WorldWideScience

Sample records for receptor glur1 subunit

  1. Cocaine-induced behavioral sensitization in adolescent rats endures until adulthood: lack of association with GluR1 and NR1 glutamate receptor subunits and tyrosine hydroxylase.

    Science.gov (United States)

    Marin, Marcelo T; Cruz, Fábio C; Planeta, Cleopatra S

    2008-11-01

    Exposure to repeated cocaine induces enduring behavioral sensitization, which has been implicated in the psychostimulant-induced craving and psychosis. Adaptations in dopamine and glutamate neurotransmission in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) seem to mediate psychostimulant-induced behavioral sensitization. The abuse of drugs often begins during adolescence; however few studies have been devoted to study the effects of drugs of abuse at this age. The aim of our study was to examine whether repeated cocaine during adolescence could induce behavioral sensitization that endures into adulthood. Moreover, the protein levels of Tyrosine Hydroxylase (TH) and the glutamate receptor subunits GluR1 and NR1 in the NAc and mPFC were measured following the behavioral tests. Adolescent rats were treated with cocaine from postnatal day (PND) 30 to PND34 and behavioral sensitization was verified recording locomotor activity after cocaine challenge injection to adolescent (PND37) or adult (PND64 or 94) rats in separate groups at each time point. TH, GluR1, and NR1 protein levels were measured by Western blotting. Rats exposed to cocaine during adolescence expressed behavioral sensitization when tested on PND37 and PND64. In cocaine sensitized rats GluR1 protein was increased in the mPFC on PND37 but not in other ages. Thus, cocaine-induced behavioral sensitization during adolescence endures into early adulthood. However, cocaine pretreatment during adolescence induced a transient increase of GluR1 in the mPFC only when animals were challenged in the same age.

  2. Effects of cyclothiazide on GluR1/AMPA receptors.

    Science.gov (United States)

    Fucile, Sergio; Miledi, Ricardo; Eusebi, Fabrizio

    2006-02-21

    Cyclothiazide (CTZ), a positive allosteric modulator of ionotropic alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors, is used frequently to block the desensitization of both native and heterologously expressed AMPA receptors. Specifically, CTZ is known to produce a fast inhibition of AMPA receptor desensitization and a much slower potentiation of the AMPA current. By using patch-clamp techniques, the effects of CTZ were studied in HEK 293 cells stably transfected with the rat flip GluR1 subunit. Upon CTZ treatment, we found an increased apparent affinity for the agonist, a slow whole-cell current potentiation, a fast inhibition of desensitization, and a lengthening of single-channel openings. Furthermore, we show that CTZ alters the channel gating events modifying the relative contribution of different single-channel classes of conductance (gamma), increasing and decreasing, respectively, the contributions of gammaM (medium) and gammaL (low) without altering that of the gammaH (high) conductance channels. We also present a kinetic model that predicts well all of the experimental findings of CTZ action. Finally, we suggest a protocol for standard cell treatment with CTZ to attain maximal efficacy of CTZ on GluR1 receptors.

  3. Impaired associative fear learning in mice with complete loss or haploinsufficiency of AMPA GluR1 receptors

    Directory of Open Access Journals (Sweden)

    Michael Feyder

    2007-12-01

    Full Text Available There is compelling evidence that L-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA glutamate receptors containing the GluR1 subunit contribute to the molecular mechanisms associated with learning. AMPA GluR1 glutamate receptor knockout mice (KO exhibit abnormal hippocampal and amygdala plasticity, and deficits on various assays for cognition including Pavlovian fear conditioning. Here we examined associative fear learning in mice with complete absence (KO or partial loss (heterozygous mutant, HET of GluR1 on multiple fear conditioning paradigms. After multi-trial delay or trace conditioning, KO displayed impaired tone and context fear recall relative to WT, whereas HET were normal. After one-trial delay conditioning, both KO and HET showed impaired tone and context recall. HET and KO showed normal nociceptive sensitivity in the hot plate and tail flick tests. These data demonstrate that the complete absence of GluR1 subunit-containing receptors prevents the formation of associative fear memories, while GluR1 haploinsufficiency is sufficient to impair one-trial fear learning. These findings support growing evidence of a major role for GluR1-containing AMPA receptors in amygdalamediated forms of learning and memory.

  4. Minocycline increases phosphorylation and membrane insertion of neuronal GluR1 receptors

    OpenAIRE

    Imbesi, Marta; Uz, Tolga; Manev, Radmila; Sharma, Rajiv P.; Manev, Hari

    2008-01-01

    The tetracycline antibiotic minocycline beneficially affects neuronal functioning and also inhibits the enzyme 5-lipoxygenase (5-LOX). We hypothesized that similar to 5-LOX inhibitors, minocycline may increase phosphorylation and membrane insertion of the glutamate receptor GluR1. The experiments were performed in primary cultures of mouse striatal neurons and in the prefrontal cortex and striatum of minocycline-treated mice. Invitro, low micromolar minocycline concentrations increased GluR1 ...

  5. Effects of cyclothiazide on GluR1/AMPA receptors

    OpenAIRE

    Fucile, Sergio; Miledi, Ricardo; Eusebi, Fabrizio

    2006-01-01

    Cyclothiazide (CTZ), a positive allosteric modulator of ionotropic α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptors, is used frequently to block the desensitization of both native and heterologously expressed AMPA receptors. Specifically, CTZ is known to produce a fast inhibition of AMPA receptor desensitization and a much slower potentiation of the AMPA current. By using patch-clamp techniques, the effects of CTZ were studied in HEK 293 cells stably transf...

  6. [Blockade of the alpha3alpha4 N-cholinoreceptors and GluR1 AMPA receptors eliminates clonic-tonic nicotinic and kainate seizures].

    Science.gov (United States)

    Serdiuk, S E; Gmiro, V E

    2008-01-01

    Monoammonium N-alkyl derivative of decylamine (IEM-1678), which blocks alpha3beta4 N-cholinoreceptors (but does not block GluR1 AMPA receptors), in doses of 1.0 - 3.0 mg/kg produces a 4-fold decrease in the frequency and lethality of nicotinic clonic-tonic seizures. However, even in the maximum dose of 3 mg/kg, IEM-1678 only slightly decreases kainate clonic-tonic seizures. Bis-ammonium compound IEM-1460 (containing adamantyl radical), which blocks both GluR1 AMPA receptors and alpha3beta4 N-cholinoreceptors, in a range of doses 0.1 - 3 mg/kg produces a 5- to 8-fold decrease in the frequency and virtually completely eliminates lethality of both clonic-tonic nicotinic and kainate seizures. Hence, the complete elimination of generalized kainate and nicotinic seizures requires combined blockade GluR1 AMPA and alpha3beta4 N-cholinoreceptors.

  7. Targeted deletion of the GluR-1 AMPA receptor in mice dissociates general and outcome-specific influences of appetitive rewards on learning.

    Science.gov (United States)

    Johnson, Alexander W; Bannerman, David; Rawlins, Nick; Sprengel, Rolf; Good, Mark A

    2007-12-01

    The authors assessed the hypothesis that deletion of the GluR-1 subtype of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor in mice disrupts the associative activation of a sensory-specific representation of an appetitive reward. In Experiment 1, mice received training on a Pavlovian-instrumental transfer task. In the test stage, conditioned stimulus (CS) presentations enhanced instrumental actions in both groups. However, this effect was specific to the action that shared the same outcome as the CS in wild-type (WT), but not GluR-1-super(-/-), mice. In Experiment 2, the mice were trained on a heterogeneous instrumental chain in which rewards were obtained for emitting 1 response (R1, that was distal to reward delivery), followed by a 2nd response (R2, that was proximal to reward delivery). A change in general motivational state (from hungry to sated) reduced the number of R2 responses in both groups. In contrast, an outcome-specific satiety treatment produced a selective decline in R1 responding only in WT mice. The results support the hypothesis that GluR-1 deletion impairs the associative activation of a representation of the sensory-specific incentive motivational properties of an appetitive reward.

  8. Effects of visual deprivation during brain development on expression of AMPA receptor subunits in rat’s hippocampus

    Directory of Open Access Journals (Sweden)

    Sayyed Alireza Talaei

    2015-06-01

    Conclusion: Dark rearing of rats during critical period of brain development changes the relative expression and also arrangement of both AMPA receptor subunits, GluR1 and GluR2 in the hippocampus, age dependently.

  9. Expression of AMPA and NMDA receptor subunits in the cervical spinal cord of wobbler mice

    Directory of Open Access Journals (Sweden)

    Corsi Massimiliano M

    2006-10-01

    Full Text Available Abstract Background The localisation of AMPA and NMDA receptor subunits was studied in a model of degeneration of cervical spinal motoneurons, the wobbler mouse. Cervical regions from early or late symptomatic wobbler mice (4 or 12 weeks of age were compared to lumbar tracts (unaffected and to those of healthy mice. Results No differences were found in the distribution of AMPA and NMDA receptor subunits at both ages. Western blots analysis showed a trend of reduction in AMPA and NMDA receptor subunits, mainly GluR1 and NR2A, exclusively in the cervical region of late symptomatic mice in the triton-insoluble post-synaptic fraction but not whole homogenates. Colocalisation experiments evidenced the expression of GluR1 and NR2A receptors in activated astrocytes from the cervical spinal cord of wobbler mice, GluR2 did not colocalise with GFAP positive cells. No differences were found in the expression of AMPA and NMDA receptor subunits in the lumbar tract of wobbler mice, where neither motoneuron loss nor reactive gliosis occurs. Conclusion In late symptomatic wobbler mice altered levels of GluR1 and NR2A receptor subunits may be a consequence of motoneuron loss rather than an early feature of motoneuron vulnerability.

  10. BDNF activates mTOR to regulate GluR1 expression required for memory formation.

    Directory of Open Access Journals (Sweden)

    Leandro Slipczuk

    Full Text Available BACKGROUND: The mammalian target of Rapamycin (mTOR kinase plays a key role in translational control of a subset of mRNAs through regulation of its initiation step. In neurons, mTOR is present at the synaptic region, where it modulates the activity-dependent expression of locally-translated proteins independently of mRNA synthesis. Indeed, mTOR is necessary for different forms of synaptic plasticity and long-term memory (LTM formation. However, little is known about the time course of mTOR activation and the extracellular signals governing this process or the identity of the proteins whose translation is regulated by this kinase, during mnemonic processing. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that consolidation of inhibitory avoidance (IA LTM entails mTOR activation in the dorsal hippocampus at the moment of and 3 h after training and is associated with a rapid and rapamycin-sensitive increase in AMPA receptor GluR1 subunit expression, which was also blocked by intra-hippocampal delivery of GluR1 antisense oligonucleotides (ASO. In addition, we found that pre- or post-training administration of function-blocking anti-BDNF antibodies into dorsal CA1 hampered IA LTM retention, abolished the learning-induced biphasic activation of mTOR and its readout, p70S6K and blocked GluR1 expression, indicating that BDNF is an upstream factor controlling mTOR signaling during fear-memory consolidation. Interestingly, BDNF ASO hindered LTM retention only when given into dorsal CA1 1 h after but not 2 h before training, suggesting that BDNF controls the biphasic requirement of mTOR during LTM consolidation through different mechanisms: an early one involving BDNF already available at the moment of training, and a late one, happening around 3 h post-training that needs de novo synthesis of this neurotrophin. CONCLUSIONS/SIGNIFICANCE: IN CONCLUSION, OUR FINDINGS DEMONSTRATE THAT: 1 mTOR-mediated mRNA translation is required for memory consolidation during

  11. Functional characterisation of homomeric ionotropic glutamate receptors GluR1-GluR6 in a fluorescence-based high throughput screening assay

    DEFF Research Database (Denmark)

    Strange, Mette; Bräuner-Osborne, Hans; Jensen, Anders A.

    2006-01-01

    studies. Finally, the effects of various concentrations of Ca2+ in the assay buffer and of the allosteric modulators cyclothiazide and concanavalin A on GluR signalling were examined. This study represents the most elaborate functional characterisation of multiple AMPA and KA receptor subtypes in the same...

  12. Functional characterization of Tet-AMPA [tetrazolyl-2-amino-3-(3-hydroxy-5-methyl- 4-isoxazolyl)propionic acid] analogues at ionotropic glutamate receptors GluR1-GluR4. The molecular basis for the functional selectivity profile of 2-Bn-Tet-AMPA

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Christesen, Thomas; Bølcho, Ulrik

    2007-01-01

    Four 2-substituted Tet-AMPA [Tet = tetrazolyl, AMPA = 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid] analogues were characterized functionally at the homomeric AMPA receptors GluR1i, GluR2Qi, GluR3i, and GluR4i in a Fluo-4/Ca2+ assay. Whereas 2-Et-Tet-AMPA, 2-Pr-Tet-AMPA, and 2-iPr-Te...

  13. Blast waves from detonated military explosive reduce GluR1 and synaptophysin levels in hippocampal slice cultures.

    Science.gov (United States)

    Smith, Marquitta; Piehler, Thuvan; Benjamin, Richard; Farizatto, Karen L; Pait, Morgan C; Almeida, Michael F; Ghukasyan, Vladimir V; Bahr, Ben A

    2016-12-01

    Explosives create shockwaves that cause blast-induced neurotrauma, one of the most common types of traumatic brain injury (TBI) linked to military service. Blast-induced TBIs are often associated with reduced cognitive and behavioral functions due to a variety of factors. To study the direct effects of military explosive blasts on brain tissue, we removed systemic factors by utilizing rat hippocampal slice cultures. The long-term slice cultures were briefly sealed air-tight in serum-free medium, lowered into a 37°C water-filled tank, and small 1.7-gram assemblies of cyclotrimethylene trinitramine (RDX) were detonated 15cm outside the tank, creating a distinct shockwave recorded at the culture plate position. Compared to control mock-treated groups of slices that received equal submerge time, 1-3 blast impacts caused a dose-dependent reduction in the AMPA receptor subunit GluR1. While only a small reduction was found in hippocampal slices exposed to a single RDX blast and harvested 1-2days later, slices that received two consecutive RDX blasts 4min apart exhibited a 26-40% reduction in GluR1, and the receptor subunit was further reduced by 64-72% after three consecutive blasts. Such loss correlated with increased levels of HDAC2, a histone deacetylase implicated in stress-induced reduction of glutamatergic transmission. No evidence of synaptic marker recovery was found at 72h post-blast. The presynaptic marker synaptophysin was found to have similar susceptibility as GluR1 to the multiple explosive detonations. In contrast to the synaptic protein reductions, actin levels were unchanged, spectrin breakdown was not detected, and Fluoro-Jade B staining found no indication of degenerating neurons in slices exposed to three RDX blasts, suggesting that small, sub-lethal explosives are capable of producing selective alterations to synaptic integrity. Together, these results indicate that blast waves from military explosive cause signs of synaptic compromise without

  14. Correlation between kinetics and RNA splicing of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in neocortical neurons.

    Science.gov (United States)

    Lambolez, B; Ropert, N; Perrais, D; Rossier, J; Hestrin, S

    1996-03-05

    In the cortex fast excitatory synaptic currents onto excitatory pyramidal neurons and inhibitory nonpyramidal neurons are mediated by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors exhibiting cell-type-specific differences in their kinetic properties. AMPA receptors consist of four subunits (GluR1-4), each existing as two splice variants, flip and flop, which critically affect the desensitization properties of receptors expressed in heterologous systems. Using single cell reverse transcription PCR to analyze the mRNA of AMPA receptor subunits expressed in layers I-III neocortical neurons, we find that 90% of the GluR1-4 in nonpyramidal neurons are flop variants, whereas 92% of the GluR1-4 in pyramidal neurons are flip variants. We also find that nonpyramidal neurons predominantly express GluR1 mRNA (GluR1/GluR1-4 = 59%), whereas pyramidal neurons contain mainly GluR2 mRNA (GluR2/GluR1-4 = 59%). However, the neuron-type-specific splicing is exhibited by all four AMPA receptor subunits. We suggest that the predominance of the flop variants contributes to the faster and more extensive desensitization in nonpyramidal neurons, compared to pyramidal cells where flip variants are dominant. Alternative splicing of AMPA receptors may play an important role in regulating synaptic function in a cell-type-specific manner, without changing permeation properties.

  15. Disruption of agonist and ligand activity in an AMPA glutamate receptor splice-variable domain deletion mutant.

    Science.gov (United States)

    Johnson, Wayne D; Parandaman, Vijaya; Onaivi, Emmanuel S; Taylor, Robert E; Akinshola, B Emmanuel

    2008-07-30

    The mechanisms by which agonists and other ligands bind ligand-gated ion channels are important determinants of function in neurotransmitter receptors. The partial agonist, kainic acid (KA) activates a less desensitized, and more robust AMPA receptor (AMPAR) current than full agonists, glutamate or AMPA. Cyclothiazide (CTZ), the allosteric modulator of AMPARs, potentiates receptor currents by inhibiting receptor desensitization resulting from agonist activation. We have constructed an AMPAR GluR1 subunit deletion mutant GluR1L3T(Delta739-784) by deleting the splice-variable "flip/flop" region of the L3 domain in the wild-type receptor and compared its function to that of the wild-type GluR1 receptor and an AMPAR substitution mutant GluR1A782N. When compared to GluR1, the potency of glutamate activation of GluR1L3T was increased, in contrast to a decrease in potency of activation and reduced sensitivity to optimal concentrations of KA. Furthermore, GluR1L3T was totally insensitive to CTZ potentiation of KA and glutamate-activated currents in Xenopus laevis oocytes. The potency of glutamate and KA activation of GluR1A782N was not significantly different from that of the wild-type GluR1 receptor although the mutant receptor currents were more sensitive to CTZ potentiation than the wild-type receptor current. This result is an indication that glutamate and KA binding to the agonist (S1/S2) domain on AMPAR can be modulated by an expendable splice-variable region of the receptor. Moreover, the effect of the allosteric modulator, CTZ on agonist activation of AMPAR can also be modified by a non-conserved amino acid residue substitution within the splice-variable "flip/flop" region.

  16. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Anubhuti Goel

    Full Text Available Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca(2+-permeable AMPA receptors (CP-AMPARs. However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1 subunit at the serine 845 (S845 site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants, which is a substrate of cAMP-dependent kinase (PKA, show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity.

  17. Stoichiometry of δ subunit containing GABAA receptors

    Science.gov (United States)

    Patel, B; Mortensen, M; Smart, T G

    2014-01-01

    Background and Purpose Although the stoichiometry of the major synaptic αβγ subunit-containing GABAA receptors has consensus support for 2α:2β:1γ, a clear view of the stoichiometry of extrasynaptic receptors containing δ subunits has remained elusive. Here we examine the subunit stoichiometry of recombinant α4β3δ receptors using a reporter mutation and a functional electrophysiological approach. Experimental Approach Using site-directed mutagenesis, we inserted a highly characterized 9′ serine to leucine mutation into the second transmembrane (M2) region of α4, β3 and δ subunits that increases receptor sensitivity to GABA. Whole-cell, GABA-activated currents were recorded from HEK-293 cells co-expressing different combinations of wild-type (WT) and/or mutant α4(L297S), β3(L284S) and δ(L288S) subunits. Key Results Recombinant receptors containing one or more mutant subunits showed increased GABA sensitivity relative to WT receptors by approximately fourfold, independent of the subunit class (α, β or δ) carrying the mutation. GABA dose–response curves of cells co-expressing WT subunits with their respective L9′S mutants exhibited multiple components, with the number of discernible components enabling a subunit stoichiometry of 2α, 2β and 1δ to be deduced for α4β3δ receptors. Varying the cDNA transfection ratio by 10-fold had no significant effect on the number of incorporated δ subunits. Conclusions and Implications Subunit stoichiometry is an important determinant of GABAA receptor function and pharmacology, and δ subunit-containing receptors are important mediators of tonic inhibition in several brain regions. Here we demonstrate a preferred subunit stoichiometry for α4β3δ receptors of 2α, 2β and 1δ. PMID:24206220

  18. Pemberian Ekstrak Bayam Merah (Amarantus Tricolor linn Memperbaiki Ekspresi BDNF dan GLUR1 pada Area Hipokampus Tikus Muda yang Terpapar Anestesi Inhalasi Halothane dan Sevoflurane

    Directory of Open Access Journals (Sweden)

    Raden Argarini

    2016-11-01

    Full Text Available In the development stage, brain has a higher level of vulnerability than the adult brain to anesthetic agents. The aim of this study was to investigate the effects of red amaranth extract to brain derived neurotrophic factor (BDNF and AMPA glutamate receptor subunit 1 (Glur1 expressions as biomarkers of cognitive and neuroplasticity in rat hippocampus areas exposed to inhaled anesthetics halothane and sevoflurane. The design of this study was a randomized posttest only control group. This study was conducted at the Department of Biochemistry Faculty of Medicine, Universitas Airlangga, and the anesthetic procedures were performed at the Veterinary Hospital, Faculty of Veterinary Medicine Universitas Airlangga during the period of May–October 2014. The subjects of this study were 23 white male rats (Rattus norvegicus wistar strain, aged 1–1.5 months, weighted approximately 60–100 grams in a healthy physical condition. The subjects were divided into 5 groups, K (control; K1 (1 MAC halothane; K2 (red amaranth 800 mg/kgBW + 1 MAC halothane; K3 (1 MAC sevoflurane; and K4 (red amaranth 800mg/kgBW+1 MAC sevoflurane. The results of this study showed a decrease in the expression of BDNF when halothane and sevoflurane were administered. Red amaranth treatment prior to anesthetic gases exposure preserved and increased BDNF expression (p=0.000 while GLUR1 expression increased in the group that received halothane and sevoflurane administration and decreased back to normal in the group that received red amaranth treatment prior to exposure to anesthetic gases (p=0.000. In conclusion, red amaranth extract has the potential effect to prevent cognitive neurotoxicity on the cognitive function in rats exposed to anesthetic gases.

