WorldWideScience

Sample records for receptor modulators decrease

  1. Glucocorticoid receptor modulators.

    Science.gov (United States)

    Meijer, Onno C; Koorneef, Lisa L; Kroon, Jan

    2018-06-01

    The glucocorticoid hormone cortisol acts throughout the body to support circadian processes and adaptation to stress. The glucocorticoid receptor is the target of cortisol and of synthetic glucocorticoids, which are used widely in the clinic. Both agonism and antagonism of the glucocorticoid receptor may be beneficial in disease, but given the wide expression of the receptor and involvement in various processes, beneficial effects are often accompanied by unwanted side effects. Selective glucocorticoid receptor modulators are ligands that induce a receptor conformation that allows activation of only a subset of downstream signaling pathways. Such molecules thereby combine agonistic and antagonistic properties. Here we discuss the mechanisms underlying selective receptor modulation and their promise in treating diseases in several organ systems where cortisol signaling plays a role. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Beta receptor-mediated modulation of the late positive potential in humans.

    Science.gov (United States)

    de Rover, Mischa; Brown, Stephen B R E; Boot, Nathalie; Hajcak, Greg; van Noorden, Martijn S; van der Wee, Nic J A; Nieuwenhuis, Sander

    2012-02-01

    Electrophysiological studies have identified a scalp potential, the late positive potential (LPP), which is modulated by the emotional intensity of observed stimuli. Previous work has shown that the LPP reflects the modulation of activity in extrastriate visual cortical structures, but little is known about the source of that modulation. The present study investigated whether beta-adrenergic receptors are involved in the generation of the LPP. We used a genetic individual differences approach (experiment 1) and a pharmacological manipulation (experiment 2) to test the hypothesis that the LPP is modulated by the activation of β-adrenergic receptors. In experiment 1, we found that LPP amplitude depends on allelic variation in the β1-receptor gene polymorphism. In experiment 2, we found that LPP amplitude was modulated by the β-blocker propranolol in a direction dependent on subjects' level of trait anxiety: In participants with lower trait anxiety, propranolol led to a (nonsignificant) decrease in the LPP modulation; in participants with higher trait anxiety, propranolol increased the emotion-related LPP modulation. These results provide initial support for the hypothesis that the LPP reflects the downstream effects, in visual cortical areas, of β-receptor-mediated activation of the amygdala.

  3. GABAA receptor positive allosteric modulators modify the abuse-related behavioral and neurochemical effects of methamphetamine in rhesus monkeys.

    Science.gov (United States)

    Berro, Laís F; Andersen, Monica L; Tufik, Sergio; Howell, Leonard L

    2017-09-01

    GABA A receptor positive allosteric modulators (GABA A receptor modulators) are commonly used for the treatment of insomnia. Nevertheless, the effects of these compounds on psychostimulant-induced sleep impairment are poorly understood. Because GABA A receptor modulators have been shown to decrease the abuse-related effects of psychostimulants, the aim of the present study was to evaluate the effects of temazepam (0.3, 1.0 or 3.0 mg/kg) and eszopiclone (0.3, 1.0 or 3.0 mg/kg), two GABA A receptor modulators, on the behavioral neuropharmacology of methamphetamine in adult rhesus macaques (n = 5). Sleep-like measures and general daytime activity were evaluated with Actiwatch monitors. Methamphetamine self-administration (0.03 mg/kg/inf) was evaluated during morning sessions. Methamphetamine-induced dopamine overflow was assessed through in vivo microdialysis targeting the nucleus accumbens. Nighttime treatment with either temazepam or eszopiclone was ineffective in improving sleep-like measures disrupted by methamphetamine self-administration. Acute pretreatment with a low dose of temazepam before self-administration sessions increased methamphetamine self-administration without affecting normal daytime home-cage activity. At a high dose, acute temazepam pretreatment decreased methamphetamine self-administration and attenuated methamphetamine-induced increases in dopamine in the nucleus accumbens, without decreasing general daytime activity. Acute eszopiclone treatment exerted no effects on methamphetamine intake or drug-induced increases in dopamine. Our study suggests that treatments based on GABA A receptor modulators are not effective for the treatment of sleep disruption in the context of psychostimulant use. In addition, distinct GABA A receptor modulators differentially modulated the abuse-related effects of methamphetamine, with acute treatment with the high efficacy GABA A receptor modulator temazepam decreasing the behavioral and neurochemical effects

  4. Allosteric modulation of G-protein coupled receptors

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Spalding, Tracy A

    2004-01-01

    are believed to activate (agonists) or inhibit (competitive antagonists) receptor signalling by binding the receptor at the same site as the endogenous agonist, the orthosteric site. In contrast, allosteric ligands modulate receptor function by binding to different regions in the receptor, allosteric sites....... In recent years, combinatorial chemistry and high throughput screening have helped identify several allosteric GPCR modulators with novel structures, several of which already have become valuable pharmacological tools and may be candidates for clinical testing in the near future. This mini review outlines...... the current status and perspectives of allosteric modulation of GPCR function with emphasis on the pharmacology of endogenous and synthesised modulators, their receptor interactions and the therapeutic prospects of allosteric ligands compared to orthosteric ligands....

  5. Selective estrogen receptor modulator promotes weight loss in ovariectomized female rhesus monkeys (Macaca mulatta) by decreasing food intake and increasing activity.

    Science.gov (United States)

    Sullivan, Elinor L; Shearin, Jean; Koegler, Frank H; Cameron, Judy L

    2012-04-01

    The effect of hormone replacement therapy (HRT) on body weight in postmenopausal women is controversial, with studies reporting an increase, a decrease, and no change in body weight. To examine estrogen receptor actions on body weight, we investigated the effects of treatment with a selective estrogen receptor modulator (SERM) on body weight, food intake, and activity and metabolic rate in a nonhuman primate model. Eighteen ovariectomized female rhesus monkeys were treated with a nonsteroidal SERM (GSK232802A, 5 mg/kg po) for 3 mo. GSK232802A decreased lutenizing hormone (P Physical activity increased during the 3rd mo of treatment (P = 0.04). Baseline activity level and the change in activity due to treatment were correlated, with the most sedentary individuals exhibiting increased physical activity during the 1st mo of treatment (P = 0.02). Metabolic rate did not change (P = 0.58). These results indicate that GSK232802A treatment reduces body weight and adiposity in ovariectomized nonhuman primates by suppressing food intake and increasing activity, particularly in the most sedentary individuals. These findings suggest that SERM treatment may counteract weight gain in postmenopausal women.

  6. Nootropic α7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators

    Science.gov (United States)

    Ng, Herman J.; Whittemore, Edward R.; Tran, Minhtam B.; Hogenkamp, Derk J.; Broide, Ron S.; Johnstone, Timothy B.; Zheng, Lijun; Stevens, Karen E.; Gee, Kelvin W.

    2007-01-01

    Activation of brain α7 nicotinic acetylcholine receptors (α7 nAChRs) has broad therapeutic potential in CNS diseases related to cognitive dysfunction, including Alzheimer's disease and schizophrenia. In contrast to direct agonist activation, positive allosteric modulation of α7 nAChRs would deliver the clinically validated benefits of allosterism to these indications. We have generated a selective α7 nAChR-positive allosteric modulator (PAM) from a library of GABAA receptor PAMs. Compound 6 (N-(4-chlorophenyl)-α-[[(4-chloro-phenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide) evokes robust positive modulation of agonist-induced currents at α7 nAChRs, while preserving the rapid native characteristics of desensitization, and has little to no efficacy at other ligand-gated ion channels. In rodent models, it corrects sensory-gating deficits and improves working memory, effects consistent with cognitive enhancement. Compound 6 represents a chemotype for allosteric activation of α7 nAChRs, with therapeutic potential in CNS diseases with cognitive dysfunction. PMID:17470817

  7. Decreased autophosphorylation of EGF receptor in insulin-deficient diabetic rats

    International Nuclear Information System (INIS)

    Okamoto, M.; Kahn, C.R.; Maron, R.; White, M.F.

    1988-01-01

    The authors have previously reported that despite an increase in receptor concentration, there is a decrease in autophosphorylation and tyrosine kinase activity of the insulin receptor in insulin-deficient diabetic rats. To determine if other tyrosine kinases might be altered, they have studied the epidermal growth factor (EGF) receptor kinase in wheat germ agglutinin-purified, Triton X-100-solubilized liver membranes from streptozotocin (STZ)-induced diabetic rats and the insulin-deficient BB rat. They find that autophosphorylation of EGF receptor is decreased in proportion to the severity of the diabetic state in STZ rats with a maximal decrease of 67%. A similar decrease in autophosphorylation was observed in diabetic BB rats that was partially normalized by insulin treatment. Separation of tryptic phosphopeptides by reverse-phase high-performance liquid chromatography revealed a decrease in labeling at all sites of autophosphorylation. A parallel decrease in EGF receptor phosphorylation was also found by immunoblotting with an antiphosphotyrosine antibody. EGF receptor concentration, determined by Scatchard analysis of 125 I-labeled EGF binding, was decreased by 39% in the STZ rat and 27% in the diabetic BB rat. Thus autophosphorylation of EGF receptor, like that of the insulin receptor, is decreased in insulin-deficient rat liver. In the case of EGF receptor, this is due in part to a decrease in receptor number and in part to a decrease in the specific activity of the kinase

  8. Soman- or kainic acid-induced convulsions decrease muscarinic receptors but not benzodiazepine receptors

    International Nuclear Information System (INIS)

    Churchill, L.; Pazdernik, T.L.; Cross, R.S.; Nelson, S.R.; Samson, F.E.

    1990-01-01

    [3H]Quinuclidinyl benzilate (QNB) binding to muscarinic receptors decreased in the rat forebrain after convulsions induced by a single dose of either soman, a potent inhibitor of acetylcholinesterase, or kainic acid, an excitotoxin. A Rosenthal plot revealed that the receptors decreased in number rather than affinity. When the soman-induced convulsions were blocked, the decrease in muscarinic receptors at 3 days was less extensive than when convulsions occurred and at 10 days they approached control levels in most of the brain areas. The most prominent decrements in QNB binding were in the piriform cortex where the decline in QNB binding is probably related to the extensive convulsion-associated neuropathology. The decrements in QNB binding after convulsions suggest that the convulsive state leads to a down-regulation of muscarinic receptors in some brain areas. In contrast to the decrease in QNB binding after convulsions, [3H]flunitrazepam binding to benzodiazepine receptors did not change even in the piriform cortex where the loss in muscarinic receptors was most prominent. Thus, it appears that those neuronal processes that bear muscarinic receptors are more vulnerable to convulsion-induced change than those with benzodiazepine receptors

  9. Modulating Estrogen Receptor-related Receptor-α Activity Inhibits Cell Proliferation*

    OpenAIRE

    Bianco, Stéphanie; Lanvin, Olivia; Tribollet, Violaine; Macari, Claire; North, Sophie; Vanacker, Jean-Marc

    2009-01-01

    High expression of the estrogen receptor-related receptor (ERR)-α in human tumors is correlated to a poor prognosis, suggesting an involvement of the receptor in cell proliferation. In this study, we show that a synthetic compound (XCT790) that modulates the activity of ERRα reduces the proliferation of various cell lines and blocks the G1/S transition of the cell cycle in an ERR...

  10. Progesterone receptor modulators in breast cancer

    OpenAIRE

    WIEHLE, Ronald D.

    2015-01-01

    Breast cancer has been treated successfully with selective estrogen receptor antagonists (SERMs) such as tamoxifen, receptor-depleting agents such as fulvestrant, and aromatase inhibitors such as anastrozole. Selective progesterone receptor modulators (SPRMs or PRMs) have not been studied as much and are currently under investigation for inhibition of mammary carcinogenesis in animal models and breast cancer prevention trials in women. They might follow tamoxifen and aromatase inhibitors in t...

  11. The Role of Cannabinoid Receptors in the Descending Modulation of Pain

    Directory of Open Access Journals (Sweden)

    Francesco Rossi

    2010-08-01

    Full Text Available The endogenous antinociceptive descending pathway represents a circuitry of the supraspinal central nervous system whose task is to counteract pain. It includes the periaqueductal grey (PAG-rostral ventromedial medulla (RVM-dorsal horn (DH axis, which is the best characterized pain modulation system through which pain is endogenously inhibited. Thus, an alternative rational strategy for silencing pain is the activation of this anatomical substrate. Evidence of the involvement of cannabinoid receptors (CB in the supraspinal modulation of pain can be found in several studies in which intra-cerebral microinjections of cannabinoid ligands or positive modulators have proved to be analgesic in different pain models, whereas cannabinoid receptor antagonists or antisense nucleotides towards CB1 receptors have facilitated pain. Like opioids, cannabinoids produce centrally-mediated analgesia by activating a descending pathway which includes PAG and its projection to downstream RVM neurons, which in turn send inhibitory projections to the dorsal horn of the spinal cord. Indeed, several studies underline a supraspinal regulation of cannabinoids on g-aminobutyric acid (GABA and glutamate release which inhibit and enhance the antinociceptive descending pathway, respectively. Cannabinoid receptor activation expressed on presynaptic GABAergic terminals reduces the probability of neurotransmitter release thus dis-inhibiting the PAG-RVM-dorsal horn antinociceptive pathway. Cannabinoids seem to increase glutamate release (maybe as consequence of GABA decrease and to require glutamate receptor activation to induce antinociception. The consequent outcome is behavioral analgesia, which is reproduced in several pain conditions, from acute to chronic pain models such as inflammatory and neuropathic pain. Taken together these findings would suggest that supraspinal cannabinoid receptors have broad applications, from pain control to closely related central nervous system

  12. Melatonin modulates rat myotube-acetylcholine receptors by inhibiting calmodulin.

    Science.gov (United States)

    de Almeida-Paula, Lidiana Duarte; Costa-Lotufo, Leticia V; Silva Ferreira, Zulma; Monteiro, Amanda Elisa G; Isoldi, Mauro Cesar; Godinho, Rosely O; Markus, Regina P

    2005-11-21

    Melatonin, the pineal gland hormone, modulates alpha-bungarotoxin sensitive nicotinic acetylcholine receptors in sympathetic nerve terminals, cerebellum and chick retina imposing a diurnal variation in functional responses [Markus, R.P., Zago, W.M., Carneiro, R.C., 1996. Melatonin modulation of presynaptic nicotinic acetylcholine receptors in the rat vas deferens. J. Pharmacol. Exp. Ther. 279, 18-22; Markus, R.P., Santos, J.M., Zago, W., Reno, L.A., 2003. Melatonin nocturnal surge modulates nicotinic receptors and nicotine-induced [3HI] glutamate release in rat cerebellum slices. J. Pharmacol. Exp. Ther. 305, 525-530; Sampaio, L.F.S., Hamassaki-Britto, D.E., Markus, R.P., 2005. Influence of melatonin on the development of functional nicotinic acetylcholine receptors in cultured chick retinal cells. Braz. J. Med. Biol. Res. 38, 603-613]. Here we show that in rat myotubes forskolin and melatonin reduced the number of nicotinic acetylcholine receptors expressed in plasma membrane. In addition, these cells expressed melatonin MT1 receptors, which are known to be coupled to G(i)-protein. However, the pharmacological profile of melatonin analogs regarding the reduction in cyclic AMP accumulation and number of nicotinic acetylcholine receptors did not point to a mechanism mediated by activation of G(i)-protein coupled receptors. On the other hand, calmidazolium, a classical inhibitor of calmodulin, reduced in a similar manner both effects. Considering that one isoform of adenylyl cyclase present in rat myotubes is regulated by Ca2+/calmodulin, we propose that melatonin modulates the number of nicotinic acetylcholine receptors via reduction in cyclic AMP accumulation.

  13. Nucleus Accumbens Acetylcholine Receptors Modulate Dopamine and Motivation.

    Science.gov (United States)

    Collins, Anne L; Aitken, Tara J; Greenfield, Venuz Y; Ostlund, Sean B; Wassum, Kate M

    2016-11-01

    Environmental reward-predictive cues can motivate reward-seeking behaviors. Although this influence is normally adaptive, it can become maladaptive in disordered states, such as addiction. Dopamine release in the nucleus accumbens core (NAc) is known to mediate the motivational impact of reward-predictive cues, but little is known about how other neuromodulatory systems contribute to cue-motivated behavior. Here, we examined the role of the NAc cholinergic receptor system in cue-motivated behavior using a Pavlovian-to-instrumental transfer task designed to assess the motivating influence of a reward-predictive cue over an independently-trained instrumental action. Disruption of NAc muscarinic acetylcholine receptor activity attenuated, whereas blockade of nicotinic receptors augmented cue-induced invigoration of reward seeking. We next examined a potential dopaminergic mechanism for this behavioral effect by combining fast-scan cyclic voltammetry with local pharmacological acetylcholine receptor manipulation. The data show evidence of opposing modulation of cue-evoked dopamine release, with muscarinic and nicotinic receptor antagonists causing suppression and augmentation, respectively, consistent with the behavioral effects of these manipulations. In addition to demonstrating cholinergic modulation of naturally-evoked and behaviorally-relevant dopamine signaling, these data suggest that NAc cholinergic receptors may gate the expression of cue-motivated behavior through modulation of phasic dopamine release.

  14. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    International Nuclear Information System (INIS)

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye; Hong, Darong; Jung, Bom; Park, Min-Ju; Kim, Jong-Ho

    2015-01-01

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer

  15. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Hong, Darong [Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Jung, Bom; Park, Min-Ju [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Kim, Jong-Ho, E-mail: jonghokim@khu.ac.kr [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2015-08-07

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.

  16. NCS-1 associates with adenosine A2A receptors and modulates receptor function

    Directory of Open Access Journals (Sweden)

    Gemma eNavarro

    2012-04-01

    Full Text Available Modulation of G protein-coupled receptor (GPCR signalling by local changes in intracellular calcium concentration is an established function of Calmodulin which is known to interact with many GPCRs. Less is known about the functional role of the closely related neuronal EF-hand Ca2+-sensor proteins that frequently associate with calmodulin targets with different functional outcome. In the present study we aimed to investigate if a target of calmodulin – the A2A adenosine receptor, is able to associate with two other neuronal calcium binding proteins, namely NCS-1 and caldendrin. Using bioluminescence resonance energy transfer and co-immunoprecipitation experiments we show the existence of A2A - NCS-1 complexes in living cells whereas caldendrin did not associate with A2A receptors under the conditions tested. Interestingly, NCS-1 binding modulated downstream A2A receptor intracellular signalling in a Ca2+-dependent manner. Taken together this study provides further evidence that neuronal Ca2+-sensor proteins play an important role in modulation of GPCR signalling.

  17. Context-dependent modulation of alphabetagamma and alphabetadelta GABA A receptors by penicillin: implications for phasic and tonic inhibition.

    Science.gov (United States)

    Feng, Hua-Jun; Botzolakis, Emmanuel J; Macdonald, Robert L

    2009-01-01

    Penicillin, an open-channel blocker of GABA(A) receptors, was recently reported to inhibit phasic, but not tonic, currents in hippocampal neurons. To distinguish between isoform-specific and context-dependent modulation as possible explanations for this selectivity, the effects of penicillin were evaluated on recombinant GABA(A) receptors expressed in HEK293T cells. When co-applied with saturating GABA, penicillin decreased peak amplitude, induced rebound, and prolonged deactivation of currents evoked from both synaptic and extrasynaptic receptor isoforms. However, penicillin had isoform-specific effects on the extent of desensitization, reflecting its ability to differentially modulate peak (non-equilibrium) and residual (near-equilibrium) currents. This suggested that the context of activation could determine the apparent sensitivity of a given receptor isoform to penicillin. To test this hypothesis, we explored the ability of penicillin to modulate synaptic and extrasynaptic isoform currents that were activated under more physiologically relevant conditions. Interestingly, while currents evoked from synaptic isoforms under phasic conditions (transient activation by a saturating concentration of GABA) were substantially inhibited by penicillin, currents evoked from extrasynaptic isoforms under tonic conditions (prolonged application by a sub-saturating concentration of GABA) were minimally affected. We therefore concluded that the reported inability of penicillin to modulate tonic currents could not simply be attributed to insensitivity of extrasynaptic receptors, but rather, reflected an inability to modulate these receptors in their native context of activation.

  18. β adrenergic receptor modulation of neurotransmission to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Bateman, R J; Boychuk, C R; Philbin, K E; Mendelowitz, D

    2012-05-17

    β-adrenergic receptors are a class of G protein-coupled receptors that have essential roles in regulating heart rate, blood pressure, and other cardiorespiratory functions. Although the role of β adrenergic receptors in the peripheral nervous system is well characterized, very little is known about their role in the central nervous system despite being localized in many brain regions involved in autonomic activity and regulation. Since parasympathetic activity to the heart is dominated by cardiac vagal neurons (CVNs) originating in the nucleus ambiguus (NA), β adrenergic receptors localized in the NA represent a potential target for modulating cardiac vagal activity and heart rate. This study tests the hypothesis that activation of β adrenergic receptors alters the membrane properties and synaptic neurotransmission to CVNs. CVNs were identified in brainstem slices, and membrane properties and synaptic events were recorded using the whole-cell voltage-clamp technique. The nonselective β agonist isoproterenol significantly decreased inhibitory GABAergic and glycinergic as well as excitatory glutamatergic neurotransmission to CVNs. In addition, the β(1)-selective receptor agonist dobutamine, but not β(2) or β(3) receptor agonists, significantly decreased inhibitory GABAergic and glycinergic and excitatory glutamatergic neurotransmission to CVNs. These decreases in neurotransmission to CVNs persisted in the presence of tetrodotoxin (TTX). These results provide a mechanism by which activation of adrenergic receptors in the brainstem can alter parasympathetic activity to the heart. Likely physiological roles for this adrenergic receptor activation are coordination of parasympathetic-sympathetic activity and β receptor-mediated increases in heart rate upon arousal. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. NMDA Receptor Modulators in the Treatment of Drug Addiction.

    Science.gov (United States)

    Tomek, Seven E; Lacrosse, Amber L; Nemirovsky, Natali E; Olive, M Foster

    2013-02-06

    Glutamate plays a pivotal role in drug addiction, and the N-methyl-D-aspartate (NMDA) glutamate receptor subtype serves as a molecular target for several drugs of abuse. In this review, we will provide an overview of NMDA receptor structure and function, followed by a review of the mechanism of action, clinical efficacy, and side effect profile of NMDA receptor ligands that are currently in use or being explored for the treatment of drug addiction. These ligands include the NMDA receptor modulators memantine and acamprosate, as well as the partial NMDA agonist D-cycloserine. Data collected to date suggest that direct NMDA receptor modulators have relatively limited efficacy in the treatment of drug addiction, and that partial agonism of NMDA receptors may have some efficacy with regards to extinction learning during cue exposure therapy. However, the lack of consistency in results to date clearly indicates that additional studies are needed, as are studies examining novel ligands with indirect mechanisms for altering NMDA receptor function.

  20. NMDA Receptor Modulators in the Treatment of Drug Addiction

    Directory of Open Access Journals (Sweden)

    M. Foster Olive

    2013-02-01

    Full Text Available Glutamate plays a pivotal role in drug addiction, and the N-methyl-D-aspartate (NMDA glutamate receptor subtype serves as a molecular target for several drugs of abuse. In this review, we will provide an overview of NMDA receptor structure and function, followed by a review of the mechanism of action, clinical efficacy, and side effect profile of NMDA receptor ligands that are currently in use or being explored for the treatment of drug addiction. These ligands include the NMDA receptor modulators memantine and acamprosate, as well as the partial NMDA agonist D-cycloserine. Data collected to date suggest that direct NMDA receptor modulators have relatively limited efficacy in the treatment of drug addiction, and that partial agonism of NMDA receptors may have some efficacy with regards to extinction learning during cue exposure therapy. However, the lack of consistency in results to date clearly indicates that additional studies are needed, as are studies examining novel ligands with indirect mechanisms for altering NMDA receptor function.

  1. Modulating Estrogen Receptor-related Receptor-α Activity Inhibits Cell Proliferation*

    Science.gov (United States)

    Bianco, Stéphanie; Lanvin, Olivia; Tribollet, Violaine; Macari, Claire; North, Sophie; Vanacker, Jean-Marc

    2009-01-01

    High expression of the estrogen receptor-related receptor (ERR)-α in human tumors is correlated to a poor prognosis, suggesting an involvement of the receptor in cell proliferation. In this study, we show that a synthetic compound (XCT790) that modulates the activity of ERRα reduces the proliferation of various cell lines and blocks the G1/S transition of the cell cycle in an ERRα-dependent manner. XCT790 induces, in a p53-independent manner, the expression of the cell cycle inhibitor p21waf/cip1 at the protein, mRNA, and promoter level, leading to an accumulation of hypophosphorylated Rb. Finally, XCT790 reduces cell tumorigenicity in Nude mice. PMID:19546226

  2. DMPD: Modulation of Toll-interleukin 1 receptor mediated signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15662540 Modulation of Toll-interleukin 1 receptor mediated signaling. Li X, Qin J.... J Mol Med. 2005 Apr;83(4):258-66. Epub 2005 Jan 21. (.png) (.svg) (.html) (.csml) Show Modulation of Toll-i...nterleukin 1 receptor mediated signaling. PubmedID 15662540 Title Modulation of Toll-interleukin 1 receptor

  3. Allosteric Modulation of Muscarinic Acetylcholine Receptors

    Czech Academy of Sciences Publication Activity Database

    Jakubík, Jan; El-Fakahany, E. E.

    2010-01-01

    Roč. 3, č. 9 (2010), s. 2838-2860 ISSN 1424-8247 R&D Projects: GA ČR GA305/09/0681 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscarinic acetylcholine receptors * allosteric modulation * Alzheimer´s disease Subject RIV: CE - Biochemistry

  4. Context-Dependent Modulation of αβγ and αβγ GABAA Receptors by Penicillin: Implications for Phasic and Tonic Inhibition

    Science.gov (United States)

    Feng, Hua-Jun; Botzolakis, Emmanuel J.; Macdonald, Robert L.

    2009-01-01

    Summary Penicillin, an open-channel blocker of GABAA receptors, was recently reported to inhibit phasic, but not tonic, currents in hippocampal neurons. To distinguish between isoform-specific and context-dependent modulation as possible explanations for this selectivity, the effects of penicillin were evaluated on recombinant GABAA receptors expressed in HEK293T cells. When co-applied with saturating GABA, penicillin decreased peak amplitude, induced rebound, and prolonged deactivation of currents evoked from both synaptic and extrasynaptic receptor isoforms. However, penicillin had isoform-specific effects on the extent of desensitization, reflecting its ability to differentially modulate peak (non-equilibrium) and residual (near-equilibrium) currents. This suggested that the context of activation could determine the apparent sensitivity of a given receptor isoform to penicillin. To test this hypothesis, we explored the ability of penicillin to modulate synaptic and extrasynaptic isoforms that were activated under more physiologically relevant conditions. Interestingly, while currents evoked from synaptic isoforms under phasic conditions (transient activation by a saturating concentration of GABA) were substantially inhibited by penicillin, currents evoked from extrasynaptic isoforms under tonic conditions (prolonged application by a sub-saturating concentration of GABA) were minimally affected. We therefore concluded that the reported inability of penicillin to modulate tonic currents could not simply be attributed to insensitivity of extrasynaptic receptors, but rather, reflected an inability to modulate these receptors in their native context of activation. PMID:18775733

  5. Subregion-specific modulation of excitatory input and dopaminergic output in the striatum by tonically activated glycine and GABAA receptors

    Directory of Open Access Journals (Sweden)

    Louise eAdermark

    2011-10-01

    Full Text Available The flow of cortical information through the basal ganglia is a complex spatiotemporal pattern of increased and decreased firing. The striatum is the biggest input nucleus to the basal ganglia and the aim of this study was to assess the role of inhibitory GABAA and glycine receptors in regulating synaptic activity in the dorsolateral (DLS and ventral striatum (nucleus accumbens, nAc. Local field potential recordings from coronal brain slices of juvenile and adult Wistar rats showed that GABAA receptors and strychnine-sensitive glycine receptors are tonically activated and inhibit excitatory input to the DLS and to the nAc. Strychnine-induced disinhibition of glutamatergic transmission was insensitive to the muscarinic receptor inhibitor scopolamine (10 µM, inhibited by the nicotinic acetylcholine receptor antagonist mecamylamine (10 µM and blocked by GABAA receptor inhibitors, suggesting that tonically activated glycine receptors depress excitatory input to the striatum through modulation of cholinergic and GABAergic neurotransmission. As an end-product example of striatal GABAergic output in vivo we measured dopamine release in the DLS and nAc by microdialysis in the awake and freely moving rat. Reversed dialysis of bicuculline (50 μM in perfusate only increased extrasynaptic dopamine levels in the nAc, while strychnine administered locally (200 μM in perfusate decreased dopamine output by 60% in both the DLS and nAc. Our data suggest that GABAA and glycine receptors are tonically activated and modulate striatal transmission in a partially sub-region specific manner.

  6. Opiates Modulate Thermosensation by Internalizing Cold Receptor TRPM8

    Directory of Open Access Journals (Sweden)

    George Shapovalov

    2013-08-01

    Full Text Available Stimulation of μ-opioid receptors (OPRMs brings powerful pain relief, but it also leads to the development of tolerance and addiction. Ensuing withdrawal in abstinent patients manifests itself with severe symptoms, including cold hyperalgesia, often preventing addicted patients from successfully completing the rehabilitation. Unsurprisingly, OPRMs have been a central point of many studies. Nonetheless, a satisfactory understanding of the pathways leading to distorted sensory responses during opiate administration and abstinence is far from complete. Here, we present a mechanism that leads to modulation by OPRMs of one of the sensory responses, thermosensation. Activation of OPRM1 leads to internalization of a cold-sensor TRPM8, which can be reversed by a follow-up treatment with the inverse OPRM agonist naloxone. Knockout of TRPM8 protein leads to a decrease in morphine-induced cold analgesia. The proposed pathway represents a universal mechanism that is probably shared by regulatory pathways modulating general pain sensation in response to opioid treatment.

  7. N-glycosylation of the β2 adrenergic receptor regulates receptor function by modulating dimerization.

    Science.gov (United States)

    Li, Xiaona; Zhou, Mang; Huang, Wei; Yang, Huaiyu

    2017-07-01

    N-glycosylation is a common post-translational modification of G-protein-coupled receptors (GPCRs). However, it remains unknown how N-glycosylation affects GPCR signaling. β 2 adrenergic receptor (β 2 AR) has three N-glycosylation sites: Asn6, Asn15 at the N-terminus, and Asn187 at the second extracellular loop (ECL2). Here, we show that deletion of the N-glycan did not affect receptor expression and ligand binding. Deletion of the N-glycan at the N-terminus rather than Asn187 showed decreased effects on isoproterenol-promoted G-protein-dependent signaling, β-arrestin2 recruitment, and receptor internalization. Both N6Q and N15Q showed decreased receptor dimerization, while N187Q did not influence receptor dimerization. As decreased β 2 AR homodimer accompanied with reduced efficiency for receptor function, we proposed that the N-glycosylation of β 2 AR regulated receptor function by influencing receptor dimerization. To verify this hypothesis, we further paid attention to the residues at the dimerization interface. Studies of Lys60 and Glu338, two residues at the receptor dimerization interface, exhibited that the K60A/E338A showed decreased β 2 AR dimerization and its effects on receptor signaling were similar to N6Q and N15Q, which further supported the importance of receptor dimerization for receptor function. This work provides new insights into the relationship among glycosylation, dimerization, and function of GPCRs. Peptide-N-glycosidase F (PNGase F, EC 3.2.2.11); endo-β-N-acetylglucosaminidase A (Endo-A, EC 3.2.1.96). © 2017 Federation of European Biochemical Societies.

  8. Genistein modulates the estrogen receptor and suppresses angiogenesis and inflammation in the murine model of peritoneal endometriosis

    Directory of Open Access Journals (Sweden)

    Sutrisno Sutrisno

    2018-04-01

    Full Text Available The purpose of this study was to investigate the effect of genistein administration on the modulation of the estrogen receptor, inhibition of inflammation and angiogenesis in the murine model of peritoneal endometriosis. A total of thirty-six mice (Mus musculus were divided into six groups (n = 6, including the control group, endometriosis group, endometriosis group treated with various doses of genistein (0.78; 1.04; 1.3 mg/day, and endometriosis group treated with leuprolide acetate (0.00975 mg/day every 5 days for 15 days. Analysis of estrogen receptor-α, estrogen receptor-β, TNF-α, IL-6, VEGF, and HIF-1α were performed immunohistochemically. Expression of estrogen receptor-α, estrogen receptor-β, TNF-α, IL-6, VEGF and HIF-1α increased significantly compared with the control group (p  0.05. Genistein also decreased the expression of TNF-α and IL-6 (1.04 and 1.3 mg/day compared with the endometriosis group, reaching level comparable to that of the control group (p > 0.05. It was concluded that genistein is able to modulate estrogen receptor-α and estrogen receptor-β and inhibit the development of inflammation and angiogenesis in the murine model of peritoneal endometriosis. Thus, genistein can be a candidate in the treatment of endometriosis. Keywords: Estrogen receptor, Growth factor, Inflammation, Angiogenesis, Peritoneum

  9. Peroxisome Proliferators-Activated Receptor (PPAR Modulators and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Min-Chul Cho

    2008-01-01

    Full Text Available Overweight and obesity lead to an increased risk for metabolic disorders such as impaired glucose regulation/insulin resistance, dyslipidemia, and hypertension. Several molecular drug targets with potential to prevent or treat metabolic disorders have been revealed. Interestingly, the activation of peroxisome proliferator-activated receptor (PPAR, which belongs to the nuclear receptor superfamily, has many beneficial clinical effects. PPAR directly modulates gene expression by binding to a specific ligand. All PPAR subtypes (α,γ, and σ are involved in glucose metabolism, lipid metabolism, and energy balance. PPAR agonists play an important role in therapeutic aspects of metabolic disorders. However, undesired effects of the existing PPAR agonists have been reported. A great deal of recent research has focused on the discovery of new PPAR modulators with more beneficial effects and more safety without producing undesired side effects. Herein, we briefly review the roles of PPAR in metabolic disorders, the effects of PPAR modulators in metabolic disorders, and the technologies with which to discover new PPAR modulators.

  10. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    Science.gov (United States)

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  11. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Science.gov (United States)

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  12. Differential Modulation of GABAA and NMDA Receptors by an α7-nicotinic Acetylcholine Receptor Agonist in Chronic Glaucoma

    Directory of Open Access Journals (Sweden)

    Xujiao Zhou

    2017-12-01

    Full Text Available Presynaptic modulation of γ-aminobutyric acid (GABA release by an alpha7 nicotinic acetylcholine receptor (α7-nAChR agonist promotes retinal ganglion cell (RGC survival and function, as suggested by a previous study on a chronic glaucomatous model from our laboratory. However, the role of excitatory and inhibitory amino acid receptors and their interaction with α7-nAChR in physiological and glaucomatous events remains unknown. In this study, we investigated GABAA and N-methyl-D-aspartate (NMDA receptor activity in control and glaucomatous retinal slices and the regulation of amino acid receptor expression and function by α7-nAChR. Whole-cell patch-clamp recordings from RGCs revealed that the α7-nAChR specific agonist PNU-282987 enhanced the amplitude of currents elicited by GABA and reduced the amplitude of currents elicited by NMDA. The positive modulation of GABAA receptor and the negative modulation of NMDA receptor (NMDAR by PNU-282987-evoked were prevented by pre-administration of the α7-nAChR antagonist methyllycaconitine (MLA. The frequency and the amplitude of glutamate receptor-mediated miniature glutamatergic excitatory postsynaptic currents (mEPSCs were not significantly different between the control and glaucomatous RGCs. Additionally, PNU-282987-treated slices showed no alteration in the frequency or amplitude of mEPSCs relative to control RGCs. Moreover, we showed that expression of the α1 subunit of the GABAA receptor was downregulated and the expression of the NMDAR NR2B subunit was upregulated by intraocular pressure (IOP elevation, and the changes of high IOP were blocked by PNU-282987. In conclusion, retina GABAA and NMDARs are modulated positively and negatively, respectively, by activation of α7-nAChR in in vivo chronic glaucomatous models.

  13. Histamine H3 Receptors Decrease Dopamine Release in the Ventral Striatum by Reducing the Activity of Striatal Cholinergic Interneurons.

    Science.gov (United States)

    Varaschin, Rafael Koerich; Osterstock, Guillaume; Ducrot, Charles; Leino, Sakari; Bourque, Marie-Josée; Prado, Marco A M; Prado, Vania Ferreira; Salminen, Outi; Rannanpää Née Nuutinen, Saara; Trudeau, Louis-Eric

    2018-04-15

    Histamine H 3 receptors are widely distributed G i -coupled receptors whose activation reduces neuronal activity and inhibits release of numerous neurotransmitters. Although these receptors are abundantly expressed in the striatum, their modulatory role on activity-dependent dopamine release is not well understood. Here, we observed that histamine H 3 receptor activation indirectly diminishes dopamine overflow in the ventral striatum by reducing cholinergic interneuron activity. Acute brain slices from C57BL/6 or channelrhodopsin-2-transfected DAT-cre mice were obtained, and dopamine transients evoked either electrically or optogenetically were measured by fast-scan cyclic voltammetry. The H 3 agonist α-methylhistamine significantly reduced electrically- evoked dopamine overflow, an effect blocked by the nicotinic acetylcholine receptor antagonist dihydro-β-erythroidine, suggesting involvement of cholinergic interneurons. None of the drug treatments targeting H 3 receptors affected optogenetically evoked dopamine overflow, indicating that direct H 3 -modulation of dopaminergic axons is unlikely. Next, we used qPCR and confirmed the expression of histamine H 3 receptor mRNA in cholinergic interneurons, both in ventral and dorsal striatum. Activation of H 3 receptors by α-methylhistamine reduced spontaneous firing of cholinergic interneurons in the ventral, but not in the dorsal striatum. Resting membrane potential and number of spontaneous action potentials in ventral-striatal cholinergic interneurons were significantly reduced by α-methylhistamine. Acetylcholine release from isolated striatal synaptosomes, however, was not altered by α-methylhistamine. Together, these results indicate that histamine H 3 receptors are important modulators of dopamine release, specifically in the ventral striatum, and that they do so by decreasing the firing rate of cholinergic neurons and, consequently, reducing cholinergic tone on dopaminergic axons. Copyright © 2018 IBRO

  14. Selective progesterone receptor modulators 3: use in oncology, endocrinology and psychiatry.

    Science.gov (United States)

    Benagiano, Giuseppe; Bastianelli, Carlo; Farris, Manuela

    2008-10-01

    A number of synthetic steroids are capable of modulating progesterone receptors with a spectrum of activities ranging from pure antagonism to a mixture of agonism and antagonism. The best known of these are mifepristone (RU 486), asoprisnil (J 867), onapristone (ZK 98299), ulipristal (CDB 2914), Proellex() (CDB 4124), ORG 33628 and ORG 31710. Outside reproduction selective modulators of progesterone receptors have been under investigation for a large variety of indications, for example in oncology as adjuvants in breast, cervical, endometrial, ovarian and prostate cancer, as well as inoperable meningioma and leiomyosarcoma. In addition, they have been used as antiglucocorticoids. It is therefore useful to review the results obtained in these conditions. A careful evaluation of existing major review papers and of recently published articles was carried out for the indications under review, focusing not only on mifepristone but also on those other selective modulators of progesterone receptors for which data are available. In preliminary studies selective modulators of progesterone receptors had some activity on a number of neoplasias. Their antiglucocorticoid activity has been tested with some success in Cushing's syndrome, several psychiatric conditions (e.g., mood disorders and Alzheimer's disease) and acute renal failure. Finally they are being used in a gene regulator system.

  15. [Pharmacological characteristics of drugs targeted on calcium-sensing receptor.-properties of cinacalcet hydrochloride as allosteric modulator].

    Science.gov (United States)

    Nagano, Nobuo; Tsutsui, Takaaki

    2016-06-01

    Calcimimetics act as positive allosteric modulators of the calcium-sensing receptor (CaSR), thereby decreasing parathyroid hormone (PTH) secretion from the parathyroid glands. On the other hand, negative allosteric modulators of the CaSR with stimulatory effect on PTH secretion are termed calcilytics. The calcimimetic cinacalcet hydrochloride (cinacalcet) is the world's first allosteric modulator of G protein-coupled receptor to enter the clinical market. Cinacalcet just tunes the physiological effects of Ca(2+), an endogenous ligand, therefore, shows high selectivity and low side effects. Calcimimetics also increase cell surface CaSR expression by acting as pharmacological chaperones (pharmacoperones). It is considered that the cinacalcet-induced upper gastrointestinal problems are resulted from enhanced physiological responses to Ca(2+) and amino acids via increased sensitivity of digestive tract CaSR by cinacalcet. While clinical developments of calcilytics for osteoporosis were unfortunately halted or terminated due to paucity of efficacy, it is expected that calcilytics may be useful for the treatment of patients with activating CaSR mutations, asthma, and idiopathic pulmonary artery hypertension.

  16. Serotonergic-postsynaptic receptors modulate gripping-induced immobility episodes in male taiep rats.

    Science.gov (United States)

    Eguibar, José R; Cortés, M C; Ita, M L

    2009-09-01

    The Taiep rat is a myelin mutant with a motor syndrome characterized by tremor, ataxia, immobility, epilepsy, and paralysis. The rat shows a hypomyelination followed by a progressive demyelination. During immobilities taiep rats show a REM-like sleep pattern and a disorganized sleep-wake pattern suggesting taiep rats as a model of narcolepsy-cataplexy. Our study analyzed the role of postsynaptic serotonin receptors in the expression of gripping-induced immobility episodes (IEs) in 8-month-old male taiep rats. The specific postsynaptic serotonin agonist +/-1-(2,5-dimethoxy-4-iodoamphetamine hydrochloride (+/-DOI) decreased the frequency of gripping-induced IEs, but that was not the case with alpha-methyl-serotonin maleate (alpha-methyl-5HT), a nonspecific postsynaptic agonist. Although the serotonin antagonists, ketanserine and metergoline, produced a biphasic effect, first a decrease followed by an increase with higher doses, similar effects were obtained with a mean duration of gripping-induced IEs. These findings correlate with the pharmacological observations in narcoleptic dogs and humans in which serotonin-reuptake inhibitors improve cataplexy, particularly in long-term treatment that could change the serotonin receptor levels. Polysomnographic recordings showed an increase in the awakening time and a decrease in the slow wave and rapid eye movement sleep concomitant with a decrease in immobilities after use of +/-DOI, this being stronger with the highest dose. Taken together, our results show that postsynaptic serotonin receptors are involved in the modulation in gripping-induced IEs caused by the changes in the organization of the sleep-wake cycle in taiep rats. It is possible that specific agonists, without side effects, could be a useful treatment in human narcoleptic patients. 2009 Wiley-Liss, Inc.

  17. Adrenergic receptor-mediated modulation of striatal firing patterns.

    Science.gov (United States)

    Ohta, Hiroyuki; Kohno, Yu; Arake, Masashi; Tamura, Risa; Yukawa, Suguru; Sato, Yoshiaki; Morimoto, Yuji; Nishida, Yasuhiro; Yawo, Hiromu

    2016-11-01

    Although noradrenaline and adrenaline are some of the most important neurotransmitters in the central nervous system, the effects of noradrenergic/adrenergic modulation on the striatum have not been determined. In order to explore the effects of adrenergic receptor (AR) agonists on the striatal firing patterns, we used optogenetic methods which can induce continuous firings. We employed transgenic rats expressing channelrhodopsin-2 (ChR2) in neurons. The medium spiny neuron showed a slow rising depolarization during the 1-s long optogenetic striatal photostimulation and a residual potential with 8.6-s half-life decay after the photostimulation. As a result of the residual potential, five repetitive 1-sec long photostimulations with 20-s onset intervals cumulatively increased the number of spikes. This 'firing increment', possibly relating to the timing control function of the striatum, was used to evaluate the AR modulation. The β-AR agonist isoproterenol decreased the firing increment between the 1st and 5th stimulation cycles, while the α 1 -AR agonist phenylephrine enhanced the firing increment. Isoproterenol and adrenaline increased the early phase (0-0.5s of the photostimulation) firing response. This adrenergic modulation was inhibited by the β-antagonist propranolol. Conversely, phenylephrine and noradrenaline reduced the early phase response. β-ARs and α 1 -ARs work in opposition controlling the striatal firing initiation and the firing increment. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  18. The past, present, and future of selective progesterone receptor modulators in the management of uterine fibroids.

    Science.gov (United States)

    Singh, Sukhbir S; Belland, Liane; Leyland, Nicholas; von Riedemann, Sarah; Murji, Ally

    2017-12-21

    Uterine fibroids are common in women of reproductive age and can have a significant impact on quality of life and fertility. Although a number of international obstetrics/gynecology societies have issued evidence-based clinical practice guidelines for the management of symptomatic uterine fibroids, many of these guidelines do not yet reflect the most recent clinical evidence and approved indication for one of the key medical management options: the selective progesterone receptor modulator class. This article aims to share the clinical experience gained with selective progesterone receptor modulators in Europe and Canada by reviewing the historical development of selective progesterone receptor modulators, current best practices for selective progesterone receptor modulator use based on available data, and potential future uses for selective progesterone receptor modulators in uterine fibroids and other gynecologic conditions. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. α2-Adrenergic modulation of the glutamate receptor and transporter function in a chronic ocular hypertension model.

    Science.gov (United States)

    Jung, Kyoung In; Kim, Jie Hyun; Park, Chan Kee

    2015-10-15

    Excitotoxicity, glutamate-induced toxic effects to retinal ganglion cells (RGCs), is one of several mechanisms of RGC loss suggested in glaucoma. In this study, we focused on the role of glutamate transporter of glial cells as well as N-methyl-d-aspartate (NMDA) receptor with regard to glutamate toxicity in glaucoma. We also investigated whether α2-adrenoceptor activation could modulate glutamate transporters and NMDA receptors in a chronic ocular hypertension model. Brimonidine 0.15% was administered topically to the eyes of experimental glaucoma and control animals twice daily. After 8 weeks of intraocular pressure (IOP) elevation, staining with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) revealed an increase in the ganglion cell layer, and the number of TUNEL-positive cells was reduced by brimonidine treatment (P<0.05). Animals with experimentally induced glaucoma exhibited an increase in retinal stress marker glial fibrillary acidic protein (GFAP) immunoreactivity; brimonidine treatment reduced GFAP. Excitatory amino acid transporter 1(EAAT1) expression remained stable throughout the period of chronic ocular hypertension. α2-Adrenergic treatment upregulated EAAT1 protein levels (P<0.05). NMDA receptor (GluN1) expression was stimulated by chronic elevation of IOP, and GluN1-positive cells in ganglion cell layer were co-localized with TUNEL staining. Brimonidine administration suppressed GluN1 levels (P<0.05). These results indicate that brimonidine decreased RGC apoptosis, upregulating EAAT1 and downregulating NMDA receptors. We suggest that topical brimonidine treatment may decrease the glutamate excitotoxicity through modulation of glutamate transporter and NMDA receptor in glaucoma. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Decreased expression of the aryl hydrocarbon receptor in ocular Behcet's disease.

    Science.gov (United States)

    Wang, Chaokui; Ye, Zi; Kijlstra, Aize; Zhou, Yan; Yang, Peizeng

    2014-01-01

    Recent studies show that the aryl hydrocarbon receptor (AhR) is involved in immune responses. AhR is activated following interaction with its ligands, such as 6-formylindolo[3,2-b]carbazole (FICZ) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). In this study, we investigated the role of AhR activation by its endogenous ligands in the pathogenesis of ocular Behcet's disease (BD). The expression of AhR was significantly decreased in active BD patients as compared to inactive BD patients and normal controls. Both FICZ and ITE inhibited Th1 and Th17 polarization and induced the expression of IL-22 by PBMCs and by CD4(+)T cells in active BD patients and normal controls. Stimulation of purified CD4(+)T cells with FICZ or ITE caused a decreased expression of RORC, IL-17, IL-23R, and CCR6 and an increased phosphorylation of STAT3 and STAT5. The present study suggests that a decreased AhR expression is associated with disease activity in BD patients. The activation of AhR by either FICZ or ITE was able to inhibit Th1 and Th17 cell polarization. Further studies are needed to investigate whether modulation of AhR might be used in the treatment of BD.

  1. Receptor activity modifying proteins (RAMPs) interact with the VPAC1 receptor: evidence for differential RAMP modulation of multiple signalling pathways

    International Nuclear Information System (INIS)

    Christopoulos, G.; Morfis, M.; Sexton, P.M.; Christopoulos, A.; Laburthe, M.; Couvineau, A.

    2001-01-01

    Full text: Receptor activity modifying proteins (RAMP) constitute a family of three accessory proteins that affect the expression and/or phenotype of the calcitonin receptor (CTR) or CTR-like receptor (CRLR). In this study we screened a range of class II G protein-coupled receptors (PTH1, PTH2, GHRH, VPAC1, VPAC2 receptors) for possible RAMP interactions by measurement of receptor-induced translocation of c-myc tagged RAMP1 or HA tagged RAMP3. Of these, only the VPAC1 receptor caused significant translocation of c-myc-RAMP1 or HA-RAMP3 to the cell surface. Co-transfection of VPAC1 and RAMPs did not alter 125 I-VIP binding and specificity. VPAC1 receptor function was subsequently analyzed through parallel determinations of cAMP accumulation and phosphoinositide (PI) hydrolysis in the presence and absence of each of the three RAMPs. In contrast to CTR-RAMP interaction, where there was an increase in cAMP Pharmacologisand a decrease in PI hydrolysis, VPAC1-RAMP interaction was characterized by a specific increase in agonist-mediated PI hydrolysis when co-transfected with RAMP2. This change was due to an enhancement of Emax with no change in EC 50 value for VIP. No significant change in cAMP accumulation was observed. This is the first demonstration of an interaction of RAMPs with a G protein-coupled receptor outside the CTR family and may suggest a more generalized role for RAMPs in modulating G protein-coupled receptor signaling. Copyright (2001) Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists

  2. Context-Dependent Modulation of αβγ and αβγ GABAA Receptors by Penicillin: Implications for Phasic and Tonic Inhibition

    OpenAIRE

    Feng, Hua-Jun; Botzolakis, Emmanuel J.; Macdonald, Robert L.

    2008-01-01

    Penicillin, an open-channel blocker of GABAA receptors, was recently reported to inhibit phasic, but not tonic, currents in hippocampal neurons. To distinguish between isoform-specific and context-dependent modulation as possible explanations for this selectivity, the effects of penicillin were evaluated on recombinant GABAA receptors expressed in HEK293T cells. When co-applied with saturating GABA, penicillin decreased peak amplitude, induced rebound, and prolonged deactivation of currents e...

  3. Bidirectional modulation of hippocampal gamma (20-80 Hz) frequency activity in vitro via alpha(α)- and beta(β)-adrenergic receptors (AR).

    Science.gov (United States)

    Haggerty, D C; Glykos, V; Adams, N E; Lebeau, F E N

    2013-12-03

    Noradrenaline (NA) in the hippocampus plays an important role in memory function and has been shown to modulate different forms of synaptic plasticity. Oscillations in the gamma frequency (20-80 Hz) band in the hippocampus have also been proposed to play an important role in memory functions and, evidence from both in vitro and in vivo studies, has suggested this activity can be modulated by NA. However, the role of different NA receptor subtypes in the modulation of gamma frequency activity has not been fully elucidated. We have found that NA (30 μM) exerts a bidirectional control on the magnitude of kainate-evoked (50-200 nM) gamma frequency oscillations in the cornu Ammonis (CA3) region of the rat hippocampus in vitro via activation of different receptor subtypes. Activation of alpha-adrenergic receptors (α-AR) reduced the power of the gamma frequency oscillation. In contrast, activation of beta-adrenergic receptors (β-AR) caused an increase in the power of the gamma frequency oscillations. Using specific agonists and antagonists of AR receptor subtypes we demonstrated that these effects are mediated specifically via α1A-AR and β1-AR subtypes. NA activated both receptor subtypes, but the α1A-AR-mediated effect predominated, resulting in a reversible suppression of gamma frequency activity. These results suggest that NA is able to differentially modulate on-going gamma frequency oscillatory activity that could result in either increased or decreased information flow through the hippocampus. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Effect of GABA agonists and GABA-A receptor modulators on cocaine- and food-maintained responding and cocaine discrimination in rats.

    Science.gov (United States)

    Barrett, Andrew C; Negus, S Stevens; Mello, Nancy K; Caine, S Barak

    2005-11-01

    Recent studies indicate that GABAergic ligands modulate abuse-related effects of cocaine. The goal of this study was to evaluate the effects of a mechanistically diverse group of GABAergic ligands on the discriminative stimulus and reinforcing effects of cocaine in rats. One group of rats was trained to discriminate 5.6 mg/kg cocaine from saline in a two-lever, food-reinforced, drug discrimination procedure. In two other groups, responding was maintained by cocaine (0-3.2 mg/kg/injection) or liquid food (0-100%) under a fixed ratio 5 schedule. Six GABA agonists were tested: the GABA-A receptor agonist muscimol, the GABA-B receptor agonist baclofen, the GABA transaminase inhibitor gamma-vinyl-GABA (GVG), and three GABA-A receptor modulators (the barbiturate pentobarbital, the high-efficacy benzodiazepine midazolam, and the low-efficacy benzodiazepine enazenil). When tested alone, none of the compounds substituted fully for the discriminative stimulus effects of cocaine. As acute pretreatments, select doses of midazolam and pentobarbital produced 2.2- to 3.6-fold rightward shifts in the cocaine dose-effect function. In contrast, muscimol, baclofen, GVG, and enazenil failed to alter the discriminative stimulus effects of cocaine. In assays of cocaine- and food-maintained responding, midazolam and pentobarbital decreased cocaine self-administration at doses 9.6- and 3.3-fold lower, respectively, than those that decreased food-maintained responding. In contrast, muscimol, baclofen, and GVG decreased cocaine self-administration at doses that also decreased food-maintained responding. Enazenil failed to alter cocaine self-administration. Together with previous studies, these data suggest that among mechanistically diverse GABA agonists, high-efficacy GABA-A modulators may be the most effective for modifying the abuse-related effects of cocaine.

  5. Estrogen effects on angiotensin receptors are modulated by pituitary in female rats

    International Nuclear Information System (INIS)

    Douglas, J.G.

    1987-01-01

    The present studies were designed to test the hypothesis that changes in angiotensin II (ANG II) receptors might modulate the layered target tissue responsiveness accompanying estradiol administration. Estradiol was infused continuously in oophorectomized female rats. Aldosterone was also infused in control and experimental animals to avoid estrogen-induced changes in renin and ANG II. ANG II binding constants were determined in radioreceptor assays. Estradiol increased binding site concentration in adrenal glomerulosa by 76% and decreased binding sites of uterine myometrium and glomeruli by 45 and 24%, respectively. There was an accompanying increase in the affinity of ANG II binding to adrenal glomerulosa and uterine myometrium. Because estrogen is a potent stimulus of prolactin release from the pituitary of rodents, studies were also designed to test the hypothesis that prolactin may mediate some or all of the estrogen-induced effects observed. Hypophysectomy abolished estradiol stimulation of prolactin release and most ANG II receptor changes. Prolactin administration to pituitary intact rats was associated with a 50% increase in receptor density of adrenal glomerulosa simulating estradiol administration. However, the changes in glomeruli and uterine myometrium were opposite in that both tissues also increased receptor density, suggesting that prolactin was not the sole mediator of the estrogen-induced receptor changes. In conclusion, regulation of ANG II receptors in a number of diverse target tissues by estradiol is complex with contributions from estrogens and pituitary factors, which include but do not exclusively involve prolactin

  6. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    DEFF Research Database (Denmark)

    Park, Kyoungmin; Mima, Akira; Li, Qian

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1...... induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca(2+)]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1...... overexpression in the endothelia of Aki/ApoE(-/-) mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway...

  7. Structural features of subtype-selective EP receptor modulators.

    Science.gov (United States)

    Markovič, Tijana; Jakopin, Žiga; Dolenc, Marija Sollner; Mlinarič-Raščan, Irena

    2017-01-01

    Prostaglandin E2 is a potent endogenous molecule that binds to four different G-protein-coupled receptors: EP1-4. Each of these receptors is a valuable drug target, with distinct tissue localisation and signalling pathways. We review the structural features of EP modulators required for subtype-selective activity, as well as the structural requirements for improved pharmacokinetic parameters. Novel EP receptor subtype selective agonists and antagonists appear to be valuable drug candidates in the therapy of many pathophysiological states, including ulcerative colitis, glaucoma, bone healing, B cell lymphoma, neurological diseases, among others, which have been studied in vitro, in vivo and in early phase clinical trials. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Dopamine receptors on adrenal chromaffin cells modulate calcium uptake and catecholamine release

    Energy Technology Data Exchange (ETDEWEB)

    Bigornia, L; Suozzo, M; Ryan, K A; Napp, D; Schneider, A S

    1988-10-01

    The presence of dopamine-containing cells in sympathetic ganglia, i.e., small, intensely fluorescent cells, has been known for some time. However, the role of dopamine as a peripheral neurotransmitter and its mechanism of action are not well understood. Previous studies have demonstrated the presence of D2 dopamine receptors on the surface of bovine adrenal chromaffin cells using radioligand binding methods and dopamine receptor inhibition of catecholamine release from perfused adrenal glands. In the present study, we provide evidence confirming a role of dopamine receptors as inhibitory modulators of adrenal catecholamine release from bovine chromaffin cell cultures and further show that the mechanism of modulation involves inhibition of stimulated calcium uptake. Apomorphine gave a dose-dependent inhibition (IC50 = 1 microM) of 45Ca2+ uptake stimulated by either nicotine (10 microM) or membrane depolarization with an elevated K+ level (60 mM). This inhibition was reversed by a series of specific (including stereospecific) dopamine receptor antagonists: haloperidol, spiperone, sulpiride, and (+)-butaclamol, but not (-)-butaclamol. In addition, the calcium channel agonist Bay K 8644 was used to stimulate uptake of 45Ca2+ into chromaffin cells, and this uptake was also inhibited by the dopamine receptor agonist apomorphine. The combined results suggest that dopamine receptors on adrenal chromaffin cells alter Ca2+ channel conductance, which, in turn, modulates catecholamine release.

  9. Presynaptic Dopamine D2 Receptors Modulate [3H]GABA Release at StriatoPallidal Terminals via Activation of PLC → IP3 → Calcineurin and Inhibition of AC → cAMP → PKA Signaling Cascades.

    Science.gov (United States)

    Jijón-Lorenzo, Rafael; Caballero-Florán, Isaac Hiram; Recillas-Morales, Sergio; Cortés, Hernán; Avalos-Fuentes, José Arturo; Paz-Bermúdez, Francisco Javier; Erlij, David; Florán, Benjamín

    2018-02-21

    Striatal dopamine D2 receptors activate the PLC → IP3 → Calcineurin-signaling pathway to modulate the neural excitability of En+ Medium-sized Spiny GABAergic neurons (MSN) through the regulation of L-type Ca 2+ channels. Presynaptic dopaminergic D2 receptors modulate GABA release at striatopallidal terminals through L-type Ca 2+ channels as well, but their signaling pathway is still undetermined. Since D2 receptors are Gi/o-coupled and negatively modulate adenylyl cyclase (AC), we investigated whether presynaptic D2 receptors modulate GABA release through the same signaling cascade that controls excitability in the striatum or by the inhibition of AC and decreased PKA activity. Activation of D2 receptors stimulated formation of [ 3 H]IP 1 and decreased Forskolin-stimulated [ 3 H]cAMP accumulation in synaptosomes from rat Globus Pallidus. D2 receptor activation with Quinpirole in the presence of L 745,870 decreased, in a dose-dependent manner, K + -induced [ 3 H]GABA release in pallidal slices. The effect was prevented by the pharmacological blockade of Gi/o βγ subunit effects with Gallein, PLC with U 73122, IP3 receptor activation with 4-APB, Calcineurin with FK506. In addition, when release was stimulated with Forskolin to activate AC, D2 receptors also decreased K + -induced [ 3 H]GABA release, an effect occluded with the effect of the blockade of PKA with H89 or stimulation of release with the cAMP analog 8-Br-cAMP. These data indicate that D2 receptors modulate [ 3 H]GABA release at striatopallidal terminals by activating the PLC → IP3 → Calcineurin-signaling cascade, the same one that modulates excitability in soma. Additionally, D2 receptors inhibit release when AC is active. Both mechanisms appear to converge to regulate the activity of presynaptic L-type Ca 2+ channels. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Adenosine receptors and muscarinic receptors cooperate in acetylcholine release modulation in the neuromuscular synapse.

    Science.gov (United States)

    Santafe, M M; Priego, M; Obis, T; Garcia, N; Tomàs, M; Lanuza, M A; Tomàs, J

    2015-07-01

    Adenosine receptors (ARs) are present in the motor terminals at the mouse neuromuscular junction. ARs and the presynaptic muscarinic acetylcholine receptors (mAChRs) share the functional control of the neuromuscular junction. We analysed their mutual interaction in transmitter release modulation. In electrophysiological experiments with unaltered synaptic transmission (muscles paralysed by blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB), we found that: (i) a collaborative action between different AR subtypes reduced synaptic depression at a moderate activity level (40 Hz); (ii) at high activity levels (100 Hz), endogenous adenosine production in the synaptic cleft was sufficient to reduce depression through A1 -type receptors (A1 Rs) and A2 A-type receptors (A2 A Rs); (iii) when the non-metabolizable 2-chloroadenosine (CADO) agonist was used, both the quantal content and depression were reduced; (iv) the protective effect of CADO on depression was mediated by A1 Rs, whereas A2 A Rs seemed to modulate A1 Rs; (v) ARs and mAChRs absolutely depended upon each other for the modulation of evoked and spontaneous acetylcholine release in basal conditions and in experimental conditions with CADO stimulation; (vi) the purinergic and muscarinic mechanisms cooperated in the control of depression by sharing a common pathway although the purinergic control was more powerful than the muscarinic control; and (vii) the imbalance of the ARs created by using subtype-selective and non-selective inhibitory and stimulatory agents uncoupled protein kinase C from evoked transmitter release. In summary, ARs (A1 Rs, A2 A Rs) and mAChRs (M1 , M2 ) cooperated in the control of activity-dependent synaptic depression and may share a common protein kinase C pathway. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Selective Negative Allosteric Modulation Of Metabotropic Glutamate Receptors - A Structural Perspective of Ligands and Mutants

    DEFF Research Database (Denmark)

    Harpsøe, Kasper; Isberg, Vignir; Tehan, Benjamin G

    2015-01-01

    modulators. In this analysis, we make the first comprehensive structural comparison of all metabotropic glutamate receptors, placing selective negative allosteric modulators and critical mutants into the detailed context of the receptor binding sites. A better understanding of how the different m......Glu allosteric modulator binding modes relates to selective pharmacological actions will be very valuable for rational design of safer drugs....

  12. Panning for SNuRMs: using cofactor profiling for the rational discovery of selective nuclear receptor modulators.

    Science.gov (United States)

    Kremoser, Claus; Albers, Michael; Burris, Thomas P; Deuschle, Ulrich; Koegl, Manfred

    2007-10-01

    Drugs that target nuclear receptors are clinically, as well as commercially, successful. Their widespread use, however, is limited by an inherent propensity of nuclear receptors to trigger beneficial, as well as adverse, pharmacological effects upon drug activation. Hence, selective drugs that display reduced adverse effects, such as the selective estrogen receptor modulator (SERM) Raloxifene, have been developed by guidance through classical cell culture assays and animal trials. Full agonist and selective modulator nuclear receptor drugs, in general, differ by their ability to recruit certain cofactors to the receptor protein. Hence, systematic cofactor profiling is advancing into an approach for the rationally guided identification of selective NR modulators (SNuRMs) with improved therapeutic ratio.

  13. NPY2-receptor variation modulates iconic memory processes.

    Science.gov (United States)

    Arning, Larissa; Stock, Ann-Kathrin; Kloster, Eugen; Epplen, Jörg T; Beste, Christian

    2014-08-01

    Sensory memory systems are modality-specific buffers that comprise information about external stimuli, which represent the earliest stage of information processing. While these systems have been the subject of cognitive neuroscience research for decades, little is known about the neurobiological basis of sensory memory. However, accumulating evidence suggests that the glutamatergic system and systems influencing glutamatergic neural transmission are important. In the current study we examine if functional promoter variations in neuropeptide Y (NPY) and its receptor gene NPY2R affect iconic memory processes using a partial report paradigm. We found that iconic memory decayed much faster in individuals carrying the rare promoter NPY2R G allele which is associated with increased expression of the Y2 receptor. Possibly this effect is due to altered presynaptic inhibition of glutamate release, known to be modulated by Y2 receptors. Altogether, our results provide evidence that the functionally relevant single nucleotide polymorphism (SNP) in the NPY2R promoter gene affect circumscribed processes of early sensory processing, i.e. only the stability of information in sensory memory buffers. This leads us to suggest that especially the stability of information in sensory memory buffers depends on glutamatergic neural transmission and factors modulating glutamatergic turnover. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  14. Efficient modulation of γ-aminobutyric acid type A receptors by piperine derivatives.

    Science.gov (United States)

    Schöffmann, Angela; Wimmer, Laurin; Goldmann, Daria; Khom, Sophia; Hintersteiner, Juliane; Baburin, Igor; Schwarz, Thomas; Hintersteininger, Michael; Pakfeifer, Peter; Oufir, Mouhssin; Hamburger, Matthias; Erker, Thomas; Ecker, Gerhard F; Mihovilovic, Marko D; Hering, Steffen

    2014-07-10

    Piperine activates TRPV1 (transient receptor potential vanilloid type 1 receptor) receptors and modulates γ-aminobutyric acid type A receptors (GABAAR). We have synthesized a library of 76 piperine analogues and analyzed their effects on GABAAR by means of a two-microelectrode voltage-clamp technique. GABAAR were expressed in Xenopus laevis oocytes. Structure-activity relationships (SARs) were established to identify structural elements essential for efficiency and potency. Efficiency of piperine derivatives was significantly increased by exchanging the piperidine moiety with either N,N-dipropyl, N,N-diisopropyl, N,N-dibutyl, p-methylpiperidine, or N,N-bis(trifluoroethyl) groups. Potency was enhanced by replacing the piperidine moiety by N,N-dibutyl, N,N-diisobutyl, or N,N-bistrifluoroethyl groups. Linker modifications did not substantially enhance the effect on GABAAR. Compound 23 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dipropyl-2,4-pentadienamide] induced the strongest modulation of GABAA (maximal GABA-induced chloride current modulation (IGABA-max = 1673% ± 146%, EC50 = 51.7 ± 9.5 μM), while 25 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dibutyl-2,4-pentadienamide] displayed the highest potency (EC50 = 13.8 ± 1.8 μM, IGABA-max = 760% ± 47%). Compound 23 induced significantly stronger anxiolysis in mice than piperine and thus may serve as a starting point for developing novel GABAAR modulators.

  15. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    Science.gov (United States)

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  16. Discovery and therapeutic promise of selective androgen receptor modulators.

    Science.gov (United States)

    Chen, Jiyun; Kim, Juhyun; Dalton, James T

    2005-06-01

    Androgens are essential for male development and the maintenance of male secondary characteristics, such as bone mass, muscle mass, body composition, and spermatogenesis. The main disadvantages of steroidal androgens are their undesirable physicochemical and pharmacokinetic properties. The recent discovery of nonsteroidal selective androgen receptor modulators (SARMs) provides a promising alternative for testosterone replacement therapies with advantages including oral bioavailability, flexibility of structural modification, androgen receptor specificity, tissue selectivity, and the lack of steroid-related side effects.

  17. Steroidal androgens and nonsteroidal, tissue-selective androgen receptor modulator, S-22, regulate androgen receptor function through distinct genomic and nongenomic signaling pathways.

    Science.gov (United States)

    Narayanan, Ramesh; Coss, Christopher C; Yepuru, Muralimohan; Kearbey, Jeffrey D; Miller, Duane D; Dalton, James T

    2008-11-01

    Androgen receptor (AR) ligands are important for the development and function of several tissues and organs. However, the poor oral bioavailability, pharmacokinetic properties, and receptor cross-reactivity of testosterone, coupled with side effects, place limits on its clinical use. Selective AR modulators (SARMs) elicit anabolic effects in muscle and bone, sparing reproductive organs like the prostate. However, molecular mechanisms underlying the tissue selectivity remain ambiguous. We performed a variety of in vitro studies to compare and define the molecular mechanisms of an aryl propionamide SARM, S-22, as compared with dihydrotestosterone (DHT). Studies indicated that S-22 increased levator ani muscle weight but decreased the size of prostate in rats. Analysis of the upstream intracellular signaling events indicated that S-22 and DHT mediated their actions through distinct pathways. Modulation of these pathways altered the recruitment of AR and its cofactors to the PSA enhancer in a ligand-dependent fashion. In addition, S-22 induced Xenopus laevis oocyte maturation and rapid phosphorylation of several kinases, through pathways distinct from steroids. These studies reveal novel differences in the molecular mechanisms by which S-22, a nonsteroidal SARM, and DHT mediate their pharmacological effects.

  18. Decreased Expression of the Aryl Hydrocarbon Receptor in Ocular Behcet’s Disease

    Directory of Open Access Journals (Sweden)

    Chaokui Wang

    2014-01-01

    Full Text Available Recent studies show that the aryl hydrocarbon receptor (AhR is involved in immune responses. AhR is activated following interaction with its ligands, such as 6-formylindolo[3,2-b]carbazole (FICZ and 2-(1′H-indole-3′-carbonyl-thiazole-4-carboxylic acid methyl ester (ITE. In this study, we investigated the role of AhR activation by its endogenous ligands in the pathogenesis of ocular Behcet’s disease (BD. The expression of AhR was significantly decreased in active BD patients as compared to inactive BD patients and normal controls. Both FICZ and ITE inhibited Th1 and Th17 polarization and induced the expression of IL-22 by PBMCs and by CD4+T cells in active BD patients and normal controls. Stimulation of purified CD4+T cells with FICZ or ITE caused a decreased expression of RORC, IL-17, IL-23R, and CCR6 and an increased phosphorylation of STAT3 and STAT5. The present study suggests that a decreased AhR expression is associated with disease activity in BD patients. The activation of AhR by either FICZ or ITE was able to inhibit Th1 and Th17 cell polarization. Further studies are needed to investigate whether modulation of AhR might be used in the treatment of BD.

  19. 5HT(1A) and 5HT(1B) receptors of medial prefrontal cortex modulate anxiogenic-like behaviors in rats.

    Science.gov (United States)

    Solati, Jalal; Salari, Ali-Akbar; Bakhtiari, Amir

    2011-10-31

    Medial prefrontal cortex (MPFC) is one of the brain regions which play an important role in emotional behaviors. The purpose of the present study was to evaluate the role of 5HT(1A) and 5HT(1B) receptors of the MPFC in modulation of anxiety behaviors in rats. The elevated plus maze (EPM) which is a useful test to investigate the effects of anxiogenic or anxiolytic drugs in rodents, was used. Bilateral intra-MPFC administration of 5HT(1A) receptor agonist, 8-OH-DPAT (5, 10, and 50 ng/rat) decreased the percentages of open arm time (OAT%) and open arm entries (OAE%), indicating an anxiogenic response. Moreover, administration of 5HT(1A) receptor antagonist, NAN-190 (0.25, 0.5, and 1 μg/rat) significantly increased OAT% and OAE%. Pre-treatment administration of NAN-190 (0.5 μg/rat), which was injected into the MPFC, reversed the anxiogenic effects of 8-OH-DPAT (5, 10, and 50 ng/rat). Intra-MPFC microinjection of 5HT(1B) receptor agonist, CGS-12066A (0.25, 0.5, and 1 μg/rat) significantly decreased OAT% and OAE%, without any change in locomotor activity, indicating an anxiogenic effect. However, injection of 5HT(1B) receptor antagonist, SB-224289 (0.5, 1, and 2 μg/rat) into the MPFC showed no significant effect. In conclusion, these findings suggest that 5HT(1A) and 5HT(1B) receptors of the MPFC region modulate anxiogenic-like behaviors in rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Chemical Composition and Labeling of Substances Marketed as Selective Androgen Receptor Modulators and Sold via the Internet.

    Science.gov (United States)

    Van Wagoner, Ryan M; Eichner, Amy; Bhasin, Shalender; Deuster, Patricia A; Eichner, Daniel

    2017-11-28

    Recent reports have described the increasing use of nonsteroidal selective androgen receptor modulators, which have not been approved by the US Food and Drug Administration (FDA), to enhance appearance and performance. The composition and purity of such products is not known. To determine the chemical identity and the amounts of ingredients in dietary supplements and products marketed and sold through the internet as selective androgen receptor modulators and compare the analyzed contents with product labels. Web-based searches were performed from February 18, 2016, to March 25, 2016, using the Google search engine on the Chrome and Internet Explorer web browsers to identify suppliers selling selective androgen receptor modulators. The products were purchased and the identities of the compounds and their amounts were determined from April to August 2016 using chain-of-custody and World Anti-Doping Association-approved analytical procedures. Analytical findings were compared against the label information. Products marketed and sold as selective androgen receptor modulators. Chemical identities and the amount of ingredients in each product marketed and sold as selective androgen receptor modulators. Among 44 products marketed and sold as selective androgen receptor modulators, only 23 (52%) contained 1 or more selective androgen receptor modulators (Ostarine, LGD-4033, or Andarine). An additional 17 products (39%) contained another unapproved drug, including the growth hormone secretagogue ibutamoren, the peroxisome proliferator-activated receptor-δ agonist GW501516, and the Rev-ErbA agonist SR9009. Of the 44 tested products, no active compound was detected in 4 (9%) and substances not listed on the label were contained in 11 (25%). In only 18 of the 44 products (41%), the amount of active compound in the product matched that listed on the label. The amount of the compounds listed on the label differed substantially from that found by analysis in 26 of 44 products

  1. Sigma-1 Receptor Plays a Negative Modulation on N-type Calcium Channel

    Directory of Open Access Journals (Sweden)

    Kang Zhang

    2017-05-01

    Full Text Available The sigma-1 receptor is a 223 amino acids molecular chaperone with a single transmembrane domain. It is resident to eukaryotic mitochondrial-associated endoplasmic reticulum and plasma membranes. By chaperone-mediated interactions with ion channels, G-protein coupled receptors and cell-signaling molecules, the sigma-1 receptor performs broad physiological and pharmacological functions. Despite sigma-1 receptors have been confirmed to regulate various types of ion channels, the relationship between the sigma-1 receptor and N-type Ca2+ channel is still unclear. Considering both sigma-1 receptors and N-type Ca2+ channels are involved in intracellular calcium homeostasis and neurotransmission, we undertake studies to explore the possible interaction between these two proteins. In the experiment, we confirmed the expression of the sigma-1 receptors and the N-type calcium channels in the cholinergic interneurons (ChIs in rat striatum by using single-cell reverse transcription-polymerase chain reaction (scRT-PCR and immunofluorescence staining. N-type Ca2+ currents recorded from ChIs in the brain slice of rat striatum was depressed when sigma-1 receptor agonists (SKF-10047 and Pre-084 were administrated. The inhibition was completely abolished by sigma-1 receptor antagonist (BD-1063. Co-expression of the sigma-1 receptors and the N-type calcium channels in Xenopus oocytes presented a decrease of N-type Ca2+ current amplitude with an increase of sigma-1 receptor expression. SKF-10047 could further depress N-type Ca2+ currents recorded from oocytes. The fluorescence resonance energy transfer (FRET assays and co-immunoprecipitation (Co-IP demonstrated that sigma-1 receptors and N-type Ca2+ channels formed a protein complex when they were co-expressed in HEK-293T (Human Embryonic Kidney -293T cells. Our results revealed that the sigma-1 receptors played a negative modulation on N-type Ca2+ channels. The mechanism for the inhibition of sigma-1 receptors on

  2. The selective estrogen receptor modulator raloxifene inhibits neutrophil extracellular trap formation.

    Directory of Open Access Journals (Sweden)

    Roxana Flores

    2016-12-01

    Full Text Available Raloxifene is a selective estrogen receptor modulator typically prescribed for the prevention/treatment of osteoporosis in postmenopausal women. Although raloxifene is known to have anti-inflammatory properties, its effect on human neutrophils, the primary phagocytic leukocytes of the immune system, remain poorly understood. Here, through a screen of pharmacologically active small molecules, we find that raloxifene prevents neutrophil cell death in response to the classical activator phorbol 12-myristate 13-acetate (PMA, a compound known to induce formation of DNA-based neutrophil extracellular traps (NETs. Inhibition of PMA-induced NET production by raloxifene was confirmed using quantitative and imaging-based assays. Human neutrophils from both male and female donors express the nuclear estrogen receptors ERα and ERβ, known targets of raloxifene. Like raloxifene, selective antagonists of these receptors inhibit PMA-induced NET production. Furthermore, raloxifene inhibited PMA-induced ERK phosphorylation but not reactive oxygen species (ROS production, pathways known to be key modulators of NET production. Finally, we found that raloxifene inhibited PMA-induced, NET-based killing of the leading human bacterial pathogen, methicillin-resistant Staphylococcus aureus (MRSA. Our results reveal that raloxifene is a potent modulator of neutrophil function and NET production.

  3. The decrease of mineralcorticoid receptor drives angiogenic pathways in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Laura Tiberio

    Full Text Available Angiogenesis plays a crucial role in tumor growth and progression. Low expression of mineralocorticoid receptor (MR in several malignant tumors correlates with disease recurrence and overall survival. Previous studies have shown that MR expression is decreased in colorectal cancer (CRC. Here we hypothesize that decreased MR expression can contribute to angiogenesis and poor patient survival in colorectal malignancies. In a cohort of CRC patients, we analyzed tumor MR expression, its correlation with tumor microvascular density and its impact on survival. Subsequently, we interrogated the role of MR in angiogenesis in an in vitro model, based on the colon cancer cell line HCT116, ingenierized to re-express a physiologically controlled MR. In CRC, decreased MR expression was associated with increased microvascular density and poor patient survival. In pchMR transfected HCT116, aldosterone or natural serum steroids largely inhibited mRNA expression levels of both VEGFA and its receptor 2/KDR. In CRC, MR activation may significantly decrease angiogenesis by directly inhibiting dysregulated VEGFA and hypoxia-induced VEGFA mRNA expression. In addition, MR activation attenuates the expression of the VEGF receptor 2/KDR, possibly dampening the activation of a VEGFA/KDR dependent signaling pathway important for the survival of tumor cells under hypoxic conditions.

  4. MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction

    DEFF Research Database (Denmark)

    Kocerha, Jannet; Faghihi, Mohammad Ali; Lopez-Toledano, Miguel A

    2009-01-01

    significantly modulated behavioral responses associated with disrupted NMDA receptor transmission. Furthermore, pretreatment with the antipsychotic drugs haloperidol and clozapine prevented dizocilpine-induced effects on miR-219. Taken together, these data support an integral role for miR-219 in the expression...

  5. Centrally located GLP-1 receptors modulate gastric slow waves and cardiovascular function in ferrets consistent with the induction of nausea.

    Science.gov (United States)

    Lu, Zengbing; Yeung, Chi-Kong; Lin, Ge; Yew, David T W; Andrews, P L R; Rudd, John A

    2017-10-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are indicated for the treatment of Type 2 diabetes and obesity, but can cause nausea and emesis in some patients. GLP-1 receptors are distributed widely in the brain, where they contribute to mechanisms of emesis, reduced appetite and aversion, but it is not known if these centrally located receptors also contribute to a modulation of gastric slow wave activity, which is linked causally to nausea. Our aim was to investigate the potential of the GLP-1 receptor agonist, exendin-4, administered into the 3rd ventricle to modulate emesis, feeding and gastric slow wave activity. Thermoregulation and cardiovascular parameters were also monitored, as they are disturbed during nausea. Ferrets were used as common laboratory rodents do not have an emetic reflex. A guide cannula was implanted into the 3rd ventricle for delivering a previously established dose of exendin-4 (10nmol), which had been shown to induce emesis and behaviours indicative of 'nausea'. Radiotelemetry recorded gastric myoelectric activity (GMA; slow waves), blood pressure and heart rate variability (HRV), and core temperature; food intake and behaviour were also assessed. Exendin-4 (10nmol, i.c.v.) decreased the dominant frequency of GMA, with an associated increase in the percentage of bradygastric power (lasting ~4h). Food intake was inhibited in all animals, with 63% exhibiting emesis. Exendin-4 also increased blood pressure (lasting ~24h) and heart rate (lasting ~7h), decreased HRV (lasting ~24h), and caused transient hyperthermia. None of the above parameters were emesis-dependent. The present study shows for the first time that gastric slow waves may be modulated by GLP-1 receptors in the brain through mechanisms that appear independent from emesis. Taken together with a reduction in HRV, the findings are consistent with changes associated with the occurrence of nausea in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0144 TITLE: Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism 5b. GRANT NUMBER W81XWH-13-1-0144 5c...ABSTRACT Autism spectrum disorder (ASD) is a polygenic signaling disorder that may result, in part, from an imbalance in excitatory and inhibitory

  7. Acidosis Decreases c-Myc Oncogene Expression in Human Lymphoma Cells: A Role for the Proton-Sensing G Protein-Coupled Receptor TDAG8

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2013-10-01

    Full Text Available Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65 is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs. Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression.

  8. Adenosine A2A Receptor Modulates the Activity of Globus Pallidus Neurons in Rats

    Directory of Open Access Journals (Sweden)

    Hui-Ling Diao

    2017-11-01

    Full Text Available The globus pallidus is a central nucleus in the basal ganglia motor control circuit. Morphological studies have revealed the expression of adenosine A2A receptors in the globus pallidus. To determine the modulation of adenosine A2A receptors on the activity of pallidal neurons in both normal and parkinsonian rats, in vivo electrophysiological and behavioral tests were performed in the present study. The extracellular single unit recordings showed that micro-pressure administration of adenosine A2A receptor agonist, CGS21680, regulated the pallidal firing activity. GABAergic neurotransmission was involved in CGS21680-induced modulation of pallidal neurons via a PKA pathway. Furthermore, application of two adenosine A2A receptor antagonists, KW6002 or SCH442416, mainly increased the spontaneous firing of pallidal neurons, suggesting that endogenous adenosine system modulates the activity of pallidal neurons through adenosine A2A receptors. Finally, elevated body swing test (EBST showed that intrapallidal microinjection of adenosine A2A receptor agonist/antagonist induced ipsilateral/contralateral-biased swing, respectively. In addition, the electrophysiological and behavioral findings also revealed that activation of dopamine D2 receptors by quinpirole strengthened KW6002/SCH442416-induced excitation of pallidal activity. Co-application of quinpirole with KW6002 or SCH442416 alleviated biased swing in hemi-parkinsonian rats. Based on the present findings, we concluded that pallidal adenosine A2A receptors may be potentially useful in the treatment of Parkinson's disease.

  9. Positive modulation of delta-subunit containing GABAA receptors in mouse neurons

    DEFF Research Database (Denmark)

    Vardya, Irina; Hoestgaard-Jensen, Kirsten; Nieto-Gonzalez, Jose Luis

    2012-01-01

    δ-subunit containing extrasynaptic GABA(A) receptors are potential targets for modifying neuronal activity in a range of brain disorders. With the aim of gaining more insight in synaptic and extrasynaptic inhibition, we used a new positive modulator, AA29504, of δ-subunit containing GABA(A) recep......δ-subunit containing extrasynaptic GABA(A) receptors are potential targets for modifying neuronal activity in a range of brain disorders. With the aim of gaining more insight in synaptic and extrasynaptic inhibition, we used a new positive modulator, AA29504, of δ-subunit containing GABA......(A) receptors in mouse neurons in vitro and in vivo. Whole-cell patch-clamp recordings were carried out in the dentate gyrus in mouse brain slices. In granule cells, AA29504 (1 μM) caused a 4.2-fold potentiation of a tonic current induced by THIP (1 μM), while interneurons showed a potentiation of 2.6-fold......-free environment using Ca²⁺ imaging in cultured neurons, AA29504 showed GABA(A) receptor agonism in the absence of agonist. Finally, AA29504 exerted dose-dependent stress-reducing and anxiolytic effects in mice in vivo. We propose that AA29504 potentiates δ-containing GABA(A) receptors to enhance tonic inhibition...

  10. Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators

    Directory of Open Access Journals (Sweden)

    Andres D. Ramirez

    2013-12-01

    Full Text Available Dual orexin receptor antagonists (DORAs are a potential treatment for insomnia that function by blocking both the orexin 1 and orexin 2 receptors. The objective of the current study was to further confirm the impact of therapeutic mechanisms targeting insomnia on locomotor coordination and ethanol interaction using DORAs and gamma-aminobutyric acid (GABA-A receptor modulators of distinct chemical structure and pharmacologic properties in the context of sleep-promoting potential. The current study compared rat motor co-ordination after administration of DORAs, DORA-12 and almorexant, and GABA-A receptor modulators, zolpidem, eszopiclone and diazepam, alone or each in combination with ethanol. Motor performance was assessed by measuring time spent walking on a rotarod apparatus. Zolpidem, eszopiclone and diazepam (0.3–30 mg/kg administered orally [PO] impaired rotarod performance in a dose-dependent manner. Furthermore, all three GABA-A receptor modulators potentiated ethanol- (0.25–1.25 g/kg induced impairment on the rotarod. By contrast, neither DORA-12 (10–100 mg/kg, PO nor almorexant (30–300 mg/kg, PO impaired motor performance alone or in combination with ethanol. In addition, distinct differences in sleep architecture were observed between ethanol, GABA-A receptor modulators (zolpidem, eszopiclone and diazepam and DORA-12 in electroencephalogram studies in rats. These findings provide further evidence that orexin receptor antagonists have an improved motor side-effect profile compared with currently available sleep-promoting agents based on preclinical data and strengthen the rationale for further evaluation of these agents in clinical development.

