WorldWideScience

Sample records for receptor mediated phenomena

  1. Mediator-dependent Nuclear Receptor Functions

    Science.gov (United States)

    Chen, Wei; Roeder, Robert

    2011-01-01

    As gene-specific transcription factors, nuclear hormone receptors are broadly involved in many important biological processes. Their function on target genes requires the stepwise assembly of different coactivator complexes that facilitate chromatin remodeling and subsequent preinitiation complex (PIC) formation and function. Mediator has proved to be a crucial, and general, nuclear receptor-interacting coactivator, with demonstrated functions in transcription steps ranging from chromatin remodeling to subsequent PIC formation and function. Here we discuss (i) our current understanding of pathways that nuclear receptors and other interacting cofactors employ to recruit Mediator to target gene enhancers and promoters, including conditional requirements for the strong NR-Mediator interactions mediated by the NR AF2 domain and the MED1 LXXLLL motifs and (ii) mechanisms by which Mediator acts to transmit signals from enhancer-bound nuclear receptors to the general transcription machinery at core promoters to effect PIC formation and function. PMID:21854863

  2. NMDA receptor-mediated long term modulation of electrically evoked field potentials in the rat medial vestibular nuclei.

    Science.gov (United States)

    Capocchi, G; Della Torre, G; Grassi, S; Pettorossi, V E; Zampolini, M

    1992-01-01

    The effect of high frequency stimulation (HFS) of the primary vestibular afferents on field potentials recorded in the ipsilateral Medial Vestibular Nuclei (MVN) was studied. Our results show that potentiation and depression can be induced in different portions of MVN, which are distinguishable by their anatomical organization. HFS induces potentiation of the monosynaptic component in the ventral portion of the MVN, whereas it provokes depression of the polysynaptic component in the dorsal portion of the same nucleus. The induction of both potentiation and depression was blocked under AP5 perfusion, thus demonstrating that NMDA receptor activation mediates both phenomena. Furthermore, the finding that the field potentials were not modified during perfusion with DL-AP5, as previously reported, supports the hypothesis that NMDA receptors are not involved in the normal synaptic transmission from the primary vestibular afferent fibres, but are only activated following hyperstimulation of this afferent system. Our results suggest that the mechanisms of long term modification of synaptic efficacy observed in MVN may underlie the plasticity phenomena occurring in vestibular nuclei.

  3. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    International Nuclear Information System (INIS)

    Xu, Yuan; Cardell, Lars-Olaf

    2014-01-01

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B 2 receptor agonist) and des-Arg 9 -bradykinin- (selective B 1 receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE 2 . The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg 9 -bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B 2 receptors, but not those on B 1 . Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in some patients with asthma

  4. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  5. Melanocortin MC(4) receptor-mediated feeding and grooming in rodents.

    Science.gov (United States)

    Mul, Joram D; Spruijt, Berry M; Brakkee, Jan H; Adan, Roger A H

    2013-11-05

    Decades ago it was recognized that the pharmacological profile of melanocortin ligands that stimulated grooming behavior in rats was strikingly similar to that of Xenopus laevis melanophore pigment dispersion. After cloning of the melanocortin MC1 receptor, expressed in melanocytes, and the melanocortin MC4 receptor, expressed mainly in brain, the pharmacological profiles of these receptors appeared to be very similar and it was demonstrated that these receptors mediate melanocortin-induced pigmentation and grooming respectively. Grooming is a low priority behavior that is concerned with care of body surface. Activation of central melanocortin MC4 receptors is also associated with meal termination, and continued postprandial stimulation of melanocortin MC4 receptors may stimulate natural postprandial grooming behavior as part of the behavioral satiety sequence. Indeed, melanocortins fail to suppress food intake or induce grooming behavior in melanocortin MC4 receptor-deficient rats. This review will focus on how melanocortins affect grooming behavior through the melanocortin MC4 receptor, and how melanocortin MC4 receptors mediate feeding behavior. This review also illustrates how melanocortins were the most likely candidates to mediate grooming and feeding based on the natural behaviors they induced. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    Science.gov (United States)

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  7. Fcγ receptor-mediated inflammation inhibits axon regeneration.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.

  8. Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes.

    Science.gov (United States)

    Santhosh, K T; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, A J; Dakshinamurti, S

    2011-07-01

    Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor-mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca(2+) response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. TP receptor sensitivity and EC(50) for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca(2+) mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  9. Sex Hormone Receptor Repertoire in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Gerald M. Higa

    2013-01-01

    Full Text Available Classification of breast cancer as endocrine sensitive, hormone dependent, or estrogen receptor (ER positive refers singularly to ERα. One of the oldest recognized tumor targets, disruption of ERα-mediated signaling, is believed to be the mechanistic mode of action for all hormonal interventions used in treating this disease. Whereas ERα is widely accepted as the single most important predictive factor (for response to endocrine therapy, the presence of the receptor in tumor cells is also of prognostic value. Even though the clinical relevance of the two other sex hormone receptors, namely, ERβ and the androgen receptor remains unclear, two discordant phenomena observed in hormone-dependent breast cancers could be causally related to ERβ-mediated effects and androgenic actions. Nonetheless, our understanding of regulatory molecules and resistance mechanisms remains incomplete, further compromising our ability to develop novel therapeutic strategies that could improve disease outcomes. This review focuses on the receptor-mediated actions of the sex hormones in breast cancer.

  10. Scavenger receptor-mediated endocytosis by sinusoidal cells in rat bone marrow

    International Nuclear Information System (INIS)

    Geoffroy, J.S.

    1987-01-01

    Endocytosis of serum albumin by sinusoidal endothelial cells in rat bone marrow was investigated initially at the ultrastructural level with subsequent biochemical investigation of the specificity mediating this event. Bovine serum albumin adsorbed to 20nm colloidal gold particles (AuBSA) was chosen as the electron microscopic probe. Morphological data strongly suggested that a receptor was involved in uptake of AuBSA. Confirmation of receptor involvement in the uptake of AuBSA by marrow sinusoidal endothelial cells was achieved utilizing an in situ isolated hind limb perfusion protocol in conjunction with unlabeled, radiolabeled, and radio-/colloidal gold labeled probes. The major findings of competition and saturation experiments were: (1) endocytosis of AuBSA was mediated by a receptor for modified/treated serum albumin; (2) endocytosis of formaldehyde-treated serum albumin was mediated by a binding site which may be the same or closely related to the site responsible for the uptake of AuBSA; and (3) endocytosis of native untreated albumin was not mediated by receptor and probably represents fluid-phase pinocitosis

  11. Role of desensitization and subunit expression for kainate receptor-mediated neurotoxicity in murine neocortical cultures

    DEFF Research Database (Denmark)

    Jensen, J B; Schousboe, A; Pickering, D S

    1999-01-01

    ) toxicity mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, and (3) toxicity that can be mediated by kainate receptors when desensitization of the receptors is blocked. The indirect action at NMDA receptors was discovered because (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H...... nedioxy-5H-2,3-benzodiazepine (GYKI 53655), a selective AMPA receptor antagonist, abolished the remaining toxicity. These results indicated that kainate- and domoate-mediated toxicity involves both the NMDA and the AMPA receptors. Pretreatment of the cultures with concanavalin A to prevent desensitization...

  12. Plant cell surface receptor-mediated signaling - a common theme amid diversity.

    Science.gov (United States)

    He, Yunxia; Zhou, Jinggeng; Shan, Libo; Meng, Xiangzong

    2018-01-29

    Sessile plants employ a diverse array of plasma membrane-bound receptors to perceive endogenous and exogenous signals for regulation of plant growth, development and immunity. These cell surface receptors include receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that harbor different extracellular domains for perception of distinct ligands. Several RLK and RLP signaling pathways converge at the somatic embryogenesis receptor kinases (SERKs), which function as shared co-receptors. A repertoire of receptor-like cytoplasmic kinases (RLCKs) associate with the receptor complexes to relay intracellular signaling. Downstream of the receptor complexes, mitogen-activated protein kinase (MAPK) cascades are among the key signaling modules at which the signals converge, and these cascades regulate diverse cellular and physiological responses through phosphorylation of different downstream substrates. In this Review, we summarize the emerging common theme that underlies cell surface receptor-mediated signaling pathways in Arabidopsis thaliana : the dynamic association of RLKs and RLPs with specific co-receptors and RLCKs for signal transduction. We further discuss how signaling specificities are maintained through modules at which signals converge, with a focus on SERK-mediated receptor signaling. © 2018. Published by The Company of Biologists Ltd.

  13. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Breeman, W.A.P.; Jong, M. de; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.M. [Dept. of Nuclear Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Visser, T.J. [Dept. of Internal Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Krenning, E.P. [Dept. of Nuclear Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Dept. of Internal Medicine, Erasmus Medical Centre Rotterdam (Netherlands)

    2001-09-01

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  14. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    International Nuclear Information System (INIS)

    Breeman, W.A.P.; Jong, M. de; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.M.; Visser, T.J.; Krenning, E.P.

    2001-01-01

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  15. DMPD: Modulation of Toll-interleukin 1 receptor mediated signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15662540 Modulation of Toll-interleukin 1 receptor mediated signaling. Li X, Qin J.... J Mol Med. 2005 Apr;83(4):258-66. Epub 2005 Jan 21. (.png) (.svg) (.html) (.csml) Show Modulation of Toll-i...nterleukin 1 receptor mediated signaling. PubmedID 15662540 Title Modulation of Toll-interleukin 1 receptor

  16. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects.

    Science.gov (United States)

    Salomone, Salvatore; Waeber, Christian

    2011-01-01

    Receptors for sphingosine-1-phosphate (S1P) have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444), used extensively as specific S1P(2) and S1P(3) receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P(2) receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca(2+) concentration via P(2) receptor or α(1A)-adrenoceptor stimulation and α(1A)-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P(3)-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P(1/3) receptor antagonist, VPC23019, does not inhibit S1P(3)-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.

  17. Selectivity and specificity of sphingosine-1-phosphate receptor ligands: caveats and critical thinking in characterizing receptor-mediated effects

    Directory of Open Access Journals (Sweden)

    Christian eWaeber

    2011-02-01

    Full Text Available Receptors for sphingosine-1-phosphate (S1P have been identified only recently. Their medicinal chemistry is therefore still in its infancy, and few selective agonists or antagonists are available. Furthermore, the selectivity of S1P receptor agonists or antagonists is not well established. JTE-013 and BML-241 (also known as CAY10444, used extensively as specific S1P2 and S1P3 receptors antagonists respectively, are cases in point. When analyzing S1P-induced vasoconstriction in mouse basilar artery, we observed that JTE-013 inhibited not only the effect of S1P, but also the effect of U46619, endothelin-1 or high KCl; JTE-013 strongly inhibited responses to S1P in S1P2 receptor knockout mice. Similarly, BML-241 has been shown to inhibit increases in intracellular Ca2+ concentration via P2 receptor or α1A-adrenoceptor stimulation and α1A-adrenoceptor-mediated contraction of rat mesenteric artery, while it did not affect S1P3-mediated decrease of forskolin-induced cyclic AMP accumulation. Another putative S1P1/3 receptor antagonist, VPC23019, does not inhibit S1P3-mediated vasoconstriction. With these examples in mind, we discuss caveats about relying on available pharmacological tools to characterize receptor subtypes.

  18. Microglia P2Y13 Receptors Prevent Astrocyte Proliferation Mediated by P2Y1 Receptors

    Directory of Open Access Journals (Sweden)

    Clara Quintas

    2018-05-01

    Full Text Available Cerebral inflammation is a common feature of several neurodegenerative diseases that requires a fine interplay between astrocytes and microglia to acquire appropriate phenotypes for an efficient response to neuronal damage. During brain inflammation, ATP is massively released into the extracellular medium and converted into ADP. Both nucleotides acting on P2 receptors, modulate astrogliosis through mechanisms involving microglia-astrocytes communication. In previous studies, primary cultures of astrocytes and co-cultures of astrocytes and microglia were used to investigate the influence of microglia on astroglial proliferation induced by ADPβS, a stable ADP analog. In astrocyte cultures, ADPβS increased cell proliferation through activation of P2Y1 and P2Y12 receptors, an effect abolished in co-cultures (of astrocytes with ∼12.5% microglia. The possibility that the loss of the ADPβS-mediated effect could have been caused by a microglia-induced degradation of ADPβS or by a preferential microglial localization of P2Y1 or P2Y12 receptors was excluded. Since ADPβS also activates P2Y13 receptors, the contribution of microglial P2Y13 receptors to prevent the proliferative effect of ADPβS in co-cultures was investigated. The results obtained indicate that P2Y13 receptors are low expressed in astrocytes and mainly expressed in microglia. Furthermore, in co-cultures, ADPβS induced astroglial proliferation in the presence of the selective P2Y13 antagonist MRS 2211 (3 μM and of the selective P2Y12 antagonist AR-C66096 (0.1 μM, suggesting that activation of microglial P2Y12 and P2Y13 receptors may induce the release of messengers that inhibit astroglial proliferation mediated by P2Y1,12 receptors. In this microglia-astrocyte paracrine communication, P2Y12 receptors exert opposite effects in astroglial proliferation as a result of its cellular localization: cooperating in astrocytes with P2Y1 receptors to directly stimulate proliferation and in

  19. Induction of aryl hydrocarbon receptor-mediated and estrogen receptor-mediated activities, and modulation of cell proliferation by dinaphthofurans

    Czech Academy of Sciences Publication Activity Database

    Vondráček, Jan; Chramostová, Kateřina; Plíšková, M.; Bláha, L.; Brack, W.; Kozubík, Alois; Machala, M.

    2004-01-01

    Roč. 23, č. 9 (2004), s. 2214-2220 ISSN 0730-7268 R&D Projects: GA ČR GA525/03/1527 Institutional research plan: CEZ:AV0Z5004920 Keywords : aryl hydrocarbon receptor-mediated activity * estrogenicity * intercellular communication inhibition Subject RIV: BO - Biophysics Impact factor: 2.121, year: 2004

  20. Nuclear Receptor Cofactors in PPARγ-Mediated Adipogenesis and Adipocyte Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Emily Powell

    2007-01-01

    Full Text Available Transcriptional cofactors are integral to the proper function and regulation of nuclear receptors. Members of the peroxisome proliferator-activated receptor (PPAR family of nuclear receptors are involved in the regulation of lipid and carbohydrate metabolism. They modulate gene transcription in response to a wide variety of ligands, a process that is mediated by transcriptional coactivators and corepressors. The mechanisms by which these cofactors mediate transcriptional regulation of nuclear receptor function are still being elucidated. The rapidly increasing array of cofactors has brought into focus the need for a clear understanding of how these cofactors interact in ligand- and cell-specific manners. This review highlights the differential effects of the assorted cofactors regulating the transcriptional action of PPARγ and summarizes the recent advances in understanding the physiological functions of corepressors and coactivators.

  1. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry.

    Science.gov (United States)

    Meertens, Laurent; Carnec, Xavier; Lecoin, Manuel Perera; Ramdasi, Rasika; Guivel-Benhassine, Florence; Lew, Erin; Lemke, Greg; Schwartz, Olivier; Amara, Ali

    2012-10-18

    Dengue viruses (DVs) are responsible for the most medically relevant arboviral diseases. However, the molecular interactions mediating DV entry are poorly understood. We determined that TIM and TAM proteins, two receptor families that mediate the phosphatidylserine (PtdSer)-dependent phagocytic removal of apoptotic cells, serve as DV entry factors. Cells poorly susceptible to DV are robustly infected after ectopic expression of TIM or TAM receptors. Conversely, DV infection of susceptible cells is inhibited by anti-TIM or anti-TAM antibodies or knockdown of TIM and TAM expression. TIM receptors facilitate DV entry by directly interacting with virion-associated PtdSer. TAM-mediated infection relies on indirect DV recognition, in which the TAM ligand Gas6 acts as a bridging molecule by binding to PtdSer within the virion. This dual mode of virus recognition by TIM and TAM receptors reveals how DVs usurp the apoptotic cell clearance pathway for infectious entry. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists.

    Science.gov (United States)

    Pernomian, Larissa; Pernomian, Laena; Gomes, Mayara S; da Silva, Carlos H T P

    2015-12-15

    The interplay between angiotensin AT1 receptors and MAS receptors relies on several inward regulatory mechanisms from renin-angiotensin system (RAS) including the functional crosstalk between angiotensin II and angiotensin-(1-7), the competitive AT1 antagonism exhibited by angiotensin-(1-7), the antagonist feature assigned to AT1/MAS heterodimerization on AT1 signaling and the AT1-mediated downregulation of angiotensin-converting enzyme 2 (ACE2). Recently, such interplay has acquired an important significance to RAS Pharmacology since a few studies have supporting strong evidences that MAS receptors mediate the effects elicited by AT1 antagonists. The present Perspective provides an overview of the regulatory mechanisms involving AT1 and MAS receptors, their significance to RAS Pharmacology and the future directions on the interplay between angiotensin receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors

    DEFF Research Database (Denmark)

    Kolko, Miriam; de Turco, Elena B; Diemer, Nils Henrik

    2002-01-01

    To define the significance of glutamate ionotropic receptors in sPLA -mediated neuronal cell death we used the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist PNQX. In primary neuronal cell cultures both MK-801 and PNQX inhibited sPLA - and glutamate-induced neuronal death. [ H...

  4. Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses.

    Science.gov (United States)

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B; Sureshkumar, Chitta; Manna, Sunil K

    2011-02-11

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies.

  5. Azadirachtin Interacts with Retinoic Acid Receptors and Inhibits Retinoic Acid-mediated Biological Responses*

    Science.gov (United States)

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B.; Sureshkumar, Chitta; Manna, Sunil K.

    2011-01-01

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies. PMID:21127062

  6. Relations between immune and mediator receptors of mouse lymphocytes

    International Nuclear Information System (INIS)

    Ado, A.D.; Alekseeva, T.A.; Kravchenko, S.A.

    1985-01-01

    This paper examines the action of the specific muscarinic antogonist tritium-quinuclidinyl benzilate (tritium-QNB) on immune rosette formation in mice. It is shown that since the specific muscarini antagonist tritium-QNB inhibits immune rosette formation, this process must be regarded as interconnected with muscarinic receptors of lymphocytes. Interaction of immune (antigen-binding) and mediator receptors, however, is an important factor maintaining immune homeostasis at a certain level

  7. Complement-mediated solubilization of immune complexes and their interaction with complement C3 receptors

    DEFF Research Database (Denmark)

    Petersen, Ivan; Baatrup, Gunnar; Jepsen, H H

    1985-01-01

    Some of the molecular events in the complement (C)-mediated solubilization of immune complexes (IC) have been clarified in recent years. The solubilization is primarily mediated by alternative C pathway proteins whereas factors in the classical pathway accelerate the process. Components of the me......Some of the molecular events in the complement (C)-mediated solubilization of immune complexes (IC) have been clarified in recent years. The solubilization is primarily mediated by alternative C pathway proteins whereas factors in the classical pathway accelerate the process. Components...... of the cellular localization, expression and structure of the C3 receptors, especially the C3b (CR1) receptor, has been considerably extended in the last few years, whereas our understanding of the physiological role of these receptors is still fragmentary. However, it is becoming increasingly evident...

  8. Biological functionalization of drug delivery carriers to bypass size restrictions of receptor-mediated endocytosis independently from receptor targeting.

    Science.gov (United States)

    Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia

    2013-12-23

    Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.

  9. The Role of Cgrp-Receptor Component Protein (Rcp in Cgrp-Mediated Signal Transduction

    Directory of Open Access Journals (Sweden)

    M. A. Prado

    2001-01-01

    Full Text Available The calcitonin gene-related peptide (CGRP-receptor component protein (RCP is a 17-kDa intracellular peripheral membrane protein required for signal transduction at CGRP receptors. To determine the role of RCP in CGRP-mediated signal transduction, RCP was depleted from NIH3T3 cells using antisense strategy. Loss of RCP protein correlated with loss of cAMP production by CGRP in the antisense cells. In contrast, loss of RCP had no effect on CGRP-mediated binding; therefore RCP is not acting as a chaperone for the CGRP receptor. Instead, RCP is a novel signal transduction molecule that couples the CGRP receptor to the cellular signal transduction machinery. RCP thus represents a prototype for a new class of signal transduction proteins that are required for regulation of G protein-coupled receptors.

  10. Cross-talk between an activator of nuclear receptors-mediated transcription and the D1 dopamine receptor signaling pathway.

    Science.gov (United States)

    Schmidt, Azriel; Vogel, Robert; Rutledge, Su Jane; Opas, Evan E; Rodan, Gideon A; Friedman, Eitan

    2005-03-01

    Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.

  11. Gz mediates the long-lasting desensitization of brain CB1 receptors and is essential for cross-tolerance with morphine

    Directory of Open Access Journals (Sweden)

    Rodríguez-Muñoz María

    2009-03-01

    Full Text Available Abstract Background Although the systemic administration of cannabinoids produces antinociception, their chronic use leads to analgesic tolerance as well as cross-tolerance to morphine. These effects are mediated by cannabinoids binding to peripheral, spinal and supraspinal CB1 and CB2 receptors, making it difficult to determine the relevance of each receptor type to these phenomena. However, in the brain, the CB1 receptors (CB1Rs are expressed at high levels in neurons, whereas the expression of CB2Rs is marginal. Thus, CB1Rs mediate the effects of smoked cannabis and are also implicated in emotional behaviors. We have analyzed the production of supraspinal analgesia and the development of tolerance at CB1Rs by the direct injection of a series of cannabinoids into the brain. The influence of the activation of CB1Rs on supraspinal analgesia evoked by morphine was also evaluated. Results Intracerebroventricular (icv administration of cannabinoid receptor agonists, WIN55,212-2, ACEA or methanandamide, generated a dose-dependent analgesia. Notably, a single administration of these compounds brought about profound analgesic tolerance that lasted for more than 14 days. This decrease in the effect of cannabinoid receptor agonists was not mediated by depletion of CB1Rs or the loss of regulated G proteins, but, nevertheless, it was accompanied by reduced morphine analgesia. On the other hand, acute morphine administration produced tolerance that lasted only 3 days and did not affect the CB1R. We found that both neural mu-opioid receptors (MORs and CB1Rs interact with the HINT1-RGSZ module, thereby regulating pertussis toxin-insensitive Gz proteins. In mice with reduced levels of these Gz proteins, the CB1R agonists produced no such desensitization or morphine cross-tolerance. On the other hand, experimental enhancement of Gz signaling enabled an acute icv administration of morphine to produce a long-lasting tolerance at MORs that persisted for more than

  12. G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-Na+ channel interaction

    International Nuclear Information System (INIS)

    Cohen-Armon, M.; Garty, H.; Sokolovsky, M.

    1988-01-01

    The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na + channels is a coupled event mediated by guanine nucleotide binding protein(s) [G-protein(s)]. These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of [ 3 H] acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of [ 3 H]batrachotoxin to Na + channel(s) in the presence of the muscarinic agonists; and (iii) muscarinically induced 22 Na + uptake in the presence and absence of tetrodotoxin, which blocks Na + channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na + channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na + channel-is such that at resting potential the muscarinic receptor induces opening of Na + channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues

  13. Stimulation of accumbal GABAA receptors inhibits delta2-, but not delta1-, opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats.

    Science.gov (United States)

    Aono, Yuri; Kiguchi, Yuri; Watanabe, Yuriko; Waddington, John L; Saigusa, Tadashi

    2017-11-15

    The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABA A receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABA A receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABA A receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABA A receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABA A receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABA A receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES SRC-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)

    Science.gov (United States)

    ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES Src-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)Weidong Wu1, Lee M. Graves2, Gordon N. Gill3 and James M. Samet4 1Center for Environmental Medicine and Lung Biology; 2Department of Pharmacology, University o...

  15. In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2.

    Science.gov (United States)

    Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R

    2018-01-01

    Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V 1 ) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys 8 ]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg 8 ]-vasopressin (AVP) at V 1 and vasopressin-2 (V 2 ) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V 1 and V 2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [ 3 H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V 1 ) and cyclic adenosine monophosphate (V 2 ). Binding potency at V 1 and V 2 was AVP>LVP>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V 1 than for V 2 . Cellular activity potency was also AVP>LVP>terlipressin. Terlipressin was a partial agonist at V 1 and a full agonist at V 2 ; LVP was a full agonist at both V 1 and V 2 . The in vivo response to terlipressin is likely due to the partial V 1 agonist activity of terlipressin and full V 1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors.

  16. The pathophysiological functions mediated by D-1 dopamine receptors

    International Nuclear Information System (INIS)

    Goldstein, M.; Kuga, S.; Meller, E.; SHimizu, Y.

    1986-01-01

    This chapter describes some behavioral responses which might be mediated by D 1 and D 2 DA receptors, and the authors discuss their clinical relevance. It was of considerable interest to determine whether a selective D 1 DA antagonist, such as SCH 23390, will induce catalepsy and whether this behavior is mediated by D 1 , or by both D 1 and D 2 DA receptors. Rats were used in the experiments. The authors examined whether the addition of the S 2 antagonist ketanserin affects the displacement of 3 H-Spi by SCH 23390. Induction of self-mutilating biting (SMB) behavior in monkeys with unilateral ventromedial tegmental (VMT) lesions by DA agonists and its prevention by DA antagonists is examined. The authors also discuss the possible relationships between abnormal guanine nucleotide metabolism and dopaminergic neuronal function through the implications in LeschNyhan syndrome and in some mental disorders

  17. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Desai, D M; Sap, J; Schlessinger, J

    1993-01-01

    CD45, a transmembrane protein tyrosine phosphatase (PTPase), is required for TCR signaling. Multiple CD45 isoforms, differing in the extracellular domain, are expressed in a tissue- and activation-specific manner, suggesting an important function for this domain. We report that a chimeric protein...... that ligand-mediated regulation of receptor-PTPases may have mechanistic similarities with receptor tyrosine kinases....

  18. Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer.

    Directory of Open Access Journals (Sweden)

    Anne-Christine Field

    Full Text Available Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm's tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies.

  19. GABA-A Receptors Mediate Tonic Inhibition and Neurosteroid Sensitivity in the Brain.

    Science.gov (United States)

    Reddy, Doodipala Samba

    2018-01-01

    Neurosteroids like allopregnanolone (AP) are positive allosteric modulators of synaptic and extrasynaptic GABA-A receptors. AP and related neurosteroids exhibit a greater potency for δ-containing extrasynaptic receptors. The δGABA-A receptors, which are expressed extrasynaptically in the dentate gyrus and other regions, contribute to tonic inhibition, promoting network shunting as well as reducing seizure susceptibility. Levels of endogenous neurosteroids fluctuate with ovarian cycle. Natural and synthetic neurosteroids maximally potentiate tonic inhibition in the hippocampus and provide robust protection against a variety of limbic seizures and status epilepticus. Recently, a consensus neurosteroid pharmacophore model has been proposed at extrasynaptic δGABA-A receptors based on structure-activity relationship for functional activation of tonic currents and seizure protection. Aside from anticonvulsant actions, neurosteroids have been found to be powerful anxiolytic and anesthetic agents. Neurosteroids and Zn 2+ have preferential affinity for δ-containing receptors. Thus, Zn 2+ can prevent neurosteroid activation of extrasynaptic δGABA-A receptor-mediated tonic inhibition. Recently, we demonstrated that Zn 2+ selectively inhibits extrasynaptic δGABA-A receptors and thereby fully prevents AP activation of tonic inhibition and seizure protection. We confirmed that neurosteroids exhibit greater sensitivity at extrasynaptic δGABA-A receptors. Overall, extrasynaptic GABA-A receptors are primary mediators of tonic inhibition in the brain and play a key role in the pathophysiology of epilepsy and other neurological disorders. © 2018 Elsevier Inc. All rights reserved.

  20. Vascular endothelin ET(B) receptor-mediated contraction requires phosphorylation of ERK1/2 proteins

    DEFF Research Database (Denmark)

    Luo, Guogang; Jamali, Roya; Cao, Yong-Xiao

    2006-01-01

    In cardiovascular diseases, endothelin type B (ET(B)) receptors in arterial smooth muscle cells are upregulated. The present study revealed that organ culture of rat mesenteric artery segments enhanced endothelin ET(B) receptor-mediated contraction paralleled with increase in the receptor mRNA an...

  1. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    International Nuclear Information System (INIS)

    Magno, Aaron L.; Ingley, Evan; Brown, Suzanne J.; Conigrave, Arthur D.; Ratajczak, Thomas; Ward, Bryan K.

    2011-01-01

    Highlights: → A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. → The second zinc finger of LIM domain 1 of testin is critical for interaction. → Testin bound to a region of the receptor tail important for cell signalling. → Testin and receptor interaction was confirmed in mammalian (HEK293) cells. → Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  2. Upregulation of endothelin ETB receptor-mediated vasoconstriction in rat coronary artery after organ culture

    DEFF Research Database (Denmark)

    Eskesen, Karen; Edvinsson, Lars

    2006-01-01

    The aim of this study was to examine if endothelin ET(B) receptor-mediated contraction occurred in isolated segments of rat coronary arteries during organ culture. Presence of contractile endothelin ET(B) receptors was studied by measuring the change in isometric tension in rings of left anterior......(+)-solution was not modified after 1 day in culture medium. The experiments indicate that organ culture of rat coronary arteries upregulate endothelin ET(B) receptor-mediated contraction by inducing synthesis of new protein....... descending coronary arteries isolated from hearts of rats as response to application of the selective endothelin ET(B) receptor agonist, Sarafotoxin 6c and endothelin-1. In segments cultured 1 day in serum free Dulbecco's Modified Eagle's Medium, Sarafotoxin 6c induced a concentration dependent contraction...

  3. Of pheromones and kairomones: what receptors mediate innate emotional responses?

    Science.gov (United States)

    Fortes-Marco, Lluis; Lanuza, Enrique; Martinez-Garcia, Fernando

    2013-09-01

    Some chemicals elicit innate emotionally laden behavioral responses. Pheromones mediate sexual attraction, parental care or agonistic confrontation, whereas predators' kairomones elicit defensive behaviors in their preys. This essay explores the hypothesis that the detection of these semiochemicals relies on highly specific olfactory and/or vomeronasal receptors. The V1R, V2R, and formyl-peptide vomeronasal receptors bind their ligands in highly specific and sensitive way, thus being good candidates for pheromone- or kairomone-detectors (e.g., secreted and excreted proteins, peptides and lipophilic volatiles). The olfactory epithelium also expresses specific receptors, for example trace amine-associated receptors (TAAR) and guanylyl cyclase receptors (GC-D and other types), some of which bind kairomones and putative pheromones. However, most of the olfactory neurons express canonical olfactory receptors (ORs) that bind many ligands with different affinity, being not suitable for mediating responses to pheromones and kairomones. In this respect, trimethylthiazoline (TMT) is considered a fox-derived kairomone for mice and rats, but it seems to be detected by canonical ORs. Therefore, we have reassessed the kairomonal nature of TMT by analyzing the behavioral responses of outbred (CD1) and inbred mice (C57BL/J6) to TMT. Our results confirm that both mouse strains avoid TMT, which increases immobility in C57BL/J6, but not CD1 mice. However, mice of both strains sniff at TMT throughout the test and show no trace of TMT-induced contextual conditioning (immobility or avoidance). This suggests that TMT is not a kairomone but, similar to a loud noise, in high concentrations it induces aversion and stress as unspecific responses to a strong olfactory stimulation. Copyright © 2013 Wiley Periodicals, Inc.

  4. AMPA receptor mediated excitotoxicity in neocortical neurons is developmentally regulated and dependent upon receptor desensitization

    DEFF Research Database (Denmark)

    Jensen, J B; Schousboe, A; Pickering, D S

    1998-01-01

    with a fast and rapidly desensitizing response, this could explain the relatively low toxicity produced by 500 microM AMPA. This was investigated by blocking AMPA receptor desensitization with cyclothiazide. Using a lower concentration (25 microM) of AMPA, addition of 50 microM cyclothiazide increased...... the AMPA induced excitotoxicity in cultured cortical neurons at all DIV except for DIV 2. This combination of AMPA + cyclothiazide yielded 77% cell death for DIV 12 cultures. In contrast to the results observed with 500 microM AMPA, the neurotoxicity mediated directly by AMPA receptors when desensitization...

  5. Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER

    International Nuclear Information System (INIS)

    Zekas, Erin; Prossnitz, Eric R.

    2015-01-01

    Estrogen (17β-estradiol) promotes the survival and proliferation of breast cancer cells and its receptors represent important therapeutic targets. The cellular actions of estrogen are mediated by the nuclear estrogen receptors ERα and ERβ as well as the 7-transmembrane spanning G protein-coupled estrogen receptor (GPER). We previously reported that estrogen activates the phosphoinositide 3-kinase (PI3Kinase) pathway via GPER, resulting in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production within the nucleus of breast cancer cells; however, the mechanisms and consequences of this activity remained unclear. MCF7 breast cancer cells were transfected with GFP-fused Forkhead box O3 (FOXO3) as a reporter to assess localization in response to estrogen stimulation. Inhibitors of PI3Kinases and EGFR were employed to determine the mechanisms of estrogen-mediated FOXO3a inactivation. Receptor knockdown with siRNA and the selective GPER agonist G-1 elucidated the estrogen receptor(s) responsible for estrogen-mediated FOXO3a inactivation. The effects of selective estrogen receptor modulators and downregulators (SERMs and SERDs) on FOXO3a in MCF7 cells were also determined. Cell survival (inhibition of apoptosis) was assessed by caspase activation. In the estrogen-responsive breast cancer cell line MCF7, FOXO3a inactivation occurs on a rapid time scale as a result of GPER, but not ERα, stimulation by estrogen, established by the GPER-selective agonist G-1 and knockdown of GPER and ERα. GPER-mediated inactivation of FOXO3a is effected by the p110α catalytic subunit of PI3Kinase as a result of transactivation of the EGFR. The SERMs tamoxifen and raloxifene, as well as the SERD ICI182,780, were active in mediating FOXO3a inactivation in a GPER-dependent manner. Additionally, estrogen-and G-1-mediated stimulation of MCF7 cells results in a decrease in caspase activation under proapoptotic conditions. Our results suggest that non-genomic signaling by GPER contributes

  6. Astrocytes protect neurons against methylmercury via ATP/P2Y(1) receptor-mediated pathways in astrocytes.

    Science.gov (United States)

    Noguchi, Yusuke; Shinozaki, Youichi; Fujishita, Kayoko; Shibata, Keisuke; Imura, Yoshio; Morizawa, Yosuke; Gachet, Christian; Koizumi, Schuichi

    2013-01-01

    Methylmercury (MeHg) is a well known environmental pollutant that induces serious neuronal damage. Although MeHg readily crosses the blood-brain barrier, and should affect both neurons and glial cells, how it affects glia or neuron-to-glia interactions has received only limited attention. Here, we report that MeHg triggers ATP/P2Y1 receptor signals in astrocytes, thereby protecting neurons against MeHg via interleukin-6 (IL-6)-mediated pathways. MeHg increased several mRNAs in astrocytes, among which IL-6 was the highest. For this, ATP/P2Y1 receptor-mediated mechanisms were required because the IL-6 production was (i) inhibited by a P2Y1 receptor antagonist, MRS2179, (ii) abolished in astrocytes obtained from P2Y1 receptor-knockout mice, and (iii) mimicked by exogenously applied ATP. In addition, (iv) MeHg released ATP by exocytosis from astrocytes. As for the intracellular mechanisms responsible for IL-6 production, p38 MAP kinase was involved. MeHg-treated astrocyte-conditioned medium (ACM) showed neuro-protective effects against MeHg, which was blocked by anti-IL-6 antibody and was mimicked by the application of recombinant IL-6. As for the mechanism of neuro-protection by IL-6, an adenosine A1 receptor-mediated pathway in neurons seems to be involved. Taken together, when astrocytes sense MeHg, they release ATP that autostimulates P2Y1 receptors to upregulate IL-6, thereby leading to A1 receptor-mediated neuro-protection against MeHg.

  7. Stress-induced decrease of uterine blood flow in sheep is mediated by alpha 1-adrenergic receptors.

    Science.gov (United States)

    Dreiling, Michelle; Bischoff, Sabine; Schiffner, Rene; Rupprecht, Sven; Kiehntopf, Michael; Schubert, Harald; Witte, Otto W; Nathanielsz, Peter W; Schwab, Matthias; Rakers, Florian

    2016-09-01

    Prenatal maternal stress can be transferred to the fetus via a catecholamine-dependent decrease of uterine blood flow (UBF). However, it is unclear which group of adrenergic receptors mediates this mechanism of maternal-fetal stress transfer. We hypothesized that in sheep, alpha 1-adrenergic receptors may play a key role in catecholamine mediated UBF decrease, as these receptors are mainly involved in peripheral vasoconstriction and are present in significant number in the uterine vasculature. After chronic instrumentation at 125 ± 1 days of gestation (dGA; term 150 dGA), nine pregnant sheep were exposed at 130 ± 1 dGA to acute isolation stress for one hour without visual, tactile, or auditory contact with their flockmates. UBF, blood pressure (BP), heart rate (HR), stress hormones, and blood gases were determined before and during this isolation challenge. Twenty-four hours later, experiments were repeated during alpha 1-adrenergic receptor blockage induced by a continuous intravenous infusion of urapidil. In both experiments, ewes reacted to isolation with an increase in serum norepinephrine, cortisol, BP, and HR as typical signs of activation of sympatho-adrenal and the hypothalamic-pituitary-adrenal axis. Stress-induced UBF decrease was prevented by alpha 1-adrenergic receptor blockage. We conclude that UBF decrease induced by maternal stress in sheep is mediated by alpha 1-adrenergic receptors. Future studies investigating prevention strategies of impact of prenatal maternal stress on fetal health should consider selective blockage of alpha 1-receptors to interrupt maternal-fetal stress transfer mediated by utero-placental malperfusion.

  8. Tissue-type plasminogen activator-binding RNA aptamers inhibiting low-density lipoprotein receptor family-mediated internalisation.

    Science.gov (United States)

    Bjerregaard, Nils; Bøtkjær, Kenneth A; Helsen, Nicky; Andreasen, Peter A; Dupont, Daniel M

    2015-07-01

    Recombinant tissue-type plasminogen activator (tPA, trade name Alteplase), currently the only drug approved by the US Food and Drug Administration and the European Medicines Agency for the treatment of cerebral ischaemic stroke, has been implicated in a number of adverse effects reportedly mediated by interactions with the low-density lipoprotein (LDL) family receptors, including neuronal cell death and an increased risk of cerebral haemorrhage. The tissue-type plasminogen activator is the principal initiator of thrombolysis in human physiology, an effect that is mediated directly via localised activation of the plasmin zymogen plasminogen at the surface of fibrin clots in the vascular lumen. Here, we sought to identify a ligand to tPA capable of inhibiting the relevant LDL family receptors without interfering with the fibrinolytic activity of tPA. Systematic evolution of ligands by exponential enrichment (SELEX) was employed to isolate tPA-binding RNA aptamers, which were characterised in biochemical assays of tPA association to low density lipoprotein receptor-related protein-1 (LRP-1, an LDL receptor family member); tPA-mediated in vitro and ex vivo clot lysis; and tPA-mediated plasminogen activation in the absence and presence of a stimulating soluble fibrin fragment. Two aptamers, K18 and K32, had minimal effects on clot lysis, but were able to efficiently inhibit tPA-LRP-1 association and LDL receptor family-mediated endocytosis in human vascular endothelial cells and astrocytes. These observations suggest that coadministration alongside tPA may be a viable strategy to improve the safety of thrombolytic treatment of cerebral ischaemic stroke by restricting tPA activity to the vascular lumen.

  9. Identification of potential pathway mediation targets in Toll-like receptor signaling.

    Directory of Open Access Journals (Sweden)

    Fan Li

    2009-02-01

    Full Text Available Recent advances in reconstruction and analytical methods for signaling networks have spurred the development of large-scale models that incorporate fully functional and biologically relevant features. An extended reconstruction of the human Toll-like receptor signaling network is presented herein. This reconstruction contains an extensive complement of kinases, phosphatases, and other associated proteins that mediate the signaling cascade along with a delineation of their associated chemical reactions. A computational framework based on the methods of large-scale convex analysis was developed and applied to this network to characterize input-output relationships. The input-output relationships enabled significant modularization of the network into ten pathways. The analysis identified potential candidates for inhibitory mediation of TLR signaling with respect to their specificity and potency. Subsequently, we were able to identify eight novel inhibition targets through constraint-based modeling methods. The results of this study are expected to yield meaningful avenues for further research in the task of mediating the Toll-like receptor signaling network and its effects.

  10. Tachykinin NK₁ receptor antagonist co-administration attenuates opioid withdrawal-mediated spinal microglia and astrocyte activation.

    Science.gov (United States)

    Tumati, Suneeta; Largent-Milnes, Tally M; Keresztes, Attila I; Yamamoto, Takashi; Vanderah, Todd W; Roeske, William R; Hruby, Victor J; Varga, Eva V

    2012-06-05

    Prolonged morphine treatment increases pain sensitivity in many patients. Enhanced spinal Substance P release is one of the adaptive changes associated with sustained opioid exposure. In addition to pain transmitting second order neurons, spinal microglia and astrocytes also express functionally active Tachykinin NK₁ (Substance P) receptors. In the present work we investigated the role of glial Tachykinin NK₁ receptors in morphine withdrawal-mediated spinal microglia and astrocyte activation. Our data indicate that intrathecal co-administration (6 days, twice daily) of a selective Tachykinin NK₁ receptor antagonist (N-acetyl-L-tryptophan 3,5-bis(trifluoromethyl)benzylester (L-732,138; 20 μg/injection)) attenuates spinal microglia and astrocyte marker and pro-inflammatory mediator immunoreactivity as well as hyperalgesia in withdrawn rats. Furthermore, covalent linkage of the opioid agonist with a Tachykinin NK₁ antagonist pharmacophore yielded a bivalent compound that did not augment spinal microglia or astrocyte marker or pro-inflammatory mediator immunoreactivity and did not cause paradoxical pain sensitization upon drug withdrawal. Thus, bivalent opioid/Tachykinin NK₁ receptor antagonists may provide a novel paradigm for long-term pain management.

  11. SR-B1 Is a Silica Receptor that Mediates Canonical Inflammasome Activation

    Directory of Open Access Journals (Sweden)

    Misato Tsugita

    2017-01-01

    Full Text Available The inhalation of silica dust is associated with fibrosis and lung cancer, which are triggered by macrophage inflammatory responses; however, how macrophages recognize silica remains largely unknown. Here, we identify by functional expression cloning the class B scavenger receptor SR-B1 as a silica receptor. Through an extracellular α-helix, both mouse and human SR-B1 specifically recognized amorphous and crystalline silica, but not titanium dioxide nanoparticles, latex nanoparticles, or monosodium urate crystals, although all particles exhibited negative surface potentials. Genetic deletion of SR-B1 and masking of SR-B1 by monoclonal antibodies showed that SR-B1-mediated recognition of silica is associated with caspase-1-mediated inflammatory responses in mouse macrophages and human peripheral blood monocytes. Furthermore, SR-B1 was involved in silica-induced pulmonary inflammation in mice. These results indicate that SR-B1 is a silica receptor associated with canonical inflammasome activation.

  12. DNA fragmentation and cell death mediated by T cell antigen receptor/CD3 complex on a leukemia T cell line.

    Science.gov (United States)

    Takahashi, S; Maecker, H T; Levy, R

    1989-10-01

    An anti-T cell receptor (TcR) monoclonal antibody (mAb), LC4, directed against a human leukemic T cell line, SUP-T13, caused DNA fragmentation ("apoptosis") and cell death upon binding to this cell line. Cross-linking of receptor molecules was necessary for this effect since F(ab')2, but not Fab', fragments of LC4 could induce cell death. Five anti-CD3 mAb tested also caused apoptosis, but only when they were presented on a solid phase. Interestingly, soluble anti-CD3 mAb induced calcium flux and had an additive effect on the calcium flux and interleukin 2 receptor expression induced by LC4, but these anti-CD3 mAb reversed the growth inhibition and apoptosis caused by LC4. The calcium ionophore A23187, but not the protein kinase C activator phorbol 12-myristate 13-acetate (PMA), also induced apoptosis, suggesting that protein kinase C activation alone does not cause apoptosis, although PMA is growth inhibitory. These results suggest that two distinct biological phenomena can accompany stimulation of the TcR/CD3 complex. In both cases, calcium flux and interleukin 2 receptor expression is induced, but only in one case is apoptosis and cell death seen. The signal initiating apoptosis can be selectively prevented by binding CD3 portion of the receptor in this cell line. This difference in signals mediated by the TcR/CD3 complex may be important in explaining the process of thymic selection, as well as in choosing anti-TcR mAb for therapeutic use.

  13. Purinergic Receptors: Key Mediators of HIV-1 infection and inflammation

    Directory of Open Access Journals (Sweden)

    Talia H Swartz

    2015-11-01

    Full Text Available Human immunodeficiency virus (HIV-1 causes a chronic infection that afflicts more than 38 million individuals worldwide. While the infection can be suppressed with potent anti-retroviral therapies, individuals infected with HIV have elevated levels of inflammation as indicated by increased T cell activation, soluble biomarkers, and associated morbidity and mortality. A single mechanism linking HIV pathogenesis to this inflammation has yet to be identified. Purinergic receptors are known to mediate inflammation and have been shown to be required for HIV-1 infection at the level of HIV-1 membrane fusion. Here we review the literature on the role of purinergic receptors in HIV-1 infection and associated inflammation and describe a role for these receptors as potential therapeutic targets.

  14. Receptor-Mediated Endocytosis and Brain Delivery of Therapeutic Biologics

    Directory of Open Access Journals (Sweden)

    Guangqing Xiao

    2013-01-01

    Full Text Available Transport of macromolecules across the blood-brain-barrier (BBB requires both specific and nonspecific interactions between macromolecules and proteins/receptors expressed on the luminal and/or the abluminal surfaces of the brain capillary endothelial cells. Endocytosis and transcytosis play important roles in the distribution of macromolecules. Due to the tight junction of BBB, brain delivery of traditional therapeutic proteins with large molecular weight is generally not possible. There are multiple pathways through which macromolecules can be taken up into cells through both specific and nonspecific interactions with proteins/receptors on the cell surface. This review is focused on the current knowledge of receptor-mediated endocytosis/transcytosis and brain delivery using the Angiopep-2-conjugated system and the molecular Trojan horses. In addition, the role of neonatal Fc receptor (FcRn in regulating the efflux of Immunoglobulin G (IgG from brain to blood, and approaches to improve the pharmacokinetics of therapeutic biologics by generating Fc fusion proteins, and increasing the pH dependent binding affinity between Fc and FcRn, are discussed.

  15. Receptor-mediated gene delivery using chemically modified chitosan

    International Nuclear Information System (INIS)

    Kim, T H; Jiang, H L; Nah, J W; Cho, M H; Akaike, T; Cho, C S

    2007-01-01

    Chitosan has been investigated as a non-viral vector because it has several advantages such as biocompatibility, biodegradability and low toxicity with high cationic potential. However, the low specificity and low transfection efficiency of chitosan need to be solved prior to clinical application. In this paper, we focused on the galactose or mannose ligand modification of chitosan for enhancement of cell specificity and transfection efficiency via receptor-mediated endocytosis in vitro and in vivo

  16. The brain cytoplasmic RNA BC1 regulates dopamine D2 receptor-mediated transmission in the striatum.

    Science.gov (United States)

    Centonze, Diego; Rossi, Silvia; Napoli, Ilaria; Mercaldo, Valentina; Lacoux, Caroline; Ferrari, Francesca; Ciotti, Maria Teresa; De Chiara, Valentina; Prosperetti, Chiara; Maccarrone, Mauro; Fezza, Filomena; Calabresi, Paolo; Bernardi, Giorgio; Bagni, Claudia

    2007-08-15

    Dopamine D(2) receptor (D(2)DR)-mediated transmission in the striatum is remarkably flexible, and changes in its efficacy have been heavily implicated in a variety of physiological and pathological conditions. Although receptor-associated proteins are clearly involved in specific forms of synaptic plasticity, the molecular mechanisms regulating the sensitivity of D(2) receptors in this brain area are essentially obscure. We have studied the physiological responses of the D(2)DR stimulations in mice lacking the brain cytoplasmic RNA BC1, a small noncoding dendritically localized RNA that is supposed to play a role in mRNA translation. We show that the efficiency of D(2)-mediated transmission regulating striatal GABA synapses is under the control of BC1 RNA, through a negative influence on D(2) receptor protein level affecting the functional pool of receptors. Ablation of the BC1 gene did not result in widespread dysregulation of synaptic transmission, because the sensitivity of cannabinoid CB(1) receptors was intact in the striatum of BC1 knock-out (KO) mice despite D(2) and CB(1) receptors mediated similar electrophysiological actions. Interestingly, the fragile X mental retardation protein FMRP, one of the multiple BC1 partners, is not involved in the BC1 effects on the D(2)-mediated transmission. Because D(2)DR mRNA is apparently equally translated in the BC1-KO and wild-type mice, whereas the protein level is higher in BC1-KO mice, we suggest that BC1 RNA controls D(2)DR indirectly, probably regulating translation of molecules involved in D(2)DR turnover and/or stability.

  17. Environmental phthalate monoesters activate pregnane X receptor-mediated transcription

    International Nuclear Information System (INIS)

    Hurst, Christopher H.; Waxman, David J.

    2004-01-01

    Phthalate esters, widely used as plasticizers in the manufacture of products made of polyvinyl chloride, induce reproductive and developmental toxicities in rodents. The mechanism that underlies these effects of phthalate exposure, including the potential role of members of the nuclear receptor superfamily, is not known. The present study investigates the effects of phthalates on the pregnane X receptor (PXR), which mediates the induction of enzymes involved in steroid metabolism and xenobiotic detoxification. The ability of phthalate monoesters to activate PXR-mediated transcription was assayed in a HepG2 cell reporter assay following transfection with mouse PXR (mPXR), human PXR (hPXR), or the hPXR allelic variants V140M, D163G, and A370T. Mono-2-ethylhexyl phthalate (MEHP) increased the transcriptional activity of both mPXR and hPXR (5- and 15-fold, respectively) with EC 50 values of 7-8 μM. mPXR and hPXR were also activated by monobenzyl phthalate (MBzP, up to 5- to 6-fold) but were unresponsive to monomethyl phthalate and mono-n-butyl phthalate (M(n)BP) at the highest concentrations tested (300 μM). hPXR-V140M and hPXR-A370T exhibited patterns of phthalate responses similar to the wild-type receptor. By contrast, hPXR-D163G was unresponsive to all phthalate monoesters tested. Further studies revealed that hPXR-D163G did respond to rifampicin, but required approximately 40-fold higher concentrations than wild-type receptor, suggesting that the ligand-binding domain D163G variant has impaired ligand-binding activity. The responsiveness of PXR to activation by phthalate monoesters demonstrated here suggests that these ubiquitous environmental chemicals may, in part, exhibit their endocrine disruptor activities by altering PXR-regulated steroid hormone metabolism with potential adverse health effects in exposed individuals

  18. Adenosine A2A receptor-dependent proliferation of pulmonary endothelial cells is mediated through calcium mobilization, PI3-kinase and ERK1/2 pathways

    International Nuclear Information System (INIS)

    Ahmad, Aftab; Schaack, Jerome B.; White, Carl W.; Ahmad, Shama

    2013-01-01

    Highlights: •A 2A receptor-induced pulmonary endothelial growth is mediated by PI3K and ERK1/2. •Cytosolic calcium mobilization is also critical for pulmonary endothelial growth. •Effectors of A 2A receptor, like tyrosine kinases and cAMP increase PI3K/Akt signaling. •Activation of A 2A receptor can contribute to vascular remodeling. -- Abstract: Hypoxia and HIF-2α-dependent A 2A receptor expression and activation increase proliferation of human lung microvascular endothelial cells (HLMVECs). This study was undertaken to investigate the signaling mechanisms that mediate the proliferative effects of A 2A receptor. A 2A receptor-mediated proliferation of HLMVECs was inhibited by intracellular calcium chelation, and by specific inhibitors of ERK1/2 and PI3-kinase (PI3K). The adenosine A 2A receptor agonist CGS21680 caused intracellular calcium mobilization in controls and, to a greater extent, in A 2A receptor-overexpressing HLMVECs. Adenoviral-mediated A 2A receptor overexpression as well as receptor activation by CGS21680 caused increased PI3K activity and Akt phosphorylation. Cells overexpressing A 2A receptor also manifested enhanced ERK1/2 phosphorylation upon CGS21680 treatment. A 2A receptor activation also caused enhanced cAMP production. Likewise, treatment with 8Br-cAMP increased PI3K activity. Hence A 2A receptor-mediated cAMP production and PI3K and Akt phosphorylation are potential mediators of the A 2A -mediated proliferative response of HLMVECs. Cytosolic calcium mobilization and ERK1/2 phosphorylation are other critical effectors of HLMVEC proliferation and growth. These studies underscore the importance of adenosine A 2A receptor in activation of survival and proliferative pathways in pulmonary endothelial cells that are mediated through PI3K/Akt and ERK1/2 pathways

  19. A pp32-retinoblastoma protein complex modulates androgen receptor-mediated transcription and associates with components of the splicing machinery

    International Nuclear Information System (INIS)

    Adegbola, Onikepe; Pasternack, Gary R.

    2005-01-01

    We have previously shown pp32 and the retinoblastoma protein interact. pp32 and the retinoblastoma protein are nuclear receptor transcriptional coregulators: the retinoblastoma protein is a coactivator for androgen receptor, the major regulator of prostate cancer growth, while pp32, which is highly expressed in prostate cancer, is a corepressor of the estrogen receptor. We now show pp32 increases androgen receptor-mediated transcription and the retinoblastoma protein modulates this activity. Using affinity purification and mass spectrometry, we identify members of the pp32-retinoblastoma protein complex as PSF and nonO/p54nrb, proteins implicated in coordinate regulation of nuclear receptor-mediated transcription and splicing. We show that the pp32-retinoblastoma protein complex is modulated during TPA-induced K562 differentiation. Present evidence suggests that nuclear receptors assemble multiprotein complexes to coordinately regulate transcription and mRNA processing. Our results suggest that pp32 and the retinoblastoma protein may be part of a multiprotein complex that coordinately regulates nuclear receptor-mediated transcription and mRNA processing

  20. Dopamine D3 receptors mediate the discriminative stimulus effects of quinpirole in free-feeding rats.

    Science.gov (United States)

    Baladi, Michelle G; Newman, Amy H; France, Charles P

    2010-01-01

    The discriminative stimulus effects of dopamine (DA) D3/D2 receptor agonists are thought to be mediated by D2 receptors. To maintain responding, access to food is often restricted, which can alter neurochemical and behavioral effects of drugs acting on DA systems. This study established stimulus control with quinpirole in free-feeding rats and tested the ability of agonists to mimic and antagonists to attenuate the effects of quinpirole. The same antagonists were studied for their ability to attenuate quinpirole-induced yawning and hypothermia. DA receptor agonists apomorphine and lisuride, but not amphetamine and morphine, occasioned responding on the quinpirole lever. The discriminative stimulus effects of quinpirole were attenuated by the D3 receptor-selective antagonist N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl (PG01037) and the nonselective D3/D2 receptor antagonist raclopride, but not by the D2 receptor-selective antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]methyl-1H-indole (L-741,626); the potencies of PG01037 and raclopride to antagonize this effect of quinpirole paralleled their potencies to antagonize the ascending limb of the quinpirole yawning dose-response curve (thought to be mediated by D3 receptors). L-741,626 selectively antagonized the descending limb of the quinpirole yawning dose-response curve, and both L-741,626 and raclopride, but not PG01037, antagonized the hypothermic effects of quinpirole (thought to be mediated by D2 receptors). Food restriction (10 g/day/7 days) significantly decreased quinpirole-induced yawning without affecting the quinpirole discrimination. Many discrimination studies on DA receptor agonists use food-restricted rats; together with those studies, the current experiment using free-feeding rats suggests that feeding conditions affecting the behavioral effects of direct-acting DA receptor agonists might also have an impact on the effects of indirect

  1. Glutamate Receptors within the Mesolimbic Dopamine System Mediate Alcohol Relapse Behavior.

    Science.gov (United States)

    Eisenhardt, Manuela; Leixner, Sarah; Luján, Rafael; Spanagel, Rainer; Bilbao, Ainhoa

    2015-11-25

    Glutamatergic input within the mesolimbic dopamine (DA) pathway plays a critical role in the development of addictive behavior. Although this is well established for some drugs of abuse, it is not known whether glutamate receptors within the mesolimbic system are involved in mediating the addictive properties of chronic alcohol use. Here we evaluated the contribution of mesolimbic NMDARs and AMPARs in mediating alcohol-seeking responses induced by environmental stimuli and relapse behavior using four inducible mutant mouse lines lacking the glutamate receptor genes Grin1 or Gria1 in either DA transporter (DAT) or D1R-expressing neurons. We first demonstrate the lack of GluN1 or GluA1 in either DAT- or D1R-expressing neurons in our mutant mouse lines by colocalization studies. We then show that GluN1 and GluA1 receptor subunits within these neuronal subpopulations mediate the alcohol deprivation effect, while having no impact on context- plus cue-induced reinstatement of alcohol-seeking behavior. We further validated these results pharmacologically by demonstrating similar reductions in the alcohol deprivation effect after infusion of the NMDAR antagonist memantine into the nucleus accumbens and ventral tegmental area of control mice, and a rescue of the mutant phenotype via pharmacological potentiation of AMPAR activity using aniracetam. In conclusion, dopamine neurons as well as D1R-expressing medium spiny neurons and their glutamatergic inputs via NMDARs and AMPARs act in concert to influence relapse responses. These results provide a neuroanatomical and molecular substrate for relapse behavior and emphasize the importance of glutamatergic drugs in modulating relapse behavior. Here we provide genetic and pharmacological evidence that glutamate receptors within the mesolimbic dopamine system play an essential role in alcohol relapse. Using various inducible and site-specific transgenic mouse models and pharmacological validation experiments, we show that critical

  2. Killing of intracellular Mycobacterium tuberculosis by receptor-mediated drug delivery

    International Nuclear Information System (INIS)

    Majumdar, S.; Basu, S.K.

    1991-01-01

    p-Aminosalicylic acid (PAS) conjugated to maleylated bovine serum albumin (MBSA) was taken up efficiently through high-affinity MBSA-binding sites on macrophages. Binding of the radiolabeled conjugate to cultured mouse peritoneal macrophages at 4 degrees C was competed for by MBSA but not by PAS. At 37 degrees C, the radiolabeled conjugate was rapidly degraded by the macrophages, leading to release of acid-soluble degradation products in the medium. The drug conjugate was nearly 100 times as effective as free PAS in killing the intracellular mycobacteria in mouse peritoneal macrophages infected in culture with Mycobacterium tuberculosis. The killing of intracellular mycobacteria mediated by the drug conjugate was effectively prevented by simultaneous addition of excess MBSA (100 micrograms/ml) or chloroquine (3 microM) to the medium, whereas these agents did not affect the microbicidal action of free PAS. These results suggest that (i) uptake of the PAS-MBSA conjugate was mediated by cell surface receptors on macrophages which recognize MBSA and (ii) lysosomal hydrolysis of the internalized conjugate resulted in intracellular release of a pharmacologically active form of the drug, which led to selective killing of the M. tuberculosis harbored by mouse macrophages infected in culture. This receptor-mediated modality of delivering drugs to macrophages could contribute to greater therapeutic efficacy and minimization of toxic side effects in the management of tuberculosis and other intracellular mycobacterial infections

  3. Influence of ER leak on resting cytoplasmic Ca2+ and receptor-mediated Ca2+ signalling in human macrophage.

    Science.gov (United States)

    Layhadi, Janice A; Fountain, Samuel J

    2017-06-03

    Mechanisms controlling endoplasmic reticulum (ER) Ca 2+ homeostasis are important regulators of resting cytoplasmic Ca 2+ concentration ([Ca 2+ ] cyto ) and receptor-mediated Ca 2+ signalling. Here we investigate channels responsible for ER Ca 2+ leak in THP-1 macrophage and human primary macrophage. In the absence of extracellular Ca 2+ we employ ionomycin action at the plasma membrane to stimulate ER Ca 2+ leak. Under these conditions ionomycin elevates [Ca 2+ ] cyto revealing a Ca 2+ leak response which is abolished by thapsigargin. IP 3 receptors (Xestospongin C, 2-APB), ryanodine receptors (dantrolene), and translocon (anisomycin) inhibition facilitated ER Ca 2+ leak in model macrophage, with translocon inhibition also reducing resting [Ca 2+ ] cyto . In primary macrophage, translocon inhibition blocks Ca 2+ leak but does not influence resting [Ca 2+ ] cyto . We identify a role for translocon-mediated ER Ca 2+ leak in receptor-mediated Ca 2+ signalling in both model and primary human macrophage, whereby the Ca 2+ response to ADP (P2Y receptor agonist) is augmented following anisomycin treatment. In conclusion, we demonstrate a role of ER Ca 2+ leak via the translocon in controlling resting cytoplasmic Ca 2+ in model macrophage and receptor-mediated Ca 2+ signalling in model macrophage and primary macrophage. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Prostaglandin E2 potentiation of P2X3 receptor mediated currents in dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Huang Li-Yen

    2007-08-01

    Full Text Available Abstract Prostaglandin E2 (PGE2 is a well-known inflammatory mediator that enhances the excitability of DRG neurons. Homomeric P2X3 and heteromeric P2X2/3 receptors are abundantly expressed in dorsal root ganglia (DRG neurons and participate in the transmission of nociceptive signals. The interaction between PGE2 and P2X3 receptors has not been well delineated. We studied the actions of PGE2 on ATP-activated currents in dissociated DRG neurons under voltage-clamp conditions. PGE2 had no effects on P2X2/3 receptor-mediated responses, but significantly potentiated fast-inactivating ATP currents mediated by homomeric P2X3 receptors. PGE2 exerted its action by activating EP3 receptors. To study the mechanism underlying the action of PGE2, we found that the adenylyl cyclase activator, forskolin and the membrane-permeable cAMP analogue, 8-Br-cAMP increased ATP currents, mimicking the effect of PGE2. In addition, forskolin occluded the enhancement produced by PGE2. The protein kinase A (PKA inhibitors, H89 and PKA-I blocked the PGE2 effect. In contrast, the PKC inhibitor, bisindolymaleimide (Bis did not change the potentiating action of PGE2. We further showed that PGE2 enhanced α,β-meATP-induced allodynia and hyperalgesia and the enhancement was blocked by H89. These observations suggest that PGE2 binds to EP3 receptors, resulting in the activation of cAMP/PKA signaling pathway and leading to an enhancement of P2X3 homomeric receptor-mediated ATP responses in DRG neurons.

  5. Regulated internalization of NMDA receptors drives PKD1-mediated suppression of the activity of residual cell-surface NMDA receptors.

    Science.gov (United States)

    Fang, Xiao-Qian; Qiao, Haifa; Groveman, Bradley R; Feng, Shuang; Pflueger, Melissa; Xin, Wen-Kuan; Ali, Mohammad K; Lin, Shuang-Xiu; Xu, Jindong; Duclot, Florian; Kabbaj, Mohamed; Wang, Wei; Ding, Xin-Sheng; Santiago-Sim, Teresa; Jiang, Xing-Hong; Salter, Michael W; Yu, Xian-Min

    2015-11-19

    Constitutive and regulated internalization of cell surface proteins has been extensively investigated. The regulated internalization has been characterized as a principal mechanism for removing cell-surface receptors from the plasma membrane, and signaling to downstream targets of receptors. However, so far it is still not known whether the functional properties of remaining (non-internalized) receptor/channels may be regulated by internalization of the same class of receptor/channels. The N-methyl-D-aspartate receptor (NMDAR) is a principal subtype of glutamate-gated ion channel and plays key roles in neuronal plasticity and memory functions. NMDARs are well-known to undergo two types of regulated internalization - homologous and heterologous, which can be induced by high NMDA/glycine and DHPG, respectively. In the present work, we investigated effects of regulated NMDAR internalization on the activity of residual cell-surface NMDARs and neuronal functions. In electrophysiological experiments we discovered that the regulated internalization of NMDARs not only reduced the number of cell surface NMDARs but also caused an inhibition of the activity of remaining (non-internalized) surface NMDARs. In biochemical experiments we identified that this functional inhibition of remaining surface NMDARs was mediated by increased serine phosphorylation of surface NMDARs, resulting from the activation of protein kinase D1 (PKD1). Knockdown of PKD1 did not affect NMDAR internalization but prevented the phosphorylation and inhibition of remaining surface NMDARs and NMDAR-mediated synaptic functions. These data demonstrate a novel concept that regulated internalization of cell surface NMDARs not only reduces the number of NMDARs on the cell surface but also causes an inhibition of the activity of remaining surface NMDARs through intracellular signaling pathway(s). Furthermore, modulating the activity of remaining surface receptors may be an effective approach for treating receptor

  6. Glucocorticoid receptor, but not mineralocorticoid receptor, mediates cortisol regulation of epidermal ionocyte development and ion transport in zebrafish (danio rerio.

    Directory of Open Access Journals (Sweden)

    Shelly Abad Cruz

    Full Text Available Cortisol is the major endogenous glucocorticoid (GC both in human and fish, mediated by corticosteroid receptors. Due to the absence of aldosterone production in teleost fish, cortisol is also traditionally accepted to function as mineralocorticoid (MC; but whether it acts through the glucocorticoid receptor (GR or the mineralocorticoid receptor (MR remains a subject of debate. Here, we used loss-of-function and rescue assays to determine whether cortisol affects zebrafish epidermal ionocyte development and function via the GR and/or the MR. GR knockdown morphants displayed a significant decrease in the major ionocytes, namely Na(+-K(+-ATPase-rich cells (NaRCs and H(+-ATPase-rich cells (HRCs, as well as other cells, including epidermal stem cells (ESCs, keratinocytes, and mucus cells; conversely, cell numbers were unaffected in MR knockdown morphants. In agreement, GR morphants, but not MR morphants, exhibited decreased NaRC-mediated Ca(2+ uptake and HRC-mediated H(+ secretion. Rescue via GR capped mRNA injection or exogenous cortisol incubation normalized the number of epidermal ionocytes in GR morphants. We also provide evidence for GR localization in epidermal cells. At the transcript level, GR mRNA is ubiquitously expressed in gill sections and present in both NaRCs and HRCs, supporting the knockdown and functional assay results in embryo. Altogether, we have provided solid molecular evidence that GR is indeed present on ionocytes, where it mediates the effects of cortisol on ionocyte development and function. Hence, cortisol-GR axis performs the roles of both GC and MC in zebrafish skin and gills.

  7. Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/Endo180, cooperate in fibroblast-mediated collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H; Engelholm, Lars H; Ingvarsen, Signe

    2007-01-01

    in these events. A recently discovered turnover route with importance for tumor growth involves intracellular collagen degradation and is governed by the collagen receptor, urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180). The interplay between this mechanism and extracellular...... collagenolysis is not known. In this report, we demonstrate the existence of a new, composite collagen breakdown pathway. Thus, fibroblast-mediated collagen degradation proceeds preferentially as a sequential mechanism in which extracellular collagenolysis is followed by uPARAP/Endo180-mediated endocytosis......The collagens of the extracellular matrix are the most abundant structural proteins in the mammalian body. In tissue remodeling and in the invasive growth of malignant tumors, collagens constitute an important barrier, and consequently, the turnover of collagen is a rate-limiting process...

  8. Receptor-mediated targeting of 67Ga-Deferoxamine-Folate to folate-receptor-positive human kb tumor xenografts

    International Nuclear Information System (INIS)

    Mathias, Carla J.; Wang, Susan; Low, Philip S.; Waters, David J.; Green, Mark A.

    1999-01-01

    The radiochemical synthesis and stability of 67 Ga-deferoxamine-folate ([ 67 Ga]Ga-DF-Folate) were examined as a function of DF-Folate concentration. Optimal labeling occurred at DF-Folate concentrations ≥2.5 μg/mL. To define the possible biological significance of variations in product formulation, the biodistribution of [ 67 Ga]Ga-DF-Folate was examined as a function of administered deferoxamine-folate dose in an athymic mouse KB tumor model. The folate-receptor-positive KB tumors were found to concentrate the 67 Ga radiolabel in a dose-dependent fashion, consistent with saturable involvement of the folate receptor in mediating tumor accumulation of the radiopharmaceutical

  9. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    Science.gov (United States)

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  10. Receptor-Mediated Drug Delivery to Macrophages in Chemotherapy of Leishmaniasis

    Science.gov (United States)

    Mukhopadhyay, Amitabha; Chaudhuri, Gautam; Arora, Sunil K.; Sehgal, Shobha; Basu, Sandip K.

    1989-05-01

    Methotrexate coupled to maleylated bovine serum albumin was taken up efficiently through the ``scavenger'' receptors present on macrophages and led to selective killing of intracellular Leishmania mexicana amazonensis amastigotes in cultured hamster peritoneal macrophages. The drug conjugate was nearly 100 times as effective as free methotrexate in eliminating the intracellular parasites. Furthermore, in a model of experimental cutaneous leishmaniasis in hamsters, the drug conjugate brought about more than 90% reduction in the size of footpad lesions within 11 days. In contrast, the free drug at a similar concentration did not significantly affect lesion size. These studies demonstrate the potential of receptor-mediated drug delivery in the therapy of macrophage-associated diseases.

  11. Role of the hinge region of glucocorticoid receptor for HEXIM1-mediated transcriptional repression

    International Nuclear Information System (INIS)

    Yoshikawa, Noritada; Shimizu, Noriaki; Sano, Motoaki; Ohnuma, Kei; Iwata, Satoshi; Hosono, Osamu; Fukuda, Keiichi; Morimoto, Chikao

    2008-01-01

    We previously reported that HEXIM1 (hexamethylene bisacetamide-inducible protein 1), which suppresses transcription elongation via sequestration of positive transcription elongation factor b (P-TEFb) using 7SK RNA as a scaffold, directly associates with glucocorticoid receptor (GR) to suppress glucocorticoid-inducible gene activation. Here, we revealed that the hinge region of GR is essential for its interaction with HEXIM1, and that oxosteroid receptors including GR show sequence homology in their hinge region and interact with HEXIM1, whereas the other members of nuclear receptors do not. We also showed that HEXIM1 suppresses GR-mediated transcription in two ways: sequestration of P-TEFb by HEXIM1 and direct interaction between GR and HEXIM1. In contrast, peroxisome proliferator-activated receptor γ-dependent gene expression is negatively modulated by HEXIM1 solely via sequestration of P-TEFb. We, therefore, conclude that HEXIM1 may act as a gene-selective transcriptional regulator via direct interaction with certain transcriptional regulators including GR and contribute to fine-tuning of, for example, glucocorticoid-mediated biological responses

  12. Endoglin-mediated suppression of prostate cancer invasion is regulated by activin and bone morphogenetic protein type II receptors.

    Directory of Open Access Journals (Sweden)

    Michael J Breen

    Full Text Available Mortality from prostate cancer (PCa is due to the formation of metastatic disease. Understanding how that process is regulated is therefore critical. We previously demonstrated that endoglin, a type III transforming growth factor β (TGFβ superfamily receptor, suppresses human PCa cell invasion and metastasis. Endoglin-mediated suppression of invasion was also shown by us to be dependent upon the type I TGFβ receptor, activin receptor-like kinase 2 (ALK2, and the downstream effector, Smad1. In this study we demonstrate for the first time that two type II TGFβ receptors are required for endoglin-mediated suppression of invasion: activin A receptor type IIA (ActRIIA and bone morphogenetic protein receptor type II (BMPRII. Downstream signaling through these receptors is predominantly mediated by Smad1. ActRIIA stimulates Smad1 activation in a kinase-dependent manner, and this is required for suppression of invasion. In contrast BMPRII regulates Smad1 in a biphasic manner, promoting Smad1 signaling through its kinase domain but suppressing it through its cytoplasmic tail. BMPRII's Smad1-regulatory effects are dependent upon its expression level. Further, its ability to suppress invasion is independent of either kinase function or tail domain. We demonstrate that ActRIIA and BMPRII physically interact, and that each also interacts with endoglin. The current findings demonstrate that both BMPRII and ActRIIA are necessary for endoglin-mediated suppression of human PCa cell invasion, that they have differential effects on Smad1 signaling, that they make separate contributions to regulation of invasion, and that they functionally and physically interact.

  13. Effects of sarcosine and N, N-dimethylglycine on NMDA receptor-mediated excitatory field potentials.

    Science.gov (United States)

    Lee, Mei-Yi; Lin, Yi-Ruu; Tu, Yi-Shu; Tseng, Yufeng Jane; Chan, Ming-Huan; Chen, Hwei-Hsien

    2017-02-28

    Sarcosine, a glycine transporter type 1 inhibitor and an N-methyl-D-aspartate (NMDA) receptor co-agonist at the glycine binding site, potentiates NMDA receptor function. Structurally similar to sarcosine, N,N-dimethylglycine (DMG) is also N-methyl glycine-derivative amino acid and commonly used as a dietary supplement. The present study compared the effects of sarcosine and DMG on NMDA receptor-mediated excitatory field potentials (EFPs) in mouse medial prefrontal cortex brain slices using a multi-electrode array system. Glycine, sarcosine and DMG alone did not alter the NMDA receptor-mediated EFPs, but in combination with glutamate, glycine and its N-methyl derivatives significantly increased the frequency and amplitude of EFPs. The enhancing effects of glycine analogs in combination with glutamate on EFPs were remarkably reduced by the glycine binding site antagonist 7-chlorokynurenate (7-CK). However, DMG, but not sarcosine, reduced the frequency and amplitude of EFPs elicited by co-application of glutamate plus glycine. D-cycloserine, a partial agonist at the glycine binding site on NMDA receptors, affected EFPs in a similar manner to DMG. Furthermore, DMG, but not sarcosine, reduced the frequencies and amplitudes of EFPs elicited by glutamate plus D-serine, another endogenous ligand for glycine binding site. These findings suggest that sarcosine acts as a full agonist, yet DMG is a partial agonist at glycine binding site of NMDA receptors. The molecular docking analysis indicated that the interactions of glycine, sarcosine, and DMG to NMDA receptors are highly similar, supporting that the glycine binding site of NMDA receptors is a critical target site for sarcosine and DMG.

  14. Phenomena as mediators in science education and mathematics in the Educação do Campo (Education for and by the countryside

    Directory of Open Access Journals (Sweden)

    Marcelo Gules Borges

    2017-12-01

    Full Text Available From the study of the phenomena, we present in this article the possibilities of its uses in the Educação do Campo (Education for and by the countryside as a concept that articulates Natural Sciences and Mathematics, materiality and, reality. From an experience in the Educação do Campo course at the Federal University of Santa Catarina, we analyze the strategies adopted and the paths followed in the studies of concepts from the natural sciences and mathematics in the delimitation of the natural dimension of phenomena in the life context of the undergraduate’s students. Based on this experience and inspired by phenomenology, we discuss the role and potential of phenomena as mediator and organizer of the knowledge coproduced with the world.

  15. Mannose Receptor Mediates the Immune Response to Ganoderma atrum Polysaccharides in Macrophages.

    Science.gov (United States)

    Li, Wen-Juan; Tang, Xiao-Fang; Shuai, Xiao-Xue; Jiang, Cheng-Jia; Liu, Xiang; Wang, Le-Feng; Yao, Yu-Fei; Nie, Shao-Ping; Xie, Ming-Yong

    2017-01-18

    The ability of mannose receptor (MR) to recognize the carbohydrate structures is well-established. Here, we reported that MR was crucial for the immune response to a Ganoderma atrum polysaccharide (PSG-1), as evidenced by elevation of MR in association with increase of phagocytosis and concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in normal macrophages. Elevation of MR triggered by PSG-1 also led to control lipopolysaccharide (LPS)-triggered inflammatory response via the increase of interleukin-10 (IL-10) and inhibition of phagocytosis and IL-1β. Anti-MR antibody partly attenuated PSG-1-mediated anti-inflammatory responses, while it could not affect TNF-α secretion, suggesting that another receptor was involved in PSG-1-triggered immunomodulatory effects. MR and toll-like receptor (TLR)4 coordinated the influences on the TLR4-mediated signaling cascade by the nuclear factor-κB (NF-κB) pathway in LPS-stimulated macrophages subjected to PSG-1. Collectively, immune response to PSG-1 required recognition by MR in macrophages. The NF-κB pathway served as a central role for the coordination of MR and TLR4 to elicit immune response to PSG-1.

  16. Estrogen receptormediates the detrimental effects of neonatal diethylstilbestrol (DES) exposure in the murine reproductive tract

    International Nuclear Information System (INIS)

    Couse, John F.; Korach, Kenneth S.

