WorldWideScience

Sample records for receptor glycine site

  1. A cation-pi interaction in the binding site of the glycine receptor is mediated by a phenylalanine residue

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Millen, Kat S; Hanek, Ariele P;

    2008-01-01

    Cys-loop receptor binding sites characteristically contain many aromatic amino acids. In nicotinic ACh and 5-HT3 receptors, a Trp residue forms a cation-pi interaction with the agonist, whereas in GABA(A) receptors, a Tyr performs this role. The glycine receptor binding site, however, contains pr...

  2. Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids.

    Directory of Open Access Journals (Sweden)

    Gonzalo E Yévenes

    Full Text Available Glycine receptors (GlyRs are transmitter-gated anion channels of the Cys-loop superfamily which mediate synaptic inhibition at spinal and selected supraspinal sites. Although they serve pivotal functions in motor control and sensory processing, they have yet to be exploited as drug targets partly because of hitherto limited possibilities for allosteric control. Endocannabinoids (ECs have recently been characterized as direct allosteric GlyR modulators, but the underlying molecular sites have remained unknown. Here, we show that chemically neutral ECs (e.g. anandamide, AEA are positive modulators of α(1, α(2 and α(3 GlyRs, whereas acidic ECs (e.g. N-arachidonoyl-glycine; NA-Gly potentiate α(1 GlyRs but inhibit α(2 and α(3. This subunit-specificity allowed us to identify the underlying molecular sites through analysis of chimeric and mutant receptors. We found that alanine 52 in extracellular loop 2, glycine 254 in transmembrane (TM region 2 and intracellular lysine 385 determine the positive modulation of α(1 GlyRs by NA-Gly. Successive substitution of non-conserved extracellular and TM residues in α(2 converted NA-Gly-mediated inhibition into potentiation. Conversely, mutation of the conserved lysine within the intracellular loop between TM3 and TM4 attenuated NA-Gly-mediated potentiation of α(1 GlyRs, without affecting inhibition of α(2 and α(3. Notably, this mutation reduced modulation by AEA of all three GlyRs. These results define molecular sites for allosteric control of GlyRs by ECs and reveal an unrecognized function for the TM3-4 intracellular loop in the allosteric modulation of Cys-loop ion channels. The identification of these sites may help to understand the physiological role of this modulation and facilitate the development of novel therapeutic approaches to diseases such as spasticity, startle disease and possibly chronic pain.

  3. Effects of RPR 118723, a novel antagonist at the glycine site of the NMDA receptor, in vitro.

    Science.gov (United States)

    Boireau, A; Monterrat, C; Bordier, F; Meunier, M; Imperato, A

    2000-08-04

    RPR 118723 ((8-chloro-5-methyl-2,3-dioxo-1,4-dihydro-5H-indeno[1, 2-b]pyrazin-5-yl) acetic acid) was previously reported to exhibit potent affinity for the glycine site of the N-methyl-D-aspartate (NMDA) receptor-channel complex in the nanomolar range (K(i)=3.1+/-0. 8 nM). We now report on the effects of RPR 118723 in two functional tests reflecting the interaction between the glycine site and the NMDA receptor. First, RPR 118723 potently inhibited [3H]N-[1-(2-thienyl)cyclohexyl]-3,4-piperidine ([3H]TCP) binding in the presence of NMDA (IC(50)=3.5+/-0.4 nM). Second, RPR 118723 antagonized the NMDA-induced increase in [3H]dopamine release in mouse striatal slices (IC(50)=8.0+/-1.1 nM). In both experimental models, an excess of glycine reversed the effect of RPR 118723. These results show that RPR 118723 interferes functionally in the nanomolar range with the glycine site coupled to the NMDA receptor in vitro. The blockade of the glycine site with RPR 118723 may be useful for the therapy of the disorders linked to excessive NMDA stimulation.

  4. High throughput techniques for discovering new glycine receptor modulators and their binding sites

    Directory of Open Access Journals (Sweden)

    Daniel F Gilbert

    2009-10-01

    Full Text Available The inhibitory glycine receptor (GlyR is a member of the Cys-loop receptor family that mediates inhibitory neurotransmission in the central nervous system. These receptors are emerging as potential drug targets for inflammatory pain, immunomodulation, spasticity and epilepsy. Antagonists that specifically inhibit particular GlyR isoforms are also required as pharmacological probes for elucidating the roles of particular GlyR isoforms in health and disease. Although a substantial number of both positive and negative GlyR modulators have been identified, very few of these are specific for the GlyR over other receptor types. Thus, the potential of known compounds as either therapeutic leads or pharmacological probes is limited. It is therefore surprising that there have been few published studies describing attempts to discover novel GlyR isoform-specific compounds. The first aim of this review is to consider various methods for efficiently screening compounds against these receptors. We conclude that an anion sensitive yellow fluorescent protein is optimal for primary screening and that automated electrophysiology of cells stably expressing GlyRs is useful for confirming hits and quantitating the actions of identified compounds. The second aim of this review is to demonstrate how these techniques are used in our laboratory for the purpose of both discovering novel GlyR-active compounds and characterizing their binding sites. We also describe a reliable, cost effective method for transfecting HEK293 cells in single wells of a 384 well plate using nanogram quantities of cDNA.

  5. Do N-arachidonyl-glycine (NA-glycine and 2-arachidonoyl glycerol (2-AG share mode of action and the binding site on the β2 subunit of GABAA receptors?

    Directory of Open Access Journals (Sweden)

    Roland Baur

    2013-09-01

    Full Text Available NA-glycine is an endogenous lipid molecule with analgesic properties, which is structurally similar to the endocannabinoids 2-AG and anandamide but does not interact with cannabinoid receptors. NA-glycine has been suggested to act at the G-protein coupled receptors GPR18 and GPR92. Recently, we have described that NA-glycine can also modulate recombinant α1β2γ2 GABAA receptors. Here we characterize in more detail this modulation and investigate the relationship of its binding site with that of the endocannabinoid 2-AG.

  6. Antagonism of ligand-gated ion channel receptors: two domains of the glycine receptor alpha subunit form the strychnine-binding site.

    Science.gov (United States)

    Vandenberg, R J; French, C R; Barry, P H; Shine, J; Schofield, P R

    1992-01-01

    The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. Glycine activation of the receptor is antagonized by the convulsant alkaloid strychnine. Using in vitro mutagenesis and functional analysis of the cDNA encoding the alpha 1 subunit of the human GlyR, we have identified several amino acid residues that form the strychnine-binding site. These residues were identified by transient expression of mutated cDNAs in mammalian (293) cells and examination of resultant [3H]strychnine binding, glycine displacement of [3H]strychnine, and electrophysiological responses to the application of glycine and strychnine. This mutational analysis revealed that residues from two separate domains within the alpha 1 subunit form the binding site for the antagonist strychnine. The first domain includes the amino acid residues Gly-160 and Tyr-161, and the second domain includes the residues Lys-200 and Tyr-202. These results, combined with analyses of other ligand-gated ion channel receptors, suggest a conserved tertiary structure and a common mechanism for antagonism in this receptor superfamily. PMID:1311851

  7. Gephyrin-mediated γ-aminobutyric acid type A and glycine receptor clustering relies on a common binding site

    DEFF Research Database (Denmark)

    Maric, Hans-Michael; Mukherjee, Jayanta; Tretter, Verena

    2011-01-01

    Gephyrin is the major protein determinant for the clustering of inhibitory neurotransmitter receptors. Earlier analyses revealed that gephyrin tightly binds to residues 398-410 of the glycine receptor β subunit (GlyR β) and, as demonstrated only recently, also interacts with GABA(A) receptors (GABA......(A)Rs) containing the α1, α2, and α3 subunits. Here, we dissect the molecular basis underlying the interactions between gephyrin and GABA(A)Rs containing these α-subunits and compare them to the crystal structure of the gephyrin-GlyR β complex. Biophysical and biochemical assays revealed that, in contrast to its...... that are central for gephyrin binding. Consistent with the biochemical data, mutations of the corresponding residues within the cytoplasmic domain of α2 subunit-containing GABA(A)Rs attenuated clustering of these receptors at postsynaptic sites in hippocampal neurons. Taken together, our experiments provide key...

  8. Glycine receptors contribute to cytoprotection of glycine in myocardial cells

    Institute of Scientific and Technical Information of China (English)

    QI Ren-bin; ZHANG Jun-yan; LU Da-xiang; WANG Hua-dong; WANG Hai-hua; LI Chu-jie

    2007-01-01

    Background The classic glycine receptor (GlyR) in the central nervous system is a ligand-gated membrane-spanning ion channel. Recent studies have provided evidence for the existence of GlyR in endothelial cells, renal proximal tubular cells and most leukocytes. In contrast, no evidence for GlyR in myocardial cells has been found so far. Our recent researches have showed that glycine could protect myocardial cells from the damage induced by lipopolysaccharide (LPS). Further studies suggest that myocardial cells could contain GlyR or binding site of glycine.Methods In isolated rat heart damaged by LPS, the myocardial monophasic action potential (MAP), the heart rate (HR),the myocardial tension and the activities of lactate dehydrogenase (LDH) from the coronary effluent were determined.The concentration of intracellular free calcium ([Ca2+]i) was measured in cardiomyocytes injured by LPS and by hypoxia/reoxygenation (H/R), which excludes the possibility that reduced calcium influx because of LPS neutralized by glycine. Immunohistochemistry was used to detect the GlyR in myocardial tissue. GlyR and its subunit in the purified cultured cardiomyocytes were identified by Western blotting.Results Although significant improvement in the MAP/MAPD20, HR, and reduction in LDH release were observed in glycine + LPS hearts, myocardial tension did not recover. Further studies demonstrated that glycine could prevent rat mycordial cells from LPS and hypoxia/reoxygenation injury (no endotoxin) by attenuating calcium influx.Immunohistochemistry exhibited a positive green-fluorescence signaling along the cardiac muscle fibers. Western blotting shows that the purified cultured cardiomyocytes express GlyR β subunit, but GlyR α1 subunit could not be detected.Conclusions The results suggest that glycine receptor is expressed in cardiomyocytes and participates in cytoprotection from LPS and hypoxia/reoxygenation injury. Glycine could directly activate GlyR on the cardiomyocytes and

  9. Crystal structure and pharmacological characterization of a novel N-methyl-D-aspartate (NMDA) receptor antagonist at the GluN1 glycine binding site

    DEFF Research Database (Denmark)

    Kvist, Trine; Steffensen, Thomas Bielefeldt; Greenwood, Jeremy R;

    2013-01-01

    glycine site antagonist, 1-thioxo-1,2-dihydro-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one (TK40). Here, we show by Schild analysis that TK40 is a potent competitive antagonist with Kb values of 21-63 nm at the GluN1 glycine-binding site of the four recombinant GluN1/N2A-D receptors. In addition, TK40...

  10. Novel nootropic drug sunifiram enhances hippocampal synaptic efficacy via glycine-binding site of N-methyl-D-aspartate receptor.

    Science.gov (United States)

    Moriguchi, Shigeki; Tanaka, Tomoya; Narahashi, Toshio; Fukunaga, Kohji

    2013-10-01

    Sunifiram is a novel pyrrolidone nootropic drug structurally related to piracetam, which was developed for neurodegenerative disorder like Alzheimer's disease. Sunifiram is known to enhance cognitive function in some behavioral experiments such as Morris water maze task. To address question whether sunifiram affects N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic function in the hippocampal CA1 region, we assessed the effects of sunifiram on NMDAR-dependent long-term potentiation (LTP) by electrophysiology and on phosphorylation of synaptic proteins by immunoblotting analysis. In mouse hippocampal slices, sunifiram at 10-100 nM significantly enhanced LTP in a bell-shaped dose-response relationship which peaked at 10 nM. The enhancement of LTP by sunifiram treatment was inhibited by 7-chloro-kynurenic acid (7-ClKN), an antagonist for glycine-binding site of NMDAR, but not by ifenprodil, an inhibitor for polyamine site of NMDAR. The enhancement of LTP by sunifilam was associated with an increase in phosphorylation of α-amino-3-hydroxy-5-methylisozazole-4-propionate receptor (AMPAR) through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and an increase in phosphorylation of NMDAR through activation of protein kinase Cα (PKCα). Sunifiram treatments at 1-1000 nM increased the slope of field excitatory postsynaptic potentials (fEPSPs) in a dose-dependent manner. The enhancement was associated with an increase in phosphorylation of AMPAR receptor through activation of CaMKII. Interestingly, under the basal condition, sunifiram treatments increased PKCα (Ser-657) and Src family (Tyr-416) activities with the same bell-shaped dose-response curve as that of LTP peaking at 10 nM. The increase in phosphorylation of PKCα (Ser-657) and Src (Tyr-416) induced by sunifiram was inhibited by 7-ClKN treatment. The LTP enhancement by sunifiram was significantly inhibited by PP2, a Src family inhibitor. Finally, when pretreated with a high

  11. Ginkgolides and glycine receptors

    DEFF Research Database (Denmark)

    Jaracz, Stanislav; Nakanishi, Koji; Jensen, Anders A.

    2004-01-01

    Ginkgolides from the Ginkgo biloba tree are diterpenes with a cage structure consisting of six five-membered rings and a unique tBu group. They exert a variety of biological properties. In addition to being antagonists of the platelet activating factor receptor (PAFR), it has recently been shown...

  12. Pre-treatment with the NMDA receptor glycine-binding site antagonist L-701,324 improves pharmacosensitivity in a mouse kindling model.

    Science.gov (United States)

    Zellinger, Christina; Salvamoser, Josephine D; Soerensen, Jonna; van Vliet, Erwin A; Aronica, Eleonora; Gorter, Jan; Potschka, Heidrun

    2014-05-01

    The glycine co-agonist binding site of the N-methyl-D-aspartat (NMDA) receptor is discussed as an interesting target for different central nervous system diseases. Antagonism at this co-agonist site has been suggested as an alternative to the use of non-competitive or competitive NMDA receptor antagonists, which are associated with a pronounced adverse effect profile in chronic epilepsy models and epilepsy patients. In the present study, we addressed the hypothesis that sub-chronic administration of the glycine-binding site antagonist L-701,324 might exert disease-modifying effects in fully kindled mice during a period with frequent seizure elicitation (massive kindling). Moreover, we analyzed whether L-701,324 exposure during this phase affects the subsequent response to an antiepileptic drug. L-701,324 treatment during the massive kindling phase did not affect ictogenesis. Mean seizure severity and cumulative seizure duration proved to be comparable between vehicle- and L-701,324-treated mice. Following withdrawal of L-701,324 seizure thresholds did not differ in a significant manner from those in animals that received vehicle injections. A low dosage of phenobarbital caused a significant increase of the generalized seizure threshold in the L-701,324 pre-treated group, whereas it did not exert a comparable effect in animals that received vehicle during the massive kindling phase. Analysis of P-glycoprotein in the hilus of the hippocampus revealed lower expression rates in L-701,324 pre-treated kindled mice. In conclusion, the data indicate that targeting of the NMDA receptor glycine-binding site does not result in anticonvulsant or disease-modifying effects. However, it might improve antiepileptic drug responses. The findings might be linked to an impact on P-glycoprotein expression. However, future studies are necessary to further evaluate the mechanisms and assess the potential of respective add-on approaches.

  13. The Startle Disease Mutation E103K Impairs Activation of Human Homomeric α1 Glycine Receptors by Disrupting an Intersubunit Salt Bridge across the Agonist Binding Site*

    Science.gov (United States)

    Safar, Fatemah; Hurdiss, Elliot; Erotocritou, Marios; Greiner, Timo; Irvine, Mark W.; Fang, Guangyu; Jane, David; Yu, Rilei; Dämgen, Marc A.

    2017-01-01

    Glycine receptors (GlyR) belong to the pentameric ligand-gated ion channel (pLGIC) superfamily and mediate fast inhibitory transmission in the vertebrate CNS. Disruption of glycinergic transmission by inherited mutations produces startle disease in man. Many startle mutations are in GlyRs and provide useful clues to the function of the channel domains. E103K is one of few startle mutations found in the extracellular agonist binding site of the channel, in loop A of the principal side of the subunit interface. Homology modeling shows that the side chain of Glu-103 is close to that of Arg-131, in loop E of the complementary side of the binding site, and may form a salt bridge at the back of the binding site, constraining its size. We investigated this hypothesis in recombinant human α1 GlyR by site-directed mutagenesis and functional measurements of agonist efficacy and potency by whole cell patch clamp and single channel recording. Despite its position near the binding site, E103K causes hyperekplexia by impairing the efficacy of glycine, its ability to gate the channel once bound, which is very high in wild type GlyR. Mutating Glu-103 and Arg-131 caused various degrees of loss-of-function in the action of glycine, whereas mutations in Arg-131 enhanced the efficacy of the slightly bigger partial agonist sarcosine (N-methylglycine). The effects of the single charge-swapping mutations of these two residues were largely rescued in the double mutant, supporting the possibility that they interact via a salt bridge that normally constrains the efficacy of larger agonist molecules. PMID:28174298

  14. Effect of glycine site/NMDA receptor antagonist MRZ2/576 on the conditioned place preference and locomotor activity induced by morphine in mice

    Institute of Scientific and Technical Information of China (English)

    ZHU Yong-ping; LONG Zai-hao; ZHENG Ming-lan; BINSACK Ralf

    2006-01-01

    Objective: To study the effect of glycine site/NMDA (N-methyl-D-aspartate) receptor antagonist MRZ2/576 on the conditioned place preference (CPP) and locomotor activity induced by morphine in mice. Methods: Different doses (1.25, 2.5 and 5 mg/kg, i.p.) of MRZ2/576 were used to evaluate the effect of MRZ2/576 on the acquisition and expression of CPP induced by morphine (5 mg/kg) in mice. In addition, we examined the locomotor activity of mice in conditioning and testing phase of CPP paradigm. Results: MRZ2/576 alone could not establish place preference, but a 5 mg/kg dose of MRZ2/576 could block both acquisition and expression of morphine-induced CPP. In testing phase of CPP, there was no statistical difference for locomotor activity between the groups; injection of MRZ2/576 showed a dose-dependent decrease of locomotor activity on both control and morphine-treated mice, especially 5 mg/kg of MRZ2/576 significantly suppressed the locomotor activity of mice. Conclusion:Based on the present results, we assume that MRZ2/576 can antagonize the rewarding effect of morphine, suggesting that this glycine site/NMDA receptor antagonist could be used to treat addictions due to its light side effect profile.

  15. A cation-π interaction at a phenylalanine residue in the glycine receptor binding site is conserved for different agonists

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Hanek, Ariele P; Price, Kerry L

    2011-01-01

    . In the current study, we investigated whether the lower efficacy agonists of the human GlyR β-alanine and taurine also form cation-π interactions with Phe159. By incorporating a series of unnatural amino acids, we found cation-π interactions between Phe159 and the amino groups of β-alanine and taurine....... The strengths of these interactions were significantly weaker than for glycine. Modeling studies suggest that β-alanine and taurine are orientated subtly differently in the binding pocket, with their amino groups further from Phe159 than that of glycine. These data therefore show that similar agonists can have...... similar but not identical orientations and interactions in the binding pocket and provide a possible explanation for the lower potencies of β-alanine and taurine....

  16. GLYX-13, a NMDA Receptor Glycine-Site Functional Partial Agonist, Induces Antidepressant-Like Effects Without Ketamine-Like Side Effects

    Science.gov (United States)

    Burgdorf, Jeffrey; Zhang, Xiao-lei; Nicholson, Katherine L; Balster, Robert L; David Leander, J; Stanton, Patric K; Gross, Amanda L; Kroes, Roger A; Moskal, Joseph R

    2013-01-01

    Recent human clinical studies with the NMDA receptor (NMDAR) antagonist ketamine have revealed profound and long-lasting antidepressant effects with rapid onset in several clinical trials, but antidepressant effects were preceded by dissociative side effects. Here we show that GLYX-13, a novel NMDAR glycine-site functional partial agonist, produces an antidepressant-like effect in the Porsolt, novelty induced hypophagia, and learned helplessness tests in rats without exhibiting substance abuse-related, gating, and sedative side effects of ketamine in the drug discrimination, conditioned place preference, pre-pulse inhibition and open-field tests. Like ketamine, the GLYX-13-induced antidepressant-like effects required AMPA/kainate receptor activation, as evidenced by the ability of NBQX to abolish the antidepressant-like effect. Both GLYX-13 and ketamine persistently (24 h) enhanced the induction of long-term potentiation of synaptic transmission and the magnitude of NMDAR-NR2B conductance at rat Schaffer collateral-CA1 synapses in vitro. Cell surface biotinylation studies showed that both GLYX-13 and ketamine led to increases in both NR2B and GluR1 protein levels, as measured by Western analysis, whereas no changes were seen in mRNA expression (microarray and qRT-PCR). GLYX-13, unlike ketamine, produced its antidepressant-like effect when injected directly into the medial prefrontal cortex (MPFC). These results suggest that GLYX-13 produces an antidepressant-like effect without the side effects seen with ketamine at least in part by directly modulating NR2B-containing NMDARs in the MPFC. Furthermore, the enhancement of ‘metaplasticity' by both GLYX-13 and ketamine may help explain the long-lasting antidepressant effects of these NMDAR modulators. GLYX-13 is currently in a Phase II clinical development program for treatment-resistant depression. PMID:23303054

  17. A role for accumbal glycine receptors in modulation of dopamine release by the glycine transporter-1 inhibitor Org25935

    Directory of Open Access Journals (Sweden)

    Helga eHöifödt Lidö

    2011-03-01

    Full Text Available AbstractAccumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investigated whether Org25935 applied locally in nAc modulates dopamine release, and whether accumbal glycine receptors or NMDA receptors are involved in this tentative effect. We also addressed whether Org25935 and ethanol applied locally in nAc interact with dopamine levels, as seen after systemic administration. We used in vivo microdialysis coupled to HPLC-ED in freely moving male Wistar rats to monitor dopamine output in nAc after local perfusion of Org25935 alone, with ethanol, or Org25935-perfusion after pre-treatment with the glycine receptor antagonist strychnine or the NMDA receptor glycine site antagonist L-701.324. Local Org25935 increased extracellular dopamine levels in a subpopulation of rats. Local strychnine, but not systemic L-701.324, antagonized the dopamine-activating effect of Org25935. Ethanol failed to induce a dopamine overflow in the subpopulation responding to Org25935 with a dopamine elevation. The study supports a role for accumbal glycine receptors rather than NMDA receptor signaling in the dopamine-activating effect of Org25935. The results further indicate that the previously reported systemic Org25935-ethanol interaction with regard to accumbal dopamine is localized to the nAc. This adds to the growing evidence for the glycine receptor as an important player in the dopamine reward circuitry and in ethanol’s effects within this system.

  18. Glycine receptors influence radial migration in the embryonic mouse neocortex.

    Science.gov (United States)

    Nimmervoll, Birgit; Denter, Denise G; Sava, Irina; Kilb, Werner; Luhmann, Heiko J

    2011-07-13

    To investigate whether glycine receptors influence radial migration in the neocortex, we analyzed the effect of glycine and the glycinergic antagonist strychnine, on the distribution of 5-bromo-2'deoxyuridine-labeled neurons in organotypic slice cultures from embryonic mice cortices. Application of glycine impeded radial migration only in the presence of the glycine-transport blockers, ALX-5407 and ALX-1393. This effect was blocked by the specific glycine receptor antagonist strychnine, whereas application of strychnine in the absence of glycine was without effect. We conclude from these observations that an activation of glycine receptors can impede radial migration, but that the glycinergic system is not directly implicated in the regulation of radial migration in organotypic slice cultures.

  19. Structure-activity relationships of strychnine analogs at glycine receptors.

    Science.gov (United States)

    Mohsen, Amal M Y; Heller, Eberhard; Holzgrabe, Ulrike; Jensen, Anders A; Zlotos, Darius P

    2014-08-01

    Nine strychnine derivatives including neostrychnine, strychnidine, isostrychnine, 21,22-dihydro-21-hydroxy-22-oxo-strychnine, and several hydrogenated analogs were synthesized, and their antagonistic activities at human α1 and α1β glycine receptors were evaluated. Isostrychnine has shown the best pharmacological profile exhibiting an IC50 value of 1.6 μM at α1 glycine receptors and 3.7-fold preference towards the α1 subtype. SAR Analysis indicates that the lactam moiety and the C(21) = C(22) bond in strychnine are essential structural features for its high antagonistic potency at glycine receptors. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  20. Structure-activity relationships of strychnine analogues at glycine receptors

    DEFF Research Database (Denmark)

    Mohsen, A.M.Y.; Heller, Eberhard; Holzgrabe, Ulrike

    2014-01-01

    Nine strychnine derivatives including neostrychnine, strychnidine, isostrychnine, 21,22-dihydro-21-hydroxy-22-oxo-strychnine, and several hydrogenated analogs were synthesized, and their antagonistic activities at human α1 and α1β glycine receptors were evaluated. Isostrychnine has shown the best...... pharmacological profile exhibiting an IC50 value of 1.6 μM at α1 glycine receptors and 3.7-fold preference towards the α1 subtype. SAR Analysis indicates that the lactam moiety and the C(21)[DOUBLE BOND]C(22) bond in strychnine are essential structural features for its high antagonistic potency at glycine...

  1. Activation of glycine site and GluN2B subunit of NMDA receptors is necessary for ERK/CREB signaling cascade in rostral anterior cingulate cortex in rats: Implications for affective pain

    Institute of Scientific and Technical Information of China (English)

    Hong Cao; Wen-Hua Ren; Mu-Ye Zhu; Zhi-Qi Zhao; Yu-Qiu Zhang

    2012-01-01

    Objective The rostral anterior cingulate cortex (rACC) is implicated in processing the emotional component of pain.N-methyl-D-aspartate receptors (NMDARs) are highly expressed in the rACC and mediate painrelated affect by activating a signaling pathway that involves cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and/or extracellular regulated kinase (ERK)/cAMP-response element-binding protein (CREB).The present study investigated the contributions of the NMDAR glycine site and GluN2B subunit to the activation of ERK and CREB both in vitro and in vivo in rat rACC.Methods Immunohistochemistry and Western blot analysis were used to separately assess the expression of phospho-ERK (pERK) and phospho-CREB (pCREB) in vitro and in vivo.Double immunostaining was also used to determine the colocalization of pERK and pCREB.Results Both bath application of NMDA in brain slices in vitro and intraplantar injection of formalin into the rat hindpaw in vivo induced significant up-regulation of pERK and pCREB in the rACC,which was inhibited by the NMDAR antagonist DL-2-amino-5-phospho-novaleric acid.Selective blockade of the NMDAR GluN2B subunit and the glycinebinding site,or degradation of endogenous D-serine,a co-agonist for the glycine site,significantly decreased the upregulation of pERK and pCREB expression in the rACC.Further,the activated ERK predominantly colocalized with CREB.Conclusion Either the glycine site or the GluN2B subunit of NMDARs participates in the phosphorylation of ERK and CREB induced by bath application of NMDA in brain slices or hindpaw injection of 5% formalin in rats,and these might be fundamental molecular mechanisms underlying pain affect.

  2. Characterization of strychnine-sensitive glycine receptor in the intact frog retina: modulation by protein kinases.

    Science.gov (United States)

    Salceda, Rocío; Aguirre-Ramirez, Marisela

    2005-03-01

    We studied 3H-glycine and 3H-strychnine specific binding to glycine receptor (GlyR) in intact isolated frog retinas. To avoid glycine binding to glycine uptake sites, experiments were performed at low ligand concentrations in a sodium-free medium. The binding of both radiolabeled ligands was saturated. Scatchard analysis of bound glycine and strychnine revealed a KD of 2.5 and 2.0 microM, respectively. Specific binding of glycine was displaced by beta-alanine, sarcosine, and strychnine. Strychnine binding was displaced 50% by glycine, and sarcosine. Properties of the strychnine-binding site in the GlyR were modified by sarcosine. Binding of both radioligands was considerably reduced by compounds that inhibit or activate adenylate cyclase and increased cAMP levels. A phorbol ester activator of PKC remarkably decreased glycine and strychnine binding. These results suggest modulation of GlyR in response to endogenous activation of protein kinases A and C, as well as protein phosphorylation modulating GlyR function in retina.

  3. Cellular transport and membrane dynamics of the glycine receptor

    Directory of Open Access Journals (Sweden)

    Andrea Dumoulin

    2010-02-01

    Full Text Available Regulation of synaptic transmission is essential to tune individual-to-network neuronal activity. One way to modulate synaptic strength is to regulate neurotransmitter receptor numbers at postsynaptic sites. This can be achieved either through plasma membrane insertion of receptors derived from intracellular vesicle pools, a process depending on active cytoskeleton transport, or through surface membrane removal via endocytosis. In parallel, lateral diffusion events along the plasma membrane allow the exchange of receptor molecules between synaptic and extrasynaptic compartments, contributing to synaptic strength regulation. In recent years, results obtained from several groups studying glycine receptor (GlyR trafficking and dynamics shed light on the regulation of synaptic GlyR density. Here, we review i proteins and mechanisms involved in GlyR cytoskeletal transport, ii the diffusion dynamics of GlyR and of its scaffolding protein gephyrin that control receptor numbers, and its relationship with synaptic plasticity, and iii adaptative changes in GlyR diffusion in response to global activity modifications, as a homeostatic mechanism.

  4. Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha7 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Gharagozloo, Parviz; Birdsall, Nigel J M

    2006-01-01

    of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain...... of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly, quaternization...... of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an insight...

  5. Mapping a molecular link between allosteric inhibition and activation of the glycine receptor.

    Science.gov (United States)

    Miller, Paul S; Topf, Maya; Smart, Trevor G

    2008-10-01

    Cys-loop ligand-gated ion channels mediate rapid neurotransmission throughout the central nervous system. They possess agonist recognition sites and allosteric sites where modulators regulate ion channel function. Using strychnine-sensitive glycine receptors, we identified a scaffold of hydrophobic residues enabling allosteric communication between glycine-agonist binding loops A and D, and the Zn(2+)-inhibition site. Mutating these hydrophobic residues disrupted Zn(2+) inhibition, generating novel Zn(2+)-activated receptors and spontaneous channel activity. Homology modeling and electrophysiology revealed that these phenomena are caused by disruption to three residues on the '-' loop face of the Zn(2+)-inhibition site, and to D84 and D86, on a neighboring beta3 strand, forming a Zn(2+)-activation site. We provide a new view for the activation of a Cys-loop receptor where, following agonist binding, the hydrophobic core and interfacial loops reorganize in a concerted fashion to induce downstream gating.

  6. Neuroprotection by a novel NMDAR functional glycine site partial agonist, GLYX-13.

    Science.gov (United States)

    Stanton, Patric K; Potter, Pamela E; Aguilar, Jennifer; Decandia, Maria; Moskal, Joseph R

    2009-08-26

    GLYX-13 (threonine-proline-proline-threonine-amide) is an amidated di-pyrrolidine that acts as a functional partial agonist at the glycine site on N-methyl-D-aspartate glutamate receptors (NMDARs). GLYX-13 can both increase NMDAR conductance at NR2B-containing receptors, and reduce conductance of non-NR2B-containing receptors. Here, we report that GLYX-13 potently reduces delayed (24 h) death of CA1 pyramidal neurons produced by bilateral carotid occlusion in Mongolian gerbils, when administered up to 5 h post-ischemia. GLYX-13 also reduced delayed (24 h) neuronal death of CA1, CA3, and dentate gyrus principal neurons elicited by oxygen/glucose deprivation in in-vitro hippocampal organotypic slice cultures, when applied up to 2 h post-oxygen/glucose deprivation. The glycine site full agonist D-serine completely occluded neuroprotection, indicating that GLYX-13 acts by modulating activation of this site.

  7. Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha7 nicotinic acetylcholine receptors.

    Science.gov (United States)

    Jensen, Anders A; Gharagozloo, Parviz; Birdsall, Nigel J M; Zlotos, Darius P

    2006-06-06

    Strychnine and brucine from the plant Strychnos nux vomica have been shown to have interesting pharmacological effects on several neurotransmitter receptors, including some members of the superfamily of ligand-gated ion channels. In this study, we have characterised the pharmacological properties of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain of the 5-HT3A serotonin receptor. Although the majority of the analogues displayed significantly increased Ki values at the glycine receptors compared to strychnine and brucine, a few retained the high antagonist potencies of the parent compounds. However, mirroring the pharmacological profiles of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly, quaternization of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an insight into the structure-activity relationships for strychnine and brucine analogues at these ligand-gated ion channels.

  8. Potentiation of glycine-gated NR1/NR3A NMDA receptors relieves Ca2+-dependent outward rectification

    Directory of Open Access Journals (Sweden)

    Christian Madry

    2010-03-01

    Full Text Available Glycine has diverse functions within the mammalian central nervous system. It inhibits postsynaptic neurons via strychnine-sensitive glycine receptors (GlyRs and enhances neuronal excitation through co-activation of N-methyl-D-aspartate (NMDA receptors. Classical Ca2+-permeable NMDA receptors are composed of glycine-binding NR1 and glutamate-binding NR2 subunits, and hence require both glutamate and glycine for efficient activation. In contrast, recombinant receptors composed of NR1 and the glycine binding NR3A and/or NR3B subunits lack glutamate binding sites and can be activated by glycine alone. Therefore these receptors are also named excitatory glycine receptors. Co-application of antagonists of the NR1 glycine-binding site or of the divalent cation Zn2+ markedly enhances the glycine responses of these receptors. To gain further insight into the properties of these glycine-gated NMDA receptors, we investigated their current-voltage (I-V dependence. Whole-cell current-voltage relations of glycine currents recorded from NR1/NR3B and NR1/NR3A/NR3B expressing oocytes were found to be linear under our recording conditions. In contrast, NR1/NR3A receptors displayed a strong outwardly rectifying I-V relation. Interestingly, the voltage-dependent inward current block was abolished in the presence of NR1 antagonists, Zn2+ or a combination of both. Further analysis revealed that Ca2+ (1.8 mM present in our recording solutions was responsible for the voltage-dependent inhibition of ion flux through NR1/NR3A receptors. Since physiological concentrations of the divalent cation Mg2+ did not affect the I-V dependence, our data suggest that relief of the voltage-dependent Ca2+ block of NR1/NR3A receptors by Zn2+ may be important for the regulation of excitatory glycinergic transmission, according to the Mg2+-block of conventional NR1/NR2 NMDA receptors.

  9. Oxime Ethers of (E)-11-Isonitrosostrychnine as Highly Potent Glycine Receptor Antagonists

    DEFF Research Database (Denmark)

    Mohsen, Amal M Y; Mandour, Yasmine M; Sarukhanyan, Edita

    2016-01-01

    A series of (E)-11-isonitrosostrychnine oxime ethers, 2-aminostrychnine, (strychnine-2-yl)propionamide, 18-oxostrychnine, and N-propylstrychnine bromide were synthesized and evaluated pharmacologically at human α1 and α1β glycine receptors in a functional fluorescence-based and a whole-cell patch......-clamp assay and in [(3)H]strychnine binding studies. 2-Aminostrychnine and the methyl, allyl, and propargyl oxime ethers were the most potent α1 and α1β antagonists in the series, displaying IC50 values similar to those of strychnine at the two receptors. Docking experiments to the strychnine binding site...... of the crystal structure of the α3 glycine receptor indicated the same orientation of the strychnine core for all analogues. For the most potent oxime ethers, the ether substituent was accommodated in a lipophilic receptor binding pocket. The findings identify the oxime hydroxy group as a suitable attachment...

  10. Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration

    Directory of Open Access Journals (Sweden)

    Ariel Avila

    2013-08-01

    Full Text Available Glycine receptors (GlyRs are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in cortical interneurons by endogenous glycine activates voltage-gated calcium channels and promotes calcium influx, which further modulates actomyosin contractility to fine-tune nuclear translocation during migration. Taken together, our data highlight the molecular events triggered by GlyR α2 activation that control cortical tangential migration during embryogenesis.

  11. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors

    Science.gov (United States)

    Farroni, Jeffrey S; McCool, Brian A

    2004-01-01

    the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology. PMID:15301692

  12. Oxime Ethers of (E)-11-Isonitrosostrychnine as Highly Potent Glycine Receptor Antagonists.

    Science.gov (United States)

    Mohsen, Amal M Y; Mandour, Yasmine M; Sarukhanyan, Edita; Breitinger, Ulrike; Villmann, Carmen; Banoub, Maha M; Breitinger, Hans-Georg; Dandekar, Thomas; Holzgrabe, Ulrike; Sotriffer, Christoph; Jensen, Anders A; Zlotos, Darius P

    2016-12-23

    A series of (E)-11-isonitrosostrychnine oxime ethers, 2-aminostrychnine, (strychnine-2-yl)propionamide, 18-oxostrychnine, and N-propylstrychnine bromide were synthesized and evaluated pharmacologically at human α1 and α1β glycine receptors in a functional fluorescence-based and a whole-cell patch-clamp assay and in [(3)H]strychnine binding studies. 2-Aminostrychnine and the methyl, allyl, and propargyl oxime ethers were the most potent α1 and α1β antagonists in the series, displaying IC50 values similar to those of strychnine at the two receptors. Docking experiments to the strychnine binding site of the crystal structure of the α3 glycine receptor indicated the same orientation of the strychnine core for all analogues. For the most potent oxime ethers, the ether substituent was accommodated in a lipophilic receptor binding pocket. The findings identify the oxime hydroxy group as a suitable attachment point for linking two strychnine pharmacophores by a polymethylene spacer and are, therefore, important for the design of bivalent ligands targeting glycine receptors.

  13. Glycine

    DEFF Research Database (Denmark)

    Sabin, John R.; Oddershede, Jens; Sauer, Stephan P. A.

    2013-01-01

    With the advent of the use of precise ion accelerators for medical purposes, it becomes ever more important to understand the interaction of biomolecules with fast ions.  Glycine is both a protein component and a model biomolecule, and is thus an important test system.    In this report, we discu...

  14. Strychnine Binding Associated with Glycine Receptors of the Central Nervous System

    Science.gov (United States)

    Young, Anne B.; Snyder, Solomon H.

    1973-01-01

    [3H]Strychnine binds to synaptic-membrane fractions of the spinal cord in a selective fashion, indicating an interaction with postsynaptic glycine receptors. Displacement of strychnine by glycine and other amino acids parallels their glycine-like neurophysiologic activity. The regional localization of strychnine binding in the central nervous system correlates closely with endogenous glycine concentrations. In subcellular fractionation experiments, strychnine binding is most enhanced in synaptic-membrane fractions. Strychnine binding is saturable, with affinity constants for glycine and strychnine of 10 and 0.03 μM, respectively. PMID:4200724

  15. Developmental stability of taurine's activation on glycine receptors in cultured neurons of rat auditory cortex.

    Science.gov (United States)

    Tang, Zheng-Quan; Lu, Yun-Gang; Chen, Lin

    2008-01-03

    Taurine is an endogenous amino acid that can activate glycine and/or gamma-aminobutyric acid type A (GABA(A)) receptors in the central nervous system. During natural development, taurine's receptor target undergoes a shift from glycine receptors to GABA(A) receptors in cortical neurons. Here, we demonstrate that taurine's receptor target in cortical neurons remains stable during in vitro development. With whole-cell patch-clamp recordings, we found that taurine always activated glycine receptors, rather than GABA(A) receptors, in neurons of rat auditory cortex cultured for 5-22 days. Our results suggest that the functional sensitivity of glycine and GABA(A) receptors to taurine is critically regulated by their developmental environments.

  16. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-containing NMDA Receptors

    Directory of Open Access Journals (Sweden)

    Li-Jun Li

    2016-10-01

    Full Text Available NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs, but not GluN2B-containing NMDA receptors (GluN2BRs, to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation.

  17. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    Science.gov (United States)

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation.

  18. Presynaptic Glycine Receptors Increase GABAergic Neurotransmission in Rat Periaqueductal Gray Neurons

    Directory of Open Access Journals (Sweden)

    Kwi-Hyung Choi

    2013-01-01

    Full Text Available The periaqueductal gray (PAG is involved in the central regulation of nociceptive transmission by affecting the descending inhibitory pathway. In the present study, we have addressed the functional role of presynaptic glycine receptors in spontaneous glutamatergic transmission. Spontaneous EPSCs (sEPSCs were recorded in mechanically dissociated rat PAG neurons using a conventional whole-cell patch recording technique under voltage-clamp conditions. The application of glycine (100 µM significantly increased the frequency of sEPSCs, without affecting the amplitude of sEPSCs. The glycine-induced increase in sEPSC frequency was blocked by 1 µM strychnine, a specific glycine receptor antagonist. The results suggest that glycine acts on presynaptic glycine receptors to increase the probability of glutamate release from excitatory nerve terminals. The glycine-induced increase in sEPSC frequency completely disappeared either in the presence of tetrodotoxin or Cd2+, voltage-gated Na+, or Ca2+ channel blockers, suggesting that the activation of presynaptic glycine receptors might depolarize excitatory nerve terminals. The present results suggest that presynaptic glycine receptors can regulate the excitability of PAG neurons by enhancing glutamatergic transmission and therefore play an important role in the regulation of various physiological functions mediated by the PAG.

  19. Frequency-dependent cannabinoid receptor-independent modulation of glycine receptors by endocannabinoid 2-AG

    Directory of Open Access Journals (Sweden)

    Natalia eLozovaya

    2011-07-01

    Full Text Available Endocannabinoids are known as retrograde messengers, being released from the postsynaptic neuron and acting on specific presynaptic G-protein-coupled cannabinoid (CB receptors to decrease neurotransmitter release. Also, at physiologically relevant concentrations cannabinoids can directly modulate the function of voltage-gated and receptor-operated ion channels. Using patch-clamp recording we analyzed the consequences of the direct action of an endocannabinoid, 2-arachidonoylglycerol (2-AG, on the functional properties of glycine receptor channels (GlyRs and ionic currents in glycinergic synapses. At physiologically relevant concentrations (0.1-1 µM, 2-AG directly affected the functions of recombinant homomeric alpha1H GlyR: it inhibited peak amplitude and dramatically enhanced desensitization. The action of 2-AG on GlyR-mediated currents developed rapidly, within ~300 milliseconds. Addition of 1 µM 2-AG strongly facilitated the depression of glycine-induced currents during repetitive (4-10 Hz application of short (2-ms duration pulses of glycine to outside-out patches. In brainstem slices from CB1 receptor-knockout mice, 2-AG significantly decreased the extent of facilitation of synaptic currents in hypoglossal motoneurons during repetitive (10-20 Hz stimulation. These observations suggest that endocannabinoids can modulate postsynaptic metaplasticity of glycinergic synaptic currents in a CB1 receptor-independent manner.

  20. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    Directory of Open Access Journals (Sweden)

    Florian Wegner

    Full Text Available BACKGROUND: Human fetal midbrain-derived neural progenitor cells (NPCs may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+-K(+-Cl(- co-transporter 1 (NKCC1-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. CONCLUSIONS/SIGNIFICANCE: These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  1. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    Science.gov (United States)

    Wegner, Florian; Kraft, Robert; Busse, Kathy; Härtig, Wolfgang; Ahrens, Jörg; Leffler, Andreas; Dengler, Reinhard; Schwarz, Johannes

    2012-01-01

    Human fetal midbrain-derived neural progenitor cells (NPCs) may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A) receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+)-K(+)-Cl(-) co-transporter 1 (NKCC1)-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  2. A novel antagonist, phenylbenzene omega-phosphono-alpha-amino acid, for strychnine-sensitive glycine receptors in the rat spinal cord.

    Science.gov (United States)

    Saitoh, T; Ishida, M; Maruyama, M; Shinozaki, H

    1994-01-01

    1. 3-[2'-Phosphonomethyl[1,1'-biphenyl]-3-yl]alanine (PMBA) is a novel glycine antagonist at strychnine-sensitive receptors. The chemical structure of PMBA, possessing both a glycine moiety and a phosphono group, is quite different from that of strychnine. 2. In the spinal motoneurone of newborn rats, glycine (100 microM-1 mM) induced depolarizing responses in a concentration-dependent manner. PMBA effectively inhibited depolarizing responses to glycine and other agonists, such as taurine and beta-alanine. The dose-response curves for glycine were shifted to the right in an almost parallel manner (pA2 value: 5.30 +/- 0.23, n = 5) by PMBA which was about 60 times less potent than strychnine (pA2 value: 7.08 +/- 0.21, n = 5) as a glycine antagonist. 3. PMBA (1-100 microM) did not interact with modulatory glycine sites on N-methyl-D-aspartate (NMDA) receptors, which suggests a high selectivity of PMBA for strychnine-sensitive glycine receptors. At considerably high concentrations (0.1 mM-1 mM), PMBA depressed responses to GABA (pA2 value: 3.57 +/- 0.24, n = 3). 4. PMBA inhibited the binding of [3H]-strychnine to synaptosomes from adult rat spinal cords; the IC50 values of PMBA, glycine and strychnine were 8 +/- 2, 9 +/- 3 and 0.08 +/- 0.04 microM, respectively (n = 5) for [3H]-strychnine (4.8 nM). 5. PMBA is a central excitant drug with relatively high potency and selectivity and should be useful as a pharmacological probe for analysing the mechanisms underlying physiological functions of glycine receptors. PMID:7812607

  3. Discovery and SAR of a novel series of non-MPEP site mGlu₅ PAMs based on an aryl glycine sulfonamide scaffold.

    Science.gov (United States)

    Rodriguez, Alice L; Zhou, Ya; Williams, Richard; Weaver, C David; Vinson, Paige N; Dawson, Eric S; Steckler, Thomas; Lavreysen, Hilde; Mackie, Claire; Bartolomé, José M; Macdonald, Gregor J; Daniels, J Scott; Niswender, Colleen M; Jones, Carrie K; Conn, P Jeffrey; Lindsley, Craig W; Stauffer, Shaun R

    2012-12-15

    Herein we report the discovery and SAR of a novel series of non-MPEP site metabotropic glutamate receptor 5 (mGlu(5)) positive allosteric modulators (PAMs) based on an aryl glycine sulfonamide scaffold. This series represents a rare non-MPEP site mGlu(5) PAM chemotype.

  4. Conformational variability of the glycine receptor M2 domain in response to activation by different agonists.

    Science.gov (United States)

    Pless, Stephan A; Dibas, Mohammed I; Lester, Henry A; Lynch, Joseph W

    2007-12-07

    Models describing the structural changes mediating Cys loop receptor activation generally give little attention to the possibility that different agonists may promote activation via distinct M2 pore-lining domain structural rearrangements. We investigated this question by comparing the effects of different ligands on the conformation of the external portion of the homomeric alpha1 glycine receptor M2 domain. Conformational flexibility was assessed by tethering a rhodamine fluorophore to cysteines introduced at the 19' or 22' positions and monitoring fluorescence and current changes during channel activation. During glycine activation, fluorescence of the label attached to R19'C increased by approximately 20%, and the emission peak shifted to lower wavelengths, consistent with a more hydrophobic fluorophore environment. In contrast, ivermectin activated the receptors without producing a fluorescence change. Although taurine and beta-alanine were weak partial agonists at the alpha1R19'C glycine receptor, they induced large fluorescence changes. Propofol, which drastically enhanced these currents, did not induce a glycine-like blue shift in the spectral emission peak. The inhibitors strychnine and picrotoxin elicited fluorescence and current changes as expected for a competitive antagonist and an open channel blocker, respectively. Glycine and taurine (or beta-alanine) also produced an increase and a decrease, respectively, in the fluorescence of a label attached to the nearby L22'C residue. Thus, results from two separate labeled residues support the conclusion that the glycine receptor M2 domain responds with distinct conformational changes to activation by different agonists.

  5. Stoichiometry of the Human Glycine Receptor Revealed by Direct Subunit counting

    Science.gov (United States)

    Durisic, Nela; Godin, Antoine G.; Wever, Claudia M.; Heyes, Colin D.; Lakadamyali, Melike; Dent, Joseph A.

    2012-01-01

    The subunit stoichiometry of heteromeric glycine-gated channels (GlyRs) determines fundamental properties of these key inhibitory neurotransmitter receptors; however the ratio of α1 to β-subunits per receptor remains controversial. We used single molecule imaging and stepwise photobleaching in Xenopus oocytes to directly determine the subunit stoichiometry of a glycine receptor to be 3α1:2β. This approach allowed us to determine the receptor stoichiometry in mixed populations consisting of both heteromeric and homomeric channels, additionally revealing the quantitative proportions for the two populations. PMID:22973015

  6. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    indicate that channel opening is accompanied by conformational rearrangements in both beta-sheets. In an attempt to resolve ligand-dependent movements in the ligand-binding domain, we employed voltage-clamp fluorometry on alpha1 glycine receptors to compare changes mediated by the agonist, glycine......, and by the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner beta-sheet, we labeled residues in loop 2 and in binding domain loops D and E....... At each position, strychnine and glycine induced distinct maximal fluorescence responses. The pre-M1 domain responded similarly; at each of four labeled positions glycine produced a strong fluorescence signal, whereas strychnine did not. This suggests that glycine induces conformational changes...

  7. Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: possible role in osmoregulation.

    Science.gov (United States)

    Hussy, N; Deleuze, C; Pantaloni, A; Desarménien, M G; Moos, F

    1997-08-01

    1. To evaluate the implication of taurine in the physiology of supraoptic neurones, we (i) investigated the agonist properties of taurine on glycine and GABAA receptors of supraoptic magnocellular neurones acutely dissociated from adult rats, using whole-cell voltage clamp, (ii) studied the effects of taurine and strychnine in vivo by extracellular recordings of supraoptic vasopressin neurones in anaesthetized rats, and (iii) measured the osmolarity-dependent release of endogenous taurine from isolated supraoptic nuclei by HPLC. 2. GABA, glycine and taurine evoked rapidly activating currents that all reversed close to the equilibrium potential for Cl-, indicating activation of Cl(-)-selective channels. Glycine-activated currents were reversibly blocked by strychnine (IC50 of 35 nM with 100 microM glycine), but were unaffected by the GABAA antagonist gabazine (1-3 microM). GABA-activated currents were reversibly antagonized by 3 microM gabazine, but not by strychnine (up to 1 microM). 3. Responses to 1 mM taurine were blocked by strychnine but not by gabazine and showed no additivity with glycine-induced currents, indicating selective activation of glycine receptors. Responses to 10 mM taurine were partially antagonized by gabazine, the residual current being blocked by strychnine. Thus, taurine is also a weak agonist of GABAA receptors. 4. In the presence of gabazine, taurine activated glycine receptors with an EC50 of 406 microM. Taurine activated at most 70% of maximal glycine currents, suggesting that it is a partial agonist of glycine receptors. 5. In vivo, locally applied strychnine (300 nM) increased and taurine (1 mM) decreased the basal electrical activity of vasopressin neurones in normally hydrated rats. The effect of strychnine was markedly more pronounced in water-loaded rats. 6. Taurine, which is concentrated in supraoptic glial cells, could be released from isolated supraoptic nuclei upon hyposmotic stimulation. Decreases in osmolarity of 15 and 30

  8. 4-Chloropropofol enhances chloride currents in human hyperekplexic and artificial mutated glycine receptors

    Directory of Open Access Journals (Sweden)

    de la Roche Jeanne

    2012-09-01

    Full Text Available Abstract Background The mammalian neurological disorder hereditary hyperekplexia can be attributed to various mutations of strychnine sensitive glycine receptors. The clinical symptoms of “startle disease” predominantly occur in the newborn leading to convulsive hypertonia and an exaggerated startle response to unexpected mild stimuli. Amongst others, point mutations R271Q and R271L in the α1-subunit of strychnine sensitive glycine receptors show reduced glycine sensitivity and cause the clinical symptoms of hyperekplexia. Halogenation has been shown to be a crucial structural determinant for the potency of a phenolic compound to positively modulate glycine receptor function. The aim of this in vitro study was to characterize the effects of 4-chloropropofol (4-chloro-2,6-dimethylphenol at four glycine receptor mutations. Methods Glycine receptor subunits were expressed in HEK 293 cells and experiments were performed using the whole-cell patch-clamp technique. Results 4-chloropropofol exerted a positive allosteric modulatory effect in a low sub-nanomolar concentration range at the wild type receptor (EC50 value of 0.08 ± 0.02 nM and in a micromolar concentration range at the mutations (1.3 ± 0.6 μM, 0.1 ± 0.2 μM, 6.0 ± 2.3 μM and 55 ± 28 μM for R271Q, L, K and S267I, respectively. Conclusions 4-chloropropofol might be an effective compound for the activation of mutated glycine receptors in experimental models of startle disease.

  9. Conformational variability of the glycine receptor M2 domain in response to activation by different agonists

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Dibas, Mohammed I; Lester, Henry A

    2007-01-01

    change. Although taurine and beta-alanine were weak partial agonists at the alpha1R19'C glycine receptor, they induced large fluorescence changes. Propofol, which drastically enhanced these currents, did not induce a glycine-like blue shift in the spectral emission peak. The inhibitors strychnine...... and picrotoxin elicited fluorescence and current changes as expected for a competitive antagonist and an open channel blocker, respectively. Glycine and taurine (or beta-alanine) also produced an increase and a decrease, respectively, in the fluorescence of a label attached to the nearby L22'C residue. Thus...

  10. Glycine transporter 1 is a target for the treatment of epilepsy

    NARCIS (Netherlands)

    Shen, H-Y; van Vliet, E.A.; Bright, K-A.; Hanthorn, M.; Lytle, N.K.; Gorter, J.; Aronica, E.; Boison, D.

    2015-01-01

    Glycine is the major inhibitory neurotransmitter in brainstem and spinal cord, whereas in hippocampus glycine exerts dual modulatory roles on strychnine-sensitive glycine receptors and on the strychnine-insensitive glycineB site of the N-methyl-d-aspartate receptor (NMDAR). In hippocampus, the

  11. Glycine transporter 1 is a target for the treatment of epilepsy

    NARCIS (Netherlands)

    Shen, H-Y; van Vliet, E.A.; Bright, K-A.; Hanthorn, M.; Lytle, N.K.; Gorter, J.; Aronica, E.; Boison, D.

    2015-01-01

    Glycine is the major inhibitory neurotransmitter in brainstem and spinal cord, whereas in hippocampus glycine exerts dual modulatory roles on strychnine-sensitive glycine receptors and on the strychnine-insensitive glycineB site of the N-methyl-d-aspartate receptor (NMDAR). In hippocampus, the synap

  12. Functional characterisation of human glycine receptors in a fluorescence-based high throughput screening assay

    DEFF Research Database (Denmark)

    Jensen, Anders A.

    2005-01-01

    The human glycine receptor subtypes alpha1beta and alpha2 have been expressed stably in HEK293 cells, and the functional characteristics of the receptors have been characterised in the FLIPR Membrane Potential Assay. The pharmacological properties obtained for nine standard ligands at the two...

  13. Regulation of glycine receptor diffusion properties and gephyrin interactions by protein kinase C.

    Science.gov (United States)

    Specht, Christian G; Grünewald, Nora; Pascual, Olivier; Rostgaard, Nina; Schwarz, Günter; Triller, Antoine

    2011-08-09

    Glycine receptors (GlyRs) can dynamically exchange between synaptic and extrasynaptic locations through lateral diffusion within the plasma membrane. Their accumulation at inhibitory synapses depends on the interaction of the β-subunit of the GlyR with the synaptic scaffold protein gephyrin. An alteration of receptor-gephyrin binding could thus shift the equilibrium between synaptic and extrasynaptic GlyRs and modulate the strength of inhibitory neurotransmission. Using a combination of dynamic imaging and biochemical approaches, we have characterised the molecular mechanism that links the GlyR-gephyrin interaction with GlyR diffusion and synaptic localisation. We have identified a protein kinase C (PKC) phosphorylation site within the cytoplasmic domain of the β-subunit of the GlyR (residue S403) that causes a reduction of the binding affinity between the receptor and gephyrin. In consequence, the receptor's diffusion in the plasma membrane is accelerated and GlyRs accumulate less strongly at synapses. We propose that the regulation of GlyR dynamics by PKC thus contributes to the plasticity of inhibitory synapses and may be involved in maladaptive forms of synaptic plasticity.

  14. Activation-induced structural change in the GluN1/GluN3A excitatory glycine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Balasuriya, Dilshan; Takahashi, Hirohide; Srivats, Shyam; Edwardson, J. Michael, E-mail: jme1000@cam.ac.uk

    2014-08-08

    Highlights: • We studied the response of the GluN1/GluN3A excitatory glycine receptor to activation. • GluN1 and GluN3A subunits interacted within transfected cells. • The GluN1/GluN3A receptor was functionally active. • Glycine or D-serine caused a ∼1 nm height reduction in bilayer-integrated receptors. • This height reduction was abolished by the glycine antagonist DCKA. - Abstract: Unlike GluN2-containing N-methyl-D-aspartate (NMDA) receptors, which require both glycine and glutamate for activation, receptors composed of GluN1 and GluN3 subunits are activated by glycine alone. Here, we used atomic force microscopy (AFM) imaging to examine the response to activation of the GluN1/GluN3A excitatory glycine receptor. GluN1 and GluN3A subunits were shown to interact intimately within transfected tsA 201 cells. Isolated GluN1/GluN3A receptors integrated into lipid bilayers responded to addition of either glycine or D-serine, but not glutamate, with a ∼1 nm reduction in height of the extracellular domain. The height reduction in response to glycine was abolished by the glycine antagonist 5,7-dichlorokynurenic acid. Our results represent the first demonstration of the effect of activation on the conformation of this receptor.

  15. Neuroprotection via strychnine-sensitive glycine receptors during post-ischemic recovery of excitatory synaptic transmission in the hippocampus.

    Science.gov (United States)

    Tanabe, Mitsuo; Nitta, Azusa; Ono, Hideki

    2010-01-01

    Recent evidence indicates that strychnine-sensitive glycine receptors are located in upper brain regions including the hippocampus. Because of excitatory effects of glycine via facilitation of NMDA-receptor function, however, the net effects of increased extracellular glycine on neuronal excitability in either physiological or pathophysiological conditions are mostly unclear. Here, we addressed the potential neuroprotective effect of either exogenous application of glycine and taurine, which are both strychnine-sensitive glycine-receptor agonists, or an endogenous increase of glycine via blockade of glycine transporter 1 (GlyT1) by assessing their ability to facilitate the functional recovery of field excitatory postsynaptic potentials (fEPSPs) after termination of brief oxygen/glucose deprivation (OGD) in the CA1 region in mouse hippocampal slices. Glycine and taurine promoted restoration of the fEPSPs after reperfusion, but this was never observed in the presence of strychnine. Interestingly, glycine and taurine appeared to generate neuroprotective effects only at their optimum concentration range. By contrast, blockade of GlyT1 by N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine or sarcosine did not elicit significant neuroprotection. These results suggest that activation of strychnine-sensitive glycine receptors potentially produces neuroprotection against metabolic stress such as OGD. However, GlyT1 inhibition is unlikely to elicit a sufficient increase in the extracellular level of glycine to generate neuroprotection.

  16. A complex interaction between glycine/NMDA receptors and serotonergic/noradrenergic antidepressants in the forced swim test in mice.

    Science.gov (United States)

    Poleszak, Ewa; Wlaź, Piotr; Szewczyk, Bernadeta; Wlaź, Aleksandra; Kasperek, Regina; Wróbel, Andrzej; Nowak, Gabriel

    2011-11-01

    Both clinical and preclinical studies demonstrate the antidepressant activity of the functional NMDA receptor antagonists. In this study, we assessed the effects of two glycine/NMDA receptor ligands, namely L-701,324 (antagonist) and D: -cycloserine (a partial agonist) on the action of antidepressant drugs with different pharmacological profiles in the forced swim test in mice. Swim sessions were conducted by placing mice individually in glass cylinders filled with warmed water for 6 min. The duration of behavioral immobility during the last 4 min of the test was evaluated. The locomotor activity of mice was measured with photoresistor actimeters. L-701,324 and D: -cycloserine given with reboxetine (administered in subeffective doses) did not change the behavior of animals in the forced swim test. A potentiating effect was seen when both tested glycine site ligands were given concomitantly with imipramine or fluoxetine in this test. The lesion of noradrenaline nerve terminals produced by DSP-4 neither altered the baseline activity nor influenced the antidepressant-like action of L-701,324 or D: -cycloserine. The depletion of serotonin by p-CPA did not alter baseline activity in the forced swim test. However, it completely antagonized the antidepressant-like action produced by L-701,324 and D: -cycloserine. Moreover, the antidepressant-like effects of imipramine, fluoxetine and reboxetine were abolished by D: -serine, a full agonist of glycine/NMDA receptors. The present study demonstrates that glycine/NMDA receptor functional antagonists enhance the antidepressant-like action of serotonin, but not noradrenaline-based antidepressants and such their activity seems to depend on serotonin rather than noradrenaline pathway.

  17. Pharmacology of morphine and morphine-3-glucuronide at opioid, excitatory amino acid, GABA and glycine binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, S.E.; Smith, M.T. (Department of Pharmacy, The University of Queensland (Australia)); Dood, P.R. (Clinical Research Centre, Royal Brisbane Hospital Foundation, Brisbane (Australia))

    1994-07-01

    Morphine in high doses and its major metabolite, morphine-3-glucuronide, cause CNS excitation following intrathecal and intracerebroventricular administration by an unknown mechanism. This study investigated whether morphine and morphine-3-glucuronide interact at major excitatory (glutamate), major inhibitory (GABA or glycine), or opioid binding sites. Homogenate binding assays were performed using specific radioligands. At opioid receptors, morphine-3-glucuronide and morphine caused an equipotent sodium shift, consistent with morphine-3-glucuronide behaving as an agonist. This suggests that morphine-3-glucuronide-mediated excitation is not caused by an interaction at opioid receptors. Morphine-3-glucuronide and morphine caused a weak inhibition of the binding of [sup 3]H-MK801 (non-competitive antagonist) and [sup 125]I-ifenprodil (polyamine site antagonist), but at unphysiologically high concentrations. This suggests that CNS excitation would not result from an interaction of morphine-3-glucuronide and high-dose morphine with these sites on the NMDA receptor. Morphine-3-glucuronide and morphine inhibited the binding of [sup 3]H-muscimol (GABA receptor agonist), [sup 3]H-diazepam and [sup 3]H-flunitraxepam (benzodiazepine agonists) binding very weakly, suggesting the excitatory effects of morphine-3-glucuronide and high-dose morphine are not elicited through GABA[sub A] receptors. Morphine-3-glucuronide and high-dose morphine did not prevent re-uptake of glutamate into presynaptic nerve terminals. In addition, morphine-3-glucuronide and morphine did not inhibit the binding of [sup 3]H-strychnine (glycine receptor antagonist) to synaptic membranes prepared from bovine spinal cord. It is concluded that excitation caused by high-dose morphine and morphine-3-glucuronide is not mediated by an interaction with postsynaptic amino acid receptors. (au) (30 refs.).

  18. Computer Simulator of Glycine Receptor Activity: A New Window into a Virtual World.

    Science.gov (United States)

    Boronovsky, S E; Nartsissov, Y R

    2016-07-01

    Our study reports computer software that simulates the work of a single glycine receptor (GlyR). GlyRs have been found in various types of tissues, but their most important role seems to be in neurons, where they hyperpolarise membranes by opening chloride transmembrane channels. The software is based on a combination of two blocks. One block describes the Brownian dynamics of charged particle motion in a dielectric medium, and the other block determines the probability and timing of receptor activation. Using this software, the voltage-current dependencies and time curves of the transmembrane current were obtained. The mean value of the simulated anion current (4.5 ± 0.3 pA) is in good agreement with measured values under identical conditions ([Formula: see text] pA). It was shown that there is a condition under which the GlyR anion channel remains active despite a negligible chloride gradient. Virtual experiments allow evaluation of the value of half maximal effective concentration (EC[Formula: see text]) of the GlyR ([Formula: see text] [Formula: see text]M) and confirm that this receptor activates according to a mechanism involving three ligand binding sites. The advantage of the model is the ability to adjust parameters to the precise demands of experimental researchers. Moreover, the introduced algorithm has low computational power demands; therefore, it can be used as a research tool for assistance with structural experiments and applied aspects of neurophysiology.

  19. Structural Dynamics of the Glycine-binding Domain of the N-Methyl-d-Aspartate Receptor*

    Science.gov (United States)

    Dolino, Drew M.; Cooper, David; Ramaswamy, Swarna; Jaurich, Henriette; Landes, Christy F.; Jayaraman, Vasanthi

    2015-01-01

    N-Methyl-d-aspartate receptors mediate the slow component of excitatory neurotransmission in the central nervous system. These receptors are obligate heteromers containing glycine- and glutamate-binding subunits. The ligands bind to a bilobed agonist-binding domain of the receptor. Previous x-ray structures of the glycine-binding domain of NMDA receptors showed no significant changes between the partial and full agonist-bound structures. Here we have used single molecule fluorescence resonance energy transfer (smFRET) to investigate the cleft closure conformational states that the glycine-binding domain of the receptor adopts in the presence of the antagonist 5,7-dichlorokynurenic acid (DCKA), the partial agonists 1-amino-1-cyclobutanecarboxylic acid (ACBC) and l-alanine, and full agonists glycine and d-serine. For these studies, we have incorporated the unnatural amino acid p-acetyl-l-phenylalanine for specific labeling of the protein with hydrazide derivatives of fluorophores. The single molecule fluorescence resonance energy transfer data show that the agonist-binding domain can adopt a wide range of cleft closure states with significant overlap in the states occupied by ligands of varying efficacy. The difference lies in the fraction of the protein in a more closed-cleft form, with full agonists having a larger fraction in the closed-cleft form, suggesting that the ability of ligands to select for these states could dictate the extent of activation. PMID:25404733

  20. Regulation of cognition and symptoms of psychosis: focus on GABA(A) receptors and glycine transporter 1.

    Science.gov (United States)

    Möhler, Hanns; Rudolph, Uwe; Boison, Detlev; Singer, Philipp; Feldon, Joram; Yee, Benjamin K

    2008-07-01

    Adaptive purposeful behaviour depends on appropriate modifications of synaptic connectivity that incorporate an organism's past experience. At least some forms of such synaptic plasticity are believed to be mediated by NMDA receptors (NMDARs). Complementary interaction with inhibitory neurotransmission mediated by GABA(A) receptors, and upstream control of the excitability of NMDARs by glycine availability can greatly influence the efficacy of NMDAR mediated neuroplasticity, and thereby exert significant effects on cognition. Memory, selective attention or sensorimotor gating functions can be modified in mice with a reduction of alpha(5)GABA(A) receptors in the hippocampus or a selective deletion of glycine transporter 1 (GlyT1) in the forebrain. Both genetic manipulations altered the formation or persistence of associative links leading to distinct phenotypes on trace conditioning, extinction learning, latent inhibition, working memory, and object recognition. Behavioural assays of latent inhibition, prepulse inhibition, working memory, and sensitivity to psychostimulants in particular suggest that alpha(3) and alpha(5) subunit-containing GABA(A) receptors as well as GlyT1 are potential sites for ameliorating psychotic-like behaviour. Taken together, these results qualify distinct GABA-A receptor subtypes and GlyT1 as molecular targets for the development of a new pharmacology in the treatment of cognitive decline and psychotic symptoms.

  1. Taurine acts as a glycine receptor agonist in slices of rat inferior colliculus.

    Science.gov (United States)

    Xu, Han; Wang, Wei; Tang, Zheng-Quan; Xu, Tian-Le; Chen, Lin

    2006-10-01

    Taurine is an important endogenous amino acid for neural development and for many physiological functions, but little is known about its functional role in the central auditory system. We investigated in young rats (P10-P14) the effects of taurine on the neuronal responses and synaptic transmissions in the central nucleus of the inferior colliculus (ICC) with a brain slice preparation and with whole-cell patch-clamp recordings. Perfusion of taurine at 1mM reliably evoked a current across the membrane and decreased the input resistance in neurons of the ICC. Taurine also depressed the spontaneous and current-evoked firing of ICC neurons. All these effects were reversible after washout and could be blocked by 3 microM strychnine, an antagonist of glycine receptors, but not by 10 microM bicuculline, an antagonist of GABA(A) receptors. When the inhibitory receptors were not pharmacologically blocked, taurine reversibly reduced the postsynaptic currents/potentials evoked by electrically stimulating the commissure of the inferior colliculus or the ipsilateral lateral lemniscus. The results demonstrate that taurine reduces the neuronal excitability and depresses the synaptic transmission in the ICC by activating glycine-gated chloride channels. Our findings suggest that taurine acts as a ligand of glycine receptors in the ICC and can be involved in the information processing of the central auditory system similarly like the neurotransmitter glycine.

  2. New hyperekplexia mutations provide insight into glycine receptor assembly, trafficking, and activation mechanisms

    DEFF Research Database (Denmark)

    Bode, Anna; Wood, Sian-Elin; Mullins, Jonathan G L

    2013-01-01

    to hyperekplexia. Most hyperekplexia cases are caused by mutations in the α1 subunit of the human glycine receptor (hGlyR) gene (GLRA1). Here we analyzed 68 new unrelated hyperekplexia probands for GLRA1 mutations and identified 19 mutations, of which 9 were novel. Electrophysiological analysis demonstrated...

  3. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes.

    Science.gov (United States)

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K; Mayer, Mark L

    2015-11-03

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species.

  4. Molecular basis of the alternative recruitment of GABA(A) versus glycine receptors through gephyrin

    DEFF Research Database (Denmark)

    Maric, Hans-Michael; Kasaragod, Vikram Babu; Hausrat, Torben Johann;

    2014-01-01

    γ-Aminobutyric acid type A and glycine receptors (GABA(A)Rs, GlyRs) are the major inhibitory neurotransmitter receptors and contribute to many synaptic functions, dysfunctions and human diseases. GABA(A)Rs are important drug targets regulated by direct interactions with the scaffolding protein ge...... of GABA(A)Rs offers a framework for future investigations into the regulation of inhibitory synaptic strength and for the development of mechanistically and therapeutically relevant compounds targeting the gephyrin-GABA(A)R interaction.......γ-Aminobutyric acid type A and glycine receptors (GABA(A)Rs, GlyRs) are the major inhibitory neurotransmitter receptors and contribute to many synaptic functions, dysfunctions and human diseases. GABA(A)Rs are important drug targets regulated by direct interactions with the scaffolding protein...

  5. A picrotoxin-specific conformational change in the glycine receptor M2-M3 loop.

    Science.gov (United States)

    Hawthorne, Rebecca; Lynch, Joseph W

    2005-10-28

    The external loop linking the M2 and M3 transmembrane domains is crucial for coupling agonist binding to channel gating in the glycine receptor chloride channel (GlyR). A substituted cysteine accessibility scan previously showed that glycine activation increased the surface accessibility of 6 contiguous residues (Arg271-Lys276) toward the N-terminal end of the homomeric alpha1 GlyR M2-M3 loop. In the present study we used a similar approach to determine whether the allosteric antagonist, picrotoxin, could impose conformational changes to this domain that cannot be induced by varying agonist concentrations alone. Picrotoxin slowed the reaction rate of a sulfhydryl-containing compound (MTSET) with A272C, S273C, and L274C. Before interpreting this as a picrotoxin-specific conformational change, it was necessary to eliminate the possibility of steric competition between picrotoxin and MTSET. Accordingly, we showed that picrotoxin and the structurally unrelated blocker, bilobalide, were both trapped in the R271C GlyR in the closed state and that a point mutation to the pore-lining Thr6' residue abolished inhibition by both compounds. We also demonstrated that the picrotoxin dissociation rate was linearly related to the channel open probability. These observations constitute a strong case for picrotoxin binding in the pore. We thus conclude that the picrotoxin-specific effects on the M2-M3 loop are mediated allosterically. This suggests that the M2-M3 loop responds differently to the occupation of different binding sites.