  11. Lipid raft integrity affects GABAA receptor, but not NMDA receptor modulation by psychopharmacological compounds.

    Science.gov (United States)

    Nothdurfter, Caroline; Tanasic, Sascha; Di Benedetto, Barbara; Uhr, Manfred; Wagner, Eva-Maria; Gilling, Kate E; Parsons, Chris G; Rein, Theo; Holsboer, Florian; Rupprecht, Rainer; Rammes, Gerhard

    2013-07-01

    Lipid rafts have been shown to play an important role for G-protein mediated signal transduction and the function of ligand-gated ion channels including their modulation by psychopharmacological compounds. In this study, we investigated the functional significance of the membrane distribution of NMDA and GABAA receptor subunits in relation to the accumulation of the tricyclic antidepressant desipramine (DMI) and the benzodiazepine diazepam (Diaz). In the presence of Triton X-100, which allowed proper separation of the lipid raft marker proteins caveolin-1 and flotillin-1 from the transferrin receptor, all receptor subunits were shifted to the non-raft fractions. In contrast, under detergent-free conditions, NMDA and GABAA receptor subunits were detected both in raft and non-raft fractions. Diaz was enriched in non-raft fractions without Triton X-100 in contrast to DMI, which preferentially accumulated in lipid rafts. Impairment of lipid raft integrity by methyl-β-cyclodextrine (MβCD)-induced cholesterol depletion did not change the inhibitory effect of DMI at the NMDA receptor, whereas it enhanced the potentiating effect of Diaz at the GABAA receptor at non-saturating concentrations of GABA. These results support the hypothesis that the interaction of benzodiazepines with the GABAA receptor likely occurs outside of lipid rafts while the antidepressant DMI acts on ionotropic receptors both within and outside these membrane microdomains.

  12. Targeting CB2-GPR55 Receptor Heteromers Modulates Cancer Cell Signaling*

    Science.gov (United States)

    Moreno, Estefanía; Andradas, Clara; Medrano, Mireia; Caffarel, María M.; Pérez-Gómez, Eduardo; Blasco-Benito, Sandra; Gómez-Cañas, María; Pazos, M. Ruth; Irving, Andrew J.; Lluís, Carme; Canela, Enric I.; Fernández-Ruiz, Javier; Guzmán, Manuel; McCormick, Peter J.; Sánchez, Cristina

    2014-01-01

    The G protein-coupled receptors CB2 (CB2R) and GPR55 are overexpressed in cancer cells and human tumors. Because a modulation of GPR55 activity by cannabinoids has been suggested, we analyzed whether this receptor participates in cannabinoid effects on cancer cells. Here we show that CB2R and GPR55 form heteromers in cancer cells, that these structures possess unique signaling properties, and that modulation of these heteromers can modify the antitumoral activity of cannabinoids in vivo. These findings unveil the existence of previously unknown signaling platforms that help explain the complex behavior of cannabinoids and may constitute new targets for therapeutic intervention in oncology. PMID:24942731

  13. Selective androgen receptor modulators: in pursuit of tissue-selective androgens.

    Science.gov (United States)

    Omwancha, Josephat; Brown, Terry R

    2006-10-01

    The androgen receptor mediates the androgenic and anabolic activity of the endogenous steroids testosterone and 5alpha-dihydrotestosterone. Current knowledge of the androgen receptor protein structure, and the molecular mechanisms surrounding the binding properties and activities of agonists and antagonists has led to the design and development of novel nonsteroidal ligands with selected tissue-specific androgen receptor agonist and antagonist activities. The activity of these compounds, termed selective androgen receptor modulators (SARMs), is directed toward the maintenance or enhancement of anabolic effects on bone and muscle with minimal androgenic effects on prostate growth. SARMs are of potential therapeutic value in the treatment of male hypogonadism, osteoporosis, frailty and muscle wasting, burn injury and would healing, anemia, mood and depression, benign prostatic hyperplasia and prostate cancer.

  14. Role of the placental Vitamin D receptor in modulating feto-placental growth in Fetal growth restriction and Preeclampsia-affected pregnancies.

    Directory of Open Access Journals (Sweden)

    Padma eMurthi

    2016-02-01

    Full Text Available Fetal growth restriction (FGR is a common pregnancy complication that affects up to 5% of pregnancies worldwide. Recent studies demonstrate that Vitamin D deficiency is implicated in reduced fetal growth, which may be rescued by supplementation of Vitamin D. Despite this, the pathway(s by which Vitamin D modulate fetal growth remains to be investigated. Our own studies demonstrate that the Vitamin D receptor (VDR is significantly decreased in placentae from human pregnancies complicated by FGR and contributes to abnormal placental trophoblast apoptosis and differentiation and regulation of cell-cycle genes in vitro. Thus, Vitamin D signalling is important for normal placental function and fetal growth. This review discusses the association of Vitamin D with fetal growth, the function of Vitamin D and its receptor in pregnancy, as well as the functional significance of a placental source of Vitamin D in FGR. Additionally, we propose that for Vitamin D to be clinically effective to prevent and manage FGR, the molecular mechanisms of Vitamin D and its receptor in modulating fetal growth requires further investigation.

  15. Liver X Receptor Genes Variants Modulate ALS Phenotype.

    Science.gov (United States)

    Mouzat, Kevin; Molinari, Nicolas; Kantar, Jovana; Polge, Anne; Corcia, Philippe; Couratier, Philippe; Clavelou, Pierre; Juntas-Morales, Raul; Pageot, Nicolas; Lobaccaro, Jean -Marc A; Raoul, Cedric; Lumbroso, Serge; Camu, William

    2018-03-01

    Amyotrophic lateral sclerosis (ALS) is one of the most severe motor neuron (MN) disorders in adults. Phenotype of ALS patients is highly variable and may be influenced by modulators of energy metabolism. Recent works have implicated the liver X receptors α and β (LXRs), either in the propagation process of ALS or in the maintenance of MN survival. LXRs are nuclear receptors activated by oxysterols, modulating cholesterol levels, a suspected modulator of ALS severity. In a cohort of 438 ALS patients and 330 healthy controls, the influence of LXR genes on ALS risk and phenotype was studied using single nucleotide polymorphisms (SNPs). The two LXRα SNPs rs2279238 and rs7120118 were shown to be associated with age at onset in ALS patients. Consistently, homozygotes were twice more correlated than were heterozygotes to delayed onset. The onset was thus delayed by 3.9 years for rs2279238 C/T carriers and 7.8 years for T/T carriers. Similar results were obtained for rs7120118 (+2.1 years and +6.7 years for T/C and C/C genotypes, respectively). The LXRβ SNP rs2695121 was also shown to be associated with a 30% increase of ALS duration (p = 0.0055, FDR = 0.044). The tested genotypes were not associated with ALS risk. These findings add further evidence to the suspected implication of LXR genes in the disease process of ALS and might open new perspectives in ALS therapeutics.

  16. Opposite modulation of brain stimulation reward by NMDA and AMPA receptors in the ventral tegmental area.

    Science.gov (United States)

    Ducrot, Charles; Fortier, Emmanuel; Bouchard, Claude; Rompré, Pierre-Paul

    2013-01-01

    Previous studies have shown that blockade of ventral tegmental area (VTA) glutamate N-Methyl-D-Aspartate (NMDA) receptors induces reward, stimulates forward locomotion and enhances brain stimulation reward. Glutamate induces two types of excitatory response on VTA neurons, a fast and short lasting depolarization mediated by α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors and a longer lasting depolarization mediated by NMDA receptors. A role for the two glutamate receptors in modulation of VTA neuronal activity is evidenced by the functional change in AMPA and NMDA synaptic responses that result from repeated exposure to reward. Since both receptors contribute to the action of glutamate on VTA neuronal activity, we studied the effects of VTA AMPA and NMDA receptor blockade on reward induced by electrical brain stimulation. Experiments were performed on rats trained to self-administer electrical pulses in the medial posterior mesencephalon. Reward thresholds were measured with the curve-shift paradigm before and for 2 h after bilateral VTA microinjections of the AMPA antagonist, NBQX (2,3,-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulfonamide, 0, 80, and 800 pmol/0.5 μl/side) and of a single dose (0.825 nmol/0.5 μl/side) of the NMDA antagonist, PPPA (2R,4S)-4-(3-Phosphonopropyl)-2-piperidinecarboxylic acid). NBQX produced a dose-dependent increase in reward threshold with no significant change in maximum rate of responding. Whereas PPPA injected at the same VTA sites produced a significant time dependent decrease in reward threshold and increase in maximum rate of responding. We found a negative correlation between the magnitude of the attenuation effect of NBQX and the enhancement effect of PPPA; moreover, NBQX and PPPA were most effective when injected, respectively, into the anterior and posterior VTA. These results suggest that glutamate acts on different receptor sub-types, most likely located on different VTA neurons, to

  17. Opposite modulation of brain stimulation reward by NMDA and AMPA receptors in the ventral tegmental area.

    Directory of Open Access Journals (Sweden)

    Charles eDucrot

    2013-10-01

    Full Text Available Previous studies have shown that blockade of ventral midbrain (VM glutamate N-Methyl-D-Aspartate (NMDA receptors induces reward, stimulates forward locomotion and enhances brain stimulation reward. Glutamate induces two types of excitatory response on VM neurons, a fast and short lasting depolarisation mediated by a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA receptors and a longer lasting depolarization mediated by NMDA receptors. A role for the two glutamate receptors in modulation of VM neuronal activity is evidenced by the functional change in AMPA and NMDA synaptic responses that result from repeated exposure to reward. Since both receptors contribute to the action of glutamate on VM neuronal activity, we studied the effects of VM AMPA and NMDA receptor blockade on reward induced by electrical brain stimulation. Experiments were performed on rats trained to self-administer electrical pulses in the medial posterior mesencephalon. Reward thresholds were measured with the curve-shift paradigm before and for two hours after bilateral VM microinjections of the AMPA antagonist, NBQX (2,3,-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(fquinoxaline-7-sulfonamide, 0, 80, and 800 pmol/0.5ul/side and of a single dose (0.825 nmol/0.5ul/side of the NMDA antagonist, PPPA (2R,4S-4-(3-Phosphonopropyl-2-piperidinecarboxylic acid. NBQX produced a dose-dependent increase in reward threshold with no significant change in maximum rate of responding. Whereas PPPA injected at the same VM sites produced a significant time dependent decrease in reward threshold and increase in maximum rate of responding. We found a negative correlation between the magnitude of the attenuation effect of NBQX and the enhancement effect of PPPA; moreover, NBQX and PPPA were most effective when injected respectively into the anterior and posterior VM. These results suggest that glutamate acts on different receptor sub-types, most likely located on different VM neurons, to modulate

  18. Selective estrogen receptor modulators as brain therapeutic agents

    OpenAIRE

    Arévalo, María Ángeles; Santos-Galindo, María; Lagunas, Natalia; Azcoitia, I.; García-Segura, Luis M.

    2011-01-01

    Selective estrogen receptor modulators (SERMs), used for the treatment of breast cancer, osteoporosis, and menopausal symptoms, affect the nervous system. Some SERMs trigger neuroprotective mechanisms and reduce neural damage in different experimental models of neural trauma, brain inflammation, neurodegenerative diseases, cognitive impairment, and affective disorders. New SERMs with specific actions on neurons and glial cells may represent promising therapeutic tools for the brain. © 2011 So...

  19. Selective and interactive effects of D2 receptor antagonism and positive allosteric mGluR4 modulation on waiting impulsivity.

    Science.gov (United States)

    Isherwood, Sarah N; Robbins, Trevor W; Nicholson, Janet R; Dalley, Jeffrey W; Pekcec, Anton

    2017-09-01

    Metabotropic glutamate receptor 4 (mGluR4) and dopamine D 2 receptors are specifically expressed within the indirect pathway neurons of the striato-pallidal-subthalamic pathway. This unique expression profile suggests that mGluR4 and D 2 receptors may play a cooperative role in the regulation and inhibitory control of behaviour. We investigated this possibility by testing the effects of a functionally-characterised positive allosteric mGluR4 modulator, 4-((E)-styryl)-pyrimidin-2-ylamine (Cpd11), both alone and in combination with the D 2 receptor antagonist eticlopride, on two distinct forms of impulsivity. Rats were trained on the five-choice serial reaction time task (5-CSRTT) of sustained visual attention and segregated according to low, mid, and high levels of motor impulsivity (LI, MI and HI, respectively), with unscreened rats used as an additional control group. A separate group of rats was trained on a delay discounting task (DDT) to assess choice impulsivity. Systemic administration of Cpd11 dose-dependently increased motor impulsivity and impaired attentional accuracy on the 5-CSRTT in all groups tested. Eticlopride selectively attenuated the increase in impulsivity induced by Cpd11, but not the accompanying attentional impairment, at doses that had no significant effect on behavioural performance when administered alone. Cpd11 also decreased choice impulsivity on the DDT (i.e. increased preference for the large, delayed reward) and decreased locomotor activity. These findings demonstrate that mGluR4s, in conjunction with D 2 receptors, affect motor- and choice-based measures of impulsivity, and therefore may be novel targets to modulate impulsive behaviour associated with a number of neuropsychiatric syndromes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Presynaptic membrane receptors in acetylcholine release modulation in the neuromuscular synapse.

    Science.gov (United States)

    Tomàs, Josep; Santafé, Manel M; Garcia, Neus; Lanuza, Maria A; Tomàs, Marta; Besalduch, Núria; Obis, Teresa; Priego, Mercedes; Hurtado, Erica

    2014-05-01

    Over the past few years, we have studied, in the mammalian neuromuscular junction (NMJ), the local involvement in transmitter release of the presynaptic muscarinic ACh autoreceptors (mAChRs), purinergic adenosine autoreceptors (P1Rs), and trophic factor receptors (TFRs; for neurotrophins and trophic cytokines) during development and in the adult. At any given moment, the way in which a synapse works is largely the logical outcome of the confluence of these (and other) metabotropic signalling pathways on intracellular kinases, which phosphorylate protein targets and materialize adaptive changes. We propose an integrated interpretation of the complementary function of these receptors in the adult NMJ. The activity of a given receptor group can modulate a given combination of spontaneous, evoked, and activity-dependent release characteristics. For instance, P1Rs can conserve resources by limiting spontaneous quantal leak of ACh (an A1 R action) and protect synapse function, because stimulation with adenosine reduces the magnitude of depression during repetitive activity. The overall outcome of the mAChRs seems to contribute to upkeep of spontaneous quantal output of ACh, save synapse function by decreasing the extent of evoked release (mainly an M2 action), and reduce depression. We have also identified several links among P1Rs, mAChRs, and TFRs. We found a close dependence between mAChR and some TFRs and observed that the muscarinic group has to operate correctly if the tropomyosin-related kinase B receptor (trkB) is also to operate correctly, and vice versa. Likewise, the functional integrity of mAChRs depends on P1Rs operating normally. Copyright © 2014 Wiley Periodicals, Inc.

  1. Chronic treatment with LY341495 decreases 5-HT2A receptor binding and hallucinogenic effects of LSD in mice

    Science.gov (United States)

    Moreno, José L.; Holloway, Terrell; Rayannavar, Vinayak; Sealfon, Stuart C.; González-Maeso, Javier

    2013-01-01

    Hallucinogenic drugs, such as lysergic acid diethylamide (LSD), mescaline and psilocybin, alter perception and cognitive processes. All hallucinogenic drugs have in common a high affinity for the serotonin 5-HT2A receptor. Metabotropic glutamate 2/3 (mGlu2/3) receptor ligands show efficacy in modulating the cellular and behavioral responses induced by hallucinogenic drugs. Here, we explored the effect of chronic treatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)-propionic acid (LY341495) on the hallucinogenic-like effects induced by LSD (0.24 mg/kg). Mice were chronically (21 days) treated with LY341495 (1.5 mg/kg), or vehicle, and experiments were carried out one day after the last injection. Chronic treatment with LY341495 down-regulated [3H]ketanserin binding in somatosensory cortex of wild-type, but not mGlu2 knockout (KO), mice. Head-twitch behavior, and expression of c-fos, egr-1 and egr-2, which are responses induced by hallucinogenic 5-HT2A agonists, were found to be significantly decreased by chronic treatment with LY341495. These findings suggest that repeated blockade of the mGlu2 receptor by LY341495 results in reduced 5-HT2A receptor-dependent hallucinogenic effects of LSD. PMID:23333599

  2. Chronic treatment with LY341495 decreases 5-HT(2A) receptor binding and hallucinogenic effects of LSD in mice.

    Science.gov (United States)

    Moreno, José L; Holloway, Terrell; Rayannavar, Vinayak; Sealfon, Stuart C; González-Maeso, Javier

    2013-03-01

    Hallucinogenic drugs, such as lysergic acid diethylamide (LSD), mescaline and psilocybin, alter perception and cognitive processes. All hallucinogenic drugs have in common a high affinity for the serotonin 5-HT(2A) receptor. Metabotropic glutamate 2/3 (mGlu2/3) receptor ligands show efficacy in modulating the cellular and behavioral responses induced by hallucinogenic drugs. Here, we explored the effect of chronic treatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)-propionic acid (LY341495) on the hallucinogenic-like effects induced by LSD (0.24mg/kg). Mice were chronically (21 days) treated with LY341495 (1.5mg/kg), or vehicle, and experiments were carried out one day after the last injection. Chronic treatment with LY341495 down-regulated [(3)H]ketanserin binding in somatosensory cortex of wild-type, but not mGlu2 knockout (KO), mice. Head-twitch behavior, and expression of c-fos, egr-1 and egr-2, which are responses induced by hallucinogenic 5-HT(2A) agonists, were found to be significantly decreased by chronic treatment with LY341495. These findings suggest that repeated blockade of the mGlu2 receptor by LY341495 results in reduced 5-HT(2A) receptor-dependent hallucinogenic effects of LSD. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Discovery of a novel allosteric modulator of 5-HT3 receptor

    DEFF Research Database (Denmark)

    Trattnig, Sarah M; Harpsøe, Kasper; Thygesen, Sarah B

    2012-01-01

    The ligand-gated ion channels in the Cysloop receptor superfamily mediate the effects of neurotransmitters acetylcholine, serotonin, GABA and glycine. Cysloop receptor signaling is susceptible to modulation by ligands acting through numerous allosteric sites. Here we report the discovery of a novel...... receptor guided by a homology model, PU02 is demonstrated to act through a transmembrane intersubunit site situated in the upper three helical turns of TM2 and TM3 in the (+)subunit and TM1 and TM2 in the (minus)subunit. The Ser248, Leu288, Ile290, Thr294 and Gly306 residues are identified as important...

  4. Stress-induced alterations in 5-HT1A receptor transcriptional modulators NUDR and Freud-1.

    Science.gov (United States)

    Szewczyk, Bernadeta; Kotarska, Katarzyna; Daigle, Mireille; Misztak, Paulina; Sowa-Kucma, Magdalena; Rafalo, Anna; Curzytek, Katarzyna; Kubera, Marta; Basta-Kaim, Agnieszka; Nowak, Gabriel; Albert, Paul R

    2014-11-01

    The effect of stress on the mRNA and protein level of the 5-HT1A receptor and two of its key transcriptional modulators, NUDR and Freud-1, was examined in the prefrontal cortex (PFC) and hippocampus (Hp) using rodent models: olfactory bulbectomy (OB) and prenatal stress (PS) in male and female rats; chronic mild stress in male rats (CMS) and pregnancy stress. In PFC, CMS induced the most widespread changes, with significant reduction in both mRNA and protein levels of NUDR, 5-HT1A receptor and in Freud-1 mRNA; while in Hp 5-HT1A receptor and Freud-1 protein levels were also decreased. In male, but not female OB rats PFC Freud-1 and 5-HT1A receptor protein levels were reduced, while in Hp 5-HT1A receptor, Freud-1 and NUDR mRNA's but not protein were reduced. In PS rats PFC 5-HT1A receptor protein was reduced more in females than males; while in Hp Freud-1 protein was increased in females. In pregnancy stress, PFC NUDR, Freud-1 and 5-HT1A protein receptor levels were reduced, and in HP 5-HT1A receptor protein levels were also reduced; in HP only NUDR and Freud-1 mRNA levels were reduced. Overall, CMS and stress during pregnancy produced the most salient changes in 5-HT1A receptor and transcription factor expression, suggesting a primary role for altered transcription factor expression in chronic regulation of 5-HT1A receptor expression. By contrast, OB (in males) and PS (in females) produced gender-specific reductions in PFC 5-HT1A receptor protein levels, suggesting a role for post-transcriptional regulation. These and previous data suggest that chronic stress might be a key regulator of NUDR/Freud-1 gene expression.

  5. Sniffer patch laser uncaging response (SPLURgE): an assay of regional differences in allosteric receptor modulation and neurotransmitter clearance.

    Science.gov (United States)

    Christian, Catherine A; Huguenard, John R

    2013-10-01

    Allosteric modulators exert actions on neurotransmitter receptors by positively or negatively altering the effective response of these receptors to their respective neurotransmitter. γ-Aminobutyric acid (GABA) type A ionotropic receptors (GABAARs) are major targets for allosteric modulators such as benzodiazepines, neurosteroids, and barbiturates. Analysis of substances that produce similar effects has been hampered by the lack of techniques to assess the localization and function of such agents in brain slices. Here we describe measurement of the sniffer patch laser uncaging response (SPLURgE), which combines the sniffer patch recording configuration with laser photolysis of caged GABA. This methodology enables the detection of allosteric GABAAR modulators endogenously present in discrete areas of the brain slice and allows for the application of exogenous GABA with spatiotemporal control without altering the release and localization of endogenous modulators within the slice. Here we demonstrate the development and use of this technique for the measurement of allosteric modulation in different areas of the thalamus. Application of this technique will be useful in determining whether a lack of modulatory effect on a particular category of neurons or receptors is due to insensitivity to allosteric modulation or a lack of local release of endogenous ligand. We also demonstrate that this technique can be used to investigate GABA diffusion and uptake. This method thus provides a biosensor assay for rapid detection of endogenous GABAAR modulators and has the potential to aid studies of allosteric modulators that exert effects on other classes of neurotransmitter receptors, such as glutamate, acetylcholine, or glycine receptors.

  6. GABA(A) receptor modulation during adolescence alters adult ethanol intake and preference in rats.

    Science.gov (United States)

    Hulin, Mary W; Amato, Russell J; Winsauer, Peter J

    2012-02-01

    To address the hypothesis that GABA(A) receptor modulation during adolescence may alter the abuse liability of ethanol during adulthood, the effects of adolescent administration of both a positive and negative GABA(A) receptor modulator on adult alcohol intake and preference were assessed. Three groups of adolescent male rats received 12 injections of lorazepam (3.2 mg/kg), dehydroepiandrosterone (DHEA, 56 mg/kg), or vehicle on alternate days starting on postnatal day (PD) 35. After this time, the doses were increased to 5.6 and 100 mg/kg, respectively, for 3 more injections on alternate days. Subjects had access to 25 to 30 g of food daily, during the period of the first 6 injections, and 18 to 20 g thereafter. Food intake of each group was measured 60 minutes after food presentation, which occurred immediately after drug administration on injection days or at the same time of day on noninjection days. When subjects reached adulthood (PD 88), ethanol preference was determined on 2 separate occasions, an initial 3-day period and a 12-day period, in which increasing concentrations of ethanol were presented. During each preference test, intake of water, saccharin, and an ethanol/saccharin solution was measured after each 23-hour access period. During adolescence, lorazepam increased 60-minute food intake, and this effect was enhanced under the more restrictive feeding schedule. DHEA had the opposite effect on injection days, decreasing food intake compared with noninjection days. In adulthood, the lorazepam-treated group preferred the 2 lowest concentrations of ethanol/saccharin more than saccharin alone compared with vehicle-treated subjects, which showed no preference for any concentration of ethanol/saccharin over saccharin. DHEA-treated subjects showed no preference among the 3 solutions. These data demonstrate that GABA(A) receptor modulation during adolescence can alter intake and preference for ethanol in adulthood and highlights the importance of drug history

  7. A Glucagon-Like Peptide-1 Receptor Agonist Lowers Weight by Modulating the Structure of Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Li Zhao

    2018-05-01

    Full Text Available In addition to improving glucose metabolism, liraglutide, a glucagon-like peptide-1 receptor agonist, has weight-loss effects. The underlying mechanisms are not completely understood. This study was performed to explore whether liraglutide could lower weight by modulating the composition of the gut microbiota in simple obese and diabetic obese rats. In our study, Wistar and Goto-Kakizaki (GK rats were randomly treated with liraglutide or normal saline for 12 weeks. The biochemical parameters and metabolic hormones were measured. Hepatic glucose production and lipid metabolism were also assessed with isotope tracers. Changes in gut microbiota were analyzed by 16S rRNA gene sequencing. Both glucose and lipid metabolism were significantly improved by liraglutide. Liraglutide lowered body weight independent of glycemia status. The abundance and diversity of gut microbiota were considerably decreased by liraglutide. Liraglutide also decreased obesity-related microbial phenotypes and increased lean-related phenotypes. In conclusion, liraglutide can prevent weight gain by modulating the gut microbiota composition in both simple obese and diabetic obese subjects.

  8. The role of selective estrogen receptor modulators in the treatment of schizophrenia.

    Science.gov (United States)

    Bratek, Agnieszka; Krysta, Krzysztof; Drzyzga, Karolina; Barańska, Justyna; Kucia, Krzysztof

    2016-09-01

    Gender differences in schizophrenia have been recognized for a long time and it has been widely accepted that sex steroid hormones, especially estradiol, are strongly attributed to this fact. Two hypotheses regarding estradiol action in psychoses gained special research attention - the estrogen protection hypothesis and hypoestrogenism hypothesis. A growing number of studies have shown benefits in augmenting antipsychotic treatment with estrogens or selective estrogen receptor modulators (SERM). This review is focused on the role of selective estrogen receptor modulators in the treatment of schizophrenic patients. In order to achieve this result PubMed was searched using the following terms: schizophrenia, raloxifene, humans. We reviewed only randomized, placebo-controlled studies. Raloxifene, a selective estrogen receptor modulator was identified as useful to improve negative, positive, and general psychopathological symptoms, and also cognitive functions. All reviewed studies indicated improvement in at least one studied domain. Augmentation with raloxifene was found to be a beneficial treatment strategy for chronic schizophrenia both in female and male patients, however potential side effects (a small increase in the risk of venous thromboembolism and endometrial cancer) should be carefully considered. SERMs could be an effective augmentation strategy in the treatment of both men women with schizophrenia, although further research efforts are needed to study potential long-term side effects.

  9. Central vasopressin V1a receptors modulate neural processing in mothers facing intruder threat to pups

    OpenAIRE

    Caffrey, Martha K.; Nephew, Benjamin C.; Febo, Marcelo

    2009-01-01

    Vasopressin V1a receptors in the rat brain have been studied for their role in modulating aggression and anxiety. In the current study blood-oxygen-level-dependent (BOLD) functional MRI was used to test whether V1a receptors modulate neural processing in the maternal brain when dams are exposed to a male intruder. Primiparous females were given an intracerebroventricular (ICV) injection of vehicle or V1a receptor antagonist ([deamino-Pen1, O-Me-Try, Arg8]-Vasopressin, 125 ng/10 μL) 90-120 min...

  10. Receptor binding of somatostatin-14 and somatostatin-28 in rat brain: differential modulation by nucleotides and ions.

    Science.gov (United States)

    Srikant, C B; Dahan, A; Craig, C

    1990-02-04

    The tissue-selective binding of the two principal bioactive forms of somatostatin, somatostatin-14 (SS-14) and somatostatin-28 (SS-28), their ability to modulate cAMP-dependent and -independent regulation of post-receptor events to different degrees and the documentation of specific labelling of SS receptor subtypes with SS-28 but not SS-14 in discrete regions of rat brain suggest the existence of distinct SS-14 and SS-28 binding sites. Receptor binding of SS-14 ligands has been shown to be modulated by nucleotides and ions, but the effect of these agents on SS-28 binding has not been studied. In the present study we investigated the effects of adenine and guanine nucleotides as well as monovalent and divalent cations on rat brain SS receptors quantitated with radioiodinated analogs of SS-14 ([125I-Tyr11]SS14, referred to in this paper as SS-14) and SS-28 ([Leu8, D-Trp22, 125I-Tyr25] SS-28, referred to as LTT* SS-28) in order to determine if distinct receptor sites for SS-14 and SS-28 could be distinguished on the basis of their modulation by nucleotides and ions. GTP as well as ATP exerted a dose-dependent inhibition (over a concentration range of 10(-7)-10(-3) M) of the binding of the two radioligands. The nucleotide inhibition of binding resulted in a decrease the Bmax of the SS receptors, the binding affinity remaining unaltered. GTP (10(-4) M) decreased the Bmax of LTT* SS-28 binding sites to a greater extent than ATP (145 +/- 10 and 228 +/- 16 respectively, compared to control value of 320 +/- 20 pmol mg-1). Under identical conditions GTP was less effective than ATP in reducing the number of T* SS-14 binding sites (Bmax = 227 +/- 8 and 182 +/- 15, respectively, compared to 340 +/- 15 pmol mg-1 in the absence of nucleotides). Monovalent cations inhibited the binding of both radioligands, Li+ and Na+ inhibited the binding of T* SS-14 to a greater extent than K+. The effect of divalent cations on the other hand was varied. At low concentration (2 mM) Mg2+, Ba2

  11. A3 Adenosine Receptor Allosteric Modulator Induces an Anti-Inflammatory Effect: In Vivo Studies and Molecular Mechanism of Action

    Directory of Open Access Journals (Sweden)

    Shira Cohen

    2014-01-01

    Full Text Available The A3 adenosine receptor (A3AR is overexpressed in inflammatory cells and in the peripheral blood mononuclear cells of individuals with inflammatory conditions. Agonists to the A3AR are known to induce specific anti-inflammatory effects upon chronic treatment. LUF6000 is an allosteric compound known to modulate the A3AR and render the endogenous ligand adenosine to bind to the receptor with higher affinity. The advantage of allosteric modulators is their capability to target specifically areas where adenosine levels are increased such as inflammatory and tumor sites, whereas normal body cells and tissues are refractory to the allosteric modulators due to low adenosine levels. LUF6000 administration induced anti-inflammatory effect in 3 experimental animal models of rat adjuvant induced arthritis, monoiodoacetate induced osteoarthritis, and concanavalin A induced liver inflammation in mice. The molecular mechanism of action points to deregulation of signaling proteins including PI3K, IKK, IκB, Jak-2, and STAT-1, resulting in decreased levels of NF-κB, known to mediate inflammatory effects. Moreover, LUF6000 induced a slight stimulatory effect on the number of normal white blood cells and neutrophils. The anti-inflammatory effect of LUF6000, mechanism of action, and the differential effects on inflammatory and normal cells position this allosteric modulator as an attractive and unique drug candidate.

  12. Synthesis of Triphenylethylene Bisphenols as Aromatase Inhibitors That Also Modulate Estrogen Receptors.

    Science.gov (United States)

    Lv, Wei; Liu, Jinzhong; Skaar, Todd C; O'Neill, Elizaveta; Yu, Ge; Flockhart, David A; Cushman, Mark

    2016-01-14

    A series of triphenylethylene bisphenol analogues of the selective estrogen receptor modulator (SERM) tamoxifen were synthesized and evaluated for their abilities to inhibit aromatase, bind to estrogen receptor α (ER-α) and estrogen receptor β (ER-β), and antagonize the activity of β-estradiol in MCF-7 human breast cancer cells. The long-range goal has been to create dual aromatase inhibitor (AI)/selective estrogen receptor modulators (SERMs). The hypothesis is that in normal tissue the estrogenic SERM activity of a dual AI/SERM could attenuate the undesired effects stemming from global estrogen depletion caused by the AI activity of a dual AI/SERM, while in breast cancer tissue the antiestrogenic SERM activity of a dual AI/SERM could act synergistically with AI activity to enhance the antiproliferative effect. The potent aromatase inhibitory activities and high ER-α and ER-β binding affinities of several of the resulting analogues, together with the facts that they antagonize β-estradiol in a functional assay in MCF-7 human breast cancer cells and they have no E/Z isomers, support their further development in order to obtain dual AI/SERM agents for breast cancer treatment.

  13. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons.

    Science.gov (United States)

    Linehan, Victoria; Trask, Robert B; Briggs, Chantalle; Rowe, Todd M; Hirasawa, Michiru

    2015-08-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Post-translational regulation of P2X receptor channels: modulation by phospholipids

    Directory of Open Access Journals (Sweden)

    Louis-Philippe eBernier

    2013-11-01

    Full Text Available P2X receptor channels mediate fast excitatory signaling by ATP and play major roles in sensory transduction, neuro-immune communication and inflammatory response. P2X receptors constitute a gene family of calcium-permeable ATP-gated cation channels therefore the regulation of P2X signaling is critical for both membrane potential and intracellular calcium homeostasis. Phosphoinositides (PIPn are anionic signaling phospholipids that act as functional regulators of many types of ion channels. Direct PIPn binding was demonstrated for several ligand- or voltage-gated ion channels, however no generic motif emerged to accurately predict lipid-protein binding sites. This review presents what is currently known about the modulation of the different P2X subtypes by phospholipids and about critical determinants underlying their sensitivity to PIPn levels in the plasma membrane.All functional mammalian P2X subtypes tested, with the notable exception of P2X5, have been shown to be positively modulated by PIPn, i.e. homomeric P2X1, P2X2, P2X3, P2X4, and P2X7, as well as heteromeric P2X1/5 and P2X2/3 receptors. Based on various results reported on the aforementioned subtypes including mutagenesis of the prototypical PIPn-sensitive P2X4 and PIPn-insensitive P2X5 receptor subtypes, an increasing amount of functional, biochemical and structural evidence converges on the modulatory role of a short polybasic domain located in the proximal C-terminus of P2X subunits. This linear motif, semi-conserved in the P2X family, seems necessary and sufficient for encoding direct modulation of ATP-gated channels by PIPn. Furthermore, the physiological impact of the regulation of ionotropic purinergic responses by phospholipids on pain pathways was recently revealed in the context of native crosstalks between phospholipase C-linked metabotropic receptors and P2X receptor channels in DRG sensory neurons and microglia.

  15. Translational PK-PD modelling of molecular target modulation for the AMPA receptor positive allosteric modulator Org 26576.

    Science.gov (United States)

    Bursi, Roberta; Erdemli, Gul; Campbell, Robert; Hutmacher, Matthew M; Kerbusch, Thomas; Spanswick, David; Jeggo, Ross; Nations, Kari R; Dogterom, Peter; Schipper, Jacques; Shahid, Mohammed

    2011-12-01

    The α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor potentiator Org 26576 represents an interesting pharmacological tool to evaluate the utility of glutamatergic enhancement towards the treatment of psychiatric disorders. In this study, a rat-human translational pharmacokinetic-pharmacodynamic (PK-PD) model of AMPA receptor modulation was used to predict human target engagement and inform dose selection in efficacy clinical trials. Modelling and simulation was applied to rat plasma and cerebrospinal fluid (CSF) pharmacokinetic and pharmacodynamic measurements to identify a target concentration (EC(80)) for AMPA receptor modulation. Human plasma pharmacokinetics was determined from 33 healthy volunteers and eight major depressive disorder patients. From four out of these eight patients, CSF PK was also determined. Simulations of human CSF levels were performed for several doses of Org 26576. Org 26576 (0.1-10 mg/kg, i.v.) potentiated rat hippocampal AMPA receptor responses in an exposure-dependant manner. The rat plasma and CSF PK data were fitted by one-compartment model each. The rat CSF PK-PD model yielded an EC(80) value of 593 ng/ml (90% confidence interval 406.8, 1,264.1). The human plasma and CSF PK data were simultaneously well described by a two-compartment model. Simulations showed that in humans at 100 mg QD, CSF levels of Org 26576 would exceed the EC(80) target concentration for about 2 h and that 400 mg BID would engage AMPA receptors for 24 h. The modelling approach provided useful insight on the likely human dose-molecular target engagement relationship for Org 26576. Based on the current analysis, 100 and 400 mg BID would be suitable to provide 'phasic' and 'continuous' AMPA receptor engagement, respectively.

  16. The hallucinogen d-lysergic diethylamide (LSD) decreases dopamine firing activity through 5-HT1A, D2 and TAAR1 receptors.

    Science.gov (United States)

    De Gregorio, Danilo; Posa, Luca; Ochoa-Sanchez, Rafael; McLaughlin, Ryan; Maione, Sabatino; Comai, Stefano; Gobbi, Gabriella

    2016-11-01

    d-lysergic diethylamide (LSD) is a hallucinogenic drug that interacts with the serotonin (5-HT) system binding to 5-HT 1 and 5-HT 2 receptors. Little is known about its potential interactions with the dopamine (DA) neurons of the ventral tegmental area (VTA). Using in-vivo electrophysiology in male adult rats, we evaluated the effects of cumulative doses of LSD on VTA DA neuronal activity, compared these effects to those produced on 5-HT neurons in the dorsal raphe nucleus (DRN), and attempted to identify the mechanism of action mediating the effects of LSD on VTA DA neurons. LSD, at low doses (5-20μg/kg, i.v.) induced a significant decrease of DRN 5-HT firing activity through 5-HT 2A and D 2 receptors. At these low doses, LSD did not alter VTA DA neuronal activity. On the contrary, at higher doses (30-120μg/kg, i.v.), LSD dose-dependently decreased VTA DA firing activity. The depletion of 5-HT with p-chlorophenylalanine did not modulate the effects of LSD on DA firing activity. The inhibitory effects of LSD on VTA DA firing activity were prevented by the D 2 receptor antagonist haloperidol (50μg/kg, i.v.) and by the 5-HT 1A receptor antagonist WAY-100,635 (500μg/kg, i.v.). Notably, pretreatment with the trace amine-associate receptor 1 (TAAR 1 ) antagonist EPPTB (5mg/kg, i.v.) blocked the inhibitory effect of LSD on VTA DA neurons. These results suggest that LSD at high doses strongly affects DA mesolimbic neuronal activity in a 5-HT independent manner and with a pleiotropic mechanism of action involving 5-HT 1A, D 2 and TAAR 1 receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A role for accumbal glycine receptors in modulation of dopamine release by the glycine transporter-1 inhibitor Org25935

    Directory of Open Access Journals (Sweden)

    Helga eHöifödt Lidö

    2011-03-01

    Full Text Available AbstractAccumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investigated whether Org25935 applied locally in nAc modulates dopamine release, and whether accumbal glycine receptors or NMDA receptors are involved in this tentative effect. We also addressed whether Org25935 and ethanol applied locally in nAc interact with dopamine levels, as seen after systemic administration. We used in vivo microdialysis coupled to HPLC-ED in freely moving male Wistar rats to monitor dopamine output in nAc after local perfusion of Org25935 alone, with ethanol, or Org25935-perfusion after pre-treatment with the glycine receptor antagonist strychnine or the NMDA receptor glycine site antagonist L-701.324. Local Org25935 increased extracellular dopamine levels in a subpopulation of rats. Local strychnine, but not systemic L-701.324, antagonized the dopamine-activating effect of Org25935. Ethanol failed to induce a dopamine overflow in the subpopulation responding to Org25935 with a dopamine elevation. The study supports a role for accumbal glycine receptors rather than NMDA receptor signaling in the dopamine-activating effect of Org25935. The results further indicate that the previously reported systemic Org25935-ethanol interaction with regard to accumbal dopamine is localized to the nAc. This adds to the growing evidence for the glycine receptor as an important player in the dopamine reward circuitry and in ethanol’s effects within this system.

  18. Synapse geometry and receptor dynamics modulate synaptic strength.

    Directory of Open Access Journals (Sweden)

    Dominik Freche

    Full Text Available Synaptic transmission relies on several processes, such as the location of a released vesicle, the number and type of receptors, trafficking between the postsynaptic density (PSD and extrasynaptic compartment, as well as the synapse organization. To study the impact of these parameters on excitatory synaptic transmission, we present a computational model for the fast AMPA-receptor mediated synaptic current. We show that in addition to the vesicular release probability, due to variations in their release locations and the AMPAR distribution, the postsynaptic current amplitude has a large variance, making a synapse an intrinsic unreliable device. We use our model to examine our experimental data recorded from CA1 mice hippocampal slices to study the differences between mEPSC and evoked EPSC variance. The synaptic current but not the coefficient of variation is maximal when the active zone where vesicles are released is apposed to the PSD. Moreover, we find that for certain type of synapses, receptor trafficking can affect the magnitude of synaptic depression. Finally, we demonstrate that perisynaptic microdomains located outside the PSD impacts synaptic transmission by regulating the number of desensitized receptors and their trafficking to the PSD. We conclude that geometrical modifications, reorganization of the PSD or perisynaptic microdomains modulate synaptic strength, as the mechanisms underlying long-term plasticity.

  19. Analgesic effect of ADX71441, a positive allosteric modulator (PAM) of GABAB receptor in a rat model of bladder pain.

    Science.gov (United States)

    Kannampalli, Pradeep; Poli, Sonia-Maria; Boléa, Christelle; Sengupta, Jyoti N

    2017-11-01

    Therapeutic use of GABA B receptor agonists for conditions like chronic abdominal pain, overactive bladder (OAB) and gastroesophageal reflux disease (GERD) is severely affected by poor blood-brain barrier permeability and potential side effects. ADX71441 is a novel positive allosteric modulator (PAM) of the GABA B receptor that has shown encouraging results in pre-clinical models of anxiety, pain, OAB and alcohol addiction. The present study investigates the analgesic effect of ADX71441 to noxious stimulation of the urinary bladder and colon in rats. In female Sprague-Dawley rats, systemic (i.p), but not intrathecal (i.t), administration of ADX71441 produced a dose-dependent decrease in viscero-motor response (VMR) to graded urinary bladder distension (UBD) and colorectal distension (CRD). Additionally, intra-cerebroventricular (i.c.v.) administration of ADX71441 significantly decreased the VMRs to noxious UBD. In electrophysiology experiments, the drug did not attenuate the responses of UBD-sensitive pelvic nerve afferent (PNA) fibers to UBD. In contrast, ADX71441 significantly decreased the responses of UBD-responsive lumbosacral (LS) spinal neurons in spinal intact rats. However, ADX71441 did not attenuate these LS neurons in cervical (C1-C2) spinal transected rats. During cystometrogram (CMG) recordings, ADX71441 (i.p.) significantly decreased the VMR to slow infusion without affecting the number of voiding contraction. These results indicate that ADX71441 modulate bladder nociception via its effect at the supra-spinal sites without affecting the normal bladder motility and micturition reflex in naïve adult rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Serotonin 5-HT2C receptor-independent expression of hypothalamic NOR1, a novel modulator of food intake and energy balance, in mice

    International Nuclear Information System (INIS)

    Nonogaki, Katsunori; Kaji, Takao; Ohba, Yukie; Sumii, Makiko; Wakameda, Mamoru; Tamari, Tomohiro

    2009-01-01

    NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese β-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice. Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in β-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.

  1. Serotonin 5-HT2C receptor-independent expression of hypothalamic NOR1, a novel modulator of food intake and energy balance, in mice

    Energy Technology Data Exchange (ETDEWEB)

    Nonogaki, Katsunori, E-mail: knonogaki-tky@umin.ac.jp [Center of Excellence, Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine (Japan); Department of Lifestyle Medicine, Biomedical Engineering Center, Tohoku University (Japan); Kaji, Takao [Department of Lifestyle Medicine, Biomedical Engineering Center, Tohoku University (Japan); Ohba, Yukie; Sumii, Makiko [Center of Excellence, Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine (Japan); Wakameda, Mamoru; Tamari, Tomohiro [Charles River Laboratories Japan, Inc. (Japan)

    2009-08-21

    NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese {beta}-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice. Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in {beta}-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.

  2. Differential Potency of 2,6-Dimethylcyclohexanol Isomers for Positive Modulation of GABAA Receptor Currents.

    Science.gov (United States)

    Chowdhury, Luvana; Croft, Celine J; Goel, Shikha; Zaman, Naina; Tai, Angela C-S; Walch, Erin M; Smith, Kelly; Page, Alexandra; Shea, Kevin M; Hall, C Dennis; Jishkariani, D; Pillai, Girinath G; Hall, Adam C

    2016-06-01

    GABAA receptors meet all of the pharmacological requirements necessary to be considered important targets for the action of general anesthetic agents in the mammalian brain. In the following patch-clamp study, the relative modulatory effects of 2,6-dimethylcyclohexanol diastereomers were investigated on human GABAA (α1β3γ2s) receptor currents stably expressed in human embryonic kidney cells. Cis,cis-, trans,trans-, and cis,trans-isomers were isolated from commercially available 2,6-dimethylcyclohexanol and were tested for positive modulation of submaximal GABA responses. For example, the addition of 30 μM cis,cis-isomer resulted in an approximately 2- to 3-fold enhancement of the EC20 GABA current. Coapplications of 30 μM 2,6-dimethylcyclohexanol isomers produced a range of positive enhancements of control GABA responses with a rank order for positive modulation: cis,cis > trans,trans ≥ mixture of isomers > > cis,trans-isomer. In molecular modeling studies, the three cyclohexanol isomers bound with the highest binding energies to a pocket within transmembrane helices M1 and M2 of the β3 subunit through hydrogen-bonding interactions with a glutamine at the 224 position and a tyrosine at the 220 position. The energies for binding to and hydrogen-bond lengths within this pocket corresponded with the relative potencies of the agents for positive modulation of GABAA receptor currents (cis,cis > trans,trans > cis,trans-2,6-dimethylcyclohexanol). In conclusion, the stereochemical configuration within the dimethylcyclohexanols is an important molecular feature in conferring positive modulation of GABAA receptor activity and for binding to the receptor, a consideration that needs to be taken into account when designing novel anesthetics with enhanced therapeutic indices. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Chimeric RXFP1 and RXFP2 receptors highlight the similar mechanism of activation utilizing their N-terminal low density lipoprotein class A modules

    Directory of Open Access Journals (Sweden)

    Shoni eBruell

    2013-11-01

    Full Text Available Relaxin family peptide (RXFP receptors 1 and 2 are unique G-protein coupled receptors in that they contain an N-terminal low density lipoprotein type A (LDLa module which is necessary for receptor activation. The current hypothesis suggests that upon ligand binding the LDLa module interacts with the transmembrane (TM domain of a homodimer partner receptor to induce the active receptor conformations. We recently demonstrated that three residues in the N-terminus of the RXFP1 LDLa module are potentially involved in hydrophobic interactions with the receptor to drive activation. RXFP2 shares two out of three of the residues implicated, suggesting that the two LDLa modules could be interchanged without adversely affecting activity. However, in 2007 it was shown that a chimera consisting of the RXFP1 receptor with its LDLa swapped for that of RXFP2 did not signal. We noticed this construct also contained the RXFP2 region linking the LDLa to the leucine-rich repeats. We therefore constructed chimeric RXFP1 and RXFP2 receptors with their LDLa modules swapped immediately C-terminally to the final cysteine residue of the module, retaining the native linker. In addition, we exchanged the TM domains of the chimeras to explore if matching the LDLa module with the TM domain of its native receptor altered activity. All of the chimeras were expressed at the surface of HEK293T cells with ligand binding profiles similar to the wild-type receptors. Importantly, as predicted, ligand binding was able to induce cAMP based signalling. Chimeras of RXFP1 with the LDLa of RXFP2 demonstrated reduced H2 relaxin potency with the pairing of the RXFP2 TM with the RXFP2 LDLa necessary for full ligand efficacy. In contrast the ligand mediated potencies and efficacies on the RXFP2 chimeras were similar suggesting the RXFP1 LDLa module has similar efficacy on the RXFP2 TM domain. Our studies demonstrate the LDLa modules of RXFP1 and RXFP2 modulate receptor activation via a

  4. Contraceptive applications of progesterone receptor modulators.

    Science.gov (United States)

    Chabbert-Buffet, Nathalie; Ouzounian, Sophie; Kairis, Axelle Pintiaux; Bouchard, Philippe

    2008-09-01

    Currently developed progesterone receptor modulators (PRMs) are steroid-derived compounds with mild or potent antiprogestin activity. PRMs may exert a contraceptive activity by different mechanisms such as blockade of ovulation and endometrial desynchronization. Their potential clinical applications are manifold and are very promising in major public health areas, including emergency contraception, long term oestrogen-free contraception (administered alone, or in association with a progestin-only pill to improve bleeding patterns), endometriosis and myoma treatment. The mechanisms of their anti-ovulatory effects and of the endometrial modifications elicited during long term PRM treatment are still not fully elucidated. In future clinical applications, PRMs will be administered orally, via intrauterine systems or vaginal rings.

  5. The association of metabotropic glutamate receptor type 5 with the neuronal Ca2+-binding protein 2 modulates receptor function.

    Science.gov (United States)

    Canela, Laia; Fernández-Dueñas, Víctor; Albergaria, Catarina; Watanabe, Masahiko; Lluís, Carme; Mallol, Josefa; Canela, Enric I; Franco, Rafael; Luján, Rafael; Ciruela, Francisco

    2009-10-01

    Metabotropic glutamate (mGlu) receptors mediate in part the CNS effects of glutamate. These receptors interact with a large array of intracellular proteins in which the final role is to regulate receptor function. Here, using co-immunoprecipitation and pull-down experiments we showed a close and specific interaction between mGlu(5) receptor and NECAB2 in both transfected human embryonic kidney cells and rat hippocampus. Interestingly, in pull-down experiments increasing concentrations of calcium drastically reduced the ability of these two proteins to interact, suggesting that NECAB2 binds to mGlu(5) receptor in a calcium-regulated manner. Immunoelectron microscopy detection of NECAB2 and mGlu(5) receptor in the rat hippocampal formation indicated that both proteins are codistributed in the same subcellular compartment of pyramidal cells. In addition, the NECAB2/mGlu(5) receptor interaction regulated mGlu(5b)-mediated activation of both inositol phosphate accumulation and the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway. Overall, these findings indicate that NECAB2 by its physical interaction with mGlu(5b) receptor modulates receptor function.

  6. The mechanisms behind decreased internalization of angiotensin II type 1 receptor.

    Science.gov (United States)

    Bian, Jingwei; Zhang, Suli; Yi, Ming; Yue, Mingming; Liu, Huirong

    2018-04-01

    The internalization of angiotensin II type 1 receptor (AT 1 R) plays an important role in maintaining cardiovascular homeostasis. Decreased receptor internalization is closely related to cardiovascular diseases induced by the abnormal activation of AT 1 R, such as hypertension. However, the mechanism behind reduced AT 1 R internalization is not fully understood. This review focuses on four parts of the receptor internalization process (the combination of agonists and receptors, receptor phosphorylation, endocytosis, and recycling) and summarizes the possible mechanisms by which AT 1 R internalization is reduced based on these four parts of the process. (1) The agonist has a large molecular weight or a stronger ability to hydrolyze phosphatidylinositol 4,5-bisphosphate (PtdIns (4,5) P 2 ), which can increase the consumption of PtdIns (4,5) P 2 . (2) AT 1 R phosphorylation is weakened because of an abnormal function of phosphorylated kinase or changes in phospho-barcoding and GPCR-β-arrestin complex conformation. (3) The abnormal formation of vesicles or AT 1 R heterodimers with fewer endocytic receptors results in less AT 1 R endocytosis. (4) The enhanced activity and upregulated expression of small GTP-binding protein 4 (Rab4) and 11 (Rab11), which regulate receptor recycling, and phosphatidylinositol 3-kinase increase AT 1 R recycling. In addition, lower expression of AT 1 R-associated protein (ATRAP) or higher expression of AT 1 R-associated protein 1 (ARAP1) can reduce receptor internalization. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Spermidine decreases Na⁺,K⁺-ATPase activity through NMDA receptor and protein kinase G activation in the hippocampus of rats.

    Science.gov (United States)

    Carvalho, Fabiano B; Mello, Carlos F; Marisco, Patricia C; Tonello, Raquel; Girardi, Bruna A; Ferreira, Juliano; Oliveira, Mauro S; Rubin, Maribel A

    2012-06-05

    Spermidine is an endogenous polyamine with a polycationic structure present in the central nervous system of mammals. Spermidine regulates biological processes, such as Ca(2+) influx by glutamatergic N-methyl-d-aspartate receptor (NMDA receptor), which has been associated with nitric oxide synthase (NOS) and cGMP/PKG pathway activation and a decrease of Na(+),K(+)-ATPase activity in rats' cerebral cortex synaptosomes. Na(+),K(+)-ATPase establishes Na(+) and K(+) gradients across membranes of excitable cells and by this means maintains membrane potential and controls intracellular pH and volume. However, it has not been defined whether spermidine modulates Na(+),K(+)-ATPase activity in the hippocampus. In this study we investigated whether spermidine alters Na(+),K(+)-ATPase activity in slices of hippocampus from rats, and possible underlying mechanisms. Hippocampal slices and homogenates were incubated with spermidine (0.05-10 μM) for 30 min. Spermidine (0.5 and 1 μM) decreased Na(+),K(+)-ATPase activity in slices, but not in homogenates. MK-801 (100 and 10 μM), a non-competitive antagonist of NMDA receptor, arcaine (0.5μM), an antagonist of the polyamine binding site at the NMDA receptor, and L-NAME (100μM), a NOS inhibitor, prevented the inhibitory effect of spermidine (0.5 μM). ODQ (10 μM), a guanylate cyclase inhibitor, and KT5823 (2 μM), a protein kinase G inhibitor, also prevented the inhibitory effect of spermidine on Na(+),K(+)-ATPase activity. Spermidine (0.5 and 1.0 μM) increased NO(2) plus NO(3) (NOx) levels in slices, and MK-801 (100 μM) and arcaine (0.5 μM) prevented the effect of spermidine (0.5 μM) on the NOx content. These results suggest that spermidine-induced decrease of Na(+),K(+)-ATPase activity involves NMDA receptor/NOS/cGMP/PKG pathway. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Odin (ANKS1A modulates EGF receptor recycling and stability.

    Directory of Open Access Journals (Sweden)

    Jiefei Tong

    Full Text Available The ANKS1A gene product, also known as Odin, was first identified as a tyrosine-phosphorylated component of the epidermal growth factor receptor network. Here we show that Odin functions as an effector of EGFR recycling. In EGF-stimulated HEK293 cells tyrosine phosphorylation of Odin was induced prior to EGFR internalization and independent of EGFR-to-ERK signaling. Over-expression of Odin increased EGF-induced EGFR trafficking to recycling endosomes and recycling back to the cell surface, and decreased trafficking to lysosomes and degradation. Conversely, Odin knockdown in both HEK293 and the non-small cell lung carcinoma line RVH6849, which expresses roughly 10-fold more EGF receptors than HEK293, caused decreased EGFR recycling and accelerated trafficking to the lysosome and degradation. By governing the endocytic fate of internalized receptors, Odin may provide a layer of regulation that enables cells to contend with receptor cell densities and ligand concentration gradients that are physiologically and pathologically highly variable.

  9. Selective androgen receptor modulators as function promoting therapies.

    Science.gov (United States)

    Bhasin, Shalender; Jasuja, Ravi

    2009-05-01

    The past decade has witnessed an unprecedented discovery effort to develop selective androgen receptor modulators (SARMs) that improve physical function and bone health without adversely affecting the prostate and cardiovascular outcomes. This review describes the historical evolution, the rationale for SARM development, and the mechanisms of testosterone action and SARM selectivity. Although steroidal SARMs have been around since the 1940s, a number of nonsteroidal SARMs that do not serve as substrates for CYP19 aromatase or 5alpha-reductase, act as full agonists in muscle and bone and as partial agonists in prostate are in development. The differing interactions of steroidal and nonsteroidal compounds with androgen receptor (AR) contribute to their unique pharmacologic actions. Ligand binding induces specific conformational changes in the ligand-binding domain, which could modulate surface topology and protein-protein interactions between AR and coregulators, resulting in tissue-specific gene regulation. Preclinical studies have demonstrated the ability of SARMs to increase muscle and bone mass in preclinical rodent models with varying degree of prostate sparing. Phase I trials of SARMs in humans have reported modest increments in fat-free mass. SARMs hold promise as a new class of function promoting anabolic therapies for a number of clinical indications, including functional limitations associated with aging and chronic disease, frailty, cancer cachexia, and osteoporosis.

  10. Differential modulation of Beta-adrenergic receptor signaling by trace amine-associated receptor 1 agonists.

    Directory of Open Access Journals (Sweden)

    Gunnar Kleinau

    Full Text Available Trace amine-associated receptors (TAAR are rhodopsin-like G-protein-coupled receptors (GPCR. TAAR are involved in modulation of neuronal, cardiac and vascular functions and they are potentially linked with neurological disorders like schizophrenia and Parkinson's disease. Subtype TAAR1, the best characterized TAAR so far, is promiscuous for a wide set of ligands and is activated by trace amines tyramine (TYR, phenylethylamine (PEA, octopamine (OA, but also by thyronamines, dopamine, and psycho-active drugs. Unfortunately, effects of trace amines on signaling of the two homologous β-adrenergic receptors 1 (ADRB1 and 2 (ADRB2 have not been clarified yet in detail. We, therefore, tested TAAR1 agonists TYR, PEA and OA regarding their effects on ADRB1/2 signaling by co-stimulation studies. Surprisingly, trace amines TYR and PEA are partial allosteric antagonists at ADRB1/2, whereas OA is a partial orthosteric ADRB2-antagonist and ADRB1-agonist. To specify molecular reasons for TAAR1 ligand promiscuity and for observed differences in signaling effects on particular aminergic receptors we compared TAAR, tyramine (TAR octopamine (OAR, ADRB1/2 and dopamine receptors at the structural level. We found especially for TAAR1 that the remarkable ligand promiscuity is likely based on high amino acid similarity in the ligand-binding region compared with further aminergic receptors. On the other hand few TAAR specific properties in the ligand-binding site might determine differences in ligand-induced effects compared to ADRB1/2. Taken together, this study points to molecular details of TAAR1-ligand promiscuity and identified specific trace amines as allosteric or orthosteric ligands of particular β-adrenergic receptor subtypes.

  11. PPARβ/δ modulates ethanol-induced hepatic effects by decreasing pyridoxal kinase activity

    International Nuclear Information System (INIS)

    Goudarzi, Maryam; Koga, Takayuki; Khozoie, Combiz; Mak, Tytus D.; Kang, Boo-Hyon; Jr, Albert J. Fornace; Peters, Jeffrey M.

    2013-01-01

    Because of the significant morbidity and lethality caused by alcoholic liver disease (ALD), there remains a need to elucidate the regulatory mechanisms that can be targeted to prevent and treat ALD. Toward this goal, minimally invasive biomarker discovery represents an outstanding approach for these purposes. The mechanisms underlying ALD include hepatic lipid accumulation. As the peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) has been shown to inhibit steatosis, the present study examined the role of PPARβ/δ in ALD coupling metabolomic, biochemical and molecular biological analyses. Wild-type and Pparβ/δ-null mice were fed either a control or 4% ethanol diet and examined after 4–7 months of treatment. Ethanol fed Pparβ/δ-null mice exhibited steatosis after short-term treatment compared to controls, the latter effect appeared to be due to increased activity of sterol regulatory element binding protein 1c (SREBP1c). The wild-type and Pparβ/δ-null mice fed the control diet showed clear differences in their urinary metabolomic profiles. In particular, metabolites associated with arginine and proline metabolism, and glycerolipid metabolism, were markedly different between genotypes suggesting a constitutive role for PPARβ/δ in the metabolism of these amino acids. Interestingly, urinary excretion of taurine was present in ethanol-fed wild-type mice but markedly lower in similarly treated Pparβ/δ-null mice. Evidence suggests that PPARβ/δ modulates pyridoxal kinase activity by altering K m , consistent with the observed decreased in urinary taurine excretion. These data collectively suggest that PPARβ/δ prevents ethanol-induced hepatic effects by inhibiting hepatic lipogenesis, modulation of amino acid metabolism, and altering pyridoxal kinase activity

  12. Stress-induced decrease of uterine blood flow in sheep is mediated by alpha 1-adrenergic receptors.

    Science.gov (United States)

    Dreiling, Michelle; Bischoff, Sabine; Schiffner, Rene; Rupprecht, Sven; Kiehntopf, Michael; Schubert, Harald; Witte, Otto W; Nathanielsz, Peter W; Schwab, Matthias; Rakers, Florian

    2016-09-01

    Prenatal maternal stress can be transferred to the fetus via a catecholamine-dependent decrease of uterine blood flow (UBF). However, it is unclear which group of adrenergic receptors mediates this mechanism of maternal-fetal stress transfer. We hypothesized that in sheep, alpha 1-adrenergic receptors may play a key role in catecholamine mediated UBF decrease, as these receptors are mainly involved in peripheral vasoconstriction and are present in significant number in the uterine vasculature. After chronic instrumentation at 125 ± 1 days of gestation (dGA; term 150 dGA), nine pregnant sheep were exposed at 130 ± 1 dGA to acute isolation stress for one hour without visual, tactile, or auditory contact with their flockmates. UBF, blood pressure (BP), heart rate (HR), stress hormones, and blood gases were determined before and during this isolation challenge. Twenty-four hours later, experiments were repeated during alpha 1-adrenergic receptor blockage induced by a continuous intravenous infusion of urapidil. In both experiments, ewes reacted to isolation with an increase in serum norepinephrine, cortisol, BP, and HR as typical signs of activation of sympatho-adrenal and the hypothalamic-pituitary-adrenal axis. Stress-induced UBF decrease was prevented by alpha 1-adrenergic receptor blockage. We conclude that UBF decrease induced by maternal stress in sheep is mediated by alpha 1-adrenergic receptors. Future studies investigating prevention strategies of impact of prenatal maternal stress on fetal health should consider selective blockage of alpha 1-receptors to interrupt maternal-fetal stress transfer mediated by utero-placental malperfusion.

  13. Increased excitability of spinal pain reflexes and altered frequency-dependent modulation in the dopamine D3-receptor knockout mouse.

    Science.gov (United States)

    Keeler, Benjamin E; Baran, Christine A; Brewer, Kori L; Clemens, Stefan

    2012-12-01

    Frequency-dependent modulation and dopamine (DA) receptors strongly modulate neural circuits in the spinal cord. Of the five known DA receptor subtypes, the D3 receptor has the highest affinity to DA, and D3-mediated actions are mainly inhibitory. Using an animal model of spinal sensorimotor dysfunction, the D3 receptor knockout mouse (D3KO), we investigated the physiological consequences of D3 receptor dysfunction on pain-associated signaling pathways in the spinal cord, the initial integration site for the processing of pain signaling. In the D3KO spinal cord, inhibitory actions of DA on the proprioceptive monosynaptic stretch reflex are converted from depression to facilitation, but its effects on longer-latency and pain-associated reflex responses and the effects of FM have not been studied. Using behavioral approaches in vivo, we found that D3KO animals exhibit reduced paw withdrawal latencies to thermal pain stimulation (Hargreaves' test) over wild type (WT) controls. Electrophysiological and pharmacological approaches in the isolated spinal cord in vitro showed that constant current stimulation of dorsal roots at a pain-associated frequency was associated with a significant reduction in the frequency-dependent modulation of longer-latency reflex (LLRs) responses but not monosynaptic stretch reflexes (MSRs) in D3KO. Application of the D1 and D2 receptor agonists and the voltage-gated calcium-channel ligand, pregabalin, but not DA, was able to restore the frequency-dependent modulation of the LLR in D3KO to WT levels. Thus we demonstrate that nociception-associated LLRs and proprioceptive MSRs are differentially modulated by frequency, dopaminergics and the Ca(2+) channel ligand, pregabalin. Our data suggest a role for the DA D3 receptor in pain modulation and identify the D3KO as a possible model for increased nociception. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Selective androgen receptor modulators in preclinical and clinical development.

    Science.gov (United States)

    Narayanan, Ramesh; Mohler, Michael L; Bohl, Casey E; Miller, Duane D; Dalton, James T

    2008-01-01

    Androgen receptor (AR) plays a critical role in the function of several organs including primary and accessory sexual organs, skeletal muscle, and bone, making it a desirable therapeutic target. Selective androgen receptor modulators (SARMs) bind to the AR and demonstrate osteo- and myo-anabolic activity; however, unlike testosterone and other anabolic steroids, these nonsteroidal agents produce less of a growth effect on prostate and other secondary sexual organs. SARMs provide therapeutic opportunities in a variety of diseases, including muscle wasting associated with burns, cancer, or end-stage renal disease, osteoporosis, frailty, and hypogonadism. This review summarizes the current standing of research and development of SARMs, crystallography of AR with SARMs, plausible mechanisms for their action and the potential therapeutic indications for this emerging class of drugs.

  15. Modulation of gene expression of adenosine and metabotropic glutamate receptors in rat's neuronal cells exposed to L-glutamate and [60]fullerene.

    Science.gov (United States)

    Giust, Davide; Da Ros, Tatiana; Martín, Mairena; Albasanz, José Luis

    2014-08-01

    L-Glutamate (L-Glu) has been often associated not only to fundamental physiological roles, as learning and memory, but also to neuronal cell death and the genesis and development of important neurodegenerative diseases. Herein we studied the variation in the adenosine and metabotropic glutamate receptors expression induced by L-Glu treatment in rat's cortical neurons. The possibility to have structural alteration of the cells induced by L-Glu (100 nM, 1 and 10 microM) has been addressed, studying the modulation of microtubule associated protein-2 (MAP-2) and neurofilament heavy polypeptide (NEFH), natively associated proteins to the dendritic shape maintenance. Results showed that the proposed treatments were not destabilizing the cells, so the L-Glu concentrations were acceptable to investigate fluctuation in receptors expression, which were studied by RT-PCR. Interestingly, C60 fullerene derivative t3ss elicited a protective effect against glutamate toxicity, as demonstrated by MTT assay. In addition, t3ss compound exerted a different effect on the adenosine and metabotropic glutamate receptors analyzed. Interestingly, A(2A) and mGlu1 mRNAs were significantly decreased in conditions were t3ss neuroprotected cortical neurons from L-Glu toxicity. In summary, t3ss protects neurons from glutamate toxicity in a process that appears to be associated with the modulation of the gene expression of adenosine and metabotropic glutamate receptors.

  16. Hyperglycemia of Diabetic Rats Decreased by a Glucagon Receptor Antagonist

    Science.gov (United States)

    Johnson, David G.; Ulichny Goebel, Camy; Hruby, Victor J.; Bregman, Marvin D.; Trivedi, Dev

    1982-02-01

    The glucagon analog [l-Nα-trinitrophenylhistidine, 12-homoarginine]-glucagon (THG) was examined for its ability to lower blood glucose concentrations in rats made diabetic with streptozotocin. In vitro, THG is a potent antagonist of glucagon activation of the hepatic adenylate cyclase assay system. Intravenous bolus injections of THG caused rapid decreases (20 to 35 percent) of short duration in blood glucose. Continuous infusion of low concentrations of the inhibitor led to larger sustained decreases in blood glucose (30 to 65 percent). These studies demonstrate that a glucagon receptor antagonist can substantially reduce blood glucose levels in diabetic animals without addition of exogenous insulin.

  17. Negative modulation of the GABAA ρ1 receptor function by l-cysteine.

    Science.gov (United States)

    Beltrán González, Andrea N; Vicentini, Florencia; Calvo, Daniel J

    2018-01-01

    l-Cysteine is an endogenous sulfur-containing amino acid with multiple and varied roles in the central nervous system, including neuroprotection and the maintenance of the redox balance. However, it was also suggested as an excitotoxic agent implicated in the pathogenesis of neurological disorders such as Parkinson's and Alzheimer's disease. l-Cysteine can modulate the activity of ionic channels, including voltage-gated calcium channels and glutamatergic NMDA receptors, whereas its effects on GABAergic neurotransmission had not been studied before. In the present work, we analyzed the effects of l-cysteine on responses mediated by homomeric GABA A ρ1 receptors, which are known for mediating tonic γ-aminobutyric acid (GABA) responses in retinal neurons. GABA A ρ1 receptors were expressed in Xenopus laevis oocytes and GABA-evoked chloride currents recorded by two-electrode voltage-clamp in the presence or absence of l-cysteine. l-Cysteine antagonized GABA A ρ1 receptor-mediated responses; inhibition was dose-dependent, reversible, voltage independent, and susceptible to GABA concentration. Concentration-response curves for GABA were shifted to the right in the presence of l-cysteine without a substantial change in the maximal response. l-Cysteine inhibition was insensitive to chemical protection of the sulfhydryl groups of the ρ1 subunits by the irreversible alkylating agent N-ethyl maleimide. Our results suggest that redox modulation is not involved during l-cysteine actions and that l-cysteine might be acting as a competitive antagonist of the GABA A ρ1 receptors. © 2017 International Society for Neurochemistry.

  18. Enhancing NMDA Receptor Function: Recent Progress on Allosteric Modulators

    Directory of Open Access Journals (Sweden)

    Lulu Yao

    2017-01-01

    Full Text Available The N-methyl-D-aspartate receptors (NMDARs are subtype glutamate receptors that play important roles in excitatory neurotransmission and synaptic plasticity. Their hypo- or hyperactivation are proposed to contribute to the genesis or progression of various brain diseases, including stroke, schizophrenia, depression, and Alzheimer’s disease. Past efforts in targeting NMDARs for therapeutic intervention have largely been on inhibitors of NMDARs. In light of the discovery of NMDAR hypofunction in psychiatric disorders and perhaps Alzheimer’s disease, efforts in boosting NMDAR activity/functions have surged in recent years. In this review, we will focus on enhancing NMDAR functions, especially on the recent progress in the generation of subunit-selective, allosteric positive modulators (PAMs of NMDARs. We shall also discuss the usefulness of these newly developed NMDAR-PAMs.

  19. Muscarinic receptor M4 positive allosteric modulators attenuate central effects of cocaine

    DEFF Research Database (Denmark)

    Dall, Camilla; Weikop, Pia; Dencker, Ditte

    2017-01-01

    BACKGROUND: Cocaine addiction is a chronic brain disease affecting neurotransmission. Muscarinic cholinergic receptors modulate dopaminergic signaling in the reward system, and muscarinic receptor stimulation can block direct reinforcing effects of cocaine. Here, we tested the hypothesis...... that specific muscarinic M4receptor stimulation can attenuate the discriminative stimulus effects and conditioned rewarding effects of cocaine, measures believed to predict the ability of cocaine and cocaine-associated cues to elicit relapse to drug taking. METHODS: We tested the M4-selective positive...

  20. TAAR1 Modulates Cortical Glutamate NMDA Receptor Function

    Science.gov (United States)

    Espinoza, Stefano; Lignani, Gabriele; Caffino, Lucia; Maggi, Silvia; Sukhanov, Ilya; Leo, Damiana; Mus, Liudmila; Emanuele, Marco; Ronzitti, Giuseppe; Harmeier, Anja; Medrihan, Lucian; Sotnikova, Tatyana D; Chieregatti, Evelina; Hoener, Marius C; Benfenati, Fabio; Tucci, Valter; Fumagalli, Fabio; Gainetdinov, Raul R

    2015-01-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions. PMID:25749299

  1. Monovalent cation and amiloride analog modulation of adrenergic ligand binding to the unglycosylated alpha 2B-adrenergic receptor subtype

    International Nuclear Information System (INIS)

    Wilson, A.L.; Seibert, K.; Brandon, S.; Cragoe, E.J. Jr.; Limbird, L.E.

    1991-01-01

    The unglycosylated alpha 2B subtype of the alpha 2-adrenergic receptor found in NG-108-15 cells possesses allosteric regulation of adrenergic ligand binding by monovalent cations and 5-amino-substituted amiloride analogs. These findings demonstrate that allosteric modulation of adrenergic ligand binding is not a property unique to the alpha 2A subtype. The observation that amiloride analogs as well as monovalent cations can modulate adrenergic ligand binding to the nonglycosylated alpha 2B subtype indicates that charge shielding due to carbohydrate moieties does not play a role in this allosteric modulation but, rather, these regulatory effects result from interactions of cations and amiloride analogs with the protein moiety of the receptor. Furthermore, the observation that both alpha 2A and alpha 2B receptor subtypes are modulated by amiloride analogs suggests that structural domains that are conserved between the two are likely to be involved in this allosteric modulation

  2. Endometrial changes from short-term therapy with CDB-4124, a selective progesterone receptor modulator.

    Science.gov (United States)

    Ioffe, Olga B; Zaino, Richard J; Mutter, George L

    2009-03-01

    Selective progesterone receptor modulators are a class of drugs with progesterone antagonist activity that may confer therapeutic benefit for reproductive disorders in premenopausal women. Endometrial structure, which is dynamically controlled by circulating sex hormones, is likely to be perturbed by progesterone receptor modulators through their progesterone antagonist properties. We examined endometrial histology in 58 premenopausal women treated with the progesterone receptor modulator CDB-4124 (also known as Proellex) for endometriosis or uterine leiomyomata in two clinical trials. Endometrial biopsies obtained after 3 or 6 months with doses of 12.5, 25, or 50 mg daily oral CDB-4124 were reviewed independently by three pathologists. Consensus diagnoses using the World Health Organization hyperplasia scoring system, comments on specific histologic features, and clinical annotation were collected and analyzed. The majority of the endometrial biopsies (103 of 174 biopsies) contained histologic changes that are not seen during normal menstrual cycles. The histology of CDB-4124-treated patients was generally inactive or atrophic, and less frequently, proliferative or secretory, superimposed upon which were novel changes including formation of cystically dilated glands, and secretory changes coexisting with mitoses and apoptotic bodies. With increasing treatment dose and duration, the cysts became predominant and their lining inactive or atrophic. Cystic glands in the CDB-4124-treated subjects correlated with increased endometrial thickness by ultrasound. None of the CDB-4124-treated patients developed endometrial carcinoma or hyperplasia while on therapy. CDB-4124 therapy for 3-6 months produces histologic changes that are sufficiently novel that they might easily be misinterpreted by pathologists, particularly as disordered proliferative or hyperplastic endometrium. Knowledge of the constellation of endometrial changes associated with this agent and other

  3. Discovery of dual-action membrane-anchored modulators of incretin receptors.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Fortin

    Full Text Available The glucose-dependent insulinotropic polypeptide (GIP and the glucagon-like peptide-1 (GLP-1 receptors are considered complementary therapeutic targets for type 2 diabetes. Using recombinant membrane-tethered ligand (MTL technology, the present study focused on defining optimized modulators of these receptors, as well as exploring how local anchoring influences soluble peptide function.Serial substitution of residue 7 in membrane-tethered GIP (tGIP led to a wide range of activities at the GIP receptor, with [G(7]tGIP showing enhanced efficacy compared to the wild type construct. In contrast, introduction of G(7 into the related ligands, tGLP-1 and tethered exendin-4 (tEXE4, did not affect signaling at the cognate GLP-1 receptor. Both soluble and tethered GIP and GLP-1 were selective activators of their respective receptors. Although soluble EXE4 is highly selective for the GLP-1 receptor, unexpectedly, tethered EXE4 was found to be a potent activator of both the GLP-1 and GIP receptors. Diverging from the pharmacological properties of soluble and tethered GIP, the newly identified GIP-R agonists, (i.e. [G(7]tGIP and tEXE4 failed to trigger cognate receptor endocytosis. In an attempt to recapitulate the dual agonism observed with tEXE4, we conjugated soluble EXE4 to a lipid moiety. Not only did this soluble peptide activate both the GLP-1 and GIP receptors but, when added to receptor expressing cells, the activity persists despite serial washes.These findings suggest that conversion of a recombinant MTL to a soluble membrane anchored equivalent offers a means to prolong ligand function, as well as to design agonists that can simultaneously act on more than one therapeutic target.

  4. Nociceptive transmission and modulation via P2X receptors in central pain syndrome.

    Science.gov (United States)

    Kuan, Yung-Hui; Shyu, Bai-Chuang

    2016-05-26

    Painful sensations are some of the most frequent complaints of patients who are admitted to local medical clinics. Persistent pain varies according to its causes, often resulting from local tissue damage or inflammation. Central somatosensory pathway lesions that are not adequately relieved can consequently cause central pain syndrome or central neuropathic pain. Research on the molecular mechanisms that underlie this pathogenesis is important for treating such pain. To date, evidence suggests the involvement of ion channels, including adenosine triphosphate (ATP)-gated cation channel P2X receptors, in central nervous system pain transmission and persistent modulation upon and following the occurrence of neuropathic pain. Several P2X receptor subtypes, including P2X2, P2X3, P2X4, and P2X7, have been shown to play diverse roles in the pathogenesis of central pain including the mediation of fast transmission in the peripheral nervous system and modulation of neuronal activity in the central nervous system. This review article highlights the role of the P2X family of ATP receptors in the pathogenesis of central neuropathic pain and pain transmission. We discuss basic research that may be translated to clinical application, suggesting that P2X receptors may be treatment targets for central pain syndrome.

  5. Melatonin ameliorates oxidative stress, modulates death receptor pathway proteins, and protects the rat cerebrum against bisphenol-A-induced apoptosis.

    Science.gov (United States)

    El-Missiry, Mohamed A; Othman, Azza I; Al-Abdan, Monera A; El-Sayed, Aml A

    2014-12-15

    Epidemiological reports have indicated a correlation between the increasing of bisphenol-A (BPA) levels in the environment and the incidence of neurodegenerative diseases. In the present study, the protective effect of melatonin on oxidative stress and the death receptor apoptotic proteins in the cerebrum of the bisphenol-A-treated rats were examined. Adult male rats were orally administered melatonin (10mg/kg bw) concurrently with BPA (50mg/kg bw) 3 days a week for 6 weeks. BPA exposure resulted in significant elevations of oxidative stress, as evidenced by the increased malondialdehyde level and the decreased glutathione level and superoxide dismutase activity in the cerebrum. BPA caused an upregulation of p53 and CD95-Fas and activation of capsases-3 and 8, resulting in cerebral cell apoptosis. Melatonin significantly attenuated the BPA-evoked brain oxidative stress, modulated apoptotic-regulating proteins and protected against apoptosis. These data suggest that melatonin modulated important steps in the death receptor apoptotic pathway which likely related to its redox control properties. Melatonin is a promising pharmacological agent for preventing the potential neurotoxicity of BPA following occupational or environmental exposures. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Correlated cone noise decreases rod signal contributions to the post-receptoral pathways.

    Science.gov (United States)

    Hathibelagal, Amithavikram R; Feigl, Beatrix; Zele, Andrew J

    2018-04-01

    This study investigated how invisible extrinsic temporal white noise that correlates with the activity of one of the three [magnocellular (MC), parvocellular (PC), or koniocellular (KC)] post-receptoral pathways alters mesopic rod signaling. A four-primary photostimulator provided independent control of the rod and three cone photoreceptor excitations. The rod contributions to the three post-receptoral pathways were estimated by perceptually matching a 20% contrast rod pulse by independently varying the LMS (MC pathway), +L-M (PC pathway), and S-cone (KC pathway) excitations. We show that extrinsic cone noise caused a predominant decrease in the overall magnitude and ratio of the rod contributions to each pathway. Thus, the relative cone activity in the post-receptoral pathways determines the relative mesopic rod inputs to each pathway.

  7. Calcium pathways such as cAMP modulate clothianidin action through activation of α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptors.

    Science.gov (United States)

    Calas-List, Delphine; List, Olivier; Quinchard, Sophie; Thany, Steeve H

    2013-07-01

    Clothianidin is a neonicotinoid insecticide developed in the early 2000s. We have recently demonstrated that it was a full agonist of α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptors expressed in the cockroach dorsal unpaired median neurons. Clothianidin was able to act as an agonist of imidacloprid-insensitive nAChR2 receptor and internal regulation of cAMP concentration modulated nAChR2 sensitivity to clothianidin. In the present study, we demonstrated that cAMP modulated the agonist action of clothianidin via α-bungarotoxin-sensitive and insensitive receptors. Clothianidin-induced current-voltage curves were dependent to clothianidin concentrations. At 10 μM clothianidin, increasing cAMP concentration induced a linear current-voltage curve. Clothianidin effects were blocked by 0.5 μM α-bungarotoxin suggesting that cAMP modulation occurred through α-bungarotoxin-sensitive receptors. At 1 mM clothianidin, cAMP effects were associated to α-bungarotoxin-insensitive receptors because clothianidin-induced currents were blocked by 5 μM mecamylamine and 20 μM d-tubocurarine. In addition, we found that application of 1mM clothianidin induced a strong increase of intracellular calcium concentration. These data reinforced the finding that calcium pathways including cAMP modulated clothianidin action on insect nicotinic acetylcholine receptors. We proposed that intracellular calcium pathways such as cAMP could be a target to modulate the mode of action of neonicotinoid insecticides. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Probe-Dependent Negative Allosteric Modulators of the Long-Chain Free Fatty Acid Receptor FFA4

    DEFF Research Database (Denmark)

    Watterson, Kenneth R; Hansen, Steffen V F; Hudson, Brian D

    2017-01-01

    High-affinity and selective antagonists that are able to block the actions of both endogenous and synthetic agonists of G protein-coupled receptors are integral to analysis of receptor function and to support suggestions of therapeutic potential. Although there is great interest in the potential...... of endogenous and synthetic agonists, clear agonist probe dependence in the nature of allosteric modulation was apparent. Although AH-7614 did not antagonize the second long-chain free fatty acid receptor, free fatty acid receptor 1, the simple chemical structure of AH-7614 containing features found in many...

  9. Dopamine modulation of avoidance behavior in Caenorhabditis elegans requires the NMDA receptor NMR-1.

    Directory of Open Access Journals (Sweden)

    Melvin Baidya

    Full Text Available The nematode C. elegans utilizes a relatively simple neural circuit to mediate avoidance responses to noxious stimuli such as the volatile odorant octanol. This avoidance behavior is modulated by dopamine. cat-2 mutant animals that are deficient in dopamine biosynthesis have an increased response latency to octanol compared to wild type animals, and this defect can be fully restored with the application of exogenous dopamine. Because this avoidance behavior is mediated by glutamatergic signaling between sensory neurons and premotor interneurons, we investigated the genetic interactions between dopaminergic signaling and ionotropic glutamate receptors. cat-2 mutant animals lacking either the GLR-1 or GLR-2 AMPA/kainate receptors displayed an increased response latency to octanol, which could be restored via exogenous dopamine. However, whereas cat-2 mutant animals lacking the NMR-1 NMDA receptor had increased response latency to octanol they were insensitive to exogenous dopamine. Mutants that lacked both AMPA/kainate and NMDA receptors were also insensitive to exogenous dopamine. Our results indicate that dopamine modulation of octanol avoidance requires NMR-1, consistent with NMR-1 as a potential downstream signaling target for dopamine.

  10. Sex-dependent anti-stress effect of an α5 subunit containing GABAA receptor positive allosteric modulator

    Directory of Open Access Journals (Sweden)

    Sean C. Piantadosi

    2016-11-01

    Full Text Available Rationale: Current first-line treatments for stress-related disorders such as Major Depressive Disorder (MDD act on monoaminergic systems and take weeks to achieve a therapeutic effect with poor response and low remission rates. Recent research has implicated the GABAergic system in the pathophysiology of depression, including deficits in interneurons targeting the dendritic compartment of cortical pyramidal cells. Objectives: The present study evaluates whether SH-053-2'F-R-CH3 (denoted α5-PAM, a positive allosteric modulator selective for α5-subunit containing GABAA receptors found predominantly on cortical pyramidal cell dendrites has anti-stress effects. Methods: Female and male C57BL6/J mice were exposed to unpredictable chronic mild stress (UCMS and treated with α5-PAM acutely (30 minutes prior to assessing behavior or chronically before being assessed behaviorally. Results: Acute and chronic α5-PAM treatments produce a pattern of decreased stress-induced behaviors (denoted as behavioral emotionality across various tests in female, but not in male mice. Behavioral Z-scores calculated across a panel of tests designed to best model the range and heterogeneity of human symptomatology confirmed that acute and chronic α5-PAM treatments consistently produce significant decreases in behavioral emotionality in several independent cohorts of females. The behavioral responses to α5-PAM could not be completely accounted for by differences in drug brain disposition between female and male mice. In mice exposed to UCMS, expression of the Gabra5 gene was increased in the frontal cortex after acute treatment and in hippocampus after chronic treatment with α5-PAM in females only, and these expression changes correlated with behavioral emotionality. Conclusions: We showed that acute and chronic positive modulation of α5 subunit-containing GABAA receptors elicit anti-stress effects in a sex-dependent manner, suggesting novel therapeutic modalities.

  11. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    Science.gov (United States)

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. Georg Thieme Verlag KG Stuttgart · New York.

  12. Do receptors get pregnant too? Adrenergic receptor alterations in human pregnancy.

    Science.gov (United States)

    Smiley, R M; Finster, M

    1996-01-01

    In this review we discuss adrenergic receptor number and function during pregnancy, with emphasis on evidence that pregnancy results in specific receptor alterations from the nonpregnant state. Changes in adrenergic receptor function or distribution in vascular smooth muscle may be in part responsible for the decreased vascular responsiveness seen in human pregnancy, and the lack of the normal alterations may be a part of the syndromes of gestational hypertension, including preeclampsia-eclampsia. The onset of labor may be influenced by adrenergic modulation, and receptor or postreceptor level molecular alterations may trigger or facilitate normal or preterm labor. Human studies are emphasized when possible to assess the role of adrenergic signal transduction regulation in the physiology and pathophysiology of normal and complicated human pregnancy.

  13. Ivy and neurogliaform interneurons are a major target of μ opioid receptor modulation

    OpenAIRE

    Krook-Magnuson, Esther; Luu, Lillian; Lee, Sang-Hun; Varga, Csaba; Soltesz, Ivan

    2011-01-01

    Mu opioid receptors (μORs) are selectively expressed on interneurons in area CA1 of the hippocampus. Fast-spiking, parvalbumin expressing, basket cells express μORs, but circumstantial evidence suggests that another major, unidentified, GABAergic cell class must also be modulated by μORs. Here we report that the abundant, dendritically targeting, neurogliaform family of cells (Ivy and neurogliaform cells) is a previously unrecognized target of direct modulation by μORs. Ivy and neurogliaform ...