    2004-01-01

    It is generally believed that estrogen receptor-dependent and -independent pathways are involved in mediating the developmental effects of the synthetic estrogen, diethylstilbestrol (DES). However, the precise role and extent to which each pathway contributes to the resulting pathologies remains unknown. We have employed the estrogen receptor knockout (ERKO) mice, which lack either estrogen receptor-α (αERKO or estrogen receptor-β (βERKO), to gain insight into the contribution of each ER-dependent pathway in mediating the effects of neonatal DES exposure in the female and male reproductive tract tissues of the mouse. Estrogen receptor-α female mice exhibited complete resistance to the chronic effects of neonatal DES exposure that were obvious in exposed wild-type animals, including atrophy and epithelial squamous metaplasia in the uterus; proliferative lesions of the oviduct; and persistent cornification of the vaginal epithelium. DES-mediated reduction in uterine Hoxa10, Hoxa11 and Wnt7a expression that occurs wild-type females during the time of exposure was also absent in αERKO females. In the male, αERKO mice exhibited complete resistance to the chronic effects of neonatal DES exposure on the prostate, including decreased androgen receptor levels, epithelial hyperplasia, and increased basal cell proliferation. Although ERβ is highly expressed in the prostate epithelium, DES-exposed βERKO males exhibited all of the effects of neonatal DES exposure that were observed in similarly exposed wild-type males. Therefore, the lack of DES-effects on gene expression and tissue differentiation in the αERKO uterus and prostate provides unequivocal evidence of an obligatory role for ERα in mediating the detrimental actions of neonatal DES exposure in the murine reproductive tract

  17. NMDA Receptor-Dependent Synaptic Activity in Dorsal Motor Nucleus of Vagus Mediates the Enhancement of Gastric Motility by Stimulating ST36

    Directory of Open Access Journals (Sweden)

    Xinyan Gao

    2012-01-01

    Full Text Available Previous studies have demonstrated the efficacy of electroacupuncture at ST36 for patients with gastrointestinal motility disorders. While several lines of evidence suggest that the effect may involve vagal reflex, the precise molecular mechanism underlying this process still remains unclear. Here we report that the intragastric pressure increase induced by low frequency electric stimulation at ST36 was blocked by AP-5, an antagonist of N-methyl-D-aspartate receptors (NMDARs. Indeed, stimulating ST36 enhanced NMDAR-mediated, but not 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-ylpropanoic-acid-(AMPA- receptor-(AMPAR- mediated synaptic transmission in gastric-projecting neurons of the dorsal motor nucleus of the vagus (DMV. We also identified that suppression of presynaptic μ-opioid receptors may contribute to upregulation of NMDAR-mediated synaptic transmission induced by electroacupuncture at ST36. Furthermore, we determined that the glutamate-receptor-2a-(NR2A- containing NMDARs are essential for NMDAR-mediated enhancement of gastric motility caused by stimulating ST36. Taken together, our results reveal an important role of NMDA receptors in mediating enhancement of gastric motility induced by stimulating ST36.

  18. Platelet alpha-2 adrenergic receptor-mediated phosphoinositide responses in endogenous depression

    International Nuclear Information System (INIS)

    Mori, Hideki; Koyama, Tsukasa; Yamashita, Itaru

    1991-01-01

    We have previously indicated that epinephrine stimulates phosphoinositide (PI) hydrolysis by activating alpha-2 adrenergic receptors in human platelets. This method involves the measurement of the accumulation of [ 3 H]-inositol-1-phosphate (IP-1) as an index of Pl hydrolysis; lithium is added to inhibit the metabolism of IP-1, thus giving an enhanced signal. In the present study, we assessed the platelet alpha-2 adrenergic receptor-mediated PI responses in samples from 15 unmedicated patients with endogenous depression and 15 age- and sex-matched control subjects. The responses to epinephrine in the depressed patients were significantly higher than those of the controls, whereas the basal values did not differ significantly. These results support the hypothesis that platelet alpha-2 adrenergic receptors may be supersensitive in patients with endogenous depression

  19. The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development

    Science.gov (United States)

    Reissmann, Eva; Jörnvall, Henrik; Blokzijl, Andries; Andersson, Olov; Chang, Chenbei; Minchiotti, Gabriella; Persico, M. Graziella; Ibáñez, Carlos F.; Brivanlou, Ali H.

    2001-01-01

    Nodal proteins have crucial roles in mesendoderm formation and left–right patterning during vertebrate development. The molecular mechanisms of signal transduction by Nodal and related ligands, however, are not fully understood. In this paper, we present biochemical and functional evidence that the orphan type I serine/threonine kinase receptor ALK7 acts as a receptor for mouse Nodal and Xenopus Nodal-related 1 (Xnr1). Receptor reconstitution experiments indicate that ALK7 collaborates with ActRIIB to confer responsiveness to Xnr1 and Nodal. Both receptors can independently bind Xnr1. In addition, Cripto, an extracellular protein genetically implicated in Nodal signaling, can independently interact with both Xnr1 and ALK7, and its expression greatly enhances the ability of ALK7 and ActRIIB to respond to Nodal ligands. The Activin receptor ALK4 is also able to mediate Nodal signaling but only in the presence of Cripto, with which it can also interact directly. A constitutively activated form of ALK7 mimics the mesendoderm-inducing activity of Xnr1 in Xenopus embryos, whereas a dominant-negative ALK7 specifically blocks the activities of Nodal and Xnr1 but has little effect on other related ligands. In contrast, a dominant-negative ALK4 blocks all mesoderm-inducing ligands tested, including Nodal, Xnr1, Xnr2, Xnr4, and Activin. In agreement with a role in Nodal signaling, ALK7 mRNA is localized to the ectodermal and organizer regions of Xenopus gastrula embryos and is expressed during early stages of mouse embryonic development. Therefore, our results indicate that both ALK4 and ALK7 can mediate signal transduction by Nodal proteins, although ALK7 appears to be a receptor more specifically dedicated to Nodal signaling. PMID:11485994

  20. VMAT2-mediated neurotransmission from midbrain leptin receptor neurons in feeding regulation

    Science.gov (United States)

    Leptin receptors (LepRs) expressed in the midbrain contribute to the action of leptin on feeding regulation. The midbrain neurons release a variety of neurotransmitters including dopamine (DA), glutamate and GABA. However, which neurotransmitter mediates midbrain leptin action on feeding remains unc...

  1. Cerebellar Kainate Receptor-Mediated Facilitation of Glutamate Release Requires Ca2+-Calmodulin and PKA

    Directory of Open Access Journals (Sweden)

    Rafael Falcón-Moya

    2018-06-01

    Full Text Available We elucidated the mechanisms underlying the kainate receptor (KAR-mediated facilitatory modulation of synaptic transmission in the cerebellum. In cerebellar slices, KA (3 μM increased the amplitude of evoked excitatory postsynaptic currents (eEPSCs at synapses between axon terminals of parallel fibers (PF and Purkinje neurons. KA-mediated facilitation was antagonized by NBQX under condition where AMPA receptors were previously antagonized. Inhibition of protein kinase A (PKA suppressed the effect of KA on glutamate release, which was also obviated by the prior stimulation of adenylyl cyclase (AC. KAR-mediated facilitation of synaptic transmission was prevented by blocking Ca2+ permeant KARs using philanthotoxin. Furthermore, depletion of intracellular Ca2+ stores by thapsigargin, or inhibition of Ca2+-induced Ca2+-release by ryanodine, abrogated the synaptic facilitation by KA. Thus, the KA-mediated modulation was conditional on extracellular Ca2+ entry through Ca2+-permeable KARs, as well as and mobilization of Ca2+ from intracellular stores. Finally, KAR-mediated facilitation was sensitive to calmodulin inhibitors, W-7 and calmidazolium, indicating that the increased cytosolic [Ca2+] sustaining KAR-mediated facilitation of synaptic transmission operates through a downstream Ca2+/calmodulin coupling. We conclude that, at cerebellar parallel fiber-Purkinje cell synapses, presynaptic KARs mediate glutamate release facilitation, and thereby enhance synaptic transmission through Ca2+-calmodulin dependent activation of adenylyl cyclase/cAMP/protein kinase A signaling.

  2. Proteinase-activated receptors - mediators of early and delayed normal tissue radiation responses

    International Nuclear Information System (INIS)

    Hauer-Jensen, M.

    2003-01-01

    Proteinase-activated receptors (PARs) are G-protein coupled receptors that are activated by proteolytic exposure of a receptor-tethered ligand. The discovery of this receptor family represents one of the most intriguing recent developments in signal transduction. PARs are involved in the regulation of many normal and pathophysiological processes, notably inflammatory and fibroproliferative responses to injury. Preclinical studies performed in our laboratory suggest that proteinase-activated receptor-1 (PAR-1) plays a critical role in the mechanism of chronicity of radiation fibrosis, while proteinase-activated receptor-2 (PAR-2) may mediate important fibroproliferative responses in irradiated intestine. Specifically, activation of PAR-1 by thrombin, and PAR-2 by pancreatic trypsin and mast cell proteinases, appears to be involved in acute radiation-induced inflammation, as well as in subsequent extracellular matrix deposition, leading to the development of intestinal wall fibrosis and clinical complications. Pharmacological modulators of PAR-1 or PAR-2 expression or activation would be potentially useful as preventive or therapeutic agents in patients who receive radiation therapy, especially if blockade could be targeted to specific tissues or cellular compartments

  3. Mediator and p300/CBP-Steroid Receptor Coactivator Complexes Have Distinct Roles, but Function Synergistically, during Estrogen Receptor α-Dependent Transcription with Chromatin Templates

    OpenAIRE

    Acevedo, Mari Luz; Kraus, W. Lee

    2003-01-01

    Ligand-dependent transcriptional activation by nuclear receptors involves the recruitment of various coactivators to the promoters of hormone-regulated genes assembled into chromatin. Nuclear receptor coactivators include histone acetyltransferase complexes, such as p300/CBP-steroid receptor coactivator (SRC), as well as the multisubunit mediator complexes (“Mediator”), which may help recruit RNA polymerase II to the promoter. We have used a biochemical approach, including an in vitro chromat...

  4. Understanding magnetic nanoparticle osteoblast receptor-mediated endocytosis using experiments and modeling

    International Nuclear Information System (INIS)

    Tran, Nhiem; Webster, Thomas J

    2013-01-01

    Iron oxide nanoparticles are promising candidates for controlling drug delivery through an external magnetic force to treat a wide range of diseases, including osteoporosis. Previous studies have demonstrated that in the presence of hydroxyapatite coated magnetite (Fe 3 O 4 ) nanoparticles, osteoblast (or bone forming cell) proliferation and long-term functions (such as calcium deposition) were significantly enhanced. Hydroxyapatite is the major inorganic component of bone. As a further attempt to understand why, in the current study, the uptake of such nanoparticles into osteoblasts was experimentally investigated and mathematically modeled. Magnetite nanoparticles were synthesized using a co-precipitation method and were coated with hydroxyapatite. A cellular uptake experiment at low temperatures indicated that receptor-mediated endocytosis contributed to the internalization of the magnetic nanoparticles into osteoblasts. A model was further developed to explain the uptake of magnetic nanoparticles into osteoblasts using receptor-mediated endocytosis. This model may explain the internalization of hydroxyapatite into osteoblasts to elevate intracellular calcium levels necessary to promote osteoblast functions to treat a wide range of orthopedic problems, including osteoporosis. (paper)

  5. RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA: a new antiviral pathway

    Directory of Open Access Journals (Sweden)

    Saurabh Chattopadhyay

    2016-11-01

    Full Text Available Abstract The innate immune response is the first line of host defense to eliminate viral infection. Pattern recognition receptors in the cytosol, such as RIG-I-like receptors (RLR and Nod-like receptors (NLR, and membrane bound Toll like receptors (TLR detect viral infection and initiate transcription of a cohort of antiviral genes, including interferon (IFN and interferon stimulated genes (ISGs, which ultimately block viral replication. Another mechanism to reduce viral spread is through RIPA, the RLR-induced IRF3-mediated pathway of apoptosis, which causes infected cells to undergo premature death. The transcription factor IRF3 can mediate cellular antiviral responses by both inducing antiviral genes and triggering apoptosis through the activation of RIPA. The mechanism of IRF3 activation in RIPA is distinct from that of transcriptional activation; it requires linear polyubiquitination of specific lysine residues of IRF3. Using RIPA-active, but transcriptionally inactive, IRF3 mutants, it was shown that RIPA can prevent viral replication and pathogenesis in mice.

  6. Role of Fyn-mediated NMDA receptor function in prediabetic neuropathy in mice

    Science.gov (United States)

    Suo, Meng; Wang, Ping

    2016-01-01

    Diabetic neuropathy is a common complication of diabetes. This study evaluated the role of Fyn kinase and N-methyl-d-aspartate receptors (NMDARs) in the spinal cord in diabetic neuropathy using an animal model of high-fat diet-induced prediabetes. We found that prediabetic wild-type mice exhibited tactile allodynia and thermal hypoalgesia after a 16-wk high-fat diet, relative to normal diet-fed wild-type mice. Furthermore, prediabetic wild-type mice exhibited increased tactile allodynia and thermal hypoalgesia at 24 wk relative to 16 wk. Such phenomena were correlated with increased expression and activation of NR2B subunit of NMDARs, as well as Fyn-NR2B interaction in the spinal cord. Fyn−/− mice developed prediabetes after 16-wk high-fat diet treatment and exhibited thermal hypoalgesia, without showing tactile allodynia or altered expression and activation of NR2B subunit, relative to normal diet-fed Fyn−/− mice. Finally, intrathecal administrations of Ro 25-6981 (selective NR2B subunit-containing NMDAR antagonist) dose-dependently alleviated tactile allodynia, but not thermal hypoalgesia, at 16 and 24 wk in prediabetic wild-type mice. Our results suggested that Fyn-mediated NR2B signaling plays a critical role in regulation of prediabetic neuropathy and that the increased expression/function of NR2B subunit-containing NMDARs may contribute to the progression of neuropathy in type 2 diabetes. PMID:27146985

  7. Basolateral P2X receptors mediate inhibition of NaCl transport in mouse medullary thick ascending limb (mTAL)

    DEFF Research Database (Denmark)

    Marques, Rita D; de Bruijn, Pauline I.A.; Sørensen, Mads Vaarby

    2012-01-01

    Extracellular nucleotides regulate epithelial transport via luminal and basolateral P2 receptors. Renal epithelia express multiple P2 receptors, which mediate significant inhibition of solute absorption. Recently, we identified several P2 receptors in the medullary thick ascending limb (m...

  8. Neuropeptide Y restores non-receptor-mediated vasoconstrictive action in superior mesenteric arteries in portal hypertension.

    Science.gov (United States)

    Hartl, Johannes; Dietrich, Peter; Moleda, Lukas; Müller-Schilling, Martina; Wiest, Reiner

    2015-12-01

    Vascular hyporeactivity to vasoconstrictors contributes to splanchnic arterial vasodilatation and hemodynamic dysregulation in portal hypertension. Neuropeptide Y (NPY), a sympathetic cotransmitter, has been shown to improve adrenergic vascular contractility in portal hypertensive rats and markedly attenuate hyperdynamic circulation. To further characterize the NPY-effects in portal hypertension, we investigated its role for non-receptor-mediated vasoconstriction in the superior mesenteric artery (SMA) of portal vein ligated (PVL) and sham-operated rats. Ex vivo SMA perfusion of PVL and sham rats was used to analyse the effects of NPY on pressure response to non-receptor-mediated vasoconstriction. Dose-response curves to KCl (30-300 mM) were used to bypass G protein-coupled receptor mechanisms. Potential involvement of the cyclooxygenase-pathway was tested by non-selective cyclooxygenase-inhibition using indomethacin. KCl-induced vascular contractility but not vascular sensitivity was significantly attenuated in PVL rats as compared with sham rats. Administration of NPY resulted in an augmentation of KCl-evoked vascular sensitivity being not different between study groups. However, KCl-induced vascular contractility was markedly more enhanced in PVL rats, thus, vascular response was no more significantly different between PVL and sham rats after addition of NPY. Administration of indomethacin abolished the NPY-induced enhancement of vasoconstriction. Receptor-independent vascular contractility is impaired in mesenteric arteries in portal hypertension. NPY improves non-receptor mediated mesenteric vasoconstriction more effective in portal hypertension than in healthy conditions correcting splanchnic vascular hyporesponsiveness. This beneficial vasoactive action of NPY adds to its well known more pronounced effects on adrenergic vasoconstriction in portal hypertension making it a promising therapeutic agent in portal hypertension. © 2015 John Wiley & Sons A

  9. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Junker, L.H.; Davis, R.A.

    1989-01-01

    The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of [14C]cholesterol from [2-14C]acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of [14C]cholesterol from [2-14C]acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis

  10. Phenobarbital but not diazepam reduces AMPA/Kainate receptor mediated currents and exerts opposite actions on initial seizures in the neonatal rat hippocampus

    Directory of Open Access Journals (Sweden)

    Romain eNardou

    2011-07-01

    Full Text Available Diazepam (DZP and phenobarbital (PB are extensively used as first and second line drugs to treat acute seizures in neonates and their actions are thought to be mediated by increasing the actions of GABAergic signals. Yet, their efficacy is variable with occasional failure or even aggravation of recurrent seizures questioning whether other mechanisms are not involved in their actions. We have now compared the effects of DZP and PB on ictal-like events (ILEs in an in vitro model of mirror focus (MF. Using the three-compartment chamber with the two immature hippocampi and their commissural fibers placed in 3 different compartments, kainate was applied to one hippocampus and PB or DZP to the contralateral one, either after one ILE or after many recurrent ILEs that produce an epileptogenic MF. We report that in contrast to PB, DZP aggravated propagating ILEs from the start and did not prevent the formation of MF. PB reduced and DZP increased the network driven Giant Depolarising Potentials suggesting that PB may exert additional actions that are not mediated by GABA signalling. In keeping with this, PB but not DZP reduced field potentials recorded in the presence of GABA and NMDA receptor antagonists. These effects are mediated by a direct action on AMPA/Kainate receptors since PB: i reduced AMPA/Kainate receptor mediated currents induced by focal applications of glutamate ; ii reduced the amplitude and the frequency of AMPA but not NMDA receptor mediated miniature EPSCs; iii augmented the number of AMPA receptor mediated EPSCs failures evoked by minimal stimulation. These effects persisted in MF. Therefore, PB exerts its anticonvulsive actions partly by reducing AMPA/Kainate receptors mediated EPSCs in addition to the pro-GABA effects. We suggest that PB may have advantage over DZP in the treatment of initial neonatal seizures since the additional reduction of glutamate receptors mediated signals may reduce the severity of neonatal seizures.

  11. ARF6 and GASP-1 are post-endocytic sorting proteins selectively involved in the intracellular trafficking of dopamine D2 receptors mediated by GRK and PKC in transfected cells

    Science.gov (United States)

    Cho, DI; Zheng, M; Min, C; Kwon, KJ; Shin, CY; Choi, HK; Kim, KM

    2013-01-01

    Background and Purpose GPCRs undergo both homologous and heterologous regulatory processes in which receptor phosphorylation plays a critical role. The protein kinases responsible for each pathway are well established; however, other molecular details that characterize each pathway remain unclear. In this study, the molecular mechanisms that determine the differences in the functional roles and intracellular trafficking between homologous and PKC-mediated heterologous internalization pathways for the dopamine D2 receptor were investigated. Experimental Approach All of the S/T residues located within the intracellular loops of D2 receptor were mutated, and the residues responsible for GRK- and PKC-mediated internalization were determined in HEK-293 cells and SH-SY5Y cells. The functional role of receptor internalization and the cellular components that determine the post-endocytic fate of internalized D2 receptors were investigated in the transfected cells. Key Results T134, T225/S228/S229 and S325 were involved in PKC-mediated D2 receptor desensitization. S229 and adjacent S/T residues mediated the PKC-dependent internalization of D2 receptors, which induced down-regulation and desensitization. S/T residues within the second intracellular loop and T225 were the major residues involved in GRK-mediated internalization of D2 receptors, which induced receptor resensitization. ARF6 mediated the recycling of D2 receptors internalized in response to agonist stimulation. In contrast, GASP-1 mediated the down-regulation of D2 receptors internalized in a PKC-dependent manner. Conclusions and Implications GRK- and PKC-mediated internalizations of D2 receptors occur through different intracellular trafficking pathways and mediate distinct functional roles. Distinct S/T residues within D2 receptors and different sorting proteins are involved in the dissimilar regulation of D2 receptors by GRK2 and PKC. PMID:23082996

  12. The Influence of Receptor-Mediated Interactions on Reaction-Diffusion Mechanisms of Cellular Self-organisation

    KAUST Repository

    Klika, Vá clav; Baker, Ruth E.; Headon, Denis; Gaffney, Eamonn A.

    2011-01-01

    formation, motivating numerous theoretical and experimental studies, though its verification at the molecular level in biological systems has remained elusive. In this work, we consider the influence of receptor-mediated dynamics within the framework

  13. Receptor-independent, vacuolar ATPase-mediated cellular uptake of histamine receptor-1 ligands: Possible origin of pharmacological distortions and side effects

    International Nuclear Information System (INIS)

    Morissette, Guillaume; Lodge, Robert; Bouthillier, Johanne; Marceau, Francois

    2008-01-01

    The aims of this study were to investigate whether several histamine receptor agonists and antagonists are subjected to receptor-independent ion trapping into acidic organelles, and whether this sequestration influences their pharmacological or toxicological properties. Vacuolar (V)-ATPase-dependent intracellular sequestration of agonists was recognized as morphological alterations (large fluid-filled vacuoles for betahistine and 1-methylhistamine, granular uptake for fluorescent BODIPY FL histamine) prevented by the specific V-ATPase inhibitor bafilomycin A1 in rabbit vascular smooth muscle cells. Lipophilicity was the major determinant of these cellular effects (order of potency: BODIPY FL histamine > betahistine > 1-methylhistamine > histamine) that occurred at high concentrations. This ranking was dissociable from the potency order for H 1 receptor-mediated contraction of the rabbit aorta, a response uninfluenced by bafilomycin. Antihistamines are inherently more lipophilic and caused vacuolization of a proportion of cells at 5-500 μM. Agonist or antagonist-induced vacuoles were of macroautophagic nature (labeled with GFP-conjugated LC3, Rab7 and CD63; detection of LC3 II). Further, the 2 most lipophilic antihistamines tested, astemizole and terfenadine, were potentiated by V-ATPase blockade in the aortic contractility assay (13- and 3.6-fold more potent, respectively, pA 2 scale), suggesting that V-ATPase-mediated cation trapping sequesters these antagonists from the vicinity of H 1 receptors in the therapeutic concentration range. This potentiation did not apply to less lipophilic antagonists (pyrilamine, diphenhydramine). While some agonists and all tested antagonists of the histamine H 1 receptors induce the V-ATPase-dependent vacuolar and autophagic cytopathology, sequestration affects the pharmacology of only the most lipophilic antagonists, the ones prone to off-target arrhythmogenic side effects

  14. Characterization of GABA/sub A/ receptor-mediated 36chloride uptake in rat brain synaptoneurosomes

    International Nuclear Information System (INIS)

    Luu, M.D.; Morrow, A.L.; Paul, S.M.; Schwartz, R.D.

    1987-01-01

    γ-Aminobutyric acid (GABA) receptor-mediated 36 chloride ( 36 Cl - ) uptake was measured in synaptoneurosomes from rat brain. GABA and GABA agonists stimulated 36 Cl - uptake in a concentration-dependent manner with the following order of potency: Muscimol>GABA>piperidine-4-sulfonic acid (P4S)>4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridin-3-ol (THIP)=3-aminopropanesulfonic acid (3APS)>>taurine. Both P4S and 3APS behaved as partial agonists, while the GABA/sub B/ agonist, baclofen, was ineffective. The response to muscimol was inhibited by bicuculline and picrotoxin in a mixed competitive/non-competitive manner. Other inhibitors of GABA receptor-opened channels or non-neuronal anion channels such as penicillin, picrate, furosemide and disulfonic acid stilbenes also inhibited the response to muscimol. A regional variation in muscimol-stimulated 36 Cl - uptake was observed; the largest responses were observed in the cerebral cortex, cerebellum and hippocampus, moderate responses were obtained in the striatum and hypothalamus and the smallest response was observed in the pons-medulla. GABA receptor-mediated 36 Cl - uptake was also dependent on the anion present in the media. The muscinol response varied in media containing the following anions: Br - >Cl - ≥NO 3 - >I - ≥SCN - >>C 3 H 5 OO - ≥ClO 4 - >F - , consistent with the relative anion permeability through GABA receptor-gated anion channels and the enhancement of convulsant binding to the GABA receptor-gated Cl - channel. 43 references, 4 figures, 3 tables

  15. Dopamine D2 receptors mediate two-odor discrimination and reversal learning in C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Grandy David K

    2004-04-01

    Full Text Available Abstract Background Dopamine modulation of neuronal signaling in the frontal cortex, midbrain, and striatum is essential for processing and integrating diverse external sensory stimuli and attaching salience to environmental cues that signal causal relationships, thereby guiding goal-directed, adaptable behaviors. At the cellular level, dopamine signaling is mediated through D1-like or D2-like receptors. Although a role for D1-like receptors in a variety of goal-directed behaviors has been identified, an explicit involvement of D2 receptors has not been clearly established. To determine whether dopamine D2 receptor-mediated signaling contributes to associative and reversal learning, we compared C57Bl/6J mice that completely lack functional dopamine D2 receptors to wild-type mice with respect to their ability to attach appropriate salience to external stimuli (stimulus discrimination and disengage from inappropriate behavioral strategies when reinforcement contingencies change (e.g. reversal learning. Results Mildly food-deprived female wild-type and dopamine D2 receptor deficient mice rapidly learned to retrieve and consume visible food reinforcers from a small plastic dish. Furthermore, both genotypes readily learned to dig through the same dish filled with sterile sand in order to locate a buried food pellet. However, the dopamine D2 receptor deficient mice required significantly more trials than wild-type mice to discriminate between two dishes, each filled with a different scented sand, and to associate one of the two odors with the presence of a reinforcer (food. In addition, the dopamine D2 receptor deficient mice repeatedly fail to alter their response patterns during reversal trials where the reinforcement rules were inverted. Conclusions Inbred C57Bl/6J mice that develop in the complete absence of functional dopamine D2 receptors are capable of olfaction but display an impaired ability to acquire odor-driven reinforcement contingencies

  16. The brain cytoplasmic RNA BC1 regulates dopamine D-2 receptor-mediated transmission in the striatum

    OpenAIRE

    Centonze, Diego; Rossi, Silvia; Napoli, Ilaria; Mercaldo, Valentina; Lacoux, Caroline; Ferrari, Francesca; Ciotti, Maria Teresa; De Chiara, Valentina; Prosperetti, Chiara; Maccarrone, Mauro; Fezza, Filomena; Calabresi, Paolo; Bernardi, Giorgio; Bagni, Claudia

    2007-01-01

    Dopamine D-2 receptor (D2DR)-mediated transmission in the striatum is remarkably flexible, and changes in its efficacy have been heavily implicated in a variety of physiological and pathological conditions. Although receptor-associated proteins are clearly involved in specific forms of synaptic plasticity, the molecular mechanisms regulating the sensitivity of D-2 receptors in this brain area are essentially obscure. We have studied the physiological responses of the D2DR stimulations in mice...

  17. Glutamate mediates the function of melanocortin receptor 4 on sim1 neurons in body weight regulation

    Science.gov (United States)

    The melanocortin receptor 4 (MC4R) is a well-established mediator of body weight homeostasis. However, the neurotransmitter(s) that mediate MC4R function remain largely unknown; as a result, little is known about the second-order neurons of the MC4R neural pathway. Single-minded 1 (Sim1)-expressing ...

  18. Identification of phenylalanine 346 in the rat growth hormone receptor as being critical for ligand-mediated internalization and down-regulation

    DEFF Research Database (Denmark)

    Allevato, G; Billestrup, N; Goujon, L

    1995-01-01

    The functional significance of growth hormone (GH) receptor (GHR) internalization is unknown; therefore, we have analyzed domains and individual amino acids in the cytoplasmic region of the rat GHR required for ligand-mediated receptor internalization, receptor down-regulation, and transcriptiona...

  19. Discoidin Domain Receptor 1 Mediates Myosin-Dependent Collagen Contraction

    Directory of Open Access Journals (Sweden)

    Nuno M. Coelho

    2017-02-01

    Full Text Available Discoidin domain receptor 1 (DDR1 is a tyrosine kinase collagen adhesion receptor that mediates cell migration through association with non-muscle myosin IIA (NMIIA. Because DDR1 is implicated in cancer fibrosis, we hypothesized that DDR1 interacts with NMIIA to enable collagen compaction by traction forces. Mechanical splinting of rat dermal wounds increased DDR1 expression and collagen alignment. In periodontal ligament of DDR1 knockout mice, collagen mechanical reorganization was reduced >30%. Similarly, cultured cells with DDR1 knockdown or expressing kinase-deficient DDR1d showed 50% reduction of aligned collagen. Tractional remodeling of collagen was dependent on DDR1 clustering, activation, and interaction of the DDR1 C-terminal kinase domain with NMIIA filaments. Collagen remodeling by traction forces, DDR1 tyrosine phosphorylation, and myosin light chain phosphorylation were increased on stiff versus soft substrates. Thus, DDR1 clustering, activation, and interaction with NMIIA filaments enhance the collagen tractional remodeling that is important for collagen compaction in fibrosis.

  20. The liver taxis of receptor mediated lactosaminated human growth hormone

    International Nuclear Information System (INIS)

    Chen Zelian; Shi Lin; Li Tongling; Pang Qijie; He Juying; Guan Changtian

    2002-01-01

    Radiography imaging is used to assess liver taxis mechanism of anti-dwarfism drug lactosaminated human growth hormone (L-rhGH). Both L-rhGH and rhGH labelled with 131 I are used to study their biodistribution in animals (including rabbits, cocks and rats). The results show that L-rhGH is of specific hepatic targeting property, and the maximum hepatic concentration rate is 76.8%, which is two times of rhGH. Its hepatic binding is receptor mediated

  1. Protease activated receptors (PARS) mediation in gyroxin biological activity

    International Nuclear Information System (INIS)

    Silva, Jose Alberto Alves da

    2009-01-01

    Gyroxin is a serine protease enzyme from the South American rattlesnake (Crotalus durissus terrificus) venom; it is only partially characterized and has multiple activities. Gyroxin induces blood coagulation, blood pressure decrease and a neurotoxic behavior named barrel rotation. The mechanisms involved in this neurotoxic activity are not known. Whereas gyroxin is a member of enzymes with high potential to become a new drug with clinical applications such as thrombin, batroxobin, ancrod, tripsyn and kalicrein, it is important to find out how gyroxin works. The analysis on agarose gel electrophoresis and circular dichroism confirmed the molecules' integrity and purity. The gyroxin intravenous administration in mice proved its neurotoxicity (barrel rotation). In vivo studies employing intravital microscopy proved that gyroxin induces vasodilation with the participation of protease activated receptors (PARs), nitric oxide and Na+K+ATPase. The leukocytes' adherence and rolling counting indicated that gyroxin has no pro inflammatory activity. Gyroxin induced platelet aggregation, which was blocked by inhibitors of PAR1 and PAR4 receptors (SCH 79797 and tcY-NH 2 , respectively). Finally, it was proved that the gyroxin temporarily alter the permeability of the blood brain barrier (BBB). Our study has shown that both the protease-activated receptors and nitric oxide are mediators involved in the biological activities of gyroxin. (author)

  2. Probing multivalency in ligand–receptor-mediated adhesion of soft, biomimetic interfaces

    Directory of Open Access Journals (Sweden)

    Stephan Schmidt

    2015-05-01

    Full Text Available Many biological functions at cell level are mediated by the glycocalyx, a dense carbohydrate-presenting layer. In this layer specific interactions between carbohydrate ligands and protein receptors are formed to control cell–cell recognition, cell adhesion and related processes. The aim of this work is to shed light on the principles of complex formation between surface anchored carbohydrates and receptor surfaces by measuring the specific adhesion between surface bound mannose on a concanavalin A (ConA layer via poly(ethylene glycol-(PEG-based soft colloidal probes (SCPs. Special emphasis is on the dependence of multivalent presentation and density of carbohydrate units on specific adhesion. Consequently, we first present a synthetic strategy that allows for controlled density variation of functional groups on the PEG scaffold using unsaturated carboxylic acids (crotonic acid, acrylic acid, methacrylic acid as grafting units for mannose conjugation. We showed by a range of analytic techniques (ATR–FTIR, Raman microscopy, zeta potential and titration that this synthetic strategy allows for straightforward variation in grafting density and grafting length enabling the controlled presentation of mannose units on the PEG network. Finally we determined the specific adhesion of PEG-network-conjugated mannose units on ConA surfaces as a function of density and grafting type. Remarkably, the results indicated the absence of a molecular-level enhancement of mannose/ConA interaction due to chelate- or subsite-binding. The results seem to support the fact that weak carbohydrate interactions at mechanically flexible interfaces hardly undergo multivalent binding but are simply mediated by the high number of ligand–receptor interactions.

  3. The CB1 Receptor as an Important Mediator of Hedonic Reward Processing

    Science.gov (United States)

    Friemel, Chris M; Zimmer, Andreas; Schneider, Miriam

    2014-01-01

    The endocannabinoid (ECB) system has emerged recently as a key mediator for reward processing. It is well known that cannabinoids affect appetitive learning processes and can induce reinforcing and rewarding effects. However, the involvement of the ECB system in hedonic aspects of reward-related behavior is not completely understood. With the present study, we investigated the modulatory role of the ECB system on hedonic perception, measured by the pleasure attenuated startle (PAS) paradigm for a palatable food reward. Here, a conditioned odor is thought to induce a pleasant affective state that attenuates an aversive reflex—the acoustic startle response. Modulatory effects of the CB1 receptor antagonist/inverse agonist SR1411716 and the cannabinoid agonist WIN 55 212-2 on PAS were examined in rats. PAS was also measured in CB1 receptor knockout (KO) and wild-type (WT) mice. Pharmacological inhibition as well as the absence of CB1 receptors was found to reduce PAS, whereas WIN 55 212-2 administration increased PAS. Finally, presentation of a conditioned reward cue was found to induce striatal FosB/ΔFosB expression in WT mice, but not in KO mice, indicating a reduced stimulation of reward-related brain regions in conditioned KO mice by odor presentation. We here show that in addition to our previous studies in rats, PAS may also serve as a valuable and suitable measure to assess hedonic processing in mice. Our data further indicate that the ECB system, and in particular CB1 receptor signaling, appears to be highly important for the mediation of hedonic aspects of reward processing. PMID:24718372

  4. Beta receptor-mediated modulation of the late positive potential in humans.

    Science.gov (United States)

    de Rover, Mischa; Brown, Stephen B R E; Boot, Nathalie; Hajcak, Greg; van Noorden, Martijn S; van der Wee, Nic J A; Nieuwenhuis, Sander

    2012-02-01

    Electrophysiological studies have identified a scalp potential, the late positive potential (LPP), which is modulated by the emotional intensity of observed stimuli. Previous work has shown that the LPP reflects the modulation of activity in extrastriate visual cortical structures, but little is known about the source of that modulation. The present study investigated whether beta-adrenergic receptors are involved in the generation of the LPP. We used a genetic individual differences approach (experiment 1) and a pharmacological manipulation (experiment 2) to test the hypothesis that the LPP is modulated by the activation of β-adrenergic receptors. In experiment 1, we found that LPP amplitude depends on allelic variation in the β1-receptor gene polymorphism. In experiment 2, we found that LPP amplitude was modulated by the β-blocker propranolol in a direction dependent on subjects' level of trait anxiety: In participants with lower trait anxiety, propranolol led to a (nonsignificant) decrease in the LPP modulation; in participants with higher trait anxiety, propranolol increased the emotion-related LPP modulation. These results provide initial support for the hypothesis that the LPP reflects the downstream effects, in visual cortical areas, of β-receptor-mediated activation of the amygdala.

  5. Estrogen-related receptor α is essential for the expression of antioxidant protection genes and mitochondrial function

    International Nuclear Information System (INIS)

    Rangwala, Shamina M.; Li, Xiaoyan; Lindsley, Loren; Wang, Xiaomei; Shaughnessy, Stacey; Daniels, Thomas G.; Szustakowski, Joseph; Nirmala, N.R.; Wu, Zhidan; Stevenson, Susan C.

    2007-01-01

    Estrogen-related receptor α (ERRα) is an important mediator of mitochondrial biogenesis and function. To investigate the transcriptional network controlling these phenomena, we investigated mitochondrial gene expression in embryonic fibroblasts isolated from ERRα null mice. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) stimulated mitochondrial gene expression program in control cells, but not in the ERRα null cells. Interestingly, the induction of levels of mitochondrial oxidative stress protection genes in response to increased PGC-1α levels was dependent on ERRα. Furthermore, we found that the PGC-1α-mediated induction of estrogen-related receptor γ and nuclear respiratory factor 2 (NRF-2), was dependent on the presence of ERRα. Basal levels of NRF-2 were decreased in the absence of ERRα. The absence of ERRα resulted in a decrease in citrate synthase enzyme activity in response to PGC-1α overexpression. Our results indicate an essential role for ERRα as a key regulator of oxidative metabolism

  6. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of β-glucuronidase

    International Nuclear Information System (INIS)

    Watanabe, H.; Grubb, J.H.; Sly, W.S.

    1990-01-01

    The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human β-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3% of the total functional receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of β-glucuronidase. At pH 7.5, the rate of endocytosis was only 14% the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized β-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized β-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor

  7. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Anika; Ammer, Hermann [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany); Eisinger, Daniela A., E-mail: eisinger@pharmtox.vetmed.uni-muenchen.de [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany)

    2009-07-15

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  8. δ-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    International Nuclear Information System (INIS)

    Heiss, Anika; Ammer, Hermann; Eisinger, Daniela A.

    2009-01-01

    δ-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen 2,5 ]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G i/o proteins, because pre-treatment with pertussis toxin, but not over-expression of the G q/11 scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the Gβγ scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  9. P2X receptor-mediated ATP purinergic signaling in health and disease

    Directory of Open Access Journals (Sweden)

    Jiang LH

    2012-09-01

    Full Text Available Lin-Hua JiangSchool of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United KingdomAbstract: Purinergic P2X receptors are plasma membrane proteins present in a wide range of mammalian cells where they act as a cellular sensor, enabling cells to detect and respond to extracellular adenosine triphosphate (ATP, an important signaling molecule. P2X receptors function as ligand-gated Ca2+-permeable cationic channels that open upon ATP binding to elevate intracellular Ca2+ concentrations and cause membrane depolarization. In response to sustained activation, P2X receptors induce formation of a pore permeable to large molecules. P2X receptors also interact with distinct functional proteins and membrane lipids to form specialized signaling complexes. Studies have provided compelling evidence to show that such P2X receptor-mediated ATP-signaling mechanisms determine and regulate a growing number and diversity of important physiological processes, including neurotransmission, muscle contraction, and cytokine release. There is accumulating evidence to support strong causative relationships of altered receptor expression and function with chronic pain, inflammatory diseases, cancers, and other pathologies or diseases. Numerous high throughput screening drug discovery programs and preclinical studies have thus far demonstrated the proof of concepts that the P2X receptors are druggable targets and selective receptor antagonism is a promising therapeutics approach. This review will discuss the recent progress in understanding the mammalian P2X receptors with respect to the ATP-signaling mechanisms, physiological and pathophysiological roles, and development and preclinical studies of receptor antagonists.Keywords: extracellular ATP, ion channel, large pore, signaling complex, chronic pain, inflammatory diseases

  10. Effects of LHRH and ANG II on prolactin stimulation are mediated by hypophysial AT1 receptor subtype.

    Science.gov (United States)

    Becú-Villalobos, D; Lacau-Mengido, I M; Thyssen, S M; Díaz-Torga, G S; Libertun, C

    1994-02-01

    We have used the nonpeptide angiotensin II (ANG II) receptor antagonists losartan (receptor subtype AT1) and PD-123319 (AT2) to determine the participation of ANG II receptor subtypes in luteinizing hormone-releasing hormone (LHRH)-induced prolactin release in a perifusion study using intact pituitaries in vitro. LHRH (1.85 x 10(-7) M) released prolactin consistently, whereas losartan (10(-5) M) abolished prolactin response without modifying basal prolactin or luteinizing hormone (LH) and follicle-stimulating hormone (FSH) release. PD-123319 (10(-5) M) had no effect on basal or LHRH-induced prolactin, LH, or FSH release. We also determined that the effect of ANG II on prolactin release was mediated by the same receptor subtype. In adenohypophysial cells dispersed in vitro ANG II (10(-8) M) released prolactin. Losartan (10(-7) and 10(-6) M), but not PD-123319, inhibited this effect. We conclude that in intact hypophyses of 15-day-old female rats the effect of LHRH on prolactin release is readily demonstrated. LHRH-induced prolactin release appears to be mediated by ANG II acting in a paracrine manner on AT1 receptors located on lactotrophs.

  11. Multifunctional pH-Responsive Folate Receptor Mediated Polymer Nanoparticles for Drug Delivery.

    Science.gov (United States)

    Cai, Xiaoqing; Yang, Xiaoye; Wang, Fang; Zhang, Chen; Sun, Deqing; Zhai, Guangxi

    2016-07-01

    Multifunctional pH-responsive folate receptor mediated targeted polymer nanoparticles (TPNps) were developed for docetaxel (DTX) delivery based on poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)poly (β-amino ester) (P123-PAE) and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)-folate (P123-FA) copolymers. The DTX was loaded into the TPNps with a decent drug loading content of 15.02 ± 0.14 wt%. In vitro drug release results showed that the DTX was released from the TPNps at a pH-dependent manner. Tetrazolium dye (MTT) assay revealed that the bland polymer nanoparticles displayed almost nontoxicity at 200 μg/mL concentration. However, the DTX-loaded TPNps showed high anti-tumor activity at low IC50 (0.72 μg/mL) for MCF-7 cells following 48 h incubation. Cellular uptake experiments revealed that the TPNps had higher degree of cellular uptake than nontargeted polymer nanoparticles, indicating that the nanoparticles were internalized into the cells via FA receptor-mediated endocytosis. Moreover, the cellular uptake pathways for the FA grafted polymer were involved in energy-dependent, clathrin-mediated and caveolae-mediated endocytosis. The cell killing effect and cellular uptake of the DTX-TPNps by the MCF-7 cells were all enhanced by about two folds at pH 5.5 when compared with pH 7.4. The TPNps also significantly prolonged the in vivo retention time for the DTX. These results suggest that the biocompatible pH responsive folate-modified polymer nanoparticles present a promising safe nanosystem for intracellular targeted delivery of DTX.

  12. GABA(A) receptors mediate orexin-A induced stimulation of food intake.

    Science.gov (United States)

    Kokare, Dadasaheb M; Patole, Angad M; Carta, Anna; Chopde, Chandrabhan T; Subhedar, Nishikant K

    2006-01-01

    Although the role of orexins in sleep/wake cycle and feeding behavior is well established, underlying mechanisms have not been fully understood. An attempt has been made to investigate the role of GABA(A) receptors and their benzodiazepine site on the orexin-A induced response to feeding. Different groups of rats were food deprived overnight and next day injected intracerebroventricularly (icv) with vehicle (artificial CSF; 5 microl/rat) or orexin-A (20-50 nM/rat) and the animals were given free access to food. Cumulative food intake was measured during light phase of light/dark cycle at 1-, 2-, 4- and 6-h post-injection time points. Orexin-A (30-50 nM/rat, icv) stimulated food intake at all the time points (P GABA(A) receptor agonists muscimol (25 ng/rat, icv) and diazepam (0.5 mg/kg, ip) at subeffective doses significantly potentiated the hyperphagic effect of orexin-A (30 nM/rat, icv). However, the effect was negated by the GABA(A) receptor antagonist bicuculline (1 mg/kg, ip). Interestingly, benzodiazepine receptor antagonist flumazenil (5 ng/rat, icv), augmented the orexin-A (30 nM/rat, icv) induced hyperphagia; the effect may be attributed to the intrinsic activity of the agent. The results suggest that the hyperphagic effect of orexin-A, at least in part, is mediated by enhanced GABA(A) receptor activity.

  13. TRIM32 promotes retinoic acid receptor α-mediated differentiation in human promyelogenous leukemic cell line HL60

    International Nuclear Information System (INIS)

    Sato, Tomonobu; Okumura, Fumihiko; Iguchi, Akihiro; Ariga, Tadashi; Hatakeyama, Shigetsugu

    2012-01-01

    Highlights: ► TRIM32 enhanced RARα-mediated transcriptional activity even in the absence of RA. ► TRIM32 stabilized RARα in the human promyelogenous leukemic cell line HL60. ► Overexpression of TRIM32 in HL60 cells induced granulocytic differentiation. ► TRIM32 may function as a coactivator for RARα-mediated transcription in APL cells. -- Abstract: Ubiquitination, one of the posttranslational modifications, appears to be involved in the transcriptional activity of nuclear receptors including retinoic acid receptor α (RARα). We previously reported that an E3 ubiquitin ligase, TRIM32, interacts with several important proteins including RARα and enhances transcriptional activity of RARα in mouse neuroblastoma cells and embryonal carcinoma cells. Retinoic acid (RA), which acts as a ligand to nuclear receptors including RARα, plays crucial roles in development, differentiation, cell cycles and apoptosis. In this study, we found that TRIM32 enhances RARα-mediated transcriptional activity even in the absence of RA and stabilizes RARα in the human promyelogenous leukemic cell line HL60. Moreover, we found that overexpression of TRIM32 in HL60 cells suppresses cellular proliferation and induces granulocytic differentiation even in the absence of RA. These findings suggest that TRIM32 functions as one of the coactivators for RARα-mediated transcription in acute promyelogenous leukemia (APL) cells, and thus TRIM32 may become a potentially therapeutic target for APL.

  14. Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow

    International Nuclear Information System (INIS)

    Semino, Carlos E.; Kamm, Roger D.; Lauffenburger, Douglas A.

    2006-01-01

    We show here that autocrine ligand activation of epidermal growth factor (EGF) receptor in combination with interstitial flow is critically involved in the morphogenetic response of endothelial cells to VEGF stimulation. Human umbilical vein endothelial cell (HUVEC) monolayers cultured on a collagen gel and exposed to low interstitial flow in the absence of EGF and VEGF remained viable and mitotic but exhibited little evidence of vascular morphogenesis. Addition of VEGF produced a flow-dependent morphogenetic response within 48 to 72 h, characterized by branched capillary-like structures. The response was substantially abolished by inhibitors related to the autocrine EGF receptor pathway including Galardin, AG1478, PD98059, and an EGF receptor-blocking antibody, indicating that regulation of the morphogenetic process operates via autocrine EGF receptor activation. Moreover, we observed that in our system the EGF receptor was always activated independently of the interstitial flow, and, in addition, the EGF receptor inhibitors used above reduced the phosphorylation state of the receptor, correlating with inhibition of capillary morphogenesis. Finally, 5'bromo-2'-deoxyuridine (BrdU) labeling identified dividing cells at the monolayer but not in the extending capillary-like structures. EGF pathway inhibitors Galardin and AG1478 did not reduce BrdU incorporation in the monolayer, indicating that the EGF-receptor-mediated morphogenetic behavior is mainly due to cell migration rather than proliferation. Based on these results, we propose a two-step model for in vitro capillary morphogenesis in response to VEGF stimulation with interstitial fluid flow: monolayer maintenance by mitotic activity independent of EGF receptors and a migratory response mediated by autocrine EGF receptor activation wherein cells establish capillary-like structures

  15. Bicarbonate Contributes to GABAA Receptor-Mediated Neuronal Excitation in Surgically-Resected Human Hypothalamic Hamartomas

    Science.gov (United States)

    Do-Young, Kim; Fenoglio, Kristina A.; Kerrigan, John F.; Rho, Jong M.

    2009-01-01

    SUMMARY The role of bicarbonate (HCO3-) in GABAA receptor-mediated depolarization of human hypothalamic hamartoma (HH) neurons was investigated using cellular electrophysiological and calcium imaging techniques. Activation of GABAA receptors with muscimol (30 μM) provoked neuronal excitation in over 70% of large (18-22 μM) HH neurons in HCO3- buffer. Subsequent perfusion of HCO3--free HEPES buffer produced partial suppression of muscimol-induced excitation. Additionally, 53% of large HH neurons under HCO3--free conditions exhibited reduced intracellular calcium accumulation by muscimol. These results suggest that HCO3- efflux through GABAA receptors on a subpopulation of large HH neurons may contribute to membrane depolarization and subsequent activation of L-type calcium channels. PMID:19022626

  16. Evidence that 5-hydroxytryptamine3 receptors mediate cytotoxic drug and radiation-evoked emesis

    International Nuclear Information System (INIS)

    Miner, W.D.; Sanger, G.J.; Turner, D.H.

    1987-01-01

    The involvement of 5-hydroxytryptamine (5-HT) 5-HT 3 receptors in the mechanisms of severe emesis evoked by cytotoxic drugs or by total body irradiation have been studied in ferrets. Anti-emetic compounds tested were domperidone (a dopamine antagonist), metoclopramide (a gastric motility stimulant and dopamine antagonist at conventional doses, a 5-HT 3 receptor antagonist at higher doses) and BRL 24924 (a potent gastric motility stimulant and a 5-HT 3 receptor antagonist). Domperidone or metoclopramide prevented apomorphine-evoked emesis, whereas BRL 24924 did not. Similar doses of domperidone did not prevent emesis evoked by cis-platin or by total body irradiation, whereas metoclopramide or BRL 24924 greatly reduced or prevented these types of emesis. Metoclopramide and BRL 24924 also prevented emesis evoked by a combination of doxorubicin and cyclophosphamide. These results are discussed in terms of a fundamental role for 5-HT 3 receptors in the mechanisms mediating severely emetogenic cancer treatment therapies. (author)

  17. Effect of ARA9 on dioxin receptor mediated transcription

    International Nuclear Information System (INIS)

    Lees, M.J.; Whitelaw, M.L.

    2002-01-01

    The dioxin (Aryl hydrocarbon) receptor (DR) is a unique bHLH transcription factor which is activated by binding of planar aromatic hydrocarbons typified by dioxin (TCDD). The active receptor is key to metabolism of aryl hydrocarbon xenobiotics by being a potent inducer of CYP1A1 gene activity. Chlorinated dioxins are inert to metabolism and initiate multifarious toxicities, including potent tumour promotion. These ill-effects are mediated by the activated DR and we are studying the mechanisms by which the ligand binding domain of the DR controls activity of the protein. The DR ligand binding domain resides within a PAS (Per/Arnt/Sim homology) region which is contiguous with the bHLH. The latent bHLH/PAS dioxin receptor (DR) is found in the cytoplasm of most mammalian cell types in a complex with heat shock protein 90, a novel immunophilin like protein termed ARA9/XAP2/AIP, and the co-chaperone p23. Here we use antisense ARA9 constructs to reveal that in the absence of ARA9, the DR is unable to form a transcriptionally active complex. Co-expression of antisense ARA9 with a form of the DR which is constitutively targeted to the nucleus leads to dramatically decreased levels of the nuclear DR protein, implying that ARA9 may function beyond its currently proposed role in cytoplasmic retention of the latent DR

  18. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiyuan, E-mail: zhiyuan_nju@163.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Yu, Yijun, E-mail: yjun.yu@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Tang, Song [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Liu, Hongling, E-mail: hlliu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Su, Guanyong; Xie, Yuwei [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Giesy, John P. [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Hecker, Markus [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Yu, Hongxia [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China)

    2015-12-15

    Highlights: • Effects of TBOEP on expression of genes of several nuclear hormone receptors and their relationship with adverse effect pathways in zebrafish. • TBOEP was neither an agonist nor antagonist of AR or AhR as determined by use of in vitro mammalian cell-based receptor transactivation assays. • Modulation of ER- and MR-dependent pathways allowed for development of feasible receptor-mediated, critical mechanisms of toxic action. - Abstract: As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5 μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane × receptor (P × R)) pathways at 120 hpf. Exposure to 0.5 μM TBOEP significantly (p < 0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were

  19. Ligand Receptor-Mediated Regulation of Growth in Plants.

    Science.gov (United States)

    Haruta, Miyoshi; Sussman, Michael R

    2017-01-01

    Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase

  20. NK cell cytotoxicity mediated by 2B4 and NTB-A is dependent on SAP acting downstream of receptor phosphorylation

    Directory of Open Access Journals (Sweden)

    Stephan eMeinke

    2013-01-01

    Full Text Available 2B4 (CD244 and NK-T-B-antigen (NTB-A, CD352 are activating receptors on human NK cells and belong to the family of SLAM-related receptors. Engagement of these receptors leads to phosphorylation of their cytoplasmic tails and recruitment of the adapter proteins SAP and EAT-2. X-linked lymphoproliferative syndrome (XLP is a severe immunodeficiency that results from mutations in the SAP gene. 2B4 and NTB-A-mediated cytotoxicity are abrogated in XLP NK cells. To elucidate the molecular basis for this defect we analyzed early signaling events in SAP knockdown cells. Similar to XLP NK cells, knockdown of SAP in primary human NK cells leads to a reduction of 2B4 and NTB-A-mediated cytotoxicity. We found that early signaling events such as raft recruitment and receptor phosphorylation are not affected by the absence of SAP, indicating the defect in the absence of SAP is downstream of these events. In addition, knockdown of EAT-2 does not impair 2B4 or NTB-A-mediated cytotoxicity. Surprisingly, EAT-2 recruitment to both receptors is abrogated in the absence of SAP, revealing a novel cooperativity between these adapters.

  1. Optodynamic simulation of β-adrenergic receptor signalling.

    Science.gov (United States)

    Siuda, Edward R; McCall, Jordan G; Al-Hasani, Ream; Shin, Gunchul; Il Park, Sung; Schmidt, Martin J; Anderson, Sonya L; Planer, William J; Rogers, John A; Bruchas, Michael R

    2015-09-28

    Optogenetics has provided a revolutionary approach to dissecting biological phenomena. However, the generation and use of optically active GPCRs in these contexts is limited and it is unclear how well an opsin-chimera GPCR might mimic endogenous receptor activity. Here we show that a chimeric rhodopsin/β2 adrenergic receptor (opto-β2AR) is similar in dynamics to endogenous β2AR in terms of: cAMP generation, MAP kinase activation and receptor internalization. In addition, we develop and characterize a novel toolset of optically active, functionally selective GPCRs that can bias intracellular signalling cascades towards either G-protein or arrestin-mediated cAMP and MAP kinase pathways. Finally, we show how photoactivation of opto-β2AR in vivo modulates neuronal activity and induces anxiety-like behavioural states in both fiber-tethered and wireless, freely moving animals when expressed in brain regions known to contain β2ARs. These new GPCR approaches enhance the utility of optogenetics and allow for discrete spatiotemporal control of GPCR signalling in vitro and in vivo.

  2. Functional characterization of GABAA receptor-mediated modulation of cortical neuron network activity in microelectrode array recordings

    DEFF Research Database (Denmark)

    Bader, Benjamin M; Steder, Anne; Klein, Anders Bue

    2017-01-01

    The numerous γ-aminobutyric acid type A receptor (GABAAR) subtypes are differentially expressed and mediate distinct functions at neuronal level. In this study we have investigated GABAAR-mediated modulation of the spontaneous activity patterns of primary neuronal networks from murine frontal...... of the information extractable from the MEA recordings offers interesting insights into the contributions of various GABAAR subtypes/subgroups to cortical network activity and the putative functional interplay between these receptors in these neurons....... cortex by characterizing the effects induced by a wide selection of pharmacological tools at a plethora of activity parameters in microelectrode array (MEA) recordings. The basic characteristics of the primary cortical neurons used in the recordings were studied in some detail, and the expression levels...

  3. Induction of osteoblast differentiation by selective activation of kinase-mediated actions of the estrogen receptor.

    Science.gov (United States)

    Kousteni, Stavroula; Almeida, Maria; Han, Li; Bellido, Teresita; Jilka, Robert L; Manolagas, Stavros C

    2007-02-01

    Estrogens control gene transcription by cis or trans interactions of the estrogen receptor (ER) with target DNA or via the activation of cytoplasmic kinases. We report that selective activation of kinase-mediated actions of the ER with 4-estren-3alpha,17beta-diol (estren) or an estradiol-dendrimer conjugate, each a synthetic compound that stimulates kinase-mediated ER actions 1,000 to 10,000 times more potently than direct DNA interactions, induced osteoblastic differentiation in established cell lines of uncommitted osteoblast precursors and primary cultures of osteoblast progenitors by stimulating Wnt and BMP-2 signaling in a kinase-dependent manner. In sharp contrast, 17beta-estradiol (E(2)) suppressed BMP-2-induced osteoblast progenitor commitment and differentiation. Consistent with the in vitro findings, estren, but not E(2), stimulated Wnt/beta-catenin-mediated transcription in T-cell factor-lacZ transgenic mice. Moreover, E(2) stimulated BMP signaling in mice in which ERalpha lacks DNA binding activity and classical estrogen response element-mediated transcription (ERalpha(NERKI/-)) but not in wild-type controls. This evidence reveals for the first time the existence of a large signalosome in which inputs from the ER, kinases, bone morphogenetic proteins, and Wnt signaling converge to induce differentiation of osteoblast precursors. ER can either induce it or repress it, depending on whether the activating ligand (and presumably the resulting conformation of the receptor protein) precludes or accommodates ERE-mediated transcription.

  4. Interaction of medullary P2 and glutamate receptors mediates the vasodilation in the hindlimb of rat.

    Science.gov (United States)

    Korim, Willian Seiji; Ferreira-Neto, Marcos L; Pedrino, Gustavo R; Pilowsky, Paul M; Cravo, Sergio L

    2012-12-01

    In the nucleus tractus solitarii (NTS) of rats, blockade of extracellular ATP breakdown to adenosine reduces arterial blood pressure (AP) increases that follow stimulation of the hypothalamic defense area (HDA). The effects of ATP on NTS P2 receptors, during stimulation of the HDA, are still unclear. The aim of this study was to determine whether activation of P2 receptors in the NTS mediates cardiovascular responses to HDA stimulation. Further investigation was taken to establish if changes in hindlimb vascular conductance (HVC) elicited by electrical stimulation of the HDA, or activation of P2 receptors in the NTS, are relayed in the rostral ventrolateral medulla (RVLM); and if those responses depend on glutamate release by ATP acting on presynaptic terminals. In anesthetized and paralyzed rats, electrical stimulation of the HDA increased AP and HVC. Blockade of P2 or glutamate receptors in the NTS, with bilateral microinjections of suramin (10 mM) or kynurenate (50 mM) reduced only the evoked increase in HVC by 75 % or more. Similar results were obtained with the blockade combining both antagonists. Blockade of P2 and glutamate receptors in the RVLM also reduced the increases in HVC to stimulation of the HDA by up to 75 %. Bilateral microinjections of kynurenate in the RVLM abolished changes in AP and HVC to injections of the P2 receptor agonist α,β-methylene ATP (20 mM) into the NTS. The findings suggest that HDA-NTS-RVLM pathways in control of HVC are mediated by activation of P2 and glutamate receptors in the brainstem in alerting-defense reactions.

  5. Enhanced NMDA receptor-mediated intracellular calcium signaling in magnocellular neurosecretory neurons in heart failure rats.

    Science.gov (United States)

    Stern, Javier E; Potapenko, Evgeniy S

    2013-08-15

    An enhanced glutamate excitatory function within the hypothalamic supraoptic and paraventricluar nuclei is known to contribute to increased neurosecretory and presympathetic neuronal activity, and hence, neurohumoral activation, during heart failure (HF). Still, the precise mechanisms underlying enhanced glutamate-driven neuronal activity in HF remain to be elucidated. Here, we performed simultaneous electrophysiology and fast confocal Ca²⁺ imaging to determine whether altered N-methyl-d-aspartate (NMDA) receptor-mediated changes in intracellular Ca²⁺ levels (NMDA-ΔCa²⁺) occurred in hypothalamic magnocellular neurosecretory cells (MNCs) in HF rats. We found that activation of NMDA receptors resulted in a larger ΔCa²⁺ in MNCs from HF when compared with sham rats. The enhanced NMDA-ΔCa²⁺ was neither dependent on the magnitude of the NMDA-mediated current (voltage clamp) nor on the degree of membrane depolarization or firing activity evoked by NMDA (current clamp). Differently from NMDA receptor activation, firing activity evoked by direct membrane depolarization resulted in similar changes in intracellular Ca²⁺ in sham and HF rats. Taken together, our results support a relatively selective alteration of intracellular Ca²⁺ homeostasis and signaling following activation of NMDA receptors in MNCs during HF. The downstream functional consequences of such altered ΔCa²⁺ signaling during HF are discussed.

  6. Hormonally-mediated Epigenetic Changes to Steroid Receptors in the Developing Brain: Implications for Sexual Differentiation

    Science.gov (United States)

    Nugent, Bridget M.; Schwarz, Jaclyn M.; McCarthy, Margaret M.

    2010-01-01

    The establishment of sex-specific neural morphology, which underlies sex-specific behaviors, occurs during a perinatal sensitive window in which brief exposure to gonadal steroid hormones produces permanent masculinization of the brain. In the rodent, estradiol derived from testicular androgens is a principle organizational hormone. The mechanism by which transient estradiol exposure induces permanent differences in neuronal anatomy has been widely investigated, but remains elusive. Epigenetic changes, such as DNA methylation, allow environmental influences to alter long-term gene expression patterns and therefore may be a potential mediator of estradiol-induced organization of the neonatal brain. Here we review data that demonstrate sex and estradiol-induced differences in DNA methylation on the estrogen receptor α (ERα), estrogen receptor β (ERβ), and progesterone receptor (PR) promoters in sexually dimorphic brain regions across development. Contrary to the overarching view of DNA methylation as a permanent modification directly tied to gene expression, these data demonstrate that methylation patterns on steroid hormone receptors change across the life span and do not necessarily predict expression. Although further exploration into the mechanism and significance of estradiol-induced alterations in DNA methylation patterns in the neonatal brain is necessary, these results provide preliminary evidence that epigenetic alterations can occur in response to early hormone exposure and may mediate estradiol-induced organization of sex differences in the neonatal brain. PMID:20800064

  7. NR4A nuclear receptors mediate carnitine palmitoyltransferase 1A gene expression by the rexinoid HX600

    Energy Technology Data Exchange (ETDEWEB)

    Ishizawa, Michiyasu [Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610 (Japan); Kagechika, Hiroyuki [Graduate School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Makishima, Makoto, E-mail: makishima.makoto@nihon-u.ac.jp [Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610 (Japan)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer The function of RXR heterodimers with NR4 receptors remains unknown. Black-Right-Pointing-Pointer The RXR ligand HX600 induces expression of carnitine palmitoyltransferase 1A (CPT1A). Black-Right-Pointing-Pointer HX600-induced CPT1A expression is mediated by the NR4 receptors, Nur77 and NURR1. Black-Right-Pointing-Pointer CPT1A induction by HX600 is not mediated by de novo protein synthesis. Black-Right-Pointing-Pointer CPT1A could be a target of the Nur77-RXR and NURR1-RXR heterodimers. -- Abstract: Retinoid X receptors (RXRs) are members of the nuclear receptor superfamily and can be activated by 9-cis retinoic acid (9CRA). RXRs form homodimers and heterodimers with other nuclear receptors such as the retinoic acid receptor and NR4 subfamily nuclear receptors, Nur77 and NURR1. Potential physiological roles of the Nur77-RXR and NURR1-RXR heterodimers have not been elucidated. In this study, we identified a gene regulated by these heterodimers utilizing HX600, a selective RXR agonist for Nur77-RXR and NURR1-RXR. While 9CRA induced many genes, including RAR-target genes, HX600 effectively induced only carnitine palmitoyltransferase 1A (CPT1A) in human teratocarcinoma NT2/D1 cells, which express RXR{alpha}, Nur77 and NURR1. HX600 also increased CPT1A expression in human embryonic kidney (HEK) 293 cells and hepatocyte-derived HepG2 cells. Although HX600 induced CPT1A less effectively than 9CRA, overexpression of Nur77 or NURR1 increased the HX600 response to levels similar to 9CRA in NT2/D1 and HEK293 cells. A dominant-negative form of Nur77 or NURR1 repressed the induction of CPT1A by HX600. A protein synthesis inhibitor did not alter HX600-dependent CPT1A induction. Thus, the rexinoid HX600 directly induces expression of CPT1A through a Nur77 or NURR1-mediated mechanism. CPT1A, a gene involved in fatty acid {beta}-oxidation, could be a target of RXR-NR4 receptor heterodimers.

  8. Inositol trisphosphate receptor mediated spatiotemporal calcium signalling.

    Science.gov (United States)

    Miyazaki, S

    1995-04-01

    Spatiotemporal Ca2+ signalling in the cytoplasm is currently understood as an excitation phenomenon by analogy with electrical excitation in the plasma membrane. In many cell types, Ca2+ waves and Ca2+ oscillations are mediated by inositol 1,4,5-trisphosphate (IP3) receptor/Ca2+ channels in the endoplasmic reticulum membrane, with positive feedback between cytosolic Ca2+ and IP3-induced Ca2+ release creating a regenerative process. Remarkable advances have been made in the past year in the analysis of subcellular Ca2+ microdomains using confocal microscopy and of Ca2+ influx pathways that are functionally coupled to IP3-induced Ca2+ release. Ca2+ signals can be conveyed into the nucleus and mitochondria. Ca2+ entry from outside the cell allows repetitive Ca2+ release by providing Ca2+ to refill the endoplasmic reticulum stores, thus giving rise to frequency-encoded Ca2+ signals.

  9. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana.

    Science.gov (United States)

    Wei, Jian; Li, Dong-Xu; Zhang, Jia-Rong; Shan, Chi; Rengel, Zed; Song, Zhong-Bang; Chen, Qi

    2018-04-27

    Melatonin has been detected in plants in 1995; however, the function and signaling pathway of this putative phytohormone are largely undetermined due to a lack of knowledge about its receptor. Here, we discovered the first phytomelatonin receptor (CAND2/PMTR1) in Arabidopsis thaliana and found that melatonin governs the receptor-dependent stomatal closure. The application of melatonin induced stomatal closure through the heterotrimeric G protein α subunit-regulated H 2 O 2 and Ca 2+ signals. The Arabidopsis mutant lines lacking AtCand2 that encodes a candidate G protein-coupled receptor were insensitive to melatonin-induced stomatal closure. Accordingly, the melatonin-induced H 2 O 2 production and Ca 2+ influx were completely abolished in cand2. CAND2 is a membrane protein that interacts with GPA1 and the expression of AtCand2 was tightly regulated by melatonin in various organs and guard cells. CAND2 showed saturable and specific 125 I-melatonin binding, with apparent K d (dissociation constant) of 0.73 ± 0.10 nmol/L (r 2  = .99), demonstrating this protein is a phytomelatonin receptor (PMTR1). Our results suggest that the phytomelatonin regulation of stomatal closure is dependent on its receptor CAND2/PMTR1-mediated H 2 O 2 and Ca 2+ signaling transduction cascade. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. A novel ecdysone receptor mediates steroid-regulated developmental events during the mid-third instar of Drosophila.

    Directory of Open Access Journals (Sweden)

    Benjamin F B Costantino

    2008-06-01

    Full Text Available The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E--signaling through a nuclear receptor heterodimer consisting of EcR and USP--induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component.

  11. Scavenger receptors mediate the role of SUMO and Ftz-f1 in Drosophila steroidogenesis.

    Directory of Open Access Journals (Sweden)

    Ana Talamillo

    2013-04-01

    Full Text Available SUMOylation participates in ecdysteroid biosynthesis at the onset of metamorphosis in Drosophila melanogaster. Silencing the Drosophila SUMO homologue smt3 in the prothoracic gland leads to reduced lipid content, low ecdysone titers, and a block in the larval-pupal transition. Here we show that the SR-BI family of Scavenger Receptors mediates SUMO functions. Reduced levels of Snmp1 compromise lipid uptake in the prothoracic gland. In addition, overexpression of Snmp1 is able to recover lipid droplet levels in the smt3 knockdown prothoracic gland cells. Snmp1 expression depends on Ftz-f1 (an NR5A-type orphan nuclear receptor, the expression of which, in turn, depends on SUMO. Furthermore, we show by in vitro and in vivo experiments that Ftz-f1 is SUMOylated. RNAi-mediated knockdown of ftz-f1 phenocopies that of smt3 at the larval to pupal transition, thus Ftz-f1 is an interesting candidate to mediate some of the functions of SUMO at the onset of metamorphosis. Additionally, we demonstrate that the role of SUMOylation, Ftz-f1, and the Scavenger Receptors in lipid capture and mobilization is conserved in other steroidogenic tissues such as the follicle cells of the ovary. smt3 knockdown, as well as ftz-f1 or Scavenger knockdown, depleted the lipid content of the follicle cells, which could be rescued by Snmp1 overexpression. Therefore, our data provide new insights into the regulation of metamorphosis via lipid homeostasis, showing that Drosophila Smt3, Ftz-f1, and SR-BIs are part of a general mechanism for uptake of lipids such as cholesterol, required during development in steroidogenic tissues.

  12. Muscarinic receptors mediate cold stress-induced detrusor overactivity in type 2 diabetes mellitus rats.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Gautam, Sudha Silwal; Nishizawa, Osamu

    2014-10-01

    This study determined if muscarinic receptors could mediate the cold stress-induced detrusor overactivity induced in type 2 diabetes mellitus rats. Ten-week-old female Goto-Kakizaki diabetic rats (n = 12) and Wister Kyoto non-diabetic rats (n = 12) were maintained on a high-fat diet for 4 weeks. Cystometric investigations of the unanesthetized rats were carried out at room temperature (27 ± 2°C) for 20 min. They were intravenously administered imidafenacin (0.3 mg/kg, n = 6) or vehicle (n = 6). After 5 min, the rats were transferred to a low temperature (4 ± 2°C) for 40 min where the cystometry was continued. The rats were then returned to room temperature for the final cystometric measurements. Afterwards, expressions of bladder muscarinic receptor M3 and M2 messenger ribonucleic acids and proteins were assessed by reverse transcription polymerase chain reaction and immunohistochemistry. In non-diabetic Wister Kyoto rats, imidafenacin did not reduce cold stress-induced detrusor overactivity. In diabetic Goto-Kakizaki rats, just after transfer to a low temperature, the cold stress-induced detrusor overactivity in imidafenacin-treated rats was reduced compared with vehicle-treated rats. Within the urinary bladders, the ratio of M3 to M2 receptor messenger ribonucleic acid in the diabetic Goto-Kakizaki rats was significantly higher than that of the non-diabetic Wister Kyoto rats. The proportion of muscarinic M3 receptor-positive area within the detrusor in diabetic Goto-Kakizaki rats was also significantly higher than that in non-diabetic Wister Kyoto rats. Imidafenacin partially inhibits cold stress-induced detrusor overactivity in diabetic Goto-Kakizaki rats. In this animal model, muscarinic M3 receptors partially mediate cold stress-induced detrusor overactivity. © 2014 The Japanese Urological Association.

  13. Novel time-dependent vascular actions of Δ9-tetrahydrocannabinol mediated by peroxisome proliferator-activated receptor gamma

    International Nuclear Information System (INIS)

    O'Sullivan, Saoirse E.; Tarling, Elizabeth J.; Bennett, Andrew J.; Kendall, David A.; Randall, Michael D.

    2005-01-01

    Cannabinoids have widespread effects on the cardiovascular system, only some of which are mediated via G-protein-coupled cell surface receptors. The active ingredient of cannabis, Δ 9 -tetrahydrocannabinol (THC), causes acute vasorelaxation in various arteries. Here we show for the first time that THC also causes slowly developing vasorelaxation through activation of peroxisome proliferator-activated receptors gamma (PPARγ). In vitro, THC (10 μM) caused time-dependent vasorelaxation of rat isolated arteries. Time-dependent vasorelaxation to THC was similar to that produced by the PPARγ agonist rosiglitazone and was inhibited by the PPARγ antagonist GW9662 (1 μM), but not the cannabinoid CB 1 receptor antagonist AM251 (1 μM). Time-dependent vasorelaxation to THC requires an intact endothelium, nitric oxide, production of hydrogen peroxide, and de novo protein synthesis. In transactivation assays in cultured HEK293 cells, THC-activated PPARγ, transiently expressed in combination with retinoid X receptor α and a luciferase reporter gene, in a concentration-dependent manner (100 nM-10 μM). In vitro incubation with THC (1 or 10 μM, 8 days) stimulated adipocyte differentiation in cultured 3T3L1 cells, a well-accepted property of PPARγ ligands. The present results provide strong evidence that THC is a PPARγ ligand, stimulation of which causes time-dependent vasorelaxation, implying some of the pleiotropic effects of cannabis may be mediated by nuclear receptors

  14. Receptor-mediated endocytosis of trichosanthin in choriocarcinoma cells

    International Nuclear Information System (INIS)

    Chan, W.Y.; Huang Hai; Tam, S.-C.

    2003-01-01

    Trichosanthin (TCS) is a ribosome inactivating protein (RIP). It is generally believed that its many biological activities act through inhibition of ribosomes resulting in a decrease in protein synthesis. It has been hypothesized that the rate of entry of TCS into cells to reach ribosomes is an important factor in determining its biological activity. To prove this hypothesis, we have mapped out and compared the intracellular routing of TCS in two cell lines, namely the choriocarcinoma JAR cell line, which is known to be highly sensitive to the toxic effects of TCS, and the hepatoma H35 cell line, to which TCS shows minimal toxicity. Results from laser scanning confocal microscopy indicated that fluorescein isothiocyanate labeled TCS quickly accumulated inside JAR cells within 4 h of incubation while only a low level of fluorescent signals was detected in H35 cells during the same period of time. When TCS was conjugated with gold particles (Au) and its intracellular locations were traced with a transmission electron microscope, it was found that most of TCS were bound to coated pits on the JAR cell surface and were rapidly internalized within an hour. By 4 h, TCS reached almost every cytoplasmic region including ribosomes, and the JAR cell began to degenerate. In H35 cells, however, the binding of TCS to coated pits was not observed, but instead, a small amount of TCS was found to penetrate the cell non-specifically by direct diffusion across the cell membrane. Our observations suggest that most of TCS enter JAR cells via a specific receptor mediated pathway, which allows a swift transport of TCS across the membrane and a rapid accumulation of intracellular TCS, while in H35 cells, TCS takes a slow and non-specific route. The receptor-mediated uptake together with the specific intracellular routing of TCS may partly account for the differential vulnerability of the choriocarcinoma cell line towards the toxicity of TCS

  15. Toll-like receptor 9 mediated responses in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Ingrid Kristine Ohm

    Full Text Available Altered cardiac Toll-like receptor 9 (TLR9 signaling is important in several experimental cardiovascular disorders. These studies have predominantly focused on cardiac myocytes or the heart as a whole. Cardiac fibroblasts have recently been attributed increasing significance in mediating inflammatory signaling. However, putative TLR9-signaling through cardiac fibroblasts remains non-investigated. Thus, our aim was to explore TLR9-signaling in cardiac fibroblasts and investigate the consequence of such receptor activity on classical cardiac fibroblast cellular functions. Cultivated murine cardiac fibroblasts were stimulated with different TLR9 agonists (CpG A, B and C and assayed for the secretion of inflammatory cytokines (tumor necrosis factor α [TNFα], CXCL2 and interferon α/β. Expression of functional cardiac fibroblast TLR9 was proven as stimulation with CpG B and -C caused significant CXCL2 and TNFα-release. These responses were TLR9-specific as complete inhibition of receptor-stimulated responses was achieved by co-treatment with a TLR9-antagonist (ODN 2088 or chloroquine diphosphate. TLR9-stimulated responses were also found more potent in cardiac fibroblasts when compared with classical innate immune cells. Stimulation of cardiac fibroblasts TLR9 was also found to attenuate migration and proliferation, but did not influence myofibroblast differentiation in vitro. Finally, results from in vivo TLR9-stimulation with subsequent fractionation of specific cardiac cell-types (cardiac myocytes, CD45+ cells, CD31+ cells and cardiac fibroblast-enriched cell-fractions corroborated our in vitro data and provided evidence of differentiated cell-specific cardiac responses. Thus, we conclude that cardiac fibroblast may constitute a significant TLR9 responder cell within the myocardium and, further, that such receptor activity may impact important cardiac fibroblast cellular functions.

  16. Evidence that 5-hydroxytryptamine/sub 3/ receptors mediate cytotoxic drug and radiation-evoked emesis

    Energy Technology Data Exchange (ETDEWEB)

    Miner, W.D.; Sanger, G.J.; Turner, D.H.

    1987-08-01

    The involvement of 5-hydroxytryptamine (5-HT) 5-HT/sub 3/ receptors in the mechanisms of severe emesis evoked by cytotoxic drugs or by total body irradiation have been studied in ferrets. Anti-emetic compounds tested were domperidone (a dopamine antagonist), metoclopramide (a gastric motility stimulant and dopamine antagonist at conventional doses, a 5-HT/sub 3/ receptor antagonist at higher doses) and BRL 24924 (a potent gastric motility stimulant and a 5-HT/sub 3/ receptor antagonist). Domperidone or metoclopramide prevented apomorphine-evoked emesis, whereas BRL 24924 did not. Similar doses of domperidone did not prevent emesis evoked by cis-platin or by total body irradiation, whereas metoclopramide or BRL 24924 greatly reduced or prevented these types of emesis. Metoclopramide and BRL 24924 also prevented emesis evoked by a combination of doxorubicin and cyclophosphamide. These results are discussed in terms of a fundamental role for 5-HT/sub 3/ receptors in the mechanisms mediating severely emetogenic cancer treatment therapies.

  17. Loss of Progesterone Receptor-Mediated Actions Induce Preterm Cellular and Structural Remodeling of the Cervix and Premature Birth

    Science.gov (United States)

    Yellon, Steven M.; Dobyns, Abigail E.; Beck, Hailey L.; Kurtzman, James T.; Garfield, Robert E.; Kirby, Michael A.