  6. Activation of Strychnine-Sensitive Glycine Receptors by Shilajit on Preoptic Hypothalamic Neurons of Juvenile Mice.

    Science.gov (United States)

    Bhattarai, Janardhan Prasad; Cho, Dong Hyu; Han, Seong Kyu

    2016-02-29

    Shilajit, a mineral pitch, has been used in Ayurveda and Siddha system of medicine to treat many human ailments, and is reported to contain at least 85 minerals in ionic form. This study examined the possible mechanism of Shilajit action on preoptic hypothalamic neurons using juvenile mice. The hypothalamic neurons are the key regulator of many hormonal systems. In voltage clamp mode at a holding potential of -60 mV, and under a high chloride pipette solution, Shilajit induced dose-dependent inward current. Shilajit-induced inward currents were reproducible and persisted in the presence of 0.5 μM tetrodotoxin (TTX) suggesting a postsynaptic action of Shilajit on hypothalamic neurons. The currents induced by Shilajit were almost completely blocked by 2 μM strychnine (Stry), a glycine receptor antagonist. In addition, Shilajit-induced inward currents were partially blocked by bicuculline. Under a gramicidin-perforated patch clamp mode, Shilajit induced membrane depolarization on juvenile neurons. These results show that Shilajit affects hypothalamic neuronal activities by activating the Stry-sensitive glycine receptor with α₂/α₂β subunit. Taken together, these results suggest that Shilajit contains some ingredients with possible glycine mimetic activities and might influence hypothalamic neurophysiology through activation of Stry-sensitive glycine receptor-mediated responses on hypothalamic neurons postsynaptically.

  7. Increased gamma-aminobutyric acid receptor function in the cerebral cortex of myoclonic calves with an hereditary deficit in glycine/strychnine receptors.

    Science.gov (United States)

    Lummis, S C; Gundlach, A L; Johnston, G A; Harper, P A; Dodd, P R

    1990-08-01

    Inherited congenital myoclonus (ICM) of Poll Hereford cattle is a neurological disease in which there are severe alterations in spinal cord glycine-mediated neurotransmission. There is a specific and marked decrease, or defect, in glycine receptors and a significant increase in neuronal (synaptosomal) glycine uptake. Here we have examined the characteristics of the cerebral gamma-aminobutyric acid (GABA) receptor complex, and demonstrate that the malfunction of the spinal cord inhibitory system is accompanied by a change in the major inhibitory system in the cerebral cortex. In synaptic membrane preparations from ICM calves, both high-and low-affinity binding sites for the GABA agonist [3H]muscimol were found (KD = 9.3 +/- 1.5 and 227 +/- 41 nM, respectively), whereas only the high-affinity site was detectable in controls (KD = 14.0 +/- 3.1 nM). The density and affinity of benzodiazepine agonist binding sites labelled by [3H]diazepam were unchanged, but there was an increase in GABA-stimulated benzodiazepine binding. The affinity for t-[3H]butylbicyclo-o-benzoate, a ligand that binds to the GABA-activated chloride channel, was significantly increased in ICM brain membranes (KD = 148 +/- 14 nM) compared with controls (KD = 245 +/- 33 nM). Muscimol-stimulated 36Cl- uptake was 12% greater in microsacs prepared from ICM calf cerebral cortex, and the uptake was more sensitive to block by the GABA antagonist picrotoxin. The results show that the characteristics of the GABA receptor complex in ICM calf cortex differ from those in cortex from unaffected calves, a difference that is particularly apparent for the low-affinity, physiologically relevant GABA receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. A glycine receptor is involved in the organization of swimming movements in an invertebrate chordate

    Directory of Open Access Journals (Sweden)

    Okamura Yasushi

    2010-01-01

    Full Text Available Abstract Background Rhythmic motor patterns for locomotion in vertebrates are generated in spinal cord neural networks known as spinal Central Pattern Generators (CPGs. A key element in pattern generation is the role of glycinergic synaptic transmission by interneurons that cross the cord midline and inhibit contralaterally-located excitatory neurons. The glycinergic inhibitory drive permits alternating and precisely timed motor output during locomotion such as walking or swimming. To understand better the evolution of this system we examined the physiology of the neural network controlling swimming in an invertebrate chordate relative of vertebrates, the ascidian larva Ciona intestinalis. Results A reduced preparation of the larva consisting of nerve cord and motor ganglion generates alternating swimming movements. Pharmacological and genetic manipulation of glycine receptors shows that they are implicated in the control of these locomotory movements. Morphological molecular techniques and heterologous expression experiments revealed that glycine receptors are inhibitory and are present on both motoneurones and locomotory muscle while putative glycinergic interneurons were identified in the nerve cord by labeling with an anti-glycine antibody. Conclusions In Ciona intestinalis, glycine receptors, glycinergic transmission and putative glycinergic interneurons, have a key role in coordinating swimming movements through a simple CPG that is present in the motor ganglion and nerve cord. Thus, the strong association between glycine receptors and vertebrate locomotory networks may now be extended to include the phylum chordata. The results suggest that the basic network for 'spinal-like' locomotion is likely to have existed in the common ancestor of extant chordates some 650 M years ago.

  9. Glycine blunts transplantative liver ischemia-reperfusion injury by downregulating interleukin 1 receptor associated kinase-4

    Institute of Scientific and Technical Information of China (English)

    Zuo-jin LIU; Lu-nan YAN; Shen-wei LI; Hai-bo YOU; Jian-ping GONG

    2006-01-01

    Aim: To determine whether glycine could downregulate interleukin 1 receptor associated kinase-4 (IRAK-4) expression to interfere with lipopolysaccharides (LPS) signal transduction and blunt transplantative liver ischemia-reperfusion injury (I/RI). Methods: SD rats were randomly divided into two groups: donor animals of the glycine group (n=40) were given glycine (1.5 mL; 300 mmol/L, iv) 1 h before harvest, and the control group were treated with 1.5 mL physiological saline (n= 40). Orthotropic liver transplantation was then performed according to the Kamada technique. Ten animals in each group were followed up for 7 d after surgery to assess survival. The remaining animals in each group were divided into 3 subgroups (n=10) at 1h, 2 h and 6 h after portal vein reperfusion. Levels of LPS, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and total bilirubin in portal circulation, as well as IRAK-4 and TNF-α expression, NF-кB transcriptional activity and morphological study of liver tissues were analyzed. Results: Reperfusion resulted in a significant elevation of LPS concentrations in each group persisting to the end of our study. However, glycine, which led to improved survival rate and liver function, significantly alleviated liver parenchyma cell damage by downregulating IRAK-4, TNF-α expression and NF-кB transcriptional activity compared with the control group. Conclusion: Glycine can attenuate hepatic I/RI by downregulating IRAK-4 to interfere with LPS signal transduction.

  10. Magnitude of a conformational change in the glycine receptor beta1-beta2 loop is correlated with agonist efficacy

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    associated with the closed-flip transition in the alpha1-glycine receptor. We employed voltage-clamp fluorometry to compare ligand-binding domain conformational changes induced by the following agonists, listed from highest to lowest affinity and efficacy: glycine > beta-alanine > taurine. Voltage...

  11. Three-dimensional autoradiographic localization of quench-corrected glycine receptor specific activity in the mouse brain using sup 3 H-strychnine as the ligand

    Energy Technology Data Exchange (ETDEWEB)

    White, W.F.; O' Gorman, S.; Roe, A.W. (Harvard Medical School, Boston, MA (USA))

    1990-03-01

    The autoradiographic analysis of neurotransmitter receptor distribution is a powerful technique that provides extensive information on the localization of neurotransmitter systems. Computer methodologies are described for the analysis of autoradiographic material which include quench correction, 3-dimensional display, and quantification based on anatomical boundaries determined from the tissue sections. These methodologies are applied to the problem of the distribution of glycine receptors measured by 3H-strychnine binding in the mouse CNS. The most distinctive feature of this distribution is its marked caudorostral gradient. The highest densities of binding sites within this gradient were seen in somatic motor and sensory areas; high densities of binding were seen in branchial efferent and special sensory areas. Moderate levels were seen in nuclei related to visceral function. Densities within the reticular formation paralleled the overall gradient with high to moderate levels of binding. The colliculi had low and the diencephalon had very low levels of binding. No binding was seen in the cerebellum or the telencephalon with the exception of the amygdala, which had very low levels of specific binding. This distribution of glycine receptors correlates well with the known functional distribution of glycine synaptic function. These data are illustrated in 3 dimensions and discussed in terms of the significance of the analysis techniques on this type of data as well as the functional significance of the distribution of glycine receptors.

  12. Study of the interaction of antiplasmodial strychnine derivatives with the glycine receptor.

    Science.gov (United States)

    Philippe, Geneviève; Nguyen, Laurent; Angenot, Luc; Frédérich, Michel; Moonen, Gustave; Tits, Monique; Rigo, Jean-Michel

    2006-01-13

    Strychnos icaja Baill. (Loganiaceae) is a liana found in Central Africa known to be an arrow and ordeal poison but also used by traditional medicine to treat malaria. Recently, many dimeric or trimeric indolomonoterpenic alkaloids with antiplasmodial properties have been isolated from its rootbark. Since these alkaloids are derivatives of strychnine, it was important, in view of their potential use as antimalarial drugs, to assess their possible convulsant strychnine-like properties. In that regard, their interaction with the strychnine-sensitive glycine receptor was investigated by whole-cell patch-clamp recordings on glycine-gated currents in mouse spinal cord neurons in culture and by [(3)H]strychnine competition assays on membranes from adult rat spinal cord. These experiments were carried out on sungucine (leading compound of the chemical class) and on the antiplasmodial strychnogucine B (dimeric) and strychnohexamine (trimeric). In comparison with strychnine, all compounds interact with a very poor efficacy and only at concentrations >1 microM with both [(3)H]strychnine binding and glycine-gated currents. Furthermore, the effects of strychnine and protostrychnine, a monomeric alkaloid (without antiplasmodial activity) also isolated from S. icaja and differing from strychnine only by a cycle opening, were compared in the same way. The weak interaction of protostrychnine confirms the importance of the G cycle ring structure in strychnine for its binding to the glycine receptor and its antagonist properties.

  13. Molecular lock regulates binding of glycine to a primitive NMDA receptor.

    Science.gov (United States)

    Yu, Alvin; Alberstein, Robert; Thomas, Alecia; Zimmet, Austin; Grey, Richard; Mayer, Mark L; Lau, Albert Y

    2016-11-01

    The earliest metazoan ancestors of humans include the ctenophore Mnemiopsis leidyi The genome of this comb jelly encodes homologs of vertebrate ionotropic glutamate receptors (iGluRs) that are distantly related to glycine-activated NMDA receptors and that bind glycine with unusually high affinity. Using ligand-binding domain (LBD) mutants for electrophysiological analysis, we demonstrate that perturbing a ctenophore-specific interdomain Arg-Glu salt bridge that is notably absent from vertebrate AMPA, kainate, and NMDA iGluRs greatly increases the rate of recovery from desensitization, while biochemical analysis reveals a large decrease in affinity for glycine. X-ray crystallographic analysis details rearrangements in the binding pocket stemming from the mutations, and molecular dynamics simulations suggest that the interdomain salt bridge acts as a steric barrier regulating ligand binding and that the free energy required to access open conformations in the glycine-bound LBD is largely responsible for differences in ligand affinity among the LBD variants.

  14. N-Hydroxypyrazolyl glycine derivatives as selective N-methyl-D-aspartic acid receptor ligands

    DEFF Research Database (Denmark)

    Clausen, Rasmus Prætorius; Christensen, Caspar; Hansen, Kasper Bø;

    2008-01-01

    A series of analogues based on N-hydroxypyrazole as a bioisostere for the distal carboxylate group of aspartate have been designed, synthesized, and pharmacologically characterized. Affinity studies on the major glutamate receptor subgroups show that these 4-substituted N-hydroxypyrazol-5-yl...... glycine (NHP5G) derivatives are selectively recognized by N-methyl- d-aspartic acid (NMDA) receptors and that the ( R)-enantiomers are preferred. Moreover, several of the compounds are able to discriminate between individual subtypes among the NMDA receptors, providing new pharmacological tools...

  15. A single glycine-alanine exchange directs ligand specificity of the elephant progestin receptor.

    Directory of Open Access Journals (Sweden)

    Michael Wierer

    Full Text Available The primary gestagen of elephants is 5α-dihydroprogesterone (DHP, which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR. Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A of PR, which specifically increases DHP affinity while not affecting binding of progesterone. By conducting molecular dynamics simulations comparing human and elephant PR ligand-binding domains (LBD, we observed that the alanine methyl group at position 722 is able to push the DHP A-ring into a position similar to progesterone. In the human PR, the DHP A-ring position is twisted towards helix 3 of PR thereby disturbing the hydrogen bond pattern around the C3-keto group, resulting in a lower binding affinity. Furthermore, we observed that the elephant PR ligand-binding pocket is more rigid than the human analogue, which probably explains the higher affinity towards both progesterone and DHP. Interestingly, the G722A substitution is not elephant-specific, rather it is also present in five independent lineages of mammalian evolution, suggesting a special role of the substitution for the development of distinct mammalian gestagen systems.

  16. A single glycine-alanine exchange directs ligand specificity of the elephant progestin receptor.

    Science.gov (United States)

    Wierer, Michael; Schrey, Anna K; Kühne, Ronald; Ulbrich, Susanne E; Meyer, Heinrich H D

    2012-01-01

    The primary gestagen of elephants is 5α-dihydroprogesterone (DHP), which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR). Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A) of PR, which specifically increases DHP affinity while not affecting binding of progesterone. By conducting molecular dynamics simulations comparing human and elephant PR ligand-binding domains (LBD), we observed that the alanine methyl group at position 722 is able to push the DHP A-ring into a position similar to progesterone. In the human PR, the DHP A-ring position is twisted towards helix 3 of PR thereby disturbing the hydrogen bond pattern around the C3-keto group, resulting in a lower binding affinity. Furthermore, we observed that the elephant PR ligand-binding pocket is more rigid than the human analogue, which probably explains the higher affinity towards both progesterone and DHP. Interestingly, the G722A substitution is not elephant-specific, rather it is also present in five independent lineages of mammalian evolution, suggesting a special role of the substitution for the development of distinct mammalian gestagen systems.

  17. Zinc enhances the inhibitory effects of strychnine-sensitive glycine receptors in mouse hippocampal neurons.

    Science.gov (United States)

    Zhang, Hai Xia; Thio, Liu Lin

    2007-12-01

    Although extracellular Zn(2+) is an endogenous biphasic modulator of strychnine-sensitive glycine receptors (GlyRs), the physiological significance of this modulation remains poorly understood. Zn(2+) modulation of GlyR may be especially important in the hippocampus where presynaptic Zn(2+) is abundant. Using cultured embryonic mouse hippocampal neurons, we examined whether 1 microM Zn(2+), a potentiating concentration, enhances the inhibitory effects of GlyRs activated by sustained glycine applications. Sustained 20 microM glycine (EC(25)) applications alone did not decrease the number of action potentials evoked by depolarizing steps, but they did in 1 microM Zn(2+). At least part of this effect resulted from Zn(2+) enhancing the GlyR-induced decrease in input resistance. Sustained 20 microM glycine applications alone did not alter neuronal bursting, a form of hyperexcitability induced by omitting extracellular Mg(2+). However, sustained 20 microM glycine applications depressed neuronal bursting in 1 microM Zn(2+). Zn(2+) did not enhance the inhibitory effects of sustained 60 microM glycine (EC(70)) applications in these paradigms. These results suggest that tonic GlyR activation could decrease neuronal excitability. To test this possibility, we examined the effect of the GlyR antagonist strychnine and the Zn(2+) chelator tricine on action potential firing by CA1 pyramidal neurons in mouse hippocampal slices. Co-applying strychnine and tricine slightly but significantly increased the number of action potentials fired during a depolarizing current step and decreased the rheobase for action potential firing. Thus Zn(2+) may modulate neuronal excitability normally and in pathological conditions such as seizures by potentiating GlyRs tonically activated by low agonist concentrations.

  18. Contributions of conserved residues at the gating interface of glycine receptors

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Leung, Ada W Y; Galpin, Jason D

    2011-01-01

    Glycine receptors (GlyRs) are chloride channels that mediate fast inhibitory neurotransmission and are members of the pentameric ligand-gated ion channel (pLGIC) family. The interface between the ligand binding domain and the transmembrane domain of pLGICs has been proposed to be crucial for chan......Glycine receptors (GlyRs) are chloride channels that mediate fast inhibitory neurotransmission and are members of the pentameric ligand-gated ion channel (pLGIC) family. The interface between the ligand binding domain and the transmembrane domain of pLGICs has been proposed to be crucial...... in the pre-M1 domain that is crucial for channel gating. We further propose that Phe-145 and Phe-187 play important roles in stabilizing this interaction by providing a hydrophobic environment. In contrast to the equivalent residues in loop 2 of other pLGICs, the negative charge at Glu-53 α1 Gly...

  19. Disturbances of ligand potency and enhanced degradation of the human glycine receptor at affected positions G160 and T162 originally identified in patients suffering from hyperekplexia

    Directory of Open Access Journals (Sweden)

    Sinem eAtak

    2015-12-01

    Full Text Available Ligand-binding of Cys-loop receptors is determined by N-terminal extracellular loop structures from the plus as well as from the minus side of two adjacent subunits in the pentameric receptor complex. An aromatic residue in loop B of the glycine receptor (GlyR undergoes direct interaction with the incoming ligand via cation-π interactions. Recently we showed that mutated residues in loop B identified from human patients suffering from hyperekplexia disturb ligand-binding. Here, we exchanged the affected human residues by amino acids found in related members of the Cys-loop receptor family to determine the effects of side chain volume for ion channel properties. GlyR variants were characterized in vitro following transfection into cell lines in order to analyze protein expression, trafficking, degradation and ion channel function. GlyR α1 G160 mutations significantly decrease glycine potency arguing for a positional effect on neighboring aromatic residues and consequently glycine-binding within the ligand-binding pocket. Disturbed glycinergic inhibition due to T162 α1 mutations is an additive effect of affected biogenesis and structural changes within the ligand-binding site. Protein trafficking from the ER towards ER-Golgi intermediate compartment, the secretory Golgi pathways and finally the cell surface is largely diminished, but still sufficient to deliver ion channels that are functional at least at high glycine concentrations. The majority of T162 mutant protein accumulates in the ER and is conducted to ER-associated proteasomal degradation. Hence, G160 is an important determinant during glycine binding. In contrast, T162 assigns primarily receptor biogenesis whereas exchanges in functionality are secondary effects thereof.

  20. Multiplexed labeling of viable cells for high-throughput analysis of glycine receptor function using flow cytometry.

    Science.gov (United States)

    Gilbert, Daniel F; Wilson, John C; Nink, Virginia; Lynch, Joseph W; Osborne, Geoffrey W

    2009-05-01

    Flow cytometry is an important drug discovery tool because it permits high-content multiparameter analysis of individual cells. A new method dramatically enhanced screening throughput by multiplexing many discrete fixed cell populations; however, this method is not suited to assays requiring functional cellular responses. HEK293 cells were transfected with unique mutant glycine receptors. Mutant receptor expression was confirmed by coexpression of yellow fluorescent protein (YFP). Commercially available cell-permeant dyes were used to label each glycine receptor expressing mutant with a unique optical code. All encoded cell lines were combined in a single tube and analyzed on a flow cytometer simultaneously before and after the addition of glycine receptor agonist. We decoded multiplexed cells that expressed functionally distinct glycine receptor chloride channels and analyzed responses to glycine in terms of chloride-sensitive YFP expression. Here, data provided by flow cytometry can be used to discriminate between functional and nonfunctional mutations in the glycine receptor, a process accelerated by the use of multiplexing. Further, this data correlates to data generated using a microscopy-based technique. The present study demonstrates multiplexed labeling of live cells, to enable cell populations to be subject to further cell culture and experimentation, and compares the results with those obtained using live cell microscopy. (c) 2009 International Society for Advancement of Cytometry.

  1. Glycine receptors caught between genome and proteome - functional implications of RNA editing and splicing

    Directory of Open Access Journals (Sweden)

    Pascal Legendre

    2009-11-01

    Full Text Available Information processing in the brain requires a delicate balance between excitation and inhibition. Glycine receptors (GlyR are involved in inhibitory mechanisms mainly at a synaptic level, but potential novel roles for these receptors recently emerged due to the discovery of posttranscriptional processing. GLR transcripts are edited through enzymatic modification of a single nucleotide leading to amino acid substitution within the neurotransmitter binding domain. RNA editing produces gain-of-function receptors well suited for generation and maintenance of tonic inhibition of neuronal excitability. As neuronal activity deprivation in early stages of development or in epileptic tissue is detrimental to neurons and because RNA editing of GlyR is up-regulated in temporal lobe epilepsy patients with a severe course of disease a pathophysiological role of these receptors emerges. This review contains a state-of-the-art discussion of (pathophysiological implications of GlyR RNA editing.

  2. In vivo protection against strychnine toxicity in mice by the glycine receptor agonist ivermectin.

    Science.gov (United States)

    Maher, Ahmed; Radwan, Rasha; Breitinger, Hans-Georg

    2014-01-01

    The inhibitory glycine receptor, a ligand-gated ion channel that mediates fast synaptic inhibition in mammalian spinal cord and brainstem, is potently and selectively inhibited by the alkaloid strychnine. The anthelminthic and anticonvulsant ivermectin is a strychnine-independent agonist of spinal glycine receptors. Here we show that ivermectin is an effective antidote of strychnine toxicity in vivo and determine time course and extent of ivermectin protection. Mice received doses of 1 mg/kg and 5 mg/kg ivermectin orally or intraperitoneally, followed by an intraperitoneal strychnine challenge (2 mg/kg). Ivermectin, through both routes of application, protected mice against strychnine toxicity. Maximum protection was observed 14 hours after ivermectin administration. Combining intraperitoneal and oral dosage of ivermectin further improved protection, resulting in survival rates of up to 80% of animals and a significant delay of strychnine effects in up to 100% of tested animals. Strychnine action developed within minutes, much faster than ivermectin, which acted on a time scale of hours. The data agree with a two-compartment distribution of ivermectin, with fat deposits acting as storage compartment. The data demonstrate that toxic effects of strychnine in mice can be prevented if a basal level of glycinergic signalling is maintained through receptor activation by ivermectin.

  3. In Vivo Protection against Strychnine Toxicity in Mice by the Glycine Receptor Agonist Ivermectin

    Directory of Open Access Journals (Sweden)

    Ahmed Maher

    2014-01-01

    Full Text Available The inhibitory glycine receptor, a ligand-gated ion channel that mediates fast synaptic inhibition in mammalian spinal cord and brainstem, is potently and selectively inhibited by the alkaloid strychnine. The anthelminthic and anticonvulsant ivermectin is a strychnine-independent agonist of spinal glycine receptors. Here we show that ivermectin is an effective antidote of strychnine toxicity in vivo and determine time course and extent of ivermectin protection. Mice received doses of 1 mg/kg and 5 mg/kg ivermectin orally or intraperitoneally, followed by an intraperitoneal strychnine challenge (2 mg/kg. Ivermectin, through both routes of application, protected mice against strychnine toxicity. Maximum protection was observed 14 hours after ivermectin administration. Combining intraperitoneal and oral dosage of ivermectin further improved protection, resulting in survival rates of up to 80% of animals and a significant delay of strychnine effects in up to 100% of tested animals. Strychnine action developed within minutes, much faster than ivermectin, which acted on a time scale of hours. The data agree with a two-compartment distribution of ivermectin, with fat deposits acting as storage compartment. The data demonstrate that toxic effects of strychnine in mice can be prevented if a basal level of glycinergic signalling is maintained through receptor activation by ivermectin.

  4. The mGluR5 antagonist MPEP elevates accumbal dopamine and glycine levels; interaction with strychnine-sensitive glycine receptors.

    Science.gov (United States)

    Chau, PeiPei; Söderpalm, Bo; Ericson, Mia

    2011-10-01

    Studies have indicated that the metabotropic glutamate receptor 5 (mGluR5) antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) decreases ethanol self-administration, and the same receptor type was also suggested to be involved in the mechanism of action of the anti-craving substance acamprosate. Our previous research suggested that glycine receptors (GlyRs) in the nucleus accumbens (nAc) play a major part in mediating the dopamine-elevating properties of ethanol and are highly involved in the ethanol intake-reducing effect of acamprosate. The aim of this study was to examine if modulation of nAc dopamine via mGluR5 antagonism or GlyR agonism is a linked or separated phenomena. The extracellular levels of dopamine as well as of the GlyR ligands, glycine, taurine and β-alanine were measured in the nAc by means of microdialysis after local perfusion of MPEP (100 or 500 µM) with or without pre-treatment with strychnine. MPEP increased dopamine levels, an effect that was blocked by pre-treatment with strychnine. In addition, the higher MPEP concentration increased glycine output, whereas no alterations of taurine or β-alanine were observed. These results indicate a relationship between the glutamatergic and glycinergic transmitter systems in regulating dopamine output, possibly via alteration of extracellular glycine levels. Taken together with our previous data demonstrating the importance of accumbal GlyRs both in ethanol-induced elevation of nAc dopamine and in ethanol consumption, it is plausible that the effects of MPEP treatment, on dopamine output and on ethanol intake, may be mediated via interaction with the same neuronal circuitry that previously has been demonstrated for ethanol, taurine and acamprosate. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  5. Strychnine-sensitive glycine receptors mediate the analgesic but not hypnotic effects of emulsified volatile anesthetics.

    Science.gov (United States)

    Chen, Yan; Dai, Ti-Jun; Zeng, Yin-Ming

    2007-01-01

    The present study was designed to investigate the role of strychnine-sensitive glycine receptors in hypnosis and analgesia induced by emulsified volatile anesthetics. After having established the mice model of hypnosis and analgesia by intraperitoneally injecting (i.p.) appropriate doses of ether, enflurane, isoflurane or sevoflurane, we intracerebroventricularly (i.c.v.) or intrathecally (i.t.) injected different doses of strychnine and then observed the effects on the sleeping time using the awaken test and the pain index in hot-plate test (HPPI) using the hot-plate test. In the awaken test, strychnine 1, 2, 4 microg (i.c.v.) had no distinctive effect on the sleeping time of the mice treated with the four emulsified inhalation anesthetics mentioned above (p > 0.05); in the hot-plate test, strychnine 0.1, 0.2, 0.4 microg (i.t.) can significantly and dose-dependently decrease the HPPI of the mice treated with emulsified ether, enflurane and sevoflurane (p strychnine 0.1 microg (i.t.) did not affect the HPPI of the mice treated with emulsified isoflurane (p > 0.05), but 0.2 and 0.4 microg (i.t.) can significantly decrease the HPPI of the mice treatedwith emulsified isoflurane (p strychnine-sensitive glycine receptors may contribute to the analgesic but not to the hypnotic effects induced by ether, enflurane, isoflurane and sevoflurane. Copyright (c) 2007 S. Karger AG, Basel.

  6. The Prodrug 4-Chlorokynurenine Causes Ketamine-Like Antidepressant Effects, but Not Side Effects, by NMDA/GlycineB-Site Inhibition

    Science.gov (United States)

    Zanos, Panos; Piantadosi, Sean C.; Wu, Hui-Qiu; Pribut, Heather J.; Dell, Matthew J.; Can, Adem; Snodgrass, H. Ralph; Zarate, Carlos A.; Schwarcz, Robert

    2015-01-01

    Currently approved antidepressant drug treatment typically takes several weeks to be effective. The noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has shown efficacy as a rapid-acting treatment of depression, but its use is associated with significant side effects. We assessed effects following blockade of the glycineB co-agonist site of the NMDA receptor, located on the GluN1 subunit, by the selective full antagonist 7-chloro-kynurenic acid (7-Cl-KYNA), delivered by systemic administration of its brain-penetrant prodrug 4-chlorokynurenine (4-Cl-KYN) in mice. Following administration of 4-Cl-KYN, 7-Cl-KYNA was promptly recovered extracellularly in hippocampal microdialysate of freely moving animals. The behavioral responses of the animals were assessed using measures of ketamine-sensitive antidepressant efficacy (including the 24-hour forced swim test, learned helplessness test, and novelty-suppressed feeding test). In these tests, distinct from fluoxetine, and similar to ketamine, 4-Cl-KYN administration resulted in rapid, dose-dependent and persistent antidepressant-like effects following a single treatment. The antidepressant effects of 4-Cl-KYN were prevented by pretreatment with glycine or the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX). 4-Cl-KYN administration was not associated with the rewarding and psychotomimetic effects of ketamine, and did not induce locomotor sensitization or stereotypic behaviors. Our results provide further support for antagonism of the glycineB site for the rapid treatment of treatment-resistant depression without the negative side effects seen with ketamine or other channel-blocking NMDA receptor antagonists. PMID:26265321

  7. Hyperekplexia mutation R271L of alpha1 glycine receptors potentiates allosteric interactions of nortropeines, propofol and glycine with [3H]strychnine binding.

    Science.gov (United States)

    Maksay, Gábor; Bíró, Tímea; Laube, Bodo; Nemes, Péter

    2008-01-01

    Human alpha1 and hyperekplexia mutant alpha1(R271L) glycine receptors (GlyRs) were transiently expressed in human embryonic kidney 293 cells for [3H]strychnine binding. Binding parameters were determined using a ternary allosteric model. The hyperekplexia mutation increased the positive cooperativity of 0.3 mM propofol and glycine binding by about six times: the cooperativity factor beta was 0.26 for alpha1 GlyRs and 0.04 for alpha1(R271L) GlyRs. Thus, propofol restored the potency of glycine impaired by the mutation. Five nortropeines, i.e. substituted benzoates of nortropine and a new compound, nortropisetron were prepared and also examined on [3H]strychnine binding. They showed nanomolar displacing potencies amplified by the hyperekplexia mutation. The affinity of nor-O-zatosetron (2.6 nM) is one of the highest reported for GlyRs. This binding test offers an in vitro method to evaluate agents against neurological disorders associated with inherited mutations of GlyRs.

  8. The Glycine Synaptic Receptor: Evidence That Strychnine Binding Is Associated with the Ionic Conductance Mechanism

    Science.gov (United States)

    Young, Anne B.; Snyder, Solomon H.

    1974-01-01

    The ability of a series of anions to inhibit [3H]strychnine binding to spinal cord synaptic membranes correlates closely with their neurophysiologic capacity to reverse inhibitory postsynaptic potentials in the mammalian spinal cord. Seven neurophysiologically active anions are also effective inhibitors of [3H]strychnine binding with mean effective doses ranging from 160 to 620 mM. Seven other anions that are ineffective neurophysiologically also fail to alter strychnine binding. Chloride inhibits strychnine binding in a noncompetitive fashion. Hill plots of the displacement of [3H]strychnine by chloride give coefficients of 2.3-2.7. The inhibition of strychnine binding by these anions suggests that strychnine binding is closely associated with the ionic conductance mechanism for chloride in the glycine receptor. PMID:4372600

  9. Subregion-specific modulation of excitatory input and dopaminergic output in the striatum by tonically activated glycine and GABAA receptors

    Directory of Open Access Journals (Sweden)

    Louise eAdermark

    2011-10-01

    Full Text Available The flow of cortical information through the basal ganglia is a complex spatiotemporal pattern of increased and decreased firing. The striatum is the biggest input nucleus to the basal ganglia and the aim of this study was to assess the role of inhibitory GABAA and glycine receptors in regulating synaptic activity in the dorsolateral (DLS and ventral striatum (nucleus accumbens, nAc. Local field potential recordings from coronal brain slices of juvenile and adult Wistar rats showed that GABAA receptors and strychnine-sensitive glycine receptors are tonically activated and inhibit excitatory input to the DLS and to the nAc. Strychnine-induced disinhibition of glutamatergic transmission was insensitive to the muscarinic receptor inhibitor scopolamine (10 µM, inhibited by the nicotinic acetylcholine receptor antagonist mecamylamine (10 µM and blocked by GABAA receptor inhibitors, suggesting that tonically activated glycine receptors depress excitatory input to the striatum through modulation of cholinergic and GABAergic neurotransmission. As an end-product example of striatal GABAergic output in vivo we measured dopamine release in the DLS and nAc by microdialysis in the awake and freely moving rat. Reversed dialysis of bicuculline (50 μM in perfusate only increased extrasynaptic dopamine levels in the nAc, while strychnine administered locally (200 μM in perfusate decreased dopamine output by 60% in both the DLS and nAc. Our data suggest that GABAA and glycine receptors are tonically activated and modulate striatal transmission in a partially sub-region specific manner.

  10. Early history of glycine receptor biology in mammalian spinal cord circuits

    Directory of Open Access Journals (Sweden)

    Robert J Callister

    2010-05-01

    Full Text Available In this review we provide an overview of key in vivo experiments, undertaken in the cat spinal cord in the 1950s and 1960s, and point out their contributions to our present understanding of glycine receptor (GlyR function. Importantly, some of these discoveries were made well before an inhibitory receptor, or its agonist, was identified. These contributions include the universal acceptance of a chemical mode of synaptic transmission, that GlyRs are chloride channels, are involved in reciprocal and recurrent spinal inhibition, are selectively blocked by strychnine, and can be distinguished from the GABAA receptor by their insensitivity to bicuculline. The early in vivo work on inhibitory mechanisms in spinal neurons also contributed to several enduring principles on synaptic function, such as the time associated with synaptic delay, the extension of Dale’s hypothesis (regarding the chemical unity of nerve cells and their terminals to neurons within the central nervous system, and the importance of inhibition for synaptic integration in motor and sensory circuits. We hope the work presented here will encourage those interested in GlyR biology and inhibitory mechanisms to seek out and read some of the “classic” articles that document the above discoveries.

  11. Membrane distribution of the glycine receptor α3 studied by optical super-resolution microscopy.

    Science.gov (United States)

    Notelaers, Kristof; Rocha, Susana; Paesen, Rik; Swinnen, Nina; Vangindertael, Jeroen; Meier, Jochen C; Rigo, Jean-Michel; Ameloot, Marcel; Hofkens, Johan

    2014-07-01

    In this study, the effect of glycine receptor (GlyR) α3 alternative RNA splicing on the distribution of receptors in the membrane of human embryonic kidney 293 cells is investigated using optical super-resolution microscopy. Direct stochastic optical reconstruction microscopy is used to image both α3K and α3L splice variants individually and together using single- and dual-color imaging. Pair correlation analysis is used to extract quantitative measures from the resulting images. Autocorrelation analysis of the individually expressed variants reveals clustering of both variants, yet with differing properties. The cluster size is increased for α3L compared to α3K (mean radius 92 ± 4 and 56 ± 3 nm, respectively), yet an even bigger difference is found in the cluster density (9,870 ± 1,433 and 1,747 ± 200 μm(-2), respectively). Furthermore, cross-correlation analysis revealed that upon co-expression, clusters colocalize on the same spatial scales as for individually expressed receptors (mean co-cluster radius 94 ± 6 nm). These results demonstrate that RNA splicing determines GlyR α3 membrane distribution, which has consequences for neuronal GlyR physiology and function.

  12. Generation of functional inhibitory synapses incorporating defined combinations of GABA(A or glycine receptor subunits

    Directory of Open Access Journals (Sweden)

    Christine Laura Dixon

    2015-12-01

    Full Text Available Fast inhibitory neurotransmission in the brain is mediated by wide range of GABAA receptor (GABAAR and glycine receptor (GlyR isoforms, each with different physiological and pharmacological properties. Because multiple isoforms are expressed simultaneously in most neurons, it is difficult to define the properties of inhibitory postsynaptic currents mediated by individual isoforms in vivo. Although recombinant expression systems permit the expression of individual isoforms in isolation, they require exogenous agonist application which cannot mimic the dynamic neurotransmitter profile characteristic of native synapses. We describe a neuron-HEK293 cell co-culture technique for generating inhibitory synapses incorporating defined combinations of GABAAR or GlyR subunits. Primary neuronal cultures, prepared from embryonic rat cerebral cortex or spinal cord, are used to provide presynaptic GABAergic and glycinergic terminals, respectively. When the cultures are mature, HEK293 cells expressing the subunits of interest plus neuroligin 2A are plated onto the neurons, which rapidly form synapses onto HEK293 cells. Patch clamp electrophysiology is then used to analyze the physiological and pharmacological properties of the inhibitory postsynaptic currents mediated by the recombinant receptors. The method is suitable for investigating the kinetic properties or the effects of drugs on inhibitory postsynaptic currents mediated by defined GABAAR or GlyR isoforms of interest, the effects of hereditary disease mutations on the formation and function of both types of synapses, and synaptogenesis and synaptic clustering mechanisms. The entire cell preparation procedure takes 2 – 5 weeks.

  13. Isolation and Characterization of the Brassinosteroid Receptor Gene (GmBRI1 from Glycine max

    Directory of Open Access Journals (Sweden)

    Miao Wang

    2014-03-01

    Full Text Available Brassinosteroids (BRs constitute a group of steroidal phytohormones that contribute to a wide range of plant growth and development functions. The genetic modulation of BR receptor genes, which play major roles in the BR signaling pathway, can create semi-dwarf plants that have great advantages in crop production. In this study, a brassinosteroid insensitive gene homologous with AtBRI1 and other BRIs was isolated from Glycine max and designated as GmBRI1. A bioinformatic analysis revealed that GmBRI1 shares a conserved kinase domain and 25 tandem leucine-rich repeats (LRRs that are characteristic of a BR receptor for BR reception and reaction and bear a striking similarity in protein tertiary structure to AtBRI1. GmBRI1 transcripts were more abundant in soybean hypocotyls and could be upregulated in response to exogenous BR treatment. The transformation of GmBRI1 into the Arabidopsis dwarf mutant bri1-5 restored the phenotype, especially regarding pod size and plant height. Additionally, this complementation is a consequence of a restored BR signaling pathway demonstrated in the light/dark analysis, root inhibition assay and BR-response gene expression. Therefore, GmBRI1 functions as a BR receptor to alter BR-mediated signaling and is valuable for improving plant architecture and enhancing the yield of soybean.

  14. Early History of Glycine Receptor Biology in Mammalian Spinal Cord Circuits

    Science.gov (United States)

    Callister, Robert John; Graham, Brett Anthony

    2010-01-01

    In this review we provide an overview of key in vivo experiments undertaken in the cat spinal cord in the 1950s and 1960s, and point out their contributions to our present understanding of glycine receptor (GlyR) function. Importantly, some of these discoveries were made well before an inhibitory receptor, or its agonist, was identified. These contributions include the universal acceptance of a chemical mode of synaptic transmission; that GlyRs are chloride channels; are involved in reciprocal and recurrent spinal inhibition; are selectively blocked by strychnine; and can be distinguished from the GABAA receptor by their insensitivity to bicuculline. The early in vivo work on inhibitory mechanisms in spinal neurons also contributed to several enduring principles on synaptic function, such as the time associated with synaptic delay, the extension of Dale's hypothesis (regarding the chemical unity of nerve cells and their terminals) to neurons within the central nervous system, and the importance of inhibition for synaptic integration in motor and sensory circuits. We hope the work presented here will encourage those interested in GlyR biology and inhibitory mechanisms to seek out and read some of the “classic” articles that document the above discoveries. PMID:20577630

  15. Pharmacology and Structural Analysis of Ligand Binding to the Orthosteric Site of Glutamate-Like GluD2 Receptors

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Hansen, Kasper B; Naur, Peter

    2016-01-01

    -term depression. Here, we investigate the pharmacology of the orthosteric binding site in GluD2 by examining the activity of analogs of D-Ser and GluN1 glycine site competitive antagonists at GluD2 receptors containing the lurcher mutation (GluD2(LC)), which promotes spontaneous channel activation. We identify...

  16. Probing glycine receptor stoichiometry in superficial dorsal horn neurones using the spasmodic mouse.

    Science.gov (United States)

    Graham, B A; Tadros, M A; Schofield, P R; Callister, R J

    2011-05-15

    Inhibitory glycine receptors (GlyRs) are pentameric ligand gated ion channels composed of α and β subunits assembled in a 2:3 stoichiometry. The α1/βheteromer is considered the dominant GlyR isoform at 'native' adult synapses in the spinal cord and brainstem. However, the α3 GlyR subunit is concentrated in the superficial dorsal horn (SDH: laminae I-II), a spinal cord region important for processing nociceptive signals from skin, muscle and viscera. Here we use the spasmodic mouse, which has a naturally occurring mutation (A52S) in the α1 subunit of the GlyR, to examine the effect of the mutation on inhibitory synaptic transmission and homeostatic plasticity, and to probe for the presence of various GlyR subunits in the SDH.We usedwhole cell recording (at 22-24◦C) in lumbar spinal cord slices obtained from ketamine-anaesthetized (100 mg kg⁻¹, I.P.) spasmodic and wild-type mice (mean age P27 and P29, respectively, both sexes). The amplitude and decay time constants of GlyR mediated mIPSCs in spasmodic micewere reduced by 25% and 50%, respectively (42.0 ± 3.6 pA vs. 31.0 ± 1.8 pA, P spasmodic GlyRs (EC50 =130 ± 20 μM vs. 64 ± 11 μM, respectively; n =8 and 15, respectively). Differential agonist sensitivity and mIPSC decay times were subsequently used to probe for the presence of α1-containing GlyRs in SDHneurones.Glycine sensitivity, based on the response to 1-3 μM glycine, was reduced in>75% of neurones tested and decay times were faster in the spasmodic sample. Together, our data suggest most GlyRs and glycinergic synapses in the SDH contain α1 subunits and few are composed exclusively of α3 subunits. Therefore, future efforts to design therapies that target the α3 subunit must consider the potential interaction between α1 and α3 subunits in the GlyR.

  17. Glycine receptor mutants of the mouse: what are possible routes of inhibitory compensation?

    Directory of Open Access Journals (Sweden)

    Natascha eSchaefer

    2012-10-01

    Full Text Available Defects in glycinergic inhibition result in a complex neuromotor disorder in humans known as hyperekplexia (OMIM 149400 with similar phenotypes in rodents characterized by an exaggerated startle reflex and hypertonia. Analogous to genetic defects in humans, single point mutations, microdeletions, or insertions in the Glra1 gene but also in the Glrb gene underlie the pathology in mice. The mutations either localized in the α (spasmodic, oscillator, cincinnati, Nmf11 or the β (spastic subunit of the GlyR are much less tolerated in mice than in humans, leaving the question for the existence of different regulatory elements of the pathomechanisms in humans and rodents. In addition to the spontaneous mutations, new insights into understanding of the regulatory pathways in hyperekplexia or glycine encephalopathy arose from the constantly increasing number of knock-out as well as knock-in mutants of GlyRs. Over the last five years, various efforts using in vivo whole cell recordings provided a detailed analysis of the kinetic parameters underlying glycinergic dysfunction. Presynaptic compensation as well as postsynaptic compensatory mechanisms in these mice by other GlyR subunits or GABAA receptors, and the role of extra-synaptic GlyRs is still a matter of debate. A recent study on the mouse mutant oscillator, displayed a novel aspect for compensation of functionality by complementation of receptor domains that fold independently. This review focuses on defects in glycinergic neurotransmission in mice discussed with the background of human hyperekplexia en route to strategies of compensation.

  18. Localisation of glycine receptors in the human forebrain, brainstem, and cervical spinal cord: an immunohistochemical review

    Directory of Open Access Journals (Sweden)

    Kristin Baer

    2009-11-01

    Full Text Available Inhibitory neurotransmitter receptors for glycine (GlyR are heteropentameric chloride ion channels that are comprised of four functional subunits, alpha1-3 and beta and that facilitate fast-response, inhibitory neurotransmission in the mammalian brain and spinal cord. We have investigated the distribution of GlyRs in the human forebrain, brainstem, and cervical spinal cord using immunohistochemistry at light and confocal laser scanning microscopy levels. This review will summarize the present knowledge on the GlyR distribution in the human brain using our established immunohistochemical techniques. The results of our immunohistochemical labeling studies demonstrated GlyR immunoreactivity (IR throughout the human basal ganglia, substantia nigra, various pontine regions, rostral medulla oblongata and the cervical spinal cord present as intense and abundant punctate IR along the membranes of the neuronal soma and dendrites. This work is part of a systematic study of inhibitory neurotransmitter receptor distribution in the human CNS, and provides a basis for additional detailed physiological and pharmacological studies on the inter-relationship of GlyR, GABAAR and gephyrin in the human brain. This basic mapping exercise, we believe, will provide important baselines for the testing of future pharmacotherapies and drug regimes that modulate neuroinhibitory systems. These findings provide new information for understanding the complexity of glycinergic functions in the human brain, which will translate into the contribution of inhibitory mechanisms in paroxysmal disorders and neurodegenerative diseases such as Epilepsy, Huntington's and Parkinson’s Disease and Motor Neuron Disease.

  19. Glycine receptor α3 and α2 subunits mediate tonic and exogenous agonist-induced currents in forebrain.

    Science.gov (United States)

    McCracken, Lindsay M; Lowes, Daniel C; Salling, Michael C; Carreau-Vollmer, Cyndel; Odean, Naomi N; Blednov, Yuri A; Betz, Heinrich; Harris, R Adron; Harrison, Neil L

    2017-08-22

    Neuronal inhibition can occur via synaptic mechanisms or through tonic activation of extrasynaptic receptors. In spinal cord, glycine mediates synaptic inhibition through the activation of heteromeric glycine receptors (GlyRs) composed primarily of α1 and β subunits. Inhibitory GlyRs are also found throughout the brain, where GlyR α2 and α3 subunit expression exceeds that of α1, particularly in forebrain structures, and coassembly of these α subunits with the β subunit appears to occur to a lesser extent than in spinal cord. Here, we analyzed GlyR currents in several regions of the adolescent mouse forebrain (striatum, prefrontal cortex, hippocampus, amygdala, and bed nucleus of the stria terminalis). Our results show ubiquitous expression of GlyRs that mediate large-amplitude currents in response to exogenously applied glycine in these forebrain structures. Additionally, tonic inward currents were also detected, but only in the striatum, hippocampus, and prefrontal cortex (PFC). These tonic currents were sensitive to both strychnine and picrotoxin, indicating that they are mediated by extrasynaptic homomeric GlyRs. Recordings from mice deficient in the GlyR α3 subunit (Glra3(-/-)) revealed a lack of tonic GlyR currents in the striatum and the PFC. In Glra2(-/Y) animals, GlyR tonic currents were preserved; however, the amplitudes of current responses to exogenous glycine were significantly reduced. We conclude that functional α2 and α3 GlyRs are present in various regions of the forebrain and that α3 GlyRs specifically participate in tonic inhibition in the striatum and PFC. Our findings suggest roles for glycine in regulating neuronal excitability in the forebrain.

  20. Charge and geometry of residues in the loop 2 β hairpin differentially affect agonist and ethanol sensitivity in glycine receptors.

    Science.gov (United States)

    Perkins, Daya I; Trudell, James R; Asatryan, Liana; Davies, Daryl L; Alkana, Ronald L

    2012-05-01

    Recent studies highlighted the importance of loop 2 of α1 glycine receptors (GlyRs) in the propagation of ligand-binding energy to the channel gate. Mutations that changed polarity at position 52 in the β hairpin of loop 2 significantly affected sensitivity to ethanol. The present study extends the investigation to charged residues. We found that substituting alanine with the negative glutamate at position 52 (A52E) significantly left-shifted the glycine concentration response curve and increased sensitivity to ethanol, whereas the negative aspartate substitution (A52D) significantly right-shifted the glycine EC₅₀ but did not affect ethanol sensitivity. It is noteworthy that the uncharged glutamine at position 52 (A52Q) caused only a small right shift of the glycine EC₅₀ while increasing ethanol sensitivity as much as A52E. In contrast, the shorter uncharged asparagine (A52N) caused the greatest right shift of glycine EC₅₀ and reduced ethanol sensitivity to half of wild type. Collectively, these findings suggest that charge interactions determined by the specific geometry of the amino acid at position 52 (e.g., the 1-Å chain length difference between aspartate and glutamate) play differential roles in receptor sensitivity to agonist and ethanol. We interpret these results in terms of a new homology model of GlyR based on a prokaryotic ion channel and propose that these mutations form salt bridges to residues across the β hairpin (A52E-R59 and A52N-D57). We hypothesize that these electrostatic interactions distort loop 2, thereby changing agonist activation and ethanol modulation. This knowledge will help to define the key physical-chemical parameters that cause the actions of ethanol in GlyRs.

  1. Taurine induces anti-anxiety by activating strychnine-sensitive glycine receptor in vivo.

    Science.gov (United States)

    Zhang, Cheng Gao; Kim, Sung-Jin

    2007-01-01

    Taurine has a variety of actions in the body such as cardiotonic, host-defensive, radioprotective and glucose-regulatory effects. However, its action in the central nervous system remains to be characterized. In the present study, we tested to see whether taurine exerts anti-anxiety effects and to explore its mechanism of anti-anxiety activity in vivo. The staircase test and elevated plus maze test were performed to test the anti-anxiety action of taurine. Convulsions induced by strychnine, picrotoxin, yohimbine and isoniazid were tested to explore the mechanism of anti-anxiety activity of taurine. The Rotarod test was performed to test muscle relaxant activity and the passive avoidance test was carried out to test memory activity in response to taurine. Taurine (200 mg/kg, p.o.) significantly reduced rearing numbers in the staircase test while it increased the time spent in the open arms as well as the number of entries to the open arms in the elevated plus maze test, suggesting that it has a significant anti-anxiety activity. Taurine's action could be due to its binding to and activating of strychnine-sensitive glycine receptor in vivo as it inhibited convulsion caused by strychnine; however, it has little effect on picrotoxin-induced convulsion, suggesting its anti-anxiety activity may not be linked to GABA receptor. It did not alter memory function and muscle activity. Taken together, these results suggest that taurine could be beneficial for the control of anxiety in the clinical situations. Copyright (c) 2007 S. Karger AG, Basel.

  2. Taurine activates strychnine-sensitive glycine receptors in neurons freshly isolated from nucleus accumbens of young rats.

    Science.gov (United States)

    Jiang, Zhenglin; Krnjević, Kresimir; Wang, Fushun; Ye, Jiang Hong

    2004-01-01

    Although functional glycine receptors (GlyRs) are present in the mature nucleus accumbens (NAcc), an important area of the mesolimbic dopamine system involved in drug addiction, their role has been unclear because the NAcc contains little glycine. However, taurine, an agonist of GlyRs, is abundant throughout the brain, especially during early development. In the present study on freshly dissociated NAcc neurons from young Sprague-Dawley rats (12- to 21-day old), we found that both glycine and taurine can strongly depolarize NAcc neurons and modulate their excitability. In voltage-clamped NAcc neurons, glycine and taurine elicited chloride currents (IGly and ITau) with an EC50 of 0.12 and 1.25 mM, respectively. The reversal potential of IGly or ITau was 0 mV in conventional whole cell mode and -30 mV in gramicidin-perforated mode. At concentrations taurine were very effectively antagonized by strychnine and by picrotoxin (with an IC50 of 60 nM and 36.5 microM for IGly, and 40 nM and 42.2 microM for ITau) but were insensitive to 10 microM bicuculline. The currents elicited by taurine (taurine (10 mM) showed partial cross-desensitization with IGABA, and it was substantially antagonized by 10 microM bicuculline. These results indicate that taurine binds mainly to GlyRs in NAcc, but it could be a partial agonist of GABAA receptors. By activating GlyRs, taurine may play an important physiological role in the control of NAcc function, especially during development.

  3. Characteristics of glycine receptors expressed by embryonic rat brain mRNAs

    Science.gov (United States)

    García-Alcocer, Guadalupe; García-Colunga, Jesús; Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2001-01-01

    A study was made of glycine (Gly) and γ-aminobutyric acid (GABA) receptors expressed in Xenopus oocytes injected with rat mRNAs isolated from the encephalon, midbrain, and brainstem of 18-day-old rat embryos. In oocytes injected with encephalon, midbrain, or brainstem mRNAs, the Gly-current amplitudes (membrane current elicited by Gly; 1 mM Gly) were respectively 115 ± 35, 346 ± 28, and 389 ± 22 nA, whereas the GABA-currents (1 mM GABA) were all ≤40 nA. Moreover, the Gly-currents desensitized faster in oocytes injected with encephalon or brainstem mRNAs. The EC50 for Gly was 611 ± 77 μM for encephalon, 661 ± 28 μM for midbrain, and 506 ± 18 μM for brainstem mRNA-injected oocytes, and the corresponding Hill coefficients were all ≈2. Strychnine inhibited all of the Gly-currents, with an IC50 of 56 ± 3 nM for encephalon, 97 ± 4 nM for midbrain, and 72 ± 4 nM for brainstem mRNAs. During repetitive Gly applications, the Gly-currents were potentiated by 1.6-fold for encephalon, 2.1-fold for midbrain, and 1.3-fold for brainstem RNA-injected oocytes. Raising the extracellular Ca2+ concentration significantly increased the Gly-currents in oocytes injected with midbrain and brainstem mRNAs. Reverse transcription–PCR studies showed differences in the Gly receptor (GlyR) α-subunits expressed, whereas the β-subunit was present in all three types of mRNA. These results indicate differential expression of GlyR mRNAs in the brain areas examined, and these mRNAs lead to the expression of GlyRs that have different properties. The modulation of GlyRs by Ca2+ could play important functions during brain development. PMID:11226317

  4. Enantiomers of HA-966 (3-amino-1-hydroxypyrrolid-2-one) exhibit distinct central nervous system effects: (+)-HA-966 is a selective glycine/N-methyl-D-aspartate receptor antagonist, but (-)-HA-966 is a potent gamma-butyrolactone-like sedative

    Energy Technology Data Exchange (ETDEWEB)

    Singh, L.; Donald, A.E.; Foster, A.C.; Hutson, P.H.; Iversen, L.L.; Iversen, S.D.; Kemp, J.A.; Leeson, P.D.; Marshall, G.R.; Oles, R.J.; Priestley, T.; Thorn, L.; Tricklebank, M.D.; Vass, C.A.; Williams, B.J. (Merck Sharp and Dohme Research Labs., Essex (England))

    1990-01-01

    The antagonist effect of {+-}-3-amino-1-hydroxypyrrolid-2-one (HA-966) at the N-methyl-D-aspartate (NMDA) receptor occurs through a selective interaction with the glycine modulatory site within the receptor complex. When the enantiomers of {+-}-HA-966 were resolved, the (R)-(+)-enantiomer was found to be a selective glycine/NMDA receptor antagonist, a property that accounts for its anticonvulsant activity in vivo. In contrast, the (S)-(-)-enantiomer was only weakly active as an NMDA-receptor antagonist, but nevertheless it possessed a marked sedative and muscle relaxant action in vivo. In radioligand binding experiments, (+)-HA-966 inhibited strychnine-insensitive ({sup 3}H)glycine binding to rat cerebral cortex synaptic membranes with an IC{sub 50} of 12.5 {mu}M, whereas (-)-HA-966 had an IC{sub 50} value of 339 {mu}M. In mice, (+)-HA-966 antagonized sound and N-methyl-DL-aspartic acid (NMDLA)-induced seizures. The coadministration of D-serine dose-dependently antagonized the anticonvulsant effect of a submaximal dose of (+)-HA-966 against NMDLA-induced seizures. The sedative/ataxic effect of racemic HA-966 was mainly attributable to the (-)-enantiomer. It is suggested that, as in the case of the sedative {gamma}-butyrolactone, disruption of striatal dopaminergic mechanisms may be responsible for this action.

  5. The surface accessibility of the glycine receptor M2-M3 loop is increased in the channel open state.

    Science.gov (United States)

    Lynch, J W; Han, N L; Haddrill, J; Pierce, K D; Schofield, P R

    2001-04-15

    Mutations in the extracellular M2-M3 loop of the glycine receptor (GlyR) alpha1 subunit have been shown previously to affect channel gating. In this study, the substituted cysteine accessibility method was used to investigate whether a structural rearrangement of the M2-M3 loop accompanies GlyR activation. All residues from R271C to V277C were covalently modified by both positively charged methanethiosulfonate ethyltrimethylammonium (MTSET) and negatively charged methanethiosulfonate ethylsulfonate (MTSES), implying that these residues form an irregular surface loop. The MTSET modification rate of all residues from R271C to K276C was faster in the glycine-bound state than in the unliganded state. MTSES modification of A272C, L274C, and V277C was also faster in the glycine-bound state. These results demonstrate that the surface accessibility of the M2-M3 loop is increased as the channel transitions from the closed to the open state, implying that either the loop itself or an overlying domain moves during channel activation.

  6. One-step preparation of [2,3-{sup 3}H]1-aminocyclo-propanecarboxylic acid: a useful ligand for strychnine-insensitive glycine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Lewin, A.H.; Lamb, P.B. [Research Triangle Inst., Research Triangle Park, NC (United States); Popik, P.; Skolnick, P. [National Insts. of Health, Bethesda, MD (United States)

    1994-11-01

    Catalytic hydrogenation of 1-aminocyclopropenecarboxylic acid under tritium gas afforded [2,3-{sup 3}H]1-aminocyclopropanecarboxylic acid with specific activity 26 Ci/mmol, determined by a combination of {sup 1}H and {sup 3}H NMR. Pilot radioligand binding assays indicate this compound will be a useful prove for the NMDA receptor-associated strychnine-insensitive glycine receptor. (author).

  7. Strychnine-sensitive glycine receptors mediate analgesia induced by emulsified inhalation anaesthetics in thermal nociception but not in chemical nociception.

    Science.gov (United States)

    Chen, Yan; Dai, Ti-Jun; Zeng, Yin-Ming

    2007-03-01

    The present study was designed to investigate the role of strychnine-sensitive glycine receptors in analgesia induced by emulsified inhalation anaesthetics. After having established the mice model of analgesia by intraperitoneal or subcutaneous injections of appropriate doses of ether, enflurane, isoflurane or sevoflurane, we injected different doses of strychnine intrathecally and then observed the effects on the tail-flick latency using the tail-withdrawal test and the writhing times and acetic acid-induced writhing test. In the tail-withdrawal test, all four emulsified inhalation anaesthetics (intraperitoneally) significantly increased the tail-flick latency (P strychnine. In the acetic acid-induced writhing test, writhing times inhibition induced by subcutaneous administration of four emulsified inhalation anaesthetics was not effected by intrathecal strychnine (0.1, 0.2 and 0.4 microg). The data presented in this study suggest that glycine receptors are specifically involved in mediating the analgesic effect of ether, enflurane, isoflurane and sevoflurane on thermal-induced nociception but not chemically induced nociception.

  8. Molecular cloning and characterization of a glycine-like receptor gene from the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae).

    Science.gov (United States)

    Flores-Fernández, José Miguel; Gutiérrez-Ortega, Abel; Padilla-Camberos, Eduardo; Rosario-Cruz, Rodrigo; Hernández-Gutiérrez, Rodolfo; Martínez-Velázquez, Moisés

    2014-01-01

    The cattle tick Rhipicephalus (Boophilus) microplus is the most economically important ectoparasite affecting the cattle industry in tropical and subtropical areas around the world. The principal method of tick control has relied mainly on the use of chemical acaricides, including ivermectin; however, cattle tick populations resistant to ivermectin have recently been reported in Brazil, Mexico, and Uruguay. Currently, the molecular basis for ivermectin susceptibility and resistance are not well understood in R. microplus. This prompted us to search for potential molecular targets for ivermectin. Here, we report the cloning and molecular characterization of a R. microplus glycine-like receptor (RmGlyR) gene. The characterized mRNA encodes for a 464-amino acid polypeptide, which contains features common to ligand-gated ion channels, such as a large N-terminal extracellular domain, four transmembrane domains, a large intracellular loop and a short C-terminal extracellular domain. The deduced amino acid sequence showed around 30% identity to GlyRs from some invertebrate and vertebrate organisms. The polypeptide also contains the PAR motif, which is important for forming anion channels, and a conserved glycine residue at the third transmembrane domain, which is essential for high ivermectin sensitivity. PCR analyses showed that RmGlyR is expressed at egg, larval and adult developmental stages. Our findings suggest that the deduced receptor is an additional molecular target to ivermectin and it might be involved in ivermectin resistance in R. microplus.

  9. Molecular cloning and characterization of a glycine-like receptor gene from the cattle tick Rhipicephalus (Boophilus microplus (Acari: Ixodidae

    Directory of Open Access Journals (Sweden)

    Flores-Fernández José Miguel

    2014-01-01

    Full Text Available The cattle tick Rhipicephalus (Boophilus microplus is the most economically important ectoparasite affecting the cattle industry in tropical and subtropical areas around the world. The principal method of tick control has relied mainly on the use of chemical acaricides, including ivermectin; however, cattle tick populations resistant to ivermectin have recently been reported in Brazil, Mexico, and Uruguay. Currently, the molecular basis for ivermectin susceptibility and resistance are not well understood in R. microplus. This prompted us to search for potential molecular targets for ivermectin. Here, we report the cloning and molecular characterization of a R. microplus glycine-like receptor (RmGlyR gene. The characterized mRNA encodes for a 464-amino acid polypeptide, which contains features common to ligand-gated ion channels, such as a large N-terminal extracellular domain, four transmembrane domains, a large intracellular loop and a short C-terminal extracellular domain. The deduced amino acid sequence showed around 30% identity to GlyRs from some invertebrate and vertebrate organisms. The polypeptide also contains the PAR motif, which is important for forming anion channels, and a conserved glycine residue at the third transmembrane domain, which is essential for high ivermectin sensitivity. PCR analyses showed that RmGlyR is expressed at egg, larval and adult developmental stages. Our findings suggest that the deduced receptor is an additional molecular target to ivermectin and it might be involved in ivermectin resistance in R. microplus.

  10. Mutation of a zinc-binding residue in the glycine receptor α1 subunit changes ethanol sensitivity in vitro and alcohol consumption in vivo.

    Science.gov (United States)

    McCracken, Lindsay M; Blednov, Yuri A; Trudell, James R; Benavidez, Jillian M; Betz, Heinrich; Harris, R Adron

    2013-02-01

    Ethanol is a widely used drug, yet an understanding of its sites and mechanisms of action remains incomplete. Among the protein targets of ethanol are glycine receptors (GlyRs), which are potentiated by millimolar concentrations of ethanol. In addition, zinc ions also modulate GlyR function, and recent evidence suggests that physiologic concentrations of zinc enhance ethanol potentiation of GlyRs. Here, we first built a homology model of a zinc-bound GlyR using the D80 position as a coordination site for a zinc ion. Next, we investigated in vitro the effects of zinc on ethanol action at recombinant wild-type (WT) and mutant α1 GlyRs containing the D80A substitution, which eliminates zinc potentiation. At D80A GlyRs, the effects of 50 and 200 mM ethanol were reduced as compared with WT receptors. Also, in contrast to what was seen with WT GlyRs, neither adding nor chelating zinc changed the magnitude of ethanol enhancement of mutant D80A receptors. Next, we evaluated the in vivo effects of the D80A substitution by using heterozygous Glra1(D80A) knock-in (KI) mice. The KI mice showed decreased ethanol consumption and preference, and they displayed increased startle responses compared with their WT littermates. Other behavioral tests, including ethanol-induced motor incoordination and strychnine-induced convulsions, revealed no differences between the KI and WT mice. Together, our findings indicate that zinc is critical in determining the effects of ethanol at GlyRs and suggest that zinc binding at the D80 position may be important for mediating some of the behavioral effects of ethanol action at GlyRs.

  11. Effects of Chronic Ethanol Consumption on Rat GABAA and Strychnine-sensitive Glycine Receptors Expressed by Lateral/Basolateral Amygdala Neurons

    Science.gov (United States)

    McCool, Brian A.; Frye, Gerald D.; Pulido, Marisa D.; Botting, Shaleen K.

    2010-01-01

    It is well known that the anxiolytic potential of ethanol is maintained during chronic exposure. We have confirmed this using a light-dark box paradigm following chronic ethanol ingestion via a liquid diet. However, cessation from chronic ethanol exposure is known to cause severe withdrawal anxiety. These opposing effects on anxiety likely result from neuro-adaptations of neurotransmitter systems within the brain regions regulating anxiety. Recent work highlights the importance of amygdala ligand-gated chloride channels in the expression of anxiety. We have therefore examined the effects of chronic ethanol exposure on GABAA and strychnine-sensitive glycine receptors expressed by acutely isolated adult rat lateral/basolateral amygdala neurons. Chronic ethanol exposure increased the functional expression of GABAA receptors in acutely isolated basolateral amygdala neurons without altering strychnine-sensitive glycine receptors. Neither the acute ethanol nor benzodiazepine sensitivity of either receptor system was affected. We explored the likelihood that subunit composition might influence each receptor’s response to chronic ethanol. Importantly, when expressed in a mammalian heterologous system, GABAA receptors composed of unique α subunits were differentially sensitive to acute ethanol. Likewise, the presence of the β subunit appeared to influence the acute ethanol sensitivity of glycine receptors containing the α2 subunit. Our results suggest that the facilitation of GABAA receptors during chronic ethanol exposure may help explain the maintenance of ethanol’s anti-anxiety effects during chronic ethanol exposure. Furthermore, the subunit composition of GABAA and strychnine-sensitive glycine receptors may ultimately influence the response of each system to chronic ethanol exposure. PMID:12560122

  12. Pharmacology of intracisternal or intrathecal glycine, muscimol, and baclofen in strychnine-induced thermal hyperalgesia of mice.

    Science.gov (United States)

    Lee, Il Ok; Son, Jin Kook; Lim, Eui-Sung; Kim, Yeon-Soo

    2011-10-01

    Glycine and γ-aminobutyric acid (GABA) are localized and released by the same interneurons in the spinal cord. Although the effects of glycine and GABA on analgesia are well known, little is known about the effect of GABA in strychnine-induced hyperalgesia. To investigate the effect of GABA and the role of the glycine receptor in thermal hyperalgesia, we designed an experiment involving the injection of muscimol (a GABA(A) receptor agonist), baclofen (a GABA(B) receptor agonist) or glycine with strychnine (strychnine sensitive glycine receptor antagonist). Glycine, muscimol, or baclofen with strychnine was injected into the cisterna magna or lumbar subarachnoidal spaces of mice. The effects of treatment on strychnine-induced heat hyperalgesia were observed using the pain threshold index via the hot plate test. The dosages of experimental drugs and strychnine we chose had no effects on motor behavior in conscious mice. Intracisternal or intrathecal administration of strychnine produced thermal hyperalgesia in mice. Glycine antagonize the effects of strychnine, whereas, muscimol or baclofen does not. Our results indicate that glycine has anti-thermal hyperalgesic properties in vivo; and GABA receptor agonists may lack the binding abilities of glycine receptor antagonists with their sites in the central nervous system.

  13. Involvement of the strychnine-sensitive glycine receptor in the anxiolytic effects of GlyT1 inhibitors on maternal separation-induced ultrasonic vocalization in rat pups.

    Science.gov (United States)

    Komatsu, Hiroko; Furuya, Yoshiaki; Sawada, Kohei; Asada, Takashi

    2015-01-05

    Several studies have shown that glycine transporter 1 (GlyT1) inhibitors have anxiolytic actions. There are two types of glycine receptor: the strychnine-sensitive glycine receptor (GlyA) and the strychnine-insensitive glycine receptor (GlyB); however, which receptor is the main contributor to the anxiolytic actions of GlyT1 inhibitors is yet to be determined. Here, we clarified which glycine receptor is the main contributor to the anxiolytic effects of GlyT1 inhibitors by using maternal separation-induced ultrasonic vocalization (USV) by rat pups as an index of anxiety. We confirmed that administration of the benzodiazepine diazepam or the selective serotonin reuptake inhibitor escitaloplam, which are both clinically proven anxiolytics, or the GlyT1 inhibitor SSR504734 (2-chloro-N-[(S)-phenyl[(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide), decreases USV in rat pups. In addition, we showed that another GlyT1 inhibitor, ALX5407 ((R)-N-[3-(4'-fluorophenyl)-3(4'-phenylphenoxy)propyl]sarcosine) also decreases USV in rat pups. SSR504734- or ALX5407-induced decreases in USV were dose-dependently reversed by administration of the GlyA antagonist strychnine, whereas the diazepam- or escitalopram-induced decreases in USV were not. Furthermore, GlyT1-induced decreases in USV were not reversed by administration of the GlyB antagonist L-687,414. Together, these results suggest that GlyA activation is the main contributor to the anxiolytic actions of GlyT1 inhibitors and that the anxiolytic actions of diazepam and escitalopram cannot be attributed to GlyA activation. Our findings provide new insights into the importance of the activation of GlyA in the anxiolytic effects of GlyT1 inhibitors. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. LU 73068, a new non-NMDA and glycine/NMDA receptor antagonist: pharmacological characterization and comparison with NBQX and L-701,324 in the kindling model of epilepsy.

    Science.gov (United States)

    Potschka, H; Löscher, W; Wlaź, P; Behl, B; Hofmann, H P; Treiber, H J; Szabo, L

    1998-11-01

    The aim of this study was to assess whether a drug which combines an antagonistic action at both NMDA and non-NMDA receptors offers advantages for treatment of epileptic seizures compared to drugs which antagonize only one of these ionotropic glutamate receptors. The novel glutamate receptor antagonist LU 73068 (4,5-dihydro-1-methyl-4-oxo-7-trifluoromethylimidazo[1,2a]quinoxal ine-2-carbonic acid) binds with high affinity to both the glycine site of the NMDA receptor (Ki 185 nM) and to the AMPA receptor (Ki 158 nM). Furthermore, binding experiments with recombinant kainate receptor subunits showed that LU 73068 binds to several of these subunits, particularly to rGluR7 (Ki 104 nM) and rGluR5 (Ki 271 nM). In comparison, the prototype non-NMDA receptor antagonist NBQX (2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo[f]quinoxaline) binds with high affinity to AMPA receptors only. Both NBQX and LU 73068 were about equieffective after i.p. injection in mice to block lethal convulsions induced by AMPA or NMDA. In the rat amygdala kindling model of temporal lobe epilepsy, LU 73068 dose-dependently increased the focal seizure threshold (afterdischarge threshold, ADT). When rats were stimulated with a current 20% above the individual control ADT, LU 73068 completely blocked seizures with an ED50 of 4.9 mg kg(-1). Up to 20 mg kg(-1), only moderate adverse effects, e.g. slight ataxia, were observed. NBQX, 10 mg kg(-1), and the glycine/NMDA site antagonist L-701,324 (7-chloro-4-hydroxy-3-(3-phenoxy)phenyl-quinoline-2(1H)one), 2.5 or 5 mg kg(-1), exerted no anticonvulsant effects in kindled rats when administered alone, but combined treatment with both drugs resulted in a significant ADT increase. The data indicate that combination of glycine/NMDA and non-NMDA receptor antagonism in a single drug is an effective means of developing a potent and effective anticonvulsant agent.