  14. Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids.

    Directory of Open Access Journals (Sweden)

    Gonzalo E Yévenes

    Full Text Available Glycine receptors (GlyRs are transmitter-gated anion channels of the Cys-loop superfamily which mediate synaptic inhibition at spinal and selected supraspinal sites. Although they serve pivotal functions in motor control and sensory processing, they have yet to be exploited as drug targets partly because of hitherto limited possibilities for allosteric control. Endocannabinoids (ECs have recently been characterized as direct allosteric GlyR modulators, but the underlying molecular sites have remained unknown. Here, we show that chemically neutral ECs (e.g. anandamide, AEA are positive modulators of α(1, α(2 and α(3 GlyRs, whereas acidic ECs (e.g. N-arachidonoyl-glycine; NA-Gly potentiate α(1 GlyRs but inhibit α(2 and α(3. This subunit-specificity allowed us to identify the underlying molecular sites through analysis of chimeric and mutant receptors. We found that alanine 52 in extracellular loop 2, glycine 254 in transmembrane (TM region 2 and intracellular lysine 385 determine the positive modulation of α(1 GlyRs by NA-Gly. Successive substitution of non-conserved extracellular and TM residues in α(2 converted NA-Gly-mediated inhibition into potentiation. Conversely, mutation of the conserved lysine within the intracellular loop between TM3 and TM4 attenuated NA-Gly-mediated potentiation of α(1 GlyRs, without affecting inhibition of α(2 and α(3. Notably, this mutation reduced modulation by AEA of all three GlyRs. These results define molecular sites for allosteric control of GlyRs by ECs and reveal an unrecognized function for the TM3-4 intracellular loop in the allosteric modulation of Cys-loop ion channels. The identification of these sites may help to understand the physiological role of this modulation and facilitate the development of novel therapeutic approaches to diseases such as spasticity, startle disease and possibly chronic pain.

  15. Presynaptic Ionotropic Receptors Controlling and Modulating the Rules for Spike Timing-Dependent Plasticity

    Directory of Open Access Journals (Sweden)

    Matthijs B. Verhoog

    2011-01-01

    Full Text Available Throughout life, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. In line with predictions made by Hebb, synapse strength can be modified depending on the millisecond timing of action potential firing (STDP. The sign of synaptic plasticity depends on the spike order of presynaptic and postsynaptic neurons. Ionotropic neurotransmitter receptors, such as NMDA receptors and nicotinic acetylcholine receptors, are intimately involved in setting the rules for synaptic strengthening and weakening. In addition, timing rules for STDP within synapses are not fixed. They can be altered by activation of ionotropic receptors located at, or close to, synapses. Here, we will highlight studies that uncovered how network actions control and modulate timing rules for STDP by activating presynaptic ionotropic receptors. Furthermore, we will discuss how interaction between different types of ionotropic receptors may create “timing” windows during which particular timing rules lead to synaptic changes.

  16. Glutamate requires NMDA receptors to modulate alpha2 adrenoceptor in medulla oblongata cultured cells of newborn rats.

    Science.gov (United States)

    Marinho da Silva, Sergio; Carrettiero, Daniel C; Chadi, Débora R F

    2014-04-03

    α2 Adrenoceptors (α2-ARs) are important in regulating the central control of blood pressure in medulla oblongata. However, it is unclear how this receptor is modulated by different receptors, especially the glutamatergic. In the present study, we studied the influence of ionotropic glutamatergic receptors over the α2-ARs in cultured cells of the medulla oblongata of newborn rats. For this purpose, the protein level of the α2-ARs was assessed after administration to the cultured cells of glutamate (glu), the agonists NMDA and kainate (KA), the NMDA receptor antagonist MK801 and the KA receptor antagonist DNQX. Results indicate that the α2-AR protein levels were increased after the treatments with glu and NMDA, and the addition of MK801 to this treatment thwarted this increase. Notwithstanding the fact that KA did not alter the receptor protein level, the combined treatment of DNQX with glu prevented the α2-AR protein modulation. In conclusion, the present study suggests that ionotropic glutamatergic receptors could be related to the α2-AR protein regulation in the medulla oblongata. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. A selective androgen receptor modulator for hormonal male contraception.

    Science.gov (United States)

    Chen, Jiyun; Hwang, Dong Jin; Bohl, Casey E; Miller, Duane D; Dalton, James T

    2005-02-01

    The recent discovery of nonsteroidal selective androgen receptor modulators (SARMs) provides a promising alternative for testosterone replacement therapies, including hormonal male contraception. The identification of an orally bioavailable SARM with the ability to mimic the central and peripheral androgenic and anabolic effects of testosterone would represent an important step toward the "male pill". We characterized the in vitro and in vivo pharmacologic activity of (S)-3-(4-chloro-3-fluorophenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethylphenyl)propionamide (C-6), a novel SARM developed in our laboratories. C-6 was identified as an androgen receptor (AR) agonist with high AR binding affinity (K(i) = 4.9 nM). C-6 showed tissue-selective pharmacologic activity with higher anabolic activity than androgenic activity in male rats. The doses required to maintain the weight of the prostate, seminal vesicles, and levator ani muscle to half the size of the maximum effects (i.e., ED(50)) were 0.78 +/- 0.06, 0.88 +/- 0.1, and 0.17 +/- 0.04 mg/day, respectively. As opposed to other SARMs, gonadotropin levels in C-6-treated groups were significantly lower than control values. C-6 also significantly decreased serum testosterone concentration in intact rats after 2 weeks of treatment. Marked suppression of spermatogenesis was observed after 10 weeks of treatment with C-6 in intact male rats. Pharmacokinetic studies of C-6 in male rats revealed that C-6 was well absorbed after oral administration (bioavailability 76%), with a long (6.3 h) half-life at a dose of 10 mg/kg. These studies show that C-6 mimicked the in vivo pharmacologic and endocrine effects of testosterone while maintaining the oral bioavailability and tissue-selective actions of nonsteroidal SARMs.

  18. Thermodynamics and structural analysis of positive allosteric modulation of the ionotropic glutamate receptor GluA2

    DEFF Research Database (Denmark)

    Krintel, Christian; Frydenvang, Karla; Olsen, Lars

    2012-01-01

    Positive allosteric modulators of the ionotropic glutamate receptor-2 (GluA2) are promising compounds for the treatment of cognitive disorders, e.g. Alzheimer's disease. These modulators bind within the dimer interface of the ligand-binding domain and stabilize the agonist-bound conformation slow...

  19. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    Science.gov (United States)

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-07

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.

  20. Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway.

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    Full Text Available Dopamine (DA, a neurotransmitter in the nervous system, has been shown to modulate immune function. We have previously reported that five subtypes of DA receptors, including D1R, D2R, D3R, D4R and D5R, are expressed in T lymphocytes and they are involved in regulation of T cells. However, roles of these DA receptor subtypes and their coupled signal-transduction pathway in modulation of natural killer (NK cells still remain to be clarified. The spleen of mice was harvested and NK cells were isolated and purified by negative selection using magnetic activated cell sorting. After NK cells were incubated with various drugs for 4 h, flow cytometry measured cytotoxicity of NK cells against YAC-1 lymphoma cells. NK cells expressed the five subtypes of DA receptors at mRNA and protein levels. Activation of D1-like receptors (including D1R and D5R with agonist SKF38393 enhanced NK cell cytotoxicity, but activation of D2-like receptors (including D2R, D3R and D4R with agonist quinpirole attenuated NK cells. Simultaneously, SKF38393 elevated D1R and D5R expression, cAMP content, and phosphorylated cAMP-response element-binding (CREB level in NK cells, while quinpirole reduced D3R and D4R expression, cAMP content, and phosphorylated CREB level in NK cells. These effects of SKF38393 were blocked by SCH23390, an antagonist of D1-like receptors, and quinpirole effects were abolished by haloperidol, an antagonist of D2-like receptors. In support these results, H89, an inhibitor of phosphokinase A (PKA, prevented the SKF38393-dependent enhancement of NK cells and forskolin, an activator of adenylyl cyclase (AC, counteracted the quinpirole-dependent suppression of NK cells. These findings show that DA receptor subtypes are involved in modulation of NK cells and suggest that D1-like receptors facilitate NK cells by stimulating D1R/D5R-cAMP-PKA-CREB signaling pathway and D2-like receptors suppress NK cells by inhibiting D3R/D4R-cAMP-PKA-CREB signaling pathway. The

  1. Modulation of inhibitory activity markers by intermittent theta-burst stimulation in rat cortex is NMDA-receptor dependent.

    Science.gov (United States)

    Labedi, Adnan; Benali, Alia; Mix, Annika; Neubacher, Ute; Funke, Klaus

    2014-01-01

    Intermittent theta-burst stimulation (iTBS) applied via transcranial magnetic stimulation has been shown to increase cortical excitability in humans. In the rat brain it strongly reduced the number of neurons expressing the 67-kD isoform of the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD67) and those expressing the calcium-binding proteins parvalbumin (PV) and calbindin (CB), specific markers of fast-spiking (FS) and non-FS inhibitory interneurons, respectively, an indication of modified cortical inhibition. Since iTBS effects in humans have been shown to be NMDA receptor sensitive, we wondered whether the iTBS-induced changes in the molecular phenotype of interneurons may be also sensitive to glutamatergic synaptic transmission mediated by NMDA receptors. In a sham-controlled fashion, five iTBS-blocks of 600 stimuli were applied to rats either lightly anesthetized by only urethane or by an additional low (subnarcotic) or high dose of the NMDA receptor antagonist ketamine before immunohistochemical analysis. iTBS reduced the number of neurons expressing GAD67, PV and CB. Except for CB, a low dose of ketamine partially prevented these effects while a higher dose almost completely abolished the iTBS effects. Our findings indicate that iTBS modulates the molecular, and likely also the electric, activity of cortical inhibitory interneurons and that the modulation of FS-type but less that of non-FS-type neurons is mediated by NMDA receptors. A combination of iTBS with pharmacological interventions affecting distinct receptor subtypes may thus offer options to enhance its selectivity in modulating the activity of distinct cell types and preventing others from being modulated. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Positive allosteric modulation of GABA-A receptors reduces capsaicin-induced primary and secondary hypersensitivity in rats

    DEFF Research Database (Denmark)

    Hansen, Rikke Rie; Erichsen, Helle K; Brown, David T

    2012-01-01

    GABA-A receptor positive allosteric modulators (PAMs) mediate robust analgesia in animal models of pathological pain, in part via enhancing injury-induced loss of GABA-A-α2 and -α3 receptor function within the spinal cord. As yet, a lack of clinically suitable tool compounds has prevented this co...

  3. Methamphetamine-induced short-term increase and long-term decrease in spatial working memory affects protein Kinase M zeta (PKMζ), dopamine, and glutamate receptors.

    Science.gov (United States)

    Braren, Stephen H; Drapala, Damian; Tulloch, Ingrid K; Serrano, Peter A

    2014-01-01

    Methamphetamine (MA) is a toxic, addictive drug shown to modulate learning and memory, yet the neural mechanisms are not fully understood. We investigated the effects of 2 weekly injections of MA (30 mg/kg) on working memory using the radial 8-arm maze (RAM) across 5 weeks in adolescent-age mice. MA-treated mice show a significant improvement in working memory performance 1 week following the first MA injection compared to saline-injected controls. Following 5 weeks of MA abstinence mice were re-trained on a reference and working memory version of the RAM to assess cognitive flexibility. MA-treated mice show significantly more working memory errors without effects on reference memory performance. The hippocampus and dorsal striatum were assessed for expression of glutamate receptors subunits, GluA2 and GluN2B; dopamine markers, dopamine 1 receptor (D1), dopamine transporter (DAT) and tyrosine hydroxylase (TH); and memory markers, protein kinase M zeta (PKMζ) and protein kinase C zeta (PKCζ). Within the hippocampus, PKMζ and GluA2 are both significantly reduced after MA supporting the poor memory performance. Additionally, a significant increase in GluN2B and decrease in D1 identifies dysregulated synaptic function. In the striatum, MA treatment increased cytosolic DAT and TH levels associated with dopamine hyperfunction. MA treatment significantly reduced GluN2B while increasing both PKMζ and PKCζ within the striatum. We discuss the potential role of PKMζ/PKCζ in modulating dopamine and glutamate receptors after MA treatment. These results identify potential underlying mechanisms for working memory deficits induced by MA.

  4. Development of allosteric modulators of GPCRs for treatment of CNS disorders.

    Science.gov (United States)

    Nickols, Hilary Highfield; Conn, P Jeffrey

    2014-01-01

    The discovery of allosteric modulators of G protein-coupled receptors (GPCRs) provides a promising new strategy with potential for developing novel treatments for a variety of central nervous system (CNS) disorders. Traditional drug discovery efforts targeting GPCRs have focused on developing ligands for orthosteric sites which bind endogenous ligands. Allosteric modulators target a site separate from the orthosteric site to modulate receptor function. These allosteric agents can either potentiate (positive allosteric modulator, PAM) or inhibit (negative allosteric modulator, NAM) the receptor response and often provide much greater subtype selectivity than orthosteric ligands for the same receptors. Experimental evidence has revealed more nuanced pharmacological modes of action of allosteric modulators, with some PAMs showing allosteric agonism in combination with positive allosteric modulation in response to endogenous ligand (ago-potentiators) as well as "bitopic" ligands that interact with both the allosteric and orthosteric sites. Drugs targeting the allosteric site allow for increased drug selectivity and potentially decreased adverse side effects. Promising evidence has demonstrated potential utility of a number of allosteric modulators of GPCRs in multiple CNS disorders, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, as well as psychiatric or neurobehavioral diseases such as anxiety, schizophrenia, and addiction. © 2013.

  5. Triazolam-induced modulation of muscarinic acetylcholine receptor in living brain slices as revealed by a new positron-based imaging technique

    International Nuclear Information System (INIS)

    Murata, T.; Matsumura, K.; Onoe, H.; Watanabe, Y.; Sihver, S.; Sihver, W.; Langstroem, B.; Bergstroem, M.; Yonekura, Y.

    1997-01-01

    The effect of triazolam, a potent benzodiazepine (BZ) agonist, on muscarinic acetylcholinergic receptor (mAChR) binding was investigated in living brain slices by use of a novel positron-based imaging technique. Fresh rat brain slices were incubated with [ 11 C]N-methyl-4-piperidylbenzilate ([ 11 C]NMPB), a mAChR antagonist, in oxygenated Krebs-Ringer solution at 37 degree C. During incubation, time-resolved imaging of [ 11 C]NMPB binding in the slices was constructed on the storage phosphor screens. Addition of triazolam (1 μM) plus muscimol (30 μM), a GABA A receptor agonist, to the incubation mixture decreased the specific binding of [ 11 C]NMPB. Ro15-1788, a BZ receptor antagonist, prevented this effect, indicating that the effect was exerted through the GABA A /BZ receptor complex. These results demonstrated that stimulation of the GABA A /BZ receptor lowers the affinity of the mAChR for its ligand, which may underlie the BZ-induced amnesia, a serious clinical side effect of BZ. No such effect in the P2-fraction instead implies that the integrity of the neuronal cells and/or their environment is prerequisite for the modulation of mAChR by GABA A /BZ stimulation. (author)

  6. Decreased numbers of chemotactic factor receptors in chronic neutropenia with defective chemotaxis: spontaneous recovery from the neutrophil abnormalities during early childhood

    International Nuclear Information System (INIS)

    Yasui, K.; Yamazaki, M.; Miyagawa, Y.; Komiyama, A.; Akabane, T.

    1987-01-01

    Childhood chronic neutropenia with decreased numbers of chemotactic factor receptors as well as defective chemotaxis was first demonstrated in an 8-month-old girl. Chemotactic factor receptors on neutrophils were assayed using tritiated N-formyl-methionyl-leucyl-phenylalanine ( 3 H-FMLP). The patient's neutrophils had decreased numbers of the receptors: numbers of the receptors were 20,000 (less than 3 SD) as compared with those of control cells of 52,000 +/- 6000 (mean +/- SD) (n = 10). The neutropenia disappeared spontaneously by 28 months of age parallel with the improvement of chemotaxis and increase in numbers of chemotactic factor receptors. These results demonstrate a transient decrease of neutrophil chemotactic factor receptors as one of the pathophysiological bases of a transient defect of neutrophil chemotaxis in this disorder

  7. Ghrelin and Ghrelin Receptor Modulation of Psychostimulant Action

    Directory of Open Access Journals (Sweden)

    Paul Jeff Wellman

    2013-09-01

    Full Text Available Ghrelin (GHR is an orexigenic gut peptide that modulates multiple homeostatic functions including gastric emptying, anxiety, stress, memory, feeding and reinforcement. GHR is known to bind and activate growth-hormone secretagogue receptors (termed GHR-Rs. Of interest to our laboratory has been the assessment of the impact of GHR modulation of the locomotor activation and reward/reinforcement properties of psychostimulants such as cocaine and nicotine. Systemic GHR infusions augment cocaine stimulated locomotion and conditioned place preference (CPP in rats, as does food restriction which elevates plasma ghrelin levels. Ghrelin enhancement of psychostimulant function may occur owing to a direct action on mesolimbic dopamine function or may reflect an indirect action of ghrelin on glucocorticoid pathways. Genomic or pharmacological ablation of GHR-Rs attenuates the acute locomotor-enhancing effects of nicotine, cocaine, amphetamine and alcohol and blunts the CPP induced by food, alcohol, amphetamine and cocaine in mice. The stimulant nicotine can induce CPP and like amphetamine and cocaine, repeated administration of nicotine induces locomotor sensitization in rats. Inactivation of ghrelin circuit function in rats by injection of a ghrelin receptor antagonist (e.g. JMV 2959 diminishes the development of nicotine-induced locomotor sensitization. These results suggest a key permissive role for GHR-R activity for the induction of locomotor sensitization to nicotine. Our finding that GHR-R null rats exhibit diminished patterns of responding for intracranial self-stimulation complements an emerging literature implicating central GHR circuits in drug reward/reinforcement. Finally, antagonism of GHR-Rs may represent a smoking cessation modality that not only blocks nicotine-induced reward but that also may limit weight gain after smoking cessation.

  8. Effects of Chronic Alcohol Exposure on the Modulation of Ischemia-Induced Glutamate Release via Cannabinoid Receptors in the Dorsal Hippocampus.

    Science.gov (United States)

    Zheng, Lei; Wu, Xiaoda; Dong, Xiao; Ding, Xinli; Song, Cunfeng

    2015-10-01

    Chronic alcohol consumption is a critical contributing factor to ischemic stroke, as it enhances ischemia-induced glutamate release, leading to more severe excitotoxicity and brain damage. But the neural mechanisms underlying this phenomenon are poorly understood. We evaluated the effects of chronic alcohol exposure on the modulation of ischemia-induced glutamate release via CB1 and CB2 cannabinoid receptors during middle cerebral artery occlusion, using in vivo microdialysis coupled with high-performance liquid chromatography, in alcohol-naïve rats or rats after 1 or 30 days of withdrawal from chronic ethanol intake (6% v/v for 14 days). Intra-dorsal hippocampus (DH) infusions of ACEA or JWH133, selective CB1 or CB2 receptor agonists, respectively, decreased glutamate release in the DH in alcohol-naïve rats in a dose-dependent manner. Such an effect was reversed by co-infusions of SR141716A or AM630, selective CB1 or CB2 receptor antagonists, respectively. After 30 days, but not 1 day of withdrawal, ischemia induced an enhancement in glutamate release in the DH, as compared with non-alcohol-treated control group. Intra-DH infusions of JWH133, but not ACEA, inhibited ischemia-induced glutamate release in the DH after 30 days of withdrawal. Finally, 1 day of withdrawal did not alter the protein level of CB1 or CB2 receptors in the DH, as compared to non-alcohol-treated control rats. Whereas 30 days of withdrawal robustly decreased the protein level of CB1 receptors, but failed to alter the protein level of CB2 receptors, in the DH, as compared to non-alcohol-treated control rats. Together, these findings suggest that loss of expression/function of CB1 receptors, but not CB2 receptors in the DH, is correlated with the enhancement of ischemia-induced glutamate release after prolonged alcohol withdrawal. Copyright © 2015 by the Research Society on Alcoholism.

  9. Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin.

    Science.gov (United States)

    Bernasconi, Fosco; Schmidt, André; Pokorny, Thomas; Kometer, Michael; Seifritz, Erich; Vollenweider, Franz X

    2014-12-01

    Emotional face processing is critically modulated by the serotonergic system. For instance, emotional face processing is impaired by acute psilocybin administration, a serotonin (5-HT) 1A and 2A receptor agonist. However, the spatiotemporal brain mechanisms underlying these modulations are poorly understood. Here, we investigated the spatiotemporal brain dynamics underlying psilocybin-induced modulations during emotional face processing. Electrical neuroimaging analyses were applied to visual evoked potentials in response to emotional faces, following psilocybin and placebo administration. Our results indicate a first time period of strength (i.e., Global Field Power) modulation over the 168-189 ms poststimulus interval, induced by psilocybin. A second time period of strength modulation was identified over the 211-242 ms poststimulus interval. Source estimations over these 2 time periods further revealed decreased activity in response to both neutral and fearful faces within limbic areas, including amygdala and parahippocampal gyrus, and the right temporal cortex over the 168-189 ms interval, and reduced activity in response to happy faces within limbic and right temporo-occipital brain areas over the 211-242 ms interval. Our results indicate a selective and temporally dissociable effect of psilocybin on the neuronal correlates of emotional face processing, consistent with a modulation of the top-down control. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Modulation of acetylcholine release from rat striatal slices by the GABA/benzodiazepine receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Supavilai, P.; Karobath, M.

    1985-02-04

    GABA, THIP and muscimol enhance spontaneous and inhibit electrically induced release of tritium labelled compounds from rat striatal slices which have been pre-labelled with /sup 3/H-choline. Baclofen is inactive in this model. Muscimol can inhibit electrically induced release of tritiated material by approximately 75% with half maximal effects at 2 ..mu..M. The response to muscimol can be blocked by the GABA antagonists bicuculline methobromide, picrotoxin, anisatin, R 5135 and CPTBO (cyclopentylbicyclophosphate). Drugs which act on the benzodiazepine receptor (BR) require the presence of muscimol to be effective and they modulate the effects of muscimol in a bidirectional manner. Thus BR agonists enhance and inverse BR agonists attenuate the inhibitory effects of muscimol on electrically induced release. Ro15-1788, a BR antagonist, does not modulate the inhibitory effects of muscimol but antagonizes the actions of clonazepam, a BR agonist, and of DMCM, an inverse BR agonist. These results demonstrate that a GABA/benzodiazepine receptor complex can modulate acetylcholine release from rat striatal slices in vitro. 24 references, 3 figures, 5 table.

  11. Peripheral benzodiazepine receptors are decreased during cocaine withdrawal in humans.

    Science.gov (United States)

    Javaid, J I; Notorangelo, M P; Pandey, S C; Reddy, P L; Pandey, G N; Davis, J M

    1994-07-01

    In the present study, homovanillic acid in plasma (pHVA) and benzodiazepine receptors (3H-PK11195 binding) in neutrophil membranes were determined in blood obtained from cocaine-dependent (DSM-III-R) adult male inpatients at baseline-(within 72 hr of last cocaine use) and after 3 weeks of cocaine abstinence, and normal controls. The mean (+/- SEM) pHVA at baseline (10.3 ng/ml +/- 1.1) was similar to normals and did not change after 3 weeks of cocaine abstinence. Similarly, the binding indices of benzodiazepine receptors in cocaine-dependent subjects as a group were not significantly different than in normal controls. In 10 cocaine-dependent subjects, however, where both blood samples were available, the number of 3H-PK11195 binding sites was significantly (p < 0.05) decreased after 3 weeks of cocaine abstinence (mean +/- sem: Bmax = 6371 +/- 657 fmol/mg protein) compared with baseline (Bmax = 7553 +/- 925 fmol/mg protein), although there were no differences in the binding affinity (mean +/- sem: KD = 8.6 +/- 1.2 nmol/L after 3 weeks of abstinence compared with 8.1 +/- 1.0 nmol/L at baseline). These preliminary results suggest that peripheral benzodiazepine receptors may play an important role in the pathophysiology of cocaine withdrawal in cocaine-dependent human subjects.

  12. Behind the curtain: cellular mechanisms for allosteric modulation of calcium-sensing receptors

    Science.gov (United States)

    Cavanaugh, Alice; Huang, Ying; Breitwieser, Gerda E

    2012-01-01

    Calcium-sensing receptors (CaSR) are integral to regulation of systemic Ca2+ homeostasis. Altered expression levels or mutations in CaSR cause Ca2+ handling diseases. CaSR is regulated by both endogenous allosteric modulators and allosteric drugs, including the first Food and Drug Administration-approved allosteric agonist, Cinacalcet HCl (Sensipar®). Recent studies suggest that allosteric modulators not only alter function of plasma membrane-localized CaSR, but regulate CaSR stability at the endoplasmic reticulum. This brief review summarizes our current understanding of the role of membrane-permeant allosteric agonists in cotranslational stabilization of CaSR, and highlights additional, indirect, signalling-dependent role(s) for membrane-impermeant allosteric drugs. Overall, these studies suggest that allosteric drugs act at multiple cellular organelles to control receptor abundance and hence function, and that drug hydrophobicity can bias the relative contributions of plasma membrane and intracellular organelles to CaSR abundance and signalling. LINKED ARTICLES This article is part of a themed section on the Molecular Pharmacology of G Protein-Coupled Receptors (GPCRs). To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-6. To view the 2010 themed section on the same topic visit http://onlinelibrary.wiley.com/doi/10.1111/bph.2010.159.issue-5/issuetoc PMID:21470201

  13. 5-HT1A receptors modulate small-conductance Ca2+-activated K+ channels

    DEFF Research Database (Denmark)

    Grunnet, Morten; Jespersen, Thomas; Perrier, Jean-François

    2004-01-01

    Small-conductance calcium-activated potassium channels (SK) are responsible for the medium afterhyperpolarisation (mAHP) following action potentials in neurons. Here we tested the ability of serotonin (5-HT) to modulate the activity of SK channels by coexpressing 5-HT1A receptors with different...

  14. 5-HT4-receptors modulate induction of long-term depression but not potentiation at hippocampal output synapses in acute rat brain slices.

    Directory of Open Access Journals (Sweden)

    Matthias Wawra

    Full Text Available The subiculum is the principal target of CA1 pyramidal cells and mediates hippocampal output to various cortical and subcortical regions of the brain. The majority of subicular pyramidal cells are burst-spiking neurons. Previous studies indicated that high frequency stimulation in subicular burst-spiking cells causes presynaptic NMDA-receptor dependent long-term potentiation (LTP whereas low frequency stimulation induces postsynaptic NMDA-receptor-dependent long-term depression (LTD. In the present study, we investigate the effect of 5-hydroxytryptamine type 4 (5-HT4 receptor activation and blockade on both forms of synaptic plasticity in burst-spiking cells. We demonstrate that neither activation nor block of 5-HT4 receptors modulate the induction or expression of LTP. In contrast, activation of 5-HT4 receptors facilitates expression of LTD, and block of the 5-HT4 receptor prevents induction of short-term depression and LTD. As 5-HT4 receptors are positively coupled to adenylate cyclase 1 (AC1, 5-HT4 receptors might modulate PKA activity through AC1. Since LTD is blocked in the presence of 5-HT4 receptor antagonists, our data are consistent with 5-HT4 receptor activation by ambient serotonin or intrinsically active 5-HT4 receptors. Our findings provide new insight into aminergic modulation of hippocampal output.

  15. A pp32-retinoblastoma protein complex modulates androgen receptor-mediated transcription and associates with components of the splicing machinery

    International Nuclear Information System (INIS)

    Adegbola, Onikepe; Pasternack, Gary R.

    2005-01-01

    We have previously shown pp32 and the retinoblastoma protein interact. pp32 and the retinoblastoma protein are nuclear receptor transcriptional coregulators: the retinoblastoma protein is a coactivator for androgen receptor, the major regulator of prostate cancer growth, while pp32, which is highly expressed in prostate cancer, is a corepressor of the estrogen receptor. We now show pp32 increases androgen receptor-mediated transcription and the retinoblastoma protein modulates this activity. Using affinity purification and mass spectrometry, we identify members of the pp32-retinoblastoma protein complex as PSF and nonO/p54nrb, proteins implicated in coordinate regulation of nuclear receptor-mediated transcription and splicing. We show that the pp32-retinoblastoma protein complex is modulated during TPA-induced K562 differentiation. Present evidence suggests that nuclear receptors assemble multiprotein complexes to coordinately regulate transcription and mRNA processing. Our results suggest that pp32 and the retinoblastoma protein may be part of a multiprotein complex that coordinately regulates nuclear receptor-mediated transcription and mRNA processing

  16. Foot reflexology can increase vagal modulation, decrease sympathetic modulation, and lower blood pressure in healthy subjects and patients with coronary artery disease.

    Science.gov (United States)

    Lu, Wan-An; Chen, Gau-Yang; Kuo, Cheng-Deng

    2011-01-01

    Complementary and alternative medicine (CAM) has long been used by people to postpone the aging process and to reverse disease progression. Reflexology is a CAM method that involves massage to reflex areas in the feet and hands. This study investigated the effect of foot reflexology (FR) on the autonomic nervous modulation in patients with coronary artery disease (CAD) by using heart rate variability analysis. Seventeen people with angiographically patent coronary arteries and 20 patients with CAD scheduled for coronary artery bypass graft surgery were recruited as the control and CAD groups, respectively. The normalized high-frequency power (nHFP) was used as the index of vagal modulation and the normalized very low-frequency power (nVLFP) as the index of vagal withdrawal and renin-angiotensin modulation. In both control and CAD groups, the nHFP was increased significantly whereas the nVLFP was decreased significantly 30 and 60 minutes after FR, as compared with those before FR. The systolic, diastolic, mean arterial, and pulse pressures were significantly decreased after FR in both groups of participants. In the CAD group, the percentage change in heart rate 30 and 60 minutes after FR was smaller than that in the control, and the percentage change in nVLFP 60 minutes after FR was smaller than that in the control. In conclusion, a higher vagal modulation, lower sympathetic modulation, and lower blood pressure can be observed following 60 minutes of FR in both controls and CAD patients. The magnitude of change in the autonomic nervous modulation in CAD patients was slightly smaller than that in the controls. FR may be used as an efficient adjunct to the therapeutic regimen to increase the vagal modulation and decrease blood pressure in both healthy people and CAD patients.

  17. Differentiation-associated decrease in muscarinic receptor sensitivity in human neuroblastoma cells

    International Nuclear Information System (INIS)

    Heikkilae, J.E.; Scott, J.G.; Suominen, L.A.; Akerman, K.E.O.

    1987-01-01

    Muscarinic receptor-linked increases in intracellular free Ca 2+ as measured with quin-2 and Ca 2+ release from monolayers of cells have been measured in the human neuroblastoma cell line SH-SY5Y. Induction of differentiation with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) leads to a decrease in the sensitivity of the cells to low concentrations of agonists with respect to the induced increase in cytosolic free Ca 2+ and stimulation of Ca 2+ efflux. No decrease in agonist binding affinity was observed when the displacement of a labelled antagonist, 3 H-NMS, by a non-labelled agonist was studied

  18. Distinctive Modulation of Dopamine Release in the Nucleus Accumbens Shell Mediated by Dopamine and Acetylcholine Receptors.

    Science.gov (United States)

    Shin, Jung Hoon; Adrover, Martin F; Alvarez, Veronica A

    2017-11-15

    Nucleus accumbens (NAc) shell shows unique dopamine (DA) signals in vivo and plays a unique role in DA-dependent behaviors such as reward-motivated learning and the response to drugs of abuse. A disynaptic mechanism for DA release was reported and shown to require synchronized firing of cholinergic interneurons (CINs) and activation of nicotinic acetylcholine (ACh) receptors (nAChRs) in DA neuron (DAN) axons. The properties of this disynaptic mechanism of DA transmission are not well understood in the NAc shell. In this study, in vitro fast-scan cyclic voltammetry was used to examine the modulation of DA transmission evoked by CINs firing in the shell of mice and compared with other striatal regions. We found that DA signals in the shell displayed significant degree of summation in response to train stimulation of CINs, contrary to core and dorsal striatum. The summation was amplified by a D2-like receptor antagonist and experiments with mice with targeted deletion of D2 receptors to DANs or CINs revealed that D2 receptors in CINs mediate a fast inhibition observed within 100 ms of the first pulse, whereas D2 autoreceptors in DAN terminals are engaged in a slower inhibition that peaks at ∼500 ms. ACh also contributes to the use-dependent inhibition of DA release through muscarinic receptors only in the shell, where higher activity of acetylcholinesterase minimizes nAChR desensitization and promotes summation. These findings show that DA signals are modulated differentially by endogenous DA and ACh in the shell, which may underlie the unique features of shell DA signals in vivo SIGNIFICANCE STATEMENT The present study reports that dopamine (DA) release evoked by activation of cholinergic interneurons displays a high degree of summation in the shell and shows unique modulation by endogenous DA and acetylcholine. Desensitization of nicotinic receptors, which is a prevailing mechanism for use-dependent inhibition in the nucleus accumbens core and dorsal striatum, is

  19. Ligand Modulation of the Epstein-Barr Virus-induced Seven-transmembrane Receptor EBI2

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Smethurst, Christopher; Holst, Peter Johannes

    2011-01-01

    The Epstein-Barr virus-induced receptor 2 (EBI2) is a constitutively active seven-transmembrane receptor, which was recently shown to orchestrate the positioning of B cells in the follicle. To date, no ligands, endogenously or synthetic, have been identified that modulate EBI2 activity. Here we...... with similar potency. Overexpression of EBI2 profoundly potentiated antibody-stimulated ex vivo proliferation of murine B cells compared with WT cells, whereas this was equivalently reduced for EBI2-deficient B cells. Inhibition of EBI2 constitutive activity suppressed the proliferation in all cases...

  20. Dopamine D4 receptors modulate brain metabolic activity in the prefrontal cortex and cerebellum at rest and in response to methylphenidate

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides, M.; Wang, G.; Michaelides, M.; Pascau, J.; Gispert, J.-D.; Delis, F.; Grandy, D.K.; Wang, G.-J.; Desco, M.; Rubinstein, M.; Volkow, N.D.; Thanos, P.K.

    2010-07-16

    Methylphenidate (MP) is widely used to treat attention deficit hyperactivity disorder (ADHD). Variable number of tandem repeats polymorphisms in the dopamine D4 receptor (D{sub 4}) gene have been implicated in vulnerability to ADHD and the response to MP. Here we examined the contribution of dopamine D4 receptors (D4Rs) to baseline brain glucose metabolism and to the regional metabolic responses to MP. We compared brain glucose metabolism (measured with micro-positron emission tomography and [{sup 18}F]2-fluoro-2-deoxy-D-glucose) at baseline and after MP (10 mg/kg, i.p.) administration in mice with genetic deletion of the D{sub 4}. Images were analyzed using a novel automated image registration procedure. Baseline D{sub 4}{sup -/-} mice had lower metabolism in the prefrontal cortex (PFC) and greater metabolism in the cerebellar vermis (CBV) than D{sub 4}{sup +/+} and D{sub 4}{sup +/-} mice; when given MP, D{sub 4}{sup -/-} mice increased metabolism in the PFC and decreased it in the CBV, whereas in D{sub 4}{sup +/+} and D{sub 4}{sup +/-} mice, MP decreased metabolism in the PFC and increased it in the CBV. These findings provide evidence that D4Rs modulate not only the PFC, which may reflect the activation by dopamine of D4Rs located in this region, but also the CBV, which may reflect an indirect modulation as D4Rs are minimally expressed in this region. As individuals with ADHD show structural and/or functional abnormalities in these brain regions, the association of ADHD with D4Rs may reflect its modulation of these brain regions. The differential response to MP as a function of genotype could explain differences in brain functional responses to MP between patients with ADHD and healthy controls and between patients with ADHD with different D{sub 4} polymorphisms.

  1. Antagonistic targeting of the histamine H3 receptor decreases caloric intake in higher mammalian species.

    Science.gov (United States)

    Malmlöf, Kjell; Hastrup, Sven; Wulff, Birgitte Schellerup; Hansen, Barbara C; Peschke, Bernd; Jeppesen, Claus Bekker; Hohlweg, Rolf; Rimvall, Karin

    2007-04-15

    The main purpose of this study was to examine the effects of a selective histamine H(3) receptor antagonist, NNC 38-1202, on caloric intake in pigs and in rhesus monkeys. The compound was given intragastrically (5 or 15 mg/kg), to normal pigs (n=7) and subcutaneously (1 or 0.1mg/kg) to obese rhesus monkeys (n=9). The energy intake recorded following administration of vehicle to the same animals served as control for the effect of the compound. In addition, rhesus monkey and pig histamine H(3) receptors were cloned from hypothalamic tissues and expressed in mammalian cell lines. The in vitro antagonist potencies of NNC 38-1202 at the H(3) receptors were determined using a functional GTPgammaS binding assay. Porcine and human H(3) receptors were found to have 93.3% identity at the amino acid level and the close homology between the monkey and human H(3) receptors (98.4% identity) was confirmed. The antagonist potencies of NNC 38-1202 at the porcine, monkey and human histamine H(3) receptors were high as evidenced by K(i)-values being clearly below 20 nM, whereas the K(i)-value on the rat H(3) receptor was significantly higher (56+/-6.0 nM). NNC 38-1202, given to pigs in a dose of 15 mg/kg, produced a significant (p<0.05) reduction (55%) of calorie intake compared with vehicle alone, (132.6+/-10.0 kcal/kgday versus 59.7+/-10.2 kcal/kgday). In rhesus monkeys administration of 0.1 and 1mg/kg decreased (p<0.05) average calorie intakes by 40 and 75%, respectively. In conclusion, the present study demonstrates that antagonistic targeting of the histamine H(3) receptor decreases caloric intake in higher mammalian species.

  2. In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs

    DEFF Research Database (Denmark)

    Eigenmann, Daniela Elisabeth; Dürig, Carmen; Jähne, Evelyn Andrea

    2016-01-01

    The alkaloid piperine from black pepper (Piper nigrum L.) and several synthetic piperine analogs were recently identified as positive allosteric modulators of γ-aminobutyric acid type A (GABAA) receptors. In order to reach their target sites of action, these compounds need to enter the brain by c...

  3. Does protein binding modulate the effect of angiotensin II receptor antagonists?

    Directory of Open Access Journals (Sweden)

    Marc P Maillard

    2001-03-01

    Full Text Available IntroductionAngiotensin II AT 1-receptor antagonists are highly bound to plasma proteins (≥ 99%. With some antagonists, such as DuP-532, the protein binding was such that no efficacy of the drug could be demonstrated clinically. Whether protein binding interferes with the efficacy of other antagonists is not known. We have therefore investigated in vitro how plasma proteins may affect the antagonistic effect of different AT1-receptor antagonists.MethodsA radio-receptor binding assay was used to analyse the interaction between proteins and the ability of various angiotensin II (Ang II antagonists to block AT1-receptors. In addition, the Biacore technology, a new technique which enables the real-time monitoring of binding events between two molecules, was used to evaluate the dissociation rate constants of five AT1-receptor antagonists from human serum albumin.ResultsThe in vitro AT 1-antagonistic effects of different Ang II receptor antagonists were differentially affected by the presence of human plasma, with rightward shifts of the IC50 ranging from one to several orders of magnitude. The importance of the shift correlates with the dissociation rate constants of these drugs from albumin. Our experiments also show that the way that AT1-receptor antagonists bind to proteins differs from one compound to another. These results suggest that the interaction with plasma proteins appears to modulate the efficacy of some Ang II antagonists.ConclusionAlthough the high binding level of Ang II receptor antagonist to plasma proteins appears to be a feature common to this class of compounds, the kinetics and characteristics of this binding is of great importance. With some antagonists, protein binding interferes markedly with their efficacy to block AT1-receptors.

  4. 3-Iodothyronamine, a Novel Endogenous Modulator of Transient Receptor Potential Melastatin 8?

    Directory of Open Access Journals (Sweden)

    Noushafarin Khajavi

    2017-08-01

    Full Text Available The decarboxylated and deiodinated thyroid hormone (TH derivative, 3-iodothyronamine (3-T1AM, is suggested to be involved in energy metabolism and thermoregulation. G protein-coupled receptors (GPCRs are known as the main targets for 3-T1AM; however, transient receptor potential channels (TRPs were also recently identified as new targets of 3-T1AM. This article reviews the current knowledge of a putative novel role of 3-T1AM in the modulation of TRPs. Specifically, the TRP melastatin 8 (TRPM8 was identified as a target of 3-T1AM in different cell types including neoplastic cells, whereby 3-T1AM significantly increased cytosolic Ca2+ through TRPM8 activation. Similarly, the β-adrenergic receptor is involved in 3-T1AM-induced Ca2+ influx. Therefore, it has been suggested that 3-T1AM-induced Ca2+ mobilization might be due to β-adrenergic receptor/TRPM8 channel interaction, which adds to the complexity of GPCR regulation by TRPs. It has been revealed that TRPM8 activation leads to a decline in TRPV1 activity, which may be of therapeutic benefit in clinical circumstances such as treatment of TRPV1-mediated inflammatory hyperalgesia, colitis, and dry eye syndrome. This review also summarizes the inverse association between changes in TRPM8 and TRPV1 activity after 3-T1AM stimulation. This finding prompted further detailed investigations of the interplay between 3-T1AM and the GPCR/TRPM8 axis and indicated the probability of additional GPCR/TRP constellations that are modulated by this TH derivative.

  5. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    Science.gov (United States)

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Devil's Claw to suppress appetite--ghrelin receptor modulation potential of a Harpagophytum procumbens root extract.

    Directory of Open Access Journals (Sweden)

    Cristina Torres-Fuentes

    Full Text Available Ghrelin is a stomach-derived peptide that has been identified as the only circulating hunger hormone that exerts a potent orexigenic effect via activation of its receptor, the growth hormone secretagogue receptor (GHS-R1a. Hence, the ghrelinergic system represents a promising target to treat obesity and obesity-related diseases. In this study we analysed the GHS-R1a receptor activating potential of Harpagophytum procumbens, popularly known as Devil's Claw, and its effect on food intake in vivo. H. procumbens is an important traditional medicinal plant from Southern Africa with potent anti-inflammatory and analgesic effects. This plant has been also used as an appetite modulator but most evidences are anecdotal and to our knowledge, no clear scientific studies relating to appetite modulation have been done to this date. The ghrelin receptor activation potential of an extract derived from the dried tuberous roots of H. procumbens was analysed by calcium mobilization and receptor internalization assays in human embryonic kidney cells (Hek stably expressing the GHS-R1a receptor. Food intake was investigated in male C57BL/6 mice following intraperitoneal administration of H. procumbens root extract in ad libitum and food restricted conditions. Exposure to H. procumbens extract demonstrated a significant increased cellular calcium influx but did not induce subsequent GHS-R1a receptor internalization, which is a characteristic for full receptor activation. A significant anorexigenic effect was observed in male C57BL/6 mice following peripheral administration of H. procumbens extract. We conclude that H. procumbens root extract is a potential novel source for potent anti-obesity bioactives. These results reinforce the promising potential of natural bioactives to be developed into functional foods with weight-loss and weight maintenance benefits.

  7. The Sigma-1 Receptor as a Pluripotent Modulator in Living Systems.

    Science.gov (United States)

    Su, Tsung-Ping; Su, Tzu-Chieh; Nakamura, Yoki; Tsai, Shang-Yi

    2016-04-01

    The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum (ER) protein that resides specifically in the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM), an interface between ER and mitochondria. In addition to being able to translocate to the plasma membrane (PM) to interact with ion channels and other receptors, Sig-1R also occurs at the nuclear envelope, where it recruits chromatin-remodeling factors to affect the transcription of genes. Sig-1Rs have also been reported to interact with other membranous or soluble proteins at other loci, including the cytosol, and to be involved in several central nervous system (CNS) diseases. Here, we propose that Sig-1R is a pluripotent modulator with resultant multiple functional manifestations in living systems. Published by Elsevier Ltd.

  8. Methamphetamine-induced short-term increase and long-term decrease in spatial working memory affects Protein Kinase M zeta (PKMζ, dopamine, and glutamate receptors

    Directory of Open Access Journals (Sweden)

    Stephen H Braren

    2014-12-01

    Full Text Available Methamphetamine (MA is a toxic, addictive drug shown to modulate learning and memory, yet the neural mechanisms are not fully understood. We investigated the effects of 2 weekly injections of MA (30 mg/kg on working memory using the radial 8-arm maze (RAM across 5 weeks in adolescent-age mice. MA-treated mice show a significant improvement in working memory performance 1 week following the first MA injection compared to saline-injected controls. Following 5 weeks of MA abstinence mice were re-trained on a reference and working memory version of the RAM to assess cognitive flexibility. MA-treated mice show significantly more working memory errors without effects on reference memory performance. The hippocampus and dorsal striatum were assessed for expression of glutamate receptors subunits, GluA2 and GluN2B; dopamine markers, dopamine 1 receptor (D1, dopamine transporter (DAT and tyrosine hydroxylase (TH; and memory markers, protein kinase M zeta (PKMζ and protein kinase C zeta (PKCζ. Within the hippocampus, PKMζ and GluA2 are both significantly reduced after MA supporting the poor memory performance. Additionally, a significant increase in GluN2B and decrease in D1 identifies dysregulated synaptic function. In the striatum, MA treatment increased cytosolic DAT and TH levels associated with dopamine hyperfunction. MA treatment significantly reduced GluN2B while increasing both PKMζ and PKCζ within the striatum. We discuss the potential role of PKMζ/PKCζ in modulating dopamine and glutamate receptors after MA treatment. These results identify potential underlying mechanisms for working memory deficits induced by MA.

  9. Stargazin Modulation of AMPA Receptors

    Directory of Open Access Journals (Sweden)

    Sana A. Shaikh

    2016-10-01

    Full Text Available Fast excitatory synaptic signaling in the mammalian brain is mediated by AMPA-type ionotropic glutamate receptors. In neurons, AMPA receptors co-assemble with auxiliary proteins, such as stargazin, which can markedly alter receptor trafficking and gating. Here, we used luminescence resonance energy transfer measurements to map distances between the full-length, functional AMPA receptor and stargazin expressed in HEK293 cells and to determine the ensemble structural changes in the receptor due to stargazin. In addition, we used single-molecule fluorescence resonance energy transfer to study the structural and conformational distribution of the receptor and how this distribution is affected by stargazin. Our nanopositioning data place stargazin below the AMPA receptor ligand-binding domain, where it is well poised to act as a scaffold to facilitate the long-range conformational selection observations seen in single-molecule experiments. These data support a model of stargazin acting to stabilize or select conformational states that favor activation.

  10. Modulation of central glucocorticoid receptors in short- and long-term experimental hyperthyroidism.

    Science.gov (United States)

    Nikolopoulou, Elena; Mytilinaios, Dimitrios; Calogero, Aldo E; Kamilaris, Themis C; Troupis, Theodore; Chrousos, George P; Johnson, Elizabeth O

    2015-08-01

    Hyperthyroidism is associated with a significant increase in circulating glucocorticoid levels and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. The aim of this study was to examine whether the HPA axis hyperactivity observed in hyperthyroidism may be explained by a disturbed feedback inhibition of endogenous glucocorticoids through two specific intracellular receptors in the brain: the high affinity mineralocorticoid receptor (MR) and the lower affinity glucocorticoid receptor (GR). Cytosolic receptor binding and gene expression was assessed in rats with short (7 days) and long standing (60 days) eu- and hyperthyroidism. Glucocorticoid receptor number and binding affinity (Kd) in the hippocampus were measured using [(3)H2]-dexamethasone radioreceptor assay. In situ hybridization was employed to examine the effects of hyperthyroidism on the GR and MR mRNA levels in the hippocampus and the pituitary. Both short- and long-term hyperthyroid rats showed pronounced reduction in the concentration of cytosolic GR in the hippocampus, without changes in binding affinity or changes in GR expression. In contrast, GR mRNA in the pituitary increased after 7 days and decreased after 60 days of thyroxin treatment. MR mRNA was moderately affected. Hyperthyroidism is associated with significant decreases in hippocampal GR levels supporting the hypothesis that hyperactivity of the HPA axis observed in experimentally induced hyperthyroidism may be attributed, at least in part, to decreased negative feedback at the level of the hippocampus. These findings further support the notion that a central locus is principally responsible for the hyperactivity of the HPA axis observed in hyperthyroidism.

  11. The 5-HT2A receptor antagonist M100907 produces antiparkinsonian effects and decreases striatal glutamate

    Directory of Open Access Journals (Sweden)

    Twum eAnsah

    2011-06-01

    Full Text Available 5-HT plays a regulatory role in voluntary movements of the basal ganglia and have a major impact on disorders of the basal ganglia such as Parkinson’s disease (PD. Clinical studies have suggested that 5-HT2 receptor antagonists may be useful in the treatment of the motor symptoms of PD. We hypothesized that 5-HT2A receptor antagonists may restore motor function by regulating glutamatergic activity in the striatum. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP exhibited decreased performance on the beam-walking apparatus. Peripheral administration of the 5-HT2A receptor antagonist M100907 improved performance of MPTP-treated mice on the beam-walking apparatus. In vivo microdialysis revealed an increase in striatal extracellular glutamate in MPTP-treated mice and local perfusion of M100907 into the dorsal striatum significantly decreased extracellular glutamate levels in saline and MPTP-treated mice. Our studies suggest that blockade of 5-HT2A receptors may represent a novel therapeutic target for the motor symptoms of Parkinson’s disease.

  12. Selective modulation of Wnt ligands and their receptors in adipose tissue by chronic hyperadiponectinemia.

    Directory of Open Access Journals (Sweden)

    Nobuhiko Wada

    Full Text Available BACKGROUND: Adiponectin-transgenic mice had many small adipocytes in both subcutaneous and visceral adipose tissues, and showed higher sensitivity to insulin, longer life span, and reduced chronic inflammation. We hypothesized that adiponectin regulates Wnt signaling in adipocytes and thereby modulates adipocyte proliferation and chronic inflammation in adipose tissue. MATERIALS AND METHODS: We examined the expression of all Wnt ligands and their receptors and the activity of Wnt signaling pathways in visceral adipose tissue from wild-type mice and two lines of adiponectin-transgenic mice. The effects of adiponectin were also investigated in cultured 3T3-L1 cells. RESULTS: The Wnt5b, Wnt6, Frizzled 6 (Fzd6, and Fzd9 genes were up-regulated in both lines of transgenic mice, whereas Wnt1, Wnt2, Wnt5a, Wnt9b, Wnt10b, Wnt11, Fzd1, Fzd2, Fzd4, Fzd7, and the Fzd coreceptor low-density-lipoprotein receptor-related protein 6 (Lrp6 were reduced. There was no difference in total β-catenin levels in whole-cell extracts, non-phospho-β-catenin levels in nuclear extracts, or mRNA levels of β-catenin target genes, indicating that hyperadiponectinemia did not affect canonical Wnt signaling. In contrast, phosphorylated calcium/calmodulin-dependent kinase II (p-CaMKII and phosphorylated Jun N-terminal kinase (p-JNK were markedly reduced in adipose tissue from the transgenic mice. The adipose tissue of the transgenic mice consisted of many small cells and had increased expression of adiponectin, whereas cyclooxygenase-2 expression was reduced. Wnt5b expression was elevated in preadipocytes of the transgenic mice and decreased in diet-induced obese mice, suggesting a role in adipocyte differentiation. Some Wnt genes, Fzd genes, and p-CaMKII protein were down-regulated in 3T3-L1 cells cultured with a high concentration of adiponectin. CONCLUSION: Chronic hyperadiponectinemia selectively modulated the expression of Wnt ligands, Fzd receptors and LRP coreceptors

  13. Evidence for a role of NTS2 receptors in the modulation of tonic pain sensitivity

    Directory of Open Access Journals (Sweden)

    Martinez Jean

    2009-07-01

    Full Text Available Abstract Background Central neurotensin (NT administration results in a naloxone-insensitive antinociceptive response in animal models of acute and persistent pain. Both NTS1 and NTS2 receptors were shown to be required for different aspects of NT-induced analgesia. We recently demonstrated that NTS2 receptors were extensively associated with ascending nociceptive pathways, both at the level of the dorsal root ganglia and of the spinal dorsal horn. Then, we found that spinally administered NTS2-selective agonists induced dose-dependent antinociceptive responses in the acute tail-flick test. In the present study, we therefore investigated whether activation of spinal NTS2 receptors suppressed the persistent inflammatory pain symptoms observed after intraplantar injection of formalin. Results We first demonstrated that spinally administered NT and NT69L agonists, which bind to both NTS1 and NTS2 receptors, significantly reduced pain-evoked responses during the inflammatory phase of the formalin test. Accordingly, pretreatment with the NTS2-selective analogs JMV-431 and levocabastine was effective in inhibiting the aversive behaviors induced by formalin. With resolution at the single-cell level, we also found that activation of spinal NTS2 receptors reduced formalin-induced c-fos expression in dorsal horn neurons. However, our results also suggest that NTS2-selective agonists and NTS1/NTS2 mixed compounds differently modulated the early (21–39 min and late (40–60 min tonic phase 2 and recruited endogenous pain inhibitory mechanisms integrated at different levels of the central nervous system. Indeed, while non-selective drugs suppressed pain-related behaviors activity in both part of phase 2, intrathecal injection of NTS2-selective agonists was only efficient in reducing pain during the late phase 2. Furthermore, assessment of the stereotypic pain behaviors of lifting, shaking, licking and biting to formalin also revealed that unlike non

  14. CDB-4124, a progesterone receptor modulator, inhibits mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Wiehle, Ronald; Lantvit, Daniel; Yamada, Tohru; Christov, Konstantin

    2011-03-01

    CDB-4124 (Proellex or telapristone acetate) is a modulator of progesterone receptor (PR) signaling, which is currently employed in preclinical studies for prevention and treatment of breast cancer and has been used in clinical studies for treatment of uterine fibroids and endometriosis. Here we provide evidence for its action on steroid hormone-signaling, cell cycle-regulated genes and in vivo on mammary carcinogenesis. When CDB-4124 is given to rats at 200 mg/kg for 24 months, it prevents the development of spontaneous mammary hyperplastic and premalignant lesions. Also, CDB-4124 given as subcutaneous pellets at two different doses suppressed, dose dependently, N-methyl-N-nitrosourea (MNU)-induced mammary carcinogenesis. The high dose (30 mg, over 84 days) increased tumor latency from 66 ± 24 days to 87 ± 20 days (P CDB-4124 inhibited cell proliferation and induced apoptosis in MNU-induced mammary tumors, which correlated with a decreased proportion of PR(+) tumor cells and with decreased serum progesterone. CDB-4124 did not affect serum estradiol. In a mechanistic study employing T47D cells we found that CDB-4124 suppressed G(1)/G(0)-S transition by inhibiting CDK2 and CDK4 expressions, which correlated with inhibition of estrogen receptor (ER) expression. Taken together, these data indicate that CDB-4124 can suppress the development of precancerous lesions and carcinogen-induced ER(+) mammary tumors in rats, and may have implications for prevention and treatment of human breast cancer.

  15. Modulation of β-adrenergic receptors in the pituitary gland following adrenalectomy in rats

    International Nuclear Information System (INIS)

    Souza, E.B. de

    1987-01-01

    The effects of adrenalectomy on β-adrenergic receptors in the rat pituitary were examined using quantitative in vitro autoradiography with 125 I-iodocyanopindolol( 125 ICYP). 125 ICYP binding in the anterior, intermediate and posterior lobes of the pituitary gland was significantly increased in chronically adrenalectomized rats. The increase in 125 ICYP binding sites in the rat pituitary following adrenalectomy was not reversed by glucocorticoid replacement with dexamethasone. These data indicate that catecholamines of adrenomedullary origin are capable of modulating β-adrenergic receptors in the pituitary gland and suggest that peripheral epinephrine may be important in regulating pituitary hormone secretion. (author)

  16. GABA receptor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Doo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA{sub A}-receptor that allows chloride to pass through a ligand gated ion channel and GABA{sub B}-receptor that uses G-proteins for signaling. The GABA{sub A}-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA{sub A}-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with {sup 11}C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, {sup 18}F-fluoroflumazenil (FFMZ) has been developed to overcome {sup 11}C's short half-life. {sup 18}F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1{sup 1}C-FMZ PET instead of {sup 18}F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA{sub A} receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas.

  17. GABA receptor imaging

    International Nuclear Information System (INIS)

    Lee, Jong Doo

    2007-01-01

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA A -receptor that allows chloride to pass through a ligand gated ion channel and GABA B -receptor that uses G-proteins for signaling. The GABA A -receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA A -receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with 11 C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, 18 F-fluoroflumazenil (FFMZ) has been developed to overcome 11 C's short half-life. 18 F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1 1 C-FMZ PET instead of 18 F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA A receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas

  18. Antiandrogens act as selective androgen receptor modulators at the proteome level in prostate cancer cells.

    Science.gov (United States)

    Brooke, Greg N; Gamble, Simon C; Hough, Michael A; Begum, Shajna; Dart, D Alwyn; Odontiadis, Michael; Powell, Sue M; Fioretti, Flavia M; Bryan, Rosie A; Waxman, Jonathan; Wait, Robin; Bevan, Charlotte L

    2015-05-01

    Current therapies for prostate cancer include antiandrogens, inhibitory ligands of the androgen receptor, which repress androgen-stimulated growth. These include the selective androgen receptor modulators cyproterone acetate and hydroxyflutamide and the complete antagonist bicalutamide. Their activity is partly dictated by the presence of androgen receptor mutations, which are commonly detected in patients who relapse while receiving antiandrogens, i.e. in castrate-resistant prostate cancer. To characterize the early proteomic response to these antiandrogens we used the LNCaP prostate cancer cell line, which harbors the androgen receptor mutation most commonly detected in castrate-resistant tumors (T877A), analyzing alterations in the proteome, and comparing these to the effect of these therapeutics upon androgen receptor activity and cell proliferation. The majority are regulated post-transcriptionally, possibly via nongenomic androgen receptor signaling. Differences detected between the exposure groups demonstrate subtle changes in the biological response to each specific ligand, suggesting a spectrum of agonistic and antagonistic effects dependent on the ligand used. Analysis of the crystal structures of the AR in the presence of cyproterone acetate, hydroxyflutamide, and DHT identified important differences in the orientation of key residues located in the AF-2 and BF-3 protein interaction surfaces. This further implies that although there is commonality in the growth responses between androgens and those antiandrogens that stimulate growth in the presence of a mutation, there may also be influential differences in the growth pathways stimulated by the different ligands. This therefore has implications for prostate cancer treatment because tumors may respond differently dependent upon which mutation is present and which ligand is activating growth, also for the design of selective androgen receptor modulators, which aim to elicit differential proteomic

  19. Decreased expression of thyroid receptor-associated protein 220 in temporal lobe tissue of patients with refractory epilepsy

    International Nuclear Information System (INIS)

    Li Jinmei; Wang Xuefeng; Xi Zhiqin; Gong Yun; Liu Fengying; Sun Jijun; Wu Yuan; Luan Guoming; Wang Yuping; Li Yunlin; Zhang Jianguo; Lu Yong; Li Hongwei

    2006-01-01

    Purpose: TRAP220 (thyroid hormone receptor-associated protein) functions as a coactivator for nuclear receptors and stimulates transcription by recruiting the TRAP mediator complex to hormone responsive promoter regions. Thus, TRAP220 enhances the function of thyroid/steroid hormone receptors such as thyroid hormone and oestrogen receptors. This study investigated the expression of TRAP220 mRNA and protein level in epileptic brains comparing with human control. Methods: We examined the expression of TRAP220 mRNA and protein levels in temporal lobes from patients with chronic pharmacoresistant epilepsy who have undergone surgery. Results: Expression of TRAP220 mRNA and protein was shown to be decreased significantly in the temporal cortex of the patients with epilepsy. Conclusions: Our work showed that a decrease in TRAP220 mRNA and protein levels may be involved in the pathophysiology of epilepsy and may be associated with impairment of the brain caused by frequent seizures

  20. Sigma-1 Receptor as a Pluripotent Modulator in the Living System

    Science.gov (United States)

    Su, Tsung-Ping; Su, Tzu-Chieh; Nakamura, Yoki; Tsai, Shang-Yi

    2016-01-01

    The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum (ER) protein resides specifically at the interface between ER and mitochondria, called the MAM, where the Sig-1R is recently reported to be involved in certain CNS diseases. In addition to being able to translocate to the plasma membrane to interact with ion channels and other receptors, the Sig-1R is found to exist at the nuclear envelope where it recruits chromatin-remodeling factors to affect the transcription of genes. As well, thorough experimental and bioinformatic means, Sig-1Rs are reported to interact with other membranous or soluble proteins at other loci, including the cytosol. We propose that the Sig-1R is a pluripotent modulator with resultant multiple functional manifestations in the living system. PMID:26869505

  1. Design and cellular kinetics of dansyl-labeled CADA derivatives with anti-HIV and CD4 receptor down-modulating activity.

    Science.gov (United States)

    Vermeire, Kurt; Lisco, Andrea; Grivel, Jean-Charles; Scarbrough, Emily; Dey, Kaka; Duffy, Noah; Margolis, Leonid; Bell, Thomas W; Schols, Dominique

    2007-08-15

    A new class of anti-retrovirals, cyclotriazadisulfonamide (CADA) and its derivatives, specifically down-regulate CD4, the main receptor of HIV, and prevent HIV infection in vitro. In this work, several CADA derivatives, chemically labeled with a fluorescent dansyl group, were evaluated for their biological features and cellular uptake kinetics. We identified a derivative KKD-016 with antiviral and CD4 down-modulating capabilities similar to those of the parental compound CADA. By using flow cytometry, we demonstrated that the dose-dependent cellular uptake of this derivative correlated with CD4 down-modulation. The uptake and activity of the dansyl-labeled compounds were not dependent on the level of expression of CD4 at the cell surface. Removal of the CADA compounds from the cell culture medium resulted in their release from the cells followed by a complete restoration of CD4 expression. The inability of several fluorescent CADA derivatives to down-modulate CD4 was not associated with their lower cellular uptake and was not reversed by facilitating their cell penetration by a surfactant. These results prove the successful integration of the dansyl fluorophore into the chemical structure of a CD4 down-modulating anti-HIV compound, and show the feasibility of tracking a receptor and its down-modulator simultaneously. These fluorescent CADA analogs with reversible CD4 down-regulating potency can now be applied in further studies on receptor modulation, and in the exploration of their potentials as preventive and therapeutic anti-HIV drugs.

  2. Decrease in benzodiazepine receptor binding in a patient with Angelman syndrome detected by iodine-123 iomazenil and single-photon emission tomography

    International Nuclear Information System (INIS)

    Odano, Ikuo; Anezaki, Toshiharu; Ohkubo, Masaki; Yonekura, Yoshiharu; Onishi, Yoshihiro; Inuzuka, Takashi; Takahashi, Makoto; Tsuji, Shoji

    1996-01-01

    A receptor mapping technique using iodine-123 iomazenil and single-photon emission tomography (SPET) was employed to examine benzodiazepine receptor binding in a patient with Angelman syndrome (AS). AS is characterized by developmental delay, seizures, inappropriate laughter and ataxic movement. In this entity there is a cytogenic deletion of the proximal long arm of chromosome 15q11-q13, where the gene encoding the GABA A receptor β3 subunit (GABRB3) is located. Since the benzodiazepine receptor is constructed as a receptor-ionophore complex that contains the GABA A receptor, it is a suitable marker for GABA-ergic synapsis. To determine whether benzodiazepine receptor density, which indirectly indicates changes in GABA A receptor density, is altered in the brain in patients with AS, we investigated a 27-year-old woman with AS using 123 I-iomazenil and SPET. Receptor density was quantitatively assessed by measuring the binding potential using a simplified method. Regional cerebral blood flow was also measured with N-isopropyl-p- 123 iodoamphetamine. We demonstrated that benzodiazepiine receptor density is severely decreased in the cerebellum, and mildly decreased in the frontal and temporal cortices and basal ganglia, a result which is considered to indicate decreased GABA A receptor density in these regions. Although the deletion of GABRB3 was not observed in the present study, we indirectly demonstrated the disturbance of inhibitory neurotransmission mediated by the GABA A receptor in the investigated patient. 123 I-iomazenil with SPET was useful to map benzodiazepine receptors, which indicate GABA A receptor distribution and their density. (orig.)

  3. The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen improve ANP levels and decrease nuclear translocation of NF-kB in estrogen-deficient rats.

    Science.gov (United States)

    Lamas, Aline Z; Nascimento, Andrews M; Medeiros, Ana Raquel S; Caliman, Izabela F; Dalpiaz, Polyana L M; Firmes, Luciana B; Sousa, Glauciene J; Oliveira, Phablo Wendell C; Andrade, Tadeu U; Reis, Adelina M; Gouvea, Sônia A; Bissoli, Nazaré S

    2017-08-01

    The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen are used for the treatment of osteoporosis and cancer, respectively, in women. The impairment of both the Atrial Natriuretic Peptide (ANP) cell signaling system and the translocation of nuclear factor-kappa B (NF-kB) to the cell nucleus are associated with detrimental cardiovascular effects and inflammation. The effects of SERMs on these parameters in the cardiac tissue of estrogen-deficient rats has not been reported. We investigated the effects of raloxifene and tamoxifen on ANP signaling, p65 NF-kB nuclear translocation, cardiac histology and contractility. Female rats were divided into five groups: control (SHAM), ovariectomized (OVX), OVX-treated 17-β-estradiol (E), OVX-treated raloxifene (RLX) and OVX-treated tamoxifen (TAM). The treatments started 21days after ovariectomy and continued for 14days. Ovariectomy reduced ANP mRNA in the left atrium (LA), decreased the content of ANP protein in the LA and in plasma, and increased the level of p65 NF-kB nuclear translocation in the left ventricle. Both 17-β-estradiol and SERMs were able to reverse these alterations, which were induced by the estrogen deficient state. The hemodynamic and cardiac structural parameters analyzed in the present work were not modified by the interventions. Our study demonstrates, for the first time, the additional benefits of raloxifene and tamoxifen in an estrogen-deficient state. These include the normalization of plasmatic and cardiac ANP levels and cardiac p65 NF-kB translocation. Therefore, these treatments promote cardiovascular protection and may contribute to the prevention of cardiac dysfunction observed long-term in postmenopausal women. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  4. Interleukin 17 receptor A modulates monocyte subsets and macrophage generation in vivo.

    Directory of Open Access Journals (Sweden)

    Shuwang Ge

    Full Text Available Interleukin (IL-17A signaling via Interleukin 17 receptor A (Il17ra contributes to the inflammatory host response by inducing recruitment of innate immune cells, but also plays a role in homeostatic neutrophilic granulocyte regulation. Monocytes, the other main innate immune cell, have a longer life span and can pursue multiple differentiation pathways towards tissue macrophages. Monocytes are divided into two subpopulations by expression of the Ly6C/Gr1 surface marker in mice. We here investigated the role of Il17ra in monocyte homeostasis and macrophage generation. In Il17ra(-/- and in mixed bone marrow chimeric wt/Il17ra(-/- mice, the concentrations of circulating Il17ra(-/- Gr1(low monocytes were significantly decreased compared to wt cells. Pulmonary, splenic and resident peritoneal Il17ra(-/- macrophages were significantly fewer than of wt origin. Bone marrow progenitor and monocyte numbers were equal, but the proportion of Il17ra(-/- Gr1(low monocytes was already decreased at bone marrow level. After monocyte depletion, initial Gr1(high and Gr1(low monocyte regeneration of Il17ra(-/- and wt cells was very similar. However, Il17ra(-/- Gr1(low counts were not sustained. After labeling with either fluorescent beads or BrdU, Il17ra(-/- Gr1(high monocyte transition to Gr1(low cells was not detectable unlike wt cells. Monocyte recruitment in acute peritonitis, which is known to be largely due to Gr1(high cell migration, was unaffected in an identical environment. Unilateral ureteral obstruction induces a less acute inflammatory and fibrotic kidney injury. Compared to wt cells in the same environment, Il17ra(-/- macrophage accumulation in the kidney was decreased. In the absence of Il17ra on all myeloid cells, renal fibrosis was significantly attenuated. Our data show that Il17ra modulates Gr1(low monocyte counts and suggest defective Gr1(high to Gr1(low monocyte transition as an underlying mechanism. Lack of Il17ra altered homeostatic tissue

  5. Adenosine A₁ and A₂A receptor-mediated modulation of acetylcholine release in the mice neuromuscular junction.

    Science.gov (United States)

    Garcia, Neus; Priego, Mercedes; Obis, Teresa; Santafe, Manel M; Tomàs, Marta; Besalduch, Nuria; Lanuza, M Angel; Tomàs, Josep

    2013-07-01

    Immunocytochemistry shows that purinergic receptors (P1Rs) type A1 and A2A (A1 R and A2 A R, respectively) are present in the nerve endings at the P6 and P30 Levator auris longus (LAL) mouse neuromuscular junctions (NMJs). As described elsewhere, 25 μm adenosine reduces (50%) acetylcholine release in high Mg(2+) or d-tubocurarine paralysed muscle. We hypothesize that in more preserved neurotransmission machinery conditions (blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB) the physiological role of the P1Rs in the NMJ must be better observed. We found that the presence of a non-selective P1R agonist (adenosine) or antagonist (8-SPT) or selective modulators of A1 R or A2 A R subtypes (CCPA and DPCPX, or CGS-21680 and SCH-58261, respectively) does not result in any changes in the evoked release. However, P1Rs seem to be involved in spontaneous release (miniature endplate potentials MEPPs) because MEPP frequency is increased by non-selective block but decreased by non-selective stimulation, with A1 Rs playing the main role. We assayed the role of P1Rs in presynaptic short-term plasticity during imposed synaptic activity (40 Hz for 2 min of supramaximal stimuli). Depression is reduced by micromolar adenosine but increased by blocking P1Rs with 8-SPT. Synaptic depression is not affected by the presence of selective A1 R and A2 A R modulators, which suggests that both receptors need to collaborate. Thus, A1 R and A2 A R might have no real effect on neuromuscular transmission in resting conditions. However, these receptors can conserve resources by limiting spontaneous quantal leak of acetylcholine and may protect synaptic function by reducing the magnitude of depression during repetitive activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum.

    Science.gov (United States)

    Goutier, W; Lowry, J P; McCreary, A C; O'Connor, J J

    2016-05-01

    Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.

  7. δ-opioid receptor and somatostatin receptor-4 heterodimerization: possible implications in modulation of pain associated signaling.

    Directory of Open Access Journals (Sweden)

    Rishi K Somvanshi

    Full Text Available Pain relief is the principal action of opioids. Somatostatin (SST, a growth hormone inhibitory peptide is also known to alleviate pain even in cases when opioids fail. Recent studies have shown that mice are prone to sustained pain and devoid of analgesic effect in the absence of somatostatin receptor 4 (SSTR4. In the present study, using brain slices, cultured neurons and HEK-293 cells, we showed that SSTR4 and δ-Opioid receptor (δOR exist in a heteromeric complex and function in synergistic manner. SSTR4 and δOR co-expressed in cortical/striatal brain regions and spinal cord. Using cultured neuronal cells, we describe the heterogeneous complex formation of SSTR4 and δOR at neuronal cell body and processes. Cotransfected cells display inhibition of cAMP/PKA and co-activation of SSTR4 and δOR oppose receptor trafficking induced by individual receptor activation. Furthermore, downstream signaling pathways either associated with withdrawal or pain relief are modulated synergistically with a predominant role of SSTR4. Inhibition of cAMP/PKA and activation of ERK1/2 are the possible cellular adaptations to prevent withdrawal induced by chronic morphine use. Our results reveal direct intra-membrane interaction between SSTR4 and δOR and provide insights for the molecular mechanism for the anti-nociceptive property of SST in combination with opioids as a potential therapeutic approach to avoid undesirable withdrawal symptoms.

  8. Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors

    Science.gov (United States)

    Pankratov, Yuriy

    2017-01-01

    Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS. PMID:28845311

  9. Agonistic activity of tamoxifen, a selective estrogen-receptor modulator (SERM), on arthritic ovariectomized mice

    Science.gov (United States)

    Silva, L.A.S.; Felix, F.B.; Araujo, J.M.D.; Souza, E.V.; Camargo, E.A.; Grespan, R.

    2017-01-01

    Arthritis is positively associated with the decline of sex hormones, especially estrogen. Tamoxifen (TMX) is a selective estrogen receptor modulator, possessing agonist or antagonistic activity in different tissues. Thus, the objective of this study was to investigate the effect of TMX on the zymosan-induced arthritis model. Female Swiss normal and ovariectomized (OVX) mice were divided into groups and treated for five days with TMX (0.3, 0.9 or 2.7 mg/kg) or 17-β-estradiol (E2, 50 µg/kg). On the fifth day, arthritis was induced and 4 h later, leukocyte migration into joint cavities was evaluated. The neutrophil migration in OVX animals, but not in normal mice, treated with TMX (all tested doses) was significantly decreased compared with mice that received the vehicle (P≤0.05). Similarly, this effect was also demonstrated in the E2-treated group. Therefore, the present study demonstrates that TMX presented agonist effects in inhibiting neutrophil migration and preventing arthritis progression in OVX mice. PMID:29160416

  10. Levamisole: A Positive Allosteric Modulator for the α3β4 Nicotinic Acetylcholine Receptors Prevents Weight Gain in the CD-1 Mice on a High Fat Diet.

    Science.gov (United States)

    Lewis, Jeanne A; Yakel, Jerrel L; Pandya, Anshul A

    2017-01-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the function of multiple neurotransmitter pathways throughout the central nervous system. This includes nAChRs found on the proopiomelanocortin neurons in the hypothalamus. Activation of these nAChRs by nicotine causes a decrease in the consumption of food in rodents. This study tested the effect of subtype selective allosteric modulators for nAChRs on the body weight of CD-1 mice. Levamisole, an allosteric modulator for the α3β4 subtype of nAChRs, prevented weight gain in mice that were fed a high fat diet. PNU-120596 and desformylflustrabromine were observed to be selective PAMs for the α7 and α4β2 nAChR, respectively. Both of these compounds failed to prevent weight gain in the CD-1 mice. These results suggest that the modulation of hypothalamic α3β4 nAChRs is an important factor in regulating food intake, and the PAMs for these receptors need further investigation as potential therapeutic agents for controlling weight gain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Pharmacodynamics of selective androgen receptor modulators.

    Science.gov (United States)

    Yin, Donghua; Gao, Wenqing; Kearbey, Jeffrey D; Xu, Huiping; Chung, Kiwon; He, Yali; Marhefka, Craig A; Veverka, Karen A; Miller, Duane D; Dalton, James T

    2003-03-01

    The present study aimed to identify selective androgen receptor modulators (SARMs) with in vivo pharmacological activity. We examined the in vitro and in vivo pharmacological activity of four chiral, nonsteroidal SARMs synthesized in our laboratories. In the in vitro assays, these compounds demonstrated moderate to high androgen receptor (AR) binding affinity, with K(i) values ranging from 4 to 37 nM, and three of the compounds efficaciously stimulated AR-mediated reporter gene expression. The compounds were then administered subcutaneously to castrated rats to appraise their in vivo pharmacological activity. Androgenic activity was evaluated by the ability of these compounds to maintain the weights of prostate and seminal vesicle, whereas levator ani muscle weight was used as a measure of anabolic activity. The maximal response (E(max)) and dose for half-maximal effect (ED(50)) were determined for each compound and compared with that observed for testosterone propionate (TP). Compounds S-1 and S-4 demonstrated in vivo androgenic and anabolic activity, whereas compounds S-2 and S-3 did not. The activities of S-1 and S-4 were tissue-selective in that both compounds stimulated the anabolic organs more than the androgenic organs. These two compounds were less potent and efficacious than TP in androgenic activity, but their anabolic activity was similar to or greater than that of TP. Neither S-1 nor S-4 caused significant luteinizing hormone or follicle stimulating hormone suppression at doses near the ED(50) value. Thus, compounds S-1 and S-4 were identified as SARMs with potent and tissue-selective in vivo pharmacological activity, and represent the first members of a new class of SARMs with selective anabolic effects.

  12. Advances in breast cancer treatment and prevention: preclinical studies on aromatase inhibitors and new selective estrogen receptor modulators (SERMs)

    International Nuclear Information System (INIS)

    Schiff, Rachel; Chamness, Gary C; Brown, Powel H

    2003-01-01

    Intensive basic and clinical research over the past 20 years has yielded crucial molecular understanding into how estrogen and the estrogen receptor act to regulate breast cancer and has led to the development of more effective, less toxic, and safer hormonal therapy agents for breast cancer management and prevention. Selective potent aromatase inhibitors are now challenging the hitherto gold standard of hormonal therapy, the selective estrogen-receptor modulator tamoxifen. Furthermore, new selective estrogen-receptor modulators such as arzoxifene, currently under clinical development, offer the possibility of selecting one with a more ideal pharmacological profile for treatment and prevention of breast cancer. Two recent studies in preclinical model systems that evaluate mechanisms of action of these new drugs and suggestions about their optimal clinical use are discussed

  13. Modulation of the constitutive activity of the ghrelin receptor by use of pharmacological tools and mutagenesis.

    Science.gov (United States)

    Mokrosiński, Jacek; Holst, Birgitte

    2010-01-01

    Ghrelin and its receptor are important regulators of metabolic functions, including appetite, energy expenditure, fat accumulation, and growth hormone (GH) secretion. The ghrelin receptor is characterized by an ability to signal even without any ligand present with approximately 50% of the maximally ghrelin-induced efficacy-a feature that may have important physiological implications. The high basal signaling can be modulated either by administration of specific ligands or by engineering of mutations in the receptor structure. [D-Arg(1), D-Phe(5), D-Trp(7,9), Leu(11)]-substance P was the first inverse agonist to be identified for the ghrelin receptor, and this peptide has been used as a starting point for identification of the structural requirements for inverse agonist properties in the ligand. The receptor binding core motif was identified as D-Trp-Phe-D-Trp-Leu-Leu, and elongation of this peptide in the amino-terminal end determined the efficacy. Attachment of a positively charged amino acid was responsible for full inverse agonism, whereas an alanin converted the peptide into a partial agonist. Importantly, by use of mutational mapping of the residues critical for the modified D-Trp-Phe-D-Trp-Leu-Leu peptides, it was found that space-generating mutations in the deeper part of the receptor improved inverse agonism, whereas similar mutations located in the more extracellular part improved agonism. Modulation of the basal signaling by mutations in the receptor structure is primarily obtained by substitutions in an aromatic cluster that keep TMs VI and VII in close proximity to TM III and thus stabilize the active conformation. Also, substitution of a Phe in TM V is crucial for the high basal activity of the receptor as this residue serves as a partner for Trp VI:13 in the active conformation. It is suggested that inverse agonist and antagonist against the ghrelin receptor provide an interesting possibility in the development of drugs for treatment of obesity and

  14. Increased vascular sympathetic modulation in mice with Mas receptor deficiency

    Science.gov (United States)

    Rabello Casali, Karina; Ravizzoni Dartora, Daniela; Moura, Marina; Bertagnolli, Mariane; Bader, Michael; Haibara, Andrea; Alenina, Natalia; Irigoyen, Maria Claudia; Santos, Robson A

    2016-01-01

    Introduction: The angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1–7)/Mas axis could modulate the heart rate (HR) and blood pressure variabilities (BPV) which are important predictors of cardiovascular risk and provide information about the autonomic modulation of the cardiovascular system. Therefore we investigated the effect of Mas deficiency on autonomic modulation in wild type and Mas-knockout (KO) mice. Methods: Blood pressure was recorded at high sample rate (4000 Hz). Stationary sequences of 200–250 beats were randomly chosen. Frequency domain analysis of HR and BPV was performed with an autoregressive algorithm on the pulse interval sequences and on respective systolic sequences. Results: The KO group presented an increase of systolic arterial pressure (SAP; 127.26±11.20 vs 135.07±6.98 mmHg), BPV (3.54±1.54 vs 5.87±2.12 mmHg2), and low-frequency component of systolic BPV (0.12±0.11 vs 0.47±0.34 mmHg2). Conclusions: The deletion of Mas receptor is associated with an increase of SAP and with an increased BPV, indicating alterations in autonomic control. Increase of sympathetic vascular modulation in absence of Mas evidences the important role of Ang-(1–7)/Mas on cardiovascular regulation. Moreover, the absence of significant changes in HR and HRV can indicate an adaptation of autonomic cardiac balance. Our results suggest that the Ang-(1–7)/Mas axis seems more important in autonomic modulation of arterial pressure than HR. PMID:27080540

  15. Common angiotensin receptor blockers may directly modulate the immune system via VDR, PPAR and CCR2b

    Directory of Open Access Journals (Sweden)

    Lee Robert E

    2006-01-01

    Full Text Available Abstract Background There have been indications that common Angiotensin Receptor Blockers (ARBs may be exerting anti-inflammatory actions by directly modulating the immune system. We decided to use molecular modelling to rapidly assess which of the potential targets might justify the expense of detailed laboratory validation. We first studied the VDR nuclear receptor, which is activated by the secosteroid hormone 1,25-dihydroxyvitamin-D. This receptor mediates the expression of regulators as ubiquitous as GnRH (Gonadatrophin hormone releasing hormone and the Parathyroid Hormone (PTH. Additionally we examined Peroxisome Proliferator-Activated Receptor Gamma (PPARgamma, which affects the function of phagocytic cells, and the C-CChemokine Receptor, type 2b, (CCR2b, which recruits monocytes to the site of inflammatory immune challenge. Results Telmisartan was predicted to strongly antagonize (Ki≈0.04nmol the VDR. The ARBs Olmesartan, Irbesartan and Valsartan (Ki≈10 nmol are likely to be useful VDR antagonists at typical in-vivo concentrations. Candesartan (Ki≈30 nmol and Losartan (Ki≈70 nmol may also usefully inhibit the VDR. Telmisartan is a strong modulator of PPARgamma (Ki≈0.3 nmol, while Losartan (Ki≈3 nmol, Irbesartan (Ki≈6 nmol, Olmesartan and Valsartan (Ki≈12 nmol also seem likely to have significant PPAR modulatory activity. Olmesartan andIrbesartan (Ki≈9 nmol additionally act as antagonists of a theoretical modelof CCR2b. Initial validation of this CCR2b model was performed, and a proposed model for the AngiotensinII Type1 receptor (AT2R1 has been presented. Conclusion Molecular modeling has proven valuable to generate testable hypotheses concerning receptor/ligand binding and is an important tool in drug design. ARBs were designed to act as antagonists for AT2R1, and it was not surprising to discover their affinity for the structurally similar CCR2b. However, this study also found evidence that ARBs modulate the

  16. Ketamine and other glutamate receptor modulators for depression in adults.

    Science.gov (United States)

    Caddy, Caroline; Amit, Ben H; McCloud, Tayla L; Rendell, Jennifer M; Furukawa, Toshi A; McShane, Rupert; Hawton, Keith; Cipriani, Andrea

    2015-09-23

    Considering the ample evidence of involvement of the glutamate system in the pathophysiology of depression, pre-clinical and clinical studies have been conducted to assess the antidepressant efficacy of glutamate inhibition, and glutamate receptor modulators in particular. This review focuses on the use of glutamate receptor modulators in unipolar depression. To assess the effects - and review the acceptability - of ketamine and other glutamate receptor modulators in comparison to placebo (or saline placebo), other pharmacologically active agents, or electroconvulsive therapy (ECT) in alleviating the acute symptoms of depression in people with unipolar major depressive disorder. We searched the Cochrane Depression, Anxiety and Neurosis Review Group's Specialised Register (CCDANCTR, to 9 January 2015). This register includes relevant randomised controlled trials (RCTs) from: the Cochrane Library (all years), MEDLINE (1950 to date), EMBASE (1974 to date), and PsycINFO (1967 to date). We did not apply any restrictions to date, language or publication status. Double- or single-blind RCTs comparing ketamine, memantine, or other glutamate receptor modulators with placebo (or saline placebo), other active psychotropic drugs, or electroconvulsive therapy (ECT) in adults with unipolar major depression. Three review authors independently identified studies, assessed trial quality and extracted data. The primary outcomes for this review were response rate and adverse events. We included 25 studies (1242 participants) on ketamine (9 trials), memantine (3), AZD6765 (3), D-cycloserine (2), Org26576 (2), atomoxetine (1), CP-101,606 (1), MK-0657 (1), N-acetylcysteine (1), riluzole (1) and sarcosine (1). Twenty-one studies were placebo-controlled and the majority were two-arm studies (23 out of 25). Twenty-two studies defined an inclusion criteria specifying the severity of depression; 11 specified at least moderate depression; eight, severe depression; and the remaining three

  17. Peroxisome proliferator-activated receptor α ligands and modulators from dietary compounds: Types, screening methods and functions.

    Science.gov (United States)

    Yang, Haixia; Xiao, Lei; Wang, Nanping

    2017-04-01

    Peroxisome proliferator-activated receptor α (PPARα) plays a key role in lipid metabolism and glucose homeostasis and a crucial role in the prevention and treatment of metabolic diseases. Natural dietary compounds, including nutrients and phytochemicals, are PPARα ligands or modulators. High-throughput screening assays have been developed to screen for PPARα ligands and modulators in our diet. In the present review, we discuss recent advances in our knowledge of PPARα, including its structure, function, and ligand and modulator screening assays, and summarize the different types of dietary PPARα ligands and modulators. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  18. Thyrotropin modulates receptor-mediated processing of the atrial natriuretic peptide receptor in cultured thyroid cells

    International Nuclear Information System (INIS)

    Tseng, Y.L.; Burman, K.D.; Lahiri, S.; Abdelrahim, M.M.; D'Avis, J.C.; Wartofsky, L.