    2013-01-01

    A decline in serum progesterone or antagonism of progesterone receptor function results in preterm labor and birth. Whether characteristics of premature remodeling of the cervix after antiprogestins or ovariectomy are similar to that at term was the focus of the present study. Groups of pregnant rats were treated with vehicle, a progesterone receptor antagonist (onapristone or mifepristone), or ovariectomized on day 17 postbreeding. As expected, controls given vehicle delivered at term while rats delivered preterm after progesterone receptor antagonist treatment or ovariectomy. Similar to the cervix before term, the preterm cervix of progesterone receptor antagonist-treated rats was characterized by reduced cell nuclei density, decreased collagen content and structure, as well as a greater presence of macrophages per unit area. Thus, loss of nuclear progesterone receptor-mediated actions promoted structural remodeling of the cervix, increased census of resident macrophages, and preterm birth much like that found in the cervix at term. In contrast to the progesterone receptor antagonist-induced advance in characteristics associated with remodeling, ovariectomy-induced loss of systemic progesterone did not affect hypertrophy, extracellular collagen, or macrophage numbers in the cervix. Thus, the structure and macrophage census in the cervix appear sufficient for premature ripening and birth to occur well before term. With progesterone receptors predominantly localized on cells other than macrophages, the findings suggest that interactions between cells may facilitate the loss of progesterone receptor-mediated actions as part of a final common mechanism that remodels the cervix in certain etiologies of preterm and with parturition at term. PMID:24339918

  18. Oxidative stress augments toll-like receptor 8 mediated neutrophilic responses in healthy subjects

    Directory of Open Access Journals (Sweden)

    Matsunaga Kazuto

    2009-06-01

    Full Text Available Abstract Background Excessive oxidative stress has been reported to be generated in inflamed tissues and contribute to the pathogenesis of inflammatory lung diseases, exacerbations of which induced by viral infections are associated with toll-like receptor (TLR activation. Among these receptors, TLR8 has been reported as a key receptor that recognizes single-strand RNA virus. However, it remains unknown whether TLR8 signaling is potentiated by oxidative stress. The aim of this study is to examine whether oxidative stress modulates TLR8 signaling in vitro. Methods Human peripheral blood neutrophils were obtained from healthy non-smokers and stimulated with TLR 7/8 agonist imidazoquinoline resiquimod (R848 in the presence or absence of hydrogen peroxide (H2O2. Neutrophilic responses including cytokine release, superoxide production and chemotaxis were examined, and the signal transduction was also analyzed. Results Activation of TLR8, but not TLR7, augmented IL-8 release. The R848-augmented IL-8 release was significantly potentiated by pretreatment with H2O2 (p L-cysteine reversed this potentiation. The combination of H2O2 and R848 significantly potentiated NF-kB phosphorylation and IkBα degradation. The H2O2-potentiated IL-8 release was suppressed by MG-132, a proteosome inhibitor, and by dexamethasone. The expressions of TLR8, myeloid differentiation primary response gene 88 (MyD88, and tumor necrosis factor receptor-associated factor 6 (TRAF6 were not affected by H2O2. Conclusion TLR8-mediated neutrophilic responses were markedly potentiated by oxidative stress, and the potentiation was mediated by enhanced NF-kB activation. These results suggest that oxidative stress might potentiate the neutrophilic inflammation during viral infection.

  19. The Influence of Receptor-Mediated Interactions on Reaction-Diffusion Mechanisms of Cellular Self-organisation

    Czech Academy of Sciences Publication Activity Database

    Klika, Václav; Baker, R. E.; Headon, D.; Gaffney, E. A.

    2012-01-01

    Roč. 74, č. 4 (2012), s. 935-957 ISSN 0092-8240 Institutional research plan: CEZ:AV0Z20760514 Keywords : reaction-diffusion * receptor-mediated patterning * turing models Subject RIV: BO - Biophysics Impact factor: 2.023, year: 2012 http://www.springerlink.com/content/9713544x6871w4n6/?MUD=MP

  20. IL-6 Overexpression in ERG-Positive Prostate Cancer Is Mediated by Prostaglandin Receptor EP2.

    Science.gov (United States)

    Merz, Constanze; von Mässenhausen, Anne; Queisser, Angela; Vogel, Wenzel; Andrén, Ove; Kirfel, Jutta; Duensing, Stefan; Perner, Sven; Nowak, Michael

    2016-04-01

    Prostate cancer is the most diagnosed cancer in men and multiple risk factors and genetic alterations have been described. The TMPRSS2-ERG fusion event and the overexpression of the transcription factor ERG are present in approximately 50% of all prostate cancer patients, however, the clinical outcome is still controversial. Prostate tumors produce various soluble factors, including the pleiotropic cytokine IL-6, regulating cellular processes such as proliferation and metastatic segregation. Here, we used prostatectomy samples in a tissue microarray format and analyzed the co-expression and the clinicopathologic data of ERG and IL-6 using immunohistochemical double staining and correlated the read-out with clinicopathologic data. Expression of ERG and IL-6 correlated strongly in prostate tissue samples. Forced expression of ERG in prostate tumor cell lines resulted in significantly increased secretion of IL-6, whereas the down-regulation of ERG decreased IL-6 secretion. By dissecting the underlying mechanism in prostate tumor cell lines we show the ERG-mediated up-regulation of the prostanoid receptors EP2 and EP3. The prostanoid receptor EP2 was overexpressed in human prostate cancer tissue. Furthermore, the proliferation rate and IL-6 secretion in DU145 cells was reduced after treatment with EP2-receptor antagonist. Collectively, our study shows that the expression of ERG in prostate cancer is linked to the expression of IL-6 mediated by the prostanoid receptor EP2. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Alpha 1-adrenergic receptor-mediated phosphoinositide hydrolysis and prostaglandin E2 formation in Madin-Darby canine kidney cells. Possible parallel activation of phospholipase C and phospholipase A2

    International Nuclear Information System (INIS)

    Slivka, S.R.; Insel, P.A.

    1987-01-01

    alpha 1-Adrenergic receptors mediate two effects on phospholipid metabolism in Madin-Darby canine kidney (MDCK-D1) cells: hydrolysis of phosphoinositides and arachidonic acid release with generation of prostaglandin E2 (PGE2). The similarity in concentration dependence for the agonist (-)-epinephrine in eliciting these two responses implies that they are mediated by a single population of alpha 1-adrenergic receptors. However, we find that the kinetics of the two responses are quite different, PGE2 production occurring more rapidly and transiently than the hydrolysis of phosphoinositides. The antibiotic neomycin selectively decreases alpha 1-receptor-mediated phosphatidylinositol 4,5-bisphosphate hydrolysis without decreasing alpha 1-receptor-mediated arachidonic acid release and PGE2 generation. In addition, receptor-mediated inositol trisphosphate formation is independent of extracellular calcium, whereas release of labeled arachidonic acid is largely calcium-dependent. Moreover, based on studies obtained with labeled arachidonic acid, receptor-mediated generation of arachidonic acid cannot be accounted for by breakdown of phosphatidylinositol monophosphate, phosphatidylinositol bisphosphate, or phosphatidic acid. Further studies indicate that epinephrine produces changes in formation or turnover of several classes of membrane phospholipids in MDCK cells. We conclude that alpha 1-adrenergic receptors in MDCK cells appear to regulate phospholipid metabolism by the parallel activation of phospholipase C and phospholipase A2. This parallel activation of phospholipases contrasts with models described in other systems which imply sequential activation of phospholipase C and diacylglycerol lipase or phospholipase A2

  2. NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes.

    Science.gov (United States)

    Lalo, Ulyana; Pankratov, Yuri; Kirchhoff, Frank; North, R Alan; Verkhratsky, Alexei

    2006-03-08

    Chemical transmission between neurons and glial cells is an important element of integration in the CNS. Here, we describe currents activated by NMDA in cortical astrocytes, identified in transgenic mice that express enhanced green fluorescent protein under control of the human glial fibrillary acidic protein promoter. Astrocytes were studied by whole-cell voltage clamp either in slices or after gentle nonenzymatic mechanical dissociation. Acutely isolated astrocytes showed a three-component response to glutamate. The initial rapid component was blocked by 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), which is an antagonist of AMPA receptors (IC50, 2 microM), and the NMDA receptor antagonist D-AP-5 blocked the later sustained component (IC50, 0.6 microM). The third component of glutamate application response was sensitive to D,L-threo-beta-benzyloxyaspartate, a glutamate transporter blocker. Fast application of NMDA evoked concentration-dependent inward currents (EC50, 0.3 microM); these showed use-dependent block by (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate (MK-801). These NMDA-evoked currents were linearly dependent on membrane potential and were not affected by extracellular magnesium at concentrations up to 10 mM. Electrical stimulation of axons in layer IV-VI induced a complex inward current in astrocytes situated in the cortical layer II, part of which was sensitive to MK-801 at holding potential -80 mV and was not affected by the AMPA glutamate receptor antagonist NBQX. The fast miniature spontaneous currents were observed in cortical astrocytes in slices as well. These currents exhibited both AMPA and NMDA receptor-mediated components. We conclude that cortical astrocytes express functional NMDA receptors that are devoid of Mg2+ block, and these receptors are involved in neuronal-glial signal transmission.

  3. Thyrotropin modulates receptor-mediated processing of the atrial natriuretic peptide receptor in cultured thyroid cells

    International Nuclear Information System (INIS)

    Tseng, Y.L.; Burman, K.D.; Lahiri, S.; Abdelrahim, M.M.; D'Avis, J.C.; Wartofsky, L.

    1991-01-01

    In a prior study of atrial natriuretic peptide (ANP) binding to cultured thyroid cells, we reported that at 4 C, more than 95% of bound ANP is recovered on cell membranes, with negligible ANP internalization observed. Since ANP binding was inhibited by TSH, we have further studied TSH effects on postbinding ANP processing to determine whether this phenomenon reflects enhanced endocytosis of the ANP-receptor complex. An ANP chase study was initiated by binding [125I] ANP to thyroid cells at 4 C for 2 h, followed by incubation at 37 C. ANP processing was then traced by following 125I activity at various time intervals in three fractions: cell surface membranes, incubation medium, and inside the cells. Radioactivity released into medium represented processed ANP rather than ANP dissociated from surface membranes, since prebound [125I]ANP could not be competitively dissociated by a high concentration of ANP (1 mumol/L) at 37 C. Chase study results showed that prebound ANP quickly disappeared from cell membranes down to 34% by 30 min. Internalized ANP peaked at 10 min, with 21% of initial prebound ANP found inside the cells. At the same time, radioactivity recovered in incubation medium sharply increased between 10-30 min from 8% to 52%. Preincubation of cells with chloroquine (which blocks degradation of the ANP-receptor complex by inhibiting lysosomal hydrolase) caused a 146% increase in internalized [125I]ANP by 30 min (39% compared to 15% control), while medium radioactivity decreased from 52% to 16%, suggesting that processing of the receptor complex is mediated via lysosomal enzymes. In chase studies employing cells pretreated with chloroquine, TSH stimulated the internalization rate of ANP-receptor complex. By 30 min, TSH significantly reduced the membrane-bound ANP, and the decrease was inversely correlated to the increase in internalized radioactivity

  4. Glutamate AMPA/kainate receptors, not GABA(A) receptors, mediate estradiol-induced sex differences in the hypothalamus.

    Science.gov (United States)

    Todd, Brigitte J; Schwarz, Jaclyn M; Mong, Jessica A; McCarthy, Margaret M

    2007-02-15

    Sex differences in brain morphology underlie physiological and behavioral differences between males and females. During the critical perinatal period for sexual differentiation in the rat, gonadal steroids act in a regionally specific manner to alter neuronal morphology. Using Golgi-Cox impregnation, we examined several parameters of neuronal morphology in postnatal day 2 (PN2) rats. We found that in the ventromedial nucleus of the hypothalamus (VMN) and in areas just dorsal and just lateral to the VMN that there was a sex difference in total dendritic spine number (males greater) that was abolished by treating female neonates with exogenous testosterone. Dendritic branching was similarly sexually differentiated and hormonally modulated in the VMN and dorsal to the VMN. We then used spinophilin, a protein that positively correlates with the amount of dendritic spines, to investigate the mechanisms underlying these sex differences. Estradiol, which mediates most aspects of masculinization and is the aromatized product of testosterone, increased spinophilin levels in female PN2 rats to that of males. Muscimol, an agonist at GABA(A) receptors, did not affect spinophilin protein levels in either male or female neonates. Kainic acid, an agonist at glutamatergic AMPA/kainate receptors, mimicked the effect of estradiol in females. Antagonizing AMPA/kainate receptors with NBQX prevented the estradiol-induced increase in spinophilin in females but did not affect spinophilin level in males. (c) 2007 Wiley Periodicals, Inc.

  5. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2012-02-01

    BACKGROUND: Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. RESULTS: Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. CONCLUSION: Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  6. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2011-08-22

    Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  7. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Hatt Hanns

    2011-08-01

    Full Text Available Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  8. Monoclonal antibody to the type I insulin-like growth factor (IGF-I) receptor blocks IGF-I receptor-mediated DNA synthesis: clarification of the mitogenic mechanisms of IGF-I and insulin in human skin fibroblasts

    International Nuclear Information System (INIS)

    Flier, J.S.; Usher, P.; Moses, A.C.

    1986-01-01

    Insulin and insulin-like growth factor type I (IGF-I) stimulate an overlapping spectrum of biological responses in human skin fibroblasts. Although insulin and IGF-I are known to stimulate the incorporation of [ 3 H]thymidine into DNA in these cells, the identify of the receptor(s) that mediates this effect has not been fully clarified. The mouse anti-human IGF-I receptor antibody αIR-3 binds with specificity to IGF-I but not to insulin receptors in human placental membranes; it also specifically inhibits the binding of 125 I-labeled IGF-I but not 125 I-labeled insulin to suspensions of human skin fibroblasts in a dose-dependent manner. αIR-3 competitively inhibits IGF-I-mediated stimulation of [ 3 H]thymidine incorporation into DNA. This inhibition is dependent on the concentration of αIR-3 and in the presence of a fixed antibody concentration can be partially overcome by high concentrations of IGF-I. In contrast, at concentrations of 3 H]thymidine incorporation is not inhibited by αIR-3. However, the incremental effects of higher concentrations (> 1 μg/ml) of insulin on [ 3 H]thymidine incorporation are inhibited by αIR-3. αIR-3 is a highly specific antagonist of IGF-I receptor-mediated mitogenesis in human skin fibroblasts. By using this antibody, it is shown directly that insulin can act through the IGF-I receptor to stimulate DNA synthesis but can also activate this effect through the insulin receptor itself

  9. Receptor binding radiotracers for the angiotensin II receptor: radioiodinated [Sar1, Ile8]angiotensin II

    International Nuclear Information System (INIS)

    Gibson, R.E.; Beauchamp, H.T.; Fioravanti, C.; Brenner, N.; Burns, H.D.

    1994-01-01

    The potential for imaging the angiotensin II receptor was evaluated using the radioiodinated peptide antagonist [ 125 I][Sar 1 , Ile 8 ]angiotensin II. The radioligand provides a receptor-mediated signal in several tissues in rat (kidneys, adrenal and liver). The receptor-mediated signal of 3% ID/g kidney cortex should be sufficient to permit imaging, at least via SPECT. The radiotracer is sensitive to reductions in receptor concentration and can be used to define in vivo dose-occupancy curves of angiotensin II receptor ligands. Receptor-mediated images of [ 123 I][Sar 1 , Ile 8 ]angiotensin II were obtained in the rat kidney and Rhesus monkey liver. (author)

  10. A role for inflammatory mediators in heterologous desensitization of CysLT1 receptor in human monocytes

    Science.gov (United States)

    Capra, Valérie; Accomazzo, Maria Rosa; Gardoni, Fabrizio; Barbieri, Silvia; Rovati, G. Enrico

    2010-01-01

    Cysteinyl-leukotrienes (cysteinyl-LT) are rapidly generated at sites of inflammation and, in addition to their role in asthma, rhinitis, and other immune disorders, are increasingly regarded as significant inflammatory factors in cancer, gastrointestinal, cardiovascular diseases. We recently demonstrated that in monocyte/macrophage–like U937 cells, extracellular nucleotides heterologously desensitize CysLT1 receptor (CysLT1R)-induced Ca2+ transients. Given that monocytes express a number of other inflammatory and chemoattractant receptors, this study was aimed at characterizing transregulation between these different stimuli. We demonstrate that in U937 cells and in primary human monocytes, a series of inflammatory mediators activating Gi-coupled receptor (FPR1, BLT1) desensitize CysLT1R-induced Ca2+ response unidirectionally through activation of PKC. Conversely, PAF-R, exclusively coupled to Gq, cross-desensitizes CysLT1R without the apparent involvement of any kinase. Interestingly, Gs-coupled receptors (β2AR, H1/2R, EP2/4R) are also able to desensitize CysLT1R response through activation of PKA. Heterologous desensitization seems to affect mostly the Gi-mediated signaling of the CysLT1R. The hierarchy of desensitization among agonists may be important for leukocyte signal processing at the site of inflammation. Considering that monocytes/macrophages are likely to be the major source of cysteinyl-LT in many immunological and inflammatory processes, shedding light on how their receptors are regulated will certainly help to better understand the role of these cells in orchestrating this complex network of integrated signals. PMID:19965602

  11. Ran GTPase promotes cancer progression via Met receptor-mediated downstream signaling

    Science.gov (United States)

    Yuen, Hiu-Fung; Chan, Ka-Kui; Platt-Higgins, Angela; Dakir, El-Habib; Matchett, Kyle B.; Haggag, Yusuf Ahmed; Jithesh, Puthen V.; Habib, Tanwir; Faheem, Ahmed; Dean, Fennell A.; Morgan, Richard; Rudland, Philip S.; El-Tanani, Mohamed

    2016-01-01

    It has been shown previously that cancer cells with an activated oncogenic pathway, including Met activation, require Ran for growth and survival. Here, we show that knockdown of Ran leads to a reduction of Met receptor expression in several breast and lung cancer cell lines. This, in turn suppressed HGF expression and the Met-mediated activation of the Akt pathway, as well as cell adhesion, migration, and invasion. In a cell line model where Met amplification has previously been shown to contribute to gefitinib resistance, Ran knockdown sensitized cells to gefitinib-mediated inhibition of Akt and ERK1/2 phosphorylation and consequently reduced cell proliferation. We further demonstrate that Met reduction-mediated by knockdown of Ran, occurs at the post-transcriptional level, probably via a matrix metalloproteinase. Moreover, the level of immunoreactive Ran and Met are positively associated in human breast cancer specimens, suggesting that a high level of Ran may be a pre-requisite for Met overexpression. Interestingly, a high level of immunoreactive Ran dictates the prognostic significance of Met, indicating that the co-overexpression of Met and Ran may be associated with cancer progression and could be used in combination as a prognostic indicator. PMID:27716616

  12. Shc adaptor proteins are key transducers of mitogenic signaling mediated by the G protein-coupled thrombin receptor

    DEFF Research Database (Denmark)

    Chen, Y; Grall, D; Salcini, A E

    1996-01-01

    The serine protease thrombin activates G protein signaling systems that lead to Ras activation and, in certain cells, proliferation. Whereas the steps leading to Ras activation by G protein-coupled receptors are not well defined, the mechanisms of Ras activation by receptor tyrosine kinases have......-insensitive proteins appear to mediate this effect, since (i) pertussis toxin pre-treatment of cells does not blunt the action of thrombin and (ii) Shc phosphorylation on tyrosine can be stimulated by the muscarinic m1 receptor. Shc phosphorylation does not appear to involve protein kinase C, since the addition of 4...

  13. Receptor-mediated endocytosis of low density lipoproteins in aortic endothelial cells

    International Nuclear Information System (INIS)

    Sanan, D.A.

    1986-04-01

    Lipoprotein binding and metabolism in actively-dividing (subconfluent) and quiescent (postconfluent) bovine aortic endothelial cells (ECs) were qualitatively investigated by fluorescence microscopy using dioctadecylindocarbocyanine-labelled lipoproteins and by indirect immunofluorescence microscopy. LDL and acetylated-LDL (AcLDL) were seen bound to the surfaces of subconfluent ECs (at 4 degrees C or at 37 degrees C), as a random distribution of punctate foci. ECs therefore closely resembled fibroblasts in the distribution of LDL receptors on their surfaces. No binding of LDL was seen on postconfluent EC surfaces by either direct or indirect fluorescence microscopy. The patterns of AcLDL binding on postconfluent ECs resembled those on subconfluent ECs. Intracellular LDL and AcLDL occurred as perinuclear accumulations of large fluorescent disc-shaped profiles in subconfluent ECs. These accumulations were shown to arise from surface-bound material by pulse-chase experiments. Intracellular LDL was absent in the majority of postconfluent ECs, while AcLDL accumulation was massive. 'Wounding' of cultures allowed simultaneous assessment of lipoprotein metabolism in quiescent and actively-dividing areas of the same culture. It is concluded that postconfluent quiescent bovine aortic ECs in vitro metabolise virtually no LDL via the LDL-receptor pathway due to a vanishingly low number of LDL receptors. This contrasts with the ability of postconfluent cells to metabolise relatively large amounts of AcLDL via a receptor-mediated mechanism. The significance of these conclusions is discussed with respect to the interaction of plasma lipoproteins with the endothelium in vivo. 301 refs

  14. Activation of Brain Somatostatin Signaling Suppresses CRF Receptor-Mediated Stress Response.

    Science.gov (United States)

    Stengel, Andreas; Taché, Yvette F

    2017-01-01

    Corticotropin-releasing factor (CRF) is the hallmark brain peptide triggering the response to stress and mediates-in addition to the stimulation of the hypothalamus-pituitary-adrenal (HPA) axis-other hormonal, behavioral, autonomic and visceral components. Earlier reports indicate that somatostatin-28 injected intracerebroventricularly counteracts the acute stress-induced ACTH and catecholamine release. Mounting evidence now supports that activation of brain somatostatin signaling exerts a broader anti-stress effect by blunting the endocrine, autonomic, behavioral (with a focus on food intake) and visceral gastrointestinal motor responses through the involvement of distinct somatostatin receptor subtypes.

  15. The SRC homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis.

    Science.gov (United States)

    Barbieri, M Alejandro; Kong, Chen; Chen, Pin-I; Horazdovsky, Bruce F; Stahl, Philip D

    2003-08-22

    Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.

  16. Novel time-dependent vascular actions of {delta}{sup 9}-tetrahydrocannabinol mediated by peroxisome proliferator-activated receptor gamma

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, Saoirse E [School of Biomedical Sciences, E Floor, Queen' s Medical Centre, University of Nottingham, Nottingham NG7 2UH (United Kingdom); Tarling, Elizabeth J [School of Biomedical Sciences, E Floor, Queen' s Medical Centre, University of Nottingham, Nottingham NG7 2UH (United Kingdom); Bennett, Andrew J [School of Biomedical Sciences, E Floor, Queen' s Medical Centre, University of Nottingham, Nottingham NG7 2UH (United Kingdom); Kendall, David A [School of Biomedical Sciences, E Floor, Queen' s Medical Centre, University of Nottingham, Nottingham NG7 2UH (United Kingdom); Randall, Michael D [School of Biomedical Sciences, E Floor, Queen' s Medical Centre, University of Nottingham, Nottingham NG7 2UH (United Kingdom)

    2005-11-25

    Cannabinoids have widespread effects on the cardiovascular system, only some of which are mediated via G-protein-coupled cell surface receptors. The active ingredient of cannabis, {delta}{sup 9}-tetrahydrocannabinol (THC), causes acute vasorelaxation in various arteries. Here we show for the first time that THC also causes slowly developing vasorelaxation through activation of peroxisome proliferator-activated receptors gamma (PPAR{gamma}). In vitro, THC (10 {mu}M) caused time-dependent vasorelaxation of rat isolated arteries. Time-dependent vasorelaxation to THC was similar to that produced by the PPAR{gamma} agonist rosiglitazone and was inhibited by the PPAR{gamma} antagonist GW9662 (1 {mu}M), but not the cannabinoid CB{sub 1} receptor antagonist AM251 (1 {mu}M). Time-dependent vasorelaxation to THC requires an intact endothelium, nitric oxide, production of hydrogen peroxide, and de novo protein synthesis. In transactivation assays in cultured HEK293 cells, THC-activated PPAR{gamma}, transiently expressed in combination with retinoid X receptor {alpha} and a luciferase reporter gene, in a concentration-dependent manner (100 nM-10 {mu}M). In vitro incubation with THC (1 or 10 {mu}M, 8 days) stimulated adipocyte differentiation in cultured 3T3L1 cells, a well-accepted property of PPAR{gamma} ligands. The present results provide strong evidence that THC is a PPAR{gamma} ligand, stimulation of which causes time-dependent vasorelaxation, implying some of the pleiotropic effects of cannabis may be mediated by nuclear receptors.

  17. Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation

    KAUST Repository

    Gao, Virginia; Suzuki, Akinobu; Magistretti, Pierre J.; Lengacher, Sylvain; Pollonini, Gabriella; Steinman, Michael Q.; Alberini, Cristina M.

    2016-01-01

    Emotionally relevant experiences form strong and long-lasting memories by critically engaging the stress hormone/neurotransmitter noradrenaline, which mediates and modulates the consolidation of these memories. Noradrenaline acts through adrenergic receptors (ARs), of which β2- Adrenergic receptors (βARs) are of particular importance. The differential anatomical and cellular distribution of βAR subtypes in the brain suggests that they play distinct roles in memory processing, although much about their specific contributions and mechanisms of action remains to be understood. Here we show that astrocytic rather than neuronal β2ARs in the hippocampus play a key role in the consolidation of a fear-based contextual memory. These hippocampal β2ARs, but not β1ARs, are coupled to the training-dependent release of lactate from astrocytes, which is necessary for long- Term memory formation and for underlying molecular changes. This key metabolic role of astrocytic β2ARs may represent a novel target mechanism for stress-related psychopathologies and neurodegeneration.

  18. Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation

    KAUST Repository

    Gao, Virginia

    2016-07-12

    Emotionally relevant experiences form strong and long-lasting memories by critically engaging the stress hormone/neurotransmitter noradrenaline, which mediates and modulates the consolidation of these memories. Noradrenaline acts through adrenergic receptors (ARs), of which β2- Adrenergic receptors (βARs) are of particular importance. The differential anatomical and cellular distribution of βAR subtypes in the brain suggests that they play distinct roles in memory processing, although much about their specific contributions and mechanisms of action remains to be understood. Here we show that astrocytic rather than neuronal β2ARs in the hippocampus play a key role in the consolidation of a fear-based contextual memory. These hippocampal β2ARs, but not β1ARs, are coupled to the training-dependent release of lactate from astrocytes, which is necessary for long- Term memory formation and for underlying molecular changes. This key metabolic role of astrocytic β2ARs may represent a novel target mechanism for stress-related psychopathologies and neurodegeneration.

  19. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways.

    Science.gov (United States)

    Fantl, W J; Escobedo, J A; Martin, G A; Turck, C W; del Rosario, M; McCormick, F; Williams, L T

    1992-05-01

    The receptor for platelet-derived growth factor (PDGF) binds two proteins containing SH2 domains, GTPase activating protein (GAP) and phosphatidylinositol 3-kinase (PI3-kinase). The sites on the receptor that mediate this interaction were identified by using phosphotyrosine-containing peptides representing receptor sequences to block specifically binding of either PI3-kinase or GAP. These results suggested that PI3-kinase binds two phosphotyrosine residues, each located in a 5 aa motif with an essential methionine at the fourth position C-terminal to the tyrosine. Point mutations at these sites caused a selective elimination of PI3-kinase binding and loss of PDGF-stimulated DNA synthesis. Mutation of the binding site for GAP prevented the receptor from associating with or phosphorylating GAP, but had no effect on PI3-kinase binding and little effect on DNA synthesis. Therefore, GAP and PI3-kinase interact with the receptor by binding to different phosphotyrosine-containing sequence motifs.

  20. Receptor-mediated internalization of [3H]-neurotensin in synaptosomal preparations from rat neostriatum.

    Science.gov (United States)

    Nguyen, Ha Minh Ky; Cahill, Catherine M; McPherson, Peter S; Beaudet, Alain

    2002-06-01

    Following its binding to somatodendritic receptors, the neuropeptide neurotensin (NT) internalizes via a clathrin-mediated process. In the present study, we investigated whether NT also internalizes presynaptically using synaptosomes from rat neostriatum, a region in which NT1 receptors are virtually all presynaptic. Binding of [(3)H]-NT to striatal synaptosomes in the presence of levocabastine to block NT2 receptors is specific, saturable, and has NT1 binding properties. A significant fraction of the bound radioactivity is resistant to hypertonic acid wash indicating that it is internalized. Internalization of [(3)H]-NT, like that of [(125)I]-transferrin, is blocked by sucrose and low temperature, consistent with endocytosis occurring via a clathrin-dependent pathway. However, contrary to what was reported at the somatodendritic level, neither [(3)H]-NT nor [(125)I]-transferrin internalization in synaptosomes is sensitive to the endocytosis inhibitor phenylarsine oxide. Moreover, treatment of synaptosomes with monensin, which prevents internalized receptors from recycling to the plasma membrane, reduces [(3)H]-NT binding and internalization, suggesting that presynaptic NT1 receptors, in contrast to somatodendritic ones, are recycled back to the plasma membrane. Taken together, these results suggest that NT internalizes in nerve terminals via an endocytic pathway that is related to, but is mechanistically distinct from that responsible for NT internalization in nerve cell bodies.

  1. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor α to epidermal growth factor receptors promotes cell proliferation

    International Nuclear Information System (INIS)

    Anklesaria, P.; Greenberger, J.S.; Teixido, J.; Laiho, M.; Massague, J.; Pierce, J.H.

    1990-01-01

    The precursor for transforming growth factor α, pro-TGF-α, is a cell surface glycoprotein that can establish contact with epidermal growth factor (EGF) receptors on adjacent cells. To examine whether the pro-TGF-α/EGF receptor pair can simultaneously mediate cell adhesion and promote cell proliferation, the authors have expressed pro-TGF-α in a bone marrow stromal cell line labeled with [ 35 S] cysteine. Expression of pro-TGF-α allows these cells to support long-term attachment of an EGF/interleukin-3-dependent hematopoietic progenitor cell line that expresses EGF receptors but is unable to adhere to normal stroma. This interaction is inhibited by soluble EGF receptor ligands. Further, the hematopoietic progenitor cells replicate their DNA while they are attached to the stromal cell layer and become foci of sustained cell proliferation. Thus, pro-TGF-α and the EGF receptor can function as mediators of intercellular adhesion and this interaction may promote a mitogenic response. They propose the term juxtacrine to designate this form of stimulation between adjacent cells

  2. Therapeutic potential of α7 nicotinic receptor agonists to regulate neuroinflammation in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Laura Foucault-Fruchard

    2017-01-01

    Full Text Available Neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, are all characterized by a component of innate immunity called neuroinflammation. Neuronal loss and neuroinflammation are two phenomena closely linked. Hence, the neuroinflammation is a relevant target for the management of the neurodegenerative diseases given that, to date, there is no treatment to stop neuronal loss. Several studies have investigated the potential effects of activators of alpha 7 nicotinic acetylcholine receptors in animal models of neurodegenerative diseases. These receptors are widely distributed in the central nervous system. After activation, they seem to mediate the cholinergic anti-inflammatory pathway in the brain. This anti-inflammatory pathway, first described in periphery, regulates activation of microglial cells considered as the resident macrophage population of the central nervous system. In this article, we shortly review the agonists of the alpha 7 nicotinic acetylcholine receptors that have been evaluated in vivo and we focused on the selective positive allosteric modulators of these receptors. These compounds represent a key element to enhance receptor activity only in the presence of the endogenous agonist.

  3. Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Alfonso Urbanucci

    2017-06-01

    Full Text Available Global changes in chromatin accessibility may drive cancer progression by reprogramming transcription factor (TF binding. In addition, histone acetylation readers such as bromodomain-containing protein 4 (BRD4 have been shown to associate with these TFs and contribute to aggressive cancers including prostate cancer (PC. Here, we show that chromatin accessibility defines castration-resistant prostate cancer (CRPC. We show that the deregulation of androgen receptor (AR expression is a driver of chromatin relaxation and that AR/androgen-regulated bromodomain-containing proteins (BRDs mediate this effect. We also report that BRDs are overexpressed in CRPCs and that ATAD2 and BRD2 have prognostic value. Finally, we developed gene stratification signature (BROMO-10 for bromodomain response and PC prognostication, to inform current and future trials with drugs targeting these processes. Our findings provide a compelling rational for combination therapy targeting bromodomains in selected patients in which BRD-mediated TF binding is enhanced or modified as cancer progresses.

  4. The Role of PPAR Receptors and Leukotriene B4 Receptors in Mediating the Effects of LY293111 in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Thomas E. Adrian

    2008-01-01

    Full Text Available Pancreatic cancer is a devastating disease in which current therapies are inadequate. Separate lines of research have identified the 5-lipoxygenase/leukotriene B4 receptor pathway and the PPAR pathway as potential targets for prevention or treatment of this disease. LY293111 was originally designed as a potent leukotriene B4 receptor antagonist for treatment of inflammatory conditions. LY293111 was also known to have inhibitory effects on 5-lipoxygenase, which is upstream of the production of leukotrienes. LY293111 was shown to have potent anticancer effects in pancreatic cancer and several other solid malignancies, where it caused cell cycle arrest and marked apoptosis. Subsequently, it came to light that LY293111 exhibited PPAR agonist activity in addition to its effects on the 5-lipoxygenase pathway. This raises the question of which of the two targets is of greatest importance with regard to the anticancer effects of this agent. The evidence to date is not conclusive, but suggests that the effects of LY293111 may be mediated by both LTB4 receptors and PPAR.

  5. Decreased α1-adrenergic receptor-mediated inositide hydrolysis in neurons from hypertensive rat brain

    International Nuclear Information System (INIS)

    Feldstein, J.B.; Gonzales, R.A.; Baker, S.P.; Sumners, C.; Crews, F.T.; Raizada, M.K.

    1986-01-01

    The expression of α 1 -adrenergic receptors and norepinephrine (NE)-stimulated hydrolysis of inositol phospholipid has been studied in neuronal cultures from the brains of normotensive (Wistar-Kyoto, WKY) and spontaneously hypertensive (SH) rats. Binding of 125 I-1-[β-(4-hydroxyphenyl)-ethyl-aminomethyl] tetralone (HEAT) to neuronal membranes was 68-85% specific and was rapid. Competition-inhibition experiments with various agonists and antagonists suggested that 125 I-HEAT bound selectively to α 1 -adrenergic receptors. Specific binding of 125 I-HEAT to neuronal membranes from SH rat brain cultures was 30-45% higher compared with binding in WKY normotensive controls. This increase was attributed to an increase in the number of α 1 -adrenergic receptors on SH rat brain neurons. Incubation of neuronal cultures of rat brain from both strains with NE resulted in a concentration-dependent stimulation of release of inositol phosphates, although neurons from SH rat brains were 40% less responsive compared with WKY controls. The decrease in responsiveness of SH rat brain neurons to NE, even though the α 1 -adrenergic receptors are increased, does not appear to be due to a general defect in membrane receptors and postreceptor signal transduction mechanisms. This is because neither the number of muscarinic-cholinergic receptors nor the carbachol-stimulated release of inositol phosphates is different in neuronal cultures from the brains of SH rats compared with neuronal cultures from the brains of WKY rats. These observations suggest that the increased expression of α 1 -adrenergic receptors does not parallel the receptor-mediated inositol phosphate hydrolysis in neuronal cultures from SH rat brain

  6. Estrogen promotes megakaryocyte polyploidization via estrogen receptor beta-mediated transcription of GATA1.

    Science.gov (United States)

    Du, C; Xu, Y; Yang, K; Chen, S; Wang, X; Wang, S; Wang, C; Shen, M; Chen, F; Chen, M; Zeng, D; Li, F; Wang, T; Wang, F; Zhao, J; Ai, G; Cheng, T; Su, Y; Wang, J

    2017-04-01

    Estrogen is reported to be involved in thrombopoiesis and the disruption of its signaling may cause myeloproliferative disease, yet the underlying mechanisms remain largely unknown. GATA-binding factor 1 (GATA1) is a key regulator of megakaryocyte (MK) differentiation and its deficiency will lead to megakaryoblastic leukemia. Here we show that estrogen can dose-dependently promote MK polyploidization and maturation via activation of estrogen receptor beta (ERβ), accompanied by a significant upregulation of GATA1. Chromatin immunoprecipitation and a dual luciferase assay demonstrate that ERβ can directly bind the promoter region of GATA1 and activate its transcription. Steroid receptor coactivator 3 (SRC3) is involved in ERβ-mediated GATA1 transcription. The deficiency of ERβ or SRC3, similar to the inhibition of GATA1, leads to the impediment of estrogen-induced MK polyploidization and platelet production. Further investigations reveal that signal transducer and activator of transcription 1 signaling pathway downstream of GATA1 has a crucial role in estrogen-induced MK polyploidization, and ERβ-mediated GATA1 upregulation subsequently enhances nuclear factor erythroid-derived 2 expression, thereby promoting proplatelet formation and platelet release. Our study provides a deep insight into the molecular mechanisms of estrogen signaling in regulating thrombopoiesis and the pathogenesis of ER deficiency-related leukemia.

  7. β-Adrenergic receptor-mediated suppression of interleukin 2 receptors in human lymphocytes

    International Nuclear Information System (INIS)

    Feldman, R.D.; Hunninghake, G.W.; McArdle, W.L.

    1987-01-01

    Adrenergic receptor agonists are know to attenuate the proliferative response of human lymphocytes after activation; however, their mechanism of action is unknown. Since expression of interleukin 2 (IL-2) receptors is a prerequisite for proliferation, the effect of β-adrenergic receptor agonists on lymphocyte IL-2 receptors was studied on both mitogen-stimulated lymphocytes and IL-2-dependent T lymphocyte cell lines. In both cell types the β-adrenergic receptor agonist isoproterenol blocked the expression of IL-2 receptors, as determined with the IL-2 receptor anti-TAC antibody. To determine the effect of β-adrenergic agonists on expression of the high affinity IL-2 receptors, [ 125 I]IL-2 binding studies were performed at concentrations selective for high affinity sites. No significant effect of β-adrenergic agonists on high affinity IL-2 receptor sites could be detected. The data demonstrate that β-adrenergic receptor agonists down-regulate IL-2 receptors primarily affecting low affinity sites

  8. MEL-18 loss mediates estrogen receptor-α downregulation and hormone independence.

    Science.gov (United States)

    Lee, Jeong-Yeon; Won, Hee-Young; Park, Ji-Hye; Kim, Hye-Yeon; Choi, Hee-Joo; Shin, Dong-Hui; Kang, Ju-Hee; Woo, Jong-Kyu; Oh, Seung-Hyun; Son, Taekwon; Choi, Jin-Woo; Kim, Sehwan; Kim, Hyung-Yong; Yi, Kijong; Jang, Ki-Seok; Oh, Young-Ha; Kong, Gu

    2015-05-01

    The polycomb protein MEL-18 has been proposed as a tumor suppressor in breast cancer; however, its functional relevance to the hormonal regulation of breast cancer remains unknown. Here, we demonstrated that MEL-18 loss contributes to the hormone-independent phenotype of breast cancer by modulating hormone receptor expression. In multiple breast cancer cohorts, MEL-18 was markedly downregulated in triple-negative breast cancer (TNBC). MEL-18 expression positively correlated with the expression of luminal markers, including estrogen receptor-α (ER-α, encoded by ESR1). MEL-18 loss was also associated with poor response to antihormonal therapy in ER-α-positive breast cancer. Furthermore, whereas MEL-18 loss in luminal breast cancer cells resulted in the downregulation of expression and activity of ER-α and the progesterone receptor (PR), MEL-18 overexpression restored ER-α expression in TNBC. Consistently, in vivo xenograft experiments demonstrated that MEL-18 loss induces estrogen-independent growth and tamoxifen resistance in luminal breast cancer, and that MEL-18 overexpression confers tamoxifen sensitivity in TNBC. MEL-18 suppressed SUMOylation of the ESR1 transactivators p53 and SP1, thereby driving ESR1 transcription. MEL-18 facilitated the deSUMOylation process by inhibiting BMI-1/RING1B-mediated ubiquitin-proteasomal degradation of SUMO1/sentrin-specific protease 1 (SENP1). These findings demonstrate that MEL-18 is a SUMO-dependent regulator of hormone receptors and suggest MEL-18 expression as a marker for determining the antihormonal therapy response in patients with breast cancer.

  9. Serotonin(2) receptors mediate respiratory recovery after cervical spinal cord hemisection in adult rats.

    Science.gov (United States)

    Zhou, S Y; Basura, G J; Goshgarian, H G

    2001-12-01

    The aim of the present study was to specifically investigate the involvement of serotonin [5-hydroxytryptamine (5-HT(2))] receptors in 5-HT-mediated respiratory recovery after cervical hemisection. Experiments were conducted on C(2) spinal cord-hemisected, anesthetized (chloral hydrate, 400 mg/kg ip), vagotomized, pancuronium- paralyzed, and artificially ventilated female Sprague-Dawley rats in which CO(2) levels were monitored and maintained. Twenty-four hours after spinal hemisection, the ipsilateral phrenic nerve displayed no respiratory-related activity indicative of a functionally complete hemisection. Intravenous administration of the 5-HT(2A/2C)-receptor agonist (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) induced respiratory-related activity in the phrenic nerve ipsilateral to hemisection under conditions in which CO(2) was maintained at constant levels and augmented the activity induced under conditions of hypercapnia. The effects of DOI were found to be dose dependent, and the recovery of activity could be maintained for up to 2 h after a single injection. DOI-induced recovery was attenuated by the 5-HT(2)-receptor antagonist ketanserin but not with the 5-HT(2C)-receptor antagonist RS-102221, suggesting that 5-HT(2A) and not necessarily 5-HT(2C) receptors may be involved in the induction of respiratory recovery after cervical spinal cord injury.

  10. Halothane inhibits the cholinergic-receptor-mediated influx of calcium in primary culture of bovine adrenal medulla cells

    International Nuclear Information System (INIS)

    Yashima, N.; Wada, A.; Izumi, F.

    1986-01-01

    Adrenal medulla cells are cholinoceptive cells. Stimulation of the acetylcholine receptor causes the influx of Ca to the cells, and Ca acts as the coupler of the stimulus-secretion coupling. In this study, the authors investigated the effects of halothane on the receptor-mediated influx of 45 Ca using cultured bovine adrenal medulla cells. Halothane at clinical concentrations (0.5-2%) inhibited the influx of 45 Ca caused by carbachol, with simultaneous inhibition of catecholamine secretion. The influx of 45 Ca and the secretion of catecholamines caused by K depolarization were inhibited by a large concentration of Mg, which competes with Ca at Ca channels, but not inhibited by halothane. Inhibition of the 45 Ca influx by halothane was not overcome by increase in the carbachol concentration. Inhibition of the 45 Ca influx by halothane was examined in comparison with that caused by a large concentration of Mg by the application of Scatchard analysis as the function of the external Ca concentration. Halothane decreased the maximal influx of 45 Ca without altering the apparent kinetic constant of Ca to Ca channels. On the contrary, a large concentration of Mg increased the apparent kinetic constant without altering the maximal influx of 45 Ca. Based on these findings, the authors suggest that inhibition of the 45 Ca influx by halothane was not due to the direct competitive inhibition of Ca channels, nor to the competitive antagonism of agonist-receptor interaction. As a possibility, halothane seems to inhibit the receptor-mediated activation of Ca channels through the interference of coupling between the receptor and Ca channels

  11. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling*♦

    Science.gov (United States)

    Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu.; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I.; Nienhaus, G. Ulrich; Gierschik, Peter

    2015-01-01

    The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca2+. The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca2+ and regulation of Ca2+-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca2+ release from intracellular stores; (iii) Ca2+ entry from the extracellular compartment; and (iv) nuclear translocation of the Ca2+-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca2+ signaling. PMID:25903139

  12. The Pyrexia transient receptor potential channel mediates circadian clock synchronization to low temperature cycles in Drosophila melanogaster.

    Science.gov (United States)

    Wolfgang, Werner; Simoni, Alekos; Gentile, Carla; Stanewsky, Ralf

    2013-10-07

    Circadian clocks are endogenous approximately 24 h oscillators that temporally regulate many physiological and behavioural processes. In order to be beneficial for the organism, these clocks must be synchronized with the environmental cycles on a daily basis. Both light : dark and the concomitant daily temperature cycles (TCs) function as Zeitgeber ('time giver') and efficiently entrain circadian clocks. The temperature receptors mediating this synchronization have not been identified. Transient receptor potential (TRP) channels function as thermo-receptors in animals, and here we show that the Pyrexia (Pyx) TRP channel mediates temperature synchronization in Drosophila melanogaster. Pyx is expressed in peripheral sensory organs (chordotonal organs), which previously have been implicated in temperature synchronization. Flies deficient for Pyx function fail to synchronize their behaviour to TCs in the lower range (16-20°C), and this deficit can be partially rescued by introducing a wild-type copy of the pyx gene. Synchronization to higher TCs is not affected, demonstrating a specific role for Pyx at lower temperatures. In addition, pyx mutants speed up their clock after being exposed to TCs. Our results identify the first TRP channel involved in temperature synchronization of circadian clocks.

  13. The GPCR membrane receptor, DopEcR, mediates the actions of both dopamine and ecdysone to control sex pheromone perception in an insect

    Directory of Open Access Journals (Sweden)

    Antoine eAbrieux

    2014-09-01

    Full Text Available Olfactory information mediating sexual behavior is crucial for reproduction in many animals, including insects. In male moths, the macroglomerular complex of the primary olfactory center, the antennal lobe (AL is specialized in the treatment of information on the female-emitted sex pheromone. Evidence is accumulating that modulation of behavioral pheromone responses occurs through neuronal plasticity via the action of hormones and/or catecholamines. We recently showed that a G-protein-coupled receptor (GPCR, AipsDopEcR, with its homologue known in Drosophila for its double affinity to the main insect steroid hormone 20-hydroxyecdysone (20E, and dopamine (DA, present in the ALs, is involved in the behavioral response to pheromone in the moth, Agrotis ipsilon. Here we tested the role of AipsDopEcR as compared to nuclear 20E receptors in central pheromone processing combining receptor inhibition with intracellular recordings of AL neurons. We show that the sensitivity of AL neurons for the pheromone in males decreases strongly after AipsDopEcR-dsRNA injection but also after inhibition of nuclear 20E receptors. Moreover we tested the involvement of 20E and DA in the receptor-mediated behavioral modulation in wind tunnel experiments, using ligand applications and receptor inhibition treatments. We show that both ligands are necessary and act on AipsDopEcR-mediated behavior. Altogether these results indicate that the GPCR membrane receptor, AipsDopEcR, controls sex pheromone perception through the action of both 20E and DA in the central nervous system, probably in concert with 20E action through nuclear receptors.

  14. Receptor-mediated endocytosis of polypeptide hormones is a regulated process: inhibition of [125I]iodoinsulin internalization in hypoinsulinemic diabetes of rat and man

    International Nuclear Information System (INIS)

    Carpentier, J.L.; Robert, A.; Grunberger, G.; van Obberghen, E.; Freychet, P.; Orci, L.; Gorden, P.

    1986-01-01

    Much data suggest that receptor-mediated endocytosis is regulated in states of hormone excess. Thus, in hyperinsulinemic states there is an accelerated loss of cell surface insulin receptors. In the present experiments we addressed this question in hypoinsulinemic states, in which insulin binding to cell surface receptors is generally increased. In hepatocytes obtained from hypoinsulinemic streptozotocin-induced diabetic rats, [ 125 I]iodoglucagon internalization was increased, while at the same time [ 125 I]iodoinsulin internalization was decreased. The defect in [ 125 I]iodoinsulin internalization was corrected by insulin treatment of the animal. In peripheral blood monocytes from patients with type I insulinopenic diabetes, internalization of [ 125 I]iodoinsulin was impaired; this defect was not present in insulin-treated patients. These data in the hypoinsulinemic rat and human diabetes suggest that receptor-mediated endocytosis is regulated in states of insulin deficiency as well as insulin excess. Delayed or reduced internalization of the insulin-receptor complex could amplify the muted signal caused by deficient hormone secretion

  15. Prenatal Alcohol Exposure Increases Histamine H3 Receptor-Mediated Inhibition of Glutamatergic Neurotransmission in Rat Dentate Gyrus.

    Science.gov (United States)

    Varaschin, Rafael K; Allen, Nyika A; Rosenberg, Martina J; Valenzuela, C Fernando; Savage, Daniel D

    2018-02-01

    We have reported that prenatal alcohol exposure (PAE)-induced deficits in dentate gyrus, long-term potentiation (LTP), and memory are ameliorated by the histamine H 3 receptor inverse agonist ABT-239. Curiously, ABT-239 did not enhance LTP or memory in control offspring. Here, we initiated an investigation of how PAE alters histaminergic neurotransmission in the dentate gyrus and other brain regions employing combined radiohistochemical and electrophysiological approaches in vitro to examine histamine H 3 receptor number and function. Long-Evans rat dams voluntarily consumed either a 0% or 5% ethanol solution 4 hours each day throughout gestation. This pattern of drinking, which produces a mean peak maternal serum ethanol concentration of 60.8 ± 5.8 mg/dl, did not affect maternal weight gain, litter size, or offspring birthweight. Radiohistochemical studies in adult offspring revealed that specific [ 3 H]-A349821 binding to histamine H 3 receptors was not different in PAE rats compared to controls. However, H 3 receptor-mediated G i /G o protein-effector coupling, as measured by methimepip-stimulated [ 35 S]-GTPγS binding, was significantly increased in cerebral cortex, cerebellum, and dentate gyrus of PAE rats compared to control. A LIGAND analysis of detailed methimepip concentration-response curves in dentate gyrus indicated that PAE significantly elevates receptor-effector coupling by a lower affinity H 3 receptor population without significantly altering the affinities of H 3 receptor subpopulations. In agreement with the [ 35 S]-GTPγS studies, a similar range of methimepip concentrations also inhibited electrically evoked field excitatory postsynaptic potential responses and increased paired-pulse ratio, a measure of decreased glutamate release, to a significantly greater extent in dentate gyrus slices from PAE rats than in controls. These results suggest that a PAE-induced elevation in H 3 receptor-mediated inhibition of glutamate release from

  16. The TAM-family receptor Mer mediates production of HGF through the RhoA-dependent pathway in response to apoptotic cells.

    Science.gov (United States)

    Park, Hyun-Jung; Baen, Ji-Yeon; Lee, Ye-Ji; Choi, Youn-Hee; Kang, Jihee Lee

    2012-08-01

    The TAM receptor protein tyrosine kinases Tyro3, Axl, and Mer play important roles in macrophage function. We investigated the roles of the TAM receptors in mediating the induction of hepatocyte growth factor (HGF) during the interaction of macrophages with apoptotic cells. Mer-specific neutralizing antibody, small interfering RNA (siRNA), and a recombinant Mer protein (Mer/Fc) inhibited HGF mRNA and protein expression, as well as activation of RhoA, Akt, and specific mitogen-activated protein (MAP) kinases in response to apoptotic cells. Inhibition of Axl or Tyro3 with specific antibodies, siRNA, or Fc-fusion proteins did not prevent apoptotic cell-induced HGF mRNA and protein expression and did not inhibit activation of the postreceptor signaling molecules RhoA and certain MAP kinases, including extracellular signal-regulated protein kinase and c-Jun NH(2)-terminal kinase. However, Axl- and Tyro3-specific blockers did inhibit the activation of Akt and p38 MAP kinase in response to apoptotic cells. In addition, none of the TAM receptors mediated the effects of apoptotic cells on transforming growth factor-β or epidermal growth factor mRNA expression. However, they were involved in the induction of vascular endothelial growth factor mRNA expression. Our data provide evidence that when macrophages interact with apoptotic cells, only Mer of the TAM-family receptors is responsible for mediating transcriptional HGF production through a RhoA-dependent pathway.

  17. Drosophila lipophorin receptors mediate the uptake of neutral lipids in oocytes and imaginal disc cells by an endocytosis-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Esmeralda Parra-Peralbo

    2011-02-01

    Full Text Available Lipids are constantly shuttled through the body to redistribute energy and metabolites between sites of absorption, storage, and catabolism in a complex homeostatic equilibrium. In Drosophila, lipids are transported through the hemolymph in the form of lipoprotein particles, known as lipophorins. The mechanisms by which cells interact with circulating lipophorins and acquire their lipidic cargo are poorly understood. We have found that lipophorin receptor 1 and 2 (lpr1 and lpr2, two partially redundant genes belonging to the Low Density Lipoprotein Receptor (LDLR family, are essential for the efficient uptake and accumulation of neutral lipids by oocytes and cells of the imaginal discs. Females lacking the lpr2 gene lay eggs with low lipid content and have reduced fertility, revealing a central role for lpr2 in mediating Drosophila vitellogenesis. lpr1 and lpr2 are transcribed into multiple isoforms. Interestingly, only a subset of these isoforms containing a particular LDLR type A module mediate neutral lipid uptake. Expression of these isoforms induces the extracellular stabilization of lipophorins. Furthermore, our data indicate that endocytosis of the lipophorin receptors is not required to mediate the uptake of neutral lipids. These findings suggest a model where lipophorin receptors promote the extracellular lipolysis of lipophorins. This model is reminiscent of the lipolytic processing of triglyceride-rich lipoproteins that occurs at the mammalian capillary endothelium, suggesting an ancient role for LDLR-like proteins in this process.

  18. Posttraumatic Propofol Neurotoxicity Is Mediated via the Pro-Brain-Derived Neurotrophic Factor-p75 Neurotrophin Receptor Pathway in Adult Mice.

    Science.gov (United States)

    Sebastiani, Anne; Granold, Matthias; Ditter, Anja; Sebastiani, Philipp; Gölz, Christina; Pöttker, Bruno; Luh, Clara; Schaible, Eva-Verena; Radyushkin, Konstantin; Timaru-Kast, Ralph; Werner, Christian; Schäfer, Michael K; Engelhard, Kristin; Moosmann, Bernd; Thal, Serge C

    2016-02-01

    The gamma-aminobutyric acid modulator propofol induces neuronal cell death in healthy immature brains by unbalancing neurotrophin homeostasis via p75 neurotrophin receptor signaling. In adulthood, p75 neurotrophin receptor becomes down-regulated and propofol loses its neurotoxic effect. However, acute brain lesions, such as traumatic brain injury, reactivate developmental-like programs and increase p75 neurotrophin receptor expression, probably to foster reparative processes, which in turn could render the brain sensitive to propofol-mediated neurotoxicity. This study investigates the influence of delayed single-bolus propofol applications at the peak of p75 neurotrophin receptor expression after experimental traumatic brain injury in adult mice. Randomized laboratory animal study. University research laboratory. Adult C57BL/6N and nerve growth factor receptor-deficient mice. Sedation by IV propofol bolus application delayed after controlled cortical impact injury. Propofol sedation at 24 hours after traumatic brain injury increased lesion volume, enhanced calpain-induced αII-spectrin cleavage, and increased cell death in perilesional tissue. Thirty-day postinjury motor function determined by CatWalk (Noldus Information Technology, Wageningen, The Netherlands) gait analysis was significantly impaired in propofol-sedated animals. Propofol enhanced pro-brain-derived neurotrophic factor/brain-derived neurotrophic factor ratio, which aggravates p75 neurotrophin receptor-mediated cell death. Propofol toxicity was abolished both by pharmacologic inhibition of the cell death domain of the p75 neurotrophin receptor (TAT-Pep5) and in mice lacking the extracellular neurotrophin binding site of p75 neurotrophin receptor. This study provides first evidence that propofol sedation after acute brain lesions can have a deleterious impact and implicates a role for the pro-brain-derived neurotrophic factor-p75 neurotrophin receptor pathway. This observation is important as sedation

  19. Role of Ca+2 and other second messengers in excitatory amino acid receptor mediated neurodegeneration: clinical perspectives

    DEFF Research Database (Denmark)

    Schousboe, A; Belhage, B; Frandsen, A

    1997-01-01

    Neurodegeneration associated with neurological disorders such as epilepsy, Huntington's Chorea, Alzheimer's disease, and olivoponto cerebellar atrophy or with energy failure such as ischemia, hypoxia, and hypoglycemia proceeds subsequent to overexposure of neurons to excitatory amino acids of which...... glutamate and aspartate may be quantitatively the most important. The toxic action of glutamate and aspartate is mediated through activation of glutamate receptors of the N-methyl-D-aspartate (NMDA) and non-NMDA subtypes. Antagonists for these receptors can act as neuroprotectants both in in vitro model...

  20. Glutamate Receptors in the Central Nucleus of the Amygdala Mediate Cisplatin-Induced Malaise and Energy Balance Dysregulation through Direct Hindbrain Projections.

    Science.gov (United States)

    Alhadeff, Amber L; Holland, Ruby A; Nelson, Alexandra; Grill, Harvey J; De Jonghe, Bart C

    2015-08-05

    Cisplatin chemotherapy is used commonly to treat a variety of cancers despite severe side effects such as nausea, vomiting, and anorexia that compromise quality of life and limit treatment adherence. The neural mechanisms mediating these side effects remain elusive despite decades of clinical use. Recent data highlight the dorsal vagal complex (DVC), lateral parabrachial nucleus (lPBN), and central nucleus of the amygdala (CeA) as potential sites of action in mediating the side effects of cisplatin. Here, results from immunohistochemical studies in rats identified a population of cisplatin-activated DVC neurons that project to the lPBN and a population of cisplatin-activated lPBN calcitonin gene-related peptide (CGRP, a marker for glutamatergic neurons in the lPBN) neurons that project to the CeA, outlining a neuroanatomical circuit that is activated by cisplatin. CeA gene expressions of AMPA and NMDA glutamate receptor subunits were markedly increased after cisplatin treatment, suggesting that CeA glutamate receptor signaling plays a role in mediating cisplatin side effects. Consistent with gene expression results, behavioral/pharmacological data showed that CeA AMPA/kainate receptor blockade attenuates cisplatin-induced pica (a proxy for nausea/behavioral malaise in nonvomiting laboratory rodents) and that CeA NMDA receptor blockade attenuates cisplatin-induced anorexia and body weight loss in addition to pica, demonstrating that glutamate receptor signaling in the CeA is critical for the energy balance dysregulation caused by cisplatin treatment. Together, these data highlight a novel circuit and CGRP/glutamatergic mechanism through which cisplatin-induced malaise and energy balance dysregulation are mediated. To treat cancer effectively, patients must follow prescribed chemotherapy treatments without interruption, yet most cancer treatments produce side effects that devastate quality of life (e.g., nausea, vomiting, anorexia, weight loss). Although hundreds of

  1. Glutamate Receptors in the Central Nucleus of the Amygdala Mediate Cisplatin-Induced Malaise and Energy Balance Dysregulation through Direct Hindbrain Projections

    Science.gov (United States)

    Alhadeff, Amber L.; Holland, Ruby A.; Nelson, Alexandra; Grill, Harvey J.

    2015-01-01

    Cisplatin chemotherapy is used commonly to treat a variety of cancers despite severe side effects such as nausea, vomiting, and anorexia that compromise quality of life and limit treatment adherence. The neural mechanisms mediating these side effects remain elusive despite decades of clinical use. Recent data highlight the dorsal vagal complex (DVC), lateral parabrachial nucleus (lPBN), and central nucleus of the amygdala (CeA) as potential sites of action in mediating the side effects of cisplatin. Here, results from immunohistochemical studies in rats identified a population of cisplatin-activated DVC neurons that project to the lPBN and a population of cisplatin-activated lPBN calcitonin gene-related peptide (CGRP, a marker for glutamatergic neurons in the lPBN) neurons that project to the CeA, outlining a neuroanatomical circuit that is activated by cisplatin. CeA gene expressions of AMPA and NMDA glutamate receptor subunits were markedly increased after cisplatin treatment, suggesting that CeA glutamate receptor signaling plays a role in mediating cisplatin side effects. Consistent with gene expression results, behavioral/pharmacological data showed that CeA AMPA/kainate receptor blockade attenuates cisplatin-induced pica (a proxy for nausea/behavioral malaise in nonvomiting laboratory rodents) and that CeA NMDA receptor blockade attenuates cisplatin-induced anorexia and body weight loss in addition to pica, demonstrating that glutamate receptor signaling in the CeA is critical for the energy balance dysregulation caused by cisplatin treatment. Together, these data highlight a novel circuit and CGRP/glutamatergic mechanism through which cisplatin-induced malaise and energy balance dysregulation are mediated. SIGNIFICANCE STATEMENT To treat cancer effectively, patients must follow prescribed chemotherapy treatments without interruption, yet most cancer treatments produce side effects that devastate quality of life (e.g., nausea, vomiting, anorexia, weight loss

  2. [A study on toxic effects of sodium salicylate on rat cochlear spiral ganglion neurons: dopamine receptors mediate expressions of NMDA and GABAA receptors].

    Science.gov (United States)

    Wei, Ting-Jia; Chen, Hui-Ying; Huang, Xi; Weng, Jing-Jin; Qin, Jiang-Yuan; Su, Ji-Ping

    2017-06-25

    The aim of the present study was to observe whether dopamine receptor (DR) was involved in the effects of sodium salicylate (SS) on the expressions of N-methyl-D-aspartic acid (NMDA) and γ-aminobutyric acid (GABA) receptors in rat cochlear spiral ganglion neurons (SGNs). Forty-eight hours after primary culture of rat SGNs, immunofluorescence technique was applied to detect expressions of DR1 and DR2, the two subtypes of dopamine receptors. Western blot was performed to assess NMDA receptor NR1 subunit and GABA A receptor subunit α2 (GABRα2) protein expressions in the SGNs after the treatments of SS alone or in combination with DR antagonists. The results demonstrated that: (1) The DR1 and DR2 were expressed in the bodies and axons of the SGN; (2) After the treatment with SS, the surface protein expressions of GABRα2 and NR1 were decreased by 44.69% and 21.57%, respectively, while the total protein expressions showed no significant changes; (3) Neither SS + SCH23390 (DR1 antagonist) group nor SS + Eticlopride (DR2 antagonist) group showed significant differences in GABRα2 and NR1 surface protein expressions compared with the control group. These results suggest that SS regulates the surface GABA A and NMDA receptors trafficking on SGN, and the mechanism may involve DR mediation.

  3. Adaptor Protein Complex-2 (AP-2) and Epsin-1 Mediate Protease-activated Receptor-1 Internalization via Phosphorylation- and Ubiquitination-dependent Sorting Signals*

    Science.gov (United States)

    Chen, Buxin; Dores, Michael R.; Grimsey, Neil; Canto, Isabel; Barker, Breann L.; Trejo, JoAnn

    2011-01-01

    Signaling by protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is regulated by desensitization and internalization. PAR1 desensitization is mediated by β-arrestins, like most classic GPCRs. In contrast, internalization of PAR1 occurs through a clathrin- and dynamin-dependent pathway independent of β-arrestins. PAR1 displays two modes of internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), where the μ2-adaptin subunit binds directly to a tyrosine-based motif localized within the receptor C-tail domain. However, AP-2 depletion only partially inhibits agonist-induced internalization of PAR1, suggesting a function for other clathrin adaptors in this process. Here, we now report that AP-2 and epsin-1 are both critical mediators of agonist-stimulated PAR1 internalization. We show that ubiquitination of PAR1 and the ubiquitin-interacting motifs of epsin-1 are required for epsin-1-dependent internalization of activated PAR1. In addition, activation of PAR1 promotes epsin-1 de-ubiquitination, which may increase its endocytic adaptor activity to facilitate receptor internalization. AP-2 also regulates activated PAR1 internalization via recognition of distal C-tail phosphorylation sites rather than the canonical tyrosine-based motif. Thus, AP-2 and epsin-1 are both required to promote efficient internalization of activated PAR1 and recognize discrete receptor sorting signals. This study defines a new pathway for internalization of mammalian GPCRs. PMID:21965661

  4. Angiotensin type 2 receptors

    DEFF Research Database (Denmark)

    Sumners, Colin; de Kloet, Annette D; Krause, Eric G

    2015-01-01

    In most situations, the angiotensin AT2-receptor (AT2R) mediates physiological actions opposing those mediated by the AT1-receptor (AT1R), including a vasorelaxant effect. Nevertheless, experimental evidence vastly supports that systemic application of AT2R-agonists is blood pressure neutral...

  5. Receptor-mediated photo-cytotoxicity: synthesis of a photoactivatable psoralen derivative conjugated to insulin.

    Science.gov (United States)

    Gasparro, F P; Knobler, R M; Yemul, S S; Bisaccia, E; Edelson, R L

    1986-12-15

    4'-Aminomethyl-4,5',8-trimethylpsoralen has been chemically conjugated to insulin using a carbodiimide derivative. The psoralen moiety retains its photochemical reactivity as evidenced by its ability to crosslink DNA after exposure to long wavelength ultraviolet light (UVA, 320-400 nm). This chimeric molecule has been used to selectively kill a population of lymphocytes whose expression of insulin receptors has been stimulated with phytohemagglutinin. Insulin carries the psoralen into the cell via receptor-mediated endocytosis, where it is subsequently activated by exposure to UVA light. The UVA induced activity of AMT-insulin can be blocked by the presence of native insulin. The viability of unstimulated lymphocytes was not affected by AMT-insulin and UVA light. The hybrid insulin-psoralen molecule may be a prototype for a family of phototoxic drugs which can be selectively delivered to subsets of lymphocytes.

  6. Exploring in vivo cholesterol-mediated interactions between activated EGF receptors in plasma membrane with single-molecule optical tracking

    International Nuclear Information System (INIS)

    Lin, Chien Y.; Huang, Jung Y.; Lo, Leu-Wei

    2016-01-01

    The first step in many cellular signaling processes occurs at various types of receptors in the plasma membrane. Membrane cholesterol can alter these signaling pathways of living cells. However, the process in which the interaction of activated receptors is modulated by cholesterol remains unclear. In this study, we measured single-molecule optical trajectories of epidermal growth factor receptors moving in the plasma membranes of two cancerous cell lines and one normal endothelial cell line. A stochastic model was developed and applied to identify critical information from single-molecule trajectories. We discovered that unliganded epidermal growth factor receptors may reside nearby cholesterol-riched regions of the plasma membrane and can move into these lipid domains when subjected to ligand binding. The amount of membrane cholesterol considerably affects the stability of correlated motion of activated epidermal growth factor receptors. Our results provide single-molecule evidence of membrane cholesterol in regulating signaling receptors. Because the three cell lines used for this study are quite diverse, our results may be useful to shed light on the mechanism of cholesterol-mediated interaction between activated receptors in live cells

  7. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity.

    Directory of Open Access Journals (Sweden)

    Meenu S Padmanabhan

    2013-03-01

    Full Text Available Following the recognition of pathogen-encoded effectors, plant TIR-NB-LRR immune receptors induce defense signaling by a largely unknown mechanism. We identify a novel and conserved role for the SQUAMOSA PROMOTER BINDING PROTEIN (SBP-domain transcription factor SPL6 in enabling the activation of the defense transcriptome following its association with a nuclear-localized immune receptor. During an active immune response, the Nicotiana TIR-NB-LRR N immune receptor associates with NbSPL6 within distinct nuclear compartments. NbSPL6 is essential for the N-mediated resistance to Tobacco mosaic virus. Similarly, the presumed Arabidopsis ortholog AtSPL6 is required for the resistance mediated by the TIR-NB-LRR RPS4 against Pseudomonas syringae carrying the avrRps4 effector. Transcriptome analysis indicates that AtSPL6 positively regulates a subset of defense genes. A pathogen-activated nuclear-localized TIR-NB-LRR like N can therefore regulate defense genes through SPL6 in a mechanism analogous to the induction of MHC genes by mammalian immune receptors like CIITA and NLRC5.

  8. Role of receptor-mediated endocytosis in the antiangiogenic effects of human T lymphoblastic cell-derived microparticles.

    Science.gov (United States)

    Yang, Chun; Xiong, Wei; Qiu, Qian; Shao, Zhuo; Shao, Zuo; Hamel, David; Tahiri, Houda; Leclair, Grégoire; Lachapelle, Pierre; Chemtob, Sylvain; Hardy, Pierre

    2012-04-15

    Microparticles possess therapeutic potential regarding angiogenesis. We have demonstrated the contribution of apoptotic human CEM T lymphocyte-derived microparticles (LMPs) as inhibitors of angiogenic responses in animal models of inflammation and tumor growth. In the present study, we characterized the antivascular endothelial growth factor (VEGF) effects of LMPs on pathological angiogenesis in an animal model of oxygen-induced retinopathy and explored the role of receptor-mediated endocytosis in the effects of LMPs on human retinal endothelial cells (HRECs). LMPs dramatically inhibited cell growth of HRECs, suppressed VEGF-induced cell migration in vitro experiments, and attenuated VEGF-induced retinal vascular leakage in vivo. Intravitreal injections of fluorescently labeled LMPs revealed accumulation of LMPs in retinal tissue, with more than 60% reductions of the vascular density in retinas of rats with oxygen-induced neovascularization. LMP uptake experiments demonstrated that the interaction between LMPs and HRECs is dependent on temperature. In addition, endocytosis is partially dependent on extracellular calcium. RNAi-mediated knockdown of low-density lipoprotein receptor (LDLR) reduced the uptake of LMPs and attenuated the inhibitory effects of LMPs on VEGF-A protein expression and HRECs cell growth. Intravitreal injection of lentivirus-mediated RNA interference reduced LDLR protein expression in retina by 53% and significantly blocked the antiangiogenic effects of LMPs on pathological vascularization. In summary, the potent antiangiogenic LMPs lead to a significant reduction of pathological retinal angiogenesis through modulation of VEGF signaling, whereas LDLR-mediated endocytosis plays a partial, but pivotal, role in the uptake of LMPs in HRECs.

  9. Caenorhabditis elegans reveals a FxNPxY-independent low-density lipoprotein receptor internalization mechanism mediated by epsin1

    Science.gov (United States)

    Kang, Yuan-Lin; Yochem, John; Bell, Leslie; Sorensen, Erika B.; Chen, Lihsia; Conner, Sean D.

    2013-01-01

    Low-density lipoprotein receptor (LDLR) internalization clears cholesterol-laden LDL particles from circulation in humans. Defects in clathrin-dependent LDLR endocytosis promote elevated serum cholesterol levels and can lead to atherosclerosis. However, our understanding of the mechanisms that control LDLR uptake remains incomplete. To identify factors critical to LDLR uptake, we pursued a genome-wide RNA interference screen using Caenorhabditis elegans LRP-1/megalin as a model for LDLR transport. In doing so, we discovered an unanticipated requirement for the clathrin-binding endocytic adaptor epsin1 in LDLR endocytosis. Epsin1 depletion reduced LDLR internalization rates in mammalian cells, similar to the reduction observed following clathrin depletion. Genetic and biochemical analyses of epsin in C. elegans and mammalian cells uncovered a requirement for the ubiquitin-interaction motif (UIM) as critical for receptor transport. As the epsin UIM promotes the internalization of some ubiquitinated receptors, we predicted LDLR ubiquitination as necessary for endocytosis. However, engineered ubiquitination-impaired LDLR mutants showed modest internalization defects that were further enhanced with epsin1 depletion, demonstrating epsin1-mediated LDLR endocytosis is independent of receptor ubiquitination. Finally, we provide evidence that epsin1-mediated LDLR uptake occurs independently of either of the two documented internalization motifs (FxNPxY or HIC) encoded within the LDLR cytoplasmic tail, indicating an additional internalization mechanism for LDLR. PMID:23242996

  10. Decrement of GABAA receptor-mediated inhibitory postsynaptic currents in dentate granule cells in epileptic hippocampus.

    Science.gov (United States)

    Isokawa, M

    1996-05-01

    1. Inhibitory postsynaptic currents (IPSCs) were studied in hippocampal dentate granule cells (DGCs) in the pilocarpine model and human temporal lobe epilepsy, with the use of the whole cell patch-clamp recording technique in slice preparations. 2. In the pilocarpine model, hippocampal slices were prepared from rats that were allowed to experience spontaneous seizures for 2 mo. Human hippocampal specimens were obtained from epileptic patients who underwent surgical treatment for medically intractable seizures. 3. IPSCs were generated by single perforant path stimulation and recorded at a membrane potential (Vm) of 0 mV near the reversal potential of glutamate excitatory postsynaptic currents in the voltage-clamp recording. IPSCs were pharmacologically identified as gamma-aminobutyric acid-A (GABAA) IPSCs by 10 microM bicuculline methiodide. 4. During low-frequency stimulation, IPSCs were not different in amplitude among non-seizure-experienced rat hippocampi, human nonsclerotic hippocampi, seizure-experienced rat hippocampi, and human sclerotic hippocampi. In the last two groups of DGCs, current-clamp recordings indicated the presence of prolonged excitatory postsynaptic potentials (EPSPs) mediated by the N-methyl-D-aspartate (NMDA) receptor. 5. High-frequency stimulation, administered at Vm = -30 mV to activate NMDA currents, reduced GABAA IPSC amplitude specifically in seizure-experienced rat hippocampi (t = 2.5, P < 0.03) and human sclerotic hippocampi (t = 7.7, P < 0.01). This reduction was blocked by an NMDA receptor antagonist, 2-amino-5-phosphonovaleric acid (APV) (50 microM). The time for GABAA IPSCs to recover to their original amplitude was also shortened by the application of APV. 6. I conclude that, when intensively activated, NMDA receptor-mediated excitatory transmission may interact with GABAergic synaptic inhibition in DGCs in seizure-experienced hippocampus to transiently reduce GABA(A) receptor-channel function. Such interactions may contribute to

  11. Mac-1 (CD11b/CD18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunologic synapse formation.

    Science.gov (United States)

    van Spriel, A B; Leusen, J H; van Egmond, M; Dijkman, H B; Assmann, K J; Mayadas, T N; van de Winkel, J G

    2001-04-15

    Receptors for human immunoglobulin (Ig)G and IgA initiate potent cytolysis of antibody (Ab)-coated targets by polymorphonuclear leukocytes (PMNs). Mac-1 (complement receptor type 3, CD11b/CD18) has previously been implicated in receptor cooperation with Fc receptors (FcRs). The role of Mac-1 in FcR-mediated lysis of tumor cells was characterized by studying normal human PMNs, Mac-1-deficient mouse PMNs, and mouse PMNs transgenic for human FcR. All PMNs efficiently phagocytosed Ab-coated particles. However, antibody-dependent cellular cytotoxicity (ADCC) was abrogated in Mac-1(-/-) PMNs and in human PMNs blocked with anti-Mac-1 monoclonal Ab (mAb). Mac-1(-/-) PMNs were unable to spread on Ab-opsonized target cells and other Ab-coated surfaces. Confocal laser scanning and electron microscopy revealed a striking difference in immunologic synapse formation between Mac-1(-/-) and wild-type PMNs. Also, respiratory burst activity could be measured outside membrane-enclosed compartments by using Mac-1(-/-) PMNs bound to Ab-coated tumor cells, in contrast to wild-type PMNs. In summary, these data document an absolute requirement of Mac-1 for FcR-mediated PMN cytotoxicity toward tumor targets. Mac-1(-/-) PMNs exhibit defective spreading on Ab-coated targets, impaired formation of immunologic synapses, and absent tumor cytolysis.

  12. Receptor downregulation and desensitization enhance the information processing ability of signalling receptors

    Directory of Open Access Journals (Sweden)

    Resat Haluk

    2007-11-01

    Full Text Available Abstract Background In addition to initiating signaling events, the activation of cell surface receptors also triggers regulatory processes that restrict the duration of signaling. Acute attenuation of signaling can be accomplished either via ligand-induced internalization of receptors (endocytic downregulation or via ligand-induced receptor desensitization. These phenomena have traditionally been viewed in the context of adaptation wherein the receptor system enters a refractory state in the presence of sustained ligand stimuli and thereby prevents the cell from over-responding to the ligand. Here we use the epidermal growth factor receptor (EGFR and G-protein coupled receptors (GPCR as model systems to respectively examine the effects of downregulation and desensitization on the ability of signaling receptors to decode time-varying ligand stimuli. Results Using a mathematical model, we show that downregulation and desensitization mechanisms can lead to tight and efficient input-output coupling thereby ensuring synchronous processing of ligand inputs. Frequency response analysis indicates that upstream elements of the EGFR and GPCR networks behave like low-pass filters with the system being able to faithfully transduce inputs below a critical frequency. Receptor downregulation and desensitization increase the filter bandwidth thereby enabling the receptor systems to decode inputs in a wider frequency range. Further, system-theoretic analysis reveals that the receptor systems are analogous to classical mechanical over-damped systems. This analogy enables us to metaphorically describe downregulation and desensitization as phenomena that make the systems more resilient in responding to ligand perturbations thereby improving the stability of the system resting state. Conclusion Our findings suggest that in addition to serving as mechanisms for adaptation, receptor downregulation and desensitization can play a critical role in temporal information

  13. GABA(A receptor-mediated acceleration of aging-associated memory decline in APP/PS1 mice and its pharmacological treatment by picrotoxin.