  15. Activation of Glycine and Extrasynaptic GABAA Receptors by Taurine on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis

    Science.gov (United States)

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Han, Seong Kyu

    2013-01-01

    The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) has been known for the processing and transmission of orofacial nociceptive information. Taurine, one of the most plentiful free amino-acids in humans, has proved to be involved in pain modulation. In this study, using whole-cell patch clamp technique, we investigated the direct membrane effects of taurine and the action mechanism behind taurine-mediated responses on the SG neurons of the Vc. Taurine showed non-desensitizing and repeatable membrane depolarizations and inward currents which remained in the presence of amino-acid receptors blocking cocktail (AARBC) with tetrodotoxin, indicating that taurine acts directly on the postsynaptic SG neurons. Further, application of taurine at different doses (10 μM to 3 mM) showed a concentration dependent depolarizations and inward currents with the EC50 of 84.3 μM and 723 μM, respectively. Taurine-mediated responses were partially blocked by picrotoxin (50 μM) and almost completely blocked by strychnine (2 μM), suggesting that taurine-mediated responses are via glycine receptor (GlyR) activation. In addition, taurine (1 mM) activated extrasynaptic GABAA receptor (GABAAR)-mediated currents. Taken together, our results indicate that taurine can be a target molecule for orofacial pain modulation through the activation of GlyRs and/or extrasynaptic GABAARs on the SG neurons. PMID:24379976

  16. Activation of Glycine and Extrasynaptic GABAA Receptors by Taurine on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis

    Directory of Open Access Journals (Sweden)

    Thi Thanh Hoang Nguyen

    2013-01-01

    Full Text Available The substantia gelatinosa (SG of the trigeminal subnucleus caudalis (Vc has been known for the processing and transmission of orofacial nociceptive information. Taurine, one of the most plentiful free amino-acids in humans, has proved to be involved in pain modulation. In this study, using whole-cell patch clamp technique, we investigated the direct membrane effects of taurine and the action mechanism behind taurine-mediated responses on the SG neurons of the Vc. Taurine showed non-desensitizing and repeatable membrane depolarizations and inward currents which remained in the presence of amino-acid receptors blocking cocktail (AARBC with tetrodotoxin, indicating that taurine acts directly on the postsynaptic SG neurons. Further, application of taurine at different doses (10 μM to 3 mM showed a concentration dependent depolarizations and inward currents with the EC50 of 84.3 μM and 723 μM, respectively. Taurine-mediated responses were partially blocked by picrotoxin (50 μM and almost completely blocked by strychnine (2 μM, suggesting that taurine-mediated responses are via glycine receptor (GlyR activation. In addition, taurine (1 mM activated extrasynaptic GABAA receptor (GABAAR-mediated currents. Taken together, our results indicate that taurine can be a target molecule for orofacial pain modulation through the activation of GlyRs and/or extrasynaptic GABAARs on the SG neurons.

  17. N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor

    Directory of Open Access Journals (Sweden)

    Vogel Zvi

    2010-03-01

    Full Text Available Abstract Background Microglia provide continuous immune surveillance of the CNS and upon activation rapidly change phenotype to express receptors that respond to chemoattractants during CNS damage or infection. These activated microglia undergo directed migration towards affected tissue. Importantly, the molecular species of chemoattractant encountered determines if microglia respond with pro- or anti-inflammatory behaviour, yet the signaling molecules that trigger migration remain poorly understood. The endogenous cannabinoid system regulates microglial migration via CB2 receptors and an as yet unidentified GPCR termed the 'abnormal cannabidiol' (Abn-CBD receptor. Abn-CBD is a synthetic isomer of the phytocannabinoid cannabidiol (CBD and is inactive at CB1 or CB2 receptors, but functions as a selective agonist at this Gi/o-coupled GPCR. N-arachidonoyl glycine (NAGly is an endogenous metabolite of the endocannabinoid anandamide and acts as an efficacious agonist at GPR18. Here, we investigate the relationship between NAGly, Abn-CBD, the unidentified 'Abn-CBD' receptor, GPR18, and BV-2 microglial migration. Results Using Boyden chamber migration experiments, yellow tetrazolium (MTT conversion, In-cell Western, qPCR and immunocytochemistry we show that NAGly, at sub-nanomolar concentrations, and Abn-CBD potently drive cellular migration in both BV-2 microglia and HEK293-GPR18 transfected cells, but neither induce migration in HEK-GPR55 or non-transfected HEK293 wildtype cells. Migration effects are blocked or attenuated in both systems by the 'Abn-CBD' receptor antagonist O-1918, and low efficacy agonists N-arachidonoyl-serine and cannabidiol. NAGly promotes proliferation and activation of MAP kinases in BV-2 microglia and HEK293-GPR18 cells at low nanomolar concentrations - cellular responses correlated with microglial migration. Additionally, BV-2 cells show GPR18 immunocytochemical staining and abundant GPR18 mRNA. qPCR demonstrates that

  18. Glycine and GABAA receptors mediate tonic and phasic inhibitory processes that contribute to prepulse inhibition in the goldfish startle network

    Directory of Open Access Journals (Sweden)

    Paul C.P. Curtin

    2015-03-01

    Full Text Available Prepulse inhibition (PPI is understood as an inhibitory process that attenuates sensory flow during early stages (20-1000ms of information processing. Here, we applied in vivo electrophysiology and pharmacology to determine if prepulse inhibition (PPI is mediated by glycine receptors (GlyRs and/or GABAA receptors (GABAARs in the goldfish auditory startle circuit. Specifically, we used selective antagonists to dissect the contributions of target receptors on sound-evoked postsynaptic potentials (PSPs recorded in the neurons that initiate startle, the Mauthner-cells (M-cell. We found that strychnine, a GlyR antagonist, disrupted a fast-activated (5 ms and rapidly (< 50ms decaying (feed-forward inhibitory process that disrupts PPI at 20 ms prepulse/pulse inter-stimulus intervals (ISI. Additionally we observed increases of the evoked postsynaptic potential (PSP peak amplitude (+87.43 ± 21.53%; N=9 and duration (+204 ± 48.91%, N=9. In contrast, treatment with bicuculline, a GABAAR antagonist, caused a general reduction in PPI across all tested ISIs (20-500 ms, essentially eliminating PPI at ISIs from 20-100 ms. Bicuculline also increased PSP peak amplitude (+133.8 ± 10.3%, N=5 and PSP duration (+284.95 ± 65.64%, N=5. Treatment with either antagonist also tonically increased post-synaptic excitability in the M-cells, reflected by an increase in the magnitude of antidromically-evoked action potentials (APs by 15.07 ± 3.21%, N=7 and 16.23 ± 7.08%, N=5 for strychnine and bicuculline, respectively. These results suggest that GABAARs and GlyRs are functionally segregated to short- and longer-lasting sound-evoked (phasic inhibitory processes that contribute to PPI, with the mediation of tonic inhibition by both receptor systems being critical for gain control within the M-cell startle circuit.

  19. Glycine Transporters and Their Inhibitors

    Science.gov (United States)

    Gilfillan, Robert; Kerr, Jennifer; Walker, Glenn; Wishart, Grant

    Glycine plays a ubiquitous role in many biological processes. In the central nervous system it serves as an important neurotransmitter acting as an agonist at strychnine-sensitive glycine receptors and as an essential co-agonist with glutamate at the NMDA receptor complex. Control of glycine concentrations in the vicinity of these receptors is mediated by the specific glycine transporters, GlyT1 and GlyT2. Inhibition of these transporters has been postulated to be of potential benefit in several therapeutic indications including schizophrenia and pain. In this review we discuss our current knowledge of glycine transporters and focus on recent advances in the medicinal chemistry of GlyT1 and GlyT2 inhibitors.

  20. The role of D-serine and glycine as co-agonists of NMDA receptors in motor neurone degeneration and amyotrophic lateral sclerosis (ALS

    Directory of Open Access Journals (Sweden)

    Praveen ePaul

    2014-04-01

    Full Text Available The fundamental role of D-serine as a co-agonist at the N-methyl-D-aspartate receptor (NMDAR, mediating both physiological actions of glutamate in long term potentiation and nociception and also pathological effects mediated by excitotoxicty, are well established. More recently, a direct link to a chronic neurodegenerative disease, amyotrophic lateral sclerosis/ motor neuron disease (ALS has been suggested by findings that D-serine levels are elevated in sporadic ALS and the G93A SOD1 model of ALS (Sasabe et al., 2007; 2012 and that a pathogenic mutation (R199W in the enzyme that degrades D-serine, D-amino acid oxidase (DAO, co-segregates with disease in familial ALS (Mitchell et al., 2010. Moreover, D-serine, its biosynthetic enzyme, serine racemase (SR and DAO are abundant in human spinal cord and severely depleted in ALS. Using cell culture models, we have defined the effects of R199W- DAO, and shown that it activates autophagy, leads to the formation of ubiquitinated aggregates and promotes apoptosis, all of which processes are attenuated by a D-serine/glycine site NMDAR antagonist. These studies provide considerable insight into the crosstalk between neurons and glia and also into potential therapeutic approaches for ALS.

  1. Electrophysiological evidence of increased glycine receptor-mediated phasic and tonic inhibition by blockade of glycine transporters in spinal superficial dorsal horn neurons of adult mice

    Directory of Open Access Journals (Sweden)

    Misa Oyama

    2017-03-01

    Full Text Available To understand the synaptic and/or extrasynaptic mechanisms underlying pain relief by blockade of glycine transporter subtypes GlyT1 and GlyT2, whole-cell recordings were made from dorsal horn neurons in spinal slices from adult mice, and the effects of NFPS and ALX-1393, selective GlyT1 and GlyT2 inhibitors, respectively, on phasic evoked or miniature glycinergic inhibitory postsynaptic currents (eIPSCs or mIPSCs were examined. NFPS and ALX-1393 prolonged the decay phase of eIPSCs without affecting their amplitude. In the presence of tetrodotoxin to record mIPSCs, NFPS and ALX-1393 induced a tonic inward current that was reversed by strychnine. Although NFPS had no statistically significant influences on mIPSCs, ALX-1393 significantly increased their frequency. We then further explored the role of GlyTs in the maintenance of glycinergic IPSCs. To facilitate vesicular release of glycine, repetitive high-frequency stimulation (HFS was applied at 10 Hz for 3 min during continuous recordings of eIPSCs at 0.1 Hz. Prominent suppression of eIPSCs was evident after HFS in the presence of ALX-1393, but not NFPS. Thus, it appears that phasic and tonic inhibition may contribute to the analgesic effects of GlyT inhibitors. However, reduced glycinergic inhibition due to impaired vesicular refilling could hamper the analgesic efficacy of GlyT2 inhibitors.

  2. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors

    Science.gov (United States)

    CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE-receptor kinase-WOX signaling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem), and vascular cambium are tightly controlled by CLE signaling pathway...

  3. Anti-homeostatic synaptic plasticity of glycine receptor function after chronic strychnine in developing cultured mouse spinal neurons.

    Science.gov (United States)

    Carrasco, M A; Castro, P A; Sepulveda, F J; Cuevas, M; Tapia, J C; Izaurieta, P; van Zundert, B; Aguayo, L G

    2007-03-01

    In this study, we describe a novel form of anti-homeostatic plasticity produced after culturing spinal neurons with strychnine, but not bicuculline or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Strychnine caused a large increase in network excitability, detected as spontaneous synaptic currents and calcium transients. The calcium transients were associated with action potential firing and activation of gamma-aminobutyric acid (GABA(A)) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors as they were blocked by tetrodotoxin (TTX), bicuculline, and CNQX. After chronic blockade of glycine receptors (GlyRs), the frequency of synaptic transmission showed a significant enhancement demonstrating the phenomenon of anti-homeostatic plasticity. Spontaneous inhibitory glycinergic currents in treated cells showed a fourfold increase in frequency (from 0.55 to 2.4 Hz) and a 184% increase in average peak amplitude compared with control. Furthermore, the augmentation in excitability accelerated the decay time constant of miniature inhibitory post-synaptic currents. Strychnine caused an increase in GlyR current density, without changes in the apparent affinity. These findings support the idea of a post-synaptic action that partly explains the increase in synaptic transmission. This phenomenon of synaptic plasticity was blocked by TTX, an antibody against brain-derived neurotrophic factor (BDNF) and K252a suggesting the involvement of the neuronal activity-dependent BDNF-TrkB signaling pathway. These results show that the properties of GlyRs are regulated by the degree of neuronal activity in the developing network.

  4. Molecular basis for substrate discrimination by glycine transporters.

    Science.gov (United States)

    Vandenberg, Robert J; Shaddick, Kim; Ju, Pengchu

    2007-05-11

    Glycine is an inhibitory neurotransmitter in the spinal cord and brain stem, where it acts on strychnine-sensitive glycine receptors, and is also an excitatory neurotransmitter throughout the brain and spinal cord, where it acts on the N-methyl-d-aspartate family of receptors. There are two Na(+)/Cl(-)-dependent glycine transporters, GLYT1 and GLYT2, which control extracellular glycine concentrations and these transporters show differences in substrate selectivity and blocker sensitivity. A bacterial Na(+)-dependent leucine transporter (LeuT(Aa)) has recently been crystallized and its structure determined. When the amino acid residues within the leucine binding site of LeuT(Aa) are aligned with residues of the two glycine transporters there are a number of identical residues and also some key differences. In this report, we demonstrate that the LeuT(Aa) structure represents a good working model of the Na(+)/Cl(-)-dependent neurotransmitters and that differences in substrate selectivity can be attributed to a single difference of a glycine residue in transmembrane domain 6 of GLYT1 for a serine residue at the corresponding position of GLYT2.

  5. Ginkgolide X is a potent antagonist of anionic Cys-loop receptors with a unique selectivity profile at glycine receptors

    DEFF Research Database (Denmark)

    Jensen, Anders Asbjørn; Bergmann, Marianne Lerbæk; Sander, Tommy

    2010-01-01

    identified as the primary molecular determinant of the selectivity profile of ginkgolide X, and a 6' M2 ring consisting of five Thr residues was found to be of key importance for its activity at the GABAAR. Conformational analysis and docking of low-energy conformations of the native ginkgolide...... arise from different flexibility and thus different binding modes to the ion channel of the anionic Cys-loop receptor....

  6. Strychnine-sensitive glycine receptors on pyramidal neurons in layers II/III of the mouse prefrontal cortex are tonically activated.

    Science.gov (United States)

    Salling, Michael C; Harrison, Neil L

    2014-09-01

    Processing of signals within the cerebral cortex requires integration of synaptic inputs and a coordination between excitatory and inhibitory neurotransmission. In addition to the classic form of synaptic inhibition, another important mechanism that can regulate neuronal excitability is tonic inhibition via sustained activation of receptors by ambient levels of inhibitory neurotransmitter, usually GABA. The purpose of this study was to determine whether this occurs in layer II/III pyramidal neurons (PNs) in the prelimbic region of the mouse medial prefrontal cortex (mPFC). We found that these neurons respond to exogenous GABA and to the α4δ-containing GABAA receptor (GABA(A)R)-selective agonist gaboxadol, consistent with the presence of extrasynaptic GABA(A)R populations. Spontaneous and miniature synaptic currents were blocked by the GABA(A)R antagonist gabazine and had fast decay kinetics, consistent with typical synaptic GABA(A)Rs. Very few layer II/III neurons showed a baseline current shift in response to gabazine, but almost all showed a current shift (15-25 pA) in response to picrotoxin. In addition to being a noncompetitive antagonist at GABA(A)Rs, picrotoxin also blocks homomeric glycine receptors (GlyRs). Application of the GlyR antagonist strychnine caused a modest but consistent shift (∼15 pA) in membrane current, without affecting spontaneous synaptic events, consistent with the tonic activation of GlyRs. Further investigation showed that these neurons respond in a concentration-dependent manner to glycine and taurine. Inhibition of glycine transporter 1 (GlyT1) with sarcosine resulted in an inward current and an increase of the strychnine-sensitive current. Our data demonstrate the existence of functional GlyRs in layer II/III of the mPFC and a role for these receptors in tonic inhibition that can have an important influence on mPFC excitability and signal processing. Copyright © 2014 the American Physiological Society.

  7. Microinjection of glycine into the hypothalamic paraventricular nucleus produces diuresis, natriuresis, and inhibition of central sympathetic outflow.

    Science.gov (United States)

    Krowicki, Zbigniew K; Kapusta, Daniel R

    2011-04-01

    Strychnine-sensitive glycine receptors and glycine-immunoreactive fibers are expressed in the hypothalamic paraventricular nucleus (PVN), yet the functional significance of this innervation is unclear. Therefore, these studies examined the changes in cardiovascular and renal function and renal sympathetic nerve activity (RSNA) produced by the microinjection of glycine (5 and 50 nmol) into the PVN of conscious Sprague-Dawley rats. Microinjection of glycine into, but not outside of, the PVN dose-dependently increased urine flow rate and urinary sodium excretion and decreased RSNA. At the higher dose, PVN glycine also decreased heart rate; neither 5 nor 50 nmol PVN glycine altered mean arterial pressure. The glycine (50 nmol)-evoked diuresis and natriuresis were abolished in rats continuously infused intravenously with [Arg(8)]-vasopressin. Furthermore, chronic bilateral renal denervation prevented the bradycardia and diuresis to PVN glycine and blunted the natriuresis. In other studies, unilateral PVN pretreatment with the glycine receptor antagonist strychnine (1.6 nmol) prevented the effects of PVN glycine (50 nmol) on heart rate, RSNA, and renal excretory function. When microinjected bilaterally, PVN strychnine (1.6 nmol per site) evoked a significant increase in heart rate and RSNA without altering renal excretory function. These findings demonstrate that in conscious rats glycine acts in the PVN to enhance the renal excretion of water and sodium and decrease central sympathetic outflow to the heart and kidneys. Although endogenous PVN glycine inputs elicit a tonic control of heart rate and RSNA, the renal excretory responses to PVN glycine seem to be caused primarily by the inhibition of arginine vasopressin secretion.

  8. Plasma glycine and serine levels in schizophrenia compared to normal controls and major depression: relation to negative symptoms.

    Science.gov (United States)

    Sumiyoshi, Tomiki; Anil, A Elif; Jin, Dai; Jayathilake, Karu; Lee, Myung; Meltzer, Herbert Y

    2004-03-01

    antipsychotic drugs with agonists at the glycine site of the NMDA receptor.

  9. Glycine receptor deficiency and its effect on the horizontal vestibulo-ocular reflex: a study on the SPD1J mouse.

    Science.gov (United States)

    Hübner, Patrick P; Lim, Rebecca; Brichta, Alan M; Migliaccio, Americo A

    2013-04-01

    Inhibition is critical in the pathways controlling the vestibulo-ocular reflex (VOR) and plays a central role in the precision, accuracy and speed of this important vestibular-mediated compensatory eye movement. While γ-aminobutyric acid is the common fast inhibitory neurotransmitter in most of the VOR microcircuits, glycine is also found in key elements. For example, the omnidirectional pause neurons (OPNs) and inhibitory burst neurons in the horizontal VOR both use glycine as their preferred inhibitory neurotransmitter. Determining the precise contribution of glycine to the VOR pathway has been difficult due to the lack of selective tools; however, we used spasmodic mice that have a naturally occurring defect in the glycine receptor (GlyR) that reduces glycinergic transmission. Using this animal model, we compared the horizontal VOR in affected animals with unaffected controls. Our data showed that initial latency and initial peak velocity as well as slow-phase eye movements were unaffected by reduced glycinergic transmission. Importantly however, there were significant effects on quick-phase activity, substantially reducing their number (30-70 %), amplitude (~55 %) and peak velocity (~38 %). We suggest that the OPNs were primarily responsible for the reduced quick-phase properties, since they are part of an unmodifiable, or more 'hard-wired', microcircuit. In contrast, the effects of reduced glycinergic transmission on slow-phases were likely ameliorated by the intrinsically modifiable nature of this pathway. Our results also suggested there is a 'threshold' in GlyR-affected animals, below which the effects of reduced glycinergic transmission were undetected.

  10. Functional characterisation of the human alpha1 glycine receptor in a fluorescence-based membrane potential assay

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Kristiansen, Uffe

    2004-01-01

    be suppressed by pre-incubation with GlyR antagonists. Agonists and antagonists displayed EC50 and Ki values in good agreement with previously reported values from studies of recombinant alpha1 GlyRs and native alpha1beta GlyRs. The rank orders of potencies was glycine > beta-alanine > taurine for the agonists...

  11. Connections between 5-HT-containing terminals and 5-HT2A receptor and γ-aminobutyric acid or glycine co-existed neurons in the rat medullary dorsal horn

    Institute of Scientific and Technical Information of China (English)

    LI Hui; LI Yun-qing

    2001-01-01

    Objective: To investigate the connections between serotonin (5-HT)-containing terminals and 5-HT2A receptor (5-HT2AR)/γ-aminobutyric acid (GABA) or 5-HT2AR/glycine co-existed neurons in the rat medullary dorsal horn (MDH).Methods: Immunofluorescence histochemical triple-staining for 5-HT, 5-HT2AR, GABA or glycine. Results: 5-HT-immunoreaetive fibers and terminals were chiefly located in the superficial laminae (laminae Ⅰ and Ⅱ) of the MDH. Neurons exhibiting 5-HT2AR-, GABA- or glycine-immunoreactivities were mainly observed in the superficial laminae. Some 5-HT2AR-immunopositive neurons also exhibited GABA- or glycine-immunoreaetivities. 5-HT-containing terminals made close contacts with 5-HT2AR/GABA or 5-HT2AR/glycine co-existed neurons. Conclusion: 5-HT2AR/GABA or 5-HT2AR /glycine co-exist in some of the neurons in the superficial laminae of the MDH. 5-HT-immunoreactive terminals form close connections with 5-HT2AR/GABA or 5-HT2AR/glycine co-existed neurons.

  12. Different forms of glycine- and GABAA-receptor mediated inhibitory synaptic transmission in mouse superficial and deep dorsal horn neurons

    Directory of Open Access Journals (Sweden)

    Brichta Alan M

    2009-11-01

    Full Text Available Abstract Background Neurons in superficial (SDH and deep (DDH laminae of the spinal cord dorsal horn receive sensory information from skin, muscle, joints and viscera. In both regions, glycine- (GlyR and GABAA-receptors (GABAARs contribute to fast synaptic inhibition. For rat, several types of GABAAR coexist in the two regions and each receptor type provides different contributions to inhibitory tone. Recent work in mouse has discovered an additional type of GlyR, (containing alpha 3 subunits in the SDH. The contribution of differing forms of the GlyR to sensory processing in SDH and DDH is not understood. Methods and Results Here we compare fast inhibitory synaptic transmission in mouse (P17-37 SDH and DDH using patch-clamp electrophysiology in transverse spinal cord slices (L3-L5 segments, 23°C. GlyR-mediated mIPSCs were detected in 74% (25/34 and 94% (25/27 of SDH and DDH neurons, respectively. In contrast, GABAAR-mediated mIPSCs were detected in virtually all neurons in both regions (93%, 14/15 and 100%, 18/18. Several Gly- and GABAAR properties also differed in SDH vs. DDH. GlyR-mediated mIPSC amplitude was smaller (37.1 ± 3.9 vs. 64.7 ± 5.0 pA; n = 25 each, decay time was slower (8.5 ± 0.8 vs. 5.5 ± 0.3 ms, and frequency was lower (0.15 ± 0.03 vs. 0.72 ± 0.13 Hz in SDH vs. DDH neurons. In contrast, GABAAR-mediated mIPSCs had similar amplitudes (25.6 ± 2.4, n = 14 vs. 25. ± 2.0 pA, n = 18 and frequencies (0.21 ± 0.08 vs. 0.18 ± 0.04 Hz in both regions; however, decay times were slower (23.0 ± 3.2 vs. 18.9 ± 1.8 ms in SDH neurons. Mean single channel conductance underlying mIPSCs was identical for GlyRs (54.3 ± 1.6 pS, n = 11 vs. 55.7 ± 1.8, n = 8 and GABAARs (22.7 ± 1.7 pS, n = 10 vs. 22.4 ± 2.0 pS, n = 11 in both regions. We also tested whether the synthetic endocanabinoid, methandamide (methAEA, had direct effects on Gly- and GABAARs in each spinal cord region. MethAEA (5 μM reduced GlyR-mediated mIPSC frequency in SDH

  13. In vivo evaluation of [{sup 11}C]-3-[2-[(3-methoxyphenylamino)carbonyl]ethenyl]-4,6-dichloroindole- 2-carboxylic acid ([{sup 11}C]3MPICA) as a PET radiotracer for the glycine site of the NMDA ion channel

    Energy Technology Data Exchange (ETDEWEB)

    Waterhouse, Rikki N. E-mail: rnw7@columbia.edu; Sultana, Abida; Laruelle, M

    2002-11-01

    Alterations in normal NMDA receptor composition, densities and function have been implicated in the pathophysiology of certain neurological and neuropsychiatric disorders such as Parkinson's Disease, Huntington's Chorea, schizophrenia, alcoholism and stroke. In our first effort to provide PET ligands for the NMDA/glycine site, we reported the synthesis of a novel high affinity glycine site ligand, 3-[2-[(3-methoxyphenylamino)carbonyl]ethenyl]-4,6-dichloroindole-2 -carboxylic acid ((3MPICA), Ki=4.8{+-}0.9 nM) and the corresponding carbon-11 labeled PET ligand, [{sup 11}C]3MPICA. We report here the in vivo evaluation of [{sup 11}C]3MPICA in rats. Biodistribution analysis revealed that [{sup 11}C]3MPICA exhibited low degree of brain penetration and high blood concentration. The average uptake at two minutes was highest in the cerebellum (0.19{+-}0.04 %ID/g) and thalamus (0.18{+-}0.05 %ID/g) and lower in the hippocampus (0.13{+-}0.03) and frontal cortex (0.11{+-}0.04 %ID/g). The radioactivity cleared quickly from all brain regions examined. Administration of unlabeled 3MPICA (1 mg/kg, i.v.) revealed at 60 minutes a small general reduction in regional brain radioactivity concentrations in treated animals versus controls, however, the blood radioactivity concentration was also lowered, confounding the assessment of the degree of saturable binding. Warfarin co-administration (100 mg/kg, i.v.) significantly lowered blood activity at 5 minutes post-injection (-27%, P<0.01) but failed to significantly increase the brain uptake of the radiotracer. In view of these results, and especially considering the low brain penetration of this tracer, [{sup 11}C]3MPICA does not appear to be a promising PET radiotracer for in vivo use.

  14. Heteromerization of ligand binding domains of N-methyl-D-aspartate receptor requires both coagonists, L-glutamate and glycine.

    Science.gov (United States)

    Cheriyan, John; Mezes, Christina; Zhou, Ning; Balsara, Rashna D; Castellino, Francis J

    2015-01-27

    NMDA receptors (NMDAR) are voltage- and glutamate-gated heteromeric ion channels found at excitatory neuronal synapses, the functions of which are to mediate the mechanisms of brain plasticity and, thereby, its higher order functions. In addition to Glu, the activation of these heteromeric receptors requires Gly or d-Ser as a coagonist. However, it is not fully known as to why coagonism is required for the opening of NMDAR ion channels. We show herein that the ligand binding domains (LBD) of the GluN1 and GluN2A subunits of the NMDAR heterodimerize only when both coagonists, Glu and Gly/d-Ser, bind to their respective sites on GluN2 and GluN1. In the agonist-free state, these domains form homomeric interactions, which are disrupted by binding of their respective agonists. Also, in a heteromer formed by the LBDs, GluN2A is more sensitized to bind Glu, while the affinity of Gly for GluN1 remains unchanged. We thus provide direct evidence to show that coagonism is necessary for heteromeric pairing of LBDs, which is an essential step in forming functional ion channels in NMDARs.

  15. A highly conserved glycine within linker I and the extreme C terminus of G protein alpha subunits interact cooperatively in switching G protein-coupled receptor-to-effector specificity

    DEFF Research Database (Denmark)

    Kostenis, Evi; Martini, Lene; Ellis, James;

    2004-01-01

    Numerous studies have attested to the importance of the extreme C terminus of G protein alpha subunits in determining their selectivity of receptor recognition. We have previously reported that a highly conserved glycine residue within linker I is important for constraining the fidelity of receptor...... recognition by Galpha(q) proteins. Herein, we explored whether both modules (linker I and extreme C terminus) interact cooperatively in switching G protein-coupled receptor (GPCR)-to-effector specificity and created as models mutant Galpha(q) proteins in which glycine was replaced with various amino acids...... and the C-terminal five Galpha(q) residues with the corresponding Galpha(i) or Galpha(s) sequence. Coupling properties of the mutated Galpha(q) proteins were determined after coexpression with a panel of 13 G(i)-and G(s) -selective receptors and compared with those of Galpha proteins modified in only one...

  16. Role of ionotropic GABA, glutamate and glycine receptors in the tonic and reflex control of cardiac vagal outflow in the rat

    Directory of Open Access Journals (Sweden)

    Goodchild Ann K

    2010-10-01

    Full Text Available Abstract Background Cardiac vagal preganglionic neurons (CVPN are responsible for the tonic, reflex and respiratory modulation of heart rate (HR. Although CVPN receive GABAergic and glutamatergic inputs, likely involved in respiratory and reflex modulation of HR respectively, little else is known regarding the functions controlled by ionotropic inputs. Activation of g-protein coupled receptors (GPCR alters these inputs, but the functional consequence is largely unknown. The present study aimed to delineate how ionotropic GABAergic, glycinergic and glutamatergic inputs contribute to the tonic and reflex control of HR and in particular determine which receptor subtypes were involved. Furthermore, we wished to establish how activation of the 5-HT1A GPCR affects tonic and reflex control of HR and what ionotropic interactions this might involve. Results Microinjection of the GABAA antagonist picrotoxin into CVPN decreased HR but did not affect baroreflex bradycardia. The glycine antagonist strychnine did not alter HR or baroreflex bradycardia. Combined microinjection of the NMDA antagonist, MK801, and AMPA antagonist, CNQX, into CVPN evoked a small bradycardia and abolished baroreflex bradycardia. MK801 attenuated whereas CNQX abolished baroreceptor bradycardia. Control intravenous injections of the 5-HT1A agonist 8-OH-DPAT evoked a small bradycardia and potentiated baroreflex bradycardia. These effects were still observed following microinjection of picrotoxin but not strychnine into CVPN. Conclusions We conclude that activation of GABAA receptors set the level of HR whereas AMPA to a greater extent than NMDA receptors elicit baroreflex changes in HR. Furthermore, activation of 5-HT1A receptors evokes bradycardia and enhances baroreflex changes in HR due to interactions with glycinergic neurons involving strychnine receptors. This study provides reference for future studies investigating how diseases alter neurochemical inputs to CVPN.

  17. A glycine insertion in the estrogen-related receptor (ERR is associated with enhanced expression of three cytochrome P450 genes in transgenic Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Weilin Sun

    Full Text Available Insecticide-resistant Drosophila melanogaster strains represent a resource for the discovery of the underlying molecular mechanisms of cytochrome P450 constitutive over-expression, even if some of these P450s are not directly involved in the resistance phenotype. For example, in select 4,4'-dichlorodiphenyltrichloroethane (DDT resistant strains the glucocorticoid receptor-like (GR-like potential transcription factor binding motifs (TFBMs have previously been shown to be associated with constitutively differentially-expressed cytochrome P450s, Cyp12d1, Cyp6g2 and Cyp9c1. However, insects are not known to have glucocorticoids. The only ortholog to the mammalian glucocorticoid receptor (GR in D. melanogaster is an estrogen-related receptor (ERR gene, which has two predicted alternative splice isoforms (ERRa and ERRb. Sequencing of ERRa and ERRb in select DDT susceptible and resistant D. melanogaster strains has revealed a glycine (G codon insertion which was only observed in the ligand binding domain of ERR from the resistant strains tested (ERR-G. Transgenic flies, expressing the ERRa-G allele, constitutively over-expressed Cyp12d1, Cyp6g2 and Cyp9c1. Only Cyp12d1 and Cyp6g2 were over-expressed in the ERRb-G transgenic flies. Phylogenetic studies show that the G-insertion appeared to be located in a less conserved domain in ERR and this insertion is found in multiple species across the Sophophora subgenera.

  18. Conversion of agonist site to metal-ion chelator site in the beta(2)-adrenergic receptor

    DEFF Research Database (Denmark)

    Elling, C E; Thirstrup, K; Holst, Birgitte

    1999-01-01

    in the mutant receptors not by normal catecholamine ligands but instead either by free zinc ions or by zinc or copper ions in complex with small hydrophobic metal-ion chelators. Chelation of the metal ions by small hydrophobic chelators such as phenanthroline or bipyridine protected the cells from the toxic......Previously metal-ion sites have been used as structural and functional probes in seven transmembrane receptors (7TM), but as yet all the engineered sites have been inactivating. Based on presumed agonist interaction points in transmembrane III (TM-III) and -VII of the beta(2)-adrenergic receptor......, in this paper we construct an activating metal-ion site between the amine-binding Asp-113 in TM-III-or a His residue introduced at this position-and a Cys residue substituted for Asn-312 in TM-VII. No increase in constitutive activity was observed in the mutant receptors. Signal transduction was activated...

  19. Studies on mu and delta opioid receptor selectivity utilizing chimeric and site-mutagenized receptors.

    Science.gov (United States)

    Wang, W W; Shahrestanifar, M; Jin, J; Howells, R D

    1995-01-01

    Opioid receptors are members of the guanine nucleotide binding protein (G protein)-coupled receptor family. Three types of opioid receptors have been cloned and characterized and are referred to as the delta, kappa and mu types. Analysis of receptor chimeras and site-directed mutant receptors has provided a great deal of information about functionally important amino acid side chains that constitute the ligand-binding domains and G-protein-coupling domains of G-protein-coupled receptors. We have constructed delta/mu opioid receptor chimeras that were express in human embryonic kidney 293 cells in order to define receptor domains that are responsible for receptor type selectivity. All chimeric receptors and wild-type delta and mu opioid receptors displayed high-affinity binding of etorphine (an agonist), naloxone (an antagonist), and bremazocine (a mixed agonist/antagonist). In contrast, chimeras that lacked the putative first extracellular loop of the mu receptor did not bind the mu-selective peptide [D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO). Chimeras that lacked the putative third extracellular loop of the delta receptor did not bind the delta-selective peptide, [D-Ser2,D-Leu5]enkephalin-Thr (DSLET). Point mutations in the putative third extracellular loop of the wild-type delta receptor that converted vicinal arginine residues to glutamine abolished DSLET binding while not affecting bremazocine, etorphine, and naltrindole binding. We conclude that amino acids in the putative first extracellular loop of the mu receptor are critical for high-affinity DAMGO binding and that arginine residues in the putative third extracellular loop of the delta receptor are important for high-affinity DSLET binding. Images Fig. 3 PMID:8618916

  20. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum).

    Science.gov (United States)

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Plants use a variety of innate immune regulators to trigger cell death and defense responses against pathogen attack. We identified pepper (Capsicum annuum) GLYCINE-RICH RNA-BINDING PROTEIN1 (CaGRP1) as a RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 (CaPIK1)-interacting partner, based on bimolecular fluorescence complementation and coimmunoprecipitation analyses as well as gene silencing and transient expression analysis. CaGRP1 contains an N-terminal RNA recognition motif and a glycine-rich region at the C-terminus. The CaGRP1 protein had DNA- and RNA-binding activity in vitro. CaGRP1 interacted with CaPIK1 in planta. CaGRP1 and CaGRP1-CaPIK1 complexes were localized to the nucleus in plant cells. CaPIK1 phosphorylated CaGRP1 in vitro and in planta. Transient coexpression of CaGRP1 with CaPIK1 suppressed the CaPIK1-triggered cell death response, accompanied by a reduced CaPIK1-triggered reactive oxygen species (ROS) burst. The RNA recognition motif region of CaGRP1 was responsible for the nuclear localization of CaGRP1 as well as the suppression of the CaPIK1-triggered cell death response. CaGRP1 silencing in pepper conferred enhanced resistance to Xanthomonas campestris pv vesicatoria (Xcv) infection; however, CaPIK1-silenced plants were more susceptible to Xcv. CaGRP1 interacts with CaPIK1 and negatively regulates CaPIK1-triggered cell death and defense responses by suppressing ROS accumulation.

  1. Glycine receptor in rat hippocampal and spinal cord neurons as a molecular target for rapid actions of 17-β-estradiol

    Directory of Open Access Journals (Sweden)

    Liu Chun-Feng

    2009-01-01

    Full Text Available Abstract Glycine receptors (GlyRs play important roles in regulating hippocampal neural network activity and spinal nociception. Here we show that, in cultured rat hippocampal (HIP and spinal dorsal horn (SDH neurons, 17-β-estradiol (E2 rapidly and reversibly reduced the peak amplitude of whole-cell glycine-activated currents (IGly. In outside-out membrane patches from HIP neurons devoid of nuclei, E2 similarly inhibited IGly, suggesting a non-genomic characteristic. Moreover, the E2 effect on IGly persisted in the presence of the calcium chelator BAPTA, the protein kinase inhibitor staurosporine, the classical ER (i.e. ERα and ERβ antagonist tamoxifen, or the G-protein modulators, favoring a direct action of E2 on GlyRs. In HEK293 cells expressing various combinations of GlyR subunits, E2 only affected the IGly in cells expressing α2, α2β or α3β subunits, suggesting that either α2-containing or α3β-GlyRs mediate the E2 effect observed in neurons. Furthermore, E2 inhibited the GlyR-mediated tonic current in pyramidal neurons of HIP CA1 region, where abundant GlyR α2 subunit is expressed. We suggest that the neuronal GlyR is a novel molecular target of E2 which directly inhibits the function of GlyRs in the HIP and SDH regions. This finding may shed new light on premenstrual dysphoric disorder and the gender differences in pain sensation at the CNS level.

  2. A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses.

    Science.gov (United States)

    Sun, XiaoLi; Sun, Mingzhe; Luo, Xiao; Ding, XiaoDong; Ji, Wei; Cai, Hua; Bai, Xi; Liu, XiaoFei; Zhu, YanMing

    2013-06-01

    Receptor such as protein kinases are proposed to work as sensors to initiate signaling cascades in higher plants. However, little is known about the precise functions of receptor such as protein kinases in abiotic stress response in plants, especially in wild soybean. Here, we focused on characterization of the biological functions of a receptor-like cytoplasmic serine/threonine protein kinase gene, GsRLCK, which was previously identified as a putative salt-alkali stress-related gene from the transcriptome profiles of Glycine soja. Bioinformatic analysis showed that GsRLCK protein contained a conserved kinase catalytic domain and two transmembrane domains at the N-terminus, but no typical extracellular domain. Consistently, GsRLCK-eGFP fusion protein was observed on the plasma membrane, but eGFP alone was distributing throughout the cytoplasm in onion epidermal cells. Quantitative real-time PCR analysis revealed the induced expression of GsRLCK by ABA, salt, alkali, and drought stresses. However, the expression levels of GsRLCK seemed to be similar in different tissues, except soybean pod. Phenotypic assays demonstrated that GsRLCK overexpression decreased ABA sensitivity and altered expression levels of ABA-responsive genes. Furthermore, we also found that GsRLCK conferred increased tolerance to salt and drought stresses and increased expression levels of a handful of stress-responsive genes, when overexpressing in Arabidopsis. In a word, we gave exact evidence that GsRLCK was a novel receptor-like cytoplasmic protein kinase and played a crucial role in plant responses to ABA, salt, and drought stresses.

  3. Effects of a glycine transporter-1 inhibitor and D-serine on MK-801-induced immobility in the forced swimming test in rats.

    Science.gov (United States)

    Kawaura, Kazuaki; Koike, Hiroyuki; Kinoshita, Kohnosuke; Kambe, Daiji; Kaku, Ayaka; Karasawa, Jun-ichi; Chaki, Shigeyuki; Hikichi, Hirohiko

    2015-02-01

    Glutamatergic dysfunction, particularly the hypofunction of N-methyl-D-aspartate (NMDA) receptors, is involved in the pathophysiology of schizophrenia. The positive modulation of the glycine site on the NMDA receptor has been proposed as a novel therapeutic approach for schizophrenia. However, its efficacy against negative symptoms, which are poorly managed by current medications, has not been fully addressed. In the present study, the effects of the positive modulation of the glycine site on the NMDA receptor were investigated in an animal model of negative symptoms of schizophrenia. The subchronic administration of MK-801 increased immobility in the forced swimming test in rats without affecting spontaneous locomotor activity. The increased immobility induced by MK-801 was attenuated by the atypical antipsychotic clozapine but not by either the typical antipsychotic haloperidol or the antidepressant imipramine, indicating that the increased immobility induced by subchronic treatment with MK-801 in the forced swimming test may represent a negative symptom of schizophrenia. Likewise, positive modulation of the glycine sites on the NMDA receptor using an agonist for the glycine site, D-serine, and a glycine transporter-1 inhibitor, N-[(3R)-3-([1,1'-biphenyl]-4-yloxy)-3-(4-fluorophenyl)propyl]-N-methylglycine hydrochloride (NFPS), significantly reversed the increase in immobility in MK-801-treated rats without reducing the immobility time in vehicle-treated rats. The present results show that the stimulation of the NMDA receptor through the glycine site on the receptor either directly with D-serine or by blocking glycine transporter-1 attenuates the immobility elicited by the subchronic administration of MK-801 and may be potentially useful for the treatment of negative symptoms of schizophrenia.

  4. Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters.

    Science.gov (United States)

    Harsing, Laszlo G; Matyus, Peter

    2013-04-01

    Glycine is an amino acid neurotransmitter that is involved in both inhibitory and excitatory neurochemical transmission in the central nervous system. The role of glycine in excitatory neurotransmission is related to its coagonist action at glutamatergic N-methyl-D-aspartate receptors. The glycine levels in the synaptic cleft rise many times higher during synaptic activation assuring that glycine spills over into the extrasynaptic space. Another possible origin of extrasynaptic glycine is the efflux of glycine occurring from astrocytes associated with glutamatergic synapses. The release of glycine from neuronal or glial origins exhibits several differences compared to that of biogenic amines or other amino acid neurotransmitters. These differences appear in an external Ca(2+)- and temperature-dependent manner, conferring unique characteristics on glycine as a neurotransmitter. Glycine transporter type-1 at synapses may exhibit neural and glial forms and plays a role in controlling synaptic glycine levels and the spill over rate of glycine from the synaptic cleft into the extrasynaptic biophase. Non-synaptic glycine transporter type-1 regulates extrasynaptic glycine concentrations, either increasing or decreasing them depending on the reverse or normal mode operation of the carrier molecule. While we can, at best, only estimate synaptic glycine levels at rest and during synaptic activation, glycine concentrations are readily measurable via brain microdialysis technique applied in the extrasynaptic space. The non-synaptic N-methyl-D-aspartate receptor may obtain glycine for activation following its spill over from highly active synapses or from its release mediated by the reverse operation of non-synaptic glycine transporter-1. The sensitivity of non-synaptic N-methyl-D-aspartate receptors to glutamate and glycine is many times higher than that of synaptic N-methyl-D-aspartate receptors making the former type of receptor the primary target for drug action. Synaptic

  5. Site of clomazone action in tolerant-soybean and susceptible-cotton photomixotrophic cell suspension cultures. [Glycine max (L. ); Gossypium hirsutum

    Energy Technology Data Exchange (ETDEWEB)

    Norman, M.A.; Liebl, R.A.; Widholm, J.M. (Univ. of Illinois, Urbana (USA))

    1990-10-01

    Studies were conducted to determine the herbicidal site of clomazone action in tolerant-soybean (Glycine max (L.) Merr. cv Corsoy) (SB-M) and susceptible-cotton (Gossypium hirsutum (L.) cv Stoneville 825) (COT-M) photomixotrophic cell suspension cultures. Although a 10 micromolar clomazone treatment did not significantly reduce the terpene or mixed terpenoid content (microgram per gram fresh weight) of the SB-M cell line, there was over a 70% reduction in the chlorophyll (Chl), carotenoid (CAR), and plastoquinone (PQ) content of the COT-M cell line. The tocopherol (TOC) content was reduced only 35.6%. Reductions in the levels of Chl, CAR, TOC, and PQ indicate that the site of clomazone action in COT-M cells is prior to geranylgeranyl pyrophosphate (GGPP). The clomazone treatment did not significantly reduce the flow of ({sup 14}C)mevalonate (({sup 14}C)MEV) (nanocuries per gram fresh weight) into CAR and the three mixed terpenoid compounds of SB-M cells. Conversely, ({sup 14}C)MEV incorporation into CAR and the terpene moieties of Chl, PQ, and TOC in COT-M cells was reduced at least 73%, indicating that the site of clomazone action must be after MEV. Sequestration of clomazone away from the chloroplast cannot account for soybean tolerance to clomazone since chloroplasts isolated from both cell lines incubated with ({sup 14}C)clomazone contained a similar amount of radioactivity (disintegrations per minute per microgram of Chl). The possible site(s) of clomazone inhibition include mevalonate kinase, phosphomevalonate kinase, pyrophosphomevalonate decarboxylase, isopentenyl pyrophosphate isomerase, and/or a prenyl transferase.

  6. The 3'-terminal exon of the family of steroid and phenol sulfotransferase genes is spliced at the N-terminal glycine of the universally conserved GXXGXXK motif that forms the sulfonate donor binding site.

    OpenAIRE

    Chiba, H; Komatsu, K.; Lee, Y.C.; Tomizuka, T; Strott, C A

    1995-01-01

    The guinea pig estrogen sulfotransferase gene has been cloned and compared to three other cloned steroid and phenol sulfotransferase genes (human estrogen sulfotransferase, human phenol sulfotransferase, and guinea pig 3 alpha-hydroxysteroid sulfotransferase). The four sulfotransferase genes demonstrate a common outstanding feature: the splice sites for their 3'-terminal exons are identically located. That is, the 3'-terminal exon splice sites involve a glycine that constitutes the N-terminal...

  7. Identification of Phosphorylation Sites Regulating sst3 Somatostatin Receptor Trafficking.

    Science.gov (United States)

    Lehmann, Andreas; Kliewer, Andrea; Günther, Thomas; Nagel, Falko; Schulz, Stefan

    2016-06-01

    The human somatostatin receptor 3 (sst3) is expressed in about 50% of all neuroendocrine tumors and hence a promising target for multireceptor somatostatin analogs. The sst3 receptor is unique among ssts in that it exhibits a very long intracellular C-terminal tail containing a huge number of potential phosphate acceptor sites. Consequently, our knowledge about the functional role of the C-terminal tail in sst3 receptor regulation is very limited. Here, we have generated a series of phosphorylation-deficient mutants that enabled us to determine crucial sites for its agonist-induced β-arrestin mobilization, internalization, and down-regulation. Based on this information, we generated phosphosite-specific antibodies for C-terminal Ser(337)/Thr(341), Thr(348), and Ser(361) that enabled us to investigate the temporal patterns of sst3 phosphorylation and dephosphorylation. We found that the endogenous ligand somatostatin induced a rapid and robust phosphorylation that was completely blocked by the sst3 antagonist NVP-ACQ090. The stable somatostatin analogs pasireotide and octreotide promoted clearly less phosphorylation compared with somatostatin. We also show that sst3 phosphorylation occurred within seconds to minutes, whereas dephosphorylation of the sst3 receptor occurred at a considerable slower rate. In addition, we also identified G protein-coupled receptor kinases 2 and 3 and protein phosphatase 1α and 1β as key regulators of sst3 phosphorylation and dephosphorylation, respectively. Thus, we here define the C-terminal phosphorylation motif of the human sst3 receptor that regulates its agonist-promoted phosphorylation, β-arrestin recruitment, and internalization of this clinically relevant receptor.

  8. Glycine-mediated changes of onset reliability at a mammalian central synapse.

    Science.gov (United States)

    Kopp-Scheinpflug, C; Dehmel, S; Tolnai, S; Dietz, B; Milenkovic, I; Rübsamen, R

    2008-11-19

    Glycine is an inhibitory neurotransmitter activating a chloride conductance in the mammalian CNS. In vitro studies from brain slices revealed a novel presynaptic site of glycine action in the medial nucleus of the trapezoid body (MNTB) which increases the release of the excitatory transmitter glutamate from the calyx of Held. Here, we investigate the action of glycine on action potential firing of single MNTB neurons from the gerbil under acoustic stimulation in vivo. Iontophoretic application of the glycine receptor antagonist strychnine caused a significant decrease in spontaneous and sound-evoked firing rates throughout the neurons' excitatory response areas, with the largest changes at the respective characteristic frequency (CF). The decreased firing rate was accompanied by longer and more variable onset latencies of sound-evoked responses. Outside the neurons' excitatory response areas, firing rates increased during the application of strychnine due to a reduction of inhibitory sidebands, causing a broadening of frequency tuning. These results indicate that glycine enhances the efficacy for on-CF stimuli, while simultaneously suppressing synaptic transmission for off-CF stimuli. These in vivo results provide evidence of multiple excitatory and inhibitory glycine effects on the same neuronal population in the mature mammalian CNS.

  9. Receptor for advanced glycation end products Glycine 82 Serine polymorphism and risk of cardiovascular events in rheumatoid arthritis

    OpenAIRE

    Carroll, Lisa; Frazer, Ian H; Turner, Malcolm; Marwick, Thomas H.; Thomas, Ranjeny

    2007-01-01

    Patients with rheumatoid arthritis (RA) are at risk of excess mortality, predominantly owing to cardiovascular (CV) events. The receptor for advanced glycation end products (RAGE) has been implicated in the perpetuation of the chronic inflammatory response in vascular disease. A Gly82→Ser polymorphism in the RAGE gene, which is associated with enhanced RAGE signaling, is present more frequently in patients with RA than the general population. To investigate whether RAGE Gly82→Ser polymorphism...

  10. Temporal alteration of spreading depression by the glycine transporter type-1 inhibitors NFPS and Org-24461 in chicken retina.

    Science.gov (United States)

    Kertesz, Szabolcs; Szabo, Geza; Udvari, Szabolcs; Levay, Gyorgy; Matyus, Peter; Harsing, Laszlo G

    2013-01-25

    We used isolated chicken retina to induce spreading depression by the glutamate receptor agonist N-methyl-d-aspartate. The N-methyl-d-aspartate-induced latency time of spreading depression was extended by the glycine(B) binding site competitive antagonist 7-chlorokynurenic acid. Addition of the glycine transporter type-1 inhibitors NFPS and Org-24461 reversed the inhibitory effect of 7-chlorokynurenic acid on N-methyl-d-aspartate-evoked spreading depression. The glycine uptake inhibitory activity of Org-24461, NFPS, and some newly synthesized analogs of NFPS was determined in CHO cells stably expressing human glycine transporter type-1b isoform. Compounds, which failed to inhibit glycine transporter type-1, also did not have effect on retinal spreading depression. These experiments indicate that the spreading depression model in chicken retina is a useful in vitro test to determine activity of glycine transporter type-1 inhibitors. In addition, our data serve further evidence for the role of glycine transporter type-1 in retinal neurotransmission and light processing.

  11. Glycine Betaine Recognition through Cation−π Interactions in Crystal Structures of Glycine Betaine Complexes with C-Ethyl-pyrogallol[4]arene and C-Ethyl-resorcin[4]arene as Receptors

    OpenAIRE

    Ikuhide Fujisawa; Katsuyuki Aoki

    2013-01-01

    The glycine betaine (betaine), interacts with several types of proteins with diverse structures in vivo, and in the contact regions, the aromatic rings of protein residues are frequently found beside the trimethylammonium group of betaine, implying the importance of the cation−π interactions in recognition of this molecule. The crystal structures determined by X-ray crystallography of the complexes of betaine and C-ethyl-pyrogallol[4]arene (pyrogallol cyclic tetramer: PCT) and betaine and C-e...

  12. The NMDA receptor ion channel: a site for binding of Huperzine A.

    Science.gov (United States)

    Gordon, R K; Nigam, S V; Weitz, J A; Dave, J R; Doctor, B P; Ved, H S

    2001-12-01

    Huperzine A (HUP-A), first isolated from the Chinese club moss Huperzia serrata, is a potent, reversible and selective inhibitor of acetylcholinesterase (AChE) over butyrylcholinesterase (BChE) (Life Sci. 54: 991-997). Because HUP-A has been shown to penetrate the blood-brain barrier, is more stable than the carbamates used as pretreatments for organophosphate poisoning (OP) and the HUP-A:AChE complex has a longer half-life than other prophylactic sequestering agents, HUP-A has been proposed as a pretreatment drug for nerve agent toxicity by protecting AChE from irreversible OP-induced phosphonylation. More recently (NeuroReport 8: 963-968), pretreatment of embryonic neuronal cultures with HUP-A reduced glutamate-induced cell death and also decreased glutamate-induced calcium mobilization. These results suggest that HUP-A might interfere with and be beneficial for excitatory amino acid overstimulation, such as seen in ischemia, where persistent elevation of internal calcium levels by activation of the N-methyl-D-aspartate (NMDA) glutamate subtype receptor is found. We have now investigated the interaction of HUP-A with glutamate receptors. Freshly frozen cortex or synaptic plasma membranes were used, providing 60-90% specific radioligand binding. Huperzine A (< or =100 microM) had no effect on the binding of [3H]glutamate (low- and high-affinity glutamate sites), [3H]MDL 105,519 (NMDA glycine regulatory site), [3H]ifenprodil (NMDA polyamine site) or [3H]CGS 19755 (NMDA antagonist). In contrast with these results, HUP-A non-competitively (Hill slope < 1) inhibited [3H]MK-801 and [3H]TCP binding (co-located NMDA ion channel PCP site) with pseudo K(i) approximately 6 microM. Furthermore, when neuronal cultures were pretreated with HUP-A for 45 min prior to NMDA exposure, HUP-A dose-dependently inhibited the NMDA-induced toxicity. Although HUP-A has been implicated to interact with cholinergic receptors, it was without effect at 100 microM on muscarinic (measured by

  13. Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multi-scale dynamics of glycine receptors in the neuronal membrane

    CERN Document Server

    Masson, Jean-Baptiste; Salvatico, Charlotte; Renner, Marianne; Specht, Christian G; Triller, Antoine; Dahan, Maxime

    2015-01-01

    Protein mobility is conventionally analyzed in terms of an effective diffusion. Yet, this description often fails to properly distinguish and evaluate the physical parameters (such as the membrane friction) and the biochemical interactions governing the motion. Here, we present a method combining high-density single-molecule imaging and statistical inference to separately map the diffusion and energy landscapes of membrane proteins across the cell surface at ~100 nm resolution (with acquisition of a few minutes). When applying these analytical tools to glycine neurotransmitter receptors (GlyRs) at inhibitory synapses, we find that gephyrin scaffolds act as shallow energy traps (~3 kBT) for GlyRs, with a depth modulated by the biochemical properties of the receptor-gephyrin interaction loop. In turn, the inferred maps can be used to simulate the dynamics of proteins in the membrane, from the level of individual receptors to that of the population, and thereby, to model the stochastic fluctuations of physiologi...

  14. Glycine Betaine Recognition through Cation−π Interactions in Crystal Structures of Glycine Betaine Complexes with C-Ethyl-pyrogallol[4]arene and C-Ethyl-resorcin[4]arene as Receptors

    Directory of Open Access Journals (Sweden)

    Ikuhide Fujisawa

    2013-04-01

    Full Text Available The glycine betaine (betaine, interacts with several types of proteins with diverse structures in vivo, and in the contact regions, the aromatic rings of protein residues are frequently found beside the trimethylammonium group of betaine, implying the importance of the cation−π interactions in recognition of this molecule. The crystal structures determined by X-ray crystallography of the complexes of betaine and C-ethyl-pyrogallol[4]arene (pyrogallol cyclic tetramer: PCT and betaine and C-ethyl-resorcin[4]arene (resorcinol cyclic tetramer: RCT mimic the conformations of betaine and protein complexes and show that the clathrate conformations are retained by the cation−π interactions. The difference of the conformation feature of betaine in the Protein Data Bank and in the Cambridge Structural Database was found by chance during the research and analyzed with the torsion angles.

  15. Effects of basic site proximity on deprotonation and hydrogen/deuterium exchange reactions for model dodecapeptide ions containing lysine and glycine

    Science.gov (United States)

    Zhang, Xin; Ewing, Nigel P.; Cassady, Carolyn J.

    1998-05-01

    The effects of basic site proximity on gas-phase deprotonation and hydrogen/deuterium (H/D) exchange reactions were investigated for three model dodecapeptide ions in a Fourier transform ion cyclotron resonance mass spectrometer. Each peptide contained four high basicity lysine (K) residues and eight low basicity glycine (G) residues; however, the ordering of the residues differed. In the deprotonation studies, `fully protonated' peptide ions, [M + 4H]4+, where M = (KGG)4, (K2G4)2, and K4G8, were reacted with reference compounds of known basicities. Reaction efficiencies were in the order: [K4G8 + 4H]4+ > [(K2G4)2 + 4H]4+ ~ [(KGG)4 + 4H]4+. The facile reaction of [K4G8 + 4H]4+ is consistent with this ion having the highest Coulomb energy. For gas-phase H/D exchange reactions with d4-methanol, [K4G8 + 4H]4+ has the fastest exchange rate and undergoes the largest number of exchanges; 22 of the 26 labile hydrogens exchanged within the timescale studied. In contrast, [(KGG)4 + 4H]4+ and [(K2G4)2 + 4H]4+ reacted more slowly, but at similar rates, with a maximum of 14 observed exchanges for both ions. Molecular dynamics calculations were conducted to gain insights into conformations. In the lowest energy structures for [(KGG)4 + 4H]4+ and [(K2G4)2 + 4H]4+, the lysine n-butylamino chains stretch out to minimize Coulomb energy; there is little or no intramolecular hydrogen bonding involving the protonated amino groups. In contrast, for [K4G8 + 4H]4+, the proximity of the basicity residues makes minimization of the Coulomb energy difficult; instead, the structure becomes more compact with stabilization of the protonated amino groups by extensive intramolecular hydrogen bonding to heteroatoms in the peptide backbone. The calculated structures suggest that, in the H/D exchange reactions, the compact conformation of [K4G8 + 4H]4+ allows stabilization of the methanolpeptide intermediate by hydrogen bonding, thus lowering the barrier to proton transfer within the complex. The

  16. Differential Regulation of Two Palmitoylation Sites in the Cytoplasmic Tail of the β1-Adrenergic Receptor*

    OpenAIRE

    2011-01-01

    S-Palmitoylation of G protein-coupled receptors (GPCRs) is a prevalent modification, contributing to the regulation of receptor function. Despite its importance, the palmitoylation status of the β1-adrenergic receptor, a GPCR critical for heart function, has never been determined. We report here that the β1-adrenergic receptor is palmitoylated on three cysteine residues at two sites in the C-terminal tail. One site (proximal) is adjacent to the seventh transmembrane domain and is a consensus ...

  17. Multiple autophosphorylation sites of the epidermal growth factor receptor are essential for receptor kinase activity and internalization. Contrasting significance of tyrosine 992 in the native and truncated receptors

    DEFF Research Database (Denmark)

    Sorkin, A; Helin, K; Waters, C M

    1992-01-01

    The role of epidermal growth factor (EGF) receptor autophosphorylation sites in the regulation of receptor functions has been studied using cells transfected with mutant EGF receptors. Simultaneous point mutation of 4 tyrosines (Y1068, Y1086, Y1148, Y1173) to phenylalanine, as well as removal of ...

  18. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    OpenAIRE

    Butler, Ethan B.; Xiong, Yong; Wang, Jimin; Strobel, Scott A.

    2011-01-01

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6Å crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for ho...

  19. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    Energy Technology Data Exchange (ETDEWEB)

    E Butler; J Wang; Y Xiong; S Strobel

    2011-12-31

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.

  20. Difference in brain distributions of carbon 11-labeled 4-hydroxy-2(1H)-quinolones as PET radioligands for the glycine-binding site of the NMDA ion channel

    Energy Technology Data Exchange (ETDEWEB)

    Fuchigami, Takeshi [Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582 (Japan); Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Haradahira, Terushi [Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan)], E-mail: terushi@niu.ac.jp; Fujimoto, Noriko [Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582 (Japan); Okauchi, Takashi; Maeda, Jun; Suzuki, Kazutoshi; Suhara, Tetsuya [Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); Yamamoto, Fumihiko; Sasaki, Shigeki; Mukai, Takahiro [Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582 (Japan); Yamaguchi, Hiroshi [Molecular Imaging Frontier Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Ogawa, Mikako [Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Magata, Yasuhiro [Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Molecular Imaging Frontier Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Maeda, Minoru [Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582 (Japan)

    2008-02-15

    High-affinity iodine- and ethyl-C-5 substituted analogs of 4-hydroxy-3-(3-[{sup 11}C]methoxyphenyl)-2(1H)-quinolone ([{sup 11}C]4HQ) were synthesized as new positron emission tomography radioligands for the glycine-binding sites of the N-methyl-D-aspartate (NMDA) ion channel. Although both radioligands showed high in vitro specific binding to rat brain slices, their binding characteristics were quite different from each other. 5-Ethyl-[{sup 11}C]4HQ (5Et-[{sup 11}C]4HQ) showed higher in vitro binding in the forebrain regions than in the cerebellum, bindings that were strongly inhibited by both glycine-site agonists and antagonists. In contrast, 5-iodo-[{sup 11}C]4HQ (5I-[{sup 11}C]4HQ) showed a homogeneous in vitro binding throughout the brain, which was inhibited by antagonists but not by agonists. This difference in in vitro binding between 5Et-[{sup 11}C]4HQ and 5I-[{sup 11}C]4HQ was quite similar to that previously observed between [{sup 11}C]L-703,717 and [{sup 11}C]4HQ, both glycine-site antagonists. In vivo brain uptakes of these {sup 11}C-labeled 4-hydroxyquinolones were examined in mice. Initial brain uptakes of 5Et- and 5I-[{sup 11}C]4HQ at 1 min after intravenous injections were comparable to that of [{sup 11}C]4HQ, but they were 1.3-2.1 times higher than that of [{sup 11}C]L-703,717. The treatment with an anticoagulant, warfarin, only slightly increased the initial uptakes of [{sup 11}C]4HQ and 5Et-[{sup 11}C]4HQ in contrast to [{sup 11}C]L-703,717. The in vivo regional brain distributions were slightly different between the two radioligands. Pretreatment with nonradioactive ligand (2 mg/kg) slightly inhibited the binding of 5Et-[{sup 11}C]4HQ (16-36% inhibition) but not that of 5I-[{sup 11}C]4HQ. In this study, it was found that a small structural change in [{sup 11}C]4HQ resulted in a major change in binding characteristics and distributions, suggesting the existence of two binding sites for [{sup 11}C]4-hydroxyquinolones on the NMDA ion channel

  1. Gas Phase Conformations of Tetrapeptide Glycine-Phenylalanine-Glycine-Glycine

    Institute of Scientific and Technical Information of China (English)

    Hui-bin Chen; Yao Wang; Xin Chen; Zi-jing Lin

    2012-01-01

    Systematic search of the potential energy surface of tetrapeptide glycine-phenylalanineglycine-glycine (GFGG) in gas phase is conducted by a combination of PM3,HF and BHandHLYP methods.The conformational search method is described in detail.The relative electronic energies,zero point vibrational energies,dipole moments,rotational constants,vertical ionization energies and the temperature.dependent conformational distributions for a number of important conformers are obtained.The structural characteristics of these conformers are analyzed and it is found that the entropic effect is a dominating factor in determining the relative stabilities of the conformers.The measurements of dipole moments and some characteristic IR mode are shown to be effective approaches to verify the theoretical prediction.The structures of the low energy GFGG conformers are also analyzed in their connection with the secondary structures of proteins.Similarity between the local structures of low energy GFGG conformers and the α-helix is discussed and manyβ- and γ-turn local structures in GFGG conformers are found.

  2. Probing of the location of the allosteric site on m1 muscarinic receptors by site-directed mutagenesis.

    Science.gov (United States)

    Matsui, H; Lazareno, S; Birdsall, N J

    1995-01-01

    In an attempt to locate the allosteric site on muscarinic receptors to which gallamine binds, 21 residues in the putative external loops and loop/transmembrane helix interfaces have been mutated to alanine. These residues are conserved in mammalian m1-m5 receptors. All mutant receptors can be expressed in COS-7 cells at high levels and appear to be functional, in that acetylcholine binding is sensitive to GTP. The gallamine binding site does not appear to involve the first, second, and most of the third extracellular loops. Tryptophan-400 and -101 inhibit gallamine binding when mutated to alanine or to phenylalanine and may form part of the allosteric site. Several mutations also affect antagonist binding. Surprisingly, tryptophan-91, a residue conserved in monoamine and peptide receptors, is important for antagonist binding. This residue, present in the middle of the first extracellular loop, may have a structural role in many G protein-coupled receptors. Antagonist binding is also affected by mutations of tryptophan-101 and tyrosine-404 to alanine or phenylalanine. In a helical wheel model, trytophan-101 and tyrosine-404, in conjunction with serine-78, aspartate-105, and tyrosine-408, form a cluster of residues that have been reported to affect antagonist binding when mutated, and they may therefore be part of the antagonist binding site. It is suggested that the allosteric site may be located close to and just extracellular to the antagonist binding site. The binding of methoctramine, an antagonist with allosteric properties, is not substantially affected by mutations at tryptophan-91, -101, and -400 and tyrosine-404, and thus these amino acids are not important for its binding. The binding of himbacine, another antagonist with allosteric properties, is affected by these mutations but in a manner different from that of gallamine or competitive antagonists. It has not been possible to determine whether methoctramine and himbacine bind exclusively to the

  3. Combining pharmacophore search, automated docking, and molecular dynamics simulations as a novel strategy for flexible docking. Proof of concept: docking of arginine-glycine-aspartic acid-like compounds into the alphavbeta3 binding site.

    Science.gov (United States)

    Moitessier, Nicolas; Henry, Christophe; Maigret, Bernard; Chapleur, Yves

    2004-08-12

    A novel and highly efficient flexible docking approach is presented where the conformations (internal degrees of freedom) and orientations (external degrees of freedom) of the ligands are successively considered. This hybrid method takes advantage of the synergistic effects of structure-based and ligand-based drug design techniques. Preliminary antagonist-derived pharmacophore determination provides the postulated bioactive conformation. Subsequent docking of this pharmacophore to the receptor crystal structure results in a postulated pharmacophore/receptor binding mode. Pharmacophore-oriented docking of antagonists is subsequently achieved by matching ligand interacting groups with pharmacophore points. Molecular dynamics in water refines the proposed complexes. To validate the method, arginine-glycine-aspartic acid (RGD) containing peptides, pseudopeptides, and RGD-like antagonists were docked to the crystal structure of alphavbeta3 holoprotein and apoprotein. The proposed directed docking was found to be more accurate, faster, and less biased with respect to the protein structure (holo and apoprotein) than DOCK, Autodock, and FlexX docking methods. The successful docking of an antagonist recently cocrystallized with the receptor to both apo and holoprotein is particularly appealing. The results summarized in this report illustrated the efficiency of our light CoMFA/rigid body docking hybrid method.

  4. Prenatal exposure to methylmercury alters development of adrenergic receptor binding sites in peripheral sympathetic target tissues

    Energy Technology Data Exchange (ETDEWEB)

    Slotkin, T.A.; Orband, L.; Cowdery, T.; Kavlock, R.J.; Bartolome, J.

    1987-01-01

    In order to assess the impact of prenatal exposure to methylmercury on sympathetic neurotransmission, effects on development of adrenergic receptor binding sites in peripheral tissues was evaluated. In the liver, methylmercury produced a dose-dependent increase in alpha/sub 1/, alpha/sub 2/, and beta-receptor binding of radioliganda throughout the first 5 weeks of postnatal life. Similarly, renal alpha-receptor subtypes showed increased binding capabilities, but binding to alpha-receptor sites was reduced. At least some of the changes in receptors appear to be of functional significance, as physiological reactivity to adrenergic stimulation is altered in the same directions in these two tissues. The actions of methylmercury displayed tissue specificity in that the same receptor populations were largely unaffected in other tissues (lung, heart). These results suggest that methylmercury exposure in utero alters adrenergic responses through targeted effects on postsynaptic receptor populations in specific tissues.

  5. A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress.

    Science.gov (United States)

    Sun, Xiaoli; Yang, Shanshan; Sun, Mingzhe; Wang, Sunting; Ding, Xiaodong; Zhu, Dan; Ji, Wei; Cai, Hua; Zhao, Chaoyue; Wang, Xuedong; Zhu, Yanming

    2014-05-01

    It has been well demonstrated that cystatins regulated plant stress tolerance through inhibiting the cysteine proteinase activity under environmental stress. However, there was limited information about the role of cystatins in plant alkali stress response, especially in wild soybean. Here, in this study, we focused on the biological characterization of a novel Glycine soja cystatin protein GsCPI14, which interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and positively regulated plant alkali stress tolerance. The protein-protein interaction between GsCBRLK and GsCPI14 was confirmed by using split-ubiquitin based membrane yeast two-hybrid analysis and bimolecular fluorescence complementation assay. Expression of GsCPI14 was greatly induced by salt, ABA and alkali stress in G. soja, and GsCBRLK overexpression (OX) in Glycine max promoted the stress induction of GmCPI14 expression under stress conditions. Furthermore, we found that GsCPI14-eGFP fusion protein localized in the entire Arabidopsis protoplast and onion epidermal cell, and GsCPI14 showed ubiquitous expression in different tissues of G. soja. In addition, we gave evidence that the GST-GsCPI14 fusion protein inhibited the proteolytic activity of papain in vitro. At last, we demonstrated that OX of GsCPI14 in Arabidopsis promoted the seed germination under alkali stress, as evidenced by higher germination rates. GsCPI14 transgenic Arabidopsis seedlings also displayed better growth performance and physiological index under alkali stress. Taken together, results presented in this study demonstrated that the G. soja cysteine proteinase inhibitor GsCPI14 interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and regulated plant tolerance to alkali stress.

  6. Laminar distribution of GABAA- and glycine-receptor mediated tonic inhibition in the dorsal horn of the rat lumbar spinal cord: effects of picrotoxin and strychnine on expression of Fos-like immunoreactivity.

    Science.gov (United States)

    Cronin, John N; Bradbury, Elizabeth J; Lidierth, Malcolm

    2004-11-01

    Inhibitory mechanisms are essential in suppressing the development of allodynia and hyperalgesia in the normal animal and there is evidence that loss of inhibition can lead to the development of neuropathic pain. We used Fos expression to map the distribution of tonically inhibited cells in the healthy rat lumbar spinal cord. In a control group, Fos-like immunoreactive (Fos-LI) cells were rare, averaging 7.5+/-2.2 cells (mean+/-SEM; N=13 sections) per 20 microm thick section of dorsal horn. This rose to 103+/-11 (mean+/-SEM; N=20) in picrotoxin-treated rats and to 88+/-11 (mean+/-SEM; N=18) in strychnine-treated rats. These changes were significant (ANOVA; Pstrychnine-treated animals. Picrotoxin induced a significant increase in the number of Fos-LI cells throughout the dorsal horn (lamina I-VI) while strychnine significantly elevated Fos-like immunoreactivity only in deep laminae (III-VI). For both picrotoxin and strychnine, the increase in Fos-like immunoreactivity peaked in lamina V (at 3579+/-319 and 3649+/-375% of control, respectively; mean+/-SEM) but for picrotoxin an additional peak was observed in the outer part of lamina II (1959+/-196%). Intrathecal administration of both GABAA and glycine receptor antagonists has been shown elsewhere to induce tactile allodynia. The present data suggest that this allodynia could arise due to blockade of tonic GABAA and glycine-receptor mediated inhibition in the deep dorsal horn. GABAA antagonists also induce hypersensitivity to noxious inputs. The blockade of tonic inhibition in the superficial dorsal horn shown here may underlie this hyperalgesia.