    1991-01-01

    In a prior study of atrial natriuretic peptide (ANP) binding to cultured thyroid cells, we reported that at 4 C, more than 95% of bound ANP is recovered on cell membranes, with negligible ANP internalization observed. Since ANP binding was inhibited by TSH, we have further studied TSH effects on postbinding ANP processing to determine whether this phenomenon reflects enhanced endocytosis of the ANP-receptor complex. An ANP chase study was initiated by binding [125I] ANP to thyroid cells at 4 C for 2 h, followed by incubation at 37 C. ANP processing was then traced by following 125I activity at various time intervals in three fractions: cell surface membranes, incubation medium, and inside the cells. Radioactivity released into medium represented processed ANP rather than ANP dissociated from surface membranes, since prebound [125I]ANP could not be competitively dissociated by a high concentration of ANP (1 mumol/L) at 37 C. Chase study results showed that prebound ANP quickly disappeared from cell membranes down to 34% by 30 min. Internalized ANP peaked at 10 min, with 21% of initial prebound ANP found inside the cells. At the same time, radioactivity recovered in incubation medium sharply increased between 10-30 min from 8% to 52%. Preincubation of cells with chloroquine (which blocks degradation of the ANP-receptor complex by inhibiting lysosomal hydrolase) caused a 146% increase in internalized [125I]ANP by 30 min (39% compared to 15% control), while medium radioactivity decreased from 52% to 16%, suggesting that processing of the receptor complex is mediated via lysosomal enzymes. In chase studies employing cells pretreated with chloroquine, TSH stimulated the internalization rate of ANP-receptor complex. By 30 min, TSH significantly reduced the membrane-bound ANP, and the decrease was inversely correlated to the increase in internalized radioactivity

  19. Do serotonin(1-7) receptors modulate short and long-term memory?

    Science.gov (United States)

    Meneses, A

    2007-05-01

    Evidence from invertebrates to human studies indicates that serotonin (5-hydroxytryptamine; 5-HT) system modulates short- (STM) and long-term memory (LTM). This work is primarily focused on analyzing the contribution of 5-HT, cholinergic and glutamatergic receptors as well as protein synthesis to STM and LTM of an autoshaping learning task. It was observed that the inhibition of hippocampal protein synthesis or new mRNA did not produce a significant effect on autoshaping STM performance but it did impair LTM. Both non-contingent protein inhibition and 5-HT depletion showed no effects. It was basically the non-selective 5-HT receptor antagonist cyproheptadine, which facilitated STM. However, the blockade of glutamatergic and cholinergic transmission impaired STM. In contrast, the selective 5-HT(1B) receptor antagonist SB-224289 facilitated both STM and LTM. Selective receptor antagonists for the 5-HT(1A) (WAY100635), 5-HT(1D) (GR127935), 5-HT(2A) (MDL100907), 5-HT(2C/2B) (SB-200646), 5-HT(3) (ondansetron) or 5-HT(4) (GR125487), 5-HT(6) (Ro 04-6790, SB-399885 and SB-35713) or 5-HT(7) (SB-269970) did not impact STM. Nevertheless, WAY100635, MDL100907, SB-200646, GR125487, Ro 04-6790, SB-399885 or SB-357134 facilitated LTM. Notably, some of these changes shown to be independent of food-intake. Concomitantly, these data indicate that '5-HT tone via 5-HT(1B) receptors' might function in a serial manner from STM to LTM, whereas working in parallel using 5-HT(1A), 5-HT(2A), 5-HT(2B/2C), 5-HT(4), or 5-HT(6) receptors.

  20. Decreased α1-adrenergic receptor-mediated inositide hydrolysis in neurons from hypertensive rat brain

    International Nuclear Information System (INIS)

    Feldstein, J.B.; Gonzales, R.A.; Baker, S.P.; Sumners, C.; Crews, F.T.; Raizada, M.K.

    1986-01-01

    The expression of α 1 -adrenergic receptors and norepinephrine (NE)-stimulated hydrolysis of inositol phospholipid has been studied in neuronal cultures from the brains of normotensive (Wistar-Kyoto, WKY) and spontaneously hypertensive (SH) rats. Binding of 125 I-1-[β-(4-hydroxyphenyl)-ethyl-aminomethyl] tetralone (HEAT) to neuronal membranes was 68-85% specific and was rapid. Competition-inhibition experiments with various agonists and antagonists suggested that 125 I-HEAT bound selectively to α 1 -adrenergic receptors. Specific binding of 125 I-HEAT to neuronal membranes from SH rat brain cultures was 30-45% higher compared with binding in WKY normotensive controls. This increase was attributed to an increase in the number of α 1 -adrenergic receptors on SH rat brain neurons. Incubation of neuronal cultures of rat brain from both strains with NE resulted in a concentration-dependent stimulation of release of inositol phosphates, although neurons from SH rat brains were 40% less responsive compared with WKY controls. The decrease in responsiveness of SH rat brain neurons to NE, even though the α 1 -adrenergic receptors are increased, does not appear to be due to a general defect in membrane receptors and postreceptor signal transduction mechanisms. This is because neither the number of muscarinic-cholinergic receptors nor the carbachol-stimulated release of inositol phosphates is different in neuronal cultures from the brains of SH rats compared with neuronal cultures from the brains of WKY rats. These observations suggest that the increased expression of α 1 -adrenergic receptors does not parallel the receptor-mediated inositol phosphate hydrolysis in neuronal cultures from SH rat brain

  1. Honey Bee Allatostatins Target Galanin/Somatostatin-Like Receptors and Modulate Learning: A Conserved Function?

    Directory of Open Access Journals (Sweden)

    Elodie Urlacher

    Full Text Available Sequencing of the honeybee genome revealed many neuropeptides and putative neuropeptide receptors, yet functional characterization of these peptidic systems is scarce. In this study, we focus on allatostatins, which were first identified as inhibitors of juvenile hormone synthesis, but whose role in the adult honey bee (Apis mellifera brain remains to be determined. We characterize the bee allatostatin system, represented by two families: allatostatin A (Apime-ASTA and its receptor (Apime-ASTA-R; and C-type allatostatins (Apime-ASTC and Apime-ASTCC and their common receptor (Apime-ASTC-R. Apime-ASTA-R and Apime-ASTC-R are the receptors in bees most closely related to vertebrate galanin and somatostatin receptors, respectively. We examine the functional properties of the two honeybee receptors and show that they are transcriptionally expressed in the adult brain, including in brain centers known to be important for learning and memory processes. Thus we investigated the effects of exogenously applied allatostatins on appetitive olfactory learning in the bee. Our results show that allatostatins modulate learning in this insect, and provide important insights into the evolution of somatostatin/allatostatin signaling.

  2. Modeling Tolerance Development for the Effect on Heart Rate of the Selective S1P1 Receptor Modulator Ponesimod.

    Science.gov (United States)

    Lott, Dominik; Lehr, Thorsten; Dingemanse, Jasper; Krause, Andreas

    2017-09-15

    Ponesimod is a selective sphingosine-1-phosphate-1 (S1P 1 ) receptor modulator currently under investigation for the treatment of multiple sclerosis. S1P receptor modulators reduce heart rate following treatment initiation. This effect disappears with repeated dosing, enabling development of innovative uptitration regimens to optimize patient safety. There are currently no published pharmacokinetic/pharmacodynamic models describing the heart rate reduction of S1P receptor modulators in humans. The model developed here provides quantification of this effect for ponesimod. A direct-effect I max model with estimated maximum reduction of 45%, tolerance development, and circadian variation best described this effect. The pooled data from nine clinical studies enabled characterization of interindividual variability. The model was used to simulate different treatment regimens to compare the effect of high initial doses vs. gradual uptitration with respect to the occurrence of bradycardia. The results indicate a better safety profile when using gradual uptitration. The model allows studying dosing regimens not clinically tested in silico. © 2017 American Society for Clinical Pharmacology and Therapeutics.

  3. Decreased agonist sensitivity of human GABA(A) receptors by an amino acid variant, isoleucine to valine, in the alpha1 subunit.

    Science.gov (United States)

    Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nabekura, J; Noguchi, K; Akaike, N; Witt, M R; Nielsen, M

    1997-06-25

    Recombinant human GABA(A) receptors were investigated in vitro by coexpression of cDNAs coding for alpha1, beta2, and gamma2 subunits in the baculovirus/Sf-9 insect cell system. We report that a single amino acid exchange (isoleucine 121 to valine 121) in the N-terminal, extracellular part of the alpha1 subunit induces a marked decrease in agonist GABA(A) receptor ligand sensitivity. The potency of muscimol and GABA to inhibit the binding of the GABA(A) receptor antagonist [3H]SR 95531 (2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide) was higher in receptor complexes of alpha1(ile 121) beta2gamma2 than in those of alpha1(val 121) beta2gamma2 (IC50 values were 32-fold and 26-fold lower for muscimol and GABA, respectively). The apparent affinity of the GABA(A) receptor antagonist bicuculline methiodide to inhibit the binding of [3H]SR 95531 did not differ between the two receptor complex variants. Electrophysiological measurements of GABA induced whole-cell Cl- currents showed a ten-fold decrease in the GABA(A) receptor sensitivity of alpha1 (val 121) beta2gamma2 as compared to alpha1(ile 121) beta2gamma2 receptor complexes. Thus, a relatively small change in the primary structure of the alpha1 subunit leads to a decrease selective for GABA(A) receptor sensitivity to agonist ligands, since no changes were observed in a GABA(A) receptor antagonist affinity and benzodiazepine receptor binding.

  4. Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats

    Directory of Open Access Journals (Sweden)

    Pang XF

    2015-11-01

    Full Text Available Xue-Fen Pang,1 Li-Hui Zhang,2 Feng Bai,1 Ning-Ping Wang,3 Ron E Garner,3 Robert J McKallip,4 Zhi-Qing Zhao1,3 1Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China; 2Department of Cardiology, Shanxi Academy of Medical Sciences and Shanxi Dayi Hospital, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China; 3Department of Basic Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA; 4Division of Basic Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA Abstract: Curcumin is known to improve cardiac function by balancing degradation and synthesis of collagens after myocardial infarction. This study tested the hypothesis that inhibition of myocardial fibrosis by curcumin is associated with modulating expression of angiotensin II (Ang II receptors and angiotensin-converting enzyme 2 (ACE2. Male Sprague Dawley rats were subjected to Ang II infusion (500 ng/kg/min using osmotic minipumps for 2 and 4 weeks, respectively, and curcumin (150 mg/kg/day was fed by gastric gavage during Ang II infusion. Compared to the animals with Ang II infusion, curcumin significantly decreased the mean arterial blood pressure during the course of the observation. The protein level of the Ang II type 1 (AT1 receptor was reduced, and the Ang II type 2 (AT2 receptor was up-regulated, evidenced by an increased ratio of the AT2 receptor over the AT1 receptor in the curcumin group (1.2±0.02% vs in the Ang II group (0.7±0.03%, P<0.05. These changes were coincident with less locally expressed AT1 receptor and enhanced AT2 receptor in the intracardiac vessels and intermyocardium. Along with these modulations, curcumin significantly decreased the populations of macrophages and alpha smooth muscle actin-expressing myofibroblasts, which were accompanied by reduced expression of transforming growth factor beta 1 and phosphorylated-Smad2/3. Collagen I synthesis was

  5. Structural and functional studies of the modulator NS9283 reveal agonist-like mechanism of action at α4β2 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Olsen, Jeppe A; Ahring, Philip K; Kastrup, Jette Sandholm Jensen

    2014-01-01

    Modulation of Cys loop receptor ion channels is a proven drug discovery strategy, but many underlying mechanisms of the mode of action are poorly understood. We report the x-ray structure of the acetylcholine-binding protein from Lymnaea stagnalis with NS9283, a stoichiometry selective positive...... on efficacy. The shared modulatory profile along with a binding site located in an extracellular subunit interface suggest that modulation via an agonist-like mechanism may be a common mechanism of action that potentially could apply to Cys loop receptors beyond the α4β2 nAChRs....... modulator that targets the α4-α4 interface of α4β2 nicotinic acetylcholine receptors (nAChRs). Together with homology modeling, mutational data, quantum mechanical calculations, and pharmacological studies on α4β2 nAChRs, the structure reveals a modulator binding mode that overlaps the α4-α4 interface...

  6. Effects of GABA-B receptor positive modulator on ketamine-induced psychosis-relevant behaviors and hippocampal electrical activity in freely moving rats.

    Science.gov (United States)

    Ma, Jingyi; Stan Leung, L

    2017-10-01

    Decreased GABA B receptor function is proposed to mediate some symptoms of schizophrenia. In this study, we tested the effect of CGP7930, a GABA B receptor positive allosteric modulator, on ketamine-induced psychosis-relevant behaviors and hippocampal electrical activity in behaving rats. Electrodes were bilaterally implanted into the hippocampus, and cannulae were placed into the lateral ventricles of Long-Evans rats. CGP7930 or vehicle was injected intraperitoneally (i.p.) or intracerebroventricularly (i.c.v.), alone or 15 min prior to ketamine (3 mg/kg, subcutaneous) injection. Paired click auditory evoked potentials in the hippocampus (AEP), prepulse inhibition (PPI), and locomotor activity were recorded before and after drug injection. CGP7930 at doses of 1 mg/kg (i.p.) prevented ketamine-induced deficit of PPI. CGP7930 (1 mg/kg i.p.) also prevented the decrease in gating of hippocampal AEP and the increase in hippocampal gamma (65-100 Hz) waves induced by ketamine. Unilateral i.c.v. infusion of CGP7930 (0.3 mM/1 μL) also prevented the decrease in gating of hippocampal AEP induced by ketamine. Ketamine-induced behavioral hyperlocomotion was suppressed by 5 mg/kg i.p. CGP7930. CGP7930 alone, without ketamine, did not significantly affect integrated PPI, locomotion, gating of hippocampal AEP, or gamma waves. CGP7930 (1 mg/kg i.p.) increased heterosynaptically mediated paired pulse depression in the hippocampus, a measure of GABA B receptor function in vivo. CGP7930 reduces the behavioral and electrophysiological disruptions induced by ketamine in animals, and the hippocampus may be one of the neural targets where CGP7930 exerts its actions.

  7. Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors

    Directory of Open Access Journals (Sweden)

    Eric Boué-Grabot

    2017-01-01

    Full Text Available Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS.

  8. GABAA receptor: Positive and negative allosteric modulators.

    Science.gov (United States)

    Olsen, Richard W

    2018-01-31

    gamma-Aminobutyric acid (GABA)-mediated inhibitory neurotransmission and the gene products involved were discovered during the mid-twentieth century. Historically, myriad existing nervous system drugs act as positive and negative allosteric modulators of these proteins, making GABA a major component of modern neuropharmacology, and suggesting that many potential drugs will be found that share these targets. Although some of these drugs act on proteins involved in synthesis, degradation, and membrane transport of GABA, the GABA receptors Type A (GABA A R) and Type B (GABA B R) are the targets of the great majority of GABAergic drugs. This discovery is due in no small part to Professor Norman Bowery. Whereas the topic of GABA B R is appropriately emphasized in this special issue, Norman Bowery also made many insights into GABA A R pharmacology, the topic of this article. GABA A R are members of the ligand-gated ion channel receptor superfamily, a chloride channel family of a dozen or more heteropentameric subtypes containing 19 possible different subunits. These subtypes show different brain regional and subcellular localization, age-dependent expression, and potential for plastic changes with experience including drug exposure. Not only are GABA A R the targets of agonist depressants and antagonist convulsants, but most GABA A R drugs act at other (allosteric) binding sites on the GABA A R proteins. Some anxiolytic and sedative drugs, like benzodiazepine and related drugs, act on GABA A R subtype-dependent extracellular domain sites. General anesthetics including alcohols and neurosteroids act at GABA A R subunit-interface trans-membrane sites. Ethanol at high anesthetic doses acts on GABA A R subtype-dependent trans-membrane domain sites. Ethanol at low intoxicating doses acts at GABA A R subtype-dependent extracellular domain sites. Thus GABA A R subtypes possess pharmacologically specific receptor binding sites for a large group of different chemical classes of

  9. Modulation of the constitutive activity of the ghrelin receptor by use of pharmacological tools and mutagenesis

    DEFF Research Database (Denmark)

    Mokrosinski, Jacek; Holst, Birgitte

    2010-01-01

    Ghrelin and its receptor are important regulators of metabolic functions, including appetite, energy expenditure, fat accumulation, and growth hormone (GH) secretion. The ghrelin receptor is characterized by an ability to signal even without any ligand present with approximately 50......% of the maximally ghrelin-induced efficacy-a feature that may have important physiological implications. The high basal signaling can be modulated either by administration of specific ligands or by engineering of mutations in the receptor structure. [D-Arg(1), D-Phe(5), D-Trp(7,9), Leu(11)]-substance P...... was the first inverse agonist to be identified for the ghrelin receptor, and this peptide has been used as a starting point for identification of the structural requirements for inverse agonist properties in the ligand. The receptor binding core motif was identified as D-Trp-Phe-D-Trp-Leu-Leu, and elongation...

  10. Overlapping binding site for the endogenous agonist, small-molecule agonists, and ago-allosteric modulators on the ghrelin receptor

    DEFF Research Database (Denmark)

    Holst, Birgitte; Frimurer, Thomas M; Mokrosinski, Jacek

    2008-01-01

    A library of robust ghrelin receptor mutants with single substitutions at 22 positions in the main ligand-binding pocket was employed to map binding sites for six different agonists: two peptides (the 28-amino-acid octanoylated endogenous ligand ghrelin and the hexapeptide growth hormone......, and PheVI:23 on the opposing face of transmembrane domain (TM) VI. Each of the agonists was also affected selectively by specific mutations. The mutational map of the ability of L-692,429 and GHRP-6 to act as allosteric modulators by increasing ghrelin's maximal efficacy overlapped with the common....... It is concluded that although each of the ligands in addition exploits other parts of the receptor, a large, common binding site for both small-molecule agonists--including ago-allosteric modulators--and the endogenous agonist is found on the opposing faces of TM-III and -VI of the ghrelin receptor....

  11. IL-36 receptor deletion attenuates lung injury and decreases mortality in murine influenza pneumonia.

    Science.gov (United States)

    Aoyagi, T; Newstead, M W; Zeng, X; Kunkel, S L; Kaku, M; Standiford, T J

    2017-07-01

    Influenza virus causes a respiratory disease in humans that can progress to lung injury with fatal outcome. The interleukin (IL)-36 cytokines are newly described IL-1 family cytokines that promote inflammatory responses via binding to the IL-36 receptor (IL-36R). The mechanism of expression and the role of IL-36 cytokines are poorly understood. Here, we investigated the role of IL-36 cytokines in modulating the innate inflammatory response during influenza virus-induced pneumonia in mice. The intranasal administration of influenza virus upregulated IL-36α mRNA and protein production in the lungs. In vitro, influenza virus-mediated IL-36α but not IL-36γ is induced and secreted from alveolar epithelial cells (AECs) through both a caspase-1 and caspase-3/7 dependent pathway. IL-36α was detected in microparticles shed from AECs and promoted the production of pro-inflammatory cytokines and chemokines in respiratory cells. IL-36R-deficient mice were protected from influenza virus-induced lung injury and mortality. Decreased mortality was associated with significantly reduced early accumulation of neutrophils and monocytes/macrophages, activation of lymphocytes, production of pro-inflammatory cytokines and chemokines, and permeability of the alveolar-epithelial barrier in despite impaired viral clearance. Taken together, these data indicate that IL-36 ligands exacerbate lung injury during influenza virus infection.

  12. Triton X-100 inhibits agonist-induced currents and suppresses benzodiazepine modulation of GABA(A) receptors in Xenopus oocytes

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Ebert, Bjarke; Klaerke, Dan

    2009-01-01

    Changes in lipid bilayer elastic properties have been proposed to underlie the modulation of voltage-gated Na(+) and L-type Ca(2+) channels and GABA(A) receptors by amphiphiles. The amphiphile Triton X-100 increases the elasticity of lipid bilayers at micromolar concentrations, assessed from its...... by flunitrazepam at alpha(1)beta(3)gamma(2S) receptors. All effects were independent of the presence of a gamma(2S) subunit in the GABA(A) receptor complex. The present study suggests that Triton X-100 may stabilize open and desensitized states of the GABA(A) receptor through changes in lipid bilayer elasticity....

  13. Cannabinoids Modulate Neuronal Activity and Cancer by CB1 and CB2 Receptor-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Ken Soderstrom

    2017-10-01

    Full Text Available Cannabinoids include the active constituents of Cannabis or are molecules that mimic the structure and/or function of these Cannabis-derived molecules. Cannabinoids produce many of their cellular and organ system effects by interacting with the well-characterized CB1 and CB2 receptors. However, it has become clear that not all effects of cannabinoid drugs are attributable to their interaction with CB1 and CB2 receptors. Evidence now demonstrates that cannabinoid agents produce effects by modulating activity of the entire array of cellular macromolecules targeted by other drug classes, including: other receptor types; ion channels; transporters; enzymes, and protein- and non-protein cellular structures. This review summarizes evidence for these interactions in the CNS and in cancer, and is organized according to the cellular targets involved. The CNS represents a well-studied area and cancer is emerging in terms of understanding mechanisms by which cannabinoids modulate their activity. Considering the CNS and cancer together allow identification of non-cannabinoid receptor targets that are shared and divergent in both systems. This comparative approach allows the identified targets to be compared and contrasted, suggesting potential new areas of investigation. It also provides insight into the diverse sources of efficacy employed by this interesting class of drugs. Obtaining a comprehensive understanding of the diverse mechanisms of cannabinoid action may lead to the design and development of therapeutic agents with greater efficacy and specificity for their cellular targets.

  14. The cannabinoid CB1 receptor and mTORC1 signalling pathways interact to modulate glucose homeostasis in mice

    Directory of Open Access Journals (Sweden)

    Francisco J. Bermudez-Silva

    2016-01-01

    Full Text Available The endocannabinoid system (ECS is an intercellular signalling mechanism that is present in the islets of Langerhans and plays a role in the modulation of insulin secretion and expansion of the β-cell mass. The downstream signalling pathways mediating these effects are poorly understood. Mammalian target of rapamycin complex 1 (mTORC1 signalling is a key intracellular pathway involved in energy homeostasis and is known to importantly affect the physiology of pancreatic islets. We investigated the possible relationship between cannabinoid type 1 (CB1 receptor signalling and the mTORC1 pathway in the endocrine pancreas of mice by using pharmacological analysis as well as mice genetically lacking the CB1 receptor or the downstream target of mTORC1, the kinase p70S6K1. In vitro static secretion experiments on islets, western blotting, and in vivo glucose and insulin tolerance tests were performed. The CB1 receptor antagonist rimonabant decreased glucose-stimulated insulin secretion (GSIS at 0.1 µM while increasing phosphorylation of p70S6K1 and ribosomal protein S6 (rpS6 within the islets. Specific pharmacological blockade of mTORC1 by 3 nM rapamycin, as well as genetic deletion of p70S6K1, impaired the CB1-antagonist-mediated decrease in GSIS. In vivo experiments showed that 3 mg/kg body weight rimonabant decreased insulin levels and induced glucose intolerance in lean mice without altering peripheral insulin sensitivity; this effect was prevented by peripheral administration of low doses of rapamycin (0.1 mg/kg body weight, which increased insulin sensitivity. These findings suggest a functional interaction between the ECS and the mTORC1 pathway within the endocrine pancreas and at the whole-organism level, which could have implications for the development of new therapeutic approaches for pancreatic β-cell diseases.

  15. Protein kinase A mediates adenosine A2a receptor modulation of neurotransmitter release via synapsin I phosphorylation in cultured cells from medulla oblongata.

    Science.gov (United States)

    Matsumoto, Joao Paulo Pontes; Almeida, Marina Gomes; Castilho-Martins, Emerson Augusto; Costa, Maisa Aparecida; Fior-Chadi, Debora Rejane

    2014-08-01

    Synaptic transmission is an essential process for neuron physiology. Such process is enabled in part due to modulation of neurotransmitter release. Adenosine is a synaptic modulator of neurotransmitter release in the Central Nervous System, including neurons of medulla oblongata, where several nuclei are involved with neurovegetative reflexes. Adenosine modulates different neurotransmitter systems in medulla oblongata, specially glutamate and noradrenaline in the nucleus tractussolitarii, which are involved in hypotensive responses. However, the intracellular mechanisms involved in this modulation remain unknown. The adenosine A2a receptor modulates neurotransmitter release by activating two cAMP protein effectors, the protein kinase A and the exchange protein activated by cAMP. Therefore, an in vitro approach (cultured cells) was carried out to evaluate modulation of neurotransmission by adenosine A2a receptor and the signaling intracellular pathway involved. Results show that the adenosine A2a receptor agonist, CGS 21680, increases neurotransmitter release, in particular, glutamate and noradrenaline and such response is mediated by protein kinase A activation, which in turn increased synapsin I phosphorylation. This suggests a mechanism of A2aR modulation of neurotransmitter release in cultured cells from medulla oblongata of Wistar rats and suggest that protein kinase A mediates this modulation of neurotransmitter release via synapsin I phosphorylation. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  16. Decreased ipsilateral [123I]iododexetimide binding to cortical muscarinic receptors in unilaterally 6-hydroxydopamine lesioned rats

    International Nuclear Information System (INIS)

    Knol, Remco J.J.; Bruin, Kora de; Opmeer, Brent; Voorn, Pieter; Jonker, Allert J.; Eck-Smit, Berthe L.F. van; Booij, Jan

    2014-01-01

    Introduction: Dysfunction of the cholinergic neurotransmitter system is present in Parkinson’s disease, Parkinson’s disease related dementia and dementia with Lewy bodies, and is thought to contribute to cognitive deficits in these patients. In vivo imaging of the cholinergic system in these diseases may be of value to monitor central cholinergic disturbances and to select cases in which treatment with cholinesterase inhibitors could be beneficial. The muscarinic receptor tracer [ 123 I]iododexetimide, predominantly reflecting M 1 receptor binding, may be an appropriate tool for imaging of the cholinergic system by means of SPECT. In this study, we used [ 123 I]iododexetimide to study the effects of a 6-hydroxydopamine lesion (an animal model of Parkinson’s disease) on the muscarinic receptor availability in the rat brain. Methods: Rats (n = 5) were injected in vivo at 10–13 days after a confirmed unilateral 6-hydroxydopamine lesion. Muscarinic receptor availability was measured bilaterally in multiple brain areas on storage phosphor images by region of interest analysis. Results: Autoradiography revealed a consistent and statistically significant lower [ 123 I]iododexetimide binding in all examined neocortical areas on the ipsilateral side of the lesion as compared to the contralateral side. In hippocampal and subcortical areas, such asymmetry was not detected. Conclusions: This study suggests that evaluation of muscarinic receptor availability in dopamine depleted brains using [ 123 I]iododexetimide is feasible. We conclude that 6-hydroxydopamine lesions induce a decrease of neocortical muscarinic receptor availability. We hypothesize that this arises from down regulation of muscarinic postsynaptic M 1 receptors due to hyperactivation of the cortical cholinergic system in response to dopamine depletion. Advances in knowledge: In rats, dopamine depletion provokes a decrease in neocortical muscarinic receptor availability, which is evaluable by [ 123 I

  17. BA321, a novel carborane analog that binds to androgen and estrogen receptors, acts as a new selective androgen receptor modulator of bone in male mice

    International Nuclear Information System (INIS)

    Watanabe, Kenta; Hirata, Michiko; Tominari, Tsukasa; Matsumoto, Chiho; Endo, Yasuyuki; Murphy, Gillian; Nagase, Hideaki

    2016-01-01

    Carboranes are a class of carbon-containing polyhedral boron cluster compounds with globular geometry and hydrophobic surface that interact with hormone receptors such as estrogen receptor (ER) and androgen receptor (AR). We have synthesized BA321, a novel carborane compound, which binds to AR. We found here that it also binds to ERs, ERα and ERβ. In orchidectomized (ORX) mice, femoral bone mass was markedly reduced due to androgen deficiency and BA321 restored bone loss in the male, whilst the decreased weight of seminal vesicle in ORX mice was not recovered by administration of BA321. In female mice, BA321 acts as a pure estrogen agonist, and restored both the loss of bone mass and uterine atrophy due to estrogen deficiency in ovariectomized (OVX) mice. In bone tissues, the trabecular bone loss occurred in both ORX and OVX mice, and BA321 completely restored the trabecular bone loss in both sexes. Cortical bone loss occurred in ORX mice but not in OVX mice, and BA321 clearly restored cortical bone loss due to androgen deficiency in ORX mice. Therefore, BA321 is a novel selective androgen receptor modulator (SARM) that may offer a new therapy option for osteoporosis in the male. - Highlights: • A novel carborane compound BA321 binds to both AR and ERs, ERα and ERβ. • BA321 restores bone loss in orchidectomized mice without effects on sex organ. • BA321 acts as an estrogen agonist in bone and uterus in ovariectomized mice. • BA321 may be a new SARM to prevent the loss of musculoskeletal mass in elder men.

  18. BA321, a novel carborane analog that binds to androgen and estrogen receptors, acts as a new selective androgen receptor modulator of bone in male mice

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kenta [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Hirata, Michiko [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Tominari, Tsukasa [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Matsumoto, Chiho [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Endo, Yasuyuki [Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, 981-8558 (Japan); Murphy, Gillian [Department of Oncology, University of Cambridge, Cancer Research UK, Cambridge Institute, Li Ka Shing Centre, Cambridge, CB2 0RE (United Kingdom); Nagase, Hideaki [Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 (Japan); Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY (United Kingdom); and others

    2016-09-09

    Carboranes are a class of carbon-containing polyhedral boron cluster compounds with globular geometry and hydrophobic surface that interact with hormone receptors such as estrogen receptor (ER) and androgen receptor (AR). We have synthesized BA321, a novel carborane compound, which binds to AR. We found here that it also binds to ERs, ERα and ERβ. In orchidectomized (ORX) mice, femoral bone mass was markedly reduced due to androgen deficiency and BA321 restored bone loss in the male, whilst the decreased weight of seminal vesicle in ORX mice was not recovered by administration of BA321. In female mice, BA321 acts as a pure estrogen agonist, and restored both the loss of bone mass and uterine atrophy due to estrogen deficiency in ovariectomized (OVX) mice. In bone tissues, the trabecular bone loss occurred in both ORX and OVX mice, and BA321 completely restored the trabecular bone loss in both sexes. Cortical bone loss occurred in ORX mice but not in OVX mice, and BA321 clearly restored cortical bone loss due to androgen deficiency in ORX mice. Therefore, BA321 is a novel selective androgen receptor modulator (SARM) that may offer a new therapy option for osteoporosis in the male. - Highlights: • A novel carborane compound BA321 binds to both AR and ERs, ERα and ERβ. • BA321 restores bone loss in orchidectomized mice without effects on sex organ. • BA321 acts as an estrogen agonist in bone and uterus in ovariectomized mice. • BA321 may be a new SARM to prevent the loss of musculoskeletal mass in elder men.

  19. Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells

    International Nuclear Information System (INIS)

    Bostanci, Zeynep; Alam, Samina; Soybel, David I.; Kelleher, Shannon L.

    2014-01-01

    Prolactin receptor (PRL-R) activation regulates cell differentiation, proliferation, cell survival and motility of breast cells. Prolactin (PRL) and PRL-R over-expression are strongly implicated in breast cancer, particularly contributing to tumor growth and invasion in the more aggressive estrogen-receptor negative (ER−) disease. PRL-R antagonists have been suggested as potential therapeutic agents; however, mechanisms through which PRL-R antagonists exert their actions are not well-understood. Zinc (Zn) is a regulatory factor for over 10% of the proteome, regulating critical cell processes such as proliferation, cell signaling, transcription, apoptosis and autophagy. PRL-R signaling regulates Zn metabolism in breast cells. Herein we determined effects of PRL-R attenuation on cellular Zn metabolism and cell function in a model of ER-, PRL-R over-expressing breast cancer cells (MDA-MB-453). PRL-R attenuation post-transcriptionally increased ZnT2 abundance and redistributed intracellular Zn pools into lysosomes and mitochondria. ZnT2-mediated lysosomal Zn sequestration was associated with reduced matrix metalloproteinase 2 (MMP-2) activity and decreased invasion. ZnT2-mediated Zn accumulation in mitochondria was associated with increased mitochondrial oxidation. Our results suggest that PRL-R antagonism in PRL-R over-expressing breast cancer cells may reduce invasion through the redistribution of intracellular Zn pools critical for cellular function. - Highlights: • PRL-R attenuation increased ZnT2 expression. • PRL-R attenuation increased lysosomal and mitochondrial Zn accumulation. • PRL-R attenuation decreased MMP-2 and invasion. • PRL-R antagonists may modulate lysosomal and mitochondrial Zn pools

  20. Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Bostanci, Zeynep, E-mail: zbostanci@hmc.psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); Alam, Samina, E-mail: sra116@psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); Soybel, David I., E-mail: dsoybel@hmc.psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); The Pennsylvania State University College of Medicine, Department of Cell and Molecular Physiology, 500 University Dr., Hershey, PA 17033 (United States); Kelleher, Shannon L., E-mail: slk39@psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); The Pennsylvania State University College of Medicine, Department of Cell and Molecular Physiology, 500 University Dr., Hershey, PA 17033 (United States)

    2014-02-15

    Prolactin receptor (PRL-R) activation regulates cell differentiation, proliferation, cell survival and motility of breast cells. Prolactin (PRL) and PRL-R over-expression are strongly implicated in breast cancer, particularly contributing to tumor growth and invasion in the more aggressive estrogen-receptor negative (ER−) disease. PRL-R antagonists have been suggested as potential therapeutic agents; however, mechanisms through which PRL-R antagonists exert their actions are not well-understood. Zinc (Zn) is a regulatory factor for over 10% of the proteome, regulating critical cell processes such as proliferation, cell signaling, transcription, apoptosis and autophagy. PRL-R signaling regulates Zn metabolism in breast cells. Herein we determined effects of PRL-R attenuation on cellular Zn metabolism and cell function in a model of ER-, PRL-R over-expressing breast cancer cells (MDA-MB-453). PRL-R attenuation post-transcriptionally increased ZnT2 abundance and redistributed intracellular Zn pools into lysosomes and mitochondria. ZnT2-mediated lysosomal Zn sequestration was associated with reduced matrix metalloproteinase 2 (MMP-2) activity and decreased invasion. ZnT2-mediated Zn accumulation in mitochondria was associated with increased mitochondrial oxidation. Our results suggest that PRL-R antagonism in PRL-R over-expressing breast cancer cells may reduce invasion through the redistribution of intracellular Zn pools critical for cellular function. - Highlights: • PRL-R attenuation increased ZnT2 expression. • PRL-R attenuation increased lysosomal and mitochondrial Zn accumulation. • PRL-R attenuation decreased MMP-2 and invasion. • PRL-R antagonists may modulate lysosomal and mitochondrial Zn pools.

  1. Gs protein peptidomimetics as allosteric modulators of the β2-adrenergic receptor

    DEFF Research Database (Denmark)

    Boyhus, Lotte Emilie; Danielsen, Mia; Bengtson, Nina Smidt

    2018-01-01

    A series of Gs protein peptidomimetics were designed and synthesised based on the published X-ray crystal structure of the active state β2-Adrenergic receptor (β2AR) in complex with the Gs protein (PDB 3SN6). We hypothesised that such peptidomimetics may function as allosteric modulators...... that target the intracellular Gs protein binding site of the β2AR. Peptidomimetics were designed to mimic the 15 residue C-Terminal α-helix of the Gs protein and were pre-organised in a helical conformation by (i, i + 4)-stapling using copper catalysed azide alkyne cycloaddition. Linear and stapled...... be able to compete with the native Gs protein for the intracellular binding site to block ISO-induced cAMP formation, but are unable to stabilise an active-like receptor conformation....

  2. Clopidogrel (Plavix®), a P2Y(12) receptor antagonist, inhibits bone cell function in vitro and decreases trabecular bone in vivo

    DEFF Research Database (Denmark)

    Syberg, Susanne; Brandao-Burch, Andrea; Patel, Jessal J

    2012-01-01

    Clopidogrel (Plavix®), a selective P2Y(12) receptor antagonist, is widely prescribed to reduce the risk of heart attack and stroke and acts via the inhibition of platelet aggregation. Accumulating evidence now suggests that extracellular nucleotides, signalling through P2 receptors, play...... a significant role in bone, modulating both osteoblast and osteoclast function. In this study, we investigated the effects of clopidogrel treatment on (1) bone cell formation, differentiation and activity in vitro; and, (2) trabecular and cortical bone parameters in vivo. P2Y(12) receptor expression...

  3. Modulation of type II TGF-β receptor degradation by integrin-linked kinase.

    Science.gov (United States)

    Vi, Linda; Boo, Stellar; Sayedyahossein, Samar; Singh, Randeep K; McLean, Sarah; Di Guglielmo, Gianni M; Dagnino, Lina

    2015-03-01

    Cutaneous responses to injury, infection, and tumor formation involve the activation of resident dermal fibroblasts and subsequent transition to myofibroblasts. The key for induction of myofibroblast differentiation is the activation of transforming growth factor-β (TGF-β) receptors and stimulation of integrins and their associated proteins, including integrin-linked kinase (ILK). Cross-talk processes between TGF-β and ILK are crucial for myofibroblast formation, as ILK-deficient dermal fibroblasts exhibit impaired responses to TGF-β receptor stimulation. We now show that ILK associates with type II TGF-β receptors (TβRII) in ligand- and receptor kinase activity-independent manners. In cells with targeted Ilk gene inactivation, cellular levels of TβRII are decreased, through mechanisms that involve enhanced ubiquitination and proteasomal degradation. Partitioning of TGF-β receptors into membrane has been linked to proteasome-dependent receptor degradation. We found that interfering with membrane raft formation in ILK-deficient cells restored TβRII levels and signaling. These observations support a model whereby ILK functions in fibroblasts to direct TβRII away from degradative pathways during their differentiation into myofibroblasts.

  4. Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.

    Science.gov (United States)

    Ahmed, Ahmed H; Oswald, Robert E

    2010-03-11

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.

  5. Synthetic anabolic agents: steroids and nonsteroidal selective androgen receptor modulators.

    Science.gov (United States)

    Thevis, Mario; Schänzer, Wilhelm

    2010-01-01

    The central role of testosterone in the development of male characteristics, as well as its beneficial effects on physical performance and muscle growth, has led to the search for synthetic alternatives with improved pharmacological profiles. Hundreds of steroidal analogs have been prepared with a superior oral bioavailability, which should also possess reduced undesirable effects. However, only a few entered the pharmaceutical market due to severe toxicological incidences that were mainly attributed to the lack of tissue selectivity. Prominent representatives of anabolic-androgenic steroids (AAS) are for instance methyltestosterone, metandienone and stanozolol, which are discussed as model compounds with regard to general pharmacological aspects of synthetic AAS. Recently, nonsteroidal alternatives to AAS have been developed that selectively activate the androgen receptor in either muscle tissue or bones. These so-called selective androgen receptor modulators (SARMs) are currently undergoing late clinical trials (IIb) and will be prohibited by the World Anti-Doping Agency from January 2008. Their entirely synthetic structures are barely related to steroids, but particular functional groups allow for the tissue-selective activation or inhibition of androgen receptors and, thus, the stimulation of muscle growth without the risk of severe undesirable effects commonly observed in steroid replacement therapies. Hence, these compounds possess a high potential for misuse in sports and will be the subject of future doping control assays.

  6. Effects of the dopamine D2 allosteric modulator, PAOPA, on the expression of GRK2, arrestin-3, ERK1/2, and on receptor internalization.

    Directory of Open Access Journals (Sweden)

    Dipannita Basu

    Full Text Available The activity of G protein-coupled receptors (GPCRs is intricately regulated by a range of intracellular proteins, including G protein-coupled kinases (GRKs and arrestins. Understanding the effects of ligands on these signaling pathways could provide insights into disease pathophysiologies and treatment. The dopamine D2 receptor is a GPCR strongly implicated in the pathophysiology of a range of neurological and neuropsychiatric disorders, particularly schizophrenia. Previous studies from our lab have shown the preclinical efficacy of a novel allosteric drug, 3(R-[(2(S-pyrrolidinylcarbonylamino]-2-oxo-1-pyrrolidineacetamide (PAOPA, in attenuating schizophrenia-like behavioural abnormalities in rodent models of the disease. As an allosteric modulator, PAOPA binds to a site on the D2 receptor, which is distinct from the endogenous ligand-binding site, in order to modulate the binding of the D2 receptor ligand, dopamine. The exact signaling pathways affected by this allosteric modulator are currently unknown. The objectives of this study were to decipher the in vivo effects, in rats, of chronic PAOPA administration on D2 receptor regulatory and downstream molecules, including GRK2, arrestin-3 and extracellular receptor kinase (ERK 1/2. Additionally, an in vitro cellular model was also used to study PAOPA's effects on D2 receptor internalization. Results from western immunoblots showed that chronic PAOPA treatment increased the striatal expression of GRK2 by 41%, arrestin-3 by 34%, phospho-ERK1 by 51% and phospho-ERK2 by 36%. Results also showed that the addition of PAOPA to agonist treatment in cells increased D2 receptor internalization by 33%. This study provides the foundational evidence of putative signaling pathways, and changes in receptor localization, affected by treatment with PAOPA. It improves our understanding on the diverse mechanisms of action of allosteric modulators, while advancing PAOPA's development into a novel drug for the

  7. Intracellular calcium levels determine differential modulation of allosteric interactions within G protein-coupled receptor heteromers.

    Science.gov (United States)

    Navarro, Gemma; Aguinaga, David; Moreno, Estefania; Hradsky, Johannes; Reddy, Pasham P; Cortés, Antoni; Mallol, Josefa; Casadó, Vicent; Mikhaylova, Marina; Kreutz, Michael R; Lluís, Carme; Canela, Enric I; McCormick, Peter J; Ferré, Sergi

    2014-11-20

    The pharmacological significance of the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer is well established and it is being considered as an important target for the treatment of Parkinson’s disease and other neuropsychiatric disorders. However, the physiological factors that control its distinctive biochemical properties are still unknown. We demonstrate that different intracellular Ca2+ levels exert a differential modulation of A2AR-D2R heteromer-mediated adenylyl-cyclase and MAPK signaling in striatal cells. This depends on the ability of low and high Ca2+ levels to promote a selective interaction of the heteromer with the neuronal Ca2+-binding proteins NCS-1 and calneuron-1, respectively. These Ca2+-binding proteins differentially modulate allosteric interactions within the A2AR-D2R heteromer, which constitutes a unique cellular device that integrates extracellular (adenosine and dopamine) and intracellular (Ca+2) signals to produce a specific functional response.

  8. Toxicological characterisation of two novel selective aryl hydrocarbon receptor modulators in Sprague-Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Mahiout, Selma, E-mail: selma.mahiout@helsinki.fi [Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki (Finland); Lindén, Jere [Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki (Finland); Esteban, Javier; Sánchez-Pérez, Ismael [Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Alicante (Spain); Sankari, Satu [Central Laboratory of the Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki (Finland); Pettersson, Lars [Immunahr AB, Lund (Sweden); Håkansson, Helen [Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm (Sweden); Pohjanvirta, Raimo [Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki (Finland)

    2017-07-01

    The aryl hydrocarbon receptor (AHR) mediates the toxicity of dioxins, but also plays important physiological roles. Selective AHR modulators, which elicit some effects imparted by this receptor without causing the marked toxicity of dioxins, are presently under intense scrutiny. Two novel such compounds are IMA-08401 (N-acetyl-N-phenyl-4-acetoxy-5-chloro-1, 2-dihydro-1-methyl-2-oxo-quinoline-3-carboxamide) and IMA-07101 (N-acetyl-N-(4-trifluoromethylphenyl)-4-acetoxy-1, 2-dihydro-5-methoxy-1-methyl-2-oxo-quinoline-3-carboxamide). They represent, as diacetyl prodrugs, AHR-active metabolites of the drug compounds laquinimod and tasquinimod, respectively, which are intended for the treatment of autoimmune diseases and cancer. Here, we toxicologically assessed the novel compounds in Sprague-Dawley rats, after a single dose (8.75–92.5 mg/kg) and 5-day repeated dosing at the highest doses achievable (IMA-08401: 100 mg/kg/day; and IMA-07101: 75 mg/kg/day). There were no overt clinical signs of toxicity, but body weight gain was marginally retarded, and the treatments induced minimal hepatic extramedullary haematopoiesis. Further, both the absolute and relative weights of the thymus were significantly decreased. Cyp1a1 gene expression was substantially increased in all tissues examined. The hepatic induction profile of other AHR battery genes was distinct from that caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The only marked alterations in serum clinical chemistry variables were a reduction in triglycerides and an increase in 3-hydroxybutyrate. Liver and kidney retinol and retinyl palmitate concentrations were affected largely in the same manner as reported for TCDD. In vitro, the novel compounds activated CYP1A1 effectively in H4IIE cells. Altogether, these novel compounds appear to act as potent activators of the AHR, but lack some major characteristic toxicities of dioxins. They therefore represent promising new selective AHR modulators. - Highlights: • IMA

  9. Decreased expression of G-protein coupled receptor kinase 2 in cold thyroid nodules.

    Science.gov (United States)

    Voigt, C; Holzapfel, H-P; Paschke, R

    2005-02-01

    G-protein coupled receptor kinases (GRKs) have been shown to regulate the homologous desensitization of different G-protein coupled receptors. We have previously demonstrated that the expression of GRK 3 and 4 is increased in hyperfunctioning thyroid nodules (HTNs) and that GRKs 2, 3, 5 and 6 are able to desensitize the TSHR in vitro. Since cold thyroid nodules (CTNs) and HTNs show different molecular and functional properties, different expression patterns of GRKs in these nodules can be expected. The comparison of GRK expression between CTNs and HTNs could give additional insight into the regulation mechanisms of these nodules. We therefore examined the expression of GRKs in CTNs and analyzed the differences to HTNs. The expression of the different GRKs in CTNs was measured by Western blot followed by chemiluminescence imaging. We found a decreased expression of GRK 2 in CTNs compared to their surrounding tissues and an increased expression of GRK 3 and 4 in CTNs, which is similar to HTNs. The decreased GRK 2 expression most likely results from reduced cAMP stimulation in CTNs. However, the increased GRK 3 and 4 expression in CTNs remains unclear and requires further investigations.

  10. Dopamine Receptor Genes Modulate Associative Memory in Old Age.

    Science.gov (United States)

    Papenberg, Goran; Becker, Nina; Ferencz, Beata; Naveh-Benjamin, Moshe; Laukka, Erika J; Bäckman, Lars; Brehmer, Yvonne

    2017-02-01

    Previous research shows that associative memory declines more than item memory in aging. Although the underlying mechanisms of this selective impairment remain poorly understood, animal and human data suggest that dopaminergic modulation may be particularly relevant for associative binding. We investigated the influence of dopamine (DA) receptor genes on item and associative memory in a population-based sample of older adults (n = 525, aged 60 years), assessed with a face-scene item associative memory task. The effects of single-nucleotide polymorphisms of DA D1 (DRD1; rs4532), D2 (DRD2/ANKK1/Taq1A; rs1800497), and D3 (DRD3/Ser9Gly; rs6280) receptor genes were examined and combined into a single genetic score. Individuals carrying more beneficial alleles, presumably associated with higher DA receptor efficacy (DRD1 C allele; DRD2 A2 allele; DRD3 T allele), performed better on associative memory than persons with less beneficial genotypes. There were no effects of these genes on item memory or other cognitive measures, such as working memory, executive functioning, fluency, and perceptual speed, indicating a selective association between DA genes and associative memory. By contrast, genetic risk for Alzheimer disease (AD) was associated with worse item and associative memory, indicating adverse effects of APOE ε4 and a genetic risk score for AD (PICALM, BIN1, CLU) on episodic memory in general. Taken together, our results suggest that DA may be particularly important for associative memory, whereas AD-related genetic variations may influence overall episodic memory in older adults without dementia.

  11. Curcumin modulates dopaminergic receptor, CREB and phospholipase c gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats

    Directory of Open Access Journals (Sweden)

    George Naijil

    2010-05-01

    Full Text Available Abstract Curcumin, an active principle component in rhizome of Curcuma longa, has proved its merit for diabetes through its anti-oxidative and anti-inflammatory properties. This study aims at evaluating the effect of curcumin in modulating the altered dopaminergic receptors, CREB and phospholipase C in the cerebral cortex and cerebellum of STZ induced diabetic rats. Radioreceptor binding assays and gene expression was done in the cerebral cortex and cerebellum of male Wistar rats using specific ligands and probes. Total dopaminergic receptor binding parameter, Bmax showed an increase in cerebral cortex and decrease in the cerebellum of diabetic rats. Gene expression studies using real time PCR showed an increased expression of dopamine D1 and D2 receptor in the cerebral cortex of diabetic rats. In cerebellum dopamine D1 receptor was down regulated and D2 receptor showed an up regulation. Transcription factor CREB and phospholipase C showed a significant down regulation in cerebral cortex and cerebellum of diabetic rats. We report that curcumin supplementation reduces diabetes induced alteration of dopamine D1, D2 receptors, transcription factor CREB and phospholipase C to near control. Our results indicate that curcumin has a potential to regulate diabetes induced malfunctions of dopaminergic signalling, CREB and Phospholipase C expression in cerebral cortex and cerebellum and thereby improving the cognitive and emotional functions associated with these regions. Furthermore, in line with these studies an interaction between curcumin and dopaminergic receptors, CREB and phospholipase C is suggested, which attenuates the cortical and cerebellar dysfunction in diabetes. These results suggest that curcumin holds promise as an agent to prevent or treat CNS complications in diabetes.

  12. Curcumin modulates dopaminergic receptor, CREB and phospholipase C gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats.

    Science.gov (United States)

    Kumar, T Peeyush; Antony, Sherin; Gireesh, G; George, Naijil; Paulose, C S

    2010-05-31

    Curcumin, an active principle component in rhizome of Curcuma longa, has proved its merit for diabetes through its anti-oxidative and anti-inflammatory properties. This study aims at evaluating the effect of curcumin in modulating the altered dopaminergic receptors, CREB and phospholipase C in the cerebral cortex and cerebellum of STZ induced diabetic rats. Radioreceptor binding assays and gene expression was done in the cerebral cortex and cerebellum of male Wistar rats using specific ligands and probes. Total dopaminergic receptor binding parameter, B(max) showed an increase in cerebral cortex and decrease in the cerebellum of diabetic rats. Gene expression studies using real time PCR showed an increased expression of dopamine D1 and D2 receptor in the cerebral cortex of diabetic rats. In cerebellum dopamine D1 receptor was down regulated and D2 receptor showed an up regulation. Transcription factor CREB and phospholipase C showed a significant down regulation in cerebral cortex and cerebellum of diabetic rats. We report that curcumin supplementation reduces diabetes induced alteration of dopamine D1, D2 receptors, transcription factor CREB and phospholipase C to near control. Our results indicate that curcumin has a potential to regulate diabetes induced malfunctions of dopaminergic signalling, CREB and Phospholipase C expression in cerebral cortex and cerebellum and thereby improving the cognitive and emotional functions associated with these regions. Furthermore, in line with these studies an interaction between curcumin and dopaminergic receptors, CREB and phospholipase C is suggested, which attenuates the cortical and cerebellar dysfunction in diabetes. These results suggest that curcumin holds promise as an agent to prevent or treat CNS complications in diabetes.

  13. Modulation of voltage-gated Ca2+ channels by G protein-coupled receptors in celiac-mesenteric ganglion neurons of septic rats.

    Directory of Open Access Journals (Sweden)

    Mohamed Farrag

    Full Text Available Septic shock, the most severe complication associated with sepsis, is manifested by tissue hypoperfusion due, in part, to cardiovascular and autonomic dysfunction. In many cases, the splanchnic circulation becomes vasoplegic. The celiac-superior mesenteric ganglion (CSMG sympathetic neurons provide the main autonomic input to these vessels. We used the cecal ligation puncture (CLP model, which closely mimics the hemodynamic and metabolic disturbances observed in septic patients, to examine the properties and modulation of Ca2+ channels by G protein-coupled receptors in acutely dissociated rat CSMG neurons. Voltage-clamp studies 48 hr post-sepsis revealed that the Ca2+ current density in CMSG neurons from septic rats was significantly lower than those isolated from sham control rats. This reduction coincided with a significant increase in membrane surface area and a negligible increase in Ca2+ current amplitude. Possible explanations for these findings include either cell swelling or neurite outgrowth enhancement of CSMG neurons from septic rats. Additionally, a significant rightward shift of the concentration-response relationship for the norepinephrine (NE-mediated Ca2+ current inhibition was observed in CSMG neurons from septic rats. Testing for the presence of opioid receptor subtypes in CSMG neurons, showed that mu opioid receptors were present in ~70% of CSMG, while NOP opioid receptors were found in all CSMG neurons tested. The pharmacological profile for both opioid receptor subtypes was not significantly affected by sepsis. Further, the Ca2+ current modulation by propionate, an agonist for the free fatty acid receptors GPR41 and GPR43, was not altered by sepsis. Overall, our findings suggest that CSMG function is affected by sepsis via changes in cell size and α2-adrenergic receptor-mediated Ca2+ channel modulation.

  14. Stress-induced changes of hippocampal NMDA receptors: modulation by duloxetine treatment.

    Directory of Open Access Journals (Sweden)

    Francesca Calabrese

    Full Text Available It is now well established that the glutamatergic system contributes to the pathophysiology of depression. Exposure to stress, a major precipitating factor for depression, enhances glutamate release that can contribute to structural abnormalities observed in the brain of depressed subjects. On the other hand, it has been demonstrated that NMDA antagonists, like ketamine, exert an antidepressant effect at preclinical and clinical levels. On these bases, the purpose of our study was to investigate whether chronic mild stress is associated with specific alterations of the NMDA receptor complex, in adult rats, and to establish whether concomitant antidepressant treatment could normalize such deficits. We found that chronic stress increases the expression of the obligatory GluN1 subunit, as well as of the accessory subunits GluN2A and GluN2B at transcriptional and translational levels, particularly in the ventral hippocampus. Concomitant treatment with the antidepressant duloxetine was able to normalize the increase of glutamatergic receptor subunit expression, and correct the changes in receptor phosphorylation produced by stress exposure. Our data suggest that prolonged stress, a condition that has etiologic relevance for depression, may enhance glutamate activity through post-synaptic mechanisms, by regulating NMDA receptors, and that antidepressants may in part normalize such changes. Our results provide support to the notion that antidepressants may exert their activity in the long-term also via modulation of the glutamatergic synapse.

  15. Endogenous opioid peptide-mediated neurotransmission in central and pericentral nuclei of the inferior colliculus recruits μ1-opioid receptor to modulate post-ictal antinociception.

    Science.gov (United States)

    Felippotti, Tatiana Tocchini; de Freitas, Renato Leonardo; Coimbra, Norberto Cysne

    2012-02-01

    The aim of the present work was to investigate the involvement of the μ1-endogenous opioid peptide receptor-mediated system in post-ictal antinociception. Antinociceptive responses were determined by the tail-flick test after pre-treatment with the selective μ1-opioid receptor antagonist naloxonazine, peripherally or centrally administered at different doses. Peripheral subchronic (24 h) pre-treatment with naloxonazine antagonised the antinociception elicited by tonic-clonic seizures. Acute (10 min) pre-treatment, however, did not have the same effect. In addition, microinjections of naloxonazine into the central, dorsal cortical and external cortical nuclei of the inferior colliculus antagonised tonic-clonic seizure-induced antinociception. Neither acute (10-min) peripheral pre-treatment with naloxonazine nor subchronic intramesencephalic blockade of μ1-opioid receptors resulted in consistent statistically significant differences in the severity of tonic-clonic seizures shown by Racine's index (1972), although the intracollicular specific antagonism of μ1-opioid receptor decreased the duration of seizures. μ1-Opioid receptors and the inferior colliculus have been implicated in several endogenous opioid peptide-mediated responses such as antinociception and convulsion. The present findings suggest the involvement of μ1-opiate receptors of central and pericentral nuclei of the inferior colliculus in the modulation of tonic-clonic seizures and in the organisation of post-ictal antinociception. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Opioid receptor subtypes mediating the noise-induced decreases in high-affinity choline uptake in the rat brain.

    Science.gov (United States)

    Lai, H; Carino, M A

    1992-07-01

    Acute (20 min) exposure to 100-dB white noise elicits a naltrexone-sensitive decrease in sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. In the present study, the subtypes of opioid receptors involved were investigated by pretreating rats with microinjection of specific opioid-receptor antagonists into the lateral cerebroventricle before noise exposure. We found that the noise-induced decrease in high-affinity choline uptake in the hippocampus was blocked by pretreatment with either mu-, delta-, or kappa-opioid-receptor antagonists, whereas the effect of noise on frontal cortical high-affinity choline uptake was blocked by a mu- and delta- but not by a kappa-antagonist. These data further confirm the role of endogenous opioids in mediating the effects of noise on central cholinergic activity and indicate that different neural mechanisms are involved in the effects of noise on the frontal cortical and hippocampal cholinergic systems.

  17. alpha-Adrenoceptor and opioid receptor modulation of clonidine-induced antinociception.

    Science.gov (United States)

    Sierralta, F; Naquira, D; Pinardi, G; Miranda, H F

    1996-10-01

    1. The antinociceptive action of clonidine (Clon) and the interactions with alpha 1, alpha 2 adrenoceptor and opioid receptor antagonists was evaluated in mice by use of chemical algesiometric test (acetic acid writhing test). 2. Clon produced a dose-dependent antinociceptive action and the ED50 for intracerebroventricular (i.c.v.) was lower than for intraperitoneal (i.p.) administration (1 ng kg-1 vs 300 ng kg-1). The parallelism of the dose-response curves indicates activation of a common receptor subtype. 3. Systemic administration of prazosin and terazosin displayed antinociceptive activity. Pretreatment with prazosin produced a dual action: i.c.v. Clon effect did not change, and i.p. Clon effect was enhanced. Yohimbine i.c.v. or i.p. did not induce antinonciception, but antagonized Clon-induced activity. These results suggest that alpha 1- and alpha 2-adrenoceptors, either located at the pre- and/or post-synaptic level, are involved in the control of spinal antinociception. 4. Naloxone (NX) and naltrexone (NTX) induced antinociceptive effects at low doses (microgram kg-1 range) and a lower antinociceptive effect at higher doses (mg kg-1 range). Low doses of NX or NTX antagonized Clon antinociception, possibly in relation to a preferential mu opioid receptor antagonism. In contrast, high doses of NX or NTX increased the antinociceptive activity of Clon, which could be due to an enhanced inhibition of the release of substance P. 5. The results obtained in the present work suggest the involvement of alpha 1-, alpha 2-adrenoceptor and opioid receptors in the modulation of the antinociceptive activity of clonidine, which seems to be exerted either at spinal and/or supraspinal level.

  18. Sexual behavior modulates contextual fear memory through dopamine D1/D5 receptors.

    Science.gov (United States)

    Bai, Hua-Yi; Cao, Jun; Liu, Na; Xu, Lin; Luo, Jian-Hong

    2009-03-01

    Traumatic events always lead to aversive emotional memory, i.e., fear memory. In contrast, positive events in daily life such as sex experiences seem to reduce aversive memory after aversive events. Thus, we hypothesized that post-traumatic pleasurable experiences, especially instinctive behaviors such as sex, might modulate traumatic memory through a memory competition mechanism. Here, we first report that male rats persistently expressed much lower fear responses when exposed to females, but not when exposed to males, for 24 h immediately after contextual fear conditioning. Remarkably, this effect of sexual behavior was blocked by either systemic or intrahippocampal injection of the dopamine D1/D5 receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390) and was mimicked by systemic but not intrahippocampal injection of the D1/D5 receptor agonist R(+)-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol hydrochloride (SKF39393). Furthermore, as a candidate mechanism underlying contextual fear memory, the impaired induction of hippocampal long-term potentiation (LTP) elicited by conditioned fear was rescued in male rats immediately exposed to female but not male rats for 24 h. Systemic injection of the dopamine D1/D5 receptor antagonist SCH23390 or agonist SKF38393 prevented or mimicked the effect of sexual behavior on the impaired induction of hippocampal LTP. Thus, our finding suggests that dopaminergic functions may, at least partially, govern competition between contextual fear and enjoyable memories through the modulation of hippocampal LTP.

  19. Decreased frontal serotonin 5-HT2a receptor binding index in deliberate self-harm patients

    International Nuclear Information System (INIS)

    Audenaert, K.; Laere, K. van; Dierckx, R.A.; Dumont, F.; Slegers, G.; Mertens, J.; Heeringen, C. van

    2001-01-01

    Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT 2a receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT 2a receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl] -5-iodo-2-methox ybenzamide or 123 I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq 123 I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT 2a binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P 2a serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT 2a receptor, indicating a decrease in the number and/or in the binding affinity of 5-HT 2a receptors. (orig.)

  20. Structural changes at the myrtenol backbone reverse its positive allosteric potential into inhibitory GABAA receptor modulation

    DEFF Research Database (Denmark)

    Milanos, Sinem; Kuenzel, Katharina; Gilbert, Daniel F

    2017-01-01

    monoterpenes, e.g. myrtenol as positive allosteric modulator at α1β2 GABAA receptors. Here, along with pharmacophore-based virtual screening studies, we demonstrate that scaffold modifications of myrtenol resulted in loss of modulatory activity. Two independent approaches, fluorescence-based compound analysis...

  1. Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling

    Directory of Open Access Journals (Sweden)

    Song eQin

    2014-04-01

    Full Text Available Neural stem cells (NSCs are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche. Here, we show that TLX modulates BMP-SMAD signaling to control the timing of postnatal astrogenesis. Genes involved in the BMP signaling pathway, such as Bmp4, Hes1, and Id3, are upregulated in postnatal brains lacking Tlx. Chromatin immunoprecipitation and electrophoretic mobility shift assays reveal that TLX can directly bind the enhancer region of Bmp4. In accordance with elevated BMP signaling, the downstream effectors SMAD1/5/8 are activated by phosphorylation in Tlx mutant mice. Consequently, Tlx mutant brains exhibit an early appearance and increased number of astrocytes with marker expression of glial fibrillary acidic protein (GFAP and S100B. Taken together, these results suggest that TLX tightly controls postnatal astrogenesis through the modulation of BMP-SMAD signaling pathway activity.

  2. Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling.

    Science.gov (United States)

    Qin, Song; Niu, Wenze; Iqbal, Nida; Smith, Derek K; Zhang, Chun-Li

    2014-01-01

    Neural stem cells (NSCs) are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche. Here, we show that TLX modulates bone morphogenetic protein (BMP)-SMAD signaling to control the timing of postnatal astrogenesis. Genes involved in the BMP signaling pathway, such as Bmp4, Hes1, and Id3, are upregulated in postnatal brains lacking Tlx. Chromatin immunoprecipitation and electrophoretic mobility shift assays reveal that TLX can directly bind the enhancer region of Bmp4. In accordance with elevated BMP signaling, the downstream effectors SMAD1/5/8 are activated by phosphorylation in Tlx mutant mice. Consequently, Tlx mutant brains exhibit an early appearance and increased number of astrocytes with marker expression of glial fibrillary acidic protein (GFAP) and S100B. Taken together, these results suggest that TLX tightly controls postnatal astrogenesis through the modulation of BMP-SMAD signaling pathway activity.

  3. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiyuan, E-mail: zhiyuan_nju@163.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Yu, Yijun, E-mail: yjun.yu@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Tang, Song [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Liu, Hongling, E-mail: hlliu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Su, Guanyong; Xie, Yuwei [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Giesy, John P. [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Hecker, Markus [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Yu, Hongxia [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China)

    2015-12-15

    Highlights: • Effects of TBOEP on expression of genes of several nuclear hormone receptors and their relationship with adverse effect pathways in zebrafish. • TBOEP was neither an agonist nor antagonist of AR or AhR as determined by use of in vitro mammalian cell-based receptor transactivation assays. • Modulation of ER- and MR-dependent pathways allowed for development of feasible receptor-mediated, critical mechanisms of toxic action. - Abstract: As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5 μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane × receptor (P × R)) pathways at 120 hpf. Exposure to 0.5 μM TBOEP significantly (p < 0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were

  4. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas.

    Science.gov (United States)

    Ma, Huihui; Wang, Zhen; Hu, Lei; Zhang, Shangrong; Zhao, Chenggang; Yang, Haoran; Wang, Hongzhi; Fang, Zhiyou; Wu, Lijun; Chen, Xueran

    2018-02-19

    More than 40% of glioma patients have tumors that harbor PTEN (phosphatase and tensin homologue deleted on chromosome ten) mutations; this disease is associated with poor therapeutic resistance and outcome. Such mutations are linked to increased cell survival and growth, decreased apoptosis, and drug resistance; thus, new therapeutic strategies focusing on inhibiting glioma tumorigenesis and progression are urgently needed. Melatonin, an indolamine produced and secreted predominantly by the pineal gland, mediates a variety of physiological functions and possesses antioxidant and antitumor properties. Here, we analyzed the relationship between PTEN and the inhibitory effect of melatonin in primary human glioma cells and cultured glioma cell lines. The results showed that melatonin can inhibit glioma cell growth both in culture and in vivo. This inhibition was associated with PTEN levels, which significantly correlated with the expression level of MT1 in patients. In fact, c-fos-mediated MT1 was shown to be a key modulator of the effect of melatonin on gliomas that harbor wild type PTEN. Taken together, these data suggest that melatonin-MT1 receptor complexes represent a potential target for the treatment of glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Rikkunshito, a Japanese Kampo Medicine, Ameliorates Decreased Feeding Behavior via Ghrelin and Serotonin 2B Receptor Signaling in a Novelty Stress Murine Model

    Directory of Open Access Journals (Sweden)

    Chihiro Yamada

    2013-01-01

    Full Text Available We investigated the effects of rikkunshito (RKT, a ghrelin signal enhancer, on the decrease in food intake after exposure to novelty stress in mice. RKT administration (500 mg/kg, per os improved the decrease in 6 h cumulative food intake. In control mice, the plasma acylated ghrelin levels significantly increased by 24 h fasting. In contrast, the acylated ghrelin levels did not increase by fasting in mice exposed to the novelty stress. RKT administration to the novelty stress mice showed a significant increase in the acylated ghrelin levels compared with that in the distilled-water-treated control mice. Food intake after administering serotonin 2B (5-HT2B receptor antagonists was evaluated to clarify the role of 5-HT2B receptor activation in the decrease in feeding behavior after novelty stress. SB215505 and SB204741, 5-HT2B receptor antagonists, significantly improved the decrease in food intake after exposure to novelty stress. A component of RKT, isoliquiritigenin, prevented the decrease in 6 h cumulative food intake. Isoliquiritigenin showed 5-HT2B receptor antagonistic activity in vitro. In conclusion, the results suggested that RKT improves the decrease in food intake after novelty stress probably via 5-HT2B receptor antagonism of isoliquiritigenin contained in RKT.

  6. Pathways Involving Beta-3 Adrenergic Receptors Modulate Cold Stress-Induced Detrusor Overactivity in Conscious Rats.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Nishizawa, Osamu

    2015-01-01

    To investigate pathways involving beta-3 adrenergic receptors (ARs) in detrusor overactivity induced by cold stress, we determined if the beta-3 AR agonist CL316243 could modulate the cold stress-induced detrusor overactivity in normal rats. Two days prior to cystometric investigations, the bladders of 10-week-old female Sprague-Dawley rats were cannulated. Cystometric measurements of the unanesthetized, unrestricted rats were taken to estimate baseline values at room temperature (RT, 27 ± 2 °C) for 20 min. They were then intravenously administered vehicle, 0.1, or 1.0 mg/kg CL316243 (n = 6 in each group). Five minutes after the treatments, they were gently and quickly transferred to the low temperature (LT, 4 ± 2 °C) room for 40 min where the cystometric measurements were again made. Afterward, the rats were returned to RT for final cystometric measurements. The cystometric effects of CL316243 were also measured at RT (n = 6 in each group). At RT, both low and high dose of CL316243 decreased basal and micturition pressure while the high dose (1.0 mg/kg) significantly increased voiding interval and bladder capacity. During LT exposure, the high dose of CL316243 partially reduced cold stress-induced detrusor overactivity characterized by increased basal pressure and urinary frequency. The high drug dose also significantly inhibited the decreases of both voiding interval and bladder capacity compared to the vehicle- and low dose (0.1 mg/kg)-treated rats. A high dose of the beta-3 agonist CL316243 could modulate cold stress-induced detrusor overactivity. Therefore, one of the mechanisms in cold stress-induced detrusor overactivity includes a pathway involving beta-3 ARs. © 2014 Wiley Publishing Asia Pty Ltd.

  7. CURCUMIN DECREASES SPECIFICITY PROTEIN (Sp) EXPRESSION IN BLADDER CANCER CELLS

    OpenAIRE

    Chadalapaka, Gayathri; Jutooru, Indira; Chintharlapalli, Sudhakar; Papineni, Sabitha; Smith, Roger; Li, Xiangrong; Safe, Stephen

    2008-01-01

    Curcumin is the active component of tumeric, and this polyphenolic compound has been extensively investigated as an anticancer drug that modulates multiple pathways and genes. In this study, 10 – 25 µM curcumin inhibited 253JB-V and KU7 bladder cancer cell growth, and this was accompanied by induction of apoptosis and decreased expression of the proapoptotic protein survivin and the angiogenic proteins vascular endothelial growth factor (VEGF) and VEGF receptor 1 (VEGFR1). Since expression of...

  8. Three-Step Test System for the Identification of Novel GABAA Receptor Modulating Food Plants.

    Science.gov (United States)

    Sahin, Sümeyye; Eulenburg, Volker; Kreis, Wolfgang; Villmann, Carmen; Pischetsrieder, Monika

    2016-12-01

    Potentiation of γ-amino butyric acid (GABA)-induced GABA A receptor (GABA A R) activation is a common pathway to achieve sedative, sleep-enhancing, anxiolytic, and antidepressant effects. Presently, a three-component test system was established for the identification of novel GABA A R modulating food plants. In the first step, potentiation of GABA-induced response of the GABA A R was analysed by two-electrode voltage clamp (TEVC) for activity on human α1β2-GABA A R expressed in Xenopus laevis oocytes. Positively tested food plants were then subjected to quantification of GABA content by high-performance liquid chromatography with fluorescence detection (HPLC-FLD) to exclude test foods, which evoke a TEVC-response by endogenous GABA. In the third step, specificity of GABA A -modulating activity was assessed by TEVC analysis of Xenopus laevis oocytes expressing the homologous glycine receptor (GlyR). The three-component test was then applied to screen 10 aqueous extracts of food plants for their GABA A R activity. Thus, hop cones (Humulus lupulus) and Sideritis sipylea were identified as the most potent specific GABA A R modulators eliciting significant potentiation of the current by 182 ± 27 and 172 ± 19 %, respectively, at the lowest concentration of 0.5 μg/mL. The extracts can now be further evaluated by in vivo studies and by structural evaluation of the active components.

  9. Negative allosteric modulation of the mGlu7 receptor reduces visceral hypersensitivity in a stress-sensitive rat strain

    Directory of Open Access Journals (Sweden)

    Rachel D. Moloney

    2015-01-01

    Full Text Available Glutamate, the main excitatory neurotransmitter in the central nervous system, exerts its effect through ionotropic and metabotropic receptors. Of these, group III mGlu receptors (mGlu 4, 6, 7, 8 are among the least studied due to a lack of pharmacological tools. mGlu7 receptors, the most highly conserved isoform, are abundantly distributed in the brain, especially in regions, such as the amygdala, known to be crucial for the emotional processing of painful stimuli. Visceral hypersensitivity is a poorly understood phenomenon manifesting as an increased sensitivity to visceral stimuli. Glutamate has long been associated with somatic pain processing leading us to postulate that crossover may exist between these two modalities. Moreover, stress has been shown to exacerbate visceral pain. ADX71743 is a novel, centrally penetrant, negative allosteric modulator of mGlu7 receptors. Thus, we used this tool to explore the possible involvement of this receptor in the mediation of visceral pain in a stress-sensitive model of visceral hypersensitivity, namely the Wistar Kyoto (WKY rat. ADX71743 reduced visceral hypersensitivity in the WKY rat as exhibited by increased visceral sensitivity threshold with concomitant reductions in total number of pain behaviours. Moreover, AD71743 increased total distance and distance travelled in the inner zone of the open field. These findings show, for what is to our knowledge, the first time, that mGlu7 receptor signalling plays a role in visceral pain processing. Thus, negative modulation of the mGlu7 receptor may be a plausible target for the amelioration of stress-induced visceral pain where there is a large unmet medical need.

  10. Modulation of BCR Signaling by the Induced Dimerization of Receptor-Associated SYK

    Directory of Open Access Journals (Sweden)

    Mark L. Westbroek

    2017-12-01

    Full Text Available Clustering of the B cell antigen receptor (BCR by polyvalent antigens is transmitted through the SYK tyrosine kinase to the activation of multiple intracellular pathways that determine the physiological consequences of receptor engagement. To explore factors that modulate the quantity and quality of signals sent by the crosslinked BCR, we developed a novel chemical mediator of dimerization to induce clustering of receptor-associated SYK. To accomplish this, we fused SYK with E. coli dihydrofolate reductase (eDHFR, which binds the small molecule trimethoprim (TMP with high affinity and selectivity and synthesized a dimer of TMP with a flexible linker. The TMP dimer is able to induce the aggregation of eDHFR-linked SYK in live cells. The induced dimerization of SYK bound to the BCR differentially regulates the activation of downstream transcription factors, promoting the activation of Nuclear Factor of Activated T cells (NFAT without affecting the activation of NFκB. The dimerization of SYK enhances the duration but not the amplitude of calcium mobilization by enhancing the extent and duration of its interaction with the crosslinked BCR at the plasma membrane.

  11. Mass spectrometry of selective androgen receptor modulators.

    Science.gov (United States)

    Thevis, Mario; Schänzer, Wilhelm

    2008-07-01

    Nonsteroidal selective androgen receptor modulators (SARMs) are an emerging class of drugs for treatment of various diseases including osteoporosis and muscle wasting as well as the correction of age-related functional decline such as muscle strength and power. Several SARMs, which have advanced to preclinical and clinical trials, are composed of diverse chemical structures including arylpropionamide-, bicyclic hydantoin-, quinoline-, and tetrahydroquinoline-derived nuclei. Since January 2008, SARMs have been categorized as anabolic agents and prohibited by the World Anti-Doping Agency (WADA). Suitable detection methods for these low-molecular weight drugs were based on mass spectrometric approaches, which necessitated the elucidation of dissociation pathways in order to characterize and identify the target analytes in doping control samples as well as potential metabolic products and synthetic analogs. Fragmentation patterns of representatives of each category of SARMs after electrospray ionization (ESI) and collision-induced dissociation (CID) as well as electron ionization (EI) are summarized. The complexity and structural heterogeneity of these drugs is a daunting challenge for detection methods. Copyright 2008 John Wiley & Sons, Ltd.

  12. Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity

    DEFF Research Database (Denmark)

    Holst, P J; Rosenkilde, M M; Manfra, D

    2001-01-01

    sarcoma (KS). Here we demonstrate that several lines of mice carrying mutated receptors deficient in either constitutive activity or chemokine regulation fail to develop KS-like disease. In addition, animals expressing a receptor that preserves chemokine binding and constitutive activity but that does...... not respond to agonist stimulation have a much lower incidence of angiogenic lesions and tumors. These results indicate that induction of the KS-like disease in transgenic mice by ORF74 requires not only high constitutive signaling activity but also modulation of this activity by endogenous chemokines....

  13. Muscarinic receptors modulate dendrodendritic inhibitory synapses to sculpt glomerular output.

    Science.gov (United States)

    Liu, Shaolin; Shao, Zuoyi; Puche, Adam; Wachowiak, Matt; Rothermel, Markus; Shipley, Michael T

    2015-04-08

    Cholinergic [acetylcholine (ACh)] axons from the basal forebrain innervate olfactory bulb glomeruli, the initial site of synaptic integration in the olfactory system. Both nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs) are expressed in glomeruli. The activation of nAChRs directly excites both mitral/tufted cells (MTCs) and external tufted cells (ETCs), the two major excitatory neurons that transmit glomerular output. The functional roles of mAChRs in glomerular circuits are unknown. We show that the restricted glomerular application of ACh causes rapid, brief nAChR-mediated excitation of both MTCs and ETCs in the mouse olfactory bulb. This excitation is followed by mAChR-mediated inhibition, which is blocked by GABAA receptor antagonists, indicating the engagement of periglomerular cells (PGCs) and/or short axon cells (SACs), the two major glomerular inhibitory neurons. Indeed, selective activation of glomerular mAChRs, with ionotropic GluRs and nAChRs blocked, increased IPSCs in MTCs and ETCs, indicating that mAChRs recruit glomerular inhibitory circuits. Selective activation of glomerular mAChRs in the presence of tetrodotoxin increased IPSCs in all glomerular neurons, indicating action potential-independent enhancement of GABA release from PGC and/or SAC dendrodendritic synapses. mAChR-mediated enhancement of GABA release also presynaptically suppressed the first synapse of the olfactory system via GABAB receptors on sensory terminals. Together, these results indicate that cholinergic modulation of glomerular circuits is biphasic, involving an initial excitation of MTC/ETCs mediated by nAChRs followed by inhibition mediated directly by mAChRs on PGCs/SACs. This may phasically enhance the sensitivity of glomerular outputs to odorants, an action that is consistent with recent in vivo findings. Copyright © 2015 the authors 0270-6474/15/355680-13$15.00/0.

  14. Selective estrogen receptor modulators (SERMs): Mechanisms of anticarcinogenesis and drug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Joan S. [Fox Chase Cancer Center, Alfred G. Knudson Chair of Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111 (United States); Jordan, V. Craig [Fox Chase Cancer Center, Alfred G. Knudson Chair of Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111 (United States)]. E-mail: v.craig.jordan@fccc.edu

    2005-12-11

    Despite the beneficial effects of estrogens in women's health, there is a plethora of evidence that suggest an important role for these hormones, particularly 17{beta}-estradiol (E{sub 2}), in the development and progression of breast cancer. Most estrogenic responses are mediated by estrogen receptors (ERs), either ER{alpha} or ER{beta}, which are members of the nuclear receptor superfamily of ligand-dependent transcription factors. Selective estrogen receptor modulators (SERMs) are ER ligands that in some tissues (i.e. bone and cardiovascular system) act like estrogens but block estrogen action in others. Tamoxifen is the first SERM that has been successfully tested for the prevention of breast cancer in high-risk women and is currently approved for the endocrine treatment of all stages of ER-positive breast cancer. Raloxifene, a newer SERM originally developed for osteoporosis, also appears to have preventive effect on breast cancer incidence. Numerous studies have examined the molecular mechanisms for the tissue selective action of SERMs, and collectively they indicate that different ER ligands induce distinct conformational changes in the receptor that influence its ability to interact with coregulatory proteins (i.e. coactivators and corepressors) critical for the regulation of target gene transcription. The relative expression of coactivators and corepressors, and the nature of the ER and its target gene promoter also affect SERM biocharacter. This review summarizes the therapeutic application of SERMs in medicine; particularly breast cancer, and highlights the emerging understanding of the mechanism of action of SERMs in select target tissues, and the inevitable development of resistance.

  15. [The molecular mechanisms and morphological manifestations of leiomyoma reduction induced by selective progesterone receptor modulators].

    Science.gov (United States)

    Demura, T A; Revazova, Z V; Kogan, E A; Adamyan, L V

    to investigate the molecular mechanisms and morphological substrate of reduced uterine leiomyoma in patients receiving the selective progesterone receptor modulator (SPRM) ulipristal acetate for 3 months, by estimating the immunohistochemical expression of the markers steroid receptor coactivator 1 (SRC-1), nuclear receptor corepressor 1 (NCoR-1), ER, PgR, Ki-67, p16, TGF-β, and VEGF in tumor tissue. The investigation enrolled 75 women with uterine leiomyoma, menorrhagias, and anemia. Group 1 included 40 patients who were treated with ulipristal for 3 months, followed by laparoscopic myomectomy. Group 2 consisted of 35 patients who underwent surgery without previous preparation. The intra- and postoperative parameters and molecular and morphological changes in the myomatous nodules were comparatively analyzed in both groups. After 3 months of therapy initiation, menorrhagia completely ceased, myomatous nodules decreased in size (pleiomyoma reduction was leiomyocyte apoptosis and dystrophy, tumor stroma sclerosis and hyalinosis with diminished Ki-67 expression and elevated p16 in the smooth muscle cells, trophic nodular tissue disorders exhibited by vascular wall sclerosis and lower VEGF and TGF-β expression, and leiomyocyte hormonal reception dysregulation that made itself evident through the reduced expression of SRC-1 with the unchanged expression of PR and ER and the maintained level of NCoR-1. The molecular mechanisms of tumor reduction involved the reduced Ki-67 expression and elevated p16, lower VEGF and TGF-β, diminished SRC-1 expression with the maintained level of PR, ER, and NCoR-1. Overall, this is suggestive of enhanced apoptosis and reduced leiomyoma proliferation and angiogenesis induced by SPRM and indicative of the expediency of using ulipristal acetate as a preoperative agent for organ-sparing surgery in reproductive-aged patients with uterine myoma, menorrhagias, and anemia.

  16. Virtual Screening Approaches towards the Discovery of Toll-Like Receptor Modulators

    Directory of Open Access Journals (Sweden)

    Lucía Pérez-Regidor

    2016-09-01

    Full Text Available This review aims to summarize the latest efforts performed in the search for novel chemical entities such as Toll-like receptor (TLR modulators by means of virtual screening techniques. This is an emergent research field with only very recent (and successful contributions. Identification of drug-like molecules with potential therapeutic applications for the treatment of a variety of TLR-regulated diseases has attracted considerable interest due to the clinical potential. Additionally, the virtual screening databases and computational tools employed have been overviewed in a descriptive way, widening the scope for researchers interested in the field.

  17. GABA-A Receptor Modulation and Anticonvulsant, Anxiolytic, and Antidepressant Activities of Constituents from Artemisia indica Linn

    Directory of Open Access Journals (Sweden)

    Imran Khan

    2016-01-01

    Full Text Available Artemisia indica, also known as “Mugwort,” has been widely used in traditional medicines. However, few studies have investigated the effects of nonvolatile components of Artemisia indica on central nervous system’s function. Fractionation of Artemisia indica led to the isolation of carnosol, ursolic acid, and oleanolic acid which were evaluated for their effects on GABA-A receptors in electrophysiological studies in Xenopus oocytes and were subsequently investigated in mouse models of acute toxicity, convulsions (pentylenetetrazole induced seizures, depression (tail suspension and forced swim tests, and anxiety (elevated plus maze and light/dark box paradigms. Carnosol, ursolic acid, and oleanolic acid were found to be positive modulators of α1β2γ2L GABA-A receptors and the modulation was antagonized by flumazenil. Carnosol, ursolic acid, and oleanolic acid were found to be devoid of any signs of acute toxicity (50–200 mg/kg but elicited anticonvulsant, antidepressant, and anxiolytic activities. Thus carnosol, ursolic acid, and oleanolic acid demonstrated CNS activity in mouse models of anticonvulsant, antidepressant, and anxiolysis. The anxiolytic activity of all three compounds was ameliorated by flumazenil suggesting a mode of action via the benzodiazepine binding site of GABA-A receptors.

  18. Endocannabinoid receptor 1 gene variations increase risk for obesity and modulate body mass index in European populations

    DEFF Research Database (Denmark)

    Benzinou, Michael; Chèvre, Jean-Claude; Ward, Kirsten J

    2008-01-01

    The therapeutic effects of cannabinoid receptor blockade on obesity-associated phenotypes underline the importance of the endocannabinoid pathway on the energy balance. Using a staged-approach, we examined the contribution of the endocannabinoid receptor 1 gene (CNR1) on obesity and body mass ind...... variations increase the risk for obesity and modulate BMI in our European population. As CB1 is a drug target for obesity, a pharmacogenetic analysis of the endocannabinoid blockade obesity treatment may be of interest to identify best responders....