    Directory of Open Access Journals (Sweden)

    Yuji Yoshiike

    Full Text Available Advanced age and mutations in the genes encoding amyloid precursor protein (APP and presenilin (PS1 are two serious risk factors for Alzheimer's disease (AD. Finding common pathogenic changes originating from these risks may lead to a new therapeutic strategy. We observed a decline in memory performance and reduction in hippocampal long-term potentiation (LTP in both mature adult (9-15 months transgenic APP/PS1 mice and old (19-25 months non-transgenic (nonTg mice. By contrast, in the presence of bicuculline, a GABA(A receptor antagonist, LTP in adult APP/PS1 mice and old nonTg mice was larger than that in adult nonTg mice. The increased LTP levels in bicuculline-treated slices suggested that GABA(A receptor-mediated inhibition in adult APP/PS1 and old nonTg mice was upregulated. Assuming that enhanced inhibition of LTP mediates memory decline in APP/PS1 mice, we rescued memory deficits in adult APP/PS1 mice by treating them with another GABA(A receptor antagonist, picrotoxin (PTX, at a non-epileptic dose for 10 days. Among the saline vehicle-treated groups, substantially higher levels of synaptic proteins such as GABA(A receptor alpha1 subunit, PSD95, and NR2B were observed in APP/PS1 mice than in nonTg control mice. This difference was insignificant among PTX-treated groups, suggesting that memory decline in APP/PS1 mice may result from changes in synaptic protein levels through homeostatic mechanisms. Several independent studies reported previously in aged rodents both an increased level of GABA(A receptor alpha1 subunit and improvement of cognitive functions by long term GABA(A receptor antagonist treatment. Therefore, reduced LTP linked to enhanced GABA(A receptor-mediated inhibition may be triggered by aging and may be accelerated by familial AD-linked gene products like Abeta and mutant PS1, leading to cognitive decline that is pharmacologically treatable at least at this stage of disease progression in mice.

  14. Induced ER-chaperones regulate a novel receptor-like kinase to mediate a viral innate immune response

    Science.gov (United States)

    Caplan, Jeffrey L.; Zhu, Xiaohong; Mamillapalli, Padmavathi; Marathe, Rajendra; Anandalakshmi, Radhamani; Dinesh-Kumar, S. P.

    2009-01-01

    Summary The plant innate immune response requires a rapid, global reprogramming of cellular processes. Here we employed two complementary proteomic methods, two-dimensional differential in-gel electrophoresis (2D-DIGE) and iTRAQ, to identify differentially regulated proteins early during a defense response. Besides defense-related proteins, the constituents of the largest category of up-regulated proteins were cytoplasmic- and endoplasmic reticulum (ER)-residing molecular chaperones. Silencing of ER-resident protein disulfide isomerases, NbERp57 and NbP5, and the calreticulins, NbCRT2 and NbCRT3, lead to a partial loss of N immune receptor-mediated defense against Tobacco mosaic virus (TMV). Furthermore, NbCRT2 and NbCRT3 are required for the expression of a novel induced receptor-like kinase (IRK). IRK is a plasma membrane-localized protein required for the N-mediated hypersensitive response programmed cell death (HR-PCD) and resistance to TMV. These data support a model in which ER-resident chaperones are required for the accumulation of membrane bound or secreted proteins that are necessary for innate immunity. PMID:19917500

  15. C4d-negative antibody-mediated rejection with high anti-angiotensin II type I receptor antibodies in absence of donor-specific antibodies.

    Science.gov (United States)

    Fuss, Alexander; Hope, Christopher M; Deayton, Susan; Bennett, Greg Donald; Holdsworth, Rhonda; Carroll, Robert P; Coates, P Toby H

    2015-07-01

    Acute antibody-mediated rejection can occur in absence of circulating donor-specific antibodies. Agonistic antibodies targeting the anti-angiotensin II type 1 receptor (anti-AT1 R) are emerging as important non-human leucocyte antigen (HLA) antibodies. Elevated levels of anti-angiotensin II receptor antibodies were first observed in kidney transplant recipients with malignant hypertension and allograft rejection. They have now been studied in three separate kidney transplant populations and associate to frequency of rejection, severity of rejection and graft failure. We report 11 cases of biopsy-proven, Complement 4 fragment d (C4d)-negative, acute rejection occurring without circulating donor-specific anti-HLA antibodies. In eight cases, anti-angiotensin receptor antibodies were retrospectively examined. The remaining three subjects were identified from our centre's newly instituted routine anti-angiotensin receptor antibody screening. All subjects fulfilled Banff 2013 criteria for antibody-mediated rejection and all responded to anti-rejection therapy, which included plasma exchange and angiotensin receptor blocker therapy. These cases support the routine assessment of anti-AT1 R antibodies in kidney transplant recipients to identify subjects at risk. Further studies will need to determine optimal assessment protocol and the effectiveness of pre-emptive treatment with angiotensin receptor blockers. © 2015 Asian Pacific Society of Nephrology.

  16. Ionotropic crustacean olfactory receptors.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Corey

    Full Text Available The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs, the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs, as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  17. The role of receptor-mediated T-cells activation disorders in pulmonary tuberculosis

    Directory of Open Access Journals (Sweden)

    Irina E. Esimova

    2017-01-01

    Full Text Available Aim. To analyze the peculiarities and mechanisms of receptor-mediated T-lymphocytes disorders in different clinical forms of pulmonary tuberculosis.Materials and мethods. The study involved 116 patients with first diagnosed infiltrative and disseminated drug-sensitive and drug-resistant pulmonary tuberculosis. The key stages in receptor-mediated activation of T-lymphocytes, isolated from blood, after their CD3/CD28-induction in vitro with addition of intracellular transport blocker were analyzed. Their immunotyping was carried out with the method of two- and threecolor flow cytofluorometry. The obtained results were statistically analyzed.Results. The breach of extracellular and intracellular stages of T-lymphocytes activation, shown by reduction in total number of CD3- and CD28-positive cells, and CD3+CD28+IL2+, CD3+CD28+IL2–, CD3+NF-kB+, CD3+NFAT2+ lymphocytes, and increase in number of CD3+CTLA4+ cells, was identified with most of their manifestations in disseminated drug-resistant pulmonary tuberculosis. It was shown that the content of CD3+AP-1+ lymphocytes is variable in drug-resistant pulmonary tuberculosis: it increases in the infiltrative form and decreases in the disseminated form.Conclusion. The results showed different mechanisms leading to a deficiency of IL-2-positive lymphocytes and T-lymphocytopenia: from “functional reserve” exhaustion of T-cells in drug-sensitive pulmonary tuberculosis to immunosuppression under the influence of suppressive cytokines (in case of the infiltrative form and inhibitory protein CTLA4 (in case of the disseminated form in drug-resistant pulmonary tuberculosis. 

  18. Kinetics of the membrane current mediated by serotonin 5-HT3 receptors in cultured mouse neuroblastoma cells.

    NARCIS (Netherlands)

    Neijt, H.C.; Plomp, J.J.; Vijverberg, H.P.M.

    1989-01-01

    1. Ionic currents mediated by serotonin 5-HT3 receptors were studied in the mouse neuroblastoma cell line N1E-115, using suction pipettes for intracellular perfusion and voltage clamp recording. The dependence of the kinetics of the membrane current on serotonin concentration was investigated. 2. At

  19. Suppressive Effects of Bee Venom Acupuncture on Paclitaxel-Induced Neuropathic Pain in Rats: Mediation by Spinal α2-Adrenergic Receptor

    Directory of Open Access Journals (Sweden)

    Jiho Choi

    2017-10-01

    Full Text Available Paclitaxel, a chemotherapy drug for solid tumors, induces peripheral painful neuropathy. Bee venom acupuncture (BVA has been reported to have potent analgesic effects, which are known to be mediated by activation of spinal α-adrenergic receptor. Here, we investigated the effect of BVA on mechanical hyperalgesia and spinal neuronal hyperexcitation induced by paclitaxel. The role of spinal α-adrenergic receptor subtypes in the analgesic effect of BVA was also observed. Administration of paclitaxel (total 8 mg/kg, intraperitoneal on four alternate days (days 0, 2, 4, and 6 induced significant mechanical hyperalgesic signs, measured using a von Frey filament. BVA (1 mg/kg, ST36 relieved this mechanical hyperalgesia for at least two hours, and suppressed the hyperexcitation in spinal wide dynamic range neurons evoked by press or pinch stimulation. Both melittin (0.5 mg/kg, ST36 and phospholipase A2 (0.12 mg/kg, ST36 were shown to play an important part in this analgesic effect of the BVA, as they significantly attenuated the pain. Intrathecal pretreatment with the α2-adrenergic receptor antagonist (idazoxan, 50 µg, but not α1-adrenergic receptor antagonist (prazosin, 30 µg, blocked the analgesic effect of BVA. These results suggest that BVA has potent suppressive effects against paclitaxel-induced neuropathic pain, which were mediated by spinal α2-adrenergic receptor.

  20. Suppressive Effects of Bee Venom Acupuncture on Paclitaxel-Induced Neuropathic Pain in Rats: Mediation by Spinal α₂-Adrenergic Receptor.

    Science.gov (United States)

    Choi, Jiho; Jeon, Changhoon; Lee, Ji Hwan; Jang, Jo Ung; Quan, Fu Shi; Lee, Kyungjin; Kim, Woojin; Kim, Sun Kwang

    2017-10-31

    Paclitaxel, a chemotherapy drug for solid tumors, induces peripheral painful neuropathy. Bee venom acupuncture (BVA) has been reported to have potent analgesic effects, which are known to be mediated by activation of spinal α-adrenergic receptor. Here, we investigated the effect of BVA on mechanical hyperalgesia and spinal neuronal hyperexcitation induced by paclitaxel. The role of spinal α-adrenergic receptor subtypes in the analgesic effect of BVA was also observed. Administration of paclitaxel (total 8 mg/kg, intraperitoneal) on four alternate days (days 0, 2, 4, and 6) induced significant mechanical hyperalgesic signs, measured using a von Frey filament. BVA (1 mg/kg, ST36) relieved this mechanical hyperalgesia for at least two hours, and suppressed the hyperexcitation in spinal wide dynamic range neurons evoked by press or pinch stimulation. Both melittin (0.5 mg/kg, ST36) and phospholipase A2 (0.12 mg/kg, ST36) were shown to play an important part in this analgesic effect of the BVA, as they significantly attenuated the pain. Intrathecal pretreatment with the α₂-adrenergic receptor antagonist (idazoxan, 50 µg), but not α₁-adrenergic receptor antagonist (prazosin, 30 µg), blocked the analgesic effect of BVA. These results suggest that BVA has potent suppressive effects against paclitaxel-induced neuropathic pain, which were mediated by spinal α₂-adrenergic receptor.

  1. Heterologous activation of protein kinase C stimulates phosphorylation of delta-opioid receptor at serine 344, resulting in beta-arrestin- and clathrin-mediated receptor internalization

    DEFF Research Database (Denmark)

    Xiang, B; Yu, G H; Guo, J

    2001-01-01

    The purpose of the current study is to investigate the effect of opioid-independent, heterologous activation of protein kinase C (PKC) on the responsiveness of opioid receptor and the underlying molecular mechanisms. Our result showed that removing the C terminus of delta opioid receptor (DOR......) containing six Ser/Thr residues abolished both DPDPE- and phorbol 12-myristate 13-acetate (PMA)-induced DOR phosphorylation. The phosphorylation levels of DOR mutants T352A, T353A, and T358A/T361A/S363S were comparable to that of the wild-type DOR, whereas S344G substitution blocked PMA-induced receptor......, and ionomycin resulted in DOR internalization that required phosphorylation of Ser-344. Expression of dominant negative beta-arrestin and hypertonic sucrose treatment blocked PMA-induced DOR internalization, suggesting that PKC mediates DOR internalization via a beta-arrestin- and clathrin-dependent mechanism...

  2. A role of periaqueductal grey NR2B-containing NMDA receptor in mediating persistent inflammatory pain

    Directory of Open Access Journals (Sweden)

    Yang Qi

    2009-12-01

    Full Text Available Abstract The midbrain periaqueductal grey (PAG is a structure known for its roles in pain transmission and modulation. Noxious stimuli potentiate the glutamate synaptic transmission and enhance glutamate NMDA receptor expression in the PAG. However, little is known about roles of NMDA receptor subunits in the PAG in processing the persistent inflammatory pain. The present study was undertaken to investigate NR2A- and NR2B-containing NMDA receptors in the PAG and their modulation to the peripheral painful inflammation. Noxious stimuli induced by hind-paw injection of complete Freund's adjuvant (CFA caused up-regulation of NR2B-containing NMDA receptors in the PAG, while NR2A-containing NMDA receptors were not altered. Whole-cell patch-clamp recordings revealed that NMDA receptor mediated mEPSCs were increased significantly in the PAG synapse during the chronic phases of inflammatory pain in mice. PAG local infusion of Ro 25-6981, an NR2B antagonist, notably prolonged the paw withdrawal latency to thermal radian heat stimuli bilaterally in rats. Hyperoside (Hyp, one of the flavonoids compound isolated from Rhododendron ponticum L., significantly reversed up-regulation of NR2B-containing NMDA receptors in the PAG and exhibited analgesic activities against persistent inflammatory stimuli in mice. Our findings provide strong evidence that up-regulation of NR2B-containing NMDA receptors in the PAG involves in the modulation to the peripheral persistent inflammatory pain.

  3. Targeting of liposomes to cells bearing nerve growth factor receptors mediated by biotinylated NGF

    International Nuclear Information System (INIS)

    Rosenberg, M.B.

    1986-01-01

    Previous studies of liposome targeting have concentrated on immunological systems, the use of ligand-receptor interactions has received little attention. The protein hormone beta-nerve growth factor (NGF) was modified by biotinylation via carboxyl group substitution (C-bio-NGF) under reaction conditions that yielded an average of 3 biotin additions per NGF subunit. NGF was also biotinylated through amino group substitution to produce derivatives with ratios of 1, 2 and 4 biotin moieties per NGF subunit (N-bio-NGF). These derivatives were compared with native NGF for their ability to compete with 125 I-NGF for binding to NGF receptors on rat pheochromocytoma (PC 12) cells at 4 0 C. C-bio-NGF was as effective as native NGF in binding to NGF receptors, while N-bio-NGF containing 1 biotin per NGF subunit was only 28% as active in binding as native NGF. C-bio-NGF, but not N-bio-NGF, mediated the specific binding of 125 I-streptavidin to PC12 cells. Biocytin-NGF, a derivative of C-bio-NGF with an extended spacer chain, was also synthesized and retained full biological and receptor binding activities. C-bio-NGF and biocytin-NGF were as effective as native NGF in a bioassay involving induction of neurite outgrowth from PC12 cells

  4. Transmembrane α-Helix 2 and 7 Are Important for Small Molecule-Mediated Activation of the GLP-1 Receptor

    DEFF Research Database (Denmark)

    Underwood, Christina Rye; Møller Knudsen, Sanne; Schjellerup Wulff, Birgitte

    2011-01-01

    Glucagon-like peptide-1 (GLP-1) activates the GLP-1 receptor (GLP-1R), which belongs to family B of the G-protein-coupled receptors. We previously identified a selective small molecule ligand, compound 2, that acted as a full agonist and allosteric modulator of GLP-1R. In this study, the structur......Glucagon-like peptide-1 (GLP-1) activates the GLP-1 receptor (GLP-1R), which belongs to family B of the G-protein-coupled receptors. We previously identified a selective small molecule ligand, compound 2, that acted as a full agonist and allosteric modulator of GLP-1R. In this study......, the structurally related small molecule, compound 3, stimulated cAMP production from GLP-1R, but not from the homologous glucagon receptor (GluR). The receptor selectivity encouraged a chimeric receptor approach to identify domains important for compound 3-mediated activation of GLP-1R. A subsegment of the GLP-1R...... transmembrane domain containing TM2 to TM5 was sufficient to transfer compound 3 responsiveness to GluR. Therefore, divergent residues in this subsegment of GLP-1R and GluR are responsible for the receptor selectivity of compound 3. Functional analyses of other chimeric receptors suggested that the existence...

  5. DMPD: Signal transduction pathways mediated by the interaction of CpG DNA withToll-like receptor 9. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14751759 Signal transduction pathways mediated by the interaction of CpG DNA withTo...;16(1):17-22. (.png) (.svg) (.html) (.csml) Show Signal transduction pathways mediated by the interaction of... CpG DNA withToll-like receptor 9. PubmedID 14751759 Title Signal transduction pathways media

  6. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa

    2009-01-01

    an effect of GR activation on 5-HT2A levels, mature organotypic hippocampal cultures were exposed to corticosterone with or without GR antagonist mifepristone and mineralocorticoid receptor (MR) antagonist spironolactone. In GR under-expressing mice, hippocampal 5-HT2A receptor protein levels were decreased......Major depression is associated with both dysregulation of the hypothalamic pituitary adrenal axis and serotonergic deficiency, not the least of the 5-HT2A receptor. However, how these phenomena are linked to each other, and whether a low 5-HT2A receptor level is a state or a trait marker...... of depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish...

  7. Platelet-activating factor receptor agonists mediate xeroderma pigmentosum A photosensitivity.

    Science.gov (United States)

    Yao, Yongxue; Harrison, Kathleen A; Al-Hassani, Mohammed; Murphy, Robert C; Rezania, Samin; Konger, Raymond L; Travers, Jeffrey B

    2012-03-16

    To date, oxidized glycerophosphocholines (Ox-GPCs) with platelet-activating factor (PAF) activity produced non-enzymatically have not been definitively demonstrated to mediate any known disease processes. Here we provide evidence that these Ox-GPCs play a pivotal role in the photosensitivity associated with the deficiency of the DNA repair protein xeroderma pigmentosum type A (XPA). It should be noted that XPA-deficient cells are known to have decreased antioxidant defenses. These studies demonstrate that treatment of human XPA-deficient fibroblasts with the pro-oxidative stressor ultraviolet B (UVB) radiation resulted in increased reactive oxygen species and PAF receptor (PAF-R) agonistic activity in comparison with gene-corrected cells. The UVB irradiation-generated PAF-R agonists were inhibited by antioxidants. UVB irradiation of XPA-deficient (Xpa-/-) mice also resulted in increased PAF-R agonistic activity and skin inflammation in comparison with control mice. The increased UVB irradiation-mediated skin inflammation and TNF-α production in Xpa-/- mice were blocked by systemic antioxidants and by PAF-R antagonists. Structural characterization of PAF-R-stimulating activity in UVB-irradiated XPA-deficient fibroblasts using mass spectrometry revealed increased levels of sn-2 short-chain Ox-GPCs along with native PAF. These studies support a critical role for PAF-R agonistic Ox-GPCs in the pathophysiology of XPA photosensitivity.

  8. Stimulatory Effects of Melatonin on Porcine In Vitro Maturation Are Mediated by MT2 Receptor

    Directory of Open Access Journals (Sweden)

    Sanghoon Lee

    2018-05-01

    Full Text Available Melatonin is a multifunctional molecule with numerous biological activities. The fact that melatonin modulates the functions of porcine granulosa cells via the MT2 receptor suggests the possibility of MT2 receptor-mediation for melatonin to promote cumulus expansion of porcine cumulus-oocyte complexes (COCs. Therefore, we investigated the presence of MT2 in porcine COCs, and the effects of melatonin with or without selective MT2 antagonists (luzindole and 4-P-PDOT on this process; COCs underwent in vitro maturation culturing with six different conditions (control, melatonin, luzindole, 4-P-PDOT, melatonin + luzindole or melatonin + 4-P-PDOT. Cumulus expansion, oocyte nuclear maturation, and subsequent embryo development after parthenogenetic activation (PA were evaluated. In experiment 1, MT2 was expressed in both oocytes and cumulus cells. In experiment 2, melatonin significantly increased the proportion of complete cumulus expansion (degree 4, which was inhibited by simultaneous addition of either luzindole or 4-P-PDOT. A similar pattern was observed in the expression of genes related to cumulus expansion, apoptosis, and MT2. In experiment 3, no significant difference was observed in immature, degenerate, and MII oocyte rates among the groups. In experiment 4, melatonin significantly increased blastocyst formation rates and total blastocyst cell numbers after PA, but these effects were abolished when either luzindole or 4-P-PDOT was added concomitantly. In conclusion, our results indicate that the MT2 receptor mediated the stimulatory effects of melatonin on porcine cumulus expansion and subsequent embryo development.

  9. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    Science.gov (United States)

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  10. Angiotensin type 2 receptor (AT2R) and receptor Mas

    DEFF Research Database (Denmark)

    Villela, Daniel; Leonhardt, Julia; Patel, Neal

    2015-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor Mas are components of the protective arms of the renin-angiotensin system (RAS), i.e. they both mediate tissue protective and regenerative actions. The spectrum of actions of these two receptors and their signalling mechanisms display striki...

  11. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription.

    Science.gov (United States)

    Stavreva, Diana A; Wiench, Malgorzata; John, Sam; Conway-Campbell, Becky L; McKenna, Mervyn A; Pooley, John R; Johnson, Thomas A; Voss, Ty C; Lightman, Stafford L; Hager, Gordon L

    2009-09-01

    Studies on glucocorticoid receptor (GR) action typically assess gene responses by long-term stimulation with synthetic hormones. As corticosteroids are released from adrenal glands in a circadian and high-frequency (ultradian) mode, such treatments may not provide an accurate assessment of physiological hormone action. Here we demonstrate that ultradian hormone stimulation induces cyclic GR-mediated transcriptional regulation, or gene pulsing, both in cultured cells and in animal models. Equilibrium receptor-occupancy of regulatory elements precisely tracks the ligand pulses. Nascent RNA transcripts from GR-regulated genes are released in distinct quanta, demonstrating a profound difference between the transcriptional programs induced by ultradian and constant stimulation. Gene pulsing is driven by rapid GR exchange with response elements and by GR recycling through the chaperone machinery, which promotes GR activation and reactivation in response to the ultradian hormone release, thus coupling promoter activity to the naturally occurring fluctuations in hormone levels. The GR signalling pathway has been optimized for a prompt and timely response to fluctuations in hormone levels, indicating that biologically accurate regulation of gene targets by GR requires an ultradian mode of hormone stimulation.

  12. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  13. A multiscale computational approach to dissect early events in the Erb family receptor mediated activation, differential signaling, and relevance to oncogenic transformations.

    Science.gov (United States)

    Liu, Yingting; Purvis, Jeremy; Shih, Andrew; Weinstein, Joshua; Agrawal, Neeraj; Radhakrishnan, Ravi

    2007-06-01

    We describe a hierarchical multiscale computational approach based on molecular dynamics simulations, free energy-based molecular docking simulations, deterministic network-based kinetic modeling, and hybrid discrete/continuum stochastic dynamics protocols to study the dimer-mediated receptor activation characteristics of the Erb family receptors, specifically the epidermal growth factor receptor (EGFR). Through these modeling approaches, we are able to extend the prior modeling of EGF-mediated signal transduction by considering specific EGFR tyrosine kinase (EGFRTK) docking interactions mediated by differential binding and phosphorylation of different C-terminal peptide tyrosines on the RTK tail. By modeling signal flows through branching pathways of the EGFRTK resolved on a molecular basis, we are able to transcribe the effects of molecular alterations in the receptor (e.g., mutant forms of the receptor) to differing kinetic behavior and downstream signaling response. Our molecular dynamics simulations show that the drug sensitizing mutation (L834R) of EGFR stabilizes the active conformation to make the system constitutively active. Docking simulations show preferential characteristics (for wildtype vs. mutant receptors) in inhibitor binding as well as preferential enhancement of phosphorylation of particular substrate tyrosines over others. We find that in comparison to the wildtype system, the L834R mutant RTK preferentially binds the inhibitor erlotinib, as well as preferentially phosphorylates the substrate tyrosine Y1068 but not Y1173. We predict that these molecular level changes result in preferential activation of the Akt signaling pathway in comparison to the Erk signaling pathway for cells with normal EGFR expression. For cells with EGFR over expression, the mutant over activates both Erk and Akt pathways, in comparison to wildtype. These results are consistent with qualitative experimental measurements reported in the literature. We discuss these

  14. Surfactant protein A (SP-A)-mediated clearance of Staphylococcus aureus involves binding of SP-A to the staphylococcal adhesin eap and the macrophage receptors SP-A receptor 210 and scavenger receptor class A.

    Science.gov (United States)

    Sever-Chroneos, Zvjezdana; Krupa, Agnieszka; Davis, Jeremy; Hasan, Misbah; Yang, Ching-Hui; Szeliga, Jacek; Herrmann, Mathias; Hussain, Muzafar; Geisbrecht, Brian V; Kobzik, Lester; Chroneos, Zissis C

    2011-02-11

    Staphylococcus aureus causes life-threatening pneumonia in hospitals and deadly superinfection during viral influenza. The current study investigated the role of surfactant protein A (SP-A) in opsonization and clearance of S. aureus. Previous studies showed that SP-A mediates phagocytosis via the SP-A receptor 210 (SP-R210). Here, we show that SP-R210 mediates binding and control of SP-A-opsonized S. aureus by macrophages. We determined that SP-A binds S. aureus through the extracellular adhesin Eap. Consequently, SP-A enhanced macrophage uptake of Eap-expressing (Eap(+)) but not Eap-deficient (Eap(-)) S. aureus. In a reciprocal fashion, SP-A failed to enhance uptake of Eap(+) S. aureus in peritoneal Raw264.7 macrophages with a dominant negative mutation (SP-R210(DN)) blocking surface expression of SP-R210. Accordingly, WT mice cleared infection with Eap(+) but succumbed to sublethal infection with Eap- S. aureus. However, SP-R210(DN) cells compensated by increasing non-opsonic phagocytosis of Eap(+) S. aureus via the scavenger receptor scavenger receptor class A (SR-A), while non-opsonic uptake of Eap(-) S. aureus was impaired. Macrophages express two isoforms: SP-R210(L) and SP-R210(S). The results show that WT alveolar macrophages are distinguished by expression of SP-R210(L), whereas SR-A(-/-) alveolar macrophages are deficient in SP-R210(L) expressing only SP-R210(S). Accordingly, SR-A(-/-) mice were highly susceptible to both Eap(+) and Eap(-) S. aureus. The lungs of susceptible mice generated abnormal inflammatory responses that were associated with impaired killing and persistence of S. aureus infection in the lung. In conclusion, alveolar macrophage SP-R210(L) mediates recognition and killing of SP-A-opsonized S. aureus in vivo, coordinating inflammatory responses and resolution of S. aureus pneumonia through interaction with SR-A.

  15. γ1-Containing GABA-A Receptors Cluster at Synapses Where they Mediate Slower Synaptic Currents than γ2-Containing GABA-A Receptors

    Directory of Open Access Journals (Sweden)

    Christine L. Dixon

    2017-06-01

    Full Text Available GABA-A receptors (GABAARs are pentameric ligand-gated ion channels that are assembled mainly from α (α1–6, β (β1–3 and γ (γ1–3 subunits. Although GABAARs containing γ2L subunits mediate most of the inhibitory neurotransmission in the brain, significant expression of γ1 subunits is seen in the amygdala, pallidum and substantia nigra. However, the location and function of γ1-containing GABAARs in these regions remains unclear. In “artificial” synapses, where the subunit composition of postsynaptic receptors is specifically controlled, γ1 incorporation slows the synaptic current decay rate without affecting channel deactivation, suggesting that γ1-containing receptors are not clustered and therefore activated by diffuse neurotransmitter. However, we show that γ1-containing receptors are localized at neuronal synapses and form clusters in both synaptic and extrasynaptic regions. In addition, they exhibit rapid membrane diffusion and a higher frequency of exchange between synaptic and perisynaptic populations compared to γ2L-containing GABAARs. A point mutation in the large intracellular domain and a pharmacological analysis reveal that when a single non-conserved γ2L residue is mutated to its γ1 counterpart (T349L, the synaptic current decay is slowed from γ2L- to γ1-like without changing the clustering or diffusion properties of the receptors. In addition, previous fast perfusion and single channel kinetic experiments revealed no difference in the intrinsic closing rates of γ2L- and γ1-containing receptors when expressed in HEK293 cells. These observations together with Monte Carlo simulations of synaptic function confirm that decreased clustering does not control γ1-containing GABAAR kinetics. Rather, they suggest that γ1- and γ2L-containing receptors exhibit differential synaptic current decay rates due to differential gating dynamics when localized at the synapse.

  16. AMPA receptor ligands

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Mellor, Ian

    2004-01-01

    Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player in the f......Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player...... in the formation of memory. Hence, ligands affecting AMPARs are highly important for the study of the structure and function of this receptor, and in this regard polyamine-based ligands, particularly polyamine toxins, are unique as they selectively block Ca2+ -permeable AMPARs. Indeed, endogenous intracellular...

  17. Serotonin₂A/C receptors mediate the aggressive phenotype of TLX gene knockout mice.

    Science.gov (United States)

    Juárez, Pablo; Valdovinos, Maria G; May, Michael E; Lloyd, Blair P; Couppis, Maria H; Kennedy, Craig H

    2013-11-01

    Deleting the tailless (TLX) gene in mice produces a highly aggressive phenotype yet to be characterized in terms of heterozygous animals or neurotransmitter mechanisms. We sought to establish pharmacological control over aggression and study the role of serotonin (5-HT)(2A/C) receptors in mediating changes in aggression. We analyzed aggression in mice heterozygous (+/-) or homozygous (-/-) for the TLX gene and wild-types (+/+) using a resident-intruder paradigm. No +/+ mice were aggressive, 36% of +/- TLX and 100% of -/- TLX mice showed aggression. Dose-effect functions were established for clozapine (0.1-1.5mg/kg, ip), ketanserin (0.3-1.25 mg/kg, ip), and (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane [(±)DOI] (0.5-2.0 mg/kg, ip). Injecting clozapine decreased the frequency and duration of attacks for +/- TLX and -/- TLX mice. Clozapine did not decrease grooming in either +/- TLX or -/- TLX mice but may have increased locomotion for -/- TLX mice. Injecting ketanserin, a 5-HT(2A/C) receptor antagonist, produced differential decreases in frequency and latency to aggression between genotypes and corresponding increases in locomotor behavior. Injecting (±)DOI, a 5-HT(2A/C) receptor agonist, increased the frequency and duration of attacks, decreased the latency to attacks, and decreased locomotion in +/- and -/- TLX mice. Results of the current study suggest aggression displayed by TLX null and heterozygous mice involves 5-HT(2A/C) receptors. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Neuroprotection of rat retinal ganglion cells mediated through alpha7 nicotinic acetylcholine receptors.

    Science.gov (United States)

    Iwamoto, K; Mata, D; Linn, D M; Linn, C L

    2013-05-01

    Glutamate-induced excitotoxicity is thought to play an important role in several neurodegenerative diseases in the central nervous system (CNS). In this study, neuroprotection against glutamate-induced excitotoxicity was analyzed using acetylcholine (ACh), nicotine and the α7 specific nicotinic acetylcholine receptor (α7 nAChR) agonist, N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride (PNU-282987), in cultured adult rat retinal neurons. Adult Long Evans rat retinas were dissociated and retinal ganglion cells (RGCs) were isolated from all other retinal tissue using a two-step panning technique. Once isolated, RGCs were cultured under various pharmacological conditions to demonstrate excitotoxicity and neuroprotection against excitotoxicity. After 3 days, RGCs were immunostained with antibodies against the glycoprotein, Thy 1.1, counted and cell survival was assessed relative to control untreated conditions. 500 μM glutamate induced excitotoxicity in large and small RGCs in an adult rat dissociated culture. After 3 days in culture with glutamate, the cell survival of large RGCs decreased by an average of 48.16% while the cell survival of small RGCs decreased by an average of 42.03%. Using specific glutamate receptor agonists and antagonists, we provide evidence that the excitotoxic response was mediated through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainic acid (KA) and N-methyl-d-aspartate (NMDA) glutamate receptors through an apoptotic mechanism. However, the excitotoxic effect of glutamate on all RGCs was eliminated if cells were cultured for an hour with 10 μM ACh, 100 μM nicotine or 100 nM of the α7 nAChR agonist, PNU-282987, before the glutamate insult. Inhibition studies using 10nM methyllycaconitine (MLA) or α-bungarotoxin (α-Bgt) supported the hypothesis that neuroprotection against glutamate-induced excitotoxicity on rat RGCs was mediated through α7 nAChRs. In immunocytochemical studies, double

  19. Involvement of N-methyl-D-aspartate receptor subunits in zinc-mediated modification of CA1 long-term potentiation in the developing hippocampus.

    Science.gov (United States)

    Takeda, Atsushi; Itagaki, Kosuke; Ando, Masaki; Oku, Naoto

    2012-03-01

    Zinc is an endogenous N-methyl-D-aspartate (NMDA) receptor blocker. It is possible that zinc-mediated modification of hippocampal CA1 long-term potentiation (LTP) is linked to the expression of NMDA receptor subunits, which varies with postnatal development. In the present study, the effect of ZnCl(2) and CaEDTA, a membrane-impermeable zinc chelator, on CA1 LTP induction was examined in hippocampal slices from immature (3-week-old) and young (6-week-old) rats. Tetanus (10-100 Hz, 1 sec)-induced CA1 LTP was more greatly enhanced in 3-week-old rats. CA1 LTP was inhibited in the presence of 2-amino-5-phosphonovalerate (APV), an NMDA receptor antagonist, and CaEDTA in 3-week-old rats, as in the case of 6-week-old rats reported previously. In 3-week-old rats, on the other hand, 5 μM ZnCl(2) attenuated NMDA receptor-mediated EPSPs more than in 6-week-old rats and significantly attenuated CA1 LTP. Moreover, 5 μM ZnCl(2) significantly attenuated CA1 LTP in the presence of (2R,4S)-4-(3-phosphonopropyl)-2-piperidinecarboxylic acid (PPPA), an NR2A antagonist, in 3-week-old rats, but not that in the presence of ifenprodil, an NR2B antagonist, suggesting that zinc-mediated attenuation of CA1 LTP is associated with the preferential expression of NR2B subunit in 3-week-old rats. In 6-week-old rats, however, 5 μM ZnCl(2) significantly potentiated CA1 LTP and also CA1 LTP in the presence of PPPA. The present study demonstrates that endogenous zinc may participate in the induction of CA1 LTP. It is likely that the changes in expression of NMDA receptor subunits are involved in the zinc-mediated modification of CA1 LTP in the developing hippocampus. Copyright © 2011 Wiley Periodicals, Inc.

  20. Adenovirus E4-ORF1 Dysregulates Epidermal Growth Factor and Insulin/Insulin-Like Growth Factor Receptors To Mediate Constitutive Myc Expression

    OpenAIRE

    Kong, Kathleen; Kumar, Manish; Taruishi, Midori; Javier, Ronald T.

    2015-01-01

    The E4-ORF1 protein encoded by human adenovirus stimulates viral replication in human epithelial cells by binding and activating cellular phosphatidylinositol 3-kinase (PI3K) at the plasma membrane and cellular Myc in the nucleus. In this study, we showed that E4-ORF1 hijacks the tyrosine kinase activities of cellular epidermal growth factor receptor (EGFR) and insulin receptor (InsR)/insulin-like growth factor receptor 1 (IGF1R), as well as the lipid kinase activity of PI3K, to mediate const...

  1. Activity-dependent ubiquitination of GluA1 mediates a distinct AMPA receptor endocytosis and sorting pathway.

    Science.gov (United States)

    Schwarz, Lindsay A; Hall, Benjamin J; Patrick, Gentry N

    2010-12-08

    The accurate trafficking of AMPA receptors (AMPARs) to and from the synapse is a critical component of learning and memory in the brain, whereas dysfunction of AMPAR trafficking is hypothesized to be an underlying mechanism of Alzheimer's disease. Previous work has shown that ubiquitination of integral membrane proteins is a common posttranslational modification used to mediate endocytosis and endocytic sorting of surface proteins in eukaryotic cells. Here we report that mammalian AMPARs become ubiquitinated in response to their activation. Using a mutant of GluA1 that is unable to be ubiquitinated at lysines on its C-terminus, we demonstrate that ubiquitination is required for internalization of surface AMPARs and their trafficking to the lysosome in response to the AMPAR agonist AMPA but not for internalization of AMPARs in response to the NMDA receptor agonist NMDA. Through overexpression or RNA interference-mediated knockdown, we identify that a specific E3 ligase, Nedd4-1 (neural-precursor cell-expressed developmentally downregulated gene 4-1), is necessary for this process. Finally, we show that ubiquitination of GluA1 by Nedd4-1 becomes more prevalent as neurons mature. Together, these data show that ubiquitination of GluA1-containing AMPARs by Nedd4-1 mediates their endocytosis and trafficking to the lysosome. Furthermore, these results provide insight into how hippocampal neurons regulate AMPAR trafficking and degradation with high specificity in response to differing neuronal signaling cues and suggest that changes to this pathway may occur as neurons mature.

  2. ZFAT plays critical roles in peripheral T cell homeostasis and its T cell receptor-mediated response

    International Nuclear Information System (INIS)

    Doi, Keiko; Fujimoto, Takahiro; Okamura, Tadashi; Ogawa, Masahiro; Tanaka, Yoko; Mototani, Yasumasa; Goto, Motohito; Ota, Takeharu; Matsuzaki, Hiroshi; Kuroki, Masahide; Tsunoda, Toshiyuki; Sasazuki, Takehiko; Shirasawa, Senji

    2012-01-01

    Highlights: ► We generated Cd4-Cre-mediated T cell-specific Zfat-deficient mice. ► Zfat-deficiency leads to reduction in the number of the peripheral T cells. ► Impaired T cell receptor-mediated response in Zfat-deficient peripheral T cells. ► Decreased expression of IL-7Rα, IL-2Rα and IL-2 in Zfat-deficient peripheral T cells. ► Zfat plays critical roles in peripheral T cell homeostasis. -- Abstract: ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in apoptosis, development and primitive hematopoiesis. Zfat is highly expressed in T- and B-cells in the lymphoid tissues, however, its physiological function in the immune system remains totally unknown. Here, we generated the T cell-specific Zfat-deficient mice and demonstrated that Zfat-deficiency leads to a remarkable reduction in the number of the peripheral T cells. Intriguingly, a reduced expression of IL-7Rα and the impaired responsiveness to IL-7 for the survival were observed in the Zfat-deficient T cells. Furthermore, a severe defect in proliferation and increased apoptosis in the Zfat-deficient T cells following T cell receptor (TCR) stimulation was observed with a reduced IL-2Rα expression as well as a reduced IL-2 production. Thus, our findings reveal that Zfat is a critical regulator in peripheral T cell homeostasis and its TCR-mediated response.

  3. Resistance to EGF receptor inhibitors in glioblastoma mediated by phosphorylation of the PTEN tumor suppressor at tyrosine 240.

    Science.gov (United States)

    Fenton, Tim R; Nathanson, David; Ponte de Albuquerque, Claudio; Kuga, Daisuke; Iwanami, Akio; Dang, Julie; Yang, Huijun; Tanaka, Kazuhiro; Oba-Shinjo, Sueli Mieko; Uno, Miyuki; Inda, Maria del Mar; Wykosky, Jill; Bachoo, Robert M; James, C David; DePinho, Ronald A; Vandenberg, Scott R; Zhou, Huilin; Marie, Suely K N; Mischel, Paul S; Cavenee, Webster K; Furnari, Frank B

    2012-08-28

    Glioblastoma multiforme (GBM) is the most aggressive of the astrocytic malignancies and the most common intracranial tumor in adults. Although the epidermal growth factor receptor (EGFR) is overexpressed and/or mutated in at least 50% of GBM cases and is required for tumor maintenance in animal models, EGFR inhibitors have thus far failed to deliver significant responses in GBM patients. One inherent resistance mechanism in GBM is the coactivation of multiple receptor tyrosine kinases, which generates redundancy in activation of phosphoinositide-3'-kinase (PI3K) signaling. Here we demonstrate that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor is frequently phosphorylated at a conserved tyrosine residue, Y240, in GBM clinical samples. Phosphorylation of Y240 is associated with shortened overall survival and resistance to EGFR inhibitor therapy in GBM patients and plays an active role in mediating resistance to EGFR inhibition in vitro. Y240 phosphorylation can be mediated by both fibroblast growth factor receptors and SRC family kinases (SFKs) but does not affect the ability of PTEN to antagonize PI3K signaling. These findings show that, in addition to genetic loss and mutation of PTEN, its modulation by tyrosine phosphorylation has important implications for the development and treatment of GBM.

  4. The LDL receptor.

    Science.gov (United States)

    Goldstein, Joseph L; Brown, Michael S

    2009-04-01

    In this article, the history of the LDL receptor is recounted by its codiscoverers. Their early work on the LDL receptor explained a genetic cause of heart attacks and led to new ways of thinking about cholesterol metabolism. The LDL receptor discovery also introduced three general concepts to cell biology: receptor-mediated endocytosis, receptor recycling, and feedback regulation of receptors. The latter concept provides the mechanism by which statins selectively lower plasma LDL, reducing heart attacks and prolonging life.

  5. Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil

    Science.gov (United States)

    Zou, Yanjiao; Aggarwal, Mini; Zheng, Wen-Guang; Wu, Hen-Ming; Cheung, Alice Y.

    2011-01-01

    Background RAC/ROPs are RHO-type GTPases and are known to play diverse signalling roles in plants. Cytoplasmic RAC/ROPs are recruited to the cell membrane and activated in response to extracellular signals perceived and mediated by cell surface-located signalling assemblies, transducing the signals to regulate cellular processes. More than any other cell types in plants, pollen tubes depend on continuous interactions with an extracellular environment produced by their surrounding tissues as they grow within the female organ pistil to deliver sperm to the female gametophyte for fertilization. Scope We review studies on pollen tube growth that provide compelling evidence indicating that RAC/ROPs are crucial for regulating the cellular processes that underlie the polarized cell growth process. Efforts to identify cell surface regulators that mediate extracellular signals also point to RAC/ROPs being the molecular switches targeted by growth-regulating female factors for modulation to mediate pollination and fertilization. We discuss a large volume of work spanning more than two decades on a family of pollen-specific receptor kinases and some recent studies on members of the FERONIA family of receptor-like kinases (RLKs). Significance The research described shows the crucial roles that two RLK families play in transducing signals from growth regulatory factors to the RAC/ROP switch at the pollen tube apex to mediate and target pollen tube growth to the female gametophyte and signal its disintegration to achieve fertilization once inside the female chamber. PMID:22476487

  6. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    International Nuclear Information System (INIS)

    Ohno, Masae; Kunimoto, Masaaki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2009-01-01

    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins are known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.

  7. Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer's disease and levodopa-induced dyskinesia.

    Science.gov (United States)

    Navarro, Gemma; Borroto-Escuela, Dasiel; Angelats, Edgar; Etayo, Íñigo; Reyes-Resina, Irene; Pulido-Salgado, Marta; Rodríguez-Pérez, Ana I; Canela, Enric I; Saura, Josep; Lanciego, José Luis; Labandeira-García, José Luis; Saura, Carlos A; Fuxe, Kjell; Franco, Rafael

    2018-01-01

    Endocannabinoids are important regulators of neurotransmission and, acting on activated microglia, they are postulated as neuroprotective agents. Endocannabinoid action is mediated by CB 1 and CB 2 receptors, which may form heteromeric complexes (CB 1 -CB 2 Hets) with unknown function in microglia. We aimed at establishing the expression and signaling properties of cannabinoid receptors in resting and LPS/IFN-γ-activated microglia. In activated microglia mRNA transcripts increased (2 fold for CB 1 and circa 20 fold for CB 2 ), whereas receptor levels were similar for CB 1 and markedly upregulated for CB 2 ; CB 1 -CB 2 Hets were also upregulated. Unlike in resting cells, CB 2 receptors became robustly coupled to G i in activated cells, in which CB 1 -CB 2 Hets mediated a potentiation effect. Hence, resting cells were refractory while activated cells were highly responsive to cannabinoids. Interestingly, similar results were obtained in cultures treated with ß-amyloid (Aß 1-42 ). Microglial activation markers were detected in the striatum of a Parkinson's disease (PD) model and, remarkably, in primary microglia cultures from the hippocampus of mutant β-amyloid precursor protein (APP Sw,Ind ) mice, a transgenic Alzheimer's disease (AD) model. Also of note was the similar cannabinoid receptor signaling found in primary cultures of microglia from APP Sw,Ind and in cells from control animals activated using LPS plus IFN-γ. Expression of CB 1 -CB 2 Hets was increased in the striatum from rats rendered dyskinetic by chronic levodopa treatment. In summary, our results showed sensitivity of activated microglial cells to cannabinoids, increased CB 1 -CB 2 Het expression in activated microglia and in microglia from the hippocampus of an AD model, and a correlation between levodopa-induced dyskinesia and striatal microglial activation in a PD model. Cannabinoid receptors and the CB 1 -CB 2 heteroreceptor complex in activated microglia have potential as targets in the

  8. Heme-Mediated Induction of CXCL10 and Depletion of CD34+ Progenitor Cells Is Toll-Like Receptor 4 Dependent.

    Directory of Open Access Journals (Sweden)

    Carmen M Dickinson-Copeland

    Full Text Available Plasmodium falciparum infection can cause microvascular dysfunction, cerebral encephalopathy and death if untreated. We have previously shown that high concentrations of free heme, and C-X-C motif chemokine 10 (CXCL10 in sera of malaria patients induce apoptosis in microvascular endothelial and neuronal cells contributing to vascular dysfunction, blood-brain barrier (BBB damage and mortality. Endothelial progenitor cells (EPC are microvascular endothelial cell precursors partly responsible for repair and regeneration of damaged BBB endothelium. Studies have shown that EPC's are depleted in severe malaria patients, but the mechanisms mediating this phenomenon are unknown. Toll-like receptors recognize a wide variety of pathogen-associated molecular patterns generated by pathogens such as bacteria and parasites. We tested the hypothesis that EPC depletion during malaria pathogenesis is a function of heme-induced apoptosis mediated by CXCL10 induction and toll-like receptor (TLR activation. Heme and CXCL10 concentrations in plasma obtained from malaria patients were elevated compared with non-malaria subjects. EPC numbers were significantly decreased in malaria patients (P < 0.02 and TLR4 expression was significantly elevated in vivo. These findings were confirmed in EPC precursors in vitro; where it was determined that heme-induced apoptosis and CXCL10 expression was TLR4-mediated. We conclude that increased serum heme mediates depletion of EPC during malaria pathogenesis.

  9. Cobaltous chloride and hypoxia inhibit aryl hydrocarbon receptor-mediated responses in breast cancer cells

    International Nuclear Information System (INIS)

    Khan, Shaheen; Liu Shengxi; Stoner, Matthew; Safe, Stephen

    2007-01-01

    The aryl hydrocarbon receptor (AhR) is expressed in estrogen receptor (ER)-positive ZR-75 breast cancer cells. Treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces CYP1A1 protein and mRNA levels and also activates inhibitory AhR-ERα crosstalk associated with hormone-induced reporter gene expression. In ZR-75 cells grown under hypoxia, induction of these AhR-mediated responses by TCDD was significantly inhibited. This was not accompanied by decreased nuclear AhR levels or decreased interaction of the AhR complex with the CYP1A1 gene promoter as determined in a chromatin immunoprecipitation assay. Hypoxia-induced loss of Ah-responsiveness was not associated with induction of hypoxia-inducible factor-1α or other factors that sequester the AhR nuclear translocation (Arnt) protein, and overexpression of Arnt under hypoxia did not restore Ah-responsiveness. The p65 subunit of NFκB which inhibits AhR-mediated transactivation was not induced by hypoxia and was primarily cytosolic in ZR-75 cells grown under hypoxic and normoxic conditions. In ZR-75 cells maintained under hypoxic conditions for 24 h, BRCA1 (an enhancer of AhR-mediated transactivation in breast cancer cells) was significantly decreased and this contributed to loss of Ah-responsiveness. In cells grown under hypoxia for 6 h, BRCA1 was not decreased, but induction of CYP1A1 by TCDD was significantly decreased. Cotreatment of ZR-75 cells with TCDD plus the protein synthesis inhibitor cycloheximide for 6 h enhanced CYP1A1 expression in cells grown under hypoxia and normoxia. These results suggest that hypoxia rapidly induces protein(s) that inhibit Ah-responsiveness and these may be similar to constitutively expressed inhibitors of Ah-responsiveness (under normoxia) that are also inhibited by cycloheximide

  10. Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity.

    Science.gov (United States)

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T

    2011-04-15

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-D-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP.

  11. The phosphatidylinositol-3 kinase pathway is not essential for insulin-like growth factor I receptor-mediated clonogenic radioresistance

    International Nuclear Information System (INIS)

    Yu, Dong; Watanabe, Hiroshi; Shibuya, Hitoshi; Miura, Masahiko

    2002-01-01

    The insulin-like growth factor I receptor (IGF-IR) is known to induce clonogenic radioresistance in cells following ionizing irradiation. To explore the downstream signaling pathways, we focused on the phosphatidylinositol-3 kinase (PI3-K) pathway, which is thought to be the primary cell survival signal originating from the receptor. For this purpose, R- cells deficient in the endogenous IGF-IR were used as a recipient of the human IGF-IR with or without mutations at potential PI3-K activation sites: NPXY 950 and Y 1316 XXM. Mutats with double mutation at Y950/Y1316 exhibited not abrogated, but reduced activation of insulin receptor substance-1 (IRS-1), PI3-K, and Akt upon IGF-I stimulation. However, the mutants had the same clonogenic radioresistance as cells with wild type (WT) receptors. Neither wortmannin nor LY294002, specific inhibitors of PI3-K, affected the radioresistance of cells with WT receptors at concentrations specific for PI3-K. Collectively, these results indicate that the PI3-K pathway is not essential for IGF-IR-mediated clonogenic radioresistance. (author)

  12. Histamine H2 Receptor-Mediated Suppression of Intestinal Inflammation by Probiotic Lactobacillus reuteri.

    Science.gov (United States)

    Gao, Chunxu; Major, Angela; Rendon, David; Lugo, Monica; Jackson, Vanessa; Shi, Zhongcheng; Mori-Akiyama, Yuko; Versalovic, James

    2015-12-15

    Probiotics and commensal intestinal microbes suppress mammalian cytokine production and intestinal inflammation in various experimental model systems. Limited information exists regarding potential mechanisms of probiotic-mediated immunomodulation in vivo. In this report, we demonstrate that specific probiotic strains of Lactobacillus reuteri suppress intestinal inflammation in a trinitrobenzene sulfonic acid (TNBS)-induced mouse colitis model. Only strains that possess the hdc gene cluster, including the histidine decarboxylase and histidine-histamine antiporter genes, can suppress colitis and mucosal cytokine (interleukin-6 [IL-6] and IL-1β in the colon) gene expression. Suppression of acute colitis in mice was documented by diminished weight loss, colonic injury, serum amyloid A (SAA) protein concentrations, and reduced uptake of [(18)F]fluorodeoxyglucose ([(18)F]FDG) in the colon by positron emission tomography (PET). The ability of probiotic L. reuteri to suppress colitis depends on the presence of a bacterial histidine decarboxylase gene(s) in the intestinal microbiome, consumption of a histidine-containing diet, and signaling via the histamine H2 receptor (H2R). Collectively, luminal conversion of l-histidine to histamine by hdc(+) L. reuteri activates H2R, and H2R signaling results in suppression of acute inflammation within the mouse colon. Probiotics are microorganisms that when administered in adequate amounts confer beneficial effects on the host. Supplementation with probiotic strains was shown to suppress intestinal inflammation in patients with inflammatory bowel disease and in rodent colitis models. However, the mechanisms of probiosis are not clear. Our current studies suggest that supplementation with hdc(+) L. reuteri, which can convert l-histidine to histamine in the gut, resulted in suppression of colonic inflammation. These findings link luminal conversion of dietary components (amino acid metabolism) by gut microbes and probiotic-mediated

  13. Mannose 6-phosphate receptor and sortilin mediated endocytosis of α-galactosidase A in kidney endothelial cells

    DEFF Research Database (Denmark)

    Prabakaran, Thaneas; Nielsen, Rikke Skovgaard; Satchell, Simon C

    2012-01-01

    endothelial cells, in order to clarify if the recombinant enzyme is targeted to the lysosomes via the universal mannose 6-phosphate receptor (M6PR) and possibly other receptors. Immunohistochemical localization of infused recombinant α-Gal A in a renal biopsy from a classic Fabry disease patient showed...... that recombinant protein localize in the endothelial cells of the kidney. Affinity purification studies using α-Gal A resins identified M6PR and sortilin as α-Gal A receptors in cultured glomerular endothelial cells. Immunohistochemical analyses of normal human kidney with anti-sortilin and anti-M6PR showed...... that sortilin and M6PR were expressed in the endothelium of smaller and larger vessels. Uptake studies in cultured glomerular endothelial cells of α-Gal A labeled with fluorescence and (125)I showed by inhibition with RAP and M6P that sortilin and M6PR mediated uptake of α-Gal A. Biacore studies revealed that α...

  14. NOD1 cooperates with TLR2 to enhance T cell receptor-mediated activation in CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Blandine C Mercier

    Full Text Available Pattern recognition receptors (PRR, like Toll-like receptors (TLR and NOD-like receptors (NLR, are involved in the detection of microbial infections and tissue damage by cells of the innate immune system. Recently, we and others have demonstrated that TLR2 can additionally function as a costimulatory receptor on CD8 T cells. Here, we establish that the intracytosolic receptor NOD1 is expressed and functional in CD8 T cells. We show that C12-iEDAP, a synthetic ligand for NOD1, has a direct impact on both murine and human CD8 T cells, increasing proliferation and effector functions of cells activated via their T cell receptor (TCR. This effect is dependent on the adaptor molecule RIP2 and is associated with an increased activation of the NF-κB, JNK and p38 signaling pathways. Furthermore, we demonstrate that NOD1 stimulation can cooperate with TLR2 engagement on CD8 T cells to enhance TCR-mediated activation. Altogether our results indicate that NOD1 might function as an alternative costimulatory receptor in CD8 T cells. Our study provides new insights into the function of NLR in T cells and extends to NOD1 the recent concept that PRR stimulation can directly control T cell functions.

  15. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices.

    Science.gov (United States)

    Grassi, S; Pettorossi, V E

    2001-08-01

    The analysis of cellular-molecular events mediating synaptic plasticity within vestibular nuclei is an attempt to explain the mechanisms underlying vestibular plasticity phenomena. The present review is meant to illustrate the main results, obtained in vitro, on the mechanisms underlying long-term changes in synaptic strength within the medial vestibular nuclei. The synaptic plasticity phenomena taking place at the level of vestibular nuclei could be useful for adapting and consolidating the efficacy of vestibular neuron responsiveness to environmental requirements, as during visuo-vestibular recalibration and vestibular compensation. Following a general introduction on the most salient features of vestibular compensation and visuo-vestibular adaptation, which are two plastic events involving neuronal circuitry within the medial vestibular nuclei, the second and third sections describe the results from rat brainstem slice studies, demonstrating the possibility to induce long-term potentiation and depression in the medial vestibular nuclei, following high frequency stimulation of the primary vestibular afferents. In particular the mechanisms sustaining the induction and expression of vestibular long-term potentiation and depression, such as the role of various glutamate receptors and retrograde messengers have been described. The relevant role of the interaction between the platelet-activating factor, acting as a retrograde messenger, and the presynaptic metabotropic glutamate receptors, in determining the full expression of vestibular long-term potentiation is also underlined. In addition, the mechanisms involved in vestibular long-term potentiation have been compared with those leading to long-term potentiation in the hippocampus to emphasize the most significant differences emerging from vestibular studies. The fourth part, describes recent results demonstrating the essential role of nitric oxide, another retrograde messenger, in the induction of vestibular

  16. Contribution of Central μ-Receptors to Switching Pulmonary C-Fibers-Mediated Rapid Shallow Breathing into An Apnea by Fentanyl in Anesthetized Rats

    Science.gov (United States)

    Zhang, Zhenxiong; Zhang, Cancan; Zhuang, Jianguo; Xu, Fadi

    2012-01-01

    Our previous study has shown that activating peripheral μ-receptors is necessary for switching the bronchopulmonary C-fibers (PCFs)-mediated rapid shallow breathing (RSB) into an apnea by systemic administration of fentanyl. The brainstem nuclei, such as the medial nucleus tractus solitarius (mNTS) and the Pre-Botzinger Complex (PBC), are required for completing the PCF-mediated respiratory reflexes. Moreover, these areas contain abundant μ-receptors and their activation prolongs expiratory duration (TE). Thus, we asked if central μ-receptors, especially those in the mNTS and PBC, are involved in fully expressing this RSB-apnea switch by fentanyl. In anesthetized rats, the cardiorespiratory responses to right atrial injection of phenylbiguanide (PBG, 3–6 μg/kg) were repeated after: 1) fentanyl (iv), a μ-receptor agonist, alone (8 μg/kg, iv); 2) fentanyl following microinjection of naloxone methiodide (NXM, an opioid receptor antagonist) into the cisterna magna (10 μg/4 μl); 3) the bilateral mNTS (10 mM, 20 nl); or 4) PBC (10 mM, 20 nl). Our results showed that PBG shortened TE by 37 ± 6 % (RSB, from 0.41 ± 0.05 to 0.26 ± 0.03 s, P fentanyl (iv). Pretreatment with NXM injected into the cisterna magna or the PBC, but not the mNTS, prevented the fentanyl-induced switch. This study, along with our previous results mentioned above, suggests that although peripheral μ-receptors are essential for triggering the fentanyl-induced switch, central μ-receptors, especially those in the PBC, are required to fully exhibit such switch. PMID:22759907

  17. Protease activated receptors (PARS) mediation in gyroxin biological activity; Mediacao dos receptores ativados por proteases (PARs) em atividades biologicas da giroxina

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jose Alberto Alves da

    2009-07-01

    Gyroxin is a serine protease enzyme from the South American rattlesnake (Crotalus durissus terrificus) venom; it is only partially characterized and has multiple activities. Gyroxin induces blood coagulation, blood pressure decrease and a neurotoxic behavior named barrel rotation. The mechanisms involved in this neurotoxic activity are not known. Whereas gyroxin is a member of enzymes with high potential to become a new drug with clinical applications such as thrombin, batroxobin, ancrod, tripsyn and kalicrein, it is important to find out how gyroxin works. The analysis on agarose gel electrophoresis and circular dichroism confirmed the molecules' integrity and purity. The gyroxin intravenous administration in mice proved its neurotoxicity (barrel rotation). In vivo studies employing intravital microscopy proved that gyroxin induces vasodilation with the participation of protease activated receptors (PARs), nitric oxide and Na+K+ATPase. The leukocytes' adherence and rolling counting indicated that gyroxin has no pro inflammatory activity. Gyroxin induced platelet aggregation, which was blocked by inhibitors of PAR1 and PAR4 receptors (SCH 79797 and tcY-NH{sub 2}, respectively). Finally, it was proved that the gyroxin temporarily alter the permeability of the blood brain barrier (BBB). Our study has shown that both the protease-activated receptors and nitric oxide are mediators involved in the biological activities of gyroxin. (author)

  18. Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex.

    Directory of Open Access Journals (Sweden)

    Iulia Glovaci

    Full Text Available The lateral entorhinal cortex receives strong inputs from midbrain dopamine neurons that can modulate its sensory and mnemonic function. We have previously demonstrated that 1 µM dopamine facilitates synaptic transmission in layer II entorhinal cortex cells via activation of D1-like receptors, increased cAMP-PKA activity, and a resulting enhancement of AMPA-receptor mediated currents. The present study assessed the contribution of phosphatidylinositol (PI-linked D1 receptors to the dopaminergic facilitation of transmission in layer II of the rat entorhinal cortex, and the involvement of phospholipase C activity and release of calcium from internal stores. Whole-cell patch-clamp recordings of glutamate-mediated evoked excitatory postsynaptic currents were obtained from pyramidal and fan cells. Activation of D1-like receptors using SKF38393, SKF83959, or 1 µM dopamine induced a reversible facilitation of EPSCs which was abolished by loading cells with either the phospholipase C inhibitor U-73122 or the Ca2+ chelator BAPTA. Neither the L-type voltage-gated Ca2+ channel blocker nifedipine, nor the L/N-type channel blocker cilnidipine, blocked the facilitation of synaptic currents. However, the facilitation was blocked by blocking Ca2+ release from internal stores via inositol 1,4,5-trisphosphate (InsP3 receptors or ryanodine receptors. Follow-up studies demonstrated that inhibiting CaMKII activity with KN-93 failed to block the facilitation, but that application of the protein kinase C inhibitor PKC(19-36 completely blocked the dopamine-induced facilitation. Overall, in addition to our previous report indicating a role for the cAMP-PKA pathway in dopamine-induced facilitation of synaptic transmission, we demonstrate here that the dopaminergic facilitation of synaptic responses in layer II entorhinal neurons also relies on a signaling cascade dependent on PI-linked D1 receptors, PLC, release of Ca2+ from internal stores, and PKC activation which is

  19. In brown adipocytes, adrenergically induced β1-/β3-(Gs)-, α2-(Gi)- and α1-(Gq)-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation

    International Nuclear Information System (INIS)

    Wang, Yanling; Fälting, Johanna M.; Mattsson, Charlotte L.; Holmström, Therése E.; Nedergaard, Jan

    2013-01-01

    Brown adipose tissue is unusual in that the neurotransmitter norepinephrine influences cell destiny in ways generally associated with effects of classical growth factors: regulation of cell proliferation, of apoptosis, and progression of differentiation. The norepinephrine effects are mediated through G-protein-coupled receptors; further mediation of such stimulation to e.g. Erk1/2 activation is in cell biology in general accepted to occur through transactivation of the EGF receptor (by external or internal pathways). We have examined here the significance of such transactivation in brown adipocytes. Stimulation of mature brown adipocytes with cirazoline (α 1 -adrenoceptor coupled via G q ), clonidine (α 2 via G i ) or CL316243 (β 3 via G s ) or via β 1 -receptors significantly activated Erk1/2. Pretreatment with the EGF receptor kinase inhibitor AG1478 had, remarkably, no significant effect on Erk1/2 activation induced by any of these adrenergic agonists (although it fully abolished EGF-induced Erk1/2 activation), demonstrating absence of EGF receptor-mediated transactivation. Results with brown preadipocytes (cells in more proliferative states) were not qualitatively different. Joint stimulation of all adrenoceptors with norepinephrine did not result in synergism on Erk1/2 activation. AG1478 action on EGF-stimulated Erk1/2 phosphorylation showed a sharp concentration–response relationship (IC 50 0.3 µM); a minor apparent effect of AG1478 on norepinephrine-stimulated Erk1/2 phosphorylation showed nonspecific kinetics, implying caution in interpretation of partial effects of AG1478 as reported in other systems. Transactivation of the EGF receptor is clearly not a universal prerequisite for coupling of G-protein coupled receptors to Erk1/2 signalling cascades. - Highlights: • In brown adipocytes, norepinephrine regulates proliferation, apoptosis, differentiation. • EGF receptor transactivation is supposed to mediate GPCR-induced Erk1/2 activation. •

  20. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors. PMID:23487769

  1. Paradoxical mineralocorticoid receptor-mediated effect in fear memory encoding and expression of rats submitted to an olfactory fear conditioning task

    NARCIS (Netherlands)

    Souza, R.R.; Dal Bó, S.; de Kloet, E.R.; Oitzl, M.S.; Carobrez, A.P.

    2014-01-01

    There is general agreement that the substantial modification in memory and motivational states exerted by corticosteroids after a traumatic experience is mediated in complementary manner by the mineralocorticoid (MR) and glucocorticoid (GR) receptors. Here we tested the hypothesis that

  2. Scavenger receptor-mediated recognition of maleyl bovine plasma albumin and the demaleylated protein in human monocyte macrophages

    International Nuclear Information System (INIS)

    Haberland, M.E.; Fogelman, A.M.

    1985-01-01

    Maleyl bovine plasma albumin competed on an equimolar basis with malondialdehyde low density lipoprotein (LDL) in suppressing the lysosomal hydrolysis of 125 I-labeled malondialdehyde LDL mediated by the scavenger receptor of human monocyte macrophages. Maleyl bovine plasma albumin, in which 94% of the amino groups were modified, exhibited an anodic mobility in agarose electrophoresis 1.7 times that of the native protein. Incubation of maleyl bovine plasma albumin at pH 3.5 regenerated the free amino groups and restored the protein to the same electrophoretic mobility as native albumin. Although ligands recognized by the scavenger receptor typically are anionic, the authors propose that addition of new negative charge achieved by maleylation, rather than directly forming the receptor binding site(s), induces conformational changes in albumin as a prerequisite to expression of the recognition domain(s). They conclude that the primary sequence of albumin, rather than addition of new negative charge, provides the recognition determinant(s) essential for interaction of maleyl bovine plasma albumin with the scavenger receptor

  3. Receptor-mediated endocytosis of lysozyme in renal proximal tubules of the frog Rana temporaria

    Directory of Open Access Journals (Sweden)

    E.V. Seliverstova

    2015-04-01

    Full Text Available The mechanism of protein reabsorption in the kidney of lower vertebrates remains insufficiently investigated in spite of raising interest to the amphibian and fish kidneys as a useful model for physiological and pathophysiological examinations. In the present study, we examined the renal tubular uptake and the internalization rote of lysozyme after its intravenous injection in the wintering frog Rana temporaria using immunohisto- and immunocytochemistry and specific markers for some endocytic compartments. The distinct expression of megalin and cubilin in the proximal tubule cells of lysozyme-injected frogs was revealed whereas kidney tissue of control animals showed no positive immunoreactivity. Lysozyme was detected in the apical endocytic compartment of the tubular cells and colocalized with clathrin 10 min after injection. After 20 min, lysozyme was located in the subapical compartment negative to clathrin (endosomes, and intracellular trafficking of lysozyme was coincided with the distribution of megalin and cubilin. However, internalized protein was retained in the endosomes and did not reach lysosomes within 30 min after treatment that may indicate the inhibition of intracellular trafficking in hibernating frogs. For the first time, we provided the evidence that lysozyme is filtered through the glomeruli and absorbed by receptor-mediated clathrin-dependent endocytosis in the frog proximal tubule cells. Thus, the protein uptake in the amphibian mesonephros is mediated by megalin and cubilin that confirms a critical role of endocytic receptors in the renal reabsorption of proteins in amphibians as in mammals.

  4. Orexin/hypocretin receptor 1 signaling mediates Pavlovian cue-food conditioning and extinction.

    Science.gov (United States)

    Keefer, Sara E; Cole, Sindy; Petrovich, Gorica D

    2016-08-01

    Learned food cues can drive feeding in the absence of hunger, and orexin/hypocretin signaling is necessary for this type of overeating. The current study examined whether orexin also mediates cue-food learning during the acquisition and extinction of these associations. In Experiment 1, rats underwent two sessions of Pavlovian appetitive conditioning, consisting of tone-food presentations. Prior to each session, rats received either the orexin 1 receptor antagonist SB-334867 (SB) or vehicle systemically. SB treatment did not affect conditioned responses during the first conditioning session, measured as food cup behavior during the tone and latency to approach the food cup after the tone onset, compared to the vehicle group. During the second conditioning session, SB treatment attenuated learning. All groups that received SB, prior to either the first or second conditioning session, displayed significantly less food cup behavior and had longer latencies to approach the food cup after tone onset compared to the vehicle group. These findings suggest orexin signaling at the 1 receptor mediates the consolidation and recall of cue-food acquisition. In Experiment 2, another group of rats underwent tone-food conditioning sessions (drug free), followed by two extinction sessions under either SB or vehicle treatment. Similar to Experiment 1, SB did not affect conditioned responses during the first session. During the second extinction session, the group that received SB prior to the first extinction session, but vehicle prior to the second, expressed conditioned food cup responses longer after tone offset, when the pellets were previously delivered during conditioning, and maintained shorter latencies to approach the food cup compared to the other groups. The persistence of these conditioned behaviors indicates impairment in extinction consolidation due to SB treatment during the first extinction session. Together, these results demonstrate an important role for orexin

  5. Orexin/hypocretin receptor 1 signaling mediates Pavlovian cue-food conditioning and extinction

    Science.gov (United States)

    Keefer, Sara E.; Cole, Sindy; Petrovich, Gorica D.

    2016-01-01

    Learned food cues can drive feeding in the absence of hunger, and orexin/hypocretin signaling is necessary for this type of overeating. The current study examined whether orexin also mediates cue-food learning during the acquisition and extinction of these associations. In Experiment 1, rats underwent two sessions of Pavlovian appetitive conditioning, consisting of tone-food presentations. Prior to each session, rats received either the orexin 1 receptor antagonist SB-334867 (SB) or vehicle systemically. SB treatment did not affect conditioned responses during the first conditioning session, measured as food cup behavior during the tone and latency to approach the food cup after the tone onset, compared to the vehicle group. During the second conditioning session, SB treatment attenuated learning. All groups that received SB, prior to either the first or second conditioning session, displayed significantly less food cup behavior and had longer latencies to approach the food cup after tone onset compared to the vehicle group. These findings suggest orexin signaling at the 1 receptor mediates the consolidation and recall of cue-food acquisition. In Experiment 2, another group of rats underwent tone-food conditioning sessions (drug free), followed by two extinction sessions under either SB or vehicle treatment. Similar to Experiment 1, SB did not affect conditioned responses during the first session. During the second extinction session, the group that received SB prior to the first extinction session, but vehicle prior to the second, expressed conditioned food cup responses longer after tone offset, when the pellets were previously delivered during conditioning, and maintained shorter latencies to approach the food cup compared to the other groups. The persistence of these conditioned behaviors indicates impairment in extinction consolidation due to SB treatment during the first extinction session. Together, these results demonstrate an important role for orexin

  6. ZFAT plays critical roles in peripheral T cell homeostasis and its T cell receptor-mediated response

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Keiko [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute of Life Sciences for the Next Generation of Women Scientists, Fukuoka University, Fukuoka (Japan); Fujimoto, Takahiro [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Okamura, Tadashi [Division of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo (Japan); Ogawa, Masahiro [Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Tanaka, Yoko [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Mototani, Yasumasa; Goto, Motohito [Division of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo (Japan); Ota, Takeharu; Matsuzaki, Hiroshi [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Kuroki, Masahide [Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Tsunoda, Toshiyuki [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Sasazuki, Takehiko [Institute for Advanced Study, Kyushu University, Fukuoka (Japan); Shirasawa, Senji, E-mail: sshirasa@fukuoka-u.ac.jp [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer We generated Cd4-Cre-mediated T cell-specific Zfat-deficient mice. Black-Right-Pointing-Pointer Zfat-deficiency leads to reduction in the number of the peripheral T cells. Black-Right-Pointing-Pointer Impaired T cell receptor-mediated response in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Decreased expression of IL-7R{alpha}, IL-2R{alpha} and IL-2 in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Zfat plays critical roles in peripheral T cell homeostasis. -- Abstract: ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in apoptosis, development and primitive hematopoiesis. Zfat is highly expressed in T- and B-cells in the lymphoid tissues, however, its physiological function in the immune system remains totally unknown. Here, we generated the T cell-specific Zfat-deficient mice and demonstrated that Zfat-deficiency leads to a remarkable reduction in the number of the peripheral T cells. Intriguingly, a reduced expression of IL-7R{alpha} and the impaired responsiveness to IL-7 for the survival were observed in the Zfat-deficient T cells. Furthermore, a severe defect in proliferation and increased apoptosis in the Zfat-deficient T cells following T cell receptor (TCR) stimulation was observed with a reduced IL-2R{alpha} expression as well as a reduced IL-2 production. Thus, our findings reveal that Zfat is a critical regulator in peripheral T cell homeostasis and its TCR-mediated response.

  7. The Impact of HLA Class I-Specific Killer Cell Immunoglobulin-Like Receptors on Antibody-Dependent Natural Killer Cell-Mediated Cytotoxicity and Organ Allograft Rejection.

    Science.gov (United States)

    Rajalingam, Raja

    2016-01-01

    Natural killer (NK) cells of the innate immune system are cytotoxic lymphocytes that play an important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self-human leukocyte antigen (HLA) class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIRs) is involved in the calibration of NK cell effector capacities during the developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self-HLA class I (due to virus infection or tumor transformation) or HLA class I disparities (in the setting of allogeneic transplantation). NK cells expressing an inhibitory KIR-binding self-HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC), triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  8. The impact of HLA class I-specific killer cell immunoglobulin-like receptors on antibody-dependent natural killer cell-mediated cytotoxicity and organ allograft rejection

    Directory of Open Access Journals (Sweden)

    Raja Rajalingam

    2016-12-01

    Full Text Available Natural killer (NK cells of the innate immune system are cytotoxic lymphocytes that play important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self HLA class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIR is involved in the calibration of NK cell effector capacities during a developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self HLA class I (due to virus infection or tumor transformation or HLA class I disparities (in the setting of allogeneic transplantation. NK cells expressing an inhibitory KIR binding self HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC, triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  9. In vivo [3H]spiperone binding: evidence for accumulation in corpus striatum by agonist-mediated receptor internalization

    International Nuclear Information System (INIS)

    Chugani, D.C.; Ackermann, R.F.; Phelps, M.E.

    1988-01-01

    The processes of receptor internalization and recycling have been well-documented for receptors for hormones, growth factors, lysosomal enzymes, and cellular substrates. Evidence also exists that these processes also occur for beta-adrenergic, muscarinic cholinergic, and delta-opiate receptors in frog erythrocytes or cultured nervous tissue. In this study, evidence is presented that agonist-mediated receptor internalization and recycling occurs at the dopamine receptor in rat corpus striatum. First, the in vivo binding of the dopamine antagonist [3H]spiperone was increased by both electrical stimulation and pharmacologically induced increases of dopamine release. Conversely, depletion of dopamine with reserpine decreased in vivo [3H]spiperone binding, but the same reserpine treatment did not alter its in vitro binding. Second, the rate of dissociation of [3H]spiperone from microsomal membranes prepared from rat striatum following in vivo binding was fivefold slower than its dissociation following in vitro equilibrium binding. Mild detergent treatment, employed to disrupt endocytic vesicle membranes, increased the rate of dissociation of in vivo bound [3H]spiperone from microsomal membranes to values not significantly different from its in vitro bound dissociation rate. Third, treatment of rats with chloroquine, a drug that prevents receptor recycling but not internalization, prior to [3H]spiperone injection resulted in a selective increase of in vivo [3H]spiperone binding in the light microsome membranes. The existence of mechanisms that rapidly alter the number of neurotransmitter receptors at synapses provides dynamic regulation of receptors in response to varied acute stimulation states

  10. C-X-C Chemokine Receptor Type 4 Plays a Crucial Role in Mediating Oxidative Stress-Induced Podocyte Injury.

    Science.gov (United States)

    Mo, Hongyan; Wu, Qinyu; Miao, Jinhua; Luo, Congwei; Hong, Xue; Wang, Yongping; Tang, Lan; Hou, Fan Fan; Liu, Youhua; Zhou, Lili

    2017-08-20

    Oxidative stress plays a role in mediating podocyte injury and proteinuria. However, the underlying mechanism remains poorly understood. In this study, we investigated the potential role of C-X-C chemokine receptor type 4 (CXCR4), the receptor for stromal cell-derived factor 1α (SDF-1α), in mediating oxidative stress-induced podocyte injury. In mouse model of adriamycin nephropathy (ADR), CXCR4 expression was significantly induced in podocytes as early as 3 days. This was accompanied by an increased upregulation of oxidative stress in podocyte, as demonstrated by malondialdehyde assay, nitrotyrosine staining and secretion of 8-hydroxy-2'-deoxyguanosine in urine, and induction of NOX2 and NOX4, major subunits of NADPH oxidase. CXCR4 was also induced in human kidney biopsies with proteinuric kidney diseases and colocalized with advanced oxidation protein products (AOPPs), an established oxidative stress trigger. Using cultured podocytes and mouse model, we found that AOPPs induced significant loss of podocyte marker Wilms tumor 1 (WT1), nephrin, and podocalyxin, accompanied by upregulation of desmin both in vitro and in vivo. Furthermore, AOPPs worsened proteinuria and aggravated glomerulosclerosis in ADR. These effects were associated with marked activation of SDF-1α/CXCR4 axis in podocytes. Administration of AMD3100, a specific inhibitor of CXCR4, reduced proteinuria and ameliorated podocyte dysfunction and renal fibrosis triggered by AOPPs in mice. In glomerular miniorgan culture, AOPPs also induced CXCR4 expression and downregulated nephrin and WT1. Innovation and Conclusion: These results suggest that chemokine receptor CXCR4 plays a crucial role in mediating oxidative stress-induced podocyte injury, proteinuria, and renal fibrosis. CXCR4 could be a new target for mitigating podocyte injury, proteinuria, and glomerular sclerosis in proteinuric chronic kidney disease. Antioxid. Redox Signal. 27, 345-362.

  11. Anti-inflammatory activity of topical THC in DNFB-mediated mouse allergic contact dermatitis independent of CB1 and CB2 receptors.

    Science.gov (United States)

    Gaffal, E; Cron, M; Glodde, N; Tüting, T

    2013-08-01

    ∆(9) -Tetrahydrocannabinol (THC), the active constituent of Cannabis sativa, exerts its biological effects in part through the G-protein-coupled CB1 and CB2 receptors, which were initially discovered in brain and spleen tissue, respectively. However, THC also has CB1/2 receptor-independent effects. Because of its immune-inhibitory potential, THC and related cannabinoids are being considered for the treatment of inflammatory skin diseases. Here we investigated the mechanism of the anti-inflammatory activity of THC and the role of CB1 and CB2 receptors. We evaluated the impact of topically applied THC on DNFB-mediated allergic contact dermatitis in wild-type and CB1/2 receptor-deficient mice. We performed immunohistochemical analyses for infiltrating immune cells and studied the influence of THC on the interaction between T cells, keratinocytes and myeloid immune cells in vitro. Topical THC application effectively decreased contact allergic ear swelling and myeloid immune cell infiltration not only in wild-type but also in CB1/2 receptor-deficient mice. We found that THC (1) inhibited the production of IFNγ by T cells, (2) decreased the production of CCL2 and of IFNγ-induced CCL8 and CXL10 by epidermal keratinocytes and (3) thereby limited the recruitment of myeloid immune cells in vitro in a CB1/2 receptor-independent manner. Topically applied THC can effectively attenuate contact allergic inflammation by decreasing keratinocyte-derived pro-inflammatory mediators that orchestrate myeloid immune cell infiltration independent of CB1/2 receptors. This has important implications for the future development of strategies to harness cannabinoids for the treatment of inflammatory skin diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. CDK11p58 represses vitamin D receptor-mediated transcriptional activation through promoting its ubiquitin-proteasome degradation

    International Nuclear Information System (INIS)

    Chi, Yayun; Hong, Yi; Zong, Hongliang; Wang, Yanlin; Zou, Weiying; Yang, Junwu; Kong, Xiangfei; Yun, Xiaojing; Gu, Jianxin

    2009-01-01

    Vitamin D receptor (VDR) is a member of the nuclear receptor superfamily and regulates transcription of target genes. In this study, we identified CDK11 p58 as a novel protein involved in the regulation of VDR. CDK11 p58 , a member of the large family of p34cdc2-related kinases, is associated with cell cycle progression, tumorigenesis, and apoptotic signaling. Our study demonstrated that CDK11 p58 interacted with VDR and repressed VDR-dependent transcriptional activation. Furthermore, overexpression of CDK11 p58 decreased the stability of VDR through promoting its ubiquitin-proteasome-mediated degradation. Taken together, these results suggest that CDK11 p58 is involved in the negative regulation of VDR.