  7. In Silico Investigation of the Neurotensin Receptor 1 Binding Site

    DEFF Research Database (Denmark)

    Lückmann, Michael; Holst, Birgitte; Schwartz, Thue W.

    2016-01-01

    structure of NTSR1 in complex with NTS8-13 has been detd., providing novel insights into peptide ligand recognition by 7TM receptors. SR48692, a potent and selective small mol. antagonist has previously been used extensively as a tool compd. to study NTSR1 receptor signaling properties. To investigate...... the structure-based design of non-peptide ligands for the evaluation of the pharmacol. potential of NTSR1 in neurol. disorders and cancer. [on SciFinder(R)]...

  8. Distribution, Arrangement and Interconnectedness of Cell Surface Receptor sites in the body of an Organism

    Directory of Open Access Journals (Sweden)

    Utoh-Nedosa

    2011-01-01

    Full Text Available Cell surface receptors have been identified as the sites of disease infectivity in living organisms in a previous study. Drugs used for the treatment or cure of infections have to eliminate infections through attacking infective organisms at the cell surface receptors to which the infective organisms are attached. Problem statement: The present study examines a wide sample of living things to get more information on the relationship of one cell surface receptor to other cell surface receptors in the body of an organism. Approach: The arrangement of cell surface receptors on the external covering of a few samples of fruits, leaves, stems, dry wood of a plant; wall gecko and some parts of the human body, were examined and photographed. Transverse and/or Longitudinal sections of soursop fruit and sycamore fruit were also examined and photographed. The five different coverings of the fleshy part of a coconut were also photographed. The photographs were studied to note the relationship of disease infection attached to cell surface receptors on the external surface of an organ to disease infection on the innermost covering of the same organ. Results: The results of the study showed that all living things had ubiquitous distribution of cell surface receptors which are usually observable with the unaided eye as dots or spots on the external covering of an organ, tissue or cell. The dots or receptor sites of cell surface receptors in the study are arranged in lines which were perpendicular, oblique, transverse or arranged in any other lineal geometrical form. The lineally arranged cell surface receptors were noted to be connected by grooves, channels or pipes which joined other receptor channels or intersected with them. Smaller cell surface receptor channels emptied into bigger channels or continued as small sized channels that ran side by side in a connective tissue bundle. These connective tissue bundles that carried many independent small-sized cell

  9. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, K.L.

    1984-01-01

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, /sup 3/H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a /sup 3/H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of /sup 3/H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A/sub 4/, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each.

  10. Potential Immune Modularly Role of Glycine in Oral Gingival Inflammation

    Directory of Open Access Journals (Sweden)

    Teresa Schaumann

    2013-01-01

    Full Text Available Gingival epithelial cells (GECs represent a physical barrier against bacteria and are involved in the processes of innate immunity. Recently, an anti-inflammatory and immune-modulatory effect of the amino acid glycine has been demonstrated. However, there is only little information about the immune-modulatory effects of glycine in oral tissues. This study aimed to investigate the existence and role of the glycine receptor in gingival tissue analyzing tissues/cells from extracted human molars via immunohistochemical analysis. In vitro, GECs were challenged by inflammatory conditions with IL-1β alone or in combination with glycine and analyzed for cytokine expression of IL6/IL8 via real-time PCR. On protein level, the effect of nuclear translocalization of NFκB protein p65 was analyzed using immunofluorescence analysis. A distinct proof of the GlyR in oral gingival tissue and keratinocytes could be demonstrated. Isolated challenge of the keratinocytes with IL-1β as well as with glycine resulted in an upregulation of IL6 and IL8 mRNA expression and activation of NFκB pathway. The presence of glycine in combination with the inflammatory stimulus led to a significant decrease in inflammatory parameters. These results indicate a possible anti-inflammatory role of glycine in gingival inflammation and encourage further research on the utility of glycine in the prevention or therapy of inflammatory periodontitis.

  11. Inhibition of glycine transporter 1: The yellow brick road to new schizophrenia therapy?

    Science.gov (United States)

    Singer, Philipp; Dubroqua, Sylvain; Yee, Benjamin K

    2015-01-01

    While pharmacological blockade of dopamine D2 receptor can effectively suppress the psychotic or positive symptoms of schizophrenia, there is no satisfactory medication for the negative and cognitive symptoms of schizophrenia in spite of the proliferation of second generation antipsychotic drugs. Excitements over a new class of third generation antipsychotics that might possibly fill this urgent medical need have been prompted by the recent development of glycine transporter 1 (GlyT1) inhibitors. The impetus of this novel pharmacological strategy stems directly from the prevailing hypothesis that negative and cognitive symptoms are attributable to the hypofunction of glutamatergic signalling via the N-methyl-D-aspartate (NMDA) receptor in the brain. Inhibition of GlyT1 reduces clearance of extra-cellular glycine near NMDA receptor-containing synapses, and thereby increases baseline occupancy of the glycine-B site at the NR1 subunit of the NMDA receptor, which is a prerequisite of channel activation upon stimulation by the excitatory neurotransmitter glutamate. Pharmacological inhibition of GlyT1 is expected to boost NMDA receptor function and therefore alleviate persistent negative and cognitive symptoms without excessive risk of excitotoxicity associated with direct NMDA receptor agonists. The recently completed phase III clinical trials of the Roche compound, bitopertin (a.k.a. RG1678 or RO-4917838) had initially raised hope that this new class of drugs might represent the first successful translation of the glutamate hypothesis of schizophrenia to the clinic. However, the outcomes of the multi-centre bitopertin clinical trials have been disappointing. The present review seeks to examine this promise through a critical survey of the latest clinical and preclinical findings on the therapeutic potential of GlyT1 inhibition or down-regulation.

  12. Evaluating Ecological Risk to Invertebrate Receptors from PAHs in Sediments at Hazardous Waste Sites (Final Report)

    Science.gov (United States)

    EPA's Ecological Risk Assessment Support Center (ERASC) announced the release of the final report, Evaluating Ecological Risk to Invertebrate Receptors from PAHs in Sediments at Hazardous Waste Sites. The report provides an overview of an approach for assessing risk to ...

  13. Evaluating Ecological Risk to Invertebrate Receptors from PAHs in Sediments at Hazardous Waste Sites (Final Report)

    Science.gov (United States)

    EPA's Ecological Risk Assessment Support Center (ERASC) announced the release of the final report, Evaluating Ecological Risk to Invertebrate Receptors from PAHs in Sediments at Hazardous Waste Sites. The report provides an overview of an approach for assessing risk to ...

  14. GsLRPK, a novel cold-activated leucine-rich repeat receptor-like protein kinase from Glycine soja, is a positive regulator to cold stress tolerance.

    Science.gov (United States)

    Yang, Liang; Wu, Kangcheng; Gao, Peng; Liu, Xiaojuan; Li, Guangpu; Wu, Zujian

    2014-02-01

    Plant LRR-RLKs serve as protein interaction platforms, and as regulatory modules of protein activation. Here, we report the isolation of a novel plant-specific LRR-RLK from Glycine soja (termed GsLRPK) by differential screening. GsLRPK expression was cold-inducible and shows Ser/Thr protein kinase activity. Subcellular localization studies using GFP fusion protein indicated that GsLRPK is localized in the plasma membrane. Real-time PCR analysis indicated that temperature, salt, drought, and ABA treatment can alter GsLRPK gene transcription in G. soja. However, just protein induced by cold stress not by salinity and ABA treatment in tobacco was found to possess kinase activity. Furthermore, we found that overexpression of GsLRPK in yeast and Arabidopsis can enhance resistance to cold stress and increase the expression of a number of cold responsive gene markers.

  15. Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Gerlach, Lars-Ole; Jakobsen, Janus S

    2004-01-01

    AMD3100 is a symmetric bicyclam, prototype non-peptide antagonist of the CXCR4 chemokine receptor. Mutational substitutions at 16 positions located in TM-III, -IV, -V, -VI, and -VII lining the main ligand-binding pocket of the CXCR4 receptor identified three acid residues: Asp(171) (AspIV:20), Asp......, respectively. Metal ion binding in the cyclam rings of AMD3100 increased its dependence on Asp(262) and provided a tighter molecular map of the binding site, where borderline mutational hits became clear hits for the Zn(II)-loaded analog. The proposed binding site for AMD3100 was confirmed by a gradual build...... that AMD3100 binds through interactions with essentially only three acidic anchor-point residues, two of which are located at one end and the third at the opposite end of the main ligand-binding pocket of the CXCR4 receptor. We suggest that non-peptide antagonists with, for example, improved oral...

  16. A propofol binding site on mammalian GABAA receptors identified by photolabeling

    Science.gov (United States)

    Yip, Grace M S; Chen, Zi-Wei; Edge, Christopher J; Smith, Edward H; Dickinson, Robert; Hohenester, Erhard; Townsend, R Reid; Fuchs, Karoline; Sieghart, Werner; Evers, Alex S; Franks, Nicholas P

    2014-01-01

    Propofol is the most important intravenous general anesthetic in current clinical use. It acts by potentiating GABAA receptors, but where it binds to this receptor is not known and has been a matter of some controversy. We have synthesized a novel propofol analogue photolabeling reagent that has a biological activity very similar to that of propofol. We confirmed that this reagent labeled known propofol binding sites in human serum albumin which have been identified using X-ray crystallography. Using a combination of the protiated label and a deuterated version, and mammalian receptors labeled in intact membranes, we have identified a novel binding site for propofol in GABAA receptors consisting of both β3 homopentamers and α1β3 heteropentamers. The binding site is located within the β subunit, at the interface between the transmembrane domains and the extracellular domain, and lies close to known determinants of anesthetic sensitivity in transmembrane segments TM1 and TM2. PMID:24056400

  17. Ivermectin binding sites in human and invertebrate Cys-loop receptors

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Lynch, Joseph W

    2012-01-01

    Ivermectin is a gold standard antiparasitic drug that has been used successfully to treat billions of humans, livestock and pets. Until recently, the binding site on its Cys-loop receptor target had been a mystery. Recent protein crystal structures, site-directed mutagenesis data and molecular mo...... for a wide variety of human neurological disorders....

  18. Triazoloquinazolinediones as novel high affinity ligands for the benzodiazepine site of GABA(A) receptors

    DEFF Research Database (Denmark)

    Nilsson, Jakob; Gidlöf, Ritha; Nielsen, Elsebet Østergaard

    2011-01-01

    Based on a pharmacophore model of the benzodiazepine-binding site of GABA(A) receptors, a series of 2-aryl-2,6-dihydro[1,2,4]triazolo[4,3-c]quinazoline-3,5-diones (structure type I) were designed, synthesized, and identified as high-affinity ligands of the binding site. For several compounds, K...

  19. Some Operational Characteristics of Glycine Release in Rat Retina: The Role of Reverse Mode Operation of Glycine Transporter Type-1 (GlyT-1) in Ischemic Conditions.

    Science.gov (United States)

    Hanuska, Adrienn; Szénási, Gábor; Albert, Mihaly; Koles, Laszlo; Varga, Agoston; Szabo, Andras; Matyus, Peter; Harsing, Laszlo G

    2016-02-01

    Rat posterior eyecups containing the retina were prepared, loaded with [(3)H]glycine and superfused in order to determine its release originated from glycinergic amacrine cells and/or glial cells. Deprivation of oxygen and glucose from the Krebs-bicarbonate buffer used for superfusion evoked a marked increase of [(3)H]glycine release, an effect that was found to be external Ca(2+)-independent. Whereas oxygen and glucose deprivation increased [(3)H]glycine release, its uptake was reduced suggesting that energy deficiency shifts glycine transporter type-1 operation from normal to reverse mode. The increased release of [(3)H]glycine evoked by oxygen and glucose deprivation was suspended by addition of the non-competitive glycine transporter type-1 inhibitor NFPS and the competitive inhibitor ACPPB further suggesting the involvement of this transporter in the mediation of [(3)H]glycine release. Oxygen and glucose deprivation also evoked [(3)H]glutamate release from rat retina and the concomitantly occurring release of the NMDA receptor agonist glutamate and the coagonist glycine makes NMDA receptor pathological overstimulation possible in hypoxic conditions. [(3)H]Glutamate release was suspended by addition of the excitatory amino acid transporter inhibitor TBOA. Sarcosine, a substrate inhibitor of glycine transporter type-1, also increased [(3)H]glycine release probably by heteroexchange shifting transporter operation into reverse mode. This effect of sarcosine was also external Ca(2+)-independent and could be suspended by NFPS. Energy deficiency in retina induced by ouabain, an inhibitor of the Na(+)-K(+)-dependent ATPase, and by rotenone, a mitochondrial complex I inhibitor added with the glycolytic inhibitor 2-deoxy-D-glucose, led to increase of retinal [(3)H]glycine efflux. These effects of ouabain and rotenone/2-deoxy-D-glucose could also be blocked by NFPS pointed to the preferential reverse mode operation of glycine transporter type-1 as a consequence of

  20. Channel-lining residues of the AMPA receptor M2 segment: structural environment of the Q/R site and identification of the selectivity filter.

    Science.gov (United States)

    Kuner, T; Beck, C; Sakmann, B; Seeburg, P H

    2001-06-15

    In AMPA receptor channels, a single amino acid residue (Q/R site) of the M2 segment controls permeation of calcium ions, single-channel conductance, blockade by intracellular polyamines, and permeation of anions. The structural environment of the Q/R site and its positioning with regard to a narrow constriction were probed with the accessibility of substituted cysteines to positively and negatively charged methanethiosulfonate reagents, applied from the extracellular and cytoplasmic sides of the channel. The accessibility patterns confirm that the M2 segment forms a pore loop with the Q/R site positioned at the tip of the loop (position 0) facing the extracellular vestibule. Cytoplasmically accessible residues on the N- and C-terminal sides of position 0 form the ascending alpha-helical (-8 to -1) and descending random coil (+1 to +6) components of the loop, respectively. Substitution of a glycine residue at position +2 with alanine strongly decreased the permeability of organic cations, indicating that position +2 contributes to the narrow constriction. The anionic 2-sulfonatoethyl-methanethiosufonate reacted with a cysteine at position 0 only from the external side and with cysteines at positions +1 to +4 only from the cytoplasmic side. These results suggest that charge selectivity occurs external to the constriction (+2) and possibly involves interactions of ions with the negative electrostatic potential created by the dipole of the alpha-helix formed by the ascending limb of the loop.

  1. Catalysis of Dialanine Formation by Glycine in the Salt-Induced Peptide Formation Reaction.

    Science.gov (United States)

    Suwannachot, Yuttana; Rode, Bernd M.

    1998-02-01

    Mutual catalysis of amino acids in the salt-induced peptide formation (SIPF) reaction is demonstrated for the case of glycine/alanine. The presence of glycine enhances dialanine formation by a factor up to 50 and enables dialanine formation at much lower alanine concentrations. The actual amounts of glycine play an important role for this catalytic effect, the optimal glycine concentration is 1/8 of the alanine concentration. The mechanism appears to be based on the formation of the intermediate Gly-Ala-Ala tripeptide, connected to one coordination site of copper(II) ion, and subsequent hydrolysis to dialanine and glycine.

  2. INTRATHECAL GLYCINE SIGNIFICANTLY DECREASES THE MINIMUM ALVEOLAR CONCENTRATION OF ISOFLURANE IN RATS

    Institute of Scientific and Technical Information of China (English)

    Jing Zhao; Yi Zhang; Edmond Ⅰ. Eger Ⅱ; James Sonner

    2008-01-01

    Objective To evaluate the effect of intrathecal administration of glycine on the minimum alveolar concentration (MAC) of isoflurane in rats.Methods Intrathecal catheters were implanted in 40 adult male rats anesthetized with isoflurane. Baseline MAC of isoflurane was measured during the infusion of artificial cerebrospinal fluid (CSF) alone. Subsequently, 10, 40, 80,160, and 300 mmol/L of glycine dissolved in artificial CSF were infused for two hours at the same rate as under control conditions, and MAC for isoflurane was re-determined.Results Intrathecal administration of glycine produced a significant, dose-dependent decrease in MAC for isoflu-rane (upto -65.2% ±16.2%).Conclusisons Intrathecal administration of glycine decreases anesthetic requirement. This result supports the idea that glycine receptors may be important to the immobilizing effect of anesthetics that enhance glycine receptor function such as isoflurane.

  3. GHB receptor targets in the CNS: focus on high-affinity binding sites.

    Science.gov (United States)

    Bay, Tina; Eghorn, Laura F; Klein, Anders B; Wellendorph, Petrine

    2014-01-15

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB effects. In this research update, a description of the various reported receptors for GHB is provided, including GABAB receptors, certain GABAA receptor subtypes and other reported GHB receptors. The main focus will thus be on the high-affinity binding targets for GHB and their potential functional roles in the mammalian brain.

  4. DNA intersegment transfer, how steroid receptors search for a target site.

    Science.gov (United States)

    Lieberman, B A; Nordeen, S K

    1997-01-10

    The mammalian nucleus contains 6 billion base pairs of DNA, encoding about 100,000 genes, yet in a given cell steroid hormones induce only a handful of genes. The logistical difficulties faced by steroid receptors or other transcription factors of sorting through this much genetic information is further increased by the density of nuclear DNA (approximately 10-50 mg/ml). Standard models propose that steroid receptors find target elements by repeated cycles of dissociation and reassociation until a high affinity site is found (cycling model) and/or by conducting a one-dimensional search along the DNA (sliding model). A third model proposes that steroid receptors search for target sites in the genome by DNA intersegment transfer. In this model, receptor dimers bind nonspecific DNA sequences and search for a target site by binding a second strand of DNA before dissociating from the first, in effect moving through the genome like Tarzan swinging from vine to vine. This model has the advantage that a high concentration of DNA favors, rather than hinders, the search. The intersegment transfer model predicts, in contrast to the cycling and sliding models, that the dissociation rate of receptor from DNA is highly dependent on DNA concentration. We have employed the purified DNA binding domain fragment from the rat glucocorticoid receptor to perform equilibrium and kinetic studies of the DNA dependence of receptor-DNA dissociation. We find receptor dissociation from DNA to be highly dependent on the concentration of DNA in solution, in agreement with the intersegment transfer model. We also find that this interaction is primarily electrostatic, because DNA-like polyanion chains (e.g. heparin and polyglutamate) can mediate the transfer. These studies provide evidence that direct DNA transfer aids the target site search conducted by steroid receptors in their role as inducible transcription factors.

  5. Biochemical study of multiple drug recognition sites on central benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Trifiletti, R.R.

    1986-01-01

    The benzodiazepine receptor complex of mammalian brain possesses recognition sites which mediate (at least in part) the pharmacologic actions of the 1,4-benzodiazepines and barbiturates. Evidence is provided suggesting the existence of least seven distinct drug recognition sites on this complex. Interactions between the various recognition sites have been explored using radioligand binding techniques. This information is utilized to provide a comprehensive scheme for characterizing receptor-active drugs on an anxiolytic-anticonvulsant/proconvulsant continuum using radioligand binding techniques, as well as a comprehensive program for identifying potential endogenous receptor-active substances. Further evidence is provided here supporting the notion of benzodiazepine recognition site heterogeneity. Classical 1,4-benzodiazepines do not appear to differentiate two populations of benzodiazepine receptors in an equilibrium sense, but appear to do so in a kinetic sense. An apparent physical separation of the two receptor subtypes can be achieved by differential solubilization. The benzodiazepine binding subunit can be identified by photoaffinity labeling with the benzodiazepine agonist (/sup 3/H)flunitrazepan. Conditions for reproducible partial proteolytic mapping of (/sup 3/H)flunitrazepam photoaffinity labeled receptors are established. From these maps, it is concluded that there are probably no major differences in the primary sequence of the benzodiazepine binding subunit in various regions of the rat central nervous system.

  6. Positive modulation of glutamatergic receptors potentiates the suppressive effects of antipsychotics on conditioned avoidance responding in rats

    DEFF Research Database (Denmark)

    Olsen, Christina Kurre; Kreilgaard, Mads; Didriksen, Michael

    2006-01-01

    Non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist administration induces a syndrome indistinguishable from schizophrenia including positive and negative symptoms and cognitive deficits. Concordantly, augmentation of the NMDA receptor function by glycine-site agonists such as D-serin...

  7. Glycine Transporter Inhibitor Attenuates the Psychotomimetic Effects of Ketamine in Healthy Males: Preliminary Evidence

    Science.gov (United States)

    D'Souza, Deepak Cyril; Singh, Nagendra; Elander, Jacqueline; Carbuto, Michelle; Pittman, Brian; de Haes, Joanna Udo; Sjogren, Magnus; Peeters, Pierre; Ranganathan, Mohini; Schipper, Jacques

    2012-01-01

    Enhancing glutamate function by stimulating the glycine site of the NMDA receptor with glycine, -serine, or with drugs that inhibit glycine reuptake may have therapeutic potential in schizophrenia. The effects of a single oral dose of cis-N-methyl-N-(6-methoxy-1-phenyl-1,2,3,4-tetrahydronaphthalen-2-ylmethyl) amino-methylcarboxylic acid hydrochloride (Org 25935), a glycine transporter-1 (GlyT1) inhibitor, and placebo pretreatment on ketamine-induced schizophrenia-like psychotic symptoms, perceptual alterations, and subjective effects were evaluated in 12 healthy male subjects in a randomized, counter-balanced, within-subjects, crossover design. At 2.5 h after administration of the Org 25935 or placebo, subjects received a ketamine bolus and constant infusion lasting 100 min. Psychotic symptoms, perceptual, and a number of subjective effects were assessed repeatedly before, several times during, and after completion of ketamine administration. A cognitive battery was administered once per test day. Ketamine produced behavioral, subjective, and cognitive effects consistent with its known effects. Org 25935 reduced the ketamine-induced increases in measures of psychosis (Positive and Negative Syndrome Scale (PANSS)) and perceptual alterations (Clinician Administered Dissociative Symptoms Scale (CADSS)). The magnitude of the effect of Org 25935 on ketamine-induced increases in Total PANSS and CADSS Clinician-rated scores was 0.71 and 0.98 (SD units), respectively. None of the behavioral effects of ketamine were increased by Org 25935 pretreatment. Org 25935 worsened some aspects of learning and delayed recall, and trended to improve choice reaction time. This study demonstrates for the first time in humans that a GlyT1 inhibitor reduces the effects induced by NMDA receptor antagonism. These findings provide preliminary support for further study of the antipsychotic potential of GlyT1 inhibitors. PMID:22113087

  8. Muscarinic cholinergic receptor binding sites differentiated by their affinity for pirenzepine do not interconvert

    Energy Technology Data Exchange (ETDEWEB)

    Gil, D.W.; Wolfe, B.B.

    1986-05-01

    Although it has been suggested by many investigators that subtypes of muscarinic cholinergic receptors exist, physical studies of solubilized receptors have indicated that only a single molecular species may exist. To test the hypothesis that the putative muscarinic receptor subtypes in rat forebrain are interconvertible states of the same receptor, the selective antagonist pirenzepine (PZ) was used to protect muscarinic receptors from blockade by the irreversible muscarinic receptor antagonist propylbenzilylcholine mustard (PBCM). If interconversion of high (M1) and low (M2) affinity binding sites for PZ occurs, incubation of cerebral cortical membranes with PBCM in the presence of PZ should not alter the proportions of M1 and M2 binding sites that are unalkylated (i.e., protected). If, on the other hand, the binding sites are not interconvertible, PZ should be able to selectively protect M1 sites and alter the proportions of unalkylated M1 and M2 binding sites. In the absence of PZ, treatment of cerebral cortical membranes with 20 nM PBCM at 4 degrees C for 50 min resulted in a 69% reduction in the density of M1 binding sites and a 55% reduction in the density of M2 binding sites with no change in the equilibrium dissociation constants of the radioligands (/sup 3/H)quinuclidinyl benzilate or (/sup 3/H)PZ. The reasons for this somewhat selective effect of PBCM are not apparent. In radioligand binding experiments using cerebral cortical membranes, PZ inhibited the binding of (/sup 3/H)quinuclidinyl benzilate in a biphasic manner.

  9. Conserved residues in RF-NH₂ receptor models identify predicted contact sites in ligand-receptor binding.

    Science.gov (United States)

    Bass, C; Katanski, C; Maynard, B; Zurro, I; Mariane, E; Matta, M; Loi, M; Melis, V; Capponi, V; Muroni, P; Setzu, M; Nichols, R

    2014-03-01

    Peptides in the RF-NH2 family are grouped together based on an amidated dipeptide C terminus and signal through G-protein coupled receptors (GPCRs) to influence diverse physiological functions. By determining the mechanisms underlying RF-NH2 signaling targets can be identified to modulate physiological activity; yet, how RF-NH2 peptides interact with GPCRs is relatively unexplored. We predicted conserved residues played a role in Drosophila melanogaster RF-NH2 ligand-receptor interactions. In this study D. melanogaster rhodopsin-like family A peptide GPCRs alignments identified eight conserved residues unique to RF-NH2 receptors. Three of these residues were in extra-cellular loops of modeled RF-NH2 receptors and four in transmembrane helices oriented into a ligand binding pocket to allow contact with a peptide. The eighth residue was unavailable for interaction; yet its conservation suggested it played another role. A novel hydrophobic region representative of RF-NH2 receptors was also discovered. The presence of rhodopsin-like family A GPCR structural motifs including a toggle switch indicated RF-NH2s signal classically; however, some features of the DMS receptors were distinct from other RF-NH2 GPCRs. Additionally, differences in RF-NH2 receptor structures which bind the same peptide explained ligand specificity. Our novel results predicted conserved residues as RF-NH2 ligand-receptor contact sites and identified unique and classic structural features. These discoveries will aid antagonist design to modulate RF-NH2 signaling. Copyright © 2013. Published by Elsevier Inc.

  10. Principles of agonist recognition in Cys-loop receptors

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Pless, Stephan Alexander

    2014-01-01

    diverse as glycine and serotonin has been subject to intense research over the last three decades. This review outlines the functional diversity and current structural understanding of agonist-binding sites, including those of invertebrate Cys-loop receptors. Together, this provides a framework...

  11. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy.

    Science.gov (United States)

    Ruff, Karen M; Strobel, Scott A

    2014-11-01

    The glycine riboswitch predominantly exists as a tandem structure, with two adjacent, homologous ligand-binding domains (aptamers), followed by a single expression platform. The recent identification of a leader helix, the inclusion of which eliminates cooperativity between the aptamers, has reopened the debate over the purpose of the tandem structure of the glycine riboswitch. An equilibrium dialysis-based assay was combined with binding-site mutations to monitor glycine binding in each ligand-binding site independently to understand the role of each aptamer in glycine binding and riboswitch tertiary interactions. A series of mutations disrupting the dimer interface was used to probe how dimerization impacts ligand binding by the tandem glycine riboswitch. While the wild-type tandem riboswitch binds two glycine equivalents, one for each aptamer, both individual aptamers are capable of binding glycine when the other aptamer is unoccupied. Intriguingly, glycine binding by aptamer-1 is more sensitive to dimerization than glycine binding by aptamer-2 in the context of the tandem riboswitch. However, monomeric aptamer-2 shows dramatically weakened glycine-binding affinity. In addition, dimerization of the two aptamers in trans is dependent on glycine binding in at least one aptamer. We propose a revised model for tandem riboswitch function that is consistent with these results, wherein ligand binding in aptamer-1 is linked to aptamer dimerization and stabilizes the P1 stem of aptamer-2, which controls the expression platform.

  12. Phosphorylation site dynamics of early T-cell receptor signaling

    DEFF Research Database (Denmark)

    Chylek, Lily A; Akimov, Vyacheslav; Dengjel, Jörn

    2014-01-01

    a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found...... that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites...

  13. Characterization of Ethylene Receptors and Their Interactions with GmTPR-A Novel Tetratricopeptide Repeat Protein (TPR) in Soybean (Glycine max L.)

    Institute of Scientific and Technical Information of China (English)

    NIU Yan-yan; CHEN Ming; XU Zhao-shi; LI Lian-cheng; CHEN Xue-ping; MA You-zhi

    2013-01-01

    Ethylene receptors play important roles not only in regulation of growth and development but also in response to environmental stimuli of plants. However, there are few reports on ethylene receptors in soybean. In this article, putative ethylene receptors of soybean were searched from soybean genomic database (http://www.phytozome.net/search.php) and analyzed. The ethylene receptor gene family in soybean comprising eight members, designated as GmERS1-1, GmERS1-2, GmETR1-1, GmETR1-2, GmETR2-1, GmETR2-2, GmEIN4-1, and GmEIN4-2 corresponding with their homologous genes in Arabidopsis, were isolated and analyzed. Phylogenetic analysis indicated that the eight soybean ethylene receptors (SERs) were in two subfamilies and further divided into four groups, viz., groups I (GmERS1-1 and GmERS1-2), II (GmETR1-1 and GmETR1-2), VI (GmETR2-1 and GmETR2-2), and VII (GmEIN4-1 and GmEIN4-2). Protein structure of the members in groups I and II from subfamily I were more conserved than the members in other two groups from subfamily II. Expression patterns of the SERs were compared with the homologous genes in Arabidopsis. The results demonstrated that expression patterns of the SERs differed from Arabidopsis members in the same group, suggesting that SERs are involved in different signal pathways compared to ethylene receptors in Arabidopsis. Promoter analysis showed that the sequences of the members in each group were different from each other, and some specific binding elements of transcription factors detected in promoter sequences might explain the differences between the members in the same group. A novel soybean TPR protein (tetratricopeptide repeat protein), GmTPR, was identified to interact with GmETR1-1, apparently an important ethylene receptor in ethylene signaling pathway in soybean. This suggested that GmTPR might be a novel downstream component of the ethylene signaling pathway.

  14. Glycine activates myenteric neurones in adult guinea-pigs.

    Science.gov (United States)

    Neunlist, M; Michel, K; Reiche, D; Dobreva, G; Huber, K; Schemann, M

    2001-11-01

    1. We studied the effects of glycine on myenteric neurones and muscle activity in the colon and stomach of adult guinea-pigs. 2. Intracellular recordings revealed that myenteric neurones responded to local microejection of glycine (1 mM) with a fast, transient membrane potential depolarisation (57 % of 191 colonic neurones and 26 % of 50 gastric neurones). Most glycine-sensitive neurones had ascending projections and were choline acetyltransferase immunoreactive. Glycine preferentially activated neurones with a late afterhyperpolarisation (AH-neurones) and tonic spiking neurones with fast synaptic inputs (tonic S-neurones) but less frequently phasic S-neurones and inexcitable (non-spiking) neurones. The depolarisation had a reversal potential at -19 +/- 13 mV, which was increased by 18 +/- 10 % upon lowering extracellular chloride concentration and decreased by 38 +/- 14 % in furosemide (frusemide, 2 mM). 3. Strychnine (300 nM) reversibly abolished the glycine-induced depolarisation and the Cl(-) channel blocker picrotoxin (100 microM) reduced the amplitude of the depolarisation by 55 +/- 5 %. The glycine effect was a postsynaptic response because it was not changed after nerve blockade with tetrodotoxin (1 microM) or blockade of synaptic transmission in reduced extracellular [Ca(2+)]. The effect was specific since the response was not changed by the nicotinic antagonists hexamethonium (200 microM) and mecamylamine (100 microM), the GABA(A) receptor antagonist bicuculline (10 microM), the NMDA antagonist MK-801 (20 microM) or the 5-HT(3) antagonist ICS 205930 (1 microM). 4. Glycine (1 mM) induced a tetrodotoxin- and strychnine-sensitive contractile response in the colon; the contractile response in the stomach was tetrodotoxin insensitive. 5. Glycine activated myenteric neurones in the adult enteric nervous system through strychnine-sensitive mechanisms. The glycine-evoked depolarisation was caused by Cl(-) efflux and the maintenance of relatively high

  15. Autoradiography of dopamine receptors and dopamine uptake sites in the spontaneously hypertensive rat

    Energy Technology Data Exchange (ETDEWEB)

    Kujirai, K.; Przedborski, S.; Kostic, V.; Jackson-Lewis, V.; Fahn, S.; Cadet, J.L. (Columbia Univ., New York, NY (USA))

    1990-11-01

    We examined the status of dopamine (DA) D1 and D2 receptors by using (3H)SCH 23390 and (3H)spiperone binding, respectively, and DA uptake sites by using (3H)mazindol binding in spontaneously hypertensive rats (SHR) and Sprague-Dawley (SD) rats. SHR showed significantly higher (3H)SCH 23390 and (3H)spiperone binding in the caudate-putamen (CPu), the nucleus accumbens (NAc) and the olfactory tubercle (OT) in comparison to the SD rats. There were no significant differences in (3H)mazindol-labeled DA uptake sites between the two strains. Unilateral 6-hydroxydopamine (6-OHDA) injection into the striatum resulted in more than 90% depletion of DA uptake sites in the CPu in both strains. 6-OHDA-induced DA depletion was associated with significant increases in striatal (3H)spiperone binding which were of similar magnitude in the SD rats (+64.1%) and SHR (+51.3%). There were only small decreases (-5.4%) in D1 receptor binding in the dorsolateral aspect of the CPu in the SHR, whereas there were no changes in striatal D1 receptors in the SD rats. These results indicate that, although the SHR have higher concentrations of both D1 and D2 receptors in the basal ganglia, these receptors are regulated in a fashion similar to DA receptors in SD rats after 6-OHDA-induced striatal DA depletion.

  16. Cycloxaprid insecticide: nicotinic acetylcholine receptor binding site and metabolism.

    Science.gov (United States)

    Shao, Xusheng; Swenson, Tami L; Casida, John E

    2013-08-21

    Cycloxaprid (CYC) is a novel neonicotinoid prepared from the (nitromethylene)imidazole (NMI) analogue of imidacloprid. In this study we consider whether CYC is active per se or only as a proinsecticide for NMI. The IC50 values (nM) for displacing [(3)H]NMI binding are 43-49 for CYC and 2.3-3.2 for NMI in house fly and honeybee head membranes and 302 and 7.2, respectively, in mouse brain membranes, potency relationships interpreted as partial conversion of some CYC to NMI under the assay conditions. The 6-8-fold difference in toxicity of injected CYC and NMI to house flies is consistent with their relative potencies as in vivo nicotinic acetylcholine receptor (nAChR) inhibitors in brain measured with [(3)H]NMI binding assays. CYC metabolism in mice largely involves cytochrome P450 pathways without NMI as a major intermediate. Metabolites of CYC tentatively assigned are five monohydroxy derivatives and one each of dihydroxy, nitroso, and amino modifications. CYC appears be a proinsecticide, serving as a slow-release reservoir for NMI with selective activity for insect versus mammalian nAChRs.

  17. Cholesterol modulates the dimer interface of the β₂-adrenergic receptor via cholesterol occupancy sites.

    Science.gov (United States)

    Prasanna, Xavier; Chattopadhyay, Amitabha; Sengupta, Durba

    2014-03-18

    The β2-adrenergic receptor is an important member of the G-protein-coupled receptor (GPCR) superfamily, whose stability and function are modulated by membrane cholesterol. The recent high-resolution crystal structure of the β2-adrenergic receptor revealed the presence of possible cholesterol-binding sites in the receptor. However, the functional relevance of cholesterol binding to the receptor remains unexplored. We used MARTINI coarse-grained molecular-dynamics simulations to explore dimerization of the β2-adrenergic receptor in lipid bilayers containing cholesterol. A novel (to our knowledge) aspect of our results is that receptor dimerization is modulated by membrane cholesterol. We show that cholesterol binds to transmembrane helix IV, and cholesterol occupancy at this site restricts its involvement at the dimer interface. With increasing cholesterol concentration, an increased presence of transmembrane helices I and II, but a reduced presence of transmembrane helix IV, is observed at the dimer interface. To our knowledge, this study is one of the first to explore the correlation between cholesterol occupancy and GPCR organization. Our results indicate that dimer plasticity is relevant not just as an organizational principle but also as a subtle regulatory principle for GPCR function. We believe these results constitute an important step toward designing better drugs for GPCR dimer targets.

  18. Site-Specific N-Glycosylation of Endothelial Cell Receptor Tyrosine Kinase VEGFR-2.

    Science.gov (United States)

    Chandler, Kevin Brown; Leon, Deborah R; Meyer, Rosana D; Rahimi, Nader; Costello, Catherine E

    2017-02-03

    Vascular endothelial growth factor receptor-2 (VEGFR-2) is an important receptor tyrosine kinase (RTK) that plays critical roles in both physiologic and pathologic angiogenesis. The extracellular domain of VEGFR-2 is composed of seven immunoglobulin-like domains, each with multiple potential N-glycosylation sites (sequons). N-glycosylation plays a central role in RTK ligand binding, trafficking, and stability. However, despite its importance, the functional role of N-glycosylation of VEGFR-2 remains poorly understood. The objectives of the present study were to characterize N-glycosylation sites in VEGFR-2 via enzymatic release of the glycans and concomitant incorporation of (18)O into formerly N-glycosylated sites followed by tandem mass spectrometry (MS/MS) analysis to determine N-glycosylation site occupancy and the site-specific N-glycan heterogeneity of VEGFR-2 glycopeptides. The data demonstrated that all seven VEGFR-2 immunoglobulin-like domains have at least one occupied N-glycosylation site. MS/MS analyses of glycopeptides and deamidated, deglycosylated (PNGase F-treated) peptides from ectopically expressed VEGFR-2 in porcine aortic endothelial (PAE) cells identified N-glycans at the majority of the 17 potential N-glycosylation sites on VEGFR-2 in a site-specific manner. The data presented here provide direct evidence for site-specific, heterogeneous N-glycosylation and N-glycosylation site occupancy on VEGFR-2. The study has important implications for the therapeutic targeting of VEGFR-2, ligand binding, trafficking, and signaling.

  19. Allosteric and orthosteric sites in CC chemokine receptor (CCR5), a chimeric receptor approach

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Steen, Anne; Jensen, Pia C;

    2011-01-01

    molecules often act more deeply in an allosteric mode. However, opposed to the well described molecular interaction of allosteric modulators in class C 7-transmembrane helix (7TM) receptors, the interaction in class A, to which the chemokine receptors belong, is more sparsely described. Using the CCR5...... chemokine receptor as a model system, we studied the molecular interaction and conformational interchange required for proper action of various orthosteric chemokines and allosteric small molecules, including the well known CCR5 antagonists TAK-779, SCH-C, and aplaviroc, and four novel CCR5 ago......-allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5...

  20. Study of V2 vasopressin receptor hormone binding site using in silico methods.

    Science.gov (United States)

    Sebti, Yeganeh; Sardari, Soroush; Sadeghi, Hamid Mir Mohammad; Ghahremani, Mohammad Hossein; Innamorati, Giulio

    2015-01-01

    The antidiuretic effect of arginine vasopressin (AVP) is mediated by the vasopressin V2 receptor. The docking study of AVP as a ligand to V2 receptor helps in identifying important amino acid residues that might be involved in AVP binding for predicting the lowest free energy state of the protein complex. Whereas previous researchers were not able to detect the exact site of the ligand-receptor binding, we designed the current study to identify the vasopressin V2 receptor hormone binding site using bioinformatic methods. The 3D structure of nonapeptide hormone vasopressin was extracted from Protein Data Bank. Since no suitable template resembling V2 receptor was found, an ab initio approach was chosen to model the protein receptor. Using protein docking methods such as Hex protein-protein docking, the model of V2 receptor was docked to the peptide ligand AVP to identify possible binding sites. The residues that involved in binding site are W293, W296, D297, A300, and P301. The lowest free energy state of the protein complex was predicted after mutation in the above residues. The amount of gained energies permits us to compare the mutant forms with native forms and help to asses critical changes such as positive and negative mutations followed by ranking the best mutations. Based on the mutation/docking predictions, we found some mutants such as W293D and A300E possess positively inducing effect in ligand binding and some of them such as A300R present negatively inducing effect in ligand binding.

  1. Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem

    DEFF Research Database (Denmark)

    Eftekhari, Sajedeh; Roberts, Rhonda; Chen, Tsing-Bau

    2016-01-01

    that several regions in the brainstem may be involved in CGRP signaling. Interestingly, we found receptor expression and antagonist binding in some areas that are not protected by the blood-brain barrier, which suggests that drugs inhibiting CGRP signaling may not be able to penetrate the central nervous...

  2. Prediction of the Human EP1 Receptor Binding Site by Homology Modeling and Molecular Dynamics Simulation.

    Science.gov (United States)

    Zare, Behnoush; Madadkar-Sobhani, Armin; Dastmalchi, Siavoush; Mahmoudian, Masoud

    2011-01-01

    The prostanoid receptor EP1 is a G-protein-coupled receptor (GPCR) known to be involved in a variety of pathological disorders such as pain, fever and inflammation. These receptors are important drug targets, but design of subtype specific agonists and antagonists has been partially hampered by the absence of three-dimensional structures for these receptors. To understand the molecular interactions of the PGE2, an endogen ligand, with the EP1 receptor, a homology model of the human EP1 receptor (hEP1R) with all connecting loops was constructed from the 2.6 Å resolution crystal structure (PDB code: 1L9H) of bovine rhodopsin. The initial model generated by MODELLER was subjected to molecular dynamics simulation to assess quality of the model. Also, a step by step ligand-supported model refinement was performed, including initial docking of PGE2 and iloprost in the putative binding site, followed by several rounds of energy minimizations and molecular dynamics simulations. Docking studies were performed for PGE2 and some other related compounds in the active site of the final hEP1 receptor model. The docking enabled us to identify key molecular interactions supported by the mutagenesis data. Also, the correlation of r(2)=0.81 was observed between the Ki values and the docking scores of 15 prostanoid compounds. The results obtained in this study may provide new insights toward understanding the active site conformation of the hEP1 receptor and can be used for the structure-based design of novel specific ligands.

  3. A Novel Glycinate-based Body Wash

    Science.gov (United States)

    Regan, Jamie; Ananthapadmanabhan, K.P.

    2013-01-01

    Objective: To assess the properties of a novel body wash containing the mild surfactant glycinate. Design: Biochemical and clinical assays. Setting: Research laboratories and clinical sites in the United States and Canada. Participants: Women 18 to 65 years of age (cleansing efficacy); male and female subjects 26 to 63 years of age with mild or moderate dryness and erythema (leg-controlled application test); subjects 5 to 65 years of age with mild-to-moderate eczema (eczema compatibility); and women 18 to 64 years of age (home use). Measurements: Assessments across studies included colorimetric dye exclusion to assess skin damage potential (corneosurfametry), efficacy of cosmetic product removal from skin, change from baseline in visual dryness, change from baseline in Eczema Area and Severity Index, and self-perceived eczema attributes and self-reported product preference. Results: The glycinate-based cleanser demonstrated mildness to skin components when evaluated in a corneosurfametry assay. Short-term use under exaggerated wash conditions in subjects with dryness scores <3 and erythema scores <2 (both on a 0-6 scale) indicated an initial reduction in visual dryness. In subjects with eczema, normal use resulted in significant improvements (p<0.05) at Week 4 compared with baseline in skin dryness (change from baseline = −0.73), rash (−0.56), itch (−0.927), tightness (−0.585), and all eczema (−0.756). The glycinate-based body wash removed 56 percent of a long-lasting cosmetic foundation from skin compared with less than 30 percent removed by two competitive products tested. The glycinate-based body wash was preferred over a competitive mild cleansing product overall. Conclusion: The patented glycinate-containing body wash demonstrated better product mildness and patient-preferred attributes and clinical benefits. PMID:23882306

  4. Distinct ETA receptor binding mode of macitentan as determined by site directed mutagenesis.

    Directory of Open Access Journals (Sweden)

    John Gatfield

    Full Text Available The competitive endothelin receptor antagonists (ERA bosentan and ambrisentan, which have long been approved for the treatment of pulmonary arterial hypertension, are characterized by very short (1 min occupancy half-lives at the ET(A receptor. The novel ERA macitentan, displays a 20-fold increased receptor occupancy half-life, causing insurmountable antagonism of ET-1-induced signaling in pulmonary arterial smooth muscle cells. We show here that the slow ET(A receptor dissociation rate of macitentan was shared with a set of structural analogs, whereas compounds structurally related to bosentan displayed fast dissociation kinetics. NMR analysis showed that macitentan adopts a compact structure in aqueous solution and molecular modeling suggests that this conformation tightly fits into a well-defined ET(A receptor binding pocket. In contrast the structurally different and negatively charged bosentan-type molecules only partially filled this pocket and expanded into an extended endothelin binding site. To further investigate these different ET(A receptor-antagonist interaction modes, we performed functional studies using ET(A receptor variants harboring amino acid point mutations in the presumed ERA interaction site. Three ET(A receptor residues significantly and differentially affected ERA activity: Mutation R326Q did not affect the antagonist activity of macitentan, however the potencies of bosentan and ambrisentan were significantly reduced; mutation L322A rendered macitentan less potent, whereas bosentan and ambrisentan were unaffected; mutation I355A significantly reduced bosentan potency, but not ambrisentan and macitentan potencies. This suggests that--in contrast to bosentan and ambrisentan--macitentan-ET(A receptor binding is not dependent on strong charge-charge interactions, but depends predominantly on hydrophobic interactions. This different binding mode could be the reason for macitentan's sustained target occupancy and

  5. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor

    Science.gov (United States)

    Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G

    2015-01-01

    Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584

  6. Estrogen-like osteoprotective effects of glycine in in vitro and in vivo models of menopause.

    Science.gov (United States)

    Kim, Min-Ho; Kim, Hyung-Min; Jeong, Hyun-Ja

    2016-03-01

    Recently, the placenta mesotherapy has been widely used to treat menopause. Placenta contains amino acids, peptides, minerals, and estrogen. Here, we investigated the estrogen-like osteoprotective effects of glycine (a main ingredient of placenta) in in vitro and in vivo models of menopause. We assessed the effect of glycine on MG-63 osteoblast cell line, MCF-7 estrogen-dependent cell line, and ovariectomized (OVX) mice. Glycine significantly increased the MG-63 cell proliferation in a dose-dependent manner. Activity of alkaline phosphatase (ALP) and phosphorylation of extracellular-signal-regulated kinase were increased by glycine in MG-63 cells. Glycine also increased the BrdU-incorporation and Ki-67 mRNA expression in MCF-7 cells. Glycine induced the up-regulation of estrogen receptor-β mRNA expression and estrogen-response element-luciferase activity in MG-63 and MCF-7 cells. In OVX mice, glycine was administered orally at a daily dose of 10 mg/kg per day for 8 weeks. Glycine resulted in the greatest decrease in weight gain caused by ovariectomy. Meanwhile, vaginal weight reduced by ovariectomy was increased by glycine. Glycine significantly increased the ALP activity in OVX mice. MicroCT-analysis showed that glycine significantly enhanced bone mineral density, trabecular number, and connectivity density in OVX mice. Moreover, glycine significantly increased the serum 17β-estradiol levels reduced by ovariectomy. Glycine has an estrogen-like osteoprotective effect in menopause models. Therefore, we suggest that glycine may be useful for the treatment of menopause.

  7. Molecular Interactions Between the Active Sites of RGD (Arg-Gly-Asp with its Receptor (Integrine

    Directory of Open Access Journals (Sweden)

    E. Jauregui

    2000-03-01

    Full Text Available A study of the molecular interactions between the active sites of RGD (Arg-Gly-Asp with it Receptor using simultaions is reported. Our calculations indicate that the guanidine-carboxylate complex is energetically favourd with respect to the guanidine-methyl tetrazole complex.

  8. Azaflavones compared to flavones as ligands to the benzodiazepine binding site of brain GABAA receptors

    DEFF Research Database (Denmark)

    Nilsson, Jakob; Nielsen, Elsebet Østergaard; Liljefors, Tommy

    2008-01-01

    A series of azaflavone derivatives and analogues were prepared and evaluated for their affinity to the benzodiazepine binding site of the GABA(A) receptor, and compared to their flavone counterparts. Three of the compounds, the azaflavones 9 and 12 as well as the new flavone 13, were also assayed...

  9. Histological investigation of the effect of soybean (Glycine max extracts on the collagen layer and estrogen receptors in the skin of female rats

    Directory of Open Access Journals (Sweden)

    Belkiz Uyar

    2014-01-01

    Full Text Available OBJECTIVES: The purpose of this study was to analyze the effects of soybean extracts obtained using different extraction methods on the skin of female rats. METHOD: A total of 64 female Sprague-Dawley rats were divided into 8 equal groups. Various extracts were administered to the female rats by oral gavage for one month. The groups comprised carboxymethyl cellulose-free control, carboxymethyl cellulose-plus control, 100-mg/kg n-hexane extract, 200-mg/kg n-hexane extract, 100-mg/kg ethyl acetate extract, 200-mg/kg ethyl acetate extract, 100-mg/kg ethanol extract and 200-mg/kg ethanol extract groups. The thickness of the collagen layer and the number of estrogen receptor-positive cells were evaluated. RESULTS: All the extract-treated groups showed a statistically significant decrease in the number of estrogen receptor-positive cells compared with the control groups. Regarding the thickness of the collagen layer, only the 200-mg/kg ethyl acetate extract-treated group showed a significant increase compared with the control groups (p<0.05. CONCLUSIONS: Our data suggest that oral intake of three different total soybean extracts might have positive estrogenic effects on the skin and that only a high-dose ethyl acetate extract can increase the expression of collagen, which may prove to be beneficial for postmenopausal facial skin.

  10. Strychnine activates neuronal α7 nicotinic receptors after mutations in the leucine ring and transmitter binding site domains

    Science.gov (United States)

    Palma, Eleonora; Fucile, Sergio; Barabino, Benedetta; Miledi, Ricardo; Eusebi, Fabrizio

    1999-01-01

    Recent work has shown that strychnine, the potent and selective antagonist of glycine receptors, is also an antagonist of nicotinic acetylcholine (AcCho) receptors including neuronal homomeric α7 receptors, and that mutating Leu-247 of the α7 nicotinic AcCho receptor-channel domain (L247Tα7; mut1) converts some nicotinic antagonists into agonists. Therefore, a study was made of the effects of strychnine on Xenopus oocytes expressing the chick wild-type α7 or L247Tα7 receptors. In these oocytes, strychnine itself did not elicit appreciable membrane currents but reduced the currents elicited by AcCho in a reversible and dose-dependent manner. In sharp contrast, in oocytes expressing L247Tα7 receptors with additional mutations at Cys-189 and Cys-190, in the extracellular N-terminal domain (L247T/C189–190Sα7; mut2), micromolar concentrations of strychnine elicited inward currents that were reversibly inhibited by the nicotinic receptor blocker α-bungarotoxin. Single-channel recordings showed that strychnine gated mut2-channels with two conductance levels, 56 pS and 42 pS, and with kinetic properties similar to AcCho-activated channels. We conclude that strychnine is a modulator, as well as an activator, of some homomeric nicotinic α7 receptors. After injecting oocytes with mixtures of cDNAs encoding mut1 and mut2 subunits, the expressed hybrid receptors were activated by strychnine, similar to the mut2, and had a high affinity to AcCho like the mut1. A pentameric symmetrical model yields the striking conclusion that two identical α7 subunits may be sufficient to determine the functional properties of α7 receptors. PMID:10557336

  11. Branch-point stoichiometry can generate weak links in metabolism: the case of glycine biosynthesis

    Indian Academy of Sciences (India)

    Enrique Meléndez-Hevia; Patricia D E Paz-Lugo

    2008-12-01

    Although the metabolic network permits conversion between almost any pair of metabolites, this versatility fails at certain sites because of chemical constraints (kinetic, thermodynamic and stoichiometric) that seriously restrict particular conversions. We call these sites weak links in metabolism, as they can interfere harmfully with management of matter and energy if the network as a whole does not include adequate safeguards. A critical weak link is created in glycine biosynthesis by the stoichiometry of the reaction catalyzed by glycine hydroxymethyltransferase (EC 2.1.2.1), which converts serine into glycine plus one C1 unit: this produces an absolute dependence of the glycine production flux on the utilization of C1 units for other metabolic pathways that do not work coordinately with glycine use. It may not be possible, therefore, to ensure that glycine is always synthesized in sufficient quantities to meet optimal metabolic requirements.

  12. Identification of second arginine-glycine-aspartic acid motif of ovine vitronectin as the complement C9 binding site and its implication in bacterial infection.

    Science.gov (United States)

    T, Prasada Rao; T, Lakshmi Prasanth; R, Parvathy; S, Murugavel; Devi, Karuna; Joshi, Paritosh

    2017-02-02

    Vitronectin (Vn), a multifunctional protein of blood and extracellular matrix interacts with complement C9. This interaction may modulate innate immunity. Details of Vn-C9 interaction are limited. An assessment of Vn-C9 interaction was made employing goat homologous system. Vn binding to C9 was observed in three different assays. Using recombinant fragments, the C9 binding was mapped to the N-terminus of Vn. Site directed mutagenesis was performed to alter the second RGD sequence (RGD-2) of Vn. Change of R to G or D to A in RGD-2 caused significant decrease in Vn binding to C9 whereas change of R to G in the first RGD motif (RGD-1) had no effect on Vn binding to C9. These results imply that the RGD-2 of goat Vn is involved in C9 binding. In competitive binding assay, the presence of soluble RGD peptide inhibited Vn binding to C9 whereas heparin had no effect. Vn binding to C9 in terms of bacterial pathogenesis was also evaluated. Serum dependent inhibition of E. coli growth was significantly reverted when Vn or its N-fragment were included in the assay. The C-fragment, which did not support C9 binding, also partly nullified serum dependent inhibition of bacterial growth probably through other serum component(s).

  13. Characterization of a ligand binding site in the human transient receptor potential ankyrin 1 pore.

    Science.gov (United States)

    Klement, Göran; Eisele, Lina; Malinowsky, David; Nolting, Andreas; Svensson, Mats; Terp, Gitte; Weigelt, Dirk; Dabrowski, Michael

    2013-02-19

    The pharmacology and regulation of Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel activity is intricate due to the physiological function as an integrator of multiple chemical, mechanical, and temperature stimuli as well as differences in species pharmacology. In this study, we describe and compare the current inhibition efficacy of human TRPA1 on three different TRPA1 antagonists. We used a homology model of TRPA1 based on Kv1.2 to select pore vestibule residues available for interaction with ligands entering the vestibule. Site-directed mutation constructs were expressed in Xenopus oocytes and their functionality and pharmacology assessed to support and improve our homology model. Based on the functional pharmacology results we propose an antagonist-binding site in the vestibule of the TRPA1 ion channel. We use the results to describe the proposed intravestibular ligand-binding site in TRPA1 in detail. Based on the single site substitutions, we designed a human TRPA1 receptor by substituting several residues in the vestibule and adjacent regions from the rat receptor to address and explain observed species pharmacology differences. In parallel, the lack of effect on HC-030031 inhibition by the vestibule substitutions suggests that this molecule interacts with TRPA1 via a binding site not situated in the vestibule.

  14. Principles of agonist recognition in Cys-loop receptors

    Directory of Open Access Journals (Sweden)

    Timothy eLynagh

    2014-04-01

    Full Text Available Cys-loop receptors are ligand-gated ion channels that are activated by a structurally diverse array of neurotransmitters, including acetylcholine, serotonin, glycine and GABA. After the term chemoreceptor emerged over 100 years ago, there was some wait until affinity labeling, molecular cloning, functional studies and X-ray crystallography experiments identified the extracellular interface of adjacent subunits as the principal site of agonist binding. The question of how subtle differences at and around agonist-binding sites of different Cys-loop receptors can accommodate transmitters as chemically diverse as glycine and serotonin has been subject to intense research over the last three decades. This review outlines the functional diversity and current structural understanding of agonist-binding sites, including those of invertebrate Cys-loop receptors. Together, this provides a framework to understand the atomic determinants involved in how these valuable therapeutic targets recognize and bind their ligands.

  15. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site

    Energy Technology Data Exchange (ETDEWEB)

    Strauch, Eva-Maria; Bernard, Steffen M.; La, David; Bohn, Alan J.; Lee, Peter S.; Anderson, Caitlin E.; Nieusma, Travis; Holstein, Carly A.; Garcia, Natalie K.; Hooper, Kathryn A.; Ravichandran, Rashmi; Nelson, Jorgen W.; Sheffler, William; Bloom, Jesse D.; Lee, Kelly K.; Ward, Andrew B.; Yager, Paul; Fuller, Deborah H.; Wilson, Ian A.; Baker , David (UWASH); (Scripps); (FHCRC)

    2017-06-12

    Many viral surface glycoproteins and cell surface receptors are homo-oligomers1, 2, 3, 4, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites5, 6, 7, 8. In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.

  16. Structural characterization of S100A15 reveals a novel zinc coordination site among S100 proteins and altered surface chemistry with functional implications for receptor binding

    Directory of Open Access Journals (Sweden)

    Murray Jill I

    2012-07-01

    Full Text Available Abstract Background S100 proteins are a family of small, EF-hand containing calcium-binding signaling proteins that are implicated in many cancers. While the majority of human S100 proteins share 25-65% sequence similarity, S100A7 and its recently identified paralog, S100A15, display 93% sequence identity. Intriguingly, however, S100A7 and S100A15 serve distinct roles in inflammatory skin disease; S100A7 signals through the receptor for advanced glycation products (RAGE in a zinc-dependent manner, while S100A15 signals through a yet unidentified G-protein coupled receptor in a zinc-independent manner. Of the seven divergent residues that differentiate S100A7 and S100A15, four cluster in a zinc-binding region and the remaining three localize to a predicted receptor-binding surface. Results To investigate the structural and functional consequences of these divergent clusters, we report the X-ray crystal structures of S100A15 and S100A7D24G, a hybrid variant where the zinc ligand Asp24 of S100A7 has been substituted with the glycine of S100A15, to 1.7 Å and 1.6 Å resolution, respectively. Remarkably, despite replacement of the Asp ligand, zinc binding is retained at the S100A15 dimer interface with distorted tetrahedral geometry and a chloride ion serving as an exogenous fourth ligand. Zinc binding was confirmed using anomalous difference maps and solution binding studies that revealed similar affinities of zinc for S100A15 and S100A7. Additionally, the predicted receptor-binding surface on S100A7 is substantially more basic in S100A15 without incurring structural rearrangement. Conclusions Here we demonstrate that S100A15 retains the ability to coordinate zinc through incorporation of an exogenous ligand resulting in a unique zinc-binding site among S100 proteins. The altered surface chemistry between S100A7 and S100A15 that localizes to the predicted receptor binding site is likely responsible for the differential recognition of distinct

  17. Do glycine-extended hormone precursors have clinical significance?

    DEFF Research Database (Denmark)

    Rehfeld, Jens Frederik

    2014-01-01

    cell growth. Accompanying findings of gastrin gene expression in common cancers spurred the interest. The interest is now accompanied by skepticism, which is due to failure to demonstrate truly specific receptors for glycine-extended peptides and failure to demonstrate separate physiological...

  18. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.; Mantyh, P.W. (Wadsworth VA Medical Center, Los Angeles, CA (USA))

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific binding of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.

  19. Single chain human interleukin 5 and its asymmetric mutagenesis for mapping receptor binding sites.

    Science.gov (United States)

    Li, J; Cook, R; Dede, K; Chaiken, I

    1996-01-26

    Wild type human (h) interleukin 5 (wt IL5) is composed of two identical peptide chains linked by disulfide bonds. A gene encoding a single chain form of hIL5 dimer was constructed by linking the two hIL5 chain coding regions with Gly-Gly linker. Expression of this gene in COS cells yielded a single chain IL5 protein (sc IL5) having biological activity similar to that of wt IL5, as judged by stimulation of human cell proliferation. Single chain and wt IL5 also had similar binding affinity for soluble IL5 receptor alpha chain, the specificity subunit of the IL5 receptor, as measured kinetically with an optical biosensor. The design of functionally active sc IL5 molecule. Such mutagenesis was exemplified by changes at residues Glu-13, Arg-91, Glu-110, and Trp-111. The receptor binding and bioactivity data obtained are consistent with a model in which residues from both IL5 monomers interact with the receptor alpha chain, while the interaction likely is asymmetric due to the intrinsic asymmetry of folded receptor. The results demonstrate a general route to the further mapping of receptor and other binding sites on the surface of human IL5.

  20. Putative hAPN receptor binding sites in SARS_CoV spike protein

    Institute of Scientific and Technical Information of China (English)

    YUXiao-Jing; LUOCheng; LinJian-Cheng; HAOPei; HEYou-Yu; GUOZong-Ming; QINLei; SUJiong; LIUBo-Shu; HUANGYin; NANPeng; LIChuan-Song; XIONGBin; LUOXiao-Min; ZHAOGuo-Ping; PEIGang; CHENKai-Xian; SHENXu; SHENJian-Hua; ZOUJian-Ping; HEWei-Zhong; SHITie-Liu; ZHONGYang; JIANGHua-Liang; LIYi-Xue

    2003-01-01

    AIM:To obtain the information of ligand-receptor binding between thd S protein of SARS_CoV and CD13, identify the possible interacting domains or motifs related to binding sites, and provide clues for studying the functions of SARS proteins and designing anti-SARS drugs and vaccines. METHODS: On the basis of comparative genomics, the homology search, phylogenetic analyses, and multi-sequence alignment were used to predict CD13 related interacting domains and binding sites sites in the S protein of SARS_CoV. Molecular modeling and docking simulation methods were employed to address the interaction feature between CD13 and S protein of SARS_CoV in validating the bioinformatics predictions. RESULTS:Possible binding sites in the SARS_CoV S protein to CD13 have been mapped out by using bioinformatics analysis tools. The binding for one protein-protein interaction pair (D757-R761 motif of the SARS_CoV S protein to P585-A653 domain of CD13) has been simulated by molecular modeling and docking simulation methods. CONCLUSION:CD13 may be a possible receptor of the SARS_CoV S protein which may be associated with the SARS infection. This study also provides a possible strategy for mapping the possible binding receptors of the proteins in a genome.

  1. D-Serine and Glycine Differentially Control Neurotransmission during Visual Cortex Critical Period.

    Directory of Open Access Journals (Sweden)

    Claire N J Meunier

    Full Text Available N-methyl-D-aspartate receptors (NMDARs play a central role in synaptic plasticity. Their activation requires the binding of both glutamate and d-serine or glycine as co-agonist. The prevalence of either co-agonist on NMDA-receptor function differs between brain regions and remains undetermined in the visual cortex (VC at the critical period of postnatal development. Here, we therefore investigated the regulatory role that d-serine and/or glycine may exert on NMDARs function and on synaptic plasticity in the rat VC layer 5 pyramidal neurons of young rats. Using selective enzymatic depletion of d-serine or glycine, we demonstrate that d-serine and not glycine is the endogenous co-agonist of synaptic NMDARs required for the induction and expression of Long Term Potentiation (LTP at both excitatory and inhibitory synapses. Glycine on the other hand is not involved in synaptic efficacy per se but regulates excitatory and inhibitory neurotransmission by activating strychnine-sensitive glycine receptors, then producing a shunting inhibition that controls neuronal gain and results in a depression of synaptic inputs at the somatic level after dendritic integration. In conclusion, we describe for the first time that in the VC both D-serine and glycine differentially regulate somatic depolarization through the activation of distinct synaptic and extrasynaptic receptors.

  2. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response.

    Science.gov (United States)

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D'Andrea, Luca Domenico

    2016-08-08

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  3. Arginine 16 Glycine Polymorphism in β2-Adrenergic Receptor Gene Is Associated with Obesity, Hyperlipidemia, Hyperleptinemia, and Insulin Resistance in Saudis

    Directory of Open Access Journals (Sweden)

    Maha H. Daghestani

    2012-01-01

    Full Text Available Background. Several studies have shown an association between codon 16 polymorphism of the β2AR gene and obesity. Methods. We studied the association between Arg16Gly polymorphism and obesity and its influence on anthropometric parameters, lipids, insulin resistance and leptin in Saudi individuals. The study group included 329 individuals (males: 109 and females: 220. Metabolic parameters, including glucose, lipids, insulin, and leptin were analyzed and anthropometric parameters including waist and hip circumference, waist/hip (W/H ratio, and body mass index (BMI were measured and HOMA-IR was calculated. Genotyping was conducted by DNA sequencing of 353 bp fragments, carrying the Arg16Gly polymorphic site. Results and Conclusion. Overweight and obese subjects had a significantly higher frequency of Gly16 (0.375 and 0.38, resp. compared with normal-weight subjects (0.200. In addition, subjects carrying Gly16 allele regardless of their BMI had greater waist and hip circumference, W/H ratio, plasma lipids, leptin, glucose level, and insulin resistance as judged from the HOMA-IR, compared to those with the wild-type allele. The findings of this study show a significant association between the Arg16Gly polymorphism in β2AR gene and the development of insulin resistance, overweight, and obesity in Saudi populations with an influence on the levels of lipid and leptin.

  4. The Sigma-2 Receptor and Progesterone Receptor Membrane Component 1 are Different Binding Sites Derived From Independent Genes

    Directory of Open Access Journals (Sweden)

    Uyen B. Chu

    2015-11-01

    Full Text Available The sigma-2 receptor (S2R is a potential therapeutic target for cancer and neuronal diseases. However, the identity of the S2R has remained a matter of debate. Historically, the S2R has been defined as (1 a binding site with high affinity to 1,3-di-o-tolylguanidine (DTG and haloperidol but not to the selective sigma-1 receptor ligand (+-pentazocine, and (2 a protein of 18–21 kDa, as shown by specific photolabeling with [3H]-Azido-DTG and [125I]-iodoazido-fenpropimorph ([125I]-IAF. Recently, the progesterone receptor membrane component 1 (PGRMC1, a 25 kDa protein, was reported to be the S2R (Nature Communications, 2011, 2:380. To confirm this identification, we created PGRMC1 knockout NSC34 cell lines using the CRISPR/Cas9 technology. We found that in NSC34 cells devoid of or overexpressing PGRMC1, the maximum [3H]-DTG binding to the S2R (Bmax as well as the DTG-protectable [125I]-IAF photolabeling of the S2R were similar to those of wild-type control cells. Furthermore, the affinities of DTG and haloperidol for PGRMC1 (KI = 472 μM and 350 μM, respectively, as determined in competition with [3H]-progesterone, were more than 3 orders of magnitude lower than those reported for the S2R (20–80 nM. These results clarify that PGRMC1 and the S2R are distinct binding sites expressed by different genes.

  5. Identification of an Inhibitory Alcohol Binding Site in GABAA ρ1 Receptors.

    Science.gov (United States)

    Borghese, Cecilia M; Ruiz, Carlos I; Lee, Ui S; Cullins, Madeline A; Bertaccini, Edward J; Trudell, James R; Harris, R Adron

    2016-01-20

    Alcohols inhibit γ-aminobutyric acid type A ρ1 receptor function. After introducing mutations in several positions of the second transmembrane helix in ρ1, we studied the effects of ethanol and hexanol on GABA responses using two-electrode voltage clamp electrophysiology in Xenopus laevis oocytes. The 6' mutations produced the following effects on ethanol and hexanol responses: small increase or no change (T6'M), increased inhibition (T6'V), and small potentiation (T6'Y and T6'F). The 5' mutations produced mainly increases in hexanol inhibition. Other mutations produced small (3' and 9') or no changes (2' and L277 in the first transmembrane domain) in alcohol effects. These results suggest an inhibitory alcohol binding site near the 6' position. Homology models of ρ1 receptors based on the X-ray structure of GluCl showed that the 2', 5', 6', and 9' residues were easily accessible from the ion pore, with 5' and 6' residues from neighboring subunits facing each other; L3' and L277 also faced the neighboring subunit. We tested ethanol through octanol on single and double mutated ρ1 receptors [ρ1(I15'S), ρ1(T6'Y), and ρ1(T6'Y,I15'S)] to further characterize the inhibitory alcohol pocket in the wild-type ρ1 receptor. The pocket can only bind relatively short-chain alcohols and is eliminated by introducing Y in the 6' position. Replacing the bulky 15' residue with a smaller side chain introduced a potentiating binding site, more sensitive to long-chain than to short-chain alcohols. In conclusion, the net alcohol effect on the ρ1 receptor is determined by the sum of its actions on inhibitory and potentiating sites.

  6. Re-evaluation of receptor-ligand interactions of the human neuropeptide Y receptor Y1: a site-directed mutagenesis study

    National Research Council Canada - National Science Library

    Sjödin, Paula; Holmberg, Sara K S; Akerberg, Helena; Berglund, Magnus M; Mohell, Nina; Larhammar, Dan

    2006-01-01

    Interactions of the human NPY (neuropeptide Y) receptor Y1 with the two endogenous agonists NPY and peptide YY and two non-peptide antagonists were investigated using site-directed mutagenesis at 17 positions...

  7. Targeting Receptors, Transporters and Site of Absorption to Improve Oral Drug Delivery

    Directory of Open Access Journals (Sweden)

    J.H. Hamman

    2007-01-01

    Full Text Available Although the oral route of drug administration is the most acceptable way of self-medication with a high degree of patient compliance, the intestinal absorption of many drugs is severely hampered by different biological barriers. These barriers comprise of biochemical and physical components. The biochemical barrier includes enzymatic degradation in the gastrointestinal lumen, brush border and in the cytoplasm of the epithelial cells as well as efflux transporters that pump drug molecules from inside the epithelial cell back to the gastrointestinal lumen. The physical barrier consists of the epithelial cell membranes, tight junctions and mucus layer. Different strategies have been applied to improve the absorption of drugs after oral administration, which range from chemical modification of drug molecules and formulation technologies to the targeting of receptors, transporters and specialized cells such as the gut-associated lymphoid tissues. This review focuses specifically on the targeting of receptor-mediated endocytosis, transporters and the absorption-site as methods of optimizing intestinal drug absorption. Intestinal epithelial cells express several nutrient transporters that can be targeted by modifying the drug molecule in such a way that it is recognized as a substrate. Receptor-mediated endocytosis is a transport mechanism that can be targeted for instance by linking a receptor substrate to the drug molecule of interest. Many formulation strategies exist for enhancing drug absorption of which one is to deliver drugs at a specific site in the gastrointestinal tract where optimum drug absorption takes place.

  8. Targeting receptors, transporters and site of absorption to improve oral drug delivery.

    Science.gov (United States)

    Hamman, J H; Demana, P H; Olivier, E I

    2007-01-01

    Although the oral route of drug administration is the most acceptable way of self-medication with a high degree of patient compliance, the intestinal absorption of many drugs is severely hampered by different biological barriers. These barriers comprise of biochemical and physical components. The biochemical barrier includes enzymatic degradation in the gastrointestinal lumen, brush border and in the cytoplasm of the epithelial cells as well as efflux transporters that pump drug molecules from inside the epithelial cell back to the gastrointestinal lumen. The physical barrier consists of the epithelial cell membranes, tight junctions and mucus layer. Different strategies have been applied to improve the absorption of drugs after oral administration, which range from chemical modification of drug molecules and formulation technologies to the targeting of receptors, transporters and specialized cells such as the gut-associated lymphoid tissues. This review focuses specifically on the targeting of receptor-mediated endocytosis, transporters and the absorption-site as methods of optimizing intestinal drug absorption. Intestinal epithelial cells express several nutrient transporters that can be targeted by modifying the drug molecule in such a way that it is recognized as a substrate. Receptor-mediated endocytosis is a transport mechanism that can be targeted for instance by linking a receptor substrate to the drug molecule of interest. Many formulation strategies exist for enhancing drug absorption of which one is to deliver drugs at a specific site in the gastrointestinal tract where optimum drug absorption takes place.