  19. Molecular Mechanism of Action for Allosteric Modulators and Agonists in CC-chemokine Receptor 5 (CCR5).

    Science.gov (United States)

    Karlshøj, Stefanie; Amarandi, Roxana Maria; Larsen, Olav; Daugvilaite, Viktorija; Steen, Anne; Brvar, Matjaž; Pui, Aurel; Frimurer, Thomas Michael; Ulven, Trond; Rosenkilde, Mette Marie

    2016-12-23

    The small molecule metal ion chelators bipyridine and terpyridine complexed with Zn 2+ (ZnBip and ZnTerp) act as CCR5 agonists and strong positive allosteric modulators of CCL3 binding to CCR5, weak modulators of CCL4 binding, and competitors for CCL5 binding. Here we describe their binding site using computational modeling, binding, and functional studies on WT and mutated CCR5. The metal ion Zn 2+ is anchored to the chemokine receptor-conserved Glu-283 VII:06/7.39 Both chelators interact with aromatic residues in the transmembrane receptor domain. The additional pyridine ring of ZnTerp binds deeply in the major binding pocket and, in contrast to ZnBip, interacts directly with the Trp-248 VI:13/6.48 microswitch, contributing to its 8-fold higher potency. The impact of Trp-248 was further confirmed by ZnClTerp, a chloro-substituted version of ZnTerp that showed no inherent agonism but maintained positive allosteric modulation of CCL3 binding. Despite a similar overall binding mode of all three metal ion chelator complexes, the pyridine ring of ZnClTerp blocks the conformational switch of Trp-248 required for receptor activation, thereby explaining its lack of activity. Importantly, ZnClTerp becomes agonist to the same extent as ZnTerp upon Ala mutation of Ile-116 III:16/3.40 , a residue that constrains the Trp-248 microswitch in its inactive conformation. Binding studies with 125 I-CCL3 revealed an allosteric interface between the chemokine and the small molecule binding site, including residues Tyr-37 I:07/1.39 , Trp-86 II:20/2.60 , and Phe-109 III:09/3.33 The small molecules and CCL3 approach this interface from opposite directions, with some residues being mutually exploited. This study provides new insight into the molecular mechanism of CCR5 activation and paves the way for future allosteric drugs for chemokine receptors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Determinants of positive cooperativity between strychnine-like allosteric modulators and N-methylscopolamine at muscarinic receptors

    Czech Academy of Sciences Publication Activity Database

    Jakubík, Jan; Doležal, Vladimír

    2006-01-01

    Roč. 30, č. 1-2 (2006), s. 111-112 ISSN 0895-8696 R&D Projects: GA ČR(CZ) GA305/05/0452; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscarinic receptors * strychnine -like allosteric modulators * cooperativity Subject RIV: ED - Physiology Impact factor: 2.965, year: 2006

  1. Macrophage ABCA2 deletion modulates intracellular cholesterol deposition, affects macrophage apoptosis, and decreases early atherosclerosis in LDL receptor knockout mice.

    Science.gov (United States)

    Calpe-Berdiel, Laura; Zhao, Ying; de Graauw, Marjo; Ye, Dan; van Santbrink, Peter J; Mommaas, A Mieke; Foks, Amanda; Bot, Martine; Meurs, Illiana; Kuiper, Johan; Mack, Jody T; Van Eck, Miranda; Tew, Kenneth D; van Berkel, Theo J C

    2012-08-01

    The ABCA2 transporter shares high structural homology to ABCA1, which is crucial for the removal of excess cholesterol from macrophages and, by extension, in atherosclerosis. It has been suggested that ABCA2 sequesters cholesterol inside the lysosomes, however, little is known of the macrophage-specific role of ABCA2 in regulating lipid homeostasis in vivo and in modulating susceptibility to atherosclerosis. Chimeras with dysfunctional macrophage ABCA2 were generated by transplantation of bone marrow from ABCA2 knockout (KO) mice into irradiated LDL receptor (LDLr) KO mice. Interestingly, lack of ABCA2 in macrophages resulted in a diminished lesion size in the aortic root (-24.5%) and descending thoracic aorta (-36.6%) associated with a 3-fold increase in apoptotic cells, as measured by both caspase 3 and TUNEL. Upon oxidized LDL exposure, macrophages from wildtype (WT) transplanted animals developed filipin-positive droplets in lysosomal-like compartments, corresponding to free cholesterol (FC) accumulation. In contrast, ABCA2-deficient macrophages displayed an abnormal diffuse distribution of FC over peripheral regions. The accumulation of neutral sterols in lipid droplets was increased in ABCA2-deficient macrophages, but primarily in cytoplasmic clusters and not in lysosomes. Importantly, apoptosis of oxLDL loaded macrophages lacking ABCA2 was increased 2.7-fold, probably as a consequence of the broad cellular distribution of FC. Lack of functional ABCA2 generates abnormalities in intracellular lipid distribution/trafficking in macrophages consistent with its lysosomal sequestering role, leading to an increased susceptibility to apoptosis in response to oxidized lipids and reduced atherosclerotic lesion development. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Modulation of cytokine and cytokine receptor/antagonist by treatment with doxycycline and tetracycline in patients with dengue fever.

    Science.gov (United States)

    Castro, J E Z; Vado-Solis, I; Perez-Osorio, C; Fredeking, T M

    2011-01-01

    Dengue virus infection can lead to dengue fever (DF) or dengue hemorrhagic fever (DHF). Disease severity has been linked to an increase in various cytokine levels. In this study, we evaluated the effectiveness of doxycycline and tetracycline to modulate serum levels of IL-6, IL-1B, and TNF and cytokine receptor/receptor antagonist TNF-R1 and IL-1RA in patients with DF or DHF. Hospitalized patients were randomized to receive standard supportive care or supportive care combined with doxycycline or tetracycline therapy. Serum cytokine and cytokine receptor/antagonist levels were determined at the onset of therapy and after 3 and 7 days. Cytokine and cytokine receptor/antagonist levels were substantially elevated at day 0. IL-6, IL-1β, and TNF remained at or above day 0 levels throughout the study period in untreated patients. Treatment with tetracycline or doxycycline resulted in a significant decline in cytokine levels. Similarly, IL-1RA and TNF-R1 serum concentrations were elevated at baseline and showed a moderate increase among untreated patients. Both drugs resulted in a significant rise in IL-1Ra levels by day 3 in patients. In contrast, treatment did not affect a similar result for TNF-R1. When compared to the control group, however, a significant rise post-treatment was seen upon intragroup analysis. Further analysis demonstrated that doxycycline was significantly more effective at modulating cytokine and cytokine receptor/antagonist levels than tetracycline.

  3. Loss of object recognition memory produced by extended access to methamphetamine self-administration is reversed by positive allosteric modulation of metabotropic glutamate receptor 5.

    Science.gov (United States)

    Reichel, Carmela M; Schwendt, Marek; McGinty, Jacqueline F; Olive, M Foster; See, Ronald E

    2011-03-01

    Chronic methamphetamine (meth) abuse can lead to persisting cognitive deficits. Here, we utilized a long-access meth self-administration (SA) protocol to assess recognition memory and metabotropic glutamate receptor (mGluR) expression, and the possible reversal of cognitive impairments with the mGluR5 allosteric modulator, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB). Male, Long-Evans rats self-administered i.v. meth (0.02 mg/infusion) on an FR1 schedule of reinforcement or received yoked-saline infusions. After seven daily 1-h sessions, rats were switched to 6-h daily sessions for 14 days, and then underwent drug abstinence. Rats were tested for object recognition memory at 1 week after meth SA at 90 min and 24 h retention intervals. In a separate experiment, rats underwent the same protocol, but received either vehicle or CDPPB (30 mg/kg) after familiarization. Rats were killed on day 8 or 14 post-SA and brain tissue was obtained. Meth intake escalated over the extended access period. Additionally, meth-experienced rats showed deficits in both short- and long-term recognition memory, demonstrated by a lack of novel object exploration. The deficit at 90 min was reversed by CDPPB treatment. On day 8, meth intake during SA negatively correlated with mGluR expression in the perirhinal and prefrontal cortex, and mGluR5 receptor expression was decreased 14 days after discontinuation of meth. This effect was specific to mGluR5 levels in the perirhinal cortex, as no differences were identified in the hippocampus or in mGluR2/3 receptors. These results from a clinically-relevant animal model of addiction suggest that mGluR5 receptor modulation may be a potential treatment of cognitive dysfunction in meth addiction.

  4. Adenosine A2A receptors modulate the dopamine D2 receptor-mediated inhibition of synaptic transmission in the mouse prefrontal cortex.

    Science.gov (United States)

    Real, Joana I; Simões, Ana Patrícia; Cunha, Rodrigo A; Ferreira, Samira G; Rial, Daniel

    2018-05-01

    Prefrontal cortex (PFC) circuits are modulated by dopamine acting on D 1 - and D 2 -like receptors, which are pharmacologically exploited to manage neuropsychiatric conditions. Adenosine A 2A receptors (A 2 A R) also control PFC-related responses and A 2 A R antagonists are potential anti-psychotic drugs. As tight antagonistic A 2 A R-D 2 R and synergistic A 2 A R-D 1 R interactions occur in other brain regions, we now investigated the crosstalk between A 2 A R and D 1 /D 2 R controlling synaptic transmission between layers II/III and V in mouse PFC coronal slices. Dopamine decreased synaptic transmission, a presynaptic effect based on the parallel increase in paired-pulse responses. Dopamine inhibition was prevented by the D 2 R-like antagonist sulpiride but not by the D 1 R antagonist SCH23390 and was mimicked by the D 2 R agonist sumanirole, but not by the agonists of either D 4 R (A-412997) or D 3 R (PD128907). Dopamine inhibition was prevented by the A 2 A R antagonist, SCH58261, and attenuated in A 2 A R knockout mice. Accordingly, triple-labelling immunocytochemistry experiments revealed the co-localization of A 2 A R and D 2 R immunoreactivity in glutamatergic (vGluT1-positive) nerve terminals of the PFC. This reported positive A 2 A R-D 2 R interaction controlling PFC synaptic transmission provides a mechanistic justification for the anti-psychotic potential of A 2 A R antagonists. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Resveratrol modulates the inflammatory response via an estrogen receptor-signal integration network

    Science.gov (United States)

    Nwachukwu, Jerome C; Srinivasan, Sathish; Bruno, Nelson E; Parent, Alexander A; Hughes, Travis S; Pollock, Julie A; Gjyshi, Olsi; Cavett, Valerie; Nowak, Jason; Garcia-Ordonez, Ruben D; Houtman, René; Griffin, Patrick R; Kojetin, Douglas J; Katzenellenbogen, John A; Conkright, Michael D; Nettles, Kendall W

    2014-01-01

    Resveratrol has beneficial effects on aging, inflammation and metabolism, which are thought to result from activation of the lysine deacetylase, sirtuin 1 (SIRT1), the cAMP pathway, or AMP-activated protein kinase. In this study, we report that resveratrol acts as a pathway-selective estrogen receptor-α (ERα) ligand to modulate the inflammatory response but not cell proliferation. A crystal structure of the ERα ligand-binding domain (LBD) as a complex with resveratrol revealed a unique perturbation of the coactivator-binding surface, consistent with an altered coregulator recruitment profile. Gene expression analyses revealed significant overlap of TNFα genes modulated by resveratrol and estradiol. Furthermore, the ability of resveratrol to suppress interleukin-6 transcription was shown to require ERα and several ERα coregulators, suggesting that ERα functions as a primary conduit for resveratrol activity. DOI: http://dx.doi.org/10.7554/eLife.02057.001 PMID:24771768

  6. Piracetam Defines a New Binding Site for Allosteric Modulators of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors§

    Science.gov (United States)

    Ahmed, Ahmed H.; Oswald, Robert E.

    2010-01-01

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to both GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators. PMID:20163115

  7. Parabrachial complex glutamate receptors modulate the cardiorespiratory response evoked from hypothalamic defense area.

    Science.gov (United States)

    Díaz-Casares, A; López-González, M V; Peinado-Aragonés, C A; González-Barón, S; Dawid-Milner, M S

    2012-08-16

    To characterize the possible role of glutamate in the interaction between Hypothalamic Defense Area (HDA) and Parabrachial complex (PBc) nuclei, cardiorespiratory changes were analyzed in response to electrical stimulation of the HDA (1 ms pulses, 30-50 μA given at 100 Hz for 5s) before and after the microinjection of the nonspecific glutamate receptor antagonist kynurenic acid (50 nl, 5 nmol), NMDA receptor antagonist MK-801 (50 nl, 50 nmol), non-NMDA receptor antagonist CNQX (50 nl, 50 nmol) or metabotropic glutamate receptor antagonist MCPG (50 nl, 5 nmol) within the PBc. HDA stimulation evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (pHDA stimulation. Similarly, the magnitude of the tachycardia and the pressor response was decreased after the microinjection of MK-801 (pHDA stimulation but the respiratory response persisted unchanged after MK-801 or CNQX microinjection into the lPB. Kynurenic acid within the medial parabrachial region (mPB) abolished the tachycardia (pHDA stimulation. MK-801 and CNQX microinjection in this region decreased the magnitude of the tachycardia (pHDA stimulation was not changed after the microinjection of kynurenic acid, MK-801 or CNQX within the mPB. No changes were observed in the cardiorespiratory response evoked to HDA stimulation after MCPG microinjection within lPB and mPB. These results indicate that glutamate PBc receptors are involved in the cardiorespiratory response evoked from the HDA. The possible mechanisms involved in these interactions are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Histamine-2 receptor antagonist famotidine modulates cardiac stem cell characteristics in hypertensive heart disease

    Directory of Open Access Journals (Sweden)

    Sherin Saheera

    2017-10-01

    Full Text Available Background Cardiac stem cells (CSCs play a vital role in cardiac homeostasis. A decrease in the efficiency of cardiac stem cells is speculated in various cardiac abnormalities. The maintenance of a healthy stem cell population is essential for the prevention of adverse cardiac remodeling leading to cardiac failure. Famotidine, a histamine-2 receptor antagonist, is currently used to treat ulcers of the stomach and intestines. In repurposing the use of the drug, reduction of cardiac hypertrophy and improvement in cardiac function of spontaneously hypertensive rats (SHR was reported by our group. Given that stem cells are affected in cardiac pathologies, the effect of histamine-2 receptor antagonism on CSC characteristics was investigated. Methods To examine whether famotidine has a positive effect on CSCs, spontaneously hypertensive rats (SHR treated with the drug were sacrificed; and CSCs isolated from atrial appendages was evaluated. Six-month-old male SHRs were treated with famotidine (30 mg/kg/day for two months. The effect of famotidine treatment on migration, proliferation and survival of CSCs was compared with untreated SHRs and normotensive Wistar rats. Results Functional efficiency of CSCs from SHR was compromised relative to that in Wistar rat. Famotidine increased the migration and proliferation potential, along with retention of stemness of CSCs in treated SHRs. Cellular senescence and oxidative stress were also reduced. The expression of H2R was unaffected by the treatment. Discussion As anticipated, CSCs from SHRs were functionally impaired. Stem cell attributes of famotidine-treated SHRs was comparable to that of Wistar rats. Therefore, in addition to being cardioprotective, the histamine 2 receptor antagonist modulated cardiac stem cells characteristics. Restoration of stem cell efficiency by famotidine is possibly mediated by reduction of oxidative stress as the expression of H2R was unaffected by the treatment. Maintenance of

  9. Activation and modulation of human α4β2 nicotinic acetylcholine receptors by the neonicotinoids clothianidin and imidacloprid.

    Science.gov (United States)

    Li, Ping; Ann, Jason; Akk, Gustav

    2011-08-01

    Neonicotinoids are synthetic, nicotine-derived insecticides used for agricultural and household pest control. Though highly effective at activating insect nicotinic receptors, many neonicotinoids are also capable of directly activating and/or modulating the activation of vertebrate nicotinic receptors. In this study, we have investigated the actions of the neonicotinoids clothianidin (CTD) and imidacloprid (IMI) on human neuronal α4β2 nicotinic acetylcholine receptors. The data demonstrate that the compounds are weak agonists of the human receptors with relative peak currents of 1-4% of the response to 1 mM acetylcholine (ACh). Coapplication of IMI strongly inhibited currents elicited by ACh. From Schild plot analysis, we estimate that the affinity of IMI for the human α4β2 receptor is 18 μM. The application of low concentrations of CTD potentiated responses to low concentrations of ACh, suggesting that receptors occupied by one ACh and one CTD molecule have a higher gating efficacy than receptors with one ACh bound. Interestingly, subunit stoichiometry affected inhibition by CTD, with (α4)(2) (β2)(3) receptors significantly more strongly inhibited than the (α4)(3) (β2)(2) receptors. Copyright © 2011 Wiley-Liss, Inc.

  10. Phorbol diesters and transferrin modulate lymphoblastoid cell transferrin receptor expression by two different mechanisms

    International Nuclear Information System (INIS)

    Alcantara, O.; Phillips, J.L.; Boldt, D.H.

    1986-01-01

    Expression of transferrin receptors (TfR) by activated lymphocytes is necessary for lymphocyte DNA synthesis and proliferation. Regulation of TfR expression, therefore, is a mechanism by which the lymphocyte's proliferative potential may be directed and controlled. The authors studied mechanisms by which lymphoblastoid cells modulate TfR expression during treatment with phorbol diesters or iron transferrin (FeTf), agents which cause downregulation of cell surface TfR. Phorbol diester-induced TfR downregulation occurred rapidly, being detectable at 2 min and reaching maximal decreases of 50% by 15 min. It was inhibited by cold but not by agents that destabilize cytoskeletal elements. Furthermore, this downregulation was reversed rapidly by washing or by treatment with the membrane interactive agent, chlorpromazine. In contrast, FeTf-induced TfR downregulation occurred slowly. Decreased expression of TfR was detectable only after 15 min and maximal downregulation was achieved after 60 min. Although FeTf-induced downregulation also was inhibited by cold, it was inhibited in addition by a group of microtubule destabilizing agents (colchicine, vinblastine, podophyllotoxin) or cytochalasin B, a microfilament inhibitor. Furthermore, FeTf-induced downregulation was not reversed readily by washing or by treatment with chlorpromazine. Phorbol diesters cause TfR downregulation by a cytoskeleton-independent mechanism. These data indicate that TfR expression is regulated by two independent mechanisms in lymphoblastoid cells, and they provide the possibility that downregulation of TfR by different mechanisms may result in different effects in these cells

  11. A new series of estrogen receptor modulators that display selectivity for estrogen receptor beta.

    Science.gov (United States)

    Henke, Brad R; Consler, Thomas G; Go, Ning; Hale, Ron L; Hohman, Dana R; Jones, Stacey A; Lu, Amy T; Moore, Linda B; Moore, John T; Orband-Miller, Lisa A; Robinett, R Graham; Shearin, Jean; Spearing, Paul K; Stewart, Eugene L; Turnbull, Philip S; Weaver, Susan L; Williams, Shawn P; Wisely, G Bruce; Lambert, Millard H

    2002-12-05

    A series of 1,3,5-triazine-based estrogen receptor (ER) modulators that are modestly selective for the ERbeta subtype are reported. Compound 1, which displayed modest potency and selectivity for ERbeta vs ERalpha, was identified via high-throughput screening utilizing an ERbeta SPA-based binding assay. Subsequent analogue preparation resulted in the identification of compounds such as 21 and 43 that display 25- to 30-fold selectivity for ERbeta with potencies in the 10-30 nM range. These compounds profile as full antagonists at ERbeta and weak partial agonists at ERalpha in a cell-based reporter gene assay. In addition, the X-ray crystal structure of compound 15 complexed with the ligand binding domain of ERbeta has been solved and was utilized in the design of more conformationally restrained analogues such as 31 in an attempt to increase selectivity for the ERbeta subtype.

  12. Modulation of the cough reflex by GABAA receptors in the caudal ventral respiratory group of the rabbit

    Directory of Open Access Journals (Sweden)

    Elenia eCinelli

    2012-10-01

    Full Text Available We have previously shown that the caudal ventral respiratory group (cVRG is a possible site of action of some antitussive drugs and plays a crucial role in determining both the expiratory and inspiratory components of the cough motor pattern. In addition, it has been reported that medullary expiratory neurons of the cVRG are subject to potent GABAergic gain modulation. This study was devoted to investigate the role of cVRG GABAA receptors in the control of baseline respiratory activity and cough responses to mechanical and chemical (citric acid stimulation of the tracheobronchial tree. To this purpose, bilateral microinjections (30-50 nl of bicuculline or muscimol were performed into the cVRG of pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bicuculline (1 mM increased peak abdominal activity and respiratory frequency due to decreases in TE. Cough responses were potentiated mainly owing to increases in the cough number. The recovery was observed within ~ 2 h. On the contrary, muscimol (0.3 mM abolished abdominal activity and decreased respiratory frequency due to increases in TE. In addition, cough responses were progressively reduced and completely suppressed within ~ 20 min. Partial recovery of cough responses was achieved after ~ 3 h or within ~ 5 min following bicuculline microinjections at the same locations. The sneeze reflex induced by mechanical stimulation of the nasal mucosa persisted following bicuculline and muscimol microinjections. However, the number and intensity of expiratory thrusts were enhanced by bicuculline and suppressed by muscimol. The results provide evidence that a potent GABAA-mediated inhibitory modulation is exerted at the level of the cVRG not only on respiratory activity, but also on cough and sneeze reflex responses.

  13. [Roles of protease-activated receptor-2 (PAR-2), a G protein-coupled receptor, in modulation of exocrine gland functions].

    Science.gov (United States)

    Nishikawa, Hiroyuki

    2006-07-01

    Protease-activated receptor-2 (PAR-2), a G protein-coupled receptor, is activated by proteolytic unmasking of the N-terminal extracellular tethered ligand that presumably binds to the extracellular loop 2 of the receptor itself. PAR-2 is widely distributed in the mammalian body and plays various roles in biological events in the cardiovascular, respiratory, alimentary, and central neurons systems. PAR-2-activating peptides administered systemically to mice and rats trigger prompt salivation in vivo. In an in vitro study, PAR-2 agonists including the endogenous PAR-2 activator trypsin induce secretion of amylase and mucin from isolated rat parotid glands and sublingual glands, respectively. PAR-2-activating peptides administered systemically also modulate pancreatic exocrine secretion in vivo as well as in vitro. In the gastric mucosa, PAR-2 stimulation enhances secretion of mucus and pepsinogen and suppresses acid secretion. Tear secretion can also be caused by PAR-2-related peptides in PAR-2-dependent and -independent manners. PAR-2 thus plays a general or key role in the regulation of exocrine secretion. This review focuses on the physiologic and/or pathophysiologic roles of PAR-2 in glandular exocrine secretion. The possibility of PAR-2 as a target for drug development is also discussed.

  14. Decreased Brain Neurokinin-1 Receptor Availability in Chronic Tennis Elbow.

    Science.gov (United States)

    Linnman, Clas; Catana, Ciprian; Svärdsudd, Kurt; Appel, Lieuwe; Engler, Henry; Långström, Bengt; Sörensen, Jens; Furmark, Tomas; Fredrikson, Mats; Borsook, David; Peterson, Magnus

    Substance P is released in painful and inflammatory conditions, affecting both peripheral processes and the central nervous system neurokinin 1 (NK1) receptor. There is a paucity of data on human brain alterations in NK1 expression, how this system may be affected by treatment, and interactions between central and peripheral tissue alterations. Ten subjects with chronic tennis elbow (lateral epicondylosis) were selected out of a larger (n = 120) randomized controlled trial evaluating graded exercise as a treatment for chronic tennis elbow (lateral epicondylosis). These ten subjects were examined by positron emission tomography (PET) with the NK1-specific radioligand 11C-GR205171 before, and eight patients were followed up after treatment with graded exercise. Brain binding in the ten patients before treatment, reflecting NK1-receptor availability (NK1-RA), was compared to that of 18 healthy subjects and, longitudinally, to the eight of the original ten patients that agreed to a second PET examination after treatment. Before treatment, patients had significantly lower NK1-RA in the insula, vmPFC, postcentral gyrus, anterior cingulate, caudate, putamen, amygdala and the midbrain but not the thalamus and cerebellum, with the largest difference in the insula contralateral to the injured elbow. No significant correlations between brain NK1-RA and pain, functional severity, or peripheral NK1-RA in the affected limb were observed. In the eight patients examined after treatment, pain ratings decreased in everyone, but there were no significant changes in NK1-RA. These findings indicate a role for the substance P (SP) / NK1 receptor system in musculoskeletal pain and tissue healing. As neither clinical parameters nor successful treatment response was reflected in brain NK1-RA after treatment, this may reflect the diverse function of the SP/NK1 system in CNS and peripheral tissue, or a change too small or slow to capture over the three-month treatment.

  15. Decreased Brain Neurokinin-1 Receptor Availability in Chronic Tennis Elbow.

    Directory of Open Access Journals (Sweden)

    Clas Linnman

    Full Text Available Substance P is released in painful and inflammatory conditions, affecting both peripheral processes and the central nervous system neurokinin 1 (NK1 receptor. There is a paucity of data on human brain alterations in NK1 expression, how this system may be affected by treatment, and interactions between central and peripheral tissue alterations. Ten subjects with chronic tennis elbow (lateral epicondylosis were selected out of a larger (n = 120 randomized controlled trial evaluating graded exercise as a treatment for chronic tennis elbow (lateral epicondylosis. These ten subjects were examined by positron emission tomography (PET with the NK1-specific radioligand 11C-GR205171 before, and eight patients were followed up after treatment with graded exercise. Brain binding in the ten patients before treatment, reflecting NK1-receptor availability (NK1-RA, was compared to that of 18 healthy subjects and, longitudinally, to the eight of the original ten patients that agreed to a second PET examination after treatment. Before treatment, patients had significantly lower NK1-RA in the insula, vmPFC, postcentral gyrus, anterior cingulate, caudate, putamen, amygdala and the midbrain but not the thalamus and cerebellum, with the largest difference in the insula contralateral to the injured elbow. No significant correlations between brain NK1-RA and pain, functional severity, or peripheral NK1-RA in the affected limb were observed. In the eight patients examined after treatment, pain ratings decreased in everyone, but there were no significant changes in NK1-RA. These findings indicate a role for the substance P (SP / NK1 receptor system in musculoskeletal pain and tissue healing. As neither clinical parameters nor successful treatment response was reflected in brain NK1-RA after treatment, this may reflect the diverse function of the SP/NK1 system in CNS and peripheral tissue, or a change too small or slow to capture over the three-month treatment.

  16. Modulation of GABA receptors expressed in Xenopus oocytes by 13-L-hydroxylinoleic acid and food additives.

    Science.gov (United States)

    Aoshima, H; Tenpaku, Y

    1997-12-01

    To study the effects of 13-L-hydroxylinoleic acid (LOH) and food additives on gamma-aminobutyric acid (GABA) receptors, ionotropic GABA receptors were expressed in Xenopus oocytes by injecting mRNAs prepared from rat whole brain. LOH, which was prepared by reduction of 13-L-hydroperoxylinoleic acid (LOOH), inhibited the response of GABA receptors in the presence of high concentrations of GABA. LOH also inhibited nicotinic acetylcholine, glycine, and kainate receptors, while it had little effect on NMDA receptors expressed in Xenopus oocytes. However, LOH potentiated the response of GABA receptors as well as LOOH in the presence of low concentrations of GABA, possibly increasing the affinity of GABA for the receptors, while linoleic acid did not. Since some modification of the compounds seemed to change their effects on GABA receptors, the responses of GABA receptors elicited by 10 microM GABA were measured in the presence of compounds with various kinds of functional groups or the structural isomers of pentanol. Potentiation of GABA receptors depended strongly on the species of functional groups and also depended on the structure of the isomers. Then effects of various kinds of food additives on GABA receptors were also examined; perfumes such as alcohols or esters potentiated the responses strongly, while hexylamine, nicotinamide, or caffeine inhibited the responses, mainly in a competitive manner, and vanillin inhibited the responses noncompetitively. These results suggest the possibility that production of LOOH and LOH, or intake of much of some food additives, modulates the neural transmission in the brain, especially through ionotropic GABA receptors and changes the frame of the human mind, as alcohol or tobacco does.

  17. Selective decreases of nicotinic acetylcholine receptors in PC12 cells exposed to fluoride

    International Nuclear Information System (INIS)

    Chen Jia; Shan, K.-R.; Long, Y.-G.; Wang, Y.-N.; Nordberg, Agneta; Guan, Z.-Z.

    2003-01-01

    In an attempt to elucidate the mechanism by which excessive fluoride damages the central nervous system, the effects of exposure of PC12 cells to different concentrations of fluoride for 48 h on nicotinic acetylcholine receptors (nAChRs) were characterized here. Significant reductions in the number of binding sites for both [ 3 H]epibatidine and [ 125 I]α-bungarotoxin, as well as a significant decrease in the B max value for the high-affinity of epibatidine binding site were observed in PC12 cells subjected to high levels of fluoride. On the protein level, the α3 and α7 subunits of nAChRs were also significantly decreased in the cells exposed to high concentrations of fluoride. In contrast, such exposure had no significant effect on the level of the β2 subunit. These findings suggest that selective decreases in the number of nAChRs may play an important role in the mechanism(s) by which fluoride causes dysfunction of the central nervous system

  18. What would 5-HT do? Regional diversity of 5-HT1 receptor modulation of primary afferent neurotransmission

    OpenAIRE

    Connor, Mark

    2012-01-01

    5-HT (serotonin) is a significant modulator of sensory input to the CNS, but the only analgesics that selectively target G-protein-coupled 5-HT receptors are highly specific for treatment of headache. Two recent papers in BJP shed light on this puzzling situation by showing that primary afferent neurotransmission to the superficial layers of the spinal and trigeminal dorsal is inhibited by different subtypes of the 5-HT1 receptor – 5-HT1B(and 1D) in the trigeminal dorsal horn and 5-HT1A in th...

  19. Oxytocin and Estrogen Receptor β in the Brain: An Overview

    Directory of Open Access Journals (Sweden)

    Alexandra eAcevedo-Rodriguez

    2015-10-01

    Full Text Available Oxytocin is a neuropeptide synthesized primarily by neurons of the paraventricular and supraoptic nuclei of the hypothalamus. These neurons have axons that project into the posterior pituitary and release oxytocin into the bloodstream to promote labor and lactation; however, oxytocin neurons also project to other brain areas where it plays a role in numerous brain functions. Oxytocin binds to the widely expressed oxytocin receptor, and, in doing so, it regulates homeostatic processes, social recognition and fear conditioning. In addition to these functions, oxytocin decreases neuroendocrine stress signaling and anxiety-related and depression-like behaviors. Steroid hormones differentially modulate stress responses and alter oxytocin receptor expression. In particular, estrogen receptor β activation has been found to both reduce anxiety-related behaviors and increase oxytocin peptide transcription, suggesting a role for oxytocin in this estrogen receptor β mediated anxiolytic effect. Further research is needed to identify modulators of oxytocin signaling and the pathways utilized and to elucidate molecular mechanisms controlling oxytocin expression to allow better therapeutic manipulations of this system in patient populations.

  20. Selective estrogen receptor modulators (SERM: A new choice for postmenopausal women and physicians who worry on cancer

    Directory of Open Access Journals (Sweden)

    Ali Baziad

    2001-09-01

    Full Text Available The postmenopausal state is characterized by the cessation of menstruation, loss of ovarian function, and a dramatic decrease in the level of circulating estrogen. This state of estrogen deficiency contributes to the acceleration of several age-related health problems in women, including cardiovascular disease, osteoporosis, and dementia. Estrogen replacement is clearly effective in the short-term and long-term treatment and prevention of postmenopausal symptoms. However, until now, the amount of HRT user is still very low. Fear of breast cancer and endometrial cancer are the most common concern in using hormone replacement therapy (HRT, although the relationship between long-term HRT and breast cancer remains controversial. For physicians or patients, who worry on cancer, the ideal drug is now available i.e. the selective estrogen receptor modulators (SERM, with the generic name raloxifine. (Med J Indones 2001; 10: 187-90Keywords: HRT, raloxifine, osteoporosis, CVD, tamoxifen

  1. Selective Androgen Receptor Modulators (SARMs) as Function Promoting Therapies

    Science.gov (United States)

    Bhasin, Shalender; Jasuja, Ravi

    2010-01-01

    Purpose of review The last decade has witnessed unprecedented discovery effort to develop selective androgen receptor modulators (SARMs) that improve physical function and bone health without adversely affecting the prostate and cardiovascular outcomes. This review describes the historical evolution, the rationale for SARM development, and the mechanisms of testosterone action and SARM selectivity. Recent Findings While steroidal SARMs have been around since the 1940s, a number of nonsteroidal SARMs that do not serve as substrates for CYP19 aromatase or 5α-reductase, act as full agonists in muscle and bone and as partial agonists in prostate are in development. The differing interactions of steroidal and nonsteroidal compounds with AR contribute to their unique pharmacologic actions. Ligand binding induces specific conformational changes in the ligand binding domain, which could modulate surface topology and protein-protein interactions between AR and coregulators, resulting in tissue-specific gene regulation. Preclinical studies have demonstrated the ability of SARMs to increase muscle and bone mass in preclinical rodent models with varying degree of prostate sparing. Phase I trials of SARMs in humans have reported modest increments in fat-free mass. Summary SARMs hold promise as a new class of function promoting anabolic therapies for a number of clinical indications, including functional limitations associated with aging and chronic disease, frailty, cancer cachexia, and osteoporosis. PMID:19357508

  2. Clinical utility of progesterone receptor modulators and their effect on the endometrium.

    Science.gov (United States)

    Spitz, Irving M

    2009-08-01

    In view of the spate of recent publications related to mifepristone and some second generation progesterone receptor modulators (PRMs), this appears to be an opportune time to view the clinical status of these compounds. Randomized double-blind placebo-controlled trials have been conducted with mifepristone, CDB-4124 (Proellex), CDB-2914 (VA 2914, Ulipristal) and asoprisnil (J867). All these PRMs are effective in the treatment of uterine fibroids where they are associated with a reduction in pain, bleeding and improvement in quality of life and decrease in fibroid size. CDB-4124 is also efficacious in endometriosis. Long-term treatment with PRMs may be associated with endometrial thickening on ultrasound and there have been reports of endometrial hyperplasia. Several reassuring recent publications have done much to explain the mechanism underlying these endometrial changes. The most common histological finding is cystic glandular dilatation often associated with both admixed estrogen (mitotic) and progestin (secretory) epithelial effects. This histology has not been previously encountered in clinical practice and should not be confused with endometrial hyperplasia. The endometrial thickness is related to this cystic glandular dilatation. At this stage of development, PRMs cannot be administered for longer than 3 or 4 months. Even over this time, there is improvement of symptoms associated with fibroids and endometriosis. Clinicians and pathologists need to be aware that the endometrial thickening and histological appearance do not represent endometrial hyperplasia.

  3. Food deprivation modulates gamma-aminobutyric acid receptors and peripheral benzodiazepine binding sites in rats.

    Science.gov (United States)

    Weizman, A; Bidder, M; Fares, F; Gavish, M

    1990-12-03

    The effect of 5 days of food deprivation followed by 5 days of refeeding on gamma-aminobutyric acid (GABA) receptors, central benzodiazepine receptors (CBR), and peripheral benzodiazepine binding sites (PBzS) was studied in female Sprague-Dawley rats. Starvation induced a decrease in the density of PBzS in peripheral organs: adrenal (35%; P less than 0.001), kidney (33%; P less than 0.01), and heart (34%; P less than 0.001). Restoration of [3H]PK 11195 binding to normal values was observed in all three organs after 5 days of refeeding. The density of PBzS in the ovary, pituitary, and hypothalamus was not affected by starvation. Food deprivation resulted in a 35% decrease in cerebellar GABA receptors (P less than 0.01), while CBR in the hypothalamus and cerebral cortex remained unaltered. The changes in PBzS observed in the heart and kidney may be related to the long-term metabolic stress associated with starvation and to the functional changes occurring in these organs. The down-regulation of the adrenal PBzS is attributable to the suppressive effect of hypercortisolemia on pituitary ACTH release. The reduction in cerebellar GABA receptors may be an adaptive response to food deprivation stress and may be relevant to the proaggressive effect of hunger.

  4. Effect of B-ring substitution pattern on binding mode of propionamide selective androgen receptor modulators.

    Science.gov (United States)

    Bohl, Casey E; Wu, Zengru; Chen, Jiyun; Mohler, Michael L; Yang, Jun; Hwang, Dong Jin; Mustafa, Suni; Miller, Duane D; Bell, Charles E; Dalton, James T

    2008-10-15

    Selective androgen receptor modulators (SARMs) are essentially prostate sparing androgens, which provide therapeutic potential in osteoporosis, male hormone replacement, and muscle wasting. Herein we report crystal structures of the androgen receptor (AR) ligand-binding domain (LBD) complexed to a series of potent synthetic nonsteroidal SARMs with a substituted pendant arene referred to as the B-ring. We found that hydrophilic B-ring para-substituted analogs exhibit an additional region of hydrogen bonding not seen with steroidal compounds and that multiple halogen substitutions affect the B-ring conformation and aromatic interactions with Trp741. This information elucidates interactions important for high AR binding affinity and provides new insight for structure-based drug design.

  5. Serotonin receptors expressed in Drosophila mushroom bodies differentially modulate larval locomotion.

    Directory of Open Access Journals (Sweden)

    Bryon Silva

    Full Text Available Drosophila melanogaster has been successfully used as a simple model to study the cellular and molecular mechanisms underlying behaviors, including the generation of motor programs. Thus, it has been shown that, as in vertebrates, CNS biogenic amines (BA including serotonin (5HT participate in motor control in Drosophila. Several evidence show that BA systems innervate an important association area in the insect brain previously associated to the planning and/or execution of motor programs, the Mushroom Bodies (MB. The main objective of this work is to evaluate the contribution of 5HT and its receptors expressed in MB to motor behavior in fly larva. Locomotion was evaluated using an automated tracking system, in Drosophila larvae (3(rd-instar exposed to drugs that affect the serotonergic neuronal transmission: alpha-methyl-L-dopa, MDMA and fluoxetine. In addition, animals expressing mutations in the 5HT biosynthetic enzymes or in any of the previously identified receptors for this amine (5HT1AR, 5HT1BR, 5HT2R and 5HT7R were evaluated in their locomotion. Finally, RNAi directed to the Drosophila 5HT receptor transcripts were expressed in MB and the effect of this manipulation on motor behavior was assessed. Data obtained in the mutants and in animals exposed to the serotonergic drugs, suggest that 5HT systems are important regulators of motor programs in fly larvae. Studies carried out in animals pan-neuronally expressing the RNAi for each of the serotonergic receptors, support this idea and further suggest that CNS 5HT pathways play a role in motor control. Moreover, animals expressing an RNAi for 5HT1BR, 5HT2R and 5HT7R in MB show increased motor behavior, while no effect is observed when the RNAi for 5HT1AR is expressed in this region. Thus, our data suggest that CNS 5HT systems are involved in motor control, and that 5HT receptors expressed in MB differentially modulate motor programs in fly larvae.

  6. Ischemic tolerance modulates TRAIL expression and its receptors and generates a neuroprotected phenotype.

    Science.gov (United States)

    Cantarella, G; Pignataro, G; Di Benedetto, G; Anzilotti, S; Vinciguerra, A; Cuomo, O; Di Renzo, G F; Parenti, C; Annunziato, L; Bernardini, R

    2014-07-17

    TNF-related apoptosis inducing ligand (TRAIL), a member of the TNF superfamily released by microglia, appears to be involved in the induction of apoptosis following focal brain ischemia. Indeed, brain ischemia is associated with progressive enlargement of damaged areas and prominent inflammation. As ischemic preconditioning reduces inflammatory response to brain ischemia and ameliorates brain damage, the purpose of the present study was to evaluate the role of TRAIL and its receptors in stroke and ischemic preconditioning and to propose, by modulating TRAIL pathway, a new therapeutic strategy in stroke. In order to achieve this aim a rat model of harmful focal ischemia, obtained by subjecting animals to 100 min of transient occlusion of middle cerebral artery followed by 24 h of reperfusion and a rat model of ischemic preconditioning in which the harmful ischemia was preceded by 30 mins of tMCAO, which represents the preconditioning protective stimulus, were used. Results show that the neuroprotection elicited by ischemic preconditioning occurs through both upregulation of TRAIL decoy receptors and downregulation of TRAIL itself and of its death receptors. As a counterproof, immunoneutralization of TRAIL in tMCAO animals resulted in significant restraint of tissue damage and in a marked functional recovery. Our data shed new light on the mechanisms that propagate ongoing neuronal damage after ischemia in the adult mammalian brain and provide new molecular targets for therapeutic intervention. Strategies aimed to repress the death-inducing ligands TRAIL, to antagonize the death receptors, or to activate the decoy receptors open new perspectives for the treatment of stroke.

  7. High throughput techniques for discovering new glycine receptor modulators and their binding sites

    Directory of Open Access Journals (Sweden)

    Daniel F Gilbert

    2009-10-01

    Full Text Available The inhibitory glycine receptor (GlyR is a member of the Cys-loop receptor family that mediates inhibitory neurotransmission in the central nervous system. These receptors are emerging as potential drug targets for inflammatory pain, immunomodulation, spasticity and epilepsy. Antagonists that specifically inhibit particular GlyR isoforms are also required as pharmacological probes for elucidating the roles of particular GlyR isoforms in health and disease. Although a substantial number of both positive and negative GlyR modulators have been identified, very few of these are specific for the GlyR over other receptor types. Thus, the potential of known compounds as either therapeutic leads or pharmacological probes is limited. It is therefore surprising that there have been few published studies describing attempts to discover novel GlyR isoform-specific compounds. The first aim of this review is to consider various methods for efficiently screening compounds against these receptors. We conclude that an anion sensitive yellow fluorescent protein is optimal for primary screening and that automated electrophysiology of cells stably expressing GlyRs is useful for confirming hits and quantitating the actions of identified compounds. The second aim of this review is to demonstrate how these techniques are used in our laboratory for the purpose of both discovering novel GlyR-active compounds and characterizing their binding sites. We also describe a reliable, cost effective method for transfecting HEK293 cells in single wells of a 384 well plate using nanogram quantities of cDNA.

  8. Epidermal growth factor receptor coexpression modulates susceptibility to Herceptin in HER2/neu overexpressing breast cancer cells via specific erbB-receptor interaction and activation

    International Nuclear Information System (INIS)

    Diermeier, Simone; Horvath, Gabor; Knuechel-Clarke, Ruth; Hofstaedter, Ferdinand; Szoellosi, Janos; Brockhoff, Gero

    2005-01-01

    Background: Growth factors and Herceptin specifically and differentially modulate cell proliferation of tumor cells. However, the mechanism of action on erbB-receptor level is incompletely understood. We evaluated Herceptin's capacity to modulate erbB-receptor activation and interaction on the cell surface level and thereby potentially impair cell proliferation of HER2/neu (c-erbB2) overexpressing breast cancer cells, both in the presence and absence of relevant growth factors. Methods: BT474 and SK-BR-3 breast cancer cell lines were treated with Epidermal Growth Factor (EGF), Heregulin, and with Herceptin in different combinations. Kinetics of cell proliferation were evaluated flow cytometrically based on BrdU-labeling. Fluorescence Resonance Energy Transfer, ELISAs and phosphorylation site specific Western Blotting was performed to investigate erbB-receptor interaction and activation. Results: EGF induced EGFR/EGFR and EGFR/c-erbB2 interactions correlate with stimulation of cell proliferation in BT474 cells. Both homo- and heterodimerization are considerably less pronounced in SK-BR-3 cells and heterointeraction is additionally reduced by EGF treatment, causing inhibition of cell proliferation. Heregulin stimulates cell proliferation extensively in both cell lines. Herceptin drives BT474 cells more efficiently into quiescence than it does with SK-BR-3 cells and thereby blocks cell cycle progress. In SK-BR-3 Herceptin treatment causes c-erbB2 phosphorylation of Y877 and Y1248, EGF induces Y877 and Y1112 phosphorylation. The Y1112 phosphorylation site, activated by EGF in SK-BR-3 cell, is bypassed in BT474. In addition the inhibitory capacity of Herceptin on BT474 and SK-BR-3 cell proliferation depends on the presence and absence of growth factors to a various extent. Conclusion: The growth inhibitory effect of Herceptin on c-erbB2 overexpressing breast cancer cells is considerably modulated by EGFR coexpression and consequently EGFR/c-erbB2 homo- and

  9. Design and synthesis of tricyclic tetrahydroquinolines as a new series of nonsteroidal selective androgen receptor modulators (SARMs).

    Science.gov (United States)

    Nagata, Naoya; Miyakawa, Motonori; Amano, Seiji; Furuya, Kazuyuki; Yamamoto, Noriko; Inoguchi, Kiyoshi

    2011-03-15

    Some tricyclic tetrahydroquinolines (THQs) were found to have the potential of a new series of nonsteroidal selective androgen receptor modulators (SARMs). Compound 5b was first designed and synthesized under our hypothesis based on a four-point pharmacophoric requirement of the 3-carbonyl, 18-methyl, 17-hydroxyl, and 13-quaternary carbon groups of dihydrotestosterone (DHT). It was revealed that this compound exhibits not only a strong androgen receptor (AR) agonistic activity (EC(50)=9.2 nM) but also the highest selectivity in binding affinity to AR among the steroid hormone receptors. Furthermore, this compound showed a weak virilizing effect with retention of the desired anabolic effect as compared with DHT in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Corticosteroid Receptors, Their Chaperones and Cochaperones: How Do They Modulate Adipogenesis?

    Directory of Open Access Journals (Sweden)

    Judith Toneatto

    2014-11-01

    Full Text Available It is well known that glucocorticoids and mineralocorticoids are part of the list of hormones that control adipogenesis as well as different aspects of the physiology of the adipose tissue. Their actions are mediated through their binding to the glucocorticoid and the mineralocorticoid receptors (GR and MR, respectively, in complex with heat shock proteins (Hsps and high molecular weight immunophilins (IMMs. Albeit many aspects of the molecular mechanism of the corticosteroid receptors are not fully elucidated yet, it was not until recently that the first evidences of the functional importance of Hsps and IMMs in the process of adipocyte differentiation have been described. Hsp90 and the high molecular weight IMM FKBP51 modulate GR and MR activity at multiple levels, that is, hormone binding affinity, their subcellular distribution, and the transcriptional status, among other aspects of the NR function. Interestingly, it has recently been described that Hsp90 and FKBP51 also participate in the control of PPARγ, a key transcription factor in the control of adipogenesis and the maintenance of the adipocyte phenotype. In addition, novel roles have been uncovered for FKBP51 in the organization of the nuclear architecture through its participation in the reorganization of the nuclear lamina and the control of the subnuclear distribution of GR. Thus, the aim of this review is to integrate and discuss the actual understanding of the role of corticosteroid receptors, their chaperones and cochaperones, in the process of adipocyte differentiation.

  11. Modulation of the arcuate nucleus-medial preoptic nucleus lordosis regulating circuit: a role for GABAB receptors

    Science.gov (United States)

    Sinchak, Kevin; Dewing, Phoebe; Ponce, Laura; Gomez, Liliana; Christensen, Amy; Berger, Max; Micevych, Paul

    2013-01-01

    Estradiol rapidly activates a microcircuit in the arcuate nucleus of the hypothalamus (ARH) that is needed for maximal female sexual receptivity. Membrane estrogen receptor-α complexes with and signals through the metabotropic glutamate receptor-1a stimulating NPY release within the ARH activating proopiomelanocortin (POMC) neurons. These POMC neurons project to the medial preoptic nucleus (MPN) and release β-endorphin. Estradiol treatment induces activation/internalization of MPN μ-opioid receptors (MOR) to inhibit lordosis. Estradiol membrane action modulates ARH gamma-aminobutyric acid receptor-B (GABAB) activity. We tested the hypothesis that ARH GABAB receptors mediate estradiol-induced MOR activation and facilitation of sexual receptivity. Double label immunohistochemistry revealed expression of GABAB receptors in NPY, ERα and POMC expressing ARH neurons. Approximately 70% of POMC neurons expressed GABAB receptors. Because estradiol initially activates an inhibitory circuit and maintains activation of this circuit, the effects of blocking GABAB receptors were evaluated before estradiol benzoate (EB) treatment and after at the time of lordosis testing. Bilateral infusions of the GABAB receptor antagonist, CGP52432, into the ARH prior to EB treatment of ovariectomized rats prevented estradiol-induced activation/internalization of MPN MOR, and the rats remained unreceptive. However, in EB treated rats, bilateral CGP52432 infusions 30 minutes before behavior testing attenuated MOR internalization and facilitated lordosis. These results indicated that GABAB receptors were located within the lordosis-regulating ARH microcircuit and are necessary for activation and maintenance of the estradiol inhibition of lordosis behavior. Although GABAB receptors positively influence estradiol signaling, they negatively regulate lordosis behavior since GABAB activity maintains the estradiol-induced inhibition. PMID:23756153

  12. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals.

    Science.gov (United States)

    Thongkum, Monthathip; Burns, Parichart; Bhunchoth, Anjana; Warin, Nuchnard; Chatchawankanphanich, Orawan; van Doorn, Wouter G

    2015-03-15

    We studied the expression of a gene encoding an ethylene receptor, called Ethylene Response Sensor 1 (Den-ERS1), in the petals of Dendrobium orchid flowers. Transcripts accumulated during the young floral bud stage and declined by the time the flowers had been open for several days. Pollination or exposure to exogenous ethylene resulted in earlier flower senescence, an increase in ethylene production and a lower Den-ERS1 transcript abundance. Treatment with 1-methylcyclopropene (1-MCP), an inhibitor of the ethylene receptor, decreased ethylene production and resulted in high transcript abundance. The literature indicates two kinds of ethylene receptor genes with regard to the effects of ethylene. One group shows ethylene-induced down-regulated transcription, while the other has ethylene-induced up-regulation. The present gene is an example of the first group. The 5' flanking region showed binding sites for Myb and myb-like, homeodomain, MADS domain, NAC, TCP, bHLH and EIN3-like transcription factors. The binding site for the EIN3-like factor might explain the ethylene effect on transcription. A few other transcription factors (RAV1 and NAC) seem also related to ethylene effects. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase.

    Science.gov (United States)

    Gracia, Eduard; Pérez-Capote, Kamil; Moreno, Estefanía; Barkešová, Jana; Mallol, Josefa; Lluís, Carme; Franco, Rafael; Cortés, Antoni; Casadó, Vicent; Canela, Enric I

    2011-05-01

    A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.

  14. Dopamine D1 receptor gene variation modulates opioid dependence risk by affecting transition to addiction.

    Directory of Open Access Journals (Sweden)

    Feng Zhu

    Full Text Available Dopamine D1 receptor (DRD1 modulates opioid reinforcement, reward, and opioid-induced neuroadaptation. We propose that DRD1 polymorphism affects susceptibility to opioid dependence (OD, the efficiency of transition to OD, and opioid-induced pleasure response. We analyzed potential association between seven DRD1 polymorphisms with the following traits: duration of transition from the first use to dependence (DTFUD, subjective pleasure responses to opioid on first use and post-dependence use, and OD risk in 425 Chinese with OD and 514 healthy controls. DTFUD and level of pleasure responses were examined using a semi-structured interview. The DTFUD of opioid addicts ranged from 5 days to 11 years. Most addicts (64.0% reported non-comfortable response upon first opioid use, while after dependence, most addicts (53.0% felt strong opioid-induced pleasure. Survival analysis revealed a correlation of prolonged DTFUD with the minor allele-carrying genotypes of DRD1 rs4532 (hazard ratios (HR = 0.694; p = 0.001 and rs686 (HR = 0.681, p = 0.0003. Binary logistic regression indicated that rs10063995 GT genotype (vs. GG+TT, OR = 0.261 could predict decreased pleasure response to first-time use and the minor alleles of rs686 (OR = 0.535 and rs4532 (OR = 0.537 could predict decreased post-dependence pleasure. Moreover, rs686 minor allele was associated with a decreased risk for rapid transition from initial use to dependence (DTFUD≤30 days; OR = 0.603 or post-dependence euphoria (OR = 0.603 relative to major allele. In conclusion, DRD1 rs686 minor allele decreases the OD risk by prolonging the transition to dependence and attenuating opioid-induced pleasure in Chinese.

  15. Ketamine Metabolites Enantioselectively Decrease Intracellular D-Serine Concentrations in PC-12 Cells.

    Directory of Open Access Journals (Sweden)

    Nagendra S Singh

    Full Text Available D-Serine is an endogenous NMDA receptor co-agonist that activates synaptic NMDA receptors modulating neuronal networks in the cerebral cortex and plays a key role in long-term potentiation of synaptic transmission. D-serine is associated with NMDA receptor neurotoxicity and neurodegeneration and elevated D-serine concentrations have been associated with Alzheimer's and Parkinsons' diseases and amyotrophic lateral sclerosis. Previous studies have demonstrated that the ketamine metabolites (rac-dehydronorketamine and (2S,6S-hydroxynorketamine decrease intracellular D-serine concentrations in a concentration dependent manner in PC-12 cells. In the current study, PC-12 cells were incubated with a series of ketamine metabolites and the IC50 values associated with attenuated intracellular D-serine concentrations were determined. The results demonstrate that structural and stereochemical features of the studied compounds contribute to the magnitude of the inhibitory effect with (2S,6S-hydroxynorketamine and (2R,6R-hydroxynorketamine displaying the most potent inhibition with IC50 values of 0.18 ± 0.04 nM and 0.68 ± 0.09 nM. The data was utilized to construct a preliminary 3D-QSAR/pharmacophore model for use in the design of new and more efficient modulators of D-serine.

  16. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons.

    Directory of Open Access Journals (Sweden)

    Khursheed A Wani

    Full Text Available Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1 required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior.

  17. Nicotinic receptor blockade decreases fos immunoreactivity within orexin/hypocretin-expressing neurons of nicotine-exposed rats.

    Science.gov (United States)

    Simmons, Steven J; Gentile, Taylor A; Mo, Lili; Tran, Fionya H; Ma, Sisi; Muschamp, John W

    2016-11-01

    Tobacco smoking is the leading cause of preventable death in the United States. Nicotine is the principal psychoactive ingredient in tobacco that causes addiction. The structures governing nicotine addiction, including those underlying withdrawal, are still being explored. Nicotine withdrawal is characterized by negative affective and cognitive symptoms that enhance relapse susceptibility, and suppressed dopaminergic transmission from ventral tegmental area (VTA) to target structures underlies behavioral symptoms of nicotine withdrawal. Agonist and partial agonist therapies help 1 in 4 treatment-seeking smokers at one-year post-cessation, and new targets are needed to more effectively aid smokers attempting to quit. Hypothalamic orexin/hypocretin neurons send excitatory projections to dopamine (DA)-producing neurons of VTA and modulate mesoaccumbal DA release. The effects of nicotinic receptor blockade, which is commonly used to precipitate withdrawal, on orexin neurons remain poorly investigated and present an attractive target for intervention. The present study sought to investigate the effects of nicotinic receptor blockade on hypothalamic orexin neurons using mecamylamine to precipitate withdrawal in rats. Separate groups of rats were treated with either chronic nicotine or saline for 7-days at which point effects of mecamylamine or saline on somatic signs and anxiety-like behavior were assessed. Finally, tissue from rats was harvested for immunofluorescent analysis of Fos within orexin neurons. Results demonstrate that nicotinic receptor blockade leads to reduced orexin cell activity, as indicated by lowered Fos-immunoreactivity, and suggest that this underlying cellular activity may be associated with symptoms of nicotine withdrawal as effects were most prominently observed in rats given chronic nicotine. We conclude from this study that orexin transmission becomes suppressed in rats upon nicotinic receptor blockade, and that behavioral symptoms associated

  18. Cannabinoids as modulators of cancer cell viability, neuronal differentiation, and embryonal development

    OpenAIRE

    Gustafsson, Sofia

    2012-01-01

    Cannabinoids (CBs) are compounds that activate the CB1 and CB2 receptors. CB receptors mediate many different physiological functions, and cannabinoids have been reported to decrease tumor cell viability, proliferation, migration, as well as to modulate metastasis. In this thesis, the effects of cannabinoids on human colorectal carcinoma Caco-2 cells (Paper I) and mouse P19 embryonal carcinoma (EC) cells (Paper III) were studied.  In both cell lines, the compounds examined produced a concentr...

  19. Decreased frontal serotonin 5-HT{sub 2a} receptor binding index in deliberate self-harm patients

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, K. [Dept. of Psychiatry and Medical Psychology, Ghent University Hospital (Belgium); Dept. of Nuclear Medicine, Ghent University Hospital (Belgium); Laere, K. van; Dierckx, R.A. [Dept. of Nuclear Medicine, Ghent University Hospital (Belgium); Dumont, F.; Slegers, G. [Dept. of Radiopharmacy, Ghent Univ. (Belgium); Mertens, J. [VUB-Cyclotron, Brussels (Belgium); Heeringen, C. van [Dept. of Psychiatry and Medical Psychology, Ghent University Hospital (Belgium)

    2001-02-01

    Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT{sub 2a} receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT{sub 2a} receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl]-5-iodo-2-methoxybenzamide or {sup 123}I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq {sup 123}I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT{sub 2a} binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P<0.001) than among deliberate self-poisoning patients (DSP). Frontal binding index was significantly lower in DSI patients than in DSP suicide attempters (P<0.001). It is concluded that brain SPET of the 5-HT{sub 2a} serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT{sub 2a} receptor, indicating a decrease in the number and/or in

  20. Selective activation of estrogen receptors, ERα and GPER-1, rapidly decreases food intake in female rats.

    Science.gov (United States)

    Butler, Michael J; Hildebrandt, Ryan P; Eckel, Lisa A

    2018-05-25

    Many of estradiol's behavioral effects are mediated, at least partially, via extra-nuclear estradiol signaling. Here, we investigated whether two estrogen receptor (ER) agonists, targeting ERα and G protein-coupled ER-1 (GPER-1), can promote rapid anorexigenic effects. Food intake was measured in ovariectomized (OVX) rats at 1, 2, 4, and 22 h following subcutaneous (s.c.) injection of an ERα agonist (PPT; 0-200 μg/kg), a GPER-1 agonist (G-1; 0-1600 μg/kg), and a GPER-1 antagonist (G-36; 0-80 μg/kg). To investigate possible cross-talk between ERα and GPER-1, we examined whether GPER-1 blockade affects the anorexigenic effect of PPT. Feeding was monitored in OVX rats that received s.c. injections of vehicle or 40 μg/kg G-36 followed 30 min later by s.c. injections of vehicle or 200 μg/kg PPT. Selective activation of ERα and GPER-1 alone decreased food intake within 1 h of drug treatment, and feeding remained suppressed for 22 h following PPT treatment and 4 h following G-1 treatment. Acute administration of G-36 alone did not suppress feeding at any time point. Blockade of GPER-1 attenuated PPT's rapid (within 1 h) anorexigenic effect, but did not modulate PPT's ability to suppress food intake at 2, 4 and 22 h. These findings demonstrate that selective activation of ERα produces a rapid (within 1 h) decrease in food intake that is best explained by a non-genomic signaling pathway and thus implicates the involvement of extra-nuclear ERα. Our findings also provide evidence that activation of GPER-1 is both sufficient to suppress feeding and necessary for PPT's rapid anorexigenic effect. Copyright © 2017. Published by Elsevier Inc.

  1. Cyclooxygenase-2 induction in macrophages is modulated by docosahexaenoic acid via interactions with free fatty acid receptor 4 (FFA4).

    Science.gov (United States)

    Li, Xinzhi; Yu, Ying; Funk, Colin D

    2013-12-01

    Cyclooxygenase-2 (COX-2)-derived prostaglandins are implicated in numerous inflammatory disorders. The purpose of these studies was to examine previously unexplored interactions between COX-2 induction and docosahexaenoic acid (DHA) via the free fatty acid receptor 4 (FFA4) signaling pathway in murine RAW 264.7 cells and peritoneal macrophages challenged with lipopolysaccharide (LPS). DHA dose (IC50=18 μM)- and time-dependently reduced COX-2 expression, without affecting COX-1. DHA (25 μM for 24 h) decreased LPS-induced prostaglandin E2 (PGE2) synthesis by 81%, primarily through reducing COX-2 (60%), as well as down-regulating microsomal prostaglandin E synthase-1 (46%), but independently of peroxisome proliferator-activated receptors. FFA4 knockdown abrogated DHA effects on COX-2 induction, PGE2 production, and interleukin 6 (IL-6) gene expression. In the presence of inhibitors of eicosanoid metabolism via COX-2, 12/15-lipoxygenase and CYP450s (rofecoxib (1 μM), PD146176 (2 μM), or MS-PPOH (20 μM)), DHA was still effective in attenuating COX-2 induction. Moreover, Toll-like receptor 4 signaling via Akt/JNK phosphorylation and p65 nuclear translocation was repressed by DHA-activated FFA4 coupling with β-arrestin 2, which was reversed by FFA4 knockdown. These data support DHA modulation of COX-2 expression and activity, in part, via FFA4, which provides a new mechanistic explanation for some of the anti-inflammatory effects of DHA.

  2. Organophosphorus pesticides decrease M2 muscarinic receptor function in guinea pig airway nerves via indirect mechanisms.

    Directory of Open Access Journals (Sweden)

    Becky J Proskocil

    Full Text Available BACKGROUND: Epidemiological studies link organophosphorus pesticide (OP exposures to asthma, and we have shown that the OPs chlorpyrifos, diazinon and parathion cause airway hyperreactivity in guinea pigs 24 hr after a single subcutaneous injection. OP-induced airway hyperreactivity involves M2 muscarinic receptor dysfunction on airway nerves independent of acetylcholinesterase (AChE inhibition, but how OPs inhibit neuronal M2 receptors in airways is not known. In the central nervous system, OPs interact directly with neurons to alter muscarinic receptor function or expression; therefore, in this study we tested whether the OP parathion or its oxon metabolite, paraoxon, might decrease M2 receptor function on peripheral neurons via similar direct mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Intravenous administration of paraoxon, but not parathion, caused acute frequency-dependent potentiation of vagally-induced bronchoconstriction and increased electrical field stimulation (EFS-induced contractions in isolated trachea independent of AChE inhibition. However, paraoxon had no effect on vagally-induced bradycardia in intact guinea pigs or EFS-induced contractions in isolated ileum, suggesting mechanisms other than pharmacologic antagonism of M2 receptors. Paraoxon did not alter M2 receptor expression in cultured cells at the mRNA or protein level as determined by quantitative RT-PCR and radio-ligand binding assays, respectively. Additionally, a biotin-labeled fluorophosphonate, which was used as a probe to identify molecular targets phosphorylated by OPs, did not phosphorylate proteins in guinea pig cardiac membranes that were recognized by M2 receptor antibodies. CONCLUSIONS/SIGNIFICANCE: These data indicate that neither direct pharmacologic antagonism nor downregulated expression of M2 receptors contributes to OP inhibition of M2 function in airway nerves, adding to the growing evidence of non-cholinergic mechanisms of OP neurotoxicity.

  3. Fibronectin type III (FN3) modules of the neuronal cell adhesion molecule L1 interact directly with the fibroblast growth factor (FGF) receptor

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Li, Shizhong; Hinsby, Anders Mørkeberg

    2008-01-01

    The neuronal cell adhesion molecule (CAM) L1 promotes axonal outgrowth, presumably through an interaction with the fibroblast growth factor receptor (FGFR). The present study demonstrates a direct interaction between L1 fibronectin type III (FN3) modules I-V and FGFR1 immunoglobulin (Ig) modules II...

  4. Intradomain Confinement of Disulfides in the Folding of Two Consecutive Modules of the LDL Receptor.

    Directory of Open Access Journals (Sweden)

    Juan Martínez-Oliván

    Full Text Available The LDL receptor internalizes circulating LDL and VLDL particles for degradation. Its extracellular binding domain contains ten (seven LA and three EGF cysteine-rich modules, each bearing three disulfide bonds. Despite the enormous number of disulfide combinations possible, LDLR oxidative folding leads to a single native species with 30 unique intradomain disulfides. Previous folding studies of the LDLR have shown that non native disulfides are initially formed that lead to compact species. Accordingly, the folding of the LDLR has been described as a "coordinated nonvectorial" reaction, and it has been proposed that early compaction funnels the reaction toward the native structure. Here we analyze the oxidative folding of LA4 and LA5, the modules critical for ApoE binding, isolated and in the LA45 tandem. Compared to LA5, LA4 folding is slow and inefficient, resembling that of LA5 disease-linked mutants. Without Ca++, it leads to a mixture of many two-disulfide scrambled species and, with Ca++, to the native form plus two three-disulfide intermediates. The folding of the LA45 tandem seems to recapitulate that of the individual repeats. Importantly, although the folding of the LA45 tandem takes place through formation of scrambled isomers, no interdomain disulfides are detected, i.e. the two adjacent modules fold independently without the assistance of interdomain covalent interactions. Reduction of incredibly large disulfide combinatorial spaces, such as that in the LDLR, by intradomain confinement of disulfide bond formation might be also essential for the efficient folding of other homologous disulfide-rich receptors.

  5. Design, synthesis, and biological characterization of metabolically stable selective androgen receptor modulators.

    Science.gov (United States)

    Marhefka, Craig A; Gao, Wenqing; Chung, Kiwon; Kim, Juhyun; He, Yali; Yin, Donghua; Bohl, Casey; Dalton, James T; Miller, Duane D

    2004-02-12

    A series of nonsteroidal ligands were synthesized as second-generation agonists for the androgen receptor (AR). These ligands were designed to eliminate metabolic sites identified in one of our first-generation AR agonists, which was inactive in vivo due to its rapid metabolism to inactive constituents. The binding affinity of these compounds was evaluated using AR isolated from rat ventral prostate. These second-generation compounds bound the AR in a high affinity and stereoselective manner, with K(i) values ranging from about 4 to 130 nM. The ability of these ligands to stimulate AR-mediated transcriptional activation was examined in cells transfected with the human AR and a hormone-dependent luciferase reporter gene. Although some compounds were unable to stimulate AR-mediated transcription, several demonstrated activity similar to that of dihydrotestosterone (DHT, an endogenous steroidal ligand for the AR). We also evaluated the in vivo pharmacologic activity of selected compounds in castrated male rats. Three compounds were identified as selective androgen receptor modulators (SARMs), exhibiting significant anabolic activity while having only moderate to minimal androgenic activity in vivo.

  6. Experimental hypothyroidism modulates the expression of the low density lipoprotein receptor by the liver

    International Nuclear Information System (INIS)

    Scarabottolo, Lia; Trezzi, Ermanno; Roma, Paola; Catapano, A.L.

    1986-01-01

    The effect of exprimental hypothyroidism of the catabolism of plasma lipoproteins and on the expression of low density lipoprotein receptors by the liver was investigated in rats made hypothyroid by surgery. The animals developed mild hypercholesterolemia, mainly due to an increase of plasma low density lipoprotein, while other lipoprotein classes were only marginally affected. Kinetic studies using ( 125 I)LDL indicated that a decreased fractional catabolic rate of the lipoprotein was responsible for this finding in agreement with the in vitro observation of a reduced binding of lipoproteins to liver membranes from hyperthyroid rats and with the demonstrations, by ligand blotting analysis, of a decreasd expression of lipoprotein receptors in liver membranes. These data suggest that hypothyroidism affects lipoprotein distribution also by decreasing the catabolism of low density lipoproteins by the liver (author)

  7. Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides.

    Science.gov (United States)

    Bodereau-Dubois, Béatrice; List, Olivier; Calas-List, Delphine; Marques, Olivier; Communal, Pierre-Yves; Thany, Steeve H; Lapied, Bruno

    2012-05-01

    Neonicotinoid insecticides act selectively on insect nicotinic acetylcholine receptors (nAChRs). Recent studies revealed that their efficiency was altered by the phosphorylation/dephosphorylation process and the intracellular signaling pathway involved in the regulation of nAChRs. Using whole-cell patch-clamp electrophysiology adapted for dissociated cockroach dorsal unpaired median (DUM) neurons, we demonstrated that intracellular factors involved in the regulation of nAChR function modulated neonicotinoid sensitivity. DUM neurons were known to express two α-bungarotoxin-insensitive nAChR subtypes: nAChR1 and nAChR2. Whereas nAChR1 was sensitive to imidacloprid, nAChR2 was insensitive to this insecticide. Here, we demonstrated that, like nicotine, acetamiprid and clothianidin, other types of neonicotinoid insecticides, acted as agonists on the nAChR2 subtype. Using acetamiprid, we revealed that both steady-state depolarization and hyperpolarization affected nAChR2 sensitivity. The measurement of the input membrane resistance indicated that change in the acetamiprid-induced agonist activity was related to the receptor conformational state. Using cadmium chloride, ω-conotoxin GVIA, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-acetamide (LOE 908), we found that inhibition of calcium influx through high voltage-activated calcium channels and transient receptor potential γ (TRPγ) activated by both depolarization and hyperpolarization increased nAChR2 sensitivity to acetamiprid. Finally, using N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7), forskolin, and cAMP, we demonstrated that adenylyl cyclase sensitive to the calcium/calmodulin complex regulated internal cAMP concentration, which in turn modulated TRPγ function and nAChR2 sensitivity to acetamiprid. Similar TRPγ-induced modulatory effects were also obtained when clothianidin was tested. These findings bring insights into the signaling pathway modulating

  8. Integrating TRPV1 Receptor Function with Capsaicin Psychophysics

    Directory of Open Access Journals (Sweden)

    Gregory Smutzer

    2016-01-01

    Full Text Available Capsaicin is a naturally occurring vanilloid that causes a hot, pungent sensation in the human oral cavity. This trigeminal stimulus activates TRPV1 receptors and stimulates an influx of cations into sensory cells. TRPV1 receptors function as homotetramers that also respond to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Kinase-mediated phosphorylation of TRPV1 leads to increased sensitivity to both chemical and thermal stimuli. In contrast, desensitization occurs via a calcium-dependent mechanism that results in receptor dephosphorylation. Human psychophysical studies have shown that capsaicin is detected at nanomole amounts and causes desensitization in the oral cavity. Psychophysical studies further indicate that desensitization can be temporarily reversed in the oral cavity if stimulation with capsaicin is resumed at short interstimulus intervals. Pretreatment of lingual epithelium with capsaicin modulates the perception of several primary taste qualities. Also, sweet taste stimuli may decrease the intensity of capsaicin perception in the oral cavity. In addition, capsaicin perception and hedonic responses may be modified by diet. Psychophysical studies with capsaicin are consistent with recent findings that have identified TRPV1 channel modulation by phosphorylation and interactions with membrane inositol phospholipids. Future studies will further clarify the importance of capsaicin and its receptor in human health and nutrition.

  9. Dopamine modulates male sexual behavior in Japanese quail in part via actions on noradrenergic receptors.

    Science.gov (United States)

    Cornil, Charlotte A; Dejace, Christel; Ball, Gregory F; Balthazart, Jacques

    2005-08-30

    In rats, dopamine (DA) facilitates male sexual behavior through its combined action on D1- and D2-like receptors, in the medial preoptic area (MPOA) as well as other brain areas. In Japanese quail, systemic injections of dopaminergic drugs suggested a similar pharmacology but central injections have never been performed. Recent electrophysiological experiments demonstrated that DA effects in the MPOA of quail are mediated mainly through the activation of alpha2-noradrenergic receptors. Previous studies of DA action on behavior used specific dopaminergic agonists/antagonists and therefore unintentionally avoided the potential cross-reaction with alpha2-receptors. The present study was thus designed to investigate directly the effects of DA on male sexual behavior and to test whether the interaction of DA with heterologous receptors affects this behavior. Intracerebroventricular (i.c.v.) injection of DA or NE inhibited copulation in a dose-dependent manner. Systemic injections of yohimbine, an alpha2-noradrenergic antagonist, modulated copulation in a bimodal manner depending on the dose injected. Interestingly, a behaviorally ineffective dose of yohimbine markedly reduced the inhibitory effects of DA when injected 15min before. Together, these results show for the first time that i.c.v. injections of DA itself inhibit male sexual behavior in quail and suggest that the interaction of DA with alpha2-receptors has behavioral significance.

  10. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens.

    Science.gov (United States)

    Iwanowicz, Luke R; Stafford, James L; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W; Blazer, Vicki S

    2014-09-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines. Published by Elsevier Ltd.

  11. Biphasic modulation of insulin receptor substrate-1 during goitrogenesis

    Directory of Open Access Journals (Sweden)

    R. Grozovsky

    2007-05-01

    Full Text Available Insulin receptor substrate-1 (IRS-1 is the main intracellular substrate for both insulin and insulin-like growth factor I (IGF-I receptors and is critical for cell mitogenesis. Thyrotropin is able to induce thyroid cell proliferation through the cyclic AMP intracellular cascade; however, the presence of either insulin or IGF-I is required for the mitogenic effect of thyroid-stimulating hormone (TSH to occur. The aim of the present study was to determine whether thyroid IRS-1 content is modulated by TSH in vivo. Strikingly, hypothyroid goitrous rats, which have chronically high serum TSH levels (control, C = 2.31 ± 0.28; methimazole (MMI 21d = 51.02 ± 6.02 ng/mL, N = 12 rats, when treated with 0.03% MMI in drinking water for 21 days, showed significantly reduced thyroid IRS-1 mRNA content. Since goiter was already established in these animals by MMI for 21 days, we also evaluated IRS-1 expression during goitrogenesis. Animals treated with MMI for different periods of time showed a progressive increase in thyroid weight (C = 22.18 ± 1.21; MMI 5d = 32.83 ± 1.48; MMI 7d = 31.1 ± 3.25; MMI 10d = 33.8 ± 1.25; MMI 14d = 45.5 ± 2.56; MMI 18d = 53.0 ± 3.01; MMI 21d = 61.9 ± 3.92 mg, N = 9-15 animals per group and serum TSH levels (C = 1.57 ± 0.2; MMI 5d = 9.95 ± 0.74; MMI 7d = 10.38 ± 0.84; MMI 10d = 17.72 ± 1.47; MMI 14d = 25.65 ± 1.23; MMI 18d = 35.38 ± 3.69; MMI 21d = 31.3 ± 2.7 ng/mL, N = 9-15 animals per group. Thyroid IRS-1 mRNA expression increased progressively during goitrogenesis, being significantly higher by the 14th day of MMI treatment, and then started to decline, reaching the lowest values by the 21st day, when a significant reduction was detected. In the liver of these animals, however, a significant decrease of IRS-1 mRNA was detected after 14 days of MMI treatment, a mechanism probably involved in the insulin resistance that occurs in hypothyroidism. The increase in IRS-1 expression during goitrogenesis may represent an

  12. Liraglutide, a GLP-1 Receptor Agonist, Which Decreases Hypothalamic 5-HT2A Receptor Expression, Reduces Appetite and Body Weight Independently of Serotonin Synthesis in Mice

    Directory of Open Access Journals (Sweden)

    Katsunori Nonogaki

    2018-01-01

    Full Text Available A recent report suggested that brain-derived serotonin (5-HT is critical for maintaining weight loss induced by glucagon-like peptide-1 (GLP-1 receptor activation in rats and that 5-HT2A receptors mediate the feeding suppression and weight loss induced by GLP-1 receptor activation. Here, we show that changes in daily food intake and body weight induced by intraperitoneal administration of liraglutide, a GLP-1 receptor agonist, over 4 days did not differ between mice treated with the tryptophan hydroxylase (Tph inhibitor p-chlorophenylalanine (PCPA for 3 days and mice without PCPA treatment. Treatment with PCPA did not affect hypothalamic 5-HT2A receptor expression. Despite the anorexic effect of liraglutide disappearing after the first day of treatment, the body weight loss induced by liraglutide persisted for 4 days in mice treated with or without PCPA. Intraperitoneal administration of liraglutide significantly decreased the gene expression of hypothalamic 5-HT2A receptors 1 h after injection. Moreover, the acute anorexic effects of liraglutide were blunted in mice treated with the high-affinity 5-HT2A agonist (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl methylamine hydrobromide 14 h or 24 h before liraglutide injection. These findings suggest that liraglutide reduces appetite and body weight independently of 5-HT synthesis in mice, whereas GLP-1 receptor activation downregulates the gene expression of hypothalamic 5-HT2A receptors.

  13. Design, synthesis, and in vivo SAR of a novel series of pyrazolines as potent selective androgen receptor modulators.

    Science.gov (United States)

    Zhang, Xuqing; Li, Xiaojie; Allan, George F; Sbriscia, Tifanie; Linton, Olivia; Lundeen, Scott G; Sui, Zhihua

    2007-08-09

    A novel series of pyrazolines 2 have been designed, synthesized, and evaluated by in vivo screening as tissue-selective androgen receptor modulators (SARMs). Structure-activity relationships (SAR) were investigated at the R1 to R6 positions as well as the core pyrazoline ring and the anilide linker. Overall, strong electron-withdrawing groups at the R1 and R2 positions and a small group at the R5 and R6 position are optimal for AR agonist activity. The (S)-isomer of 7c exhibits more potent AR agonist activity than the corresponding (R)-isomer. (S)-7c exhibited an overall partial androgenic effect but full anabolic effect via oral administration in castrated rats. It demonstrated a noticeable antiandrogenic effect on prostate in intact rats with endogenous testosterone. Thus, (S)-7c is a tissue-selective nonsteroidal androgen receptor modulator with agonist activity on muscle and mixed agonist and antagonist activity on prostate.

  14. Chronic zinc exposure decreases the surface expression of NR2A-containing NMDA receptors in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Jia Zhu

    Full Text Available Zinc distributes widely in the central nervous system, especially in the hippocampus, amygdala and cortex. The dynamic balance of zinc is critical for neuronal functions. Zinc modulates the activity of N-methyl-D-aspartate receptors (NMDARs through the direct inhibition and various intracellular signaling pathways. Abnormal NMDAR activities have been implicated in the aetiology of many brain diseases. Sustained zinc accumulation in the extracellular fluid is known to link to pathological conditions. However, the mechanism linking this chronic zinc exposure and NMDAR dysfunction is poorly understood.We reported that chronic zinc exposure reduced the numbers of NR1 and NR2A clusters in cultured hippocampal pyramidal neurons. Whole-cell and synaptic NR2A-mediated currents also decreased. By contrast, zinc did not affect NR2B, suggesting that chronic zinc exposure specifically influences NR2A-containg NMDARs. Surface biotinylation indicated that zinc exposure attenuated the membrane expression of NR1 and NR2A, which might arise from to the dissociation of the NR2A-PSD-95-Src complex.Chronic zinc exposure perturbs the interaction of NR2A to PSD-95 and causes the disorder of NMDARs in hippocampal neurons, suggesting a novel action of zinc distinct from its acute effects on NMDAR activity.

  15. Potent, nonsteroidal selective androgen receptor modulators (SARMs) based on 8H-[1,4]oxazino[2,3-f]quinolin-8-ones.

    Science.gov (United States)

    Higuchi, Robert I; Thompson, Anthony W; Chen, Jyun-Hung; Caferro, Thomas R; Cummings, Marquis L; Deckhut, Charlotte P; Adams, Mark E; Tegley, Christopher M; Edwards, James P; López, Francisco J; Kallel, E Adam; Karanewsky, Donald S; Schrader, William T; Marschke, Keith B; Zhi, Lin

    2007-10-01

    A series of androgen receptor modulators based on 8H-[1,4]oxazino[2,3-f]quinolin-8-ones was synthesized and evaluated in an androgen receptor transcriptional activation assay. The most potent analogues from the series exhibited single-digit nanomolar potency in vitro. Compound 18h demonstrated full efficacy in the maintenance of muscle weight, at 10 mg/kg, with reduced activity in prostate weight in an in vivo model of androgen action.

  16. Decreased circulation time offsets increased efficacy of PEGylated nanocarriers targeting folate receptors of glioma

    International Nuclear Information System (INIS)

    McNeeley, Kathleen M; Annapragada, Ananth; Bellamkonda, Ravi V

    2007-01-01

    Liposomal and other nanocarrier based drug delivery vehicles can localize to tumours through passive and/or active targeting. Passively targeted liposomal nanocarriers accumulate in tumours via 'leaky' vasculature through the enhanced permeability and retention (EPR) effect. Passive accumulation depends upon the circulation time and the degree of tumour vessel 'leakiness'. After extravasation, actively targeted liposomal nanocarriers efficiently deliver their payload by receptor-mediated uptake. However, incorporation of targeting moieties can compromise circulation time in the blood due to recognition and clearance by the reticuloendothelial system, decreasing passive accumulation. Here, we compare the efficacy of passively targeted doxorubicin-loaded PEGylated liposomal nanocarriers to that of actively targeted liposomal nanocarriers in a rat 9L brain tumour model. Although folate receptor (FR)-targeted liposomal nanocarriers had significantly reduced blood circulation time compared to PEGylated liposomal nanocarriers; intratumoural drug concentrations both at 20 and 50 h after administration were equal for both treatments. Both treatments significantly increased tumour inoculated animal survival by 60-80% compared to non-treated controls, but no difference in survival was observed between FR-targeted and passively targeted nanocarriers. Therefore, alternate approaches allowing for active targeting without compromising circulation time may be important for fully realizing the benefits of receptor-mediated active targeting of gliomas

  17. Selective estrogen receptor modulators and risk for coronary heart disease.

    Science.gov (United States)

    Cano, A; Hermenegildo, C; Oviedo, P; Tarín, J J

    2007-04-01

    Coronary heart disease (CHD) is the leading cause of death in women in most countries. Atherosclerosis is the main biological process determining CHD. Clinical data support the notion that CHD is sensitive to estrogens, but debate exists concerning the effects of the hormone on atherosclerosis and its complications. Selective estrogen receptor modulators (SERMs) are compounds capable of binding the estrogen receptor to induce a functional profile distinct from estrogens. The possibility that SERMs may shift the estrogenic balance on cardiovascular risk towards a more beneficial profile has generated interest in recent years. There is considerable information on the effects of SERMs on distinct areas that are crucial in atherogenesis. The complexity derived from the diversity of variables affecting their mechanism of action plus the differences between compounds make it difficult to delineate one uniform trend for SERMs. The present picture, nonetheless, is one where SERMs seem less powerful than estrogens in atherosclerosis protection, but more gentle with advanced forms of the disease. The recent publication of the Raloxifene Use for The Heart (RUTH) study has confirmed a neutral effect for raloxifene. Prothrombotic states may favor occlusive thrombi at sites occupied by atheromatous plaques. Platelet activation has received attention as an important determinant of arterial thrombogenesis. Although still sparse, available evidence globally suggests neutral or beneficial effects for SERMs.

  18. The orexin-1 receptor antagonist SB-334867 decreases anxiety-like behavior and c-Fos expression in the hypothalamus of rats exposed to cat odor.

    Science.gov (United States)

    Vanderhaven, M W; Cornish, J L; Staples, L G

    2015-02-01

    Increasing evidence suggests that the orexin system is involved in modulating anxiety, and we have recently shown that cat odor-induced anxiety in rats is attenuated by the orexin receptor antagonist SB-334867. In the current experiment, c-Fos expression was used to map changes in neuronal activation following SB-334867 administration in the cat odor anxiety model. Male Wistar rats were exposed to cat odor with or without SB-334867 pre-treatment (10 mg/kg, i.p.). A naïve control group not exposed to cat odor was also used. Following cat odor exposure, brains were processed for c-Fos expression. Vehicle-treated rats showed an increase in anxiety-like behaviors (increased hiding and decreased approach toward the cat odor), and increased c-Fos expression in the posteroventral medial amygdala (MePV), paraventricular hypothalamus (PVN) and dorsal premammillary nucleus (PMd). In rats pretreated with SB-334867, approach scores increased and c-Fos expression decreased in the PVN and PMd. These results provide both behavioral and neuroanatomical evidence for the attenuation of cat odor-induced anxiety in rats via the orexin system. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  19. Role of D1- and D2-like dopaminergic receptors in the nucleus accumbens in modulation of formalin-induced orofacial pain: Involvement of lateral hypothalamus.

    Science.gov (United States)

    Shafiei, Iman; Vatankhah, Mahsaneh; Zarepour, Leila; Ezzatpanah, Somayeh; Haghparast, Abbas

    2018-05-01

    The role of dopaminergic system in modulation of formalin-induced orofacial nociception has been established. The present study aims to investigate the role of dopaminergic receptors in the nucleus accumbens (NAc) in modulation of nociceptive responses induced by formalin injection in the orofacial region. One hundred and six male Wistar rats were unilaterally implanted with two cannulae into the lateral hypothalamus (LH) and NAc. Intra-LH microinjection of carbachol, a cholinergic receptor agonist, was done 5min after intra-accumbal administration of different doses of SCH23390 (D1-like receptor antagonist) or sulpiride (D2-like receptor antagonist). After 5min, 50μl of 1% formalin was subcutaneously injected into the upper lip for inducing the orofacial pain. Carbachol alone dose-dependently reduced both phases of the formalin-induced orofacial pain. Intra-accumbal administration of SCH23390 (0.25, 1 and 4μg/0.5μl saline) or sulpiride (0.25, 1 and 4μg/0.5μl DMSO) before LH stimulation by carbachol (250nM/0.5μl saline) antagonized the antinociceptive responses during both phases of orofacial formalin test. The effects of D1- and D2-like receptor antagonism on the LH stimulation-induced antinociception were almost similar during the early phase. However, compared to D1-like receptor antagonism, D2-like receptor antagonism was a little more effective but not significant, at blocking the LH stimulation-induced antinociception during the late phase of formalin test. The findings revealed that there is a direct or indirect neural pathway from the LH to the NAc which is at least partially contributed to the modulation of formalin-induced orofacial nociception through recruitment of both dopaminergic receptors in this region. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Increased NMDA receptor inhibition at an increased Sevoflurane MAC

    Directory of Open Access Journals (Sweden)

    Brosnan Robert J

    2012-06-01

    Full Text Available Abstract Background Sevoflurane potently enhances glycine receptor currents and more modestly decreases NMDA receptor currents, each of which may contribute to immobility. This modest NMDA receptor antagonism by sevoflurane at a minimum alveolar concentration (MAC could be reciprocally related to large potentiation of other inhibitory ion channels. If so, then reduced glycine receptor potency should increase NMDA receptor antagonism by sevoflurane at MAC. Methods Indwelling lumbar subarachnoid catheters were surgically placed in 14 anesthetized rats. Rats were anesthetized with sevoflurane the next day, and a pre-infusion sevoflurane MAC was measured in duplicate using a tail clamp method. Artificial CSF (aCSF containing either 0 or 4 mg/mL strychnine was then infused intrathecally at 4 μL/min, and the post-infusion baseline sevoflurane MAC was measured. Finally, aCSF containing strychnine (either 0 or 4 mg/mL plus 0.4 mg/mL dizocilpine (MK-801 was administered intrathecally at 4 μL/min, and the post-dizocilpine sevoflurane MAC was measured. Results Pre-infusion sevoflurane MAC was 2.26%. Intrathecal aCSF alone did not affect MAC, but intrathecal strychnine significantly increased sevoflurane requirement. Addition of dizocilpine significantly decreased MAC in all rats, but this decrease was two times larger in rats without intrathecal strychnine compared to rats with intrathecal strychnine, a statistically significant (P  Conclusions Glycine receptor antagonism increases NMDA receptor antagonism by sevoflurane at MAC. The magnitude of anesthetic effects on a given ion channel may therefore depend on the magnitude of its effects on other receptors that modulate neuronal excitability.