  19. Developmental maturation of ionotropic glutamate receptor subunits in rat vestibular nuclear neurons responsive to vertical linear acceleration.

    Science.gov (United States)

    Lai, Suk-King; Lai, Chun-Hong; Tse, Yiu-Chung; Yung, Ken K L; Shum, Daisy K Y; Chan, Ying-Shing

    2008-12-01

    We investigated the maturation profile of subunits of ionotropic glutamate receptors in vestibular nuclear neurons that were activated by sinusoidal linear acceleration along the vertical plane. The otolithic origin of Fos expression in these neurons was confirmed as a marker of functional activation when labyrinthectomized and/or stationary control rats contrasted by showing sporadically scattered Fos-labeled neurons in the vestibular nuclei. By double immunohistochemistry for Fos and one of the receptor subunits, otolith-related neurons that expressed either alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate or N-methyl-d-aspartate subunits were first identified in the medial vestibular nucleus, spinal vestibular nucleus and Group x by postnatal day (P)7, and in the lateral vestibular nucleus and Group y by P9. No double-labeled neurons were found in the superior vestibular nucleus. Within each vestibular subnucleus, these double-labeled neurons constituted approximately 90% of the total Fos-labeled neurons. The percentage of Fos-labeled neurons expressing the GluR1 or NR2A subunit showed developmental invariance in all subnuclei. For Fos-labeled neurons expressing the NR1 subunit, similar invariance was observed except that, in Group y, these neurons decreased from P14 onwards. For Fos-labeled neurons expressing the GluR2, GluR2/3, GluR4 or NR2B subunit, a significant decrease was found by the adult stage. In particular, those expressing the GluR4 subunit showed a two- to threefold decrease in the medial vestibular nucleus, spinal vestibular nucleus and Group y. Also, those expressing the NR2B subunit showed a twofold decrease in Group y. Taken together, the postsynaptic expression of ionotropic glutamate receptor subunits in different vestibular subnuclei suggests that glutamatergic transmission within subregions plays differential developmental roles in the coding of gravity-related vertical spatial information.

  20. Altered excitability and distribution of NMDA receptor subunit proteins in cortical layers of rat pups following multiple perinatal seizures.

    Science.gov (United States)

    Gashi, Eleonora; Avallone, Jennifer; Webster, Toni; Friedman, Linda K

    2007-05-11

    During a critical period of postnatal development the epileptogenic focus is thought to be of cortical origin. We used immunohistochemistry and Western blotting to elucidate potential mechanisms underlying an increased state of susceptibility to seizures in immature animals. Distribution patterns of N-methyl-D-aspartic acid (NMDA) (NR1 and NR2A/B) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) (GluR1 and GluR2) subunits were analyzed in retrosplenial, parietal and temporal cortices during the first two postnatal weeks following three episodes of status-epilepticus. Rat pups were injected three times with kainic acid (3x KA) on P6, P9, and P13 and subsequently sacrificed 48 h after the third seizure. Cortical electroencephalography (EEG) showed increased number of spikes and bursts of longer duration after 3x KA. Immunodensity measurements after 3x KA revealed a robust increase in NR2A/B labeling specific to cortical layer V throughout the retrosplenial, parietal, and temporal cortices, with no changes noted in piriform cortex. NR1 layer V immunoreactivity was also simultaneously increased in serial sections but to a lesser degree; heightened immunodensities were specific to retrosplenial and temporal cortices. The NR1:NR2 ratio was decreased in cortical layer V of the temporal and retrosplenial cortices but not in parietal cortex despite elevated immunoreactivity. Steady levels of GluR1 and GluR2 subunits were noted in all cortical areas studied in the same animals. Thus, recurrent perinatal seizures led to selective and layer-specific increases in NMDA receptor proteins. These changes may be responsible for lowering the seizure threshold in deeper cortical areas and eventually contribute to the cortical epileptogenic focus.

  1. Two Mutations Preventing PDZ-Protein Interactions of GluR1 Have Opposite Effects on Synaptic Plasticity

    Science.gov (United States)

    Boehm, Jannic; Ehrlich, Ingrid; Hsieh, Helen; Malinow, Roberto

    2006-01-01

    The regulated trafficking of GluR1 contributes significantly to synaptic plasticity, but studies addressing the function of the GluR1 C-terminal PDZ-ligand domain in this process have produced conflicting results. Here, we resolve this conflict by showing that apparently similar C-terminal mutations of the GluR1 PDZ-ligand domain result in…

  2. Administration of a PTEN inhibitor BPV(pic) attenuates early brain injury via modulating AMPA receptor subunits after subarachnoid hemorrhage in rats.

    Science.gov (United States)

    Chen, Yujie; Luo, Chunxia; Zhao, Mingyue; Li, Qiang; Hu, Rong; Zhang, John H; Liu, Zhi; Feng, Hua

    2015-02-19

    The aim of this study was to investigate whether the phosphatase and tensin homolog deleted on chromosome ten (PTEN) inhibitor dipotassium bisperoxo(pyridine-2-carboxyl) oxovanadate (BPV(pic)) attenuates early brain injury by modulating α-amino-3-hydroxy-5-methyl-4-isoxa-zolep-propionate (AMPA) receptor subunits after subarachnoid hemorrhage (SAH). A standard intravascular perforation model was used to produce the experimental SAH in Sprague-Dawley rats. BPV(pic) treatment (0.2mg/kg) was evaluated for effects on neurological score, brain water content, Evans blue extravasation, hippocampal neuronal death and AMPA receptor subunits alterations after SAH. We found that BPV(pic) is effective in attenuating BBB disruption, lowering edema, reducing hippocampal neural death and improving neurological outcomes. In addition, the AMPA receptor subunit GluR1 protein expression at cytomembrane was downregulated, whereas the expression of GluR2 and GluR3 was upregulated after BPV(pic) treatment. Our results suggest that PTEN inhibited by BPV(pic) plays a neuroprotective role in SAH pathophysiology, possibly by alterations in glutamate AMPA receptor subunits. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Size and receptor density of glutamatergic synapses: a viewpoint from left-right asymmetry of CA3-CA1 connections

    Directory of Open Access Journals (Sweden)

    Yoshiaki Shinohara

    2009-07-01

    Full Text Available Synaptic plasticity is considered to be the main mechanism for learning and memory. Excitatory synapses in the cerebral cortex and hippocampus undergo plastic changes during development and in response to electric stimulation. It is widely accepted that this process is mediated by insertion and elimination of various glutamate receptors. In a series of recent investigations on left-right asymmetry of hippocampal CA3-CA1 synapses, glutamate receptor subunits have been found to have distinctive expression patterns that depend on the postsynaptic density (PSD area. Particularly notable are the GluR1 AMPA receptor subunit and NR2B NMDA receptor subunit, where receptor density has either a supra-linear (GluR1 AMPA or inverse (NR2B NMDAR relationship to the PSD area. We review current understanding of structural and physiological synaptic plasticity and propose a scheme to classify receptor subtypes by their expression pattern with respect to PSD area.

  4. Stoichiometry of δ subunit containing GABA(A) receptors.

    Science.gov (United States)

    Patel, B; Mortensen, M; Smart, T G

    2014-02-01

    Although the stoichiometry of the major synaptic αβγ subunit-containing GABAA receptors has consensus support for 2α:2β:1γ, a clear view of the stoichiometry of extrasynaptic receptors containing δ subunits has remained elusive. Here we examine the subunit stoichiometry of recombinant α4β3δ receptors using a reporter mutation and a functional electrophysiological approach. Using site-directed mutagenesis, we inserted a highly characterized 9' serine to leucine mutation into the second transmembrane (M2) region of α4, β3 and δ subunits that increases receptor sensitivity to GABA. Whole-cell, GABA-activated currents were recorded from HEK-293 cells co-expressing different combinations of wild-type (WT) and/or mutant α4(L297S), β3(L284S) and δ(L288S) subunits. Recombinant receptors containing one or more mutant subunits showed increased GABA sensitivity relative to WT receptors by approximately fourfold, independent of the subunit class (α, β or δ) carrying the mutation. GABA dose-response curves of cells co-expressing WT subunits with their respective L9'S mutants exhibited multiple components, with the number of discernible components enabling a subunit stoichiometry of 2α, 2β and 1δ to be deduced for α4β3δ receptors. Varying the cDNA transfection ratio by 10-fold had no significant effect on the number of incorporated δ subunits. Subunit stoichiometry is an important determinant of GABAA receptor function and pharmacology, and δ subunit-containing receptors are important mediators of tonic inhibition in several brain regions. Here we demonstrate a preferred subunit stoichiometry for α4β3δ receptors of 2α, 2β and 1δ. © 2013 The British Pharmacological Society.

  5. Correlation between kinetics and RNA splicing of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in neocortical neurons.

    OpenAIRE

    Lambolez, B; Ropert, N; Perrais, D.; Rossier, J.; Hestrin, S.

    1996-01-01

    In the cortex fast excitatory synaptic currents onto excitatory pyramidal neurons and inhibitory nonpyramidal neurons are mediated by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors exhibiting cell-type-specific differences in their kinetic properties. AMPA receptors consist of four subunits (GluR1-4), each existing as two splice variants, flip and flop, which critically affect the desensitization properties of receptors expressed in heterologous systems. Using singl...

  6. Cyclothiazide: a subunit-specific inhibitor of GABAC receptors.

    Science.gov (United States)

    Xie, An; Song, Xiangqian; Ripps, Harris; Qian, Haohua

    2008-06-01

    We tested the effects of cyclothiazide (CTZ), an agent used to block desensitization of AMPA-type glutamate receptors, on heterologously expressed GABA(C) receptors formed by homomeric rho subunits. CTZ inhibition of GABA(C) receptors was subunit specific; it produced a dose-dependent reduction of the GABA-elicited current on homomeric rho2 receptors with an IC(50) of about 12 microm, but had no significant effect on homomeric rho1 receptors. This differential sensitivity was attributable to a single amino acid located on the second transmembrane domain of the rho subunits. Mutating the residue at this position from serine to proline on the rho2 subunit eliminated CTZ sensitivity, whereas switching proline to serine on the rho1 subunit made the receptor CTZ sensitive. The inhibitory properties of CTZ were consistent with its action as a channel blocker on the receptors formed by rho2 subunits. The effect showed a small degree of voltage dependence, and was due mainly to a non-competitive mechanism that reduced the maximum response elicited by GABA. In addition, the prominent membrane current rebound when co-application of GABA and CTZ was terminated suggests that the binding site for CTZ on the GABA(C) receptor is distinct from that for GABA, and that CTZ acts as a non-competitive antagonist on the GABA(C) receptor. CTZ inhibited the open channel of the GABA(C) receptor with a time constant of about 0.4 s, but the kinetics were approximately 10-fold slower when GABA is absent. The ability of CTZ to interact with various types of neurotransmitter receptors indicates that the drug has multiple actions in the CNS.

  7. Diversity of glutamate receptors in neocortical neurons: implications for synaptic plasticity.

    Science.gov (United States)

    Audinat, E; Lambolez, B; Cauli, B; Ropert, N; Perrais, D; Hestrin, S; Rossier, J

    1996-01-01

    The biochemical and functional characteristics of the AMPA subtype of the glutamate receptors expressed by pyramidal and non-pyramidal neurons of the neocortex have been studied in acute slices by means of single-cell RT-PCR and fast applications of glutamate on outside-out patches. Our results suggest that the predominant expression of the flop splice variants of the GluR1-4 AMPA subunits contributes to the faster desensitization of these receptors in non-pyramidal neurons compared to pyramidal cells where flip variants of GluR1-4 are dominant. Alternative splicing of AMPA receptors may therefore play an important role in regulating synaptic function in a cell-type specific manner.

  8. Molecular Characterization of Native and Recom­binant Ionotrophic Glutamate Receptors Expressed in Neurons and Heterologous Systems

    DEFF Research Database (Denmark)

    Drasbek, Kim Ryun

    2005-01-01

    (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl) propionic acid receptors (AMPARs) are assembled from four subunits, GluR1-GluR4, of which GluR2 greatly influences receptor properties and has been coupled to activity dependent neurodegeneration. The GluR2 subunit plays a major role in receptor...... of GluR2 negative neurons, the newly described method of acute knock down of specific mRNAs, RNA interference (RNAi), was established in the laboratory and shown to work in cultured primary neurons. The effectiveness of seven plasmids expressing short hairpin RNAs (shRNAs), targeting the GluR2 m...

  9. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J. (UWA); (St. Vincent); (Queensland)

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  10. Alpha2 subunit specificity of cyclothiazide inhibition on glycine receptors.

    Science.gov (United States)

    Zhang, Xiao-Bing; Sun, Guang-Chun; Liu, Lu-Ying; Yu, Fang; Xu, Tian-Le

    2008-04-01

    In the mammalian cortex, alpha2 subunit-containing glycine receptors (GlyRs) mediate tonic inhibition, but the precise functional role of this type of GlyRs is difficult to establish because of the lack of subtype-selective antagonist. In this study, we found that cyclothiazide (CTZ), an epileptogenic agent, potently inhibited GlyR-mediated current (I(Gly)) in cultured rat hippocampal neurons. The inhibition was glycine concentration-dependent, suggesting a competitive mechanism. Note that GlyRs containing the alpha2 but not alpha1 or alpha3 subunits, when being heterologously expressed in human embryonic kidney 293T cells, were inhibited by CTZ, indicating subunit specificity of CTZ action. In addition, the degree of CTZ inhibition on I(Gly) in rat spinal neurons declined with time in culture, in parallel with a decline of alpha2 subunit expression, which is known to occur during spinal cord development. Furthermore, site-directed mutagenesis indicates that a single-amino acid threonine at position 59 near the N terminus of the alpha2 subunit confers the specificity of CTZ action. Thus, CTZ is a potent and selective inhibitor of alpha2-GlyRs, and threonine at position 59 plays a critical role in the susceptibility of GlyR to CTZ inhibition.

  11. NMDA receptor structures reveal subunit arrangement and pore architecture

    Science.gov (United States)

    Lee, Chia-Hsueh; Lü, Wei; Michel, Jennifer Carlisle; Goehring, April; Du, Juan; Song, Xianqiang; Gouaux, Eric

    2014-01-01

    Summary N-methyl-d-aspartate (NMDA) receptors are Hebbian-like coincidence detectors, requiring binding of glycine and glutamate in combination with the relief of voltage-dependent magnesium block to open an ion conductive pore across the membrane bilayer. Despite the importance of the NMDA receptor in the development and function of the brain, a molecular structure of an intact receptor has remained elusive. Here we present x-ray crystal structures of the GluN1/GluN2B NMDA receptor with the allosteric inhibitor, Ro25-6981, partial agonists and the ion channel blocker, MK-801. Receptor subunits are arranged in a 1-2-1-2 fashion, demonstrating extensive interactions between the amino terminal and ligand binding domains. The transmembrane domains harbor a closed-blocked ion channel, a pyramidal central vestibule lined by residues implicated in binding ion channel blockers and magnesium, and a ~2-fold symmetric arrangement of ion channel pore loops. These structures provide new insights into the architecture, allosteric coupling and ion channel function of NMDA receptors. PMID:25008524

  12. NMDA receptor structures reveal subunit arrangement and pore architecture.

    Science.gov (United States)

    Lee, Chia-Hsueh; Lü, Wei; Michel, Jennifer Carlisle; Goehring, April; Du, Juan; Song, Xianqiang; Gouaux, Eric

    2014-07-10

    N-methyl-d-aspartate (NMDA) receptors are Hebbian-like coincidence detectors, requiring binding of glycine and glutamate in combination with the relief of voltage-dependent magnesium block to open an ion conductive pore across the membrane bilayer. Despite the importance of the NMDA receptor in the development and function of the brain, a molecular structure of an intact receptor has remained elusive. Here we present X-ray crystal structures of the Xenopus laevis GluN1-GluN2B NMDA receptor with the allosteric inhibitor, Ro25-6981, partial agonists and the ion channel blocker, MK-801. Receptor subunits are arranged in a 1-2-1-2 fashion, demonstrating extensive interactions between the amino-terminal and ligand-binding domains. The transmembrane domains harbour a closed-blocked ion channel, a pyramidal central vestibule lined by residues implicated in binding ion channel blockers and magnesium, and a ∼twofold symmetric arrangement of ion channel pore loops. These structures provide new insights into the architecture, allosteric coupling and ion channel function of NMDA receptors.

  13. Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration

    Directory of Open Access Journals (Sweden)

    Ariel Avila

    2013-08-01

    Full Text Available Glycine receptors (GlyRs are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in cortical interneurons by endogenous glycine activates voltage-gated calcium channels and promotes calcium influx, which further modulates actomyosin contractility to fine-tune nuclear translocation during migration. Taken together, our data highlight the molecular events triggered by GlyR α2 activation that control cortical tangential migration during embryogenesis.

  14. Screening for AMPA receptor auxiliary subunit specific modulators.

    Directory of Open Access Journals (Sweden)

    Caleigh M Azumaya

    Full Text Available AMPA receptors (AMPAR are ligand gated ion channels critical for synaptic transmission and plasticity. Their dysfunction is implicated in a variety of psychiatric and neurological diseases ranging from major depressive disorder to amyotrophic lateral sclerosis. Attempting to potentiate or depress AMPAR activity is an inherently difficult balancing act between effective treatments and debilitating side effects. A newly explored strategy to target subsets of AMPARs in the central nervous system is to identify compounds that affect specific AMPAR-auxiliary subunit complexes. This exploits diverse spatio-temporal expression patterns of known AMPAR auxiliary subunits, providing means for designing brain region-selective compounds. Here we report a high-throughput screening-based pipeline that can identify compounds that are selective for GluA2-CNIH3 and GluA2-stargazin complexes. These compounds will help us build upon the growing library of AMPAR-auxiliary subunit specific inhibitors, which have thus far all been targeted to TARP γ-8. We used a cell-based assay combined with a voltage-sensitive dye (VSD to identify changes in glutamate-gated cation flow across the membranes of HEK cells co-expressing GluA2 and an auxiliary subunit. We then used a calcium flux assay to further validate hits picked from the VSD assay. VU0612951 and VU0627849 are candidate compounds from the initial screen that were identified as negative and positive allosteric modulators (NAM and PAM, respectively. They both have lower IC50/EC50s on complexes containing stargazin and CNIH3 than GSG1L or the AMPAR alone. We have also identified a candidate compound, VU0539491, that has NAM activity in GluA2(R-CNIH3 and GluA2(Q complexes and PAM activity in GluA2(Q-GSG1L complexes.

  15. Alcohol- and alcohol antagonist-sensitive human GABAA receptors: tracking δ subunit incorporation into functional receptors.