  13. The Influence of Receptor-Mediated Interactions on Reaction-Diffusion Mechanisms of Cellular Self-organisation

    KAUST Repository

    Klika, Václav

    2011-11-10

    Understanding the mechanisms governing and regulating self-organisation in the developing embryo is a key challenge that has puzzled and fascinated scientists for decades. Since its conception in 1952 the Turing model has been a paradigm for pattern formation, motivating numerous theoretical and experimental studies, though its verification at the molecular level in biological systems has remained elusive. In this work, we consider the influence of receptor-mediated dynamics within the framework of Turing models, showing how non-diffusing species impact the conditions for the emergence of self-organisation. We illustrate our results within the framework of hair follicle pre-patterning, showing how receptor interaction structures can be constrained by the requirement for patterning, without the need for detailed knowledge of the network dynamics. Finally, in the light of our results, we discuss the ability of such systems to pattern outside the classical limits of the Turing model, and the inherent dangers involved in model reduction. © 2011 Society for Mathematical Biology.

  14. MDMA-Induced Dissociative State not Mediated by the 5-HT2A Receptor

    Directory of Open Access Journals (Sweden)

    Drew J. Puxty

    2017-07-01

    Full Text Available Previous research has shown that a single dose of MDMA induce a dissociative state, by elevating feelings of depersonalization and derealization. Typically, it is assumed that action on the 5-HT2A receptor is the mechanism underlying these psychedelic experiences. In addition, other studies have shown associations between dissociative states and biological parameters (heart rate, cortisol, which are elevated by MDMA. In order to investigate the role of the 5-HT2 receptor in the MDMA-induced dissociative state and the association with biological parameters, a placebo-controlled within-subject study was conducted including a single oral dose of MDMA (75 mg, combined with placebo or a single oral dose of the 5-HT2 receptor blocker ketanserin (40 mg. Twenty healthy recreational MDMA users filled out a dissociative states scale (CADSS 90 min after treatments, which was preceded and followed by assessment of a number of biological parameters (cortisol levels, heart rate, MDMA blood concentrations. Findings showed that MDMA induced a dissociative state but this effect was not counteracted by pre-treatment with ketanserin. Heart rate was the only biological parameter that correlated with the MDMA-induced dissociative state, but an absence of correlation between these measures when participants were pretreated with ketanserin suggests an absence of directional effects of heart rate on dissociative state. It is suggested that the 5-HT2 receptor does not mediate the dissociative effects caused by a single dose of MDMA. Further research is needed to determine the exact neurobiology underlying this effect and whether these effects contribute to the therapeutic potential of MDMA.

  15. Electroacupuncture Potentiates Cannabinoid Receptor-Mediated Descending Inhibitory Control in a Mouse Model of Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Xiao-Cui Yuan

    2018-04-01

    Full Text Available Knee osteoarthritis (KOA is a highly prevalent, chronic joint disorder, which can lead to chronic pain. Although electroacupuncture (EA is effective in relieving chronic pain in the clinic, the involved mechanisms remain unclear. Reduced diffuse noxius inhibitory controls (DNIC function is associated with chronic pain and may be related to the action of endocannabinoids. In the present study, we determined whether EA may potentiate cannabinoid receptor-mediated descending inhibitory control and inhibit chronic pain in a mouse model of KOA. We found that the optimized parameters of EA inhibiting chronic pain were the low frequency and high intensity (2 Hz + 1 mA. EA reversed the reduced expression of CB1 receptors and the 2-arachidonoylglycerol (2-AG level in the midbrain in chronic pain. Microinjection of the CB1 receptor antagonist AM251 into the ventrolateral periaqueductal gray (vlPAG can reversed the EA effect on pain hypersensitivity and DNIC function. In addition, CB1 receptors on GABAergic but not glutamatergic neurons are involved in the EA effect on DNIC function and descending inhibitory control of 5-HT in the medulla, thus inhibiting chronic pain. Our data suggest that endocannabinoid (2-AG-CB1R-GABA-5-HT may be a novel signaling pathway involved in the effect of EA improving DNIC function and inhibiting chronic pain.

  16. Transmission to interneurons is via slow excitatory synaptic potentials mediated by P2Y(1 receptors during descending inhibition in guinea-pig ileum.

    Directory of Open Access Journals (Sweden)

    Peter D J Thornton

    Full Text Available BACKGROUND: The nature of synaptic transmission at functionally distinct synapses in intestinal reflex pathways has not been fully identified. In this study, we investigated whether transmission between interneurons in the descending inhibitory pathway is mediated by a purine acting at P2Y receptors to produce slow excitatory synaptic potentials (EPSPs. METHODOLOGY/PRINCIPAL FINDINGS: Myenteric neurons from guinea-pig ileum in vitro were impaled with intracellular microelectrodes. Responses to distension 15 mm oral to the recording site, in a separately perfused stimulation chamber and to electrical stimulation of local nerve trunks were recorded. A subset of neurons, previously identified as nitric oxide synthase immunoreactive descending interneurons, responded to both stimuli with slow EPSPs that were reversibly abolished by a high concentration of PPADS (30 μM, P2 receptor antagonist. When added to the central chamber of a three chambered organ bath, PPADS concentration-dependently depressed transmission through that chamber of descending inhibitory reflexes, measured as inhibitory junction potentials in the circular muscle of the anal chamber. Reflexes evoked by distension in the central chamber were unaffected. A similar depression of transmission was seen when the specific P2Y(1 receptor antagonist MRS 2179 (10 μM was in the central chamber. Blocking either nicotinic receptors (hexamethonium 200 μM or 5-HT(3 receptors (granisetron 1 μM together with P2 receptors had no greater effect than blocking P2 receptors alone. CONCLUSIONS/SIGNIFICANCE: Slow EPSPs mediated by P2Y(1 receptors, play a primary role in transmission between descending interneurons of the inhibitory reflexes in the guinea-pig ileum. This is the first demonstration for a primary role of excitatory metabotropic receptors in physiological transmission at a functionally identified synapse.

  17. p75 Neurotrophin Receptor Cleavage by α- and γ-Secretases Is Required for Neurotrophin-mediated Proliferation of Brain Tumor-initiating Cells*

    Science.gov (United States)

    Forsyth, Peter A.; Krishna, Niveditha; Lawn, Samuel; Valadez, J. Gerardo; Qu, Xiaotao; Fenstermacher, David A.; Fournier, Michelle; Potthast, Lisa; Chinnaiyan, Prakash; Gibney, Geoffrey T.; Zeinieh, Michele; Barker, Philip A.; Carter, Bruce D.; Cooper, Michael K.; Kenchappa, Rajappa S.

    2014-01-01

    Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target. PMID:24519935

  18. p75 neurotrophin receptor cleavage by α- and γ-secretases is required for neurotrophin-mediated proliferation of brain tumor-initiating cells.

    Science.gov (United States)

    Forsyth, Peter A; Krishna, Niveditha; Lawn, Samuel; Valadez, J Gerardo; Qu, Xiaotao; Fenstermacher, David A; Fournier, Michelle; Potthast, Lisa; Chinnaiyan, Prakash; Gibney, Geoffrey T; Zeinieh, Michele; Barker, Philip A; Carter, Bruce D; Cooper, Michael K; Kenchappa, Rajappa S

    2014-03-21

    Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.

  19. THIP, a hypnotic and antinociceptive drug, enhances a tonic GABAA receptor mediated conductance in mouse neocortex

    DEFF Research Database (Denmark)

    Drasbek, Kim Ryun; Jensen, Kimmo

    2006-01-01

    its cellular actions in the neocortex are uncertain, we studied the effects of THIP on neurons in slices of frontoparietal neocortex of 13- to 19-day-old (P13-19) mice. Using whole-cell patch-clamp recordings, we found that the clinically relevant THIP concentration of 1 μM induced a robust tonic GABA...... suggest that THIP activates an extrasynaptic GABA(A) receptor-mediated conductance in the neocortex, which may alter the cortical network activity....

  20. Endogenous opioid peptide-mediated neurotransmission in central and pericentral nuclei of the inferior colliculus recruits μ1-opioid receptor to modulate post-ictal antinociception.

    Science.gov (United States)

    Felippotti, Tatiana Tocchini; de Freitas, Renato Leonardo; Coimbra, Norberto Cysne

    2012-02-01

    The aim of the present work was to investigate the involvement of the μ1-endogenous opioid peptide receptor-mediated system in post-ictal antinociception. Antinociceptive responses were determined by the tail-flick test after pre-treatment with the selective μ1-opioid receptor antagonist naloxonazine, peripherally or centrally administered at different doses. Peripheral subchronic (24 h) pre-treatment with naloxonazine antagonised the antinociception elicited by tonic-clonic seizures. Acute (10 min) pre-treatment, however, did not have the same effect. In addition, microinjections of naloxonazine into the central, dorsal cortical and external cortical nuclei of the inferior colliculus antagonised tonic-clonic seizure-induced antinociception. Neither acute (10-min) peripheral pre-treatment with naloxonazine nor subchronic intramesencephalic blockade of μ1-opioid receptors resulted in consistent statistically significant differences in the severity of tonic-clonic seizures shown by Racine's index (1972), although the intracollicular specific antagonism of μ1-opioid receptor decreased the duration of seizures. μ1-Opioid receptors and the inferior colliculus have been implicated in several endogenous opioid peptide-mediated responses such as antinociception and convulsion. The present findings suggest the involvement of μ1-opiate receptors of central and pericentral nuclei of the inferior colliculus in the modulation of tonic-clonic seizures and in the organisation of post-ictal antinociception. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. The Arabidopsis flagellin receptor FLS2 mediates the perception of Xanthomonas Ax21 secreted peptides.

    Science.gov (United States)

    Danna, Cristian H; Millet, Yves A; Koller, Teresa; Han, Sang-Wook; Bent, Andrew F; Ronald, Pamela C; Ausubel, Frederick M

    2011-05-31

    Detection of microbes by plants relies in part on an array of pattern-recognition receptors that recognize conserved microbial signatures, so-called "microbe-associated molecular patterns." The Arabidopsis thaliana receptor-like kinase FLS2 is the pattern-recognition receptor for bacterial flagellin. Similarly to FLS2, the rice transmembrane protein XA21 is the receptor for the sulfated form of the Xanthomonas oryzae pv. oryzae secreted protein Ax21. Here we show that Ax21-derived peptides activate Arabidopsis immunity, triggering responses similar to those elicited by flagellin, including an oxidative burst, induction of defense-response genes, and enhanced resistance to bacterial pathogens. To identify Arabidopsis Xa21 functional homologs, we used a reverse genetics approach to screen T-DNA insertion mutants corresponding to all 47 of the Arabidopsis genes encoding non-RD kinases belonging to the interleukin-1 receptor-associated kinase (IRAK) family. Surprisingly, among all of these mutant lines, only fls2 mutants exhibited a significant loss of response to Ax21-derived peptides. Ax21 peptides also failed to activate defense-related responses in an fls2-24 mutant that does not bind Flg22. Moreover, a Flg22Δ2 variant of Flg22 that binds to FLS2 but does not activate FLS2-mediated signaling suppressed Ax21-derived peptide signaling, indicating mutually exclusive perception of Flg22 or Ax21 peptides by FLS2. The data indicate that FLS2 functions beyond flagellin perception to detect other microbe-associated molecular patterns.

  2. Sphingosine-1-phosphate (S1P) displays sustained S1P1 receptor agonism and signaling through S1P lyase-dependent receptor recycling.

    Science.gov (United States)

    Gatfield, John; Monnier, Lucile; Studer, Rolf; Bolli, Martin H; Steiner, Beat; Nayler, Oliver

    2014-07-01

    The sphingosine-1-phosphate (S1P) type 1 receptor (S1P1R) is a novel therapeutic target in lymphocyte-mediated autoimmune diseases. S1P1 receptor desensitization caused by synthetic S1P1 receptor agonists prevents T-lymphocyte egress from secondary lymphoid organs into the circulation. The selective S1P1 receptor agonist ponesimod, which is in development for the treatment of autoimmune diseases, efficiently reduces peripheral lymphocyte counts and displays efficacy in animal models of autoimmune disease. Using ponesimod and the natural ligand S1P, we investigated the molecular mechanisms leading to different signaling, desensitization and trafficking behavior of S1P1 receptors. In recombinant S1P1 receptor-expressing cells, ponesimod and S1P triggered Gαi protein-mediated signaling and β-arrestin recruitment with comparable potency and efficiency, but only ponesimod efficiently induced intracellular receptor accumulation. In human umbilical vein endothelial cells (HUVEC), ponesimod and S1P triggered translocation of the endogenous S1P1 receptor to the Golgi compartment. However, only ponesimod treatment caused efficient surface receptor depletion, receptor accumulation in the Golgi and degradation. Impedance measurements in HUVEC showed that ponesimod induced only short-lived Gαi protein-mediated signaling followed by resistance to further stimulation, whereas S1P induced sustained Gαi protein-mediated signaling without desensitization. Inhibition of S1P lyase activity in HUVEC rendered S1P an efficient S1P1 receptor internalizing compound and abrogated S1P-mediated sustained signaling. This suggests that S1P lyase - by facilitating S1P1 receptor recycling - is essential for S1P-mediated sustained signaling, and that synthetic agonists are functional antagonists because they are not S1P lyase substrates. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Endocannabinoids mediate neuron-astrocyte communication.

    Science.gov (United States)

    Navarrete, Marta; Araque, Alfonso

    2008-03-27

    Cannabinoid receptors play key roles in brain function, and cannabinoid effects in brain physiology and drug-related behavior are thought to be mediated by receptors present in neurons. Neuron-astrocyte communication relies on the expression by astrocytes of neurotransmitter receptors. Yet, the expression of cannabinoid receptors by astrocytes in situ and their involvement in the neuron-astrocyte communication remain largely unknown. We show that hippocampal astrocytes express CB1 receptors that upon activation lead to phospholipase C-dependent Ca2+ mobilization from internal stores. These receptors are activated by endocannabinoids released by neurons, increasing astrocyte Ca2+ levels, which stimulate glutamate release that activates NMDA receptors in pyramidal neurons. These results demonstrate the existence of endocannabinoid-mediated neuron-astrocyte communication, revealing that astrocytes are targets of cannabinoids and might therefore participate in the physiology of cannabinoid-related addiction. They also reveal the existence of an endocannabinoid-glutamate signaling pathway where astrocytes serve as a bridge for nonsynaptic interneuronal communication.

  4. Opioid receptor subtypes mediating the noise-induced decreases in high-affinity choline uptake in the rat brain.

    Science.gov (United States)

    Lai, H; Carino, M A

    1992-07-01

    Acute (20 min) exposure to 100-dB white noise elicits a naltrexone-sensitive decrease in sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. In the present study, the subtypes of opioid receptors involved were investigated by pretreating rats with microinjection of specific opioid-receptor antagonists into the lateral cerebroventricle before noise exposure. We found that the noise-induced decrease in high-affinity choline uptake in the hippocampus was blocked by pretreatment with either mu-, delta-, or kappa-opioid-receptor antagonists, whereas the effect of noise on frontal cortical high-affinity choline uptake was blocked by a mu- and delta- but not by a kappa-antagonist. These data further confirm the role of endogenous opioids in mediating the effects of noise on central cholinergic activity and indicate that different neural mechanisms are involved in the effects of noise on the frontal cortical and hippocampal cholinergic systems.

  5. Critical roles for LIGHT and its receptors in generating T cell-mediated immunity during Leishmania donovani infection.

    Directory of Open Access Journals (Sweden)

    Amanda C Stanley

    2011-10-01

    Full Text Available LIGHT (TNFSF14 is a member of the TNF superfamily involved in inflammation and defence against infection. LIGHT signals via two cell-bound receptors; herpes virus entry mediator (HVEM and lymphotoxin-beta receptor (LTβR. We found that LIGHT is critical for control of hepatic parasite growth in mice with visceral leishmaniasis (VL caused by infection with the protozoan parasite Leishmania donovani. LIGHT-HVEM signalling is essential for early dendritic cell IL-12/IL-23p40 production, and the generation of IFNγ- and TNF-producing T cells that control hepatic infection. However, we also discovered that LIGHT-LTβR interactions suppress anti-parasitic immunity in the liver in the first 7 days of infection by mechanisms that restrict both CD4(+ T cell function and TNF-dependent microbicidal mechanisms. Thus, we have identified distinct roles for LIGHT in infection, and show that manipulation of interactions between LIGHT and its receptors may be used for therapeutic advantage.

  6. 5-HT receptor subtypes as key targets in mediating pigment dispersion within melanophores of teleost, Oreochromis mossambicus.

    Science.gov (United States)

    Salim, Saima; Ali, Ayesha S; Ali, Sharique A

    2013-02-01

    The presence of distinct class of 5-HT receptors in the melanophores of tilapia (Oreochromis mossambicus) is reported. The cellular responses to 5-HT (5-hydroxytryptamine), 5-HT(1), and 5-HT(2), agonists on isolated scale melanophores were observed with regard to pigment translocation within the cells. It was found that 5-HT exerted rapid and strong concentration dependent pigment granule dispersion within the melanophores. The threshold pharmacological dose of 5-HT that could elicit a measurable response was as low as 4.7×10(-12) M/L. Selective 5-HT(1) and 5-HT(2) agonists, sumatriptan and myristicin were investigated and resulted in dose-dependent pigment dispersion. The dispersing effects were effectively antagonized by receptor specific antagonists. It is suggested that 5-HT-induced physiological effects are mediated via distinct classes of receptors that possibly participate in modulation of pigmentary responses of the fish. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Histone H4 Lys 20 methyltransferase SET8 promotes androgen receptor-mediated transcription activation in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Lushuai [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Yanyan; Du, Fengxia [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Han, Xiao [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Xiaohua [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Niu, Yuanjie [Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300070 (China); Ren, Shancheng, E-mail: renshancheng@gmail.com [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Sun, Yingli, E-mail: sunyl@big.ac.cn [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-07-18

    Highlights: • Dihydrotestosterone stimulates H4K20me1 enrichment at the PSA promoter. • SET8 promotes AR-mediated transcription activation. • SET8 interacts with AR and promotes cell proliferation. - Abstract: Histone methylation status in different lysine residues has an important role in transcription regulation. The effect of H4K20 monomethylation (H4K20me1) on androgen receptor (AR)-mediated gene transcription remains unclear. Here we show that AR agonist stimulates the enrichment of H4K20me1 and SET8 at the promoter of AR target gene PSA in an AR dependent manner. Furthermore, SET8 is crucial for the transcription activation of PSA. Co-immunoprecipitation analyses demonstrate that SET8 interacts with AR. Therefore, we conclude that SET8 is involved in AR-mediated transcription activation, possibly through its interaction with AR and H4K20me1 modification.

  8. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression.

    Science.gov (United States)

    Scarlatti, G; Tresoldi, E; Björndal, A; Fredriksson, R; Colognesi, C; Deng, H K; Malnati, M S; Plebani, A; Siccardi, A G; Littman, D R; Fenyö, E M; Lusso, P

    1997-11-01

    Following the identification of the C-C chemokines RANTES, MIP-1alpha and MIP-1beta as major human immunodeficiency virus (HIV)-suppressive factors produced by CD8+ T cells, several chemokine receptors were found to serve as membrane co-receptors for primate immunodeficiency lentiretroviruses. The two most widely used co-receptors thus far recognized, CCR5 and CXCR4, are expressed by both activated T lymphocytes and mononuclear phagocytes. CCR5, a specific RANTES, MIP-1alpha and MIP-1 receptor, is used preferentially by non-MT2-tropic HIV-1 and HIV-2 strains and by simian immunodeficiency virus (SIV), whereas CXCR4, a receptor for the C-X-C chemokine SDF-1, is used by MT2-tropic HIV-1 and HIV-2, but not by SIV. Other receptors with a more restricted cellular distribution, such as CCR2b, CCR3 and STRL33, can also function as co-receptors for selected viral isolates. The third variable region (V3) of the gp120 envelope glycoprotein of HIV-1 has been fingered as a critical determinant of the co-receptor choice. Here, we document a consistent pattern of evolution of viral co-receptor usage and sensitivity to chemokine-mediated suppression in a longitudinal follow-up of children with progressive HIV-1 infection. Viral isolates obtained during the asymptomatic stages generally used only CCR5 as a co-receptor and were inhibited by RANTES, MIP-1alpha and MIP-1beta, but not by SDF-1. By contrast, the majority of the isolates derived after the progression of the disease were resistant to C-C chemokines, having acquired the ability to use CXCR4 and, in some cases, CCR3, while gradually losing CCR5 usage. Surprisingly, most of these isolates were also insensitive to SDF-1, even when used in combination with RANTES. An early acquisition of CXCR4 usage predicted a poor prognosis. In children who progressed to AIDS without a shift to CXCR4 usage, all the sequential isolates were CCR5-dependent but showed a reduced sensitivity to C-C chemokines. Discrete changes in the V3 domain

  9. Novel isoforms of the TFIID subunit TAF4 modulate nuclear receptor-mediated transcriptional activity

    International Nuclear Information System (INIS)

    Brunkhorst, Adrian; Neuman, Toomas; Hall, Anita; Arenas, Ernest; Bartfai, Tamas; Hermanson, Ola; Metsis, Madis

    2004-01-01

    The transcription factor TFIID consists of TATA-binding protein (TBP) and TBP-associated factors (TAFs). TAFs are essential for modulation of transcriptional activity but the regulation of TAFs is complex and many important aspects remain unclear. In this study, we have identified and characterized five novel truncated forms of the TFIID subunit TAF4 (TAF II 135). Analysis of the mouse gene structure revealed that all truncations were the results of alternative splicing and resulted in the loss of domains or parts of domains implicated in TAF4 functional interactions. Results from transcriptional assays showed that several of the TAF4 isoforms exerted dominant negative effects on TAF4 activity in nuclear receptor-mediated transcriptional activation. In addition, alternative TAF4 isoforms could be detected in specific cell types. Our results indicate an additional level of complexity in TAF4-mediated regulation of transcription and suggest context-specific roles for these new TAF4 isoforms in transcriptional regulation in vivo

  10. Time-Dependent Vascular Effects of Endocannabinoids Mediated by Peroxisome Proliferator-Activated Receptor Gamma (PPAR

    Directory of Open Access Journals (Sweden)

    Saoirse E. O'Sullivan

    2009-01-01

    Full Text Available The aim of the present study was to examine whether endocannabinoids cause PPAR-mediated vascular actions. Functional vascular studies were carried out in rat aortae. Anandamide and N-arachidonoyl-dopamine (NADA, but not palmitoylethanolamide, caused significant vasorelaxation over time (2 hours. Vasorelaxation to NADA, but not anandamide, was inhibited by CB1 receptor antagonism (AM251, 1 M, and vasorelaxation to both anandamide and NADA was inhibited by PPAR antagonism (GW9662, 1 M. Pharmacological inhibition of de novo protein synthesis, nitric oxide synthase, and super oxide dismutase abolished the responses to anandamide and NADA. Removal of the endothelium partly inhibited the vasorelaxant responses to anandamide and NADA. Inhibition of fatty acid amide hydrolase (URB597, 1 M inhibited the vasorelaxant response to NADA, but not anandamide. These data indicate that endocannabinoids cause time-dependent, PPAR-mediated vasorelaxation. Activation of PPAR in the vasculature may represent a novel mechanism by which endocannabinoids are involved in vascular regulation.

  11. Differences between lutropin-mediated and choriogonadotropin-mediated receptor activation.

    Science.gov (United States)

    Grzesik, Paul; Teichmann, Anke; Furkert, Jens; Rutz, Claudia; Wiesner, Burkhard; Kleinau, Gunnar; Schülein, Ralf; Gromoll, Jörg; Krause, Gerd

    2014-03-01

    The human lutropin/choriogonadotropin receptor (hLHR) for the gonadotropic hormones human luteinizing hormone (hLH; lutropin) and human choriogonadotropin (hCG) is crucial for normal sexual development and fertility. We aimed to unravel differences between the two hLHR hormones in molecular activation mechanisms at hLHR. We utilized a specific hLHR variant that lacks exon 10 (hLHR-delExon10), which maintains full cAMP signaling by hCG, but decreases hLH-induced receptor signaling, resulting in a pathogenic phenotype. Exon 10 encodes 27 amino acids within the hinge region, which is an extracellular segment that is important for signaling and hormone interaction. Initially, we assumed that the lack of exon 10 might disturb intermolecular trans-activation of hLH, a mechanism that has been reported for hCG at hLHR. Coexpression of signaling-deficient hLHR and binding-deficient hLHR can be used to examine the mechanisms of receptor signaling, in particular intermolecular cooperation and intramolecular cis-activation. Therefore, hLHR-delExon10 was combined with the hLHR Lys605→Glu mutant, in which signaling is abolished, and the hLHR mutant Cys131→Arg, in which binding is deficient. We found that hCG signaling was partially rescued, indicating trans-activation. However, the hLH signal could not be restored via forced trans-activation with any construct. Fluorescence cross-correlation spectroscopy detected oligomerization in all combinations, indicating that these functional differences cannot be explained by monomerization of hLHR-delExon10. Thus, our data demonstrate not only that the different behavior of hLH at hLHR-delExon10 is unlikely to be related to modified intermolecular receptor activation, but also that hLH may exclusively stimulate the targeted hLHR by cis-activation, whereas hCG is also capable of inducing trans-activation. © 2014 FEBS.

  12. Channel opening of γ-aminobutyric acid receptor from rat brain: molecular mechanisms of the receptor responses

    International Nuclear Information System (INIS)

    Cash, D.J.; Subbarao, K.

    1987-01-01

    The function of γ-aminobutyric acid (GABA) receptors, which mediate transmembrane chloride flux, can be studied by use of 36 Cl - isotope tracer with membrane from mammalian brain by quench-flow technique, with reaction times that allow resolution of the receptor desensitization rates from the ion flux rates. The rates of chloride exchange into the vesicles in the absence and presence of GABA were characterized with membrane from rat cerebral cortex. Unspecific 36 Cl - influx was completed in three phases of ca. 3% (t/sub 1/2/ = 0.6 s), 56% (t/sub 1/2 = 82 s), and 41% (t/sub 1/2 = 23 min). GABA-mediated, specific chloride exchange occurred with 6.5% of the total vesicular internal volume. The GABA-dependent 36 Cl - influx proceeded in two phases, each progressively slowed by desensitization. The measurements supported the presence of two distinguishable active GABA receptors on the same membrane mediating chloride exchange into the vesicles. The half-response concentrations were similar for both receptors. The two receptors were present in the activity ratio of ca. 4/1, similar to the ratio of low affinity to high-affinity GABA sites found in ligand binding experiments. The desensitization rates have a different dependence on GABA concentration than the channel-opening equilibria. For both receptors, the measurements over a 2000-fold GABA concentration range required a minimal mechanism involving the occupation of both of the two GABA binding sites for significant channel opening; then the receptors were ca. 80% open. Similarly for both receptors, desensitization was mediated by a different pair of binding sites, although desensitization with only one ligand molecule bound could occur at a 20-fold slower rate

  13. Upregulation of vascular endothelial growth factor receptor-1 contributes to sevoflurane preconditioning–mediated cardioprotection

    Directory of Open Access Journals (Sweden)

    Qian B

    2018-04-01

    Full Text Available Bin Qian,1 Yang Yang,2 Yusheng Yao,3 Yanling Liao,3 Ying Lin3 1Department of Anesthesiology, People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; 2Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; 3Department of Anesthesiology, The Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China Purpose: Sevoflurane preconditioning (SPC can provide myocardial protective effects similar to ischemic preconditioning. However, the exact mechanism of SPC remains unclear. Previous studies indicate that vascular endothelial growth factor receptor 1 (VEGFR-1 is involved in ischemic preconditioning-mediated cardioprotection. This study was designed to determine the significance of VEGFR-1 signaling in SPC-mediated cardioprotection.Materials and methods: Myocardial ischemia–reperfusion (I/R rat model was established using the Langendorff isolated heart perfusion apparatus. Additionally, after 15 min of baseline equilibration, the isolated hearts were pretreated with 2.5% sevoflurane, 2.5% sevoflurane+MF1 10 µmol/L, or 2.5% sevoflurane+placental growth factor 10 µmol/L, and then subjected to 30 min of global ischemia and 120 min of reperfusion. The changes in hemodynamic parameters, myocardial infarct size, and the levels of creatine kinase-MB, lactate dehydrogenase, cardiac troponin-I, tumor necrosis factor-α, and interleukin 6 in the myocardium were evaluated.Results: Compared to the I/R group, pretreatment with 2.5% sevoflurane significantly improved the cardiac function, limited myocardial infarct size, reduced cardiac enzyme release, upregulated VEGFR-1 expression, and decreased inflammation. In addition, the selective VEGFR-1 agonist, placental growth factor, did not enhance the cardioprotection and anti-inflammation effects of sevoflurane, while the specific VEGFR-1 inhibitor, MF1, completely reversed these effects

  14. Mas-related G protein coupled receptor-X2: A potential new target for modulating mast cell-mediated allergic and inflammatory diseases.

    Science.gov (United States)

    Ali, Hydar

    2016-12-01

    Mast cells (MCs) are tissue resident immune cells that are best known for their roles in allergic and inflammatory diseases. In addition to the high affinity IgE receptor (FcεRI), MCs express numerous G protein coupled receptors (GPCRs), which are the most common targets of drug therapy. Neurokinin 1 receptor (NK-1R) is expressed on MCs and contributes to IgE and non-IgE-mediated responses in mice. Although NK-1R antagonists are highly effective in modulating experimental allergic and inflammatory responses in mice they lack efficacy in humans. This article reviews recent findings that demonstrate that while neuropeptides (NPs) activate murine MCs via NK-1R and Mas related G protein coupled receptor B2 (MrgprB2), they activate human MCs via Mas-related G protein coupled receptor X2 (MRGPRX2). Interestingly, conventional NK-1R antagonists have off-target activity against mouse MrgprB2 but not human MRGPRX2. These findings suggest that the failure to translate studies with NK-1R antagonists from in vivo mouse studies to the clinic likely reflects their lack of effect on human MRGPRX2. A unique feature of MRGPRX2 that distinguishes it from other GPCRs is that it is activated by a diverse group of ligands that include; neuropeptides, cysteine proteases, antimicrobial peptides and cationic proteins released from activated eosinophils. Thus, the development of small molecule MRGPRX2-specific antagonists or neutralizing antibodies may provide new targets for the treatment of MC-mediated allergic and inflammatory diseases.

  15. Global analysis of gene expression mediated by OX1 orexin receptor signaling in a hypothalamic cell line.

    Directory of Open Access Journals (Sweden)

    Eric Koesema

    Full Text Available The orexins and their cognate G-protein coupled receptors have been widely studied due to their associations with various behaviors and cellular processes. However, the detailed downstream signaling cascades that mediate these effects are not completely understood. We report the generation of a neuronal model cell line that stably expresses the OX1 orexin receptor (OX1 and an RNA-Seq analysis of changes in gene expression seen upon receptor activation. Upon treatment with orexin, several families of related transcription factors are transcriptionally regulated, including the early growth response genes (Egr, the Kruppel-like factors (Klf, and the Nr4a subgroup of nuclear hormone receptors. Furthermore, some of the transcriptional effects observed have also been seen in data from in vivo sleep deprivation microarray studies, supporting the physiological relevance of the data set. Additionally, inhibition of one of the most highly regulated genes, serum and glucocorticoid-regulated kinase 1 (Sgk1, resulted in the diminished orexin-dependent induction of a subset of genes. These results provide new insight into the molecular signaling events that occur during OX1 signaling and support a role for orexin signaling in the stimulation of wakefulness during sleep deprivation studies.

  16. Distinct muscarinic acetylcholine receptor subtypes mediate pre- and postsynaptic effects in rat neocortex

    Directory of Open Access Journals (Sweden)

    Gigout Sylvain

    2012-04-01

    Full Text Available Abstract Background Cholinergic transmission has been implicated in learning, memory and cognition. However, the cellular effects induced by muscarinic acetylcholine receptors (mAChRs activation are poorly understood in the neocortex. We investigated the effects of the cholinergic agonist carbachol (CCh and various agonists and antagonists on neuronal activity in rat neocortical slices using intracellular (sharp microelectrode and field potential recordings. Results CCh increased neuronal firing but reduced synaptic transmission. The increase of neuronal firing was antagonized by pirenzepine (M1/M4 mAChRs antagonist but not by AF-DX 116 (M2/M4 mAChRs antagonist. Pirenzepine reversed the depressant effect of CCh on excitatory postsynaptic potential (EPSP but had marginal effects when applied before CCh. AF-DX 116 antagonized the depression of EPSP when applied before or during CCh. CCh also decreased the paired-pulse inhibition of field potentials and the inhibitory conductances mediated by GABAA and GABAB receptors. The depression of paired-pulse inhibition was antagonized or prevented by AF-DX 116 or atropine but only marginally by pirenzepine. The inhibitory conductances were unaltered by xanomeline (M1/M4 mAChRs agonist, yet the CCh-induced depression was antagonized by AF-DX 116. Linopirdine, a selective M-current blocker, mimicked the effect of CCh on neuronal firing. However, linopirdine had no effect on the amplitude of EPSP or on the paired-pulse inhibition, indicating that M-current is involved in the increase of neuronal excitability but neither in the depression of EPSP nor paired-pulse inhibition. Conclusions These data indicate that the three effects are mediated by different mAChRs, the increase in firing being mediated by M1 mAChR, decrease of inhibition by M2 mAChR and depression of excitatory transmission by M4 mAChR. The depression of EPSP and increase of neuronal firing might enhance the signal-to-noise ratio, whereas the

  17. GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow

    DEFF Research Database (Denmark)

    Guan, Xinfu; Karpen, Heidi E; Stephens, John

    2006-01-01

    . These actions are mediated by the G-protein-coupled receptor, GLP-2R. Cellular localization of the GLP-2R and the nature of its signaling network in the gut, however, are poorly defined. Thus, our aim was to establish cellular localization of GLP-2R and functional connection to vascular action of GLP-2......-dependently stimulated intestinal blood flow and coordinately upregulated the expression of intestinal eNOS mRNA, protein, and phosphorylation (eNOS-Ser1117). CONCLUSIONS: We conclude that the GLP-2-induced stimulation of blood flow is mediated by vasoactive neurotransmitters that are colocalized with GLP-2R in 2...

  18. Hindbrain GLP-1 receptor mediation of cisplatin-induced anorexia and nausea.

    Science.gov (United States)

    De Jonghe, Bart C; Holland, Ruby A; Olivos, Diana R; Rupprecht, Laura E; Kanoski, Scott E; Hayes, Matthew R

    2016-01-01

    While chemotherapy-induced nausea and vomiting are clinically controlled in the acute (anorexia, nausea, fatigue, and other illness-type behaviors during the delayed phase (>24 h) of chemotherapy are largely uncontrolled. As the hindbrain glucagon-like peptide-1 (GLP-1) system contributes to energy balance and mediates aversive and stressful stimuli, here we examine the hypothesis that hindbrain GLP-1 signaling mediates aspects of chemotherapy-induced nausea and reductions in feeding behavior in rats. Specifically, hindbrain GLP-1 receptor (GLP-1R) blockade, via 4th intracerebroventricular (ICV) exendin-(9-39) injections, attenuates the anorexia, body weight reduction, and pica (nausea-induced ingestion of kaolin clay) elicited by cisplatin chemotherapy during the delayed phase (48 h) of chemotherapy-induced nausea. Additionally, the present data provide evidence that the central GLP-1-producing preproglucagon neurons in the nucleus tractus solitarius (NTS) of the caudal brainstem are activated by cisplatin during the delayed phase of chemotherapy-induced nausea, as cisplatin led to a significant increase in c-Fos immunoreactivity in NTS GLP-1-immunoreactive neurons. These data support a growing body of literature suggesting that the central GLP-1 system may be a potential pharmaceutical target for adjunct anti-emetics used to treat the delayed-phase of nausea and emesis, anorexia, and body weight loss that accompany chemotherapy treatments. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Histamine 1 Receptor Blockade Enhances Eosinophil-Mediated Clearance of Adult Filarial Worms.

    Directory of Open Access Journals (Sweden)

    Ellen Mueller Fox

    Full Text Available Filariae are tissue-invasive nematodes that cause diseases such as elephantiasis and river blindness. The goal of this study was to characterize the role of histamine during Litomosoides sigmodontis infection of BALB/c mice, a murine model of filariasis. Time course studies demonstrated that while expression of histidine decarboxylase mRNA increases throughout 12 weeks of infection, serum levels of histamine exhibit two peaks-one 30 minutes after primary infection and one 8 weeks later. Interestingly, mice treated with fexofenadine, a histamine receptor 1 inhibitor, demonstrated significantly reduced worm burden in infected mice compared to untreated infected controls. Although fexofenadine-treated mice had decreased antigen-specific IgE levels as well as lower splenocyte IL-5 and IFNγ production, they exhibited a greater than fourfold rise in eosinophil numbers at the tissue site where adult L. sigmodontis worms reside. Fexofenadine-mediated clearance of L. sigmodontis worms was dependent on host eosinophils, as fexofenadine did not decrease worm burdens in eosinophil-deficient dblGATA mice. These findings suggest that histamine release induced by tissue invasive helminths may aid parasite survival by diminishing eosinophilic responses. Further, these results raise the possibility that combining H1 receptor inhibitors with current anthelmintics may improve treatment efficacy for filariae and other tissue-invasive helminths.

  20. Surface receptor Toso controls B cell-mediated regulation of T cell immunity.

    Science.gov (United States)

    Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee

    2018-05-01

    The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.

  1. Inhibition of Toll-like receptor 2-mediated interleukin-8 production in Cystic Fibrosis airway epithelial cells via the alpha7-nicotinic acetylcholine receptor.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2010-01-01

    Cystic Fibrosis (CF) is an inherited disorder characterised by chronic inflammation of the airways. The lung manifestations of CF include colonization with Pseudomonas aeruginosa and Staphylococcus aureus leading to neutrophil-dominated airway inflammation and tissue damage. Inflammation in the CF lung is initiated by microbial components which activate the innate immune response via Toll-like receptors (TLRs), increasing airway epithelial cell production of proinflammatory mediators such as the neutrophil chemokine interleukin-8 (IL-8). Thus modulation of TLR function represents a therapeutic approach for CF. Nicotine is a naturally occurring plant alkaloid. Although it is negatively associated with cigarette smoking and cardiovascular damage, nicotine also has anti-inflammatory properties. Here we investigate the inhibitory capacity of nicotine against TLR2- and TLR4-induced IL-8 production by CFTE29o- airway epithelial cells, determine the role of alpha7-nAChR (nicotinic acetylcholine receptor) in these events, and provide data to support the potential use of safe nicotine analogues as anti-inflammatories for CF.

  2. Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways.

    Science.gov (United States)

    Conigrave, Arthur D; Ward, Donald T

    2013-06-01

    In this article we consider the mechanisms by which the calcium-sensing receptor (CaSR) induces its cellular responses via the control (activation or inhibition) of signaling pathways. We consider key features of CaSR-mediated signaling including its control of the heterotrimeric G-proteins Gq/11, Gi/o and G12/13 and the downstream consequences recognizing that very few CaSR-mediated cell phenomena have been fully described. We also consider the manner in which the CaSR contributes to the formation of specific signaling scaffolds via peptide recognition sequences in its intracellular C-terminal along with the origins of its high level of cooperativity, particularly for Ca(2+)o, and its remarkable resistance to desensitization. We also consider the nature of the mechanisms by which the CaSR controls oscillatory and sustained Ca(2+)i mobilizing responses and inhibits or elevates cyclic adenosine monophosphate (cAMP) levels dependent on the cellular and signaling context. Finally, we consider the diversity of the receptor's ligands, ligand binding sites and broader compartment-dependent physiological roles leading to the identification of pronounced ligand-biased signaling for agonists including Sr(2+) and modulators including l-amino acids and the clinically effective calcimimetic cinacalcet. We note the implications of these findings for the development of new designer drugs that might target the CaSR in pathophysiological contexts beyond those established for the treatment of disorders of calcium metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Nitric oxide inhibits the bradykinin B2 receptor-mediated adrenomedullary catecholamine release but has no effect on adrenal blood flow response in vivo.

    Science.gov (United States)

    Bouallegue, Ali; Yamaguchi, Nobuharu

    2005-06-01

    The role of nitric oxide (NO) in bradykinin (BK)-induced adrenal catecholamine secretion still remains obscure. The present study was to investigate whether an inhibition of NO synthase with N(omega)-nitro-L-arginine methyl ester (L-NAME) would modulate BK-induced adrenal catecholamine secretion (ACS) and adrenal vasodilating response (AVR) in anesthetized dogs. Plasma catecholamine concentrations were determined with an HPLC coupled with an electrochemical detector. All drugs were locally administered to the left adrenal gland via intra-arterial infusion. BK dose-dependently increased both ACS and AVR. Hoe-140, a selective B(2) antagonist, significantly blocked the BK-induced increases in both ACS and AVR. In the presence of L-NAME, the BK-induced ACS was significantly enhanced, while the simultaneous AVR remained unaffected. These results suggest that the both BK-induced ACS and AVR are primarily mediated by B(2) receptors in the canine adrenal gland. Our results also suggest that the enhanced ACS in response to BK in the presence of L-NAME may have resulted from a specific inhibition of NO formation in the adrenal gland. It is concluded that the BK-induced NO may play an inhibitory role in the B(2)-receptor-mediated mechanisms regulating ACS, while it may not be implicated in the B(2)-receptor-mediated AVR under in vivo conditions.

  4. The role of G-protein-coupled receptors in mediating the effect of fatty acids on inflammation and insulin sensitivity.

    Science.gov (United States)

    Oh, Da Young; Lagakos, William S

    2011-07-01

    Chronic activation of inflammatory pathways mediates the pathogenesis of insulin resistance, and the macrophage/adipocyte nexus provides a key mechanism underlying decreased insulin sensitivity. Free fatty acids are important in the pathogenesis of insulin resistance, although their precise mechanisms of action have yet to be fully elucidated. Recently, a family of G-protein-coupled receptors has been identified that exhibits high affinity for fatty acids. This review summarizes recent findings on six of these receptors, their ligands, and their potential physiological functions in vivo. Upon activation, the free fatty acid receptors affect inflammation, glucose metabolism, and insulin sensitivity. Genetic deletion of GPR40 and GPR41, receptors for long-chain and short-chain fatty acids, respectively, results in resistance to diet-induced obesity. Deletion of GPR43 and GPR84 exacerbates inflammation, and deletion of the long-chain fatty acid receptors GPR119 and GPR120 reduces or is predicted to reduce glucose tolerance. These studies provide a new understanding of the general biology of gastric motility and also shed valuable insight into some potentially beneficial therapeutic targets. Furthermore, highly selective agonists or antagonists for the free fatty acid receptors have been developed and look promising for treating various metabolic diseases.

  5. Hormonal control of spermatogenesis: expression of FSJH receptor and androgen receptor genes

    NARCIS (Netherlands)

    L.J. Blok (Leen)

    1992-01-01

    textabstractFSH and testosterone are the main hormonal regulators of spermatogenesis. The actions of androgens and FSH are mediated by their respective receptors. Receptor gene expression (mRNA and protein). is an important determinant of hormone action. Biochemical aspects of the regulation of

  6. The effect of vanadate on receptor-mediated endocytosis of asialoorosomucoid in rat liver parenchymal cells

    International Nuclear Information System (INIS)

    Kindberg, G.M.; Gudmundsen, O.; Berg, T.

    1990-01-01

    Vanadate is a phosphate analogue that inhibits enzymes involved in phosphate release and transfer reactions. Since such reactions may play important roles in endocytosis, we studied the effects of vanadate on various steps in receptor-mediated endocytosis of asialoorosomucoid labeled with 125I-tyramine-cellobiose (125I-TC-AOM). The labeled degradation products formed from 125I-TC-AOM are trapped in the lysosomes and may therefore serve as lysosomal markers in subcellular fractionation studies. Vanadate reduced the amount of active surface asialoglycoprotein receptors approximately 70%, but had no effect on the rate of internalization and retroendocytosis of ligand. The amount of surface asialoglycoprotein receptors can be reduced by lowering the incubation temperature gradually from 37 to 15 degrees C; vanadate affected only the temperature--sensitive receptors. Vanadate inhibited degradation of 125I-TC-AOM 70-80%. Degradation was much more sensitive to vanadate than binding; half-maximal effects were seen at approximately 1 mM vanadate for binding and approximately 0.1 mM vanadate for degradation. By subcellular fractionation in sucrose and Nycodenz gradients, it was shown that vanadate completely prevented the transfer of 125I-TC-AOM from endosomes to lysosomes. Therefore, the inhibition of degradation by vanadate was indirect; in the presence of vanadate, ligand did not gain access to the lysosomes. The limited degradation in the presence of vanadate took place in a prelysosomal compartment. Vanadate did not affect cell viability and ATP content

  7. Transient Receptor Potential Vanilloid 1 Expression Mediates Capsaicin-Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Ricardo Ramírez-Barrantes

    2018-06-01

    Full Text Available The transient receptor potential (TRP ion channel family consists of a broad variety of non-selective cation channels that integrate environmental physicochemical signals for dynamic homeostatic control. Involved in a variety of cellular physiological processes, TRP channels are fundamental to the control of the cell life cycle. TRP channels from the vanilloid (TRPV family have been directly implicated in cell death. TRPV1 is activated by pain-inducing stimuli, including inflammatory endovanilloids and pungent exovanilloids, such as capsaicin (CAP. TRPV1 activation by high doses of CAP (>10 μM leads to necrosis, but also exhibits apoptotic characteristics. However, CAP dose–response studies are lacking in order to determine whether CAP-induced cell death occurs preferentially via necrosis or apoptosis. In addition, it is not known whether cytosolic Ca2+ and mitochondrial dysfunction participates in CAP-induced TRPV1-mediated cell death. By using TRPV1-transfected HeLa cells, we investigated the underlying mechanisms involved in CAP-induced TRPV1-mediated cell death, the dependence of CAP dose, and the participation of mitochondrial dysfunction and cytosolic Ca2+ increase. Together, our results contribute to elucidate the pathophysiological steps that follow after TRPV1 stimulation with CAP. Low concentrations of CAP (1 μM induce cell death by a mechanism involving a TRPV1-mediated rapid and transient intracellular Ca2+ increase that stimulates plasma membrane depolarization, thereby compromising plasma membrane integrity and ultimately leading to cell death. Meanwhile, higher doses of CAP induce cell death via a TRPV1-independent mechanism, involving a slow and persistent intracellular Ca2+ increase that induces mitochondrial dysfunction, plasma membrane depolarization, plasma membrane loss of integrity, and ultimately, cell death.

  8. Opioid mediated activity and expression of mu and delta opioid receptors in isolated human term non-labouring myometrium.

    LENUS (Irish Health Repository)

    Fanning, Rebecca A

    2013-01-05

    The existence of opioid receptors in mammalian myometrial tissue is now widely accepted. Previously enkephalin degrading enzymes have been shown to be elevated in pregnant rat uterus and a met-enkephalin analogue has been shown to alter spontaneous contractility of rat myometrium. Here we have undertaken studies to determine the effects of met-enkephalin on in vitro human myometrial contractility and investigate the expression of opioid receptors in pregnant myometrium. Myometrial biopsies were taken from women undergoing elective caesarean delivery at term. Organ bath experiments were used to investigate the effect of the met-enkephalin analogue [d-Ala 2, d-met 5] enkephalin (DAMEA) on spontaneous contractility. A confocal immunofluorescent technique and real time PCR were used to determine the expression of protein and mRNA, respectively for two opioid receptor subtypes, mu and delta. DAMEA had a concentration dependent inhibitory effect on contractile activity (1 × 10(-7)M-1 × 10(-4)M; 54% reduction in contractile activity, P<0.001 at 1 × 10(-4)M concentration). Mu and delta opioid receptor protein sub-types and their respective mRNA were identified in all tissues sampled. This is the first report of opioid receptor expression and of an opioid mediated uterorelaxant action in term human non-labouring myometrium in vitro.

  9. Clathrin-dependent internalization of the angiotensin II AT₁A receptor links receptor internalization to COX-2 protein expression in rat aortic vascular smooth muscle cells.

    Science.gov (United States)

    Morinelli, Thomas A; Walker, Linda P; Velez, Juan Carlos Q; Ullian, Michael E

    2015-02-05

    The major effects of Angiotensin II (AngII) in vascular tissue are mediated by AngII AT1A receptor activation. Certain effects initiated by AT1A receptor activation require receptor internalization. In rat aortic vascular smooth muscle cells (RASMC), AngII stimulates cyclooxygenase 2 protein expression. We have previously shown this is mediated by β-arrestin-dependent receptor internalization and NF-κB activation. In this study, a specific inhibitor of clathrin-mediated endocytosis (CME), pitstop-2, was used to test the hypothesis that clathrin-dependent internalization of activated AT1A receptor mediates NF-κB activation and subsequent cyclooxygenase 2 expression. Radioligand binding assays, real time qt-PCR and immunoblotting were used to document the effects of pitstop-2 on AngII binding and signaling in RASMC. Laser scanning confocal microscopy (LSCM) was used to image pitstop-2׳s effects on AT1 receptor/GFP internalization in HEK-293 cells and p65 NF-κB nuclear localization in RASMC. Pitstop-2 significantly inhibited internalization of AT1A receptor (44.7% ± 3.1% Control vs. 13.2% ± 8.3% Pitstop-2; n=3) as determined by radioligand binding studies in RASMC. Studies utilizing AT1A receptor/GFP expressed in HEK 293 cells and LSCM confirmed these findings. Pitstop-2 significantly inhibited AngII-induced p65 NF-κB phosphorylation and nuclear localization, COX-2 message and protein expression in RASMC without altering activation of p42/44 ERK or TNFα signaling. Pitstop-2, a specific inhibitor of clathrin-mediated endocytosis, confirms that internalization of activated AT1A receptor mediates AngII activation of cyclooxygenase 2 expression in RASMC. These data provide support for additional intracellular signaling pathways activated through β-arrestin mediated internalization of G protein-coupled receptors, such as AT1A receptors. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. The cannabinoid receptor type 2 as mediator of mesenchymal stromal cell immunosuppressive properties.

    Directory of Open Access Journals (Sweden)

    Francesca Rossi

    Full Text Available Mesenchymal stromal cells are non-hematopoietic, multipotent progenitor cells producing cytokines, chemokines, and extracellular matrix proteins that support hematopoietic stem cell survival and engraftment, influence immune effector cell development, maturation, and function, and inhibit alloreactive T-cell responses. The immunosuppressive properties of human mesenchymal stromal cells have attracted much attention from immunologists, stem cell biologists and clinicians. Recently, the presence of the endocannabinoid system in hematopoietic and neural stem cells has been demonstrated. Endocannabinoids, mainly acting through the cannabinoid receptor subtype 2, are able to modulate cytokine release and to act as immunosuppressant when added to activated T lymphocytes. In the present study, we have investigated, through a multidisciplinary approach, the involvement of the endocannabinoids in migration, viability and cytokine release of human mesenchymal stromal cells. We show, for the first time, that cultures of human mesenchymal stromal cells express all of the components of the endocannabinoid system, suggesting a potential role for the cannabinoid CB2 receptor as a mediator of anti-inflammatory properties of human mesenchymal stromal cells, as well as of their survival pathways and their capability to home and migrate towards endocannabinoid sources.

  11. Progesterone receptors (PR) mediate STAT actions: PR and prolactin receptor signaling crosstalk in breast cancer models.

    Science.gov (United States)

    Leehy, Katherine A; Truong, Thu H; Mauro, Laura J; Lange, Carol A

    2018-02-01

    Estrogen is the major mitogenic stimulus of mammary gland development during puberty wherein ER signaling acts to induce abundant PR expression. PR signaling, in contrast, is the primary driver of mammary epithelial cell proliferation in adulthood. The high circulating levels of progesterone during pregnancy signal through PR, inducing expression of the prolactin receptor (PRLR). Cooperation between PR and prolactin (PRL) signaling, via regulation of downstream components in the PRL signaling pathway including JAKs and STATs, facilitates the alveolar morphogenesis observed during pregnancy. Indeed, these pathways are fully integrated via activation of shared signaling pathways (i.e. JAKs, MAPKs) as well as by the convergence of PRs and STATs at target genes relevant to both mammary gland biology and breast cancer progression (i.e. proliferation, stem cell outgrowth, tissue cell type heterogeneity). Thus, rather than a single mediator such as ER, transcription factor cascades (ER>PR>STATs) are responsible for rapid proliferative and developmental programming in the normal mammary gland. It is not surprising that these same mediators typify uncontrolled proliferation in a majority of breast cancers, where ER and PR are most often co-expressed and may cooperate to drive malignant tumor progression. This review will primarily focus on the integration of PR and PRL signaling in breast cancer models and the importance of this cross-talk in cancer progression in the context of mammographic density. Components of these PR/PRL signaling pathways could offer alternative drug targets and logical complements to anti-ER or anti-estrogen-based endocrine therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Different AMPA receptor subtypes mediate the distinct kinetic components of a biphasic EPSC in hippocampal interneurons

    Directory of Open Access Journals (Sweden)

    Todd eStincic

    2015-05-01

    Full Text Available CA1 hippocampal interneurons at the border between stratum radiatum and stratum lacunosum-moleculare have AMPA receptor (AMPAR-mediated excitatory postsynaptic currents (EPSCs that consist of two distinct phases: a typical fast component (FC, and a highly unusual slow component (SC that persists for hundreds of milliseconds. To determine whether these kinetically distinct components of the EPSC are mediated by distinct AMPAR subpopulations, we examined the relative contributions of GluA2-containing and –lacking AMPARs to the SC. GluA2-containing AMPARs mediated the majority of the FC whereas GluA2-lacking AMPARs preferentially generated the SC. When glutamate uptake through the glial glutamate transporter EAAT1 was inhibited, spill over-mediated AMPAR activation recruited an even slower third kinetic component that persisted for several seconds; however, this spillover-mediated current was mediated predominantly by GluA2-containing AMPARs and therefore was clearly distinct from the SC when uptake is intact. Thus, different AMPAR subpopulations that vary in GluA2 content mediate the distinct components of the AMPAR EPSC. The SC is developmentally downregulated in mice, declining after the second postnatal week. This downregulation affects both GluA2-containing and GluA2-lacking AMPARs mediating the SC, and is not accompanied by developmental changes in the GluA2 content of AMPARs underlying the FC. Thus, the downregulation of the SC appears to be independent of synaptic GluA2 expression, suggesting the involvement of another AMPAR subunit or an auxiliary protein. Our results therefore identify GluA2-dependent and GluA2-independent determinants of the SC: GluA2-lacking AMPARs preferentially contribute to the SC, while the developmental downregulation of the SC is independent of GluA2 content.

  13. Gelidium amansii promotes dendritic spine morphology and synaptogenesis, and modulates NMDA receptor-mediated postsynaptic current.

    Science.gov (United States)

    Hannan, Md Abdul; Mohibbullah, Md; Hong, Yong-Ki; Nam, Joo Hyun; Moon, Il Soo

    2014-01-01

    Neurotrophic factors are essential for the differentiation and maturation of developing neurons as well as providing survival support to the mature neurons. Moreover, therapeutically neurotrophic factors are promising to reconstruct partially damaged neuronal networks in neurodegenerative diseases. In the previous study, we reported that the ethanol extract of an edible marine alga, Gelidium amansii (GAE) had shown promising effects in the development and maturation of both axon and dendrites of hippocampal neurons. Here, we demonstrate that in primary culture of hippocampal neurons (1) GAE promotes a significant increase in the number of filopodia and dendritic spines; (2) promotes synaptogenesis; (3) enhances N-methyl-D-aspartic acid (NMDA) receptor recruitment; and (4) modulates NMDA-receptor-mediated postsynaptic current. Taken together these findings that GAE might be involved in both morphological and functional maturation of neurons suggest the possibility that GAE may constitute a promising candidate for novel compounds for the prevention and treatment of neurodegenerative diseases.

  14. PKCɛ mediates substance P inhibition of GABAA receptors-mediated current in rat dorsal root ganglion.

    Science.gov (United States)

    Li, Li; Zhao, Lei; Wang, Yang; Ma, Ke-tao; Shi, Wen-yan; Wang, Ying-zi; Si, Jun-qiang

    2015-02-01

    The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.

  15. Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy

    Directory of Open Access Journals (Sweden)

    Kristi A Kohlmeier

    2013-12-01

    Full Text Available Orexin neuropeptides influence multiple homeostatic functions and play an essential role in the expression of normal sleep-wake behavior. While their two known receptors (OX1 and OX2 are targets for novel pharmacotherapeutics, the actions mediated by each receptor remain largely unexplored. Using brain slices from mice constitutively lacking either receptor, we used whole-cell and Ca2+ imaging methods to delineate the cellular actions of each receptor within cholinergic (laterodorsal tegmental nucleus; LDT and monoaminergic (dorsal raphe; DR and locus coeruleus; LC brainstem nuclei – where orexins promote arousal and suppress REM sleep. In slices from OX2-/- mice, orexin-A (300 nM elicited wild-type responses in LDT, DR and LC neurons consisting of a depolarizing current and augmented voltage-dependent Ca2+ transients. In slices from OX1-/- mice, the depolarizing current was absent in LDT and LC neurons and was attenuated in DR neurons, although Ca2+-transients were still augmented. Since orexin-A produced neither of these actions in slices lacking both receptors, our findings suggest that orexin-mediated depolarization is mediated by both receptors in DR, but is exclusively mediated by OX1 in LDT and LC neurons, even though OX2 is present and OX2 mRNA appears elevated in brainstems from OX1-/- mice. Considering published behavioral data, these findings support a model in which orexin-mediated excitation of mesopontine cholinergic and monoaminergic neurons contributes little to stabilizing spontaneous waking and sleep bouts, but functions in context-dependent arousal and helps restrict muscle atonia to REM sleep. The augmented Ca2± transients mediated by both receptors appeared mediated by influx via L-type Ca2+ channels, which is often linked to transcriptional signaling. This could provide an adaptive signal to compensate for receptor loss or prolonged antagonism and may contribute to the reduced severity of narcolepsy in single receptor

  16. Ligand-Receptor Interaction-Mediated Transmembrane Transport of Dendrimer-like Soft Nanoparticles: Mechanisms and Complicated Diffusive Dynamics.

    Science.gov (United States)

    Liang, Junshi; Chen, Pengyu; Dong, Bojun; Huang, Zihan; Zhao, Kongyin; Yan, Li-Tang

    2016-05-09

    Nearly all nanomedical applications of dendrimer-like soft nanoparticles rely on the functionality of attached ligands. Understanding how the ligands interact with the receptors in cell membrane and its further effect on the cellular uptake of dendrimer-like soft nanoparticles is thereby a key issue for their better application in nanomedicine. However, the essential mechanism and detailed kinetics for the ligand-receptor interaction-mediated transmembrane transport of such unconventional nanoparticles remain poorly elucidated. Here, using coarse-grained simulations, we present the very first study of molecular mechanism and kinetics behaviors for the transmembrane transport of dendrimer-like soft nanoparticles conjugated with ligands. A phase diagram of interaction states is constructed through examining ligand densities and membrane tensions that allows us to identify novel endocytosis mechanisms featured by the direct wrapping and the penetration-extraction vesiculation. The results provide an in-depth insight into the diffusivity of receptors and dendrimer in the membrane plane and demonstrate how the ligand density influences receptor diffusion and uptake kinetics. It is interesting to find that the ligand-conjugated dendrimers present superdiffusive behaviors on a membrane, which is revealed to be driven by the random fluctuation dynamics of the membrane. The findings facilitate our understanding of some recent experimental observations and could establish fundamental principles for the future development of such important nanomaterials for widespread nanomedical applications.

  17. Paranormal phenomena

    Science.gov (United States)

    Gaina, Alex

    1996-08-01

    Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.

  18. Molecular pharmacology of human NMDA receptors

    DEFF Research Database (Denmark)

    Hedegaard, Maiken; Hansen, Kasper Bø; Andersen, Karen Toftegaard

    2012-01-01

    N-methyl-d-aspartate (NMDA) receptors are ionotropic glutamate receptors that mediate excitatory neurotransmission. NMDA receptors are also important drug targets that are implicated in a number of pathophysiological conditions. To facilitate the transition from lead compounds in pre-clinical ani...

  19. Calcium sensing receptor as a novel mediator of adipose tissue dysfunction: mechanisms and potential clinical implications

    Directory of Open Access Journals (Sweden)

    Roberto Bravo

    2016-09-01

    Full Text Available Obesity is currently a serious worldwide public health problem, reaching pandemic levels. For decades, dietary and behavioral approaches have failed to prevent this disease from expanding, and health authorities are challenged by the elevated prevalence of co-morbid conditions. Understanding how obesity-associated diseases develop from a basic science approach is recognized as an urgent task to face this growing problem. White adipose tissue is an active endocrine organ, with a crucial influence on whole-body homeostasis. White adipose tissue dysfunction plays a key role linking obesity with its associated diseases such as type 2 diabetes mellitus, cardiovascular disease and some cancers. Among the regulators of white adipose tissue physiology, the calcium-sensing receptor has arisen as a potential mediator of white adipose tissue dysfunction. Expression of the receptor has been described in human preadipocytes, adipocytes, and the human adipose cell lines LS14 and SW872. The evidence suggests that calcium-sensing receptor activation in the visceral (i.e. unhealthy white adipose tissue is associated with an increased proliferation of adipose progenitor cells and elevated adipocyte differentiation. In addition, exposure of adipose cells to calcium-sensing receptor activators in vitro elevates proinflammatory cytokine expression and secretion. An increased proinflammatory environment in white adipose tissue plays a key role in the development of white adipose tissue dysfunction that leads to peripheral organ fat deposition and insulin resistance, among other consequences. We propose that calcium-sensing receptor may be one relevant therapeutic target in the struggle to confront the health consequences of the current worldwide obesity pandemic.

  20. Sphingosine 1-phosphate receptor 5 mediates the immune quiescence of the human brain endothelial barrier

    Directory of Open Access Journals (Sweden)

    van Doorn Ruben

    2012-06-01

    Full Text Available Abstract Background The sphingosine 1-phosphate (S1P receptor modulator FTY720P (Gilenya® potently reduces relapse rate and lesion activity in the neuroinflammatory disorder multiple sclerosis. Although most of its efficacy has been shown to be related to immunosuppression through the induction of lymphopenia, it has been suggested that a number of its beneficial effects are related to altered endothelial and blood–brain barrier (BBB functionality. However, to date it remains unknown whether brain endothelial S1P receptors are involved in the maintenance of the function of the BBB thereby mediating immune quiescence of the brain. Here we demonstrate that the brain endothelial receptor S1P5 largely contributes to the maintenance of brain endothelial barrier function. Methods We analyzed the expression of S1P5 in human post-mortem tissues using immunohistochemistry. The function of S1P5 at the BBB was assessed in cultured human brain endothelial cells (ECs using agonists and lentivirus-mediated knockdown of S1P5. Subsequent analyses of different aspects of the brain EC barrier included the formation of a tight barrier, the expression of BBB proteins and markers of inflammation and monocyte transmigration. Results We show that activation of S1P5 on cultured human brain ECs by a selective agonist elicits enhanced barrier integrity and reduced transendothelial migration of monocytes in vitro. These results were corroborated by genetically silencing S1P5 in brain ECs. Interestingly, functional studies with these cells revealed that S1P5 strongly contributes to brain EC barrier function and underlies the expression of specific BBB endothelial characteristics such as tight junctions and permeability. In addition, S1P5 maintains the immunoquiescent state of brain ECs with low expression levels of leukocyte adhesion molecules and inflammatory chemokines and cytokines through lowering the activation of the transcription factor NFκB. Conclusion Our

  1. Suppression of TLR4-mediated inflammatory response by macrophage class A scavenger receptor (CD204)

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Koji; Komohara, Yoshihiro; Fujiwara, Yukio; Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Lei, XiaoFeng [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Department of Biochemistry, Showa University School of Medicine, Tokyo (Japan); Nakagawa, Takenobu [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Department of Human Pathology, Institute of Health Biosciences, The University of Tokushima, Tokushima (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan)

    2011-08-05

    Highlights: {yields} We focused on the interaction between SR-A and TLR4 signaling in this study. {yields} SR-A deletion promoted NF{kappa}B activation in macrophages in septic model mouse. {yields} SR-A suppresses both MyD88-dependent and -independent TLR4 signaling in vitro. {yields} SR-A clears LPS binding to TLR4 which resulting in the suppression of TLR4 signals. -- Abstract: The class A scavenger receptor (SR-A, CD204), one of the principal receptors expressed on macrophages, has been found to regulate inflammatory response and attenuate septic endotoxemia. However, the detailed mechanism of this process has not yet been well characterized. To clarify the regulative mechanisms of lipopolysaccharide (LPS)-induced macrophage activation by SR-A, we evaluated the activation of Toll-like receptor 4 (TLR4)-mediated signaling molecules in SR-A-deficient (SR-A{sup -/-}) macrophages. In a septic shock model, the blood levels of tumor necrosis factor (TNF)-{alpha}, interleukin (IL)-6 and interferon (IFN)-{beta} were significantly increased in SR-A{sup -/-} mice compared to wild-type mice, and elevated nuclear factor kappa B (NF{kappa}B) activation was detected in SR-A{sup -/-} macrophages. SR-A deletion increased the production of pro-inflammatory cytokines, and the phosphorylation of mitogen-activated protein kinase (MAPK) and NF{kappa}B in vitro. SR-A deletion also promoted the nuclear translocation of NF{kappa}B and IFN regulatory factor (IRF)-3. In addition, a competitive binding assay with acetylated low-density lipoprotein, an SR-A-specific ligand, and anti-SR-A antibody induced significant activation of TLR4-mediated signaling molecules in wild-type macrophages but not in SR-A{sup -/-} macrophages. These results suggest that SR-A suppresses the macrophage activation by inhibiting the binding of LPS to TLR4 in a competitive manner and it plays a pivotal role in the regulation of the LPS-induced inflammatory response.

  2. Presynaptic CRF1 Receptors Mediate the Ethanol Enhancement of GABAergic Transmission in the Mouse Central Amygdala

    Directory of Open Access Journals (Sweden)

    Zhiguo Nie

    2009-01-01

    Full Text Available Corticotropin-releasing factor (CRF is a 41-amino-acid neuropeptide involved in stress responses initiated from several brain areas, including the amygdala formation. Research shows a strong relationship between stress, brain CRF, and excessive alcohol consumption. Behavioral studies suggest that the central amygdala (CeA is significantly involved in alcohol reward and dependence. We recently reported that the ethanol augmentation of GABAergic synaptic transmission in rat CeA involves CRF1 receptors, because both CRF and ethanol significantly enhanced the amplitude of evoked GABAergic inhibitory postsynaptic currents (IPSCs in CeA neurons from wild-type (WT and CRF2 knockout (KO mice, but not in neurons of CRF1 KO mice. The present study extends these findings using selective CRF receptor ligands, gene KO models, and miniature IPSC (mIPSC analysis to assess further a presynaptic role for the CRF receptors in mediating ethanol effects in the CeA. In whole-cell patch recordings of pharmacologically isolated GABAAergic IPSCs from slices of mouse CeA, both CRF and ethanol augmented evoked IPSCs in a concentration-dependent manner, with low EC50s. A CRF1 (but not CRF2 KO construct and the CRF1-selective nonpeptide antagonist NIH-3 (LWH-63 blocked the augmenting effect of both CRF and ethanol on evoked IPSCs. Furthermore, the new selective CRF1 agonist stressin1, but not the CRF2 agonist urocortin 3, also increased evoked IPSC amplitudes. Both CRF and ethanol decreased paired-pulse facilitation (PPF of evoked IPSCs and significantly enhanced the frequency, but not the amplitude, of spontaneous miniature GABAergic mIPSCs in CeA neurons of WT mice, suggesting a presynaptic site of action. The PPF effect of ethanol was abolished in CeA neurons of CRF1 KO mice. The CRF1 antagonist NIH-3 blocked the CRF- and ethanol-induced enhancement of mIPSC frequency in CeA neurons. These data indicate that presynaptic CRF1 receptors play a critical role in permitting

  3. Artemisinin disrupts androgen responsiveness of human prostate cancer cells by stimulating the 26S proteasome-mediated degradation of the androgen receptor protein.

    Science.gov (United States)

    Steely, Andrea M; Willoughby, Jamin A; Sundar, Shyam N; Aivaliotis, Vasiliki I; Firestone, Gary L

    2017-10-01

    Androgen receptor (AR) expression and activity is highly linked to the development and progression of prostate cancer and is a target of therapeutic strategies for this disease. We investigated whether the antimalarial drug artemisinin, which is a sesquiterpene lactone isolated from the sweet wormwood plant Artemisia annua, could alter AR expression and responsiveness in cultured human prostate cancer cell lines. Artemisinin treatment induced the 26S proteasome-mediated degradation of the receptor protein, without altering AR transcript levels, in androgen-responsive LNCaP prostate cancer cells or PC-3 prostate cancer cells expressing exogenous wild-type AR. Furthermore, artemisinin stimulated AR ubiquitination and AR receptor interactions with the E3 ubiquitin ligase MDM2 in LNCaP cells. The artemisinin-induced loss of AR protein prevented androgen-responsive cell proliferation and ablated total AR transcriptional activity. The serine/threonine protein kinase AKT-1 was shown to be highly associated with artemisinin-induced proteasome-mediated degradation of AR protein. Artemisinin treatment activated AKT-1 enzymatic activity, enhanced receptor association with AKT-1, and induced AR serine phosphorylation. Treatment of LNCaP cells with the PI3-kinase inhibitor LY294002, which inhibits the PI3-kinase-dependent activation of AKT-1, prevented the artemisinin-induced AR degradation. Furthermore, in transfected receptor-negative PC-3 cells, artemisinin failed to stimulate the degradation of an altered receptor protein (S215A/S792A) with mutations in its two consensus AKT-1 serine phosphorylation sites. Taken together, our results indicate that artemisinin induces the degradation of AR protein and disrupts androgen responsiveness of human prostate cancer cells, suggesting that this natural compound represents a new potential therapeutic molecule that selectively targets AR levels.

  4. Gamma-hydroxybutyric acid (GHB) and the mesoaccumbens reward circuit: evidence for GABA(B) receptor-mediated effects.

    Science.gov (United States)

    Pistis, M; Muntoni, A L; Pillolla, G; Perra, S; Cignarella, G; Melis, M; Gessa, G L

    2005-01-01

    Gamma-hydroxybutyric acid (GHB) is a short-chain fatty acid naturally occurring in the mammalian brain, which recently emerged as a major recreational drug of abuse. GHB has multiple neuronal mechanisms including activation of both the GABA(B) receptor, and a distinct GHB-specific receptor. This complex GHB-GABA(B) receptor interaction is probably responsible for the multifaceted pharmacological, behavioral and toxicological profile of GHB. Drugs of abuse exert remarkably similar effects upon reward-related circuits, in particular the mesolimbic dopaminergic system and the nucleus accumbens (NAc). We used single unit recordings in vivo from urethane-anesthetized rats to characterize the effects of GHB on evoked firing in NAc "shell" neurons and on spontaneous activity of antidromically identified dopamine (DA) cells located in the ventral tegmental area. GHB was studied in comparison with the GABA(B) receptor agonist baclofen and antagonist (2S)(+)-5,5-dimethyl-2-morpholineacetic acid (SCH50911). Additionally, we utilized a GHB analog, gamma-(p-methoxybenzil)-gamma-hydroxybutyric acid (NCS-435), devoid of GABA(B) binding properties, but with high affinity for specific GHB binding sites. In common with other drugs of abuse, GHB depressed firing in NAc neurons evoked by the stimulation of the basolateral amygdala. On DA neurons, GHB exerted heterogeneous effects, which were correlated to the baseline firing rate of the cells but led to a moderate stimulation of the DA system. All GHB actions were mediated by GABA(B) receptors, since they were blocked by SCH50911 and were not mimicked by NCS-435. Our study indicates that the electrophysiological profile of GHB is close to typical drugs of abuse: both inhibition of NAc neurons and moderate to strong stimulation of DA transmission are distinctive features of diverse classes of abused drugs. Moreover, it is concluded that addictive and rewarding properties of GHB do not necessarily involve a putative high affinity GHB

  5. CaMKII inhibition with KN93 attenuates endothelin and serotonin receptor-mediated vasoconstriction and prevents subarachnoid hemorrhage-induced deficits in sensorimotor function

    DEFF Research Database (Denmark)

    Edvinsson, Lars; Povlsen, Gro Klitgaard; Ahnstedt, Hilda

    2014-01-01

    tested the hypothesis that inhibition of calcium calmodulin-dependent protein kinase II (CaMKII) may reduce cerebral vasoconstriction mediated by endothelin and serotonin receptors and improve neurological outcome after experimental SAH. METHODS: SAH was induced in adult rats by injection of 250 μ...

  6. Melanocortin-3 receptors in the limbic system mediate feeding-related motivational responses during weight loss

    Directory of Open Access Journals (Sweden)

    Maria Mavrikaki

    2016-07-01

    Full Text Available Objective: Appetitive responses to weight loss are mediated by a nutrient-sensing neural network comprised of melanocortin neurons. The role of neural melanocortin-3 receptors (MC3R in mediating these responses is enigmatic. Mc3r knockout mice exhibit a paradoxical phenotype of obesity and reduced feeding-related behaviors in situations of nutrient scarcity. Here we examined whether MC3Rs expressed in mesolimbic neurons regulate feeding-related motivational responses. Methods: Interactions between Mc3r genotype, cognitive function and energy balance on food self-administration were assessed using operant conditioning with fixed- and progressive ratio (FR1/PR1 settings. Inhibition of Mc3r transcription by a loxP-flanked transcriptional blocker (TB in C57BL/6JN mice (Mc3rTB/TB was reversed in mesolimbic neurons using DAT-Cre (DAT-MC3R. Results: Caloric restriction (CR caused 10–15% weight loss and increased motivation to acquire food rewards during training sessions. c-Fos-expression in the nucleus accumbens was increased 1 h following food presentation. While exhibiting weight loss, total food self-administration, enhanced motivation to self-administer food rewards in training sessions held during CR and c-Fos-activation in the nucleus accumbens following re-feeding were all markedly attenuated in Mc3rTB/TB mice. In contrast, cognitive abilities were normal in Mc3rTB/TB mice. Total food self-administration during FR1 sessions was not rescued in DAT-MC3R mice, however enhanced motivational responses to self-administer food rewards in PR1 conditions were restored. The nutrient-partitioning phenotype observed with Mc3r-deficiency was not rescued in DAT-MC3R mice. Conclusions: Mesolimbic MC3Rs mediate enhanced motivational responses during CR. However, they are insufficient to restore normal caloric loading when food is presented during CR and do not affect metabolic conditions altering nutrient partitioning. Author Video: Author Video Watch what

  7. Dopamine inhibition of anterior pituitary adenylate cyclase is mediated through the high-affinity state of the D2 receptor

    International Nuclear Information System (INIS)

    Borgundvaag, B.; George, S.R.

    1985-01-01

    The diterpinoid forskolin stimulated adenylate cyclase activity (measured by conversion of [ 3 H]-ATP to [ 3 H]-cAMP) in anterior pituitary from male and female rats. Inhibition of stimulated adenylate cyclase activity by potent dopaminergic agonists was demonstrable only in female anterior pituitary. The inhibition of adenylate cyclase activity displayed a typically dopaminergic rank order of agonist potencies and could be completely reversed by a specific dopamine receptor antagonist. The IC 50 values of dopamine agonist inhibition of adenylate cyclase activity correlated with equal molarity with the dissociation constant of the high-affinity dopamine agonist-detected receptor binding site and with the IC 50 values for inhibition of prolactin secretion. These findings support the hypothesis that it is the high-affinity form of the D 2 dopamine receptor in anterior pituitary which is responsible for mediating the dopaminergic function of attenuating adenylate cyclase activity. 12 references, 4 figures, 1 table

  8. Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor delta-mediated transactivation

    DEFF Research Database (Denmark)

    Krogsdam, Anne-M; Nielsen, Curt A F; Neve, Søren

    2002-01-01

    delta-RXR alpha heterodimer bound to an acyl-CoA oxidase (ACO)-type peroxisome-proliferator response element recruited a glutathione S-transferase-NCoR fusion protein in a ligand-independent manner. Contrasting with most other nuclear receptors, PPAR delta was found to interact equally well......The nuclear receptor corepressor (NCoR) was isolated as a peroxisome-proliferator-activated receptor (PPAR) delta interacting protein using the yeast two-hybrid system. NCoR interacted strongly with the ligand-binding domain of PPAR delta, whereas interactions with the ligand-binding domains...