  9. In vivo receptor binding of opioid drugs at the mu site

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, J.S.; Holford, N.H.; Sadee, W.

    1985-06-01

    The in vivo receptor binding of a series of opioid drugs was investigated in intact rats after s.c. administration of (/sup 3/H)etorphine tracer, which selectively binds to mu sites in vivo. Receptor binding was determined by a membrane filtration assay immediately after sacrifice of the animals and brain homogenization. Coadministration of unlabeled opioid drugs together with tracer led to a dose-dependent decrease of in vivo tracer binding. Estimates of the doses required to occupy 50% of the mu sites in vivo established the following potency rank order: diprenorphine, naloxone, buprenorphine, etorphine, levallorphan, cyclazocine, sufentanil, nalorphine, ethylketocyclazocine, ketocyclazocine, pentazocine, morphine. In vivo-in vitro differences among the relative receptor binding potencies were only partially accounted for by differences in their access to the brain and the regulatory effects of Na+ and GTP, which are expected to reduce agonist affinities in vivo. The relationship among mu receptor occupancy in vivo and pharmacological effects of the opioid drugs is described.

  10. Affinity of 3-acyl substituted 4-quinolones at the benzodiazepine site of GABAA receptors

    DEFF Research Database (Denmark)

    Lager, Erik; Nilsson, Jakob; Nielsen, Elsebet Østergaard

    2008-01-01

    The finding that alkyl 1,4-dihydro-4-oxoquinoline-3-carboxylate and N-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxamide derivatives may be high-affinity ligands at the benzodiazepine binding site of the GABA(A) receptor, prompted a study of 3-acyl-1,4-dihydro-4-oxoquinoline (3-acyl-4-quinolones......). In general, the affinity of the 3-acyl derivatives was found to be comparable with the 3-carboxylate and the 3-carboxamide derivatives, and certain substituents (e.g., benzyl) in position 6 were again shown to be important. As it is believed that the benzodiazepine binding site is situated between an alpha...

  11. In vivo brain dopaminergic receptor site mapping using /sup 75/Se-labeled pergolide analogs: the effects of various dopamine receptor agonists and antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, A.

    1986-01-01

    Perogolide mesylate is a new synthetic ergoline derivative which is reported to possess agonistic activity at central dopamine receptor sites in the brain. The authors have synthesized a (/sup 75/Se)-radiolabeled pergolide mesylate derivative, (/sup 75/Se)-pergolide tartrate, which, after i.v. administration to mature male rats, showed a time course differentiation in the uptake of this radiolabeled compound in isolated peripheral and central (brain) tissues that are known to be rich in dopamine receptor sites. Further studies were conducted in which the animals were preexposed to the dopamine receptor agonist SKF-38393, as well as the dopamine receptor antagonists (+)-butaclamol, (-)-butaclamol, (+/-)-butaclamol and (-)-chloroethylnorapomorphine, to substantiate the specific peripheral and central localization patterns of (/sup 75/Se)-pergolide tartrate. Further investigations were also conducted in which the animals received an i.v. administration of N-isopropyl-l-123-p-iodoamphetamine ((/sup 123/I)-iodoamphetamine). However, (/sup 123/I)-iodoamphetamine did not demonstrate a specific affinity for any type of receptor site in the brain. These investigations further substantiated the fact that (/sup 75/Se)-pergolide tartrate does cross the blood-brain barrier is quickly localized at specific dopamine receptor sites in the intact rat brain and that this localization pattern can be affected by preexposure to different dopamine receptor agonists and antagonists. Therefore, these investigations provided further evidence that (/sup 75/Se)-pergolide tartrate and other radiolabeled ergoline analogs might be useful as brain dopamine receptor localization radiopharmaceuticals.

  12. Genetics Home Reference: glycine encephalopathy

    Science.gov (United States)

    ... atypical types of glycine encephalopathy appear later in childhood or adulthood and cause a variety of medical problems that primarily affect the nervous system. Rarely, the characteristic features of ...

  13. The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor

    Directory of Open Access Journals (Sweden)

    Kratochwil Nicole A

    2007-10-01

    Full Text Available Abstract Background Differences in sweet taste perception among species depend on structural variations of the sweet taste receptor. The commercially used isovanillyl sweetener neohesperidin dihydrochalcone activates the human but not the rat sweet receptor TAS1R2+TAS1R3. Analysis of interspecies combinations and chimeras of rat and human TAS1R2+TAS1R3 suggested that the heptahelical domain of human TAS1R3 is crucial for the activation of the sweet receptor by neohesperidin dihydrochalcone. Results By mutational analysis combined with functional studies and molecular modeling we identified a set of different amino acid residues within the heptahelical domain of human TAS1R3 that forms the neohesperidin dihydrochalcone binding pocket. Sixteen amino acid residues in the transmembrane domains 2 to 7 and one in the extracellular loop 2 of hTAS1R3 influenced the receptor's response to neohesperidin dihydrochalcone. Some of these seventeen residues are also part of the binding sites for the sweetener cyclamate or the sweet taste inhibitor lactisole. In line with this observation, lactisole inhibited activation of the sweet receptor by neohesperidin dihydrochalcone and cyclamate competitively, whereas receptor activation by aspartame, a sweetener known to bind to the N-terminal domain of TAS1R2, was allosterically inhibited. Seven of the amino acid positions crucial for activation of hTAS1R2+hTAS1R3 by neohesperidin dihydrochalcone are thought to play a role in the binding of allosteric modulators of other class C GPCRs, further supporting our model of the neohesperidin dihydrochalcone pharmacophore. Conclusion From our data we conclude that we identified the neohesperidin dihydrochalcone binding site at the human sweet taste receptor, which overlaps with those for the sweetener cyclamate and the sweet taste inhibitor lactisole. This readily delivers a molecular explanation of our finding that lactisole is a competitive inhibitor of the receptor

  14. Elucidation of a four-site allosteric network in fibroblast growth factor receptor tyrosine kinases

    Science.gov (United States)

    Chen, Huaibin; Marsiglia, William M; Cho, Min-Kyu; Huang, Zhifeng; Deng, Jingjing; Blais, Steven P; Gai, Weiming; Bhattacharya, Shibani; Neubert, Thomas A; Traaseth, Nathaniel J; Mohammadi, Moosa

    2017-01-01

    Receptor tyrosine kinase (RTK) signaling is tightly regulated by protein allostery within the intracellular tyrosine kinase domains. Yet the molecular determinants of allosteric connectivity in tyrosine kinase domain are incompletely understood. By means of structural (X-ray and NMR) and functional characterization of pathogenic gain-of-function mutations affecting the FGF receptor (FGFR) tyrosine kinase domain, we elucidated a long-distance allosteric network composed of four interconnected sites termed the ‘molecular brake’, ‘DFG latch’, ‘A-loop plug’, and ‘αC tether’. The first three sites repress the kinase from adopting an active conformation, whereas the αC tether promotes the active conformation. The skewed design of this four-site allosteric network imposes tight autoinhibition and accounts for the incomplete mimicry of the activated conformation by pathogenic mutations targeting a single site. Based on the structural similarity shared among RTKs, we propose that this allosteric model for FGFR kinases is applicable to other RTKs. DOI: http://dx.doi.org/10.7554/eLife.21137.001 PMID:28166054

  15. Structures of Receptor Complexes of a North American H7N2 Influenza Hemagglutinin with a Loop Deletion in the Receptor Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hua; Chen, Li-Mei; Carney, Paul J.; Donis, Ruben O.; Stevens, James (CDC)

    2012-02-21

    Human infections with subtype H7 avian influenza viruses have been reported as early as 1979. In 1996, a genetically stable 24-nucleotide deletion emerged in North American H7 influenza virus hemagglutinins, resulting in an eight amino acid deletion in the receptor-binding site. The continuous circulation of these viruses in live bird markets, as well as its documented ability to infect humans, raises the question of how these viruses achieve structural stability and functionality. Here we report a detailed molecular analysis of the receptor binding site of the North American lineage subtype H7N2 virus A/New York/107/2003 (NY107), including complexes with an avian receptor analog (3'-sialyl-N-acetyllactosamine, 3'SLN) and two human receptor analogs (6'-sialyl-N-acetyllactosamine, 6'SLN; sialyllacto-N-tetraose b, LSTb). Structural results suggest a novel mechanism by which residues Arg220 and Arg229 (H3 numbering) are used to compensate for the deletion of the 220-loop and form interactions with the receptor analogs. Glycan microarray results reveal that NY107 maintains an avian-type ({alpha}2-3) receptor binding profile, with only moderate binding to human-type ({alpha}2-6) receptor. Thus despite its dramatically altered receptor binding site, this HA maintains functionality and confirms a need for continued influenza virus surveillance of avian and other animal reservoirs to define their zoonotic potential.

  16. Mathematical models to correlate molecular topology with substrate affinity of the glycine antagonist in glutamate receptors Generación de modelos matemáticos correlacionales entre afinidad y descriptores topológicos moleculares de antagonistas de glicina en receptores de glutamato

    Directory of Open Access Journals (Sweden)

    Guillermo Narváez

    2010-08-01

    Full Text Available Introduction. Mathematical models that correlate chemical structure with biological activity have been useful in the design of new drugs and can be used to predict biological behavior of new, chemically related molecules.
    Objectives. A mathematical model was generated to correlate the substrate affinities with variations in the molecular topology of glycine antagonists in NMDA sub-class glutamate receptor and, subsequently, to propose new molecules with antagonist activity.
    Materials and methods. By use of molecular connectivity indexes, the electronic structure and atomic bonding patterns of 45 glycine antagonists were coded. Correlation between connectivity indexes and antagonist affinity was determined by regression analysis.
    Results. The connectivity index that best described affinity behavior was 4Xvpc, which indicates the relative importance of heteroatoms, the vicinity of aromatic ring substitutes, and valency gradient. The equations generated predicted new antagonist affinities, and the model was able to suggest structural requirements for designating compounds with increased affinity. Twelve new molecules were proposed, from which three appeared promising-based of the affinities previously calculated by means of the new equations. Energetic interaction analysis was developed as a control for the mathematical methodology.
    Conclusion. Glycine antagonists' structure were analyzed mathematically by means of connectivity indexes. The equations modeled receptor behavior and contributed useful information for new antagonist design.
    Introducción. Los modelos matemáticos que correlacionan la estructura química con la actividad biológica son útiles en el diseño de nuevos fármacos, y pueden emplearse para predecir el comportamiento biológico de moléculas nuevas químicamente relacionadas.
    Objetivos. Generar un modelo matemático que correlacione la afinidad y la topología molecular de antagonistas de

  17. Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors.

    Science.gov (United States)

    Lakkaraju, Sirish Kaushik; Yu, Wenbo; Raman, E Prabhu; Hershfeld, Alena V; Fang, Lei; Deshpande, Deepak A; MacKerell, Alexander D

    2015-03-23

    Occluded ligand-binding pockets (LBP) such as those found in nuclear receptors (NR) and G-protein coupled receptors (GPCR) represent a significant opportunity and challenge for computer-aided drug design. To determine free energies maps of functional groups of these LBPs, a Grand-Canonical Monte Carlo/Molecular Dynamics (GCMC/MD) strategy is combined with the Site Identification by Ligand Competitive Saturation (SILCS) methodology. SILCS-GCMC/MD is shown to map functional group affinity patterns that recapitulate locations of functional groups across diverse classes of ligands in the LBPs of the androgen (AR) and peroxisome proliferator-activated-γ (PPARγ) NRs and the metabotropic glutamate (mGluR) and β2-adreneric (β2AR) GPCRs. Inclusion of protein flexibility identifies regions of the binding pockets not accessible in crystal conformations and allows for better quantitative estimates of relative ligand binding affinities in all the proteins tested. Differences in functional group requirements of the active and inactive states of the β2AR LBP were used in virtual screening to identify high efficacy agonists targeting β2AR in Airway Smooth Muscle (ASM) cells. Seven of the 15 selected ligands were found to effect ASM relaxation representing a 46% hit rate. Hence, the method will be of use for the rational design of ligands in the context of chemical biology and the development of therapeutic agents.

  18. Interaction of a monoclonal antibody against hEGF with a receptor site for EGF

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Sonia; Souto, Beatriz; Balter, Henia; Welling, Mick M.; Roman, Estela; Robles, Ana; Pauwels, Ernest K.J

    1999-11-01

    Epidermal growth factor (EGF) has been detected by radioimmunoassay (RIA) in different body fluids such as serum, amniotic fluid, and urine. Human tumor tissues with EGF receptors (EGF-Rc) may be saturated with EGF, which may be of prognostic value. An RIA was envisaged to measure human epidermal growth factor (hEGF) levels using EGF-Rc as capture agent and a monoclonal antibody anti-hEGF (MAb anti-hEGF) labeled with {sup 125}Iodine as a marker for this binding. The purpose of this work was to study the feasibility of MAb anti-hEGF to detect the receptor binding sites and to investigate the interaction between MAb anti-hEGF and the EGF-Rc. Various binding experiments were performed to study possible interference and interactions in the complex MAb anti-hEGF and the receptor. Affinity constants were determined by means of Scatchard plot analysis to interpret the complex stability challenged with other compounds for a better understanding of the interaction process. Binding constants were of the same order for all the ligands tested separately involving the EGF-Rc, but were significantly higher (t=15.7, p<0.05) for hEGF in its binding to MAb anti-hEGF. It was possible with equilibrium studies and competition experiments to evaluate the interaction of EGF and MAb anti-hEGF with the EGF receptor. This observation makes the MAb anti-hEGF a potential tracer for the quantitation of receptors in vitro, and possibly for the detection of membrane receptors on tumor cells in vivo.

  19. Interaction of a monoclonal antibody against hEGF with a receptor site for EGF.

    Science.gov (United States)

    Valente, S; Souto, B; Balter, H; Welling, M M; Román, E; Robles, A; Pauwels, E K

    1999-11-01

    Epidermal growth factor (EGF) has been detected by radioimmunoassay (RIA) in different body fluids such as serum, amniotic fluid, and urine. Human tumor tissues with EGF receptors (EGF-Rc) may be saturated with EGF, which may be of prognostic value. An RIA was envisaged to measure human epidermal growth factor (hEGF) levels using EGF-Rc as capture agent and a monoclonal antibody anti-hEGF (MAb anti-hEGF) labeled with 125Iodine as a marker for this binding. The purpose of this work was to study the feasibility of MAb anti-hEGF to detect the receptor binding sites and to investigate the interaction between MAb anti-hEGF and the EGF-Rc. Various binding experiments were performed to study possible interference and interactions in the complex MAb anti-hEGF and the receptor. Affinity constants were determined by means of Scatchard plot analysis to interpret the complex stability challenged with other compounds for a better understanding of the interaction process. Binding constants were of the same order for all the ligands tested separately involving the EGF-Rc, but were significantly higher (t = 15.7, p anti-hEGF. It was possible with equilibrium studies and competition experiments to evaluate the interaction of EGF and MAb anti-hEGF with the EGF receptor. This observation makes the MAb anti-hEGF a potential tracer for the quantitation of receptors in vitro, and possibly for the detection of membrane receptors on tumor cells in vivo.

  20. Comparative virtual screening and novelty detection for NMDA-GlycineB antagonists.

    Science.gov (United States)

    Krueger, Bjoern A; Weil, Tanja; Schneider, Gisbert

    2009-12-01

    Identification of novel compound classes for a drug target is a challenging task for cheminformatics and drug design when considerable research has already been undertaken and many potent lead structures have been identified, which leaves limited unclaimed chemical space for innovation. We validated and successfully applied different state-of-the-art techniques for virtual screening (Bayesian machine learning, automated molecular docking, pharmacophore search, pharmacophore QSAR and shape analysis) of 4.6 million unique and readily available chemical structures to identify promising new and competitive antagonists of the strychnine-insensitive Glycine binding site (Glycine(B) site) of the NMDA receptor. The novelty of the identified virtual hits was assessed by scaffold analysis, putting a strong emphasis on novelty detection. The resulting hits were tested in vitro and several novel, active compounds were identified. While the majority of the computational methods tested were able to partially discriminate actives from structurally similar decoy molecules, the methods differed substantially in their prospective applicability in terms of novelty detection. The results demonstrate that although there is no single best computational method, it is most worthwhile to follow this concept of focused compound library design and screening, as there still can new bioactive compounds be found that possess hitherto unexplored scaffolds and interesting variations of known chemotypes.

  1. Probing the GnRH receptor agonist binding site identifies methylated triptorelin as a new anti-proliferative agent

    Directory of Open Access Journals (Sweden)

    Robert P Millar

    2012-06-01

    Full Text Available D-amino acid substitutions at Glycine postion-6 in GnRH-I decapeptide can possess super-agonist activity and enhanced in vivo pharmacokinetics. Agonists elicit growth-inhibition in tumorigenic cells expressing the GnRH receptor above threshold levels. However, new agonists with modified properties are required to improve the anti-proliferative range. Effects of residue substitutions and methylations on tumourigenic HEK293[SCL60] and WPE-1-NB26-3 prostate cells expressing the rat GnRH receptor were compared. Peptides were ranked according to receptor binding affinity, induction of inositol phosphate production and cell growth-inhibition. Analogues possessing D-Trp6 (including Triptorelin, D-Leu6 (including Leuprolide, D-Ala6, D-Lys6, or D-Arg6 exhibited agonist and anti-proliferative activity. Residues His5 or His5,Trp7,Tyr8, corresponding to residues found in GnRH-II , were tolerated, with retention of sub-nanomolar/low nanomolar binding affinities and EC50s for receptor activation and IC50s for cell growth-inhibition. His5D-Arg6-GnRH-I exhibited reduced binding affinity and potency, effective in the mid-nanomolar range. However, all GnRH-II-like analogues were less potent than Triptorelin. By comparison, three methylated-Trp6 Triptorelin variants showed differential binding, receptor activation and anti-proliferation potency. Significantly, 5-Methyl-DL-Trp6-Triptorelin was equipotent to triptorelin. Subsequent studies should determine whether pharmacologically enhanced derivatives of Triptorelin can be developed by further alkylations, without substitutions or cleavable cytotoxic adducts, to improve the extent of growth-inhibition of tumour cells expressing the GnRH receptor.

  2. Ligand-induced changes in estrogen receptor conformation as measured by site-directed spin labeling.

    Science.gov (United States)

    Hurth, Kyle M; Nilges, Mark J; Carlson, Kathryn E; Tamrazi, Anobel; Belford, R Linn; Katzenellenbogen, John A

    2004-02-24

    Site-directed spin labeling (SDSL), the site-specific incorporation of nitroxide spin-labels into a protein, has allowed us to investigate ligand-induced conformational changes in the ligand-binding domain of human estrogen receptor alpha (hERalpha-LBD). EPR (electron paramagnetic resonance) spectroscopy of the nitroxide probe attached to ER produces different spectra depending upon the identity of the bound ligand; these differences are indicative of changes in the type and degree of motional character of the spin-label induced by different ligand-induced conformations of labeled ER. Visual inspection of EPR spectra, construction of B versus C cross-correlation plots, and cross-comparison of spectral pairs using a relative squared difference (RSD) calculation allowed receptor-ligand complexes to be profiled according to their conformational character. Plotting B and C parameters allowed us to evaluate the liganded receptor according to the motional characteristics of the attached spin-label, and they were particularly illustrative for the receptor labeled at position 530, which had motion between the fast and intermediate regimes. RSD analysis allowed us to directly compare the similarity or difference between two different spectra, and these comparisons produced groupings that paralleled those seen in B versus C cross-correlation plots, again relating meaningfully with the pharmacological nature of the bound ligand. RSD analysis was also particularly useful for qualifying differences seen with the receptor labeled at position 417, which had motion between the intermediate and slow motional regimes. This work demonstrates that B and C formulas from EPR line shape theory are useful for qualitative analysis of spectra with differences subtler than those that are often analyzed by EPR spectroscopists. This work also provides evidence that the ER can exist in a range of conformations, with specific conformations resulting from preferential stabilization of ER by the

  3. Molecular Modeling of the M3 Acetylcholine Muscarinic Receptor and Its Binding Site

    Science.gov (United States)

    Martinez-Archundia, Marlet; Cordomi, Arnau; Garriga, Pere; Perez, Juan J.

    2012-01-01

    The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template. Then, the antagonist N-methylscopolamine was docked in the model and subsequently embedded in a lipid bilayer for its refinement using molecular dynamics simulations. Two different lipid bilayer compositions were studied: one component palmitoyl-oleyl phosphatidylcholine (POPC) and two-component palmitoyl-oleyl phosphatidylcholine/palmitoyl-oleyl phosphatidylserine (POPC-POPS). Analysis of the results suggested that residues F222 and T235 may contribute to the ligand-receptor recognition. Accordingly, alanine mutants at positions 222 and 235 were constructed, expressed, and their binding properties determined. The results confirmed the role of these residues in modulating the binding affinity of the ligand. PMID:22500107

  4. Molecular Modeling of the M3 Acetylcholine Muscarinic Receptor and Its Binding Site

    Directory of Open Access Journals (Sweden)

    Marlet Martinez-Archundia

    2012-01-01

    Full Text Available The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template. Then, the antagonist N-methylscopolamine was docked in the model and subsequently embedded in a lipid bilayer for its refinement using molecular dynamics simulations. Two different lipid bilayer compositions were studied: one component palmitoyl-oleyl phosphatidylcholine (POPC and two-component palmitoyl-oleyl phosphatidylcholine/palmitoyl-oleyl phosphatidylserine (POPC-POPS. Analysis of the results suggested that residues F222 and T235 may contribute to the ligand-receptor recognition. Accordingly, alanine mutants at positions 222 and 235 were constructed, expressed, and their binding properties determined. The results confirmed the role of these residues in modulating the binding affinity of the ligand.

  5. Why do receptor-ligand bonds in cell adhesion cluster into discrete focal-adhesion sites?

    Science.gov (United States)

    Gao, Zhiwen; Gao, Yanfei

    2016-10-01

    Cell adhesion often exhibits the clustering of the receptor-ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation for the clustering/assembling of the receptor-ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor-ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.

  6. Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor.

    Science.gov (United States)

    Maillet, Emeline L; Cui, Meng; Jiang, Peihua; Mezei, Mihaly; Hecht, Elizabeth; Quijada, Jeniffer; Margolskee, Robert F; Osman, Roman; Max, Marianna

    2015-10-01

    The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2's VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste.

  7. B cell recognition of the conserved HIV-1 co-receptor binding site is altered by endogenous primate CD4.

    Directory of Open Access Journals (Sweden)

    Mattias N E Forsell

    2008-10-01

    Full Text Available The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3. Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4 rabbits with envelope glycoprotein (Env trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.

  8. B cell recognition of the conserved HIV-1 co-receptor binding site is altered by endogenous primate CD4.

    Science.gov (United States)

    Forsell, Mattias N E; Dey, Barna; Mörner, Andreas; Svehla, Krisha; O'dell, Sijy; Högerkorp, Carl-Magnus; Voss, Gerald; Thorstensson, Rigmor; Shaw, George M; Mascola, John R; Karlsson Hedestam, Gunilla B; Wyatt, Richard T

    2008-10-03

    The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3). Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4) rabbits with envelope glycoprotein (Env) trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT) rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity) primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.

  9. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2016-07-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  10. Deletion of glycine transporter 1 (GlyT1) in forebrain neurons facilitates reversal learning: enhanced cognitive adaptability?

    Science.gov (United States)

    Singer, Philipp; Boison, Detlev; Möhler, Hanns; Feldon, Joram; Yee, Benjamin K

    2009-10-01

    Local availability of glycine near N-methyl-D-aspartate receptors (NMDARs) is partly regulated by neuronal glycine transporter 1 (GlyT1), which can therefore modulate NMDAR function because binding to the glycine site of the NMDAR is necessary for channel activation. Disrupting GlyT1 in forebrain neurons has been shown to enhance Pavlovian conditioning and object recognition memory. Here, the authors report that the same genetic manipulation facilitated reversal learning in the water maze test of reference memory, but did not lead to any clear improvement in a working memory version of the water maze test. Facilitation in a nonspatial discrimination reversal task conducted on a T maze was also observed, supporting the conclusion that forebrain neuronal GlyT1 may modulate the flexibility in (new) learning and relevant mnemonic functions. One possibility is that these phenotypes may reflect reduced susceptibility to certain forms of proactive interference. This may be relevant for the suggested clinical application of GlyT1 inhibitors in the treatment of cognitive deficits, including schizophrenia, which is characterized by cognitive inflexibility in addition to the positive symptoms of the disease.

  11. An improved synthesis of [{sup 11}C]L-703,717 as a radioligand for the glycine site of the NMDA receptor

    Energy Technology Data Exchange (ETDEWEB)

    Haradahira, Terushi E-mail: terushi@nirs.go.jp; Suzuki, Kazutoshi

    1999-02-01

    A method for high-yield synthesis of 7-chloro-4-hydroxy-3-[3-(4-[{sup 11}C]methoxybenzyl)phenyl-2(1H)-quinolone ([{sup 11}C]L-703,717) using sodium hydride (NaH) as a base has been developed. Reaction of 7-chloro-4-hydroxy-3-[3-(4-hydroxybenzyl)phenyl-2(1H)-quinolone (1) with [{sup 11}C]CH{sub 3}I in anhydrous dimethylformamide in the presence of NaH and subsequent high performance liquid chromatography (HPLC) purification gave [{sup 11}C]L-703,717 in a total synthesis time of 25 min from end of bombardment. The radiochemical yield of [{sup 11}C]L-703,717 calculated by HPLC of the {sup 11}C-reaction mixture averaged 87% after the 5-min reaction at 30 deg. C. Radiochemical purity and specific activity of [{sup 11}C]L-703,717 in isotonic saline were {>=}99% and 47-53 GBq/{mu}mol, respectively.

  12. Amiloride and GMQ Allosteric Modulation of the GABA-A ρ1 Receptor: Influences of the Intersubunit Site

    Science.gov (United States)

    Snell, Heather D.

    2015-01-01

    Amiloride, a diuretic used in the treatment of hypertension and congestive heart failure, and 2-guanidine-4-methylquinazoline (GMQ) are guanidine compounds that modulate acid-sensing ion channels. Both compounds have demonstrated affinity for a variety of membrane proteins, including members of the Cys-loop family of ligand-gated ion channels, such as the heteromeric GABA-A αβγ receptors. The actions of these guanidine compounds on the homomeric GABA-A ρ1 receptor remains unclear, especially in light of how many GABA-A αβγ receptor modulators have different effects in the GABA-A ρ1 receptors. We sought to characterize the influence of amiloride and GMQ on the human GABA-A ρ1 receptors using whole-cell patch-clamp electrophysiology. The diuretic amiloride potentiated the human GABA-A ρ1 GABA-mediated current, whereas GMQ antagonized the receptor. Furthermore, a GABA-A second transmembrane domain site, the intersubunit site, responsible for allosteric modulation in the heteromeric GABA-A receptors mediated amiloride’s positive allosteric actions. In contrast, the mutation did not remove GMQ antagonism but only changed the guanidine compound’s potency within the human GABA-A ρ1 receptor. Through modeling and introduction of point mutations, we propose that the GABA-A ρ1 intersubunit site plays a role in mediating the allosteric effects of amiloride and GMQ. PMID:25829529

  13. Proximity effect of magnetic permalloy nanoelements used to induce AMR changes in magnetic biosensor nanowires at specific receptor sites

    Energy Technology Data Exchange (ETDEWEB)

    Will, Iain; Ding, An; Xu, Yongbing, E-mail: yongbing.xu@york.ac.uk

    2015-08-15

    We present simulated, substrate bound, permalloy nanowires with receptor sites for magnetic, aqueously suspended nanoelements that are able to induce an anisotropic magnetoresistive effect in nanowire circuits. The permalloy nanoelements were also simulated to determine the remanent spin configuration and were designed to be bound by antibody mediated interactions with biological ligands at the receptor sites in order to act as a biosensor. All results were simulated using micromagnetic simulations by the Object Oriented Micromagnetic Framework (OOMMF). The simulations revealed that anisotropic magnetoresistive changes were induced at the bridging sections between adjacent nanowires, next to the receptor sites, which connect the two adjacent nanowires. The electrical resistance across the nanowires reduced after the inclusion of the nanoelements at the receptor sites. We therefore conclude that this nanowire configuration is useful for an inexpensive diagnostic biosensor. - Highlights: • We engineered the domain structure in a split nanowire. • We rejoined the nanowire with conducting bridges. • We introduced and modelled receptor sites for free nanoelements near the receptors. • The inclusion of magnetic nanoelement labels induces an AMR effect at the bridges. • The split nanowire can act as a biosensor for labelled biomolecules.

  14. Study on Synthesis and Binding Ability of a New Anion Receptor Containing NH Binding Sites

    Institute of Scientific and Technical Information of China (English)

    QIAO,Yan-Hong; LIN,Hai; LIN,Hua-Kuan

    2007-01-01

    A new colorimetric recognition receptor 1 based on the dual capability containing NH binding sites of selectively sensing anionic guest species has been synthesized. Compared with other halide anions, its UV/Vis absorption spectrum in dimethyl sulfoxide showed the response toward the presence of fluoride anion with high selectivity,and also displayed dramatic color changes from colorless to yellow in the presence of TBAF (5 × 10-5 mol/L). The similar UV/Vis absorption spectrum change also occurred when 1 was treated with AcO- while a little change with H2PO-4 and OH-. Receptor 1 has almost not affinity abilities to Cl-, Br- and I-. The binding ability of receptor 1to fluoride with high selectivity over other halides contributes to the anion size and the ability of forming hydrogen bonding. While the different ability of binding with geometrically triangular (AcO-), tetrahedral (H2PO-4 ) and linear (OH-) anions maybe result from their geometry configuration.

  15. Isobolographic analysis of non-depolarising muscle relaxant interactions at their receptor site.

    Science.gov (United States)

    Paul, Matthias; Kindler, Christoph H; Fokt, Ralf M; Dipp, Natalie C J; Yost, C Spencer

    2002-03-01

    Administration of certain combinations of non-depolarising muscle relaxants produces greater than expected neuromuscular blockade. Synergistic effects may be explained by drug interactions with the postsynaptic muscle nicotinic acetylcholine receptor. To investigate this hypothesis, the adult mouse muscle nicotinic acetylcholine receptor (alpha(2)beta delta epsilon) was heterologously expressed in Xenopus laevis oocytes and activated by the application of acetylcholine (10 microM). The effects of five individually applied muscle relaxants and six combinations of structurally similar and dissimilar compounds were studied. Drug combinations containing equipotent concentrations of two agents were tested and dose-response curves were determined. All compounds tested alone and in combination produced rapid and readily reversible, concentration-dependent inhibition. Isobolographic and fractional analyses indicated additive interactions for all six tested combinations. These findings suggest that synergistic neuromuscular blocking effects, observed for the administration of certain combinations of muscle relaxants, do not result from purely postsynaptic binding events at the muscle nicotinic acetylcholine receptor, but rather from differential actions on pre- and postsynaptic sites.

  16. Identification of alpha 2-adrenergic receptor sites in human retinoblastoma (Y-79) and neuroblastoma (SH-SY5Y) cells

    Energy Technology Data Exchange (ETDEWEB)

    Kazmi, S.M.; Mishra, R.K.

    1989-02-15

    The existence of specific alpha 2-adrenergic receptor sites has been shown in human retinoblastoma (Y-79) and neuroblastoma (SH-SH5Y) cells using direct radioligand binding. (/sup 3/H)Rauwolscine, a selective alpha 2-adrenergic receptor antagonist, exhibited high affinity, saturable binding to both Y-79 and SH-SY5Y cell membranes. The binding of alpha 1 specific antagonist, (/sup 3/H)Prazocine, was not detectable in either cell type. Competition studies with antagonists yielded pharmacological characteristics typical of alpha 2-adrenergic receptors: rauwolscine greater than yohimbine greater than phentolamine greater than prazocine. Based on the affinity constants of prazocine and oxymetazoline, it appears that Y-79 cells contain alpha 2A receptor, whereas SH-SY5Y cells probably represent a mixture of alpha 2A and alpha 2B receptors. alpha 2-agonists clonidine and (-)epinephrine inhibition curves yielded high and low affinity states of the receptor in SH-SY5Y cells. Gpp(NH)p and sodium ions reduced the proportion of high affinity sites of alpha 2 receptors. These two neuronal cell lines of human origin would prove useful in elucidating the action and regulation of human alpha 2-adrenergic receptors and their interaction with other receptor systems.

  17. The Receptor Site and Mechanism of Action of Sodium Channel Blocker Insecticides.

    Science.gov (United States)

    Zhang, Yongqiang; Du, Yuzhe; Jiang, Dingxin; Behnke, Caitlyn; Nomura, Yoshiko; Zhorov, Boris S; Dong, Ke

    2016-09-16

    Sodium channels are excellent targets of both natural and synthetic insecticides with high insect selectivity. Indoxacarb, its active metabolite DCJW, and metaflumizone (MFZ) belong to a relatively new class of sodium channel blocker insecticides (SCBIs) with a mode of action distinct from all other sodium channel-targeting insecticides, including pyrethroids. Electroneutral SCBIs preferably bind to and trap sodium channels in the inactivated state, a mechanism similar to that of cationic local anesthetics. Previous studies identified several SCBI-sensing residues that face the inner pore of sodium channels. However, the receptor site of SCBIs, their atomic mechanisms, and the cause of selective toxicity of MFZ remain elusive. Here, we have built a homology model of the open-state cockroach sodium channel BgNav1-1a. Our computations predicted that SCBIs bind in the inner pore, interact with a sodium ion at the focus of P1 helices, and extend their aromatic moiety into the III/IV domain interface (fenestration). Using model-driven mutagenesis and electrophysiology, we identified five new SCBI-sensing residues, including insect-specific residues. Our study proposes the first three-dimensional models of channel-bound SCBIs, sheds light on the molecular basis of MFZ selective toxicity, and suggests that a sodium ion located in the inner pore contributes to the receptor site for electroneutral SCBIs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    Energy Technology Data Exchange (ETDEWEB)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.

  19. Alterations in brain extracellular dopamine and glycine levels following combined administration of the glycine transporter type-1 inhibitor Org-24461 and risperidone.

    Science.gov (United States)

    Nagy, Katalin; Marko, Bernadett; Zsilla, Gabriella; Matyus, Peter; Pallagi, Katalin; Szabo, Geza; Juranyi, Zsolt; Barkoczy, Jozsef; Levay, Gyorgy; Harsing, Laszlo G

    2010-12-01

    The most dominant hypotheses for the pathogenesis of schizophrenia have focused primarily upon hyperfunctional dopaminergic and hypofunctional glutamatergic neurotransmission in the central nervous system. The therapeutic efficacy of all atypical antipsychotics is explained in part by antagonism of the dopaminergic neurotransmission, mainly by blockade of D(2) dopamine receptors. N-methyl-D-aspartate (NMDA) receptor hypofunction in schizophrenia can be reversed by glycine transporter type-1 (GlyT-1) inhibitors, which regulate glycine concentrations at the vicinity of NMDA receptors. Combined drug administration with D(2) dopamine receptor blockade and activation of hypofunctional NMDA receptors may be needed for a more effective treatment of positive and negative symptoms and the accompanied cognitive deficit in schizophrenia. To investigate this type of combined drug administration, rats were treated with the atypical antipsychotic risperidone together with the GlyT-1 inhibitor Org-24461. Brain microdialysis was applied in the striatum of conscious rats and determinations of extracellular dopamine, DOPAC, HVA, glycine, glutamate, and serine concentrations were carried out using HPLC/electrochemistry. Risperidone increased extracellular concentrations of dopamine but failed to influence those of glycine or glutamate measured in microdialysis samples. Org-24461 injection reduced extracellular dopamine concentrations and elevated extracellular glycine levels but the concentrations of serine and glutamate were not changed. When risperidone and Org-24461 were added in combination, a decrease in extracellular dopamine concentrations was accompanied with sustained elevation of extracellular glycine levels. Interestingly, the extracellular concentrations of glutamate were also enhanced. Our data indicate that coadministration of an antipsychotic with a GlyT-1 inhibitor may normalize hypofunctional NMDA receptor-mediated glutamatergic neurotransmission with reduced

  20. Targeting Extracellular Domains D4 and D7 of Vascular Endothelial Growth Factor Receptor 2 Reveals Allosteric Receptor Regulatory Sites

    OpenAIRE

    Hyde, Caroline A. C.; Giese, Alexandra; Stuttfeld, Edward; Abram Saliba, Johan; Villemagne, Denis; Schleier, Thomas; Binz, H. Kaspar; Ballmer-Hofer, Kurt

    2012-01-01

    Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron...

  1. Computational prediction of cAMP receptor protein (CRP binding sites in cyanobacterial genomes

    Directory of Open Access Journals (Sweden)

    Su Zhengchang

    2009-01-01

    Full Text Available Abstract Background Cyclic AMP receptor protein (CRP, also known as catabolite gene activator protein (CAP, is an important transcriptional regulator widely distributed in many bacteria. The biological processes under the regulation of CRP are highly diverse among different groups of bacterial species. Elucidation of CRP regulons in cyanobacteria will further our understanding of the physiology and ecology of this important group of microorganisms. Previously, CRP has been experimentally studied in only two cyanobacterial strains: Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120; therefore, a systematic genome-scale study of the potential CRP target genes and binding sites in cyanobacterial genomes is urgently needed. Results We have predicted and analyzed the CRP binding sites and regulons in 12 sequenced cyanobacterial genomes using a highly effective cis-regulatory binding site scanning algorithm. Our results show that cyanobacterial CRP binding sites are very similar to those in E. coli; however, the regulons are very different from that of E. coli. Furthermore, CRP regulons in different cyanobacterial species/ecotypes are also highly diversified, ranging from photosynthesis, carbon fixation and nitrogen assimilation, to chemotaxis and signal transduction. In addition, our prediction indicates that crp genes in modern cyanobacteria are likely inherited from a common ancestral gene in their last common ancestor, and have adapted various cellular functions in different environments, while some cyanobacteria lost their crp genes as well as CRP binding sites during the course of evolution. Conclusion The CRP regulons in cyanobacteria are highly diversified, probably as a result of divergent evolution to adapt to various ecological niches. Cyanobacterial CRPs may function as lineage-specific regulators participating in various cellular processes, and are important in some lineages. However, they are dispensable in some other lineages. The

  2. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    Directory of Open Access Journals (Sweden)

    John G Koland

    2014-01-01

    Full Text Available Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR, the intrinsic protein tyrosine kinase (PTK activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites in either of the two C-terminal (CT domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in

  3. 76 FR 55109 - Glycine From China

    Science.gov (United States)

    2011-09-06

    ... COMMISSION Glycine From China Determination On the basis of the record \\1\\ developed in the subject five-year... glycine from China would be likely to lead to continuation or recurrence of material injury to an industry... 2011), entitled Glycine from China: Investigation No. 731-TA-718 (Third Review). By order of...

  4. A critical role for glycine transporters in hyperexcitability disorders

    Directory of Open Access Journals (Sweden)

    Robert J Harvey

    2008-03-01

    Full Text Available Defects in mammalian glycinergic neurotransmission result in a complex motor disorder characterized by neonatal hypertonia and an exaggerated startle refl ex, known as hyperekplexia (OMIM 149400. This affects newborn children and is characterized by noise or touch-induced seizures that result in muscle stiffness and breath-holding episodes. Although rare, this disorder can have serious consequences, including brain damage and/or sudden infant death. The primary cause of hyperekplexia is missense and nonsense mutations in the glycine receptor (GlyR α1 subunit gene (GLRA1 on chromosome 5q33.1, although we have also discovered rare mutations in the genes encoding the GlyR β subunit (GLRB and the GlyR clustering proteins gephyrin (GPNH and collybistin (ARHGEF9. Recent studies of the Na+ /Cl--dependent glycine transporters GlyT1 and GlyT2 using mouse knockout models and human genetics have revealed that mutations in GlyT2 are a second major cause of hyperekplexia, while the phenotype of the GlyT1 knockout mouse resembles a devastating neurological disorder known as glycine encephalopathy (OMIM 605899. These findings highlight the importance of these transporters in regulating the levels of synaptic glycine.

  5. Identification of Propofol Binding Sites in a Nicotinic Acetylcholine Receptor with a Photoreactive Propofol Analog*

    Science.gov (United States)

    Jayakar, Selwyn S.; Dailey, William P.; Eckenhoff, Roderic G.; Cohen, Jonathan B.

    2013-01-01

    Propofol, a widely used intravenous general anesthetic, acts at anesthetic concentrations as a positive allosteric modulator of γ-aminobutyric acid type A receptors and at higher concentration as an inhibitor of nicotinic acetylcholine receptors (nAChRs). Here, we characterize propofol binding sites in a muscle-type nAChR by use of a photoreactive analog of propofol, 2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol (AziPm). Based upon radioligand binding assays, AziPm stabilized the Torpedo nAChR in the resting state, whereas propofol stabilized the desensitized state. nAChR-rich membranes were photolabeled with [3H]AziPm, and labeled amino acids were identified by Edman degradation. [3H]AziPm binds at three sites within the nAChR transmembrane domain: (i) an intrasubunit site in the δ subunit helix bundle, photolabeling in the nAChR desensitized state (+agonist) δM2-18′ and two residues in δM1 (δPhe-232 and δCys-236); (ii) in the ion channel, photolabeling in the nAChR resting, closed channel state (−agonist) amino acids in the M2 helices (αM2-6′, βM2-6′ and -13′, and δM2-13′) that line the channel lumen (with photolabeling reduced by >90% in the desensitized state); and (iii) at the γ-α interface, photolabeling αM2-10′. Propofol enhanced [3H]AziPm photolabeling at αM2-10′. Propofol inhibited [3H]AziPm photolabeling within the δ subunit helix bundle at lower concentrations (IC50 = 40 μm) than it inhibited ion channel photolabeling (IC50 = 125 μm). These results identify for the first time a single intrasubunit propofol binding site in the nAChR transmembrane domain and suggest that this is the functionally relevant inhibitory binding site. PMID:23300078

  6. The peptide agonist-binding site of the glucagon-like peptide-1 (GLP-1) receptor based on site-directed mutagenesis and knowledge-based modelling.

    Science.gov (United States)

    Dods, Rachel L; Donnelly, Dan

    2015-11-23

    Glucagon-like peptide-1 (7-36)amide (GLP-1) plays a central role in regulating blood sugar levels and its receptor, GLP-1R, is a target for anti-diabetic agents such as the peptide agonist drugs exenatide and liraglutide. In order to understand the molecular nature of the peptide-receptor interaction, we used site-directed mutagenesis and pharmacological profiling to highlight nine sites as being important for peptide agonist binding and/or activation. Using a knowledge-based approach, we constructed a 3D model of agonist-bound GLP-1R, basing the conformation of the N-terminal region on that of the receptor-bound NMR structure of the related peptide pituitary adenylate cyclase-activating protein (PACAP21). The relative position of the extracellular to the transmembrane (TM) domain, as well as the molecular details of the agonist-binding site itself, were found to be different from the model that was published alongside the crystal structure of the TM domain of the glucagon receptor, but were nevertheless more compatible with published mutagenesis data. Furthermore, the NMR-determined structure of a high-potency cyclic conformationally-constrained 11-residue analogue of GLP-1 was also docked into the receptor-binding site. Despite having a different main chain conformation to that seen in the PACAP21 structure, four conserved residues (equivalent to His-7, Glu-9, Ser-14 and Asp-15 in GLP-1) could be structurally aligned and made similar interactions with the receptor as their equivalents in the GLP-1-docked model, suggesting the basis of a pharmacophore for GLP-1R peptide agonists. In this way, the model not only explains current mutagenesis and molecular pharmacological data but also provides a basis for further experimental design.

  7. Mapping of scorpion toxin receptor sites at voltage-gated sodium channels.

    Science.gov (United States)

    Gurevitz, Michael

    2012-09-15

    Scorpion alpha and beta toxins interact with voltage-gated sodium channels (Na(v)s) at two pharmacologically distinct sites. Alpha toxins bind at receptor site-3 and inhibit channel inactivation, whereas beta toxins bind at receptor site-4 and shift the voltage-dependent activation toward more hyperpolarizing potentials. The two toxin classes are subdivided to distinct pharmacological groups according to their binding preferences and ability to compete for the receptor sites at Na(v) subtypes. To elucidate the toxin-channel surface of interaction at both receptor sites and clarify the molecular basis of varying toxin preferences, an efficient bacterial system for their expression in recombinant form was established. Mutagenesis accompanied by toxicity, binding and electrophysiological assays, in parallel to determination of the three-dimensional structure using NMR and X-ray crystallography uncovered a bipartite bioactive surface in toxin representatives of all pharmacological groups. Exchange of external loops between the mammalian brain channel rNa(v)1.2a and the insect channel DmNa(v)1 highlighted channel regions involved in the varying sensitivity to assorted toxins. In parallel, thorough mutagenesis of channel external loops illuminated points of putative interaction with the toxins. Amino acid substitutions at external loops S1-S2 and S3-S4 of the voltage sensor module in domain II of rNa(v)1.2a had prominent impact on the activity of the beta-toxin Css4 (from Centruroides suffusus suffusus), and substitutions at external loops S1-S2 and S3-S4 of the voltage sensor module in domain IV affected the activity of the alpha-toxin Lqh2 (from Leiurus quinquestriatus hebraeus). Rosetta modeling of toxin-Na(v) interaction using the voltage sensor module of the potassium channel as template raises commonalities in the way alpha and beta toxins interact with the channel. Css4 interacts with rNa(v)1.2a at a crevice between S1-S2 and S3-S4 transmembrane segments in domain

  8. Activation of a GTP-binding protein and a GTP-binding-protein-coupled receptor kinase (beta-adrenergic-receptor kinase-1) by a muscarinic receptor m2 mutant lacking phosphorylation sites.

    Science.gov (United States)

    Kameyama, K; Haga, K; Haga, T; Moro, O; Sadée, W

    1994-12-01

    A mutant of the human muscarinic acetylcholine receptor m2 subtype (m2 receptor), lacking a large part of the third intracellular loop, was expressed and purified using the baculovirus/insect cell culture system. The mutant was not phosphorylated by beta-adrenergic-receptor kinase, as expected from the previous assignment of phosphorylation sites to the central part of the third intracellular loop. However, the m2 receptor mutant was capable of stimulating beta-adrenergic-receptor-kinase-1-mediated phosphorylation of a glutathione S-transferase fusion protein containing the m2 phosphorylation sites in an agonist-dependent manner. Both mutant and wild-type m2 receptors reconstituted with the guanine-nucleotide-binding regulatory proteins (G protein), G(o) and G(i)2, displayed guanine-nucleotide-sensitive high-affinity agonist binding, as assessed by displacement of [3H]quinuclidinyl-benzilate binding with carbamoylcholine, and both stimulated guanosine 5'-3-O-[35S]thiotriphosphate ([35S]GTP[S]) binding in the presence of carbamoylcholine and GDP. The Ki values of carbamoylcholine effects on [3H]quinuclidinyl-benzilate binding were indistinguishable for the mutant and wild-type m2 receptors. Moreover, the phosphorylation of the wild-type m2 receptor by beta-adrenergic-receptor kinase-1 did not affect m2 interaction with G proteins as assessed by the binding of [3H]quinuclidinyl benzilate or [35S]GTP[S]. These results indicate that (a) the m2 receptor serves both as an activator and as a substrate of beta-adrenergic-receptor kinase, and (b) a large part of the third intracellular loop of the m2 receptor does not contribute to interaction with G proteins and its phosphorylation by beta-adrenergic-receptor kinase does not uncouple the receptor and G proteins in reconstituted lipid vesicles.

  9. Complement receptor 2-mediated targeting of complement inhibitors to sites of complement activation.

    Science.gov (United States)

    Song, Hongbin; He, Chun; Knaak, Christian; Guthridge, Joel M; Holers, V Michael; Tomlinson, Stephen

    2003-06-01

    In a strategy to specifically target complement inhibitors to sites of complement activation and disease, recombinant fusion proteins consisting of a complement inhibitor linked to a C3 binding region of complement receptor (CR) 2 were prepared and characterized. Natural ligands for CR2 are C3 breakdown products deposited at sites of complement activation. Fusion proteins were prepared consisting of a human CR2 fragment linked to either the N terminus or C terminus of soluble forms of the membrane complement inhibitors decay accelerating factor (DAF) or CD59. The targeted complement inhibitors bound to C3-opsonized cells, and all were significantly more effective (up to 20-fold) than corresponding untargeted inhibitors at protecting target cells from complement. CR2 fusion proteins also inhibited CR3-dependent adhesion of U937 cells to C3 opsonized erythrocytes, indicating a second potential anti-inflammatory mechanism of CR2 fusion proteins, since CR3 is involved in endothelial adhesion and diapedesis of leukocytes at inflammatory sites. Finally, the in vivo validity of the targeting strategy was confirmed by the demonstration that CR2-DAF, but not soluble DAF, targets to the kidney in mouse models of lupus nephritis that are associated with renal complement deposition.

  10. Neuropeptide Y receptor binding sites in rat brain: differential autoradiographic localizations with sup 125 I-peptide YY and sup 125 I-neuropeptide Y imply receptor heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, D.R.; Walker, M.W.; Miller, R.J.; Snyder, S.H. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))

    1989-08-01

    Neuropeptide Y (NPY) receptor binding sites have been localized in the rat brain by in vitro autoradiography using picomolar concentrations of both 125I-NPY and 125I-peptide YY (PYY) and new evidence provided for differentially localized receptor subtypes. Equilibrium binding studies using membranes indicate that rat brain contains a small population of high-affinity binding sites and a large population of moderate-affinity binding sites. 125I-PYY (10 pM) is selective for high-affinity binding sites (KD = 23 pM), whereas 10 pM 125I-NPY labels both high- and moderate-affinity sites (KD = 54 pM and 920 pM). The peptide specificity and affinity of these ligands in autoradiographic experiments match those seen in homogenates. Binding sites for 125I-PYY are most concentrated in the lateral septum, stratum oriens, and radiatum of the hippocampus, amygdala, piriform cortex, entorhinal cortex, several thalamic nuclei, including the reuniens and lateral posterior nuclei, and substantia nigra, pars compacta, and pars lateralis. In the brain stem, 125I-PYY sites are densest in a variety of nuclei on the floor of the fourth ventricle, including the pontine central grey, the supragenual nucleus, and the area postrema. 125I-NPY binding sites are found in similar areas, but relative levels of NPY binding and PYY binding differ regionally, suggesting differences in sites labeled by the two ligands. These receptor localizations resemble the distribution of endogenous NPY in some areas, but others, such as the hypothalamus, contain NPY immunoreactivity but few binding sites.

  11. Construction of a high affinity zinc binding site in the metabotropic glutamate receptor mGluR1

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Sheppard, P O; Jensen, L B

    2001-01-01

    and the loops connecting these. The findings offer valuable insight into the mechanism of ATD closure and family C receptor activation. Furthermore, the findings demonstrate that ATD regions other than those participating in agonist binding could be potential targets for new generations of ligands......The metabotropic glutamate receptors (mGluRs) belong to family C of the G-protein-coupled receptor (GPCR) superfamily. The receptors are characterized by having unusually long amino-terminal domains (ATDs), to which agonist binding has been shown to take place. Previously, we have constructed...... of a "closed" conformation, and thus stabilizing a more or less inactive "open" form of the ATD. This study presents the first metal ion site constructed in a family C GPCR. Furthermore, it is the first time a metal ion site has been created in a region outside of the seven transmembrane regions of a GPCR...

  12. Mapping Substance P Binding Sites on the Neurokinin-1 Receptor Using Genetic Incorporation of a Photoreactive Amino Acid

    DEFF Research Database (Denmark)

    Valentin-Hansen, Louise; Park, Minyoung; Huber, Thomas;

    2014-01-01

    Substance P (SP) is a neuropeptide that mediates numerous physiological responses, including transmission of pain and inflammation through the neurokinin-1 (NK1) receptor, a G protein-coupled receptor. Previous mutagenesis studies and photoaffinity labeling using ligand analogues suggested that t...... possess multiple determinants for SP binding and demonstrate the utility of genetically encoded photocross-linking to map complex multitopic binding sites on G protein-coupled receptors in a cell-based assay format....... that the binding site for SP includes multiple domains in the N-terminal (Nt) segment and the second extracellular loop (ECLII) of NK1. To map precisely the NK1 residues that interact with SP, we applied a novel receptor-based targeted photocross-linking approach. We used amber codon suppression to introduce...

  13. LIBSA--a method for the determination of ligand-binding preference to allosteric sites on receptor ensembles.

    Science.gov (United States)

    Hocker, Harrison J; Rambahal, Nandini; Gorfe, Alemayehu A

    2014-02-24

    Incorporation of receptor flexibility into computational drug discovery through the relaxed complex scheme is well suited for screening against a single binding site. In the absence of a known pocket or if there are multiple potential binding sites, it may be necessary to do docking against the entire surface of the target (global docking). However no suitable and easy-to-use tool is currently available to rank global docking results based on the preference of a ligand for a given binding site. We have developed a protocol, termed LIBSA for LIgand Binding Specificity Analysis, that analyzes multiple docked poses against a single or ensemble of receptor conformations and returns a metric for the relative binding to a specific region of interest. By using novel filtering algorithms and the signal-to-noise ratio (SNR), the relative ligand-binding frequency at different pockets can be calculated and compared quantitatively. Ligands can then be triaged by their tendency to bind to a site instead of ranking by affinity alone. The method thus facilitates screening libraries of ligand cores against a large library of receptor conformations without prior knowledge of specific pockets, which is especially useful to search for hits that selectively target a particular site. We demonstrate the utility of LIBSA by showing that it correctly identifies known ligand binding sites and predicts the relative preference of a set of related ligands for different pockets on the same receptor.

  14. Probing the orthosteric binding site of GABAA receptors with heterocyclic GABA carboxylic acid bioisosteres

    DEFF Research Database (Denmark)

    Petersen, Jette G; Bergmann, Rikke; Krogsgaard-Larsen, Povl;

    2013-01-01

    selective and potent GABAAR agonists. This review investigates the use of heterocyclic carboxylic acid bioisosteres within the GABAAR area. Several heterocycles including 3-hydroxyisoxazole, 3-hydroxyisoxazoline, 3-hydroxyisothiazole, and the 1- and 3-hydroxypyrazole rings have been employed in order to map...... the orthosteric binding site. The physicochemical properties of the heterocyclic moieties making them suitable for bioisosteric replacement of the carboxylic acid in the molecule of GABA are discussed. A variety of synthetic strategies for synthesis of the heterocyclic scaffolds are available. Likewise, methods...... for introduction of substituents into specific positions of the heterocyclic scaffolds facilitate the investigation of different regions in the orthosteric binding pocket in close vicinity of the core scaffolds of muscimol/GABA. The development of structural models, from pharmacophore models to receptor homology...

  15. Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site.

    Science.gov (United States)

    Kanekiyo, Masaru; Bu, Wei; Joyce, M Gordon; Meng, Geng; Whittle, James R R; Baxa, Ulrich; Yamamoto, Takuya; Narpala, Sandeep; Todd, John-Paul; Rao, Srinivas S; McDermott, Adrian B; Koup, Richard A; Rossmann, Michael G; Mascola, John R; Graham, Barney S; Cohen, Jeffrey I; Nabel, Gary J

    2015-08-27

    Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses.

  16. Bacteriophage lambda receptor site on the Escherichia coli K-12 LamB protein.

    Science.gov (United States)

    Gehring, K; Charbit, A; Brissaud, E; Hofnung, M

    1987-05-01

    We have analyzed eight new phage-resistant missense mutations in lamB. These mutations identify five new amino acid residues essential for phage lambda adsorption. Two mutations at positions 245 and 382 affect residues which were previously identified, but lead to different amino acid changes. Three mutations at residues 163, 164, and 250 enlarge and confirm previously proposed phage receptor sites. Two different mutations at residue 259 and one at 18 alter residues previously suggested as facing the periplasmic face. The mutation at residue 18 implicates for the first time the amino-terminal region of the LamB protein in phage adsorption. The results are discussed in terms of the topology of the LamB protein.

  17. Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor Binding Site

    Science.gov (United States)

    2016-06-14

    1 Antibody treatment of Ebola and Sudan virus infection via a uniquely exposed epitope within the glycoprotein receptor-binding site Katie A...interaction with the endosomal receptor NPC-1, cross neutralizes Ebola (EBOV), Sudan (SUDV), and Bundibugyo viruses, and protects mice and guinea pigs...Filoviridae include two marburgviruses: Marburg virus (MARV) and Ravn virus (RAVV), and five ebolaviruses: Ebola virus (EBOV), Sudan virus (SUDV

  18. Analysis of the Binding Sites of Porcine Sialoadhesin Receptor with PRRSV

    Directory of Open Access Journals (Sweden)

    Yibo Jiang

    2013-12-01

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV can infect pigs and cause enormous economic losses to the pig industry worldwide. Porcine sialoadhesin (pSN and CD163 have been identified as key viral receptors on porcine alveolar macrophages (PAM, a main target cell infected by PRRSV. In this study, the protein structures of amino acids 1–119 from the pSN and cSN (cattle sialoadhesin N-termini (excluding the 19-amino acid signal peptide were modeled via homology modeling based on mSN (mouse sialoadhesin template structures using bioinformatics tools. Subsequently, pSN and cSN homology structures were superposed onto the mSN protein structure to predict the binding sites of pSN. As a validation experiment, the SN N-terminus (including the wild-type and site-directed-mutant-types of pSN and cSN was cloned and expressed as a SN-GFP chimera protein. The binding activity between SN and PRRSV was confirmed by WB (Western blotting, FAR-WB (far Western blotting, ELISA (enzyme-linked immunosorbent assay and immunofluorescence assay. We found that the S107 amino acid residue in the pSN N-terminal played a crucial role in forming a special cavity, as well as a hydrogen bond for enhancing PRRSV binding during PRRSV infection. S107 may be glycosylated during PRRSV infection and may also be involved in forming the cavity for binding PRRSV along with other sites, including W2, Y44, S45, R97, R105, W106 and V109. Additionally, S107 might also be important for pSN binding with PRRSV. However, the function of these binding sites must be confirmed by further studies.

  19. Mutation of putative N-linked glycosylation sites on the human nucleotide receptor P2X7 reveals a key residue important for receptor function.

    Science.gov (United States)

    Lenertz, Lisa Y; Wang, Ziyi; Guadarrama, Arturo; Hill, Lindsay M; Gavala, Monica L; Bertics, Paul J

    2010-06-08

    The nucleotide receptor P2X(7) is an immunomodulatory cation channel and a potential therapeutic target. P2X(7) is expressed in immune cells such as monocytes and macrophages and is activated by extracellular ATP following tissue injury or infection. Ligand binding to P2X(7) can stimulate ERK1/2, the transcription factor CREB, enzymes linked to the production of reactive oxygen species and interleukin-1 isoforms, and the formation of a nonspecific pore. However, little is known about the biochemistry of P2X(7), including whether the receptor is N-linked glycosylated and if this modification affects receptor function. Here we provide evidence that P2X(7) is sensitive to the glycosidases EndoH and PNGase F and that the human receptor appears glycosylated at N187, N202, N213, N241, and N284. Mutation of N187 results in weakened P2X(7) agonist-induced phosphorylation of ERK1/2, CREB, and p90 ribosomal S6 kinase, as well as a decreased level of pore formation. In further support of a role for glycosylation in receptor function, treatment of RAW 264.7 macrophages with the N-linked glycosylation synthesis inhibitor tunicamycin attenuates P2X(7) agonist-induced, but not phorbol ester-induced, ERK1/2 phosphorylation. Interestingly, residue N187 belongs to an N-linked glycosylation consensus sequence found in six of the seven P2X family members, suggesting this site is fundamentally important to P2X receptor function. To address the mechanism whereby N187 mutation attenuates receptor activity, we developed a live cell proteinase K digestion assay that demonstrated altered cell surface expression of P2X(7) N187A. This is the first report to map human P2X(7) glycosylation sites and reveal residue N187 is critical for receptor trafficking and function.

  20. Aboveground feeding by soybean aphid, Aphis glycines, affects soybean cyst nematode, Heterodera glycines, reproduction belowground.

    Directory of Open Access Journals (Sweden)

    Michael T McCarville

    Full Text Available Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27-52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.

  1. Structure-activity relationships for the irreversible blockade of nicotinic receptor agonist sites by lophotoxin and congeneric diterpene lactones

    Energy Technology Data Exchange (ETDEWEB)

    Culver, P.; Burch, M.; Potenza, C.; Wasserman, L.; Fenical, W.; Taylor, P.

    1985-11-01

    Lophotoxin, a diterpene lactone paralytic toxin from gorgonian corals of the genus Lophogorgia, inhibits ( SVI)-alpha-toxin binding to surface nicotinic receptors of BC3H-1 cells by irreversible occupation of the primary agonist sites. In contrast, receptor-bearing membrane fragments or detergent-solubilized receptors prepared from BC3H-1 cells are not susceptible to lophotoxin block. Thus, lophotoxin inhibition requires intact cells. However, when intact cells were incubated with lophotoxin, subsequent membrane-fragment preparation or detergent solubilization of the receptors did not diminish lophotoxin occupation of ( SVI)-alpha-toxin-binding sites, indicating that lophotoxin binds very tightly to nicotinic receptors. These studies further demonstrate that both surface and nonsurface nicotinic receptors of BC3H-1 cells are susceptible to irreversible occupation by lophotoxin, indicating that the lipophilic toxin freely permeates intact cells. The authors also examined several structural analogs of lophotoxin, one of which was equipotent with lophotoxin for inhibition of ( SVI)-alpha-toxin binding to intact cells and, notably, also blocked alpha-toxin binding to detergent-extracted receptor.

  2. DNA methylation of specific CpG sites in the promoter region regulates the transcription of the mouse oxytocin receptor.

    Directory of Open Access Journals (Sweden)

    Shimrat Mamrut

    Full Text Available Oxytocin is a peptide hormone, well known for its role in labor and suckling, and most recently for its involvement in mammalian social behavior. All central and peripheral actions of oxytocin are mediated through the oxytocin receptor, which is the product of a single gene. Transcription of the oxytocin receptor is subject to regulation by gonadal steroid hormones, and is profoundly elevated in the uterus and mammary glands during parturition. DNA methylation is a major epigenetic mechanism that regulates gene transcription, and has been linked to reduced expression of the oxytocin receptor in individuals with autism. Here, we hypothesized that transcription of the mouse oxytocin receptor is regulated by DNA methylation of specific sites in its promoter, in a tissue-specific manner. Hypothalamus-derived GT1-7, and mammary-derived 4T1 murine cell lines displayed negative correlations between oxytocin receptor transcription and methylation of the gene promoter, and demethylation caused a significant enhancement of oxytocin receptor transcription in 4T1 cells. Using a reporter gene assay, we showed that methylation of specific sites in the gene promoter, including an estrogen response element, significantly inhibits transcription. Furthermore, methylation of the oxytocin receptor promoter was found to be differentially correlated with oxytocin receptor expression in mammary glands and the uterus of virgin and post-partum mice, suggesting that it plays a distinct role in oxytocin receptor transcription among tissues and under different physiological conditions. Together, these results support the hypothesis that the expression of the mouse oxytocin receptor gene is epigenetically regulated by DNA methylation of its promoter.

  3. Phylogenetic distribution of [3H]kainic acid receptor binding sites in neuronal tissue.

    Science.gov (United States)

    London, E D; Klemm, N; Coyle, J T

    1980-06-23

    derived from these displacement curves were 1.0 for unlabeled kainic acid but approximately 0.5 for L- and D-glutamic acids and dihydrokainic acid, which is compatible with negative cooperativity. In summary, these studies demonstrated a widespread distribution throughout the animal kingdom of specific binding sites for kainic acid in neural tissue; the characteristics of these receptor sites are remarkably similar from primitive vertebrates to man.

  4. 3-Alkyl- and 3-amido-isothiazoloquinolin-4-ones as ligands for the benzodiazepine site of GABAA receptors

    DEFF Research Database (Denmark)

    Nilsson, Jakob; Nielsen, Elsebet Østergaard; Liljefors, Tommy

    2012-01-01

    Based on a pharmacophore model of the benzodiazepine binding site of the GABA(A) receptors, developed with synthetic flavones and potent 3-carbonylquinolin-4-ones, 3-alkyl- and 3-amido-6-methylisothiazoloquinolin-4-ones were designed, prepared and assayed. The suggestion that the interaction...... interaction with the lipophilic pockets of the pharmacophore model. The most potent 3-alkyl derivative, 3-pentyl-6-methylisothiazoloquinolin-4-one, has an affinity (K(i) value) for the benzodiazepine binding site of the GABA(A) receptors of 13nM. However, by replacing the 3-pentyl with a 3-butyramido group...

  5. Crystallization of glycine with ultrasound

    DEFF Research Database (Denmark)

    Louhi-Kultanen, Marjatta; Karjalainen, Milja; Rantanen, Jukka

    2006-01-01

    Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound with an ultr......Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound...... with an ultrasound frequency of 20kHz at two temperature ranges 40-50 and 20-30 degrees C in a jacketed 250-ml cooling crystallizer equipped with a stirrer. The polymorph composition of the obtained crystals was analyzed with a temperature variable X-ray powder diffractometer (XRPD). XRPD results showed that......, besides the operating temperature, the glycine polymorphism was affected also by insonation. This was especially the case at the lower temperature range. Furthermore, based on the heat balance within the crystallizer, an increase in required cooling capacity was presented as a function of increasing...

  6. A specific receptor site for glycerol, a new sweet tastant for Drosophila: structure-taste relationship of glycerol in the labellar sugar receptor cell.

    Science.gov (United States)

    Koseki, Takaya; Koganezawa, Masayuki; Furuyama, Akira; Isono, Kunio; Shimada, Ichiro

    2004-10-01

    Glycerol, a linear triol, is a sweet tastant for mammals but it has not previously been recognized to stimulate the sense of taste in insects. Here we show by electrophysiological experimentation that it effectively stimulates the labellar sugar receptor cell of Drosophila. We also show that in accord with the electrophysiological observations, the behavioral feeding response to glycerol is dose dependent. 3-Amino-1,2-propanediol inhibited the response of the sugar receptor cell to glycerol, specifically and competitively, while it had almost no effect on responses to sucrose, D-glucose, D-fructose and trehalose. In the null Drosophila mutant for the trehalose receptor (DeltaEP19), the response to glycerol showed no change, in sharp contrast with a characteristic drastic decrease in the response to trehalose. The glycerol concentration-response curves for I-type and L-type labellar hairs were statistically indistinguishable, while those for sucrose, D-glucose, D-fructose and trehalose were clearly different. These all indicate the presence of a specific receptor site for glycerol. The glycerol site was characterized by comparing the effectiveness of various derivatives of glycerol. Based on this structure-taste relationship of glycerol, a model is proposed for the glycerol site including three subsites and two steric barriers, which cannot accommodate carbon-ring containing sugars such as D-glucose. Copyright 2004 Oxford University Press

  7. Receptor site topographies for phencyclidine-like and sigma drugs: predictions from quantitative conformational, electrostatic potential, and radioreceptor analyses.

    Science.gov (United States)

    Manallack, D T; Wong, M G; Costa, M; Andrews, P R; Beart, P M

    1988-12-01

    Computer-assisted molecular modelling techniques and electrostatic analyses of a wide range of phenycyclidine (PCP) and sigma ligands, in conjunction with radioreceptor studies, were used to determine the topographies of the PCP and sigma receptors. The PCP receptor model was defined using key molecules from the arylcyclohexylamine, benzomorphan, bridged benz[f]isoquinoline, and dibenzocycloalkenimine drug classes. Hypothetical receptor points (R1, R2) were constructed onto the aromatic ring of each compound to represent hydrophobic interactions with the receptor, along with an additional receptor point (R3) representing a hydrogen bond between the nitrogen atom and the receptor. The superimposition of these key molecules gave the coordinates of the receptor points and nitrogen defining the primary PCP pharmacophore as follows: R1 (0.00, 3.50, 0.00), R2 (0.00, -3.50, 0.00), R3 (6.66, -1.13, 0.00), and N (3.90, -1.46, -0.32). Additional analyses were used to describe secondary binding sites for an additional hydrogen bonding site and two lipophilic clefts. Similarly, the sigma receptor model was constructed from ligands of the benzomorphan, octahydrobenzo[f]quinoline, phenylpiperidine, and diphenylguanidine drug classes. Coordinates for the primary sigma pharmacophore are as follows: R1 (0.00, 3.50, 0.00), R2 (0.00, -3.50, 0.00), R3 (6.09, 2.09, 0.00), and N (4.9, -0.12, -1.25). Secondary binding sites for sigma ligands were proposed for the interaction of aromatic ring substituents and large N-substituted lipophilic groups with the receptor. The sigma receptor model differs from the PCP model in the position of nitrogen atom, direction of the nitrogen lone pair vector, and secondary sigma binding sites. This study has thus demonstrated that the differing quantitative structure-activity relationships of PCP and sigma ligands allow the definition of discrete receptors. These models may be used in conjunction with rational drug design techniques to design novel PCP

  8. Carboxyl-terminal multi-site phosphorylation regulates internalization and desensitization of the human sst2 somatostatin receptor.

    Science.gov (United States)

    Lehmann, Andreas; Kliewer, Andrea; Schütz, Dagmar; Nagel, Falko; Stumm, Ralf; Schulz, Stefan

    2014-04-25

    The somatostatin receptor 2 (sst2) is the pharmacological target of somatostatin analogs that are widely used in the diagnosis and treatment of human neuroendocrine tumors. We have recently shown that the stable somatostatin analogs octreotide and pasireotide (SOM230) stimulate distinct patterns of sst2 receptor phosphorylation and internalization. Like somatostatin, octreotide promotes the phosphorylation of at least six carboxyl-terminal serine and threonine residues namely S341, S343, T353, T354, T356 and T359, which in turn leads to a robust receptor endocytosis. Unlike somatostatin, pasireotide stimulates a selective phosphorylation of S341 and S343 of the human sst2 receptor followed by a partial receptor internalization. Here, we show that exchange of S341 and S343 by alanine is sufficient to block pasireotide-driven internalization, whereas mutation of T353, T354, T356 and T359 to alanine is required to strongly inhibited both octreotide- and somatostatin-induced internalization. Yet, combined mutation of T353, T354, T356 and T359 is not sufficient to prevent somatostatin-driven β-arrestin mobilization and receptor desensitization. Replacement of all fourteen carboxyl-terminal serine and threonine residues by alanine completely abrogates sst2 receptor internalization and β-arrestin mobilization in HEK293 cells. Together, our findings demonstrate for the first time that agonist-selective sst2 receptor internalization is regulated by multi-site phosphorylation of its carboxyl-terminal tail.

  9. Genome-Wide Profiling of Liver X Receptor, Retinoid X Receptor, and Peroxisome Proliferator-Activated Receptor α in Mouse Liver Reveals Extensive Sharing of Binding Sites

    DEFF Research Database (Denmark)

    Boergesen, Michael; Pedersen, Thomas Åskov; Gross, Barbara;

    2012-01-01

    The liver X receptors (LXRs) are nuclear receptors that form permissive heterodimers with retinoid X receptor (RXR) and are important regulators of lipid metabolism in the liver. We have recently shown that RXR agonist-induced hypertriglyceridemia and hepatic steatosis in mice are dependent on LXRs...