    Science.gov (United States)

    Meera, Pratap; Olsen, Richard W; Otis, Thomas S; Wallner, Martin

    2010-11-01

    GABA(A) receptors (GABA(A)Rs) have long been a focus as targets for alcohol actions. Recent work suggests that tonic GABAergic inhibition mediated by extrasynaptic δ subunit-containing GABA(A)Rs is uniquely sensitive to ethanol and enhanced at concentrations relevant for human alcohol consumption. Ethanol enhancement of recombinant α4β3δ receptors is blocked by the behavioral alcohol antagonist 8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylic acid ethyl ester (Ro15-4513), suggesting that EtOH/Ro15-4513-sensitive receptors mediate important behavioral alcohol actions. Here we confirm alcohol/alcohol antagonist sensitivity of α4β3δ receptors using human clones expressed in a human cell line and test the hypothesis that discrepant findings concerning the high alcohol sensitivity of these receptors are due to difficulties incorporating δ subunits into functional receptors. To track δ subunit incorporation, we used a functional tag, a single amino acid change (H68A) in a benzodiazepine binding residue in which a histidine in the δ subunit is replaced by an alanine residue found at the homologous position in γ subunits. We demonstrate that the δH68A substitution confers diazepam sensitivity to otherwise diazepam-insensitive α4β3δ receptors. The extent of enhancement of α4β3δH68A receptors by 1 μM diazepam, 30 mM EtOH, and 1 μM β-carboline-3-carboxy ethyl ester (but not 1 μM Zn(2+) block) is correlated in individual recordings, suggesting that δ subunit incorporation into recombinant GABA(A)Rs varies from cell to cell and that this variation accounts for the variable pharmacological profile. These data are consistent with the notion that δ subunit-incorporation is often incomplete in recombinant systems yet is necessary for high ethanol sensitivity, one of the features of native δ subunit-containing GABA(A)Rs.

  16. Neuroprotective effect of β-asarone against Alzheimer’s disease: regulation of synaptic plasticity by increased expression of SYP and GluR1

    Directory of Open Access Journals (Sweden)

    Liu SJ

    2016-04-01

    Full Text Available Si-jun Liu,1,* Cong Yang,2,* Yue Zhang,2,* Ru-yu Su,2 Jun-li Chen,2 Meng-meng Jiao,2 Hui-fang Chen,2 Na Zheng,2 Si Luo,2 Yun-bo Chen,2 Shi-jian Quan,1 Qi Wang21School of Chinese Materia Medica, 2Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China*These authors contributed equally to this workAim: β-asarone, an active component of Acori graminei rhizome, has been reported to have neuroprotective effects in Alzheimer’s disease. As the underlying mechanism is not known, we investigated the neuroprotective effects of β-asarone in an APP/PS1 double transgenic mouse model and in NG108 cells.Materials and methods: APPswe/PS1dE9 double transgenic male mice were randomly assigned to a model group, β-asarone treatment groups (21.2, 42.4, or 84.8 mg/kg/d, or donepezil treatment group (2 mg/kg/d. Donepezil treatment was a positive control, and background- and age-matched wild-type B6 mice were an external control group. β-asarone (95.6% purity was dissolved in 0.8% Tween 80 and administered by gavage once daily for 2.5 months. Control and model animals received an equal volume of vehicle. After 2.5 months of treatment, behavior of all animals was evaluated in a Morris water maze. Expression of synaptophysin (SYP and glutamatergic receptor 1 (G1uR1 in the hippocampus and cortex of the double transgenic mice was assayed by Western blotting. The antagonistic effects of β-asarone against amyloid-β peptide (Aβ were investigated in vitro in the NG108-15 cell line. After 24 hours of incubation, cells were treated with 10 µm Aβ with or without β-asarone at different concentrations (6.25, 12.5, or 25 µM for an additional 36 hours. The cytotoxicity of β-asarone was evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay of cell viability, and cell morphology was evaluated by bright-field microscopy after 24 hours of treatment. The expression of SYP and GluR1 in

  17. Distinct Subunit Domains Govern Synaptic Stability and Specificity of the Kainate Receptor

    Directory of Open Access Journals (Sweden)

    Christoph Straub

    2016-07-01

    Full Text Available Synaptic communication between neurons requires the precise localization of neurotransmitter receptors to the correct synapse type. Kainate-type glutamate receptors restrict synaptic localization that is determined by the afferent presynaptic connection. The mechanisms that govern this input-specific synaptic localization remain unclear. Here, we examine how subunit composition and specific subunit domains contribute to synaptic localization of kainate receptors. The cytoplasmic domain of the GluK2 low-affinity subunit stabilizes kainate receptors at synapses. In contrast, the extracellular domain of the GluK4/5 high-affinity subunit synergistically controls the synaptic specificity of kainate receptors through interaction with C1q-like proteins. Thus, the input-specific synaptic localization of the native kainate receptor complex involves two mechanisms that underlie specificity and stabilization of the receptor at synapses.

  18. Lack of NMDA receptor subunit exchange alters Purkinje cell dendritic morphology in cerebellar slice cultures

    NARCIS (Netherlands)

    Metzger, F; Pieri, [No Value; Eisel, ULM; Pieri, Isabelle

    2005-01-01

    Early postnatal developmental changes in N-methyl-D-aspartate (NMDA) receptor (NR) subunits regulate cerebellar granule cell maturation and potentially Purkinje cell development. We therefore investigated Purkinje cell morphology in slice cultures from mice with genetic subunit exchange from NR2C to

  19. The reinstatement of amphetamine-induced place preference is long-lasting and related to decreased expression of AMPA receptors in the nucleus accumbens.

    Science.gov (United States)

    Cruz, F C; Marin, M T; Planeta, C S

    2008-01-24

    A great deal of effort has been devoted to elucidating the psychopharmacology underlying addiction and relapse. Long-term neuroadaptations in glutamate transmission seem to be of great relevance for relapse to stimulant abuse. In this study, we investigated amphetamine-induced conditioned place preference during adolescence and the reinstatement of the conditioned behavior following a priming injection of the drug 1 day (adolescence), 30 days (early adulthood) and 60 days (adulthood) after the extinction test. The nucleus accumbens was dissected immediately after the reinstatement test to examine alterations in GluR1 and NR1 subunits of glutamatergic receptors. Our results showed that a priming injection of amphetamine was able to reinstate the CPP 1 and 30 days after extinction. However, it failed to reinstate the conditioned response after 60 days. GluR1 levels were decreased on days 1 and 30 but not on day 60 while NR1 levels were unaltered in the reinstatement test. Using a relapse model we found that reinstatement of amphetamine-induced conditioning place preference during adolescence is long lasting and persists through early adulthood. Decreased levels of GluR1 in the nucleus accumbens might be related to the reinstatement of amphetamine-induced conditioning place preference.

  20. Topographic Studies of Torpedo Acetylcholine Receptor Subunits as a Transmembrane Complex

    Science.gov (United States)

    Strader, Catherine D.; Raftery, Michael A.

    1980-10-01

    The exposure of the four subunits of the acetylcholine receptor from Torpedo californica on both the extracellular and cytoplasmic faces of the postsynaptic membranes of the electroplaque cells has been investigated. Sealed membrane vesicles containing no protein components other than the receptor were isolated and were shown to have 95% of their synaptic surfaces facing the medium. The susceptibility of the four receptor subunits in these preparations to hydrolysis by trypsin both from the external and from the internal medium was used to investigate the exposure of the subunits on the synaptic and cytoplasmic surfaces of the membrane. It was shown by sodium dodecyl sulfate gel electrophoresis of the tryptic products that all four subunits are exposed on the extracellular surface to a similar degree. All four subunits are also exposed on the internal surface of the membrane, but the apparent degree of exposure varies with the subunit size, the larger subunits being more exposed. The results are discussed in terms of a possible topographic model of the receptor as a transmembrane protein complex.

  1. GABAA receptor subunit deregulation in the hippocampus of human foetuses with Down syndrome.

    Science.gov (United States)

    Milenkovic, Ivan; Stojanovic, Tamara; Aronica, Eleonora; Fülöp, Livia; Bozsó, Zsolt; Máté, Zoltán; Yanagawa, Yuchio; Adle-Biassette, Homa; Lubec, Gert; Szabó, Gábor; Harkany, Tibor; Kovács, Gábor G; Keimpema, Erik

    2017-11-22

    The function, regulation and cellular distribution of GABAA receptor subunits have been extensively documented in the adult rodent brain and are linked to numerous neurological disorders. However, there is a surprising lack of knowledge on the cellular (sub-) distribution of GABAA receptor subunits and of their expressional regulation in developing healthy and diseased foetal human brains. To propose a role for GABAA receptor subunits in neurodevelopmental disorders, we studied the developing hippocampus of normal and Down syndrome foetuses. Among the α1-3 and γ2 subunits probed, we find significantly altered expression profiles of the α1, α3 and γ2 subunits in developing Down syndrome hippocampi, with the α3 subunit being most affected. α3 subunits were selectively down-regulated in all hippocampal subfields and developmental periods tested in Down syndrome foetuses, presenting a developmental mismatch by their adult-like distribution in early foetal development. We hypothesized that increased levels of the amyloid precursor protein (APP), and particularly its neurotoxic β-amyloid (1-42) fragment, could disrupt α3 gene expression, likely by facilitating premature neuronal differentiation. Indeed, we find increased APP content in the hippocampi of the Down foetuses. In a corresponding cellular model, soluble β-amyloid (1-42) administered to cultured SH-SY5Y neuroblastoma cells, augmented by retinoic acid-induced differentiation towards a neuronal phenotype, displayed a reduction in α3 subunit levels. In sum, this study charts a comprehensive regional and subcellular map of key GABAA receptor subunits in identified neuronal populations in the hippocampus of healthy and Down syndrome foetuses and associates increased β-amyloid load with discordant down-regulation of α3 subunits.

  2. Autonomic function in mice lacking alpha5 neuronal nicotinic acetylcholine receptor subunit.

    Science.gov (United States)

    Wang, Ningshan; Orr-Urtreger, Avi; Chapman, Joab; Rabinowitz, Ruth; Nachman, Rachel; Korczyn, Amos D

    2002-07-15

    Neuronal acetylcholine nicotinic receptors (nAChR) are composed of 12 subunits (alpha2-10, beta2-4), of which alpha3, alpha5, alpha7, beta2 and beta4 subunits are known to exist in the autonomic nervous system (ANS). alpha5 subunits possess unique biophysical and pharmacological properties. The present study was undertaken to examine the functional role and pharmacological properties of the nAChR alpha5 subunits in the ANS using mice lacking alpha5 nAChR subunits (alpha5-/-). These mice grew to normal size showing no obvious physical or neurological deficit. They also showed normality in thermoregulation, pupil size and resting heart rate under physiological conditions. The heart rate and rectal temperature did not differ between alpha5-/- and wild-type mice during exposure to cold stress. An impairment of cardiac parasympathetic ganglionic transmission was observed during high frequency vagal stimulation, which caused cardiac arrest in all wild-type animals while alpha5-/- mice were more resistant. Deficiency of alpha5 subunits strikingly increased the sensitivity to a low concentration of hexamethonium, leading to a nearly complete blockade of bradycardia in response to vagal stimulation. Such a concentration of hexamethonium only slightly depressed the effects of vagal stimulation in control mice. Deficiency of alpha5 subunits significantly increased ileal contractile responses to cytisine and epibatidine. These results suggest that alpha5 subunits may affect the affinity and sensitivity of agonists and antagonists in the native receptors. Previous studies revealed that alpha5 subunits form functional receptors only in combination with other alpha and beta subunits. Thus, the data presented here imply that alpha5 subunits modulate the activity of nAChR in autonomic ganglia in vivo.

  3. Subunit Composition of Neurotransmitter Receptors in the Immature and in the Epileptic Brain

    Directory of Open Access Journals (Sweden)

    Iván Sánchez Fernández

    2014-01-01

    Full Text Available Neuronal activity is critical for synaptogenesis and the development of neuronal networks. In the immature brain excitation predominates over inhibition facilitating the development of normal brain circuits, but also rendering it more susceptible to seizures. In this paper, we review the evolution of the subunit composition of neurotransmitter receptors during development, how it promotes excitation in the immature brain, and how this subunit composition of neurotransmission receptors may be also present in the epileptic brain. During normal brain development, excitatory glutamate receptors peak in function and gamma-aminobutiric acid (GABA receptors are mainly excitatory rather than inhibitory. A growing body of evidence from animal models of epilepsy and status epilepticus has demonstrated that the brain exposed to repeated seizures presents a subunit composition of neurotransmitter receptors that mirrors that of the immature brain and promotes further seizures and epileptogenesis. Studies performed in samples from the epileptic human brain have also found a subunit composition pattern of neurotransmitter receptors similar to the one found in the immature brain. These findings provide a solid rationale for tailoring antiepileptic treatments to the specific subunit composition of neurotransmitter receptors and they provide potential targets for the development of antiepileptogenic treatments.

  4. Subunit compensation and plasticity of synaptic GABAA receptors induced by ethanol in α4 subunit knockout mice

    Directory of Open Access Journals (Sweden)

    Asha eSuryanarayanan

    2011-09-01

    Full Text Available There is considerable evidence that ethanol (EtOH potentiates γ-aminobutyric acid type A receptor (GABAAR action, but only GABAARs containing δ subunits appear sensitive to low mM EtOH. The α4 and δ subunits co-assemble into GABAARs which are relatively highly expressed at extrasynaptic locations in the dentate gyrus where they mediate tonic inhibition. We previously demonstrated reversible- and time-dependent changes in GABAAR function and subunit composition in rats after single-dose EtOH intoxication. We concluded that early tolerance to EtOH occurs by over-activation and subsequent internalization of EtOH-sensitive extrasynaptic α4βδ-GABAARs. Based on this hypothesis, any highly EtOH-sensitive GABAARs should be subject to internalization following exposure to suitably high EtOH doses. To test this, we studied the GABAARs in mice with a global deletion of the α4 subunit (KO. The dentate granule cells (DGCs of these mice exhibited greatly reduced tonic currents and greatly reduced potentiation by acutely applied EtOH, whereas synaptic currents showed heightened sensitivity to low EtOH concentrations. The hippocampus of naive KO mice showed reduced δ subunit protein levels, but increased α2, and γ2 levels compared to wild-type (WT controls, suggesting at least partial compensation by these subunits in synaptic, highly EtOH-sensitive GABAARs of KO mice. In WT mice, cross-linking and Western blot analysis at 1 h after an EtOH challenge (3.5 g/kg, i.p. revealed increased intracellular fraction of the α1, α4 and δ, but not α2, α5 or γ2 subunits. By contrast, we observed significant internalization of α1, α2, δ, and γ2 subunits after a similar EtOH challenge in KO mice. Synaptic currents from naïve KO mice were more sensitive to potentiation by zolpidem (0.3 μM, requiring α1/α2, inactive at α4/5 GABAARs than those from naïve WT mice. At 1 h after EtOH, synaptic currents of WT mice were unchanged, whereas those of KO mice

  5. Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A

    DEFF Research Database (Denmark)

    Eriksson, Maria; Nilsson, Anna; Froelich-Fabre, Susanne

    2002-01-01

    Native N-methyl-D-aspartate (NMDA) receptors are heteromeric assemblies of four or five subunits. The NMDA receptor subunits, NR1, NR2A, NR2B, NR2C, and NR2D have been cloned in several species, including man. The NR3A subunit, which in rodents is predominantly expressed during early development......, seems to function by reducing the NMDA receptor response. The human homologue to the rat NR3A, however, had not been cloned. In order to study the functions of the human NR3A (hNR3A), we have cloned and sequenced the hNR3A. It was found to share 88% of the DNA sequence with the rat gene, corresponding...

  6. Flexible subunit stoichiometry of functional human P2X2/3 heteromeric receptors.

    Science.gov (United States)

    Kowalski, Maria; Hausmann, Ralf; Schmid, Julia; Dopychai, Anke; Stephan, Gabriele; Tang, Yong; Schmalzing, Günther; Illes, Peter; Rubini, Patrizia

    2015-12-01

    The aim of the present work was to clarify whether heterotrimeric P2X2/3 receptors have a fixed subunit stoichiometry consisting of one P2X2 and two P2X3 subunits as previously suggested, or a flexible stoichiometry containing also the inverse subunit composition. For this purpose we transfected HEK293 cells with P2X2 and P2X3 encoding cDNA at the ratios of 1:2 and 4:1, and analysed the biophysical and pharmacological properties of the generated receptors by means of the whole-cell patch-clamp technique. The concentration-response curves for the selective agonist α,β-meATP did not differ from each other under the two transfection ratios. However, co-expression of an inactive P2X2 mutant and the wild type P2X3 subunit and vice versa resulted in characteristic distortions of the α,β-meATP concentration-response relationships, depending on which subunit was expressed in excess, suggesting that HEK293 cells express mixtures of (P2X2)1/(P2X3)2 and (P2X2)2/(P2X3)1 receptors. Whereas the allosteric modulators H+ and Zn2+ failed to discriminate between the two possible heterotrimeric receptor variants, the α,β-meATP-induced responses were blocked more potently by the competitive antagonist A317491, when the P2X2 subunit was expressed in deficit of the P2X3 subunit. Furthermore, blue-native PAGE analysis of P2X2 and P2X3 subunits co-expressed in Xenopus laevis oocytes and HEK293 cells revealed that plasma membrane-bound P2X2/3 receptors appeared in two clearly distinct heterotrimeric complexes: a (P2X2-GFP)2/(P2X3)1 complex and a (P2X2-GFP)1/(P2X3)2 complex. These data strongly indicate that the stoichiometry of the heteromeric P2X2/3 receptor is not fixed, but determined in a permutational manner by the relative availability of P2X2 and P2X3 subunits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Ligand-guided homology modelling of the GABAB2 subunit of the GABAB receptor.

    Directory of Open Access Journals (Sweden)

    Thibaud Freyd

    Full Text Available γ-aminobutyric acid (GABA is the main inhibitory neurotransmitter in the central nervous system, and disturbances in the GABAergic system have been implicated in numerous neurological and neuropsychiatric diseases. The GABAB receptor is a heterodimeric class C G protein-coupled receptor (GPCR consisting of GABAB1a/b and GABAB2 subunits. Two GABAB receptor ligand binding sites have been described, namely the orthosteric GABA binding site located in the extracellular GABAB1 Venus fly trap domain and the allosteric binding site found in the GABAB2 transmembrane domain. To date, the only experimentally solved three-dimensional structures of the GABAB receptor are of the Venus fly trap domain. GABAB receptor allosteric modulators, however, show great therapeutic potential, and elucidating the structure of the GABAB2 transmembrane domain may lead to development of novel drugs and increased understanding of the allosteric mechanism of action. Despite the lack of x-ray crystal structures of the GABAB2 transmembrane domain, multiple crystal structures belonging to other classes of GPCRs than class A have been released within the last years. More closely related template structures are now available for homology modelling of the GABAB receptor. Here, multiple homology models of the GABAB2 subunit of the GABAB receptor have been constructed using templates from class A, B and C GPCRs, and docking of five clusters of positive allosteric modulators and decoys has been undertaken to select models that enrich the active compounds. Using this ligand-guided approach, eight GABAB2 homology models have been chosen as possible structural representatives of the transmembrane domain of the GABAB2 subunit. To the best of our knowledge, the present study is the first to describe homology modelling of the transmembrane domain of the GABAB2 subunit and the docking of positive allosteric modulators in the receptor.

  8. d Subunit-Containing GABA[subscript A] Receptor Prevents Overgeneralization of Fear in Adult Mice

    Science.gov (United States)

    Zhang, Wen-Hua; Zhou, Jin; Pan, Han-Qing; Wang, Xiao-Yang; Liu, Wei-Zhu; Zhang, Jun-Yu; Yin, Xiao-Ping; Pan, Bing-Xing

    2017-01-01

    The role of d subunit-containing GABA[subscript A] receptor (GABA[subscript A](d)R) in fear generalization is uncertain. Here, by using mice with or without genetic deletion of GABA[subscript A](d)R and using protocols in which the conditioned tone stimuli were cross presented with different nonconditioned stimuli, we observed that when the two…

  9. Mechanism of partial agonist action at the NR1 subunit of NMDA receptors.

    Science.gov (United States)

    Inanobe, Atsushi; Furukawa, Hiroyasu; Gouaux, Eric

    2005-07-07

    Partial agonists produce submaximal activation of ligand-gated ion channels. To address the question of partial agonist action at the NR1 subunit of the NMDA receptor, we performed crystallographic and electrophysiological studies with 1-aminocyclopropane-1-carboxylic acid (ACPC), 1-aminocyclobutane-1-carboxylic acid (ACBC), and 1-aminocyclopentane-1-carboxylic acid (cycloleucine), three compounds with incrementally larger carbocyclic rings. Whereas ACPC and ACBC partially activate the NMDA receptor by 80% and 42%, respectively, their cocrystal structures of the NR1 ligand binding core show the same degree of domain closure as found in the complex with glycine, a full agonist, illustrating that the NR1 subunit provides a new paradigm for partial agonist action that is distinct from that of the evolutionarily related GluR2, AMPA-sensitive receptor. Cycloleucine behaves as an antagonist and stabilizes an open-cleft conformation. The NR1-cycloleucine complex forms a dimer that is similar to the GluR2 dimer, thereby suggesting a conserved mode of subunit-subunit interaction in AMPA and NMDA receptors.