  1. The selective estrogen receptor modulators in breast cancer prevention.

    Science.gov (United States)

    Li, Fangxuan; Dou, Jinli; Wei, Lijuan; Li, Shixia; Liu, Juntian

    2016-05-01

    Persistently increased blood levels of estrogens are associated with an increased risk of breast cancer. Selective estrogen receptor modulators (SERMs) are a class of compounds that act on the estrogen receptor (ER). Several clinical trials have demonstrated the effectiveness of its prophylactic administration. Incidence of invasive ER-positive breast cancer was reduced by SERMs treatment, especially for those women with high risk of developing breast cancer. In this study, we reviewed the clinical application of SERMs in breast cancer prevention. To date, four prospective randomized clinical trials had been performed to test the efficacy of tamoxifen for this purpose. Concerning on the benefit and cost of tamoxifen, various studies from different countries demonstrated that chemoprevention with tamoxifen seemed to be cost-effective for women with a high risk of invasive breast cancer. Based above, tamoxifen was approved for breast cancer prevention by the US Food and Drug Administration in 1998. Raloxifene was also approved for postmenopausal women in 2007 for breast cancer prevention which reduces the risk of invasive breast cancer with a lower risk of unwanted stimulation of endometrium. Thus, raloxifene is considered to have a better clinical possesses as prophylactic agent. Several other agents, such as arzoxifene and lasofoxifene, are currently being investigated in clinic. The American Society of Clinical Oncology and National Comprehensive Cancer Network had published guidelines on breast cancer chemoprevention by SERMs. However, use of tamoxifen and raloxifene for primary breast cancer prevention was still low. A broader educational effort is needed to alert women and primary care physicians that SERMs are available to reduce breast cancer risk.

  2. Modeling clinical efficacy of the S1P receptor modulator ponesimod in psoriasis.

    Science.gov (United States)

    Krause, Andreas; D'Ambrosio, Daniele; Dingemanse, Jasper

    2018-02-01

    Ponesimod is currently the only S1P receptor modulator studied in psoriasis. In a dose-finding study, the active doses showed similar efficacy. Prediction of efficacy at lower doses to aid clinical phase 3 planning with respect to dose selection, duration of treatment, and patient inclusion criteria based on pharma-co-kinetic/pharmacodynamic (PK/PD) modeling and simulation. The dose-finding study treated 326 patients (67 on placebo, 126 on 20mg, and 133 on 40mg) over 16 weeks. PK/PD modeling of steady-state trough concentrations and longitudinal PASI scores was employed to characterize data and simulate scenarios. PASI score continually decreased with time on ponesimod treatment, reaching a plateau at 16 weeks. Absolute and relative (percent) PASI score change was larger in patients with higher PASI score at baseline. Doses below 10mg were predicted to show lower efficacy than doses of 10mg and higher. Concentration-response modeling was able to predict the efficacy of doses that were not studied. In psoriasis patients, a dose of 10mg (not administered in the study) was predicted to show efficacy similar to 20mg. Disease status (PASI score at baseline) as study inclusion criterion has pronounced influence on study outcome. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  3. A1 adenosine receptor-induced phosphorylation and modulation of transglutaminase 2 activity in H9c2 cells: A role in cell survival.

    Science.gov (United States)

    Vyas, Falguni S; Hargreaves, Alan J; Bonner, Philip L R; Boocock, David J; Coveney, Clare; Dickenson, John M

    2016-05-01

    The regulation of tissue transglutaminase (TG2) activity by the GPCR family is poorly understood. In this study, we investigated the modulation of TG2 activity by the A1 adenosine receptor in cardiomyocyte-like H9c2 cells. H9c2 cells were lysed following stimulation with the A1 adenosine receptor agonist N(6)-cyclopentyladenosine (CPA). Transglutaminase activity was determined using an amine incorporating and a protein cross linking assay. TG2 phosphorylation was assessed via immunoprecipitation and Western blotting. The role of TG2 in A1 adenosine receptor-induced cytoprotection was investigated by monitoring hypoxia-induced cell death. CPA induced time and concentration-dependent increases in amine incorporating and protein crosslinking activity of TG2. CPA-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Responses to CPA were blocked by PKC (Ro 31-8220), MEK1/2 (PD 98059), p38 MAPK (SB 203580) and JNK1/2 (SP 600125) inhibitors and by removal of extracellular Ca(2+). CPA triggered robust increases in the levels of TG2-associated phosphoserine and phosphothreonine, which were attenuated by PKC, MEK1/2 and JNK1/2 inhibitors. Fluorescence microscopy revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (Histone H4) and novel (Hexokinase 1) protein substrates for TG2. CPA pre-treatment reversed hypoxia-induced LDH release and decreases in MTT reduction. TG2 inhibitors R283 and Z-DON attenuated A1 adenosine receptor-induced cytoprotection. TG2 activity was stimulated by the A1 adenosine receptor in H9c2 cells via a multi protein kinase dependent pathway. These results suggest a role for TG2 in A1 adenosine receptor-induced cytoprotection. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A selective androgen receptor modulator that reduces prostate tumor size and prevents orchidectomy-induced bone loss in rats.

    Science.gov (United States)

    Allan, George; Lai, Muh-Tsann; Sbriscia, Tifanie; Linton, Olivia; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Dodds, Robert; Fiordeliso, James; Lanter, James; Sui, Zhihua; Lundeen, Scott

    2007-01-01

    The pharmacological activity of JNJ-26146900 is described. JNJ-26146900 is a nonsteroidal androgen receptor (AR) ligand with tissue-selective activity in rats. The compound was evaluated in in vitro and in vivo models of AR activity. It binds to the rat AR with a K(i) of 400nM and acts as a pure androgen antagonist in an in vitro cell-based assay. Its in vitro profile is similar to the androgen antagonist bicalutamide (Casodex). In intact rats, JNJ-26146900 reduces ventral prostate weight with an oral potency (ED(50)) of 20-30mg/kg, again comparable to that of bicalutamide. JNJ-26146900 prevented prostate tumor growth in the Dunning rat model, maximally inhibiting growth at a dose of 10mg/kg. It slowed tumor growth significantly in a CWR22-LD1 mouse xenograft model of human prostate cancer. It was tested in aged male rats for its ability to prevent bone loss and loss of lean body mass following orchidectomy. After 6 weeks of dosing, bone volume decreased by 33% in orchidectomized versus intact vehicle-treated rats with a probability (P) of less than 0.05, as measured by micro-computerized tomography analysis. At a dose of 30mg/kg, JNJ-26146900 significantly reduced castration-induced tibial bone loss as indicated by the following parameters: bone volume, trabecular connectivity, trabecular number and spacing between trabeculae. Bone mineral density decreased from 229+/-34mg/cm(3) of hydroxyapatite to 166+/-26mg/cm(3) following orchidectomy, and was maintained at 194+/-20mg/cm(3) with JNJ-26146900 treatment (Pselective androgen receptor modulators (SARMs) have the potential for anabolic effects on bone and muscle while maintaining therapeutic efficacy in prostate cancer.

  5. A study of time- and sex-dependent effects of vortioxetine on rat sexual behavior: Possible roles of direct receptor modulation.

    Science.gov (United States)

    Li, Yan; Pehrson, Alan L; Oosting, Ronald S; Gulinello, Maria; Olivier, Berend; Sanchez, Connie

    2017-07-15

    Treatment-related sexual dysfunction is a common side effect of antidepressants and contributes to patient non-compliance or treatment cessation. However, the multimodal antidepressant, vortioxetine, demonstrates low sexual side effects in depressed patients. To investigate the mechanisms involved, sexual behavior was assessed in male and female rats after acute, and repeated (7 and 14 days) treatment with vortioxetine, flesinoxan (a 5-HT 1A receptor agonist), CP-94253 (a 5-HT 1B receptor agonist), or ondansetron (a 5-HT 3 receptor antagonist). These selective ligands were chosen to simulate vortioxetine's direct modulation of these receptors. Paroxetine was also included in the male study. Acute and repeated treatment with vortioxetine at doses corresponding to clinical levels (based on serotonin transporter occupancy) had minimal effects on sexual behavior in male and female rats. High dose vortioxetine plus flesinoxan (to mimic predicted clinical levels of 5-HT 1A receptor occupancy by vortioxetine) facilitated male rat sexual behavior (acutely) while inhibiting female rat proceptive behavior (both acutely and after 14 days treatment). The selective serotonin reuptake inhibitor, paroxetine, inhibited male sexual behavior after repeated administration (7 and 14 days). Flesinoxan alone facilitated male sexual behavior acutely while inhibiting female rat proceptive behavior after repeated administration (7 and 14 days). CP-94253 inhibited sexual behavior in both male and female rats after repeated administration. Ondansetron had no effect on sexual behavior. These findings underline the complex serotonergic regulation of sexual behavior and indicate that the low sexual side effects of vortioxetine found in clinical studies are likely associated with its direct modulation of serotonin receptors. Copyright © 2017. Published by Elsevier Ltd.

  6. Novel series of potent, nonsteroidal, selective androgen receptor modulators based on 7H-[1,4]oxazino[3,2-g]quinolin-7-ones.

    Science.gov (United States)

    Higuchi, Robert I; Arienti, Kristen L; López, Francisco J; Mani, Neelakhanda S; Mais, Dale E; Caferro, Thomas R; Long, Yun Oliver; Jones, Todd K; Edwards, James P; Zhi, Lin; Schrader, William T; Negro-Vilar, Andrés; Marschke, Keith B

    2007-05-17

    Recent interest in orally available androgens has fueled the search for new androgens for use in hormone replacement therapy and as anabolic agents. In pursuit of this, we have discovered a series of novel androgen receptor modulators derived from 7H-[1,4]oxazino[3,2-g]quinolin-7-ones. These compounds were synthesized and evaluated in competitive binding assays and an androgen receptor transcriptional activation assay. A number of compounds from the series demonstrated single-digit nanomolar agonist activity in vitro. In addition, lead compound (R)-16e was orally active in established rodent models that measure androgenic and anabolic properties of these agents. In this assay, (R)-16e demonstrated full efficacy in muscle and only partially stimulated the prostate at 100 mg/kg. These data suggest that these compounds may be utilized as selective androgen receptor modulators or SARMs. This series represents a novel class of compounds for use in androgen replacement therapy.

  7. Membrane cholesterol effect on the 5-HT2A receptor: Insights into the lipid-induced modulation of an antipsychotic drug target.

    Science.gov (United States)

    Ramírez-Anguita, Juan Manuel; Rodríguez-Espigares, Ismael; Guixà-González, Ramon; Bruno, Agostino; Torrens-Fontanals, Mariona; Varela-Rial, Alejandro; Selent, Jana

    2018-01-01

    The serotonin 5-hydroxytryptamine 2A (5-HT 2A ) receptor is a G-protein-coupled receptor (GPCR) relevant for the treatment of CNS disorders. In this regard, neuronal membrane composition in the brain plays a crucial role in the modulation of the receptor functioning. Since cholesterol is an essential component of neuronal membranes, we have studied its effect on the 5-HT 2A receptor dynamics through all-atom MD simulations. We find that the presence of cholesterol in the membrane increases receptor conformational variability in most receptor segments. Importantly, detailed structural analysis indicates that conformational variability goes along with the destabilization of hydrogen bonding networks not only within the receptor but also between receptor and lipids. In addition to increased conformational variability, we also find receptor segments with reduced variability. Our analysis suggests that this increased stabilization is the result of stabilizing effects of tightly bound cholesterol molecules to the receptor surface. Our finding contributes to a better understanding of membrane-induced alterations of receptor dynamics and points to cholesterol-induced stabilizing and destabilizing effects on the conformational variability of GPCRs. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  8. GLP-1 Receptor Activation Modulates Appetite- and Reward-Related Brain Areas in Humans

    NARCIS (Netherlands)

    van Bloemendaal, L.; IJzerman, R.G.; ten Kulve, J.S.; Barkhof, F.; Konrad, R.J.; Drent, M.L.; Veltman, D.J.; Diamant, M.

    2014-01-01

    Gut-derived hormones, such as GLP-1, have been proposed to relay information to the brain to regulate appetite. GLP-1 receptor agonists, currently used for the treatment of type 2 diabetes (T2DM), improve glycemic control and stimulate satiety, leading to decreases in food intake and body weight. We

  9. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels

    Directory of Open Access Journals (Sweden)

    Takashi eMaejima

    2013-05-01

    Full Text Available Serotonergic neurons project to virtually all regions of the CNS and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing and reproductive success. Therefore serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo.

  10. Modulation of receptors and adenylate cyclase activity during sucrose feeding, food deprivation, and cold exposure

    International Nuclear Information System (INIS)

    Scarpace, P.J.; Baresi, L.A.; Morley, J.E.

    1987-01-01

    Thermogenesis in brown adipose tissue (BAT) serves as a regulator of body temperature and weight maintenance. Thermogenesis can be stimulated by catecholamine activation of adenylate cyclase through the β-adrenergic receptor. To investigate the effects of sucrose feeding, food deprivation, and cold exposure on the β-adrenergic pathway, adenylate cyclase activity and β-adrenergic receptors were assessed in rat BAT after 2 wk of sucrose feeding, 2 days of food deprivation, or 2 days of cold exposure. β-Adrenergic receptors were identified in BAT using [ 125 I]iodocyanopindolol. Binding sites had the characteristics of mixed β 1 - and β 2 -type adrenergic receptors at a ratio of 60/40. After sucrose feeding or cold exposure, there was the expected increase in BAT mitochondrial mass as measured by total cytochrome-c oxidase activity but a decrease in β-adrenergic receptor density due to a loss of the β 1 -adrenergic subtype. This BAT β-adrenergic receptor downregulation was tissue specific, since myocardial β-adrenergic receptors were unchanged with either sucrose feeding or cold exposure. Forskolin-stimulated adenylate cyclase activity increased in BAT after sucrose feeding or cold exposure but not after food deprivation. These data suggest that in BAT, sucrose feeding or cold exposure result in downregulation of β-adrenergic receptors and that isoproterenol-stimulated adenylate cyclase activity was limited by receptor availability

  11. CB1 cannabinoid receptor-mediated anandamide signaling mechanisms of the inferior colliculus modulate the haloperidol-induced catalepsy.

    Science.gov (United States)

    Medeiros, P; de Freitas, R L; Silva, M O; Coimbra, N C; Melo-Thomas, L

    2016-11-19

    The inferior colliculus (IC), a midbrain structure that processes acoustic information of aversive nature, is distinguished from other auditory nuclei in the brainstem by its connections with structures of the motor system. Previous evidence relating the IC to motor behavior shows that glutamatergic and GABAergic mechanisms in the IC exert influence on systemic haloperidol-induced catalepsy. There is substantial evidence supporting a role played by the endocannabinoid system as a modulator of the glutamatergic neurotransmission, as well as the dopaminergic activity in the basal nuclei and therefore it may be considered as a potential pharmacological target for the treatment of movement disorders. The present study evaluated if the endocannabinoid system in the IC plays a role in the elaboration of systemic haloperidol-induced catalepsy. Male Wistar rats received intracollicular microinjection of either the endogenous cannabinoid anandamide (AEA) at different concentrations (5, 50 or 100pmol/0.2μl), the CB 1 cannabinoid receptor antagonist AM251 at 50, 100 or 200pmol/0.2μl or vehicle, followed by intraperitoneal (IP) administration of either haloperidol at 0.5 or 1mg/kg or physiological saline. Systemic injection of haloperidol at both doses (0.5 or 1mg/kg, IP) produced a cataleptic state, compared to vehicle/physiological saline-treated group, lasting 30 and 50min after systemic administration of the dopaminergic receptors non-selective antagonist. The midbrain microinjection of AEA at 50pmol/0.2μl increased the latency for stepping down from the horizontal bar after systemic administration of haloperidol. Moreover, the intracollicular administration of AEA at 50pmol/0.2μl was able to increase the duration of catalepsy as compared to AEA at 100pmol/0.2-μl-treated group. Intracollicular pretreatment with AM251 at the intermediate concentration (100pmol/0.2μl) was able to decrease the duration of catalepsy after systemic administration of haloperidol. However

  12. Oxytocin and Estrogen Receptor β in the Brain: An Overview.

    Science.gov (United States)

    Acevedo-Rodriguez, Alexandra; Mani, Shaila K; Handa, Robert J

    2015-01-01

    Oxytocin (OT) is a neuropeptide synthesized primarily by neurons of the paraventricular and supraoptic nuclei of the hypothalamus. These neurons have axons that project into the posterior pituitary and release OT into the bloodstream to promote labor and lactation; however, OT neurons also project to other brain areas where it plays a role in numerous brain functions. OT binds to the widely expressed OT receptor (OTR), and, in doing so, it regulates homeostatic processes, social recognition, and fear conditioning. In addition to these functions, OT decreases neuroendocrine stress signaling and anxiety-related and depression-like behaviors. Steroid hormones differentially modulate stress responses and alter OTR expression. In particular, estrogen receptor β activation has been found to both reduce anxiety-related behaviors and increase OT peptide transcription, suggesting a role for OT in this estrogen receptor β-mediated anxiolytic effect. Further research is needed to identify modulators of OT signaling and the pathways utilized and to elucidate molecular mechanisms controlling OT expression to allow better therapeutic manipulations of this system in patient populations.

  13. Functional characterization of GABAA receptor-mediated modulation of cortical neuron network activity in microelectrode array recordings

    DEFF Research Database (Denmark)

    Bader, Benjamin M; Steder, Anne; Klein, Anders Bue

    2017-01-01

    The numerous γ-aminobutyric acid type A receptor (GABAAR) subtypes are differentially expressed and mediate distinct functions at neuronal level. In this study we have investigated GABAAR-mediated modulation of the spontaneous activity patterns of primary neuronal networks from murine frontal...... of the information extractable from the MEA recordings offers interesting insights into the contributions of various GABAAR subtypes/subgroups to cortical network activity and the putative functional interplay between these receptors in these neurons....... cortex by characterizing the effects induced by a wide selection of pharmacological tools at a plethora of activity parameters in microelectrode array (MEA) recordings. The basic characteristics of the primary cortical neurons used in the recordings were studied in some detail, and the expression levels...

  14. The AMPA receptor potentiator Org 26576 modulates stress-induced transcription of BDNF isoforms in rat hippocampus.

    Science.gov (United States)

    Fumagalli, Fabio; Calabrese, Francesca; Luoni, Alessia; Shahid, Mohammed; Racagni, Giorgio; Riva, Marco A

    2012-02-01

    Brain derived neurotrophic factor (BDNF) is a key mediator of brain plasticity. The modulation of its expression and function is important for cognition and represents a key strategy to enhance neuronal resilience. Within this context, there exists a close interaction between glutamatergic neurotransmission and BDNF activity towards regulating cellular homeostasis and plasticity. The aim of the current study was to investigate the ability of the AMPA receptor potentiator Org 26576 to modulate BDNF expression in selected brain regions under basal conditions or in response to an acute swim stress. Rats subjected to a single intraperitoneal injection with Org 26576 (10mg/kg) or saline were exposed to a swim stress session (5 min) and sacrificed 15 min after the end of stress. Real-time PCR assay was used to determine changes in BDNF transcription in different brain regions. Total BDNF mRNA levels were significantly increased in the hippocampus of animals exposed to the combination of Org 26576 and stress whereas, in prefrontal and frontal cortices, BDNF mRNA levels were modulated by the acute stress, independently from drug treatment. The analysis of BDNF transcripts in the hippocampus revealed a major contribution of exons I and IV. Our results suggest that AMPA receptor potentiation by Org 26576 exerts a positive modulatory influence on BDNF expression during ongoing neuronal activity. Given that these mechanisms are critical for neuronal plasticity, we hypothesized that such changes may facilitate learning/coping mechanisms associated with a mild stressful experience. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Correction for Inhibition Leads to an Allosteric Co-Agonist Model for Pentobarbital Modulation and Activation of α1β3γ2L GABAA Receptors.

    Directory of Open Access Journals (Sweden)

    Alexis M Ziemba

    Full Text Available Pentobarbital, like propofol and etomidate, produces important general anesthetic effects through GABAA receptors. Photolabeling also indicates that pentobarbital binds to some of the same sites where propofol and etomidate act. Quantitative allosteric co-agonist models for propofol and etomidate account for modulatory and agonist effects in GABAA receptors and have proven valuable in establishing drug site characteristics and for functional analysis of mutants. We therefore sought to establish an allosteric co-agonist model for pentobarbital activation and modulation of α1β3γ2L receptors, using a novel approach to first correct pentobarbital activation data for inhibitory effects in the same concentration range.Using oocyte-expressed α1β3γ2L GABAA receptors and two-microelectrode voltage-clamp, we quantified modulation of GABA responses by a low pentobarbital concentration and direct effects of high pentobarbital concentrations, the latter displaying mixed agonist and inhibitory effects. We then isolated and quantified pentobarbital inhibition in activated receptors using a novel single-sweep "notch" approach, and used these results to correct steady-state direct activation for inhibition.Combining results for GABA modulation and corrected direct activation, we estimated receptor open probability and optimized parameters for a Monod-Wyman-Changeux allosteric co-agonist model. Inhibition by pentobarbital was consistent with two sites with IC50s near 1 mM, while co-agonist model parameters suggest two allosteric pentobarbital agonist sites characterized by KPB ≈ 5 mM and high efficacy. The results also indicate that pentobarbital may be a more efficacious agonist than GABA.Our novel approach to quantifying both inhibitory and co-agonist effects of pentobarbital provides a basis for future structure-function analyses of GABAA receptor mutations in putative pentobarbital binding sites.

  16. Discovery of estrogen receptor α modulators from natural compounds in Si-Wu-Tang series decoctions using estrogen-responsive MCF-7 breast cancer cells.

    Science.gov (United States)

    Liu, Li; Ma, Hongyue; Tang, Yuping; Chen, Wenxing; Lu, Yin; Guo, Jianming; Duan, Jin-Ao

    2012-01-01

    The binding between the estrogen receptor α (ER-α) and a variety of compounds in traditional Chinese formulae, Si-Wu-Tang (SWT) series decoctions, was studied using a stably-transfected human breast cancer cell line (MVLN). In 38 compounds tested from SWT series decoctions, the estrogen-like activity of 22 compounds was above 60% in 20 μg mL(-1). Furthermore, theoretical affinity of these compounds was certificated using the functional virtual screen of ER-α modulators by FlexX-Pharm. The accuracy of functional virtual screening of ER-α modulators could reach to 77.27%. The results showed that some compounds, such as organic acids and flavones in SWT series decoctions could be used as selective estrogen receptor modulators (SERMs) and could be selected for further development as potential agents for estrogen related diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Dopamine receptors D3 and D5 regulate CD4(+)T-cell activation and differentiation by modulating ERK activation and cAMP production.

    Science.gov (United States)

    Franz, Dafne; Contreras, Francisco; González, Hugo; Prado, Carolina; Elgueta, Daniela; Figueroa, Claudio; Pacheco, Rodrigo

    2015-07-15

    Dopamine receptors have been described in T-cells, however their signalling pathways coupled remain unknown. Since cAMP and ERKs play key roles regulating T-cell physiology, we aim to determine whether cAMP and ERK1/2-phosphorylation are modulated by dopamine receptor 3 (D3R) and D5R, and how this modulation affects CD4(+) T-cell activation and differentiation. Our pharmacologic and genetic evidence shows that D3R-stimulation reduced cAMP levels and ERK2-phosphorylation, consequently increasing CD4(+) T-cell activation and Th1-differentiation, respectively. Moreover, D5R expression reinforced TCR-triggered ERK1/2-phosphorylation and T-cell activation. In conclusion, these findings demonstrate how D3R and D5R modulate key signalling pathways affecting CD4(+) T-cell activation and Th1-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Ursodeoxycholic Acid Suppresses Lipogenesis in Mouse Liver: Possible Role of the Decrease in β-Muricholic Acid, a Farnesoid X Receptor Antagonist.

    Science.gov (United States)

    Fujita, Kyosuke; Iguchi, Yusuke; Une, Mizuho; Watanabe, Shiro

    2017-04-01

    The farnesoid X receptor (FXR) is a major nuclear receptor of bile acids; its activation suppresses sterol regulatory element-binding protein 1c (SREBP1c)-mediated lipogenesis and decreases the lipid contents in the liver. There are many reports showing that the administration of ursodeoxycholic acid (UDCA) suppresses lipogenesis and reduces the lipid contents in the liver of experimental animals. Since UDCA is not recognized as an FXR agonist, these effects of UDCA cannot be readily explained by its direct activation of FXR. We observed that the dietary administration of UDCA in mice decreased the expression levels of SREBP1c and its target lipogenic genes. Alpha- and β-muricholic acids (MCA) and cholic acid (CA) were the major bile acids in the mouse liver but their contents decreased upon UDCA administration. The hepatic contents of chenodeoxycholic acid and deoxycholic acid (DCA) were relatively low but were not changed by UDCA. UDCA did not show FXR agonistic or antagonistic potency in in vitro FXR transactivation assay. Taking these together, we deduced that the above-mentioned change in hepatic bile acid composition induced upon UDCA administration might cause the relative increase in the FXR activity in the liver, mainly by the reduction in the content of β-MCA, a farnesoid X receptor antagonist, which suggests a mechanism by which UDCA suppresses lipogenesis and decreases the lipid contents in the mouse liver.

  19. Pathophysiological consequences of receptor mistraffic: Tales from the platelet P2Y12 receptor.

    Science.gov (United States)

    Cunningham, Margaret R; Aungraheeta, Riyaad; Mundell, Stuart J

    2017-07-05

    Genetic variations in G protein-coupled receptor (GPCR) genes can disrupt receptor function in a wide variety of human genetic diseases, including platelet bleeding disorders. Platelets are critical for haemostasis with inappropriate platelet activation leading to the development of arterial thrombosis, which can result in heart attack and stroke whilst decreased platelet activity is associated with an increased risk of bleeding. GPCRs expressed on the surface of platelets play key roles in regulating platelet activity and therefore function. Receptors include purinergic receptors (P2Y 1 and P2Y 12 ), proteinase-activated receptor (PAR1 and PAR4) and thromboxane receptors (TPα), among others. Pharmacological blockade of these receptors forms a powerful therapeutic tool in the treatment and prevention of arterial thrombosis. With the advance of genomic technologies, there has been a substantial increase in the identification of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms (SNPs) and insertion or deletions that have the potential to alter GPCR expression or function. A number of defects in platelet GPCRs that disrupt receptor function have now been characterized in patients with mild bleeding disorders. This review will focus on rare, function-disrupting variants of platelet GPCRs with particular emphasis upon mutations in the P2Y 12 receptor gene that affect receptor traffic to modulate platelet function. Further this review will outline how the identification and characterization of function-disrupting GPCR mutations provides an essential link in translating our detailed understanding of receptor traffic and function in cell line studies into relevant human biological systems. Copyright © 2017. Published by Elsevier B.V.

  20. Imidazoline2 (I2) receptor- and alpha2-adrenoceptor-mediated modulation of hypothalamic-pituitary-adrenal axis activity in control and acute restraint stressed rats.

    Science.gov (United States)

    Finn, David P; Hudson, Alan L; Kinoshita, Hiroshi; Coventry, Toni L; Jessop, David S; Nutt, David J; Harbuz, Michael S

    2004-03-01

    Central noradrenaline regulates the activity of the hypothalamic-pituitary-adrenal (HPA) axis and the neuroendocrine response to stress. alpha2-adrenoceptors and imidazoline2 (I2) receptors modulate the activity of the central noradrenergic system. The present set of experiments investigated the role of alpha2-adrenoceptors and I2 receptors in the regulation of HPA axis activity under basal conditions and during exposure to the acute psychological stress of restraint. Three separate experiments were carried out in which rats were given an i.p. injection of either saline vehicle, the combined alpha2-adrenoceptor antagonist and I2 receptor ligand idazoxan (10 mg/kg), the selective I2 receptor ligand BU224 (2.5 or 10 mg/kg) or the selective alpha2-adrenoceptor antagonist RX821002 (2.5 mg/kg) with or without restraint stress. Drugs were administered immediately prior to restraint of 60 min duration. Blood was sampled pre-injection, 30, 60 and 240 min post-injection and plasma corticosterone was measured by radioimmunoassay. In experiment 1, idazoxan increased plasma corticosterone levels in naive animals and potentiated the corticosterone response to acute restraint stress. In experiment 2, BU224 administration increased plasma corticosterone levels in a dose-related manner in naive rats. The results of experiment 3 indicated that RX821002 also elevated plasma corticosterone levels in naive rats, however, only BU224 potentiated the corticosterone response to restraint stress. These studies suggest that both alpha2-adrenoceptors and I2 receptors play a role in modulating basal HPA axis activity and that I2 receptors may play a more important role than alpha2-adrenoceptors in modulating the HPA axis response to the acute psychological stress of restraint.

  1. A nonsense mutation causing decreased levels of insulin receptor mRNA: Detection by a simplified technique for direct sequencing of genomic DNA amplified by the polymerase chain reaction

    International Nuclear Information System (INIS)

    Kadowaki, T.; Kadowaki, H.; Taylor, S.I.

    1990-01-01

    Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. The authors have studied a patient with leprechaunism (leprechaun/Minn-1), a genetic syndrome associated with intrauterine growth retardation and extreme insulin resistance. Genomic DNA from the patient was amplified by the polymerase chain reaction catalyzed by Thermus aquaticus (Taq) DNA polymerase, and the amplified DNA was directly sequenced. A nonsense mutations was identified at codon 897 in exon 14 in the paternal allele of the patient's insulin receptor gene. Levels of insulin receptor mRNA are decreased to <10% of normal in Epstein-Barr virus-transformed lymphoblasts and cultured skin fibroblasts from this patient. Thus, this nonsense mutation appears to cause a decrease in the levels of insulin receptor mRNA. In addition, they have obtained indirect evidence that the patient's maternal allele of the insulin receptor gene contains a cis-acting dominant mutation that also decreases the level of mRNA, but by a different mechanism. The nucleotide sequence of the entire protein-coding domain and the sequences of the intron-exon boundaries for all 22 exons of the maternal allele were normal. Presumably, the mutation in the maternal allele maps elsewhere in the insulin receptor gene. Thus, they conclude that the patient is a compound heterozygote for two cis-acting dominant mutations in the insulin receptor gene: (i) a nonsense mutation in the paternal allel that reduces the level of insulin receptor mRNA and (ii) an as yet unidentified mutation in the maternal allele that either decreases the rate of transcription or decreases the stability of the mRNA

  2. The administration of endocannabinoid uptake inhibitors OMDM-2 or VDM-11 promotes sleep and decreases extracellular levels of dopamine in rats.

    Science.gov (United States)

    Murillo-Rodríguez, Eric; Palomero-Rivero, Marcela; Millán-Aldaco, Diana; Di Marzo, Vincenzo

    2013-01-17

    The family of the endocannabinoid system comprises endogenous lipids (such as anandamide [ANA]), receptors (CB(1)/CB(2) cannabinoid receptors), metabolic enzymes (fatty acid amide hydrolase [FAAH]) and a putative membrane transporter (anandamide membrane transporter [AMT]). Although the role of ANA, FAAH or the CB(1) cannabinoid receptor in sleep modulation has been reported, the effects of the inhibition of AMT on sleep remain unclear. In the present study, we show that microdialysis perfusion in rats of AMT inhibitors, (9Z)-N-[1-((R)-4-hydroxbenzyl)-2-hydroxyethyl]-9-octadecenamide (OMDM-2) or N-(4-hydroxy-2-methylphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (VDM-11; 10, 20 or 30 μM; each compound) delivered into the paraventricular thalamic nucleus (PVA) increased sleep and decreased waking. In addition, the infusion of compounds reduced the extracellular levels of dopamine collected from nucleus accumbens. Taken together, these findings illustrate a critical role of AMT in sleep modulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Designed modulation of sex steroid signaling inhibits telomerase activity and proliferation of human prostate cancer cells

    International Nuclear Information System (INIS)

    Verma, Vikas; Sharma, Vikas; Singh, Vishal; Sharma, Siddharth; Bishnoi, Ajay Kumar; Chandra, Vishal; Maikhuri, J.P.; Dwivedi, Anila; Kumar, Atul; Gupta, Gopal

    2014-01-01

    The predominant estrogen-receptor (ER)-β signaling in normal prostate is countered by increased ER-α signaling in prostate cancer (CaP), which in association with androgen-receptor (AR) signaling results in pathogenesis of the disease. However CaP treatments mostly target AR signaling which is initially effective but eventually leads to androgen resistance, hence simultaneous targeting of ERs has been proposed. A novel series of molecules were designed with multiple sex-steroid receptor modulating capabilities by coalescing the pharmacophores of known anti-CaP molecules that act via modulation of ER(α/β) and/or AR, viz. 3,3′diindolylmethane (DIM), mifepristone, toremifene, tamoxifen and raloxifene. N,N-diethyl-4-((2-(4-methoxyphenyl)-1H-indol-3-yl)methyl) aniline (DIMA) was identified as the most promising structure of this new series. DIMA increased annexin-V labelling, cell-cycle arrest and caspase-3 activity, and decreased expression of AR and prostate specific antigen in LNCaP cells, in vitro. Concurrently, DIMA increased ER-β, p21 and p27 protein levels in LNCaP cells and exhibited ∼ 5 times more selective binding for ER-β than ER-α, in comparison to raloxifene. DIMA exhibited a dose-dependent ER-β agonism and ER-α antagonism in classical gene reporter assay and decreased hTERT (catalytic subunit of telomerase) transcript levels in LNCaP at 3.0 μM (P < 0.05). DIMA also dose-dependently decreased telomerase enzyme activity in prostate cancer cells. It is thus concluded that DIMA acts as a multi-steroid receptor modulator and effectively inhibits proliferation of prostate cancer cells through ER-β mediated telomerase inhibition, by countering actions of ER-α and AR. Its unique molecular design can serve as a lead structure for generation of potent agents against endocrine malignancies like the CaP

  4. Designed modulation of sex steroid signaling inhibits telomerase activity and proliferation of human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vikas; Sharma, Vikas; Singh, Vishal [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Sharma, Siddharth; Bishnoi, Ajay Kumar [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Chandra, Vishal; Maikhuri, J.P.; Dwivedi, Anila [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Kumar, Atul [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Gupta, Gopal, E-mail: g_gupta@cdri.res.in [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India)

    2014-10-15

    The predominant estrogen-receptor (ER)-β signaling in normal prostate is countered by increased ER-α signaling in prostate cancer (CaP), which in association with androgen-receptor (AR) signaling results in pathogenesis of the disease. However CaP treatments mostly target AR signaling which is initially effective but eventually leads to androgen resistance, hence simultaneous targeting of ERs has been proposed. A novel series of molecules were designed with multiple sex-steroid receptor modulating capabilities by coalescing the pharmacophores of known anti-CaP molecules that act via modulation of ER(α/β) and/or AR, viz. 3,3′diindolylmethane (DIM), mifepristone, toremifene, tamoxifen and raloxifene. N,N-diethyl-4-((2-(4-methoxyphenyl)-1H-indol-3-yl)methyl) aniline (DIMA) was identified as the most promising structure of this new series. DIMA increased annexin-V labelling, cell-cycle arrest and caspase-3 activity, and decreased expression of AR and prostate specific antigen in LNCaP cells, in vitro. Concurrently, DIMA increased ER-β, p21 and p27 protein levels in LNCaP cells and exhibited ∼ 5 times more selective binding for ER-β than ER-α, in comparison to raloxifene. DIMA exhibited a dose-dependent ER-β agonism and ER-α antagonism in classical gene reporter assay and decreased hTERT (catalytic subunit of telomerase) transcript levels in LNCaP at 3.0 μM (P < 0.05). DIMA also dose-dependently decreased telomerase enzyme activity in prostate cancer cells. It is thus concluded that DIMA acts as a multi-steroid receptor modulator and effectively inhibits proliferation of prostate cancer cells through ER-β mediated telomerase inhibition, by countering actions of ER-α and AR. Its unique molecular design can serve as a lead structure for generation of potent agents against endocrine malignancies like the CaP.

  5. N-Aryl-oxazolidin-2-imine Muscle Selective Androgen Receptor Modulators Enhance Potency through Pharmacophore Reorientation

    Energy Technology Data Exchange (ETDEWEB)

    Nirschl, Alexandra A.; Zou, Yan; Krystek, Jr., Stanley R.; Sutton, James C.; Simpkins, Ligaya M.; Lupisella, John A.; Kuhns, Joyce E.; Seethala, Ramakrishna; Golla, Rajasree; Sleph, Paul G.; Beehler, Blake C.; Grover, Gary J.; Egan, Donald; Fura, Aberra; Vyas, Viral P.; Li, Yi-Xin; Sack, John S.; Kish, Kevin F.; An, Yongmi; Bryson, James A.; Gougoutas, Jack Z.; DiMarco, John; Zahler, Robert; Ostrowski, Jacek; Hamann, Lawrence G.; (BMS)

    2010-11-09

    A novel selective androgen receptor modulator (SARM) scaffold was discovered as a byproduct obtained during synthesis of our earlier series of imidazolidin-2-ones. The resulting oxazolidin-2-imines are among the most potent SARMs known, with many analogues exhibiting sub-nM in vitro potency in binding and functional assays. Despite the potential for hydrolytic instability at gut pH, compounds of the present class showed good oral bioavailability and were highly active in a standard rodent pharmacological model.

  6. Kappa-opioid receptor signaling in the striatum as a potential modulator of dopamine transmission in cocaine dependence

    Directory of Open Access Journals (Sweden)

    Pierre eTrifilieff

    2013-06-01

    Full Text Available Cocaine addiction is accompanied by a decrease in striatal dopamine signaling, measured as a decrease in dopamine D2 receptor binding as well as blunted dopamine release in the striatum. These alterations in dopamine transmission have clinical relevance, and have been shown to correlate with cocaine-seeking behavior and response to treatment for cocaine dependence. However, the mechanisms contributing to the hypodopaminergic state in cocaine addiction remain unknown. Here we review the Positron Emission Tomography (PET imaging studies showing alterations in D2 receptor binding potential and dopamine transmission in cocaine abusers and their significance in cocaine-seeking behavior. Based on animal and human studies, we propose that the kappa receptor/dynorphin system, because of its impact on dopamine transmission and upregulation following cocaine exposure, could contribute to the hypodopaminergic state reported in cocaine addiction, and could thus be a relevant target for treatment development.

  7. Aversive odorant causing appetite decrease downregulates tyrosine decarboxylase gene expression in the olfactory receptor neuron of the blowfly, Phormia regina

    Science.gov (United States)

    Ishida, Yuko; Ozaki, Mamiko

    2012-01-01

    In the blowfly Phormia regina, exposure to d-limonene for 5 days during feeding inhibits proboscis extension reflex behavior due to decreasing tyramine (TA) titer in the brain. TA is synthesized by tyrosine decarboxylase (Tdc) and catalyzed into octopamine (OA) by TA ß-hydroxylase (Tbh). To address the mechanisms of TA titer regulation in the blowfly, we cloned Tdc and Tbh cDNAs from P. regina (PregTdc and PregTbh). The deduced amino acid sequences of both proteins showed high identity to those of the corresponding proteins from Drosophila melanogaster at the amino acid level. PregTdc was expressed in the antenna, labellum, and tarsus whereas PregTbh was expressed in the head, indicating that TA is mainly synthesized in the sensory organs whereas OA is primarily synthesized in the brain. d-Limonene exposure significantly decreased PregTdc expression in the antenna but not in the labellum and the tarsus, indicating that PregTdc expressed in the antenna is responsible for decreasing TA titer. PregTdc-like immunoreactive material was localized in the thin-walled sensillum. In contrast, the OA/TA receptor (PregOAR/TAR) was localized to the thick-walled sensillum. The results indicated that d-limonene inhibits PregTdc expression in the olfactory receptor neurons in the thin-walled sensilla, likely resulting in reduced TA levels in the receptor neurons in the antenna. TA may be transferred from the receptor neuron to the specific synaptic junction in the antennal lobe of the brain through the projection neurons and play a role in conveying the aversive odorant information to the projection and local neurons.

  8. Modulation of short-term plasticity in the corticothalamic circuit by group III metabotropic glutamate receptors.

    Science.gov (United States)

    Kyuyoung, Christine L; Huguenard, John R

    2014-01-08

    Recurrent connections in the corticothalamic circuit underlie oscillatory behavior in this network and range from normal sleep rhythms to the abnormal spike-wave discharges seen in absence epilepsy. The propensity of thalamic neurons to fire postinhibitory rebound bursts mediated by low-threshold calcium spikes renders the circuit vulnerable to both increased excitation and increased inhibition, such as excessive excitatory cortical drive to thalamic reticular (RT) neurons or heightened inhibition of thalamocortical relay (TC) neurons by RT. In this context, a protective role may be played by group III metabotropic receptors (mGluRs), which are uniquely located in the presynaptic active zone and typically act as autoreceptors or heteroceptors to depress synaptic release. Here, we report that these receptors regulate short-term plasticity at two loci in the corticothalamic circuit in rats: glutamatergic cortical synapses onto RT neurons and GABAergic synapses onto TC neurons in somatosensory ventrobasal thalamus. The net effect of group III mGluR activation at these synapses is to suppress thalamic oscillations as assayed in vitro. These findings suggest a functional role of these receptors to modulate corticothalamic transmission and protect against prolonged activity in the network.

  9. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes.

    Science.gov (United States)

    Cervetto, Chiara; Venturini, Arianna; Passalacqua, Mario; Guidolin, Diego; Genedani, Susanna; Fuxe, Kjell; Borroto-Esquela, Dasiel O; Cortelli, Pietro; Woods, Amina; Maura, Guido; Marcoli, Manuela; Agnati, Luigi F

    2017-01-01

    Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders. © 2016 International Society for Neurochemistry.

  10. Food Components Modulate Obesity and Energy Metabolism via the Transcriptional Regulation of Lipid-Sensing Nuclear Receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    Obesity is a major risk factor for chronic diseases such as diabetes, cardiovascular diseases, and hypertension. Many modern people have a tendency to overeat owing to stress and loosening of self-control. Moreover, energy expenditure varies greatly among individuals. Scientific reduction of obesity is important under these circumstances. Furthermore, recent research on molecular levels has clarified the differentiation of adipocytes, the level of subsequent fat accumulation, and the secretion of the biologically active adipokines by adipocytes. Adipose tissues and obesity have become the most important target for the prevention and treatment of many chronic diseases. We have identified various food-derived compounds modulating nuclear receptors, especially peroxisome proliferators-activated receptor(PPAR), in the regulation of energy metabolism and obesity. In this review, we discuss the PPARs that are most important in obesity and energy metabolism.

  11. PDGF-beta receptor expression and ventilatory acclimatization to hypoxia in the rat.

    Science.gov (United States)

    Alea, O A; Czapla, M A; Lasky, J A; Simakajornboon, N; Gozal, E; Gozal, D

    2000-11-01

    Activation of platelet-derived growth factor-beta (PDGF-beta) receptors in the nucleus of the solitary tract (nTS) modulates the late phase of the acute hypoxic ventilatory response (HVR) in the rat. We hypothesized that temporal changes in PDGF-beta receptor expression could underlie the ventilatory acclimatization to hypoxia (VAH). Normoxic ventilation was examined in adult Sprague-Dawley rats chronically exposed to 10% O(2), and at 0, 1, 2, 7, and 14 days, Northern and Western blots of the dorsocaudal brain stem were performed for assessment of PDGF-beta receptor expression. Although no significant changes in PDGF-beta receptor mRNA occurred over time, marked attenuation of PDGF-beta receptor protein became apparent after day 7 of hypoxic exposure. Such changes were significantly correlated with concomitant increases in normoxic ventilation, i.e., with VAH (r: -0.56, P < 0.005). In addition, long-term administration of PDGF-BB in the nTS via osmotic pumps loaded with either PDGF-BB (n = 8) or vehicle (Veh; n = 8) showed that although no significant changes in the magnitude of acute HVR occurred in Veh over time, the typical attenuation of HVR by PDGF-BB decreased over time. Furthermore, PDGF-BB microinjections did not attenuate HVR in acclimatized rats at 7 and 14 days of hypoxia (n = 10). We conclude that decreased expression of PDGF-beta receptors in the dorsocaudal brain stem correlates with the magnitude of VAH. We speculate that the decreased expression of PDGF-beta receptors is mediated via internalization and degradation of the receptor rather than by transcriptional regulation.

  12. Pharmacological characterization of an imidazolopyrazole as novel selective androgen receptor modulator.

    Science.gov (United States)

    Zhang, Xuqing; Allan, George F; Tannenbaum, Pamela; Sbriscia, Tifanie; Linton, Olivia; Lai, Muh-Tsann; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Lundeen, Scott G; Sui, Zhihua

    2013-03-01

    Selective androgen receptor modulators (SARMs) are androgens with tissue-selective activity. SARMs that have anabolic activity on muscle while having minimal stimulatory activity on prostate are classified as SARM agonists. They can be used to prevent the loss of lean body mass that is associated with cancer, immunodeficiency, renal disease and aging. They may also have anabolic activity on bone; thus, unlike estrogens, they may reverse the loss of bone strength associated with aging or hypogonadism. Our in-house effort on SARM program discovers a nonsteroidal androgen receptor ligand with a unique imidazolopyrazole moiety in its structure. In vitro, this compound is a weak androgen receptor binder and a weak androgen agonist. Despite this, in orchidectomized mature rats it is an effective SARM agonist, with an ED(50) on levator ani muscle of 3.3mg/kg and an ED(50) on ventral prostate of >30mg/kg. It has its maximal effect on muscle at the dose of 10mg/kg. In addition, this compound has mixed agonistic and antagonistic activities on prostate, reducing the weight of that tissue in intact rats by 22% at 10mg/kg. The compound does not have significant effect on gonadotropin levels or testosterone levels in both orchidectomized and intact male rats. It does not have notable progestin, estrogen or glucocorticoid agonistic or antagonistic activity in rats. In a female sexual behavior model, it improves the sexual desire of ovariectomized female rats for sexually mature intact males over nonsexually ovariectomized females. Overall, the imidazolopyrazole is a potent prostate-sparing candidate for development as a SARM agonist with an appropriate pharmacological profile for clinical benefit in muscle-wasting conditions and female sexual function disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Bilirubin Modulates Acetylcholine Receptors In Rat Superior Cervical Ganglionic Neurons In a Bidirectional Manner

    Science.gov (United States)

    Zhang, Chengmi; Wang, Zhenmeng; Dong, Jing; Pan, Ruirui; Qiu, Haibo; Zhang, Jinmin; Zhang, Peng; Zheng, Jijian; Yu, Weifeng

    2014-01-01

    Autonomic dysfunction as a partial contributing factor to cardiovascular instability in jaundiced patients is often associated with increased serum bilirubin levels. Whether increased serum bilirubin levels could directly inhibit sympathetic ganglion transmission by blocking neuronal nicotinic acetylcholine receptors (nAChRs) remains to be elucidated. Conventional patch-clamp recordings were used to study the effect of bilirubin on nAChRs currents from enzymatically dissociated rat superior cervical ganglia (SCG) neurons. The results showed that low concnetrations (0.5 and 2 μM) of bilirubin enhanced the peak ACh-evoked currents, while high concentrations (3 to 5.5 µM) of bilirubin suppressed the currents with an IC50 of 4 ± 0.5 μM. In addition, bilirubin decreased the extent of desensitization of nAChRs in a concentration-dependent manner. This inhibitory effect of bilirubin on nAChRs channel currents was non-competitive and voltage independent. Bilirubin partly improved the inhibitory effect of forskolin on ACh-induced currents without affecting the action of H-89. These data suggest that the dual effects of enhancement and suppression of bilirubin on nAChR function may be ascribed to the action mechanism of positive allosteric modulation and direct blockade. Thus, suppression of sympathetic ganglionic transmission through postganglionic nAChRs inhibition may partially contribute to the adverse cardiovascular effects in jaundiced patients. PMID:25503810

  14. Analysis of Onset Mechanisms of a Sphingosine 1-Phosphate Receptor Modulator Fingolimod-Induced Atrioventricular Conduction Block and QT-Interval Prolongation

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Yukihiro [Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143–8540 (Japan); Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama, Kanagawa 222–8567 (Japan); Nakamura, Yuji [Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143–8540 (Japan); Kitahara, Ken [Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143–8540 (Japan); Division of Cardiovascular Medicine, Department of Internal Medicine, Faculty of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143–8541 (Japan); Harada, Takuma [Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143–8540 (Japan); Kato, Kazuhiko; Ninomiya, Tomohisa [Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama, Kanagawa 222–8567 (Japan); Cao, Xin [Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143–8540 (Japan); Ohara, Hiroshi [Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143–8540 (Japan); Division of Cardiovascular Medicine, Department of Internal Medicine, Faculty of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143–8541 (Japan); Izumi-Nakaseko, Hiroko [Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143–8540 (Japan); Suzuki, Kokichi [Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama, Kanagawa 222–8567 (Japan); Ando, Kentaro [Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143–8540 (Japan); and others

    2014-11-15

    Fingolimod, a sphingosine 1-phosphate (S1P) receptor subtype 1, 3, 4 and 5 modulator, has been used for the treatment of patients with relapsing forms of multiple sclerosis, but atrioventricular conduction block and/or QT-interval prolongation have been reported in some patients after the first dose. In this study, we directly compared the electropharmacological profiles of fingolimod with those of siponimod, a modulator of sphingosine 1-phosphate receptor subtype 1 and 5, using in vivo guinea-pig model and in vitro human ether-a-go-go-related gene (hERG) assay to better understand the onset mechanisms of the clinically observed adverse events. Fingolimod (0.01 and 0.1 mg/kg) or siponimod (0.001 and 0.01 mg/kg) was intravenously infused over 10 min to the halothane-anaesthetized guinea pigs (n = 4), whereas the effects of fingolimod (1 μmol/L) and siponimod (1 μmol/L) on hERG current were examined (n = 3). The high doses of fingolimod and siponimod induced atrioventricular conduction block, whereas the low dose of siponimod prolonged PR interval, which was not observed by that of fingolimod. The high dose of fingolimod prolonged QT interval, which was not observed by either dose of siponimod. Meanwhile, fingolimod significantly inhibited hERG current, which was not observed by siponimod. These results suggest that S1P receptor subtype 1 in the heart could be one of the candidates for fingolimod- and siponimod-induced atrioventricular conduction block since S1P receptor subtype 5 is localized at the brain, and that direct I{sub Kr} inhibition may play a key role in fingolimod-induced QT-interval prolongation. - Highlights: • Fingolimod and siponimod are S1P{sub 1,3,4,5} and S1P{sub 1,5} receptor modulators, respectively. • Fingolimod and siponimod induced AV block in the halothane-anesthetized guinea pigs. • S1P{sub 1} in the hearts may be the target of fingolimod- and siponimod-induced AV block. • Fingolimod directly inhibited hERG current, which was not

  15. Analysis of Onset Mechanisms of a Sphingosine 1-Phosphate Receptor Modulator Fingolimod-Induced Atrioventricular Conduction Block and QT-Interval Prolongation

    International Nuclear Information System (INIS)

    Yagi, Yukihiro; Nakamura, Yuji; Kitahara, Ken; Harada, Takuma; Kato, Kazuhiko; Ninomiya, Tomohisa; Cao, Xin; Ohara, Hiroshi; Izumi-Nakaseko, Hiroko; Suzuki, Kokichi; Ando, Kentaro

    2014-01-01

    Fingolimod, a sphingosine 1-phosphate (S1P) receptor subtype 1, 3, 4 and 5 modulator, has been used for the treatment of patients with relapsing forms of multiple sclerosis, but atrioventricular conduction block and/or QT-interval prolongation have been reported in some patients after the first dose. In this study, we directly compared the electropharmacological profiles of fingolimod with those of siponimod, a modulator of sphingosine 1-phosphate receptor subtype 1 and 5, using in vivo guinea-pig model and in vitro human ether-a-go-go-related gene (hERG) assay to better understand the onset mechanisms of the clinically observed adverse events. Fingolimod (0.01 and 0.1 mg/kg) or siponimod (0.001 and 0.01 mg/kg) was intravenously infused over 10 min to the halothane-anaesthetized guinea pigs (n = 4), whereas the effects of fingolimod (1 μmol/L) and siponimod (1 μmol/L) on hERG current were examined (n = 3). The high doses of fingolimod and siponimod induced atrioventricular conduction block, whereas the low dose of siponimod prolonged PR interval, which was not observed by that of fingolimod. The high dose of fingolimod prolonged QT interval, which was not observed by either dose of siponimod. Meanwhile, fingolimod significantly inhibited hERG current, which was not observed by siponimod. These results suggest that S1P receptor subtype 1 in the heart could be one of the candidates for fingolimod- and siponimod-induced atrioventricular conduction block since S1P receptor subtype 5 is localized at the brain, and that direct I Kr inhibition may play a key role in fingolimod-induced QT-interval prolongation. - Highlights: • Fingolimod and siponimod are S1P 1,3,4,5 and S1P 1,5 receptor modulators, respectively. • Fingolimod and siponimod induced AV block in the halothane-anesthetized guinea pigs. • S1P 1 in the hearts may be the target of fingolimod- and siponimod-induced AV block. • Fingolimod directly inhibited hERG current, which was not observed by

  16. Are AMPA Receptor Positive Allosteric Modulators Potential Pharmacotherapeutics for Addiction?

    Directory of Open Access Journals (Sweden)

    Lucas R. Watterson

    2013-12-01

    Full Text Available Positive allosteric modulators (PAMs of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications.

  17. Changes in interleukin-1 signal modulators induced by 3,4-methylenedioxymethamphetamine (MDMA: regulation by CB2 receptors and implications for neurotoxicity

    Directory of Open Access Journals (Sweden)

    O'Shea Esther

    2011-05-01

    Full Text Available Abstract Background 3,4-Methylenedioxymethamphetamine (MDMA produces a neuroinflammatory reaction in rat brain characterized by an increase in interleukin-1 beta (IL-1β and microglial activation. The CB2 receptor agonist JWH-015 reduces both these changes and partially protects against MDMA-induced neurotoxicity. We have examined MDMA-induced changes in IL-1 receptor antagonist (IL-1ra levels and IL-1 receptor type I (IL-1RI expression and the effects of JWH-015. The cellular location of IL-1β and IL-1RI was also examined. MDMA-treated animals were given the soluble form of IL-1RI (sIL-1RI and neurotoxic effects examined. Methods Dark Agouti rats received MDMA (12.5 mg/kg, i.p. and levels of IL-1ra and expression of IL-1RI measured 1 h, 3 h or 6 h later. JWH-015 (2.4 mg/kg, i.p. was injected 48 h, 24 h and 0.5 h before MDMA and IL-1ra and IL-1RI measured. For localization studies, animals were sacrificed 1 h or 3 h following MDMA and stained for IL-1β or IL-1RI in combination with neuronal and microglial markers. sIL-1RI (3 μg/animal; i.c.v. was administered 5 min before MDMA and 3 h later. 5-HT transporter density was determined 7 days after MDMA injection. Results MDMA produced an increase in IL-ra levels and a decrease in IL-1RI expression in hypothalamus which was prevented by CB2 receptor activation. IL-1RI expression was localized on neuronal cell bodies while IL-1β expression was observed in microglial cells following MDMA. sIL-1RI potentiated MDMA-induced neurotoxicity. MDMA also increased IgG immunostaining indicating that blood brain-barrier permeability was compromised. Conclusions In summary, MDMA produces changes in IL-1 signal modulators which are modified by CB2 receptor activation. These results indicate that IL-1β may play a partial role in MDMA-induced neurotoxicity.

  18. Nature and regulation of the insulin receptor: structure and function

    International Nuclear Information System (INIS)

    Czech, M.P.

    1985-01-01

    Native, cell-surface insulin receptor consists of two glycoprotein subunit types with apparent masses of about 125,000 daltons (alpha subunit) and 90,000 daltons (beta subunit). The alpha and beta insulin-receptor subunits seem to have distinct functions such that alpha appears to bind hormone whereas beta appears to possess intrinsic tyrosine kinase activity. In detergent extracts, insulin activates receptor autophosphorylation of tyrosine residues on its beta subunit, whereas in the presence of reductant, the alpha subunit is also phosphorylated. In intact cells, insulin activates serine/threonine phosphorylation of insulin receptor beta subunit as well as tyrosine phosphorylation. The biological role of the receptor-associated tyrosine kinase is not known. The insulin receptor kinase is regulated by beta-adrenergic agonists and other agents that elevate cAMP in adipocytes, presumably via the cAMP-dependent protein kinase. Such agents decrease receptor affinity for insulin and partially uncouple receptor tyrosine kinase activity from activation by insulin. These effects appear to contribute to the biological antagonism between insulin and beta-agonists. These data suggest the hypothesis that a complex network of tyrosine and serine/threonine phosphorylations on the insulin receptor modulate its binding and kinase activities in an antagonistic manner

  19. Reduced beta-adrenergic receptor activation decreases G-protein expression and beta-adrenergic receptor kinase activity in porcine heart.

    OpenAIRE

    Ping, P; Gelzer-Bell, R; Roth, D A; Kiel, D; Insel, P A; Hammond, H K

    1995-01-01

    To determine whether beta-adrenergic receptor agonist activation influences guanosine 5'-triphosphate-binding protein (G-protein) expression and beta-adrenergic receptor kinase activity in the heart, we examined the effects of chronic beta 1-adrenergic receptor antagonist treatment (bisoprolol, 0.2 mg/kg per d i.v., 35 d) on components of the myocardial beta-adrenergic receptor-G-protein-adenylyl cyclase pathway in porcine myocardium. Three novel alterations in cardiac adrenergic signaling as...

  20. An ultra-HTS process for the identification of small molecule modulators of orphan G-protein-coupled receptors.

    Science.gov (United States)

    Cacace, Angela; Banks, Martyn; Spicer, Timothy; Civoli, Francesca; Watson, John

    2003-09-01

    G-protein-coupled receptors (GPCRs) are the most successful target proteins for drug discovery research to date. More than 150 orphan GPCRs of potential therapeutic interest have been identified for which no activating ligands or biological functions are known. One of the greatest challenges in the pharmaceutical industry is to link these orphan GPCRs with human diseases. Highly automated parallel approaches that integrate ultra-high throughput and focused screening can be used to identify small molecule modulators of orphan GPCRs. These small molecules can then be employed as pharmacological tools to explore the function of orphan receptors in models of human disease. In this review, we describe methods that utilize powerful ultra-high-throughput screening technologies to identify surrogate ligands of orphan GPCRs.

  1. Nonsteroidal selective androgen receptor modulators enhance female sexual motivation.

    Science.gov (United States)

    Jones, Amanda; Hwang, Dong Jin; Duke, Charles B; He, Yali; Siddam, Anjaiah; Miller, Duane D; Dalton, James T

    2010-08-01

    Women experience a decline in estrogen and androgen levels after natural or surgically induced menopause, effects that are associated with a loss of sexual desire and bone mineral density. Studies in our laboratories have shown the beneficial effects of selective androgen receptor modulators (SARMs) in the treatment of osteoporosis and muscle wasting in animal models. A series of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-cyano-3-trifluoromethyl-phenyl)-propionamide analogs was synthesized to evaluate the effects of B-ring substitutions on in vitro and in vivo pharmacologic activity, especially female sexual motivation. The androgen receptor (AR) relative binding affinities ranged from 0.1 to 26.5% (relative to dihydrotestosterone) and demonstrated a range of agonist activity at 100 nM. In vivo pharmacologic activity was first assessed by using male rats. Structural modifications to the B-ring significantly affected the selectivity of the SARMs, demonstrating that single-atom substitutions can dramatically and unexpectedly influence activity in androgenic (i.e., prostate) and anabolic (i.e., muscle) tissues. (S)-N-(4-cyano-3-trifluoromethyl-phenyl)-3-(3-fluoro,4-chlorophenoxy)-2-hydroxy-2-methyl-propanamide (S-23) displayed full agonist activity in androgenic and anabolic tissues; however, the remaining SARMs were more prostate-sparing, selectively maintaining the size of the levator ani muscle in castrated rats. The partner-preference paradigm was used to evaluate the effects of SARMs on female sexual motivation. With the exception of two four-halo substituted analogs, the SARMs increased sexual motivation in ovariectomized rats, with potency and efficacy comparable with testosterone propionate. These results indicate that the AR is important in regulating female libido given the nonaromatizable nature of SARMs and it could be a superior alternative to steroidal testosterone preparations in the treatment of hypoactive sexual desire disorder.

  2. The heterotrimeric G protein Gβ1 interacts with the catalytic subunit of protein phosphatase 1 and modulates G protein-coupled receptor signaling in platelets.

    Science.gov (United States)

    Pradhan, Subhashree; Khatlani, Tanvir; Nairn, Angus C; Vijayan, K Vinod

    2017-08-11

    Thrombosis is caused by the activation of platelets at the site of ruptured atherosclerotic plaques. This activation involves engagement of G protein-coupled receptors (GPCR) on platelets that promote their aggregation. Although it is known that protein kinases and phosphatases modulate GPCR signaling, how serine/threonine phosphatases integrate with G protein signaling pathways is less understood. Because the subcellular localization and substrate specificity of the catalytic subunit of protein phosphatase 1 (PP1c) is dictated by PP1c-interacting proteins, here we sought to identify new PP1c interactors. GPCRs signal via the canonical heterotrimeric Gα and Gβγ subunits. Using a yeast two-hybrid screen, we discovered an interaction between PP1cα and the heterotrimeric G protein Gβ 1 subunit. Co-immunoprecipitation studies with epitope-tagged PP1c and Gβ 1 revealed that Gβ 1 interacts with the PP1c α, β, and γ1 isoforms. Purified PP1c bound to recombinant Gβ 1 -GST protein, and PP1c co-immunoprecipitated with Gβ 1 in unstimulated platelets. Thrombin stimulation of platelets induced the dissociation of the PP1c-Gβ 1 complex, which correlated with an association of PP1c with phospholipase C β3 (PLCβ3), along with a concomitant dephosphorylation of the inhibitory Ser 1105 residue in PLCβ3. siRNA-mediated depletion of GNB1 (encoding Gβ 1 ) in murine megakaryocytes reduced protease-activated receptor 4, activating peptide-induced soluble fibrinogen binding. Thrombin-induced aggregation was decreased in PP1cα -/- murine platelets and in human platelets treated with a small-molecule inhibitor of Gβγ. Finally, disruption of PP1c-Gβ 1 complexes with myristoylated Gβ 1 peptides containing the PP1c binding site moderately decreased thrombin-induced human platelet aggregation. These findings suggest that Gβ 1 protein enlists PP1c to modulate GPCR signaling in platelets.

  3. D2-like receptors in the descending dopaminergic pathway are not involved in the decreased postoperative nociceptive threshold induced by plantar incision in adult rats

    Directory of Open Access Journals (Sweden)

    Ohtani N

    2016-10-01

    Full Text Available Norimasa Ohtani, Eiji Masaki Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan Background: Approximately half of all patients who undergo surgery develop postoperative pain, the mechanisms of which are not well understood by anesthesiologists. D2-like receptors in the descending dopaminergic pathway play an important role in regulation of pain transmission in the spinal cord. Impairment of inhibitory neurons in the spinal cord is suggested as part of the mechanism for neuropathic pain, which is one component of postoperative pain. The purpose of this study was to investigate whether impairment of D2-like receptors in the descending dopaminergic pathway in the spinal cord is involved in the decreased postoperative nociceptive threshold in rats.Methods: Male Sprague-Dawley rats (250–300 g were anesthetized with sevoflurane and an intrathecal (IT catheter was implanted. Six days later, a plantar incision was made. On the following day, saline, a D2-like receptor agonist (quinpirole, or a D2-like receptor antagonist (sulpiride was administered intrathecally. Thermal and mechanical nociceptive responses were assessed by exposure to infrared radiant heat and the von Frey filament test before and after plantar incision.Results: Plantar incision decreased both thermal latency and the mechanical nociceptive threshold. IT administration of quinpirole inhibited the nociceptive responses induced by plantar incision, but sulpiride had no effect.Conclusion: A D2-like receptor agonist had antinociceptive effects on the hypersensitivity response triggered by a surgical incision, but a D2-like receptor antagonist had no effect on this response. These results suggest that impairment and/or modification of D2-like receptors in the descending dopaminergic pathway in the spinal cord is not involved in the postoperative decrease in nociceptive threshold. Keywords: postoperative pain, descending pathway

  4. Interleukin-1 receptor antagonist modulates the early phase of liver regeneration after partial hepatectomy in mice.

    Directory of Open Access Journals (Sweden)

    Antonino Sgroi

    Full Text Available BACKGROUND: Cytokine administration is a potential therapy for acute liver failure by reducing inflammatory responses and favour hepatocyte regeneration. The aim of this study was to evaluate the role of interleukin-1 receptor antagonist (IL-1ra during liver regeneration and to study the effect of a recombinant human IL-1ra on liver regeneration. METHODS: We performed 70%-hepatectomy in wild type (WT mice, IL-1ra knock-out (KO mice and in WT mice treated by anakinra. We analyzed liver regeneration at regular intervals by measuring the blood levels of cytokines, the hepatocyte proliferation by bromodeoxyuridin (BrdU incorporation, proliferating cell nuclear antigen (PCNA and Cyclin D1 expression. The effect of anakinra on hepatocyte proliferation was also tested in vitro using human hepatocytes. RESULTS: At 24h and at 48 h after hepatectomy, IL-1ra KO mice had significantly higher levels of pro-inflammatory cytokines (IL-6, IL-1β and MCP-1 and a reduced and delayed hepatocyte proliferation measured by BrdU incorporation, PCNA and Cyclin D1 protein levels, when compared to WT mice. IGFBP-1 and C/EBPβ expression was significantly decreased in IL-1ra KO compared to WT mice. WT mice treated with anakinra showed significantly decreased levels of IL-6 and significantly higher hepatocyte proliferation at 24h compared to untreated WT mice. In vitro, primary human hepatocytes treated with anakinra showed significantly higher proliferation at 24h compared to hepatocytes without treatment. CONCLUSION: IL1ra modulates the early phase of liver regeneration by decreasing the inflammatory stress and accelerating the entry of hepatocytes in proliferation. IL1ra might be a therapeutic target to improve hepatocyte proliferation.

  5. Oxygen dependency of epidermal growth factor receptor binding and DNA synthesis of rat hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Tetsuro; Terajima, Hiroaki; Yamauchi, Akira

    1997-01-01

    Background/Aims: Changes in oxygen availability modulate replicative responses in several cell types, but the effects on hepatocyte replication remain unclear. We have studied the effects of transient nonlethal hypoxia on epidermal growth factor receptor binding and epidermal growth factor-induced DNA synthesis of rat hepatocytes. Methods: Lactate dehydrogenase activity in culture supernatant, intracellular adenosine triphosphate content, 125 I-epidermal growth factor specific binding, epidermal growth factor receptor protein expression, and 3 H-thymidine incorporation were compared between hepatocytes cultured in hypoxia and normoxia. Results: Hypoxia up to 3 h caused no significant increase in lactate dehydrogenase activity in the culture supernatant, while intracellular adenosine triphosphate content decreased time-dependently and was restored to normoxic levels by reoxygenation (nonlethal hypoxia). Concomitantly, 125 I-epidermal growth factor specific binding to hepatocytes decreased time-dependently (to 54.1% of normoxia) and was restored to control levels by reoxygenation, although 125 I-insulin specific binding was not affected. The decrease in 125 I-epidermal growth factor specific binding was explained by the decrease in the number or available epidermal growth factor receptors (21.37±3.08 to 12.16±1.42 fmol/10 5 cells), while the dissociation constant of the receptor was not affected. The change in the number of available receptors was not considered to be due to receptor degradation-resynthesis, since immuno-detection of the epidermal growth factor receptor revealed that the receptor protein expression did not change during hypoxia and reoxygenation, and since neither actinomycin D nor cycloheximide affected the recovery of 125 I-epidermal growth factor binding by reoxygenation. Inhibition of epidermal growth factor-induced DNA synthesis after hypoxia (to 75.4% of normoxia by 3 h hypoxia) paralleled the decrease in 125 I-epidermal growth factor binding

  6. Modulation of the TGF-β1-induced epithelial to mesenchymal transition (EMT) mediated by P1 and P2 purine receptors in MDCK cells.

    Science.gov (United States)

    Zuccarini, Mariachiara; Giuliani, Patricia; Buccella, Silvana; Di Liberto, Valentina; Mudò, Giuseppa; Belluardo, Natale; Carluccio, Marzia; Rossini, Margherita; Condorelli, Daniele Filippo; Rathbone, Michel Piers; Caciagli, Francesco; Ciccarelli, Renata; Di Iorio, Patrizia

    2017-12-01

    Epithelial to mesenchymal transition (EMT) occurs during embryogenesis or under pathological conditions such as hypoxia, injury, chronic inflammation, or tissue fibrosis. In renal tubular epithelial cells (MDCK), TGF-β1 induces EMT by reducing or increasing epithelial or mesenchymal marker expression, respectively. In this study, we confirmed that the cAMP analogues, 8-CPT-cAMP or N6-Ph-cAMP, inhibited the TGF-β1-driven overexpression of the mesenchymal markers ZEB-1, Slug, Fibronectin, and α-SMA. Furthermore, we showed that A1, A2A, P2Y1, P2Y11, and P2X7 purine receptor agonists modulated the TGF-β1-induced EMT through the involvement of PKA and/or MAPK/ERK signaling. The stimulation of A2A receptor reduced the overexpression of the EMT-related markers, mainly through the cAMP-dependent PKA pathway, as confirmed by cell pre-treatment with Myr-PKI. Both A1 and P2Y1 receptor stimulation exacerbated the TGF-β1-driven effects, which were reduced by cell pre-treatment with the MAPK inhibitor PD98059, according to the increased ERK1/2 phosphorylation upon receptor activation. The effects induced by P2Y11 receptor activation were oppositely modulated by PKA or MAPK inhibition, in line with the dual nature of the Gs- and Gq-coupled receptor. Differently, P2X7 receptor induced, per se, similar and not additive effects compared to TGF-β1, after prolonged cell exposure to BzATP. These results suggest a putative role of purine receptors as target for anti-fibrotic agents.

  7. Beyond the HPA-axis: The role of the gonadal steroid hormone receptors in modulating stress-related responses in an animal model of PTSD.

    Science.gov (United States)

    Fenchel, Daphna; Levkovitz, Yechiel; Vainer, Ella; Kaplan, Zeev; Zohar, Joseph; Cohen, Hagit

    2015-06-01

    The hypothalamic-pituitary-adrenal (HPA) axis, which plays a major role in the response to stress, and the hypothalamic-pituitary-gonadal (HPG) axis are closely linked with the ability to inhibit the other. Testosterone, a product of the HPG, has many beneficial effects beyond its functions as a sex hormone including anti-anxiety properties. In this study we examined the effect of stress exposure on gonadal hormones, and their efficacy in modulating anxiety-like response in an animal model of PTSD. Male rats were exposed to predator scent stress, followed by analysis of brain expression of androgen receptor (AR) receptor and estrogen receptor α (ERα). The behavioral effects of immediate treatment with testosterone, testosterone receptor antagonist (flutamide) or vehicle were evaluated using the elevated plus-maze, acoustic startle response and trauma-cue response. Levels of circulating corticosterone and testosterone were also measured after treatment. The behavioral effects of delayed testosterone treatment were explored in the same manner. We report that animals whose behavior was extremely disrupted (EBR) selectively displayed significant down-regulation of AR and ERα in the hippocampus. Immediate treatment with flutamide or delayed treatment with testosterone significantly increased prevalence rates of minimal behavioral response (MBR) and decreased prevalence of EBR with favorable behavioral results. Testosterone levels were higher in control un-exposed animals, while corticosterone was higher in control exposed animals. This study suggests that gonadal steroid hormones are involved in the neurobiological response to predator scent stress and thus warrant further study as a potential therapeutic avenue for the treatment of anxiety-related disorders. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  8. Ivy and neurogliaform interneurons are a major target of μ opioid receptor modulation

    Science.gov (United States)

    Krook-Magnuson, Esther; Luu, Lillian; Lee, Sang-Hun; Varga, Csaba; Soltesz, Ivan

    2011-01-01

    Mu opioid receptors (μORs) are selectively expressed on interneurons in area CA1 of the hippocampus. Fast-spiking, parvalbumin expressing, basket cells express μORs, but circumstantial evidence suggests that another major, unidentified, GABAergic cell class must also be modulated by μORs. Here we report that the abundant, dendritically targeting, neurogliaform family of cells (Ivy and neurogliaform cells) is a previously unrecognized target of direct modulation by μORs. Ivy and neurogliaform cells are not only numerous, but also have unique properties, including promiscuous gap junctions formed with various interneuronal subtypes, volume transmission, and the ability to produce a postsynaptic GABAB response after a single presynaptic spike. Using a mouse line expressing green fluorescent protein under the neuropeptide Y promoter, we find that across all layers of CA1, activation of μORs hyperpolarizes Ivy and neurogliaform cells. Further, paired recordings between synaptically coupled Ivy and pyramidal cells show that Ivy cell terminals are dramatically inhibited by μOR-activation. Effects in Ivy and neurogliaform cells are seen at similar concentrations of agonist as those producing inhibition in fast-spiking PV basket cells. We also report that Ivy cells display the recently described phenomenon of persistent firing, a state of continued firing in the absence of continued input, and that induction of persistent firing is inhibited by μOR-activation. Together these findings identify a major, previously unrecognized, target of μOR-modulation. Given the prominence of this cell type in and beyond CA1, as well as its unique role in microcircuitry, opioid modulation of neurogliaform cells has wide implications. PMID:22016519

  9. Ivy and neurogliaform interneurons are a major target of μ-opioid receptor modulation.

    Science.gov (United States)

    Krook-Magnuson, Esther; Luu, Lillian; Lee, Sang-Hun; Varga, Csaba; Soltesz, Ivan

    2011-10-19

    μ-Opioid receptors (μORs) are selectively expressed on interneurons in area CA1 of the hippocampus. Fast-spiking, parvalbumin-expressing, basket cells express μORs, but circumstantial evidence suggests that another major, unidentified, GABAergic cell class must also be modulated by μORs. Here we report that the abundant, dendritically targeting, neurogliaform family of cells (Ivy and neurogliaform cells) is a previously unrecognized target of direct modulation by μORs. Ivy and neurogliaform cells are not only numerous but also have unique properties, including promiscuous gap junctions formed with various interneuronal subtypes, volume transmission, and the ability to produce a postsynaptic GABA(B) response after a single presynaptic spike. Using a mouse line expressing green fluorescent protein under the neuropeptide Y promoter, we find that, across all layers of CA1, activation of μORs hyperpolarizes Ivy and neurogliaform cells. Furthermore, paired recordings between synaptically coupled Ivy and pyramidal cells show that Ivy cell terminals are dramatically inhibited by μOR activation. Effects in Ivy and neurogliaform cells are seen at similar concentrations of agonist as those producing inhibition in fast-spiking parvalbumin basket cells. We also report that Ivy cells display the recently described phenomenon of persistent firing, a state of continued firing in the absence of continued input, and that induction of persistent firing is inhibited by μOR activation. Together, these findings identify a major, previously unrecognized, target of μOR modulation. Given the prominence of this cell type in and beyond CA1, as well as its unique role in microcircuitry, opioid modulation of neurogliaform cells has wide implications.

  10. The adipokinetic hormone receptor modulates sexual behavior, pheromone perception and pheromone production in a sex-specific and starvation-dependent manner in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Sebastien eLebreton

    2016-01-01

    Full Text Available Food availability and nutritional status shape the reproductive activity of many animals. In rodents, hormones such as gonadotropin-releasing hormone (GnRH, restore energy homeostasis not only through regulating e.g. caloric intake and energy housekeeping, but also through modulating sex drive. We investigated whether the insect homologue of the GnRH receptor, the adipokinetic hormone receptor (AKHR modulates sexual behavior of the fruit fly Drosophila melanogaster depending on nutritional status. We found that AKHR regulates male, but not female sexual behavior in a starvation-dependent manner. Males lacking AKHR showed a severe decrease in their courtship activity when starved, as well as an increase in mating duration when fed. AKHR expression is particularly strong in the subesophageal zone (SEZ, Ito et al. 2014. We found axonal projections from AKHR-expressing neurons to higher brain centers including specific glomeruli in the antennal lobe. Among the glomeruli that received projections were those dedicated to detecting the male specific pheromone cis-vaccenyl acetate (cVA. Accordingly, responses to cVA were dependent on the nutritional status of flies. AKHR was also involved in the regulation of the production of cuticular pheromones, 7,11-heptacosadiene and 7-tricosene. This effect was observed only in females and depended on their feeding state. AKHR has therefore a dual role on both pheromone perception and production. For the first time our study shows an effect of AKHR on insect sexual behavior and physiology. Our results support the hypothesis of a conserved role of the GnRH/AKH pathway on a nutritional state-dependent regulation of reproduction in both vertebrates and invertebrates.

  11. The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity.

    Science.gov (United States)

    Kraehenmann, Rainer; Schmidt, André; Friston, Karl; Preller, Katrin H; Seifritz, Erich; Vollenweider, Franz X

    2016-01-01

    Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual-limbic-prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders.

  12. The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity

    Directory of Open Access Journals (Sweden)

    Rainer Kraehenmann

    2016-01-01

    Full Text Available Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual–limbic–prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders.

  13. The selective positive allosteric M1 muscarinic receptor modulator PQCA attenuates learning and memory deficits in the Tg2576 Alzheimer's disease mouse model.

    Science.gov (United States)

    Puri, Vanita; Wang, Xiaohai; Vardigan, Joshua D; Kuduk, Scott D; Uslaner, Jason M

    2015-01-01

    We have recently shown that the M1 muscarinic receptor positive allosteric modulator, PQCA, improves cognitive performance in rodents and non-human primates administered the muscarinic receptor antagonist scopolamine. The purpose of the present experiments was to characterize the effects of PQCA in a model more relevant to the disease pathology of Alzheimer's disease. Tg2576 transgenic mice that have elevated Aβ were tested in the novel object recognition task to characterize recognition memory as a function of age and treatment with the PQCA. The effects of PQCA were compared to the acetylcholinesterase inhibitor donepezil, the standard of care for Alzheimer's disease. In addition, the effect of co-administering PQCA and donepezil was evaluated. Aged Tg2576 mice demonstrated a deficit in recognition memory that was significantly attenuated by PQCA. The positive control donepezil also reversed the deficit. Furthermore, doses of PQCA and donepezil that were inactive on their own were found to improve recognition memory when given together. These studies suggest that M1 muscarinic receptor positive allosteric modulation can ameliorate memory deficits in disease relevant models of Alzheimer's disease. These data, combined with our previous findings demonstrating PQCA improves scopolamine-induced cognitive deficits in both rodents and non-human primates, suggest that M1 positive allosteric modulators have therapeutic potential for the treatment of Alzheimer's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Cooperative ethylene receptor signaling

    OpenAIRE

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The gaseous plant hormone ethylene is perceived by a family of five ethylene receptor members in the dicotyledonous model plant Arabidopsis. Genetic and biochemical studies suggest that the ethylene response is suppressed by ethylene receptor complexes, but the biochemical nature of the receptor signal is unknown. Without appropriate biochemical measures to trace the ethylene receptor signal and quantify the signal strength, the biological significance of the modulation of ethylene responses ...

  15. D2-like receptors in the descending dopaminergic pathway are not involved in the decreased postoperative nociceptive threshold induced by plantar incision in adult rats.

    Science.gov (United States)

    Ohtani, Norimasa; Masaki, Eiji

    2016-01-01

    Approximately half of all patients who undergo surgery develop postoperative pain, the mechanisms of which are not well understood by anesthesiologists. D2-like receptors in the descending dopaminergic pathway play an important role in regulation of pain transmission in the spinal cord. Impairment of inhibitory neurons in the spinal cord is suggested as part of the mechanism for neuropathic pain, which is one component of postoperative pain. The purpose of this study was to investigate whether impairment of D2-like receptors in the descending dopaminergic pathway in the spinal cord is involved in the decreased postoperative nociceptive threshold in rats. Male Sprague-Dawley rats (250-300 g) were anesthetized with sevoflurane and an intrathecal (IT) catheter was implanted. Six days later, a plantar incision was made. On the following day, saline, a D2-like receptor agonist (quinpirole), or a D2-like receptor antagonist (sulpiride) was administered intrathecally. Thermal and mechanical nociceptive responses were assessed by exposure to infrared radiant heat and the von Frey filament test before and after plantar incision. Plantar incision decreased both thermal latency and the mechanical nociceptive threshold. IT administration of quinpirole inhibited the nociceptive responses induced by plantar incision, but sulpiride had no effect. A D2-like receptor agonist had antinociceptive effects on the hypersensitivity response triggered by a surgical incision, but a D2-like receptor antagonist had no effect on this response. These results suggest that impairment and/or modification of D2-like receptors in the descending dopaminergic pathway in the spinal cord is not involved in the postoperative decrease in nociceptive threshold.

  16. Corticotropin-Releasing Factor Receptors Modulate Oxytocin Release in the Dorsolateral Bed Nucleus of the Stria Terminalis (BNST in Male Rats

    Directory of Open Access Journals (Sweden)

    Daisy Martinon

    2018-03-01

    Full Text Available The neuropeptide oxytocin (OT plays an important role in the regulation of social and anxiety-like behavior. Our previous studies have shown that OT neurons send projections from the hypothalamus to the dorsolateral bed nucleus of the stria terminalis (BNSTdl, a forebrain region critically involved in the modulation of anxiety-like behavior. Importantly, these OT terminals in the BNSTdl express presynaptic corticotropin releasing factor (CRF receptor type 2 (CRFR2. This suggests that CRFR2 might be involved in the modulation of OT release. To test this hypothesis, we measured OT content in microdialysates collected from the BNSTdl of freely-moving male Sprague-Dawley rats following the administration of a selective CRFR2 agonist (Urocortin 3 or antagonist (Astressin 2B, As2B. To determine if type 1 CRF receptors (CRFR1 are also involved, we used selective CRFR1 antagonist (NBI35965 as well as CRF, a putative ligand of both CRFR1 and CRFR2. All compounds were delivered directly into the BNSTdl via reverse dialysis. OT content in the microdialysates was measured with highly sensitive and selective radioimmunoassay. Blocking CRFR2 with As2B caused an increase in OT content in BNSTdl microdialysates, whereas CRFR2 activation by Urocortin 3 did not have an effect. The As2B-induced increase in OT release was blocked by application of the CRFR1 antagonist demonstrating that the effect was dependent on CRFR1 transmission. Interestingly, CRF alone caused a delayed increase in OT content in BNSTdl microdialysates, which was dependent on CRF2 but not CRF1 receptors. Our results suggest that members of the CRF peptide family modulate OT release in the BNSTdl via a fine-tuned mechanism that involves both CRFR1 and CRFR2. Further exploration of mechanisms by which endogenous OT system is modulated by CRF peptide family is needed to better understand the role of these neuropeptides in the regulation of anxiety and the stress response.

  17. Serotonin inputs to the dorsal BNST modulate anxiety in a 5-HT1A receptor dependent manner

    Science.gov (United States)

    Garcia-Garcia, Alvaro L.; Canetta, Sarah; Stujenske, Joseph M.; Burghardt, Nesha S.; Ansorge, Mark S.; Dranovsky, Alex; Leonardo, E. David

    2017-01-01

    Serotonin (5-HT) neurons project from the raphe nuclei throughout the brain where they act to maintain homeostasis. Here, we study 5-HT inputs into the bed nucleus of the stria terminalis (BNST), a major subdivision of the extended amygdala that has been proposed to regulate responses to anxiogenic environments in humans and rodents. While the dorsal part of the BNST (dBNST) receives dense 5-HT innervation, whether and how 5-HT in the dBNST normally modulates anxiety remains unclear. Using optogenetics, we demonstrate that activation of 5-HT terminals in the dBNST reduces anxiety in a highly anxiogenic environment. Further analysis revealed that optogenetic inhibition of 5-HT inputs into the dBNST increases anxiety in a less anxiogenic environment. We found that 5-HT predominantly hyperpolarizes dBNST neurons, reducing their activity in a manner that can be blocked by a 5-HT1A antagonist. Finally, we demonstrate that activation of 5-HT1A receptors in the dBNST is necessary for the anxiolytic effect observed following optogenetic stimulation of 5-HT inputs into the dBNST. These data reveal that 5-HT release in the dBNST modulates anxiety-like behavior via 5-HT1A receptors under naturalistic conditions. PMID:28761080

  18. Prediction of consensus binding mode geometries for related chemical series of positive allosteric modulators of adenosine and muscarinic acetylcholine receptors.

    Science.gov (United States)

    Sakkal, Leon A; Rajkowski, Kyle Z; Armen, Roger S

    2017-06-05

    Following insights from recent crystal structures of the muscarinic acetylcholine receptor, binding modes of Positive Allosteric Modulators (PAMs) were predicted under the assumption that PAMs should bind to the extracellular surface of the active state. A series of well-characterized PAMs for adenosine (A 1 R, A 2A R, A 3 R) and muscarinic acetylcholine (M 1 R, M 5 R) receptors were modeled using both rigid and flexible receptor CHARMM-based molecular docking. Studies of adenosine receptors investigated the molecular basis of the probe-dependence of PAM activity by modeling in complex with specific agonist radioligands. Consensus binding modes map common pharmacophore features of several chemical series to specific binding interactions. These models provide a rationalization of how PAM binding slows agonist radioligand dissociation kinetics. M 1 R PAMs were predicted to bind in the analogous M 2 R PAM LY2119620 binding site. The M 5 R NAM (ML-375) was predicted to bind in the PAM (ML-380) binding site with a unique induced-fit receptor conformation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. The number of FceRI receptors on basophils decreases during subcutaneous immunotherapy

    DEFF Research Database (Denmark)

    Schmid, J. M.; Dahl, R.; Hoffmann, H. J.