  10. Transient elevation of amygdala alpha 2 adrenergic receptor binding sites during the early stages of amygdala kindling.

    Science.gov (United States)

    Chen, M J; Vigil, A; Savage, D D; Weiss, G K

    1990-03-01

    Enhanced noradrenergic neurotransmission retards but does not prevent the development of kindling. We previously reported that locus coeruleus (LC) alpha 2 adrenergic receptor binding sites are transiently elevated during the early stages of kindling development. Since the firing activity of LC noradrenergic neurons is partially regulated via an alpha 2 receptor-mediated recurrent inhibition, the transient elevation in LC alpha 2 receptors could decrease LC activity and consequently facilitate the development of kindling. Transient elevation of alpha 2 receptor binding sites during early stages of kindling may also occur on noradrenergic axon terminals projecting to forebrain sites. Using in vitro neurotransmitter autoradiography techniques, we investigated this hypothesis by measuring specific [3H]idazoxan binding in 5 different areas of rat forebrain at 2 different stages of kindling development. After 2 class 1 kindled seizures, specific [3H]idazoxan binding was elevated significantly in the amygdala, but not in other forebrain regions. No differences in specific [3H]idazoxan binding were observed in any of the 5 brain regions in rats kindled to a single class 5 kindled motor seizure. Saturation of binding experiments indicated that the increase in amygdala [3H]idazoxan binding, following 2 class 1 kindled motor seizures, was due to an increase in the total number of alpha 2 receptor binding sites without a change in the affinity of the binding sites for [3H]idazoxan. Thus, the transient increase in alpha 2 receptors that occurs in the LC in the early stages of kindling also occurs in the forebrain region in which the kindled seizure originates.

  11. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains

    DEFF Research Database (Denmark)

    Behrendt, N; Ronne, E; Dano, K

    1996-01-01

    . The purified suPAR was cross-linked to the radiolabeled amino-terminal fragment (ATF) of urokinase, followed by cleavage with chymotrypsin. In accordance with the cleavage pattern found for the uncomplexed receptor, this treatment led to cleavage between D1 and D(2 + 3). Analysis of the radiolabeled fragments...... revealed the expected ligand labeling of D1 but a clear labeling of D(2 + 3) was also found, indicating that this part of the molecule is also situated in close contact with ATF in the receptor-ligand complex. The latter contact site may contribute to the role of molecular regions outside D1 in high...

  12. Discovery of a novel allosteric modulator of 5-HT3 receptor

    DEFF Research Database (Denmark)

    Trattnig, Sarah M; Harpsøe, Kasper; Thygesen, Sarah B

    2012-01-01

    The ligand-gated ion channels in the Cysloop receptor superfamily mediate the effects of neurotransmitters acetylcholine, serotonin, GABA and glycine. Cysloop receptor signaling is susceptible to modulation by ligands acting through numerous allosteric sites. Here we report the discovery of a novel...... receptor guided by a homology model, PU02 is demonstrated to act through a transmembrane intersubunit site situated in the upper three helical turns of TM2 and TM3 in the (+)subunit and TM1 and TM2 in the (minus)subunit. The Ser248, Leu288, Ile290, Thr294 and Gly306 residues are identified as important...... and inhibiting 5-HT-evoked signaling through these mutants at low and high concentrations, respectively. The PU02 binding site in the 5HT3R corresponds to allosteric sites in anionic Cysloop receptors, which emphasizes the uniform nature of the molecular events underlying signaling through the receptors...

  13. Plasticity-related binding of GABA and muscarinic receptor sites in piriform cortex of rat: An autoradiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, A.P.; Westrum, L.E. (Univ. of Washington, Seattle (USA))

    1989-09-01

    This study has used the recently developed in vitro quantitative autoradiographic technique to examine the effects of olfactory bulb (OB) removal on receptor-binding sites in the deafferented piriform cortex (PC) of the rat. The gamma-aminobutyric acid-benzodiazepine receptor (GABA-BZR)- and muscarinic cholinergic receptor (MChR)-binding sites in layer I of PC were localized using (3H)flunitrazepam and (3H)quinuclidinyl benzilate as ligands, respectively. From the resultant autoradiograms the optical densities were measured using a Drexel-DUMAS image analysis system. The densities of BZR and MChR-binding sites were markedly increased in the PC ipsilateral to the lesion as compared to the contralateral side in those subjects that were operated in adulthood (Postnatal Day 100, PN 100). Comparisons between the unoperated and PN 100 operated animals also showed significant increases in the deafferented PC. In the animals operated on the day of birth (PN 0) no significant differences were seen between the operated and the contralateral PC. The difference between the PN 0 deafferented PC and the unoperated controls shows a slight decrease in BZR density in the former group; however, in case of the MChR there is a slight increase on the side of the lesion. These results demonstrate that deafferentation of PC by OB removal appears to modulate both the BZR-binding sites that are coupled with the GABA-A receptor complex and the MChR-binding sites. The results also suggest that possibility of a role for these neurotransmitter receptor-binding sites in plasticity following deafferentation.

  14. The D2 period of collagen II contains a specific binding site for the human discoidin domain receptor, DDR2.

    Science.gov (United States)

    Leitinger, Birgit; Steplewski, Andrzej; Fertala, Andrzej

    2004-12-03

    The human discoidin domain receptors (DDRs), DDR1 and DDR2, are expressed widely and, uniquely among receptor tyrosine kinases, activated by the extracellular matrix protein collagen. This activation is due to a direct interaction of collagen with the DDR discoidin domain. Here, we localised a specific DDR2 binding site on the triple-helical region of collagen II. Collagen II was found to be a much better ligand for DDR2 than for DDR1. As expected, DDR2 binding to collagen II was dependent on triple-helical collagen and was mediated by the DDR2 discoidin domain. Collagen II served as a potent stimulator of DDR2 autophosphorylation, the first step in transmembrane signalling. To map the DDR2 binding site(s) on collagen II, we used recombinant collagen II variants with specific deletions of one of the four repeating D periods. We found that the D2 period of collagen II was essential for DDR2 binding and receptor autophosphorylation, whereas the D3 and D4 periods were dispensable. The DDR2 binding site on collagen II was further defined by recombinant collagen II-like proteins consisting predominantly of tandem repeats of the D2 or D4 period. The D2 construct, but not the D4 construct, mediated DDR2 binding and receptor autophosphorylation, demonstrating that the D2 period of collagen II harbours a specific DDR2 recognition site. The discovery of a site-specific interaction of DDR2 with collagen II gives novel insight into the nature of the interaction of collagen II with matrix receptors.

  15. Signal transduction by the formyl peptide receptor. Studies using chimeric receptors and site-directed mutagenesis define a novel domain for interaction with G-proteins.

    Science.gov (United States)

    Amatruda, T T; Dragas-Graonic, S; Holmes, R; Perez, H D

    1995-11-24

    The binding of small peptide ligands to high affinity chemoattractant receptors on the surface of neutrophils and monocytes leads to activation of heterotrimeric G-proteins, stimulation of phosphatidylinositol-phospholipase C (PI-PLC), and subsequently to the inflammatory response. It was recently shown (Amatruda, T. T., Gerard, N. P., Gerard, C., and Simon, M. I. (1993) J. Biol. Chem. 268, 10139-10144) that the receptor for the chemoattractant peptide C5a specifically interacts with G alpha 16, a G-protein alpha subunit of the Gq class, to trigger ligand-dependent stimulation of PI-PLC in transfected cells. In order to further characterize this chemoattractant peptide signal transduction pathway, we transfected cDNAs encoding the formylmethionylleucylphenylalanine receptor (fMLPR) into COS cells and measured the production of inositol phosphates. Ligand-dependent activation of PI-PLC was seen in COS cells transfected with the fMLPR and G alpha 16 and stimulated with fMLP but not in cells transfected with receptor alone or with receptor plus G alpha q. Chimeric receptors in which the N-terminal extracellular domain, the second intracellular domain, or the intracellular C-terminal tail of the fMLP receptor was replaced with C5a receptor domains (Perez, H. D., Holmes, R., Vilander, L. R., Adams, R. R., Manzana, W., Jolley, D., and Andrews, W. H. (1993) J. Biol. Chem. 268, 2292-2295) were capable of ligand-dependent activation of PI-PLC when co-transfected with G alpha 16. A chimeric receptor exchanging the first intracellular domain of the fMLPR was constitutively activated, stimulating PI-PLC in the absence of ligand. Constitutive activation of PI-PLC, to a level 233% of that seen in cells transfected with wild-type fMLP receptors, was dependent on G alpha 16. Site-directed mutagenesis of the first intracellular domain of the fMLPR (amino acids 54-62) reveals this to be a domain necessary for ligand-dependent activation of G alpha 16. These results suggest that

  16. Quantitative encoding of a partial agonist effect on individual opioid receptors by multi-site phosphorylation and threshold detection

    Science.gov (United States)

    Lau, Elaine K.; Trester-Zedlitz, Michelle; Trinidad, Jonathan C.; Kotowski, Sarah J.; Krutchinsky, Andrew N.; Burlingame, Alma L.; von Zastrow, Mark

    2013-01-01

    Many drugs act as partial agonists of seven-transmembrane signaling receptors when compared to endogenous ligands. Partial agonism is well described as a 'macroscopic' property manifest at the level of physiological systems or cell populations, but it is not known whether partial agonists encode discrete regulatory information at the 'microscopic' level of individual receptors. We addressed this question by focusing on morphine, a partial agonist drug for µ-type opioid peptide receptors, and combining quantitative mass spectrometry with cell biological analysis to investigate morphine's reduced efficacy for promoting receptor endocytosis when compared to a peptide full agonist. We show that these chemically distinct ligands produce a complex, and qualitatively similar mixture of phosphorylated opioid receptor forms in intact cells. Quantitatively, however, the agonists promote markedly disproportional production of multi-site phosphorylation involving a specific Ser/Thr motif, whose modification at more than one residue is essential for efficient recruitment of the adaptor protein β-arrestin to clathrin-coated pits that mediate subsequent endocytosis of MORs. These results reveal quantitative encoding of agonist-selective endocytosis at the level of individual opioid receptors, based on the conserved biochemical principles of multi-site phosphorylation and threshold detection. PMID:21868358

  17. The discovery of glycine and related amino acid-based factor Xa inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Kohrt, Jeffrey T.; Filipski, Kevin J.; Cody, Wayne L.; Bigge, Christopher F.; La, Frances; Welch, Kathleen; Dahring, Tawny; Bryant, John W.; Leonard, Daniele; Bolton, Gary; Narasimhan, Lakshmi; Zhang, Erli; Peterson, J. Thomas; Haarer, Staci; Sahasrabudhe, Vaishali; Janiczek, Nancy; Desiraju, Shrilakshmi; Hena, Mostofa; Fiakpui, Charles; Saraswat, Neerja; Sharma, Raman; Sun, Shaoyi; Maiti, Samarendra N.; Leadley, Robert; Edmunds, Jeremy J. (Naeja); (Pfizer)

    2010-12-03

    Herein, we report on the identification of three potent glycine and related amino acid-based series of FXa inhibitors containing a neutral P1 chlorophenyl pharmacophore. A X-ray crystal structure has shown that constrained glycine derivatives with optimized N-substitution can greatly increase hydrophobic interactions in the FXa active site. Also, the substitution of a pyridone ring for a phenylsulfone ring in the P4 sidechain resulted in an inhibitor with enhanced oral bioavailability.

  18. Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Karl, M.; Lamberts, S.W.J.; Detera-Wadleigh, S.D.; Encio, I.J.; Stratakis, C.A.; Hurley, D.M.; Accili, D.; Chrousos, G.P. (National Institutes of Health, Bethesda, MD (United States) Erasmus Univ. of Rotterdam (Netherlands))

    1993-03-01

    The clinical syndrome of generalized, compensated glucocorticoid resistance is characterized by increased cortisol secretion without clinical evidence of hyper- or hypocortisolism, and manifestations of androgen and/or mineralocorticoid excess. This condition results from partial failure of the glucocorticoid receptor (GR) to modulate transcription of its target genes. The authors studied the molecular mechanisms of this syndrome in a Dutch kindred, whose affected members had hypercortisolism and approximately half of normal GRs, and whose proband was a young woman with manifestations of hyperandrogenism. Using the polymerase chain reaction to amplify and sequence each of the nine exons of the GR gene [alpha], along with their 5[prime]- and 3[prime]-flanking regions, the authors identified a 4-base deletion at the 3[prime]-boundary of exon 6 in one GR allele ([Delta][sub 4]), which removed a donor splice site in all three affected members studied. In contrast, the sequence of exon 6 in the two unaffected siblings was normal. A single nucleotide substitution causing an amino acid substitution in the amino terminal domain of the GR (asparagine to serine, codon 363) was also discovered in exon 2 of the other allele (G[sub 1220]) in the proband, in one of her affected brothers and in her unaffected sister. This deletion in the glucocorticoid receptor gene was associated with the expression of only one allele and a decrease of GR protein by 50% in affected members of this glucocorticoid resistant family. The mutation identified in exon 2 did not segregate with the disease and appears to be of no functional significance. The presence of the null allele was apparently compensated for by increased cortisol production at the expense of concurrent hyperandrogenism. 40 refs., 3 figs.

  19. Evidence of positive selection at codon sites localized in extracellular domains of mammalian CC motif chemokine receptor proteins

    Directory of Open Access Journals (Sweden)

    Metzger Kelsey J

    2010-05-01

    Full Text Available Abstract Background CC chemokine receptor proteins (CCR1 through CCR10 are seven-transmembrane G-protein coupled receptors whose signaling pathways are known for their important roles coordinating immune system responses through targeted trafficking of white blood cells. In addition, some of these receptors have been identified as fusion proteins for viral pathogens: for example, HIV-1 strains utilize CCR5, CCR2 and CCR3 proteins to obtain cellular entry in humans. The extracellular domains of these receptor proteins are involved in ligand-binding specificity as well as pathogen recognition interactions. In mammals, the majority of chemokine receptor genes are clustered together; in humans, seven of the ten genes are clustered in the 3p21-24 chromosome region. Gene conversion events, or exchange of DNA sequence between genes, have been reported in chemokine receptor paralogs in various mammalian lineages, especially between the cytogenetically closely located pairs CCR2/5 and CCR1/3. Datasets of mammalian orthologs for each gene were analyzed separately to minimize the potential confounding impact of analyzing highly similar sequences resulting from gene conversion events. Molecular evolution approaches and the software package Phylogenetic Analyses by Maximum Likelihood (PAML were utilized to investigate the signature of selection that has acted on the mammalian CC chemokine receptor (CCR gene family. The results of neutral vs. adaptive evolution (positive selection hypothesis testing using Site Models are reported. In general, positive selection is defined by a ratio of nonsynonymous/synonymous nucleotide changes (dN/dS, or ω >1. Results Of the ten mammalian CC motif chemokine receptor sequence datasets analyzed, only CCR2 and CCR3 contain amino acid codon sites that exhibit evidence of positive selection using site based hypothesis testing in PAML. Nineteen of the twenty codon sites putatively indentified as likely to be under positive

  20. Overlapping binding site for the endogenous agonist, small-molecule agonists, and ago-allosteric modulators on the ghrelin receptor

    DEFF Research Database (Denmark)

    Holst, Birgitte; Frimurer, Thomas M; Mokrosinski, Jacek

    2009-01-01

    A library of robust ghrelin receptor mutants with single substitutions at 22 positions in the main ligand-binding pocket was employed to map binding sites for six different agonists: two peptides (the 28-amino-acid octanoylated endogenous ligand ghrelin and the hexapeptide growth hormone......, and PheVI:23 on the opposing face of transmembrane domain (TM) VI. Each of the agonists was also affected selectively by specific mutations. The mutational map of the ability of L-692,429 and GHRP-6 to act as allosteric modulators by increasing ghrelin's maximal efficacy overlapped with the common....... It is concluded that although each of the ligands in addition exploits other parts of the receptor, a large, common binding site for both small-molecule agonists--including ago-allosteric modulators--and the endogenous agonist is found on the opposing faces of TM-III and -VI of the ghrelin receptor....

  1. Identification of Host Insulin Binding Sites on Schistosoma japonicum Insulin Receptors.

    Directory of Open Access Journals (Sweden)

    Rachel J Stephenson

    Full Text Available Schistosoma japonicum insulin receptors (SjIRs have been identified as encouraging vaccine candidates. Interrupting or blocking the binding between host insulin and the schistosome insulin receptors (IRs may result in reduced glucose uptake leading to starvation and stunting of worms with a reduction in egg output. To further understand how schistosomes are able to exploit host insulin for development and growth, and whether these parasites and their mammalian hosts compete for the same insulin source, we identified insulin binding sites on the SjIRs. Based on sequence analysis and the predicted antigenic structure of the primary sequences of the SjIRs, we designed nine and eleven peptide analogues from SjIR-1 and SjIR-2, respectively. Using the Octet RED system, we identified analogues derived from SjIR-1 (10 and SjIR-2 (20, 21 and 22 with insulin-binding sequences specific for S. japonicum. Nevertheless, the human insulin receptor (HIR may compete with the SjIRs in binding human insulin in other positions which are important for HIR binding to insulin. However, no binding occurred between insulin and parasite analogues derived from SjIR-1 (2, 7 and 8 and SjIR-2 (14, 16 and 18 at the same locations as HIR sequences which have been shown to have strong insulin binding affinities. Importantly, we found two analogues (1 and 3, derived from SjIR-1, and two analogues (13 and 15 derived from SjIR-2, were responsible for the major insulin binding affinity in S. japonicum. These peptide analogues were shown to have more than 10 times (in KD value stronger binding capacity for human insulin compared with peptides derived from the HIR in the same sequence positions. Paradoxically, analogues 1, 3, 13 and 15 do not appear to contain major antigenic determinants which resulted in poor antibody responses to native S. japonicum protein. This argues against their future development as peptide-vaccine candidates.

  2. Meta-diamide insecticides acting on distinct sites of RDL GABA receptor from those for conventional noncompetitive antagonists.

    Science.gov (United States)

    Nakao, Toshifumi; Banba, Shinich; Nomura, Michikazu; Hirase, Kangetsu

    2013-04-01

    The RDL GABA receptor is an attractive target of insecticides. Here we demonstrate that meta-diamides [3-benzamido-N-(4-(perfluoropropan-2-yl)phenyl)benzamides] are a distinct class of RDL GABA receptor antagonists showing high insecticidal activity against Spodoptera litura. We also suggest that the mode of action of the meta-diamides is distinct from that of conventional noncompetitive antagonists (NCAs), such as fipronil, picrotoxin, lindane, dieldrin, and α-endosulfan. Using a membrane potential assay, we examined the effects of the meta-diamide 3-benzamido-N-(2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)-2-fluorobenzamide (meta-diamide 7) and NCAs on mutant Drosophila RDL GABA receptors expressed in Drosophila Mel-2 cells. NCAs had little or no inhibitory activity against at least one of the three mutant receptors (A2'S, A2'G, and A2'N), which were reported to confer resistance to NCAs. In contrast, meta-diamide 7 inhibited all three A2' mutant receptors, at levels comparable to its activity with the wild-type receptor. Furthermore, the A2'S·T6'V mutation almost abolished the inhibitory effects of all NCAs. However, meta-diamide 7 inhibited the A2'S・T6'S mutant receptor at the same level as its activity with the wild-type receptor. In contrast, a G336M mutation in the third transmembrane domain of the RDL GABA receptor abolished the inhibitory activities of meta-diamide 7, although the G336M mutation had little effect on the inhibitory activities of conventional NCAs. Molecular modeling studies also suggested that the binding site of meta-diamides was different from those of NCAs. Meta-diamide insecticides are expected to be prominent insecticides effective against A2' mutant RDL GABA receptors with a different mode of action.

  3. Site-specific and synergistic stimulation of methylation on the bacterial chemotaxis receptor Tsr by serine and CheW

    Directory of Open Access Journals (Sweden)

    Weis Robert M

    2005-03-01

    Full Text Available Abstract Background Specific glutamates in the methyl-accepting chemotaxis proteins (MCPs of Escherichia coli are modified during sensory adaptation. Attractants that bind to MCPs are known to increase the rate of receptor modification, as with serine and the serine receptor (Tsr, which contributes to an increase in the steady-state (adapted methylation level. However, MCPs form ternary complexes with two cytoplasmic signaling proteins, the kinase (CheA and an adaptor protein (CheW, but their influences on receptor methylation are unknown. Here, the influence of CheW on the rate of Tsr methylation has been studied to identify contributions to the process of adaptation. Results Methyl group incorporation was measured in a series of membrane samples in which the Tsr molecules were engineered to have one available methyl-accepting glutamate residue (297, 304, 311 or 493. The relative rates at these sites (0.14, 0.05, 0.05 and 1, respectively differed from those found previously for the aspartate receptor (Tar, which was in part due to sequence differences between Tar and Tsr near site four. The addition of CheW generated unexpectedly large and site-specific rate increases, equal to or larger than the increases produced by serine. The increases produced by serine and CheW (added separately were the largest at site one, ~3 and 6-fold, respectively, and the least at site four, no change and ~2-fold, respectively. The rate increases were even larger when serine and CheW were added together, larger than the sums of the increases produced by serine and CheW added separately (except site four. This resulted in substantially larger serine-stimulated increases when CheW was present. Also, CheW enhanced methylation rates when either two or all four sites were available. Conclusion The increase in the rate of receptor methylation upon CheW binding contributes significantly to the ligand specificity and kinetics of sensory adaptation. The synergistic effect of

  4. Oral neutrophils display a site-specific phenotype characterized by expression of T-cell receptors.

    Science.gov (United States)

    Lakschevitz, Flavia S; Aboodi, Guy M; Glogauer, Michael

    2013-10-01

    Neutrophils, key cells of the innate immune system, were previously thought to be terminally differentiated cells, incapable of altering their gene expression after differentiation and maturation in the bone marrow. Only recently has it been shown that neutrophils perform rapid and complex changes in gene expression during inflammatory responses. Previous work by the authors has demonstrated differences in reactive oxygen species production between oral and peripheral blood neutrophils isolated from patients with chronic periodontitis, suggesting that oral neutrophils present with a unique oral phenotype. Understanding differences in the neutrophil transcriptome after transit from circulation into the site of inflammation will give new insights into how these innate immune cells function during inflammation. Venous blood and oral rinse samples were obtained from five healthy participants. Blood neutrophils were isolated using a standard gradient method. Oral neutrophils were isolated through nylon mesh filters of different pore sizes (40 to 10 μm). RNA was purified from isolated neutrophils, and gene expression microarray analysis was completed. Results were confirmed by quantitative reverse transcription-polymerase chain reaction and immunofluorescence microscopy. Oral neutrophil isolation, which is critical when analyzing gene expression with samples clear of epithelial cell contamination, was optimized. It was also demonstrated that oral neutrophils present with a significant increase in T-cell receptor expression compared with circulating neutrophils, suggesting a role for oral neutrophils in crosstalk between the innate and adaptive immune system in the mouth. To the best of the authors' knowledge, it is demonstrated for the first time that, compared with circulating neutrophils, oral neutrophils present a site-specific gene expression profile in healthy individuals.

  5. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE, IN VIVO

    Science.gov (United States)

    In vitro, toluene disrupts the function of NMDA-glutamate receptors, indicating that effects on NMDA receptor function may contribute to toluene neurotoxicity. NMDA-glutamate receptors are widely present in the visual system and contribute to pattern-elicited visual evoked potent...

  6. A Novel Loop Domain in Superantigens Extends Their T Cell Receptor Recognition Site

    Energy Technology Data Exchange (ETDEWEB)

    Gunther,S.; Varma, A.; Moza, B.; Kasper, K.; Wyatt, A.; Zhu, P.; Nur-ur Rahman, A.; Li, Y.; Mariuzza, R.; et al.

    2007-01-01

    Superantigens (SAGs) interact with host immune receptors to induce a massive release of inflammatory cytokines that can lead to toxic shock syndrome and death. Bacterial SAGs can be classified into five distinct evolutionary groups. Group V SAGs are characterized by the {alpha}3-{beta}8 loop, a unique {approx}15 amino acid residue extension that is required for optimal T cell activation. Here, we report the X-ray crystal structures of the group V SAG staphylococcal enterotoxin K (SEK) alone and in complex with the TCR hV{beta}5.1 domain. SEK adopts a unique TCR binding orientation relative to other SAG-TCR complexes, which results in the {alpha}3-{beta}8 loop contacting the apical loop of framework region 4, thereby extending the known TCR recognition site of SAGs. These interactions are absolutely required for TCR binding and T cell activation by SEK, and dictate the TCR V{beta} domain specificity of SEK and other group V SAGs.

  7. NMDA receptor and schizophrenia: a brief history.

    Science.gov (United States)

    Coyle, Joseph T

    2012-09-01

    Although glutamate was first hypothesized to be involved in the pathophysiology of schizophrenia in the 1980s, it was the demonstration that N-methyl-D-aspartate (NMDA) receptor antagonists, the dissociative anesthetics, could replicate the full range of psychotic, negative, cognitive, and physiologic features of schizophrenia in normal subjects that placed the "NMDA receptor hypofunction hypothesis" on firm footing. Additional support came from the demonstration that a variety of agents that enhanced NMDA receptor function at the glycine modulatory site significantly reduced negative symptoms and variably improved cognition in patients with schizophrenia receiving antipsychotic drugs. Finally, persistent blockade of NMDA receptors recreates in experimental animals the critical pathologic features of schizophrenia including downregulation of parvalbumin-positive cortical GABAergic neurons, pyramidal neuron dendritic dysgenesis, and reduced spine density.

  8. New insights into the structural bases of activation of Cys-loop receptors.

    Science.gov (United States)

    Bouzat, Cecilia

    2012-01-01

    Neurotransmitter receptors of the Cys-loop superfamily mediate rapid synaptic transmission throughout the nervous system, and include receptors activated by ACh, GABA, glycine and serotonin. They are involved in physiological processes, including learning and memory, and in neurological disorders, and they are targets for clinically relevant drugs. Cys-loop receptors assemble either from five copies of one type of subunit, giving rise to homomeric receptors, or from several types of subunits, giving rise to heteromeric receptors. Homomeric receptors are invaluable models for probing fundamental relationships between structure and function. Receptors contain a large extracellular domain that carries the binding sites and a transmembrane region that forms the ion pore. How the structural changes elicited by agonist binding are propagated through a distance of 50Å to the ion channel gate is central to understanding receptor function. Depending on the receptor subtype, occupancy of either two, as in the prototype muscle nicotinic receptor, or three binding sites, as in homomeric receptors, is required for full activation. The conformational changes initiated at the binding sites are propagated to the gate through the interface between the extracellular and transmembrane domains. This region forms a network that relays structural changes from the binding site towards the pore, and also contributes to open channel lifetime and rate of desensitization. Thus, this coupling region controls the beginning and duration of a synaptic response. Here we review recent advances in the molecular mechanism by which Cys-loop receptors are activated with particular emphasis on homomeric receptors.

  9. Natural agonist enhancing bis-His zinc-site in transmembrane segment V of the tachykinin NK3 receptor

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Lucibello, M; Holst, B;

    1998-01-01

    In the wild-type tachykinin NK3A receptor histidyl residues are present at two positions in TM-V, V:01 and V:05, at which Zn2+ functions as an antagonist in NK1 and kappa-opioid receptors with engineered metal-ion sites. Surprisingly, in the NK3A receptor Zn2+ instead increased the binding...... of the agonist 125I-[MePhe7]neurokinin B to 150%. [MePhe7]neurokinin B bound to the NK3A receptor in a two-component mode of which Zn2+ eliminated the subnanomolar binding mode but induced a higher binding capacity of the nanomolar binding mode. Signal transduction was not induced by ZnCl2 but 10 microM ZnCl2...... enhanced the effect of neurokinin B. Ala-substitution of HisV:01 eliminated the enhancing effect of Zn2+ on peptide binding. It is concluded that physiological concentrations of Zn2+ have a positive modulatory effect on the binding and function of neurokinin B on the NK3A receptor through a bis-His site...

  10. 76 FR 8771 - Glycine From China

    Science.gov (United States)

    2011-02-15

    ... COMMISSION Glycine From China AGENCY: United States International Trade Commission. ACTION: Notice of... concerning the antidumping duty order on glycine from China. SUMMARY: The Commission hereby gives notice that... China would be likely to lead to continuation or recurrence of material injury within a...

  11. 75 FR 62141 - Glycine From China

    Science.gov (United States)

    2010-10-07

    ... COMMISSION Glycine From China AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on glycine from China. SUMMARY: The Commission... from China would be likely to lead to continuation or recurrence of material injury. Pursuant...

  12. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela [Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic); Watson, Christopher J.; Turkenburg, Johan P. [The University of York, Heslington, York YO10 5DD (United Kingdom); Jiráček, Jiří [Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic); Brzozowski, Andrzej M., E-mail: marek.brzozowski@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom); Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic)

    2014-10-01

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.

  13. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    Science.gov (United States)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  14. Glycine treatment decreases proinflammatory cytokines and increases interferon-gamma in patients with type 2 diabetes.

    Science.gov (United States)

    Cruz, M; Maldonado-Bernal, C; Mondragón-Gonzalez, R; Sanchez-Barrera, R; Wacher, N H; Carvajal-Sandoval, G; Kumate, J

    2008-08-01

    Amino acids have been shown to stimulate insulin secretion and decrease glycated hemoglobin (A1C) in patients with Type 2 diabetes. In vitro, glycine reduces tumor necrosis factor (TNF)-alpha secretion and increases interleukin-10 secretion in human monocytes stimulated with lipopolysaccharide. The aim of this study was to determine whether glycine modifies the proinflammatory profiles of patients with Type 2 diabetes. Seventy-four patients, with Type 2 diabetes were enrolled in the study. The mean age was 58.5 yr, average age of diagnosis was 5 yr, the mean body mass index was 28.5 kg/m2, the mean fasting glucose level was 175.5 mg/dl and the mean A1C level was 8%. They were allocated to one of two treatments, 5 g/d glycine or 5 g/d placebo, po tid, for 3 months. A1C levels of patients given glycine were significantly lower after 3 months of treatment than those of the placebo group. A significant reduction in TNF-receptor I levels was observed in patients given glycine compared with placebo. There was a decrease of 38% in the interferon (IFN)-gamma level of the group treated with placebo, whereas that of the group treated with glycine increased up to 43%. These data showed that patients treated with glycine had a significant decrease in A1C and in proinflammatory cytokines and also an important increase of IFN-gamma. Treatment with glycine is likely to have a beneficial effect on innate and adaptive immune responses and may help prevent tissue damage caused by chronic inflammation in patients with Type 2 diabetes.

  15. Bisphenol A binds to the local anesthetic receptor site to block the human cardiac sodium channel.

    Directory of Open Access Journals (Sweden)

    Andrias O O'Reilly

    Full Text Available Bisphenol A (BPA has attracted considerable public attention as it leaches from plastic used in food containers, is detectable in human fluids and recent epidemiologic studies link BPA exposure with diseases including cardiovascular disorders. As heart-toxicity may derive from modified cardiac electrophysiology, we investigated the interaction between BPA and hNav1.5, the predominant voltage-gated sodium channel subtype expressed in the human heart. Electrophysiology studies of heterologously-expressed hNav1.5 determined that BPA blocks the channel with a K(d of 25.4±1.3 µM. By comparing the effects of BPA and the local anesthetic mexiletine on wild type hNav1.5 and the F1760A mutant, we demonstrate that both compounds share an overlapping binding site. With a key binding determinant thus identified, an homology model of hNav1.5 was generated based on the recently-reported crystal structure of the bacterial voltage-gated sodium channel NavAb. Docking predictions position both ligands in a cavity delimited by F1760 and contiguous with the DIII-IV pore fenestration. Steered molecular dynamics simulations used to assess routes of ligand ingress indicate that the DIII-IV pore fenestration is a viable access pathway. Therefore BPA block of the human heart sodium channel involves the local anesthetic receptor and both BPA and mexiletine may enter the closed-state pore via membrane-located side fenestrations.

  16. Specific epidermal growth factor receptor autophosphorylation sites promote mouse colon epithelial cell chemotaxis and restitution.

    Science.gov (United States)

    Yamaoka, Toshimitsu; Frey, Mark R; Dise, Rebecca S; Bernard, Jessica K; Polk, D Brent

    2011-08-01

    Upon ligand binding, epidermal growth factor (EGF) receptor (R) autophosphorylates on COOH-terminal tyrosines, generating docking sites for signaling partners that stimulate proliferation, restitution, and chemotaxis. Specificity for individual EGFR tyrosines in cellular responses has been hypothesized but not well documented. Here we tested the requirement for particular tyrosines, and associated downstream pathways, in mouse colon epithelial cell chemotactic migration. We compared these requirements to those for the phenotypically distinct restitution (wound healing) migration. Wild-type, Y992/1173F, Y1045F, Y1068F, and Y1086F EGFR constructs were expressed in EGFR(-/-) cells; EGF-induced chemotaxis or restitution were determined by Boyden chamber or modified scratch wound assay, respectively. Pharmacological inhibitors of p38, phospholipase C (PLC), Src, MEK, JNK/SAPK, phosphatidylinositol 3-kinase (PI 3-kinase), and protein kinase C (PKC) were used to block EGF-stimulated signaling. Pathway activation was determined by immunoblot analysis. Unlike wild-type EGFR, Y992/1173F and Y1086F EGFR did not stimulate colon epithelial cell chemotaxis toward EGF; Y1045F and Y1068F EGFR partially stimulated chemotaxis. Only wild-type EGFR promoted colonocyte restitution. Inhibition of p38, PLC, and Src, or Grb2 knockdown, blocked chemotaxis; JNK, PI 3-kinase, and PKC inhibitors or c-Cbl knockdown blocked restitution but not chemotaxis. All four EGFR mutants stimulated downstream signaling in response to EGF, but Y992/1173F EGFR was partially defective in PLCγ activation whereas both Y1068F and Y1086F EGFR failed to activate Src. We conclude that specific EGFR tyrosines play key roles in determining cellular responses to ligand. Chemotaxis and restitution, which have different migration phenotypes and physiological consequences, have overlapping but not identical EGFR signaling requirements.

  17. Persistent expression of chemokine and chemokine receptor RNAs at primary and latent sites of herpes simplex virus 1 infection

    Directory of Open Access Journals (Sweden)

    Burwell Timothy J

    2004-09-01

    Full Text Available Abstract Inflammatory cytokines and infiltrating T cells are readily detected in herpes simplex virus (HSV infected mouse cornea and trigeminal ganglia (TG during the acute phase of infection, and certain cytokines continue to be expressed at lower levels in infected TG during the subsequent latent phase. Recent results have shown that HSV infection activates Toll-like receptor signaling. Thus, we hypothesized that chemokines may be broadly expressed at both primary sites and latent sites of HSV infection for prolonged periods of time. Real-time reverse transcriptase-polymrease chain reaction (RT-PCR to quantify expression levels of transcripts encoding chemokines and their receptors in cornea and TG following corneal infection. RNAs encoding the inflammatory-type chemokine receptors CCR1, CCR2, CCR5, and CXCR3, which are highly expressed on activated T cells, macrophages and most immature dendritic cells (DC, and the more broadly expressed CCR7, were highly expressed and strongly induced in infected cornea and TG at 3 and 10 days postinfection (dpi. Elevated levels of these RNAs persisted in both cornea and TG during the latent phase at 30 dpi. RNAs for the broadly expressed CXCR4 receptor was induced at 30 dpi but less so at 3 and 10 dpi in both cornea and TG. Transcripts for CCR3 and CCR6, receptors that are not highly expressed on activated T cells or macrophages, also appeared to be induced during acute and latent phases; however, their very low expression levels were near the limit of our detection. RNAs encoding the CCR1 and CCR5 chemokine ligands MIP-1α, MIP-1β and RANTES, and the CCR2 ligand MCP-1 were also strongly induced and persisted in cornea and TG during the latent phase. These and other recent results argue that HSV antigens or DNA can stimulate expression of chemokines, perhaps through activation of Toll-like receptors, for long periods of time at both primary and latent sites of HSV infection. These chemokines recruit

  18. Role of the NMDA-receptor in Prepulse Inhibition in the Rat

    Directory of Open Access Journals (Sweden)

    Klas Linderholm

    2010-02-01

    Full Text Available Kynurenic acid (KYNA is an endogenous metabolite of tryptophan. Studies have revealed increased brain KYNA levels in patients with schizophrenia. Prepulse inhibition (PPI is a behavioral model for sensorimotor gating and found to be reduced in schizophrenia. Previous studies have shown that pharmacologically elevated brain KYNA levels disrupt PPI in the rat. The aim of the present study was to investigate the receptor(s involved in this effect. Rats were treated with different drugs selectively blocking each of the sites that KYNA antagonizes, namely the glutamate recognition site of the N-methyl-D-aspartate receptor (NMDAR, the α7* nicotinic acetylcholine receptor (α7nAChR and the glycine site of the NMDAR. Kynurenine (200 mg/kg was given to replicate the effects of increased levels of KYNA on PPI. In order to block the glutamate recognition site of the NMDAR, CGS 19755 (10 mg/kg or SDZ 220–581 (2.5 mg/kg were administered and to antagonize the α7nAChR methyllycaconitine (MLA; 6 mg/kg was given. L-701,324 (1 and 4 mg/kg or 4-Chloro-kynurenine (4-Cl-KYN; 25, 50 and 100 mg/kg, a drug in situ converted to 7-Chloro-kynurenic acid, were used to block the glycine-site of the NMDAR. Administration of SDZ 220-581 or CGS 19755 was associated with a robust reduction in PPI, whereas L-701,324, 4-Cl-KYN or MLA failed to alter PPI. Kynurenine increased brain KYNA levels 5-fold and tended to decrease PPI. The present study suggests that neither antagonism of the glycine-site of the NMDA receptor nor antagonism of the α7nAChR disrupts PPI, rather with regard to the effects of KYNA, blockade of the glutamate recognition-site is necessary to reduce PPI.

  19. Discovery and mapping of an intracellular antagonist binding site at the chemokine receptor CCR2

    DEFF Research Database (Denmark)

    Zweemer, Annelien J M; Bunnik, Julia; Veenhuizen, Margo

    2014-01-01

    The chemokine receptor CCR2 is a G protein-coupled receptor that is involved in many diseases characterized by chronic inflammation, and therefore a large variety of CCR2 small molecule antagonists has been developed. On the basis of their chemical structures these antagonists can roughly be divi...

  20. Tweaking agonist efficacy at N-methyl-D-aspartate receptors by site-directed mutagenesis

    DEFF Research Database (Denmark)

    Hansen, Kasper B; Clausen, Rasmus P; Bjerrum, Esben J

    2005-01-01

    The structural basis for partial agonism at N-methyl-D-aspartate (NMDA) receptors is currently unresolved. We have characterized several partial agonists at the NR1/NR2B receptor and investigated the mechanisms underlying their reduced efficacy by introducing mutations in the glutamate binding si...

  1. A Unified Model of the GABA(A) Receptor Comprising Agonist and Benzodiazepine Binding Sites

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning; Bergmann, Rikke; Sørensen, Pernille Louise

    2013-01-01

    We present a full-length a1b2c2 GABA receptor model optimized for agonists and benzodiazepine (BZD) allosteric modulators. We propose binding hypotheses for the agonists GABA, muscimol and THIP and for the allosteric modulator diazepam (DZP). The receptor model is primarily based on the glutamate...

  2. Regulation of MMP-9 by a WIN-binding site in the monocyte-macrophage system independent from cannabinoid receptors.

    Directory of Open Access Journals (Sweden)

    Svantje Tauber

    Full Text Available The cannabinoid system is known to be involved in the regulation of inflammatory processes. Therefore, drugs targeting cannabinoid receptors are considered as candidates for anti-inflammatory and tissue protective therapy. We demonstrated that the prototypical cannabinoid agonist R(+WIN55,212-2 (WIN reduced the secretion of matrix metalloproteinase-9 (MMP-9 in a murine model of cigarette-smoke induced lung inflammation. In experiments using primary cells and cell lines of the monocyte-macrophage-system we found that binding of the cannabinoid-receptor agonist WIN to a stereo-selective, specific binding site in cells of the monocyte-macrophage-system induced a significant down-regulation of MMP-9 secretion and disturbance of intracellular processing, which subsequently down-regulated MMP-9 mRNA expression via a ERK1/2-phosphorylation-dependent pathway. Surprisingly, the anti-inflammatory effect was independent from classical cannabinoid receptors. Our experiments supposed an involvement of TRPV1, but other yet unidentified sites are also possible. We conclude that cannabinoid-induced control of MMP-9 in the monocyte-macrophage system via a cannabinoid-receptor independent pathway represents a general option for tissue protection during inflammation, such as during lung inflammation and other diseases associated with inflammatory tissue damage.

  3. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    Science.gov (United States)

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the

  4. Investigation of the histamine H3 receptor binding site. Design and synthesis of hybrid agonists with a lipophilic side chain.

    Science.gov (United States)

    Ishikawa, Makoto; Watanabe, Takashi; Kudo, Toshiaki; Yokoyama, Fumikazu; Yamauchi, Miki; Kato, Kazuhiko; Kakui, Nobukazu; Sato, Yasuo

    2010-09-09

    As a part of our search for novel histamine H3 receptor agonists, we designed and synthesized hybrid compounds in which the lipophilic (4'-alkylphenylthio)ethyl moiety of a novel H3 receptor agonist, 4-(2-(4'-tert-butylphenylthio)ethyl)-1H-imidazole (1), was incorporated into N(alpha)-methylhistamine, immepip, and immethridine derivatives. These hybrid compounds were expected to interact concurrently with the histamine-binding site and a putative hydrophobic region in the H3 receptor. Among them, piperidine- and pyridine-type derivatives displayed partial agonist activity, and (S)-4-(1-(1H-imidazol-4-yl)-2-(4-(trifluoromethyl)phenylthio)ethyl)piperidine (36) was identified as a potent H3 agonist. We performed computational docking studies to examine the binding mode of the agonists. The results indicated that immepip interacts with the key residues, Asp114 and Glu206, in a different manner from histamine. The binding mode of 36 to these residues is similar to that of immepip, and the lipophilic tail of 36 has an additional interaction with a hydrophobic region in transmembrane helix 6 of the receptor. These results indicated that 36 served as a useful tool for studies on receptor-agonist interactions and drug design.

  5. Identification of a site critical for kinase regulation on the central processing unit (CPU) helix of the aspartate receptor.

    Science.gov (United States)

    Trammell, M A; Falke, J J

    1999-01-05

    Ligand binding to the homodimeric aspartate receptor of Escherichia coli and Salmonella typhimurium generates a transmembrane signal that regulates the activity of a cytoplasmic histidine kinase, thereby controlling cellular chemotaxis. This receptor also senses intracellular pH and ambient temperature and is covalently modified by an adaptation system. A specific helix in the cytoplasmic domain of the receptor, helix alpha6, has been previously implicated in the processing of these multiple input signals. While the solvent-exposed face of helix alpha6 possesses adaptive methylation sites known to play a role in kinase regulation, the functional significance of its buried face is less clear. This buried region lies at the subunit interface where helix alpha6 packs against its symmetric partner, helix alpha6'. To test the role of the helix alpha6-helix alpha6' interface in kinase regulation, the present study introduces a series of 13 side-chain substitutions at the Gly 278 position on the buried face of helix alpha6. The substitutions are observed to dramatically alter receptor function in vivo and in vitro, yielding effects ranging from kinase superactivation (11 examples) to complete kinase inhibition (one example). Moreover, four hydrophobic, branched side chains (Val, Ile, Phe, and Trp) lock the kinase in the superactivated state regardless of whether the receptor is occupied by ligand. The observation that most side-chain substitutions at position 278 yield kinase superactivation, combined with evidence that such facile superactivation is rare at other receptor positions, identifies the buried Gly 278 residue as a regulatory hotspot where helix packing is tightly coupled to kinase regulation. Together, helix alpha6 and its packing interactions function as a simple central processing unit (CPU) that senses multiple input signals, integrates these signals, and transmits the output to the signaling subdomain where the histidine kinase is bound. Analogous CPU

  6. The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor

    OpenAIRE

    2007-01-01

    Abstract Background Differences in sweet taste perception among species depend on structural variations of the sweet taste receptor. The commercially used isovanillyl sweetener neohesperidin dihydrochalcone activates the human but not the rat sweet receptor TAS1R2+TAS1R3. Analysis of interspecies combinations and chimeras of rat and human TAS1R2+TAS1R3 suggested that the heptahelical domain of human TAS1R3 is crucial for the activation of the sweet receptor by neohesperidin dihydrochalcone. R...

  7. Rapid agonist-induced loss of sup 125 I-. beta. -endorphin opioid receptor sites in NG108-15, but not SK-N-SH neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Cone, R.I.; Lameh, J.; Sadee, W. (Univ. of California, San Francisco (United States))

    1991-01-01

    The authors have measured {mu} and {delta} opioid receptor sites on intact SK-N-SH and NG108-15 neuroblastoma cells, respectively, in culture. Use of {sup 125}I-{beta}-endorphin ({beta}E) as a tracer, together with {beta}E(6-31) to block high-affinity non-opioid binding in both cell lines, permitted the measurement of cell surface {mu} and {delta} opioid receptor sites. Labeling was at {delta} sites in NG108-15 cells and predominantly at {mu} sites in SK-N-SH cells. Pretreatment with the {mu} and {delta} agonist, DADLE, caused a rapid loss of cell surface {delta} receptor sites in NG108-15 cells, but failed to reduce significantly {mu} receptor density in SK-N-SH cells.

  8. VOC emissions, evolutions and contributions to SOA formation at a receptor site in Eastern China

    Directory of Open Access Journals (Sweden)

    B. Yuan

    2013-03-01

    Full Text Available Volatile organic compounds (VOCs were measured by two online instruments (GC-FID/MS and PTR-MS at a receptor site on Changdao Island (37.99° N, 120.70° E in eastern China. Reaction with OH radical dominated the chemical loss of most VOC species during the Changdao campaign. A photochemical age based parameterization method is used to calculate VOC emission ratios and to quantify the evolution of ambient VOCs. The calculated emission ratios of most hydrocarbons agree well with those obtained from emission inventory, but the emission ratios of oxygenated VOCs (OVOCs are significantly lower than those from emission inventory. The photochemical age based parameterization method is also used to investigate primary emissions and secondary formation of organic aerosol. The primary emission ratio of OA to CO are determined to be 14.9 μg m−3 ppm−1 and SOA are produced at an enhancement ratio of 18.8 μg m−3 ppm−1 to CO after 50 h of photochemical processing in the atmosphere. SOA formation is significantly higher than the level determined from VOC oxidation under both high-NOx (2.0 μg m−3 ppm−1 CO and low-NOx condition (6.5 μg m−3 ppm−1 CO. Polycyclic aromatic hydrocarbons (PAHs and higher alkanes (>C10 account for as high as 17.4% of SOA formation, which suggests semi-volatile organic compounds (SVOCs may be a large contributor to SOA formation during the Changdao campaign. SOA formation potential of primary VOC emissions determined from both field campaigns and emission inventory in China are lower than the measured SOA levels reported in Beijing and Pearl River Delta (PRD, indicating SOA formation cannot be explained by VOC oxidation in this regions. SOA budget in China is estimated to be 5.0–13.7 Tg yr−1, with a fraction of at least 2.7 Tg yr−1 from anthropogenic emissions, which are much higher than the previous estimates from regional models.

  9. Peptides derived from specific interaction sites of the fibroblast growth factor 2 - FGF receptor complexes induce receptor activation and signaling

    DEFF Research Database (Denmark)

    Manfè, Valentina; Kochoyan, Artur; Bock, Elisabeth

    2010-01-01

    , promoting survival of cerebellar granule neurons induced to undergo apoptosis. Our results suggest that canofins mirror the effect of specific interaction sites in FGF2 for FGFR. Thus, canofins are valuable pharmacological tools to study the functional roles of specific molecular interactions of FGF2...... by canofins, indicating that canofins are partial FGFR agonists. Furthermore, canofins were demonstrated to induce neuronal differentiation determined by neurite outgrowth from cerebellar granule neurons, and this effect was dependent on FGFR activation. Additionally, canofins acted as neuroprotectants...

  10. A Novel Voltage Sensor in the Orthosteric Binding Site of the M2 Muscarinic Receptor.

    Science.gov (United States)

    Barchad-Avitzur, Ofra; Priest, Michael F; Dekel, Noa; Bezanilla, Francisco; Parnas, Hanna; Ben-Chaim, Yair

    2016-10-04

    G protein-coupled receptors (GPCRs) mediate many signal transduction processes in the body. The discovery that these receptors are voltage-sensitive has changed our understanding of their behavior. The M2 muscarinic acetylcholine receptor (M2R) was found to exhibit depolarization-induced charge movement-associated currents, implying that this prototypical GPCR possesses a voltage sensor. However, the typical domain that serves as a voltage sensor in voltage-gated channels is not present in GPCRs, making the search for the voltage sensor in the latter challenging. Here, we examine the M2R and describe a voltage sensor that is comprised of tyrosine residues. This voltage sensor is crucial for the voltage dependence of agonist binding to the receptor. The tyrosine-based voltage sensor discovered here constitutes a noncanonical by which membrane proteins may sense voltage.

  11. Structural proof of a dimeric positive modulator bridging two identical AMPA receptor-binding sites

    DEFF Research Database (Denmark)

    Kaae, Birgitte Høiriis; Harpsøe, Kasper; Kastrup, Jette Sandholm Jensen;

    2007-01-01

    Dimeric positive allosteric modulators of ionotropic glutamate receptors were designed, synthesized, and characterized pharmacologically in electrophysiological experiments. The designed compounds are dimers of arylpropylsulfonamides and have been constructed without a linker. The monomeric...

  12. GABAA Receptors Implicated in REM Sleep Control Express a Benzodiazepine Binding Site

    OpenAIRE

    Nguyen, Tin Quang; Liang, Chang-Lin; Marks, Gerald A.

    2013-01-01

    It has been reported that non-subtype-selective GABAA receptor antagonists injected into the nucleus pontis oralis (PnO) of rats induced long-lasting increases in REM sleep. Characteristics of these REM sleep increases were identical to those resulting from injection of muscarinic cholinergic agonists. Both actions were blocked by the muscarinic antagonist, atropine. Microdialysis of GABAA receptor antagonists into the PnO resulted in increased acetylcholine levels. These findings were consis...

  13. Structural model for gamma-aminobutyric acid receptor noncompetitive antagonist binding: widely diverse structures fit the same site.

    Science.gov (United States)

    Chen, Ligong; Durkin, Kathleen A; Casida, John E

    2006-03-28

    Several major insecticides, including alpha-endosulfan, lindane, and fipronil, and the botanical picrotoxinin are noncompetitive antagonists (NCAs) for the GABA receptor. We showed earlier that human beta(3) homopentameric GABA(A) receptor recognizes all of the important GABAergic insecticides and reproduces the high insecticide sensitivity and structure-activity relationships of the native insect receptor. Despite large structural diversity, the NCAs are proposed to fit a single binding site in the chloride channel lumen lined by five transmembrane 2 segments. This hypothesis is examined with the beta(3) homopentamer by mutagenesis, pore structure studies, NCA binding, and molecular modeling. The 15 amino acids in the cytoplasmic half of the pore were mutated to cysteine, serine, or other residue for 22 mutants overall. Localization of A-1'C, A2'C, T6'C, and L9'C (index numbers for the transmembrane 2 region) in the channel lumen was established by disulfide cross-linking. Binding of two NCA radioligands [(3)H]1-(4-ethynylphenyl)-4-n-propyl-2,6,7-trioxabicyclo[2.2.2]octane and [(3)H] 3,3-bis-trifluoromethyl-bicyclo[2,2,1]heptane-2,2-dicarbonitrile was dramatically reduced with 8 of the 15 mutated positions, focusing attention on A2', T6', and L9' as proposed binding sites, consistent with earlier mutagenesis studies. The cytoplasmic half of the beta3 homopentamer pore was modeled as an alpha-helix. The six NCAs listed above plus t-butylbicyclophosphorothionate fit the 2' to 9' pore region forming hydrogen bonds with the T6' hydroxyl and hydrophobic interactions with A2', T6', and L9' alkyl substituents, thereby blocking the channel. Thus, widely diverse NCA structures fit the same GABA receptor beta subunit site with important implications for insecticide cross-resistance and selective toxicity between insects and mammals.

  14. Importance of the Sequence-Directed DNA Shape for Specific Binding Site Recognition by the Estrogen-Related Receptor

    Directory of Open Access Journals (Sweden)

    Kareem Mohideen-Abdul

    2017-06-01

    Full Text Available Most nuclear receptors (NRs bind DNA as dimers, either as hetero- or as homodimers on DNA sequences organized as two half-sites with specific orientation and spacing. The dimerization of NRs on their cognate response elements (REs involves specific protein–DNA and protein–protein interactions. The estrogen-related receptor (ERR belongs to the steroid hormone nuclear receptor (SHR family and shares strong similarity in its DNA-binding domain (DBD with that of the estrogen receptor (ER. In vitro, ERR binds with high affinity inverted repeat REs with a 3-bps spacing (IR3, but in vivo, it preferentially binds to single half-site REs extended at the 5′-end by 3 bp [estrogen-related response element (ERREs], thus explaining why ERR was often inferred as a purely monomeric receptor. Since its C-terminal ligand-binding domain is known to homodimerize with a strong dimer interface, we investigated the binding behavior of the isolated DBDs to different REs using electrophoretic migration, multi-angle static laser light scattering (MALLS, non-denaturing mass spectrometry, and nuclear magnetic resonance. In contrast to ER DBD, ERR DBD binds as a monomer to EREs (IR3, such as the tff1 ERE-IR3, but we identified a DNA sequence composed of an extended half-site embedded within an IR3 element (embedded ERRE/IR3, where stable dimer binding is observed. Using a series of chimera and mutant DNA sequences of ERREs and IR3 REs, we have found the key determinants for the binding of ERR DBD as a dimer. Our results suggest that the sequence-directed DNA shape is more important than the exact nucleotide sequence for the binding of ERR DBD to DNA as a dimer. Our work underlines the importance of the shape-driven DNA readout mechanisms based on minor groove recognition and electrostatic potential. These conclusions may apply not only to ERR but also to other members of the SHR family, such as androgen or glucocorticoid, for which a strong well-conserved half-site

  15. Schizophrenia, dissociative anaesthesia and near-death experience; three events meeting at the NMDA receptor.

    Science.gov (United States)

    Bonta, Iván L

    2004-01-01

    The three events, viz. schizophrenia, dissociative anaesthesia and Near-Death Experience, despite their seemingly unrelated manifestation to each other, have nevertheless similar functional basis. All three events are linked to the glutamate sensitive N-methyl-D-aspartate (NMDA) receptor complex, which serves as their common functional denominator. Arguments and speculations are presented in favor of the view that, the three events might be considered as functional models of each other. Antagonism to the recognition NMDA-site of the receptor induces dissociative anaesthesia and precipitates Near-Death Experience. Agonist reinforcement at the modulatory glycine-site of the receptor counteracts negative symptoms of schizophrenia. Both types of challenges towards the receptor are compatible with a glutamate deficiency concept which underlies the meeting of the three events at the NMDA receptor.

  16. Computational Characterization and Prediction of Estrogen Receptor Coactivator Binding Site Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, B J; Kulp, K S; Cosman, M; Lightstone, F C

    2005-08-26

    Many carcinogens have been shown to cause tissue specific tumors in animal models. The mechanism for this specificity has not been fully elucidated and is usually attributed to differences in organ metabolism. For heterocyclic amines, potent carcinogens that are formed in well-done meat, the ability to either bind to the estrogen receptor and activate or inhibit an estrogenic response will have a major impact on carcinogenicity. Here we describe our work with the human estrogen receptor alpha (hERa) and the mutagenic/carcinogenic heterocyclic amines PhIP, MeIQx, IFP, and the hydroxylated metabolite of PhIP, N2-hydroxy-PhIP. We found that PhIP, in contrast to the other heterocyclic amines, increased cell-proliferation in MCF-7 human breast cancer cells and activated the hERa receptor. We show mechanistic data supporting this activation both computationally by homology modeling and docking, and by NMR confirmation that PhIP binds with the ligand binding domain (LBD). This binding competes with estradiol (E2) in the native E2 binding cavity of the receptor. We also find that other heterocyclic amines and N2-hydroxy-PhIP inhibit ER activation presumably by binding into another cavity on the LBD. Moreover, molecular dynamics simulations of inhibitory heterocyclic amines reveal a disruption of the surface of the receptor protein involved with protein-protein signaling. We therefore propose that the mechanism for the tissue specific carcinogenicity seen in the rat breast tumors and the presumptive human breast cancer associated with the consumption of well-done meat maybe mediated by this receptor activation.

  17. GABA(A) receptors implicated in REM sleep control express a benzodiazepine binding site.

    Science.gov (United States)

    Nguyen, Tin Quang; Liang, Chang-Lin; Marks, Gerald A

    2013-08-21

    It has been reported that non-subtype-selective GABAA receptor antagonists injected into the nucleus pontis oralis (PnO) of rats induced long-lasting increases in REM sleep. Characteristics of these REM sleep increases were identical to those resulting from injection of muscarinic cholinergic agonists. Both actions were blocked by the muscarinic antagonist, atropine. Microdialysis of GABAA receptor antagonists into the PnO resulted in increased acetylcholine levels. These findings were consistent with GABAA receptor antagonists disinhibiting acetylcholine release in the PnO to result in an acetylcholine-mediated REM sleep induction. Direct evidence has been lacking for localization in the PnO of the specific GABAA receptor-subtypes mediating the REM sleep effects. Here, we demonstrated a dose-related, long-lasting increase in REM sleep following injection (60 nl) in the PnO of the inverse benzodiazepine agonist, methyl-6,7-dimethoxy-4-ethyl-β-carboline (DMCM, 10(-2)M). REM sleep increases were greater and more consistently produced than with the non-selective antagonist gabazine, and both were blocked by atropine. Fluorescence immunohistochemistry and laser scanning confocal microscopy, colocalized in PnO vesicular acetylcholine transporter, a presynaptic marker of cholinergic boutons, with the γ2 subunit of the GABAA receptor. These data provide support for the direct action of GABA on mechanisms of acetylcholine release in the PnO. The presence of the γ2 subunit at this locus and the REM sleep induction by DMCM are consistent with binding of benzodiazepines by a GABAA receptor-subtype in control of REM sleep.

  18. Lactate Receptor Sites Link Neurotransmission, Neurovascular Coupling, and Brain Energy Metabolism

    DEFF Research Database (Denmark)

    Lauritzen, Knut H; Morland, Cecilie; Puchades, Maja;

    2013-01-01

    The G-protein-coupled lactate receptor, GPR81 (HCA1), is known to promote lipid storage in adipocytes by downregulating cAMP levels. Here, we show that GPR81 is also present in the mammalian brain, including regions of the cerebral neocortex and hippocampus, where it can be activated by physiolog......The G-protein-coupled lactate receptor, GPR81 (HCA1), is known to promote lipid storage in adipocytes by downregulating cAMP levels. Here, we show that GPR81 is also present in the mammalian brain, including regions of the cerebral neocortex and hippocampus, where it can be activated...

  19. Interaction of Fusarium solani f. sp. glycines and Heterodera glycines in Sudden Death Syndrome of Soybean.

    Science.gov (United States)

    Xing, Lijuan; Westphal, Andreas

    2006-07-01

    ABSTRACT Sudden death syndrome (SDS) of soybean is caused by the soilborne Fusarium solani f. sp. glycines (synonym F. virguliforme). In a sequential approach, two multifactor factorial-design microplot experiments were conducted to investigate the effects of fungal infestation levels and soil moisture on both root necrosis and foliar SDS severity, and the interaction between F. solani f. sp. glycines and Heterodera glycines in fumigated versus nonfumigated soil. In 2003, soybean cv. Spencer was grown in nonfumigated or methyl bromide-fumigated soil and infested with increasing levels of F. solani f. sp. glycines, either under rainfall or irrigated after growth stage V6/R1. In 2004, interactions between F. solani f. sp. glycines and H. glycines were explored in a factorial inoculation design in fumigated or nonfumigated soil, planted to Williams 82 or Cyst-X20-18. In both years, higher levels of foliar SDS severity and root necrosis were found in F. solani f. sp. glycines-infested soils with H. glycines than in soils without the nematode on the soybean cultivars susceptible to both pathogens. Both natural infestations of H. glycines in 2003 and artificially amended populations of H. glycines in 2004 contributed to higher foliar SDS severity. More severe foliar SDS symptoms always were associated with more root necrosis, but elevated levels of root necrosis did not predict severe leaf symptoms. In contrast to the critical role of H. glycines, increasing fungal infestation levels had no significant effects on increasing either foliar SDS symptoms or root necrosis. Effects of moisture regime and fungal infestation levels also were examined in factorial greenhouse and growth chamber experiments. High soil moisture resulted in higher levels of SDS root necrosis. In the greenhouse, root necrosis increased at a higher rate in low soil moisture than the rate in high soil moisture. The two pathogens acted as a complex and the disease development was strongly dependent on

  20. Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site.

    Directory of Open Access Journals (Sweden)

    Barna Dey

    2009-05-01

    Full Text Available The human immunodeficiency virus type 1 (HIV-1 exterior envelope glycoprotein, gp120, possesses conserved binding sites for interaction with the primary virus receptor, CD4, and also for the co-receptor, generally CCR5. Although gp120 is a major target for virus-specific neutralizing antibodies, the gp120 variable elements and its malleable nature contribute to evasion of effective host-neutralizing antibodies. To understand the conformational character and immunogenicity of the gp120 receptor binding sites as potential vaccine targets, we introduced structure-based modifications to stabilize gp120 core proteins (deleted of the gp120 major variable regions into the conformation recognized by both receptors. Thermodynamic analysis of the re-engineered core with selected ligands revealed significant stabilization of the receptor-binding regions. Stabilization of the co-receptor-binding region was associated with a marked increase in on-rate of ligand binding to this site as determined by surface plasmon resonance. Rabbit immunization studies showed that the conformational stabilization of core proteins, along with increased ligand affinity, was associated with strikingly enhanced humoral immune responses against the co-receptor-binding site. These results demonstrate that structure-based approaches can be exploited to stabilize a conformational site in a large functional protein to enhance immunogenic responses specific for that region.

  1. Collagen binding specificity of the discoidin domain receptors: Binding sites on collagens II and III and molecular determinants for collagen IV recognition by DDR1

    OpenAIRE

    Xu, Huifang; Raynal, Nicolas; Stathopoulos, Stavros; Myllyharju, Johanna; Farndale, Richard W.; Leitinger, Birgit

    2011-01-01

    The discoidin domain receptors, DDR1 and DDR2 are cell surface receptor tyrosine kinases that are activated by triple-helical collagen. While normal DDR signalling regulates fundamental cellular processes, aberrant DDR signalling is associated with several human diseases. We previously identified GVMGFO (O is hydroxyproline) as a major DDR2 binding site in collagens I–III, and located two additional DDR2 binding sites in collagen II. Here we extend these studies to the homologous DDR1 and the...

  2. GHB receptor targets in the CNS: Focus on high-affinity binding sites

    DEFF Research Database (Denmark)

    Bay, Tina; Eghorn, Laura Friis; Klein, Anders Bue;

    2014-01-01

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects...

  3. GABA receptors and benzodiazepine binding sites modulate hippocampal acetylcholine release in vivo

    NARCIS (Netherlands)

    Moor, E; de Boer, P; Westerink, B.H.C.

    1998-01-01

    In the present study, the regulation of acetylcholine release from the ventral hippocampus by gamma-aminobutyric acid (GABA) was investigated in vivo. GABA receptor agonists and antagonists were administered locally in the medial septum and the adjacent vertical limb of the diagonal band of Broca, o

  4. Site-specific circadian expression of leptin and its receptor in human adipose tissue

    Science.gov (United States)

    Circadian variability of circulating leptin levels has been well established over the last decade. However, the circadian behavior of leptin in human adipose tissue remains unknown. This also applies to the soluble leptin receptor. We investigated the ex vivo circadian behavior of leptin and its rec...

  5. Short-term desensitization of muscarinic cholinergic receptors in mouse neuroblastoma cells: selective loss of agonist low-affinity and pirenzepine high-affinity binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Cioffi, C.L.; el-Fakahany, E.E.

    1986-09-01

    The effects of brief incubation with carbamylcholine on subsequent binding of (/sup 3/H)N-methylscopolamine were investigated in mouse neuroblastoma cells (clone N1E-115). This treatment demonstrated that the muscarinic receptors in this neuronal clone can be divided into two types; one which is readily susceptible to regulation by receptor agonists, whereas the other is resistant in this regard. In control cells, both pirenzepine and carbamylcholine interacted with high- and low-affinity subsets of muscarinic receptors. Computer-assisted analysis of the competition between pirenzepine and carbamylcholine with (/sup 3/H)N-methylscopolamine showed that the receptor sites remaining upon desensitization are composed mainly of pirenzepine low-affinity and agonist high-affinity binding sites. Furthermore, there was an excellent correlation between the ability of various muscarinic receptor agonists to induce a decrease in consequent (/sup 3/H)N-methylscopolamine binding and their efficacy in stimulating cyclic GMP synthesis in these cells. Thus, only the agonists that are known to recognize the receptor's low-affinity conformation in order to elicit increases in cyclic GMP levels were capable of diminishing ligand binding. Taken together, our present results suggest that the receptor population that is sensitive to regulation by agonists includes both the pirenzepine high-affinity and the agonist low-affinity receptor binding states. In addition, the sensitivity of these receptor subsets to rapid regulation by agonists further implicates their involvement in desensitization of muscarinic receptor-mediated cyclic GMP formation.

  6. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice.

    Science.gov (United States)

    Alarcon-Aguilar, F J; Almanza-Perez, Julio; Blancas, Gerardo; Angeles, Selene; Garcia-Macedo, Rebeca; Roman, Ruben; Cruz, Miguel

    2008-12-03

    Fat tissue plays an important role in the regulation of inflammatory processes. Increased visceral fat has been associated with a higher production of cytokines that triggers a low-grade inflammatory response, which eventually may contribute to the development of insulin resistance. In the present study, we investigated whether glycine, an amino acid that represses the expression in vitro of pro-inflammatory cytokines in Kupffer and 3T3-L1 cells, can affect in vivo cytokine production in lean and monosodium glutamate-induced obese mice (MSG/Ob mice). Our data demonstrate that glycine treatment in lean mice suppressed TNF-alpha transcriptional expression in fat tissue, and serum protein levels of IL-6 were suppressed, while adiponectin levels were increased. In MSG/Ob mice, glycine suppressed TNF-alpha and IL-6 gene expression in fat tissue and significantly reduced protein levels of IL-6, resistin and leptin. To determine the role of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in the modulation of this inflammatory response evoked by glycine, we examined its expression levels in fat tissue. Glycine clearly increased PPAR-gamma expression in lean mice but not in MSG/Ob mice. Finally, to identify alterations in glucose metabolism by glycine, we also examined insulin levels and other biochemical parameters during an oral glucose tolerance test. Glycine significantly reduced glucose tolerance and raised insulin levels in lean but not in obese mice. In conclusion, our findings suggest that glycine suppresses the pro-inflammatory cytokines production and increases adiponectin secretion in vivo through the activation of PPAR-gamma. Glycine might prevent insulin resistance and associated inflammatory diseases.

  7. Identification of a nuclear protein interacting with a novel site on rat androgen receptor promoter after transcription factor NFkB is displaced from adjacent site.

    Science.gov (United States)

    Zaidi, Ghazala; Supakar, Prakash C

    2003-06-01

    Sequence-specific DNA-protein interactions mediate the regulation of rat androgen receptor (rAR) gene expression. Previously, DNase I footprinting revealed that nuclear factor kappa B (NFkB) binds to region -574 to -554 on rAR promoter and represses its expression. In this study, we demonstrate that when NFkB protein is removed from its site by competitor DNA in DNase I footprinting reaction, a new DNase I protected region is formed overlapping adjacently (-594 to -561). This indicates that another nuclear protein (named here as FRN, factor repressed by NFkB) binds to rAR promoter only after NFkB protein is displaced. By competitive electrophoretic mobility shift assay and mutation analysis, we confirmed the formation of FRN-DNA complex. FRN interacts with a novel sequence on rAR promoter and may play a role in regulation of rAR gene expression in concert with NFkB.

  8. Novel splice site mutation in the growth hormone receptor gene in Turkish patients with Laron-type dwarfism.

    Science.gov (United States)

    Arman, Ahmet; Ozon, Alev; Isguven, Pinar S; Coker, Ajda; Peker, Ismail; Yordam, Nursen

    2008-01-01

    Growth hormone (GH) is involved in growth, and fat and carbohydrate metabolism. Interaction of GH with the GH receptor (GHR) is necessary for systemic and local production of insulin-like growth factor-I (IGF-I) which mediates GH actions. Mutations in the GHR cause severe postnatal growth failure; the disorder is an autosomal recessive genetic disease resulting in GH insensitivity, called Laron syndrome. It is characterized by dwarfism with elevated serum GH and low levels of IGF-I. We analyzed the GHR gene for mutations and polymorphisms in eight patients with Laron-type dwarfism from six families. We found three missense mutations (S40L, V125A, I526L), one nonsense mutation (W157X), and one splice site mutation in the extracellular domain of GHR. Furthermore, G168G and exon 3 deletion polymorphisms were detected in patients with Laron syndrome. The splice site mutation, which is a novel mutation, was located at the donor splice site of exon 2/ intron 2 within GHR. Although this mutation changed the highly conserved donor splice site consensus sequence GT to GGT by insertion of a G residue, the intron splicing between exon 2 and exon 3 was detected in the patient. These results imply that the splicing occurs arthe GT site in intron 2, leaving the extra inserted G residue at the end of exon 2, thus changing the open reading frame of GHR resulting in a premature termination codon in exon 3.