  10. Binding of src-like kinases to the beta-subunit of the interleukin-3 receptor.

    Science.gov (United States)

    Burton, E A; Hunter, S; Wu, S C; Anderson, S M

    1997-06-27

    We have previously shown that stimulation of 32D cl3 cells with interleukin (IL)-3 results in the activation of three src-like tyrosine kinases, fyn, hck, and lyn. The beta subunit of the IL-3 receptor co-immunoprecipitated with hck in lysates of both unstimulated and IL-3-stimulated cells; however, the beta subunit did not precipitate with either fyn or lyn. The association of these three kinases with the beta subunit of the IL-3 receptor was further investigated using bacterial fusion proteins encoding the unique, SH3, and SH2 domains of these three kinases. Fusion proteins of both hck and fyn bound to a 150-kDa tyrosine-phosphorylated protein present in lysates of IL-3-stimulated cells. This protein was identified as the beta subunit of the IL-3 receptor by immunoblotting with an anti-beta antibody. Glutathione S-transferase (GST) fusion proteins containing the SH2 domain of hck bound to the beta subunit although the amount of beta subunit that bound to the SH2 domain alone was only 30% of that which bound to the fusion protein containing the unique, SH3, and SH2 domains. This indicates that the SH2 domain is one of the motifs involved in binding hck to the beta subunit. A GST fusion protein encoding a 236-amino acid region of the cytoplasmic tail of the beta subunit, which contained four tyrosine residues, bound to hck and fyn. Binding to both proteins was dramatically increased when the GST-beta fusion protein was tyrosine-phosphorylated. Far Western blot analysis was used to demonstrate the binding of the unique, SH3, and SH2 domains of hck to this 236-amino acid region of the beta subunit; tyrosine phosphorylation of this protein increased the binding of both the unique region and the SH2 domain probes. These data indicate that binding of hck to the beta subunit is mediated by both phosphotyrosine-dependent and -independent mechanisms.

  11. Altered GABAA Receptor Subunit Expression and Pharmacology in Human Angelman Syndrome Cortex

    Science.gov (United States)

    Roden, William H.; Peugh, Lindsey D.; Jansen, Laura A.

    2011-01-01

    The neurodevelopmental disorder Angelman syndrome is most frequently caused by deletion of the maternally-derived chromosome 15q11-q13 region, which includes not only the causative UBE3A gene, but also the β3-α5-γ3 GABAA receptor subunit gene cluster. GABAergic dysfunction has been hypothesized to contribute to the occurrence of epilepsy and cognitive and behavioral impairments in this condition. In the present study, analysis of GABAA receptor subunit expression and pharmacology was performed in cerebral cortex from four subjects with Angelman syndrome and compared to that from control tissue. The membrane fraction of frozen postmortem neocortical tissue was isolated and subjected to quantitative Western blot analysis. The ratios of β3/β2 and α5/α1 subunit protein expression in Angelman syndrome cortex were significantly decreased when compared with controls. An additional membrane fraction was injected into Xenopus oocytes, resulting in incorporation of the brain membrane vesicles with their associated receptors into the oocyte cellular membrane. Two-electrode voltage clamp analysis of GABAA receptor currents was then performed. Studies of GABAA receptor pharmacology in Angelman syndrome cortex revealed increased current enhancement by the α1-selective benzodiazepine site agonist zolpidem and by the barbiturate phenobarbital, while sensitivity to current inhibition by zinc was decreased. GABAA receptor affinity and modulation by neurosteroids were unchanged. This shift in GABAA receptor subunit expression and pharmacology in Angelman syndrome is consistent with impaired extrasynaptic but intact to augmented synaptic cortical GABAergic inhibition, which could contribute to the epileptic, behavioral, and cognitive phenotypes of the disorder. PMID:20692323

  12. Analysis of NR3A receptor subunits in human native NMDA receptors

    DEFF Research Database (Denmark)

    Nilsson, Anna; Eriksson, Maria; Muly, E Chris

    2007-01-01

    NR3A, representing the third class of NMDA receptor subunits, was first studied in rats, demonstrating ubiquitous expression in the developing central nervous system (CNS), but in the adult mainly expressed in spinal cord and some forebrain nuclei. Subsequent studies showed that rodent and non-human...... primate NR3A expression differs. We have studied the distribution of NR3A in the human CNS and show a widespread distribution of NR3A protein in adult human brain. NR3A mRNA and protein were found in all regions of the cerebral cortex, and also in the subcortical forebrain, midbrain and hindbrain. Only...... very low levels of NR3A mRNA and protein could be detected in homogenized adult human spinal cord, and in situ hybridization showed that expression was limited to ventral motoneurons. We found that NR3A is associated with NR1, NR2A and NR2B in adult human CNS, suggesting the existence of native NR1-NR2...

  13. Change in desensitization of cat muscle acetylcholine receptor caused by coexpression of Torpedo acetylcholine receptor subunits in Xenopus oocytes.

    OpenAIRE

    Sumikawa, K; Miledi, R

    1989-01-01

    Cat muscle acetylcholine receptors (AcChoR) expressed in Xenopus oocytes desensitized more slowly than Torpedo electric organ AcChoRs, also expressed in oocytes. To examine the bases for the different degrees of desensitization, cat-Torpedo AcChoR hybrids were formed by injecting oocytes with cat denervated muscle mRNA mixed with a large excess of cloned Torpedo AcChoR subunit mRNAs. Hybrid AcChoRs formed by coinjection of cat muscle mRNA with the Torpedo beta or delta subunit mRNAs desensiti...

  14. Functional cartography of the ectodomain of the type I interferon receptor subunit ifnar1.

    Science.gov (United States)

    Lamken, Peter; Gavutis, Martynas; Peters, Imke; Van der Heyden, José; Uzé, Gilles; Piehler, Jacob

    2005-07-15

    Ligand-induced cross-linking of the type I interferon (IFN) receptor subunits ifnar1 and ifnar2 induces a pleiotrophic cellular response. Several studies have suggested differential signal activation by flexible recruitment of the accessory receptor subunit ifnar1. We have characterized the roles of the four Ig-like sub-domains (SDs) of the extracellular domain of ifnar1 (ifnar1-EC) for ligand recognition and receptor assembling. Various sub-fragments of ifnar1-EC were expressed in insect cells and purified to homogeneity. Solid phase binding assays with the ligands IFN(alpha)2 and IFN(beta) revealed that all three N-terminal SDs were required and sufficient for ligand binding, and that IFN(alpha)2 and IFN(beta) compete for this binding site. Cellular binding assays with different fragments, however, highlighted the key role of the membrane-proximal SD for the formation of an in situ IFN-receptor complex. Even substitution with the corresponding SD from homologous cytokine receptors did not restore high-affinity ligand binding. Receptor assembling analysis on supported lipid bilayers in vitro revealed that the membrane-proximal SD controls appropriate orientation of the receptor on the membrane, which is required for efficient association of ifnar1 into the ternary complex.

  15. AMPA receptor/TARP stoichiometry visualized by single-molecule subunit counting.

    Science.gov (United States)

    Hastie, Peter; Ulbrich, Maximilian H; Wang, Hui-Li; Arant, Ryan J; Lau, Anthony G; Zhang, Zhenjie; Isacoff, Ehud Y; Chen, Lu

    2013-03-26

    Members of the transmembrane AMPA receptor-regulatory protein (TARP) family modulate AMPA receptor (AMPA-R) trafficking and function. AMPA-Rs consist of four pore-forming subunits. Previous studies show that TARPs are an integral part of the AMPA-R complex, acting as accessory subunits for mature receptors in vivo. The TARP/AMPA-R stoichiometry was previously measured indirectly and found to be variable and dependent on TARP expression level, with at most four TARPs associated with each AMPA-R complex. Here, we use a single-molecule technique in live cells that selectively images proteins located in the plasma membrane to directly count the number of TARPs associated with each AMPA-R complex. Although individual GFP-tagged TARP subunits are observed as freely diffusing fluorescent spots on the surface of Xenopus laevis oocytes when expressed alone, coexpression with AMPA-R-mCherry immobilizes the stargazin-GFP spots at sites of AMPA-R-mCherry, consistent with complex formation. We determined the number of TARP molecules associated with each AMPA-R by counting bleaching steps for three different TARP family members: γ-2, γ-3, and γ-4. We confirm that the TARP/AMPA-R stoichiometry depends on TARP expression level and discover that the maximum number of TARPs per AMPA-R complex falls into two categories: up to four γ-2 or γ-3 subunits, but rarely above two for γ-4 subunit. This unexpected AMPA-R/TARP stoichiometry difference has important implications for the assembly and function of TARP/AMPA-R complexes.

  16. Cloning and structural analysis of partial acetylcholine receptor subunit genes from the parasitic nematode Teladorsagia circumcincta.

    Science.gov (United States)

    Walker, J; Hoekstra, R; Roos, M H; Wiley, L J; Weiss, A S; Sangster, N C; Tait, A

    2001-06-28

    Nematode nicotinic acetylcholine receptors (nAChRs) are the sites of action for the anthelmintic drug levamisole. Recent findings indicate that the molecular mechanism of levamisole resistance may involve changes in the number and/or functions of target nAChRs. Accordingly, we have used an RT-PCR approach to isolate and characterise partial cDNA clones (tca-1 and tca-2) encoding putative nAChR subunits from the economically important trichostrongyloid, Teladorsagia circumcincta. The predicted tca-1 gene product is a 248 aa fragment (TCA-1) which contains structural motifs typical of ligand-binding (alpha-) subunits, and which shows very high sequence similarities (98.8 and 97.2% amino acid identities) to the alpha-subunits encoded by tar-1 and hca-1 from Trichostrongylus colubriformis and Haemonchus contortus, respectively. Sequence analyses of partial tca-1 cDNAs from one levamisole-resistant and two susceptible populations of T. circumcincta revealed polymorphism at the predicted amino acid level, but there was no apparent association of any particular tca-1 allele with resistance. tca-2 encodes a 67 aa fragment (TCA-2) containing the TM4 transmembrane domain and carboxyl terminus of a putative nAChR structural (non-alpha) subunit. The deduced amino acid sequence of TCA-2 shows highest similarity (75% amino acid identity) to ACR-2, a structural subunit involved in forming levamisole-gated ion channels in Caenorhabditis elegans, but low similarity (43% identity) to the corresponding regions of TAR-1 and HCA-1. tca-2 is the first nAChR subunit gene of this type to be isolated from parasitic nematodes, and it provides a basis for further characterisation of structural subunits in trichostrongyloids.

  17. Chronic intermittent ethanol regulates hippocampal GABA(A receptor delta subunit gene expression

    Directory of Open Access Journals (Sweden)

    Paolo eFollesa

    2015-11-01

    Full Text Available Chronic ethanol consumption causes structural and functional reorganization in the hippocampus and induces alterations in the gene expression of gamma-aminobutyric acid type A receptors (GABAARs. Distinct forced intermittent exposure models have been used previously to investigate changes in GABAAR expression, with contrasting results. Here, we used repeated cycles of a Chronic Intermittent Ethanol paradigm to examine the relationship between voluntary, dependence-associated ethanol consumption and GABAAR gene expression in mouse hippocampus. Adult male C57BL/6J mice were exposed to four 16-h ethanol vapor (or air cycles in inhalation chambers alternated with limited-access two-bottle choice between ethanol (15% and water consumption. The mice exposed to ethanol vapor showed significant increases in ethanol consumption compared to their air-matched controls. GABAAR alpha4 and delta subunit gene expression were measured by qRT-PCR at different stages. There were significant changes in GABAAR delta subunit transcript levels at different time points in ethanol-vapor exposed mice, while the alpha4 subunit levels remained unchanged. Correlated concurrent blood ethanol concentrations suggested that GABAAR delta subunit mRNA levels fluctuate depending on ethanol intoxication, dependence, and withdrawal state. Using a vapor-based Chronic Intermittent Ethanol procedure with combined two-bottle choice consumption, we corroborated previous evidences showing that discontinuous ethanol exposure affects GABAAR delta subunit expression but we did not observe changes in alpha4 subunit. These findings indicate that hippocampal GABAAR delta subunit expression changes transiently over the course of a Chronic Intermittent Ethanol paradigm associated with voluntary intake, in response to ethanol-mediated disturbance of GABAergic neurotransmission.

  18. Inhibition of insect olfactory behavior by an airborne antagonist of the insect odorant receptor co-receptor subunit.

    Directory of Open Access Journals (Sweden)

    Devin Kepchia

    Full Text Available Response to volatile environmental chemosensory cues is essential for insect survival. The odorant receptor (OR family is an important class of receptors that detects volatile molecules; guiding insects towards food, mates, and oviposition sites. ORs are odorant-gated ion channels, consisting of a variable odorant specificity subunit and a conserved odorant receptor co-receptor (Orco subunit, in an unknown stoichiometry. The Orco subunit possesses an allosteric site to which modulators can bind and noncompetitively inhibit odorant activation of ORs. In this study, we characterized several halogen-substituted versions of a phenylthiophenecarboxamide Orco antagonist structure. Orco antagonist activity was assessed on ORs from Drosophila melanogaster flies and Culex quinquefasciatus mosquitoes, expressed in Xenopus laevis oocytes and assayed by two-electrode voltage clamp electrophysiology. One compound, OX1w, was also shown to inhibit odorant activation of a panel of Anopheles gambiae mosquito ORs activated by diverse odorants. Next, we asked whether Orco antagonist OX1w could affect insect olfactory behavior. A Drosophila melanogaster larval chemotaxis assay was utilized to address this question. Larvae were robustly attracted to highly diluted ethyl acetate in a closed experimental chamber. Attraction to ethyl acetate was Orco dependent and also required the odorant specificity subunit Or42b. The addition of the airborne Orco antagonist OX1w to the experimental chamber abolished larval chemotaxis towards ethyl acetate. The Orco antagonist was not a general inhibitor of sensory behavior, as behavioral repulsion from a light source was unaffected. This is the first demonstration that an airborne Orco antagonist can alter olfactory behavior in an insect. These results suggest a new approach to insect control and emphasize the need to develop more potent Orco antagonists.

  19. Neurosteroid regulation of GABAA receptors: Focus on the α4 and δ subunits

    OpenAIRE

    Smith, Sheryl S.; Shen, Hui; Gong, Qi Hua; Zhou, Xiangping

    2007-01-01

    Neurosteroids, such as the progesterone metabolite 3α-OH-5α[β]-pregnan-20-one (THP or [allo]pregnanolone), function as potent positive modulators of the GABAA receptor (GABAR) when acutely administered. However, fluctuations in the circulating levels of this steroid at puberty, across endogenous ovarian cycles, during pregnancy or following chronic stress produce periods of prolonged exposure and withdrawal, where changes in GABAR subunit composition may occur as compensatory responses to sus...

  20. Neurosteroid regulation of GABA(A) receptors: Focus on the alpha4 and delta subunits.

    Science.gov (United States)

    Smith, Sheryl S; Shen, Hui; Gong, Qi Hua; Zhou, Xiangping

    2007-10-01

    Neurosteroids, such as the progesterone metabolite 3alpha-OH-5alpha[beta]-pregnan-20-one (THP or [allo]pregnanolone), function as potent positive modulators of the GABA(A) receptor (GABAR) when acutely administered. However, fluctuations in the circulating levels of this steroid at puberty, across endogenous ovarian cycles, during pregnancy or following chronic stress produce periods of prolonged exposure and withdrawal, where changes in GABAR subunit composition may occur as compensatory responses to sustained levels of inhibition. A number of laboratories have demonstrated that both chronic administration of THP as well as its withdrawal transiently increase expression of the alpha4 subunit of the GABAR in several areas of the central nervous system (CNS) as well as in in vitro neuronal systems. Receptors containing this subunit are insensitive to benzodiazepine (BDZ) modulation and display faster deactivation kinetics, which studies suggest underlie hyperexcitability states. Similar increases in alpha4 expression are triggered by withdrawal from other GABA-modulatory compounds, such as ethanol and BDZ, suggesting a common mechanism. Other studies have reported puberty or estrous cycle-associated increases in delta-GABAR, the most sensitive target of these steroids which underlies a tonic inhibitory current. In the studies reported here, the effect of steroids on inhibition, which influence anxiety state and seizure susceptibility, depend not only on the subunit composition of the receptor but also on the direction of Cl(-) current generated by these target receptors. The effect of neurosteroids on GABAR function thus results in behavioral outcomes relevant for pubertal mood swings, premenstrual dysphoric disorder and catamenial epilepsy, which are due to fluctuations in endogenous steroids.

  1. Extrasynaptic α6 subunit-containing GABAA receptors modulate excitability in turtle spinal motoneurons.

    Directory of Open Access Journals (Sweden)

    Carmen Andres

    Full Text Available Motoneurons are furnished with a vast repertoire of ionotropic and metabotropic receptors as well as ion channels responsible for maintaining the resting membrane potential and involved in the regulation of the mechanisms underlying its membrane excitability and firing properties. Among them, the GABAA receptors, which respond to GABA binding by allowing the flow of Cl- ions across the membrane, mediate two distinct forms of inhibition in the mature nervous system, phasic and tonic, upon activation of synaptic or extrasynaptic receptors, respectively. In a previous work we showed that furosemide facilitates the monosynaptic reflex without affecting the dorsal root potential. Our data also revealed a tonic inhibition mediated by GABAA receptors activated in motoneurons by ambient GABA. These data suggested that the high affinity GABAA extrasynaptic receptors may have an important role in motor control, though the molecular nature of these receptors was not determined. By combining electrophysiological, immunofluorescence and molecular biology techniques with pharmacological tools here we show that GABAA receptors containing the α6 subunit are expressed in adult turtle spinal motoneurons and can function as extrasynaptic receptors responsible for tonic inhibition. These results expand our understanding of the role of GABAA receptors in motoneuron tonic inhibition.

  2. Olanzapine Reverses MK-801-Induced Cognitive Deficits and Region-Specific Alterations of NMDA Receptor Subunits

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    2018-01-01

    Full Text Available Cognitive dysfunction constitutes an essential component in schizophrenia for its early presence in the pathophysiology of the disease and close relatedness to life quality of patients. To develop effective treatment of cognitive deficits, it is important to understand their neurobiological causes and to identify potential therapeutic targets. In this study, adopting repeated MK-801 treatment as an animal model of schizophrenia, we investigated whether antipsychotic drugs, olanzapine and haloperidol, can reverse MK-801-induced cognitive deficits and how the reversal processes recruited proteins involved in glutamate neurotransmission in rat medial prefrontal cortex (mPFC and hippocampus. We found that low-dose chronic MK-801 treatment impaired object-in-context recognition memory and reversal learning in the Morris water maze, leaving reference memory relatively unaffected, and that these cognitive deficits can be partially reversed by olanzapine, not haloperidol, treatment. At the molecular level, chronic MK-801 treatment resulted in the reduction of multiple N-methyl-D-aspartate (NMDA receptor subunits in rat mPFC and olanzapine, not haloperidol, treatment restored the levels of GluN1 and phosphorylated GluN2B in this region. Taken together, MK-801-induced cognitive deficits may be associated with region-specific changes in NMDA receptor subunits and the reversal of specific NMDA receptor subunits may underlie the cognition-enhancing effects of olanzapine.

  3. Genetic diversity of levamisole receptor subunits in parasitic nematode species and abbreviated transcripts associated with resistance.

    Science.gov (United States)

    Neveu, Cédric; Charvet, Claude L; Fauvin, Aymeric; Cortet, Jacques; Beech, Robin N; Cabaret, Jacques

    2010-07-01

    The molecular mechanisms of levamisole (LEV) activity and expression of resistance remain largely unknown in parasitic nematodes. In contrast, genetic screens for mutants that survive exposure to LEV in the free-living nematode Caenorhabditis elegans have led to the identification of five genes (unc-38, unc-63, unc-29, lev-1 and lev-8) that encode a LEV-sensitive acetylcholine receptor (L-AChR). Loss of these genes leads to LEV resistance. In this study, orthologues of these genes were identified in three species of trichostrongylid nematodes that have a major impact on small ruminants: Haemonchus contortus, Teladorsagia circumcincta and Trichostrongylus colubriformis. Polymorphism associated with LEV resistance have been investigated by comparing transcripts of these subunits in LEV susceptible and LEV-resistant isolates of the three strongylid species. Partial sequences were identified by PCR experiments and full-length cDNA sequences corresponding to AChR subunits in the three trichostrongylid species were obtained using 3'-rapid amplification of cDNA ends-PCR and 5' rapid amplification of cDNA ends anchored with the spliced leader sequence, SL1. Expression of L-AChR subunits was investigated in LEV-resistant and LEV-susceptible isolates of H. contortus, T. circumcincta and T. colubriformis using reverse transcription PCR. We have identified a total of 20 full-length cDNA sequences corresponding to L-AChR subunits in three parasitic trichostrongylid species of which 14 correspond to novel sequences. Genes orthologous to unc-29, unc-63, unc-38 and lev-1 were found in each trichostrongylid species, whereas no gene corresponding to lev-8 has yet been identified. We have found 11 distinct paralogous sequences corresponding to the C. elegans unc-29 gene clustered in four groups revealing an unexpected diversity of unc-29-like genes. Complete coding sequences of the L-AChR subunits in two LEV-resistant and three susceptible isolates of H. contortus, T. circumcincta

  4. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs) during inflammation induced visceral hypersensitivity.