  9. CDK11{sup p58} represses vitamin D receptor-mediated transcriptional activation through promoting its ubiquitin-proteasome degradation

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Yayun; Hong, Yi; Zong, Hongliang; Wang, Yanlin; Zou, Weiying; Yang, Junwu; Kong, Xiangfei; Yun, Xiaojing [Gene Research Center, Shanghai Medical College and Institutes of Biomedical, Shanghai 200032 (China); Gu, Jianxin, E-mail: jxgu@shmu.edu.cn [Gene Research Center, Shanghai Medical College and Institutes of Biomedical, Shanghai 200032 (China)

    2009-08-28

    Vitamin D receptor (VDR) is a member of the nuclear receptor superfamily and regulates transcription of target genes. In this study, we identified CDK11{sup p58} as a novel protein involved in the regulation of VDR. CDK11{sup p58}, a member of the large family of p34cdc2-related kinases, is associated with cell cycle progression, tumorigenesis, and apoptotic signaling. Our study demonstrated that CDK11{sup p58} interacted with VDR and repressed VDR-dependent transcriptional activation. Furthermore, overexpression of CDK11{sup p58} decreased the stability of VDR through promoting its ubiquitin-proteasome-mediated degradation. Taken together, these results suggest that CDK11{sup p58} is involved in the negative regulation of VDR.

  10. Leptospira surface adhesin (Lsa21) induces Toll like receptor 2 and 4 mediated inflammatory responses in macrophages

    OpenAIRE

    Syed M. Faisal; Vivek P. Varma; M. Subathra; Sarwar Azam; Anil K. Sunkara; Mohd Akif; Mirza. S. Baig; Yung-Fu Chang

    2016-01-01

    Leptospirosis is zoonotic and emerging infectious disease of global importance. Little is understood about Leptospira pathogenesis and host immune response. In the present work we have investigated how Leptospira modulates the host innate immune response mediated by Toll-like receptors (TLRs) via surface exposed proteins. We screened Leptospira outer membrane/surface proteins for their ability to activate/inhibit TLR2/4 signaling in HEK293 cell lines. Of these the 21?kDa Leptospira surface ad...

  11. An LRR/malectin receptor-like kinase mediates resistance to non-adapted and adapted powdery mildew fungi in barley and wheat

    Directory of Open Access Journals (Sweden)

    Jeyaraman Rajaraman

    2016-12-01

    Full Text Available Pattern recognition receptors (PRRs belonging to the multigene family of receptor-like kinases (RLKs are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for required for nonhost resistance 8 encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates nonhost resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici. Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus Blumeria graminis f.sp. hordei. Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating nonhost resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.

  12. An LRR/Malectin Receptor-Like Kinase Mediates Resistance to Non-adapted and Adapted Powdery Mildew Fungi in Barley and Wheat.

    Science.gov (United States)

    Rajaraman, Jeyaraman; Douchkov, Dimitar; Hensel, Götz; Stefanato, Francesca L; Gordon, Anna; Ereful, Nelzo; Caldararu, Octav F; Petrescu, Andrei-Jose; Kumlehn, Jochen; Boyd, Lesley A; Schweizer, Patrick

    2016-01-01

    Pattern recognition receptors (PRRs) belonging to the multigene family of receptor-like kinases (RLKs) are the sensing devices of plants for microbe- or pathogen-associated molecular patterns released from microbial organisms. Here we describe Rnr8 (for Required for non-host resistance 8 ) encoding HvLEMK1, a LRR-malectin domain-containing transmembrane RLK that mediates non-host resistance of barley to the non-adapted wheat powdery mildew fungus Blumeria graminis f.sp. tritici . Transgenic barley lines with silenced HvLEMK1 allow entry and colony growth of the non-adapted pathogen, although sporulation was reduced and final colony size did not reach that of the adapted barley powdery mildew fungus B. graminis f.sp. hordei . Transient expression of the barley or wheat LEMK1 genes enhanced resistance in wheat to the adapted wheat powdery mildew fungus while expression of the same genes did not protect barley from attack by the barley powdery mildew fungus. The results suggest that HvLEMK1 is a factor mediating non-host resistance in barley and quantitative host resistance in wheat to the wheat powdery mildew fungus.

  13. Progesterone receptor (PR) polyproline domain (PPD) mediates inhibition of epidermal growth factor receptor (EGFR) signaling in non-small cell lung cancer cells.

    Science.gov (United States)

    Kawprasertsri, Sornsawan; Pietras, Richard J; Marquez-Garban, Diana C; Boonyaratanakornkit, Viroj

    2016-05-01

    Recent evidence has suggested a possible role for progesterone receptor (PR) in the progression of non-small cell lung cancer (NSCLC). However, little is known concerning roles of PR in NSCLC. PR contains a polyproline domain (PPD), which directly binds to the SH3 domain of signaling molecules. Because PPD-SH3 interactions are essential for EGFR signaling, we hypothesized that the presence of PR-PPD interfered with EGFR-mediated signaling and cell proliferation. We examined the role of PR-PPD in cell proliferation and signaling by stably expressing PR-B, or PR-B with disrupting mutations in the PPD (PR-BΔSH3), from a tetracycline-regulated promoter in A549 NSCLC cells. PR-B dose-dependently inhibited cell growth in the absence of ligand, and progestin (R5020) treatment further suppressed the growth. Treatment with RU486 abolished PR-B- and R5020-mediated inhibition of cell proliferation. Expression of PR-BΔSH3 and treatment with R5020 or RU486 had no effect on cell proliferation. Furthermore, PR-B expression but not PR-BΔSH3 expression reduced EGF-induced A549 proliferation and activation of ERK1/2, in the absence of ligand. Taken together, our data demonstrated the significance of PR extranuclear signaling through PPD interactions in EGFR-mediated proliferation and signaling in NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Ionotropic glutamate receptors mediate inducible defense in the water flea Daphnia pulex.

    Directory of Open Access Journals (Sweden)

    Hitoshi Miyakawa

    Full Text Available Phenotypic plasticity is the ability held in many organisms to produce different phenotypes with a given genome in response to environmental stimuli, such as temperature, nutrition and various biological interactions. It seems likely that environmental signals induce a variety of mechanistic responses that influence ontogenetic processes. Inducible defenses, in which prey animals alter their morphology, behavior and/or other traits to help protect against direct or latent predation threats, are among the most striking examples of phenotypic plasticity. The freshwater microcrustacean Daphnia pulex forms tooth-like defensive structures, "neckteeth," in response to chemical cues or signals, referred to as "kairomones," in this case released from phantom midge larvae, a predator of D. pulex. To identify factors involved in the reception and/or transmission of a kairomone, we used microarray analysis to identify genes up-regulated following a short period of exposure to the midge kairomone. In addition to identifying differentially expressed genes of unknown function, we also found significant up-regulation of genes encoding ionotropic glutamate receptors, which are known to be involved in neurotransmission in many animal species. Specific antagonists of these receptors strongly inhibit the formation of neckteeth in D. pulex, although agonists did not induce neckteeth by themselves, indicating that ionotropic glutamate receptors are necessary but not sufficient for early steps of neckteeth formation in D. pulex. Moreover, using co-exposure of D. pulex to antagonists and juvenile hormone (JH, which physiologically mediates neckteeth formation, we found evidence suggesting that the inhibitory effect of antagonists is not due to direct inhibition of JH synthesis/secretion. Our findings not only provide a candidate molecule required for the inducible defense response in D. pulex, but also will contribute to the understanding of complex mechanisms

  15. Non-IgE mediated mast cell activation.

    Science.gov (United States)

    Redegeld, Frank A; Yu, Yingxin; Kumari, Sangeeta; Charles, Nicolas; Blank, Ulrich

    2018-03-01

    Mast cells (MCs) are innate immune cells that are scattered in tissues throughout the organism being particularly abundant at sites exposed to the environment such as the skin and mucosal surfaces. Generally known for their role in IgE-mediated allergies, they have also important functions in the maintenance of tissue integrity by constantly sensing their microenvironment for signals by inflammatory triggers that can comprise infectious agents, toxins, hormones, alarmins, metabolic states, etc. When triggered their main function is to release a whole set of inflammatory mediators, cytokines, chemokines, and lipid products. This allows them to organize the ensuing innate immune and inflammatory response in tight coordination with resident tissue cells, other rapidly recruited immune effector cells as well as the endocrine and exocrine systems of the body. To complete these tasks, MCs are endowed with a large repertoire of receptors allowing them to respond to multiple stimuli or directly interact with other cells. Here we review some of the receptors expressed on MCs (ie, receptors for Immunoglobulins, pattern recognition receptors, nuclear receptors, receptors for alarmins, and a variety of other receptors) and discuss their functional implication in the immune and inflammatory response focusing on non-IgE-mediated activation mechanisms. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway.

    Science.gov (United States)

    Wu, Qian; Zhong, Zhao-Ming; Zhu, Si-Yuan; Liao, Cong-Rui; Pan, Ying; Zeng, Ji-Huan; Zheng, Shuai; Ding, Ruo-Ting; Lin, Qing-Song; Ye, Qing; Ye, Wen-Bin; Li, Wei; Chen, Jian-Ting

    2016-01-01

    Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear. The present study demonstrated that the plasma formation of AOPPs was enhanced in RA rats compared with normal. Then, chondrocyte were treated with AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. Exposure of chondrocyte to AOPPs activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and increased expression of NADPH oxidase subunits, which was mediated by receptor for advanced glycation end products (RAGE), but not scavenger receptor CD36. Moreover, AOPPs challenge triggered NADPH oxidase-dependent ROS generation which induced mitochondrial dysfunction and endoplasmic reticulum stress resulted in activation of caspase family that eventually lead to apoptosis. Lastly, blockade of RAGE, instead of CD36, largely attenuated these signals. Our study demonstrated first time that AOPPs induce chondrocyte apoptosis via RAGE-mediated and redox-dependent intrinsic apoptosis pathway in vitro. These data implicates that AOPPs may represent a novel pathogenic factor that contributes to RA progression. Targeting AOPPs-triggered cellular mechanisms might emerge as a promising therapeutic option for patients with RA.

  17. Reboxetine Enhances the Olanzapine-Induced Antipsychotic-Like Effect, Cortical Dopamine Outflow and NMDA Receptor-Mediated Transmission

    Science.gov (United States)

    Marcus, Monica M; Jardemark, Kent; Malmerfelt, Anna; Björkholm, Carl; Svensson, Torgny H

    2010-01-01

    Preclinical data have shown that addition of the selective norepinephrine transporter (NET) inhibitor reboxetine increases the antipsychotic-like effect of the D2/3 antagonist raclopride and, in parallel, enhances cortical dopamine output. Subsequent clinical results suggested that adding reboxetine to stable treatments with various antipsychotic drugs (APDs) may improve positive, negative and depressive symptoms in schizophrenia. In this study, we investigated in rats the effects of adding reboxetine to the second-generation APD olanzapine on: (i) antipsychotic efficacy, using the conditioned avoidance response (CAR) test, (ii) extrapyramidal side effect (EPS) liability, using a catalepsy test, (iii) dopamine efflux in the medial prefrontal cortex and the nucleus accumbens, using in vivo microdialysis in freely moving animals and (iv) cortical N-methyl--aspartate (NMDA) receptor-mediated transmission, using intracellular electrophysiological recording in vitro. Reboxetine (6 mg/kg) enhanced the suppression of CAR induced by a suboptimal dose (1.25 mg/kg), but not an optimal (2.5 mg/kg) dose of olanzapine without any concomitant catalepsy. Addition of reboxetine to the low dose of olanzapine also markedly increased cortical dopamine outflow and facilitated prefrontal NMDA receptor-mediated transmission. Our data suggest that adjunctive treatment with a NET inhibitor may enhance the therapeutic effect of low-dose olanzapine in schizophrenia without increasing EPS liability and add an antidepressant action, thus in principle allowing for a dose reduction of olanzapine with a concomitant reduction of dose-related side effects, such as EPS and weight gain. PMID:20463659

  18. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats

    Science.gov (United States)

    Hakimizadeh, Elham; Shamsizadeh, Ali; Roohbakhsh, Ali; Arababadi, Mohammad Kazemi; Hajizadeh, Mohammad Reza; Shariati, Mehdi; Fatemi, Iman; Moghadam-ahmadi, Amir; Bazmandegan, Gholamreza; Rezazadeh, Hossein; Allahtavakoli, Mohammad

    2017-01-01

    Objective(s): Stroke is known as a main cause of mortality and prolonged disability in adults. Both transient receptor potential V1 (TRPV1) channels and toll-like receptors (TLRs) are involved in mediating the inflammatory responses. In the present study, the effects of TRPV1 receptor activation and blockade on stroke outcome and gene expression of TLR2 and TLR4 were assessed following permanent middle cerebral artery occlusion in rats Materials and Methods: Eighty male Wistar rats were divided into four groups as follows: sham, vehicle, AMG9810 (TRPV1 antagonist) -treated and capsaicin (TRPV1 agonist) -treated. For Stroke induction, the middle cerebral artery was permanently occluded and then behavioral functions were evaluated 1, 3 and 7 days after stroke. Results: TRPV1 antagonism significantly reduced the infarct volume compared to the stroke group. Also, neurological deficits were decreased by AMG9810 seven days after cerebral ischemia. In the ledged beam-walking test, the slip ratio was enhanced following ischemia. AMG9810 decreased this index in stroke animals. However, capsaicin improved the ratio 3 and 7 days after cerebral ischemia. Compared to the sham group, the mRNA expression of TLR2 and TLR4 was significantly increased in the stroke rats. AMG9810 Administration significantly reduced the mRNA expression of TLR2 and TLR4. However, capsaicin did not significantly affect the gene expression of TLR2 and TLR4. Conclusion: Our results demonstrated that TRPV1 antagonism by AMG9810 attenuates behavioral function and mRNA expression of TLR2 and TLR4. Thus, it might be useful to shed light on future therapeutic strategies for the treatment of ischemic stroke. PMID:29085577

  19. Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Müller Anke

    2010-06-01

    Full Text Available Abstract Background Adult neurogenesis is a particular example of brain plasticity that is partially modulated by the endocannabinoid system. Whereas the impact of synthetic cannabinoids on the neuronal progenitor cells has been described, there has been lack of information about the action of plant-derived extracts on neurogenesis. Therefore we here focused on the effects of Δ9-tetrahydrocannabinol (THC and Cannabidiol (CBD fed to female C57Bl/6 and Nestin-GFP-reporter mice on proliferation and maturation of neuronal progenitor cells and spatial learning performance. In addition we used cannabinoid receptor 1 (CB1 deficient mice and treatment with CB1 antagonist AM251 in Nestin-GFP-reporter mice to investigate the role of the CB1 receptor in adult neurogenesis in detail. Results THC and CBD differed in their effects on spatial learning and adult neurogenesis. CBD did not impair learning but increased adult neurogenesis, whereas THC reduced learning without affecting adult neurogenesis. We found the neurogenic effect of CBD to be dependent on the CB1 receptor, which is expressed over the whole dentate gyrus. Similarly, the neurogenic effect of environmental enrichment and voluntary wheel running depends on the presence of the CB1 receptor. We found that in the absence of CB1 receptors, cell proliferation was increased and neuronal differentiation reduced, which could be related to CB1 receptor mediated signaling in Doublecortin (DCX-expressing intermediate progenitor cells. Conclusion CB1 affected the stages of adult neurogenesis that involve intermediate highly proliferative progenitor cells and the survival and maturation of new neurons. The pro-neurogenic effects of CBD might explain some of the positive therapeutic features of CBD-based compounds.

  20. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene.

    Science.gov (United States)

    Hadjighassem, Mahmoud R; Galaraga, Kimberly; Albert, Paul R

    2011-01-01

    The serotonin-1A (5-HT1A) receptor functions as a pre-synaptic autoreceptor in serotonin neurons that regulates their activity, and is also widely expressed on non-serotonergic neurons as a post-synaptic heteroreceptor to mediate serotonin action. The 5-HT1A receptor gene is strongly repressed by a dual repressor element (DRE), which is recognized by two proteins: Freud-1/CC2D1A and another unknown protein. Here we identify mouse Freud-2/CC2D1B as the second repressor of the 5-HT1A-DRE. Freud-2 shares 50% amino acid identity with Freud-1, and contains conserved structural domains. Mouse Freud-2 bound specifically to the rat 5-HT1A-DRE adjacent to, and partially overlapping, the Freud-1 binding site. By supershift assay using nuclear extracts from L6 myoblasts, Freud-2-DRE complexes were distinguished from Freud-1-DRE complexes. Freud-2 mRNA and protein were detected throughout mouse brain and peripheral tissues. Freud-2 repressed 5-HT1A promoter-reporter constructs in a DRE-dependent manner in non-neuronal (L6) or 5-HT1A-expressing neuronal (NG108-15, RN46A) cell models. In NG108-15 cells, knockdown of Freud-2 using a specific short-interfering RNA reduced endogenous Freud-2 protein levels and decreased Freud-2 bound to the 5-HT1A-DRE as detected by chromatin immunoprecipitation assay, but increased 5-HT1A promoter activity and 5-HT1A protein levels. Taken together, these data show that Freud-2 is the second component that, with Freud-1, mediates dual repression of the 5-HT1A receptor gene at the DRE. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  1. Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS

    DEFF Research Database (Denmark)

    Leonhardt, Julia; Villela, Daniel C.; Teichmann, Anke

    2017-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may in...

  2. P2Y receptor-mediated transient relaxation of rat longitudinal ileum preparations involves phospholipase C activation, intracellular Ca(2+) release and SK channel activation.

    Science.gov (United States)

    Mader, Felix; Krause, Ludwig; Tokay, Tursonjan; Hakenberg, Oliver W; Köhling, Rüdiger; Kirschstein, Timo

    2016-05-01

    Purinergic signaling plays a major role in the enteric nervous system, where it governs gut motility through a number of P2X and P2Y receptors. The aim of this study was to investigate the P2Y receptor-mediated motility in rat longitudinal ileum preparations. Ileum smooth muscle strips were prepared from rats, and fixed in an organ bath. Isometric contraction and relaxation responses of the muscle strips were measured with force transducers. Drugs were applied by adding of stock solutions to the organ bath to yield the individual final concentrations. Application of the non-hydrolyzable P2 receptor agonists α,β-Me-ATP or 2-Me-S-ADP (10, 100 μmol/L) dose-dependently elicited a transient relaxation response followed by a sustained contraction. The relaxation response was largely blocked by SK channel blockers apamin (500 nmol/L) and UCL1684 (10 μmol/L), PLC inhibitor U73122 (100 μmol/L), IP3 receptor blocker 2-APB (100 μmol/L) or sarcoendoplasmic Ca(2+) ATPase inhibitor thapsigargin (1 μmol/L), but not affected by atropine, NO synthase blocker L-NAME or tetrodotoxin. Furthermore, α,β-Me-ATP-induced relaxation was suppressed by P2Y1 receptor antagonist MRS2179 (50 μmol/L) or P2Y13 receptor antagonist MRS2211 (100 μmol/L), and was abolished by co-application of the two antagonists, whereas 2-Me-S-ADP-induced relaxation was abolished by P2Y6 receptor antagonist MRS2578 (50 μmol/L). In addition, P2Y1 receptor antagonist MRS2500 (1 μmol/L) not only abolished α,β-Me-ATP-induced relaxation, but also suppressed 2-Me-S-ADP-induced relaxation. P2Y receptor agonist-induced transient relaxation of rat ileum smooth muscle strips is mediated predominantly by P2Y1 receptor, but also by P2Y6 and P2Y13 receptors, and involves PLC, IP3, Ca(2+) release and SK channel activation, but is independent of acetylcholine and NO release.

  3. The First Fifteen Years of Steroid Receptor Research in Zebrafish; Characterization and Functional Analysis of the Receptors

    Directory of Open Access Journals (Sweden)

    Marcel J. M. Schaaf

    2017-07-01

    Full Text Available Steroid hormones regulate a wide range of processes in our body, and their effects are mediated by steroid receptors. In addition to their physiological role, these receptors mediate the effects of endocrine disrupting chemicals (EDCs and are widely used targets for dugs involved in the treatment of numerous diseases, ranging from cancer to inflammatory disorders. Over the last fifteen years, the zebrafish has increasingly been used as an animal model in steroid receptor research. Orthologues of all human steroid receptor genes appear to be present in zebrafish. All zebrafish steroid receptors have been characterized in detail, and their expression patterns have been analyzed. Functional studies have been performed using morpholino knockdown of receptor expression and zebrafish lines carrying mutations in one of their steroid receptor genes. To investigate the activity of the receptors in vivo, specific zebrafish reporter lines have been developed, and transcriptomic studies have been carried out to identify biomarkers for steroid receptor action. In this review, an overview of research on steroid receptors in zebrafish is presented, and it is concluded that further exploitation of the possibilities of the zebrafish model system will contribute significantly to the advancement of steroid receptor research in the next decade.

  4. Ex-vivo expanded human NK cells express activating receptors that mediate cytotoxicity of allogeneic and autologous cancer cell lines by direct recognition and antibody directed cellular cytotoxicity

    Directory of Open Access Journals (Sweden)

    Campana Dario

    2010-10-01

    Full Text Available Abstract Background The possibility that autologous NK cells could serve as an effective treatment modality for solid tumors has long been considered. However, implementation is hampered by (i the small number of NK cells in peripheral blood, (ii the difficulties associated with large-scale production of GMP compliant cytolytic NK cells, (iii the need to activate the NK cells in order to induce NK cell mediated killing and (iv the constraints imposed by autologous inhibitory receptor-ligand interactions. To address these issues, we determined (i if large numbers of NK cells could be expanded from PBMC and GMP compliant cell fractions derived by elutriation, (ii their ability to kill allogeneic and autologous tumor targets by direct cytotoxitiy and by antibody-mediated cellular cytotoxicity and (iii defined NK cell specific receptor-ligand interactions that mediate tumor target cell killing. Methods Human NK cells were expanded during 14 days. Expansion efficiency, NK receptor repertoire before and after expansion, expression of NK specific ligands, cytolytic activity against allogeneic and autologous tumor targets, with and without the addition of chimeric EGFR monoclonal antibody, were investigated. Results Cell expansion shifted the NK cell receptor repertoire towards activation and resulted in cytotoxicity against various allogeneic tumor cell lines and autologous gastric cancer cells, while sparing normal PBMC. Blocking studies confirmed that autologous cytotoxicity is established through multiple activating receptor-ligand interactions. Importantly, expanded NK cells also mediated ADCC in an autologous and allogeneic setting by antibodies that are currently being used to treat patients with select solid tumors. Conclusion These data demonstrate that large numbers of cytolytic NK cells can be generated from PBMC and lymphocyte-enriched fractions obtained by GMP compliant counter current elutriation from PBMC, establishing the preclinical

  5. Evidence that shock-induced immune suppression is mediated by adrenal hormones and peripheral beta-adrenergic receptors.

    Science.gov (United States)

    Cunnick, J E; Lysle, D T; Kucinski, B J; Rabin, B S

    1990-07-01

    Our previous work has demonstrated that presentations of mild foot-shock to Lewis rats induces a suppression of splenic and peripheral blood lymphocyte responses to nonspecific T-cell mitogens. The present study demonstrated that adrenalectomy prevented the shock-induced suppression of the mitogenic response of peripheral blood T-cells but did not attenuate the suppression of splenic T-cells. Conversely, the beta-adrenergic receptor antagonists, propranolol and nadolol, attenuated the shock-induced suppression of splenic T-cells in a dose-dependent manner but did not attenuate suppression of the blood mitogen response. These data indicate that distinct mechanisms mediate the shock-induced suppression of T-cell responsiveness to mitogens in the spleen and the peripheral blood. The results indicate that the peripheral release of catecholamines is responsible for splenic immune suppression and that adrenal hormones, which do not interact with beta-adrenergic receptors, are responsible for shock-induced suppression of blood mitogenic responses.

  6. Mincle suppresses Toll-like receptor 4 activation.

    Science.gov (United States)

    Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George

    2016-07-01

    Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation. © Society for Leukocyte Biology.

  7. Cutaneous nociceptors lack sensitisation, but reveal μ-opioid receptor-mediated reduction in excitability to mechanical stimulation in neuropathy

    Directory of Open Access Journals (Sweden)

    Schmidt Yvonne

    2012-11-01

    Full Text Available Abstract Background Peripheral nerve injuries often trigger a hypersensitivity to tactile stimulation. Behavioural studies demonstrated efficient and side effect-free analgesia mediated by opioid receptors on peripheral sensory neurons. However, mechanistic approaches addressing such opioid properties in painful neuropathies are lacking. Here we investigated whether opioids can directly inhibit primary afferent neuron transmission of mechanical stimuli in neuropathy. We analysed the mechanical thresholds, the firing rates and response latencies of sensory fibres to mechanical stimulation of their cutaneous receptive fields. Results Two weeks following a chronic constriction injury of the saphenous nerve, mice developed a profound mechanical hypersensitivity in the paw innervated by the damaged nerve. Using an in vitro skin-nerve preparation we found no changes in the mechanical thresholds and latencies of sensory fibres from injured nerves. The firing rates to mechanical stimulation were unchanged or reduced following injury. Importantly, μ-opioid receptor agonist [D-Ala2,N-Me-Phe4,Gly5]-ol-enkephalin (DAMGO significantly elevated the mechanical thresholds of nociceptive Aδ and C fibres. Furthermore, DAMGO substantially diminished the mechanically evoked discharges of C nociceptors in injured nerves. These effects were blocked by DAMGO washout and pre-treatment with the selective μ-opioid receptor antagonist Cys2-Tyr3-Orn5-Pen7-amide. DAMGO did not alter the responses of sensory fibres in uninjured nerves. Conclusions Our findings suggest that behaviourally manifested neuropathy-induced mechanosensitivity does not require a sensitised state of cutaneous nociceptors in damaged nerves. Yet, nerve injury renders nociceptors sensitive to opioids. Prevention of action potential generation or propagation in nociceptors might represent a cellular mechanism underlying peripheral opioid-mediated alleviation of mechanical hypersensitivity in neuropathy.

  8. Ruthenium complexes with phenylterpyridine derivatives target cell membrane and trigger death receptors-mediated apoptosis in cancer cells.

    Science.gov (United States)

    Deng, Zhiqin; Gao, Pan; Yu, Lianling; Ma, Bin; You, Yuanyuan; Chan, Leung; Mei, Chaoming; Chen, Tianfeng

    2017-06-01

    Elucidation of the communication between metal complexes and cell membrane may provide useful information for rational design of metal-based anticancer drugs. Herein we synthesized a novel class of ruthenium (Ru) complexes containing phtpy derivatives (phtpy = phenylterpyridine), analyzed their structure-activity relationship and revealed their action mechanisms. The result showed that, the increase in the planarity of hydrophobic Ru complexes significantly enhanced their lipophilicity and cellular uptake. Meanwhile, the introduction of nitro group effectively improved their anticancer efficacy. Further mechanism studies revealed that, complex (2c), firstly accumulated on cell membrane and interacted with death receptors to activate extrinsic apoptosis signaling pathway. The complex was then transported into cell cytoplasm through transferrin receptor-mediated endocytosis. Most of the intracellular 2c accumulated in cell plasma, decreasing the level of cellular ROS, inducing the activation of caspase-9 and thus intensifying the apoptosis. At the same time, the residual 2c can translocate into cell nucleus to interact with DNA, induce DNA damage, activate p53 pathway and enhance apoptosis. Comparing with cisplatin, 2c possesses prolonged circulation time in blood, comparable antitumor ability and importantly, much lower toxicity in vivo. Taken together, this study uncovers the role of membrane receptors in the anticancer actions of Ru complexes, and provides fundamental information for rational design of membrane receptor targeting anticancer drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ghrelin receptors mediate ghrelin-induced excitation of agouti-related protein/neuropeptide Y but not pro-opiomelanocortin neurons.

    Science.gov (United States)

    Chen, Shao-Rui; Chen, Hong; Zhou, Jing-Jing; Pradhan, Geetali; Sun, Yuxiang; Pan, Hui-Lin; Li, De-Pei

    2017-08-01

    Ghrelin increases food intake and body weight by stimulating orexigenic agouti-related protein (AgRP)/neuropeptide Y (NPY) neurons and inhibiting anorexic pro-opiomelanocortin (POMC) neurons in the hypothalamus. Growth hormone secretagogue receptor (Ghsr) mediates the effect of ghrelin on feeding behavior and energy homeostasis. However, the role of Ghsr in the ghrelin effect on these two populations of neurons is unclear. We hypothesized that Ghsr mediates the effect of ghrelin on AgRP and POMC neurons. In this study, we determined whether Ghsr similarly mediates the effects of ghrelin on AgRP/NPY and POMC neurons using cell type-specific Ghsr-knockout mice. Perforated whole-cell recordings were performed on green fluorescent protein-tagged AgRP/NPY and POMC neurons in the arcuate nucleus in hypothalamic slices. In Ghsr +/+ mice, ghrelin (100 nM) significantly increased the firing activity of AgRP/NPY neurons but inhibited the firing activity of POMC neurons. In Ghsr -/- mice, the excitatory effect of ghrelin on AgRP/NPY neurons was abolished. Ablation of Ghsr also eliminated ghrelin-induced increases in the frequency of GABAergic inhibitory postsynaptic currents of POMC neurons. Strikingly, ablation of Ghsr converted the ghrelin effect on POMC neurons from inhibition to excitation. Des-acylated ghrelin had no such effect on POMC neurons in Ghsr -/- mice. In both Ghsr +/+ and Ghsr -/- mice, blocking GABA A receptors with gabazine increased the basal firing activity of POMC neurons, and ghrelin further increased the firing activity of POMC neurons in the presence of gabazine. Our findings provide unequivocal evidence that Ghsr is essential for ghrelin-induced excitation of AgRP/NPY neurons. However, ghrelin excites POMC neurons through an unidentified mechanism that is distinct from conventional Ghsr. © 2017 International Society for Neurochemistry.

  10. Synergistic effect of pacritinib with erlotinib on JAK2-mediated resistance in epidermal gowth factor receptor mutation-positive non-small cell lung Cancer.

    Science.gov (United States)

    Ochi, Nobuaki; Isozaki, Hideko; Takeyama, Masami; Singer, Jack W; Yamane, Hiromichi; Honda, Yoshihiro; Kiura, Katsuyuki; Takigawa, Nagio

    2016-06-10

    The combination effect of pacritinib, a novel JAK2/FLT3 inhibitor, with erlotinib, the epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), on non-small cell lung cancer cells with EGFR activating mutations was investigated. The combination showed synergistic effects on JAK2-mediated EGFR TKI-resistant PC-9/ER3 cells in some cases. The combination markedly suppressed pAKT and pERK although pSTAT3 expression was similar regardless of treatment with the pacritinib, pacritinib + erlotinib, or control in PC-9/ER3 cells. Receptor tyrosine kinase array profiling demonstrated that pacritinib suppressed MET in the PC-9/ER3 cells. The combined treatment of pacritinib and erlotinib in PC-9/ER3 xenografts showed more tumor shrinkage compared with each drug as monotherapy. Western blotting revealed that pMET in tumor samples was inhibited. These results suggest MET suppression by pacritinib may play a role in overcoming the EGFR-TKI resistance mediated by JAK2 in the PC-9/ER3 cells. In conclusion, pacritinib combined with EGFR-TKI might be a potent strategy against JAK2-mediated EGFR-TKI resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The Mannose Receptor in Regulation of Helminth-Mediated Host Immunity

    Directory of Open Access Journals (Sweden)

    Irma van Die

    2017-11-01

    Full Text Available Infection with parasitic helminths affects humanity and animal welfare. Parasitic helminths have the capacity to modulate host immune responses to promote their survival in infected hosts, often for a long time leading to chronic infections. In contrast to many infectious microbes, however, the helminths are able to induce immune responses that show positive bystander effects such as the protection to several immune disorders, including multiple sclerosis, inflammatory bowel disease, and allergies. They generally promote the generation of a tolerogenic immune microenvironment including the induction of type 2 (Th2 responses and a sub-population of alternatively activated macrophages. It is proposed that this anti-inflammatory response enables helminths to survive in their hosts and protects the host from excessive pathology arising from infection with these large pathogens. In any case, there is an urgent need to enhance understanding of how helminths beneficially modulate inflammatory reactions, to identify the molecules involved and to promote approaches to exploit this knowledge for future therapeutic interventions. Evidence is increasing that C-type lectins play an important role in driving helminth-mediated immune responses. C-type lectins belong to a large family of calcium-dependent receptors with broad glycan specificity. They are abundantly present on immune cells, such as dendritic cells and macrophages, which are essential in shaping host immune responses. Here, we will focus on the role of the C-type lectin macrophage mannose receptor (MR in helminth–host interactions, which is a critically understudied area in the field of helminth immunobiology. We give an overview of the structural aspects of the MR including its glycan specificity, and the functional implications of the MR in helminth–host interactions focusing on a few selected helminth species.

  12. Erythropoietin's Beta Common Receptor Mediates Neuroprotection in Spinal Cord Neurons.

    Science.gov (United States)

    Foley, Lisa S; Fullerton, David A; Mares, Joshua; Sungelo, Mitchell; Weyant, Michael J; Cleveland, Joseph C; Reece, T Brett

    2017-12-01

    Paraplegia from spinal cord ischemia-reperfusion (SCIR) remains an elusive and devastating complication of complex aortic operations. Erythropoietin (EPO) attenuates this injury in models of SCIR. Upregulation of the EPO beta common receptor (βcR) is associated with reduced damage in models of neural injury. The purpose of this study was to examine whether EPO-mediated neuroprotection was dependent on βcR expression. We hypothesized that spinal cord neurons subjected to oxygen-glucose deprivation would mimic SCIR injury in aortic surgery and EPO treatment attenuates this injury in a βcR-dependent fashion. Lentiviral vectors with βcR knockdown sequences were tested on neuron cell cultures. The virus with greatest βcR knockdown was selected. Spinal cord neurons from perinatal wild-type mice were harvested and cultured to maturity. They were treated with knockdown or nonsense virus and transduced cells were selected. Three groups (βcR knockdown virus, nonsense control virus, no virus control; n = 8 each) were subjected to 1 hour of oxygen-glucose deprivation. Viability was assessed. βcR expression was quantified by immunoblot. EPO preserved neuronal viability after oxygen-glucose deprivation (0.82 ± 0.04 versus 0.61 ± 0.01; p neuron preservation was similar in the nonsense virus and control mice (0.82 ± 0.04 versus 0.80 ± 0.05; p = 0.77). EPO neuron preservation was lost in βcR knockdown mice compared with nonsense control mice (0.46 ± 0.03 versus 0.80 ± 0.05; p neuronal loss after oxygen-glucose deprivation in a βcR-dependent fashion. This receptor holds immense clinical promise as a target for pharmacotherapies treating spinal cord ischemic injury. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  13. The association of metabotropic glutamate receptor type 5 with the neuronal Ca2+-binding protein 2 modulates receptor function.

    Science.gov (United States)

    Canela, Laia; Fernández-Dueñas, Víctor; Albergaria, Catarina; Watanabe, Masahiko; Lluís, Carme; Mallol, Josefa; Canela, Enric I; Franco, Rafael; Luján, Rafael; Ciruela, Francisco

    2009-10-01

    Metabotropic glutamate (mGlu) receptors mediate in part the CNS effects of glutamate. These receptors interact with a large array of intracellular proteins in which the final role is to regulate receptor function. Here, using co-immunoprecipitation and pull-down experiments we showed a close and specific interaction between mGlu(5) receptor and NECAB2 in both transfected human embryonic kidney cells and rat hippocampus. Interestingly, in pull-down experiments increasing concentrations of calcium drastically reduced the ability of these two proteins to interact, suggesting that NECAB2 binds to mGlu(5) receptor in a calcium-regulated manner. Immunoelectron microscopy detection of NECAB2 and mGlu(5) receptor in the rat hippocampal formation indicated that both proteins are codistributed in the same subcellular compartment of pyramidal cells. In addition, the NECAB2/mGlu(5) receptor interaction regulated mGlu(5b)-mediated activation of both inositol phosphate accumulation and the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway. Overall, these findings indicate that NECAB2 by its physical interaction with mGlu(5b) receptor modulates receptor function.

  14. Electroacupuncture improves cerebral blood flow and attenuates moderate ischemic injury via Angiotensin II its receptors-mediated mechanism in rats.

    Science.gov (United States)

    Li, Jing; He, Jiaojun; Du, Yuanhao; Cui, Jingjun; Ma, Ying; Zhang, Xuezhu

    2014-11-11

    To investigate the effects and potential mechanism of electroacupuncture intervention on expressions of Angiotensin II and its receptors-mediated signaling pathway in experimentally induced cerebral ischemia. Totally 126 male Wistar rats were randomly divided into control group, model group and EA group. The latter two were further divided into ten subgroups (n = 6) following Middle Cerebral Artery Occlusion (MCAO). Changes in regional cerebral blood flow (rCBF) and expressions of Angiotensin II and its receptors (AT1R, AT2R), as well as effector proteins in phosphatidyl inositol signal pathway were monitored before and at different times after MCAO. MCAO-induced decline of ipsilateral rCBF was partially suppressed by electroacupuncture, and contralateral blood flow was also superior to that of model group. Angiotensin II level was remarkably elevated immediately after MCAO, while electroacupuncture group exhibited significantly lower levels at 1 to 3 h and the value was significantly increased thereafter. The enhanced expression of AT1R was partially inhibited by electroacupuncture, while increased AT2R level was further induced. Electroacupuncture stimulation attenuated and postponed the upregulated-expressions of Gq and CaM these upregulations. ELISA results showed sharply increased expressions of DAG and IP3, which were remarkably neutralized by electroacupuncture. MCAO induced significant increases in expression of Angiotensin II and its receptor-mediated signal pathway. These enhanced expressions were significantly attenuated by electroacupuncture intervention, followed by reduced vasoconstriction and improved blood supply in ischemic region, and ultimately conferred beneficial effects on cerebral ischemia.

  15. C-terminal of human histamine H1 receptors regulates their agonist-induced clathrin-mediated internalization and G-protein signaling.

    Science.gov (United States)

    Hishinuma, Shigeru; Nozawa, Hiroki; Akatsu, Chizuru; Shoji, Masaru

    2016-11-01

    It has been suggested that the agonist-induced internalization of G-protein-coupled receptors from the cell surface into intracellular compartments regulates cellular responsiveness. We previously reported that G q/11 -protein-coupled human histamine H 1 receptors internalized via clathrin-dependent mechanisms upon stimulation with histamine. However, the molecular determinants of H 1 receptors responsible for agonist-induced internalization remain unclear. In this study, we evaluated the roles of the intracellular C-terminal of human histamine H 1 receptors tagged with hemagglutinin (HA) at the N-terminal in histamine-induced internalization in Chinese hamster ovary cells. The histamine-induced internalization was evaluated by the receptor binding assay with [ 3 H]mepyramine and confocal immunofluorescence microscopy with an anti-HA antibody. We found that histamine-induced internalization was inhibited under hypertonic conditions or by pitstop, a clathrin terminal domain inhibitor, but not by filipin or nystatin, disruptors of the caveolar structure and function. The histamine-induced internalization was also inhibited by truncation of a single amino acid, Ser487, located at the end of the intracellular C-terminal of H 1 receptors, but not by its mutation to alanine. In contrast, the receptor-G-protein coupling, which was evaluated by histamine-induced accumulation of [ 3 H]inositol phosphates, was potentiated by truncation of Ser487, but was lost by its mutation to alanine. These results suggest that the intracellular C-terminal of human H 1 receptors, which only comprises 17 amino acids (Cys471-Ser487), plays crucial roles in both clathrin-dependent internalization of H 1 receptors and G-protein signaling, in which truncation of Ser487 and its mutation to alanine are revealed to result in biased signaling toward activation of G-proteins and clathrin-mediated internalization, respectively. © 2016 International Society for Neurochemistry.

  16. Scavenger Receptor Class B Type I Mediates Biliary Cholesterol Secretion Independent of ATP-Binding Cassette Transporter g5/g8 in Mice

    NARCIS (Netherlands)

    Wiersma, Harmen; Gatti, Alberto; Nijstad, Niels; Elferink, Ronald P. J. Oude; Kuipers, Folkert; Tietge, Uwe J. F.

    2009-01-01

    Scavenger receptor class B type I (SR-BI) mediates selective uptake of cholesterol from high-density lipoprotein (HDL) particles by the liver and influences biliary cholesterol secretion. However, it is not dear, if this effect is direct or indirect. The aim of this study was to determine the impact

  17. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling

    Science.gov (United States)

    Mattila, Pieta K.; Batista, Facundo D.

    2016-01-01

    Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival. PMID:26833785

  18. Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation.

    Science.gov (United States)

    Ullah, Md Ashik; Loh, Zhixuan; Gan, Wan Jun; Zhang, Vivian; Yang, Huan; Li, Jian Hua; Yamamoto, Yasuhiko; Schmidt, Ann Marie; Armour, Carol L; Hughes, J Margaret; Phipps, Simon; Sukkar, Maria B

    2014-08-01

    The receptor for advanced glycation end products (RAGE) shares common ligands and signaling pathways with TLR4, a key mediator of house dust mite (Dermatophagoides pteronyssinus) (HDM) sensitization. We hypothesized that RAGE and its ligand high-mobility group box-1 (HMGB1) cooperate with TLR4 to mediate HDM sensitization. To determine the requirement for HMGB1 and RAGE, and their relationship with TLR4, in airway sensitization. TLR4(-/-), RAGE(-/-), and RAGE-TLR4(-/-) mice were intranasally exposed to HDM or cockroach (Blatella germanica) extracts, and features of allergic inflammation were measured during the sensitization or challenge phase. Anti-HMGB1 antibody and the IL-1 receptor antagonist Anakinra were used to inhibit HMGB1 and the IL-1 receptor, respectively. The magnitude of allergic airway inflammation in response to either HDM or cockroach sensitization and/or challenge was significantly reduced in the absence of RAGE but not further diminished in the absence of both RAGE and TLR4. HDM sensitization induced the release of HMGB1 from the airway epithelium in a biphasic manner, which corresponded to the sequential activation of TLR4 then RAGE. Release of HMGB1 in response to cockroach sensitization also was RAGE dependent. Significantly, HMGB1 release occurred downstream of TLR4-induced IL-1α, and upstream of IL-25 and IL-33 production. Adoptive transfer of HDM-pulsed RAGE(+/+)dendritic cells to RAGE(-/-) mice recapitulated the allergic responses after HDM challenge. Immunoneutralization of HMGB1 attenuated HDM-induced allergic airway inflammation. The HMGB1-RAGE axis mediates allergic airway sensitization and airway inflammation. Activation of this axis in response to different allergens acts to amplify the allergic inflammatory response, which exposes it as an attractive target for therapeutic intervention. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  19. SMRT repression of nuclear receptors controls the adipogenic set point and metabolic homeostasis

    NARCIS (Netherlands)

    Nofsinger, Russell R.; Li, Pingping; Hong, Suk-Hyun; Jonker, Johan W.; Barish, Grant D.; Ying, Hao; Cheng, Sheue-Yann; LeBlanc, Mathias; Xu, Wei; Pei, Liming; Kang, Yeon-Joo; Nelson, Michael; Downes, Michael; Yu, Ruth T.; Olefsky, Jerrold M.; Lee, Chih-Hao; Evans, Ronald M.

    2008-01-01

    The nuclear receptor corepressor, silencing mediator of retinoid and thyroid hormone receptors (SMRT), is recruited by a plethora of transcription factors to mediate lineage and signal-dependent transcriptional repression. We generated a knockin mutation in the receptor interaction domain (RID) of

  20. Dopamine D2 receptor-mediated G-protein activation in rat striatum: functional autoradiography and influence of unilateral 6-hydroxydopamine lesions of the substantia nigra.

    Science.gov (United States)

    Newman-Tancredi, A; Cussac, D; Brocco, M; Rivet, J M; Chaput, C; Touzard, M; Pasteau, V; Millan, M J

    2001-11-30

    , the present data indicate that, in rat striatum, the actions of quinelorane are mediated primarily by D2 receptors, and suggest that behavioural hypersensitivity to this agonist, induced by unilateral SNPC lesions, is associated with an increase in D2, but not D3 or D4, receptor-mediated G-protein activation.

  1. Platelet-activating factor and group I metabotropic glutamate receptors interact for full development and maintenance of long-term potentiation in the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Francescangeli, E; Goracci, G; Pettorossi, V E

    1999-01-01

    In rat brainstem slices, we investigated the interaction between platelet-activating factor and group I metabotropic glutamate receptors in mediating long-term potentiation within the medial vestibular nuclei. We analysed the N1 field potential wave evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation. The group I metabotropic glutamate receptor antagonist, (R,S)-1-aminoindan-1,5-dicarboxylic acid, prevented long-term potentiation induced by a platelet-activating factor analogue [1-O-hexadecyl-2-O-(methylcarbamyl)-sn-glycero-3-phosphocholine], as well as the full development of potentiation, induced by high-frequency stimulation under the blocking agent for synaptosomal platelet-activating factor receptors (ginkolide B), at drug washout. However, potentiation directly induced by the group I glutamate metabotropic receptor agonist, (R,S)-3,5-dihydroxyphenylglycine, was reduced by ginkolide B. These findings suggest that platelet-activating factor, whether exogenous or released following potentiation induction, exerts its effect through presynaptic group I metabotropic glutamate receptors, mediating the increase of glutamate release. In addition, we found that this mechanism, which led to full potentiation through presynaptic group I metabotropic glutamate receptor activation, was inactivated soon after application of potentiation-inducing stimulus. In fact, the long-lasting block of the platelet-activating factor and metabotropic glutamate receptors prevented the full potentiation development and the induced potentiation progressively declined to null. Moreover, ginkolide B, given when high-frequency-dependent potentiation was established, only reduced it within 5 min after potentiation induction. We conclude that to fully develop vestibular long-term potentiation requires presynaptic events. Platelet-activating factor, released after the activation of postsynaptic mechanisms which induce potentiation, is necessary

  2. Glycine and GABAA receptors mediate tonic and phasic inhibitory processes that contribute to prepulse inhibition in the goldfish startle network

    Directory of Open Access Journals (Sweden)

    Paul C.P. Curtin

    2015-03-01

    Full Text Available Prepulse inhibition (PPI is understood as an inhibitory process that attenuates sensory flow during early stages (20-1000ms of information processing. Here, we applied in vivo electrophysiology and pharmacology to determine if prepulse inhibition (PPI is mediated by glycine receptors (GlyRs and/or GABAA receptors (GABAARs in the goldfish auditory startle circuit. Specifically, we used selective antagonists to dissect the contributions of target receptors on sound-evoked postsynaptic potentials (PSPs recorded in the neurons that initiate startle, the Mauthner-cells (M-cell. We found that strychnine, a GlyR antagonist, disrupted a fast-activated (5 ms and rapidly (< 50ms decaying (feed-forward inhibitory process that disrupts PPI at 20 ms prepulse/pulse inter-stimulus intervals (ISI. Additionally we observed increases of the evoked postsynaptic potential (PSP peak amplitude (+87.43 ± 21.53%; N=9 and duration (+204 ± 48.91%, N=9. In contrast, treatment with bicuculline, a GABAAR antagonist, caused a general reduction in PPI across all tested ISIs (20-500 ms, essentially eliminating PPI at ISIs from 20-100 ms. Bicuculline also increased PSP peak amplitude (+133.8 ± 10.3%, N=5 and PSP duration (+284.95 ± 65.64%, N=5. Treatment with either antagonist also tonically increased post-synaptic excitability in the M-cells, reflected by an increase in the magnitude of antidromically-evoked action potentials (APs by 15.07 ± 3.21%, N=7 and 16.23 ± 7.08%, N=5 for strychnine and bicuculline, respectively. These results suggest that GABAARs and GlyRs are functionally segregated to short- and longer-lasting sound-evoked (phasic inhibitory processes that contribute to PPI, with the mediation of tonic inhibition by both receptor systems being critical for gain control within the M-cell startle circuit.

  3. LncRNA HOTAIR Enhances the Androgen-Receptor-Mediated Transcriptional Program and Drives Castration-Resistant Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Ali Zhang

    2015-10-01

    Full Text Available Understanding the mechanisms of androgen receptor (AR activation in the milieu of low androgen is critical to effective treatment of castration-resistant prostate cancer (CRPC. Here, we report HOTAIR as an androgen-repressed lncRNA, and, as such, it is markedly upregulated following androgen deprivation therapies and in CRPC. We further demonstrate a distinct mode of lncRNA-mediated gene regulation, wherein HOTAIR binds to the AR protein to block its interaction with the E3 ubiquitin ligase MDM2, thereby preventing AR ubiquitination and protein degradation. Consequently, HOTAIR expression is sufficient to induce androgen-independent AR activation and drive the AR-mediated transcriptional program in the absence of androgen. Functionally, HOTAIR overexpression increases, whereas HOTAIR knockdown decreases, prostate cancer cell growth and invasion. Taken together, our results provide compelling evidence of lncRNAs as drivers of androgen-independent AR activity and CRPC progression, and they support the potential of lncRNAs as therapeutic targets.

  4. Phagocytosis by macrophages mediated by receptors for denatured proteins - dependence on tyrosine protein kinases

    Directory of Open Access Journals (Sweden)

    M.R. Hespanhol

    2002-03-01

    Full Text Available Previous studies have demonstrated that some components of the leukocyte cell membrane, CR3 (Mac-1, CD11b/CD18 and p150/95, are able to bind to denatured proteins. Thus, it is of interest to know which effector functions of these cells can be triggered by these receptors when they interact with particles or surfaces covered with denatured proteins. In the present study we analyzed their possible role as mediators of phagocytosis of red cells covered with denatured bovine serum albumin (BSA by mouse peritoneal macrophages. We observed that a macrophages are able to recognize (bind to these red cells, b this interaction can be inhibited by denatured BSA in the fluid phase, c there is no phagocytosis of these particles by normal macrophages, d phagocytosis mediated by denatured BSA can be, however, effectively triggered in inflammatory macrophages induced by glycogen or in macrophages activated in vivo with LPS, and e this phagocytic capacity is strongly dependent on the activity of tyrosine protein kinases in its signal transduction pathway, as demonstrated by using three kinds of enzyme inhibitors (genistein, quercetin and herbimycin A.

  5. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats

    Directory of Open Access Journals (Sweden)

    Elham Hakimizadeh

    2017-08-01

    Full Text Available Objective(s: Stroke is known as a main cause of mortality and prolonged disability in adults. Both transient receptor potential V1 (TRPV1 channels and toll-like receptors (TLRs are involved in mediating the inflammatory responses. In the present study, the effects of TRPV1 receptor activation and blockade on stroke outcome and gene expression of TLR2 and TLR4 were assessed following permanent middle cerebral artery occlusion in rats Materials and Methods: Eighty male Wistar rats were divided into four groups as follows: sham, vehicle, AMG9810 (TRPV1 antagonist -treated and capsaicin (TRPV1 agonist -treated. For Stroke induction, the middle cerebral artery was permanently occluded and then behavioral functions were evaluated 1, 3 and 7 days after stroke. Results: TRPV1 antagonism significantly reduced the infarct volume compared to the stroke group. Also, neurological deficits were decreased by AMG9810 seven days after cerebral ischemia. In the ledged beam-walking test, the slip ratio was enhanced following ischemia. AMG9810 decreased this index in stroke animals. However, capsaicin improved the ratio 3 and 7 days after cerebral ischemia. Compared to the sham group, the mRNA expression of TLR2 and TLR4 was significantly increased in the stroke rats. AMG9810 Administration significantly reduced the mRNA expression of TLR2 and TLR4. However, capsaicin did not significantly affect the gene expression of TLR2 and TLR4. Conclusion: Our results demonstrated that TRPV1 antagonism by AMG9810 attenuates behavioral function and mRNA expression of TLR2 and TLR4. Thus, it might be useful to shed light on future therapeutic strategies for the treatment of ischemic stroke.

  6. Integrated in silico and in vivo approaches to investigate effects of BDE-99 mediated by the nuclear receptors on developing zebrafish.

    Science.gov (United States)

    Zhang, Li; Jin, Yaru; Han, Zhihua; Liu, Hongling; Shi, Laihao; Hua, Xiaoxue; Doering, Jon A; Tang, Song; Giesy, John P; Yu, Hongxia

    2018-03-01

    One of the most abundant polybrominated diphenyl ethers (PBDEs) is 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), which persists and potentially bioaccumulates in aquatic wildlife. Previous studies in mammals have shown that BDE-99 affects development and disrupts certain endocrine functions through signaling pathways mediated by nuclear receptors. However, fewer studies have investigated the potential of BDE-99 to interact with nuclear receptors in aquatic vertebrates such as fish. In the present study, interactions between BDE-99 and nuclear receptors were investigated by in silico and in vivo approaches. This PBDE was able to dock into the ligand-binding domain of zebrafish aryl hydrocarbon receptor 2 (AhR2) and pregnane X receptor (PXR). It had a significant effect on the transcriptional profiles of genes associated with AhR or PXR. Based on the developed cytoscape of all zebrafish genes, it was also inferred that AhR and PXR could interact via cross-talk. In addition, both the in silico and in vivo approaches found that BDE-99 affected peroxisome proliferator-activated receptor alpha (PPARα), glucocorticoid receptor, and thyroid receptor. Collectively, our results demonstrate for the first time detailed in silico evidence that BDE-99 can bind to and interact with zebrafish AhR and PXR. These findings can be used to elaborate the molecular mechanism of BDE-99 and guide more objective environmental risk assessments. Environ Toxicol Chem 2018;37:780-787. © 2017 SETAC. © 2017 SETAC.

  7. Fluctuation correlation models for receptor immobilization

    Science.gov (United States)

    Fourcade, B.

    2017-12-01

    Nanoscale dynamics with cycles of receptor diffusion and immobilization by cell-external-or-internal factors is a key process in living cell adhesion phenomena at the origin of a plethora of signal transduction pathways. Motivated by modern correlation microscopy approaches, the receptor correlation functions in physical models based on diffusion-influenced reaction is studied. Using analytical and stochastic modeling, this paper focuses on the hybrid regime where diffusion and reaction are not truly separable. The time receptor autocorrelation functions are shown to be indexed by different time scales and their asymptotic expansions are given. Stochastic simulations show that this analysis can be extended to situations with a small number of molecules. It is also demonstrated that this analysis applies when receptor immobilization is coupled to environmental noise.

  8. GLI1, a crucial mediator of sonic hedgehog signaling in prostate cancer, functions as a negative modulator for androgen receptor

    International Nuclear Information System (INIS)

    Chen, Guangchun; Goto, Yutaka; Sakamoto, Ryuichi; Tanaka, Kimitaka; Matsubara, Eri; Nakamura, Masafumi; Zheng, Hong; Lu, Jian; Takayanagi, Ryoichi; Nomura, Masatoshi

    2011-01-01

    Research highlights: → GLI1, which play a central role in sonic hedgehog signaling in prostate cancer, can act as a co-repressor to substantially block androgen receptor-mediated transactivation. → GLI1 directly interacts with AR. → SHH-GLI pathway might be one of determinants governing the transition of prostate cancer from an androgen-dependent to an androgen-independent state. -- Abstract: Sonic hedgehog (SHH) signaling, acting in a combinatorial manner with androgen signaling, is essential for prostate patterning and development. Recently, elevated activation of SHH signaling has been shown to play important roles in proliferation, progression and metastasis of prostate cancer. In this report, we demonstrate for the first time, that GLI1, which has been shown to play a central role in SHH signaling in prostate cancer, can act as a co-repressor to substantially block androgen receptor (AR)-mediated transactivation, at least in part, by directly interacting with AR. Our observations suggest that the SHH-GLI pathway might be one of determinants governing the transition of prostate cancer from an androgen-dependent to an androgen-independent state by compensating, or even superseding androgen signaling.

  9. Functional Genomic investigation of Peroxisome Proliferator-Activated Receptor Gamma (PPARG mediated transcription response in gastric cancer

    Directory of Open Access Journals (Sweden)

    Karthikeyan Selvarasu

    2017-10-01

    Full Text Available Cancer is a complex and progressive multi-step disorder that results from the transformation of normal cells to malignant derivatives. Several oncogenic signaling pathways are involved in this transformation. PPARG (Peroxisome proliferator-activated receptor gamma mediated transcription and signaling is involved in few cancers. We have investigated the PPARG in gastric tumors. The objective of the present study was to investigate the PPARG mediated transcriptional response in gastric tumors. Gene-set based and pathway focused gene-set enrichment analysis of available PPARG signatures in gastric tumor mRNA profiles shows that PPARG mediated transcription is highly activated in intestinal sub-type of gastric tumors. Further, we have derived the PPARG associated genes in gastric cancer and their expression was identified for the association with the better survival of the patients. Analysis of the PPARG associated genes reveals their involvement in mitotic cell cycle process, chromosome organization and nuclear division. Towards identifying the association with other oncogenic signaling process, E2F regulated genes were found associated with PPARG mediated transcription. The current results reveal the possible stratification of gastric tumors based on the PPARG gene expression and the possible development of PPARG targeted gastric cancer therapeutics. The identified PPARG regulated genes were identified to be targetable by pioglitazone and rosiglitazone. The identification of PPARG genes also in the normal stomach tissues reveal the possible involvement of these genes in the normal physiology of stomach and needs to be investigated.

  10. Identification of the receptor scavenging hemopexin-heme complexes

    DEFF Research Database (Denmark)

    Hvidberg, Vibeke; Maniecki, Maciej B; Jacobsen, Christian

    2005-01-01

    and is suggested to facilitate cellular heme metabolism. Using a ligand-affinity approach, we purified the human hemopexin-heme receptor and identified it as the low-density lipoprotein receptor-related protein (LRP)/CD91, a receptor expressed in several cell types including macrophages, hepatocytes, neurons......, and syncytiotrophoblasts. Binding experiments, including Biacore analysis, showed that hemopexin-heme complex formation elicits the high receptor affinity. Uptake studies of radio-labeled hemopexin-heme complex in LRP/CD91-expressing COS cells and confocal microscopy of the cellular processing of fluorescent hemopexin......-heme complexes are removed by a receptor-mediated pathway showing striking similarities to the CD163-mediated haptoglobin-hemoglobin clearance in macrophages. Furthermore, the data indicate a hitherto unknown role of LRP/CD91 in inflammation....

  11. Interaction among Saccharomyces cerevisiae pheromone receptors during endocytosis

    Directory of Open Access Journals (Sweden)

    Chien-I Chang

    2014-03-01

    Full Text Available This study investigates endocytosis of Saccharomyces cerevisiae α-factor receptor and the role that receptor oligomerization plays in this process. α-factor receptor contains signal sequences in the cytoplasmic C-terminal domain that are essential for ligand-mediated endocytosis. In an endocytosis complementation assay, we found that oligomeric complexes of the receptor undergo ligand-mediated endocytosis when the α-factor binding site and the endocytosis signal sequences are located in different receptors. Both in vitro and in vivo assays suggested that ligand-induced conformational changes in one Ste2 subunit do not affect neighboring subunits. Therefore, recognition of the endocytosis signal sequence and recognition of the ligand-induced conformational change are likely to be two independent events.

  12. Dopamine D(1) receptor-mediated control of striatal acetylcholine release by endogenous dopamine.

    Science.gov (United States)

    Acquas, E; Di Chiara, G

    1999-10-27

    acetylcholine release, counteracting the increase of dopamine release and potentiating the decrease in acetylcholine release. These results provide further evidence for the existence of a tonic stimulatory input of endogenous dopamine on striatal acetylcholine transmission mediated by dopamine D(1) receptors.

  13. Bayesian dynamic mediation analysis.

    Science.gov (United States)

    Huang, Jing; Yuan, Ying

    2017-12-01

    Most existing methods for mediation analysis assume that mediation is a stationary, time-invariant process, which overlooks the inherently dynamic nature of many human psychological processes and behavioral activities. In this article, we consider mediation as a dynamic process that continuously changes over time. We propose Bayesian multilevel time-varying coefficient models to describe and estimate such dynamic mediation effects. By taking the nonparametric penalized spline approach, the proposed method is flexible and able to accommodate any shape of the relationship between time and mediation effects. Simulation studies show that the proposed method works well and faithfully reflects the true nature of the mediation process. By modeling mediation effect nonparametrically as a continuous function of time, our method provides a valuable tool to help researchers obtain a more complete understanding of the dynamic nature of the mediation process underlying psychological and behavioral phenomena. We also briefly discuss an alternative approach of using dynamic autoregressive mediation model to estimate the dynamic mediation effect. The computer code is provided to implement the proposed Bayesian dynamic mediation analysis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Fcγ-receptor IIa-mediated Src Signaling Pathway Is Essential for the Antibody-Dependent Enhancement of Ebola Virus Infection.

    Directory of Open Access Journals (Sweden)

    Wakako Furuyama

    2016-12-01

    Full Text Available Antibody-dependent enhancement (ADE of Ebola virus (EBOV infection has been demonstrated in vitro, raising concerns about the detrimental potential of some anti-EBOV antibodies. ADE has been described for many viruses and mostly depends on the cross-linking of virus-antibody complexes to cell surface Fc receptors, leading to enhanced infection. However, little is known about the molecular mechanisms underlying this phenomenon. Here we show that Fcγ-receptor IIa (FcγRIIa-mediated intracellular signaling through Src family protein tyrosine kinases (PTKs is required for ADE of EBOV infection. We found that deletion of the FcγRIIa cytoplasmic tail abolished EBOV ADE due to decreased virus uptake into cellular endosomes. Furthermore, EBOV ADE, but not non-ADE infection, was significantly reduced by inhibition of the Src family protein PTK pathway, which was also found to be important to promote phagocytosis/macropinocytosis for viral uptake into endosomes. We further confirmed a significant increase of the Src phosphorylation mediated by ADE. These data suggest that antibody-EBOV complexes bound to the cell surface FcγRIIa activate the Src signaling pathway that leads to enhanced viral entry into cells, providing a novel perspective for the general understanding of ADE of virus infection.

  15. Receptor-mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system.

    Science.gov (United States)

    Limaye, Arati; Koya, Vijay; Samsam, Mohtashem; Daniell, Henry

    2006-05-01

    Oral delivery of biopharmaceutical proteins expressed in plant cells should reduce their cost of production, purification, processing, cold storage, transportation, and delivery. However, poor intestinal absorption of intact proteins is a major challenge. To overcome this limitation, we investigate here the concept of receptor-mediated oral delivery of chloroplast-expressed foreign proteins. Therefore, the transmucosal carrier cholera toxin B-subunit and green fluorescent protein (CTB-GFP), separated by a furin cleavage site, was expressed via the tobacco chloroplast genome. Polymerase chain reaction (PCR) and Southern blot analyses confirmed site-specific transgene integration and homoplasmy. Immunoblot analysis and ELISA confirmed expression of monomeric and pentameric forms of CTB-GFP, up to 21.3% of total soluble proteins. An in vitro furin cleavage assay confirmed integrity of the engineered furin cleavage site, and a GM1 binding assay confirmed the functionality of CTB-GFP pentamers. Following oral administration of CTB-GFP expressing leaf material to mice, GFP was observed in the mice intestinal mucosa, liver, and spleen in fluorescence and immunohistochemical studies, while CTB remained in the intestinal cell. This report of receptor-mediated oral delivery of a foreign protein into the circulatory system opens the door for low-cost production and delivery of human therapeutic proteins.

  16. TNF and TNF Receptor Superfamily Members in HIV infection: New Cellular Targets for Therapy?

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2013-01-01

    Full Text Available Tumor necrosis factor (TNF and TNF receptors (TNFR superfamily members are engaged in diverse cellular phenomena such as cellular proliferation, morphogenesis, apoptosis, inflammation, and immune regulation. Their role in regulating viral infections has been well documented. Viruses have evolved with numerous strategies to interfere with TNF-mediated signaling indicating the importance of TNF and TNFR superfamily in viral pathogenesis. Recent research reports suggest that TNF and TNFRs play an important role in the pathogenesis of HIV. TNFR signaling modulates HIV replication and HIV proteins interfere with TNF/TNFR pathways. Since immune activation and inflammation are the hallmark of HIV infection, the use of TNF inhibitors can have significant impact on HIV disease progression. In this review, we will describe how HIV infection is modulated by signaling mediated through members of TNF and TNFR superfamily and in turn how these latter could be targeted by HIV proteins. Finally, we will discuss the emerging therapeutics options based on modulation of TNF activity that could ultimately lead to the cure of HIV-infected patients.

  17. Receptor-mediated transcytosis of cyclophilin B through the blood-brain barrier.

    Science.gov (United States)

    Carpentier, M; Descamps, L; Allain, F; Denys, A; Durieux, S; Fenart, L; Kieda, C; Cecchelli, R; Spik, G

    1999-07-01

    Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein mainly located in intracellular vesicles and secreted in biological fluids. In previous works, we demonstrated that CyPB interacts with T lymphocytes and enhances in vitro cellular incorporation and activity of CsA. In addition to its immunosuppressive activity, CsA is able to promote regeneration of damaged peripheral nerves. However, the crossing of the drug from plasma to neural tissue is restricted by the relative impermeability of the blood-brain barrier. To know whether CyPB might also participate in the delivery of CsA into the brain, we have analyzed the interactions of CyPB with brain capillary endothelial cells. First, we demonstrated that CyPB binds to two types of binding sites present at the surface of capillary endothelial cells from various species of tissues. The first type of binding sites (K(D) = 300 nM; number of sites = 3 x 10(6)) is related to interactions with negatively charged compounds such as proteoglycans. The second type of binding sites, approximately 50,000 per cell, exhibits a higher affinity for CyPB (K(D) = 15 nM) and is involved in an endocytosis process, indicating it might correspond to a functional receptor. Finally, the use of an in vitro model of blood-brain barrier allowed us to demonstrate that CyPB is transcytosed by a receptor-mediated pathway (flux = 16.5 fmol/cm2/h). In these conditions, CyPB did not significantly modify the passage of CsA, indicating that it is unlikely to provide a pathway for CsA brain delivery.

  18. A novel soluble immune-type receptor (SITR in teleost fish: carp SITR is involved in the nitric oxide-mediated response to a protozoan parasite.

    Directory of Open Access Journals (Sweden)

    Carla M S Ribeiro

    2011-01-01

    Full Text Available The innate immune system relies upon a wide range of germ-line encoded receptors including a large number of immunoglobulin superfamily (IgSF receptors. Different Ig-like immune receptor families have been reported in mammals, birds, amphibians and fish. Most innate immune receptors of the IgSF are type I transmembrane proteins containing one or more extracellular Ig-like domains and their regulation of effector functions is mediated intracellularly by distinct stimulatory or inhibitory pathways.Carp SITR was found in a substracted cDNA repertoire from carp macrophages, enriched for genes up-regulated in response to the protozoan parasite Trypanoplasma borreli. Carp SITR is a type I protein with two extracellular Ig domains in a unique organisation of a N-proximal V/C2 (or I- type and a C-proximal V-type Ig domain, devoid of a transmembrane domain or any intracytoplasmic signalling motif. The carp SITR C-proximal V-type Ig domain, in particular, has a close sequence similarity and conserved structural characteristics to the mammalian CD300 molecules. By generating an anti-SITR antibody we could show that SITR protein expression was restricted to cells of the myeloid lineage. Carp SITR is abundantly expressed in macrophages and is secreted upon in vitro stimulation with the protozoan parasite T. borreli. Secretion of SITR protein during in vivo T. borreli infection suggests a role for this IgSF receptor in the host response to this protozoan parasite. Overexpression of carp SITR in mouse macrophages and knock-down of SITR protein expression in carp macrophages, using morpholino antisense technology, provided evidence for the involvement of carp SITR in the parasite-induced NO production.We report the structural and functional characterization of a novel soluble immune-type receptor (SITR in a teleost fish and propose a role for carp SITR in the NO-mediated response to a protozoan parasite.

  19. Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Lili; Yang, Min; Ding, Wei [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Zhang, Minmin [Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240 (China); Niu, Jianying [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Qiao, Zhongdong [School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240 (China); Gu, Yong, E-mail: yonggu@vip.163.com [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240 (China)

    2016-08-01

    Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. - Highlights: • EGFR was involved in aldosterone-induced renal profibrotic responses. • Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation. • EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis.

  20. Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rat.

    Directory of Open Access Journals (Sweden)

    Rebecca Lethbridge

    Full Text Available Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular disinhibition also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABA(A receptor agonist. A glomerular GABA(A receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning.

  1. Major Vault Protein Regulates Class A Scavenger Receptor-mediated Tumor Necrosis Factor-α Synthesis and Apoptosis in Macrophages*

    Science.gov (United States)

    Ben, Jingjing; Zhang, Yan; Zhou, Rongmei; Zhang, Haiyang; Zhu, Xudong; Li, Xiaoyu; Zhang, Hanwen; Li, Nan; Zhou, Xiaodan; Bai, Hui; Yang, Qing; Li, Donghai; Xu, Yong; Chen, Qi

    2013-01-01

    Atherosclerosis is considered a disease of chronic inflammation largely initiated and perpetuated by macrophage-dependent synthesis and release of pro-inflammatory mediators. Class A scavenger receptor (SR-A) expressed on macrophages plays a key role in this process. However, how SR-A-mediated pro-inflammatory response is modulated in macrophages remains ill defined. Here through immunoprecipitation coupled with mass spectrometry, we reported major vault protein (MVP) as a novel binding partner for SR-A. The interaction between SR-A and MVP was confirmed by immunofluorescence staining and chemical cross-linking assay. Treatment of macrophages with fucoidan, a SR-A ligand, led to a marked increase in TNF-α production, which was attenuated by MVP depletion. Further analysis revealed that SR-A stimulated TNF-α synthesis in macrophages via the caveolin- instead of clathrin-mediated endocytic pathway linked to p38 and JNK, but not ERK, signaling pathways. Importantly, fucoidan invoked an enrichment of MVP in lipid raft, a caveolin-reliant membrane structure, and enhanced the interaction among SR-A, caveolin, and MVP. Finally, we demonstrated that MVP elimination ameliorated SR-A-mediated apoptosis in macrophages. As such, MVP may fine-tune SR-A activity in macrophages which contributes to the development of atherosclerosis. PMID:23703615

  2. A putative octopamine/tyramine receptor mediating appetite in a hungry fly

    Science.gov (United States)

    Ishida, Yuko; Ozaki, Mamiko

    2011-07-01

    In the blowfly Phormia regina, experience of simultaneous feeding with d-limonene exposure inhibits proboscis extension reflex (PER) due to decreased tyramine (TA) titer in the brain. To elucidate the molecular mechanism of TA signaling pathway related to the associated feeding behavior, we cloned cDNA encoding the octopamine/TA receptor (PregOAR/TAR). The deduced protein is composed of 607 amino acid residues and has 7 predicted transmembrane domains. Based on homology and phylogenetic analyses, this protein belongs to the OAR/TAR family. The PregOAR/TAR was mainly expressed in head, with low levels of expression in other tissues at adult stages. Gene expression profile is in agreement with a plethora of functions ascribed to TA in various insect tissues. The immunolabeled cell bodies and processes were localized in the medial protocerebrum, outer layer of lobula, antennal lobe, and subesophageal ganglion. These results suggest that decrease of TA level in the brain likely affects neurons expressing PregOAR/TAR, causing mediation of the sensitivity in the sensillum and/or output of motor neurons for PER.

  3. Muscarinic receptor-mediated inositol tetrakisphosphate response in bovine adrenal chromaffin cells

    International Nuclear Information System (INIS)

    Sanborn, B.B.; Schneider, A.S.

    1990-01-01

    Inositol trisphosphate (IP 3 ), a product of the phosphoinositide cycle, mobilizes intracellular Ca 2+ in many cell types. New evidence suggests that inositol tetrakisphosphate (IP 4 ), an IP 3 derivative, may act as another second messenger to further alter calcium homeostasis. However, the function and mechanism of action of IP 4 are presently unresolved. We now report evidence of muscarinic receptor-mediated accumulation of IP 4 in bovine adrenal chromaffin cells, a classic neurosecretory system in which calcium movements have been well studied. Muscarine stimulated an increase in [ 3 H]IP 4 and [ 3 H]IP 3 accumulation in chromaffin cells and this effect was completely blocked by atropine. [ 3 H]IP 4 accumulation was detectable within 15 sec, increased to a maximum by 30 sec and thereafter declined. 2,3-diphosphoglycerate, an inhibitor of IP 3 and IP 4 hydrolysis, enhanced accumulation of these inositol polyphosphates. The results provide the first evidence of a rapid inositol tetrakisphosphate response in adrenal chromaffin cells, which should facilitate the future resolution of the relationship between IP 4 and calcium homeostasis

  4. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water.

    Science.gov (United States)

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury.

  5. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water

    Science.gov (United States)

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury. PMID:26316710

  6. CGRP receptors mediating CGRP-, adrenomedullin- and amylin-induced relaxation in porcine coronary arteries. Characterization with 'Compound 1' (WO98/11128), a non-peptide antagonist

    DEFF Research Database (Denmark)

    Hasbak, P; Sams, A; Schifter, S

    2001-01-01

    . The partial porcine mRNA sequences shared 82 - 92% nucleotide identity with human sequences. 3. The human peptides alphaCGRP, betaCGRP, AM and amylin induced relaxation with pEC(50) values of 8.1, 8.1, 6.7 and 6.1 M respectively. 4. The antagonistic properties of a novel non-peptide CGRP antagonist 'Compound...... 1' (WO98/11128), betaCGRP(8 - 37) and the proposed AM receptor antagonist AM(22 - 52) were compared to the well-known CGRP(1) receptor antagonist alphaCGRP(8 - 37). 5. The alphaCGRP(8 - 37) and betaCGRP(8 - 37) induced concentration-dependent (10(-7) - 10(-5) M) rightward shift of both the alpha......(-6) M) had no significant antagonistic effect. 7. In conclusion, the building blocks forming CGRP and AM receptors were present in the porcine LAD, whereas those of the amylin receptor were not. alphaCGRP, betaCGRP, AM and amylin mediated vasorelaxation via the CGRP receptors. No functional response...

  7. Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein

    NARCIS (Netherlands)

    Sotoca Covaleda, A.M.; Sollewijn Gelpke, M.D.; Boeren, S.; Ström, A.; Gustafsson, J.A.; Murk, A.J.; Rietjens, I.M.C.M.; Vervoort, J.J.M.

    2011-01-01

    The present study addresses, by transcriptomics and quantitative SILAC-based proteomics, the estrogen receptor alpha (ER) and beta (ERß)-mediated effects on gene and protein expression in T47D breast cancer cells exposed to the phytoestrogen genistein. Using the T47D human breast cancer cell line

  8. Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells

    International Nuclear Information System (INIS)

    Luce, A.; Courtin, A.; Levalois, C.; Altmeyer-Morel, S.; Chevillard, S.; Lebeau, J.; Romeo, P.H.

    2009-01-01

    Delayed cell death by mitotic catastrophe is a frequent mode of solid tumor cell death after γ-irradiation, a widely used treatment of cancer. Whereas the mechanisms that underlie the early γ-irradiation-induced cell death are well documented, those that drive the delayed cell death are largely unknown. Here we show that the Fas, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and tumor necrosis factor (TNF)-α death receptor pathways mediate the delayed cell death observed after γ-irradiation of breast cancer cells. Early after irradiation, we observe the increased expression of Fas, TRAIL-R and TNF-R that first sensitizes cells to apoptosis. Later, the increased expression of FasL, TRAIL and TNF-α permit the apoptosis engagement linked to mitotic catastrophe. Treatments with TNF-α, TRAIL or anti-Fas antibody, early after radiation exposure, induce apoptosis, whereas the neutralization of the three death receptors pathways impairs the delayed cell death. We also show for the first time that irradiated breast cancer cells excrete soluble forms of the three ligands that can induce the death of sensitive bystander cells. Overall, these results define the molecular basis of the delayed cell death of irradiated cancer cells and identify the death receptors pathways as crucial actors in apoptosis induced by targeted as well as non-targeted effects of ionizing radiation. (authors)

  9. Analgesia produced by exposure to 2450-MHz radiofrequency radiation (RFR) is mediated by brain mu- and kappa-opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Salomon, G.; Park, E.J.; Quock, R.M. (Univ. of Illinois, Rockford (United States))

    1992-02-26

    This study was conducted to identify the opioid receptor subtype(s) responsible for RFR-induced analgesia. Male Swiss Webster mice, 20-25 g, were exposed to 20 mW/cm{sup 2} RFR in a 2,450-MHz waveguide system for 10 min, then tested 15 min later in the abdominal constriction paradigm which detects {mu}- and {kappa}-opioid activity. Immediately following RFR exposure, different groups of mice were pretreated intracerebroventricularly with different opioid receptor blockers with selectivity for {mu}- or {kappa}-opioid receptors. Results show that RFR-induced analgesia was attenuated by higher but not lower doses of the non-selective antagonist naloxone, but the selective {mu}-opioid antagonist {beta}-funaltrexamine and by the selective {kappa}-opioid antagonist norbinaltorphimine. RFR-induced analgesia was also reduced by subcutaneous pretreatment with 5.0 mg/kg of the {mu}-/{kappa}-opioid antagonist({minus})-5,9-diethyl-{alpha}-5,9-dialkyl-2{prime}-hydroxy-6,7-benzomorphan(MR-2266). These findings suggest that RFR-induced analgesia may be mediated by both {mu}- and {kappa}-opioid mechanisms.