  9. Inhibitory effect of strychnine on acetylcholine receptor activation in bovine adrenal medullary chromaffin cells.

    Science.gov (United States)

    Kuijpers, G A; Vergara, L A; Calvo, S; Yadid, G

    1994-01-01

    1. Strychnine, which is known as a potent and selective antagonist of the inhibitory glycine receptor in the central nervous system, inhibits the nicotinic stimulation of catecholamine release from bovine cultured adrenal chromaffin cells in a concentration-dependent (1-100 microM) manner. At 10 microM nicotine, the IC50 value for strychnine is approximately 30 microM. Strychnine also inhibits the nicotine-induced membrane depolarization and increase in intracellular Ca2+ concentration. 2. The inhibitory action of strychnine is reversible and is selective for nicotinic stimulation, with no effect observed on secretion elicited by a high external K+ concentration, histamine or angiotensin II. 3. Strychnine competes with nicotine in its effect, but not modify the apparent positive cooperatively of the nicotine binding sites. In the absence of nicotine, strychnine has no effect on catecholamine release. Glycine does not affect catecholamine release nor the inhibitory action of strychnine on this release. 4. These results suggest that strychnine interacts with the agonist binding site of the nicotinic acetylcholine receptor in chromaffin cells, thus exerting a pharmacological effect independently of the glycine receptor. PMID:7834198

  10. Type 2 diabetes mellitus: phylogenetic motifs for predicting protein functional sites

    Indian Academy of Sciences (India)

    Ashok Sharma; Tanuja Rastogi; Meenakshi Bhartiya; A K Shasany; S P S Khanuja

    2007-08-01

    Diabetes mellitus, commonly referred to as diabetes, is a medical condition associated with abnormally high levels of glucose (or sugar) in the blood. Keeping this view, we demonstrate the phylogenetic motifs (PMs) identification in type 2 diabetes mellitus very likely corresponding to protein functional sites. In this article, we have identified PMs for all the candidate genes for type 2 diabetes mellitus. Glycine 310 remains conserved for glucokinase and potassium channel KCNJ11. Isoleucine 137 was conserved for insulin receptor and regulatory subunit of a phosphorylating enzyme. Whereas residues valine, leucine, methionine were highly conserved for insulin receptor. Occurrence of proline was very high for calpain 10 gene and glucose transporter

  11. GPR18 undergoes a high degree of constitutive trafficking but is unresponsive to N-Arachidonoyl Glycine

    Directory of Open Access Journals (Sweden)

    David B. Finlay

    2016-03-01

    Full Text Available The orphan receptor GPR18 has become a research target following the discovery of a putative endogenous agonist, N-arachidonoyl glycine (NAGly. Chemical similarity between NAGly and the endocannabinoid anandamide suggested the hypothesis that GPR18 is a third cannabinoid receptor. GPR18-mediated cellular signalling through inhibition of cyclic adenosine monophosphate (cAMP and phosphorylation of extracellular signal-regulated kinase (ERK, in addition to physiological consequences such as regulation of cellular migration and proliferation/apoptosis have been described in response to both NAGly and anandamide. However, discordant findings have also been reported. Here we sought to describe the functional consequences of GPR18 activation in heterologously-expressing HEK cells. GPR18 expression was predominantly intracellular in stably transfected cell lines, but moderate cell surface expression could be achieved in transiently transfected cells which also had higher overall expression. Assays were employed to characterise the ability of NAGly or anandamide to inhibit cAMP or induce ERK phosphorylation through GPR18, or induce receptor trafficking. Positive control experiments, which utilised cells expressing hCB1 receptors (hCB1R, were performed to validate assay design and performance. While these functional pathways in GPR18-expressing cells were not modified on treatment with a panel of putative GPR18 ligands, a constitutive phenotype was discovered for this receptor. Our data reveal that GPR18 undergoes rapid constitutive receptor membrane trafficking—several-fold faster than hCB1R, a highly constitutively active receptor. To enhance the likelihood of detecting agonist-mediated receptor signalling responses, we increased GPR18 protein expression (by tagging with a preprolactin signal sequence and generated a putative constitutively inactive receptor by mutating the hGPR18 gene at amino acid site 108 (alanine to asparagine. This A108N mutant

  12. Evidence for dual receptor-binding sites in Clostridium difficile toxin A.

    Science.gov (United States)

    Lambert, Gregory S; Baldwin, Michael R

    2016-12-01

    TcdA (308 kDa) and TcdB (270 kDa) disrupt the integrity of the intestinal epithelial barrier and provide an environment favorable for Clostridium difficile colonization. Recent evidence suggests that entry of TcdA into cells is mediated by at least two domains. Here, we report the characterization of a second receptor-binding domain (RBD2) for TcdA. While both the isolated combined repetitive oligopeptides (CROPs) and RBD2 fragments are rapidly internalized into cells under physiologic conditions, only the CROPs domain appreciably accumulates at the cell surface. Once internalized, CROPs and RBD2 are trafficked to late endosomal compartments. An internal deletion of RBD2 from TcdA holotoxin ablated toxicity in HT29 cells. These data are consistent with the recently proposed dual receptor model of cellular entry. © 2016 Federation of European Biochemical Societies.

  13. Mechanisms for Antagonistic Regulation of AMPA and NMDA-D1 Receptor Complexes at Postsynaptic Sites

    Science.gov (United States)

    Schumann, Johann; Scheler, Gabriele

    2004-01-01

    From the analysis of these pathways we conclude that postsynaptic processes that regulate synaptic transmission undergo significant cross-talk with respect to glutamatergic and neuromodulatory (dopamine) signals. The main hypothesis is that of a compensatory regulation, a competitive switch between the induction of increased AMPA conductance by CaMKII-dependent phosphorylation and reduced expression of PP2A, and increased D1 receptor sensitivity and expression by increased PKA, PP2A and decreased PP-1/calcineurin expression. Both types of plasticity are induced by NMDA receptor activation and increased internal calcium, they require different internal conditions to become expressed. Specifically we propose that AMPA regulation and D1 regulation are inversely coupled;The net result may be a bifurcation of synaptic state into predominantly AMPA or NMDA-D1 synapses. This could have functional consequences: stable connections for AMPA and conditional gating for NMDA-D1 synapses.

  14. MRT-92 inhibits Hedgehog signaling by blocking overlapping binding sites in the transmembrane domain of the Smoothened receptor.

    Science.gov (United States)

    Hoch, Lucile; Faure, Helene; Roudaut, Hermine; Schoenfelder, Angele; Mann, Andre; Girard, Nicolas; Bihannic, Laure; Ayrault, Olivier; Petricci, Elena; Taddei, Maurizio; Rognan, Didier; Ruat, Martial

    2015-05-01

    The Smoothened (Smo) receptor, a member of class F G protein-coupled receptors, is the main transducer of the Hedgehog (Hh) signaling pathway implicated in a wide range of developmental and adult processes. Smo is the target of anticancer drugs that bind to a long and narrow cavity in the 7-transmembrane (7TM) domain. X-ray structures of human Smo (hSmo) bound to several ligands have revealed 2 types of 7TM-directed antagonists: those binding mostly to extracellular loops (site 1, e.g., LY2940680) and those penetrating deeply in the 7TM cavity (site 2, e.g., SANT-1). Here we report the development of the acylguanidine MRT-92, which displays subnanomolar antagonist activity against Smo in various Hh cell-based assays. MRT-92 inhibits rodent cerebellar granule cell proliferation induced by Hh pathway activation through pharmacologic (half maximal inhibitory concentration [IC50] = 0.4 nM) or genetic manipulation. Using [(3)H]MRT-92 (Kd = 0.3 nM for hSmo), we created a comprehensive framework for the interaction of small molecule modulators with hSmo and for understanding chemoresistance linked to hSmo mutations. Guided by molecular docking and site-directed mutagenesis data, our work convincingly confirms that MRT-92 simultaneously recognized and occupied both sites 1 and 2. Our data demonstrate the existence of a third type of Smo antagonists, those entirely filling the Smo binding cavity from the upper extracellular part to the lower cytoplasmic-proximal subpocket. Our studies should help design novel potent Smo antagonists and more effective therapeutic strategies for treating Hh-linked cancers and associated chemoresistance. © FASEB.

  15. Metal ion site engineering indicates a global toggle switch model for seven-transmembrane receptor activation

    DEFF Research Database (Denmark)

    Elling, Christian E; Frimurer, Thomas M; Gerlach, Lars-Ole;

    2006-01-01

    Much evidence indicates that, during activation of seven-transmembrane (7TM) receptors, the intracellular segments of the transmembrane helices (TMs) move apart with large amplitude, rigid body movements of especially TM-VI and TM-VII. In this study, AspIII:08 (Asp113), the anchor point for monoa...... that the pivots for these vertical seesaw movements are the highly conserved proline bends of the involved helices....

  16. Insecticidal 3-benzamido-N-phenylbenzamides specifically bind with high affinity to a novel allosteric site in housefly GABA receptors.

    Science.gov (United States)

    Ozoe, Yoshihisa; Kita, Tomo; Ozoe, Fumiyo; Nakao, Toshifumi; Sato, Kazuyuki; Hirase, Kangetsu

    2013-11-01

    γ-Aminobutyric acid (GABA) receptors (GABARs) are an important target for existing insecticides such as fiproles. These insecticides act as noncompetitive antagonists (channel blockers) for insect GABARs by binding to a site within the intrinsic channel of the GABAR. Recently, a novel class of insecticides, 3-benzamido-N-phenylbenzamides (BPBs), was shown to inhibit GABARs by binding to a site distinct from the site for fiproles. We examined the binding site of BPBs in the adult housefly by means of radioligand-binding and electrophysiological experiments. 3-Benzamido-N-(2,6-dimethyl-4-perfluoroisopropylphenyl)-2-fluorobenzamide (BPB 1) (the N-demethyl BPB) was a partial, but potent, inhibitor of [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (GABA channel blocker) binding to housefly head membranes, whereas the 3-(N-methyl)benzamido congener (the N-methyl BPB) had low or little activity. A total of 15 BPB analogs were tested for their abilities to inhibit [(3)H]BPB 1 binding to the head membranes. The N-demethyl analogs, known to be highly effective insecticides, potently inhibited the [(3)H]BPB 1 binding, but the N-methyl analogs did not even though they, too, are considered highly effective. [(3)H]BPB 1 equally bound to the head membranes from wild-type and dieldrin-resistant (rdl mutant) houseflies. GABA allosterically inhibited [(3)H]BPB 1 binding. By contrast, channel blocker-type antagonists enhanced [(3)H]BPB 1 binding to housefly head membranes by increasing the affinity of BPB 1. Antiparasitic macrolides, such as ivermectin B1a, were potent inhibitors of [(3)H]BPB 1 binding. BPB 1 inhibited GABA-induced currents in housefly GABARs expressed in Xenopus oocytes, whereas it failed to inhibit l-glutamate-induced currents in inhibitory l-glutamate receptors. Overall, these findings indicate that BPBs act at a novel allosteric site that is different from the site for channel blocker-type antagonists and that is probably overlapped with the site for macrolides

  17. Complete androgen insensitivity syndrome caused by a novel splice donor site mutation and activation of a cryptic splice donor site in the androgen receptor gene.

    Science.gov (United States)

    Infante, Joana B; Alvelos, Maria I; Bastos, Margarida; Carrilho, Francisco; Lemos, Manuel C

    2016-01-01

    The androgen insensitivity syndrome is an X-linked recessive genetic disorder characterized by resistance to the actions of androgens in an individual with a male karyotype. We evaluated a 34-year-old female with primary amenorrhea and a 46,XY karyotype, with normal secondary sex characteristics, absence of uterus and ovaries, intra-abdominal testis, and elevated testosterone levels. Sequence analysis of the androgen receptor (AR) gene revealed a novel splice donor site mutation in intron 4 (c.2173+2T>C). RT-PCR analysis showed that this mutation resulted in the activation of a cryptic splice donor site located in the second half of exon 4 and in the synthesis of a shorter mRNA transcript and an in-frame deletion of 41 amino acids. This novel mutation associated with a rare mechanism of abnormal splicing further expands the spectrum of mutations associated with the androgen insensitivity syndrome and may contribute to the understanding of the molecular mechanisms involved in splicing defects.

  18. An aspartate to glycine change in the carboxyl transferase domain of acetyl CoA carboxylase and non-target-site mechanism(s) confer resistance to ACCase inhibitor herbicides in a Lolium multiflorum population.

    Science.gov (United States)

    Kaundun, Shiv Shankhar

    2010-11-01

    The increasing use of ACCase-inhibiting herbicides has resulted in evolved resistance in key grass weeds infesting cereal cropping systems worldwide. Here, a thorough and systematic approach is proposed to elucidate the basis of resistance to three ACCase herbicides in a Lolium multiflorum Lam. (Italian rye grass) population from the United Kingdom (UK24). Resistance to sethoxydim and pinoxaden was always associated with a dominant D2078G (Alopecurus myosuroides Huds. equivalent) target-site mutation in UK24. Conversely, whole-plant herbicide assays on predetermined ACCase genotypes showed very high levels of resistance to diclofop-methyl for all three wild DD2078 and mutant DG2078 and GG2078 ACCase genotypes from the mixed resistant population UK24. This indicates the presence of other diclofop-methyl-specific resistance mechanism(s) yet to be determined in this population. The D2078G mutation could be detected using an unambiguous DNA-based dCAPS procedure that proved very transferable to A. myosuroides, Avena fatua L., Setaria viridis (L.) Beauv. and Phalaris minor Retz. This study provides further understanding of the molecular basis of resistance to ACCase inhibitor herbicides in a Lolium population and a widely applicable PCR-based method for monitoring the D2078G target-site resistance mutation in five major grass weed species. Copyright © 2010 Society of Chemical Industry.

  19. A Rigorous Attempt to Verify Interstellar Glycine

    Science.gov (United States)

    Snyder, L. E.; Lovas, F. J.; Hollis, J. M.; Friedel, D. N.; Jewell, P. R.; Remijan, A.; Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.

    2004-01-01

    In 2003, Kuan, Charnley, and co-workers reported the detection of interstellar glycine (NH2CH2COOH) based on observations of 27 lines in 19 different spectral bands in one or more of the sources Sgr BP(N-LMH), Orion KL, and W51 e1/e2. They supported their detection report with rotational temperature diagrams for all three sources. In this paper, we present essential criteria which can be used in a straightforward analysis technique to confirm the identity of an interstellar asymmetric rotor such as glycine. We use new laboratory measurements of glycine as a basis for applying this analysis technique, both to our previously unpublished 12 m telescope data and to the previously published SEST data of Nummelin and colleagues. We conclude that key lines necessary for an interstellar glycine identification have not yet been found. We identify several common molecular candidates that should be examined further as more likely carriers of the lines reported as glycine. Finally, we illustrate that rotational temperature diagrams used without the support of correct spectroscopic assignments are not a reliable tool for the identification of interstellar molecules. Subject headings: ISM: abundances - ISM: clouds - ISM: individual (Sagittarius B2[N-

  20. Site-directed mutagenesis at the human B2 receptor and molecular modelling to define the pharmacophore of non-peptide bradykinin receptor antagonists.

    Science.gov (United States)

    Meini, Stefania; Cucchi, Paola; Bellucci, Francesca; Catalani, Claudio; Faiella, Angela; Rotondaro, Luigi; Quartara, Laura; Giolitti, Alessandro; Maggi, Carlo Alberto

    2004-02-15

    Combining site-directed mutagenesis with information obtained from molecular modelling of the bradykinin (BK) human B2 receptor (hB2R) as derived from the bovine rhodopsin crystal structure [Science 289 (2000) 739], we previously defined a putative binding mode for the non-peptide B2 receptor antagonists, FR173657 and LF16-0687 [Can J Physiol Pharmacol 80 (2002) 303]. The present work is aimed to define the specific role of the quinoline moiety in the pharmacophore of these non-peptide antagonists. The effect of the mutations I110A, L114A (TM, transmembrane 3), W256A (TM6), F292A, Y295A and Y295F (TM7) was evaluated. None of the mutations affected the binding interaction of peptide ligands: the agonist BK and the peptide antagonist MEN 11270. The affinities in competing for [3H]-BK binding and in blocking the BK-induced IP production by the non-peptide antagonists LF16-0687 and FR173657 at the wild type and mutant receptors were analysed. While the affinities of LF16-0687 and FR173657 were crucially decreased at the I110A, Y295A, and Y295F mutants, the W256A mutation affected the affinity of the LF16-0687 only. The important contribution of the quinoline moiety was shown by the inability of an analogue of LF16-0687, lacking this moiety, to affect BK binding at the wild type receptor. On the other hand, the benzamidine group did not interact with mutated residues, since LF16-0687 analogues without this group or with an oxidated benzamidine displayed pairwise loss of affinity on wild type and mutated receptors. Further differences between FR173657 and LF16-0687 were highlighted at the I110 and Y295 mutants when comparing binding (pK(i)) and functional antagonist (pKB) affinity. First, the I110A mutation similarly impaired their binding affinity (250-fold), but at a less extent the antagonist potency of FR173657 only. Second, both the hydroxyl and the phenyl moieties of the Y295 residue had a specific role in the LF16-0687 interaction with the receptor, as

  1. Differential Effects of D-Cycloserine and ACBC at NMDA Receptors in the Rat Entorhinal Cortex Are Related to Efficacy at the Co-Agonist Binding Site.

    Science.gov (United States)

    Lench, Alex M; Robson, Emma; Jones, Roland S G

    2015-01-01

    Partial agonists at the NMDA receptor co-agonist binding site may have potential therapeutic efficacy in a number of cognitive and neurological conditions. The entorhinal cortex is a key brain area in spatial memory and cognitive processing. At synapses in the entorhinal cortex, NMDA receptors not only mediate postsynaptic excitation but are expressed in presynaptic terminals where they tonically facilitate glutamate release. In a previous study we showed that the co-agonist binding site of the presynaptic NMDA receptor is endogenously and tonically activated by D-serine released from astrocytes. In this study we determined the effects of two co-agonist site partial agonists on both presynaptic and postsynaptic NMDA receptors in layer II of the entorhinal cortex. The high efficacy partial agonist, D-cycloserine, decreased the decay time of postsynaptic NMDA receptor mediated currents evoked by electrical stimulation, but had no effect on amplitude or other kinetic parameters. In contrast, a lower efficacy partial agonist, 1-aminocyclobutane-1-carboxylic acid, decreased decay time to a greater extent than D-cycloserine, and also reduced the peak amplitude of the evoked NMDA receptor mediated postsynaptic responses. Presynaptic NMDA receptors, (monitored indirectly by effects on the frequency of AMPA receptor mediated spontaneous excitatory currents) were unaffected by D-cycloserine, but were reduced in effectiveness by 1-aminocyclobutane-1-carboxylic acid. We discuss these results in the context of the effect of endogenous regulation of the NMDA receptor co-agonist site on receptor gating and the potential therapeutic implications for cognitive disorders.

  2. Structural differences in the two agonist binding sites of the Torpedo nicotinic acetylcholine receptor revealed by time-resolved fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Martinez, K. L.; Corringer, P. J.; Edelstein, S. J.

    2000-01-01

    The nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata carries two nonequivalent agonist binding sites at the αδ and αγ subunit interfaces. These sites have been characterized by time-resolved fluorescence with the partial nicotinic agonist dansyl-C6-choline (Dnscho). When bound to t...

  3. Structural differences in the two agonist binding sites of the Torpedo nicotinic acetylcholine receptor revealed by time-resolved fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Martinez, K. L.; Corringer, P. J.; Edelstein, S. J.

    2000-01-01

    The nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata carries two nonequivalent agonist binding sites at the αδ and αγ subunit interfaces. These sites have been characterized by time-resolved fluorescence with the partial nicotinic agonist dansyl-C6-choline (Dnscho). When bound...

  4. Modular insulators: genome wide search for composite CTCF/thyroid hormone receptor binding sites.

    Directory of Open Access Journals (Sweden)

    Oliver Weth

    Full Text Available The conserved 11 zinc-finger protein CTCF is involved in several transcriptional mechanisms, including insulation and enhancer blocking. We had previously identified two composite elements consisting of a CTCF and a TR binding site at the chicken lysozyme and the human c-myc genes. Using these it has been demonstrated that thyroid hormone mediates the relief of enhancer blocking even though CTCF remains bound to its binding site. Here we wished to determine whether CTCF and TR combined sites are representative of a general feature of the genome, and whether such sites are functional in regulating enhancer blocking. Genome wide analysis revealed that about 18% of the CTCF regions harbored at least one of the four different palindromic or repeated sequence arrangements typical for the binding of TR homodimers or TR/RXR heterodimers. Functional analysis of 10 different composite elements of thyroid hormone responsive genes was performed using episomal constructs. The episomal system allowed recapitulating CTCF mediated enhancer blocking function to be dependent on poly (ADP-ribose modification and to mediate histone deacetylation. Furthermore, thyroid hormone sensitive enhancer blocking could be shown for one of these new composite elements. Remarkably, not only did the regulation of enhancer blocking require functional TR binding, but also the basal enhancer blocking activity of CTCF was dependent on the binding of the unliganded TR. Thus, a number of composite CTCF/TR binding sites may represent a subset of other modular CTCF composite sites, such as groups of multiple CTCF sites or of CTCF/Oct4, CTCF/Kaiso or CTCF/Yy1 combinations.

  5. Fluorescence histochemical study of the localisation and distribution of beta-adrenergic receptor sites in the spinal cord and cerebellum of the chicken.

    Science.gov (United States)

    Bondok, A A; Botros, K G; el-Mohandes, E A

    1988-10-01

    The distribution of beta-adrenergic receptor sites has been studied in chicken spinal cord and cerebellum using a fluorescent analogue of propranolol, 9-amino-acridin-propranolol (9-AAP). In the cervical and lumbar regions of the spinal cord, beta-adrenoceptor sites were concentrated on cell bodies of alpha-motor neurons of the dorsolateral and ventrolateral nuclear groups of the ventral horn. In the thoracic region, they were present on cell bodies of the preganglionic sympathetic nucleus (dorsal commissural nucleus). In the dorsal horn, the receptor sites were present mainly on cell bodies of columna dorsalis magnocellularis. Sparse distribution of fluorescence was present in other regions of the gray matter. In the cerebellum, a dense distribution of beta-adrenergic receptor sites was observed on Purkinje cell bodies and their apical dendrites. Sparse distribution of receptor sites was present on fine ramifications of Purkinje cell dendrites in the molecular layer. Receptor sites were absent in the granule cell layer and the white matter. These observations indicate that alpha-motor neurons, preganglionic sympathetic neurons, neurons of columna dorsalis magnocellularis, and Purkinje cells are adrenoceptive, while granule cells are non-adrenoceptive.

  6. An intracellular allosteric site for a specific class of antagonists of the CC chemokine G protein-coupled receptors CCR4 and CCR5.

    Science.gov (United States)

    Andrews, Glen; Jones, Carolyn; Wreggett, Keith A

    2008-03-01

    A novel mechanism for antagonism of the human chemokine receptors CCR4 and CCR5 has been discovered with a series of small-molecule compounds that seems to interact with an allosteric, intracellular site on the receptor. The existence of this site is supported by a series of observations: 1) intracellular access of these antagonists is required for their activity; 2) specific, saturable binding of a radiolabeled antagonist requires the presence of CCR4; and 3) through engineering receptor chimeras by reciprocal transfer of C-terminal domains between CCR4 and CCR5, compound binding and the selective structure-activity relationships for antagonism of these receptors seem to be associated with the integrity of that intracellular region. Published antagonists from other chemical series do not seem to bind to the novel site, and their interaction with either CCR4 or CCR5 is not affected by alteration of the C-terminal domain. The precise location of the proposed binding site remains to be determined, but the known close association of the C-terminal domain, including helix 8, as a proposed intracellular region that interacts with transduction proteins (e.g., G proteins and beta-arrestin) suggests that this could be a generic allosteric site for chemokine receptors and perhaps more broadly for class A G protein-coupled receptors. The existence of such a site that can be targeted for drug discovery has implications for screening assays for receptor antagonists, which would need, therefore, to consider compound properties for access to this intracellular site.

  7. Opioid receptors in human neuroblastoma SH-SY5Y cells: evidence for distinct morphine (. mu. ) and enkephalin (delta) binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Kazmi, S.M.I.; Mishra, R.K.

    1986-06-13

    Human neuroblastoma SH-SY5Y cells exhibited a heterogeneous population of ..mu.. and delta types of opioid binding sites. These specific binding sites displayed the characteristic saturability, stereospecificity and reversibility, expected of a receptor. Scatchard analysis of (/sup 3/H)-D-Ala/sup 2/-D-Leu/sup 5/-enkephalin (DADLE) in the presence of 10/sup -5/M D-Pro/sup 4/-morphiceptin (to block the ..mu.. receptors) and the competitive displacement by various highly selective ligands yielded the binding parameters of delta sites which closely resemble those of the delta receptors in brain and mouse neuroblastoma clones. Similarly, the high affinity binding of (/sup 3/H)-dihydromorphine, together with the higher potency of morphine analogues to displace (/sup 3/H)-naloxone binding established the presence of ..mu.. sites. Guanine nucleotides and NaCl significantly inhibited the association and increased the dissociation of (/sup 3/H)-DADLE binding.

  8. Polymorphisms at the Ligand Binding Site of the Vitamin D Receptor Gene and Osteomalacia

    Directory of Open Access Journals (Sweden)

    Duygu Gezen Ak

    2005-01-01

    Full Text Available Vitamin D receptor (VDR gene polymorphisms have been suggested as possible determinants of bone mineral density (BMD and calcium metabolism. In this study, our aim was to determine whether there is an association between VDR gene polymorphism and osteomalacia or not. We determined ApaI and TaqI polymorphisms in the vitamin D receptor gene in 24 patients with osteomalacia and 25 age-matched healthy controls. Serum calcium, phosphorus, ALP, PTH, 25OHD levels were also examined. We used PCR and RFLP methods to test for an association between osteomalacia and polymorphisms within, intron 8 and exon 9 of the VDR gene. When the control and patients were compared for their ApaI and TaqI genotypes there was no relationship between VDR gene allelic polymorphisms and osteomalacia. Whereas a nearly significant difference for A allele was found in the allellic distribution of the patients (p = 0.08. Also no association between biochemical data and VDR gene polymorphisms was observed.

  9. Synthesis and characterization of manganese-glycine and copper-glycine adducts

    Directory of Open Access Journals (Sweden)

    Robson Fernandes de Farias

    2002-09-01

    Full Text Available This work reports the synthesis and characterization of adducts of general formula MCl2.ngly, where M= Mn and Cu; n= 2 and 4, and gly= glycine. The manganese adducts were synthesized by dissolution of both, manganese chloride and glycine in water, whereas the copper adducts were obtained by using an alternative solid state synthesis approach. For all adducts, the obtained infrared data shows that the coordination involves the amine nitrogen atom, as well as an oxygen atom of the COO- group. The TG curves for the synthesized adducts exhibit only one mass loss step associated with the release of glycine molecules.

  10. Differences in Glycoprotein Complex Receptor Binding Site Accessibility Prompt Poor Cross-Reactivity of Neutralizing Antibodies between Closely Related Arenaviruses.

    Science.gov (United States)

    Brouillette, Rachel B; Phillips, Elisabeth K; Ayithan, Natarajan; Maury, Wendy

    2017-04-01

    The glycoprotein complex (GPC) of arenaviruses, composed of stable signal peptide, GP1, and GP2, is the only antigen correlated with antibody-mediated neutralization. However, despite strong cross-reactivity of convalescent antisera between related arenavirus species, weak or no cross-neutralization occurs. Two closely related clade B viruses, Machupo virus (MACV) and Junín virus (JUNV), have nearly identical overall GPC architecture and share a host receptor, transferrin receptor 1 (TfR1). Given structural and functional similarities of the GP1 receptor binding site (RBS) of these viruses and the recent demonstration that the RBS is an important target for neutralizing antibodies, it is not clear how these viruses avoid cross-neutralization. To address this, MACV/JUNV chimeric GPCs were assessed for interaction with a group of α-JUNV GPC monoclonal antibodies (MAbs) and mouse antisera against JUNV or MACV GPC. All six MAbs targeted GP1, with those that neutralized JUNV GPC-pseudovirions competing with each other for RBS binding. However, these MAbs were unable to bind to a chimeric GPC composed of JUNV GP1 containing a small disulfide bonded loop (loop 10) unique to MACV GPC, suggesting that this loop may block MAbs interaction with the GP1 RBS. Consistent with this loop causing interference, mouse anti-JUNV GPC antisera that solely neutralized pseudovirions bearing autologous GP1 provided enhanced neutralization of MACV GPC when this loop was removed. Our studies provide evidence that loop 10, which is unique to MACV GP1, is an important impediment to binding of neutralizing antibodies and contributes to the poor cross-neutralization of α-JUNV antisera against MACV.IMPORTANCE Multiple New World arenaviruses can cause severe disease in humans, and some geographic overlap exists among these viruses. A vaccine that protects against a broad range of New World arenaviruses is desirable for purposes of simplicity, cost, and broad protection against multiple National

  11. Identification of C-terminal phosphorylation sites of N-formyl peptide receptor-1 (FPR1) in human blood neutrophils.

    Science.gov (United States)

    Maaty, Walid S; Lord, Connie I; Gripentrog, Jeannie M; Riesselman, Marcia; Keren-Aviram, Gal; Liu, Ting; Dratz, Edward A; Bothner, Brian; Jesaitis, Algirdas J

    2013-09-20

    Accumulation, activation, and control of neutrophils at inflammation sites is partly driven by N-formyl peptide chemoattractant receptors (FPRs). Occupancy of these G-protein-coupled receptors by formyl peptides has been shown to induce regulatory phosphorylation of cytoplasmic serine/threonine amino acid residues in heterologously expressed recombinant receptors, but the biochemistry of these modifications in primary human neutrophils remains relatively unstudied. FPR1 and FPR2 were partially immunopurified using antibodies that recognize both receptors (NFPRa) or unphosphorylated FPR1 (NFPRb) in dodecylmaltoside extracts of unstimulated and N-formyl-Met-Leu-Phe (fMLF) + cytochalasin B-stimulated neutrophils or their membrane fractions. After deglycosylation and separation by SDS-PAGE, excised Coomassie Blue-staining bands (∼34,000 Mr) were tryptically digested, and FPR1, phospho-FPR1, and FPR2 content was confirmed by peptide mass spectrometry. C-terminal FPR1 peptides (Leu(312)-Arg(322) and Arg(323)-Lys(350)) and extracellular FPR1 peptide (Ile(191)-Arg(201)) as well as three similarly placed FPR2 peptides were identified in unstimulated and fMLF + cytochalasin B-stimulated samples. LC/MS/MS identified seven isoforms of Ala(323)-Lys(350) only in the fMLF + cytochalasin B-stimulated sample. These were individually phosphorylated at Thr(325), Ser(328), Thr(329), Thr(331), Ser(332), Thr(334), and Thr(339). No phospho-FPR2 peptides were detected. Cytochalasin B treatment of neutrophils decreased the sensitivity of fMLF-dependent NFPRb recognition 2-fold, from EC50 = 33 ± 8 to 74 ± 21 nM. Our results suggest that 1) partial immunopurification, deglycosylation, and SDS-PAGE separation of FPRs is sufficient to identify C-terminal FPR1 Ser/Thr phosphorylations by LC/MS/MS; 2) kinases/phosphatases activated in fMLF/cytochalasin B-stimulated neutrophils produce multiple C-terminal tail FPR1 Ser/Thr phosphorylations but have little effect on corresponding FPR2 sites

  12. Identification of C-terminal Phosphorylation Sites of N-Formyl Peptide Receptor-1 (FPR1) in Human Blood Neutrophils*

    Science.gov (United States)

    Maaty, Walid S.; Lord, Connie I.; Gripentrog, Jeannie M.; Riesselman, Marcia; Keren-Aviram, Gal; Liu, Ting; Dratz, Edward A.; Bothner, Brian; Jesaitis, Algirdas J.

    2013-01-01

    Accumulation, activation, and control of neutrophils at inflammation sites is partly driven by N-formyl peptide chemoattractant receptors (FPRs). Occupancy of these G-protein-coupled receptors by formyl peptides has been shown to induce regulatory phosphorylation of cytoplasmic serine/threonine amino acid residues in heterologously expressed recombinant receptors, but the biochemistry of these modifications in primary human neutrophils remains relatively unstudied. FPR1 and FPR2 were partially immunopurified using antibodies that recognize both receptors (NFPRa) or unphosphorylated FPR1 (NFPRb) in dodecylmaltoside extracts of unstimulated and N-formyl-Met-Leu-Phe (fMLF) + cytochalasin B-stimulated neutrophils or their membrane fractions. After deglycosylation and separation by SDS-PAGE, excised Coomassie Blue-staining bands (∼34,000 Mr) were tryptically digested, and FPR1, phospho-FPR1, and FPR2 content was confirmed by peptide mass spectrometry. C-terminal FPR1 peptides (Leu312–Arg322 and Arg323–Lys350) and extracellular FPR1 peptide (Ile191–Arg201) as well as three similarly placed FPR2 peptides were identified in unstimulated and fMLF + cytochalasin B-stimulated samples. LC/MS/MS identified seven isoforms of Ala323–Lys350 only in the fMLF + cytochalasin B-stimulated sample. These were individually phosphorylated at Thr325, Ser328, Thr329, Thr331, Ser332, Thr334, and Thr339. No phospho-FPR2 peptides were detected. Cytochalasin B treatment of neutrophils decreased the sensitivity of fMLF-dependent NFPRb recognition 2-fold, from EC50 = 33 ± 8 to 74 ± 21 nm. Our results suggest that 1) partial immunopurification, deglycosylation, and SDS-PAGE separation of FPRs is sufficient to identify C-terminal FPR1 Ser/Thr phosphorylations by LC/MS/MS; 2) kinases/phosphatases activated in fMLF/cytochalasin B-stimulated neutrophils produce multiple C-terminal tail FPR1 Ser/Thr phosphorylations but have little effect on corresponding FPR2 sites; and 3) the extent of

  13. An inter-comparison of PM10 source apportionment using PCA and PMF receptor models in three European sites.

    Science.gov (United States)

    Cesari, Daniela; Amato, F; Pandolfi, M; Alastuey, A; Querol, X; Contini, D

    2016-08-01

    Source apportionment of aerosol is an important approach to investigate aerosol formation and transformation processes as well as to assess appropriate mitigation strategies and to investigate causes of non-compliance with air quality standards (Directive 2008/50/CE). Receptor models (RMs) based on chemical composition of aerosol measured at specific sites are a useful, and widely used, tool to perform source apportionment. However, an analysis of available studies in the scientific literature reveals heterogeneities in the approaches used, in terms of "working variables" such as the number of samples in the dataset and the number of chemical species used as well as in the modeling tools used. In this work, an inter-comparison of PM10 source apportionment results obtained at three European measurement sites is presented, using two receptor models: principal component analysis coupled with multi-linear regression analysis (PCA-MLRA) and positive matrix factorization (PMF). The inter-comparison focuses on source identification, quantification of source contribution to PM10, robustness of the results, and how these are influenced by the number of chemical species available in the datasets. Results show very similar component/factor profiles identified by PCA and PMF, with some discrepancies in the number of factors. The PMF model appears to be more suitable to separate secondary sulfate and secondary nitrate with respect to PCA at least in the datasets analyzed. Further, some difficulties have been observed with PCA in separating industrial and heavy oil combustion contributions. Commonly at all sites, the crustal contributions found with PCA were larger than those found with PMF, and the secondary inorganic aerosol contributions found by PCA were lower than those found by PMF. Site-dependent differences were also observed for traffic and marine contributions. The inter-comparison of source apportionment performed on complete datasets (using the full range of

  14. Analysis of a polymorphic microRNA target site in the purinergic receptor P2RX7 gene.

    Science.gov (United States)

    Rahman, Omar Abdul; Sasvari-Szekely, Maria; Szekely, Anna; Faludi, Gabor; Guttman, Andras; Nemoda, Zsofia

    2010-06-01

    The recent discovery of post-transcriptional regulation by microRNAs (miRNAs) drew our attention to SNPs of putative miRNA target sites in candidate genes of depression-related psychiatric disorders. The P2RX7 (purinergic receptor P2X, ligand-gated ion channel, 7) gene has been suggested as a candidate for major depressive and bipolar disorder, because of repeated associations with the rs2230912 (Gln460Arg) polymorphism. As this polymorphism is located at the end of the coding region, we considered a possible linkage with SNP(s) in putative miRNA target sites of the 3' untranslated region. Based on our in silico search, the rs1653625 fulfilled this criterion. This SNP, however, is surrounded with polycytosine and polyadenine tracts, which hindered its analysis until now. In this study, we describe a readily applicable genotyping method for rs1653625 by applying a primer that introduces mismatched nucleotides to create a restriction enzyme cleavage site. The resulting allele-specific products with 19 base pair difference were separated by both traditional horizontal agarose gel electrophoresis and multicapillary gel electrophoresis. The developed genotyping method was applied in our depression-related association study.

  15. (/sup 3/H)MK-801 labels a site on the N-methyl-D-aspartate receptor channel complex in rat brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wong, E.H.; Knight, A.R.; Woodruff, G.N.

    1988-01-01

    The potent noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist (/sup 3/H)MK-801 bound with nanomolar affinity to rat brain membranes in a reversible, saturable, and stereospecific manner. The affinity of (/sup 3/H)MK-801 was considerably higher in 5 mM Tris-HCl (pH 7.4) than in previous studies using Krebs-Henseleit buffer. (/sup 3/H)MK-801 labels a homogeneous population of sites in rat cerebral cortical membranes with KD of 6.3 nM and Bmax of 2.37 pmol/mg of protein. This binding was unevenly distributed among brain regions, with hippocampus greater than cortex greater than olfactory bulb = striatum greater than medulla-pons, and the cerebellum failing to show significant binding. Detailed pharmacological characterization indicated (/sup 3/H)MK-801 binding to a site which was competitively and potently inhibited by known noncompetitive NMDA receptor antagonists, such as phencyclidine, thienylcyclohexylpiperidine (TCP), ketamine, N-allylnormetazocine (SKF 10,047), cyclazocine, and etoxadrol, a specificity similar to sites labelled by (/sup 3/H)TCP. These sites were distinct from the high-affinity sites labelled by the sigma receptor ligand (+)-(/sup 3/H)SKF 10,047. (/sup 3/H)MK-801 binding was allosterically modulated by the endogenous NMDA receptor antagonist Mg2+ and by other active divalent cations. These data suggest that (/sup 3/H)MK-801 labels a high-affinity site on the NMDA receptor channel complex, distinct from the NMDA recognition site, which is responsible for the blocking action of MK-801 and other noncompetitive NMDA receptor antagonists.

  16. Developmental aspects of adipose tissue in GH receptor and prolactin receptor gene disrupted mice: site-specific effects upon proliferation, differentiation and hormone sensitivity.

    Science.gov (United States)

    Flint, David J; Binart, Nadine; Boumard, Stephanie; Kopchick, John J; Kelly, Paul

    2006-10-01

    Direct metabolic effects of GH on adipose tissue are well established, but effects of prolactin (PRL) have been more controversial. Recent studies have demonstrated PRL receptors on adipocytes and effects of PRL on adipose tissue in vitro. The role of GH in adipocyte proliferation and differentiation is also controversial, since GH stimulates adipocyte differentiation in cell lines, whereas it stimulates proliferation but inhibits differentiation of adipocytes in primary cell culture. Using female gene disrupted (ko) mice, we showed that absence of PRL receptors (PRLRko) impaired development of both internal and s.c. adipose tissue, due to reduced numbers of adipocytes, an effect differing from that of reduced food intake, where cell volume is decreased. In contrast, GHRko mice exhibited major decreases in the number of internal adipocytes, whereas s.c. adipocyte numbers were increased, even though body weight was decreased by 40-50%. The changes in adipose tissue in PRLRko mice appeared to be entirely due to extrinsic factors since preadipocytes proliferated and differentiated in similar fashion to wild-type animals in vitro and their response to insulin and isoproterenol was similar to wild-type animals. This contrasted with GHRko mice, where s.c. adipocytes proliferated, differentiated, and responded to hormones in identical fashion to controls, whereas parametrial adipocytes exhibited markedly depressed proliferation and differentiation potential and failed to respond to insulin or noradrenaline. Our results provide in vivo evidence that both GH and PRL stimulate differentiation of adipocytes but that the effects of GH are site specific and induce intrinsic changes in the precursor population, which are retained in vitro.

  17. The soybean (Glycine max) nodulation-suppressive CLE peptide, GmRIC1, functions interspecifically in common white bean (Phaseolus vulgaris), but not in a supernodulating line mutated in the receptor PvNARK.

    Science.gov (United States)

    Ferguson, Brett J; Li, Dongxue; Hastwell, April H; Reid, Dugald E; Li, Yupeng; Jackson, Scott A; Gresshoff, Peter M

    2014-10-01

    Legume plants regulate the number of nitrogen-fixing root nodules they form via a process called the Autoregulation of Nodulation (AON). Despite being one of the most economically important and abundantly consumed legumes, little is known about the AON pathway of common bean (Phaseolus vulgaris). We used comparative- and functional-genomic approaches to identify central components in the AON pathway of common bean. This includes identifying PvNARK, which encodes a LRR receptor kinase that acts to regulate root nodule numbers. A novel, truncated version of the gene was identified directly upstream of PvNARK, similar to Medicago truncatula, but not seen in Lotus japonicus or soybean. Two mutant alleles of PvNARK were identified that cause a classic shoot-controlled and nitrate-tolerant supernodulation phenotype. Homeologous over-expression of the nodulation-suppressive CLE peptide-encoding soybean gene, GmRIC1, abolished nodulation in wild-type bean, but had no discernible effect on PvNARK-mutant plants. This demonstrates that soybean GmRIC1 can function interspecifically in bean, acting in a PvNARK-dependent manner. Identification of bean PvRIC1, PvRIC2 and PvNIC1, orthologues of the soybean nodulation-suppressive CLE peptides, revealed a high degree of conservation, particularly in the CLE domain. Overall, our work identified four new components of bean nodulation control and a truncated copy of PvNARK, discovered the mutation responsible for two supernodulating bean mutants and demonstrated that soybean GmRIC1 can function in the AON pathway of bean. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Identification of Rotylenchulus reniformis resistant Glycine lines

    Science.gov (United States)

    Identification of resistance to reniform nematode (Rotylenchulus reniformis) is the first step in developing resistant soybean (Glycine max) cultivars that will benefit growers in the Mid South. This study was conducted to identify soybean (G. max and G. soja) lines with resistance to this pathogen....

  19. Glycine/Glycolic acid based copolymers

    NARCIS (Netherlands)

    in 't Veld, P.J.A.; in 't Veld, Peter J.A.; Shen, Zheng-Rong; Shen, Z.; Takens, Gijsbert A.J.; Takens, G.A.J.; Dijkstra, Pieter J.; Feijen, Jan

    1994-01-01

    Glycine/glycolic acid based biodegradable copolymers have been prepared by ring-opening homopolymerization of morpholine-2,5-dione, and ring-opening copolymerization of morpholine-2,5-dione and glycolide. The homopolymerization of morpholine-2,5-dione was carried out in the melt at 200°C for 3 min

  20. Conformational changes in glycine tri- and hexapeptide

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2006-01-01

    We have investigated the potential energy surfaces for glycine chains consisting of three and six amino acids. For these molecules we have calculated potential energy surfaces as a function of the Ramachandran angles phi and psi, which are widely used for the characterization of the polypeptide c...

  1. Glycine/Glycolic acid based copolymers

    NARCIS (Netherlands)

    Veld, in 't Peter J.A.; Shen, Zheng-Rong; Takens, Gijsbert A.J.; Dijkstra, Pieter J.; Feijen, Jan

    1994-01-01

    Glycine/glycolic acid based biodegradable copolymers have been prepared by ring-opening homopolymerization of morpholine-2,5-dione, and ring-opening copolymerization of morpholine-2,5-dione and glycolide. The homopolymerization of morpholine-2,5-dione was carried out in the melt at 200°C for 3 min u

  2. The glycine transporter-1 inhibitors NFPS and Org 24461: a pharmacological study.

    Science.gov (United States)

    Harsing, Laszlo G; Gacsalyi, Istvan; Szabo, Geza; Schmidt, Eva; Sziray, Nora; Sebban, Claude; Tesolin-Decros, Brigitte; Matyus, Peter; Egyed, Andras; Spedding, Michael; Levay, Gyorgy

    2003-03-01

    The in vitro and in vivo pharmacology of two glycine transporter-1 (GlyT1) inhibitors, N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)-propyl]sarcosine (NFPS) and R,S-(+/-)N-methyl-N-[(4-trifluoromethyl)phenoxy]-3-phenyl-propylglycine (Org 24461), was studied. NFPS and Org 24461 inhibited the uptake of [3H]glycine in hippocampal synaptosomal preparation with IC(50) values of 0.022 and 2.5 microM. Neither NFPS nor Org 24461 (0.1 microM) showed significant binding to alpha-1, alpha-2, and beta-adrenoceptors, D(1) and D(2) dopamine receptors, and 5-HT(1A) and 5-HT(2A) serotonin receptors in membranes prepared from rat brain or to cloned 5-HT(6) and 5-HT(7) receptors. At 10 microM concentrations, binding affinity was measured for NFPS to 5-HT(2A) and 5-HT(2C) serotonin receptors and alpha-2 adrenoceptors and for NFPS and Org 24461 to 5-HT(7) serotonin receptors. Glycine (0.1 mM) and sarcosine (5 mM) increased [3H]glycine efflux from superfused rat hippocampal slices preloaded with [3H]glycine. NFPS and Org 24461 (0.1 mM) did not influence [3H]glycine efflux, however, they inhibited glycine-induced [3H]glycine release. These findings indicate that NFPS and Org 24461 selectively inhibit glycine uptake without being substrates of the transporter protein. Several antipsychotic tests were used to characterize antipsychotic effects of NFPS and Org 24461 in vivo. These compounds did not alter apomorphine-induced climbing and stereotypy in a dose of 10 mg/kg p.o. in mice and did not induce catalepsy in a dose of 10 mg/kg i.p. in rats. The ID(50) values of NFPS were 21.4 mg/kg and higher than 30 mg/kg i.p. for inhibition of phencyclidine (PCP)- and D-amphetamine-induced hypermotility in mice and these values were 2.5 and 8.6 mg/kg i.p. for Org 24461. NFPS and Org 24461 did not exhibit anxiolytic effects in light-dark test in mice, in the meta-chlorophenylpiperazine (mCPP)-induced anxiety test (minimal effective dose or MED was higher than 3 mg/kg i.p.) and in the Vogel conflict

  3. Characterization of the ligand binding site of the bovine IgA Fc receptor (bFc alpha R).

    Science.gov (United States)

    Morton, H Craig; Pleass, Richard J; Woof, Jenny M; Brandtzaeg, Per

    2004-12-24

    Recently, we identified a bovine IgA Fc receptor (bFc alpha R), which shows high homology to the human myeloid Fc alpha R, CD89. IgA binding has previously been shown to depend on several specific residues located in the B-C and F-G loops of the membrane-distal extracellular domain 1 of CD89. To compare the ligand binding properties of these two Fc alpha Rs, we have mapped the IgA binding site of bFc alpha R. We show that, in common with CD89, Tyr-35 in the B-C loop is essential for IgA binding. However, in contrast to earlier observations on CD89, mutation of residues in the F-G loop did not significantly inhibit IgA binding.

  4. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, J.; Kuriyama, K. (Kyoto Prefectural Univ. of Medicine (Japan))

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  5. A study of the source-receptor relationships influencing the acidity of precipitation collected at a rural site in France

    Science.gov (United States)

    Charron, Aurélie; Plaisance, Hervé; Sauvage, Stéphane; Coddeville, Patrice; Galloo, Jean-Claude; Guillermo, René

    In order to examine the qualitative and quantitative source-receptor relationships responsible for acid rains at a background site in France, a receptor-oriented model was applied to the precipitation data collected from 1992 to 1995. Origins of acidic and alkaline species in precipitations have been investigated. The methodology combines precipitation chemical data with air parcel backward trajectories to establish concentration field maps of likely contributing sources. Highest acidities and concentrations of sulfate and nitrate in precipitation were associated with transport from the high emission areas of central Europe. Alkaline events were associated with air masses originating from Mediterranean basin or northern Africa. The quantitative relationships between the maps of potential sources and the European emissions of SO 2 and NO x were examined performing a correlation analysis. Good correlations were found between computed concentrations of acidic species and emissions of SO 2 and NO x. Substantial seasonal variations of acidic species were revealed. The highest concentrations occurred during the warm season. These seasonal variations are the effect of change of meteorological conditions and of the strength atmospheric processes according to the season.

  6. Elucidation of binding sites of dual antagonists in the human chemokine receptors CCR2 and CCR5.

    Science.gov (United States)

    Hall, Spencer E; Mao, Allen; Nicolaidou, Vicky; Finelli, Mattea; Wise, Emma L; Nedjai, Belinda; Kanjanapangka, Julie; Harirchian, Paymann; Chen, Deborah; Selchau, Victor; Ribeiro, Sofia; Schyler, Sabine; Pease, James E; Horuk, Richard; Vaidehi, Nagarajan

    2009-06-01

    Design of dual antagonists for the chemokine receptors CCR2 and CCR5 will be greatly facilitated by knowledge of the structural differences of their binding sites. Thus, we computationally predicted the binding site of the dual CCR2/CCR5 antagonist N-dimethyl-N-[4-[[[2-(4-methylphenyl)-6,7-dihydro-5H-benzohepten-8-yl] carbonyl]amino]benzyl]tetrahydro-2H-pyran-4-aminium (TAK-779), and a CCR2-specific antagonist N-(carbamoylmethyl)-3-trifluoromethyl benzamido-parachlorobenzyl 3-aminopyrrolidine (Teijin compound 1) in an ensemble of predicted structures of human CCR2 and CCR5. Based on our predictions of the protein-ligand interactions, we examined the activity of the antagonists for cells expressing thirteen mutants of CCR2 and five mutants of CCR5. The results show that residues Trp98(2.60) and Thr292(7.40) contribute significantly to the efficacy of both TAK-779 and Teijin compound 1, whereas His121(3.33) and Ile263(6.55) contribute significantly only to the antagonistic effect of Teijin compound 1 at CCR2. Mutation of residues Trp86(2.60) and Tyr108(3.32) adversely affected the efficacy of TAK-779 in antagonizing CCR5-mediated chemotaxis. Y49A(1.39) and E291A(7.39) mutants of CCR2 showed a complete loss of CCL2 binding and chemotaxis, despite robust cell surface expression, suggesting that these residues are critical in maintaining the correct receptor architecture. Modeling studies support the hypothesis that the residues Tyr49(1.39), Trp98(2.60), Tyr120(3.32), and Glu291(7.39) of CCR2 form a tight network of aromatic cluster and polar contacts between transmembrane helices 1, 2, 3, and 7.

  7. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin

    DEFF Research Database (Denmark)

    Eghorn, Laura Friis; Høstgaard-Jensen, Kirsten; Kongstad, Kenneth Thermann

    2014-01-01

    conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed......γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate...... whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive...

  8. Heptapeptide ligands against receptor-binding sites of influenza hemagglutinin toward anti-influenza therapy.

    Science.gov (United States)

    Matsubara, Teruhiko; Onishi, Ai; Yamaguchi, Daisuke; Sato, Toshinori

    2016-03-01

    The initial attachment of influenza virus to cells is the binding of hemagglutinin (HA) to the sialyloligosaccharide receptor; therefore, the small molecules that inhibit the sugar-protein interaction are promising as HA inhibitors to prevent the infection. We herein demonstrate that sialic acid-mimic heptapeptides are identified through a selection from a primary library against influenza virus HA. In order to obtain lead peptides, an affinity selection from a phage-displayed random heptapeptide library was performed with the HAs of the H1 and H3 strains, and two kinds of the HA-binding peptides were identified. The binding of the peptides to HAs was inhibited in the presence of sialic acid, and plaque assays indicated that the corresponding N-stearoyl peptide strongly inhibited infections by the A/Aichi/2/68 (H3N2) strain of the virus. Alanine scanning of the peptides indicated that arginine and proline were responsible for binding. The affinities of several mutant peptides with single-amino-acid substitutions against H3 HA were determined, and corresponding docking studies were performed. A Spearman analysis revealed a correlation between the affinity of the peptides and the docking study. These results provide a practicable method to design of peptide-based HA inhibitors that are promising as anti-influenza drugs.

  9. Shisa6 traps AMPA receptors at postsynaptic sites and prevents their desensitization during synaptic activity.

    Science.gov (United States)

    Klaassen, Remco V; Stroeder, Jasper; Coussen, Françoise; Hafner, Anne-Sophie; Petersen, Jennifer D; Renancio, Cedric; Schmitz, Leanne J M; Normand, Elisabeth; Lodder, Johannes C; Rotaru, Diana C; Rao-Ruiz, Priyanka; Spijker, Sabine; Mansvelder, Huibert D; Choquet, Daniel; Smit, August B

    2016-03-02

    Trafficking and biophysical properties of AMPA receptors (AMPARs) in the brain depend on interactions with associated proteins. We identify Shisa6, a single transmembrane protein, as a stable and directly interacting bona fide AMPAR auxiliary subunit. Shisa6 is enriched at hippocampal postsynaptic membranes and co-localizes with AMPARs. The Shisa6 C-terminus harbours a PDZ domain ligand that binds to PSD-95, constraining mobility of AMPARs in the plasma membrane and confining them to postsynaptic densities. Shisa6 expressed in HEK293 cells alters GluA1- and GluA2-mediated currents by prolonging decay times and decreasing the extent of AMPAR desensitization, while slowing the rate of recovery from desensitization. Using gene deletion, we show that Shisa6 increases rise and decay times of hippocampal CA1 miniature excitatory postsynaptic currents (mEPSCs). Shisa6-containing AMPARs show prominent sustained currents, indicating protection from full desensitization. Accordingly, Shisa6 prevents synaptically trapped AMPARs from depression at high-frequency synaptic transmission.

  10. Chromium Substituted Cobalt Ferrites by Glycine-Nitrates Process

    Directory of Open Access Journals (Sweden)

    Dana Gingasu

    2015-12-01

    Full Text Available Chromium substituted cobalt ferrites (CoFe2–xCrxO4, 0 ≤ x ≤ 2 were synthesized through solution combustion method using glycine as fuel, named glycine-nitrates process (GNP. As evidenced by X-ray diffraction data (XRD, single cubic spinel phase was formed for all CoFe2–xCrxO4 (0 ≤ x ≤ 2 series. The cubic lattice parameter (a decreases with increasing chromium content. Room temperature 57Fe Mössbauer spectra revealed the Fe3+ and Cr3+ site occupancy, the local hyperfine magnetic fields and the substitution of Fe3+ by Cr3+ in the lattice. Scanning electron microscopy (SEM showed a refinement of particle size with the increase of Cr3+ content. Magnetic measurements from 5 K to 120 K have shown a dropping in the saturation magnetization as the chromium content increases. This behaviour has been explained in terms of substitution of Fe3+ by Cr3+ in the cubic lattice of cobalt ferrite.

  11. Comparative neuroprotective properties of stilbene and catechin analogs: action via a plasma membrane receptor site?

    Science.gov (United States)

    Bastianetto, Stéphane; Dumont, Yvan; Han, Yingshan; Quirion, Rémi

    2009-01-01

    Various studies have reported on the neuroprotective effects of polyphenols, widely present in food, beverages, and natural products. For example, we have shown that resveratrol, a polyphenol enriched in red wine and other foods such as peanuts, protects hippocampal cells against beta-amyloid (Abeta)-induced toxicity, a key protein involved in the neuropathology of Alzheimer disease. This effect involves, at least in part, the capacity of resveratrol to activate the phosphorylation of delta isoform of protein kinase C (PKC-delta). The neuroprotective action of resveratrol is shared by piceatannol, a stilbene derivative, as well as by tea-derived catechin gallate esters. The thioflavin T assay indicated that all these polyphenols inhibited the formation of Abeta fibrils, suggesting that this action likely also contributes to their neuroprotective effects. Binding and autoradiographic studies revealed that the effects of polyphenols might involve specific binding sites that are particularly enriched in the choroid plexus in the rat brain. Interestingly, the choroid plexus secretes transthyretin, a protein that has been shown to modulate Abeta aggregation and that may be critical to the maintenance of normal learning capacities in aging. Taken together, these data suggest that polyphenols target multiple enzymes/proteins, leading to their neuroprotective actions, possibly through action via specific plasma membrane binding sites.

  12. Research Progress in Glycine Betaine Improving Plant Salty Stressful Tolerance

    Institute of Scientific and Technical Information of China (English)

    ZHU Hong; WANG Wenjie; YAN Yongqing; ZU Yuangang

    2008-01-01

    Many plants accumulate compatible solutes in response to the imposition of environmental stresses. Glycine betaine, which is one of compatible solutes in cell of plants, has been shown to have surviving ability for plant from salt stress. Effect of glycine betaine on improving plant salt resistance was discussed in plants under salt stress. The accumulation of glycine betaine protects plants against the damaging effects of stress. Strategies of glycine betaine against the damaging effects of stress were analyzed to clarify the roles of glycine betaine in salt stress tolerance of plants.

  13. Binding Sites for Acylated Trehalose Analogs of Glycolipid Ligands on an Extended Carbohydrate Recognition Domain of the Macrophage Receptor Mincle*

    Science.gov (United States)

    Feinberg, Hadar; Rambaruth, Neela D. S.; Jégouzo, Sabine A. F.; Jacobsen, Kristian M.; Djurhuus, Rasmus; Poulsen, Thomas B.; Weis, William I.; Taylor, Maureen E.; Drickamer, Kurt

    2016-01-01

    The macrophage receptor mincle binds to trehalose dimycolate on the surface of Mycobacterium tuberculosis. Signaling initiated by this interaction leads to cytokine production, which underlies the ability of mycobacteria to evade the immune system and also to function as adjuvants. In previous work the mechanism for binding of the sugar headgroup of trehalose dimycolate to mincle has been elucidated, but the basis for enhanced binding to glycolipid ligands, in which hydrophobic substituents are attached to the 6-hydroxyl groups, has been the subject of speculation. In the work reported here, the interaction of trehalose derivatives with bovine mincle has been probed with a series of synthetic mimics of trehalose dimycolate in binding assays, in structural studies by x-ray crystallography, and by site-directed mutagenesis. Binding studies reveal that, rather than reflecting specific structural preference, the apparent affinity of mincle for ligands with hydrophobic substituents correlates with their overall size. Structural and mutagenesis analysis provides evidence for interaction of the hydrophobic substituents with multiple different portions of the surface of mincle and confirms the presence of three Ca2+-binding sites. The structure of an extended portion of the extracellular domain of mincle, beyond the minimal C-type carbohydrate recognition domain, also constrains the way the binding domains may interact on the surface of macrophages. PMID:27542410

  14. The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists

    Science.gov (United States)

    Kalani, M. Yashar S.; Vaidehi, Nagarajan; Hall, Spencer E.; Trabanino, Rene J.; Freddolino, Peter L.; Kalani, Maziyar A.; Floriano, Wely B.; Tak Kam, Victor Wai; Goddard, William A., III

    2004-03-01

    Dopamine neurotransmitter and its receptors play a critical role in the cell signaling process responsible for information transfer in neurons functioning in the nervous system. Development of improved therapeutics for such disorders as Parkinson's disease and schizophrenia would be significantly enhanced with the availability of the 3D structure for the dopamine receptors and of the binding site for dopamine and other agonists and antagonists. We report here the 3D structure of the long isoform of the human D2 dopamine receptor, predicted from primary sequence using first-principles theoretical and computational techniques (i.e., we did not use bioinformatic or experimental 3D structural information in predicting structures). The predicted 3D structure is validated by comparison of the predicted binding site and the relative binding affinities of dopamine, three known dopamine agonists (antiparkinsonian), and seven known antagonists (antipsychotic) in the D2 receptor to experimentally determined values. These structures correctly predict the critical residues for binding dopamine and several antagonists, identified by mutation studies, and give relative binding affinities that correlate well with experiments. The predicted binding site for dopamine and agonists is located between transmembrane (TM) helices 3, 4, 5, and 6, whereas the best antagonists bind to a site involving TM helices 2, 3, 4, 6, and 7 with minimal contacts to TM helix 5. We identify characteristic differences between the binding sites of agonists and antagonists.

  15. Piracetam Defines a New Binding Site for Allosteric Modulators of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors§

    Science.gov (United States)

    Ahmed, Ahmed H.; Oswald, Robert E.

    2010-01-01

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to both GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators. PMID:20163115

  16. Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.

    Science.gov (United States)

    Ahmed, Ahmed H; Oswald, Robert E

    2010-03-11

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.

  17. Delineation of the complement receptor type 2-C3d complex by site-directed mutagenesis and molecular docking.

    Science.gov (United States)

    Shaw, Craig D; Storek, Michael J; Young, Kendra A; Kovacs, James M; Thurman, Joshua M; Holers, V Michael; Hannan, Jonathan P

    2010-12-10

    The interactions between the complement receptor type 2 (CR2) and the C3 complement fragments C3d, C3dg, and iC3b are essential for the initiation of a normal immune response. A crystal-derived structure of the two N-terminal short consensus repeat (SCR1-2) domains of CR2 in complex with C3d has previously been elucidated. However, a number of biochemical and biophysical studies targeting both CR2 and C3d appear to be in conflict with these structural data. Previous mutagenesis and heteronuclear NMR spectroscopy studies directed toward the C3d-binding site on CR2 have indicated that the CR2-C3d cocrystal structure may represent an encounter/intermediate or nonphysiological complex. With regard to the CR2-binding site on C3d, mutagenesis studies by Isenman and coworkers [Isenman, D. E., Leung, E., Mackay, J. D., Bagby, S. & van den Elsen, J. M. H. (2010). Mutational analyses reveal that the staphylococcal immune evasion molecule Sbi and complement receptor 2 (CR2) share overlapping contact residues on C3d: Implications for the controversy regarding the CR2/C3d cocrystal structure. J. Immunol. 184, 1946-1955] have implicated an electronegative "concave" surface on C3d in the binding process. This surface is discrete from the CR2-C3d interface identified in the crystal structure. We generated a total of 18 mutations targeting the two (X-ray crystallographic- and mutagenesis-based) proposed CR2 SCR1-2 binding sites on C3d. Using ELISA analyses, we were able to assess binding of mutant forms of C3d to CR2. Mutations directed toward the concave surface of C3d result in substantially compromised CR2 binding. By contrast, targeting the CR2-C3d interface identified in the cocrystal structure and the surrounding area results in significantly lower levels of disruption in binding. Molecular modeling approaches used to investigate disparities between the biochemical data and the X-ray structure of the CR2-C3d cocrystal result in highest-scoring solutions in which CR2 SCR1-2 is

  18. Shutoff and agonist-triggered internalization of protease-activated receptor 1 can be separated by mutation of putative phosphorylation sites in the cytoplasmic tail.

    Science.gov (United States)

    Hammes, S R; Shapiro, M J; Coughlin, S R

    1999-07-20

    The thrombin receptor PAR1 becomes rapidly phosphorylated upon activation by either thrombin or exogenous SFLLRN agonist peptide. Substitution of alanine for all serine and threonine residues in the receptor's cytoplasmic carboxyl-terminal tail ablated phosphorylation and yielded a receptor defective in both shutoff and agonist-triggered internalization. These observations suggested that activation-dependent phosphorylation of PAR1's cytoplasmic tail is required for both shutoff and agonist-triggered internalization. To identify the phosphorylation site(s) that are necessary for these functions, we generated three mutant receptors in which alanine was substituted for serine and threonine residues in the amino-terminal, middle, and carboxyl-terminal thirds of PAR1's cytoplasmic tail. When stably expressed in fibroblasts, all three mutated receptors were rapidly phosphorylated in response to agonist, while a mutant in which all serines and threonines in the cytoplasmic tail were converted to alanines was not. This result suggests that phosphorylation can occur at multiple sites in PAR1's cytoplasmic tail. Alanine substitutions in the N-terminal and C-terminal portions of the tail had no effect on either receptor shutoff or agonist-triggered internalization. By contrast, alanine substitutions in the "middle" serine cluster between Ser(391) and Ser(406) yielded a receptor with considerably slower shutoff of signaling after thrombin activation than the wild type. Surprisingly, this same mutant was indistinguishable from the wild type in agonist-triggered internalization and degradation. Overexpression of G protein-coupled receptor kinase 2 (GRK2) and GRK3 "suppressed" the shutoff defect of the S --> A (391-406) mutant, consistent with this defect being due to altered receptor phosphorylation. These results suggest that specific phosphorylation sites are required for rapid receptor shutoff, but phosphorylation at multiple alternative sites is sufficient for agonist

  19. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin.

    Science.gov (United States)

    Eghorn, Laura F; Hoestgaard-Jensen, Kirsten; Kongstad, Kenneth T; Bay, Tina; Higgins, David; Frølund, Bente; Wellendorph, Petrine

    2014-10-05

    γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive allosteric modulator of GABA function at δ-containing GABAA receptors, and the naturally occurring flavonoid catechin. These compounds increased [3H]NCS-382 binding to 185-272% in high micromolar concentrations. Monastrol and (+)-catechin significantly reduced [3H]NCS-382 dissociation rates and induced conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed modulation was critically probe-dependent. Both monastrol and (+)-catechin were agonists at recombinant α4β3δ receptors expressed in Xenopus laevis oocytes. When monastrol and GHB were co-applied no changes were seen compared to the individual responses. In summary, we have identified the compounds monastrol and catechin as the first allosteric modulators of GHB high-affinity binding sites. Despite their relatively weak affinity, these compounds may aid in further characterization of the GHB high-affinity sites that are likely to represent certain GABAA receptors.

  20. Functional analysis of the BRI1 receptor kinase by Thr-for-Ser substitution in a regulatory autophosphorylation site

    Directory of Open Access Journals (Sweden)

    Man-Ho eOh

    2015-07-01

    Full Text Available BRI1 becomes highly phosphorylated in vivo upon perception of the ligand, brassinolide, as a result of autophosphorylation and transphosphorylation by its co-receptor kinase, BAK1. Important autophosphorylation sites include those involved in activation of kinase activity and those that are inhibitory, such as Ser-891. The inhibitory sites are autophosphorylated after kinase activation has been achieved and are postulated to contribute to deactivation of the kinase. The function of phosphosites is usually tested by substituting a non-phosphorylatable residue or an acidic residue that can act as a phosphomimetic. What has typically not been examined is substitution of a Thr for a Ser phosphosite (or vice versa but given that Thr and Ser are not equivalent amino acids this type of substitution may represent a new approach to engineer regulatory phosphorylation. In the present study with BRI1, we substituted Thr at the Ser-891 phosphosite to generate the S891T directed mutant. The recombinant Flag-BRI1 (S891T cytoplasmic domain protein (the S891T protein was catalytically active and phosphorylation occurred at the engineered Thr-891 site. However, the S891T recombinant protein autophosphorylated more slowly than the wild type protein during expression in E. coli. As a result, activation of peptide kinase activity (measured in vitro was delayed as was transphosphorylation of bacterial proteins in situ. Stable transgenic expression of BRI1 (S891T-Flag in Arabidopsis bri1-5 plants did not fully rescue the brassinosteroid (BR phenotype indicating that BR signaling was constrained. Our working model is that restricted signaling in the S891T plants occurs as a result of the reduced rate of activation of the mutant BRI1 kinase by autophosphorylation. These results provide the platform for future studies to critically test this new model in vivo and establish Ser-Thr substitutions at phosphosites as an interesting approach to consider with other protein

  1. Analgesic effect of GT-0198, a structurally novel glycine transporter 2 inhibitor, in a mouse model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Yu Omori

    2015-03-01

    Full Text Available This study was conducted to identify the characteristic pharmacological features of GT-0198 that is phenoxymethylbenzamide derivatives. GT-0198 inhibited the function of glycine transporter 2 (GlyT2 in human GlyT2-expressing HEK293 cells and did not bind various major transporters or receptors of neurotransmitters in a competitive manner. Thus, GT-0198 is considered to be a comparatively selective GlyT2 inhibitor. Intravenous, oral, and intrathecal injections of GT-0198 decreased the pain-related response in a model of neuropathic pain with partial sciatic nerve ligation. This result suggests that GT-0198 has an analgesic effect. The analgesic effect of GT-0198 was abolished by the intrathecal injection of strychnine, a glycine receptor antagonist. Therefore, GT-0198 is considered to exhibit its analgesic effect via the activation of a glycine receptor by glycine following presynaptic GlyT2 inhibition in the spinal cord. In summary, GT-0198 is a structurally novel GlyT2 inhibitor bearing a phenoxymethylbenzamide moiety with in vivo efficacy in behavioral models of neuropathic pain.

  2. Intracellular signaling of the Ufo/Axl receptor tyrosine kinase is mediated mainly by a multi-substrate docking-site.

    Science.gov (United States)

    Braunger, J; Schleithoff, L; Schulz, A S; Kessler, H; Lammers, R; Ullrich, A; Bartram, C R; Janssen, J W

    1997-06-05

    Ufo/Axl belongs to a new family of receptor tyrosine kinases with an extracellular structure similar to that of neural cell adhesion molecules. In order to elucidate intracellular signaling, the cytoplasmic moiety of Ufo/Axl was used to screen an expression library according to the CORT (cloning of receptor targets) method. Three putative Ufo substrates were identified: phospholipase Cgamma1 (PLCgamma), as well as p85alpha and p85beta subunits of phosphatidylinositol 3'-kinase (PI3-kinase). Subsequently, chimeric EGFR/Ufo receptors consisting of the extracellular domains of the epidermal growth factor receptor (EGFR) and the transmembrane and intracellular moiety of Ufo were engineered. Using different far-Western blot analyses and coimmunoprecipitation assays, receptor binding of PLCgamma and p85 proteins as well as GRB2, c-src and lck was examined in vitro and in vivo. Competitive inhibition of substrate binding and mutagenesis experiments with EGFR/Ufo constructs revealed C-terminal tyrosine 821 (EILpYVNMDEG) as a docking site for multiple effectors, namely PLCgamma, p85 proteins, GRB2, c-src and lck. Tyrosine 779 (DGLpYALMSRC) demonstrated an additional, but lower binding affinity for the p85 proteins in vitro. In addition, binding of PLCgamma occurred through tyrosine 866 (AGRpYVLCPST). Moreover, our in vivo data indicate that further direct or indirect binding sites for PLCgamma, GRB2, c-src and lck on the human Ufo receptor may exist.

  3. Receptor modelling of both particle composition and size distribution from a background site in London, UK

    Science.gov (United States)

    Beddows, D. C. S.; Harrison, R. M.; Green, D. C.; Fuller, G. W.

    2015-09-01

    Positive matrix factorisation (PMF) analysis was applied to PM10 chemical composition and particle number size distribution (NSD) data measured at an urban background site (North Kensington) in London, UK, for the whole of 2011 and 2012. The PMF analyses for these 2 years revealed six and four factors respectively which described seven sources or aerosol types. These included nucleation, traffic, urban background, secondary, fuel oil, marine and non-exhaust/crustal sources. Urban background, secondary and traffic sources were identified by both the chemical composition and particle NSD analysis, but a nucleation source was identified only from the particle NSD data set. Analysis of the PM10 chemical composition data set revealed fuel oil, marine, non-exhaust traffic/crustal sources which were not identified from the NSD data. The two methods appear to be complementary, as the analysis of the PM10 chemical composition data is able to distinguish components contributing largely to particle mass, whereas the number particle size distribution data set - although limited to detecting sources of particles below the diameter upper limit of the SMPS (604 nm) - is more effective for identifying components making an appreciable contribution to particle number. Analysis was also conducted on the combined chemical composition and NSD data set, revealing five factors representing urban background, nucleation, secondary, aged marine and traffic sources. However, the combined analysis appears not to offer any additional power to discriminate sources above that of the aggregate of the two separate PMF analyses. Day-of-the-week and month-of-the-year associations of the factors proved consistent with their assignment to source categories, and bivariate polar plots which examined the wind directional and wind speed association of the different factors also proved highly consistent with their inferred sources. Source attribution according to the air mass back trajectory showed, as

  4. 5-HT2A/5-HT2C receptor pharmacology and intrinsic clearance of N-benzylphenethylamines modified at the primary site of metabolism

    DEFF Research Database (Denmark)

    Leth-Petersen, Sebastian; Petersen, Ida Nymann; Jensen, Anders A

    2016-01-01

    The toxic hallucinogen 25B-NBOMe is very rapidly degraded by human liver microsomes and has low oral bioavailability. Herein we report on the synthesis, microsomal stability and 5-HT2A/5-HT2C receptor profile of novel analogs of 25B-NBOMe modified at the primary site of metabolism. Although micro...