    Science.gov (United States)

    Suckow, Shelby K; Caudle, Robert M

    2009-09-22

    Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs), co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG) neurons expressing the transient receptor potential vanilloid-1 (TRPV1) receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX) prior to inflammation and behavioural testing. CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned animals. Therefore, these data suggest that CANs

  5. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs during inflammation induced visceral hypersensitivity

    Directory of Open Access Journals (Sweden)

    Caudle Robert M

    2009-09-01

    Full Text Available Abstract Background Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs, co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG neurons expressing the transient receptor potential vanilloid-1 (TRPV1 receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX prior to inflammation and behavioural testing. Results CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Conclusion Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned

  6. NR2 subunits and NMDA receptors on lamina II inhibitory and excitatory interneurons of the mouse dorsal horn

    Directory of Open Access Journals (Sweden)

    MacDermott Amy B

    2010-05-01

    Full Text Available Abstract Background NMDA receptors expressed by spinal cord neurons in the superficial dorsal horn are involved in the development of chronic pain associated with inflammation and nerve injury. The superficial dorsal horn has a complex and still poorly understood circuitry that is mainly populated by inhibitory and excitatory interneurons. Little is known about how NMDA receptor subunit composition, and therefore pharmacology and voltage dependence, varies with neuronal cell type. NMDA receptors are typically composed of two NR1 subunits and two of four NR2 subunits, NR2A-2D. We took advantage of the differences in Mg2+ sensitivity of the NMDA receptor subtypes together with subtype preferring antagonists to identify the NR2 subunit composition of NMDA receptors expressed on lamina II inhibitory and excitatory interneurons. To distinguish between excitatory and inhibitory interneurons, we used transgenic mice expressing enhanced green fluorescent protein driven by the GAD67 promoter. Results Analysis of conductance ratio and selective antagonists showed that lamina II GABAergic interneurons express both the NR2A/B containing Mg2+ sensitive receptors and the NR2C/D containing NMDA receptors with less Mg2+ sensitivity. In contrast, excitatory lamina II interneurons express primarily NR2A/B containing receptors. Despite this clear difference in NMDA receptor subunit expression in the two neuronal populations, focally stimulated synaptic input is mediated exclusively by NR2A and 2B containing receptors in both neuronal populations. Conclusions Stronger expression of NMDA receptors with NR2C/D subunits by inhibitory interneurons compared to excitatory interneurons may provide a mechanism to selectively increase activity of inhibitory neurons during intense excitatory drive that can provide inhibitory feedback.

  7. Distribution of the a2, a3, and a5 nicotinic acetylcholine receptor subunits in the chick brain

    Directory of Open Access Journals (Sweden)

    Torrão A.S.

    1997-01-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are ionotropic receptors comprised of a and ß subunits. These receptors are widely distributed in the central nervous system, and previous studies have revealed specific patterns of localization for some nAChR subunits in the vertebrate brain. In the present study we used immunohistochemical methods and monoclonal antibodies to localize the a2, a3, and a5 nAChR subunits in the chick mesencephalon and diencephalon. We observed a differential distribution of these three subunits in the chick brain, and showed that the somata and neuropil of many central structures contain the a5 nAChR subunit. The a2 and a3 subunits, on the other hand, exhibited a more restricted distribution than a5 and other subunits previously studied, namely a7, a8 and ß2. The patterns of distribution of the different nAChR subunits suggest that neurons in many brain structures may contain several subtypes of nAChRs and that in a few regions one particular subtype may determine the cholinergic nicotinic responses

  8. Auxiliary subunits of the CKAMP family differentially modulate AMPA receptor properties

    DEFF Research Database (Denmark)

    Farrow, Paul; Khodosevich, Konstantin; Sapir, Yechiam

    2015-01-01

    AMPA receptor (AMPAR) function is modulated by auxiliary subunits. Here, we report on three AMPAR interacting proteins-namely CKAMP39, CKAMP52 and CKAMP59-that, together with the previously characterized CKAMP44, constitute a novel family of auxiliary subunits distinct from other families of AMPAR...... interacting proteins. The new members of the CKAMP family display distinct regional and developmental expression profiles in the mouse brain. Notably, despite their structural similarities they exert diverse modulation on AMPAR gating by influencing deactivation, desensitization and recovery from...... desensitization, as well as glutamate and cyclothiazide potency to AMPARs. This study indicates that AMPAR function is very precisely controlled by the cell-type specific expression of the CKAMP family members....

  9. Autoinactivation of the stargazin-AMPA receptor complex: subunit-dependency and independence from physical dissociation.

    Directory of Open Access Journals (Sweden)

    Artur Semenov

    Full Text Available Agonist responses and channel kinetics of native α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA receptors are modulated by transmembrane accessory proteins. Stargazin, the prototypical accessory protein, decreases desensitization and increases agonist potency at AMPA receptors. Furthermore, in the presence of stargazin, the steady-state responses of AMPA receptors show a gradual decline at higher glutamate concentrations. This "autoinactivation" has been assigned to physical dissociation of the stargazin-AMPA receptor complex and suggested to serve as a protective mechanism against overactivation. Here, we analyzed autoinactivation of GluA1-A4 AMPA receptors (all flip isoform expressed in the presence of stargazin. Homomeric GluA1, GluA3, and GluA4 channels showed pronounced autoinactivation indicated by the bell-shaped steady-state dose response curves for glutamate. In contrast, homomeric GluA2i channels did not show significant autoinactivation. The resistance of GluA2 to autoinactivation showed striking dependence on the splice form as GluA2-flop receptors displayed clear autoinactivation. Interestingly, the resistance of GluA2-flip containing receptors to autoinactivation was transferred onto heteromeric receptors in a dominant fashion. To examine the relationship of autoinactivation to physical separation of stargazin from the AMPA receptor, we analyzed a GluA4-stargazin fusion protein. Notably, the covalently linked complex and separately expressed proteins expressed a similar level of autoinactivation. We conclude that autoinactivation is a subunit and splice form dependent property of AMPA receptor-stargazin complexes, which involves structural rearrangements within the complex rather than any physical dissociation.

  10. GABAA Receptors Containing ρ1 Subunits Contribute to In Vivo Effects of Ethanol in Mice

    Science.gov (United States)

    Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Leiter, Courtney R.; Osterndorff-Kahanek, Elizabeth; Johnson, David; Borghese, Cecilia M.; Hanrahan, Jane R.; Johnston, Graham A. R.; Chebib, Mary; Harris, R. Adron

    2014-01-01

    GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ1” antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ2” antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo. PMID:24454882

  11. Fast and Slow Inhibition in the Visual Thalamus Is Influenced by Allocating GABAA Receptors with Different γ Subunits

    Directory of Open Access Journals (Sweden)

    Zhiwen Ye

    2017-04-01

    Full Text Available Cell-type specific differences in the kinetics of inhibitory postsynaptic conductance changes (IPSCs are believed to impact upon network dynamics throughout the brain. Much attention has focused on how GABAA receptor (GABAAR α and β subunit diversity will influence IPSC kinetics, but less is known about the influence of the γ subunit. We have examined whether GABAAR γ subunit heterogeneity influences IPSC properties in the thalamus. The γ2 subunit gene was deleted from GABAARs selectively in the dorsal lateral geniculate nucleus (dLGN. The removal of the γ2 subunit from the dLGN reduced the overall spontaneous IPSC (sIPSC frequency across all relay cells and produced an absence of IPSCs in a subset of relay neurons. The remaining slower IPSCs were both insensitive to diazepam and zinc indicating the absence of the γ2 subunit. Because these slower IPSCs were potentiated by methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM, we propose these IPSCs involve γ1 subunit-containing GABAAR activation. Therefore, γ subunit heterogeneity appears to influence the kinetics of GABAAR-mediated synaptic transmission in the visual thalamus in a cell-selective manner. We suggest that activation of γ1 subunit-containing GABAARs give rise to slower IPSCs in general, while faster IPSCs tend to be mediated by γ2 subunit-containing GABAARs.

  12. Generation of functional inhibitory synapses incorporating defined combinations of GABA(A or glycine receptor subunits

    Directory of Open Access Journals (Sweden)

    Christine Laura Dixon

    2015-12-01

    Full Text Available Fast inhibitory neurotransmission in the brain is mediated by wide range of GABAA receptor (GABAAR and glycine receptor (GlyR isoforms, each with different physiological and pharmacological properties. Because multiple isoforms are expressed simultaneously in most neurons, it is difficult to define the properties of inhibitory postsynaptic currents mediated by individual isoforms in vivo. Although recombinant expression systems permit the expression of individual isoforms in isolation, they require exogenous agonist application which cannot mimic the dynamic neurotransmitter profile characteristic of native synapses. We describe a neuron-HEK293 cell co-culture technique for generating inhibitory synapses incorporating defined combinations of GABAAR or GlyR subunits. Primary neuronal cultures, prepared from embryonic rat cerebral cortex or spinal cord, are used to provide presynaptic GABAergic and glycinergic terminals, respectively. When the cultures are mature, HEK293 cells expressing the subunits of interest plus neuroligin 2A are plated onto the neurons, which rapidly form synapses onto HEK293 cells. Patch clamp electrophysiology is then used to analyze the physiological and pharmacological properties of the inhibitory postsynaptic currents mediated by the recombinant receptors. The method is suitable for investigating the kinetic properties or the effects of drugs on inhibitory postsynaptic currents mediated by defined GABAAR or GlyR isoforms of interest, the effects of hereditary disease mutations on the formation and function of both types of synapses, and synaptogenesis and synaptic clustering mechanisms. The entire cell preparation procedure takes 2 – 5 weeks.

  13. The GluK4 kainate receptor subunit regulates memory, mood, and excitotoxic neurodegeneration.

    Science.gov (United States)

    Lowry, E R; Kruyer, A; Norris, E H; Cederroth, C R; Strickland, S

    2013-04-03

    Though the GluK4 kainate receptor subunit shows limited homology and a restricted expression pattern relative to other kainate receptor subunits, its ablation results in distinct behavioral and molecular phenotypes. GluK4 knockout mice demonstrated impairments in memory acquisition and recall in a Morris water maze test, suggesting a previously unreported role for kainate receptors in spatial memory. GluK4 knockout mice also showed marked hyperactivity and impaired pre-pulse inhibition, thereby mirroring two of the hallmark endophenotypes of patients with schizophrenia and bipolar disorder. Furthermore, we found that GluK4 is a key mediator of excitotoxic neurodegeneration: GluK4 knockout mice showed robust neuroprotection in the CA3 region of the hippocampus following intrahippocampal injection of kainate and widespread neuroprotection throughout the hippocampus following hypoxia-ischemia. Biochemical analysis of kainate- or sham-treated wild-type and GluK4 knockout hippocampal tissue suggests that GluK4 may act through the JNK pathway to regulate the molecular cascades that lead to excitotoxicity. Together, our findings suggest that GluK4 may be relevant to the understanding and treatment of human neuropsychiatric and neurodegenerative disorders. Copyright © 2013 IBRO. All rights reserved.

  14. Evidence that TSH Receptor A-Subunit Multimers, Not Monomers, Drive Antibody Affinity Maturation in Graves' Disease.

    Science.gov (United States)

    Rapoport, Basil; Aliesky, Holly A; Chen, Chun-Rong; McLachlan, Sandra M

    2015-06-01

    The TSH receptor (TSHR) A-subunit shed from the cell surface contributes to the induction and/or affinity maturation of pathogenic TSHR autoantibodies in Graves' disease. This study aimed to determine whether the quaternary structure (multimerization) of shed A-subunits influences pathogenic TSHR autoantibody generation. The isolated TSHR A-subunit generated by transfected mammalian cells exists in two forms; one (active) is recognized only by Graves' TSHR autoantibodies, the second (inactive) is recognized only by mouse monoclonal antibody (mAb) 3BD10. Recent evidence suggests that both Graves' TSHR autoantibodies and mAb 3BD10 recognize the A-subunit monomer. Therefore, if the A-subunit monomer is an immunogen, Graves' sera should have antibodies to both active and inactive A-subunits. Conversely, restriction of TSHR autoantibodies to active A-subunits would be evidence of a role for shed A-subunit multimers, not monomers, in the pathogenesis of Graves' disease. Therefore, we tested a panel of Graves' sera for their relative recognition of active and inactive A-subunits. Of 34 sera from unselected Graves' patients, 28 were unequivocally positive in a clinical TSH binding inhibition assay. None of the latter sera, as well as 8/9 sera from control individuals, recognized inactive A-subunits on ELISA. In contrast to Graves' sera, antibodies induced in mice, not by shedding from the TSHR holoreceptor, but by immunization with adenovirus expressing the free human A-subunit, were directed to both the active and inactive A-subunit forms. The present study supports the concept that pathogenic TSHR autoantibody affinity maturation in Graves' disease is driven by A-subunit multimers, not monomers.

  15. Complex control of GABA(A receptor subunit mRNA expression: variation, covariation, and genetic regulation.

    Directory of Open Access Journals (Sweden)

    Megan K Mulligan

    Full Text Available GABA type-A receptors are essential for fast inhibitory neurotransmission and are critical in brain function. Surprisingly, expression of receptor subunits is highly variable among individuals, but the cause and impact of this fluctuation remains unknown. We have studied sources of variation for all 19 receptor subunits using massive expression data sets collected across multiple brain regions and platforms in mice and humans. Expression of Gabra1, Gabra2, Gabrb2, Gabrb3, and Gabrg2 is highly variable and heritable among the large cohort of BXD strains derived from crosses of fully sequenced parents--C57BL/6J and DBA/2J. Genetic control of these subunits is complex and highly dependent on tissue and mRNA region. Remarkably, this high variation is generally not linked to phenotypic differences. The single exception is Gabrb3, a locus that is linked to anxiety. We identified upstream genetic loci that influence subunit expression, including three unlinked regions of chromosome 5 that modulate the expression of nine subunits in hippocampus, and that are also associated with multiple phenotypes. Candidate genes within these loci include, Naaa, Nos1, and Zkscan1. We confirmed a high level of coexpression for subunits comprising the major channel--Gabra1, Gabrb2, and Gabrg2--and identified conserved members of this expression network in mice and humans. Gucy1a3, Gucy1b3, and Lis1 are novel and conserved associates of multiple subunits that are involved in inhibitory signaling. Finally, proximal and distal regions of the 3' UTRs of single subunits have remarkably independent expression patterns in both species. However, corresponding regions of different subunits often show congruent genetic control and coexpression (proximal-to-proximal or distal-to-distal, even in the absence of sequence homology. Our findings identify novel sources of variation that modulate subunit expression and highlight the extraordinary capacity of biological networks to buffer

  16. Multiple thyrotropin β-subunit and thyrotropin receptor-related genes arose during vertebrate evolution.

    Directory of Open Access Journals (Sweden)

    Gersende Maugars

    Full Text Available Thyroid-stimulating hormone (TSH is composed of a specific β subunit and an α subunit that is shared with the two pituitary gonadotropins. The three β subunits derive from a common ancestral gene through two genome duplications (1R and 2R that took place before the radiation of vertebrates. Analysis of genomic data from phylogenetically relevant species allowed us to identify an additional Tshβ subunit-related gene that was generated through 2R. This gene, named Tshβ2, present in cartilaginous fish, little skate and elephant shark, and in early lobe-finned fish, coelacanth and lungfish, was lost in ray-finned fish and tetrapods. The absence of a second type of TSH receptor (Tshr gene in these species suggests that both TSHs act through the same receptor. A novel Tshβ sister gene, named Tshβ3, was generated through the third genomic duplication (3R that occurred early in the teleost lineage. Tshβ3 is present in most teleost groups but was lostin tedraodontiforms. The 3R also generated a second Tshr, named Tshrb. Interestingly, the new Tshrb was translocated from its original chromosomic position after the emergence of eels and was then maintained in its new position. Tshrb was lost in tetraodontiforms and in ostariophysians including zebrafish although the latter species have two TSHs, suggesting that TSHRb may be dispensable. The tissue distribution of duplicated Tshβs and Tshrs was studied in the European eel. The endocrine thyrotropic function in the eel would be essentially mediated by the classical Tshβ and Tshra, which are mainly expressed in the pituitary and thyroid, respectively. Tshβ3 and Tshrb showed a similar distribution pattern in the brain, pituitary, ovary and adipose tissue, suggesting a possible paracrine/autocrine mode of action in these non-thyroidal tissues. Further studies will be needed to determine the binding specificity of the two receptors and how these two TSH systems are interrelated.

  17. Neto Auxiliary Subunits Regulate Interneuron Somatodendritic and Presynaptic Kainate Receptors to Control Network Inhibition

    Directory of Open Access Journals (Sweden)

    Megan S. Wyeth

    2017-08-01

    Full Text Available Although Netos are considered auxiliary subunits critical for kainate receptor (KAR function, direct evidence for their regulation of native KARs is limited. Because Neto KAR regulation is GluK subunit/Neto isoform specific, such regulation must be determined in cell-type-specific contexts. We demonstrate Neto1/2 expression in somatostatin (SOM-, cholecystokinin/cannabinoid receptor 1 (CCK/CB1-, and parvalbumin (PV-containing interneurons. KAR-mediated excitation of these interneurons is contingent upon Neto1 because kainate yields comparable effects in Neto2 knockouts and wild-types but fails to excite interneurons or recruit inhibition in Neto1 knockouts. In contrast, presynaptic KARs in CCK/CB1 interneurons are dually regulated by both Neto1 and Neto2. Neto association promotes tonic presynaptic KAR activation, dampening CCK/CB1 interneuron output, and loss of this brake in Neto mutants profoundly increases CCK/CB1 interneuron-mediated inhibition. Our results confirm that Neto1 regulates endogenous somatodendritic KARs in diverse interneurons and demonstrate Neto regulation of presynaptic KARs in mature inhibitory presynaptic terminals.

  18. Expression of interferon receptor subunits, IFNAR1 and IFNAR2, in the ovine uterus.

    Science.gov (United States)

    Rosenfeld, Cheryl S; Han, Chun-Sheng; Alexenko, Andrei P; Spencer, Thomas E; Roberts, R Michael

    2002-09-01

    Interferon-tau (IFN-tau) is the antiluteolytic factor released by concepti of ruminant ungulate species prior to implantation. All type I interferons, including IFN-tau, exert their action through a common receptor, which consists of two subunits, IFNAR1 and IFNAR2c, but the distribution of the two polypeptides in uterine endometrium has not been examined. In situ hybridization and immunohistochemistry on sections from pregnant and nonpregnant ovine uteri at Days 14 and 15 after estrus and mating showed that both IFNAR1 and IFNAR2 mRNA and protein were strongly expressed in endometrial luminal epithelium (LE), superficial glandular epithelium (GE), and stromal cells, within but not outside caruncles. Similar staining patterns were noted in pregnant and nonpregnant uteri for both subunits. Western blot analysis of membrane fractions from cell lines derived from endometrial LE, GE, and stromal cells, and affinity cross-linking experiments with radioactively labeled IFN-tau performed on crude endometrial membranes indicated the presence of both high ( approximately 110 kDa) and low (75-80 kDa) molecular mass forms of the two receptor subunits. To localize where IFN-tau binds when it is introduced into the uterine lumen, immunohistochemistry with an antiserum against IFN-tau was performed on sections of uteri from Day 14 nonpregnant ewes whose uteri had previously been infused with IFN-tau. Staining was concentrated on the LE and superficial GE cells, and was absent from the deeper regions of the glands and from the stromal tissues. These studies demonstrate the heavy concentration of IFNAR1 and IFNAR2 in cells of the LE and superficial GE, which appear to be the main targets for IFN-tau.

  19. Design, synthesis, and pharmacology of a highly subtype-selective GluR1/2 agonist, (RS)-2-amino-3-(4-chloro-3-hydroxy-5-isoxazolyl)propionic acid (Cl-HIBO)

    DEFF Research Database (Denmark)

    Bjerrum, Esben J; Kristensen, Anders S; Pickering, Darryl S

    2003-01-01

    On the basis of structural studies, chloro-homoibotenic acid (Cl-HIBO) was designed and synthesized. Cl-HIBO was characterized in binding and electrophysiology experiments on native and cloned subtypes of GluRs. Electrophysiological selectivities ranged from 275 to 1600 for GluR1/2 over GluR3...