    2015-01-01

    Background: Allergen specific immunotherapy is the only disease modifying treatment of allergic diseases. It induces complex cellular and humoral changes leading to an inhibition of type-1 allergic reactions. Method: Twenty four young grass pollen allergic adults suffering from seasonal rhino......-conjunctivitis were randomized to receive standard subcutaneous immunotherapy (n = 18) or to an open control group (n = 6). The number of FceRI receptors on basophils was measured by quantitative analysis of indirect immunofluorescence by flow cytometry. Grass binding to basophils was measured by staining with grass......)/basophil in the treatment group (n = 0.016), while it remained constant in the control group (pre: 102424; post: 103753). We found only minor changes in maximal grass binding on the basophils. The allergen concentration leading to halfmaximum grass binding decreased slightly during SCIT, whereas the EC50...

  20. The allosteric site regulates the voltage sensitivity of muscarinic receptors.

    Science.gov (United States)

    Hoppe, Anika; Marti-Solano, Maria; Drabek, Matthäus; Bünemann, Moritz; Kolb, Peter; Rinne, Andreas

    2018-01-01

    Muscarinic receptors (M-Rs) for acetylcholine (ACh) belong to the class A of G protein-coupled receptors. M-Rs are activated by orthosteric agonists that bind to a specific site buried in the M-R transmembrane helix bundle. In the active conformation, receptor function can be modulated either by allosteric modulators, which bind to the extracellular receptor surface or by the membrane potential via an unknown mechanism. Here, we compared the modulation of M 1 -Rs and M 3 -Rs induced by changes in voltage to their allosteric modulation by chemical compounds. We quantified changes in receptor signaling in single HEK 293 cells with a FRET biosensor for the G q protein cycle. In the presence of ACh, M 1 -R signaling was potentiated by voltage, similarly to positive allosteric modulation by benzyl quinolone carboxylic acid. Conversely, signaling of M 3 -R was attenuated by voltage or the negative allosteric modulator gallamine. Because the orthosteric site is highly conserved among M-Rs, but allosteric sites vary, we constructed "allosteric site" M 3 /M 1 -R chimeras and analyzed their voltage dependencies. Exchanging the entire allosteric sites eliminated the voltage sensitivity of ACh responses for both receptors, but did not affect their modulation by allosteric compounds. Furthermore, a point mutation in M 3 -Rs caused functional uncoupling of the allosteric and orthosteric sites and abolished voltage dependence. Molecular dynamics simulations of the receptor variants indicated a subtype-specific crosstalk between both sites, involving the conserved tyrosine lid structure of the orthosteric site. This molecular crosstalk leads to receptor subtype-specific voltage effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Decreased levels of soluble Toll-like Receptor 2 in patients with asthma

    Directory of Open Access Journals (Sweden)

    Mohsen Tehrani

    2012-10-01

    Full Text Available Background: Recently, reports have indicated a role for the membrane form of Toll-like Receptor 2 (TLR2 in asthma pathogenesis. In this study we examined soluble TLR2 levels in serum and sputum of asthmatic and healthy subjects. Methods: Serum and sputum samples were obtained from 33 asthmatic and 19 healthy subjects. The asthmatics were classified into four groups according to the Global Initiative for Asthma. A sandwich ELISA was developed to measure soluble TLR2 (sTLR2 in serum and sputum. TLR2 mRNA expression was determined by semi-quantitative RT-PCR of all sputum samples. Results: The mean sTLR2 levels from serum and sputum of asthmatics were significantly lower than those from healthy subjects. Moreover, sTLR2 concentration decreased concomitantly with asthma severity. The differences observed, however, were not statistically significant. TLR2/GAPDH mRNA of sputum leukocytes was also significantly lower in asthmatics than in healthy subjects. Conclusion: This study demonstrated for the first time thatsTLR2 levels are lower in serum and sputum samples from asthmatic than from healthy subjects, and this could be an indicator of TLR2 expression. We also found that sTLR2 concentration in serum decreased concomitantly with an increase of asthma severity clinical score.

  2. Gelidium amansii promotes dendritic spine morphology and synaptogenesis, and modulates NMDA receptor-mediated postsynaptic current.

    Science.gov (United States)

    Hannan, Md Abdul; Mohibbullah, Md; Hong, Yong-Ki; Nam, Joo Hyun; Moon, Il Soo

    2014-01-01

    Neurotrophic factors are essential for the differentiation and maturation of developing neurons as well as providing survival support to the mature neurons. Moreover, therapeutically neurotrophic factors are promising to reconstruct partially damaged neuronal networks in neurodegenerative diseases. In the previous study, we reported that the ethanol extract of an edible marine alga, Gelidium amansii (GAE) had shown promising effects in the development and maturation of both axon and dendrites of hippocampal neurons. Here, we demonstrate that in primary culture of hippocampal neurons (1) GAE promotes a significant increase in the number of filopodia and dendritic spines; (2) promotes synaptogenesis; (3) enhances N-methyl-D-aspartic acid (NMDA) receptor recruitment; and (4) modulates NMDA-receptor-mediated postsynaptic current. Taken together these findings that GAE might be involved in both morphological and functional maturation of neurons suggest the possibility that GAE may constitute a promising candidate for novel compounds for the prevention and treatment of neurodegenerative diseases.

  3. Adrenal medullary regulation of rat renal cortical adrenergic receptors

    International Nuclear Information System (INIS)

    Sundaresan, P.R.; Guarnaccia, M.M.; Izzo, J.L. Jr.

    1987-01-01

    The role of the adrenal medulla in the regulation of renal cortical adrenergic receptors was investigated in renal cortical particular fractions from control rats and rats 6 wk after adrenal demedullation. The specific binding of [ 3 H]prazosin, [ 3 H]rauwolscine, and [ 125 I]iodocyanopindolol were used to quantitate α 1 -, α 2 -, and β-adrenergic receptors, respectively. Adrenal demedullation increased the concentration of all three groups of renal adrenergic receptors; maximal number of binding sites (B max , per milligram membrane protein) for α 1 -, and α 2 -, and β-adrenergic receptors were increased by 22, 18.5, and 25%, respectively. No differences were found in the equilibrium dissociation constants (K D ) for any of the radioligands. Plasma corticosterone and plasma and renal norepinephrine levels were unchanged, whereas plasma epinephrine was decreased 72% by adrenal demedullation, renal cortical epinephrine was not detectable in control or demedullated animals. The results suggest that, in the physiological state, the adrenal medulla modulates the number of renal cortical adrenergic receptors, presumably through the actions of a circulating factor such as epinephrine

  4. Components of cross-frequency modulation in health and disease

    Directory of Open Access Journals (Sweden)

    Elena A Allen

    2011-07-01

    Full Text Available The cognitive deficits associated with schizophrenia are commonly believed to arise from the abnormal temporal integration of information, however a quantitative approach to assess network coordination is lacking. Here, we propose to use cross-frequency modulation, the dependence of local high-frequency activity on the phase of widespread low-frequency oscillations, as an indicator of network coordination and functional integration. In an exploratory analysis based on pre-existing data, we measured cross-frequency modulation from multi-channel EEG recordings acquired while schizophrenia patients (n = 47 and healthy controls (n = 130 performed an auditory oddball task. Novel application of independent component analysis (ICA to modulation data delineated components with specific spatial and spectral profiles, the weights of which showed co-variation with diagnosis. Global cross-frequency modulation was significantly greater in healthy controls (F1,175=9.25, P<0.005, while modulation at fronto-temporal electrodes was greater in patients (F1,175 =17.5, P<0.0001. We further found that the weights of schizophrenia-relevant components were associated with genetic polymorphisms at previously identified risk loci. Global cross-frequency modulation decreased with copies of 957C allele in the gene for the dopamine D2 receptor (r = −0.20, P < 0.01 across all subjects. Additionally, greater ‘aberrant’ fronto-temporal modulation in schizophrenia patients was correlated with several polymorphisms in the gene for the α2-subunit of the GABAA receptor (GABRA2 as well as the total number of risk alleles in GABRA2 (r = 0.45, P < 0.01. Overall, our results indicate great promise for this approach in establishing patterns of cross-frequency modulation in health and disease and elucidating the roles of oscillatory interactions in functional connectivity.

  5. The future of type 1 cannabinoid receptor allosteric ligands.

    Science.gov (United States)

    Alaverdashvili, Mariam; Laprairie, Robert B

    2018-02-01

    Allosteric modulation of the type 1 cannabinoid receptor (CB1R) holds great therapeutic potential. This is because allosteric modulators do not possess intrinsic efficacy, but instead augment (positive allosteric modulation) or diminish (negative allosteric modulation) the receptor's response to endogenous ligand. Consequently, CB1R allosteric modulators have an effect ceiling which allows for the tempering of CB1R signaling without the desensitization, tolerance, dependence, and psychoactivity associated with orthosteric compounds. Pain, movement disorders, epilepsy, obesity are all potential therapeutic targets for CB1R allosteric modulation. Several challenges exist for the development of CB1R allosteric modulators, such as receptor subtype specificity, translation to in vivo systems, and mixed allosteric/agonist/inverse agonist activity. Despite these challenges, elucidation of crystal structures of CB1R and compound design based on structure-activity relationships will advance the field. In this review, we will cover recent progress for CB1R allosteric modulators and discuss the future promise of this research.

  6. Panicolytic-like effects caused by substantia nigra pars reticulata pretreatment with low doses of endomorphin-1 and high doses of CTOP or the NOP receptors antagonist JTC-801 in male Rattus norvegicus.

    Science.gov (United States)

    da Silva, Juliana Almeida; Biagioni, Audrey Franceschi; Almada, Rafael Carvalho; de Freitas, Renato Leonardo; Coimbra, Norberto Cysne

    2017-10-01

    Gamma-aminobutyric acid (GABA)ergic neurons of the substantia nigra pars reticulata (SNpr) are connected to the deep layers of the superior colliculus (dlSC). The dlSC, in turn, connect with the SNpr through opioid projections. Nociceptin/orphanin FQ peptide (N/OFQ) is a natural ligand of a Gi protein-coupled nociceptin receptor (ORL1; NOP) that is also found in the SNpr. Our hypothesis is that tectonigral opioid pathways and intranigral orphanin-mediated mechanisms modulate GABAergic nigrotectal connections. Therefore, the aim of this work was to study the role of opioid and NOP receptors in the SNpr during the modulation of defence reactions organised by the dlSC. The SNpr was pretreated with either opioid or NOP receptor agonists and antagonists, followed by dlSC treatment with bicuculline. Blockade of GABA A receptors in the dlSC elicited fear-related defensive behaviour. Pretreatment of the SNpr with naloxone benzoylhydrazone (NalBzoH), a μ-, δ-, and κ 1 -opioid receptor antagonist as well as a NOP receptor antagonist, decreased the aversive effect of bicuculline treatment on the dlSC. Either μ-opioid receptor activation or blockade by SNpr microinjection of endomorphin-1 (EM-1) and CTOP promoted pro-aversive and anti-aversive actions, respectively, that modulated the defensive responses elicited by bicuculline injection into the dlSC. Pretreatment of the SNpr with the selective NOP receptor antagonist JTC801 decreased the aversive effect of bicuculline, and microinjections of the selective NOP receptor agonist NNC 63-0532 promoted the opposite effect. These results demonstrate that opioid pathways and orphanin-mediated mechanisms have a critical role in modulating the activity of nigrotectal GABAergic pathways during the organisation of defensive behaviours.

  7. Synthesis and Evaluation of a Library of Trifunctional Scaffold-Derived Compounds as Modulators of the Insulin Receptor.

    Science.gov (United States)

    Fabre, Benjamin; Pícha, Jan; Vaněk, Václav; Selicharová, Irena; Chrudinová, Martina; Collinsová, Michaela; Žáková, Lenka; Buděšínský, Miloš; Jiráček, Jiří

    2016-12-12

    We designed a combinatorial library of trifunctional scaffold-derived compounds, which were derivatized with 30 different in-house-made azides. The compounds were proposed to mimic insulin receptor (IR)-binding epitopes in the insulin molecule and bind to and activate this receptor. This work has enabled us to test our synthetic and biological methodology and to prove its robustness and reliability for the solid-phase synthesis and testing of combinatorial libraries of the trifunctional scaffold-derived compounds. Our effort resulted in the discovery of two compounds, which were able to weakly induce the autophosphorylation of IR and weakly bind to this receptor at a 0.1 mM concentration. Despite these modest biological results, which well document the well-known difficulty in modulating protein-protein interactions, this study represents a unique example of targeting the IR with a set of nonpeptide compounds that were specifically designed and synthesized for this purpose. We believe that this work can open new perspectives for the development of next-generation insulin mimetics based on the scaffold structure.

  8. Pathophysiologic Changes in Extracellular pH Modulate Parathyroid Calcium-Sensing Receptor Activity and Secretion via a Histidine-Independent Mechanism.

    Science.gov (United States)

    Campion, Katherine L; McCormick, Wanda D; Warwicker, Jim; Khayat, Mohd Ezuan Bin; Atkinson-Dell, Rebecca; Steward, Martin C; Delbridge, Leigh W; Mun, Hee-Chang; Conigrave, Arthur D; Ward, Donald T

    2015-09-01

    The calcium-sensing receptor (CaR) modulates renal calcium reabsorption and parathyroid hormone (PTH) secretion and is involved in the etiology of secondary hyperparathyroidism in CKD. Supraphysiologic changes in extracellular pH (pHo) modulate CaR responsiveness in HEK-293 (CaR-HEK) cells. Therefore, because acidosis and alkalosis are associated with altered PTH secretion in vivo, we examined whether pathophysiologic changes in pHo can significantly alter CaR responsiveness in both heterologous and endogenous expression systems and whether this affects PTH secretion. In both CaR-HEK and isolated bovine parathyroid cells, decreasing pHo from 7.4 to 7.2 rapidly inhibited CaR-induced intracellular calcium (Ca(2+)i) mobilization, whereas raising pHo to 7.6 potentiated responsiveness to extracellular calcium (Ca(2+)o). Similar pHo effects were observed for Ca(2+)o-induced extracellular signal-regulated kinase phosphorylation and actin polymerization and for L-Phe-induced Ca(2+)i mobilization. Intracellular pH was unaffected by acute 0.4-unit pHo changes, and the presence of physiologic albumin concentrations failed to attenuate the pHo-mediated effects. None of the individual point mutations created at histidine or cysteine residues in the extracellular domain of CaR attenuated pHo sensitivity. Finally, pathophysiologic pHo elevation reversibly suppressed PTH secretion from perifused human parathyroid cells, and acidosis transiently increased PTH secretion. Therefore, pathophysiologic pHo changes can modulate CaR responsiveness in HEK-293 and parathyroid cells independently of extracellular histidine residues. Specifically, pathophysiologic acidification inhibits CaR activity, thus permitting PTH secretion, whereas alkalinization potentiates CaR activity to suppress PTH secretion. These findings suggest that acid-base disturbances may affect the CaR-mediated control of parathyroid function and calcium metabolism in vivo. Copyright © 2015 by the American Society of

  9. Positive allosteric modulators of the α7 nicotinic acetylcholine receptor potentiate glutamate release in the prefrontal cortex of freely-moving rats

    DEFF Research Database (Denmark)

    Bortz, D M; Upton, B A; Mikkelsen, J D

    2016-01-01

    Positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (α7nAChRs) exhibit pro-cognitive effects in animal models of schizophrenia and are targets for the discovery of cognition-enhancing drugs. However, little is known about their in vivo mechanism of action because...

  10. Structure of the ligand-binding domain (LBD) of human androgen receptor in complex with a selective modulator LGD2226

    International Nuclear Information System (INIS)

    Wang, Feng; Liu, Xiao-qin; Li, He; Liang, Kai-ni; Miner, Jeffrey N.; Hong, Mei; Kallel, E. Adam; Oeveren, Arjan van; Zhi, Lin; Jiang, Tao

    2006-01-01

    Crystal structure of the ligand-binding domain of androgen receptor in complex with LGD2226. The androgen receptor (AR) is a ligand-inducible steroid hormone receptor that mediates androgen action, determining male sexual phenotypes and promoting spermatogenesis. As the androgens play a dominant role in male sexual development and function, steroidal androgen agonists have been used clinically for some years. However, there is a risk of potential side effects and most steroidal androgens cannot be dosed orally, which limits the use of these substances. 1,2-Dihydro-6-N,N-bis(2,2,2-trifluoroethyl) amino-4-trifluoromethyl-2-quinolinone (LGD2226) is a synthetic nonsteroidal ligand and a novel selective AR modulator. The crystal structure of the complex of LGD2226 with the androgen receptor ligand-binding domain (AR LBD) at 2.1 Å was solved and compared with the structure of the AR LBD–R1881 complex. It is hoped that this will aid in further explaining the selectivity of LGD2226 observed in in vitro and in vivo assays and in developing more selective and effective therapeutic agents

  11. Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity.

    Science.gov (United States)

    Kidani, Yoko; Bensinger, Steven J

    2012-09-01

    Lipid metabolism has emerged as an important modulator of innate and adaptive immune cell fate and function. The lipid-activated transcription factors peroxisome proliferator-activated receptor (PPAR) α, β/δ, γ and liver X receptor (LXR) are members of the nuclear receptor superfamily that have a well-defined role in regulating lipid homeostasis and metabolic diseases. Accumulated evidence over the last decade indicates that PPAR and LXR signaling also influence multiple facets of inflammation and immunity, thereby providing important crosstalk between metabolism and immune system. Herein, we provide a brief introduction to LXR and PPAR biology and review recent discoveries highlighting the importance of PPAR and LXR signaling in the modulation of normal and pathologic states of immunity. We also examine advances in our mechanistic understanding of how nuclear receptors impact immune system function and homeostasis. Finally, we discuss whether LXRs and PPARs could be pharmacologically manipulated to provide novel therapeutic approaches for modulation of the immune system under pathologic inflammation or in the context of allergic and autoimmune disease. © 2012 John Wiley & Sons A/S.

  12. Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

    International Nuclear Information System (INIS)

    Pols, Thijs W.H.; Ottenhoff, Roelof; Vos, Mariska; Levels, Johannes H.M.; Quax, Paul H.A.; Meijers, Joost C.M.; Pannekoek, Hans; Groen, Albert K.; Vries, Carlie J.M. de

    2008-01-01

    NR4A nuclear receptors are induced in the liver upon fasting and regulate hepatic gluconeogenesis. Here, we studied the role of nuclear receptor Nur77 (NR4A1) in hepatic lipid metabolism. We generated mice expressing hepatic Nur77 using adenoviral vectors, and demonstrate that these mice exhibit a modulation of the plasma lipid profile and a reduction in hepatic triglyceride. Expression analysis of >25 key genes involved in lipid metabolism revealed that Nur77 inhibits SREBP1c expression. This results in decreased SREBP1c activity as is illustrated by reduced expression of its target genes stearoyl-coA desaturase-1, mitochondrial glycerol-3-phosphate acyltransferase, fatty acid synthase and the LDL receptor, and provides a mechanism for the physiological changes observed in response to Nur77. Expression of LXR target genes Abcg5 and Abcg8 is reduced by Nur77, and may suggest involvement of LXR in the inhibitory action of Nur77 on SREBP1c expression. Taken together, our study demonstrates that Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

  13. Leptin and cancer: Pathogenesis and modulation

    Directory of Open Access Journals (Sweden)

    Deep Dutta

    2012-01-01

    Full Text Available Leptin, a product of Ob gene from adipocytes regulates appetite, energy expenditure and body mass composition by decreasing orexigenic and increasing anorexigenic neuropeptide release from hypothalamus. Research over the past few years have suggested leptin/leptin receptor dysregulation to have a role in the development of a large variety of malignancies like breast ca, thyroid ca, endometrial ca and gastrointestinal malignancies, predominantly through JAK/STAT pathway which modulates PI3K/AKT3 signaling, ERK1/2 signaling, expression of antiapoptotic proteins (like XIAP, systemic inflammation (TNF-α, IL6, angiogenic factors (VEGF and hypoxia inducible factor-1a (HIF-1a expression. In this review, the current understanding of leptin′s role in carcinogenesis has been elaborated. Also a few agents modulating leptin signaling to inhibit cancer cell growth has been described.

  14. Nonsteroidal Selective Androgen Receptor Modulators and Selective Estrogen Receptor β Agonists Moderate Cognitive Deficits and Amyloid-β Levels in a Mouse Model of Alzheimer’s Disease

    Science.gov (United States)

    2013-01-01

    Decreases of the sex steroids, testosterone and estrogen, are associated with increased risk of Alzheimer’s disease. Testosterone and estrogen supplementation improves cognitive deficits in animal models of Alzheimer’s disease. Sex hormones play a role in the regulation of amyloid-β via induction of the amyloid-β degrading enzymes neprilysin and insulin-degrading enzyme. To mimic the effect of dihydrotestosterone (DHT), we administered a selective androgen receptor agonist, ACP-105, alone and in combination with the selective estrogen receptor β (ERβ) agonist AC-186 to male gonadectomized triple transgenic mice. We assessed long-term spatial memory in the Morris water maze, spontaneous locomotion, and anxiety-like behavior in the open field and in the elevated plus maze. We found that ACP-105 given alone decreases anxiety-like behavior. Furthermore, when ACP-105 is administered in combination with AC-186, they increase the amyloid-β degrading enzymes neprilysin and insulin-degrading enzyme and decrease amyloid-β levels in the brain as well as improve cognition. Interestingly, the androgen receptor level in the brain was increased by chronic treatment with the same combination treatment, ACP-105 and AC-186, not seen with DHT or ACP-105 alone. Based on these results, the beneficial effect of the selective ERβ agonist as a potential therapeutic for Alzheimer’s disease warrants further investigation. PMID:24020966

  15. Unilateral Hypothalamus Inactivation Prevents PTZ Kindling Development through Hippocampal Orexin Receptor 1 Modulation

    Directory of Open Access Journals (Sweden)

    Nasibe Akbari

    2014-02-01

    Full Text Available Introduction: Epilepsy is a neural disorder in which abnormal plastic changes during short and long term periods lead to increased excitability of brain tissue. Kindling is an animal model of epileptogenesis which results in changes of synaptic plasticity due to repetitive electrical or chemical sub-convulsive stimulations of the brain. Lateral hypothalamus, as the main niche of orexin neurons with extensive projections, is involved in sleep and wakefulness and so it affects the excitability of the brain. Therefore, we investigated whether lateral hypothalamic area (LHA inactivation or orexin-A receptor blocking could change convulsive behavior of acute and kindled PTZ treated animals and if glutamate has a role in this regard.  Methods: Kindling was induced by 40 mg/kg PTZ, every 48 hours up to 13 injections to each rat. Three consecutive stages 4 or 5 of convulsive behavior were used to ensure kindling. Lidocaine was injected stereotaxically to inactivate LHA, unilaterally. SB334867 used for orexin receptor 1 (OX1R blocking administered in CSF.  Results: We demonstrated that LHA inactivation prevented PTZ kindling and hence, excitability evolution. Hippocampal glutamate content was decreased due to LHA inactivation, OX1R antagonist infusion, lidocaine injection and kindled groups. In accordance, OX1R antagonist (SB334867 and lidocaine injection decreased PTZ single dose induced convulsive behavior. While orexin-A i.c.v. infusion increased hippocampal glutamate content, it did not change PTZ induced convulsive intensity.  Discussion: It is concluded that LHA inactivation prevented kindling development probably through orexin receptor antagonism. CSF orexin probably acts as an inhibitory step on convulsive intensity through another unknown process.

  16. Electrochemical oxidation of selective estrogen receptor modulator raloxifene

    International Nuclear Information System (INIS)

    Li, Xi-Qian; He, Jian-Bo; Liu, Lu; Cui, Ting

    2013-01-01

    Highlights: ► Application and analysis of in situ thin-layer spectroelectrochemistry. ► Cyclic voltabsorptometry used for a drug study. ► Highly pH-dependent oxidative metabolism of raloxifene. ► A complex parallel-consecutive mechanism proposed for oxidation of raloxifene. -- Abstract: Raloxifene is a selective estrogen receptor modulator that may produce toxic oxidative species in metabolism. The oxidation mechanism of raloxifene with different pH values was studied by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), in situ UV–vis spectral analysis and cyclic voltabsorptometry based on a long optical-path thin-layer electrochemical cell. Time-derivative cyclic voltabsorptograms were obtained for comparative discussion with the corresponding cyclic voltammograms. Raloxifene was initially oxidized to reactive phenoxyl radicals, followed by a series of transformation steps leading to different final products in different pH media. A parallel-consecutive reaction mechanism was proposed for the pH-dependent formation of 7-hydroxyraloxifene, raloxifene 6,7-o-quinone and two raloxifene dimers, each pathway following a complex electrochemical-chemical mechanism. Both raloxifene diquinone methide and its N-oxides were not detected by in situ UV–vis spectroscopy and XPS analysis. This work provides an electrochemical viewpoint and comparable information for better understanding of the oxidative metabolism and chemical toxicology of raloxifene under physiological conditions in vivo or in vitro

  17. NMDA and AMPA/kainate glutamatergic receptors in the prelimbic medial prefrontal cortex modulate the elaborated defensive behavior and innate fear-induced antinociception elicited by GABAA receptor blockade in the medial hypothalamus.

    Science.gov (United States)

    de Freitas, Renato Leonardo; Salgado-Rohner, Carlos José; Biagioni, Audrey Francisco; Medeiros, Priscila; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre S; Coimbra, Norberto Cysne

    2014-06-01

    The aim of the present study was to investigate the involvement of N-methyl-d-aspartate (NMDA) and amino-3-hydroxy-5-methyl-isoxazole-4-proprionate (AMPA)/kainate receptors of the prelimbic (PL) division of the medial prefrontal cortex (MPFC) on the panic attack-like reactions evoked by γ-aminobutyric acid-A receptor blockade in the medial hypothalamus (MH). Rats were pretreated with NaCl 0.9%, LY235959 (NMDA receptor antagonist), and NBQX (AMPA/kainate receptor antagonist) in the PL at 3 different concentrations. Ten minutes later, the MH was treated with bicuculline, and the defensive responses were recorded for 10 min. The antagonism of NMDA receptors in the PL decreased the frequency and duration of all defensive behaviors evoked by the stimulation of the MH and reduced the innate fear-induced antinociception. However, the pretreatment of the PL cortex with NBQX was able to decrease only part of defensive responses and innate fear-induced antinociception. The present findings suggest that the NMDA-glutamatergic system of the PL is critically involved in panic-like responses and innate fear-induced antinociception and those AMPA/kainate receptors are also recruited during the elaboration of fear-induced antinociception and in panic attack-related response. The activation of the glutamatergic neurotransmission of PL division of the MPFC during the elaboration of oriented behavioral reactions elicited by the chemical stimulation of the MH recruits mainly NMDA receptors in comparison with AMPA/kainate receptors.

  18. Effects of intraperitoneal administration of the GABAB receptor positive allosteric modulator 2,6-di tert-butyl-4-(2-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) on food intake in non-deprived rats.

    Science.gov (United States)

    Ebenezer, Ivor S

    2012-09-05

    γ-Aminobutyric acid-(B) (GABA(B)) receptor positive allosteric modulators (PAMs) act on an allosteric site on the GABA(B) receptor to potentiate the effects of GABA and GABA(B) receptor agonists. It has previously been demonstrated that the GABA(B) receptor agonist baclofen increases food intake in non-deprived rats. The aim of this study was to investigate whether the GABA(B) receptor PAM 2,6-di tert-butyl-4-(2-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) would (i) increase food intake, and (ii) potentiate the hyperphagic effects of baclofen in rats. In Experiment 1, the effects of intraperitoneal (i.p.) administration of CGP7930 (1, 6 and 12 mg/kg) was investigated on food intake in non-deprived male Wistar rats. The 12 mg/kg dose of CGP7930 significantly increased cumulative food intake 30, 60 and 120 min (PGABA and GABA(B) receptor agonists by allosteric modulation of the GABA(B) receptor. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core.

    Science.gov (United States)

    Fortin, Samantha M; Roitman, Mitchell F

    2017-07-01

    Drugs of abuse increase the frequency and magnitude of brief (1-3s), high concentration (phasic) dopamine release events in terminal regions. These are thought to be a critical part of drug reinforcement and ultimately the development of addiction. Recently, metabolic regulatory peptides, including the satiety signal glucagon-like peptide-1 (GLP-1), have been shown to modulate cocaine reward-driven behavior and sustained dopamine levels after cocaine administration. Here, we use fast-scan cyclic voltammetry (FSCV) to explore GLP-1 receptor (GLP-1R) modulation of dynamic dopamine release in the nucleus accumbens (NAc) during cocaine administration. We analyzed dopamine release events in both the NAc shell and core, as these two subregions are differentially affected by cocaine and uniquely contribute to motivated behavior. We found that central delivery of the GLP-1R agonist Exendin-4 suppressed the induction of phasic dopamine release events by intravenous cocaine. This effect was selective for dopamine signaling in the NAc core. Suppression of phasic signaling in the core by Exendin-4 could not be attributed to interference with cocaine binding to one of its major substrates, the dopamine transporter, as cocaine-induced increases in reuptake were unaffected. The results suggest that GLP-1R activation, instead, exerts its suppressive effects by altering dopamine release - possibly by suppressing the excitability of dopamine neurons. Given the role of NAc core dopamine in the generation of conditioned responses based on associative learning, suppression of cocaine-induced dopamine signaling in this subregion by GLP-1R agonism may decrease the reinforcing properties of cocaine. Thus, GLP-1Rs remain viable targets for the treatment and prevention of cocaine seeking, taking and relapse. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The neuronal Ca(2+) -binding protein 2 (NECAB2) interacts with the adenosine A(2A) receptor and modulates the cell surface expression and function of the receptor.

    Science.gov (United States)

    Canela, Laia; Luján, Rafael; Lluís, Carme; Burgueño, Javier; Mallol, Josefa; Canela, Enric I; Franco, Rafael; Ciruela, Francisco

    2007-09-01

    Heptaspanning membrane also known as G protein-coupled receptors (GPCR) do interact with a variety of intracellular proteins whose function is regulate receptor traffic and/or signaling. Using a yeast two-hybrid screen, NECAB2, a neuronal calcium binding protein, was identified as a binding partner for the adenosine A(2A) receptor (A(2A)R) interacting with its C-terminal domain. Co-localization, co-immunoprecipitation and pull-down experiments showed a close and specific interaction between A(2A)R and NECAB2 in both transfected HEK-293 cells and also in rat striatum. Immunoelectron microscopy detection of NECAB2 and A(2A)R in the rat striatopallidal structures indicated that both proteins are co-distributed in the same glutamatergic nerve terminals. The interaction of NECAB2 with A(2A)R modulated the cell surface expression, the ligand-dependent internalization and the receptor-mediated activation of the MAPK pathway. Overall, these results show that A(2A)R interacts with NECAB2 in striatal neurones co-expressing the two proteins and that the interaction is relevant for A(2A)R function.

  1. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology.

    Science.gov (United States)

    Pin, Jean-Philippe; Acher, Francine

    2002-06-01

    The metabotropic glutamate receptors are G-protein coupled receptors (GPCR) involved in the regulation of many synapses, including most glutamatergic fast excitatory synapses. Eight subtypes have been identified that can be classified into three groups. The molecular characterization of these receptors revealed proteins much more complex than any other GPCRs. They are composed of a Venus Flytrap (VFT) module where glutamate binds, connected to a heptahelical domain responsible for G-protein coupling. Recent data including the structure of the VFT module determined with and without glutamate, indicate that these receptors function as dimers. Moreover a number of intracellular proteins can regulate their targeting and transduction mechanism. Such structural features of mGlu receptors offer multiple possibilities for synthetic compounds to modulate their activity. In addition to agonists and competitive antagonists acting at the glutamate binding site, a number of non-competitive antagonists with inverse agonist activity, and positive allosteric modulators have been discovered. These later compounds share specific properties that make them good candidates for therapeutic applications. First, their non-amino acid structure makes them pass more easily the blood brain barrier. Second, they are much more selective than any other compound identified so far, being the first subtype selective molecules. Third, for the negative modulators, their non competitive mechanism of action makes them relatively unaffected by high concentrations of glutamate that may be present in disease states (e.g. stroke, epilepsy, neuropathic pain, etc.). Fourth, like the benzodiazepines acting at the GABA(A) receptors, the positive modulators offer a new way to increase the activity of these receptors in vivo, with a low risk of inducing their desensitization. The present review article focuses on the specific structural features of these receptors and highlights the various possibilities these

  2. The A2B Adenosine Receptor Modulates the Epithelial– Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells

    Science.gov (United States)

    Giacomelli, Chiara; Daniele, Simona; Romei, Chiara; Tavanti, Laura; Neri, Tommaso; Piano, Ilaria; Celi, Alessandro; Martini, Claudia; Trincavelli, Maria L.

    2018-01-01

    The epithelial-mesenchymal transition (EMT) is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2B adenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1), which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin) and the mesenchymal one (Vimentin, N-cadherin), respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to affect different

  3. The A2B Adenosine Receptor Modulates the Epithelial– Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells

    Directory of Open Access Journals (Sweden)

    Chiara Giacomelli

    2018-01-01

    Full Text Available The epithelial-mesenchymal transition (EMT is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2B adenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1, which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin and the mesenchymal one (Vimentin, N-cadherin, respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to

  4. α-Tocopherol modulates the low density lipoprotein receptor of human HepG2 cells

    Directory of Open Access Journals (Sweden)

    Bottema Cynthia DK

    2003-05-01

    Full Text Available Abstract The aim of this study was to determine the effects of vitamin E (α-tocopherol on the low density lipoprotein (LDL receptor, a cell surface protein which plays an important role in controlling blood cholesterol. Human HepG2 hepatoma cells were incubated for 24 hours with increasing amounts of α, δ, or γ-tocopherol. The LDL receptor binding activity, protein and mRNA, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase mRNA, cell cholesterol and cell lathosterol were measured. The effect of α-tocopherol was biphasic. Up to a concentration of 50 μM, α-tocopherol progressively increased LDL receptor binding activity, protein and mRNA to maximum levels 2, 4 and 6-fold higher than control, respectively. The HMG-CoA reductase mRNA and the cell lathosterol concentration, indices of cholesterol synthesis, were also increased by 40% over control by treatment with 50 μM α-tocopherol. The cell cholesterol concentration was decreased by 20% compared to control at 50 μM α-tocopherol. However, at α-tocopherol concentrations higher than 50 μM, the LDL receptor binding activity, protein and mRNA, the HMG-CoA reductase mRNA and the cell lathosterol and cholesterol concentrations all returned to control levels. The biphasic effect on the LDL receptor was specific for α-tocopherol in that δ and γ-tocopherol suppressed LDL receptor binding activity, protein and mRNA at all concentrations tested despite the cells incorporating similar amounts of the three homologues. In conclusion, α-tocopherol, exhibits a specific, concentration-dependent and biphasic "up then down" effect on the LDL receptor of HepG2 cells which appears to be at the level of gene transcription. Cholesterol synthesis appears to be similarly affected and the cell cholesterol concentration may mediate these effects.

  5. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors.

    NARCIS (Netherlands)

    de Kloet, S.F.; Mansvelder, H.D.; de Vries, T.J.

    2015-01-01

    Nicotine addiction is highly prevalent in current society and is often comorbid with other diseases. In the central nervous system, nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs) and its effects depend on location and receptor composition. Although nicotinic receptors are

  6. The Cannabinoid Receptor CB1 Modulates the Signaling Properties of the Lysophosphatidylinositol Receptor GPR55*

    Science.gov (United States)

    Kargl, Julia; Balenga, Nariman; Parzmair, Gerald P.; Brown, Andrew J.; Heinemann, Akos; Waldhoer, Maria

    2012-01-01

    The G protein-coupled receptor (GPCR) 55 (GPR55) and the cannabinoid receptor 1 (CB1R) are co-expressed in many tissues, predominantly in the central nervous system. Seven transmembrane spanning (7TM) receptors/GPCRs can form homo- and heteromers and initiate distinct signaling pathways. Recently, several synthetic CB1 receptor inverse agonists/antagonists, such as SR141716A, AM251, and AM281, were reported to activate GPR55. Of these, SR141716A was marketed as a promising anti-obesity drug, but was withdrawn from the market because of severe side effects. Here, we tested whether GPR55 and CB1 receptors are capable of (i) forming heteromers and (ii) whether such heteromers could exhibit novel signaling patterns. We show that GPR55 and CB1 receptors alter each others signaling properties in human embryonic kidney (HEK293) cells. We demonstrate that the co-expression of FLAG-CB1 receptors in cells stably expressing HA-GPR55 specifically inhibits GPR55-mediated transcription factor activation, such as nuclear factor of activated T-cells and serum response element, as well as extracellular signal-regulated kinases (ERK1/2) activation. GPR55 and CB1 receptors can form heteromers, but the internalization of both receptors is not affected. In addition, we observe that the presence of GPR55 enhances CB1R-mediated ERK1/2 and nuclear factor of activated T-cell activation. Our data provide the first evidence that GPR55 can form heteromers with another 7TM/GPCR and that this interaction with the CB1 receptor has functional consequences in vitro. The GPR55-CB1R heteromer may play an important physiological and/or pathophysiological role in tissues endogenously co-expressing both receptors. PMID:23161546

  7. Design of a serotonin 4 receptor radiotracer with decreased lipophilicity for single photon emission computed tomography.

    Science.gov (United States)

    Fresneau, Nathalie; Dumas, Noé; Tournier, Benjamin B; Fossey, Christine; Ballandonne, Céline; Lesnard, Aurélien; Millet, Philippe; Charnay, Yves; Cailly, Thomas; Bouillon, Jean-Philippe; Fabis, Frédéric

    2015-04-13

    With the aim to develop a suitable radiotracer for the brain imaging of the serotonin 4 receptor subtype (5-HT4R) using single photon emission computed tomography (SPECT), we synthesized and evaluated a library of di- and triazaphenanthridines with lipophilicity values which were in the range expected to favour brain penetration, and which demonstrated specific binding to the target of interest. Adding additional nitrogen atoms to previously described phenanthridine ligands exhibiting a high unspecific binding, we were able to design a radioiodinated compound [(125)I]14. This compound exhibited a binding affinity value of 0.094 nM toward human 5-HT4R and a high selectivity over other serotonin receptor subtypes (5-HTR). In vivo SPECT imaging studies and competition experiments demonstrated that the decreased lipophilicity (in comparison with our previously reported compounds 4 and 5) allowed a more specific labelling of the 5-HT4R brain-containing regions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. The cognition-enhancing activity of E1R, a novel positive allosteric modulator of sigma-1 receptors

    Science.gov (United States)

    Zvejniece, L; Vavers, E; Svalbe, B; Vilskersts, R; Domracheva, I; Vorona, M; Veinberg, G; Misane, I; Stonans, I; Kalvinsh, I; Dambrova, M

    2014-01-01

    Background and Purpose Here, we describe the in vitro and in vivo effects of (4R,5S)-2-(5-methyl-2-oxo-4-phenyl-pyrrolidin-1-yl)-acetamide (E1R), a novel positive allosteric modulator of sigma-1 receptors. Experimental Approach E1R was tested for sigma receptor binding activity in a [3H](+)-pentazocine assay, in bradykinin (BK)-induced intracellular Ca2+ concentration ([Ca2+]i) assays and in an electrically stimulated rat vas deferens model. E1R's effects on cognitive function were tested using passive avoidance (PA) and Y-maze tests in mice. A selective sigma-1 receptor antagonist (NE-100), was used to study the involvement of the sigma-1 receptor in the effects of E1R. The open-field test was used to detect the effects of E1R on locomotion. Key Results Pretreatment with E1R enhanced the selective sigma-1 receptor agonist PRE-084's stimulating effect during a model study employing electrically stimulated rat vasa deferentia and an assay measuring the BK-induced [Ca2+]i increase. Pretreatment with E1R facilitated PA retention in a dose-related manner. Furthermore, E1R alleviated the scopolamine-induced cognitive impairment during the PA and Y-maze tests in mice. The in vivo and in vitro effects of E1R were blocked by treatment with the selective sigma-1 receptor antagonist NE-100. E1R did not affect locomotor activity. Conclusion and Implications E1R is a novel 4,5-disubstituted derivative of piracetam that enhances cognition and demonstrates efficacy against scopolamine-induced cholinergic dysfunction in mice. These effects are attributed to its positive modulatory action on the sigma-1 receptor and this activity may be relevant when developing new drugs for treating cognitive symptoms related to neurodegenerative diseases. PMID:24490863

  9. Modulation of Network Oscillatory Activity and GABAergic Synaptic Transmission by CB1 Cannabinoid Receptors in the Rat Medial Entorhinal Cortex

    Directory of Open Access Journals (Sweden)

    Nicola H. Morgan

    2008-01-01

    Full Text Available Cannabinoids modulate inhibitory GABAergic neurotransmission in many brain regions. Within the temporal lobe, cannabinoid receptors are highly expressed, and are located presynaptically at inhibitory terminals. Here, we have explored the role of type-1 cannabinoid receptors (CB1Rs at the level of inhibitory synaptic currents and field-recorded network oscillations. We report that arachidonylcyclopropylamide (ACPA; 10 M, an agonist at CB1R, inhibits GABAergic synaptic transmission onto both superficial and deep medial entorhinal (mEC neurones, but this has little effect on network oscillations in beta/gamma frequency bands. By contrast, the CB1R antagonist/inverse agonist LY320135 (500 nM, increased GABAergic synaptic activity and beta/gamma oscillatory activity in superficial mEC, was suppressed, whilst that in deep mEC was enhanced. These data indicate that cannabinoid-mediated effects on inhibitory synaptic activity may be constitutively active in vitro, and that modulation of CB1R activation using inverse agonists unmasks complex effects of CBR function on network activity.

  10. The Combined Inhibitory Effect of the Adenosine A1 and Cannabinoid CB1 Receptors on cAMP Accumulation in the Hippocampus Is Additive and Independent of A1 Receptor Desensitization

    OpenAIRE

    Serpa, Andr?; Correia, Sara; Ribeiro, Joaquim A.; Sebasti?o, Ana M.; Cascalheira, Jos? F.

    2015-01-01

    Adenosine A1 and cannabinoid CB1 receptors are highly expressed in hippocampus where they trigger similar transduction pathways. We investigated how the combined acute activation of A1 and CB1 receptors modulates cAMP accumulation in rat hippocampal slices. The CB1 agonist WIN55212-2 (0.3?30??M) decreased forskolin-stimulated cAMP accumulation with an EC50 of 6.6 ? 2.7??M and an E max? of 31% ? 2%, whereas for the A1 agonist, N6-cyclopentyladenosine (CPA, 10?150?nM), an EC50 of 35 ? 19?nM, an...

  11. Role of hypothalamic cannabinoid receptors in post-stroke depression in rats.

    Science.gov (United States)

    Wang, Shanshan; Sun, Hong; Liu, Sainan; Wang, Ting; Guan, Jinqun; Jia, Jianjun

    2016-03-01

    One of the most common psychological consequences of stroke is post-stroke depression (PSD). While more than 30 percent of stroke patients eventually develop PSD, the neurobiological mechanisms underlying such a phenomenon have not been well investigated. Given the critical involvement of hypothalamic-pituitary-adrenal axis and endocannabinoid system in response to stressful stimuli, we evaluated the hypothesis that cannabinoid receptors in the hypothalamus are critical for modulation of post-stroke depression-like behaviors in rats. To this end, rats were treated with middle cerebral artery occlusion (MCAO) followed by chronic unpredictable mild stress (CUMS) treatment procedure. We then assessed the expression of CB1 and CB2 receptors in the hypothalamus, and evaluated the effects of pharmacological stimulations of CB1 or CB2 receptors on the expression and development of depression-like behaviors in PSD rats. We found that PSD rats exhibited decreased the expression of CB1 receptor, but not CB2 receptor, in the ventral medial hypothalamus (VMH). Such an effect was not observed in the dorsally adjacent brain regions. Furthermore, intra-VMH injections of CB2 receptor agonist, but not CB1 receptor agonist, attenuated the expression of depression-like behaviors in PSD rats. Finally, repeated intraperitoneal injections of CB1 or CB2 receptor agonists during CUMS treatment inhibited the development of depression-like behaviors in PSD rats. Taken together, these results suggest that decreased CB1 receptor expression is likely associated with the development of post-stroke depression, and CB2 receptor may be a potential therapeutic target for the treatment post-stroke depressive disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Evaluation of the Biological Activity of Opuntia ficus indica as a Tissue- and Estrogen Receptor Subtype-Selective Modulator.

    Science.gov (United States)

    An, Byoung Ha; Jeong, Hyesoo; Zhou, Wenmei; Liu, Xiyuan; Kim, Soolin; Jang, Chang Young; Kim, Hyun-Sook; Sohn, Johann; Park, Hye-Jin; Sung, Na-Hye; Hong, Cheol Yi; Chang, Minsun

    2016-06-01

    Phytoestrogens are selective estrogen receptor modulators (SERMs) with potential for use in hormone replacement therapy (HRT) to relieve peri/postmenopausal symptoms. This study was aimed at elucidating the molecular mechanisms underlying the SERM properties of the extract of Korean-grown Opuntia ficus-indica (KOFI). The KOFI extract induced estrogen response element (ERE)-driven transcription in breast and endometrial cancer cell lines and the expression of endogenous estrogen-responsive genes in breast cancer cells. The flavonoid content of different KOFI preparations affected ERE-luciferase activities, implying that the flavonoid composition likely mediated the estrogenic activities in cells. Oral administration of KOFI decreased the weight gain and levels of both serum glucose and triglyceride in ovariectomized (OVX) rats. Finally, KOFI had an inhibitory effect on the 17β-estradiol-induced proliferation of the endometrial epithelium in OVX rats. Our data demonstrate that KOFI exhibited SERM activity with no uterotrophic side effects. Therefore, KOFI alone or in combination with other botanical supplements, vitamins, or minerals may be an effective and safe alternative active ingredient to HRTs, for the management of postmenopausal symptoms. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Implications of astrocytes in mediating the protective effects of Selective Estrogen Receptor Modulators upon brain damage

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-04-01

    Full Text Available Selective Estrogen Receptor Modulators (SERMs are steroidal or non-steroidal compounds that are already used in clinical practice for the treatment of breast cancer, osteoporosis and menopausal symptoms. While SERMs actions in the breast, bone, and uterus have been well characterized, their actions in the brain are less well understood. Previous works have demonstrated the beneficial effects of SERMs in different chronic neurodegenerative diseases like Alzheimer, Parkinson’s disease and Multiple sclerosis, as well as acute degeneration as stroke and traumatic brain injury. Moreover, these compounds exhibit similar protective actions as those of estradiol in the Central Nervous System, overt any secondary effect. For these reasons, in the past few years, there has been a growing interest in the neuroprotective effects exerted directly or indirectly by SERMs in the SNC. In this context, astrocytes play an important role in the maintenance of brain metabolism, and antioxidant support to neurons, thus indicating that better protection of astrocytes are an important asset targeting neuronal protection. Moreover, various clinical and experimental studies have reported that astrocytes are essential for the neuroprotective effects of SERMs during neuronal injuries, as these cells express different estrogen receptors in cell membrane, demonstrating that part of SERMs effects upon injury may be mediated by astrocytes. The present work highlights the current evidence on the protective mechanisms of SERMs, such as tamoxifen and raloxifene, in the SNC, and their modulation of astrocytic properties as promising therapeutic targets during brain damage.

  14. Viral and bacterial septicaemic infections modulate the expression of PACAP splicing variants and VIP/PACAP receptors in brown trout immune organs.

    Science.gov (United States)

    Gorgoglione, Bartolomeo; Carpio, Yamila; Secombes, Christopher J; Taylor, Nick G H; Lugo, Juana María; Estrada, Mario Pablo

    2015-12-01

    Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and PACAP-Related Peptide (PRP) are structurally similar peptides encoded in the same transcripts. Their transcription has been detected not only in the brain but also in a wide range of peripheral tissues, even including organs of the immune system. PACAP exerts pleiotropic activities through G-protein coupled membrane receptors: the PACAP-specific PAC-1 and the VPAC-1 and VPAC-2 receptors that exhibit similar affinities for the Vasoactive Intestinal Peptide (VIP) and PACAP. Recent findings added PACAP and its receptors to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in fish. In this study the expression of genes encoding for PACAP and PRP, as well as VIP/PACAP receptors was studied in laboratory-reared brown trout (Salmo trutta) after septicaemic infections. Respectively Viral Haemorrhagic Septicaemia Virus (VHSV-Ia) or the Gram-negative bacterium Yersinia ruckeri (ser. O1 - biot. 2) were used in infection challenges. Kidney and spleen, the teleost main lymphopoietic organs, were sampled during the first two weeks post-infection. RT-qPCR analysis assessed specific pathogens burden and gene expression levels. PACAP and PRP transcription in each organ was positively correlated to the respective pathogen burden, assessed targeting the VHSV-glycoprotein or Y. ruckeri 16S rRNA. Results showed as the transcription of PACAP splicing variants and VIP/PACAP receptors is modulated in these organs during an acute viral and bacterial septicaemic infections in brown trout. These gene expression results provide clues as to how the PACAP system is modulated in fish, confirming an involvement during active immune responses elicited by both viral and bacterial aetiological agents. However, further experimental evidence is still required to fully elucidate and characterize the role of PACAP and PRP for an efficient immune response against pathogens. Copyright © 2015

  15. Integrated cannabinoid CB1 receptor transmission within the amygdala-prefrontal cortical pathway modulates neuronal plasticity and emotional memory encoding.

    Science.gov (United States)

    Tan, Huibing; Lauzon, Nicole M; Bishop, Stephanie F; Bechard, Melanie A; Laviolette, Steven R

    2010-06-01

    The cannabinoid CB1 receptor system is functionally involved in the processing and encoding of emotionally salient sensory information, learning and memory. The CB1 receptor is found in high concentrations in brain structures that are critical for emotional processing, including the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC). In addition, synaptic plasticity in the form of long-term potentiation (LTP) within the BLA > mPFC pathway is an established correlate of exposure to emotionally salient events. We performed a series of in vivo LTP studies by applying tetanic stimulation to the BLA combined with recordings of local field potentials within prelimbic cortical (PLC) region of the rat mPFC. Systemic pretreatment with AM-251 dose dependently blocked LTP along the BLA-PLC pathway and also the behavioral acquisition of conditioned fear memories. We next performed a series of microinfusion experiments wherein CB1 receptor transmission within the BLA > PLC circuit was pharmacologically blocked. Asymmetrical, interhemispheric blockade of CB1 receptor transmission along the BLA > PLC pathway prevented the acquisition of emotionally salient associative memory. Our results indicate that coordinated CB1 receptor transmission within the BLA > PLC pathway is critically involved in the encoding of emotional fear memories and modulates neural plasticity related to the encoding of emotionally salient associative learning.

  16. Paraventricular Nucleus Modulates Excitatory Cardiovascular Reflexes during Electroacupuncture

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C.; Guo, Zhi-Ling; Fu, Liang-Wu; Longhurst, John C.

    2016-01-01

    The paraventricular nucleus (PVN) regulates sympathetic outflow and blood pressure. Somatic afferent stimulation activates neurons in the hypothalamic PVN. Parvocellular PVN neurons project to sympathoexcitatory cardiovascular regions of the rostral ventrolateral medulla (rVLM). Electroacupuncture (EA) stimulates the median nerve (P5-P6) to modulate sympathoexcitatory responses. We hypothesized that the PVN and its projections to the rVLM participate in the EA-modulation of sympathoexcitatory cardiovascular responses. Cats were anesthetized and ventilated. Heart rate and mean blood pressure were monitored. Application of bradykinin every 10-min on the gallbladder induced consistent pressor reflex responses. Thirty-min of bilateral EA stimulation at acupoints P5-P6 reduced the pressor responses for at least 60-min. Inhibition of the PVN with naloxone reversed the EA-inhibition. Responses of cardiovascular barosensitive rVLM neurons evoked by splanchnic nerve stimulation were reduced by EA and then restored with opioid receptor blockade in the PVN. EA at P5-P6 decreased splanchnic evoked activity of cardiovascular barosensitive PVN neurons that also project directly to the rVLM. PVN neurons labeled with retrograde tracer from rVLM were co-labeled with μ-opioid receptors and juxtaposed to endorphinergic fibers. Thus, the PVN and its projection to rVLM are important in processing acupuncture modulation of elevated blood pressure responses through a PVN opioid mechanism. PMID:27181844

  17. Serotonin inputs to the dorsal BNST modulate anxiety in a 5-HT1A receptor-dependent manner.

    Science.gov (United States)

    Garcia-Garcia, A L; Canetta, S; Stujenske, J M; Burghardt, N S; Ansorge, M S; Dranovsky, A; Leonardo, E D

    2017-08-01

    Serotonin (5-HT) neurons project from the raphe nuclei throughout the brain where they act to maintain homeostasis. Here, we study 5-HT inputs into the bed nucleus of the stria terminalis (BNST), a major subdivision of the extended amygdala that has been proposed to regulate responses to anxiogenic environments in humans and rodents. While the dorsal part of the BNST (dBNST) receives dense 5-HT innervation, whether and how 5-HT in the dBNST normally modulates anxiety remains unclear. Using optogenetics, we demonstrate that activation of 5-HT terminals in the dBNST reduces anxiety in a highly anxiogenic environment. Further analysis revealed that optogenetic inhibition of 5-HT inputs into the dBNST increases anxiety in a less anxiogenic environment. We found that 5-HT predominantly hyperpolarizes dBNST neurons, reducing their activity in a manner that can be blocked by a 5-HT 1A antagonist. Finally, we demonstrate that activation of 5-HT 1A receptors in the dBNST is necessary for the anxiolytic effect observed following optogenetic stimulation of 5-HT inputs into the dBNST. These data reveal that 5-HT release in the dBNST modulates anxiety-like behavior via 5-HT 1A receptors under naturalistic conditions.Molecular Psychiatry advance online publication, 1 August 2017; doi:10.1038/mp.2017.165.

  18. Intraportal nicotine infusion in rats decreases hepatic blood flow through endothelin-1 and both endothelin A and endothelin B receptors

    International Nuclear Information System (INIS)

    Hashimoto, Takashi; Yoneda, Masashi; Shimada, Tadahito; Kurosawa, Mieko; Terano, Akira

    2004-01-01

    Smoking has been demonstrated to aggravate liver injury. Nicotine, a major pharmacological component of tobacco smoke, affects a multitude of functions. Smoking and nicotine induce synthesis of endothelin (ET)-1. The effect of intraportal infusion of nicotine on hepatic circulation and an involvement of ET-1 and ET receptor in the action of nicotine were investigated in rats. Nicotine (0-100 μg/kg/h) was infused into the portal vein of urethane-anesthetized rats, and changes of hepatic blood flow were evaluated. Intraportal infusion of nicotine dose-dependently decreased hepatic blood flow and increased portal pressure without any alteration of heart rate or arterial blood pressure. This action of intraportal nicotine was completely abolished by pretreatment of ET-1 antibody. Either BQ485 (ET A receptor antagonist) or BQ788 (ET B receptor antagonist) partially reversed the effect of nicotine, and combination of BQ788 and BQ485 completely abolished it. These findings suggest that nicotine inhibits hepatic circulation through ET-1, and ET A and ET B receptor

  19. Dietary sodium restriction and β2-adrenergic receptor polymorphism modulate cardiovascular function in humans

    Science.gov (United States)

    Eisenach, John H; Schroeder, Darrell R; Pike, Tasha L; Johnson, Christopher P; Schrage, William G; Snyder, Eric M; Johnson, Bruce D; Garovic, Vesna D; Turner, Stephen T; Joyner, Michael J

    2006-01-01

    Dietary Na+ intake influences β2-adrenergic receptor (β2AR) responsiveness. While receiving a normal Na+ diet (150 mmol day−1), subjects homozygous for glycine at amino acid 16 (Gly16) have greater forearm β2AR-mediated vasodilatation than subjects homozygous for arginine (Arg16), an effect that is mediated by endothelial NO. We tested the hypothesis that dietary Na+ restriction eliminates genotype differences in forearm and systemic β2AR-mediated dilatation in these groups. We measured heart rate, mean arterial pressure and cardiac output (CO, acetylene breathing) responses to administration of intravenous terbutaline (TRB) before and after 5 days of low dietary Na+ intake (10 mmol day−1) in healthy Gly16 (n = 17; age, 31 ± 7 year) and Arg16 homozygotes (n = 15; age, 29 ± 8 year). After the low-Na+ diet, a catheter was placed in the brachial artery to measure forearm blood flow (FBF, plethysmography) responses to administration of isoprenaline (isoproterenol) before and after NO inhibition with NG-mono-methyl-l-arginine (l-NMMA). In the Gly16 group, the low-Na+ diet decreased baseline CO from 6.4 ± 1.4 to 5.5 ± 1.2 l min−1 (P = 0.003, paired t test), tended to decrease stroke volume from 97.0 ± 20.6 to 86.9 ± 21.7 ml (P = 0.06) and increased peripheral resistance from 1106 ± 246 to 1246 ± 222 dynes s cm−5 (P = 0.02); significant effects of the low-Na+ diet were not observed in Arg16 subjects. In a repeated measures ANOVA, the responses of all cardiovascular measures to systemic administration of TRB were not influenced by genotype or diet. Additionally, the FBF response to incremenetal doses of isoprenaline did not differ between genotype groups before or after administration of l-NMMA. We conclude that dietary Na+ restriction blunted the increased forearm NO-mediated β2AR responsiveness in Gly16 homozygotes observed in a previous study after normal dietary Na+ intake, while baseline CO decreased and peripheral resistance increased in this

  20. Pathway and Cell-Specific Kappa-Opioid Receptor Modulation of Excitatory-Inhibitory Balance Differentially Gates D1 and D2 Accumbens Neuron Activity

    Science.gov (United States)

    Tejeda, Hugo A.; Wu, Jocelyn; Kornspun, Alana R.; Pignatelli, Marco; Kashtelyan, Vadim; Krashes, Michael J.; Lowell, Brad B.; Carlezon, William A.; Bonci, Antonello

    2018-01-01

    Endogenous dynorphin signaling via the kappa-opioid receptor (KOR) in the nucleus accumbens (NAcc) powerfully mediates negative affective states and stress reactivity. Excitatory inputs from the hippocampus and amygdala play a fundamental role in shaping the activity of both NAcc D1 and D2 MSNs, which encode positive and negative motivational valences, respectively. However, a circuit-based mechanism by which KOR modulation of excitation-inhibition balance modifies D1 and D2 MSN activity is lacking. Here, we provide a comprehensive synaptic framework wherein presynaptic KOR inhibition decreases excitatory drive of D1 MSN activity by the amygdala, but not hippocampus. Conversely, presynaptic inhibition by KORs of inhibitory synapses on D2 MSNs enhances integration of excitatory drive by the amygdala and hippocampus. In conclusion, we describe a circuit-based mechanism showing differential gating of afferent control of D1 and D2 MSN activity by KORs in a pathway specific manner. PMID:28056342

  1. 3β-Methyl-Neurosteroid Analogs are Preferential Positive Allosteric Modulators and Direct Activators of Extrasynaptic δGABA-A Receptors in the Hippocampus Dentate Gyrus Subfield.

    Science.gov (United States)

    Chuang, Shu-Hui; Reddy, Doodipala Samba

    2018-03-30

    Neurosteroids are powerful modulators of GABA-A receptors. Ganaxolone (3α-hydroxy-3β-methyl-5α-pregnan-20-one, GX) and synthetic analogs of the neurosteroid allopregnanolone (AP) are designed to treat epilepsy and related conditions. However, their precise mechanism of action in native neurons remains unclear. Here, we sought to determine the mode of action of GX and its analogs at GABA-A receptors in native hippocampal neurons by analyzing extrasynaptic receptor-mediated tonic currents and synaptic receptor-mediated phasic currents. Concentration-response profiles of GX were determined in two cell types: δ-containing dentate gyrus granule cells (DGGCs) and γ2-containing CA1 pyramidal cells (CA1PCs). GX produced significantly greater potentiation of the GABA-A receptor-activated chloride currents in DGGCs (500%) than CA1PCs (200%). In the absence of GABA, GX evoked 2-fold greater inward currents in DGGCs than CA1PCs, which were 2-fold greater than AP within DGGCs. In hippocampus slices, GX potentiated and directly activated tonic currents in DGGCs. These responses were significantly diminished in DGGCs from δ-subunit knockout (δKO) mice, confirming GX's selectivity for δGABA-A receptors. Like AP, GX potentiation of tonic currents was prevented by protein kinase C inhibition. Furthermore, GX's protection against hippocampus kindled seizures was significantly diminished in δKO mice. GX analogs exhibited greater potency and efficacy than GX on δGABA-A receptor-mediated tonic inhibition. In summary, these results provide strong evidence that GX and its analogs are preferential allosteric modulators and direct activators of extrasynaptic δGABA-A receptors regulating network inhibition and seizures in the dentate gyrus. Therefore, these findings provide a mechanistic rationale for the clinical use of synthetic neurosteroids in epilepsy and seizure disorders. The American Society for Pharmacology and Experimental Therapeutics.

  2. α5-GABAA receptors negatively regulate MYC-amplified medulloblastoma growth

    Science.gov (United States)

    Sengupta, Soma; Weeraratne, Shyamal Dilhan; Sun, Hongyu; Phallen, Jillian; Rallapalli, Sundari K.; Teider, Natalia; Kosaras, Bela; Amani, Vladimir; Pierre-Francois, Jessica; Tang, Yujie; Nguyen, Brian; Yu, Furong; Schubert, Simone; Balansay, Brianna; Mathios, Dimitris; Lechpammer, Mirna; Archer, Tenley C.; Tran, Phuoc; Reimer, Richard J.; Cook, James M.; Lim, Michael; Jensen, Frances E.; Pomeroy, Scott L.; Cho, Yoon-Jae

    2013-01-01

    Neural tumors often express neurotransmitter receptors as markers of their developmental lineage. Although these receptors have been well characterized in electrophysiological, developmental and pharmacological settings, their importance in the maintenance and progression of brain tumors, and importantly, the effect of their targeting in brain cancers remains obscure. Here, we demonstrate high levels of GABR5, which encodes the α-subunit of the GABAA receptor complex, in aggressive MYC-driven, “Group 3” medulloblastomas. We hypothesized that modulation of α-GABAA receptors alters medulloblastoma cell survival and monitored biological and electrophysiological responses of GABR5-expressing medulloblastoma cells upon pharmacological targeting of the GABAA receptor. While antagonists, inverse agonists and non-specific positive allosteric modulators had limited effects on medulloblastoma cells, a highly specific and potent α5-GABAA receptor agonist, QHii066, resulted in marked membrane depolarization and a significant decrease in cell survival. This effect was GABR5 dependent and mediated through the induction of apoptosis as well as accumulation of cells in S and G2 phases of the cell cycle. Chemical genomic profiling of QHii066-treated medulloblastoma cells confirmed inhibition of MYC-related transcriptional activity and revealed an enrichment of HOX5 target gene expression. siRNA-mediated knockdown of HOX5 markedly blunted the response of medulloblastoma cells to QHii066. Furthermore, QHii066 sensitized GABR5 positive medulloblastoma cells to radiation and chemotherapy consistent with the role of HOX5 in directly regulating p53 expression and inducing apoptosis. Thus, our results provide novel insights into the synthetic lethal nature of α5-GABAA receptor activation in MYC-driven/Group 3 medulloblastomas and propose its targeting as a novel strategy for the management of this highly aggressive tumor. PMID:24196163

  3. α5-GABAA receptors negatively regulate MYC-amplified medulloblastoma growth.

    Science.gov (United States)

    Sengupta, Soma; Weeraratne, Shyamal Dilhan; Sun, Hongyu; Phallen, Jillian; Rallapalli, Sundari K; Teider, Natalia; Kosaras, Bela; Amani, Vladimir; Pierre-Francois, Jessica; Tang, Yujie; Nguyen, Brian; Yu, Furong; Schubert, Simone; Balansay, Brianna; Mathios, Dimitris; Lechpammer, Mirna; Archer, Tenley C; Tran, Phuoc; Reimer, Richard J; Cook, James M; Lim, Michael; Jensen, Frances E; Pomeroy, Scott L; Cho, Yoon-Jae

    2014-04-01

    Neural tumors often express neurotransmitter receptors as markers of their developmental lineage. Although these receptors have been well characterized in electrophysiological, developmental and pharmacological settings, their importance in the maintenance and progression of brain tumors and, importantly, the effect of their targeting in brain cancers remains obscure. Here, we demonstrate high levels of GABRA5, which encodes the α5-subunit of the GABAA receptor complex, in aggressive MYC-driven, "Group 3" medulloblastomas. We hypothesized that modulation of α5-GABAA receptors alters medulloblastoma cell survival and monitored biological and electrophysiological responses of GABRA5-expressing medulloblastoma cells upon pharmacological targeting of the GABAA receptor. While antagonists, inverse agonists and non-specific positive allosteric modulators had limited effects on medulloblastoma cells, a highly specific and potent α5-GABAA receptor agonist, QHii066, resulted in marked membrane depolarization and a significant decrease in cell survival. This effect was GABRA5 dependent and mediated through the induction of apoptosis as well as accumulation of cells in S and G2 phases of the cell cycle. Chemical genomic profiling of QHii066-treated medulloblastoma cells confirmed inhibition of MYC-related transcriptional activity and revealed an enrichment of HOXA5 target gene expression. siRNA-mediated knockdown of HOXA5 markedly blunted the response of medulloblastoma cells to QHii066. Furthermore, QHii066 sensitized GABRA5 positive medulloblastoma cells to radiation and chemotherapy consistent with the role of HOXA5 in directly regulating p53 expression and inducing apoptosis. Thus, our results provide novel insights into the synthetic lethal nature of α5-GABAA receptor activation in MYC-driven/Group 3 medulloblastomas and propose its targeting as a novel strategy for the management of this highly aggressive tumor.

  4. Propranolol decreases retention of fear memory by modulating the stability of surface glutamate receptor GluA1 subunits in the lateral amygdala.

    Science.gov (United States)

    Zhou, Jun; Luo, Yi; Zhang, Jie-Ting; Li, Ming-Xing; Wang, Can-Ming; Guan, Xin-Lei; Wu, Peng-Fei; Hu, Zhuang-Li; Jin, You; Ni, Lan; Wang, Fang; Chen, Jian-Guo

    2015-11-01

    Posttraumatic stress disorder (PTSD) is a mental disorder with enhanced retention of fear memory and has profound impact on quality of life for millions of people worldwide. The β-adrenoceptor antagonist propranolol has been used in preclinical and clinical studies for the treatment of PTSD, but the mechanisms underlying its potential efficacy on fear memory retention remain to be elucidated. We investigated the action of propranolol on the retention of conditioned fear memory, the surface expression of glutamate receptor GluA1 subunits of AMPA receptors and synaptic adaptation in the lateral amygdala (LA) of rats. Propranolol attenuated reactivation-induced strengthening of fear retention while reducing enhanced surface expression of GluA1 subunits and restoring the impaired long-term depression in LA. These effects of propranolol were mediated by antagonizing reactivation-induced enhancement of adrenergic signalling, which activates PKA and calcium/calmodulin-dependent protein kinase II and then regulates the trafficking of AMPA receptors via phosphorylation of GluA1 subunits at the C-terminus. Both i.p. injection and intra-amygdala infusion of propranolol attenuated reactivation-induced enhancement of fear retention. Reactivation strengthens fear retention by increasing the level of noradrenaline and promotes the surface expression of GluA1 subunits and the excitatory synaptic transmission in LA. These findings uncover one mechanism underlying the efficiency of propranolol on retention of fear memories and suggest that β-adrenoceptor antagonists, which act centrally, may be more suitable for the treatment of PTSD. © 2015 The British Pharmacological Society.

  5. Ovarian steroid hormones modulate the expression of progesterone receptors and histone acetylation patterns in uterine leiomyoma cells.

    Science.gov (United States)

    Sant'Anna, Gabriela Dos Santos; Brum, Ilma Simoni; Branchini, Gisele; Pizzolato, Lolita Schneider; Capp, Edison; Corleta, Helena von Eye

    2017-08-01

    Uterine leiomyomas are the most common benign smooth muscle cell tumors in women. Estrogen (E2), progesterone (P4) and environmental factors play important roles in the development of these tumors. New treatments, such as mifepristone, have been proposed. We evaluated the gene expression of total (PRT) and B (PRB) progesterone receptors, and the histone acetyltransferase (HAT) and deacetylase (HDAC) activity after treatment with E2, P4 and mifepristone (RU486) in primary cell cultures from uterine leiomyoma and normal myometrium. Compared to myometrium, uterine leiomyoma cells showed an increase in PRT mRNA expression when treated with E2, and increase in PRB mRNA expression when treated with E2 and P4. Treatment with mifepristone had no significant impact on mRNA expression in these cells. The HDAC activity was higher in uterine leiomyoma compared to myometrial cells after treatment with E2 and E2 + P4 + mifepristone. HAT activity was barely detectable. Our results suggest that ovarian steroid hormones modulate PR, and mifepristone was unable to decrease PRT and PRB mRNA. The higher activity of HDAC leiomyoma cells could be involved in transcriptional repression of genes implicated in normal myometrium cell function, contributing to the maintenance and growth of uterine leiomyoma.

  6. Cannabinoid receptor CB2 modulates axon guidance

    DEFF Research Database (Denmark)

    Duff, Gabriel; Argaw, Anteneh; Cecyre, Bruno

    2013-01-01

    on axon guidance. These effects are specific to CB2R since no changes were observed in mice where the gene coding for this receptor was altered (cnr2 (-/-)). The CB2R induced morphological changes observed at the growth cone are PKA dependent and require the presence of the netrin-1 receptor, Deleted...... CB2R's implication in retinothalamic development. Overall, this study demonstrates that the contribution of endocannabinoids to brain development is not solely mediated by CB1R, but also involves CB2R....

  7. A common oxytocin receptor gene (OXTR) polymorphism modulates intranasal oxytocin effects on the neural response to social cooperation in humans.

    Science.gov (United States)

    Feng, C; Lori, A; Waldman, I D; Binder, E B; Haroon, E; Rilling, J K

    2015-09-01

    Intranasal oxytocin (OT) can modulate social-emotional functioning and related brain activity in humans. Consequently, OT has been discussed as a potential treatment for psychiatric disorders involving social behavioral deficits. However, OT effects are often heterogeneous across individuals. Here we explore individual differences in OT effects on the neural response to social cooperation as a function of the rs53576 polymorphism of the oxytocin receptor gene (OXTR). Previously, we conducted a double-blind, placebo-controlled study in which healthy men and women were randomized to treatment with intranasal OT or placebo. Afterwards, they were imaged with functional magnetic resonance imaging while playing an iterated Prisoner's Dilemma Game with same-sex partners. Within the left ventral caudate nucleus, intranasal OT treatment increased activation to reciprocated cooperation in men, but tended to decrease activation in women. Here, we show that these sex differences in OT effects are specific to individuals with the rs53576 GG genotype, and are not found for other genotypes (rs53576 AA/AG). Thus, OT may increase the reward or salience of positive social interactions for male GG homozygotes, while decreasing those processes for female GG homozygotes. These results suggest that rs53576 genotype is an important variable to consider in future investigations of the clinical efficacy of intranasal OT treatment. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  8. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    Science.gov (United States)

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.

  9. Angiotensin II potentiates adrenergic and muscarinic modulation of guinea pig intracardiac neurons.

    Science.gov (United States)

    Girasole, Allison E; Palmer, Christopher P; Corrado, Samantha L; Marie Southerland, E; Ardell, Jeffrey L; Hardwick, Jean C

    2011-11-01

    The intrinsic cardiac plexus represents a major peripheral integration site for neuronal, hormonal, and locally produced neuromodulators controlling efferent neuronal output to the heart. This study examined the interdependence of norepinephrine, muscarinic agonists, and ANG II, to modulate intrinsic cardiac neuronal activity. Intracellular voltage recordings from whole-mount preparations of the guinea pig cardiac plexus were used to determine changes in active and passive electrical properties of individual intrinsic cardiac neurons. Application of either adrenergic or muscarinic agonists induced changes in neuronal resting membrane potentials, decreased afterhyperpolarization duration of single action potentials, and increased neuronal excitability. Adrenergic responses were inhibited by removal of extracellular calcium ions, while muscarinic responses were inhibited by application of TEA. The adrenergic responses were heterogeneous, responding to a variety of receptor-specific agonists (phenylephrine, clonidine, dobutamine, and terbutaline), although α-receptor agonists produced the most frequent responses. Application of ANG II alone produced a significant increase in excitability, while application of ANG II in combination with either adrenergic or muscarinic agonists produced a much larger potentiation of excitability. The ANG II-induced modulation of firing was blocked by the angiotensin type 2 (AT(2)) receptor inhibitor PD 123319 and was mimicked by the AT(2) receptor agonist CGP-42112A. AT(1) receptor blockade with telmasartin did not alter neuronal responses to ANG II. These data demonstrate that ANG II potentiates both muscarinically and adrenergically mediated activation of intrinsic cardiac neurons, doing so primarily via AT(2) receptor-dependent mechanisms. These neurohumoral interactions may be fundamental to regulation of neuronal excitability within the intrinsic cardiac nervous system.

  10. Short-term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in hippocampus.

    Science.gov (United States)

    Xie, Meilan; Yan, Jie; He, Chao; Yang, Li; Tan, Gang; Li, Chao; Hu, Zhian; Wang, Jiali

    2015-06-01

    Hippocampus-dependent learning memory is sensitive to sleep deprivation (SD). Although the ionotropic glutamate receptors play a vital role in synaptic plasticity and learning and memory, however, whether the expression of these receptor subunits is modulated by sleep loss remains unclear. In the present study, western blotting was performed by probing with specific antibodies against the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1, GluA2, GluA3, and against the N-methyl-d-aspartate (NMDA) glutamate receptor subunits GluN1, GluN2A, GluN2B. In hippocampus, down regulation of surface GluA1 and GluN2A surface expression were observed in both SD groups. However, surface expression level of GluA2, GluA3, GluN1 and GluN2B was significantly up-regulated in 8h-SD rats when compared to the 4h-SD rats. In parallel with the complex changes in AMPA and NMDA receptor subunit expressions, we found the 8h-SD impaired rat spatial working memory in 30-s-delay T-maze task, whereas no impairment of spatial learning was observed in 4h-SD rats. These results indicate that sleep loss alters the relative expression levels of the AMPA and NMDA receptors, thus affects the synaptic strength and capacity for plasticity and partially contributes to spatial memory impairment. Copyright © 2015. Published by Elsevier B.V.

  11. Residues in the 5th module of the low-density lipoprotein receptor that bind apoE and apoB-100

    International Nuclear Information System (INIS)

    Kroon, P.A.; Zhang, H.-Y.; Smith, R.

    2000-01-01

    Full text: The low-density lipoprotein receptor (LDLR) binds and removes cholesterol-rich lipoproteins from the circulation. Its ligand-binding (LB) domain consists of seven cysteine-rich LB modules that bind apoB-100 and apoE. These modules fold into well-defined structures with three disulfide bonds, in the presence of Ca 2+ . The 5th module (LB5) is unique in that it is required to bind both apoB-100 and apoE. The aim of the current study was to map residues in human LB5 that are required for ligand binding. This was done by alanine mutagenesis of a series of residues that are conserved in human, mouse, rat and rabbit LB5 (E9, S14, E16, H19, S21, K31, and K33), but not in the other six modules. E37 (R37 in the rabbit) was included, since it has been previously hypothesized to play a role in binding. The variant LB5 modules were first produced as recombinant peptides, and subjected to oxidative folding to determine whether the mutations interfered with Ca 2+ '-dependent folding. Only the S14A and E16A mutations interfered significantly with folding, suggesting that S14 and E16 are required for the structural framework of LB5 and that their substitution in the LDLR may interfere with its folding. The native LDLR and E9A, H19A, S21A, K31A, K33A and E37A LDLRs were expressed in LDLR negative IdlA-7 CHO cells. Labeling with 125 I-lgG-C7 showed that all receptors were expressed on the cell surface. Binding of Dil-labeled LDL (Dil-LDL) and Dil-labeled DMPC, complexed with the N-terminal receptor-binding domain of apoE3 (Dil-E3), at 4 deg C, was used to assess receptor binding. Binding of Dil-E3 (0.1 μ/ml) to the H19A, S21A, K31A, K33A and E37A LDLRs was 65-92% of binding to the native LDLR. In contrast, the E9A LDLR only bound 3% of that of the native LDLR. The binding of Dil-LDL (0.5 Ag/ml) to the E9A LDLR was 23% of that of the native LDLR, while binding to the remaining variant LDLRs ranged from 44-70% of what of the native LDLR. We conclude that (i) E9 of LB5

  12. The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Raymond; Matthews, Jason, E-mail: jason.matthews@utoronto.ca

    2013-07-15

    Nuclear factor erythroid-2-related factor 2 (NRF2; NFE2L2) plays an important role in mediating cellular protection against reactive oxygen species. NRF2 signaling is positively modulated by the aryl hydrocarbon receptor (AHR) but inhibited by estrogen receptor alpha (ERα). In this study we investigated the crosstalk among NRF2, AHR and ERα in MCF-7 breast cancer cells treated with the NRF2 activator sulforaphane (SFN), a dual AHR and ERα activator, 3,3′-diindolylmethane (DIM), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 17β-estradiol (E2). SFN-dependent increases in NADPH-dependent oxidoreductase 1 (NQO1) and heme oxygenase I (HMOX1) mRNA levels were significantly reduced after co-treatment with E2. E2-dependent repression of NQO1 and HMOX1 was associated with increased ERα but reduced p300 recruitment and reduced histone H3 acetylation at both genes. In contrast, DIM + SFN or TCDD + SFN induced NQO1 and HMOX1 mRNA expression to levels higher than SFN alone, which was prevented by RNAi-mediated knockdown of AHR. DIM + SFN but not TCDD + SFN also induced recruitment of ERα to NQO1 and HMOX1. However, the presence of AHR at NQO1 and HMOX1 restored p300 recruitment and histone H3 acetylation, thereby reversing the ERα-dependent repression of NRF2. Taken together, our study provides further evidence of functional interplay among NRF2, AHR and ERα signaling pathways through altered p300 recruitment to NRF2-regulated target genes. - Highlights: • We examined crosstalk among ERα, AHR, and NRF2 in MCF-7 breast cancer cells. • AHR enhanced the mRNA expression levels of two NRF2 target genes – HMOX1 and NQO1. • ERα repressed HMOX1 and NQO1 expression via decreased histone acetylation. • AHR prevented ERα-dependent repression of HMOX1 and NQO1.

  13. The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Lo, Raymond; Matthews, Jason

    2013-01-01

    Nuclear factor erythroid-2-related factor 2 (NRF2; NFE2L2) plays an important role in mediating cellular protection against reactive oxygen species. NRF2 signaling is positively modulated by the aryl hydrocarbon receptor (AHR) but inhibited by estrogen receptor alpha (ERα). In this study we investigated the crosstalk among NRF2, AHR and ERα in MCF-7 breast cancer cells treated with the NRF2 activator sulforaphane (SFN), a dual AHR and ERα activator, 3,3′-diindolylmethane (DIM), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 17β-estradiol (E2). SFN-dependent increases in NADPH-dependent oxidoreductase 1 (NQO1) and heme oxygenase I (HMOX1) mRNA levels were significantly reduced after co-treatment with E2. E2-dependent repression of NQO1 and HMOX1 was associated with increased ERα but reduced p300 recruitment and reduced histone H3 acetylation at both genes. In contrast, DIM + SFN or TCDD + SFN induced NQO1 and HMOX1 mRNA expression to levels higher than SFN alone, which was prevented by RNAi-mediated knockdown of AHR. DIM + SFN but not TCDD + SFN also induced recruitment of ERα to NQO1 and HMOX1. However, the presence of AHR at NQO1 and HMOX1 restored p300 recruitment and histone H3 acetylation, thereby reversing the ERα-dependent repression of NRF2. Taken together, our study provides further evidence of functional interplay among NRF2, AHR and ERα signaling pathways through altered p300 recruitment to NRF2-regulated target genes. - Highlights: • We examined crosstalk among ERα, AHR, and NRF2 in MCF-7 breast cancer cells. • AHR enhanced the mRNA expression levels of two NRF2 target genes – HMOX1 and NQO1. • ERα repressed HMOX1 and NQO1 expression via decreased histone acetylation. • AHR prevented ERα-dependent repression of HMOX1 and NQO1.

  14. Single Channel Analysis of Isoflurane and Ethanol Enhancement of Taurine-Activated Glycine Receptors.

    Science.gov (United States)

    Kirson, Dean; Todorovic, Jelena; Mihic, S John

    2018-01-01

    The amino acid taurine is an endogenous ligand acting on glycine receptors (GlyRs), which is released by astrocytes in many brain regions, such as the nucleus accumbens and prefrontal cortex. Taurine is a partial agonist with an efficacy significantly lower than that of glycine. Allosteric modulators such as ethanol and isoflurane produce leftward shifts of glycine concentration-response curves but have no effects at saturating glycine concentrations. In contrast, in whole-cell electrophysiology studies these modulators increase the effects of saturating taurine concentrations. A number of possible mechanisms may explain these enhancing effects, including modulator effects on conductance, channel open times, or channel closed times. We used outside-out patch-clamp single channel electrophysiology to investigate the mechanism of action of 200 mM ethanol and 0.55 mM isoflurane in enhancing the effects of a saturating concentration of taurine. Neither modulator enhanced taurine-mediated conductance. Isoflurane increased the probability of channel opening. Isoflurane also increased the lifetimes of the two shortest open dwell times while both agents decreased the likelihood of occurrence of the longest-lived intracluster channel-closing events. The mechanism of enhancement of GlyR functioning by these modulators is dependent on the efficacy of the agonist activating the receptor and the concentration of agonist tested. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Modulation of short-term social memory in rats by adenosine A1 and A(2A) receptors.

    Science.gov (United States)

    Prediger, Rui D S; Takahashi, Reinaldo N

    2005-03-16

    The recognition of an unfamiliar juvenile rat by an adult rat has been shown to imply short-term memory processes. The present study was designed to examine the role of adenosine receptors in the short-term social memory of rats using the social recognition paradigm. Adenosine (5.0-10.0 mg/kg), the selective adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA, 0.025-0.05 mg/kg) and the selective adenosine A(2A) receptor agonist N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine (DPMA, 1.0-5.0 mg/kg), given by i.p. route 30 min before the test, disrupted the juvenile recognition ability of adult rats. This negative effect of adenosine (5.0 mg/kg, i.p.) on social memory was prevented by pretreatment with the non-selective adenosine receptor antagonist caffeine (10.0 mg/kg, i.p.), the adenosine A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 1.0 mg/kg, i.p.) and the adenosine A(2A) antagonist 4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo-{2,3-a}{1,3,5}triazin-5-yl-amino]ethyl)phenol (ZM241385, 1.0 mg/kg, i.p.). Furthermore, acute administration of caffeine (10.0-30.0 mg/kg, i.p.), DPCPX (1.0-3.0 mg/kg, i.p.) or ZM241385 (0.5-1.0 mg/kg, i.p.) improved the short-term social memory in a specific manner. These results indicate that adenosine modulates the short-term social memory in rats by acting on both A1 and A(2A) receptors, with adenosine receptor agonists and antagonists, respectively, disrupting and enhancing the social memory.

  16. Population pharmacokinetics and pharmacodynamics of ponesimod, a selective S1P1 receptor modulator.

    Science.gov (United States)

    Krause, Andreas; Brossard, Patrick; D'Ambrosio, Daniele; Dingemanse, Jasper

    2014-06-01

    Ponesimod (ACT-128800), a reversible, orally active, selective S1P1 receptor modulator, prevents the egress of lymphocytes from the lymph node into the systemic circulation. It is currently in clinical development for the treatment of relapsing multiple sclerosis. Modulation of circulating lymphocytes serves as biomarker of efficacy and safety, such that the quantitative characterization of the pharmacokinetic/pharmacodynamic (PK/PD) relationship guides the clinical development of the compound. The availability of a variety of doses, dosing regimens, and treatment durations permitted estimation of the pharmacokinetics characterized by an absorption lag time followed by a sequential zero/first-order absorption and two compartments with first-order elimination. The PD are modeled as an indirect-effect model with rates of appearance and disappearance of lymphocytes in blood with a circadian rhythm and a drug effect on the rate of appearance. The model suggests a circadian variation of 9% and a maximum inhibition of 86% of total lymphocyte count with high doses at steady state. It was instrumental for the selection of doses for subsequent studies that confirmed the effect plateau in total lymphocyte count at approximately 0.5 × 10(9) counts/L.

  17. Selective androgen receptor modulators for the treatment of late onset male hypogonadism.

    Science.gov (United States)

    Coss, Christopher C; Jones, Amanda; Hancock, Michael L; Steiner, Mitchell S; Dalton, James T

    2014-01-01

    Several testosterone preparations are used in the treatment of hypogonadism in the ageing male. These therapies differ in their convenience, flexibility, regional availability and expense but share their pharmacokinetic basis of approval and dearth of long-term safety data. The brevity and relatively reduced cost of pharmacokinetic based registration trials provides little commercial incentive to develop improved novel therapies for the treatment of late onset male hypogonadism. Selective androgen receptor modulators (SARMs) have been shown to provide anabolic benefit in the absence of androgenic effects on prostate, hair and skin. Current clinical development for SARMs is focused on acute muscle wasting conditions with defi ned clinical endpoints of physical function and lean body mass. Similar regulatory clarity concerning clinical deficits in men with hypogonadism is required before the beneficial pharmacology and desirable pharmacokinetics of SARMs can be employed in the treatment of late onset male hypogonadism.