  10. IMPDHII Protein Inhibits Toll-like Receptor 2-mediated Activation of NF-κB*

    Science.gov (United States)

    Toubiana, Julie; Rossi, Anne-Lise; Grimaldi, David; Belaidouni, Nadia; Chafey, Philippe; Clary, Guilhem; Courtine, Emilie; Pene, Frederic; Mira, Jean-Paul; Claessens, Yann-Erick; Chiche, Jean-Daniel

    2011-01-01

    Toll-like receptor 2 (TLR2) plays an essential role in innate immunity by the recognition of a large variety of pathogen-associated molecular patterns. It induces its recruitment to lipid rafts induces the formation of a membranous activation cluster necessary to enhance, amplify, and control downstream signaling. However, the exact composition of the TLR2-mediated molecular complex is unknown. We performed a proteomic analysis in lipopeptide-stimulated THP1 and found IMPDHII protein rapidly recruited to lipid raft. Whereas IMPDHII is essential for lymphocyte proliferation, its biologic function within innate immune signal pathways has not been established yet. We report here that IMPDHII plays an important role in the negative regulation of TLR2 signaling by modulating PI3K activity. Indeed, IMPDHII increases the phosphatase activity of SHP1, which participates to the inactivation of PI3K. PMID:21460227

  11. Dependence of plasmin-mediated degradation of platelet adhesive receptors on temperature and Ca2+

    International Nuclear Information System (INIS)

    Winters, K.J.; Eisenberg, P.R.; Jaffe, A.S.; Santoro, S.A.

    1990-01-01

    The effects of activation of plasminogen by streptokinase and tissue-type-plasminogen activator on platelet activation and the membrane glycoproteins (GPs) that mediate platelet adhesion and aggregation are not yet fully defined. To clarify effects on platelets during activation of plasminogen in vitro, we used monoclonal antibodies (MoAbs), flow cytometry, and platelets surface-labeled with 125 I to characterize changes in receptors for fibrinogen (GPIIb-IIIa), von Willebrand factor (GPIb), and collagen (GPIa-IIa). Activation of plasminogen in plasma with pharmacologic concentrations of plasminogen activators did not degrade GPIIb-IIIa or GPIb, and caused only a modest decrease in GPIa. In washed platelets GPIIb-IIIa was extensively degraded by plasmin at 37 degrees C in the absence of exogenous Ca 2+ , conditions that destabilize the IIb-IIIa complex. Degradation of GPIb in washed platelets displayed a similar although less-marked dependence on temperature and the absence of Ca 2+ . The binding of activation-specific MoAbs did not increase during activation of plasminogen in plasma. We conclude that during pharmacologic fibrinolysis, reported inhibition of platelet function in plasma is not due to degradation of platelet-adhesive receptors. In addition, platelet activation observed during thrombolytic therapy does not appear to be a direct consequence of plasminogen activation

  12. Methylphenidate enhances NMDA-receptor response in medial prefrontal cortex via sigma-1 receptor: a novel mechanism for methylphenidate action.

    Directory of Open Access Journals (Sweden)

    Chun-Lei Zhang

    Full Text Available Methylphenidate (MPH, commercially called Ritalin or Concerta, has been widely used as a drug for Attention Deficit Hyperactivity Disorder (ADHD. Noteworthily, growing numbers of young people using prescribed MPH improperly for pleasurable enhancement, take high risk of addiction. Thus, understanding the mechanism underlying high level of MPH action in the brain becomes an important goal nowadays. As a blocker of catecholamine transporters, its therapeutic effect is explained as being due to proper modulation of D1 and α2A receptor. Here we showed that higher dose of MPH facilitates NMDA-receptor mediated synaptic transmission via a catecholamine-independent mechanism, in layer V∼VI pyramidal cells of the rat medial prefrontal cortex (PFC. To indicate its postsynaptic action, we next found that MPH facilitates NMDA-induced current and such facilitation could be blocked by σ1 but not D1/5 and α2 receptor antagonists. And this MPH eliciting enhancement of NMDA-receptor activity involves PLC, PKC and IP3 receptor mediated intracellular Ca(2+ increase, but does not require PKA and extracellular Ca(2+ influx. Our additional pharmacological studies confirmed that higher dose of MPH increases locomotor activity via interacting with σ1 receptor. Together, the present study demonstrates for the first time that MPH facilitates NMDA-receptor mediated synaptic transmission via σ1 receptor, and such facilitation requires PLC/IP3/PKC signaling pathway. This novel mechanism possibly explains the underlying mechanism for MPH induced addictive potential and other psychiatric side effects.

  13. Role of laminin receptor in tumor cell migration

    DEFF Research Database (Denmark)

    Wewer, U M; Taraboletti, G; Sobel, M E

    1987-01-01

    Polyclonal antisera were made against biochemically purified laminin receptor protein as well as against synthetic peptides deduced from a complementary DNA clone corresponding to the COOH-terminal end of the laminin receptor (U.M. Wewer et al., Proc. Natl. Acad. Sci. USA, 83: 7137-7141, 1986......). These antisera were used to study the potential role of laminin receptor in laminin-mediated attachment and haptotactic migration of human A2058 melanoma cells. The anti-laminin receptor antisera reacted with the surface of suspended, nonpermeabilized melanoma and carcinoma cells. The anti-laminin receptor...... antisera blocked the surface interaction of A2058 cells with endogenous laminin, resulting in the inhibition of laminin-mediated cell attachment. The A2058 melanoma cells migrated toward a gradient of solid phase laminin or fibronectin (haptotaxis). Anti-laminin antiserum abolished haptotaxis on laminin...

  14. Characterization of the effect of penehyclidine hydrochloride on muscarinic receptor subtypes mediating the contraction of guinea-pig isolated gastrointestinal smooth muscle.

    Science.gov (United States)

    Xiao, Hong-Tao; Liao, Zhi; Meng, Xian-Min; Yan, Xiao-Yan; Chen, Shu-Jie; Mo, Zheng-Ji

    2009-07-01

    The aim was to characterize the effect of penehyclidine hydrochloride, which mediates the relaxation of guinea-pig isolated gastrointestinal smooth muscle, on muscarinic receptor subtypes. Radioimmune assay was used to determine cAMP levels in isolated guinea-pig gastrointestinal smooth muscle to compare the selective effects of penehyclidine hydrochloride on muscarinic receptor subtypes. The results indicated that the relaxing effect of penehyclidine hydrochloride on isolated gastrointestinal smooth muscle contraction induced by acetylcholine was stronger than that of atropine (based on PA2 values). In the radioimmune assay, penehyclidine hydrochloride increased the cAMP content in isolated guinea-pig stomach smooth muscle and decreased the cAMP content in isolated guinea-pig intestinal smooth muscle, but the difference was not statistically significant at a dose of 10 mumol/l. The results suggest that penehyclidine hydrochloride has little or no effect on M2 receptor subtypes in guinea-pig gastrointestinal smooth muscle.

  15. EMMPRIN (CD147) is a novel receptor for platelet GPVI and mediates platelet rolling via GPVI-EMMPRIN interaction.

    Science.gov (United States)

    Seizer, Peter; Borst, Oliver; Langer, Harald F; Bültmann, Andreas; Münch, Götz; Herouy, Yared; Stellos, Konstantinos; Krämer, Björn; Bigalke, Boris; Büchele, Berthold; Bachem, Max G; Vestweber, Dietmar; Simmet, Thomas; Gawaz, Meinrad; May, Andreas E

    2009-04-01

    The Extracellular Matrix Metalloproteinase Inducer (EMMPRIN, CD147, basigin) is an immunoglobulin-like receptor expressed in various cell types. During cellular interactions homotypic EMMPRIN-EMMPRIN interactions are known to induce the synthesis of matrix metalloproteinases. Recently, we have identified EMMPRIN as a novel receptor on platelets. To our knowledge EMMPRIN has not been shown to serve as adhesion receptor, yet. Here we characterise platelet glycoprotein VI (GPVI) as a novel adhesion receptor for EMMPRIN. Human platelets were prestimulated with ADP and perfused over immobilised recombinant EMMPRIN-Fc or Fc-fragments under arterial shear conditions. ADP-stimulated platelets showed significantly enhanced rolling (but not enhanced firm adhesion) on immobilised EMMPRIN-Fc compared to Fc. Pretreatment of platelets with blocking mAbs anti-EMMPRIN or anti-GPVI leads to a significant reduction of rolling platelets on immobilised EMMPRIN-Fc, whereas pretreatment with blocking mAbs anti-p-selectin, anti-alpha4-integrin or anti-GPIIb/IIIa complex (20 microg/ml each) had no effect. Consistently, chinese hamster ovary (CHO) cells stably transfected with GPVI showed enhanced rolling (but not adhesion) on immobilised EMMPRIN-Fc in comparison to non-transfected CHO cells. Similarly, CHO cells stably transfected with EMMPRIN showed enhanced rolling on immobilised GPVI-Fc (or EMMPRIN-Fc) compared to non transfected CHO-cells. Finally, specific binding of EMMPRIN to GPVI was demonstrated by a modified ELISA and surface plasmon resonance technology with a dissociation constant of 88 nM. Platelet GPVI is a novel receptor for EMMPRIN and can mediate platelet rolling via GPVI-EMMPRIN interaction.

  16. Gαs regulates Glucagon-Like Peptide 1 Receptor-mediated cyclic AMP generation at Rab5 endosomal compartment.

    Science.gov (United States)

    Girada, Shravan Babu; Kuna, Ramya S; Bele, Shilpak; Zhu, Zhimeng; Chakravarthi, N R; DiMarchi, Richard D; Mitra, Prasenjit

    2017-10-01

    Upon activation, G protein coupled receptors (GPCRs) associate with heterotrimeric G proteins at the plasma membrane to initiate second messenger signaling. Subsequently, the activated receptor experiences desensitization, internalization, and recycling back to the plasma membrane, or it undergoes lysosomal degradation. Recent reports highlight specific cases of persistent cyclic AMP generation by internalized GPCRs, although the functional significance and mechanistic details remain to be defined. Cyclic AMP generation from internalized Glucagon-Like Peptide-1 Receptor (GLP-1R) has previously been reported from our laboratory. This study aimed at deciphering the molecular mechanism by which internalized GLP-R supports sustained cyclic AMP generation upon receptor activation in pancreatic beta cells. We studied the time course of cyclic AMP generation following GLP-1R activation with particular emphasis on defining the location where cyclic AMP is generated. Detection involved a novel GLP-1 conjugate coupled with immunofluorescence using specific endosomal markers. Finally, we employed co-immunoprecipitation as well as immunofluorescence to assess the protein-protein interactions that regulate GLP-1R mediated cyclic AMP generation at endosomes. Our data reveal that prolonged association of G protein α subunit Gαs with activated GLP-1R contributed to sustained cyclic AMP generation at Rab 5 endosomal compartment. The findings provide the mechanism of endosomal cyclic AMP generation following GLP-1R activation. We identified the specific compartment that serves as an organizing center to generate endosomal cyclic AMP by internalized activated receptor complex. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  17. Estrogen-Related Receptor Alpha Confers Methotrexate Resistance via Attenuation of Reactive Oxygen Species Production and P53 Mediated Apoptosis in Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2014-01-01

    Full Text Available Osteosarcoma (OS is a malignant tumor mainly occurring in children and adolescents. Methotrexate (MTX, a chemotherapy agent, is widely used in treating OS. However, treatment failures are common due to acquired chemoresistance, for which the underlying molecular mechanisms are still unclear. In this study, we report that overexpression of estrogen-related receptor alpha (ERRα, an orphan nuclear receptor, promoted cell survival and blocked MTX-induced cell death in U2OS cells. We showed that MTX induced ROS production in MTX-sensitive U2OS cells while ERRα effectively blocked the ROS production and ROS associated cell apoptosis. Our further studies demonstrated that ERRα suppressed ROS induction of tumor suppressor P53 and its target genes NOXA and XAF1 which are mediators of P53-dependent apoptosis. In conclusion, this study demonstrated that ERRα plays an important role in the development of MTX resistance through blocking MTX-induced ROS production and attenuating the activation of p53 mediated apoptosis signaling pathway, and points to ERRα as a novel target for improving osteosarcoma therapy.

  18. Benzodiazepine receptor ligand influences on learning: an endogenous modulatory mechanism mediated by benzodiazepines possibly of alimentary origin

    Directory of Open Access Journals (Sweden)

    I. Izquierdo

    1991-01-01

    Full Text Available In rats pre-but not post-training ip administration of either flumazenil, a central benzodiazepine (BSD receptor antagonist, or of n-butyl-B-carboline-carboxylate (BCCB, an inverse agonist, enhanced retention of inhibitory avoidance learning. Flumazenil vlocked the enhancing effect of BCCB, and the inhibitory effect of the BZD agonists clonazepam and diazepam also given pre-training. Post-training administration of these drugs had no effects. The peripheral BZD receptor agonist/chloride channel blocker Ro5-4864 had no effect on the inhibitory avoidance task when given ip prior to training, buth it caused enhancement when given immediately post-training either ip or icv. This effect was blocked by PK11195, a competitive antagonist of Ro5-4864. These results suggest that ther is an endogenous mechanism mediated by BZD agonists, which is sensitive to inverse agonists and that normally down-regulates the formation of memories through a mechanism involving GABA-A receptors and the corresponding chloride channels. The most likely agonists for the endogenous mechanism suggested are the diazepam-like BZDs found in brain whose origin is possibly alimentary. Levels of these BZDs in the cortex were found to sharply decrease after inhibitory acoidance training or mere exposure to the training apparatus.

  19. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob

    2018-01-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling...... properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type......, IRS-1-/-and IRS-2-/-mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1...

  20. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart

    2011-01-01

    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  1. Homologous histamine H1 receptor desensitization results in reduction of H1 receptor agonist efficacy

    NARCIS (Netherlands)

    Leurs, R; Smit, M J; Bast, A; Timmerman, H

    1991-01-01

    Prolonged exposure of the guinea-pig intestinal longitudinal smooth muscle to histamine caused homologous desensitization of the H1 receptor, which led to reduced H1 receptor-mediated production of [3H]inositol phosphates as well as to reduced H1 agonist-induced contractions. [3H]Mepyramine binding

  2. Different protein kinase C isoenzymes mediate inhibition of cardiac rapidly activating delayed rectifier K+ current by different G-protein coupled receptors.

    Science.gov (United States)

    Liu, Xueli; Wang, Yuhong; Zhang, Hua; Shen, Li; Xu, Yanfang

    2017-12-01

    Elevated angiotensin II (Ang II) and sympathetic activity contributes to a high risk of ventricular arrhythmias in heart disease. The rapidly activating delayed rectifier K + current (I Kr ) carried by the hERG channels plays a critical role in cardiac repolarization, and decreased I Kr is involved in increased cardiac arrhythmogenicity. Stimulation of α 1A -adrenoreceptors or angiotensin II AT 1 receptors is known to inhibit I Kr via PKC. Here, we have identified the PKC isoenzymes mediating the inhibition of I Kr by activation of these two different GPCRs. The whole-cell patch-clamp technique was used to record I Kr in guinea pig cardiomyocytes and HEK293 cells co-transfected with hERG and α 1A -adrenoreceptor or AT 1 receptor genes. A broad spectrum PKC inhibitor Gö6983 (not inhibiting PKCε), a selective cPKC inhibitor Gö6976 and a PKCα-specific inhibitor peptide, blocked the inhibition of I Kr by the α 1A -adrenoreceptor agonist A61603. However, these inhibitors did not affect the reduction of I Kr by activation of AT 1 receptors, whereas the PKCε-selective inhibitor peptide did block the effect. The effects of angiotensin II and the PKCε activator peptide were inhibited in mutant hERG channels in which 17 of the 18 PKC phosphorylation sites were deleted, whereas a deletion of the N-terminus of the hERG channels selectively prevented the inhibition elicited by A61603 and the cPKC activator peptide. Our results indicated that inhibition of I Kr by activation of α 1A -adrenoreceptors or AT 1 receptors were mediated by PKCα and PKCε isoforms respectively, through different molecular mechanisms. © 2017 The British Pharmacological Society.

  3. Complement Receptor 3-Mediated Inhibition of Inflammasome Priming by Ras GTPase-Activating Protein During Francisella tularensis Phagocytosis by Human Mononuclear Phagocytes

    Directory of Open Access Journals (Sweden)

    Ky V. Hoang

    2018-03-01

    Full Text Available Francisella tularensis is a remarkably infectious facultative intracellular bacterium of macrophages that causes tularemia. Early evasion of host immune responses contributes to the success of F. tularensis as a pathogen. F. tularensis entry into human monocytes and macrophages is mediated by the major phagocytic receptor, complement receptor 3 (CR3, CD11b/CD18. We recently determined that despite a significant increase in macrophage uptake following C3 opsonization of the virulent Type A F. tularensis spp. tularensis Schu S4, this phagocytic pathway results in limited pro-inflammatory cytokine production. Notably, MAP kinase/ERK activation is suppressed immediately during C3-opsonized Schu S4-CR3 phagocytosis. A mathematical model of CR3-TLR2 crosstalk predicted early involvement of Ras GTPase-activating protein (RasGAP in immune suppression by CR3. Here, we link CR3-mediated uptake of opsonized Schu S4 by human monocytes and macrophages with inhibition of early signal 1 inflammasome activation, evidenced by limited caspase-1 cleavage and IL-18 release. This inhibition is due to increased RasGAP activity, leading to a reduction in the Ras-ERK signaling cascade upstream of the early inflammasome activation event. Thus, our data uncover a novel signaling pathway mediated by CR3 following engagement of opsonized virulent F. tularensis to limit inflammasome activation in human phagocytic cells, thereby contributing to evasion of the host innate immune system.

  4. Persistent interferon transgene expression by RNA interference-mediated silencing of interferon receptors.

    Science.gov (United States)

    Takahashi, Yuki; Vikman, Elin; Nishikawa, Makiya; Ando, Mitsuru; Watanabe, Yoshihiko; Takakura, Yoshinobu

    2010-09-01

    The in vivo half-life of interferons (IFNs) is very short, and its extension would produce a better therapeutic outcome in IFN-based therapy. Delivery of IFN genes is one solution for providing a sustained supply. IFNs have a variety of functions, including the suppression of transgene expression, through interaction with IFN receptors (IFNRs). This suppression could prevent IFNs from being expressed from vectors delivered. Silencing the expression of IFNAR and IFNGR, the receptors for type I and II IFNs, respectively, in cells expressing IFNs may prolong transgene expression of IFNs. Mouse melanoma B16-BL6 cells or mouse liver were selected as a site expressing IFNs (not a target for IFN gene therapy) and IFN-expressing plasmid DNA was delivered with or without small interfering RNA (siRNA) targeting IFNRs. Transfection of B16-BL6 cells with siRNA targeting IFNAR1 subunit (IFNAR1) resulted in the reduced expression of IFNAR on the cell surface. This silencing significantly increased the IFN-beta production in cells that were transfected with IFN-beta-expressing plasmid DNA. Similar results were obtained with the combination of IFN-gamma and IFNGR. Co-injection of IFN-beta-expressing plasmid DNA with siRNA targeting IFNAR1 into mice resulted in sustained plasma concentration of IFN-beta. These results provide experimental evidence that the RNAi-mediated silencing of IFNRs in cells expressing IFN, such as hepatocytes, is an effective approach for improving transgene expression of IFNs when their therapeutic target comprises cells other than those expressing IFNs.

  5. P2X1 receptors and the endothelium

    Directory of Open Access Journals (Sweden)

    LS Harrington

    2005-03-01

    Full Text Available Adenosine triphosphate (ATP is now established as a principle vaso-active mediator in the vasculature. Its actions on arteries are complex, and are mediated by the P2X and P2Y receptor families. It is generally accepted that ATP induces a bi-phasic response in arteries, inducing contraction via the P2X and P2Y receptors on the smooth muscle cells, and vasodilation via the actions of P2Y receptors located on the endothelium. However, a number of recent studies have placed P2X1 receptors on the endothelium of some arteries. The use of a specific P2X1 receptor ligand, a, b methylene ATP has demonstrated that P2X1 receptors also have a bi-functional role. The actions of ATP on P2X1 receptors is therefore dependant on its location, inducing contraction when located on the smooth muscle cells, and dilation when expressed on the endothelium, comparable to that of P2Y receptors.

  6. Characterization of the single transmembrane domain of human receptor activity-modifying protein 3 in adrenomedullin receptor internalization

    International Nuclear Information System (INIS)

    Kuwasako, Kenji; Kitamura, Kazuo; Nagata, Sayaka; Nozaki, Naomi; Kato, Johji

    2012-01-01

    Highlights: ► RAMP3 mediates CLR internalization much less effectively than does RAMP2. ► The RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization. ► A new strategy of promoting internalization and resensitization of the receptor was found. -- Abstract: Two receptor activity-modifying proteins (RAMP2 and RAMP3) enable calcitonin receptor-like receptor (CLR) to function as two heterodimeric receptors (CLR/RAMP2 and CLR/RAMP3) for adrenomedullin (AM), a potent cardiovascular protective peptide. Following AM stimulation, both receptors undergo rapid internalization through a clathrin-dependent pathway, after which CLR/RAMP3, but not CLR/RAMP2, can be recycled to the cell surface for resensitization. However, human (h)RAMP3 mediates CLR internalization much less efficiently than does hRAMP2. Therefore, the molecular basis of the single transmembrane domain (TMD) and the intracellular domain of hRAMP3 during AM receptor internalization was investigated by transiently transfecting various RAMP chimeras and mutants into HEK-293 cells stably expressing hCLR. Flow cytometric analysis revealed that substituting the RAMP3 TMD with that of RAMP2 markedly enhanced AM-induced internalization of CLR. However, this replacement did not enhance the cell surface expression of CLR, [ 125 I]AM binding affinity or AM-induced cAMP response. More detailed analyses showed that substituting the Thr 130 –Val 131 sequence in the RAMP3 TMD with the corresponding sequence (Ile 157 –Pro 158 ) from RAMP2 significantly enhanced AM-mediated CLR internalization. In contrast, substituting the RAMP3 target sequence with Ala 130 –Ala 131 did not significantly affect CLR internalization. Thus, the RAMP3 TMD participates in the negative regulation of CLR/RAMP3 internalization, and the aforementioned introduction of the Ile–Pro sequence into the RAMP3 TMD may be a strategy for promoting receptor internalization/resensitization.

  7. Gambogic acid inhibits multiple myeloma mediated osteoclastogenesis through suppression of chemokine receptor CXCR4 signaling pathways.

    Science.gov (United States)

    Pandey, Manoj K; Kale, Vijay P; Song, Chunhua; Sung, Shen-shu; Sharma, Arun K; Talamo, Giampaolo; Dovat, Sinisa; Amin, Shantu G

    2014-10-01

    Bone disease, characterized by the presence of lytic lesions and osteoporosis is the hallmark of multiple myeloma (MM). Stromal cell-derived factor 1α (SDF-1α) and its receptor, CXC chemokine receptor 4 (CXCR4), has been implicated as a regulator of bone resorption, suggesting that agents that can suppress SDF1α/CXCR4 signaling might inhibit osteoclastogenesis, a process closely linked to bone resorption. We, therefore, investigated whether gambogic acid (GA), a xanthone, could inhibit CXCR4 signaling and suppress osteoclastogenesis induced by MM cells. Through docking studies we predicted that GA directly interacts with CXCR4. This xanthone down-regulates the expression of CXCR4 on MM cells in a dose- and time-dependent manner. The down-regulation of CXCR4 was not due to proteolytic degradation, but rather GA suppresses CXCR4 mRNA expression by inhibiting nuclear factor-kappa B (NF-κB) DNA binding. This was further confirmed by quantitative chromatin immunoprecipitation assay, as GA inhibits p65 binding at the CXCR4 promoter. GA suppressed SDF-1α-induced chemotaxis of MM cells and downstream signaling of CXCR4 by inhibiting phosphorylation of Akt, p38, and Erk1/2 in MM cells. GA abrogated the RANKL-induced differentiation of macrophages to osteoclasts in a dose- and time-dependent manner. In addition, we found that MM cells induced differentiation of macrophages to osteoclasts, and that GA suppressed this process. Importantly, suppression of osteoclastogenesis by GA was mediated through IL-6 inhibition. Overall, our results show that GA is a novel inhibitor of CXCR4 expression and has a strong potential to suppress osteoclastogenesis mediated by MM cells. Published by Elsevier Inc.

  8. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    Science.gov (United States)

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Infection of CD4+ T lymphocytes by the human T cell leukemia virus type 1 is mediated by the glucose transporter GLUT-1: Evidence using antibodies specific to the receptor's large extracellular domain

    International Nuclear Information System (INIS)

    Jin, Qingwen; Agrawal, Lokesh; VanHorn-Ali, Zainab; Alkhatib, Ghalib

    2006-01-01

    To analyze HTLV-1 cytotropism, we developed a highly sensitive vaccinia virus-based assay measuring activation of a reporter gene upon fusion of two distinct cell populations. We used this system in a functional cDNA screening to isolate and confirm that the glucose transporter protein 1 (GLUT-1) is a receptor for HTLV-1. GLUT-1 is a ubiquitously expressed plasma membrane glycoprotein with 12 transmembrane domains and 6 extracellular loops (ECL). We demonstrate for the first time that peptide antibodies (GLUT-IgY) raised in chicken to the large extracellular loop (ECL1) detect GLUT-1 at the cell surface and inhibit envelope (Env)-mediated fusion and infection. Efficient GLUT-IgY staining was detected with peripheral blood CD4 + lymphocytes purified by positive selection. Further, GLUT-IgY caused efficient inhibition of Env-mediated fusion and infection of CD4 + T and significantly lower inhibition of CD8 + T lymphocytes. The specificity of GLUT-IgY antibodies to GLUT-1 was demonstrated by ECL1 peptide competition studies. Grafting ECL1 of GLUT-1 onto the receptor-negative GLUT-3 conferred significant receptor activity. In contrast, grafting ECL1 of GLUT-3 onto GLUT-1 resulted in a significant loss of the receptor activity. The ECL1-mediated receptor activity was efficiently blocked with four different human monoclonal antibody (HMab) to HTLV-1 Env. The ECL1-derived peptide blocked HTLV-1 Env-mediated fusion with several nonhuman mammalian cell lines. The results demonstrate the utilization of cell surface GLUT-1 in HTLV-1 infection of CD4 + T lymphocytes and implicate a critical role for the ECL1 region in viral tropism

  10. Neurotrophin receptor p75NTR mediates Huntington’s disease–associated synaptic and memory dysfunction

    Science.gov (United States)

    Brito, Verónica; Giralt, Albert; Enriquez-Barreto, Lilian; Puigdellívol, Mar; Suelves, Nuria; Zamora-Moratalla, Alfonsa; Ballesteros, Jesús J.; Martín, Eduardo D.; Dominguez-Iturza, Nuria; Morales, Miguel; Alberch, Jordi; Ginés, Sílvia

    2014-01-01

    Learning and memory deficits are early clinical manifestations of Huntington’s disease (HD). These cognitive impairments have been mainly associated with frontostriatal HD pathology; however, compelling evidence provided by several HD murine models suggests that the hippocampus may contribute to synaptic deficits and memory dysfunction in HD. The neurotrophin receptor p75NTR negatively regulates spine density, which is associated with learning and memory; therefore, we explored whether disturbed p75NTR function in the hippocampus could contribute to synaptic dysfunction and memory deficits in HD. Here, we determined that levels of p75NTR are markedly increased in the hippocampus of 2 distinct mouse models of HD and in HD patients. Normalization of p75NTR levels in HD mutant mice heterozygous for p75NTR prevented memory and synaptic plasticity deficits and ameliorated dendritic spine abnormalities, likely through normalization of the activity of the GTPase RhoA. Moreover, viral-mediated overexpression of p75NTR in the hippocampus of WT mice reproduced HD learning and memory deficits, while knockdown of p75NTR in the hippocampus of HD mice prevented cognitive decline. Together, these findings provide evidence of hippocampus-associated memory deficits in HD and demonstrate that p75NTR mediates synaptic, learning, and memory dysfunction in HD. PMID:25180603

  11. Collagen Type I as a Ligand for Receptor-Mediated Signaling

    Directory of Open Access Journals (Sweden)

    Iris Boraschi-Diaz

    2017-05-01

    Full Text Available Collagens form the fibrous component of the extracellular matrix in all multi-cellular animals. Collagen type I is the most abundant collagen present in skin, tendons, vasculature, as well as the organic portion of the calcified tissue of bone and teeth. This review focuses on numerous receptors for which collagen acts as a ligand, including integrins, discoidin domain receptors DDR1 and 2, OSCAR, GPVI, G6b-B, and LAIR-1 of the leukocyte receptor complex (LRC and mannose family receptor uPARAP/Endo180. We explore the process of collagen production and self-assembly, as well as its degradation by collagenases and gelatinases in order to predict potential temporal and spatial sites of action of different collagen receptors. While the interactions of the mature collagen matrix with integrins and DDR are well-appreciated, potential signals from immature matrix as well as collagen degradation products are possible but not yet described. The role of multiple collagen receptors in physiological processes and their contribution to pathophysiology of diseases affecting collagen homeostasis require further studies.

  12. Neuroblastoma Cell Lines Are Refractory to Genotoxic Drug-Mediated Induction of Ligands for NK Cell-Activating Receptors

    Directory of Open Access Journals (Sweden)

    Irene Veneziani

    2018-01-01

    Full Text Available Neuroblastoma (NB, the most common extracranial solid tumor of childhood, causes death in almost 15% of children affected by cancer. Treatment of neuroblastoma is based on the combination of chemotherapy with other therapeutic interventions such as surgery, radiotherapy, use of differentiating agents, and immunotherapy. In particular, adoptive NK cell transfer is a new immune-therapeutic approach whose efficacy may be boosted by several anticancer agents able to induce the expression of ligands for NK cell-activating receptors, thus rendering cancer cells more susceptible to NK cell-mediated lysis. Here, we show that chemotherapeutic drugs commonly used for the treatment of NB such as cisplatin, topotecan, irinotecan, and etoposide are unable to induce the expression of activating ligands in a panel of NB cell lines. Consistently, cisplatin-treated NB cell lines were not more susceptible to NK cells than untreated cells. The refractoriness of NB cell lines to these drugs has been partially associated with the abnormal status of genes for ATM, ATR, Chk1, and Chk2, the major transducers of the DNA damage response (DDR, triggered by several anticancer agents and promoting different antitumor mechanisms including the expression of ligands for NK cell-activating receptors. Moreover, both the impaired production of reactive oxygen species (ROS in some NB cell lines and the transient p53 stabilization in response to our genotoxic drugs under our experimental conditions could contribute to inefficient induction of activating ligands. These data suggest that further investigations, exploiting molecular strategies aimed to potentiate the NK cell-mediated immunotherapy of NB, are warranted.

  13. Neuroblastoma Cell Lines Are Refractory to Genotoxic Drug-Mediated Induction of Ligands for NK Cell-Activating Receptors

    Science.gov (United States)

    Veneziani, Irene; Brandetti, Elisa; Ognibene, Marzia; Pezzolo, Annalisa; Pistoia, Vito

    2018-01-01

    Neuroblastoma (NB), the most common extracranial solid tumor of childhood, causes death in almost 15% of children affected by cancer. Treatment of neuroblastoma is based on the combination of chemotherapy with other therapeutic interventions such as surgery, radiotherapy, use of differentiating agents, and immunotherapy. In particular, adoptive NK cell transfer is a new immune-therapeutic approach whose efficacy may be boosted by several anticancer agents able to induce the expression of ligands for NK cell-activating receptors, thus rendering cancer cells more susceptible to NK cell-mediated lysis. Here, we show that chemotherapeutic drugs commonly used for the treatment of NB such as cisplatin, topotecan, irinotecan, and etoposide are unable to induce the expression of activating ligands in a panel of NB cell lines. Consistently, cisplatin-treated NB cell lines were not more susceptible to NK cells than untreated cells. The refractoriness of NB cell lines to these drugs has been partially associated with the abnormal status of genes for ATM, ATR, Chk1, and Chk2, the major transducers of the DNA damage response (DDR), triggered by several anticancer agents and promoting different antitumor mechanisms including the expression of ligands for NK cell-activating receptors. Moreover, both the impaired production of reactive oxygen species (ROS) in some NB cell lines and the transient p53 stabilization in response to our genotoxic drugs under our experimental conditions could contribute to inefficient induction of activating ligands. These data suggest that further investigations, exploiting molecular strategies aimed to potentiate the NK cell-mediated immunotherapy of NB, are warranted. PMID:29805983

  14. Autoimmunity in Arabidopsis acd11 Is Mediated by Epigenetic Regulation of an Immune Receptor

    DEFF Research Database (Denmark)

    Palma, K.; Thorgrimsen, S.; Malinovsky, F.G.

    2010-01-01

    Certain pathogens deliver effectors into plant cells to modify host protein targets and thereby suppress immunity. These target modifications can be detected by intracellular immune receptors, or Resistance (R) proteins, that trigger strong immune responses including localized host cell death....... The accelerated cell death 11 (acd11) "lesion mimic" mutant of Arabidopsis thaliana exhibits autoimmune phenotypes such as constitutive defense responses and cell death without pathogen perception. ACD11 encodes a putative sphingosine transfer protein, but its precise role during these processes is unknown......, and that cell death in other lesion mimic mutants may also be caused by inappropriate activation of R genes. Moreover, SDG8 is required for basal and R protein-mediated pathogen resistance in Arabidopsis, revealing the importance of chromatin remodeling as a key process in plant innate immunity....

  15. Hypothesis: The Psychedelic Ayahuasca Heals Traumatic Memories via a Sigma 1 Receptor-Mediated Epigenetic-Mnemonic Process

    Directory of Open Access Journals (Sweden)

    Antonio Inserra

    2018-04-01

    Full Text Available Ayahuasca ingestion modulates brain activity, neurotransmission, gene expression and epigenetic regulation. N,N-Dimethyltryptamine (DMT, one of the alkaloids in Ayahuasca activates sigma 1 receptor (SIGMAR1 and others. SIGMAR1 is a multi-faceted stress-responsive receptor which promotes cell survival, neuroprotection, neuroplasticity, and neuroimmunomodulation. Simultaneously, monoamine oxidase inhibitors (MAOIs also present in Ayahuasca prevent the degradation of DMT. One peculiarity of SIGMAR1 activation and MAOI activity is the reversal of mnemonic deficits in pre-clinical models. Since traumatic memories in post-traumatic stress disorder (PTSD are often characterised by “repression” and PTSD patients ingesting Ayahuasca report the retrieval of such memories, it cannot be excluded that DMT-mediated SIGMAR1 activation and the concomitant MAOIs effects during Ayahuasca ingestion might mediate such “anti-amnesic” process. Here I hypothesise that Ayahuasca, via hyperactivation of trauma and emotional memory-related centres, and via its concomitant SIGMAR1- and MAOIs- induced anti-amnesic effects, facilitates the retrieval of traumatic memories, in turn making them labile (destabilised. As Ayahuasca alkaloids enhance synaptic plasticity, increase neurogenesis and boost dopaminergic neurotransmission, and those processes are involved in memory reconsolidation and fear extinction, the fear response triggered by the memory can be reprogramed and/or extinguished. Subsequently, the memory is stored with this updated significance. To date, it is unclear if new memories replace, co-exist with or bypass old ones. Although the mechanisms involved in memory are still debated, they seem to require the involvement of cellular and molecular events, such as reorganisation of homo and heteroreceptor complexes at the synapse, synaptic plasticity, and epigenetic re-modulation of gene expression. Since SIGMAR1 mobilises synaptic receptor, boosts synaptic

  16. Hypothesis: The Psychedelic Ayahuasca Heals Traumatic Memories via a Sigma 1 Receptor-Mediated Epigenetic-Mnemonic Process.

    Science.gov (United States)

    Inserra, Antonio

    2018-01-01

    Ayahuasca ingestion modulates brain activity, neurotransmission, gene expression and epigenetic regulation. N,N -Dimethyltryptamine (DMT, one of the alkaloids in Ayahuasca) activates sigma 1 receptor (SIGMAR1) and others. SIGMAR1 is a multi-faceted stress-responsive receptor which promotes cell survival, neuroprotection, neuroplasticity, and neuroimmunomodulation. Simultaneously, monoamine oxidase inhibitors (MAOIs) also present in Ayahuasca prevent the degradation of DMT. One peculiarity of SIGMAR1 activation and MAOI activity is the reversal of mnemonic deficits in pre-clinical models. Since traumatic memories in post-traumatic stress disorder (PTSD) are often characterised by "repression" and PTSD patients ingesting Ayahuasca report the retrieval of such memories, it cannot be excluded that DMT-mediated SIGMAR1 activation and the concomitant MAOIs effects during Ayahuasca ingestion might mediate such "anti-amnesic" process. Here I hypothesise that Ayahuasca, via hyperactivation of trauma and emotional memory-related centres, and via its concomitant SIGMAR1- and MAOIs- induced anti-amnesic effects, facilitates the retrieval of traumatic memories, in turn making them labile (destabilised). As Ayahuasca alkaloids enhance synaptic plasticity, increase neurogenesis and boost dopaminergic neurotransmission, and those processes are involved in memory reconsolidation and fear extinction, the fear response triggered by the memory can be reprogramed and/or extinguished. Subsequently, the memory is stored with this updated significance. To date, it is unclear if new memories replace, co-exist with or bypass old ones. Although the mechanisms involved in memory are still debated, they seem to require the involvement of cellular and molecular events, such as reorganisation of homo and heteroreceptor complexes at the synapse, synaptic plasticity, and epigenetic re-modulation of gene expression. Since SIGMAR1 mobilises synaptic receptor, boosts synaptic plasticity and modulates

  17. Molecular Mechanisms of Dopamine Receptor Mediated Neuroprotection

    National Research Council Canada - National Science Library

    Sealfon, Stuart

    2000-01-01

    ... of the cellular changes characteristic of this process. Evidence from our laboratory and others suggest that activation of dopamine receptors can oppose the induction of apoptosis in dopamine neurons...

  18. Stimulation of dopamine receptor D5 expressed on dendritic cells potentiates Th17-mediated immunity.

    Science.gov (United States)

    Prado, Carolina; Contreras, Francisco; González, Hugo; Díaz, Pablo; Elgueta, Daniela; Barrientos, Magaly; Herrada, Andrés A; Lladser, Álvaro; Bernales, Sebastián; Pacheco, Rodrigo

    2012-04-01

    Dendritic cells (DCs) are responsible for priming T cells and for promoting their differentiation from naive T cells into appropriate effector cells. Emerging evidence suggests that neurotransmitters can modulate T cell-mediated immunity. However, the involvement of specific neurotransmitters or receptors remains poorly understood. In this study, we analyzed the role of dopamine in the regulation of DC function. We found that DCs express dopamine receptors as well as the machinery necessary to synthesize, store, and degrade dopamine. Notably, the expression of D5R decreased upon LPS-induced DC maturation. Deficiency of D5R on the surface of DCs impaired LPS-induced IL-23 and IL-12 production and consequently attenuated the activation and proliferation of Ag-specific CD4(+) T cells. To determine the relevance of D5R expressed on DCs in vivo, we studied the role of this receptor in the modulation of a CD4(+) T cell-driven autoimmunity model. Importantly, D5R-deficient DCs prophylactically transferred into wild-type recipients were able to reduce the severity of experimental autoimmune encephalomyelitis. Furthermore, mice transferred with D5R-deficient DCs displayed a significant reduction in the percentage of Th17 cells infiltrating the CNS without differences in the percentage of Th1 cells compared with animals transferred with wild-type DCs. Our findings demonstrate that by contributing to CD4(+) T cell activation and differentiation to Th17 phenotype, D5R expressed on DCs is able to modulate the development of an autoimmune response in vivo.

  19. Duffy antigen receptor for chemokines mediates chemokine endocytosis through a macropinocytosis-like process in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Yani Zhao

    Full Text Available The Duffy antigen receptor for chemokines (DARC shows high affinity binding to multiple inflammatory CC and CXC chemokines and is expressed by erythrocytes and endothelial cells. Recent evidence suggests that endothelial DARC facilitates chemokine transcytosis to promote neutrophil recruitment. However, the mechanism of chemokine endocytosis by DARC remains unclear.We investigated the role of several endocytic pathways in DARC-mediated ligand internalization. Here we report that, although DARC co-localizes with caveolin-1 in endothelial cells, caveolin-1 is dispensable for DARC-mediated (125I-CXCL1 endocytosis as knockdown of caveolin-1 failed to inhibit ligand internalization. (125I-CXCL1 endocytosis by DARC was also independent of clathrin and flotillin-1 but required cholesterol and was, in part, inhibited by silencing Dynamin II expression.(125I-CXCL1 endocytosis was inhibited by amiloride, cytochalasin D, and the PKC inhibitor Gö6976 whereas Platelet Derived Growth Factor (PDGF enhanced ligand internalization through DARC. The majority of DARC-ligand interactions occurred on the endothelial surface, with DARC identified along plasma membrane extensions with the appearance of ruffles, supporting the concept that DARC provides a high affinity scaffolding function for surface retention of chemokines on endothelial cells.These results show DARC-mediated chemokine endocytosis occurs through a macropinocytosis-like process in endothelial cells and caveolin-1 is dispensable for CXCL1 internalization.

  20. Timing is critical for effective glucocorticoid receptor mediated repression of the cAMP-induced CRH gene.

    Directory of Open Access Journals (Sweden)

    Siem van der Laan

    Full Text Available Glucocorticoid negative feedback of the hypothalamus-pituitary-adrenal axis is mediated in part by direct repression of gene transcription in glucocorticoid receptor (GR expressing cells. We have investigated the cross talk between the two main signaling pathways involved in activation and repression of corticotrophin releasing hormone (CRH mRNA expression: cyclic AMP (cAMP and GR. We report that in the At-T20 cell-line the glucocorticoid-mediated repression of the cAMP-induced human CRH proximal promoter activity depends on the relative timing of activation of both signaling pathways. Activation of the GR prior to or in conjunction with cAMP signaling results in an effective repression of the cAMP-induced transcription of the CRH gene. In contrast, activation of the GR 10 minutes after onset of cAMP treatment, results in a significant loss of GR-mediated repression. In addition, translocation of ligand-activated GR to the nucleus was found as early as 10 minutes after glucocorticoid treatment. Interestingly, while both signaling cascades counteract each other on the CRH proximal promoter, they synergize on a synthetic promoter containing 'positive' response elements. Since the order of activation of both signaling pathways may vary considerably in vivo, we conclude that a critical time-window exists for effective repression of the CRH gene by glucocorticoids.

  1. Protein kinase A mediates adenosine A2a receptor modulation of neurotransmitter release via synapsin I phosphorylation in cultured cells from medulla oblongata.

    Science.gov (United States)

    Matsumoto, Joao Paulo Pontes; Almeida, Marina Gomes; Castilho-Martins, Emerson Augusto; Costa, Maisa Aparecida; Fior-Chadi, Debora Rejane

    2014-08-01

    Synaptic transmission is an essential process for neuron physiology. Such process is enabled in part due to modulation of neurotransmitter release. Adenosine is a synaptic modulator of neurotransmitter release in the Central Nervous System, including neurons of medulla oblongata, where several nuclei are involved with neurovegetative reflexes. Adenosine modulates different neurotransmitter systems in medulla oblongata, specially glutamate and noradrenaline in the nucleus tractussolitarii, which are involved in hypotensive responses. However, the intracellular mechanisms involved in this modulation remain unknown. The adenosine A2a receptor modulates neurotransmitter release by activating two cAMP protein effectors, the protein kinase A and the exchange protein activated by cAMP. Therefore, an in vitro approach (cultured cells) was carried out to evaluate modulation of neurotransmission by adenosine A2a receptor and the signaling intracellular pathway involved. Results show that the adenosine A2a receptor agonist, CGS 21680, increases neurotransmitter release, in particular, glutamate and noradrenaline and such response is mediated by protein kinase A activation, which in turn increased synapsin I phosphorylation. This suggests a mechanism of A2aR modulation of neurotransmitter release in cultured cells from medulla oblongata of Wistar rats and suggest that protein kinase A mediates this modulation of neurotransmitter release via synapsin I phosphorylation. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  2. Distinctive Modulation of Dopamine Release in the Nucleus Accumbens Shell Mediated by Dopamine and Acetylcholine Receptors.

    Science.gov (United States)

    Shin, Jung Hoon; Adrover, Martin F; Alvarez, Veronica A

    2017-11-15

    Nucleus accumbens (NAc) shell shows unique dopamine (DA) signals in vivo and plays a unique role in DA-dependent behaviors such as reward-motivated learning and the response to drugs of abuse. A disynaptic mechanism for DA release was reported and shown to require synchronized firing of cholinergic interneurons (CINs) and activation of nicotinic acetylcholine (ACh) receptors (nAChRs) in DA neuron (DAN) axons. The properties of this disynaptic mechanism of DA transmission are not well understood in the NAc shell. In this study, in vitro fast-scan cyclic voltammetry was used to examine the modulation of DA transmission evoked by CINs firing in the shell of mice and compared with other striatal regions. We found that DA signals in the shell displayed significant degree of summation in response to train stimulation of CINs, contrary to core and dorsal striatum. The summation was amplified by a D2-like receptor antagonist and experiments with mice with targeted deletion of D2 receptors to DANs or CINs revealed that D2 receptors in CINs mediate a fast inhibition observed within 100 ms of the first pulse, whereas D2 autoreceptors in DAN terminals are engaged in a slower inhibition that peaks at ∼500 ms. ACh also contributes to the use-dependent inhibition of DA release through muscarinic receptors only in the shell, where higher activity of acetylcholinesterase minimizes nAChR desensitization and promotes summation. These findings show that DA signals are modulated differentially by endogenous DA and ACh in the shell, which may underlie the unique features of shell DA signals in vivo SIGNIFICANCE STATEMENT The present study reports that dopamine (DA) release evoked by activation of cholinergic interneurons displays a high degree of summation in the shell and shows unique modulation by endogenous DA and acetylcholine. Desensitization of nicotinic receptors, which is a prevailing mechanism for use-dependent inhibition in the nucleus accumbens core and dorsal striatum, is

  3. P2X7 receptors in satellite glial cells mediate high functional expression of P2X3 receptors in immature dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Chen Yong

    2012-02-01

    Full Text Available Abstract Background The purinergic P2X3 receptor (P2X3R expressed in the dorsal root ganglion (DRG sensory neuron and the P2X7 receptor (P2X7R expressed in the surrounding satellite glial cell (SGC are two major receptors participating in neuron-SGC communication in adult DRGs. Activation of P2X7Rs was found to tonically reduce the expression of P2X3Rs in DRGs, thus inhibiting the abnormal pain behaviors in adult rats. P2X receptors are also actively involved in sensory signaling in developing rodents. However, very little is known about the developmental change of P2X7Rs in DRGs and the interaction between P2X7Rs and P2X3Rs in those animals. We therefore examined the expression of P2X3Rs and P2X7Rs in postnatal rats and determined if P2X7R-P2X3R control exists in developing rats. Findings We immunostained DRGs of immature rats and found that P2X3Rs were expressed only in neurons and P2X7Rs were expressed only in SGCs. Western blot analyses indicated that P2X3R expression decreased while P2X7R expression increased with the age of rats. Electrophysiological studies showed that the number of DRG neurons responding to the stimulation of the P2XR agonist, α,β-meATP, was higher and the amplitudes of α,β-meATP-induced depolarizations were larger in immature DRG neurons. As a result, P2X3R-mediated flinching responses were much more pronounced in immature rats than those found in adult rats. When we reduced P2X7R expression with P2X7R-siRNA in postnatal and adult rats, P2X3R-mediated flinch responses were greatly enhanced in both rat populations. Conclusions These results show that the P2X7R expression increases as rats age. In addition, P2X7Rs in SGCs exert inhibitory control on the P2X3R expression and function in sensory neurons of immature rats, just as observed in adult rats. Regulation of P2X7R expression is likely an effective way to control P2X3R activity and manage pain relief in infants.

  4. Channel opening of gamma-aminobutyric acid receptor from rat brain: molecular mechanisms of the receptor responses.

    Science.gov (United States)

    Cash, D J; Subbarao, K

    1987-12-01

    The function of gamma-aminobutyric acid (GABA) receptors, which mediate transmembrane chloride flux, can be studied by use of 36Cl- isotope tracer with membrane from mammalian brain by quench-flow technique, with reaction times that allow resolution of the receptor desensitization rates from the ion flux rates. The rates of chloride exchange into the vesicles in the absence and presence of GABA were characterized with membrane from rat cerebral cortex. Unspecific 36Cl- influx was completed in three phases of ca. 3% (t 1/2 = 0.6 s), 56% (t 1/2 = 82 s), and 41% (t 1/2 = 23 min). GABA-mediated, specific chloride exchange occurred with 6.5% of the total vesicular internal volume. The GABA-dependent 36Cl- influx proceeded in two phases, each progressively slowed by desensitization. The measurements supported the presence of two distinguishable active GABA receptors on the same membrane mediating chloride exchange into the vesicles with initial first-order rate constants of 9.5 s-1 and 2.3 s-1 and desensitizing with first-order rate constants of 21 s-1 and 1.4 s-1, respectively, at saturation. The half-response concentrations were similar for both receptors, 150 microM and 114 microM GABA for desensitization and 105 microM and 82 microM for chloride exchange, for the faster and slower desensitizing receptors, respectively. The two receptors were present in the activity ratio of ca. 4/1, similar to the ratio of "low-affinity" to "high-affinity" GABA sites found in ligand binding experiments. The desensitization rates have a different dependence on GABA concentration than the channel-opening equilibria.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    Science.gov (United States)

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the

  6. Hypersensitivity to thromboxane receptor mediated cerebral vasomotion and CBF oscillations during acute NO-deficiency in rats.

    Directory of Open Access Journals (Sweden)

    Béla Horváth

    Full Text Available BACKGROUND: Low frequency (4-12 cpm spontaneous fluctuations of the cerebrovascular tone (vasomotion and oscillations of the cerebral blood flow (CBF have been reported in diseases associated with endothelial dysfunction. Since endothelium-derived nitric oxide (NO suppresses constitutively the release and vascular effects of thromboxane A(2 (TXA(2, NO-deficiency is often associated with activation of thromboxane receptors (TP. In the present study we hypothesized that in the absence of NO, overactivation of the TP-receptor mediated cerebrovascular signaling pathway contributes to the development of vasomotion and CBF oscillations. METHODOLOGY/PRINCIPAL FINDINGS: Effects of pharmacological modulation of TP-receptor activation and its downstream signaling pathway have been investigated on CBF oscillations (measured by laser-Doppler flowmetry in anesthetized rats and vasomotion (measured by isometric tension recording in isolated rat middle cerebral arteries, MCAs both under physiological conditions and after acute inhibition of NO synthesis. Administration of the TP-receptor agonist U-46619 (1 µg/kg i.v. to control animals failed to induce any changes of the systemic or cerebral circulatory parameters. Inhibition of the NO synthesis by nitro-L-arginine methyl ester (L-NAME, 100 mg/kg i.v. resulted in increased mean arterial blood pressure and a decreased CBF accompanied by appearance of CBF-oscillations with a dominant frequency of 148±2 mHz. U-46619 significantly augmented the CBF-oscillations induced by L-NAME while inhibition of endogenous TXA(2 synthesis by ozagrel (10 mg/kg i.v. attenuated it. In isolated MCAs U-46619 in a concentration of 100 nM, which induced weak and stable contraction under physiological conditions, evoked sustained vasomotion in the absence of NO, which effect could be completely reversed by inhibition of Rho-kinase by 10 µM Y-27632. CONCLUSION/SIGNIFICANCE: These results suggest that hypersensitivity of the TP-receptor

  7. In brown adipocytes, adrenergically induced β{sub 1}-/β{sub 3}-(G{sub s})-, α{sub 2}-(G{sub i})- and α{sub 1}-(G{sub q})-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanling; Fälting, Johanna M.; Mattsson, Charlotte L.; Holmström, Therése E.; Nedergaard, Jan, E-mail: jan@metabol.su.se

    2013-10-15

    Brown adipose tissue is unusual in that the neurotransmitter norepinephrine influences cell destiny in ways generally associated with effects of classical growth factors: regulation of cell proliferation, of apoptosis, and progression of differentiation. The norepinephrine effects are mediated through G-protein-coupled receptors; further mediation of such stimulation to e.g. Erk1/2 activation is in cell biology in general accepted to occur through transactivation of the EGF receptor (by external or internal pathways). We have examined here the significance of such transactivation in brown adipocytes. Stimulation of mature brown adipocytes with cirazoline (α{sub 1}-adrenoceptor coupled via G{sub q}), clonidine (α{sub 2} via G{sub i}) or CL316243 (β{sub 3} via G{sub s}) or via β{sub 1}-receptors significantly activated Erk1/2. Pretreatment with the EGF receptor kinase inhibitor AG1478 had, remarkably, no significant effect on Erk1/2 activation induced by any of these adrenergic agonists (although it fully abolished EGF-induced Erk1/2 activation), demonstrating absence of EGF receptor-mediated transactivation. Results with brown preadipocytes (cells in more proliferative states) were not qualitatively different. Joint stimulation of all adrenoceptors with norepinephrine did not result in synergism on Erk1/2 activation. AG1478 action on EGF-stimulated Erk1/2 phosphorylation showed a sharp concentration–response relationship (IC{sub 50} 0.3 µM); a minor apparent effect of AG1478 on norepinephrine-stimulated Erk1/2 phosphorylation showed nonspecific kinetics, implying caution in interpretation of partial effects of AG1478 as reported in other systems. Transactivation of the EGF receptor is clearly not a universal prerequisite for coupling of G-protein coupled receptors to Erk1/2 signalling cascades. - Highlights: • In brown adipocytes, norepinephrine regulates proliferation, apoptosis, differentiation. • EGF receptor transactivation is supposed to mediate GPCR

  8. Downstream of tyrosine kinase/docking protein 6, as a novel substrate of tropomyosin-related kinase C receptor, is involved in neurotrophin 3-mediated neurite outgrowth in mouse cortex neurons

    Directory of Open Access Journals (Sweden)

    Yuan Jian

    2010-06-01

    Full Text Available Abstract Background The downstream of tyrosine kinase/docking protein (Dok adaptor protein family has seven members, Dok1 to Dok7, that act as substrates of multiple receptor tyrosine kinase and non-receptor tyrosine kinase. The tropomyosin-related kinase (Trk receptor family, which has three members (TrkA, TrkB and TrkC, are receptor tyrosine kinases that play pivotal roles in many stages of nervous system development, such as differentiation, migration, axon and dendrite projection and neuron patterning. Upon related neurotrophin growth factor stimulation, dimerisation and autophosphorylation of Trk receptors can occur, recruiting adaptor proteins to mediate signal transduction. Results In this report, by using yeast two-hybrid assays, glutathione S-transferase (GST precipitation assays and coimmunoprecipitation (Co-IP experiments, we demonstrate that Dok6 selectively binds to the NPQY motif of TrkC through its phosphotyrosine-binding (PTB domain in a kinase activity-dependent manner. We further confirmed their interaction by coimmunoprecipitation and colocalisation in E18.5 mouse cortex neurons, which provided more in vivo evidence. Next, we demonstrated that Dok6 is involved in neurite outgrowth in mouse cortex neurons via the RNAi method. Knockdown of Dok6 decreased neurite outgrowth in cortical neurons upon neurotrophin 3 (NT-3 stimulation. Conclusions We conclude that Dok6 interacts with the NPQY motif of the TrkC receptor through its PTB domain in a kinase activity-dependent manner, and works as a novel substrate of the TrkC receptor involved in NT-3-mediated neurite outgrowth in mouse cortex neurons.

  9. The CRF1 and the CRF2 receptor mediate recognition memory deficits and vulnerability induced by opiate withdrawal.

    Science.gov (United States)

    Morisot, Nadège; Contarino, Angelo

    2016-06-01

    Opiate use disorders are associated with impaired cognitive function and altered stress-responsive systems. The corticotropin-releasing factor (CRF) system mediates stress responses via CRF1 and CRF2 receptors and may be implicated in substance use disorders. However, the specific role for each of the two known CRF receptor subtypes in cognitive impairment induced by opiate administration and withdrawal remains to be elucidated. In the present study, CRF1-/-, CRF2-/- and their respective wild-type mice are injected with escalating doses of morphine and cognitive function assessed by the novel object recognition (NOR) memory task throughout relatively long periods of opiate withdrawal. Early (2 days) phases of opiate withdrawal impair NOR memory in wild-type, CRF1-/- and CRF2-/- mice. However, the duration of opiate withdrawal-induced NOR memory deficits is prolonged in CRF1-/- but shortened in CRF2-/- mice, as compared to their respective wild-type mice, indicating opposite roles for the two CRF receptor subtypes. Nevertheless, following apparent recovery, exposure to an environmental stressor induces the reemergence of NOR memory deficits in long-term opiate-withdrawn wild-type but not CRF1-/- or CRF2-/- mice, indicating an essential role for both CRF receptor subtypes in stress vulnerability. These findings bring initial evidence of a complex physiopathological role for the CRF system in cognitive deficits and the long-lasting vulnerability induced by opiate drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Membrane receptor-mediated apoptosis and caspase activation in the differentiated EoL-1 eosinophilic cell line.

    Science.gov (United States)

    Al-Rabia, Mohammed W; Blaylock, Morgan G; Sexton, Darren W; Walsh, Garry M

    2004-06-01

    Caspases are key molecules in the control of apoptosis, but relatively little is known about their contribution to eosinophil apoptosis. We examined caspase-3, -8, and -9 activities in receptor ligation-dependent apoptosis induction in the differentiated human eosinophilic cell line EoL-1. Differentiated EoL-1 exhibited bi-lobed nuclei, eosinophil-associated membrane receptors, and basic granule proteins. Annexin-V fluorescein isothiocyanate binding to EoL-1 revealed significant (PEoL-1 but had no effect on constitutive (baseline) apoptosis at 16 and 20 h. Caspase activity was analyzed using the novel CaspaTag trade mark technique and flow cytometry. EoL-1 treated with pan-CD45, CD45RA, CD45RB, and CD95 mAb exhibited caspase-3 and -9 activation at 12 h post-treatment, which increased at 16 and 20 h. Activated caspase-8 was detected 12 and 16 h after ligation with CD45, CD45RA, CD45RB, and CD95 mAb followed by a trend toward basal levels at 20 h. CD69 ligation resulted in caspase-3 activation, a modest but significant activation of caspase-8, and a loss in mitochondrial transmembrane potential but had no significant effect on activation of caspase-9. Thus, the intrinsic and extrinsic caspase pathways are involved in controlling receptor ligation-mediated apoptosis induction in human eosinophils, findings that may aid the development of a more targeted, anti-inflammatory therapy for asthma.

  11. Neurokinin 1 Receptor Mediates Membrane Blebbing and Sheer Stress-Induced Microparticle Formation in HEK293 Cells

    Science.gov (United States)

    Chen, Panpan; Douglas, Steven D.; Meshki, John; Tuluc, Florin

    2012-01-01

    Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R) is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP). We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2–10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing. PMID:23024816

  12. Neurokinin 1 receptor mediates membrane blebbing and sheer stress-induced microparticle formation in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Panpan Chen

    Full Text Available Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP. We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2-10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing.

  13. Polyethylene Glycol Mediated Colorectal Cancer Chemoprevention: Roles of Epidermal Growth Factor Receptor and Snail

    Science.gov (United States)

    Wali, Ramesh K.; Kunte, Dhananjay P.; Koetsier, Jennifer L.; Bissonnette, Marc; Roy, Hemant K.

    2008-01-01

    Polyethylene glycol (PEG) is a clinically widely used agent with profound chemopreventive properties in experimental colon carcinogenesis. We previously reported that Snail/β-catenin signaling may mediate the suppression of epithelial proliferation by PEG, although the upstream events remain unclear. We report herein the role of epidermal growth factor receptor (EGFR), a known mediator of Snail and overepressed in ~80% of human colorectal cancers (CRC), on PEG-mediated anti-proliferative and hence anti-neoplastic effects in azoxymethane (AOM)-rats and HT-29 colon cancer cells. AOM-rats were randomized to either standard diet or one with 10% PEG 3350 and euthanized 8 weeks later. The colonic samples were subjected to immunohistochemical or Western blot analyses. PEG decreased mucosal EGFR by 60% (pPEG effects were obtained in HT-29 cells. PEG suppressed EGFR protein via lysosmal degradation with no change in mRNA levels. To show that EGFR antagonism per se was responsible for the antiproliferative effect, we inhibited EGFR by either pre-treating cells with gefitinib or stably transfecting with EGFR-shRNA and measured the effect of PEG on proliferation. In either case PEG effect was blunted suggesting a vital role of EGFR. Flow cytometric analysis revealed that EGFR-shRNA cells, besides having reduced membrane EGFR also expressed low Snail levels (40%), corroborating a strong association. Furthermore, in EGFR silenced cells PEG effect on EGFR or Snail was muted, similar to that on proliferation. In conclusion, we show that EGFR is the proximate membrane signaling molecule through which PEG initiates antiproliferative activity with Snail/β-catenin pathway playing the central intermediary function. PMID:18790788

  14. Polyethylene glycol-mediated colorectal cancer chemoprevention: roles of epidermal growth factor receptor and Snail.

    Science.gov (United States)

    Wali, Ramesh K; Kunte, Dhananjay P; Koetsier, Jennifer L; Bissonnette, Marc; Roy, Hemant K

    2008-09-01

    Polyethylene glycol (PEG) is a clinically widely used agent with profound chemopreventive properties in experimental colon carcinogenesis. We reported previously that Snail/beta-catenin signaling may mediate the suppression of epithelial proliferation by PEG, although the upstream events remain unclear. We report herein the role of epidermal growth factor receptor (EGFR), a known mediator of Snail and overexpressed in approximately 80% of human colorectal cancers, on PEG-mediated antiproliferative and hence antineoplastic effects in azoxymethane (AOM) rats and HT-29 colon cancer cells. AOM rats were randomized to either standard diet or one with 10% PEG-3350 and euthanized 8 weeks later. The colonic samples were subjected to immunohistochemical or Western blot analyses. PEG decreased mucosal EGFR by 60% (P PEG effects were obtained in HT-29 cells. PEG suppressed EGFR protein via lysosmal degradation with no change in mRNA levels. To show that EGFR antagonism per se was responsible for the antiproliferative effect, we inhibited EGFR by either pretreating cells with gefitinib or stably transfecting with EGFR-short hairpin RNA and measured the effect of PEG on proliferation. In either case, PEG effect was blunted, suggesting a vital role of EGFR. Flow cytometric analysis revealed that EGFR-short hairpin RNA cells, besides having reduced membrane EGFR, also expressed low Snail levels (40%), corroborating a strong association. Furthermore, in EGFR silenced cells, PEG effect on EGFR or Snail was muted, similar to that on proliferation. In conclusion, we show that EGFR is the proximate membrane signaling molecule through which PEG initiates antiproliferative activity with Snail/beta-catenin pathway playing the central intermediary function.

  15. X-ray Spectroscopy and Imaging as Multiscale Probes of Intercalation Phenomena in Cathode Materials

    Science.gov (United States)

    Horrocks, Gregory A.; De Jesus, Luis R.; Andrews, Justin L.; Banerjee, Sarbajit

    2017-09-01

    Intercalation phenomena are at the heart of modern electrochemical energy storage. Nevertheless, as out-of-equilibrium processes involving concomitant mass and charge transport, such phenomena can be difficult to engineer in a predictive manner. The rational design of electrode architectures requires mechanistic understanding of physical phenomena spanning multiple length scales, from atomistic distortions and electron localization at individual transition metal centers to phase inhomogeneities and intercalation gradients in individual particles and concentration variances across ensembles of particles. In this review article, we discuss the importance of the electronic structure in mediating electrochemical storage and mesoscale heterogeneity. In particular, we discuss x-ray spectroscopy and imaging probes of electronic and atomistic structure as well as statistical regression methods that allow for monitoring of the evolution of the electronic structure as a function of intercalation. The layered α-phase of V2O5 is used as a model system to develop fundamental ideas on the origins of mesoscale heterogeneity.

  16. Elevated carbon dioxide blunts mammalian cAMP signaling dependent on inositol 1,4,5-triphosphate receptor-mediated Ca2+ release.

    Science.gov (United States)

    Cook, Zara C; Gray, Michael A; Cann, Martin J

    2012-07-27

    Elevated CO(2) is generally detrimental to animal cells, suggesting an interaction with core processes in cell biology. We demonstrate that elevated CO(2) blunts G protein-activated cAMP signaling. The effect of CO(2) is independent of changes in intracellular and extracellular pH, independent of the mechanism used to activate the cAMP signaling pathway, and is independent of cell context. A combination of pharmacological and genetic tools demonstrated that the effect of elevated CO(2) on cAMP levels required the activity of the IP(3) receptor. Consistent with these findings, CO(2) caused an increase in steady state cytoplasmic Ca(2+) concentrations not observed in the absence of the IP(3) receptor or under nonspecific acidotic conditions. We examined the well characterized cAMP-dependent inhibition of the isoform 3 Na(+)/H(+) antiporter (NHE3) to demonstrate a functional relevance for CO(2)-mediated reductions in cellular cAMP. Consistent with the cellular biochemistry, elevated CO(2) abrogated the inhibitory effect of cAMP on NHE3 function via an IP(3) receptor-dependent mechanism.

  17. Elevated Carbon Dioxide Blunts Mammalian cAMP Signaling Dependent on Inositol 1,4,5-Triphosphate Receptor-mediated Ca2+ Release*

    Science.gov (United States)

    Cook, Zara C.; Gray, Michael A.; Cann, Martin J.

    2012-01-01

    Elevated CO2 is generally detrimental to animal cells, suggesting an interaction with core processes in cell biology. We demonstrate that elevated CO2 blunts G protein-activated cAMP signaling. The effect of CO2 is independent of changes in intracellular and extracellular pH, independent of the mechanism used to activate the cAMP signaling pathway, and is independent of cell context. A combination of pharmacological and genetic tools demonstrated that the effect of elevated CO2 on cAMP levels required the activity of the IP3 receptor. Consistent with these findings, CO2 caused an increase in steady state cytoplasmic Ca2+ concentrations not observed in the absence of the IP3 receptor or under nonspecific acidotic conditions. We examined the well characterized cAMP-dependent inhibition of the isoform 3 Na+/H+ antiporter (NHE3) to demonstrate a functional relevance for CO2-mediated reductions in cellular cAMP. Consistent with the cellular biochemistry, elevated CO2 abrogated the inhibitory effect of cAMP on NHE3 function via an IP3 receptor-dependent mechanism. PMID:22654111

  18. Dropout Phenomena at Universities

    DEFF Research Database (Denmark)

    Larsen, Michael Søgaard; Kornbeck, Kasper Pihl; Kristensen, Rune

    Dropout from university studies comprises a number of complex phenomena with serious complex consequences and profound political attention. Further analysis of the field is, therefore, warranted. Such an analysis is offered here as a systematic review which gives answers based on the best possible...... such dropout phenomena occur at universities? What can be done by the universities to prevent or reduce such dropout phenomena?...

  19. Role of insulin hormone in modulation of inflammatory phenomena

    Directory of Open Access Journals (Sweden)

    Antonio Di Petta

    2011-09-01

    Full Text Available Evidence demonstrates the involvement of hormones in thedevelopment of inflammatory response. Inflammation evokes markedstructural alterations of microvasculature, besides migration ofleukocytes from microcirculation to the site of lesion. These alterations are caused primarily by release or activation of endogenous mediators, in which hormones play an integral role in this regulatory system. Binding sites for many hormones may be characterized by vascular structures and hematogenous cells involved with the inflammatory response. Quantitative alterations of inflammatory events involving the decrease in microvascular response to inflammatory mediators, deficiency in the leukocyte-endothelium interaction, reduction of cell concentration in the inflammatory exudate, and failure of the phagocyte function of mononuclear cells were observed in insulindeficient states. Therefore, inflammation is not merely a local response, but rather a process controlled by hormones in which insulin plays an essential role in modulation of these phenomena, and assures tissue repair and remodeling within the limits of normality.

  20. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer

    DEFF Research Database (Denmark)

    Svensson, Charlotte; Ceder, Jens; Iglesias Gato, Diego

    2014-01-01

    The androgen receptor (AR) is a key regulator of prostate tumorgenesis through actions that are not fully understood. We identified the repressor element (RE)-1 silencing transcription factor (REST) as a mediator of AR actions on gene repression. Chromatin immunoprecipitation showed that AR binds...... in cell cycle progression, including Aurora Kinase A, that has previously been implicated in the growth of NE-like castration-resistant tumors. The analysis of prostate cancer tissue microarrays revealed that tumors with reduced expression of REST have higher probability of early recurrence, independently...... of their Gleason score. The demonstration that REST modulates AR actions in prostate epithelia and that REST expression is negatively correlated with disease recurrence after prostatectomy, invite a deeper characterization of its role in prostate carcinogenesis....

  1. Structure-function relationships for the interleukin 2 receptor system

    Directory of Open Access Journals (Sweden)

    Richard J. Robb

    1987-01-01

    Full Text Available Receptors for interleukin 2 (IL-2 esit in at least three forms which differ in their subunit compositio, their affinity for ligand and their ability to mediate a cellular reponse. Type I receptors occur following cellular acitivation and consist of the 55,000 m. w. glycoprotein Tac. These receptors bind IL-2 with a low affinity, do not internalize ligand and have not been definitively associated with any response. Type II receptors, on the other hand, conssit of one or more glycoproteins of 70,000 m. w. which have been termed "beta ([beta] chains." They bind IL-2 with an intermediate affinity and rapidly internalize the ligand. [Beta] proteins mediate many cellular IL-2-dependent reponses, including the short-term activation of natural killer cells and the induction of Tac protein expression. Type III receptors consist of a ternary complex of the Tac protein, the [beta] chain(s and IL-2. They are characterized by a paricularly high affinity for ligand association. Type III receptors also internalize ligand and mediate IL-2-dependent responses at low factor concentrations. The identification of two independent IL-2-binding molecules, Tac and [beta], thus provides the elusive molecular explanation for the differences in IL-2 receptor affinity and suggests the potential for selective therapeutic manipulation of IL-2 reponses.

  2. The Cannabinoid Receptor CB1 Modulates the Signaling Properties of the Lysophosphatidylinositol Receptor GPR55*

    Science.gov (United States)

    Kargl, Julia; Balenga, Nariman; Parzmair, Gerald P.; Brown, Andrew J.; Heinemann, Akos; Waldhoer, Maria

    2012-01-01

    The G protein-coupled receptor (GPCR) 55 (GPR55) and the cannabinoid receptor 1 (CB1R) are co-expressed in many tissues, predominantly in the central nervous system. Seven transmembrane spanning (7TM) receptors/GPCRs can form homo- and heteromers and initiate distinct signaling pathways. Recently, several synthetic CB1 receptor inverse agonists/antagonists, such as SR141716A, AM251, and AM281, were reported to activate GPR55. Of these, SR141716A was marketed as a promising anti-obesity drug, but was withdrawn from the market because of severe side effects. Here, we tested whether GPR55 and CB1 receptors are capable of (i) forming heteromers and (ii) whether such heteromers could exhibit novel signaling patterns. We show that GPR55 and CB1 receptors alter each others signaling properties in human embryonic kidney (HEK293) cells. We demonstrate that the co-expression of FLAG-CB1 receptors in cells stably expressing HA-GPR55 specifically inhibits GPR55-mediated transcription factor activation, such as nuclear factor of activated T-cells and serum response element, as well as extracellular signal-regulated kinases (ERK1/2) activation. GPR55 and CB1 receptors can form heteromers, but the internalization of both receptors is not affected. In addition, we observe that the presence of GPR55 enhances CB1R-mediated ERK1/2 and nuclear factor of activated T-cell activation. Our data provide the first evidence that GPR55 can form heteromers with another 7TM/GPCR and that this interaction with the CB1 receptor has functional consequences in vitro. The GPR55-CB1R heteromer may play an important physiological and/or pathophysiological role in tissues endogenously co-expressing both receptors. PMID:23161546

  3. Phenomena Associated With EIT Waves

    Science.gov (United States)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.

    2003-01-01

    We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  4. B cell antigen receptor signaling and internalization are mutually exclusive events.

    Directory of Open Access Journals (Sweden)

    Ping Hou

    2006-07-01

    Full Text Available Engagement of the B cell antigen receptor initiates two concurrent processes, signaling and receptor internalization. While both are required for normal humoral immune responses, the relationship between these two processes is unknown. Herein, we demonstrate that following receptor ligation, a small subpopulation of B cell antigen receptors are inductively phosphorylated and selectively retained at the cell surface where they can serve as scaffolds for the assembly of signaling molecules. In contrast, the larger population of non-phosphorylated receptors is rapidly endocytosed. Each receptor can undergo only one of two mutually exclusive fates because the tyrosine-based motifs that mediate signaling when phosphorylated mediate internalization when not phosphorylated. Mathematical modeling indicates that the observed competition between receptor phosphorylation and internalization enhances signaling responses to low avidity ligands.

  5. Corticotropin-releasing factor (CRF) and α 2 adrenergic receptors mediate heroin withdrawal-potentiated startle in rats.

    Science.gov (United States)

    Park, Paula E; Vendruscolo, Leandro F; Schlosburg, Joel E; Edwards, Scott; Schulteis, Gery; Koob, George F

    2013-09-01

    Anxiety is one of the early symptoms of opioid withdrawal and contributes to continued drug use and relapse. The acoustic startle response (ASR) is a component of anxiety that has been shown to increase during opioid withdrawal in both humans and animals. We investigated the role of corticotropin-releasing factor (CRF) and norepinephrine (NE), two key mediators of the brain stress system, on acute heroin withdrawal-potentiated ASR. Rats injected with heroin (2 mg/kg s.c.) displayed an increased ASR when tested 4 h after heroin treatment. A similar increase in ASR was found in rats 10-20 h into withdrawal from extended access (12 h) to i.v. heroin self-administration, a model that captures several aspects of heroin addiction in humans. Both the α 2 adrenergic receptor agonist clonidine (10 μg/kg s.c.) and CRF1 receptor antagonist N,N-bis(2-methoxyethyl)-3-(4-methoxy-2-methylphenyl)-2,5-dimethyl-pyrazolo[1,5-a] pyrimidin-7-amine (MPZP; 20 mg/kg s.c.) blocked heroin withdrawal-potentiated startle. To investigate the relationship between CRF1 and α 2 adrenergic receptors in the potentiation of the ASR, we tested the effect of MPZP on yohimbine (1.25 mg/kg s.c.)-potentiated startle and clonidine on CRF (2 μg i.c.v.)-potentiated startle. Clonidine blocked CRF-potentiated startle, whereas MPZP partially attenuated but did not reverse yohimbine-potentiated startle, suggesting that CRF may drive NE release to potentiate startle. These results suggest that CRF1 and α 2 receptors play an important role in the heightened anxiety-like behaviour observed during acute withdrawal from heroin, possibly via CRF inducing the release of NE in stress-related brain regions.

  6. Androgen Receptor Signaling in Bladder Cancer

    OpenAIRE

    Li, Peng; Chen, Jinbo; Miyamoto, Hiroshi

    2017-01-01

    Emerging preclinical findings have indicated that steroid hormone receptor signaling plays an important role in bladder cancer outgrowth. In particular, androgen-mediated androgen receptor signals have been shown to correlate with the promotion of tumor development and progression, which may clearly explain some sex-specific differences in bladder cancer. This review summarizes and discusses the available data, suggesting the involvement of androgens and/or the androgen receptor pathways in u...

  7. Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling.

    Science.gov (United States)

    Gelband, C H; Sumners, C; Lu, D; Raizada, M K

    1998-02-27

    The objective of this review is to examine the role of neuronal angiotensin II (Ang II) receptors in vitro. Two types of G protein-coupled Ang II receptors have been identified in cardiovascularly relevant areas of the brain: the AT1 and the AT2. We have utilized neurons in culture to study the signaling mechanisms of AT1 and AT2 receptors. Neuronal AT1 receptors are involved in norepinephrine (NE) neuromodulation. NE neuromodulation can be either evoked or enhanced. Evoked NE neuromodulation involves AT1 receptor-mediated, losartan-dependent, rapid NE release, inhibition of K+ channels and stimulation of Ca2+ channels. AT1 receptor-mediated enhanced NE neuromodulation involves the Ras-Raf-MAP kinase cascade and ultimately leads to an increase in NE transporter, tyrosine hydroxylase and dopamine beta-hydroxylase mRNA transcription. Neuronal AT2 receptors signal via a Gi protein and are coupled to activation of PP2A and PLA2 and stimulation of K+ channels. Finally, putative cross-talk pathways between AT1 and AT2 receptors will be discussed.

  8. Non-Neuronal Functions of the M2 Muscarinic Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Ritva Tikkanen

    2013-04-01

    Full Text Available Acetylcholine is an important neurotransmitter whose effects are mediated by two classes of receptors. The nicotinic acetylcholine receptors are ion channels, whereas the muscarinic receptors belong to the large family of G protein coupled seven transmembrane helix receptors. Beyond its function in neuronal systems, it has become evident that acetylcholine also plays an important role in non-neuronal cells such as epithelial and immune cells. Furthermore, many cell types in the periphery are capable of synthesizing acetylcholine and express at least some of the receptors. In this review, we summarize the non-neuronal functions of the muscarinic acetylcholine receptors, especially those of the M2 muscarinic receptor in epithelial cells. We will review the mechanisms of signaling by the M2 receptor but also the cellular trafficking and ARF6 mediated endocytosis of this receptor, which play an important role in the regulation of signaling events. In addition, we provide an overview of the M2 receptor in human pathological conditions such as autoimmune diseases and cancer.