  20. NEUROSTEROID WITHDRAWAL REGULATES GABA-A RECEPTOR α4-SUBUNIT EXPRESSION AND SEIZURE SUSCEPTIBILITY BY ACTIVATION OF PR-INDEPENDENT EGR3 PATHWAY

    OpenAIRE

    Gangisetty, Omkaram; Reddy, Doodipala Samba

    2010-01-01

    Neurosteroids regulate GABA-A receptor plasticity. Neurosteroid withdrawal occurs during menstruation and is associated with a marked increase in expression of GABA-A receptor α4-subunit, a key subunit linked to enhanced neuronal excitability, seizure susceptibility and benzodiazepine resistance. However, the molecular mechanisms underlying the upregulation of α4-subunit expression remain unclear. Here we utilized the progesterone receptor (PR) knockout mouse to investigate molecular pathways...

  1. GABA(A receptor α subunits differentially contribute to diazepam tolerance after chronic treatment.

    Directory of Open Access Journals (Sweden)

    Christiaan H Vinkers

    Full Text Available Within the GABA(A-receptor field, two important questions are what molecular mechanisms underlie benzodiazepine tolerance, and whether tolerance can be ascribed to certain GABA(A-receptor subtypes.We investigated tolerance to acute anxiolytic, hypothermic and sedative effects of diazepam in mice exposed for 28-days to non-selective/selective GABA(A-receptor positive allosteric modulators: diazepam (non-selective, bretazenil (partial non-selective, zolpidem (α(1 selective and TPA023 (α(2/3 selective. In-vivo binding studies with [(3H]flumazenil confirmed compounds occupied CNS GABA(A receptors.Chronic diazepam treatment resulted in tolerance to diazepam's acute anxiolytic, hypothermic and sedative effects. In mice treated chronically with bretazenil, tolerance to diazepam's anxiolytic and hypothermic, but not sedative, effects was seen. Chronic zolpidem treatment resulted in tolerance to diazepam's hypothermic effect, but partial anxiolytic tolerance and no sedative tolerance. Chronic TPA023 treatment did not result in tolerance to diazepam's hypothermic, anxiolytic or sedative effects.OUR DATA INDICATE THAT: (i GABA(A-α(2/α(3 subtype selective drugs might not induce tolerance; (ii in rodents quantitative and temporal variations in tolerance development occur dependent on the endpoint assessed, consistent with clinical experience with benzodiazepines (e.g., differential tolerance to antiepileptic and anxiolytic actions; (iii tolerance to diazepam's sedative actions needs concomitant activation of GABA(A-α(1/GABA(A-α(5 receptors. Regarding mechanism, in-situ hybridization studies indicated no gross changes in expression levels of GABA(A α(1, α(2 or α(5 subunit mRNA in hippocampus or cortex. Since selective chronic activation of either GABA(A α(2, or α(3 receptors does not engender tolerance development, subtype-selective GABA(A drugs might constitute a promising class of novel drugs.

  2. GABAA Receptor α Subunits Differentially Contribute to Diazepam Tolerance after Chronic Treatment

    Science.gov (United States)

    Vinkers, Christiaan H.; van Oorschot, Ruud; Nielsen, Elsebet Ø.; Cook, James M.; Hansen, Henrik H.; Groenink, Lucianne; Olivier, Berend; Mirza, Naheed R.

    2012-01-01

    Background Within the GABAA-receptor field, two important questions are what molecular mechanisms underlie benzodiazepine tolerance, and whether tolerance can be ascribed to certain GABAA-receptor subtypes. Methods We investigated tolerance to acute anxiolytic, hypothermic and sedative effects of diazepam in mice exposed for 28-days to non-selective/selective GABAA-receptor positive allosteric modulators: diazepam (non-selective), bretazenil (partial non-selective), zolpidem (α1 selective) and TPA023 (α2/3 selective). In-vivo binding studies with [3H]flumazenil confirmed compounds occupied CNS GABAA receptors. Results Chronic diazepam treatment resulted in tolerance to diazepam's acute anxiolytic, hypothermic and sedative effects. In mice treated chronically with bretazenil, tolerance to diazepam's anxiolytic and hypothermic, but not sedative, effects was seen. Chronic zolpidem treatment resulted in tolerance to diazepam's hypothermic effect, but partial anxiolytic tolerance and no sedative tolerance. Chronic TPA023 treatment did not result in tolerance to diazepam's hypothermic, anxiolytic or sedative effects. Conclusions Our data indicate that: (i) GABAA-α2/α3 subtype selective drugs might not induce tolerance; (ii) in rodents quantitative and temporal variations in tolerance development occur dependent on the endpoint assessed, consistent with clinical experience with benzodiazepines (e.g., differential tolerance to antiepileptic and anxiolytic actions); (iii) tolerance to diazepam's sedative actions needs concomitant activation of GABAA-α1/GABAA-α5 receptors. Regarding mechanism, in-situ hybridization studies indicated no gross changes in expression levels of GABAA α1, α2 or α5 subunit mRNA in hippocampus or cortex. Since selective chronic activation of either GABAA α2, or α3 receptors does not engender tolerance development, subtype-selective GABAA drugs might constitute a promising class of novel drugs. PMID:22912786

  3. Do specific NMDA receptor subunits act as gateways for addictive behaviors?

    Science.gov (United States)

    Hopf, F W

    2017-01-01

    Addiction to alcohol and drugs is a major social and economic problem, and there is considerable interest in understanding the molecular mechanisms that promote addictive drives. A number of proteins have been identified that contribute to expression of addictive behaviors. NMDA receptors (NMDARs), a subclass of ionotropic glutamate receptors, have been of particular interest because their physiological properties make them an attractive candidate for gating induction of synaptic plasticity, a molecular change thought to mediate learning and memory. NMDARs are generally inactive at the hyperpolarized resting potentials of many neurons. However, given sufficient depolarization, NMDARs are activated and exhibit long-lasting currents with significant calcium permeability. Also, in addition to stimulating neurons by direct depolarization, NMDARs and their calcium signaling can allow strong and/or synchronized inputs to produce long-term changes in other molecules (such as AMPA-type glutamate receptors) which can last from days to years, binding internal and external stimuli in a long-term memory trace. Such memories could allow salient drug-related stimuli to exert strong control over future behaviors and thus promote addictive drives. Finally, NMDARs may themselves undergo plasticity, which can alter subsequent neuronal stimulation and/or the ability to induce plasticity. This review will address recent and past findings suggesting that NMDAR activity promotes drug- and alcohol-related behaviors, with a particular focus on GluN2B subunits as possible central regulators of many addictive behaviors, as well as newer studies examining the importance of non-canonical NMDAR subunits and endogenous NMDAR cofactors. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. Early continuous white noise exposure alters l-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit glutamate receptor 2 and gamma-aminobutyric acid type a receptor subunit beta3 protein expression in rat auditory cortex.

    Science.gov (United States)

    Xu, Jinghong; Yu, Liping; Zhang, Jiping; Cai, Rui; Sun, Xinde

    2010-02-15

    Auditory experience during the postnatal critical period is essential for the normal maturation of auditory function. Previous studies have shown that rearing infant rat pups under conditions of continuous moderate-level noise delayed the emergence of adult-like topographic representational order and the refinement of response selectivity in the primary auditory cortex (A1) beyond normal developmental benchmarks and indefinitely blocked the closure of a brief, critical-period window. To gain insight into the molecular mechanisms of these physiological changes after noise rearing, we studied expression of the AMPA receptor subunit GluR2 and GABA(A) receptor subunit beta3 in the auditory cortex after noise rearing. Our results show that continuous moderate-level noise rearing during the early stages of development decreases the expression levels of GluR2 and GABA(A)beta3. Furthermore, noise rearing also induced a significant decrease in the level of GABA(A) receptors relative to AMPA receptors. However, in adult rats, noise rearing did not have significant effects on GluR2 and GABA(A)beta3 expression or the ratio between the two units. These changes could have a role in the cellular mechanisms involved in the delayed maturation of auditory receptive field structure and topographic organization of A1 after noise rearing. Copyright 2009 Wiley-Liss, Inc.

  5. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Genevieve E.; Mou, Tung-Chung; Tamborini, Lucia; Pomper, Martin G.; De Micheli, Carlo; Conti, Paola; Pinto, Andrea; Hansen, Kasper B. (JHU); (Milan); (Montana)

    2017-07-31

    NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A–D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with bound ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity.

  6. Skeletal effects of a gastrin receptor antagonist in H+/K+ATPase beta subunit KO mice.

    Science.gov (United States)

    Aasarød, Kristin M; Ramezanzadehkoldeh, Masoud; Shabestari, Maziar; Mosti, Mats P; Stunes, Astrid K; Reseland, Janne E; Beisvag, Vidar; Eriksen, Erik Fink; Sandvik, Arne K; Erben, Reinhold G; Schüler, Christiane; Boyce, Malcolm; Skallerud, Bjørn H; Syversen, Unni; Fossmark, Reidar

    2016-08-01

    Epidemiological studies suggest an increased fracture risk in patients taking proton pump inhibitors (PPIs) for long term. The underlying mechanism, however, has been disputed. By binding to the gastric proton pump, PPIs inhibit gastric acid secretion. We have previously shown that proton pump (H(+)/K(+)ATPase beta subunit) KO mice exhibit reduced bone mineral density (BMD) and inferior bone strength compared with WT mice. Patients using PPIs as well as these KO mice exhibit gastric hypoacidity, and subsequently increased serum concentrations of the hormone gastrin. In this study, we wanted to examine whether inhibition of the gastrin/CCK2 receptor influences bone quality in these mice. KO and WT mice were given either the gastrin/CCK2 receptor antagonist netazepide dissolved in polyethylene glycol (PEG) or only PEG for 1year. We found significantly lower bone mineral content and BMD, as well as inferior bone microarchitecture in KO mice compared with WT. Biomechanical properties by three-point bending test also proved inferior in KO mice. KO mice receiving netazepide exhibited significantly higher cortical thickness, cortical area fraction, trabecular thickness and trabecular BMD by micro-CT compared with the control group. Three-point bending test also showed higher Young's modulus of elasticity in the netazepide KO group compared with control mice. In conclusion, we observed that the gastrin receptor antagonist netazepide slightly improved bone quality in this mouse model, suggesting that hypergastrinemia may contribute to deteriorated bone quality during acid inhibition. © 2016 Society for Endocrinology.

  7. Novel TPR-containing subunit of TOM complex functions as cytosolic receptor for Entamoeba mitosomal transport

    Science.gov (United States)

    Makiuchi, Takashi; Mi-ichi, Fumika; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2013-01-01

    Under anaerobic environments, the mitochondria have undergone remarkable reduction and transformation into highly reduced structures, referred as mitochondrion-related organelles (MROs), which include mitosomes and hydrogenosomes. In agreement with the concept of reductive evolution, mitosomes of Entamoeba histolytica lack most of the components of the TOM (translocase of the outer mitochondrial membrane) complex, which is required for the targeting and membrane translocation of preproteins into the canonical aerobic mitochondria. Here we showed, in E. histolytica mitosomes, the presence of a 600-kDa TOM complex composed of Tom40, a conserved pore-forming subunit, and Tom60, a novel lineage-specific receptor protein. Tom60, containing multiple tetratricopeptide repeats, is localized to the mitosomal outer membrane and the cytosol, and serves as a receptor of both mitosomal matrix and membrane preproteins. Our data indicate that Entamoeba has invented a novel lineage-specific shuttle receptor of the TOM complex as a consequence of adaptation to an anaerobic environment. PMID:23350036

  8. Association of the glutamate receptor subunit gene GRIN2B with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Dorval, K M; Wigg, K G; Crosbie, J; Tannock, R; Kennedy, J L; Ickowicz, A; Pathare, T; Malone, M; Schachar, R; Barr, C L

    2007-07-01

    The glutamatergic signaling pathway represents an ideal candidate susceptibility system for attention-deficit/hyperactivity disorder (ADHD). Disruption of specific N-methyl-D-aspartate-type glutamate receptor subunit genes (GRIN1, 2A-D) in mice leads to significant alterations in cognitive and/or locomotor behavior including impairments in latent learning, spatial memory tasks and hyperactivity. Here, we tested for association of GRIN2B variants with ADHD, by genotyping nine single nucleotide polymorphisms (SNPs) in 205 nuclear families identified through probands with ADHD. Transmission of alleles from heterozygous parents to affected offspring was examined using the transmission/disequilibrium test. Quantitative trait analyses for the ADHD symptom dimensions [inattentive (IA) and hyperactive/impulsive (HI)] and cognitive measures of verbal working memory and verbal short-term memory were performed using the fbat program. Three SNPs showed significantly biased transmission (P memory or verbal working memory. Our data suggest an association between variations in the GRIN2B subunit gene and ADHD as measured categorically or as a quantitatively distributed trait.

  9. GABA{sub A} receptor beta 3 subunit gene is possibly paternally imprinted in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-15

    As the gene for GABA{sub A} receptor beta 3 subunit (GABRB3) is encompassed by a small molecular deletion in chromosome 15q11-q13, which is the critical region for Angelman syndrome(AS), the GABRB3 gene could be a candidate gene for AS. The abnormal phenotype of AS is manifested only when the deletion is inherited from the mother, not from the father. Therefore, a candidate gene for AS should be paternally imprinted. Although it was reported that the GABRB3 gene was expressed equally from either the maternal or paternal chromosome in mouse brain (i.e., not imprinted), it is well known that imprinting shows tissue specificity, and it remains to be determined if all genes imprinted in the mouse are also imprinted in humans. 4 refs., 1 fig.

  10. GABA(A) receptor alpha4 subunit suppression prevents withdrawal properties of an endogenous steroid.

    Science.gov (United States)

    Smith, S S; Gong, Q H; Hsu, F C; Markowitz, R S; ffrench-Mullen, J M; Li, X

    1998-04-30

    The hormone progesterone is readily converted to 3alpha-OH-5alpha-pregnan-20-one (3alpha,5alpha-THP) in the brains of males and females. In the brain, 3alpha,5alpha-THP acts like a sedative, decreasing anxiety and reducing seizure activity, by enhancing the function of GABA (gamma-aminobutyric acid), the brain's major inhibitory neurotransmitter. Symptoms of premenstrual syndrome (PMS), such as anxiety and seizure susceptibility, are associated with sharp declines in circulating levels of progesterone and, consequently, of levels of 3alpha,5alpha-THP in the brain. Abrupt discontinuation of use of sedatives such as benzodiazepines and ethanol can also produce PMS-like withdrawal symptoms. Here we report a progesterone-withdrawal paradigm, designed to mimic PMS and post-partum syndrome in a rat model. In this model, withdrawal of progesterone leads to increased seizure susceptibility and insensitivity to benzodiazepine sedatives through an effect on gene transcription. Specifically, this effect was due to reduced levels of 3alpha,5alpha-THP which enhance transcription of the gene encoding the alpha4 subunit of the GABA(A) receptor. We also find that increased susceptibility to seizure after progesferone withdrawal is due to a sixfold decrease in the decay time for GABA currents and consequent decreased inhibitory function. Blockade of the alpha4 gene transcript prevents these withdrawal properties. PMS symptoms may therefore be attributable, in part, to alterations in expression of GABA(A) receptor subunits as a result of progesterone withdrawal.

  11. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    Directory of Open Access Journals (Sweden)

    Florian Wegner

    Full Text Available BACKGROUND: Human fetal midbrain-derived neural progenitor cells (NPCs may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+-K(+-Cl(- co-transporter 1 (NKCC1-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. CONCLUSIONS/SIGNIFICANCE: These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  12. Taste responses in mice lacking taste receptor subunit T1R1

    Science.gov (United States)

    Kusuhara, Yoko; Yoshida, Ryusuke; Ohkuri, Tadahiro; Yasumatsu, Keiko; Voigt, Anja; Hübner, Sandra; Maeda, Katsumasa; Boehm, Ulrich; Meyerhof, Wolfgang; Ninomiya, Yuzo

    2013-01-01

    The T1R1 receptor subunit acts as an umami taste receptor in combination with its partner, T1R3. In addition, metabotropic glutamate receptors (brain and taste variants of mGluR1 and mGluR4) are thought to function as umami taste receptors. To elucidate the function of T1R1 and the contribution of mGluRs to umami taste detection in vivo, we used newly developed knock-out (T1R1−/−) mice, which lack the entire coding region of the Tas1r1 gene and express mCherry in T1R1-expressing cells. Gustatory nerve recordings demonstrated that T1R1−/− mice exhibited a serious deficit in inosine monophosphate-elicited synergy but substantial residual responses to glutamate alone in both chorda tympani and glossopharyngeal nerves. Interestingly, chorda tympani nerve responses to sweeteners were smaller in T1R1−/− mice. Taste cell recordings demonstrated that many mCherry-expressing taste cells in T1R1+/− mice responded to sweet and umami compounds, whereas those in T1R1−/− mice responded to sweet stimuli. The proportion of sweet-responsive cells was smaller in T1R1−/− than in T1R1+/− mice. Single-cell RT-PCR demonstrated that some single mCherry-expressing cells expressed all three T1R subunits. Chorda tympani and glossopharyngeal nerve responses to glutamate were significantly inhibited by addition of mGluR antagonists in both T1R1−/− and T1R1+/− mice. Conditioned taste aversion tests demonstrated that both T1R1−/− and T1R1+/− mice were equally capable of discriminating glutamate from other basic taste stimuli. Avoidance conditioned to glutamate was significantly reduced by addition of mGluR antagonists. These results suggest that T1R1-expressing cells mainly contribute to umami taste synergism and partly to sweet sensitivity and that mGluRs are involved in the detection of umami compounds. PMID:23339178

  13. Neurosteroid withdrawal regulates GABA-A receptor α4-subunit expression and seizure susceptibility by activation of progesterone receptor-independent early growth response factor-3 pathway.

    Science.gov (United States)

    Gangisetty, O; Reddy, D S

    2010-10-27

    Neurosteroids regulate GABA-A receptor plasticity. Neurosteroid withdrawal occurs during menstruation and is associated with a marked increase in expression of GABA-A receptor α4-subunit, a key subunit linked to enhanced neuronal excitability, seizure susceptibility and benzodiazepine resistance. However, the molecular mechanisms underlying the upregulation of α4-subunit expression remain unclear. Here we utilized the progesterone receptor (PR) knockout mouse to investigate molecular pathways of PR and the transcription factor early growth response factor-3 (Egr3) in regulation of the GABA-A receptor α4-subunit expression in the hippocampus in a mouse neurosteroid withdrawal paradigm. Neurosteroid withdrawal induced a threefold increase in α4-subunit expression in wild-type mice, but this upregulation was unchanged in PR knockout mice. The expression of Egr3, which controls α4-subunit transcription, was increased significantly following neurosteroid withdrawal in wild-type and PR knockout mice. Neurosteroid withdrawal-induced α4-subunit upregulation was completely suppressed by antisense Egr3 inhibition. In the hippocampus kindling model of epilepsy, there was heightened seizure activity, significant reduction in the antiseizure sensitivity of diazepam (a benzodiazepine insensitive at α4βγ-receptors) and conferral of increased seizure protection of flumazenil (a low-affinity agonist at α4βγ-receptors) in neurosteroid-withdrawn wild-type and PR knockout mice. These observations are consistent with enhanced α4-containing receptor abundance in vivo. Neurosteroid withdrawal-induced seizure exacerbation, diazepam insensitivity, and flumazenil efficacy in the kindling model were reversed by inhibition of Egr3. These results indicate that neurosteroid withdrawal-induced upregulation of GABA-A receptor α4-subunit expression is mediated by the Egr3 via a PR-independent signaling pathway. These findings help advance our understanding of the molecular basis of

  14. Deletion of the GluA1 AMPA Receptor Subunit Alters the Expression of Short-Term Memory

    Science.gov (United States)

    Sanderson, David J.; Sprengel, Rolf; Seeburg, Peter H.; Bannerman, David M.

    2011-01-01

    Deletion of the GluA1 AMPA receptor subunit selectively impairs short-term memory for spatial locations. We further investigated this deficit by examining memory for discrete nonspatial visual stimuli in an operant chamber. Unconditioned suppression of magazine responding to visual stimuli was measured in wild-type and GluA1 knockout mice.…

  15. A Transmembrane Amino Acid in the GABAA Receptor β2 Subunit Critical for the Actions of Alcohols and Anesthetics

    Science.gov (United States)

    McCracken, Mandy L.; Borghese, Cecilia M.; Trudell, James R.