  18. Selective androgen receptor modulators for the treatment of late onset male hypogonadism

    Directory of Open Access Journals (Sweden)

    Christopher C Coss

    2014-04-01

    Full Text Available Several testosterone preparations are used in the treatment of hypogonadism in the ageing male. These therapies differ in their convenience, flexibility, regional availability and expense but share their pharmacokinetic basis of approval and dearth of long-term safety data. The brevity and relatively reduced cost of pharmacokinetic based registration trials provides little commercial incentive to develop improved novel therapies for the treatment of late onset male hypogonadism. Selective androgen receptor modulators (SARMs have been shown to provide anabolic benefit in the absence of androgenic effects on prostate, hair and skin. Current clinical development for SARMs is focused on acute muscle wasting conditions with defi ned clinical endpoints of physical function and lean body mass. Similar regulatory clarity concerning clinical deficits in men with hypogonadism is required before the beneficial pharmacology and desirable pharmacokinetics of SARMs can be employed in the treatment of late onset male hypogonadism.

  19. Selective androgen receptor modulators for the treatment of late onset male hypogonadism

    Science.gov (United States)

    Coss, Christopher C; Jones, Amanda; Hancock, Michael L; Steiner, Mitchell S; Dalton, James T

    2014-01-01

    Several testosterone preparations are used in the treatment of hypogonadism in the ageing male. These therapies differ in their convenience, flexibility, regional availability and expense but share their pharmacokinetic basis of approval and dearth of long-term safety data. The brevity and relatively reduced cost of pharmacokinetic based registration trials provides little commercial incentive to develop improved novel therapies for the treatment of late onset male hypogonadism. Selective androgen receptor modulators (SARMs) have been shown to provide anabolic benefit in the absence of androgenic effects on prostate, hair and skin. Current clinical development for SARMs is focused on acute muscle wasting conditions with defined clinical endpoints of physical function and lean body mass. Similar regulatory clarity concerning clinical deficits in men with hypogonadism is required before the beneficial pharmacology and desirable pharmacokinetics of SARMs can be employed in the treatment of late onset male hypogonadism. PMID:24407183

  20. Blockade of NMDA receptors decreased spinal microglia activation in bee venom induced acute inflammatory pain in rats.

    Science.gov (United States)

    Li, Li; Wu, Yongfang; Bai, Zhifeng; Hu, Yuyan; Li, Wenbin

    2017-03-01

    Microglial cells in spinal dorsal horn can be activated by nociceptive stimuli and the activated microglial cells release various cytokines enhancing the nociceptive transmission. However, the mechanisms underlying the activation of spinal microglia during nociceptive stimuli have not been well understood. In order to define the role of NMDA receptors in the activation of spinal microglia during nociceptive stimuli, the present study was undertaken to investigate the effect of blockade of NMDA receptors on the spinal microglial activation induced by acute peripheral inflammatory pain in rats. The acute inflammatory pain was induced by subcutaneous bee venom injection to the plantar surface of hind paw of rats. Spontaneous pain behavior, thermal withdrawal latency and mechanical withdrawal threshold were rated. The expression of specific microglia marker CD11b/c was assayed by immunohistochemistry and western blot. After bee venom treatment, it was found that rats produced a monophasic nociception characterized by constantly lifting and licking the injected hind paws, decreased thermal withdrawal latency and mechanical withdrawal threshold; immunohistochemistry displayed microglia with enlarged cell bodies, thickened, extended cellular processes with few ramifications, small spines, and intensive immunostaining; western blot showed upregulated expression level of CD11b/c within the period of hyperalgesia. Prior intrathecal injection of MK-801, a selective antagonist of NMDA receptors, attenuated the pain behaviors and suppressed up-regulation of CD11b/c induced by bee venom. It can be concluded that NMDA receptors take part in the mediation of spinal microglia activation in bee venom induced peripheral inflammatory pain and hyperalgesia in rats.

  1. Effects of GABAergic modulators on food and cocaine self-administration in baboons.

    Science.gov (United States)

    Weerts, Elise M; Froestl, Wolfgang; Griffiths, Roland R

    2005-12-12

    Drugs that indirectly alter dopaminergic systems may alter the reinforcing effects of cocaine. The inhibitory neurotransmitter gamma-aminobutyric acid (GABA) has extensive neural connections in mesolimbic regions that appear to modulate dopamine. The current study evaluated the effects of GABA(B) receptor agonists baclofen and CGP44532, the benzodiazepine agonist alprazolam, and the GABA reuptake inhibitor tiagabine on lever responding maintained by low dose cocaine injections (0.032 mg/kg) or by food pellet (1 g) delivery in baboons. The benzodiazepine antagonist flumazenil was tested as a negative control. Cocaine or food was available under a fixed ratio (FR 10) schedule of reinforcement during daily 2-h sessions. During baseline conditions, cocaine and pellets maintained similar numbers of reinforcers per session. Baclofen, CGP44532 and tiagabine dose-dependently reduced the number of cocaine injections, where as the benzodiazepine antagonist flumazenil did not. Baclofen, CGP44532 and tiagabine also produced dose-related decreases in food-maintained behavior. In contrast, the benzodiazepine agonist alprazolam, which positively modulates GABA(A) receptors via the benzodiazepine site, produced decreases in cocaine self-injection, but not food-maintained behavior. Thus, the effects of alprazolam were specific for cocaine-maintained behavior, where as the effects of baclofen and CGP44532 were not.

  2. Ghrelin receptor antagonism of hyperlocomotion in cocaine-sensitized mice requires βarrestin-2.

    Science.gov (United States)

    Toth, Krisztian; Slosky, Lauren M; Pack, Thomas F; Urs, Nikhil M; Boone, Peter; Mao, Lan; Abraham, Dennis; Caron, Marc G; Barak, Lawrence S

    2018-01-01

    The "brain-gut" peptide ghrelin, which mediates food-seeking behaviors, is recognized as a very strong endogenous modulator of dopamine (DA) signaling. Ghrelin binds the G protein-coupled receptor GHSR1a, and administration of ghrelin increases the rewarding properties of psychostimulants while ghrelin receptor antagonists decrease them. In addition, the GHSR1a signals through βarrestin-2 to regulate actin/stress fiber rearrangement, suggesting βarrestin-2 participation in the regulation of actin-mediated synaptic plasticity for addictive substances like cocaine. The effects of ghrelin receptor ligands on reward strongly suggest that modulation of ghrelin signaling could provide an effective strategy to ameliorate undesirable behaviors arising from addiction. To investigate this possibility, we tested the effects of ghrelin receptor antagonism in a cocaine behavioral sensitization paradigm using DA neuron-specific βarrestin-2 KO mice. Our results show that these mice sensitize to cocaine as well as wild-type littermates. The βarrestin-2 KO mice, however, no longer respond to the locomotor attenuating effects of the GHSR1a antagonist YIL781. The data presented here suggest that the separate stages of addictive behavior differ in their requirements for βarrestin-2 and show that pharmacological inhibition of βarrestin-2 function through GHSR1a antagonism is not equivalent to the loss of βarrestin-2 function achieved by genetic ablation. These data support targeting GHSR1a signaling in addiction therapy but indicate that using signaling biased compounds that modulate βarrestin-2 activity differentially from G protein activity may be required. © 2017 Wiley Periodicals, Inc.

  3. Bidirectional modulation of windup by NMDA receptors in the rat spinal trigeminal nucleus.

    Science.gov (United States)

    Woda, Alain; Blanc, Olivier; Voisin, Daniel L; Coste, Jérôme; Molat, Jean-Louis; Luccarini, Philippe

    2004-04-01

    Activation of afferent nociceptive pathways is subject to activity-dependent plasticity, which may manifest as windup, a progressive increase in the response of dorsal horn nociceptive neurons to repeated stimuli. At the cellular level, N-methyl-d-aspartate (NMDA) receptor activation by glutamate released from nociceptive C-afferent terminals is currently thought to generate windup. Most of the wide dynamic range nociceptive neurons that display windup, however, do not receive direct C-fibre input. It is thus unknown where the NMDA mechanisms for windup operate. Here, using the Sprague-Dawley rat trigeminal system as a model, we anatomically identify a subpopulation of interneurons that relay nociceptive information from the superficial dorsal horn where C-fibres terminate, to downstream wide dynamic range nociceptive neurons. Using in vivo electrophysiological recordings, we show that at the end of this pathway, windup was reduced (24 +/- 6%, n = 7) by the NMDA receptor antagonist AP-5 (2.0 fmol) and enhanced (62 +/- 19%, n = 12) by NMDA (1 nmol). In contrast, microinjections of AP-5 (1.0 fmol) within the superficial laminae increased windup (83 +/- 44%, n = 9), whereas NMDA dose dependently decreased windup (n = 19). These results indicate that NMDA receptor function at the segmental level depends on their precise location in nociceptive neural networks. While some NMDA receptors actually amplify pain information, the new evidence for NMDA dependent inhibition of windup we show here indicates that, simultaneously, others act in the opposite direction. Working together, the two mechanisms may provide a fine tuning of gain in pain.

  4. Structural Insights into Selective Ligand-Receptor Interactions Leading to Receptor Inactivation Utilizing Selective Melanocortin 3 Receptor Antagonists.

    Science.gov (United States)

    Cai, Minying; Marelli, Udaya Kiran; Mertz, Blake; Beck, Johannes G; Opperer, Florian; Rechenmacher, Florian; Kessler, Horst; Hruby, Victor J

    2017-08-15

    Systematic N-methylated derivatives of the melanocortin receptor ligand, SHU9119, lead to multiple binding and functional selectivity toward melanocortin receptors. However, the relationship between N-methylation-induced conformational changes in the peptide backbone and side chains and melanocortin receptor selectivity is still unknown. We conducted comprehensive conformational studies in solution of two selective antagonists of the third isoform of the melanocortin receptor (hMC3R), namely, Ac-Nle-c[Asp-NMe-His 6 -d-Nal(2') 7 -NMe-Arg 8 -Trp 9 -Lys]-NH 2 (15) and Ac-Nle-c[Asp-His 6 -d-Nal(2') 7 -NMe-Arg 8 -NMe-Trp 9 -NMe-Lys]-NH 2 (17). It is known that the pharmacophore (His 6 -DNal 7 -Arg 8 -Trp 9 ) of the SHU-9119 peptides occupies a β II-turn-like region with the turn centered about DNal 7 -Arg 8 . The analogues with hMC3R selectivity showed distinct differences in the spatial arrangement of the Trp 9 side chains. In addition to our NMR studies, we also carried out molecular-level interaction studies of these two peptides at the homology model of hMC3R. Earlier chimeric human melanocortin 3 receptor studies revealed insights regarding the binding and functional sites of hMC3R selectivity. Upon docking of peptides 15 and 17 to the binding pocket of hMC3R, it was revealed that Arg 8 and Trp 9 side chains are involved in a majority of the interactions with the receptor. While Arg 8 forms polar contacts with D154 and D158 of hMC3R, Trp 9 utilizes π-π stacking interactions with F295 and F298, located on the transmembrane domain of hMC3R. It is hypothesized that as the frequency of Trp 9 -hMC3R interactions decrease, antagonistic activity increases. The absence of any interactions of the N-methyl groups with hMC3R suggests that their primary function is to modulate backbone conformations of the ligands.

  5. DREAM (Downstream Regulatory Element Antagonist Modulator contributes to synaptic depression and contextual fear memory

    Directory of Open Access Journals (Sweden)

    Wu Long-Jun

    2010-01-01

    Full Text Available Abstract The downstream regulatory element antagonist modulator (DREAM, a multifunctional Ca2+-binding protein, binds specifically to DNA and several nucleoproteins regulating gene expression and with proteins outside the nucleus to regulate membrane excitability or calcium homeostasis. DREAM is highly expressed in the central nervous system including the hippocampus and cortex; however, the roles of DREAM in hippocampal synaptic transmission and plasticity have not been investigated. Taking advantage of transgenic mice overexpressing a Ca2+-insensitive DREAM mutant (TgDREAM, we used integrative methods including electrophysiology, biochemistry, immunostaining, and behavior tests to study the function of DREAM in synaptic transmission, long-term plasticity and fear memory in hippocampal CA1 region. We found that NMDA receptor but not AMPA receptor-mediated current was decreased in TgDREAM mice. Moreover, synaptic plasticity, such as long-term depression (LTD but not long-term potentiation (LTP, was impaired in TgDREAM mice. Biochemical experiments found that DREAM interacts with PSD-95 and may inhibit NMDA receptor function through this interaction. Contextual fear memory was significantly impaired in TgDREAM mice. By contrast, sensory responses to noxious stimuli were not affected. Our results demonstrate that DREAM plays a novel role in postsynaptic modulation of the NMDA receptor, and contributes to synaptic plasticity and behavioral memory.

  6. Dopamine D1 receptor stimulation modulates the formation and retrieval of novel object recognition memory: Role of the prelimbic cortex.

    Science.gov (United States)

    Pezze, Marie A; Marshall, Hayley J; Fone, Kevin C F; Cassaday, Helen J

    2015-11-01

    Previous studies have shown that dopamine D1 receptor antagonists impair novel object recognition memory but the effects of dopamine D1 receptor stimulation remain to be determined. This study investigated the effects of the selective dopamine D1 receptor agonist SKF81297 on acquisition and retrieval in the novel object recognition task in male Wistar rats. SKF81297 (0.4 and 0.8 mg/kg s.c.) given 15 min before the sampling phase impaired novel object recognition evaluated 10 min or 24 h later. The same treatments also reduced novel object recognition memory tested 24 h after the sampling phase and when given 15 min before the choice session. These data indicate that D1 receptor stimulation modulates both the encoding and retrieval of object recognition memory. Microinfusion of SKF81297 (0.025 or 0.05 μg/side) into the prelimbic sub-region of the medial prefrontal cortex (mPFC) in this case 10 min before the sampling phase also impaired novel object recognition memory, suggesting that the mPFC is one important site mediating the effects of D1 receptor stimulation on visual recognition memory. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. The electrophysiological effects of the serotonin 1A receptor agonist buspirone in emotional face processing.

    Science.gov (United States)

    Bernasconi, Fosco; Kometer, Michael; Pokorny, Thomas; Seifritz, Erich; Vollenweider, Franz X

    2015-04-01

    Emotional face processing is critically modulated by the serotonergic system, and serotonin (5-HT) receptor agonists impair emotional face processing. However, the specific contribution of the 5-HT1A receptor remains poorly understood. Here we investigated the spatiotemporal brain mechanisms underpinning the modulation of emotional face processing induced by buspirone, a partial 5-HT1A receptor agonist. In a psychophysical discrimination of emotional faces task, we observed that the discrimination fearful versus neutral faces were reduced, but not happy versus neutral faces. Electrical neuroimaging analyses were applied to visual evoked potentials elicited by emotional face images, after placebo and buspirone administration. Buspirone modulated response strength (i.e., global field power) in the interval 230-248ms after stimulus onset. Distributed source estimation over this time interval revealed that buspirone decreased the neural activity in the right dorsolateral prefrontal cortex that was evoked by fearful faces. These results indicate temporal and valence-specific effects of buspirone on the neuronal correlates of emotional face processing. Furthermore, the reduced neural activity in the dorsolateral prefrontal cortex in response to fearful faces suggests a reduced attention to fearful faces. Collectively, these findings provide new insights into the role of 5-HT1A receptors in emotional face processing and have implications for affective disorders that are characterized by an increased attention to negative stimuli. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  8. Opposing Effects of α2- and β-Adrenergic Receptor Stimulation on Quiescent Neural Precursor Cell Activity and Adult Hippocampal Neurogenesis

    Science.gov (United States)

    Prosper, Boris W.; Marathe, Swanand; Husain, Basma F. A.; Kernie, Steven G.; Bartlett, Perry F.; Vaidya, Vidita A.

    2014-01-01

    Norepinephrine regulates latent neural stem cell activity and adult hippocampal neurogenesis, and has an important role in modulating hippocampal functions such as learning, memory and mood. Adult hippocampal neurogenesis is a multi-stage process, spanning from the activation and proliferation of hippocampal stem cells, to their differentiation into neurons. However, the stage-specific effects of noradrenergic receptors in regulating adult hippocampal neurogenesis remain poorly understood. In this study, we used transgenic Nestin-GFP mice and neurosphere assays to show that modulation of α2- and β-adrenergic receptor activity directly affects Nestin-GFP/GFAP-positive precursor cell population albeit in an opposing fashion. While selective stimulation of α2-adrenergic receptors decreases precursor cell activation, proliferation and immature neuron number, stimulation of β-adrenergic receptors activates the quiescent precursor pool and enhances their proliferation in the adult hippocampus. Furthermore, our data indicate no major role for α1-adrenergic receptors, as we did not observe any change in either the activation and proliferation of hippocampal precursors following selective stimulation or blockade of α1-adrenergic receptors. Taken together, our data suggest that under physiological as well as under conditions that lead to enhanced norepinephrine release, the balance between α2- and β-adrenergic receptor activity regulates precursor cell activity and hippocampal neurogenesis. PMID:24922313

  9. Fatigue correlates with the decrease in parasympathetic sinus modulation induced by a cognitive challenge

    Science.gov (United States)

    2014-01-01

    Background It is known that enhancement of sympathetic nerve activity based on a decrease in parasympathetic nerve activity is associated with fatigue induced by mental tasks lasting more than 30 min. However, to measure autonomic nerve function and assess fatigue levels in both clinical and industrial settings, shorter experimental durations and more sensitive measurement methods are needed. The aim of the present study was to establish an improved method for inducing fatigue and evaluating the association between it and autonomic nerve activity. Methods Twenty-eight healthy female college students participated in the study. We used a kana pick-out test (KPT) as a brief verbal cognitive task and recorded electrocardiography (ECG) to measure autonomic nerve activity. The experimental design consisted of a 16-min period of ECG: A pre-task resting state with eyes open for 3 min and eyes closed for 3 min, the 4-min KPT, and a post-task resting state with eyes open for 3 min and eyes closed for 3 min. Results Baseline fatigue sensation, measured by a visual analogue scale before the experiment, was associated with the decrease in parasympathetic sinus modulation, as indicated the by ratio of low-frequency component power (LF) to high-frequency component power (HF), during the KPT. The LF/HF ratio during the post-KPT rest with eyes open tended to be greater than the ratio during the KPT and correlated with fatigue sensation. Fatigue sensation was correlated negatively with log-transformed HF, which is an index of parasympathetic sinus modulation, during the post-KPT rest with eyes open. Conclusions The methods described here are useful for assessing the association between fatigue sensation and autonomic nerve activity using a brief cognitive test in healthy females. PMID:25069864

  10. Changes of cooperativity between N-methylscopolamine and allosteric modulators alcuronium and gallamine induced by mutations of external loops of muscarinic M(3) receptors

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Alena; Tuček, Stanislav

    2001-01-01

    Roč. 60, č. 4 (2001), s. 761-767 ISSN 0026-895X R&D Projects: GA ČR GA309/99/0214 Institutional research plan: CEZ:AV0Z5011922 Keywords : muscarinic receptors * allosteric modulators Subject RIV: FH - Neurology Impact factor: 5.297, year: 2001

  11. Hearing loss alters serotonergic modulation of intrinsic excitability in auditory cortex.

    Science.gov (United States)

    Rao, Deepti; Basura, Gregory J; Roche, Joseph; Daniels, Scott; Mancilla, Jaime G; Manis, Paul B

    2010-11-01

    Sensorineural hearing loss during early childhood alters auditory cortical evoked potentials in humans and profoundly changes auditory processing in hearing-impaired animals. Multiple mechanisms underlie the early postnatal establishment of cortical circuits, but one important set of developmental mechanisms relies on the neuromodulator serotonin (5-hydroxytryptamine [5-HT]). On the other hand, early sensory activity may also regulate the establishment of adultlike 5-HT receptor expression and function. We examined the role of 5-HT in auditory cortex by first investigating how 5-HT neurotransmission and 5-HT(2) receptors influence the intrinsic excitability of layer II/III pyramidal neurons in brain slices of primary auditory cortex (A1). A brief application of 5-HT (50 μM) transiently and reversibly decreased firing rates, input resistance, and spike rate adaptation in normal postnatal day 12 (P12) to P21 rats. Compared with sham-operated animals, cochlear ablation increased excitability at P12-P21, but all the effects of 5-HT, except for the decrease in adaptation, were eliminated in both sham-operated and cochlear-ablated rats. At P30-P35, cochlear ablation did not increase intrinsic excitability compared with shams, but it did prevent a pronounced decrease in excitability that appeared 10 min after 5-HT application. We also tested whether the effects on excitability were mediated by 5-HT(2) receptors. In the presence of the 5-HT(2)-receptor antagonist, ketanserin, 5-HT significantly decreased excitability compared with 5-HT or ketanserin alone in both sham-operated and cochlear-ablated P12-P21 rats. However, at P30-P35, ketanserin had no effect in sham-operated and only a modest effect cochlear-ablated animals. The 5-HT(2)-specific agonist 5-methoxy-N,N-dimethyltryptamine also had no effect at P12-P21. These results suggest that 5-HT likely regulates pyramidal cell excitability via multiple receptor subtypes with opposing effects. These data also show that

  12. Heavy metals modulate the activity of the purinergic P2X4 receptor

    International Nuclear Information System (INIS)

    Coddou, Claudio; Lorca, Ramon A.; Acuna-Castillo, Claudio; Grauso, Marta; Rassendren, Francois; Huidobro-Toro, J.Pablo

    2005-01-01

    To further characterize the nature of the regulatory metal-binding sites of the rat P2X 4 receptor, several transition heavy metals were tested to examine their ability to mimic the facilitator action of zinc or the inhibitory action of copper. cDNA coding for the rat P2X 4 receptor was injected into Xenopus laevis oocytes; the two-electrode voltage-clamp technique was used to measure and quantify the ATP-evoked currents in the absence or presence of the metals. Cadmium facilitated the ATP-gated currents in a reversible and voltage-independent manner; maximal potentiation occurred within less than 1 min. Cadmium displaced leftward, in a concentration-dependent manner, the ATP concentration-response curve. In contrast, mercury reduced the ATP-gated currents in a reversible, time, and concentration manner. Maximal inhibition occurred after about 5 min of metal application. Cobalt also augmented the ATP-evoked currents, but its action was long lasting and did not reverse even after 45 min of metal washout. Other metals such as lead, nickel, manganese, silver, or gallium did not significantly alter the ATP-gated currents. The co-application of cadmium plus zinc or mercury plus copper caused additive effects. Mutation of H140 by alanine (H140A) augmented both the cadmium-induced facilitation and the mercury-induced inhibition. In contrast, the H241A mutant showed characteristics indistinguishable from the wild type. The H286A mutant showed a normal cadmium-induced potentiation, but an increased mercury inhibition. Out of the metals examined, only cadmium mimicked closely the action of zinc, evidencing commonalities. While mercury mimicked the action of copper, both metals apparently interact at distinct metal-binding sites. The present findings allow us to infer that heavy metals modulate the P2X 4 receptor by acting in at least three separate metal-binding sites

  13. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    International Nuclear Information System (INIS)

    Lau, Wen Min; Doucet, Michele; Huang, David; Weber, Kristy L.; Kominsky, Scott L.

    2013-01-01

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found that CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co

  14. Desensitization by progressive up-titration prevents first-dose effects on the heart: guinea pig study with ponesimod, a selective S1P1 receptor modulator.

    Directory of Open Access Journals (Sweden)

    Markus Rey

    Full Text Available Ponesimod, a selective S1P1 receptor modulator, reduces the blood lymphocyte count in all tested species by preventing egress of T and B cells from thymus and peripheral lymphoid organs. In addition, ponesimod transiently affects heart rate and atrioventricular (AV conduction in humans, effects not observed in mice, rats, and dogs with selective S1P1 receptor modulators, suggesting that the regulation of heart rate and rhythm is species dependent. In the present study, we used conscious guinea pigs implanted with a telemetry device to investigate the effects of single and multiple oral doses of ponesimod on ECG variables, heart rate, and blood pressure. Oral administration of ponesimod did not affect the sinus rate (P rate but dose-dependently induced AV block type I to III. A single oral dose of 0.1 mg/kg had no effect on ECG variables, while a dose of 3 mg/kg induced AV block type III in all treated guinea pigs. Repeated oral dosing of 1 or 3 mg/kg ponesimod resulted in rapid desensitization, so that the second dose had no or a clearly reduced effect on ECG variables as compared with the first dose. Resensitization of the S1P1 receptor in the heart was concentration dependent. After desensitization had been induced by the first dose of ponesimod, the cardiac system remained desensitized as long as the plasma concentration was ≥75 ng/ml. By using a progressive up-titration regimen, the first-dose effect of ponesimod on heart rate and AV conduction was significantly reduced due to desensitization of the S1P1 receptor. In summary, conscious guinea pigs implanted with a telemetry device represent a useful model to study first-dose effects of S1P1 receptor modulators on heart rate and rhythm. This knowledge was translated to a dosing regimen of ponesimod to be tested in humans to avoid or significantly reduce the first-dose effects.

  15. Oxygen Modulates Human Decidual Natural Killer Cell Surface Receptor Expression and Interactions with Trophoblasts1

    Science.gov (United States)

    Wallace, Alison E.; Goulwara, Sonu S.; Whitley, Guy S.; Cartwright, Judith E.

    2014-01-01

    Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P cells treated with dNK cell CM incubated in oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P cells expressed NKG2D at 10% oxygen (P oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy. PMID:25232021

  16. Medullary GABAergic mechanisms contribute to electroacupuncture modulation of cardiovascular depressor responses during gastric distention in rats

    Science.gov (United States)

    Guo, Zhi-Ling; Li, Min; Longhurst, John C.

    2013-01-01

    Electroacupuncture (EA) at P5–P6 acupoints overlying the median nerves typically reduces sympathoexcitatory blood pressure (BP) reflex responses in eucapnic rats. Gastric distention in hypercapnic acidotic rats, by activating both vagal and sympathetic afferents, decreases heart rate (HR) and BP through actions in the rostral ventrolateral medulla (rVLM) and nucleus ambiguus (NAmb), leading to sympathetic withdrawal and parasympathetic activation, respectively. A GABAA mechanism in the rVLM mediates the decreased sympathetic outflow. The present study investigated the hypothesis that EA modulates gastric distention-induced hemodynamic depressor and bradycardia responses through nuclei that process parasympathetic and sympathetic outflow. Anesthetized hypercapnic acidotic rats manifested repeatable decreases in BP and HR with gastric distention every 10 min. Bilateral EA at P5–P6 for 30 min reversed the hypotensive response from −26 ± 3 to −6 ± 1 mmHg and the bradycardia from −35 ± 11 to −10 ± 3 beats/min for a period that lasted more than 70 min. Immunohistochemistry and in situ hybridization to detect c-Fos protein and GAD 67 mRNA expression showed that GABAergic caudal ventral lateral medulla (cVLM) neurons were activated by EA. Glutamatergic antagonism of cVLM neurons with kynurenic acid reversed the actions of EA. Gabazine used to block GABAA receptors microinjected into the rVLM or cVLM reversed EA's action on both the reflex depressor and bradycardia responses. EA modulation of the decreased HR was inhibited by microinjection of gabazine into the NAmb. Thus, EA through GABAA receptor mechanisms in the rVLM, cVLM, and NAmb modulates gastric distention-induced reflex sympathoinhibition and vagal excitation. PMID:23302958

  17. Tonically Active α5GABAA Receptors Reduce Motoneuron Excitability and Decrease the Monosynaptic Reflex

    Directory of Open Access Journals (Sweden)

    Martha Canto-Bustos

    2017-09-01

    Full Text Available Motoneurons, the final common path of the Central Nervous System (CNS, are under a complex control of its excitability in order to precisely translate the interneuronal pattern of activity into skeletal muscle contraction and relaxation. To fulfill this relevant function, motoneurons are provided with a vast repertoire of receptors and channels, including the extrasynaptic GABAA receptors which have been poorly investigated. Here, we confirmed that extrasynaptic α5 subunit-containing GABAA receptors localize with choline acetyltransferase (ChAT positive cells, suggesting that these receptors are expressed in turtle motoneurons as previously reported in rodents. In these cells, α5GABAA receptors are activated by ambient GABA, producing a tonic shunt that reduces motoneurons’ membrane resistance and affects their action potential firing properties. In addition, α5GABAA receptors shunted the synaptic excitatory inputs depressing the monosynaptic reflex (MSR induced by activation of primary afferents. Therefore, our results suggest that α5GABAA receptors may play a relevant physiological role in motor control.

  18. BDNF and AMPA receptors in the cNTS modulate the hyperglycemic reflex after local carotid body NaCN stimulation.

    Science.gov (United States)

    Cuéllar, R; Montero, S; Luquín, S; García-Estrada, J; Melnikov, V; Virgen-Ortiz, A; Lemus, M; Pineda-Lemus, M; de Álvarez-Buylla, E

    2017-07-01

    The application of sodium cyanide (NaCN) to the carotid body receptors (CBR) (CBR stimulation) induces rapid blood hyperglycemia and an increase in brain glucose retention. The commissural nucleus tractus solitarius (cNTS) is an essential relay nucleus in this hyperglycemic reflex; it receives glutamatergic afferents (that also release brain derived neurotrophic factor, BDNF) from the nodose-petrosal ganglia that relays CBR information. Previous work showed that AMPA in NTS blocks hyperglycemia and brain glucose retention after CBR stimulation. In contrast, BDNF, which attenuates glutamatergic AMPA currents in NTS, enhances these glycemic responses. Here we investigated the combined effects of BDNF and AMPA (and their antagonists) in NTS on the glycemic responses to CBR stimulation. Microinjections of BDNF plus AMPA into the cNTS before CBR stimulation in anesthetized rats, induced blood hyperglycemia and an increase in brain arteriovenous (a-v) of blood glucose concentration difference, which we infer is due to increased brain glucose retention. By contrast, the microinjection of the TrkB antagonist K252a plus AMPA abolished the glycemic responses to CBR stimulation similar to what is observed after AMPA pretreatments. In BDNF plus AMPA microinjections preceding CBR stimulation, the number of c-fos immunoreactive cNTS neurons increased. In contrast, in the rats microinjected with K252a plus AMPA in NTS, before CBR stimulation, c-fos expression in cNTS decreased. The expression of AMPA receptors GluR2/3 did not change in any of the studied groups. These results indicate that BDNF in cNTS plays a key role in the modulation of the hyperglycemic reflex initiated by CBR stimulation. Copyright © 2017. Published by Elsevier B.V.

  19. Spongionella secondary metabolites, promising modulators of immune response through CD147 receptor modulation

    Directory of Open Access Journals (Sweden)

    Jon Andoni Sánchez

    2016-10-01

    Full Text Available The modulation of the immune system can have multiple applications such as cancer treatment, and a wide type of processes involving inflammation where the potent chemotactic agent cyclophilin A (Cyp A is implicated. The Porifera phylum, in which Spongionella is encompassed, is the main producer of marine bioactive compounds. Four secondary metabolites obtained from Spongionella (Gracilin H, A, L and Tetrahydroaplysulphurin-1 were described to hit Cyp A and to block the release of inflammation mediators. Based on these results some role of Spongionella compounds on other steps of the signalling pathway mediated by this chemotactic agent can be hypothesised. In the present paper we studied the effect of these four compounds on the surface membrane CD147 receptor expression, on the extracellular levels of Cyp A and on the ability to migrate of concanavalin (Con A-activated T lymphocytes. Similarly to a well-known immunosuppressive agent cyclosporine A (CsA, Gracilin H, A, L and tetrahydroaplysulphurin-1 were able to reduce the CD147 membrane expression and to block the release of Cyp A to the medium. Besides, by using Cyp A as chemotactic agent, T cell migration was inhibited when cells were previously incubated with Gracilin A and Gracilin L. These positive results lead us to test the in vivo effect of Gracilin H and L in a mouse ear delayed hypersensitive reaction. Thus, both compounds efficiently reduce the ear swelling as well as the inflammatory cell infiltration. These results provide more evidences for their potential therapeutic application in immune related diseases of Spongionella compounds.

  20. A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors

    DEFF Research Database (Denmark)

    Jeon, Jongrye; Dencker, Ditte; Wörtwein, Gitta

    2010-01-01

    AChRs are coexpressed with D(1) dopamine receptors in a specific subset of striatal projection neurons. To investigate the physiological relevance of this M(4) mAChR subpopulation in modulating dopamine-dependent behaviors, we used Cre/loxP technology to generate mutant mice that lack M(4) mAChRs only in D(1) dopamine....... Since enhanced central dopaminergic neurotransmission is a hallmark of several severe disorders of the CNS, including schizophrenia and drug addiction, our findings have substantial clinical relevance....

  1. Dietary Modulation of Inflammation-Induced Colorectal Cancer through PPARγ

    Directory of Open Access Journals (Sweden)

    Ashlee B. Carter

    2009-01-01

    Full Text Available Mounting evidence suggests that the risk of developing colorectal cancer (CRC is dramatically increased for patients with chronic inflammatory diseases. For instance, patients with Crohn's Disease (CD or Ulcerative Colitis (UC have a 12–20% increased risk for developing CRC. Preventive strategies utilizing nontoxic natural compounds that modulate immune responses could be successful in the suppression of inflammation-driven colorectal cancer in high-risk groups. The increase of peroxisome proliferator-activated receptor-γ (PPAR-γ expression and its transcriptional activity has been identified as a target for anti-inflammatory efforts, and the suppression of inflammation-driven colon cancer. PPARγ down-modulates inflammation and elicits antiproliferative and proapoptotic actions in epithelial cells. All of which may decrease the risk for inflammation-induced CRC. This review will focus on the use of orally active, naturally occurring chemopreventive approaches against inflammation-induced CRC that target PPARγ and therefore down-modulate inflammation.

  2. Metabotropic Regulation of Extrasynaptic GABAA Receptors

    Directory of Open Access Journals (Sweden)

    William Martin Connelly

    2013-10-01

    Full Text Available A large body of work now shows the importance of GABAA receptor-mediated tonic inhibition in regulating CNS function. However, outside of pathological conditions, there is relatively little evidence that the magnitude of tonic inhibition is itself under regulation. Here we review the mechanisms by which tonic inhibition is known to be modulated, and outline the potential behavioural consequences of this modulation. Specifically, we address the ability of protein kinase A and C to phosphorylate the extrasynaptic receptors responsible for the tonic GABAA current, and how G-protein coupled receptors can regulate tonic inhibition through these effectors. We then speculate about the possible functional consequences of regulating the magnitude of the tonic GABAA current.

  3. Administration of caffeine inhibited adenosine receptor agonist-induced decreases in motor performance, thermoregulation, and brain neurotransmitter release in exercising rats.

    Science.gov (United States)

    Zheng, Xinyan; Hasegawa, Hiroshi

    2016-01-01

    We examined the effects of an adenosine receptor agonist on caffeine-induced changes in thermoregulation, neurotransmitter release in the preoptic area and anterior hypothalamus, and endurance exercise performance in rats. One hour before the start of exercise, rats were intraperitoneally injected with either saline alone (SAL), 10 mg kg(-1) caffeine and saline (CAF), a non-selective adenosine receptor agonist (5'-N-ethylcarboxamidoadenosine [NECA]: 0.5 mg kg(-1)) and saline (NECA), or the combination of caffeine and NECA (CAF+NECA). Rats ran until fatigue on the treadmill with a 5% grade at a speed of 18 m min(-1) at 23 °C. Compared to the SAL group, the run time to fatigue (RTTF) was significantly increased by 52% following caffeine administration and significantly decreased by 65% following NECA injection (SAL: 91 ± 14.1 min; CAF: 137 ± 25.8 min; NECA: 31 ± 13.7 min; CAF+NECA: 85 ± 11.8 min; pcaffeine injection inhibited the NECA-induced decreases in the RTTF, Tcore, heat production, heat loss, and extracellular DA release. Neither caffeine nor NECA affected extracellular noradrenaline or serotonin release. These results support the findings of previous studies showing improved endurance performance and overrides in body limitations after caffeine administration, and imply that the ergogenic effects of caffeine may be associated with the adenosine receptor blockade-induced increases in brain DA release. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression*

    Science.gov (United States)

    Coke, Christopher J.; Scarlett, Kisha A.; Chetram, Mahandranauth A.; Jones, Kia J.; Sandifer, Brittney J.; Davis, Ahriea S.; Marcus, Adam I.

    2016-01-01

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. PMID:26841863

  5. Glycine receptor: light microscopic autoradiographic localization with [3H]strychnine

    International Nuclear Information System (INIS)

    Zarbin, M.A.; Wamsley, J.K.; Kuhar, M.J.

    1981-01-01

    Glycine receptors have been localized by autoradiography in the rat central nervous system (CNS) using [ 3 H]strychnine. The gross distribution of receptors is in excellent accord with the distribution determined by filtration binding assays. Specifically, the density of glycine receptors is greatest in the gray matter of the spinal cord and decreases progressively in regions more rostral in the neuraxis. Glycine receptors were found to be associated with both sensory and motor systems in the CNS. Moreover, there is a striking correlation between areas of high strychnine binding site density and areas in which glycine has been found to be electrophysiologically active. Finally, the anatomic localization of strychnine binding sites may help explain many of the signs and symptoms of strychnine ingestion. For example, individuals consuming subconvulsive doses of strychnine frequently experience altered cutaneous and auditory sensation. We have localized strychnine receptors in areas of the acoustic system known to influence discriminative aspects of audition and in areas of the spinal cord and trigeminal nuclei which modulate discriminative aspects of cutaneous sensation. The alteration of visceral functions (e.g., blood pressure and respiratory rate) associated with strychnine ingestion may be accounted for in a similar manner

  6. Oxytocin decreases colonic motility of cold water stressed rats via oxytocin receptors.

    Science.gov (United States)

    Yang, Xiao; Xi, Tao-Fang; Li, Yu-Xian; Wang, Hai-Hong; Qin, Ying; Zhang, Jie-Ping; Cai, Wen-Ting; Huang, Meng-Ting; Shen, Ji-Qiao; Fan, Xi-Min; Shi, Xuan-Zheng; Xie, Dong-Ping

    2014-08-21

    To investigate whether cold water intake into the stomach affects colonic motility and the involvement of the oxytocin-oxytocin receptor pathway in rats. Female Sprague Dawley rats were used and some of them were ovariectomized. The rats were subjected to gastric instillation with cold (0-4 °C, cold group) or room temperature (20-25 °C, control group) saline for 14 consecutive days. Colon transit was determined with a bead inserted into the colon. Colonic longitudinal muscle strips were prepared to investigate the response to oxytocin in vitro. Plasma concentration of oxytocin was detected by ELISA. Oxytocin receptor expression was investigated by Western blot analysis. Immunohistochemistry was used to locate oxytocin receptors. Colon transit was slower in the cold group than in the control group (P cold water intake (0.69 ± 0.08 vs 0.88 ± 0.16, P receptors were located in the myenteric plexus, and their expression was up-regulated in the cold group (P Cold water intake increased blood concentration of oxytocin, but this effect was attenuated in ovariectomized rats (286.99 ± 83.72 pg/mL vs 100.56 ± 92.71 pg/mL, P Cold water intake inhibits colonic motility partially through oxytocin-oxytocin receptor signaling in the myenteric nervous system pathway, which is estrogen dependent.

  7. Regulating prefrontal cortex activation: an emerging role for the 5-HT₂A serotonin receptor in the modulation of emotion-based actions?

    Science.gov (United States)

    Aznar, Susana; Klein, Anders B

    2013-12-01

    The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala and the striatal circuitry, areas involved in emotion and reward processing. The PFC, however, is able to modulate amygdala reactivity via a feedback loop to this area. A role for serotonin in adjusting for this circuitry of cognitive regulation of emotion has long been suggested based primarily on the positive pharmacological effect of elevating serotonin levels in anxiety regulation. Recent animal and human functional magnetic resonance studies have pointed to a specific involvement of the 5-hydroxytryptamine (5-HT)2A serotonin receptor in the PFC feedback regulatory projection onto the amygdala. This receptor is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings of a regulatory effect of the PFC on the emotional control of our actions.

  8. Haloperidol inhibits the development of atherosclerotic lesions in LDL receptor knockout mice.

    Science.gov (United States)

    van der Sluis, Ronald J; Nahon, Joya E; Reuwer, Anne Q; Van Eck, Miranda; Hoekstra, Menno

    2015-05-01

    Antipsychotic drugs have been shown to modulate the expression of ATP-binding cassette transporter A1 (ABCA1), a key factor in the anti-atherogenic reverse cholesterol transport process, in vitro. Here we evaluated the potential of the typical antipsychotic drug haloperidol to modulate the cholesterol efflux function of macrophages in vitro and their susceptibility to atherosclerosis in vivo. Thioglycollate-elicited peritoneal macrophages were used for in vitro studies. Hyperlipidaemic low-density lipoprotein (LDL) receptor knockout mice were implanted with a haloperidol-containing pellet and subsequently fed a Western-type diet for 5 weeks to induce the development of atherosclerotic lesions in vivo. Haloperidol induced a 54% decrease in the mRNA expression of ABCA1 in peritoneal macrophages. This coincided with a 30% decrease in the capacity of macrophages to efflux cholesterol to apolipoprotein A1. Haloperidol treatment stimulated the expression of ABCA1 (+51%) and other genes involved in reverse cholesterol transport, that is, CYP7A1 (+98%) in livers of LDL receptor knockout mice. No change in splenic ABCA1 expression was noted. However, the average size of the atherosclerotic size was significantly smaller (-31%) in the context of a mildly more atherogenic metabolic phenotype upon haloperidol treatment. More importantly, haloperidol markedly lowered MCP-1 expression (-70%) and secretion (-28%) by peritoneal macrophages. Haloperidol treatment lowered the susceptibility of hyperlipidaemic LDL receptor knockout mice to develop atherosclerotic lesions. Our findings suggest that the beneficial effect of haloperidol on atherosclerosis susceptibility can be attributed to its ability to inhibit macrophage chemotaxis. © 2015 The British Pharmacological Society.

  9. The matricellular receptor LRP1 forms an interface for signaling and endocytosis in modulation of the extracellular tumor environment

    Directory of Open Access Journals (Sweden)

    Bart eVan Gool

    2015-11-01

    Full Text Available The membrane protein low-density lipoprotein receptor related-protein 1 (LRP1 has been attributed a role in cancer. However, its presumably often indirect involvement is far from understood. LRP1 has both endocytic and signaling activities. As a matricellular receptor it is involved in regulation, mostly by clearing, of various extracellular matrix degrading enzymes including matrix metalloproteinases, serine proteases, protease-inhibitor complexes and the endoglycosidase heparanase. Furthermore, by binding extracellular ligands including growth factors and subsequent intracellular interaction with scaffolding and adaptor proteins it is involved in regulation of various signaling cascades. LRP1 expression levels are often downregulated in cancer and some studies consider low LRP1 levels a poor prognostic factor. On the contrary, upregulation in brain cancers has been noted and clinical trials explore the use of LRP1 as cargo receptor to deliver cytotoxic agents.This mini-review focuses on LRP1’s role in tumor growth and metastasis especially by modulation of the extracellular tumor environment. In relation to this role its diagnostic, prognostic and therapeutic potential will be discussed.

  10. GABAA receptor activity modulating piperine analogs: In vitro metabolic stability, metabolite identification, CYP450 reaction phenotyping, and protein binding.

    Science.gov (United States)

    Zabela, Volha; Hettich, Timm; Schlotterbeck, Götz; Wimmer, Laurin; Mihovilovic, Marko D; Guillet, Fabrice; Bouaita, Belkacem; Shevchenko, Bénédicte; Hamburger, Matthias; Oufir, Mouhssin

    2018-01-01

    In a screening of natural products for allosteric modulators of GABA A receptors (γ-aminobutyric acid type A receptor), piperine was identified as a compound targeting a benzodiazepine-independent binding site. Given that piperine is also an activator of TRPV1 (transient receptor potential vanilloid type 1) receptors involved in pain signaling and thermoregulation, a series of piperine analogs were prepared in several cycles of structural optimization, with the aim of separating GABA A and TRPV1 activating properties. We here investigated the metabolism of piperine and selected analogs in view of further cycles of lead optimization. Metabolic stability of the compounds was evaluated by incubation with pooled human liver microsomes, and metabolites were analyzed by UHPLC-Q-TOF-MS. CYP450 isoenzymes involved in metabolism of compounds were identified by reaction phenotyping with Silensomes™. Unbound fraction in whole blood was determined by rapid equilibrium dialysis. Piperine was the metabolically most stable compound. Aliphatic hydroxylation, and N- and O-dealkylation were the major routes of oxidative metabolism. Piperine was exclusively metabolized by CYP1A2, whereas CYP2C9 contributed significantly in the oxidative metabolism of all analogs. Extensive binding to blood constituents was observed for all compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Human glutathione S-transferase P1-1 functions as an estrogen receptor α signaling modulator

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiyuan [Department of Biological Science, Sookmyung Women’s University, Seoul (Korea, Republic of); An, Byoung Ha [Department of Food and Nutrition, College of Life Science, Sookmyung Women’s University, Seoul (Korea, Republic of); Kim, Min Jung; Park, Jong Hoon [Department of Biological Science, Sookmyung Women’s University, Seoul (Korea, Republic of); Kang, Young Sook [Department of Pharmacy, College of Pharmacy, Sookmyung Women’s University, Seoul (Korea, Republic of); Chang, Minsun, E-mail: minsunchang@sm.ac.kr [Department of Medical and Pharmaceutical Science, College of Science, Sookmyung Women’s University, Seoul (Korea, Republic of)

    2014-09-26

    Highlights: • GSTP induces the classical ERα signaling event. • The functional GSTP is a prerequisite for GSTP-induced ERα transcription activity. • The expression of RIP140, a transcription cofactor, was inhibited by GSTP protein. • We propose the novel non-enzymatic role of GSTP. - Abstract: Estrogen receptor α (ERα) plays a crucial role in estrogen-mediated signaling pathways and exerts its action as a nuclear transcription factor. Binding of the ligand-activated ERα to the estrogen response element (ERE) is a central part of ERα-associated signal transduction pathways and its aberrant modulation is associated with many disease conditions. Human glutathione S-transferase P1-1 (GSTP) functions as an enzyme in conjugation reactions in drug metabolism and as a regulator of kinase signaling pathways. It is overexpressed in tumors following chemotherapy and has been associated with a poor prognosis in breast cancer. In this study, a novel regulatory function of GSTP has been proposed in which GSTP modulates ERE-mediated ERα signaling events. Ectopic expression of GSTP was able to induce the ERα and ERE-mediated transcriptional activities in ERα-positive but GSTP-negative MCF7 human breast cancer cells. This inductive effect of GSTP on the ERE-transcription activity was diminished when the cells express a mutated form of the enzyme or are treated with a GSTP-specific chemical inhibitor. It was found that GSTP inhibited the expression of the receptor interacting protein 140 (RIP140), a negative regulator of ERα transcription, at both mRNA and protein levels. Our study suggests a novel non-enzymatic role of GSTP which plays a significant role in regulating the classical ERα signaling pathways via modification of transcription cofactors such as RIP140.

  12. Topiramate via NMDA, AMPA/kainate, GABAA and Alpha2 receptors and by modulation of CREB/BDNF and Akt/GSK3 signaling pathway exerts neuroprotective effects against methylphenidate-induced neurotoxicity in rats.

    Science.gov (United States)

    Motaghinejad, Majid; Motevalian, Manijeh; Fatima, Sulail; Beiranvand, Tabassom; Mozaffari, Shiva

    2017-11-01

    Chronic abuse of methylphenidate (MPH) often causes neuronal cell death. Topiramate (TPM) carries neuroprotective effects, but its exact mechanism of action remains unclear. In the present study, the role of various doses of TPM and its possible mechanisms, receptors and signaling pathways involved against MPH-induced hippocampal neurodegeneration were evaluated in vivo. Thus, domoic acid (DOM) was used as AMPA/kainate receptor agonist, bicuculline (BIC) as GABA A receptor antagonist, ketamine (KET) as NMDA receptor antagonist, yohimbine (YOH) as α 2 adrenergic receptor antagonist and haloperidol (HAL) was used as dopamine D 2 receptor antagonist. Open field test (OFT) was used to investigate the disturbances in motor activity. Hippocampal neurodegenerative parameters were evaluated. Protein expressions of CREB/BDNF and Akt/GSK3 signaling pathways were also evaluated. Cresyl violet staining was performed to show and confirm the changes in the shape of the cells. TPM (70 and 100 mg/kg) reduced MPH-induced rise in lipid peroxidation, oxidized form of glutathione (GSSG), IL-1β and TNF-α levels, Bax expression and motor activity disturbances. In addition, TPM treatment increased Bcl-2 expression, the level of reduced form of glutathione (GSH) and the levels and activities of superoxide dismutase, glutathione peroxidase and glutathione reductase enzymes. TPM also inhibited MPH-induced hippocampal degeneration. Pretreatment of animals with DOM, BIC, KET and YOH inhibited TPM-induced neuroprotection and increased oxidative stress, neuroinflammation, neuroapoptosis and neurodegeneration while reducing CREB, BDNF and Akt protein expressions. Also pretreatment with DOM, BIC, KET and YOH inhibited TPM-induced decreases in GSK3. It can be concluded that the mentioned receptors by modulation of CREB/BDNF and Akt/GSK3 pathways, are involved in neuroprotection of TPM against MPH-induced neurodegeneration.

  13. Systemic PD149163, a neurotensin receptor 1 agonist, decreases methamphetamine self-administration in DBA/2J mice without causing excessive sedation.

    Directory of Open Access Journals (Sweden)

    Amanda L Sharpe

    Full Text Available Methamphetamine (METH is a psychostimulant that exhibits significant abuse potential. Although METH addiction is a major health and societal concern, no drug is currently approved for its therapeutic management. METH activates the central dopaminergic "reward" circuitry, and with repeated use increases levels of the neuromodulatory peptide neurotensin in the nucleus accumbens and ventral tegmental area. Previous studies in rats suggest that neurotensin agonism decreases METH self-administration, but these studies did not examine the effect of neurotensin agonism on the pattern of self-administration or open field locomotion. In our studies, we established intravenous METH self-administration in male, DBA/2J mice (fixed ratio 3, 2 hr sessions and examined the effect of pretreatment with the NTS1 receptor agonist PD149163 on METH self-administration behavior. Locomotion following PD149163 was also measured up to 2 hours after injection on a rotarod and in an open field. Pretreatment with PD149163 (0.05 and 0.10 mg/kg, s.c. significantly decreased METH self-administration. The pattern of responding suggested that PD149163 decreased motivation to self-administer METH initially in the session with more normal intake in the second hour of access. Voluntary movement in the open-field was significantly decreased by both 0.05 and 0.10 mg/kg (s.c. PD149163 from 10-120 minutes after injection, but rotarod performance suggested that PD149163 did not cause frank sedation. These results suggest that a systemically delivered NTS1 receptor agonist decreases METH self-administration in mice. The pattern of self-administration suggests that PD149163 may acutely decrease motivation to self-administer METH before the drug is experienced, but cannot rule out that depression of voluntary movement plays a role in the decreased self-administration.

  14. Response to platelet-activating factor in human platelets stored and aged in plasma. Decrease in aggregation, phosphoinositide turnover, and receptor affinity

    International Nuclear Information System (INIS)

    Shukla, S.D.; Morrison, W.J.; Klachko, D.M.

    1989-01-01

    Human platelet concentrates were stored in polyolefin bags at 22 to 24 degrees C on a horizontal shaker for up to 8 days. At different intervals, aliquots of platelet-rich plasma (PRP) were removed aseptically and five variables, i.e., platelet counts, morphology, platelet-activating factor (PAF)-stimulated aggregation, phosphoinositide turnover, and [3H]PAF binding to platelet receptors, were studied. The number of platelets did not change during the 8 days of storage. Scanning electron microscopy of the platelets revealed a gradual morphologic change from biconcave flat discs to irregular, crenated forms. The PAF-induced aggregation of platelets declined with time of storage. A decrease to 50 percent of the Day 1 aggregatory response to PAF was evident on Day 2, and there was a further decline to about 20 percent by Day 6. Similarly, PAF receptor-coupled phosphoinositide turnover, as monitored by 32P incorporation into individual phosphoinositides, decreased dramatically with storage. After 2 to 3 days of storage, the phosphoinositide turnover was reduced to 50 percent of the original response, and it continued to decline to about 25 percent of original response by Day 5 or 6. The binding of [3H]PAF to washed human platelets indicated subtle changes between Days 2 and 4, which became more noticeable by Day 6. These results have raised the possibility of changes in the number of the receptors and/or their affinity for the ligand during storage. We conclude that although the number of platelets was maintained during storage for 8 days, a general deterioration of their responses to PAF occurred at the levels of cell surface receptor, transmembrane signaling (phosphoinositide turnover), and response (aggregation)

  15. Anatomical and molecular consequences of Unilateral Naris Closure on two populations of olfactory sensory neurons expressing defined odorant receptors.

    Science.gov (United States)

    Molinas, Adrien; Aoudé, Imad; Soubeyre, Vanessa; Tazir, Bassim; Cadiou, Hervé; Grosmaitre, Xavier

    2016-07-28

    Mammalian olfactory sensory neurons (OSNs), the primary elements of the olfactory system, are located in the olfactory epithelium lining the nasal cavity. Exposed to the environment, their lifespan is short. Consequently, OSNs are regularly regenerated and several reports show that activity strongly modulates their development and regeneration: the peripheral olfactory system can adjust to the amount of stimulus through compensatory mechanisms. Unilateral naris occlusion (UNO) was frequently used to investigate this mechanism at the entire epithelium level. However, there is little data regarding the effects of UNO at the cellular level, especially on individual neuronal populations expressing a defined odorant receptor. Here, using UNO during the first three postnatal weeks, we analyzed the anatomical and molecular consequences of sensory deprivation in OSNs populations expressing the MOR23 and M71 receptors. The density of MOR23-expressing neurons is decreased in the closed side while UNO does not affect the density of M71-expressing neurons. Using Real Time qPCR on isolated neurons, we observed that UNO modulates the transcript levels for transduction pathway proteins (odorant receptors, CNGA2, PDE1c). The transcripts modulated by UNO will differ between populations depending on the receptor expressed. These results suggest that sensory deprivation will have different effects on different OSNs' populations. As a consequence, early experience will shape the functional properties of OSNs differently depending on the type of odorant receptor they express. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Presynaptic Membrane Receptors Modulate ACh Release, Axonal Competition and Synapse Elimination during Neuromuscular Junction Development.

    Science.gov (United States)

    Tomàs, Josep; Garcia, Neus; Lanuza, Maria A; Santafé, Manel M; Tomàs, Marta; Nadal, Laura; Hurtado, Erica; Simó, Anna; Cilleros, Víctor

    2017-01-01

    During the histogenesis of the nervous system a lush production of neurons, which establish an excessive number of synapses, is followed by a drop in both neurons and synaptic contacts as maturation proceeds. Hebbian competition between axons with different activities leads to the loss of roughly half of the neurons initially produced so connectivity is refined and specificity gained. The skeletal muscle fibers in the newborn neuromuscular junction (NMJ) are polyinnervated but by the end of the competition, 2 weeks later, the NMJ are innervated by only one axon. This peripheral synapse has long been used as a convenient model for synapse development. In the last few years, we have studied transmitter release and the local involvement of the presynaptic muscarinic acetylcholine autoreceptors (mAChR), adenosine autoreceptors (AR) and trophic factor receptors (TFR, for neurotrophins and trophic cytokines) during the development of NMJ and in the adult. This review article brings together previously published data and proposes a molecular background for developmental axonal competition and loss. At the end of the first week postnatal, these receptors modulate transmitter release in the various nerve terminals on polyinnervated NMJ and contribute to axonal competition and synapse elimination.

  17. Presynaptic Membrane Receptors Modulate ACh Release, Axonal Competition and Synapse Elimination during Neuromuscular Junction Development

    Directory of Open Access Journals (Sweden)

    Josep Tomàs

    2017-05-01

    Full Text Available During the histogenesis of the nervous system a lush production of neurons, which establish an excessive number of synapses, is followed by a drop in both neurons and synaptic contacts as maturation proceeds. Hebbian competition between axons with different activities leads to the loss of roughly half of the neurons initially produced so connectivity is refined and specificity gained. The skeletal muscle fibers in the newborn neuromuscular junction (NMJ are polyinnervated but by the end of the competition, 2 weeks later, the NMJ are innervated by only one axon. This peripheral synapse has long been used as a convenient model for synapse development. In the last few years, we have studied transmitter release and the local involvement of the presynaptic muscarinic acetylcholine autoreceptors (mAChR, adenosine autoreceptors (AR and trophic factor receptors (TFR, for neurotrophins and trophic cytokines during the development of NMJ and in the adult. This review article brings together previously published data and proposes a molecular background for developmental axonal competition and loss. At the end of the first week postnatal, these receptors modulate transmitter release in the various nerve terminals on polyinnervated NMJ and contribute to axonal competition and synapse elimination.

  18. Modulation of β-catenin signaling by glucagon receptor activation.

    Directory of Open Access Journals (Sweden)

    Jiyuan Ke

    Full Text Available The glucagon receptor (GCGR is a member of the class B G protein-coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin-mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R and glucagon-like peptide 1 (GLP-1R receptors. Since low-density-lipoprotein receptor-related protein 5 (Lrp5 is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter-mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1 or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations.

  19. Engineering defined membrane-embedded elements of AMPA receptor induces opposing gating modulation by cornichon 3 and stargazin.

    Science.gov (United States)

    Hawken, Natalie M; Zaika, Elena I; Nakagawa, Terunaga

    2017-10-15

    The AMPA-type ionotropic glutamate receptors (AMPARs) mediate the majority of excitatory synaptic transmission and their function impacts learning, cognition and behaviour. The gating of AMPARs occurs in milliseconds, precisely controlled by a variety of auxiliary subunits that are expressed differentially in the brain, but the difference in mechanisms underlying AMPAR gating modulation by auxiliary subunits remains elusive and is investigated. The elements of the AMPAR that are functionally recruited by auxiliary subunits, stargazin and cornichon 3, are located not only in the extracellular domains but also in the lipid-accessible surface of the AMPAR. We reveal that the two auxiliary subunits require a shared surface on the transmembrane domain of the AMPAR for their function, but the gating is influenced by this surface in opposing directions for each auxiliary subunit. Our results provide new insights into the mechanistic difference of AMPAR modulation by auxiliary subunits and a conceptual framework for functional engineering of the complex. During excitatory synaptic transmission, various structurally unrelated transmembrane auxiliary subunits control the function of AMPA receptors (AMPARs), but the underlying mechanisms remain unclear. We identified lipid-exposed residues in the transmembrane domain (TMD) of the GluA2 subunit of AMPARs that are critical for the function of AMPAR auxiliary subunits, stargazin (Stg) and cornichon 3 (CNIH3). These residues are essential for stabilizing the AMPAR-CNIH3 complex in detergents and overlap with the contacts made between GluA2 TMD and Stg in the cryoEM structures. Mutating these residues had opposite effects on gating modulation and complex stability when Stg- and CNIH3-bound AMPARs were compared. Specifically, in detergent the GluA2-A793F formed an unstable complex with CNIIH3 but in the membrane the GluA2-A793F-CNIH3 complex expressed a gain of function. In contrast, the GluA2-A793F-Stg complex was stable, but had

  20. How bees distinguish patterns by green and blue modulation.

    Science.gov (United States)

    Horridge, Adrian

    2015-01-01

    In the 1920s, Mathilde Hertz found that trained bees discriminated between shapes or patterns of similar size by something related to total length of contrasting contours. This input is now interpreted as modulation in green and blue receptor channels as flying bees scan in the horizontal plane. Modulation is defined as total contrast irrespective of sign multiplied by length of edge displaying that contrast, projected to vertical, therefore, combining structure and contrast in a single input. Contrast is outside the eye; modulation is a phasic response in receptor pathways inside. In recent experiments, bees trained to distinguish color detected, located, and measured three independent inputs and the angles between them. They are the tonic response of the blue receptor pathway and modulation of small-field green or (less preferred) blue receptor pathways. Green and blue channels interacted intimately at a peripheral level. This study explores in more detail how various patterns are discriminated by these cues. The direction of contrast at a boundary was not detected. Instead, bees located and measured total modulation generated by horizontal scanning of contrasts, irrespective of pattern. They also located the positions of isolated vertical edges relative to other landmarks and distinguished the angular widths between vertical edges by green or blue modulation alone. The preferred inputs were the strongest green modulation signal and angular width between outside edges, irrespective of color. In the absence of green modulation, the remaining cue was a measure and location of blue modulation at edges. In the presence of green modulation, blue modulation was inhibited. Black/white patterns were distinguished by the same inputs in blue and green receptor channels. Left-right polarity and mirror images could be discriminated by retinotopic green modulation alone. Colors in areas bounded by strong green contrast were distinguished as more or less blue than the

  1. Inhibition of hydrogen sulfide on the proliferation of vascular smooth muscle cells involved in the modulation of calcium sensing receptor in high homocysteine

    International Nuclear Information System (INIS)

    Wang, Yuwen; Wang, Xiyao; Liang, Xiaohui; Wu, Jichao; Dong, Shiyun; Li, Hongzhu; Jin, Meili; Sun, Dianjun; Zhang, Weihua; Zhong, Xin

    2016-01-01

    Hyperhomocysteinemia induces the proliferation of vascular smooth muscle cells (VSMCs). Hydrogen sulfide (H 2 S) inhibits the phenotype switch of VSMCs and calcium-sensing receptor (CaSR) regulated the production of endogenous H 2 S. However, whether CaSR inhibits the proliferation of VSMCs by regulating the endogenous cystathionine-gamma-lyase (CSE, a major enzyme that produces H 2 S) pathway in high homocysteine (HHcy) has not been previously investigated. The intracellular calcium concentration, the concentration of H 2 S, the cell viability, the proliferation and the expression of proteins of cultured VSMCs from rat thoracic aortas were measured, respectively. The results showed that the [Ca 2+ ] i and the expression of p-CaMK and CSE increased upon treatment with CaSR agonist. In HHcy, the H 2 S concentration decrease, the proliferation and migration rate increased, the expression of Cyclin D1, PCNA, Osteopontin and p-Erk1/2 increased while the α-SM actin, P21 Cip/WAK−1 and Calponin decreased. The CaSR agonist or exogenous H 2 S significantly reversed the changes of VSMCs caused by HHcy. In conclusion, our results demonstrated that CaSR regulate the endogenous CSE/H 2 S is related to the PLC-IP 3 receptor and CaM signal pathways which inhibit the proliferation of VSMCs, and the latter is involved in the Erk1/2 dependent signal pathway in high homocysteine. - Highlights: • CaSR activation increased the production of endogenous H 2 S in high homocysteine VSMCs. • CaSR modulated the CSE/H 2 S are related to the PLC-IP 3 R and Ca 2+ -CaM signal pathways. • Inhibition of H 2 S on the proliferation of VSMCs is involved in the Erk1/2 pathway. • Explore the potential roles of CaSR in regulating VSMCs proliferation in high homocysteine.

  2. Negative modulation of NMDA receptor channel function by DREAM/calsenilin/KChIP3 provides neuroprotection?

    Science.gov (United States)

    Wang, KeWei; Wang, Yun

    2012-01-01

    N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels highly permeable to calcium and essential to excitatory neurotransmission. The NMDARs have attracted much attention because of their role in synaptic plasticity and excitotoxicity. Evidence has recently accumulated that NMDARs are negatively regulated by intracellular calcium binding proteins. The calcium-dependent suppression of NMDAR function serves as a feedback mechanism capable of regulating subsequent Ca2+ entry into the postsynaptic cell, and may offer an alternative approach to treating NMDAR-mediated excitotoxic injury. This short review summarizes the recent progress made in understanding the negative modulation of NMDAR function by DREAM/calsenilin/KChIP3, a neuronal calcium sensor (NCS) protein. PMID:22518099

  3. Synergistic Action of Presynaptic Muscarinic Acetylcholine Receptors and Adenosine Receptors in Developmental Axonal Competition at the Neuromuscular Junction.

    Science.gov (United States)

    Nadal, Laura; Garcia, Neus; Hurtado, Erica; Simó, Anna; Tomàs, Marta; Lanuza, Maria Angel; Cilleros, Victor; Tomàs, Josep Maria

    2016-01-01

    The development of the nervous system involves the initial overproduction of synapses, which promotes connectivity. Hebbian competition between axons with different activities leads to the loss of roughly half of the overproduced elements and this refines connectivity. We used quantitative immunohistochemistry to investigate, in the postnatal day 7 (P7) to P9 neuromuscular junctions, the involvement of muscarinic receptors (muscarinic acetylcholine autoreceptors and the M1, M2, and M4 subtypes) and adenosine receptors (A1 and A2A subtypes) in the control of axonal elimination after the mouse levator auris longus muscle had been exposed to selective antagonists in vivo. In a previous study we analyzed the role of each of the individual receptors. Here we investigate the additive or occlusive effects of their inhibitors and thus the existence of synergistic activity between the receptors. The main results show that the A2A, M1, M4, and A1 receptors (in this order of ability) delayed axonal elimination at P7. M4 produces some occlusion of the M1 pathway and some addition to the A1 pathway, which suggests that they cooperate. M2 receptors may modulate (by allowing a permissive action) the other receptors, mainly M4 and A1. The continued action of these receptors (now including M2 but not M4) finally promotes axonal loss at P9. All 4 receptors (M2, M1, A1, and A2A, in this order of ability) are necessary. The M4 receptor (which in itself does not affect axon loss) seems to modulate the other receptors. We found a synergistic action between the M1, A1, and A2A receptors, which show an additive effect, whereas the potent M2 effect is largely independent of the other receptors (though can be modulated by M4). At P9, there is a full mutual dependence between the A1 and A2A receptors in regulating axon loss. In summary, postnatal axonal elimination is a regulated multireceptor mechanism that involves the cooperation of several muscarinic and adenosine receptor subtypes.

  4. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production.

    Science.gov (United States)

    Bhattarai, Yogesh; Schmidt, Bradley A; Linden, David R; Larson, Eric D; Grover, Madhusudan; Beyder, Arthur; Farrugia, Gianrico; Kashyap, Purna C

    2017-07-01

    Serotonin [5-hydroxytryptamine (5-HT)], an important neurotransmitter and a paracrine messenger in the gastrointestinal tract, regulates intestinal secretion by its action primarily on 5-HT 3 and 5-HT 4 receptors. Recent studies highlight the role of gut microbiota in 5-HT biosynthesis. In this study, we determine whether human-derived gut microbiota affects host secretory response to 5-HT and 5-HT receptor expression. We used proximal colonic mucosa-submucosa preparation from age-matched Swiss Webster germ-free (GF) and humanized (HM; ex-GF colonized with human gut microbiota) mice. 5-HT evoked a significantly greater increase in short-circuit current (Δ I sc ) in GF compared with HM mice. Additionally, 5-HT 3 receptor mRNA and protein expression was significantly higher in GF compared with HM mice. Ondansetron, a 5-HT 3 receptor antagonist, inhibited 5-HT-evoked Δ I sc in GF mice but not in HM mice. Furthermore, a 5-HT 3 receptor-selective agonist, 2-methyl-5-hydroxytryptamine hydrochloride, evoked a significantly higher Δ I sc in GF compared with HM mice. Immunohistochemistry in 5-HT 3A -green fluorescent protein mice localized 5-HT 3 receptor expression to enterochromaffin cells in addition to nerve fibers. The significant difference in 5-HT-evoked Δ I sc between GF and HM mice persisted in the presence of tetrodotoxin (TTX) but was lost after ondansetron application in the presence of TTX. Application of acetate (10 mM) significantly lowered 5-HT 3 receptor mRNA in GF mouse colonoids. We conclude that host secretory response to 5-HT may be modulated by gut microbiota regulation of 5-HT 3 receptor expression via acetate production. Epithelial 5-HT 3 receptor may function as a mediator of gut microbiota-driven change in intestinal secretion. NEW & NOTEWORTHY We found that gut microbiota alters serotonin (5-HT)-evoked intestinal secretion in a 5-HT 3 receptor-dependent mechanism and gut microbiota metabolite acetate alters 5-HT 3 receptor expression in

  5. Neto2 Assembles with Kainate Receptors in DRG Neurons during Development and Modulates Neurite Outgrowth in Adult Sensory Neurons.

    Science.gov (United States)

    Vernon, Claire G; Swanson, Geoffrey T

    2017-03-22

    Peripheral sensory neurons in the dorsal root ganglia (DRG) are the initial transducers of sensory stimuli, including painful stimuli, from the periphery to central sensory and pain-processing centers. Small- to medium-diameter non-peptidergic neurons in the neonatal DRG express functional kainate receptors (KARs), one of three subfamilies of ionotropic glutamate receptors, as well as the putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2). Neto2 alters recombinant KAR function markedly but has yet to be confirmed as an auxiliary subunit that assembles with and alters the function of endogenous KARs. KARs in neonatal DRG require the GluK1 subunit as a necessary constituent, but it is unclear to what extent other KAR subunits contribute to the function and proposed roles of KARs in sensory ganglia, which include promotion of neurite outgrowth and modulation of glutamate release at the DRG-dorsal horn synapse. In addition, KARs containing the GluK1 subunit are implicated in modes of persistent but not acute pain signaling. We show here that the Neto2 protein is highly expressed in neonatal DRG and modifies KAR gating in DRG neurons in a developmentally regulated fashion in mice. Although normally at very low levels in adult DRG neurons, Neto2 protein expression can be upregulated via MEK/ERK signaling and after sciatic nerve crush and Neto2 -/- neurons from adult mice have stunted neurite outgrowth. These data confirm that Neto2 is a bona fide KAR auxiliary subunit that is an important constituent of KARs early in sensory neuron development and suggest that Neto2 assembly is critical to KAR modulation of DRG neuron process outgrowth. SIGNIFICANCE STATEMENT Pain-transducing peripheral sensory neurons of the dorsal root ganglia (DRG) express kainate receptors (KARs), a subfamily of glutamate receptors that modulate neurite outgrowth and regulate glutamate release at the DRG-dorsal horn synapse. The putative KAR auxiliary subunit Neuropilin- and

  6. Modulation of [3H]-glutamate binding by serotonin in the rat hippocampus: An autoradiographic study

    International Nuclear Information System (INIS)

    Mennini, T.; Miari, A.

    1991-01-01

    Serotonin (5-HT) added in vitro increased [ 3 H]-glutamate specific binding in the rat hippocampus, reaching statistical significance in layers rich in N-Methyl-D-Aspartate sensitive glutamate receptors. This effect was explained by a significant increase in the apparent affinity of [ 3 H]-glutamate when 5-HT is added in vitro. Two days after lesion of serotonergic afferents to the hippocampus with 5,7- Dihydroxytryptamine [ 3 H]-glutamate binding was significantly decreased in the CA3 region and stratum lacunosum moleculare of the hippocampus, this reduction being reversed by in vitro addition of 10 μM 5-HT. The decrease observed is due to a significant reduction of quisqualate-insensitive (radiatum CA3) and kainate receptors (strata oriens, radiatum, pyramidal of CA3). Five days after lesion [ 3 H]-glutamate binding increased significantly in the CA3 region of the hippocampus but was not different from sham animals in the other hippocampal layers. Two weeks after lesion [ 3 H]-glutamate binding to quisqualate-insensitive receptors was increased in all the hippocampal layers, while kainate and quisqualate-sensitive receptors were not affected. These data are consistent with the possibility that 5-HT is a direct positive modulator of glutamate receptor subtypes

  7. Decrease in TSH Receptor Autoantibodies during Antithyroid Treatment

    DEFF Research Database (Denmark)

    Christensen, Niels Juel; Habekost, Gurli; Bratholm, Palle

    2011-01-01

    that TRAb decrease significantly during treatment with antithyroid drugs. This decrease during treatment cannot be explained by Heg RNA, which remains unchanged. Cdk1 mRNA decreased significantly during treatment to values below values obtained in normal subjects. Thus both Heg RNA and Cdk1 mRNA may...

  8. Pharmacological benefits of selective modulation of cannabinoid receptor type 2 (CB2) in experimental Alzheimer's disease.

    Science.gov (United States)

    Jayant, Shalini; Sharma, Brij Mohan; Bansal, Rani; Sharma, Bhupesh

    2016-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that pervasively affects the population across the world. Currently, there is no effective treatment available for this and existing drugs merely slow the progression of cognitive function decline. Thus, massive effort is required to find an intended therapeutic target to overcome this condition. The present study has been framed to investigate the ameliorative role of selective modulator of cannabinoid receptor type 2 (CB2), 1-phenylisatin in experimental AD condition. We have induced experimental AD in mice by using two induction models viz., intracerebroventricular (i.c.v.) administration of streptozotocin (STZ) and aluminum trichloride (AlCl3)+d-galactose. Morris water maze (MWM) and attentional set shifting test (ASST) were used to assess learning and memory. Hematoxylin-eosin and Congo red staining were used to examine the structural variation in brain. Brain oxidative stress (thiobarbituric acid reactive substance and glutathione), nitric oxide levels (nitrites/nitrates), acetyl cholinesterase activity, myeloperoxidase and calcium levels were also estimated. i.c.v. STZ as well as AlCl3+d-galactose have impaired spatial and reversal learning with executive functioning, increased brain oxidative and nitrosative stress, cholinergic activity, inflammation and calcium levels. Furthermore, these agents have also enhanced the burden of Aβ plaque in the brain. Treatment with 1-phenylisatin and donepezil attenuated i.c.v. STZ as well as AlCl3+d-galactose induced impairment of learning-memory, brain biochemistry and brain damage. Hence, this study concludes that CB2 receptor modulation can be a potential therapeutic target for the management of AD. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Lessons from crystal structures of kainate receptors

    DEFF Research Database (Denmark)

    Møllerud, Stine; Frydenvang, Karla Andrea; Pickering, Darryl S

    2017-01-01

    Kainate receptors belong to the family of ionotropic glutamate receptors. These receptors assemble from five subunits (GluK1-5) into tetrameric ion channels. Kainate receptors are located at both pre- and postsynaptic membranes in the central nervous system where they contribute to excitatory...... synaptic transmission and modulate network excitability by regulating neurotransmitter release. Dysfunction of kainate receptors has been implicated in several neurological disorders such as epilepsy, schizophrenia and depression. Here we provide a review on the current understanding of kainate receptor...

  10. T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters

    Energy Technology Data Exchange (ETDEWEB)

    Manz, Boryana N. [Howard Hughes Medical Inst., Chevy Chase, MD (United States); Univ. of California, Berkeley, CA (United States); Jackson, Bryan L. [Howard Hughes Medical Inst., Chevy Chase, MD (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Petit, Rebecca S. [Howard Hughes Medical Inst., Chevy Chase, MD (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dustin, Michael L. [New York School of Medicine, New York, NY (United States); Groves, Jay [Howard Hughes Medical Inst., Chevy Chase, MD (United States); Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-05-31

    T cells react to extremely small numbers of activating agonist peptides. Spatial organization of T-cell receptors (TCR) and their peptide-major histocompatibility complex (pMHC) ligands into microclusters is correlated with T-cell activation. In this study, we have designed an experimental strategy that enables control over the number of agonist peptides per TCR cluster, without altering the total number engaged by the cell. Supported membranes, partitioned with grids of barriers to lateral mobility, provide an effective way of limiting the total number of pMHC ligands that may be assembled within a single TCR cluster. Observations directly reveal that restriction of pMHC content within individual TCR clusters can decrease T-cell sensitivity for triggering initial calcium flux at fixed total pMHC density. Further analysis suggests that triggering thresholds are determined by the number of activating ligands available to individual TCR clusters, not by the total number encountered by the cell. Results from a series of experiments in which the overall agonist density and the maximum number of agonist per TCR cluster are independently varied in primary T cells indicate that the most probable minimal triggering unit for calcium signaling is at least four pMHC in a single cluster for this system. In conclusion, this threshold is unchanged by inclusion of coagonist pMHC, but costimulation of CD28 by CD80 can modulate the threshold lower.

  11. Developmental Bisphenol A Exposure Modulates Immune-Related Diseases

    Science.gov (United States)

    Xu, Joella; Huang, Guannan; Guo, Tai L.

    2016-01-01

    Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors), epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg) cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS), have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases. PMID:29051427

  12. Developmental Bisphenol A Exposure Modulates Immune-Related Diseases

    Directory of Open Access Journals (Sweden)

    Joella Xu

    2016-09-01

    Full Text Available Bisphenol A (BPA, used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors, epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS, have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases.

  13. Endocrine therapy use among elderly hormone receptor-pos...

    Data.gov (United States)

    U.S. Department of Health & Human Services — Clinical guidelines recommend that women with hormone-receptor positive breast cancer receive endocrine therapy (selective estrogen receptor modulators or aromatase...

  14. GABA in nucleus tractus solitarius participates in electroacupuncture modulation of cardiopulmonary bradycardia reflex.

    Science.gov (United States)

    Tjen-A-Looi, Stephanie C; Guo, Zhi-Ling; Longhurst, John C

    2014-12-01

    Phenylbiguanide (PBG) stimulates cardiopulmonary receptors and cardiovascular reflex responses, including decreases in blood pressure and heart rate mediated by the brain stem parasympathetic cardiac neurons in the nucleus ambiguus and nucleus tractus solitarius (NTS). Electroacupuncture (EA) at P5-6 stimulates sensory fibers in the median nerve and modulates these reflex responses. Stimulation of median nerves reverses bradycardia through action of γ-aminobutyric acid (GABA) in the nucleus ambiguus, important in the regulation of heart rate. We do not know whether the NTS or the neurotransmitter mechanisms in this nucleus participate in these modulatory actions by acupuncture. We hypothesized that somatic nerve stimulation during EA (P5-6) modulates cardiopulmonary inhibitory responses through a GABAergic mechanism in the NTS. Anesthetized and ventilated cats were examined during either PBG or direct vagal afferent stimulation while 30 min of EA was applied at P5-6. Reflex heart rate and blood pressure responses and NTS-evoked discharge were recorded. EA reduced the PBG-induced depressor and bradycardia reflexes by 67% and 60%, respectively. Blockade of GABAA receptors in the NTS reversed EA modulation of bradycardia but not the depressor response. During EA, gabazine reversed the vagally evoked discharge activity of cardiovascular NTS neurons. EA modulated the vagal-evoked cardiovascular NTS cellular activity for 60 min. Immunohistochemistry using triple labeling showed GABA immunoreactive fibers juxtaposed to glutamatergic nucleus ambiguus-projecting NTS neurons in rats. These glutamatergic neurons expressed GABAA receptors. These findings suggest that EA inhibits PBG-evoked bradycardia and vagally evoked NTS activity through a GABAergic mechanism, likely involving glutamatergic nucleus ambiguus-projecting NTS neurons. Copyright © 2014 the American Physiological Society.

  15. Decreased plasma levels of factor II + VII + X correlate with increased levels of soluble cytokine receptors in patients with malaria and meningococcal infections

    DEFF Research Database (Denmark)

    Bygbjerg, I C; Hansen, M B; Rønn, A M

    1997-01-01

    The levels of coagulation factors II + VII + X and of blood platelets (thrombocytes) as well as of cytokines and soluble cytokine receptors were studied in the patients with malaria or meningococcal infections. The coagulation factors were decreased particularly in the meningococcal patients, while...... thrombocytes were lowest in the Plasmodium falciparum malaria patients. There was no correlation between factors II + VII + X and thrombocytes, but plasma levels of coagulation factors II + VII + X were found to correlate inversely with levels of soluble interleukin-2 receptor (sIL-2R) and soluble tumour...... necrosis factor-I (sTNF-RI) in patients with malaria and meningococcal infections. Elevated sIL-2R and sTNF-RI levels and decreased coagulation factors reverted to normal within 3-5 days after initiation of therapy in P. falciparum patients followed consecutively. Estimation of coagulation factors may...

  16. Ocimum basilicum ethanolic extract decreases cholesterol synthesis and lipid accumulation in human macrophages.

    Science.gov (United States)

    Bravo, Elena; Amrani, Souliman; Aziz, Mohammed; Harnafi, Hicham; Napolitano, Mariarosaria

    2008-12-01

    Macrophage lipid accumulation induced by low density lipoproteins (LDL) plays a pivotal role in atherosclerotic plaque development. Previous work showed that Ocimum basilicum extract, used as hypocholesterolemic agent by traditional medicine in Morocco, has hypolipidemic activity in rat acute hyperlipimidemia. This study investigated the effects of ethanolic extract of O. basilicum on lipid accumulation in human macrophages. As modification of LDL increase atherogenicity of the particles we evaluated the effects of the extract on LDL oxidation. The extract caused a dose-related increase of LDL-resistance to Cu(2+)-induced oxidation. Furthermore, at the dose of 60 microg/ml, significantly decreases the accumulation of macrophage lipid droplets induced by modified LDL evaluated as by red-oil staining. Cholesterol esterification and triacylglycerol synthesis in the cells were not affected. Macrophage treatment with 60 microg/ml, but not 20 microg/ml, of the extract reduced newly synthesized unesterified cholesterol by about 60% and decreased scavenger receptors activity by about 20-30%, evaluated by the internalization of cholesterol carried by [(3)H]CE-aggregated-LDL. The results suggest that O. basilicum ethanolic extract has the capability to reduce foam cell formation through the reduction of cholesterol synthesis and the modulation of the activity of surface scavenger receptors.

  17. An overview of potential molecular mechanisms involved in VSMC phenotypic modulation.

    Science.gov (United States)

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Yan-Qin; Wang, Xu; Pi, Yan; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-02-01

    The fully differentiated medial vascular smooth muscle cells (VSMCs) of mature vessels keep quiescent and contractile. However, VSMC can exhibit the plasticity in phenotype switching from a differentiated and contractile phenotype to a dedifferentiated state in response to alterations in local environmental cues, which is called phenotypic modulation or switching. Distinguishing from its differentiated state expressing more smooth muscle (SM)-specific/selective proteins, the phenotypic modulation in VSMC is characterized by an increased rate of proliferation, migration, synthesis of extracellular matrix proteins and decreased expression of SM contractile proteins. Although it has been well demonstrated that phenotypic modulation of VSMC contributes to the occurrence and progression of many proliferative vascular diseases, little is known about the details of the molecular mechanisms of VSMC phenotypic modulation. Growing evidence suggests that variety of molecules including microRNAs, cytokines and biochemical factors, membrane receptors, ion channels, cytoskeleton and extracellular matrix play important roles in controlling VSMC phenotype. The focus of the present review is to provide an overview of potential molecular mechanisms involved in VSMC phenotypic modulation in recent years. To clarify VSMC differentiation and phenotypic modulation mechanisms will contribute to producing cell-based therapeutic interventions for aberrant VSMC differentiation-related diseases.

  18. Catalpic acid decreases abdominal fat deposition, improves glucose homeostasis and upregulates PPAR alpha expression in adipose tissue.

    Science.gov (United States)

    Hontecillas, Raquel; Diguardo, Maggie; Duran, Elisa; Orpi, Marcel; Bassaganya-Riera, Josep

    2008-10-01

    Catalpic acid (CAT) is a conjugated linolenic acid (CLN) isomer containing trans-9, trans-11, cis-13 double bonds in an 18-carbon chain and it is found primarily in the seed oil of ornamental and medicinal trees and shrubs of the family Bignoniaceae. The objective of this study was to investigate whether CAT decreases obesity and ameliorates insulin sensitivity and glucose tolerance in mice fed high-fat diets. To test the efficacy of CAT in decreasing obesity and diabetes we used both a model of diet-induced obesity (DIO) and a genetic model of obesity (i.e., mice lacking the leptin receptor). Blood was collected on days 0, 7, 14, 21 and 28 for determining fasting glucose and insulin concentrations in plasma. In addition, a glucose tolerance test was administered on day 28. We found that dietary CAT (1g/100g) decreased fasting plasma glucose and insulin concentrations, ameliorated the glucose normalizing ability following glucose challenge and decreased abdominal white adipose tissue accumulation. In white adipose tissue (WAT), CAT upregulated peroxisome proliferator-activated receptor (PPAR) alpha and its responsive genes [i.e., stearoyl-coenzyme A desaturase (SCD1) and enoyl-coenzyme A hydratase (ECH)], increased concentrations of high-density lipoprotein (HDL) cholesterol and decreased plasma triglyceride (TG) levels. CAT decreased abdominal fat deposition, increased HDL cholesterol, decreased TG concentrations, decreased glucose and insulin homeostasis and modulated WAT gene expression in a manner reminiscent of the actions of the PPAR alpha-activating fibrate class of lipid-lowering drugs.

  19. Novel Zn2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents.

    Directory of Open Access Journals (Sweden)

    Ola Fjellström

    Full Text Available Type 2 diabetes (T2D occurs when there is insufficient insulin release to control blood glucose, due to insulin resistance and impaired β-cell function. The GPR39 receptor is expressed in metabolic tissues including pancreatic β-cells and has been proposed as a T2D target. Specifically, GPR39 agonists might improve β-cell function leading to more adequate and sustained insulin release and glucose control. The present study aimed to test the hypothesis that GPR39 agonism would improve glucose stimulated insulin secretion in vivo. A high throughput screen, followed by a medicinal chemistry program, identified three novel potent Zn2+ modulated GPR39 agonists. These agonists were evaluated in acute rodent glucose tolerance tests. The results showed a lack of glucose lowering and insulinotropic effects not only in lean mice, but also in diet-induced obese (DIO mice and Zucker fatty rats. It is concluded that Zn2+ modulated GPR39 agonists do not acutely stimulate insulin release in rodents.

  20. Serotonin Receptors in Hippocampus

    Science.gov (United States)

    Berumen, Laura Cristina; Rodríguez, Angelina; Miledi, Ricardo; García-Alcocer, Guadalupe

    2012-01-01

    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system. PMID:22629209