  5. The novel alpha 2-adrenoceptor agonist [3H]mivazerol binds to non-adrenergic binding sites in human striatum membranes that are distinct from imidazoline receptors.

    Science.gov (United States)

    Flamez, A; Gillard, M; De Backer, J P; Vauquelin, G; Noyer, M

    1997-07-01

    The alpha 2 adrenergic agonist [3H]mivazerol labelled two populations of binding sites in membranes from the human striatum. Forty per cent of the sites labelled by 3 nM [3H]mivazerol corresponded to alpha 2 adrenergic receptors as they displayed a high affinity for (-)-adrenaline and for rauwolscine. The remaining binding was displaced by mivazerol with a pIC50 of 6.5 +/- 0.1. These sites displayed higher affinity for dexmedetomidine (pIC50 = 7.1 +/- 0.1), but much lower affinity for clonidine (pIC50 < 5.0) and for idazoxan (pIC50 = 5.1 +/- 0.1). Mivazerol also showed low affinity for the [3H]clonidine-labelled I1 imidazoline receptors and for the [3H]idazoxan-labelled I2 receptors (pIC50 = 5.1 and 3.9, respectively). These results suggest that the non-adrenergic [3H]mivazerol binding sites are distinct from the imidazoline receptors in the human striatum.

  6. Identification of different binding sites in the dendritic cell-specific receptor DC-SIGN for intercellular adhesion molecule 3 and HIV-1.

    NARCIS (Netherlands)

    Geijtenbeek, T.B.; Duijnhoven, G.C.F. van; Vliet, S. van; Krieger, E.; Vriend, G.; Figdor, C.G.; Kooyk, Y. van

    2002-01-01

    The novel dendritic cell (DC)-specific human immunodeficiency virus type 1 (HIV-1) receptor DC-SIGN plays a key role in the dissemination of HIV-1 by DC. DC-SIGN is thought to capture HIV-1 at mucosal sites of entry, facilitating transport to lymphoid tissues, where DC-SIGN efficiently transmits HIV

  7. Cholinesterases: structure of the active site and mechanism of the effect of cholinergic receptor blockers on the rate of interaction with ligands

    Energy Technology Data Exchange (ETDEWEB)

    Antokhin, A M; Gainullina, E T; Taranchenko, V F [Federal State Agency ' 27 Scientific Centre of Ministry of Defence of the Russian Federation' (Russian Federation); Ryzhikov, S B; Yavaeva, D K [Department of Physics, M.V.Lomonosov Moscow State University (Russian Federation)

    2010-10-19

    Modern views on the structure of cholinesterase active sites and the mechanism of their interaction with organophosphorus inhibitors are considered. The attention is focused on the mechanism of the effect of cholinergic receptor blockers, acetylcholine antagonists, on the rate of interaction of acetylcholine esterase with organophosphorus inhibitors.

  8. Identification of different binding sites in the dendritic cell-specific receptor DC-SIGN for intercellular adhesion molecule 3 and HIV-1.

    NARCIS (Netherlands)

    Geijtenbeek, T.B.; Duijnhoven, G.C.F. van; Vliet, S. van; Krieger, E.; Vriend, G.; Figdor, C.G.; Kooyk, Y. van

    2002-01-01

    The novel dendritic cell (DC)-specific human immunodeficiency virus type 1 (HIV-1) receptor DC-SIGN plays a key role in the dissemination of HIV-1 by DC. DC-SIGN is thought to capture HIV-1 at mucosal sites of entry, facilitating transport to lymphoid tissues, where DC-SIGN efficiently transmits HIV

  9. Regulation of neurosteroid allopregnanolone biosynthesis in the rat spinal cord by glycine and the alkaloidal analogs strychnine and gelsemine.

    Science.gov (United States)

    Venard, C; Boujedaini, N; Belon, P; Mensah-Nyagan, A G; Patte-Mensah, C

    2008-04-22

    The neurosteroid allopregnanolone (3alpha,5alpha-THP) is well characterized as a potentially therapeutic molecule which exerts important neurobiological actions including neuroprotective, antidepressant, anxiolytic, anesthetic and analgesic effects. We have recently observed that neurons and glial cells of the rat spinal cord (SC) contain various key steroidogenic enzymes such as 5alpha-reductase and 3alpha-hydroxysteroid oxido-reductase which are crucial for 3alpha,5alpha-THP biosynthesis. Furthermore, we demonstrated that the rat SC actively produces 3alpha,5alpha-THP. As the key factors regulating neurosteroid production by nerve cells are unknown and because glycine is one of the pivotal inhibitory neurotransmitters in the SC, we investigated glycine effects on 3alpha,5alpha-THP biosynthesis in the rat SC. Glycine markedly stimulated [(3)H]-progesterone conversion into [(3)H]3alpha,5alpha-THP by SC slices. The alkaloid strychnine, well-known as a glycine receptor (Gly-R) antagonist, blocked glycine stimulatory effect on 3alpha,5alpha-THP formation. Gelsemine, another alkaloid containing the same functional groups as strychnine, increased 3alpha,5alpha-THP synthesis. The stimulatory effects of glycine and gelsemine on 3alpha,5alpha-THP production were additive when the two drugs were combined. These results demonstrate that glycine and gelsemine, acting via Gly-R, upregulate 3alpha,5alpha-THP biosynthesis in the SC. The data also revealed a structure-activity relationship of the analogs strychnine and gelsemine on neurosteroidogenesis. Possibilities are opened for glycinergic agents and gelsemine utilization to stimulate selectively 3alpha,5alpha-THP biosynthetic pathways in diseases evoked by a decreased neurosteroidogenic activity of nerve cells.

  10. Forster resonance energy transfer measurements of ryanodine receptor type 1 structure using a novel site-specific labeling method.

    Directory of Open Access Journals (Sweden)

    James D Fessenden

    Full Text Available BACKGROUND: While the static structure of the intracellular Ca(2+ release channel, the ryanodine receptor type 1 (RyR1 has been determined using cryo electron microscopy, relatively little is known concerning changes in RyR1 structure that accompany channel gating. Förster resonance energy transfer (FRET methods can resolve small changes in protein structure although FRET measurements of RyR1 are hampered by an inability to site-specifically label the protein with fluorescent probes. METHODOLOGY/PRINCIPAL FINDINGS: A novel site-specific labeling method is presented that targets a FRET acceptor, Cy3NTA to 10-residue histidine (His tags engineered into RyR1. Cy3NTA, comprised of the fluorescent dye Cy3, coupled to two Ni(2+/nitrilotriacetic acid moieties, was synthesized and functionally tested for binding to His-tagged green fluorescent protein (GFP. GFP fluorescence emission and Cy3NTA absorbance spectra overlapped significantly, indicating that FRET could occur (Förster distance = 6.3 nm. Cy3NTA bound to His(10-tagged GFP, quenching its fluorescence by 88%. GFP was then fused to the N-terminus of RyR1 and His(10 tags were placed either at the N-terminus of the fused GFP or between GFP and RyR1. Cy3NTA reduced fluorescence of these fusion proteins by 75% and this quenching could be reversed by photobleaching Cy3, thus confirming GFP-RyR1 quenching via FRET. A His(10 tag was then placed at amino acid position 1861 and FRET was measured from GFP located at either the N-terminus or at position 618 to Cy3NTA bound to this His tag. While minimal FRET was detected between GFP at position 1 and Cy3NTA at position 1861, 53% energy transfer was detected from GFP at position 618 to Cy3NTA at position 1861, thus indicating that these sites are in close proximity to each other. CONCLUSIONS/SIGNIFICANCE: These findings illustrate the potential of this site-specific labeling system for use in future FRET-based experiments to elucidate novel aspects of RyR1

  11. Temporal variability of Polycyclic Aromatic Hydrocarbons in a receptor site of Puebla -Tlaxcala Valley.

    Science.gov (United States)

    Padilla Barrera, Zuhelen; Torres Jardón, Ricardo; Gerardo Ruiz, Luis; Castro, Telma

    2015-04-01

    surface area was 81.9 mm2/m3and the maximum of 176.8 mm2/m3. Peak concentrations occurred at dawn and in the early hours of the morning then decreasing in the morning and evening. Particularly notable was the drop in the concentration of both PAHs and DC between 8 and 10 am , this period is when the vehicular activity peaks as the use of fuels for heating homes is intense. Additionally, this period is when the boundary layer is fully established favoring the accumulation of newly issued pollutants and remnants of the night. The breaking of the layer precisely between 8 am and 9am resulting in a rapid decrease in the concentrations of all pollutants favored the vertical mixing them with cleaner air masses previously located above the boundary layer. Once broken the boundary layer , the new layer grows and pollutants are mixed with air masses that are being transported to other sites which establishes the dominant concentrations and in the day. By 7 pm there is an increase in vehicular traffic and even dominates the regional wind ventilation, a slight increase was observed in the concentrations of CO , NOx and DC.

  12. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review

    Directory of Open Access Journals (Sweden)

    Meerza Abdul Razak

    2017-01-01

    Full Text Available Glycine is most important and simple, nonessential amino acid in humans, animals, and many mammals. Generally, glycine is synthesized from choline, serine, hydroxyproline, and threonine through interorgan metabolism in which kidneys and liver are the primarily involved. Generally in common feeding conditions, glycine is not sufficiently synthesized in humans, animals, and birds. Glycine acts as precursor for several key metabolites of low molecular weight such as creatine, glutathione, haem, purines, and porphyrins. Glycine is very effective in improving the health and supports the growth and well-being of humans and animals. There are overwhelming reports supporting the role of supplementary glycine in prevention of many diseases and disorders including cancer. Dietary supplementation of proper dose of glycine is effectual in treating metabolic disorders in patients with cardiovascular diseases, several inflammatory diseases, obesity, cancers, and diabetes. Glycine also has the property to enhance the quality of sleep and neurological functions. In this review we will focus on the metabolism of glycine in humans and animals and the recent findings and advances about the beneficial effects and protection of glycine in different disease states.

  13. PM over summertime India: Sources and trends investigated using long term measurements and multi-receptor site back trajectory analysis

    Science.gov (United States)

    Kumar, Vinod; Sarkar, Chinmoy; Sachan, Himanshu; Kumar, Devender; Sinha, Baerbel

    2013-04-01

    We apply multi-receptor site residence-time weighted concentration back trajectory analysis to a ten year data set (1991-2003) of PM10 and TSP measurement data from four Indian megacities Delhi, Mumbai, Kolkata and Chennai. The dataset was sourced from the published and peer reviewed work of Gupta and Kumar (2006). Sources and trends of PM10 and TSP during the pre-monsoon season (March-June) were investigated. Residence-time weighted concentration maps were derived using 72 hour HYSPLIT back trajectory ensemble calculations. Trajectory runs were started 100 m AGL and the observed PM monthly averages were attributed to all trajectory runs in a month and each trajectory of the ensemble runs with equal probability. For investigating trends the dataset was further subdivided into two groups of four year durations each (1992-1995 and 2000-2003). We found a linear correlation with a slope of 1.0 (R2=0.9) between estimated seasonal average TSP (2000-2003) using our approach and the measured seasonal averages (2006-2007) for Kanpur, Ahmedabad, Pune and Bangalore. A linear fit between predicted and measured PM10 concentration for 19 sites with PM10 observations of at least one seasonal average between 1999-2009 shows a slope of 1.4 (R2=0.4). For the observation period 2000-2003, the Thar Desert and Taklimakan Desert emerged as largest sources for both PM10 (>180 μg/m3 and >200 μg/m3 respectively) and TSP (>650 μg/m3 and >725 μg/m3 respectively). In-situ observation at Bikaner (central Thar Desert) and in Jhunjhunu (semi-arid site at the border of the Thar Desert) indicate that both TSP and PM10 inside the desert source region are underpredicted by a factor of 10 compared to in-situ observations while for the semi arid area bordering the desert PM10 and TSP are underpredicted by a factor of 5 and 3 respectively. This indicates that strong sources are underpredicted by a receptor site centred approach. The entire North-Western Indo-Gangetic Basin (NW-IGB), where crop

  14. Characterization of the 5-HT7 receptor. Determination of the pharmacophore for 5-HT7 receptor agonism and CoMFA-based modeling of the agonist binding site

    NARCIS (Netherlands)

    Vermeulen, ES; Schmidt, AW; Sprouse, JS; Wikstrom, HV; Grol, CJ

    2003-01-01

    On the basis of a set of 20 diverse 5-HT7 receptor agonists, the pharmacophore for 5-HT7 receptor agonism was determined. Additionally two CoMFA models were developed, based on different alignments of the agonists. Both models show good correlations between experimental and predictive pK(i) values a

  15. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains

    DEFF Research Database (Denmark)

    Behrendt, N; Ronne, E; Dano, K

    1996-01-01

    The urokinase plasminogen activator receptor (uPAR) is a membrane protein comprised of three extracellular domains. In order to study the importance of this domain organization in the ligand-binding process of the receptor we subjected a recombinant, soluble uPAR (suPAR) to specific proteolytic c...

  16. Coronaridine congeners inhibit human α3β4 nicotinic acetylcholine receptors by interacting with luminal and non-luminal sites.

    Science.gov (United States)

    Arias, Hugo R; Targowska-Duda, Katarzyna M; Feuerbach, Dominik; Jozwiak, Krzysztof

    2015-08-01

    To characterize the interaction of coronaridine congeners with human (h) α3β4 nicotinic acetylcholine receptors (AChRs), structural and functional approaches were used. The Ca(2+) influx results established that coronaridine congeners noncompetitively inhibit hα3β4 AChRs with the following potency (IC50's in μM) sequence: (-)-ibogamine (0.62±0.23)∼(+)-catharanthine (0.68±0.10)>(-)-ibogaine (0.95±0.10)>(±)-18-methoxycoronaridine [(±)-18-MC] (1.47±0.21)>(-)-voacangine (2.28±0.33)>(±)-18-methylaminocoronaridine (2.62±0.57 μM)∼(±)-18-hydroxycoronaridine (2.81±0.54)>(-)-noribogaine (6.82±0.78). A good linear correlation (r(2)=0.771) between the calculated IC50 values and their polar surface area was found, suggesting that this is an important structural feature for its activity. The radioligand competition results indicate that (±)-18-MC and (-)-ibogaine partially inhibit [(3)H]imipramine binding by an allosteric mechanism. Molecular docking, molecular dynamics, and in silico mutation results suggest that protonated (-)-18-MC binds to luminal [i.e., β4-Phe255 (phenylalanine/valine ring; position 13'), and α3-Leu250 and β4-Leu251 (leucine ring; position 9')], non-luminal, and intersubunit sites. The pharmacophore model suggests that nitrogens from the ibogamine core as well as methylamino, hydroxyl, and methoxyl moieties at position 18 form hydrogen bonds. Collectively our data indicate that coronaridine congeners inhibit hα3β4 AChRs by blocking the ion channel's lumen and probably by additional negative allosteric mechanisms by interacting with a series of non-luminal sites.

  17. Mutation of androgen receptor N-terminal phosphorylation site Tyr-267 leads to inhibition of nuclear translocation and DNA binding.

    Science.gov (United States)

    Karaca, Mehmet; Liu, Yuanbo; Zhang, Zhentao; De Silva, Dinuka; Parker, Joel S; Earp, H Shelton; Whang, Young E

    2015-01-01

    Reactivation of androgen receptor (AR) may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity.

  18. Dimensional and chemical characterization of particles at a downwind receptor site of a waste-to-energy plant.

    Science.gov (United States)

    Buonanno, G; Stabile, L; Avino, P; Vanoli, R

    2010-07-01

    In the last years numerous epidemiological studies were carried out to evaluate the effects of particulate matter on human health. In industrialized areas, anthropogenic activities highly contribute to the fine and ultrafine particle concentrations. Then, it is important to characterize the evolution of particle size distribution and chemical composition near these emission points. Waste incineration represents a favorable technique for reducing the waste volume. However, in the past, municipal waste incinerators (MWIs) had a bad reputation due to the emission of toxic combustion byproducts. Consequently, the risk perception of the people living near MWIs is very high even if in Western countries waste incineration has nowadays to be considered a relatively clean process from a technical point of view. The study here presented has an exemplary meaning for developing appropriate management and control strategies for air quality in the surrounding of MWIs and to perform exposure assessment for populations involved. Environment particles were continuously measured through a SMPS/APS system over 12 months. The monitoring site represents a downwind receptor of a typical MWI. Furthermore, elements and organic fractions were measured by means of the Instrumental Neutron Activation Analysis and using dichotomous and high volume samplers. Annual mean values of 8.6 x 10(3)+/-3.7 x 10(2)part.cm(-3) and 31.1+/-9.0 microg m(-3) were found for number and mass concentration, typical of a rural site. Most of the elements can be attributed to long-range transport from other natural and/or anthropogenic sources. Finally, the Polycyclic Aromatic Hydrocarbons present low concentrations with a mean value of 24.6 ng m(-3). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Mutation of androgen receptor N-terminal phosphorylation site Tyr-267 leads to inhibition of nuclear translocation and DNA binding.

    Directory of Open Access Journals (Sweden)

    Mehmet Karaca

    Full Text Available Reactivation of androgen receptor (AR may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity.

  20. The National BioResource Project (NBRP) Lotus and Glycine in Japan.

    Science.gov (United States)

    Hashiguchi, Masatsugu; Abe, Jun; Aoki, Toshio; Anai, Toyoaki; Suzuki, Akihiro; Akashi, Ryo

    2012-01-01

    The objective of the National BioResource Project (NBRP) in Japan is to collect, conserve and distribute biological materials for life sciences research. The project consists of twenty-eight bioresources, including animal, plant, microorganism and DNA resources. NBRP Lotus and Glycine aims to support the development of legume research through the collection, conservation, and distribution of these bioresources. Lotus japonicus is a perennial legume that grows naturally throughout Japan and is widely used as a model plant for legumes because of such advantages as its small genome size and short life cycle. Soybean (Glycine max) has been cultivated as an important crop since ancient times, and numerous research programs have generated a large amount of basic research information and valuable bioresources for this crop. We have also developed a "LegumeBase" a specialized database for the genera Lotus and Glycine, and are maintaining this database as a part of the NBRP. In this paper we will provide an overview of the resources available from the NBRP Lotus and Glycine database site, called "LegumeBase".

  1. Glycine hydrogen fluoride: Remarkable hydrogen bonding in the dimeric glycine glycinium cation

    Science.gov (United States)

    Fleck, M.; Ghazaryan, V. V.; Petrosyan, A. M.

    2010-12-01

    Crystals of glycine hydrogen fluoride (Gly·HF) were prepared from an aqueous solution containing stoichiometric quantities of the components. The crystal structure of Gly·HF was determined, IR and Raman spectra were registered and are discussed. Gly·HF crystallizes in the orthorhombic space group Pbca with Z = 32. The most remarkable feature of the structure is the existence of symmetric dimeric glycine-glycinium cations with short hydrogen bonds (O⋯O distance of 2.446 Å), charge-counterbalanced by hydrogen bifluoride (F sbnd H⋯F) - anions - in addition to the expected glycinium cations and fluoride anions. These results were compared with previously published data on crystals grown in the system glycine-HF-H 2O.

  2. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  3. Site-specific influence of polyunsaturated fatty acids on atherosclerosis in immune incompetent LDL receptor deficient mice.

    Science.gov (United States)

    Reardon, Catherine A; Blachowicz, Lydia; Gupta, Gaorav; Lukens, John; Nissenbaum, Michael; Getz, Godfrey S

    2006-08-01

    Polyunsaturated fatty acids (PUFA) are thought to influence plasma lipid levels, atherosclerosis, and the immune system. In this study, we fed male LDL receptor deficient (LDLR(-/-)) mice and immune incompetent LDLR(-/-) RAG2(-/-) mice diets containing predominantly saturated fats (milk fat) or PUFA (safflower oil) to determine if the response to diet was influenced by immune status. Relative to milk fat diet, plasma lipid and VLDL levels in both the LDLR(-/-) and LDLR(-/-) RAG2(-/-) mice fed safflower oil diet were lower, suggesting that the primary effect of PUFA on plasma lipids was not due to its inhibition of the immune system. Neither diet nor immune status influenced hepatic triglyceride production and post-heparin lipase activity, suggesting that the differences in triglyceride levels are due to differences in rates of catabolism of triglyceride-rich lipoproteins. While both diets promoted atherogenesis, both aortic root and innominate artery atherosclerosis in LDLR(-/-) mice was less in safflower oil fed animals. In contrast, a site-specific effect of PUFA was observed in the immune incompetent LDLR(-/-) RAG2(-/-). In these mice, aortic root atherosclerosis, but not innominate artery atherosclerosis, was less in PUFA fed animal. These results suggest that PUFA and the immune system may influence innominate artery atherosclerosis by some overlapping mechanisms.

  4. Tissue-specific alterations of binding sites for peripheral-type benzodiazepine receptor ligand [3H]PK11195 in rats following portacaval anastomosis.

    Science.gov (United States)

    Rao, V L; Audet, R; Therrien, G; Butterworth, R F

    1994-05-01

    Kinetics of binding of [3H]PK11195, an antagonist ligand with high selectivity for the peripheral-type (mitochondrial) benzodiazepine receptor (PTBR), was studied in homogenates of cerebral cortex, kidney, heart, and testis of portacaval shunted rats and sham-operated controls. Portacaval anastomosis resulted in a significant two- to threefold increase in the number of [3H]PK11195 binding sites in cerebral cortex and kidney. A reduction in the number of [3H]PK11195 binding sites was observed in testis preparations, while the number of binding sites in the heart remained unaltered. These differences in the response of PTBRs to portacaval anastomosis, in different organs suggest that the physiological function of these receptors and the factors regulating them are modulated by distinct mechanisms. The finding of increased densities of [3H]PK11195 binding sites in brain and kidney following portacaval anastomosis parallels the cellular hypertrophy in these tissues and, together with previous observations of similar increases of these binding sites in brain and kidney in congenital hyperammonemia, suggest a pathophysiologic role for ammonia in these changes. In contrast, the significant loss of [3H]PK11195 binding sites in testicular preparations following portacaval anastomosis together with the known effects of steroid hormones on these sites suggests a role for PTBRs in the pathogenesis of testicular atrophy in chronic liver disease.

  5. Evaluation of mechanical properties of some glycine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Nagaraju, D. [Department of Physics, PG Centre, Lal Bahadur College, Warangal - 506007 (India); Raja Shekar, P. V., E-mail: pvrsleo@gmail.com [Department of Physics, SR Engineering College, Warangal - 506371 (India); Chandra, Ch. Sateesh [Department of Physics, Kakatiya Institute of Technology and Sciences, Warangal - 506015 (India); Rao, K. Kishan; Krishna, N. Gopi [Department of Physics, Kakatiya University, Warangal - 506009 (India)

    2014-04-24

    The variation of Vickers hardness with load for (101) glycine zinc chloride (GZC), (001) glycine lithium sulphate (GLS), (001) triglycine sulphate (TGS) and (010) glycine phosphite (GPI) crystals was studied. From the cracks initiated along the corners of the indentation impression, crack lengths were measured and the fracture toughness value and brittle index number were determined. The hardness related parameters viz. yield strength and Young’s modulus were also estimated. The anisotropic nature of the crystals was studied using Knoop indentation technique.

  6. Collagen binding specificity of the discoidin domain receptors: binding sites on collagens II and III and molecular determinants for collagen IV recognition by DDR1.

    Science.gov (United States)

    Xu, Huifang; Raynal, Nicolas; Stathopoulos, Stavros; Myllyharju, Johanna; Farndale, Richard W; Leitinger, Birgit

    2011-01-01

    The discoidin domain receptors, DDR1 and DDR2 are cell surface receptor tyrosine kinases that are activated by triple-helical collagen. While normal DDR signalling regulates fundamental cellular processes, aberrant DDR signalling is associated with several human diseases. We previously identified GVMGFO (O is hydroxyproline) as a major DDR2 binding site in collagens I-III, and located two additional DDR2 binding sites in collagen II. Here we extend these studies to the homologous DDR1 and the identification of DDR binding sites on collagen III. Using sets of overlapping triple-helical peptides, the Collagen II and Collagen III Toolkits, we located several DDR2 binding sites on both collagens. The interaction of DDR1 with Toolkit peptides was more restricted, with DDR1 mainly binding to peptides containing the GVMGFO motif. Triple-helical peptides containing the GVMGFO motif induced DDR1 transmembrane signalling, and DDR1 binding and receptor activation occurred with the same amino acid requirements as previously defined for DDR2. While both DDRs exhibit the same specificity for binding the GVMGFO motif, which is present only in fibrillar collagens, the two receptors display distinct preferences for certain non-fibrillar collagens, with the basement membrane collagen IV being exclusively recognised by DDR1. Based on our recent crystal structure of a DDR2-collagen complex, we designed mutations to identify the molecular determinants for DDR1 binding to collagen IV. By replacing five amino acids in DDR2 with the corresponding DDR1 residues we were able to create a DDR2 construct that could function as a collagen IV receptor.

  7. Synthesis and distribution of N-benzyloxycarbonyl-[{sup 14}C]-glycine, a lipophilic derivative of glycine

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.M.; Gallez, Bernard; Poupaert, J.H. [Universite Catholique de Louvain, Brussels (Belgium). Dept. des Sciences Pharmaceutiques

    1995-12-31

    N-benzyloxycarbonyl[{sup 14}C]-glycine, a lipophilic derivative of glycine exhibiting anticonvulsant properties, was prepared in one step from [U-{sup 14}C] glycine and benzyl chloroformate in alkali medium. a comparative study of biodistribution was carried on mice between this compound and the parent amino-acid after intravenous administration. Dimethylsulfoxide was used as injection vehicle for N-benzyloxycarbonylglycine. The influence of this injection vehicle was studied comparing glycine injected in a saline solution and glycine co-administered with dimethylsulfoxide. No significant difference was found between these two treatments. Compared to glycine, N-benzyloxycarbonylglycine reached quickly the central nervous system and exhibited an enhanced brain penetration index, 13-fold superior to the parent aminoacid value. (Author).

  8. Determination of structure-activity relationships between fentanyl analogs and human μ-opioid receptors based on active binding site models

    Institute of Scientific and Technical Information of China (English)

    Ming Liu; Xiaoli Liu; Ping Wan; Qiangsan Wu; Wenxiang Hu

    2011-01-01

    Fentanyl is a potent and widely used clinical narcotic analgesic, as well as a highly selective μ-opioid agonist. The present study established a homologous model of the human μ-opioid receptor; an intercomparison of three types of μ-opioid receptor protein sequence homologous rates was made. The secondary receptor structure was predicted, the model reliability was assessed and verified using the Ramachandran plot and ProTab analysis. The predictive ability of the CoMFA model was further validated using an external test set. Using the Surflex-Dock program, a series of fentanyl analog molecules were docked to the receptor, the calculation results from Biopolymer/SiteID showed that the receptor had a deep binding area situated in the extracellular side of the transmembrane domains (TM) among TM3, TM5, TM6, and TM7. Results suggested that there might be 5 active areas in the receptor. The important residues were Asp147, Tyr148, and Tyr149 in TM3, Trp293, and His297 in TM6, and Trp318, His319, Ile322, and Tyr326 in TM7, which were located at the 5 active areas. The best fentanyl docking orientation position was the piperidine ring, which was nearly perpendicular to the membrane surface in the 7 TM domains. Molecular dynamic simulations were applied to evaluate potential relationships between ligand conformation and fentanyl substitution.

  9. The murine coronavirus hemagglutinin-esterase receptor-binding site: a major shift in ligand specificity through modest changes in architecture.

    Directory of Open Access Journals (Sweden)

    Martijn A Langereis

    2012-01-01

    Full Text Available The hemagglutinin-esterases (HEs, envelope glycoproteins of corona-, toro- and orthomyxoviruses, mediate reversible virion attachment to O-acetylated sialic acids (O-Ac-Sias. They do so through concerted action of distinct receptor-binding ("lectin" and receptor-destroying sialate O-acetylesterase ("esterase" domains. Most HEs target 9-O-acetylated Sias. In one lineage of murine coronaviruses, however, HE esterase substrate and lectin ligand specificity changed dramatically as these viruses evolved to use 4-O-acetylated Sias instead. Here we present the crystal structure of the lectin domain of mouse hepatitis virus (MHV strain S HE, resolved both in its native state and in complex with a receptor analogue. The data show that the shift from 9-O- to 4-O-Ac-Sia receptor usage primarily entailed a change in ligand binding topology and, surprisingly, only modest changes in receptor-binding site architecture. Our findings illustrate the ease with which viruses can change receptor-binding specificity with potential consequences for host-, organ and/or cell tropism, and for pathogenesis.

  10. Similarities between the Binding Sites of SB-206553 at Serotonin Type 2 and Alpha7 Acetylcholine Nicotinic Receptors: Rationale for Its Polypharmacological Profile.

    Directory of Open Access Journals (Sweden)

    Patricia Möller-Acuña

    Full Text Available Evidence from systems biology indicates that promiscuous drugs, i.e. those that act simultaneously at various protein targets, are clinically better in terms of efficacy, than those that act in a more selective fashion. This has generated a new trend in drug development called polypharmacology. However, the rational design of promiscuous compounds is a difficult task, particularly when the drugs are aimed to act at receptors with diverse structure, function and endogenous ligand. In the present work, using docking and molecular dynamics methodologies, we established the most probable binding sites of SB-206553, a drug originally described as a competitive antagonist of serotonin type 2B/2C metabotropic receptors (5-HT2B/2CRs and more recently as a positive allosteric modulator of the ionotropic α7 nicotinic acetylcholine receptor (nAChR. To this end, we employed the crystal structures of the 5-HT2BR and acetylcholine binding protein as templates to build homology models of the 5-HT2CR and α7 nAChR, respectively. Then, using a statistical algorithm, the similarity between these binding sites was determined. Our analysis showed that the most plausible binding sites for SB-206553 at 5-HT2Rs and α7 nAChR are remarkably similar, both in size and chemical nature of the amino acid residues lining these pockets, thus providing a rationale to explain its affinity towards both receptor types. Finally, using a computational tool for multiple binding site alignment, we determined a consensus binding site, which should be useful for the rational design of novel compounds acting simultaneously at these two types of highly different protein targets.

  11. Quantitative encoding of a partial agonist effect on individual opioid receptors by multi-site phosphorylation and threshold detection

    OpenAIRE

    Lau, Elaine K.; Trester-Zedlitz, Michelle; Trinidad, Jonathan C.; Kotowski, Sarah J.; Krutchinsky, Andrew N.; Burlingame, Alma L; von Zastrow, Mark

    2011-01-01

    Many drugs act as partial agonists of seven-transmembrane signaling receptors when compared to endogenous ligands. Partial agonism is well described as a 'macroscopic' property manifest at the level of physiological systems or cell populations, but it is not known whether partial agonists encode discrete regulatory information at the 'microscopic' level of individual receptors. We addressed this question by focusing on morphine, a partial agonist drug for µ-type opioid peptide receptors, and ...

  12. Nordimaprit, homodimaprit, clobenpropit and imetit: affinities for H3 binding sites and potencies in a functional H3 receptor model.

    Science.gov (United States)

    Kathmann, M; Schlicker, E; Detzner, M; Timmerman, H

    1993-11-01

    We determined the affinities of nordimaprit, homodimaprit, clobenpropit and imetit for H3 binding sites (labelled by 3H-N alpha-methylhistamine) in rat brain cortex homogenates and their potencies at presynaptic H3A receptors on noradrenergic nerve endings in mouse brain cortex slices. 3H-N alpha-Methylhistamine bound saturably to rat brain cortex homogenates with a Kd of 0.70 nmol/l and a Bmax of 98 fmol/mg protein. Binding of 3H-N alpha-methylhistamine was displaced monophasically by dimaprit (pKi 6.55), nordimaprit (5.94), homodimaprit (6.44), clobenpropit (9.16), imetit (9.83), R-(-)-alpha-methylhistamine (8.87) and histamine (8.20), and biphasically by burimamide (pKi high 7.73, pKi low 5.97). In superfused mouse brain cortex slices preincubated with 3H-noradrenaline, the electrically (0.3 Hz) evoked tritium overflow was inhibited by imetit (pIC35 8.93), R-(-)-alpha-methylhistamine (7.87) and histamine (7.03). The effect of histamine was attenuated by nordimaprit, homodimaprit, clobenpropit and N-ethoxycarbonyl-2- ethoxy-1,2-dihydroquinoline (EEDQ); EEDQ (but not nordimaprit, homodimaprit and clobenpropit) attenuated the effect of histamine also in slices pre-exposed to the drug 60-30 min prior to superfusion. The concentration-response curve of histamine was shifted to the right by homodimaprit and clobenpropit; Schild plots yielded straight lines with a slope of unity for both drugs (pA2 5.94 and 9.55, respectively). Nordimaprit depressed the maximum effect of histamine (pD'2 5.55) and also slightly increased the concentration of histamine producing the half-maximum effect.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Identification of ah receptor agonists in soil of E-waste recycling sites from Taizhou area in China.

    Science.gov (United States)

    Shen, Chaofeng; Huang, Shengbiao; Wang, Zijian; Qiao, Min; Tang, Xianjin; Yu, Chunna; Shi, Dezhi; Zhu, Youfeng; Shi, Jiyan; Chen, Xincai; Setty, Karen; Chen, Yingxu

    2008-01-01

    In recent years, increasing concern has surrounded the consequences of improper electric and electronic waste (e-waste) disposal. In order to mitigate or remediate the potentially severe toxic effects of e-waste recycling on the environment, organisms, and humans, many contaminated sites must first be well-characterized. In this study, soil samples were taken from Taizhou city, one of the largest e-waste disposal centers in China, which was involved in recycling for nearly 30 years. The extracts of the samples were assayed for aryl hydrocarbon receptor (AhR)-mediated ethoxyresorufin-O-deethylase (EROD) induction in the rat hepatoma cell line H4IIE. Some of the target AhR agonists, including polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs), were instrumentally analyzed as well. The cause-effect relationship and dose-response relationship between the chemical concentrations of AhR agonists and observed EROD activity were examined. The results showed that soil extracts could induce AhR activity significantly, and the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalents (TEQcal) were perfectly correlated to bioassay-derived TCDD equivalents (TEQbio; R = 0.96, P electric power devices and open burning of electric wires and printed circuit boards may be the main sources of these dioxin-like compounds. This study suggests that the combination of in vitro bioassay and chemical analysis is useful to screen, identify, and prioritize AhR agonists in soil from e-waste recycling areas.

  14. Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding

    Science.gov (United States)

    Schmøkel, Julie; Voldum, Anders; Tsakiridou, Georgia; Kuhlmann, Matthias; Cameron, Jason; Sørensen, Esben S.; Wengel, Jesper; Howard, Kenneth A.

    2017-05-01

    Aptamers are an attractive molecular medicine that offers high target specificity. Nucleic acid-based aptamers, however, are prone to nuclease degradation and rapid renal excretion that require blood circulatory half-life extension enabling technologies. The long circulatory half-life, predominately facilitated by engagement with the cellular recycling neonatal Fc receptor (FcRn), and ligand transport properties of albumin promote it as an attractive candidate to improve the pharmacokinetic profile of aptamers. This study investigates the effect of Cys34 site-selective covalent attachment of a factor IXa anticoagulant aptamer on aptamer functionality and human FcRn (hFcRn) engagement using recombinant human albumin (rHA) of either a wild type (WT) or an engineered human FcRn high binding variant (HB). Albumin-aptamer conjugates, connected covalently through a heterobifunctional succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate linker, were successfully prepared and purified by high performance liquid chromatography as confirmed by gel electrophoresis band-shift analysis and matrix-assisted laser desorption/ionization time of flight. Minimal reduction (∼25%) in activity of WT-linked aptamer to that of aptamer alone was found using an anticoagulant activity assay measuring temporal levels of activated partial thrombin. Covalent albumin-aptamer conjugation, however, substantially compromized binding to hFcRn, to 10% affinity of that of non-conjugated WT, determined by biolayer interferometry. Binding could be rescued by aptamer conjugation to recombinant albumin engineered for higher FcRn affinity (HB) that exhibited an 8-fold affinity compared to WT alone. This work describes a novel albumin-based aptamer delivery system whose hFcRn binding can be increased using a HB engineered albumin.

  15. The identification of source regions of black carbon at a receptor site off the eastern coast of China

    Science.gov (United States)

    Guo, Qingfeng; Hu, Min; Guo, Song; Wu, Zhijun; Hu, Weiwei; Peng, Jianfei; Hu, Wei; Wu, Yusheng; Yuan, Bin; Zhang, Qiang; Song, Yu

    2015-01-01

    The black carbon (BC) mass concentration and the particle chemical compositions were continually measured at Changdao Island, which is a regional receptor site off the eastern coast of China. This island is in the transport passage of the continental outflow to the Pacific Ocean when the East Asia monsoon prevails in the winter and spring. The campaign period was for March and April 2011, which corresponded to heating and non-heating periods in northern China. The effect of BC emission source regions on BC measured at Changdao Island between the heating and non-heating periods was determined by integrating the total potential source contribution function (TPSCF) model with the new monthly emission inventory in 2010 and the fire counts retrieved from MODIS during the campaign. BC concentrations were determined to be highest for similar times of day for both the heating and non-heating periods: 4.27 μg m-3 at 8:00 AM and 3.06 μg m-3 at 9:00 AM, respectively. The probable source regions for BC were primarily located in Shandong and Jiangsu provinces (and in other neighboring provinces) for both periods. However, the source regions for the non-heating period extended more to the north and southwest than those of the heating period. TPSCF values were correlated with the emission rates from residential, industry, transportation, and power plants sources in the anthropogenic emission inventory. This correlation provides an indirect and qualitative process to verify the emission inventory. In the heating period, the predominant source was the residential source in the emission inventory, and this source had a significant effect on the BC concentration. The differing peak concentrations between the two periods may be observed because of the increased residential heating during the heating period, which suggested that the measures employed by the government and environmental managers to reduce the emissions of pollutants should be stricter in the identified source regions

  16. High-resolution definition of vaccine-elicited B cell responses against the HIV primary receptor binding site.

    Science.gov (United States)

    Sundling, Christopher; Li, Yuxing; Huynh, Nick; Poulsen, Christian; Wilson, Richard; O'Dell, Sijy; Feng, Yu; Mascola, John R; Wyatt, Richard T; Karlsson Hedestam, Gunilla B

    2012-07-11

    The high overall genetic homology between humans and rhesus macaques, coupled with the phenotypic conservation of lymphocyte populations, highlights the potential use of nonhuman primates (NHPs) for the preclinical evaluation of vaccine candidates. For HIV-1, experimental models are needed to identify vaccine regimens capable of eliciting desired immune responses, such as broadly neutralizing antibodies (bNAbs). One important neutralization target on the HIV-1 envelope glycoproteins (Envs) is the conserved primary CD4 receptor binding site (CD4bs). The isolation and characterization of CD4bs-specific neutralizing monoclonal Abs (mAbs) from HIV-1-infected individuals have provided insights into how broadly reactive Abs target this conserved epitope. In contrast, and for reasons that are not understood, current Env immunogens elicit CD4bs-directed Abs with limited neutralization breadth. To facilitate the use of the NHP model to address this and other questions relevant to human humoral immunity, we defined features of the rhesus macaque immunoglobulin (Ig) loci and compared these to the human Ig loci. We then studied Env-immunized rhesus macaques, identified single B cells expressing CD4bs-specific Abs, and sequenced and expressed a panel of functional mAbs. Comparison of vaccine-elicited mAbs with HIV-1 infection-induced mAbs revealed differences in the degree of somatic hypermutation of the Abs as well as in the fine specificities targeted within the CD4bs. These data support the use of the preclinical NHP model to characterize vaccine-induced B cell responses at high resolution.

  17. Interaction of pyracetam with specific /sup 3/H-imipramine binding sites and GABA-benzodiazepine receptor complex of brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rozhanets, V.V.; Chakhbra, K.K.; Danchev, N.D.; Malin, K.M.; Rusakov, D.Yu.; Val' dman, A.V.

    1986-06-01

    This paper studies the effect of pyracetam on parameters of specific binding of tritium-imipramine and GABA-activated binding of tritium-flunitrazepam with rat brain membranes. The experimental method is described and it is shown that pyracetam and mebicar in experiments in vivo on normal animals can exert their anxiolytic action without the participation of bensodiazepine receptors. Either the interaction of pyracetam and mebicar with benzodiazeprine receptors has a different interpretation than competition of these compounds with specific binding sites of tritium-flunitrazepam, or in experiments on normal animals in vivo GABA-benzodiazepine receptor complex does not accept pyracetam and mebicar, for it contains endogenous inhibitors of GABA-modulating action.

  18. Adenosine A2A receptor binding profile of two antagonists, ST1535 and KW6002: consideration on the presence of atypical adenosine A2A binding sites

    Directory of Open Access Journals (Sweden)

    Teresa Riccioni

    2010-08-01

    Full Text Available Adenosine A2A receptors seem to exist in typical (more in striatum and atypical (more in hippocampus and cortex subtypes. In the present study, we investigated the affinity of two adenosine A2A receptor antagonists, ST1535 [2 butyl -9-methyl-8-(2H-1,2,3-triazol 2-yl-9H-purin-6-xylamine] and KW6002 [(E-1,3-diethyl-8-(3,4-dimethoxystyryl-7-methyl-3,7-dihydro-1H-purine-2,6,dione] to the “typical” and “atypical” A2A binding sites. Affinity was determined by radioligand competition experiments in membranes from rat striatum and hippocampus. Displacement of the adenosine analog [3H]CGS21680 [2-p-(2-carboxyethylphenethyl-amino-5’-N-ethylcarbox-amidoadenosine] was evaluated in the absence or in the presence of either CSC [8-(3-chlorostyryl-caffeine], an adenosine A2A antagonist that pharmacologically isolates atypical binding sites, or DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor antagonist that pharmacologically isolates typical binding site. ZM241385 [84-(2-[7-amino-2-(2-furyl [1,2,4]-triazol[2,3-a][1,3,5]triazin-5-yl amino]ethyl phenol] and SCH58261 [(5-amino-7-(β-phenylethyl-2-(8-furylpyrazolo(4,3-e-1,2,4-triazolo(1,5-c pyrimidine], two other adenosine A2A receptor antagonists, which were reported to differently bind to atypical and typical A2A receptors, were used as reference compounds. ST1535, KW6002, ZM241385 and SCH58261 displaced [3H]CGS21680 with higher affinity in striatum than in hippocampus. In hippocampus, no typical adenosine A2A binding was detected, and ST1535 was the only compound that occupied atypical A2A adenosine receptors. Present data are explained in terms of heteromeric association among adenosine A2A, A2B and A1 receptors, rather than with the presence of atypical A2A receptor subtype.

  19. Identification of N-methyl-D-aspartic acid (NMDA) receptor subtype-specific binding sites that mediate direct interactions with scaffold protein PSD-95.

    Science.gov (United States)

    Cousins, Sarah L; Stephenson, F Anne

    2012-04-13

    N-methyl-D-aspartate (NMDA) neurotransmitter receptors and the postsynaptic density-95 (PSD-95) membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins are integral components of post-synaptic macromolecular signaling complexes that serve to propagate glutamate responses intracellularly. Classically, NMDA receptor NR2 subunits associate with PSD-95 MAGUKs via a conserved ES(E/D)V amino acid sequence located at their C termini. We previously challenged this dogma to demonstrate a second non-ES(E/D)V PSD-95-binding site in both NMDA receptor NR2A and NR2B subunits. Here, using a combination of co-immunoprecipitations from transfected mammalian cells, yeast two-hybrid interaction assays, and glutathione S-transferase (GST) pulldown assays, we show that NR2A subunits interact directly with PSD-95 via the C-terminal ESDV motif and additionally via an Src homology 3 domain-binding motif that associates with the Src homology 3 domain of PSD-95. Peptide inhibition of co-immunoprecipitations of NR2A and PSD-95 demonstrates that both the ESDV and non-ESDV sites are required for association in native brain tissue. Furthermore, we refine the non-ESDV site within NR2B to residues 1149-1157. These findings provide a molecular basis for the differential association of NMDA receptor subtypes with PSD-95 MAGUK scaffold proteins. These selective interactions may contribute to the organization, lateral mobility, and ultimately the function of NMDA receptor subtypes at synapses. Furthermore, they provide a more general molecular mechanism by which the scaffold, PSD-95, may discriminate between potential interacting partner proteins.

  20. Identification of N-Methyl-d-aspartic Acid (NMDA) Receptor Subtype-specific Binding Sites That Mediate Direct Interactions with Scaffold Protein PSD-95*

    Science.gov (United States)

    Cousins, Sarah L.; Stephenson, F. Anne

    2012-01-01

    N-methyl-d-aspartate (NMDA) neurotransmitter receptors and the postsynaptic density-95 (PSD-95) membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins are integral components of post-synaptic macromolecular signaling complexes that serve to propagate glutamate responses intracellularly. Classically, NMDA receptor NR2 subunits associate with PSD-95 MAGUKs via a conserved ES(E/D)V amino acid sequence located at their C termini. We previously challenged this dogma to demonstrate a second non-ES(E/D)V PSD-95-binding site in both NMDA receptor NR2A and NR2B subunits. Here, using a combination of co-immunoprecipitations from transfected mammalian cells, yeast two-hybrid interaction assays, and glutathione S-transferase (GST) pulldown assays, we show that NR2A subunits interact directly with PSD-95 via the C-terminal ESDV motif and additionally via an Src homology 3 domain-binding motif that associates with the Src homology 3 domain of PSD-95. Peptide inhibition of co-immunoprecipitations of NR2A and PSD-95 demonstrates that both the ESDV and non-ESDV sites are required for association in native brain tissue. Furthermore, we refine the non-ESDV site within NR2B to residues 1149–1157. These findings provide a molecular basis for the differential association of NMDA receptor subtypes with PSD-95 MAGUK scaffold proteins. These selective interactions may contribute to the organization, lateral mobility, and ultimately the function of NMDA receptor subtypes at synapses. Furthermore, they provide a more general molecular mechanism by which the scaffold, PSD-95, may discriminate between potential interacting partner proteins. PMID:22375001

  1. Binding site characterization of G protein-coupled receptor by alanine-scanning mutagenesis using molecular dynamics and binding free energy approach: application to C-C chemokine receptor-2 (CCR2).

    Science.gov (United States)

    Chavan, Swapnil; Pawar, Shirishkumar; Singh, Rajesh; Sobhia, M Elizabeth

    2012-05-01

    The C-C chemokine receptor 2 (CCR2) was proved as a multidrug target in many diseases like diabetes, inflammation and AIDS, but rational drug design on this target is still lagging behind as the information on the exact binding site and the crystal structure is not yet available. Therefore, for a successful structure-based drug design, an accurate receptor model in ligand-bound state is necessary. In this study, binding-site residues of CCR2 was determined using in silico alanine scanning mutagenesis and the interactions between TAK-779 and the developed homology model of CCR2. Molecular dynamic simulation and Molecular Mechanics-Generalized Born Solvent Area method was applied to calculate binding free energy difference between the template and mutated protein. Upon mutating 29 amino acids of template protein and comparison of binding free energy with wild type, six residues were identified as putative hot spots of CCR2.

  2. Gephyrin-binding peptides visualize postsynaptic sites and modulate neurotransmission

    DEFF Research Database (Denmark)

    Maric, Hans Michael; Hausrat, Torben Johann; Neubert, Franziska;

    2016-01-01

    γ-Aminobutyric acid type A and glycine receptors are the major mediators of fast synaptic inhibition in the human central nervous system and are established drug targets. However, all drugs targeting these receptors bind to the extracellular ligand-binding domain of the receptors, which inherently...

  3. Structure of the Fab fragment of the anti-murine EGFR antibody 7A7 and exploration of its receptor binding site.

    Science.gov (United States)

    Talavera, Ariel; Mackenzie, Jenny; Garrido, Greta; Friemann, Rosmarie; López-Requena, Alejandro; Moreno, Ernesto; Krengel, Ute

    2011-07-01

    The EGF receptor is an important target of cancer immunotherapies. The 7A7 monoclonal antibody has been raised against the murine EGFR, but it cross-reacts with the human receptor. The results from experiments using immune-competent mice can therefore, in principle, be extrapolated to the corresponding scenario in humans. In this work we report the crystal structure of the 7A7 Fab at an effective resolution of 1.4Å. The antibody binding site comprises a deep pocket, located at the interface between the light and heavy chains, with major contributions from CDR loops H1, H2, H3 and L1. Binding experiments show that 7A7 recognizes a site on the EGFR extracellular domain that is not accessible in its most stable conformations, but that becomes exposed upon treatment with a tyrosine kinase inhibitor. This suggests a recognition mechanism similar to that proposed for mAb 806.

  4. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE USING PATTERN ELICITED VISUAL EVOKED POTENTIALS.

    Science.gov (United States)

    In vitro studies have demonstrated that toluene disrupts the function of NMDA-glutamate receptors, as well as other channels. This has led to the hypothesis that effects on NMDA receptor function may contribute to toluene neurotoxicity, CNS depression, and altered visual evoked ...

  5. Internalization of the human CRF receptor 1 is independent of classical phosphorylation sites and of beta-arrestin 1 recruitment

    DEFF Research Database (Denmark)

    Rasmussen, Trine N; Novak, Ivana; Nielsen, Søren M

    2004-01-01

    The corticotropin releasing factor receptor 1 (CRFR1) belongs to the superfamily of G-protein coupled receptors. Though CRF is involved in the aetiology of several stress-related disorders, including depression and anxiety, details of CRFR1 regulation such as internalization remain uncharacterize...

  6. Two types of scorpion receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel.

    Science.gov (United States)

    Couraud, F; Jover, E; Dubois, J M; Rochat, H

    1982-01-01

    The action of the neurotoxin in Buthinae scorpion venoms (Androctonus, Buthus or Leiurus genera) has been extensively studied. These proteins induce a prolongation of the action potential of nerves and muscles by slowing down inactivation of the sodium channel. Their affinity for their receptor site depends on membrane potential. In the present report we describe a toxin from a Centrurinae scorpion, Centruroides suffusus, which binds rat brain synaptosomes at a receptor site distinct from the Buthinae scorpion site independently of voltage. We name Androctonus-like toxins, alpha-scorpion toxins (alpha-ScTX), and Centruroides-like toxins, beta-scorpion toxins (beta-ScTX). We further report that beta-ScTX induces repetitive firing in frog myelinated nerve fibres by producing an abnormal sodium permeability. The beta-toxin binds specifically to rat brain synaptosomes (Kd = 3 nM) and induces an inhibition of the uptake and a stimulation of the release of GABA at concentrations which are in good agreement with the Kd value. These effects are blocked by tetrodotoxin. The binding site of beta -ScTX is distinct from those of other neurotoxins acting on the sodium channel like tetrodotoxin, alpha-ScTX and veratridine. The alpha-ScTX/beta-ScTX binding site capacities decreases as development of rat brain synaptosomes progresses ; at day 7 after birth, it is 1.1. and at day 39, 0.3.

  7. 5-(Piperidin-4-yl)-3-Hydroxypyrazole: A Novel Scaffold for Probing the Orthosteric γ-Aminobutyric Acid Type A Receptor Binding Site

    DEFF Research Database (Denmark)

    Krall, Jacob; Kongstad, Kenneth Thermann; Nielsen, Birgitte

    2014-01-01

    indicate that the N1-substituted analogues of 4-PIOL and 4-PHP, 2 a–k, and previously reported 3-substituted 4-PHP analogues share a common binding mode to the orthosteric binding site in the receptor. Interestingly, the core scaffold of the N2-substituted analogues of 4-PIOL and 4-PHP, 3 b......–k, are suggested to flip 180° thereby adapting to the binding pocket and addressing a cavity situated above the core scaffold....

  8. Transcriptomic Analysis Of Purified Embryonic Neural Stem Cells From Zebrafish Embryos Reveals Signalling Pathways Involved In Glycine-dependent Neurogenesis

    Directory of Open Access Journals (Sweden)

    Eric eSAMARUT

    2016-03-01

    Full Text Available How is the initial set of neurons correctly established during the development of the vertebrate central nervous system? In the embryo, glycine and GABA are depolarizing due the immature chloride gradient, which is only reversed to become hyperpolarizing later in post-natal development. We previously showed that glycine regulates neurogenesis via paracrine signalling that promotes calcium transients in neural stem cells (NSCs and their differentiation into interneurons within the spinal cord of the zebrafish embryo. However, the subjacent molecular mechanisms are not yet understood. Our previous work suggests that early neuronal progenitors were not differentiating correctly in the developing spinal cord. As a result, we aimed at identifying the downstream molecular mechanisms involved specifically in NSCs during glycine-dependent embryonic neurogenesis. Using a gfap:GFP transgenic line, we successfully purified NSCs by fluorescence-activated cell sorting (FACS from whole zebrafish embryos and in embryos in which the glycine receptor was knocked down. The strength of this approach is that it focused on the NSC population while tackling the biological issue in an in vivo context in whole zebrafish embryos. After sequencing the transcriptome by RNA-sequencing, we analyzed the genes whose expression was changed upon disruption of glycine signalling and we confirmed the differential expression by independent RTqPCR assay. While over a thousand genes showed altered expression levels, through pathway analysis we identified 14 top candidate genes belonging to five different canonical signalling pathways (signalling by calcium, TGF-beta, sonic hedgehog, Wnt and p53-related apoptosis that are likely to mediate the promotion of neurogenesis by glycine.

  9. Glycine betaine as a direct substrate for methanogens (Methanococcoides spp.).

    Science.gov (United States)

    Watkins, Andrew J; Roussel, Erwan G; Parkes, R John; Sass, Henrik

    2014-01-01

    Nine marine methanogenic Methanococcoides strains, including the type strains of Methanococcoides methylutens, M. burtonii, and M. alaskense, were tested for the utilization of N-methylated glycines. Three strains (NM1, PM2, and MKM1) used glycine betaine (N,N,N-trimethylglycine) as a substrate for methanogenesis, partially demethylating it to N,N-dimethylglycine, whereas none of the strains used N,N-dimethylglycine or sarcosine (N-methylglycine). Growth rates and growth yields per mole of substrate with glycine betaine (3.96 g [dry weight] per mol) were similar to those with trimethylamine (4.11 g [dry weight] per mol). However, as glycine betaine is only partially demethylated, the yield per methyl group was significantly higher than with trimethylamine. If glycine betaine and trimethylamine are provided together, trimethylamine is demethylated to dimethyl- and methylamine with limited glycine betaine utilization. After trimethylamine is depleted, dimethylamine and glycine betaine are consumed rapidly, before methylamine. Glycine betaine extends the range of substrates that can be directly utilized by some methanogens, allowing them to gain energy from the substrate without the need for syntrophic partners.

  10. Characterization of seed storage proteins of several perennial glycine species

    Science.gov (United States)

    Perennial Glycine species, distant relatives of soybean, have been recognized as a potential source of new genetic diversity for soybean improvement. The subgenus Glycine includes around 30 perennial species, which are well adapted to drought conditions and possess resistance to a number of soybean ...

  11. Glycine zinc sulfate pentahydrate: redetermination at 10 K from time-of-flight neutron Laue diffraction

    Directory of Open Access Journals (Sweden)

    A. Dominic Fortes

    2016-10-01

    Full Text Available Single crystals of glycine zinc sulfate pentahydrate [systematic name: hexaaquazinc tetraaquadiglycinezinc bis(sulfate], [Zn(H2O6][Zn(C2H5NO22(H2O4](SO42, have been grown by isothermal evaporation from aqueous solution at room temperature and characterized by single-crystal neutron diffraction. The unit cell contains two unique ZnO6 octahedra on sites of symmetry -1 and two SO4 tetrahedra with site symmetry 1; the octahedra comprise one [tetraaqua-diglycine zinc]2+ ion (centred on one Zn atom and one [hexaaquazinc]2+ ion (centred on the other Zn atom; the glycine zwitterion, NH3+CH2COO−, adopts a monodentate coordination to the first Zn atom. All other atoms sit on general positions of site symmetry 1. Glycine forms centrosymmetric closed cyclic dimers due to N—H...O hydrogen bonds between the amine and carboxylate groups of adjacent zwitterions and exhibits torsion angles varying from ideal planarity by no more than 1.2°, the smallest values for any known glycine zwitterion not otherwise constrained by a mirror plane. This work confirms the H-atom locations estimated in three earlier single-crystal X-ray diffraction studies with the addition of independently refined fractional coordinates and Uij parameters, which provide accurate internuclear X—H (X = N, O bond lengths and consequently a more accurate and precise depiction of the hydrogen-bond framework.

  12. Molecular mechanism for the dual alcohol modulation of Cys-loop receptors.

    Directory of Open Access Journals (Sweden)

    Samuel Murail

    Full Text Available Cys-loop receptors constitute a superfamily of pentameric ligand-gated ion channels (pLGICs, including receptors for acetylcholine, serotonin, glycine and γ-aminobutyric acid. Several bacterial homologues have been identified that are excellent models for understanding allosteric binding of alcohols and anesthetics in human Cys-loop receptors. Recently, we showed that a single point mutation on a prokaryotic homologue (GLIC could transform it from a channel weakly potentiated by ethanol into a highly ethanol-sensitive channel. Here, we have employed molecular simulations to study ethanol binding to GLIC, and to elucidate the role of the ethanol-enhancing mutation in GLIC modulation. By performing 1-µs simulations with and without ethanol on wild-type and mutated GLIC, we observed spontaneous binding in both intra-subunit and inter-subunit transmembrane cavities. In contrast to the glycine receptor GlyR, in which we previously observed ethanol binding primarily in an inter-subunit cavity, ethanol primarily occupied an intra-subunit cavity in wild-type GLIC. However, the highly ethanol-sensitive GLIC mutation significantly enhanced ethanol binding in the inter-subunit cavity. These results demonstrate dramatic effects of the F(14'A mutation on the distribution of ligands, and are consistent with a two-site model of pLGIC inhibition and potentiation.

  13. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica.

    Science.gov (United States)

    Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Fukaya, Minoru; Rai, Vandna; Takabe, Teruhiro

    2015-12-01

    A halotolerant cyanobacterium Aphanothece halophytica thrives in extreme salinity with accumulation of a potent osmoprotectant glycine betaine. Recently, this cyanobacterium was shown to accumulate sunscreen molecule mycosporine-2-glycine significantly at high salinity. In this study, we investigated effects of nitrate and amino acid provision on the accumulation of glycine betaine and mycosporine-2-glycine. With elevated nitrate concentrations at high salinity, intracellular levels of both metabolites were enhanced. Six-fold high nitrate concentration increased the relative amounts of glycine betaine and mycosporine-2-glycine to be 1.5 and 2.0 folds compared with control condition : Increased levels were time- and dose-dependent manner. Exogenous supply of glycine/serine at high salinity resulted in the similar trends as observed in excess nitrate experiment. Intracellular level of glycine betaine increased ∼1.6 folds with glycine/serine supplementation. These supplementations also caused the increased level of mycosporine-2-glycine, namely 1.4 and 2 folds by glycine and serine, respectively. The transcription of glycine betaine and mycosporine-2-glycine biosynthetic genes was strongly induced under high-nitrate-salt condition. These results suggest the dependence of glycine betaine and mycosporine-2-glycine productions on substrate availability, and the effect of nitrate was possibly associated with stimulation of osmoprotectant increment in this extremophile.

  14. Development of a radioligand, [(3)H]LY2119620, to probe the human M(2) and M(4) muscarinic receptor allosteric binding sites.

    Science.gov (United States)

    Schober, Douglas A; Croy, Carrie H; Xiao, Hongling; Christopoulos, Arthur; Felder, Christian C

    2014-07-01

    In this study, we characterized a muscarinic acetylcholine receptor (mAChR) potentiator, LY2119620 (3-amino-5-chloro-N-cyclopropyl-4-methyl-6-[2-(4-methylpiperazin-1-yl)-2-oxoethoxy]thieno[2,3-b]pyridine-2-carboxamide) as a novel probe of the human M2 and M4 allosteric binding sites. Since the discovery of allosteric binding sites on G protein-coupled receptors, compounds targeting these novel sites have been starting to emerge. For example, LY2033298 (3-amino-5-chloro-6-methoxy-4-methyl-thieno(2,3-b)pyridine-2-carboxylic acid cyclopropylamid) and a derivative of this chemical scaffold, VU152100 (3-amino-N-(4-methoxybenzyl)-4,6-dim​ethylthieno[2,3-b]pyridine carboxamide), bind to the human M4 mAChR allosteric pocket. In the current study, we characterized LY2119620, a compound similar in structure to LY2033298 and binds to the same allosteric site on the human M4 mAChRs. However, LY2119620 also binds to an allosteric site on the human M2 subtype. [(3)H]NMS ([(3)H]N-methylscopolamine) binding experiments confirm that LY2119620 does not compete for the orthosteric binding pocket at any of the five muscarinic receptor subtypes. Dissociation kinetic studies using [(3)H]NMS further support that LY2119620 binds allosterically to the M2 and M4 mAChRs and was positively cooperative with muscarinic orthosteric agonists. To probe directly the allosteric sites on M2 and M4, we radiolabeled LY2119620. Cooperativity binding of [(3)H]LY2119620 with mAChR orthosteric agonists detects significant changes in Bmax values with little change in Kd, suggesting a G protein-dependent process. Furthermore, [(3)H]LY2119620 was displaced by compounds of similar chemical structure but not by previously described mAChR allosteric compounds such as gallamine or WIN 62,577 (17-β-hydroxy-17-α-ethynyl-δ-4-androstano[3,2-b]pyrimido[1,2-a]benzimidazole). Our results therefore demonstrate the development of a radioligand, [(3)H]LY2119620 to probe specifically the human M2 and M4 muscarinic

  15. Reconstitution of high-affinity binding of a beta-scorpion toxin to neurotoxin receptor site 4 on purified sodium channels.

    Science.gov (United States)

    Thomsen, W; Martin-Eauclaire, M F; Rochat, H; Catterall, W A

    1995-09-01

    Reconstitution of purified sodium channels into phospholipid vesicles restores many aspects of sodium channel function including high-affinity neurotoxin binding and action at neurotoxin receptor sites 1-3 and 5, but neurotoxin binding and action at receptor site 4 has not previously been demonstrated in purified and reconstituted preparations. Toxin IV from the venom of the American scorpion Centruroides suffusus suffusus (Css IV), a beta-scorpion toxin, shifts the voltage dependence of sodium channel activation by binding with high affinity to neurotoxin receptor site 4. Sodium channels were purified from rat brain and reconstituted into phospholipid vesicles composed of phosphatidylcholine and phosphatidylethanolamine (65:35). 125I-Css IV, purified by reversed-phase HPLC, bound rapidly and specifically to reconstituted sodium channels. Dissociation of the bound toxin was biphasic with half-times of 0.22 min-1 and 0.015 min-1. At equilibrium, the toxin bound to two classes of specific high-affinity sites, a variable minor class with KD of approximately 0.1 nM and a major class with a KD of approximately 5 nM. Approximately 0.8 mol 125I-Css IV was bound per mole of reconstituted, right-side-out sodium channels, as assessed from comparison of binding of saxitoxin and Css IV. Binding of Css IV was unaffected by membrane potential or by neurotoxins that bind at sites 1-3 or 5, consistent with the characteristics of binding of beta-scorpion toxins to sodium channels in cells and membrane preparations.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China

    Directory of Open Access Journals (Sweden)

    W. W. Hu

    2013-10-01

    Full Text Available In order to understand the aging and processing of organic aerosols (OA, an intensive field campaign (Campaign of Air Pollution at Typical Coastal Areas IN Eastern China, CAPTAIN was conducted March–April at a receptor site (a Changdao island in central eastern China. Multiple fast aerosol and gas measurement instruments were used during the campaign, including a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS that was applied to measure mass concentrations and non-refractory chemical components of submicron particles (PM1nr. The average mass concentration of PM1(PM1nr+black carbon was 47 ± 36 μg m−3 during the campaign and showed distinct variation, depending on back trajectories and their overlap with source regions. Organic aerosol (OA is the largest component of PM1 (30%, followed by nitrate (28%, sulfate (19%, ammonium (15%, black carbon (6%, and chloride (3%. Four OA components were resolved by positive matrix factorization (PMF of the high-resolution spectra, including low-volatility oxygenated organic aerosol (LV-OOA, semi-volatile oxygenated OA (SV-OOA, hydrocarbon-like OA (HOA and a coal combustion OA (CCOA. The mass spectrum of CCOA had high abundance of fragments from polycyclic aromatic hydrocarbons (PAHs (m/z 128, 152, 178, etc.. The average atomic ratio of oxygen to carbon in OA (O / C at Changdao was 0.59, which is comparable to other field studies reported at locations downwind of large pollution sources, indicating the oxidized nature of most OA during the campaign. The evolution of OA elemental composition in the van Krevelen diagram (H / C vs. O / C showed a slope of −0.63; however, the OA influenced by coal combustion exhibits a completely different evolution that appears dominated by physical mixing. The aging of organic aerosols vs. photochemical age was investigated. It was shown that OA / ΔCO, as well as LV-OOA / ΔCO and SV-OOA / ΔCO, positively correlated with photochemical age. LV

  17. Molecular analysis of collagen binding by the human discoidin domain receptors, DDR1 and DDR2. Identification of collagen binding sites in DDR2.

    Science.gov (United States)

    Leitinger, Birgit

    2003-05-09

    The widely expressed mammalian discoidin domain receptors (DDRs), DDR1 and DDR2, are unique among receptor tyrosine kinases in that they are activated by the extracellular matrix protein collagen. Various collagen types bind to and activate the DDRs, but the molecular details of collagen recognition have not been well defined. In this study, recombinant extracellular domains of DDR1 and DDR2 were produced to explore DDR-collagen binding in detail. In solid phase assays, both DDRs bound collagen I with high affinity. DDR1 recognized collagen I only as a dimeric and not as a monomeric construct, indicating a requirement for receptor dimerization in the DDR1-collagen interaction. The DDRs contain a discoidin homology domain in their extracellular domains, and the isolated discoidin domain of DDR2 bound collagen I with high affinity. Furthermore, the discoidin domain of DDR2, but not of DDR1, was sufficient for transmembrane receptor signaling. To map the collagen binding site within the discoidin domain of DDR2, mutant constructs were created, in which potential surface-exposed loops in DDR2 were exchanged for the corresponding loops of functionally unrelated discoidin domains. Three spatially adjacent surface loops within the DDR2 discoidin domain were found to be critically involved in collagen binding of the isolated DDR2 extracellular domain. In addition, the same loops were required for collagen-dependent receptor activation. It is concluded that the loop region opposite to the polypeptide chain termini of the DDR2 discoidin domain constitutes the collagen recognition site.

  18. Binding site of hepatitis B virus preS1 region to the asialoglycoprotein receptor of human liver

    Institute of Scientific and Technical Information of China (English)

    JIN Zhe-zhu; LI Mei-hua; WANG Yu-shu; CAI Ying-ji; JIN He-kui; ZHU Wei

    2002-01-01

    @@ The hepatitis B virus (HBV) is a major pathogen of chronic inflammatory liver disease and liver cirrhosis and is known to be infected to the hepatocytes via HBV specific receptors[1]. However, the specific receptor for HBV has not yet been identified. The HBV envelops consist of three related proteins, called major-(S region), middle-(S + preS2) and large protein (S + preS2 + preS1).

  19. Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2

    DEFF Research Database (Denmark)

    Seemann, Petra; Schwappacher, Raphaela; Kjær, Klaus Wilbrandt

    2005-01-01

    Here we describe 2 mutations in growth and differentiation factor 5 (GDF5) that alter receptor-binding affinities. They cause brachydactyly type A2 (L441P) and symphalangism (R438L), conditions previously associated with mutations in the GDF5 receptor bone morphogenetic protein receptor type 1b...... activity when compared with WT GDF5. Biosensor interaction analyses revealed loss of binding to BMPR1A and BMPR1B ectodomains for the L441P mutant, whereas the R438L mutant showed normal binding to BMPR1B but increased binding to BMPR1A, the receptor normally activated by BMP2. The binding to NOGGIN...... was normal for both mutants. Thus, the brachydactyly type A2 phenotype (L441P) is caused by inhibition of the ligand-receptor interaction, whereas the symphalangism phenotype (R438L) is caused by a loss of receptor-binding specificity, resulting in a gain of function by the acquisition of BMP2-like...

  20. Conformational changes in glycine tri- and hexapeptide

    CERN Document Server

    Yakubovitch, A V; Solovyov, A V; Solovyov, I A; Greiner, Walter; Solov'yov, Andrey V.; Solov'yov, Ilia A.; Yakubovitch, Alexander V.

    2005-01-01

    We have investigated the potential energy surfaces for glycine chains consisting of three and six amino acids. For these molecules we have calculated potential energy surfaces as a function of the Ramachandran angles phi and psi, which are widely used for the characterization of the polypeptide chains. These particular degrees of freedom are essential for the characterization of proteins folding process. Calculations have been carried out within ab initio theoretical framework based on the density functional theory and accounting for all the electrons in the system. We have determined stable conformations and calculated the energy barriers for transitions between them. Using a thermodynamic approach, we have estimated the times of the characteristic transitions between these conformations. The results of our calculations have been compared with those obtained by other theoretical methods and with the available experimental data extracted from the Protein Data Base. This comparison demonstrates a reasonable co...

  1. Quantum chemical calculations of glycine glutaric acid

    Science.gov (United States)

    Arioǧlu, ćaǧla; Tamer, Ömer; Avci, Davut; Atalay, Yusuf

    2017-02-01

    Density functional theory (DFT) calculations of glycine glutaric acid were performed by using B3LYP levels with 6-311++G(d,p) basis set. The theoretical structural parameters such as bond lengths and bond angles are in a good agreement with the experimental values of the title compound. HOMO and LUMO energies were calculated, and the obtained energy gap shows that charge transfer occurs in the title compound. Vibrational frequencies were calculated and compare with experimental ones. 3D molecular surfaces of the title compound were simulated using the same level and basis set. Finally, the 13C and 1H NMR chemical shift values were calculated by the application of the gauge independent atomic orbital (GIAO) method.

  2. Novel computational methodologies for structural modeling of spacious ligand binding sites of G-protein-coupled receptors: development and application to human leukotriene B4 receptor.

    Science.gov (United States)

    Ishino, Yoko; Harada, Takanori

    2012-01-01

    This paper describes a novel method to predict the activated structures of G-protein-coupled receptors (GPCRs) with high accuracy, while aiming for the use of the predicted 3D structures in in silico virtual screening in the future. We propose a new method for modeling GPCR thermal fluctuations, where conformation changes of the proteins are modeled by combining fluctuations on multiple time scales. The core idea of the method is that a molecular dynamics simulation is used to calculate average 3D coordinates of all atoms of a GPCR protein against heat fluctuation on the picosecond or nanosecond time scale, and then evolutionary computation including receptor-ligand docking simulations functions to determine the rotation angle of each helix of a GPCR protein as a movement on a longer time scale. The method was validated using human leukotriene B4 receptor BLT1 as a sample GPCR. Our study demonstrated that the proposed method was able to derive the appropriate 3D structure of the active-state GPCR which docks with its agonists.

  3. Novel Computational Methodologies for Structural Modeling of Spacious Ligand Binding Sites of G-Protein-Coupled Receptors: Development and Application to Human Leukotriene B4 Receptor

    Directory of Open Access Journals (Sweden)

    Yoko Ishino

    2012-01-01

    Full Text Available This paper describes a nov