  9. P2X receptors, sensory neurons and pain.

    Science.gov (United States)

    Bele, Tanja; Fabbretti, Elsa

    2015-01-01

    Pain represents a very large social and clinical problem since the current treatment provides insufficient pain relief. Plasticity of pain receptors together with sensitisation of sensory neurons, and the role of soluble mediators released from non-neuronal cells render difficult to understand the spatial and temporal scale of pain development, neuronal responses and disease progression. In pathological conditions, ATP is one of the most powerful mediators that activates P2X receptors that behave as sensitive ATP-detectors, such as neuronal P2X3 receptor subtypes and P2X4 and P2X7 receptors expressed on non-neuronal cells. Dissecting the molecular mechanisms occurring in sensory neurons and in accessory cells allows to design appropriate tissue- and cell- targeted approaches to treat chronic pain.

  10. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies...... this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does...

  11. Molecular determinants of odorant receptor function in insects

    Indian Academy of Sciences (India)

    2014-07-20

    Jul 20, 2014 ... other host-odor responsive receptors from vector insect spe- cies would .... those that mediate host-seeking behaviour in insect disease vectors and ... receptors are transmitted and processed via olfactory circuits. (Vosshall ...

  12. Thermogenic characterization of ghrelin receptor null mice

    Science.gov (United States)

    Ghrelin is the only known circulating orexigenic hormone that increases food intake and promotes adiposity, and these physiological functions of ghrelin are mediated through its receptor growth hormone secretagogue receptor (GHS-R). Ghrelin/GHS-R signaling plays a crucial role in energy homeostasis....

  13. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming

    Science.gov (United States)

    2018-01-01

    Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER) positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1) and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P) in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR) and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention. PMID:29385066

  14. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming

    Directory of Open Access Journals (Sweden)

    Olga A. Sukocheva

    2018-01-01

    Full Text Available Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1 and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention.

  15. Rhythmic components in renal autoregulation: Nonlinear modulation phenomena

    International Nuclear Information System (INIS)

    Pavlov, A.N.; Sosnovtseva, O.V.; Pavlova, O.N.; Mosekilde, E.; Holstein-Rathlou, N.-H.

    2009-01-01

    Autoregulation of nephron blood flow involves two oscillatory processes: the tubular-flow sensitive tubuloglomerular feedback (TGF) mechanism and the blood-pressure sensitive myogenic mechanism. Both act to regulate the diameter of the afferent arteriole, which carries blood to the nephron. In this paper, we apply wavelet analysis to time series of the proximal tubular pressure obtained from normotensive and hypertensive rats to study how the TGF-mediated oscillations modulate both the frequency and the amplitude of the myogenic oscillations. The tubular pressure oscillations are nearly periodic for normotensive rats, but irregular (or chaotic) for rats with hypertension. Modulation phenomena are clearly observed in both types of rats, but the effect is stronger in those with hypertension.

  16. Airborne fine particulate matter induces an upregulation of endothelin receptors on rat bronchi

    International Nuclear Information System (INIS)

    Wang, Rong; Xiao, Xue; Cao, Lei; Shen, Zhen-xing; Lei, Ying; Cao, Yong-xiao

    2016-01-01

    Airborne fine particulate matter (PM2.5) is a risk factor for respiratory diseases. However, little is known about the effects of PM2.5 on bronchi. The present study investigated the effect of airborne PM2.5 on rat bronchi and the underlying mechanisms. Isolated rat bronchial segments were cultured for 24 h. Endothelin (ET) receptor-mediated contractile responses were recorded using a wire myograph. The mRNA and protein expression levels of ET receptors were studied using quantitative real-time PCR, Western blotting, and immunohistochemistry. The results demonstrated that ET A and ET B receptor agonists induced remarkable contractile responses on fresh and cultured bronchial segments. PM2.5 (1.0 or 3.0 μg/ml) significantly enhanced ET A and ET B receptor-mediated contractile responses in bronchi with a markedly increased maximal contraction compared to the DMSO or fresh groups. PM2.5 increased the mRNA and protein expression levels of ET A and ET B receptors. U0126 (a MEK1/2 inhibitor) and SB203580 (a p38 inhibitor) significantly suppressed PM2.5-induced increases in ET B receptor-mediated contractile responses, mRNA and protein levels. SP600125 (a JNK inhibitor) and SB203580 significantly abrogated the PM2.5-induced enhancement of ET A receptor-mediated contraction and receptor expression. In conclusion, PM2.5 upregulates ET receptors in bronchi. ET B receptor upregulation is associated with MEK1/2 and p38 pathways, and the upregulation of ET A receptor is involved in JNK and p38 pathways. - Highlights: • Airborne PM2.5 induces bronchial hyperreactivity mediated with endothelin ET B and ET A receptors in rats. • PM2.5 increases mRNA and protein expressions of endothelin ET B and ET A receptors in bronchi. • The upregulation of ET B receptor is associated with MEK1/2 and p38 pathways. • The upregulation of ET A receptor is involved in JNK and p38 pathways. • The research provides novel understanding for PM2.5-associated respiratory diseases.

  17. β2-Adrenergic Receptor-Mediated HIF-1α Upregulation Mediates Blood Brain Barrier Damage in Acute Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Yanyun Sun

    2017-08-01

    Full Text Available Disruption of the blood brain barrier (BBB within the thrombolytic time window is an antecedent event to intracerebral hemorrhage in ischemic stroke. Our recent studies showed that 2-h cerebral ischemia induced BBB damage in non-infarcted area and secreted matrix metalloproteinase-2 (MMP-2 accounted for this disruption. However, the factors that affect MMP-2 secretion and regulate BBB damage remains unknown. Since hypoxia-inducible factor-1 alpha (HIF-1α was discovered as a mater regulator in hypoxia, we sought to investigate the roles of HIF-1α in BBB damage as well as the factors regulating HIF-1α expression in the ischemic brain. in vivo rat middle cerebral artery occlusion (MCAO and in vitro oxygen glucose deprivation (OGD models were used to mimic ischemia. Pretreatment with HIF-1α inhibitor YC-1 significantly inhibited 2-h MCAO-induced BBB damage, which was accompanied by suppressed occludin degradation and vascular endothelial growth factor (VEGF mRNA upregulation. Interestingly, β2-adrenergic receptor (β2-AR antagonist ICI 118551 attenuated ischemia-induced BBB damage by regulating HIF-1α expression. Double immunostaining showed that HIF-1α was upregulated in ischemic neurons but not in astrocytes andendothelial cells. Of note, HIF-1α inhibition with inhibitor YC-1 or siRNA significantly prevented OGD-induced VEGF upregulation as well as the secretion of VEGF and MMP-2 in neurons. More importantly, blocking β2-AR with ICI 118551 suppressedHIF-1α upregulation in ischemic neurons and attenuated occludin degradation induced by the conditioned media of OGD-treatedneurons. Taken together, blockade of β2-AR-mediated HIF-1α upregulation mediates BBB damage during acute cerebral ischemia. These findings provide new mechanistic understanding of early BBB damage in ischemic stroke and may help reduce thrombolysis-related hemorrhagic complications.

  18. A membrane glucocorticoid receptor mediates the rapid/non-genomic actions of glucocorticoids in mammalian skeletal muscle fibres.

    Science.gov (United States)

    Pérez, María Hernández-Alcalá; Cormack, Jonathan; Mallinson, David; Mutungi, Gabriel

    2013-10-15

    Glucocorticoids (GCs) are steroid hormones released from the adrenal gland in response to stress. They are also some of the most potent anti-inflammatory and immunosuppressive drugs currently in clinical use. They exert most of their physiological and pharmacological actions through the classical/genomic pathway. However, they also have rapid/non-genomic actions whose physiological and pharmacological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the rapid/non-genomic effects of two widely prescribed glucocorticoids, beclomethasone dipropionate (BDP) and prednisolone acetate (PDNA), on force production in isolated, intact, mouse skeletal muscle fibre bundles. The results show that the effects of both GCs on maximum isometric force (Po) were fibre-type dependent. Thus, they increased Po in the slow-twitch fibre bundles without significantly affecting that of the fast-twitch fibre bundles. The increase in Po occurred within 10 min and was insensitive to the transcriptional inhibitor actinomycin D. Also, it was maximal at ∼250 nM and was blocked by the glucocorticoid receptor (GCR) inhibitor RU486 and a monoclonal anti-GCR, suggesting that it was mediated by a membrane (m) GCR. Both muscle fibre types expressed a cytosolic GCR. However, a mGCR was present only in the slow-twitch fibres. The receptor was more abundant in oxidative than in glycolytic fibres and was confined mainly to the periphery of the fibres where it co-localised with laminin. From these findings we conclude that the rapid/non-genomic actions of GCs are mediated by a mGCR and that they are physiologically/therapeutically beneficial, especially in slow-twitch muscle fibres.

  19. Prostaglandins and their receptors in insect biology

    Directory of Open Access Journals (Sweden)

    David eStanley

    2011-12-01

    Full Text Available We treat the biological significance of prostaglandins (PGs and their known receptors in insect biology. PGs and related eicosanoids are oxygenated derivatives of arachidonic acid (AA and two other C20 polyunsaturated fatty acids. PGs are mostly appreciated in the context of biomedicine, but a growing body of literature indicates the biological significance of these compounds extends throughout the animal kingdom, and possibly beyond. PGs act in several crucial areas of insect biology. In reproduction, a specific PG, PGE2, releases oviposition behavior in most crickets and a few other insect species; PGs also mediate events in egg development in some species, which may represent all insects. PGs play major roles in modulating fluid secretion in Malpighian tubules, rectum and salivary glands, although, again, this has been studied in only a few insect species that may represent the Class. Insect immunity is a very complex defense system. PGs and other eicosanoids mediate a large number of immune reactions to infection and invasion. The actions of most PGs are mediated by specific receptors. Biomedical research has discovered a great deal of knowledge about PG receptors in mammals, including their structures, pharmacology, molecular biology and cellular locations. Studies of PG receptors in insects lag behind the biomedical background, however, recent results hold the promise of accelerated research in this area. A PG receptor has been identified in a class of lepidopteran hemocytes and experimentally linked to the release of prophenoloxidase. We conclude that research into PGs and their receptors in insects will lead to important advances in our understanding of insect biology.

  20. The cellular receptors for infectious bursal disease virus | Zhu ...

    African Journals Online (AJOL)

    Virus receptors are simplistically defined as cell surface molecules that mediate binding (attachment, adsorption) and/or trigger membrane fusion or entry through other processes. Infectious bursal disease virus (IBDV) entry into host cells occurs by recognition of specific cellular receptor(s) with viral envelope glycoprotein, ...

  1. The role of GH receptor tyrosine phosphorylation in Stat5 activation

    DEFF Research Database (Denmark)

    Hansen, J A; Hansen, L H; Wang, X

    1997-01-01

    Stimulation of GH receptors leads to rapid activation of Jak2 kinase and subsequent tyrosine phosphorylation of the GH receptor. Three specific tyrosines located in the C-terminal domain of the GH receptor have been identified as being involved in GH-stimulated transcription of the Spi 2.1 promoter....... Mutated GH receptors lacking all but one of these three tyrosines are able to mediate a transcriptional response when transiently transfected into CHO cells together with a Spi 2.1 promoter/luciferase construct. Similarly, these GH receptors were found to be able to mediate activation of Stat5 DNA......-binding activity, whereas the GH receptor mutant lacking all intracellular tyrosines was not. Synthetic tyrosine phosphorylated peptides corresponding to the GH receptor sequence around the three tyrosines inhibited Stat5 DNA-binding activity while their non-phosphorylated counterparts were ineffective. Tyrosine...

  2. Nucleotide transmitters ATP and ADP mediate intercellular calcium wave communication via P2Y12/13 receptors among BV-2 microglia.

    Directory of Open Access Journals (Sweden)

    Pengchong Jiang

    Full Text Available Nerve injury is accompanied by a liberation of diverse nucleotides, some of which act as 'find/eat-me' signals in mediating neuron-glial interplay. Intercellular Ca2+ wave (ICW communication is the main approach by which glial cells interact and coordinate with each other to execute immune defense. However, the detailed mechanisms on how these nucleotides participate in ICW communication remain largely unclear. In the present work, we employed a mechanical stimulus to an individual BV-2 microglia to simulate localized injury. Remarkable ICW propagation was observed no matter whether calcium was in the environment or not. Apyrase (ATP/ADP-hydrolyzing enzyme, suramin (broad-spectrum P2 receptor antagonist, 2-APB (IP3 receptor blocker and thapsigargin (endoplasmic reticulum calcium pump inhibitor potently inhibited these ICWs, respectively, indicating the dependence of nucleotide signals and P2Y receptors. Then, we detected the involvement of five naturally occurring nucleotides (ATP, ADP, UTP, UDP and UDP-glucose by desensitizing receptors. Results showed that desensitization with ATP and ADP could block ICW propagation in a dose-dependent manner, whereas other nucleotides had little effect. Meanwhile, the expression of P2Y receptors in BV-2 microglia was identified and their contributions were analyzed, from which we suggested P2Y12/13 receptors activation mostly contributed to ICWs. Besides, we estimated that extracellular ATP and ADP concentration sensed by BV-2 microglia was about 0.3 μM during ICWs by analyzing calcium dynamic characteristics. Taken together, these results demonstrated that the nucleotides ATP and ADP were predominant signal transmitters in mechanical stimulation-induced ICW communication through acting on P2Y12/13 receptors in BV-2 microglia.

  3. Neuronal Orphan G-Protein Coupled Receptor Proteins Mediate Plasmalogens-Induced Activation of ERK and Akt Signaling.

    Directory of Open Access Journals (Sweden)

    Md Shamim Hossain

    Full Text Available The special glycerophospholipids plasmalogens (Pls are enriched in the brain and reported to prevent neuronal cell death by enhancing phosphorylation of Akt and ERK signaling in neuronal cells. Though the activation of Akt and ERK was found to be necessary for the neuronal cells survival, it was not known how Pls enhanced cellular signaling. To answer this question, we searched for neuronal specific orphan GPCR (G-protein coupled receptor proteins, since these proteins were believed to play a role in cellular signal transduction through the lipid rafts, where both Pls and some GPCRs were found to be enriched. In the present study, pan GPCR inhibitor significantly reduced Pls-induced ERK signaling in neuronal cells, suggesting that Pls could activate GPCRs to induce signaling. We then checked mRNA expression of 19 orphan GPCRs and 10 of them were found to be highly expressed in neuronal cells. The knockdown of these 10 neuronal specific GPCRs by short hairpin (sh-RNA lentiviral particles revealed that the Pls-mediated phosphorylation of ERK was inhibited in GPR1, GPR19, GPR21, GPR27 and GPR61 knockdown cells. We further found that the overexpression of these GPCRs enhanced Pls-mediated phosphorylation of ERK and Akt in cells. Most interestingly, the GPCRs-mediated cellular signaling was reduced significantly when the endogenous Pls were reduced. Our cumulative data, for the first time, suggest a possible mechanism for Pls-induced cellular signaling in the nervous system.

  4. Transport phenomena in environmental engineering

    Science.gov (United States)

    Sander, Aleksandra; Kardum, Jasna Prlić; Matijašić, Gordana; Žižek, Krunoslav

    2018-01-01

    A term transport phenomena arises as a second paradigm at the end of 1950s with high awareness that there was a strong need to improve the scoping of chemical engineering science. At that point, engineers became highly aware that it is extremely important to take step forward from pure empirical description and the concept of unit operations only to understand the specific process using phenomenological equations that rely on three elementary physical processes: momentum, energy and mass transport. This conceptual evolution of chemical engineering was first presented with a well-known book of R. Byron Bird, Warren E. Stewart and Edwin N. Lightfoot, Transport Phenomena, published in 1960 [1]. What transport phenomena are included in environmental engineering? It is hard to divide those phenomena through different engineering disciplines. The core is the same but the focus changes. Intention of the authors here is to present the transport phenomena that are omnipresent in treatment of various process streams. The focus in this chapter is made on the transport phenomena that permanently occur in mechanical macroprocesses of sedimentation and filtration for separation in solid-liquid particulate systems and on the phenomena of the flow through a fixed and a fluidized bed of particles that are immanent in separation processes in packed columns and in environmental catalysis. The fundamental phenomena for each thermal and equilibrium separation process technology are presented as well. Understanding and mathematical description of underlying transport phenomena result in scoping the separation processes in a way that ChEs should act worldwide.

  5. Degradation of Epidermal Growth Factor Receptor Mediates Dasatinib-Induced Apoptosis in Head and Neck Squamous Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chin Lin

    2012-06-01

    Full Text Available Epidermal growth factor receptor (EGFR is an important oncoprotein that promotes cell growth and proliferation. Dasatinib, a bcr-abl inhibitor, has been approved clinically for the treatment of chronic myeloid leukemia and demonstrated to be effective against solid tumors in vitro through Src inhibition. Here, we disclose that EGFR degradation mediated dasatinib-induced apoptosis in head and neck squamous cell carcinoma (HNSCC cells. HNSCC cells, including Ca9-22, FaDu, HSC3, SAS, SCC-25, and UMSCC1, were treated with dasatinib, and cell viability, apoptosis, and underlying signal transduction were evaluated. Dasatinib exhibited differential sensitivities against HNSCC cells. Growth inhibition and apoptosis were correlated with its inhibition on Akt, Erk, and Bcl-2, irrespective of Src inhibition. Accordingly, we found that down-regulation of EGFR was a determinant of dasatinib sensitivity. Lysosome inhibitor reversed dasatinib-induced EGFR down-regulation, and c-cbl activity was increased by dasatinib, indicating that dasatinib-induced EGFR down-regulation might be through c-cbl-mediated lysosome degradation. Increased EGFR activation by ligand administration rescued cells from dasatinib-induced apoptosis, whereas inhibition of EGFR enhanced its apoptotic effect. Estrogen receptor α (ERα was demonstrated to play a role in Bcl-2 expression, and dasatinib inhibited ERα at the pretranslational level. ERα was associated with EGFR in dasatinib-treated HNSCC cells. Furthermore, the xenograft model showed that dasatinib inhibited HSC3 tumor growth through in vivo down-regulation of EGFR and ERα. In conclusion, degradation of EGFR is a novel mechanism responsible for dasatinib-induced apoptosis in HNSCC cells.

  6. Estradiol-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the hypothalamus is independent of estrogen receptor-beta.

    Science.gov (United States)

    Rossi, Dania V; Dai, Ying; Thomas, Peter; Carrasco, Gonzalo A; DonCarlos, Lydia L; Muma, Nancy A; Li, Qian

    2010-08-01

    Estradiol regulates serotonin 1A (5-HT(1A)) receptor signaling. Since desensitization of 5-HT(1A) receptors may be an underlying mechanism by which selective serotonin reuptake inhibitors (SSRIs) mediate their therapeutic effects and combining estradiol with SSRIs enhances the efficacy of the SSRIs, it is important to determine which estrogen receptors are capable of desensitizating 5-HT(1A) receptor function. We previously demonstrated that selective activation of the estrogen receptor, GPR30, desensitizes 5-HT(1A) receptor signaling in rat hypothalamic paraventricular nucleus (PVN). However, since estrogen receptor-beta (ERbeta), is highly expressed in the PVN, we investigated the role of ERbeta in estradiol-induced desensitization of 5-HT(1A) receptor signaling. We first showed that a selective ERbeta agonist, diarylpropionitrile (DPN) has a 100-fold lower binding affinity than estradiol for GPR30. Administration of DPN did not desensitize 5-HT(1A) receptor signaling in rat PVN as demonstrated by agonist-stimulated hormone release. Second, we used a recombinant adenovirus containing ERbeta siRNAs to decrease ERbeta expression in the PVN. Reductions in ERbeta did not alter the estradiol-induced desensitization of 5-HT(1A) receptor signaling in oxytocin cells. In contrast, in animals with reduced ERbeta, estradiol administration, instead of producing desensitization, augmented the ACTH response to a 5-HT(1A) agonist. Combined with the results from the DPN treatment experiments, desensitization of 5-HT(1A) receptor signaling does not appear to be mediated by ERbeta in oxytocin cells, but that ERbeta, together with GPR30, may play a complex role in central regulation of 5-HT(1A)-mediated ACTH release. Determining the mechanisms by which estrogens induce desensitization may aid in the development of better treatments for mood disorders. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Implementation of a fluorescence-based screening assay identifies histamine H3 receptor antagonists clobenpropit and iodophenpropit as subunit-selective N-methyl-D-aspartate receptor antagonists

    DEFF Research Database (Denmark)

    Hansen, Kasper Bø; Mullasseril, Praseeda; Dawit, Sara

    2010-01-01

    N-Methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca(2+)-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe...... a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal...

  8. Effect of genetic and pharmacological blockade of GABA receptors on the 5-HT2C receptor function during stress.

    OpenAIRE

    Martin Cédric B P; Gassmann Martin; Chevarin Caroline; Hamon Michel; Rudolph Uwe; Bettler Bernhard; Lanfumey Laurence; Mongeau Raymond

    2014-01-01

    5-HT2C receptors play a role in psychoaffective disorders and often contribute to the antidepressant and anxiolytic effects of psychotropic drugs. During stress, activation of these receptors exerts a negative feedback on serotonin (5-HT) release, probably by increasing the activity of GABAergic interneurons. However, to date, the GABA receptor types that mediate the 5-HT2C receptor-induced feedback inhibition are still unknown. To address this question, we assessed the inhibition of 5-HT tur...

  9. Iptakalim inhibits nicotinic acetylcholine receptor-mediated currents in dopamine neurons acutely dissociated from rat substantia nigra pars compacta.

    Science.gov (United States)

    Hu, J; DeChon, J; Yan, K C; Liu, Q; Hu, G; Wu, J

    2006-07-31

    Iptakalim hydrochloride, a novel cardiovascular ATP-sensitive K(+) (K(ATP)) channel opener, has shown remarkable antihypertensive and neuroprotective effects in a variety of studies using in vivo and in vitro preparations. We recently found that iptakalim blocked human alpha4-containing nicotinic acetylcholine receptors (nAChRs) heterologously expressed in the human SH-EP1 cell line. In the present study, we examined the effects of iptakalim on several neurotransmitter-induced current responses in single DA neurons freshly dissociated from rat substantia nigra pars compacta (SNc), using perforated patch-clamp recordings combined with a U-tube rapid drug application. In identified DA neurons under voltage-clamp configuration, glutamate-, NMDA-, and GABA-induced currents were insensitive to co-application with iptakalim (100 microM), while whole-cell currents induced by ACh (1 mM+1 microM atropine) or an alpha4beta2 nicotinic acetylcholine receptors relatively selective agonist, RJR-2403 (300 microM), were eliminated by iptakalim. Iptakalim inhibited RJR-2403-induced current in a concentration-dependent manner, and reduced maximal RJR-2403-induced currents at the highest agonist concentration, suggesting a non-competitive block. In current-clamp mode, iptakalim failed to affect resting membrane potential and spontaneous action potential firing, but abolished RJR-2403-induced neuronal firing acceleration. Together, these results indicate that in dissociated SNc DA neurons, alpha4-containing nAChRs, rather than ionotropic glutamate receptors, GABA(A) receptors or perhaps K-ATP channels are the sensitive targets to mediate iptakalim's pharmacological roles.

  10. Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages.

    Science.gov (United States)

    Maler, Mareike D; Nielsen, Peter J; Stichling, Nicole; Cohen, Idan; Ruzsics, Zsolt; Wood, Connor; Engelhard, Peggy; Suomalainen, Maarit; Gyory, Ildiko; Huber, Michael; Müller-Quernheim, Joachim; Schamel, Wolfgang W A; Gordon, Siamon; Jakob, Thilo; Martin, Stefan F; Jahnen-Dechent, Willi; Greber, Urs F; Freudenberg, Marina A; Fejer, György

    2017-08-01

    The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors. IMPORTANCE Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages

  11. Sweet Taste Receptor Signaling Network: Possible Implication for Cognitive Functioning

    Directory of Open Access Journals (Sweden)

    Menizibeya O. Welcome

    2015-01-01

    Full Text Available Sweet taste receptors are transmembrane protein network specialized in the transmission of information from special “sweet” molecules into the intracellular domain. These receptors can sense the taste of a range of molecules and transmit the information downstream to several acceptors, modulate cell specific functions and metabolism, and mediate cell-to-cell coupling through paracrine mechanism. Recent reports indicate that sweet taste receptors are widely distributed in the body and serves specific function relative to their localization. Due to their pleiotropic signaling properties and multisubstrate ligand affinity, sweet taste receptors are able to cooperatively bind multiple substances and mediate signaling by other receptors. Based on increasing evidence about the role of these receptors in the initiation and control of absorption and metabolism, and the pivotal role of metabolic (glucose regulation in the central nervous system functioning, we propose a possible implication of sweet taste receptor signaling in modulating cognitive functioning.

  12. Interaction between tumor cell surface receptor RAGE and proteinase 3 mediates prostate cancer metastasis to bone

    Science.gov (United States)

    Kolonin, Mikhail G.; Sergeeva, Anna; Staquicini, Daniela I.; Smith, Tracey L.; Tarleton, Christy A.; Molldrem, Jeffrey J.; Sidman, Richard L.; Marchiò, Serena; Pasqualini, Renata; Arap, Wadih

    2017-01-01

    Human prostate cancer often metastasizes to bone, but the biological basis for such site-specific tropism remains largely unresolved. Recent work led us to hypothesize that this tropism may reflect pathogenic interactions between RAGE, a cell surface receptor expressed on malignant cells in advanced prostate cancer, and proteinase 3 (PR3), a serine protease present in inflammatory neutrophils and hematopoietic cells within the bone marrow microenvironment. In this study, we establish that RAGE-PR3 interaction mediates homing of prostate cancer cells to the bone marrow. PR3 bound to RAGE on the surface of prostate cancer cells in vitro, inducing tumor cell motility through a non-proteolytic signal transduction cascade involving activation and phosphorylation of ERK1/2 and JNK1. In preclinical models of experimental metastasis, ectopic expression of RAGE on human prostate cancer cells was sufficient to promote bone marrow homing within a short time frame. Our findings demonstrate how RAGE-PR3 interactions between human prostate cancer cells and the bone marrow microenvironment mediate bone metastasis during prostate cancer progression, with potential implications for prognosis and therapeutic intervention. PMID:28428279

  13. Toll-Like Receptor-Mediated Free Radical Generation in Clonorchis sinensis Excretory-Secretory Product-Treated Cholangiocarcinoma Cells.

    Science.gov (United States)

    Bahk, Young Yil; Pak, Jhang Ho

    2016-10-01

    Clonorchiasis, caused by direct contact with Clonorchis sinensis worms and their excretory-secretory products (ESPs), is associated with chronic inflammation, malignant changes in bile ducts, and even cholangiocarcinogenesis. Our previous report revealed that intracellular free radicals enzymatically generated by C. sinensis ESPs cause NF-κB-mediated inflammation in human cholangiocarcinoma cells (HuCCT1). Therefore, the present study was conducted to examine the role of upstream Toll-like receptors (TLRs) on the initial host innate immune responses to infection. We found that treatment of HuCCT1 cells with native ESPs induced changes in TLR mRNA levels in a time-dependent manner, concomitant with the generation of free radicals. ESP-mediated free radical generation was markedly attenuated by preincubation of the cells with TLR1-4-neutralizing antibodies, indicating that at least TLR1 through 4 participate in stimulation of the host innate immune responses. These findings indicate that free radicals triggered by ESPs are critically involved in TLR signal transduction. Continuous signaling by this pathway may function in initiating C. sinensis infection-associated inflammation cascades, a detrimental event leading to progression to more severe hepatobiliary diseases.

  14. Arctigenin suppresses receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages.

    Science.gov (United States)

    Kim, A-Ram; Kim, Hyuk Soon; Lee, Jeong Min; Choi, Jung Ho; Kim, Se Na; Kim, Do Kyun; Kim, Ji Hyung; Mun, Se Hwan; Kim, Jie Wan; Jeon, Hyun Soo; Kim, Young Mi; Choi, Wahn Soo

    2012-05-05

    Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid arthritis and osteoporosis. Osteoclasts are derived from hematopoietic precursor cells, and their differentiation is mediated by two cytokines, including macrophage colony stimulating factor and receptor activator of nuclear factor κB ligand (RANKL). Previous studies have shown that arctigenin exhibits an anti-inflammatory effect. However, the effect of arctigenin on osteoclast differentiation is yet to be elucidated. In this study, we found that arctigenin inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages in a dose-dependent manner and suppressed RANKL-mediated bone resorption. Additionally, the expression of typical marker proteins, such as NFATc1, c-Fos, TRAF6, c-Src, and cathepsin K, were significantly inhibited. Arctigenin inhibited the phosphorylation of Erk1/2, but not p38 and JNK, in a dose-dependent manner. Arctigenin also dramatically suppressed immunoreceptor tyrosine-based activation motif-mediated costimulatory signaling molecules, including Syk and PLCγ2, and Gab2. Notably, arctigenin inhibited the activation of Syk through RANKL stimulation. Furthermore, arctigenin prevented osteoclast differentiation in the calvarial bone of mice following stimulation with lipopolysaccharide. Our results show that arctigenin inhibits osteoclast differentiation in vitro and in vivo. Therefore, arctigenin may be useful for treating rheumatoid arthritis and osteoporosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. The CD3 gamma leucine-based receptor-sorting motif is required for efficient ligand-mediated TCR down-regulation

    DEFF Research Database (Denmark)

    von Essen, Marina; Menné, Charlotte; Nielsen, Bodil L

    2002-01-01

    . The other pathway is dependent on protein kinase C (PKC)-mediated activation of the CD3 gamma di-leucine-based receptor-sorting motif. Previous studies have failed to demonstrate a connection between ligand- and PKC-induced TCR down-regulation. Thus, although an apparent paradox, the dogma has been...... that ligand- and PKC-induced TCR down-regulations are not interrelated. By analyses of a newly developed CD3 gamma-negative T cell variant, freshly isolated and PHA-activated PBMC, and a mouse T cell line, we challenged this dogma and demonstrate in this work that PKC activation and the CD3 gamma di...

  16. Regulation of hippocampal cannabinoid CB1 receptor actions by adenosine A1 receptors and chronic caffeine administration: implications for the effects of Δ9-tetrahydrocannabinol on spatial memory.

    Science.gov (United States)

    Sousa, Vasco C; Assaife-Lopes, Natália; Ribeiro, Joaquim A; Pratt, Judith A; Brett, Ros R; Sebastião, Ana M

    2011-01-01

    The cannabinoid CB(1) receptor-mediated modulation of γ-aminobutyric acid (GABA) release from inhibitory interneurons is important for the integrity of hippocampal-dependent spatial memory. Although adenosine A(1) receptors have a central role in fine-tuning excitatory transmission in the hippocampus, A(1) receptors localized in GABAergic cells do not directly influence GABA release. CB(1) and A(1) receptors are the main targets for the effects of two of the most heavily consumed psychoactive substances worldwide: Δ(9)-tetrahydrocannabinol (THC, a CB(1) receptor agonist) and caffeine (an adenosine receptor antagonist). We first tested the hypothesis that an A(1)-CB(1) interaction influences GABA and glutamate release in the hippocampus. We found that A(1) receptor activation attenuated the CB(1)-mediated inhibition of GABA and glutamate release and this interaction was manifested at the level of G-protein activation. Using in vivo and in vitro approaches, we then investigated the functional implications of the adenosine-cannabinoid interplay that may arise following chronic caffeine consumption. Chronic administration of caffeine in mice (intraperitoneally, 3 mg/kg/day, for 15 days, >12 h before trials) led to an A(1)-mediated enhancement of the CB(1)-dependent acute disruptive effects of THC on a short-term spatial memory task, despite inducing a reduction in cortical and hippocampal CB(1) receptor number and an attenuation of CB(1) coupling with G protein. A(1) receptor levels were increased following chronic caffeine administration. This study shows that A(1) receptors exert a negative modulatory effect on CB(1)-mediated inhibition of GABA and glutamate release, and provides the first evidence of chronic caffeine-induced alterations on the cannabinoid system in the cortex and hippocampus, with functional implications in spatial memory.

  17. Effects of muscarinic receptor antagonists on cocaine discrimination in wild-type mice and in muscarinic receptor M1, M2, and M4 receptor knockout mice

    DEFF Research Database (Denmark)

    Joseph, Lauren; Thomsen, Morgane

    2017-01-01

    Muscarinic M1/M4 receptor stimulation can reduce abuse-related effects of cocaine and may represent avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of cocaine, including discriminative stimulus (SD) effects, but the receptor subtypes mediating those...

  18. Comparison of MEK/ERK pathway inhibitors on the upregulation of vascular G-protein coupled receptors in rat cerebral arteries

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Ansar, Saema; Edvinsson, Lars

    2010-01-01

    on translational level and increased respective contractions. The prostanoid TP receptor mediated contraction curve was left-wards shifted by organ culture. Organ culture was associated with elevated pERK1/2 in the vascular smooth muscle cells: the MEK1/2 inhibitor U0126 attenuated the endothelin ET(B) receptor...... mediated contraction at post-translational level or by changing the receptor affinities. The serotonin 5-HT(1B) receptor and prostanoid TP receptor mediated contractions were abolished by U0126. Administration of U0126 6h after start of incubation blocked the receptor upregulation. In conclusion, MEK...

  19. Prostaglandin Receptor Signaling in Disease

    Directory of Open Access Journals (Sweden)

    Toshiyuki Matsuoka

    2007-01-01

    Full Text Available Prostanoids, consisting of the prostaglandins (PGs and the thromboxanes (TXs, are a group of lipid mediators formed in response to various stimuli. They include PGD2, PGE2, PGF2α, PGI2, and TXA2. They are released outside of the cells immediately after synthesis, and exert their actions by binding to a G-protein coupled rhodopsin-type receptor on the surface of target cells. There are eight types of the prostanoid receptors conserved in mammals from mouse to human. They are the PGD receptor (DP, four subtypes of the PGE receptor (EP1, EP2, EP3, and EP4, the PGF receptor (FP, PGI receptor (IP, and TXA receptor (TP. Recently, mice deficient in each of these prostanoid receptors were generated and subjected to various experimental models of disease. These studies have revealed the roles of PG receptor signaling in various pathological conditions, and suggest that selective manipulation of the prostanoid receptors may be beneficial in treatment of the pathological conditions. Here we review these recent findings of roles of prostanoid receptor signaling and their therapeutic implications.

  20. Context-Dependent Modulation of GABAAR-Mediated Tonic Currents

    DEFF Research Database (Denmark)

    Patel, Bijal; Bright, Damian P; Mortensen, Martin

    2016-01-01

    UNLABELLED: Tonic GABA currents mediated by high-affinity extrasynaptic GABAA receptors, are increasingly recognized as important regulators of cell and neuronal network excitability. Dysfunctional GABAA receptor signaling that results in modified tonic GABA currents is associated with a number o...

  1. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  2. The GluR2 hypothesis: Ca(++)-permeable AMPA receptors in delayed neurodegeneration

    NARCIS (Netherlands)

    Bennett, M. V.; Pellegrini-Giampietro, D. E.; Gorter, J. A.; Aronica, E.; Connor, J. A.; Zukin, R. S.

    1996-01-01

    Increased glutamate-receptor-mediated Ca++ influx is considered an important factor underlying delayed neurodegeneration following ischemia or seizures. Until recently, the NMDA receptor was the only glutamate receptor known to be Ca(++)-permeable. It is now well established that glutamate receptors

  3. Lipids Derived from Virulent Francisella tularensis Broadly Inhibit Pulmonary Inflammation via Toll-Like Receptor 2 and Peroxisome Proliferator-Activated Receptor α

    Science.gov (United States)

    Crane, Deborah D.; Ireland, Robin; Alinger, Joshua B.; Small, Pamela

    2013-01-01

    Francisella tularensis is a Gram-negative facultative intracellular pathogen that causes an acute lethal respiratory disease in humans. The heightened virulence of the pathogen is linked to its unique ability to inhibit Toll-like receptor (TLR)-mediated inflammatory responses. The bacterial component and mechanism of this inhibition are unknown. Here we show that lipids isolated from virulent but not attenuated strains of F. tularensis are not detected by host cells, inhibit production of proinflammatory cytokines by primary macrophages in response to known TLR ligands, and suppress neutrophil recruitment in vivo. We further show that lipid-mediated inhibition of inflammation is dependent on TLR2, MyD88, and the nuclear hormone and fatty acid receptor peroxisome proliferator-activated receptor α (PPARα). Pathogen lipid-mediated interference with inflammatory responses through the engagement of TLR2 and PPARα represents a novel manipulation of host signaling pathways consistent with the ability of highly virulent F. tularensis to efficiently evade host immune responses. PMID:23925884

  4. T cell receptor (TCR-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ signaling mediate superior tumor regression in an animal model of adoptive cell therapy

    Directory of Open Access Journals (Sweden)

    Quatromoni Jon G

    2012-06-01

    Full Text Available Abstract Tumor antigen-reactive T cells must enter into an immunosuppressive tumor microenvironment, continue to produce cytokine and deliver apoptotic death signals to affect tumor regression. Many tumors produce transforming growth factor beta (TGFβ, which inhibits T cell activation, proliferation and cytotoxicity. In a murine model of adoptive cell therapy, we demonstrate that transgenic Pmel-1 CD8 T cells, rendered insensitive to TGFβ by transduction with a TGFβ dominant negative receptor II (DN, were more effective in mediating regression of established B16 melanoma. Smaller numbers of DN Pmel-1 T cells effectively mediated tumor regression and retained the ability to produce interferon-γ in the tumor microenvironment. These results support efforts to incorporate this DN receptor in clinical trials of adoptive cell therapy for cancer.

  5. Regulation of DNA Damage Response by Estrogen Receptor β-Mediated Inhibition of Breast Cancer Associated Gene 2

    Directory of Open Access Journals (Sweden)

    Yuan-Hao Lee

    2015-04-01

    Full Text Available Accumulating evidence suggests that ubiquitin E3 ligases are involved in cancer development as their mutations correlate with genomic instability and genetic susceptibility to cancer. Despite significant findings of cancer-driving mutations in the BRCA1 gene, estrogen receptor (ER-positive breast cancers progress upon treatment with DNA damaging-cytotoxic therapies. In order to understand the underlying mechanism by which ER-positive breast cancer cells develop resistance to DNA damaging agents, we employed an estrogen receptor agonist, Erb-041, to increase the activity of ERβ and negatively regulate the expression and function of the estrogen receptor α (ERα in MCF-7 breast cancer cells. Upon Erb-041-mediated ERα down-regulation, the transcription of an ERα downstream effector, BCA2 (Breast Cancer Associated gene 2, correspondingly decreased. The ubiquitination of chromatin-bound BCA2 was induced by ultraviolet C (UVC irradiation but suppressed by Erb-041 pretreatment, resulting in a blunted DNA damage response. Upon BCA2 silencing, DNA double-stranded breaks increased with Rad51 up-regulation and ataxia telangiectasia mutated (ATM activation. Mechanistically, UV-induced BCA2 ubiquitination and chromatin binding were found to promote DNA damage response and repair via the interaction of BCA2 with ATM, γH2AX and Rad51. Taken together, this study suggests that Erb-041 potentiates BCA2 dissociation from chromatin and co-localization with Rad51, resulting in inhibition of homologous recombination repair.

  6. Local analgesic effect of tramadol is not mediated by opioid receptors in early postoperative pain in rats

    Directory of Open Access Journals (Sweden)

    Angela Maria Sousa

    2015-06-01

    Full Text Available BACKGROUND AND OBJECTIVES: Tramadol is known as a central acting analgesic drug, used for the treatment of moderate to severe pain. Local analgesic effect has been demonstrated, in part due to local anesthetic-like effect, but other mechanisms remain unclear. The role of peripheral opioid receptors in the local analgesic effect is not known. In this study, we examined role of peripheral opioid receptors in the local analgesic effect of tramadol in the plantar incision model. METHODS: Young male Wistar rats were divided into seven groups: control, intraplantar tramadol, intravenous tramadol, intravenous naloxone-intraplantar tramadol, intraplantar naloxone-intraplantar tramadol, intravenous naloxone-intravenous tramadol, and intravenous naloxone. After receiving the assigned drugs (tramadol 5 mg, naloxone 200 µg or 0.9% NaCl, rats were submitted to plantar incision, and withdrawal thresholds after mechanical stimuli with von Frey filaments were assessed at baseline, 10, 15, 30, 45 and 60 min after incision. RESULTS: Plantar incision led to marked mechanical hyperalgesia during the whole period of observation in the control group, no mechanical hyperalgesia were observed in intraplantar tramadol group, intraplantar naloxone-intraplantar tramadol group and intravenous naloxone-intraplantar tramadol. In the intravenous tramadol group a late increase in withdrawal thresholds (after 45 min was observed, the intravenous naloxone-intravenous tramadol group and intravenous naloxone remained hyperalgesic during the whole period. CONCLUSIONS: Tramadol presented an early local analgesic effect decreasing mechanical hyperalgesia induced by plantar incision. This analgesic effect was not mediated by peripheral opioid receptors.

  7. Permanent Distal Occlusion of Middle Cerebral Artery in Rat Causes Local Increased ETB, 5-HT1B and AT1 Receptor-Mediated Contractility Downstream of Occlusion

    DEFF Research Database (Denmark)

    Rasmussen, Marianne N P; Hornbak, Malene; Larsen, Stine S

    2013-01-01

    Background/Aims: In response to experimental stroke, a characteristic functional and expressional upregulation of contractile G-protein-coupled receptors has been uncovered in the affected cerebral vasculature; however, the mechanism initiating this phenomenon remains unknown. Methods: Using...... a model of permanent distal occlusion of rat middle cerebral arteries, we investigated whether there was a regional difference in receptor-mediated contractility of segments located upstream and downstream of the occlusion site. The contractile response to endothelin, angiotensin and 5-hydroxytryptamine...... receptor stimulation was studied by sensitive wire myograph. Results: Only downstream segments exhibited an augmented contractile response to stimulation with each of the three ligands, with the response towards sarafotoxin 6c being especially augmented compared to sham, upstream and contralateral controls...

  8. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity

    Directory of Open Access Journals (Sweden)

    Darya V. Bazovkina

    2015-01-01

    Full Text Available In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors.

  9. GABA-B receptor activation and conflict behavior

    International Nuclear Information System (INIS)

    Ketelaars, C.E.J.; Bollen, E.L.; Rigter, H.; Bruinvels, J.

    1988-01-01

    Baclofen and oxazepam enhance extinction of conflict behavior in the Geller-Seifter test while baclofen and diazepam release punished behavior in Vogel's conflict test. In order to investigate the possibility that the effect of the selective GABA-B receptor agonist baclofen is mediated indirectly via the GABA-A/benzodiazepine receptor complex, the effect of pretreatment of rats with baclofen on [ 3 H]-diazepam binding to washed and unwashed cortical and cerebellar membranes of rats has been studied. Baclofen pretreatment increase Bmax in washed cerebellar membranes when bicuculline was present in the incubation mixture. No effect was seen in cortical membranes. The present results render it unlikely that the effect of baclofen on extinction of conflict behavior and punished drinking is mediated via the GABA-A/benzodiazepine receptor complex. 50 references, 1 figure, 4 tables

  10. Emerging functions for neuropeptide Y5 receptors

    NARCIS (Netherlands)

    Bischoff, A.; Michel, M. C.

    1999-01-01

    The Y5 subtype of neuropeptide Y (NPY) receptors has raised considerable interest as a mediator of NPY-stimulated food intake, but with the advent of recent data, this hypothesis has come into question. Moreover, Y5 receptor-selective drugs might not be specific for food intake because additional

  11. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  12. Different forms of glycine- and GABAA-receptor mediated inhibitory synaptic transmission in mouse superficial and deep dorsal horn neurons

    Directory of Open Access Journals (Sweden)

    Brichta Alan M

    2009-11-01

    Full Text Available Abstract Background Neurons in superficial (SDH and deep (DDH laminae of the spinal cord dorsal horn receive sensory information from skin, muscle, joints and viscera. In both regions, glycine- (GlyR and GABAA-receptors (GABAARs contribute to fast synaptic inhibition. For rat, several types of GABAAR coexist in the two regions and each receptor type provides different contributions to inhibitory tone. Recent work in mouse has discovered an additional type of GlyR, (containing alpha 3 subunits in the SDH. The contribution of differing forms of the GlyR to sensory processing in SDH and DDH is not understood. Methods and Results Here we compare fast inhibitory synaptic transmission in mouse (P17-37 SDH and DDH using patch-clamp electrophysiology in transverse spinal cord slices (L3-L5 segments, 23°C. GlyR-mediated mIPSCs were detected in 74% (25/34 and 94% (25/27 of SDH and DDH neurons, respectively. In contrast, GABAAR-mediated mIPSCs were detected in virtually all neurons in both regions (93%, 14/15 and 100%, 18/18. Several Gly- and GABAAR properties also differed in SDH vs. DDH. GlyR-mediated mIPSC amplitude was smaller (37.1 ± 3.9 vs. 64.7 ± 5.0 pA; n = 25 each, decay time was slower (8.5 ± 0.8 vs. 5.5 ± 0.3 ms, and frequency was lower (0.15 ± 0.03 vs. 0.72 ± 0.13 Hz in SDH vs. DDH neurons. In contrast, GABAAR-mediated mIPSCs had similar amplitudes (25.6 ± 2.4, n = 14 vs. 25. ± 2.0 pA, n = 18 and frequencies (0.21 ± 0.08 vs. 0.18 ± 0.04 Hz in both regions; however, decay times were slower (23.0 ± 3.2 vs. 18.9 ± 1.8 ms in SDH neurons. Mean single channel conductance underlying mIPSCs was identical for GlyRs (54.3 ± 1.6 pS, n = 11 vs. 55.7 ± 1.8, n = 8 and GABAARs (22.7 ± 1.7 pS, n = 10 vs. 22.4 ± 2.0 pS, n = 11 in both regions. We also tested whether the synthetic endocanabinoid, methandamide (methAEA, had direct effects on Gly- and GABAARs in each spinal cord region. MethAEA (5 μM reduced GlyR-mediated mIPSC frequency in SDH

  13. Fas receptor-mediated apoptosis : a clinical application?

    NARCIS (Netherlands)

    Timmer, T; de Vries, EGE; de Jong, S

    Fas is a membrane protein belonging to the death receptor family. Cross-linking of Fas by its ligand, FasL, or agonistic anti-Fas antibodies, induces apoptosis of cells expressing Fas on the membrane by triggering a cascade of caspases. Since many different tumours express Fas on their membrane,

  14. Action control is mediated by prefrontal BDNF and glucocorticoid receptor binding.

    Science.gov (United States)

    Gourley, Shannon L; Swanson, Andrew M; Jacobs, Andrea M; Howell, Jessica L; Mo, Michelle; Dileone, Ralph J; Koleske, Anthony J; Taylor, Jane R

    2012-12-11

    Stressor exposure biases decision-making strategies from those based on the relationship between actions and their consequences to others restricted by stimulus-response associations. Chronic stressor exposure also desensitizes glucocorticoid receptors (GR) and diminishes motivation to acquire food reinforcement, although causal relationships are largely not established. We show that a history of chronic exposure to the GR ligand corticosterone or acute posttraining GR blockade with RU38486 makes rodents less able to perform actions based on their consequences. Thus, optimal GR binding is necessary for the consolidation of new response-outcome learning. In contrast, medial prefrontal (but not striatal) BDNF can account for stress-related amotivation, in that selective medial prefrontal cortical Bdnf knockdown decreases break-point ratios in a progressive-ratio task. Knockdown also increases vulnerability to RU38486. Despite the role of BDNF in dendritic spine reorganization, deep-layer spine remodeling does not obviously parallel progressive-ratio response patterns, but treatment with the Na(+)-channel inhibitor riluzole reverses corticosteroid-induced motivational deficits and restores prefrontal BDNF expression after corticosterone. We argue that when prefrontal neurotrophin systems are compromised, and GR-mediated hypothalamic-pituitary-adrenal axis feedback is desensitized (as in the case of chronic stress hormone exposure), amotivation and inflexible maladaptive response strategies that contribute to stress-related mood disorders result.

  15. Click-Chemistry-Mediated Synthesis of Selective Melanocortin Receptor 4 Agonists

    DEFF Research Database (Denmark)

    Palmer, Daniel; Gonçalves, Juliana P.L.; Hansen, Louise V.

    2017-01-01

    The melanocortin receptor 4 (MC4R) subtype of the melanocortin receptor family is a target for therapeutics to ameliorate metabolic dysfunction. Endogenous MC4R agonists possess a critical pharmacophore (HFRW), and cyclization of peptide agonists often enhances potency. Thus, 17 cyclized peptides...

  16. Fundamentals of Fire Phenomena

    DEFF Research Database (Denmark)

    Quintiere, James

    analyses. Fire phenomena encompass everything about the scientific principles behind fire behaviour. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear...

  17. Ah receptor mediated suppression of the antibody response in mice is primarily dependent on the Ah phenotype of lymphoid tissue

    International Nuclear Information System (INIS)

    Silkworth, J.B.; Antrim, L.A.; Sack, G.

    1986-01-01

    Halogenated aromatic hydrocarbons act through the aromatic hydrocarbon (Ah) receptor in mice to produce a series of toxic effects of the immune system. The receptor protein is a product of the Ah gene locus. Ah responsive (Ahb/Ahb) mice express a high affinity receptor in both lymphoid and nonlymphoid tissues whereas nonresponsive Ahd/Ahd mice express a poor affinity receptor. To determine the role of the Ah receptor of lymphoid tissue relative to that of nonlymphoid tissue in the induction of immune impairment, bone marrow was used to reconstitute lethally irradiated mice of the same or opposite Ah phenotype. All mice were given 3,3',4,4'-tetrachlorobiphenyl (35 and 350 mumol/kg) ip 2 days before immunization with sheep erythrocytes (SRBC). The immune response to this T dependent antigen and organ weights were determined 5 or 7 days later in normal or chimeric mice, respectively. Monoclonal Lyt 1.1 and Lyt 1.2 antibodies were used to establish the origin of the cells which repopulated the chimeric thymuses. The immune responses of both BALB/cBy (Ahb/Ahb) and the BALB/cBy X DBA/2 hybrid, CByD2F1 (Ahb/Ahd), were significantly suppressed but DBA/2 mice were unaffected. The immune responses of chimeric BALB/cBy----BALB/cBy and BALB/cBy----DBA/2 (donor----recipient) mice were also significantly suppressed and thymic atrophy was observed in both cases. The serum anti-SRBC antibody titers of DBA/2----BALB/cBy chimeras were also significantly decreased although not to the same extent as in BALB/cBy----DBA/2 mice. Chimeric DBA/2----DBA/2 mice were not affected. These results indicate that the sensitivity to Ah receptor mediated suppression of the antibody response is primarily determined by the Ah phenotype of the lymphoid tissue

  18. Selective coupling of the S1P3 receptor subtype to S1P-mediated RhoA activation and cardioprotection.

    Science.gov (United States)

    Yung, Bryan S; Brand, Cameron S; Xiang, Sunny Y; Gray, Charles B B; Means, Christopher K; Rosen, Hugh; Chun, Jerold; Purcell, Nicole H; Brown, Joan Heller; Miyamoto, Shigeki

    2017-02-01

    Sphingosine-1-phosphate (S1P), a bioactive lysophospholipid, is generated and released at sites of tissue injury in the heart and can act on S1P 1 , S1P 2 , and S1P 3 receptor subtypes to affect cardiovascular responses. We established that S1P causes little phosphoinositide hydrolysis and does not induce hypertrophy indicating that it does not cause receptor coupling to G q . We previously demonstrated that S1P confers cardioprotection against ischemia/reperfusion by activating RhoA and its downstream effector PKD. The S1P receptor subtypes and G proteins that regulate RhoA activation and downstream responses in the heart have not been determined. Using siRNA or pertussis toxin to inhibit different G proteins in NRVMs we established that S1P regulates RhoA activation through Gα 13 but not Gα 12 , Gα q , or Gα i . Knockdown of the three major S1P receptors using siRNA demonstrated a requirement for S1P 3 in RhoA activation and subsequent phosphorylation of PKD, and this was confirmed in studies using isolated hearts from S1P 3 knockout (KO) mice. S1P treatment reduced infarct size induced by ischemia/reperfusion in Langendorff perfused wild-type (WT) hearts and this protection was abolished in the S1P 3 KO mouse heart. CYM-51736, an S1P 3 -specific agonist, also decreased infarct size after ischemia/reperfusion to a degree similar to that achieved by S1P. The finding that S1P 3 receptor- and Gα 13 -mediated RhoA activation is responsible for protection against ischemia/reperfusion suggests that selective targeting of S1P 3 receptors could provide therapeutic benefits in ischemic heart disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. H4 histamine receptors mediate cell cycle arrest in growth factor-induced murine and human hematopoietic progenitor cells.

    Directory of Open Access Journals (Sweden)

    Anne-France Petit-Bertron

    Full Text Available The most recently characterized H4 histamine receptor (H4R is expressed preferentially in the bone marrow, raising the question of its role during hematopoiesis. Here we show that both murine and human progenitor cell populations express this receptor subtype on transcriptional and protein levels and respond to its agonists by reduced growth factor-induced cell cycle progression that leads to decreased myeloid, erythroid and lymphoid colony formation. H4R activation prevents the induction of cell cycle genes through a cAMP/PKA-dependent pathway that is not associated with apoptosis. It is mediated specifically through H4R signaling since gene silencing or treatment with selective antagonists restores normal cell cycle progression. The arrest of growth factor-induced G1/S transition protects murine and human progenitor cells from the toxicity of the cell cycle-dependent anticancer drug Ara-C in vitro and reduces aplasia in a murine model of chemotherapy. This first evidence for functional H4R expression in hematopoietic progenitors opens new therapeutic perspectives for alleviating hematotoxic side effects of antineoplastic drugs.

  20. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase

    International Nuclear Information System (INIS)

    Iri-Sofla, Farnoush Jafari; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud; Rasaee, Mohammad J.

    2011-01-01

    The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3ζ/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of FcγRII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for high and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy.

  1. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase

    Energy Technology Data Exchange (ETDEWEB)

    Iri-Sofla, Farnoush Jafari [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Rahbarizadeh, Fatemeh, E-mail: rahbarif@modares.ac.ir [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ahmadvand, Davoud [Center of Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen O (Denmark); Rasaee, Mohammad J. [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2011-11-01

    The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3{zeta}/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of Fc{gamma}RII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for high and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy.

  2. Switching Phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Mazza, M. G.; Kumar, P.; Plerou, V.; Preis, T.; Stokely, K.; Xu, L.

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines can suddenly "switch" from one behavior to another, even though they possess no perfect metronome in time. As if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many temporal patterns in physics, economics, and medicine and even begin to characterize the switching phenomena that enable a system to pass from one state to another. We discuss some applications of correlated randomness to understanding switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water's anomalies are related to a switching point (which is not unlike the "tipping point" immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not "outliers" (another Gladwell immortalization).

  3. Transcriptional targets shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta.

    Science.gov (United States)

    Vanacker, J M; Pettersson, K; Gustafsson, J A; Laudet, V

    1999-01-01

    The physiological activities of estrogens are thought to be mediated by specific nuclear receptors, ERalpha and ERbeta. However, certain tissues, such as the bone, that are highly responsive to estrogens only express a low level of these receptors. Starting from this apparent contradiction, we have evaluated the potentials of two related receptors ERRalpha and ERRbeta to intervene in estrogen signaling. ERalpha, ERRalpha and ERRbeta bind to and activate transcription through both the classical estrogen response element (ERE) and the SF-1 response element (SFRE). In contrast, ERbeta DNA-binding and transcriptional activity is restricted to the ERE. Accordingly, the osteopontin gene promoter is stimulated through SFRE sequences, by ERRalpha as well as by ERalpha, but not by ERbeta. Analysis of the cross-talk within the ER/ERR subgroup of nuclear receptors thus revealed common targets but also functional differences between the two ERs. PMID:10428965

  4. The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in Caenorhabditis elegans.

    Science.gov (United States)

    Grants, Jennifer M; Ying, Lisa T L; Yoda, Akinori; You, Charlotte C; Okano, Hideyuki; Sawa, Hitoshi; Taubert, Stefan

    2016-02-01

    Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator's dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals. Copyright © 2016 by the Genetics Society of America.

  5. Effects of muscarinic receptor antagonists on cocaine discrimination in wild-type mice and in muscarinic receptor M1, M2, and M4 receptor knockout mice.

    Science.gov (United States)

    Joseph, Lauren; Thomsen, Morgane

    2017-06-30

    Muscarinic M 1 /M 4 receptor stimulation can reduce abuse-related effects of cocaine and may represent avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of cocaine, including discriminative stimulus (S D ) effects, but the receptor subtypes mediating those effects are not known. A better understanding of the complex cocaine/muscarinic interactions is needed to evaluate and develop potential muscarinic-based medications. Here, knockout mice lacking M 1 , M 2 , or M 4 receptors (M 1 -/- , M 2 -/- , M 4 -/- ), as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline. Muscarinic receptor antagonists with no subtype selectivity (scopolamine), or preferential affinity at the M 1 , M 2 , or M 4 subtype (telenzepine, trihexyphenidyl; methoctramine, AQ-RA 741; tropicamide) were tested alone and in combination with cocaine. In intact animals, antagonists with high affinity at M 1 /M 4 receptors partially substituted for cocaine and increased the S D effect of cocaine, while M 2 -preferring antagonists did not substitute, and reduced the S D effect of cocaine. The cocaine-like effects of scopolamine were absent in M 1 -/- mice. The cocaine S D attenuating effects of methoctramine were absent in M 2 -/- mice and almost absent in M 1 -/- mice. The findings indicate that the cocaine-like S D effects of muscarinic antagonists are primarily mediated through M 1 receptors, with a minor contribution of M 4 receptors. The data also support our previous findings that stimulation of M 1 receptors and M 4 receptors can each attenuate the S D effect of cocaine, and show that this can also be achieved by blocking M 2 autoreceptors, likely via increased acetylcholine release. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Toll-like receptor activation enhances cell-mediated immunity induced by an antibody vaccine targeting human dendritic cells

    Directory of Open Access Journals (Sweden)

    Berger Marc A

    2007-01-01

    Full Text Available Abstract Previously, we have successfully targeted the mannose receptor (MR expressed on monocyte-derived dendritic cells (DCs using a fully human MR-specific antibody, B11, as a vehicle to deliver whole protein tumor antigens such as the human chorionic gonadotropin hormone (hCGβ. Since MRs play a role in bridging innate immunity with adaptive immunity we have explored several toll-like receptor (TLR-specific ligands that may synergize with MR targeting and be applicable as adjuvants in the clinic. We demonstrate that antigen-specific helper and cytolytic T cells from both healthy donors and cancer patients were effectively primed with B11-hCGβ-treated autologous DCs when a combination of one or several TLR ligands is used. Specifically, concomitant signaling of DCs via TLR3 with dsRNA (poly I:C and DC TLR 7/8 with Resiquimod (R-848, respectively, elicited efficient antigen presentation-mediated by MR-targeting. We demonstrate that MR and TLRs contribute towards maturation and activation of DCs by a mechanism that may be driven by a combination of adjuvant and antibody vaccines that specifically deliver antigenic targets to DCs.

  7. Crystal structure of the urokinase receptor in a ligand-free form

    DEFF Research Database (Denmark)

    Xu, Xiang; Gårdsvoll, Henrik; Yuan, Cai

    2012-01-01

    The urokinase receptor urokinase-type plasminogen activator receptor (uPAR) is a surface receptor capable of not only focalizing urokinase-type plasminogen activator (uPA)-mediated fibrinolysis to the pericellular micro-environment but also promoting cell migration and chemotaxis. Consistent...

  8. Downregulation of toll-like receptor-mediated signalling pathways in oral lichen planus.

    Science.gov (United States)

    Sinon, Suraya H; Rich, Alison M; Parachuru, Venkata P B; Firth, Fiona A; Milne, Trudy; Seymour, Gregory J

    2016-01-01

    The objective of this study was to investigate the expression of Toll-like receptors (TLR) and TLR-associated signalling pathway genes in oral lichen planus (OLP). Initially, immunohistochemistry was used to determine TLR expression in 12 formalin-fixed archival OLP tissues with 12 non-specifically inflamed oral tissues as controls. RNA was isolated from further fresh samples of OLP and non-specifically inflamed oral tissue controls (n = 6 for both groups) and used in qRT(2)-PCR focused arrays to determine the expression of TLRs and associated signalling pathway genes. Genes with a statistical significance of ±two-fold regulation (FR) and a P-value < 0.05 were considered as significantly regulated. Significantly more TLR4(+) cells were present in the inflammatory infiltrate in OLP compared with the control tissues (P < 0.05). There was no statistically significant difference in the numbers of TLR2(+) and TLR8(+) cells between the groups. TLR3 was significantly downregulated in OLP (P < 0.01). TLR8 was upregulated in OLP, but the difference between the groups was not statistically significant. The TLR-mediated signalling-associated protein genes MyD88 and TIRAP were significantly downregulated (P < 0.01 and P < 0.05), as were IRAK1 (P < 0.05), MAPK8 (P < 0.01), MAP3K1 (P < 0.05), MAP4K4 (P < 0.05), REL (P < 0.01) and RELA (P < 0.01). Stress proteins HMGB1 and the heat shock protein D1 were significantly downregulated in OLP (P < 0.01). These findings suggest a downregulation of TLR-mediated signalling pathways in OLP lesions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor

    Directory of Open Access Journals (Sweden)

    Hiroki Ide

    2015-01-01

    Full Text Available There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression.

  10. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis.

    Directory of Open Access Journals (Sweden)

    Michail S Lionakis

    Full Text Available Invasive candidiasis is the 4(th leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1(lo to Ccr1(high at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1(+/+ and Ccr1(-/- donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1(+/+ recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1(+/+ cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ.

  11. Endothelial Mineralocorticoid Receptor Mediates Parenchymal Arteriole and Posterior Cerebral Artery Remodeling During Angiotensin II-Induced Hypertension.

    Science.gov (United States)

    Diaz-Otero, Janice M; Fisher, Courtney; Downs, Kelsey; Moss, M Elizabeth; Jaffe, Iris Z; Jackson, William F; Dorrance, Anne M

    2017-12-01

    The brain is highly susceptible to injury caused by hypertension because the increased blood pressure causes artery remodeling that can limit cerebral perfusion. Mineralocorticoid receptor (MR) antagonism prevents hypertensive cerebral artery remodeling, but the vascular cell types involved have not been defined. In the periphery, the endothelial MR mediates hypertension-induced vascular injury, but cerebral and peripheral arteries are anatomically distinct; thus, these findings cannot be extrapolated to the brain. The parenchymal arterioles determine cerebrovascular resistance. Determining the effects of hypertension and MR signaling on these arterioles could lead to a better understanding of cerebral small vessel disease. We hypothesized that endothelial MR signaling mediates inward cerebral artery remodeling and reduced cerebral perfusion during angiotensin II (AngII) hypertension. The biomechanics of the parenchymal arterioles and posterior cerebral arteries were studied in male C57Bl/6 and endothelial cell-specific MR knockout mice and their appropriate controls using pressure myography. AngII increased plasma aldosterone and decreased cerebral perfusion in C57Bl/6 and MR-intact littermates. Endothelial cell MR deletion improved cerebral perfusion in AngII-treated mice. AngII hypertension resulted in inward hypotrophic remodeling; this was prevented by MR antagonism and endothelial MR deletion. Our studies suggest that endothelial cell MR mediates hypertensive remodeling in the cerebral microcirculation and large pial arteries. AngII-induced inward remodeling of cerebral arteries and arterioles was associated with a reduction in cerebral perfusion that could worsen the outcome of stroke or contribute to vascular dementia. © 2017 American Heart Association, Inc.

  12. Desensitization of γ-aminobutyric acid receptor from rat brain: two distinguishable receptors on the same membrane

    International Nuclear Information System (INIS)

    Cash, D.J.; Subbarao, K.

    1987-01-01

    Transmembrane chloride flux mediated by γ-aminobutyric acid (GABA) receptor can be measured with a mammalian brain homogenate preparation containing sealed membrane vesicles. The preparation can be mixed rapidly with solutions of defined composition. Influx of 36 Cl - tracer initiated by mixing with GABA was rapidly terminated by mixing with bicuculline methiodide. The decrease in the isotope influx measurement due to prior incubation of the vesicle preparation with GABA, which increased with preincubation time and GABA concentration, was attributed to desensitization of the GABA receptor. By varying the time of preincubation with GABA between 10 ms and 50 s with quench-flow technique, the desensitization rates could be measured over their whole time course independently of the chloride ion flux rate. Most of the receptor activity decreased in a fast phase of desensitization complete in 200 ms at saturation with GABA. Remaining activity was desensitized in a few seconds. These two phases of desensitization were each kinetically first order and were shown to correspond with two distinguishable GABA receptors on the same membrane. The receptor activities could be estimated, and the faster desensitizing receptor was the predominant one, giving on average ca. 80% of the total activity. The half-response concentrations were similar, 150 and 114 μM for the major and minor receptors, respectively. The dependence on GABA concentration indicated that desensitization is mediated by two GABA binding sites. The fast desensitization rate was approximately 20-fold faster than previously reported rates while the slower desensitization rate was slightly faster than previously reported rates

  13. Protein kinase C-mediated ATP stimulation of Na(+)-ATPase activity in LLC-PK1 cells involves a P2Y2 and/or P2Y4 receptor.

    Science.gov (United States)

    Wengert, M; Ribeiro, M C; Abreu, T P; Coutinho-Silva, R; Leão-Ferreira, L R; Pinheiro, A A S; Caruso-Neves, C

    2013-07-15

    ATP-activated P2Y receptors play an important role in renal sodium excretion. The aim of this study was to evaluate the modulation of ATPase-driven sodium reabsorption in the proximal tubule by ATP or adenosine (Ado). LLC-PK1 cells, a model of porcine proximal tubule cells, were used. ATP (10(-6)M) or Ado (10(-6)M) specifically stimulated Na(+)-ATPase activity without any changes in (Na(+)+K(+))-ATPase activity. Our results show that the Ado effect is mediated by its conversion to ATP. Furthermore, it was observed that the effect of ATP was mimicked by UTP, ATPγS and 2-thio-UTP, an agonist of P2Y2 and P2Y4 receptors. In addition, ATP-stimulated Na(+)-ATPase activity involves protein kinase C (PKC). Our results indicate that ATP-induced stimulation of proximal tubule Na(+)-ATPase activity is mediated by a PKC-dependent P2Y2 and/or P2Y4 pathway. These findings provide new perspectives on the role of the effect of P2Y-mediated extracellular ATP on renal sodium handling. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Science and Paranormal Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H. Pierre

    1999-06-03

    In order to ground my approach to the study of paranormal phenomena, I first explain my operational approach to physics, and to the ''historical'' sciences of cosmic, biological, human, social and political evolution. I then indicate why I believe that ''paranormal phenomena'' might-but need not- fit into this framework. I endorse the need for a new theoretical framework for the investigation of this field presented by Etter and Shoup at this meeting. I close with a short discussion of Ted Bastin's contention that paranormal phenomena should be defined as contradicting physics.

  15. Orexin A/Hypocretin Modulates Leptin Receptor-Mediated Signaling by Allosteric Modulations Mediated by the Ghrelin GHS-R1A Receptor in Hypothalamic Neurons.

    Science.gov (United States)

    Medrano, Mireia; Aguinaga, David; Reyes-Resina, Irene; Canela, Enric I; Mallol, Josefa; Navarro, Gemma; Franco, Rafael

    2018-06-01

    The hypothalamus is a key integrator of nutrient-seeking signals in the form of hormones and metabolites originated in both the central nervous system and the periphery. The main autocrine and paracrine target of orexinergic-related hormones such as leptin, orexin/hypocretin, and ghrelin are neuropeptide Y neurons located in the arcuate nucleus of the hypothalamus. The aim of this study was to investigate the expression and the molecular and functional relationships between leptin, orexin/hypocretin and ghrelin receptors. Biophysical studies in a heterologous system showed physical interactions between them, with potential formation of heterotrimeric complexes. Functional assays showed robust allosteric interactions particularly different when the three receptors are expressed together. Further biochemical and pharmacological assays provided evidence of heterotrimer functional expression in primary cultures of hypothalamic neurons. These findings constitute evidence of close relationships in the action of the three hormones already starting at the receptor level in hypothalamic cells.

  16. Purple sweet potato color attenuates domoic acid-induced cognitive deficits by promoting estrogen receptor-α-mediated mitochondrial biogenesis signaling in mice.

    Science.gov (United States)

    Lu, Jun; Wu, Dong-Mei; Zheng, Yuan-Lin; Hu, Bin; Cheng, Wei; Zhang, Zi-Feng

    2012-02-01

    Recent findings suggest that endoplasmic reticulum stress may be involved in the pathogenesis of domoic acid-induced neurodegeneration. Purple sweet potato color, a class of naturally occurring anthocyanins, has beneficial health and biological effects. Recent studies have also shown that anthocyanins have estrogenic activity and can enhance estrogen receptor-α expression. In this study, we evaluated the effect of purple sweet potato color on cognitive deficits induced by hippocampal mitochondrial dysfunction in domoic acid-treated mice and explored the potential mechanisms underlying this effect. Our results showed that the oral administration of purple sweet potato color to domoic acid-treated mice significantly improved their behavioral performance in a step-through passive avoidance task and a Morris water maze task. These improvements were mediated, at least in part, by a stimulation of estrogen receptor-α-mediated mitochondrial biogenesis signaling and by decreases in the expression of p47phox and gp91phox. Decreases in reactive oxygen species and protein carbonylation were also observed, along with a blockade of the endoplasmic reticulum stress pathway. Furthermore, purple sweet potato color significantly suppressed endoplasmic reticulum stress-induced apoptosis, which prevented neuron loss and restored the expression of memory-related proteins. However, knockdown of estrogen receptor-α using short hairpin RNA only partially blocked the neuroprotective effects of purple sweet potato color in the hippocampus of mice cotreated with purple sweet potato color and domoic acid, indicating that purple sweet potato color acts through multiple pathways. These results suggest that purple sweet potato color could be a possible candidate for the prevention and treatment of cognitive deficits in excitotoxic and other brain disorders. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  17. An N-methyl-D-aspartate receptor mediated large, low-frequency, spontaneous excitatory postsynaptic current in neonatal rat spinal dorsal horn neurons.

    Science.gov (United States)

    Thomson, L M; Zeng, J; Terman, G W

    2006-09-01

    Examples of spontaneous oscillating neural activity contributing to both pathological and physiological states are abundant throughout the CNS. Here we report a spontaneous oscillating intermittent synaptic current located in lamina I of the neonatal rat spinal cord dorsal horn. The spontaneous oscillating intermittent synaptic current is characterized by its large amplitude, slow decay time, and low-frequency. We demonstrate that post-synaptic N-methyl-D-aspartate receptors (NMDARs) mediate the spontaneous oscillating intermittent synaptic current, as it is inhibited by magnesium, bath-applied d-2-amino-5-phosphonovalerate (APV), or intracellular MK-801. The NR2B subunit of the NMDAR appears important to this phenomenon, as the NR2B subunit selective NMDAR antagonist, alpha-(4-hydroxphenyl)-beta-methyl-4-benzyl-1-piperidineethanol tartrate (ifenprodil), also partially inhibited the spontaneous oscillating intermittent synaptic current. Inhibition of spontaneous glutamate release by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or the mu-opioid receptor agonist [D-Ala2, N-Me-Phe4, Gly5] enkephalin-ol (DAMGO) inhibited the spontaneous oscillating intermittent synaptic current frequency. Marked inhibition of spontaneous oscillating intermittent synaptic current frequency by tetrodotoxin (TTX), but not post-synaptic N-(2,6-dimethylphenylcarbamoylmethyl)triethylammonium bromide (QX-314), suggests that the glutamate release important to the spontaneous oscillating intermittent synaptic current is dependent on active neural processes. Conversely, increasing dorsal horn synaptic glutamate release by GABAA or glycine inhibition increased spontaneous oscillating intermittent synaptic current frequency. Moreover, inhibiting glutamate transporters with threo-beta-benzyloxyaspartic acid (DL-TBOA) increased spontaneous oscillating intermittent synaptic current frequency and decay time. A possible functional role of this spontaneous NMDAR-mediated

  18. Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT neurons in mice with altered 5-HT homeostasis

    Directory of Open Access Journals (Sweden)

    Naozumi eAraragi

    2013-08-01

    Full Text Available Firing activity of serotonin (5-HT neurons in the dorsal raphe nucleus (DRN is controlled by inhibitory somatodendritic 5-HT1A autoreceptors. This autoinhibitory mechanism is implicated in the etiology of disorders of emotion regulation, such as anxiety disorders and depression, as well as in the mechanism of antidepressant action. Here, we investigated how persistent alterations in brain 5-HT availability affect autoinhibition in two genetically modified mouse models lacking critical mediators of serotonergic transmission: 5-HT transporter knockout (Sert -/- and tryptophan hydroxylase-2 knockout (Tph2 -/- mice. The degree of autoinhibition was assessed by loose-seal cell-attached recording in DRN slices. First, application of the 5-HT1A-selective agonist R(+-8-hydroxy-2-(di-n-propylaminotetralin showed mild sensitization and marked desensitization of 5-HT1A receptors in Tph2 -/- mice and Sert -/- mice, respectively. While 5-HT neurons from Tph2 -/- mice did not display autoinhibition in response to L-tryptophan, autoinhibition of these neurons was unaltered in Sert -/- mice despite marked desensitization of their 5-HT1A autoreceptors. When the Tph2-dependent 5-HT synthesis step was bypassed by application of 5-hydroxy-L-tryptophan (5-HTP, neurons from both Tph2 -/- and Sert -/- mice decreased their firing rates at significantly lower concentrations of 5-HTP compared to wildtype controls. Our findings demonstrate that, as opposed to the prevalent view, sensitivity of somatodendritic 5-HT1A receptors does not predict the magnitude of 5-HT neuron autoinhibition. Changes in 5-HT1A receptor sensitivity may rather be seen as an adaptive mechanism to keep autoinhibition functioning in response to extremely altered levels of extracellular 5-HT resulting from targeted inactivation of mediators of serotonergic signaling.

  19. Resolution of Toll-like receptor 4-mediated acute lung injury is linked to eicosanoids and suppressor of cytokine signaling 3.

    Science.gov (United States)

    Hilberath, Jan N; Carlo, Troy; Pfeffer, Michael A; Croze, Roxanne H; Hastrup, Frantz; Levy, Bruce D

    2011-06-01

    The purpose of this study was to investigate roles for Toll-like receptor 4 (TLR4) in host responses to sterile tissue injury. Hydrochloric acid was instilled into the left mainstem bronchus of TLR4-defective (both C3H/HeJ and congenic C.C3-Tlr4(Lps-d)/J) and control mice to initiate mild, self-limited acute lung injury (ALI). Outcome measures included respiratory mechanics, barrier integrity, leukocyte accumulation, and levels of select soluble mediators. TLR4-defective mice were more resistant to ALI, with significantly decreased perturbations in lung elastance and resistance, resulting in faster resolution of these parameters [resolution interval (R(i)); ∼6 vs. 12 h]. Vascular permeability changes and oxidative stress were also decreased in injured HeJ mice. These TLR4-defective mice paradoxically displayed increased lung neutrophils [(HeJ) 24×10(3) vs. (control) 13×10(3) cells/bronchoalveolar lavage]. Proresolving mechanisms for TLR4-defective animals included decreased eicosanoid biosynthesis, including cysteinyl leukotrienes (80% mean decrease) that mediated CysLT1 receptor-dependent vascular permeability changes; and induction of lung suppressor of cytokine signaling 3 (SOCS3) expression that decreased TLR4-driven oxidative stress. Together, these findings indicate pivotal roles for TLR4 in promoting sterile ALI and suggest downstream provocative roles for cysteinyl leukotrienes and protective roles for SOCS3 in the intensity and duration of host responses to ALI.

  20. Disruption of Tumor Necrosis Factor Receptor-Associated Factor 5 Exacerbates Murine Experimental Colitis via Regulating T Helper Cell-Mediated Inflammation

    Directory of Open Access Journals (Sweden)

    Jian Shang

    2016-01-01

    Full Text Available Tumor necrosis factor (TNF receptor-associated factor 5 (TRAF5 is a key mediator of TNF receptor superfamily members and is important in both T helper (Th cell immunity and the regulation of multiple signaling pathways. To clarify TRAF5’s influence on inflammatory bowel diseases (IBDs, we investigated TRAF5 deficiency’s effect on dextran sulfate sodium- (DSS- induced colitis. Colitis was induced in TRAF5 knockout (KO mice and their wild-type (WT littermates by administering 3% DSS orally for 7 days. The mice were then sacrificed, and their colons were removed. Our data suggested that KO mice were more susceptible to DSS-induced colitis. TRAF5 deficiency significantly enhanced IFN-γ, IL-4, and IL-17a mRNA and protein levels in the colons of DSS-fed mice, and the mRNA expression of T-bet and GATA-3 was also markedly elevated. However, ROR-α and ROR-γt mRNA levels did not differ between DSS-induced KO and WT mice. Flow cytometry showed increased frequencies of Th2 and IFN-γ/IL-17a-coproducing CD4+ T cells in the colons of DSS-induced KO mice. Additionally, TRAF5 deficiency significantly enhanced the activation of NF-κB in CD4+ T cells after DSS administration. These results indicated that TRAF5 deficiency significantly aggravated DSS-induced colitis, most likely by regulating Th cell-mediated inflammation.