    2010-01-01

    Alcohols and inhaled anesthetics enhance the function of GABAA receptors containing α, β, and γ subunits. Molecular analysis has focused on the role of the α subunits; however, there is evidence that the β subunits may also be important. The goal of our study was to determine whether Asn265, which is homologous to the site implicated in the α subunit (Ser270), contributes to an alcohol and volatile anesthetic binding site in the GABAA receptor β2 subunit. We substituted cysteine for Asn265 and exposed the mutant to the sulfhydryl-specific reagent octyl methanethiosulfonate (OMTS). We used two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes and found that, after OMTS application, GABA-induced currents were irreversibly potentiated in mutant α1β2(N265C)γ2S receptors [but not α1β2(I264C)γ2S], presumably because of the covalent linking of octanethiol to the thiol group in the substituted cysteine. It is noteworthy that this effect was blocked when OMTS was applied in the presence of octanol. We found that potentiation by butanol, octanol, or isoflurane in the N265C mutant was nearly abolished after the application of OMTS, suggesting that an alcohol and volatile anesthetic binding site at position 265 of the β2 subunit was irreversibly occupied by octanethiol and consequently prevented butanol or isoflurane from binding and producing their effects. OMTS did not affect modulation or direct activation by pentobarbital, but there was a partial reduction of allosteric modulation by flunitrazepam and alphaxalone in mutant α1β2(N265C)γ2S receptors after OMTS was applied. Our findings provide evidence that Asn265 may contribute to an alcohol and anesthetic binding site. PMID:20826568

  16. GluN2A subunit-containing NMDA receptors are the preferential neuronal targets of homocysteine

    Directory of Open Access Journals (Sweden)

    Dmitry A Sibarov

    2016-11-01

    Full Text Available Homocysteine (HCY is an endogenous redox active amino acid, best known as contributor to various neurodegenerative disorders. Although it is known that HCY can activate NMDA receptors (NMDARs, the mechanisms of its action on receptors composed of different NMDA receptor subunits remains almost unknown. In this study, using imaging and patch clamp technique in cultured cortical neurons and heterologous expression in HEK293T cells we tested the agonist activity of HCY on NMDARs composed of GluN1 and GluN2A subunits (GluN1/2A receptors and GluN1 and GluN2B subunits (GluN1/2B receptors. We demonstrate that the time courses of Ca2+ transients and membrane currents activated by HCY and NMDA in cortical neurons are drastically different. Application of HCY to cortical neurons induced responses, which in contrast to currents induced by NMDA (both in the presence of glycine considerably decreased to steady state of small amplitude. In contrast to NMDA, HCY-activated currents at steady state were resistant to the selective GluN2B subunit inhibitor ifenprodil. In calcium-free external solution the decrease of NMDA evoked currents was abolished, suggesting the Ca2+-dependent NMDAR desensitization. Under these conditions HCY evoked currents still declined almost to the baseline suggesting Ca2+-independent desensitization. In HEK293T cells HCY activated NMDARs of GluN1/2A and GluN1/2B subunit compositions with EC50s of 9.7 ± 1.8 μM and 61.8 ± 8.9 μM, respectively. Recombinant GluN1/2A receptors, however, did not desensitize by HCY, whereas GluN1/2B receptors were almost fully desensitized by HCY. Thus, HCY is a high affinity agonist of NMDARs preferring the GluN1/2A subunit composition. Our data suggest that HCY induced native NMDAR currents in neurons are mainly mediated by the synaptic type GluN1/2A NMDARs. This implies that in hyperhomocysteinemia, a disorder with enlarged level of HCY in plasma, HCY may persistently contribute to postsynaptic

  17. GABA A receptor π subunit promotes apoptosis of HTR-8/SVneo trophoblastic cells: Implications in preeclampsia.

    Science.gov (United States)

    Lu, Junjie; Zhang, Qian; Tan, Dongmei; Luo, Wenping; Zhao, Hai; Ma, Jing; Liang, Hao; Tan, Yi

    2016-07-01

    Gamma-aminobutyric acid (GABA) functions primarily as an inhibitory neurotransmitter through its receptors in the mature central nervous system. The GABA type A receptor π subunit (GABRP) has been identified in the tissues of the reproductive system, particularly in the uterus. In addition, we have previously detected GABRP expression in both human and mouse placentas. To examine the role of GABRP in trophoblastic cell invasion, we constructed a pIRES2-GABRP-EGFP plasmid which was used for the transfection of a human placental cell line derived from first trimester extravillous trophoblasts (HTR-8/SVneo). The number of invaded cells was decreased by GABRP overexpression. Notably, the decrease in the invasive cell number may be due to the increased apoptosis of the HTR-8/SVneo cells following GABRP transfection, which was further confirmed by flow cytometry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Based on the increased apoptosis of trophoblastic cells in pregnancies complicated by preeclampsia (PE) and the fact that GABRP promotes the apoptosis of trophoblastic cells, we hypothesized that GABRP expression is increased in the placental tissues from patients with PE compared with that in the normal groups and this hypothesis was confirmed by RT-qPCR and immunohistochemical analysis. Taken together, these findings imply that GABRP plays an important role in placentation and this pathway may be a promising molecular target for the development of novel therapeutic strategies for PE.

  18. Resequencing of the auxiliary GABAB receptor subunit gene KCTD12 in chronic tinnitus

    Directory of Open Access Journals (Sweden)

    Philipp G Sand

    2012-05-01

    Full Text Available Tinnitus is a common and often incapacitating hearing disorder marked by the perception of phantom sounds. Susceptibility factors remain largely unknown but GABAB receptor signalling has long been implicated in the response to treatment and, putatively, in the etiology of the disorder. We hypothesized that variation in KCTD12, the gene encoding an auxiliary subunit of GABAB receptors, could help to predict the risk of developing tinnitus. 95 Caucasian outpatients with a diagnosis of chronic tinnitus were systematically screened for mutations in the KCTD12 open reading frame and the adjacent 3' untranslated region by Sanger sequencing. Allele frequencies were determined for 14 known variants of which three (rs73237446, rs34544607 and rs41287030 were polymorphic. When allele frequencies were compared to data from a large reference population of European ancestry, rs34544607 was associated with tinnitus (p=.04. However, KCTD12 genotype did not predict tinnitus severity (p=.52 and the association with rs34544607 was weakened after screening 50 additional cases (p=.07. Pending replication in a larger cohort, KCTD12 may act as a risk modifier in chronic tinnitus. Issues that are yet to be addressed include the effects of neighbouring variants, e.g. in the KCTD12 gene regulatory region, plus interactions with variants of GABAB1 and GABAB2.

  19. Characterisation of the human NMDA receptor subunit NR3A glycine binding site

    DEFF Research Database (Denmark)

    Nilsson, A; Duan, J; Mo-Boquist, L-L

    2007-01-01

    In this study, we characterise the binding site of the human N-methyl-d-aspartate (NMDA) receptor subunit NR3A. Saturation radioligand binding of the NMDA receptor agonists [(3)H]-glycine and [(3)H]-glutamate showed that only glycine binds to human NR3A (hNR3A) with high affinity (K(d)=535nM (277...... NR1 glycine site agonist d-serine and partial agonist HA-966 (3-amino-1-hydroxypyrrolid-2-one), similarly to glycine displaced [(3)H]-glycine monophasically, suggesting a single common binding site. However, neither the partial agonist d-cycloserine nor the antagonist 7-chlorokynurenic acid displaced...... [(3)H]-glycine. Using homology modelling, a model of the NR3A binding pocket was generated which we suggest can be used to identify candidate agonists and antagonists. Our data show that glycine is a ligand, and most probably the endogenous ligand, for native NR3A at a binding site with unique...

  20. The role of the AMPA receptor and 5-HT(3) receptor on aggressive behavior and depressive-like symptoms in chronic social isolation-reared mice.

    Science.gov (United States)

    Shimizu, Koh; Kurosawa, Natsuki; Seki, Kenjiro

    2016-01-01

    Chronic social isolation (SI)-reared mice exhibit aggressive and depressive-like behaviors. However, the pathophysiological changes caused by chronic SI remain unclear. The hypothalamus and amygdala have been suggested to be associated with the stress of SI. In addition to serotonin 3 (5-HT3) receptors, AMPA receptors have also been suggested to be involved in aggressive behavior and depressive-like symptoms in animals. Therefore, we examined whether chronic SI affects AMPA and 5-HT3 receptor expression levels in these regions. A Western blot analysis revealed that after four weeks of SI, mice exhibited up-regulated AMPA receptor subunit (GluR1, GluR2) protein levels in the amygdala and down-regulated hypothalamic 5-HT3 receptor protein levels. The AMPA/kainate receptor antagonist NBQX (10 mg/kg; i.p.) attenuated SI-induced depressive-like symptoms but not aggressive behavior. Intra-amygdalar infusions of the selective AMPA receptor agonist (S)-AMPA (10 μM) induced despair-like behavior, but not sucrose preference or aggressive behavior, in mice not reared in SI (naïve mice). Alternatively, treatment with the 5-HT3 receptor agonist SR57227A (3.0 mg/kg; i.p.) decreased aggression levels. In addition, intra-hypothalamic infusions of the 5-HT3 receptor antagonist ondansetron (3 μM) did not trigger aggressive behavior in naïve mice; however, the administration of ondansetron (0.3 mg/kg; i.p.) increased aggression levels in two-week SI mice, which rarely exhibited the aggressive behavior. Moreover, ondansetron did not affect the depressive-like symptoms of the SI mice. These results suggest that SI-induced up-regulation of GluR1 and GluR2 subunits protein levels in the amygdalar region and down-regulation of 5-HT3 receptor proteins level in the hypothalamic region are associated with the effect of AMPA receptor agonist and 5-HT3 receptor antagonist -induced aggressive behavior and depressive-like symptoms. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Pharmacogenetic study of seven polymorphisms in three nicotinic acetylcholine receptor subunits in smoking-cessation therapies.

    Science.gov (United States)

    Pintarelli, Giulia; Galvan, Antonella; Pozzi, Paolo; Noci, Sara; Pasetti, Giovanna; Sala, Francesca; Pastorino, Ugo; Boffi, Roberto; Colombo, Francesca

    2017-12-01

    Smoking-cessation therapy reduces the risk of smoking-related diseases, but is successful only in a fraction of smokers. There is growing evidence that genetic variations in nicotinic acetylcholine receptor (nAChR) subunits influence the risk of nicotine dependence and the ability to quit smoking. To investigate the role of polymorphisms in nAChR genes on smoking quantity and the outcome of smoking-cessation therapies, we carried out an association study on 337 smokers who underwent pharmacotherapy with varenicline, bupropion, nicotine replacement therapy (NRT) alone, or NRT plus bupropion. Smoking habit and abstention were assessed from the number of cigarettes smoked per day (CPD) and the exhaled CO (eCO), at baseline and up to 12 months. We genotyped seven polymorphisms in genes encoding the nAChR subunits CHRNA4, CHRNA5, and CHRNB2. At baseline, both CPD and eCO were associated with polymorphisms in the CHRNA5 locus (rs503464, rs55853698, rs55781567 and rs16969968; P < 0.01). rs503464, a variant in the 5'-UTR of CHRNA5, was also associated with short-, mid- and long-term responses to therapy (P = 0.011, P = 0.0043, P = 0.020, respectively), although after correction for multiple testing only the association at the mid-term assessment remained significant (FDR = 0.03). These data support the role of individual genetic makeup in the ability to quit smoking.

  2. Sub-unit Specific Regulation of Type-A GABAergic Receptors during Post-Natal Development of the Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Liisa A. Tremere

    2011-01-01

    Full Text Available The GABA-A receptor has been strongly implicated in the organization and function of cortical sensory circuits in the adult mammal. In the present work, changes in the expression patterns of select GABA-A subunits were examined as a function of development. The RNA expression profiles for three subunit types were studied, α1, β2/3 and δ at four developmental time points, (p0, p15, p30 and p90. The o1, β2/3 subunits were present at birth and following a modest increase early in life; mRNA expression for these subunits were found at stable levels throughout life. The expression pattern for the δ subunit showed the most dramatic changes in the number of positive cells as a function of age. In early life, p0 through p15 expression of mRNA for the δ subunit was quite low but increased in later life, p30 and p90. Together these data suggest that much of the potential for inhibitory connectivity is laid down in the pre and early post-natal periods.

  3. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    Science.gov (United States)

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  4. Short-term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in hippocampus.

    Science.gov (United States)

    Xie, Meilan; Yan, Jie; He, Chao; Yang, Li; Tan, Gang; Li, Chao; Hu, Zhian; Wang, Jiali

    2015-06-01

    Hippocampus-dependent learning memory is sensitive to sleep deprivation (SD). Although the ionotropic glutamate receptors play a vital role in synaptic plasticity and learning and memory, however, whether the expression of these receptor subunits is modulated by sleep loss remains unclear. In the present study, western blotting was performed by probing with specific antibodies against the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1, GluA2, GluA3, and against the N-methyl-d-aspartate (NMDA) glutamate receptor subunits GluN1, GluN2A, GluN2B. In hippocampus, down regulation of surface GluA1 and GluN2A surface expression were observed in both SD groups. However, surface expression level of GluA2, GluA3, GluN1 and GluN2B was significantly up-regulated in 8h-SD rats when compared to the 4h-SD rats. In parallel with the complex changes in AMPA and NMDA receptor subunit expressions, we found the 8h-SD impaired rat spatial working memory in 30-s-delay T-maze task, whereas no impairment of spatial learning was observed in 4h-SD rats. These results indicate that sleep loss alters the relative expression levels of the AMPA and NMDA receptors, thus affects the synaptic strength and capacity for plasticity and partially contributes to spatial memory impairment. Copyright © 2015. Published by Elsevier B.V.

  5. [Beta]-Adrenergic Receptor Activation Rescues Theta Frequency Stimulation-Induced LTP Deficits in Mice Expressing C-Terminally Truncated NMDA Receptor GluN2A Subunits

    Science.gov (United States)

    Moody, Teena D.; Watabe, Ayako M.; Indersmitten, Tim; Komiyama, Noboru H.; Grant, Seth G. N.; O'Dell, Thomas J.

    2011-01-01

    Through protein interactions mediated by their cytoplasmic C termini the GluN2A and GluN2B subunits of NMDA receptors (NMDARs) have a key role in the formation of NMDAR signaling complexes at excitatory synapses. Although these signaling complexes are thought to have a crucial role in NMDAR-dependent forms of synaptic plasticity such as long-term…

  6. ActRIIA and BMPRII Type II BMP receptor subunits selectively required for Smad4-independent BMP7-evoked chemotaxis.

    Directory of Open Access Journals (Sweden)

    Jeanette C Perron

    2009-12-01

    Full Text Available Bone morphogenetic protein (BMP-evoked reorientation and chemotaxis of cells occurs with rapid onset and involves events local to the cell membrane. The signaling pathways underlying these rapid processes likely diverge from those mediating classical transcriptional responses to BMPs but it remains unclear how BMP receptors are utilized to generate distinct intracellular mechanisms. We show that BMP7-evoked chemotaxis of monocytic cells depends on the activity of canonical type II BMP receptors. Although the three canonical type II BMP receptors are expressed in monocytic cells, inhibition of receptor subunit expression by RNAi reveals that ActRIIA and BMPRII, but not ActRIIB, are each essential for BMP7-evoked chemotaxis but not required individually for BMP-mediated induction. Furthermore, the chemotactic response to BMP7 does not involve canonical Smad4-dependent signaling but acts through PI3K-dependent signaling, illustrating selective activation of distinct intracellular events through differential engagement of receptors. We suggest a model of a BMP receptor complex in which the coordinated activity of ActRIIA and BMPRII receptor subunits selectively mediates the chemotactic response to BMP7.

  7. Assessment of NMDA receptor NR1 subunit hypofunction in mice as a model for schizophrenia.

    Science.gov (United States)

    Halene, T B; Ehrlichman, R S; Liang, Y; Christian, E P; Jonak, G J; Gur, T L; Blendy, J A; Dow, H C; Brodkin, E S; Schneider, F; Gur, R C; Siegel, S J

    2009-10-01

    N-methyl-D-aspartate receptors (NMDARs) play a pivotal role in excitatory neurotransmission, synaptic plasticity and brain development. Clinical and experimental evidence suggests a dysregulation of NMDAR function and glutamatergic pathways in the pathophysiology of schizophrenia. We evaluated electrophysiological and behavioral properties of NMDAR deficiency utilizing mice that express only 5-10% of the normal level of NMDAR NR1 subunit. Auditory and visual event related potentials yielded significantly increased amplitudes for the P20 and N40 components in NMDAR deficient (NR1(neo)-/-) mice suggesting decreased inhibitory tone. Compared to wild types, NR1(neo)-/- mice spent less time in social interactions and showed reduced nest building. NR1(neo)-/- mice displayed a preference for open arms of a zero maze and central zone of an open field, possibly reflecting decreased anxiety-related behavioral inhibition. However, locomotor activity did not differ between groups in either home cage environment or during behavioral testing. NR1(neo)-/- mice displayed hyperactivity only when placed in a large unfamiliar environment, suggesting that neither increased anxiety nor non-specific motor activation accounts for differential behavioral patterns. Data suggest that NMDAR NR1 deficiency causes disinhibition in sensory processing as well as reduced behavioral inhibition and impaired social interactions. The behavioral signature in NR1(neo)-/- mice supports the impact of impaired NMDAR function in a mouse model with possible relevance to negative symptoms in schizophrenia.

  8. Increased GABA(A receptor ε-subunit expression on ventral respiratory column neurons protects breathing during pregnancy.

    Directory of Open Access Journals (Sweden)

    Keith B Hengen

    Full Text Available GABAergic signaling is essential for proper respiratory function. Potentiation of this signaling with allosteric modulators such as anesthetics, barbiturates, and neurosteroids can lead to respiratory arrest. Paradoxically, pregnant animals continue to breathe normally despite nearly 100-fold increases in circulating neurosteroids. ε subunit-containing GABA(ARs are insensitive to positive allosteric modulation, thus we hypothesized that pregnant rats increase ε subunit-containing GABA(AR expression on brainstem neurons of the ventral respiratory column (VRC. In vivo, pregnancy rendered respiratory motor output insensitive to otherwise lethal doses of pentobarbital, a barbiturate previously used to categorize the ε subunit. Using electrode array recordings in vitro, we demonstrated that putative respiratory neurons of the preBötzinger Complex (preBötC were also rendered insensitive to the effects of pentobarbital during pregnancy, but unit activity in the VRC was rapidly inhibited by the GABA(AR agonist, muscimol. VRC unit activity from virgin and post-partum females was potently inhibited by both pentobarbital and muscimol. Brainstem ε subunit mRNA and protein levels were increased in pregnant rats, and GABA(AR ε subunit expression co-localized with a marker of rhythm generating neurons (neurokinin 1 receptors in the preBötC. These data support the hypothesis that pregnancy renders respiratory motor output and respiratory neuron activity insensitive to barbiturates, most likely via increased ε subunit-containing GABA(AR expression on respiratory rhythm-generating neurons. Increased ε subunit expression may be critical to preserve respiratory function (and life despite increased neurosteroid levels during pregnancy.

  9. Acquisition and expression of conditioned taste aversion differentially affects extracellular signal regulated kinase and glutamate receptor phosphorylation in rat prefrontal cortex and nucleus accumbens.

    Science.gov (United States)

    Marotta, Roberto; Fenu, Sandro; Scheggi, Simona; Vinci, Stefania; Rosas, Michela; Falqui, Andrea; Gambarana, Carla; De Montis, M Graziella; Acquas, Elio

    2014-01-01

    Conditioned taste aversion (CTA) can be applied to study associative learning and its relevant underpinning molecular mechanisms in discrete brain regions. The present study examined, by immunohistochemistry and immunocytochemistry, the effects of acquisition and expression of lithium-induced CTA on activated Extracellular signal Regulated Kinase (p-ERK) in the prefrontal cortex (PFCx) and nucleus accumbens (Acb) of male Sprague-Dawley rats. The study also examined, by immunoblotting, whether acquisition and expression of lithium-induced CTA resulted in modified levels of phosphorylation of glutamate receptor subunits (NR1 and GluR1) and Thr(34)- and Thr(75-Dopamine-and-cAMP-Regulated) PhosphoProtein (DARPP-32). CTA acquisition was associated with an increase of p-ERK-positive neurons and phosphorylated NR1 receptor subunit (p-NR1) in the PFCx, whereas p-GluR1, p-Thr(34)- and p-Thr(75)-DARPP-32 levels were not changed in this brain region. CTA expression increased the number of p-ERK-positive neurons in the shell (AcbSh) and core (AcbC) but left unmodified p-NR1, p-GluR1, p-Thr(34)- and p-Thr(75-DARPP-32) levels. Furthermore, post-embedding immunogold quantitative analysis in AcbSh revealed that CTA expression significantly increased nuclear p-ERK immunostaining as well as p-ERK-labeled axo-spinous contacts. Overall, these results indicate that ERK and NR1, but not GluR1 and DARPP-32, are differentially phosphorylated as a consequence of acquisition and expression of aversive associative learning. Moreover, these results confirm that CTA represents an useful approach to study the molecular basis of associative learning in rats and suggest the involvement of ERK cascade in learning-associated synaptic plasticity.

  10. Acquisition and expression of Conditioned Taste Aversion differentially affects Extracellular signal Regulated Kinase and Glutamate receptor phosphorylation in rat Prefrontal Cortex and Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Roberto eMarotta

    2014-05-01

    Full Text Available Conditioned taste aversion (CTA can be applied to study associative learning and its relevant underpinning molecular mechanisms in discrete brain regions. The present study examined, by immunohistochemistry and immunocytochemistry, the effects of acquisition and expression of lithium-induced CTA on activated Extracellular signal Regulated Kinase (p-ERK in the prefrontal cortex (PFCx and nucleus accumbens (Acb of male Sprague-Dawley rats. The study also examined, by immunoblotting, whether acquisition and expression of lithium-induced CTA resulted in modified levels of phosphorylation of glutamate receptor subunits (NR1 and GluR1 and Thr34- and Thr75-Dopamine-and-cAMP-Regulated PhosphoProtein (DARPP-32. CTA acquisition was associated with an increase of p-ERK-positive neurons and phosphorylated NR1 receptor subunit (p-NR1 in the PFCx, whereas p-GluR1, p-Thr34- and p-Thr75-DARPP-32 levels were not changed in this brain region. CTA expression increased the number of p-ERK-positive neurons in the shell (AcbSh and core (AcbC but left unmodified p-NR1, p-GluR1, p-Thr34- and p-Thr75-DARPP-32 levels. Furthermore, post-embedding immunogold quantitative analysis in AcbSh revealed that CTA expression significantly increased nuclear p-ERK immunostaining as well as p-ERK-labeled axo-spinous contacts. Overall, these results indicate that ERK and NR1, but not GluR1 and DARPP-32, are differentially phosphorylated as a consequence of acquisition and expression of aversive associative learning. Moreover, these results confirm that CTA represents an useful approach to study the molecular basis of associative learning in rats and suggest the involvement of ERK cascade in learning-associated synaptic plasticity.

  11. Sulfonylurea Receptor 1 Subunits of ATP-Sensitive Potassium Channels and Myocardial Ischemia/Reperfusion Injury

    Science.gov (United States)

    Lefer, David J.; Nichols, Colin G.; Coetzee, William A.

    2009-01-01

    KATP channels are generally cardioprotective under conditions of metabolic impairment, consisting of pore-forming (Kir6.1 and/or Kir6.2) and sulphonylurea-binding, modulatory subunits (SUR1, SUR2A or SUR2B). Cardiovascular KATP channels are generally thought to consist of Kir6.2/SUR2A subunits (in the case of heart muscle) or Kir6.1/SUR2B subunits (smooth muscle), whereas SUR1-containing channels have well-documented roles in pancreatic insulin release. Recent data, however, demonstrated the presence of SUR1 subunits in mouse cardiac tissue (particularly in atria) and a surprising protection from myocardial ischemia/reperfusion in SUR1-null mice. Here we review some of the extra-pancreatic roles assigned to SUR1 subunits and consider whether these might be involved in the sequelae of ischemia/reperfusion. PMID:19577714

  12. Downregulation of GABA[Subscript A] Receptor Protein Subunits a6, ß2, d, e, ?2, ?, and ?2 in Superior Frontal Cortex of Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.

    2014-01-01

    We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…

  13. Attenuated AMPA receptor expression allows glioblastoma cell survival in glutamate-rich environment.

    Directory of Open Access Journals (Sweden)

    Dannis G van Vuurden

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM cells secrete large amounts of glutamate that can trigger AMPA-type glutamate receptors (AMPARs. This commonly results in Na(+ and Ca(2+-permeability and thereby in excitotoxic cell death of the surrounding neurons. Here we investigated how the GBM cells themselves survive in a glutamate-rich environment. METHODS AND FINDINGS: In silico analysis of published reports shows down-regulation of all ionotropic glutamate receptors in GBM as compared to normal brain. In vitro, in all GBM samples tested, mRNA expression of AMPAR subunit GluR1, 2 and 4 was relatively low compared to adult and fetal total brain mRNA and adult cerebellum mRNA. These findings were in line with primary GBM samples, in which protein expression patterns were down-regulated as compared to the normal tissue. Furthermore, mislocalized expression of these receptors was found. Sequence analysis of GluR2 RNA in primary and established GBM cell lines showed that the GluR2 subunit was found to be partly unedited. CONCLUSIONS: Together with the lack of functional effect of AMPAR inhibition by NBQX our results suggest that down-regulation and afunctionality of AMPARs, enable GBM cells to survive in a high glutamate environment without going into excitotoxic cell death themselves. It can be speculated that specific AMPA receptor inhibitors may protect normal neurons against the high glutamate microenvironment of GBM tumors.

  14. NEUROSTEROID WITHDRAWAL REGULATES GABA-A RECEPTOR α4-SUBUNIT EXPRESSION AND SEIZURE SUSCEPTIBILITY BY ACTIVATION OF PR-INDEPENDENT EGR3 PATHWAY

    Science.gov (United States)

    Gangisetty, Omkaram; Reddy, Doodipala Samba

    2010-01-01

    Neurosteroids regulate GABA-A receptor plasticity. Neurosteroid withdrawal occurs during menstruation and is associated with a marked increase in expression of GABA-A receptor α4-subunit, a key subunit linked to enhanced neuronal excitability, seizure susceptibility and benzodiazepine resistance. However, the molecular mechanisms underlying the upregulation of α4-subunit expression remain unclear. Here we utilized the progesterone receptor (PR) knockout mouse to investigate molecular pathways of PR and the transcription factor early growth response factor-3 (Egr3) in regulation of the GABA-A receptor α4-subunit expression in the hippocampus in a mouse neurosteroid withdrawal paradigm. Neurosteroid withdrawal induced a threefold increase in α4-subunit expression in wild-type mice, but this upregulation was unchanged in PR knockout mice. The expression of Egr3, which controls α4-subunit transcription, was increased significantly following neurosteroid withdrawal in wild-type and PR knockout mice. Neurosteroid withdrawal-induced α4-subunit upregulation was completely suppressed by antisense Egr3 inhibition. In the hippocampus kindling model of epilepsy, there was heightened seizure activity, significant reduction in the antiseizure sensitivity of diazepam (a benzodiazepine insensitive at α4βγ-receptors) and conferral of increased seizure protection of flumazenil (a low-affinity agonist at α4βγ-receptors) in neurosteroid-withdrawn wild-type and PR knockout mice. These observations are consistent with enhanced α4-containing receptor abundance in vivo. Neurosteroid withdrawal-induced seizure exacerbation, diazepam insensitivity, and flumazenil efficacy in the kindling model were reversed by inhibition of Egr3. These results indicate that neurosteroid withdrawal-induced upregulation of GABA-A receptor α4-subunit expression is mediated by the Egr3 via a PR-independent signaling pathway. These findings help advance our understanding of the molecular basis of

  15. Mice Lacking the Alpha9 Subunit of the Nicotinic Acetylcholine Receptor Exhibit Deficits in Frequency Difference Limens and Sound Localization

    Directory of Open Access Journals (Sweden)

    Amanda Clause

    2017-06-01

    Full Text Available Sound processing in the cochlea is modulated by cholinergic efferent axons arising from medial olivocochlear neurons in the brainstem. These axons contact outer hair cells in the mature cochlea and inner hair cells during development and activate nicotinic acetylcholine receptors composed of α9 and α10 subunits. The α9 subunit is necessary for mediating the effects of acetylcholine on hair cells as genetic deletion of the α9 subunit results in functional cholinergic de-efferentation of the cochlea. Cholinergic modulation of spontaneous cochlear activity before hearing onset is important for the maturation of central auditory circuits. In α9KO mice, the developmental refinement of inhibitory afferents to the lateral superior olive is disturbed, resulting in decreased tonotopic organization of this sound localization nucleus. In this study, we used behavioral tests to investigate whether the circuit anomalies in α9KO mice correlate with sound localization or sound frequency processing. Using a conditioned lick suppression task to measure sound localization, we found that three out of four α9KO mice showed impaired minimum audible angles. Using a prepulse inhibition of the acoustic startle response paradigm, we found that the ability of α9KO mice to detect sound frequency changes was impaired, whereas their ability to detect sound intensity changes was not. These results demonstrate that cholinergic, nicotinic α9 subunit mediated transmission in the developing cochlear plays an important role in the maturation of hearing.

  16. The IFNAR1 subunit of the type I IFN receptor complex contains a functional nuclear localization sequence.

    Science.gov (United States)

    Subramaniam, Prem S; Johnson, Howard M

    2004-12-17

    A nuclear localization sequence (NLS) in the type II interferon (IFN) IFN gamma, which is responsible for the nuclear translocation of both the ligand and the alpha-subunit (IFNGR1) of the receptor complex, has previously been characterized and its role in signaling examined in detail. We have now identified an NLS in the type I IFN receptor (IFNAR) common subunit IFNAR1 from humans and show that the human IFNAR1 subunit can translocate to the nucleus following human IFN beta stimulation. An NLS in human IFNAR1 is located in the extracellular domain of IFNAR1 within the sequence (382)RKIIEKKT (numbered for the precursor form). Nuclear import by the NLS functions in a conventional fashion requiring cytosolic import factors, is energy-dependent and inhibited by the prototypical NLS of the SV40 large T-antigen. These studies provide a mechanism for nuclear import of IFNAR1, as well as for type I IFN ligands, and a starting point for studying an alternate role for IFNAR1 in nuclear signaling within the type I IFN system.

  17. Delayed internalization and lack of recycling in a beta2-adrenergic receptor fused to the G protein alpha-subunit

    Directory of Open Access Journals (Sweden)

    Floridi Aristide

    2008-10-01

    Full Text Available Abstract Background Chimeric proteins obtained by the fusion of a G protein-coupled receptor (GPCR sequence to the N-terminus of the G protein α-subunit have been extensively used to investigate several aspects of GPCR signalling. Although both the receptor and the G protein generally maintain a fully functional state in such polypeptides, original observations made using a chimera between the β2-adrenergic receptor (β2AR and Gαs indicated that the fusion to the α-subunit resulted in a marked reduction of receptor desensitization and down-regulation. To further investigate this phenomenon, we have compared the rates of internalization and recycling between wild-type and Gαs-fused β2AR. Results The rate of agonist-induced internalization, measured as the disappearance of cell surface immunofluorescence in HEK293 cells permanently expressing N-terminus tagged receptors, was reduced three-fold by receptor-G protein fusion. However, both fused and non-fused receptors translocated to the same endocytic compartment, as determined by dual-label confocal analysis of cells co-expressing both proteins and transferrin co-localization. Receptor recycling, determined as the reversion of surface immunofluorescence following the addition of antagonist to cells that were previously exposed to agonist, markedly differed between wild-type and fused receptors. While most of the internalized β2AR returned rapidly to the plasma membrane, β2AR-Gαs did not recycle, and the observed slow recovery for the fusion protein immunofluorescence was entirely accounted for by protein synthesis. Conclusion The covalent linkage between β2AR and Gαs does not appear to alter the initial endocytic translocation of the two proteins, although there is reduced efficiency. It does, however, completely disrupt the process of receptor and G protein recycling. We conclude that the physical separation between receptor and Gα is not necessary for the transit to early endosomes

  18. Role of NMDA receptor GluN2D subunit in the antidepressant effects of enantiomers of ketamine

    Directory of Open Access Journals (Sweden)

    Soichiro Ide

    2017-11-01

    Full Text Available We investigated the rapid and sustained antidepressant effects of enantiomers of ketamine in N-methyl-d-aspartate (NMDA receptor GluN2D subunit knockout (GluN2D-KO mice. Intraperitoneal administration of ketamine or its enantiomers 10 min before the tail-suspension test exerted significant antidepressant effects on restraint stress-induced depression in both wildtype and GluN2D-KO mice. The antidepressant effects of (RS-ketamine and (S-ketamine were sustained 96 h after the injection in both wildtype and GluN2D-KO mice, but such sustained antidepressant effects of (R-ketamine were only observed in wildtype mice. These data suggest that the GluN2D subunit is critical for the sustained antidepressant effects of (R-ketamine.

  19. Expression of GABA(A) receptor subunit mRNAs by layer V pyramidal cells of the rat primary visual cortex.

    Science.gov (United States)

    Ruano, D; Perrais, D; Rossier, J; Ropert, N

    1997-04-01

    The expression of the GABA(A) receptor subunit mRNAs by layer V pyramidal neurons of the primary visual cortex and cerebellar Purkinje cells was analysed by single-cell reverse transcription of the mRNAs and amplification of the resulting cDNAs by the polymerase chain reaction. Neurons were identified by infrared videomicroscopy, and GABA(A)-mediated miniature inhibitory postsynaptic currents were recorded. In Purkinje cells, alpha1, beta2, beta3, gamma2S and gamma2L subunit mRNAs were detected within a single cell. In layer V pyramidal cells, a total of ten GABA(A) receptor subunit mRNAs could be detected, with a mean of seven subunit mRNAs per cell, suggesting GABA(A) receptor heterogeneity within a single pyramidal cell.

  20. Deletion of Asn{sup 281} in the {alpha}-subunit of the human insulin receptor causes constitutive activation of the receptor and insulin desensitization

    Energy Technology Data Exchange (ETDEWEB)

    Desbois-Mouthon, C.; Sert-Langeron, C.; Magre, J.; Blivet, M.J. [INSERM, Paris (France)] [and others

    1996-02-01

    We studied the structure and function of the insulin receptor (IR) in two sisters with leprechaunism. The patients had inherited alterations in the IR gene and were compound heterozygotes. Their paternal IR allele carried a major deletion, including exons 10-13, which shifted the reading frame and introduced a premature chain termination codon in the IR sequence. This allele was expressed at a very low level in cultured fibroblasts (<10% of total IR messenger ribonucleic acid content) and encoded a truncated protein lacking transmembrane and tyrosine kinase domains. The maternal IR allele was deleted of 3 bp in exon 3, causing the loss of Asn{sup 281} in the {alpha}-subunit. This allele generated levels of IR messenger ribonucleic acid and cell surface receptors similar to those seen in control fibroblasts. However, IRs from patients` cells had impaired insulin binding and exhibited in vivo and in vitro constitutive activation of autophosphorylation and tyrosine kinase activity. As a result of this IR-preactivated state, the cells were desensitized to insulin stimulation of glycogen and DNA syntheses. These findings strongly suggest that Asn{sup 281} of the IR {alpha}-subunit plays a critical role in the inhibitory constraint exerted by the extracellular {alpha}-subunit over the intracellular kinase activity. 59 refs., 6 figs.

  1. Selective increases of AMPA, NMDA and kainate receptor subunit mRNAs in the hippocampus and orbitofrontal cortex but not in prefrontal cortex of human alcoholics

    Directory of Open Access Journals (Sweden)

    Zhe eJin

    2014-01-01

    Full Text Available Glutamate is the main excitatory transmitter in the human brain. Drugs that affect the glutamatergic signaling will alter neuronal excitability. Ethanol inhibits glutamate receptors. We examined the expression level of glutamate receptor subunit mRNAs in human post-mortem samples from alcoholics and compared the results to brain samples from control subjects. RNA from hippocampal dentate gyrus (HP-DG, orbitofrontal cortex (OFC, and dorso-lateral prefrontal cortex (DL-PFC samples from 21 controls and 19 individuals with chronic alcohol dependence were included in the study. Total RNA was assayed using quantitative RT-PCR. Out of the 16 glutamate receptor subunits, mRNAs encoding two AMPA (2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-ylpropanoic acid receptor subunits GluA2 and GluA3; three kainate receptor subunits GluK2, GluK3 and GluK5 and five NMDA (N-methyl-D-aspartate receptor subunits GluN1, GluN2A, GluN2C, GluN2D and GluN3A were significantly increased in the HP-DG region in alcoholics. In the OFC, mRNA encoding the NMDA receptor subunit GluN3A was increased, whereas in the DL-PFC, no differences in mRNA levels were observed. Our laboratory has previously shown that the expression of genes encoding inhibitory GABA-A receptors is altered in the HP-DG and OFC of alcoholics (Jin et al., 2011. Whether the changes in one neurotransmitter system drives changes in the other or if they change independently is currently not known. The results demonstrate that excessive long-term alcohol consumption is associated with altered expression of genes encoding glutamate receptors in a brain region-specific manner. It is an intriguing possibility that genetic predisposition to alcoholism may contribute to these gene expression changes.

  2. Stabilization of GABA(A) receptors at endocytic zones is mediated by an AP2 binding motif within the GABA(A) receptor β3 subunit.

    Science.gov (United States)

    Smith, Katharine R; Muir, James; Rao, Yijian; Browarski, Marietta; Gruenig, Marielle C; Sheehan, David F; Haucke, Volker; Kittler, Josef T

    2012-02-15

    The strength of synaptic inhibition can be controlled by the stability and endocytosis of surface and synaptic GABA(A) receptors (GABA(A)Rs), but the surface receptor dynamics that underpin GABA(A)R recruitment to dendritic endocytic zones (EZs) have not been investigated. Stabilization of GABA(A)Rs at EZs is likely to be regulated by receptor interactions with the clathrin-adaptor AP2, but the molecular determinants of these associations remain poorly understood. Moreover, although surface GABA(A)R downmodulation plays a key role in pathological disinhibition in conditions such as ischemia and epilepsy, whether this occurs in an AP2-dependent manner also remains unclear. Here we report the characterization of a novel motif containing three arginine residues (405RRR407) within the GABA(A)R β3-subunit intracellular domain (ICD), responsible for the interaction with AP2 and GABA(A)R internalization. When this motif is disrupted, binding to AP2 is abolished in vitro and in rat brain. Using single-particle tracking, we reveal that surface β3-subunit-containing GABA(A)Rs exhibit highly confined behavior at EZs, which is dependent on AP2 interactions via this motif. Reduced stabilization of mutant GABA(A)Rs at EZs correlates with their reduced endocytosis and increased steady-state levels at synapses. By imaging wild-type or mutant super-ecliptic pHluorin-tagged GABA(A)Rs in neurons, we also show that, under conditions of oxygen-glucose deprivation to mimic cerebral ischemia, GABA(A)Rs are depleted from synapses in dendrites, depending on the 405RRR407 motif. Thus, AP2 binding to an RRR motif in the GABA(A)R β3-subunit ICD regulates GABA(A)R residency time at EZs, steady-state synaptic receptor levels, and pathological loss of GABA(A)Rs from synapses during simulated ischemia.

  3. Identification of a neuregulin and protein-tyrosine phosphatase response element in the nicotinic acetylcholine receptor epsilon subunit gene: regulatory role of an Rts transcription factor.

    Science.gov (United States)

    Sapru, M K; Florance, S K; Kirk, C; Goldman, D

    1998-02-03

    At the neuromuscular synapse, innervation induces endplate-specific expression of adult-type nicotinic acetylcholine receptors by selective expression of their subunit-encoding genes (alpha2betaepsilondelta) in endplate-associated myonuclei. These genes are specifically regulated by protein-tyrosine phosphatase (PTPase) activity. In addition, neuregulin/acetylcholine-receptor-inducing activity, a nerve-derived factor that stimulates nicotinic acetylcholine receptor synthesis, induces adult-type specific epsilon subunit gene expression via activation of a Ras/mitogen-activated protein kinase pathway. However, the DNA regulatory elements and the binding proteins that mediate PTPase and neuregulin-dependent gene expression remain unknown. Herein we report that PTPase, neuregulin, and Ras-dependent regulation of the epsilon subunit gene map to a 15-bp promoter sequence. Interestingly, this same 15-bp sequence appears to be necessary for low epsilon subunit gene expression in extrajunctional regions of the muscle fiber. Site-directed mutagenesis of a putative Ets binding site located within this 15-bp sequence, reduced PTPase, neuregulin, and Ras-dependent regulation. Overexpression of the rat muscle Ets-2 transcription factor resulted in a sequence-specific induction of epsilon subunit promoter activity. Further, a dominant negative mutant of Ets-2 abolished neuregulin-dependent induction of epsilon subunit gene expression. Thus, these results indicate a crucial role for the 15-bp element in determining synapse-specific and neuregulin-mediated motor neuron control of epsilon subunit gene expression and suggest the participation of Ets transcription factor(s) in this control.

  4. Pharmacological characterisation of α6β4* nicotinic acetylcholine receptors assembled from three different α6/α3 subunit chimeras in tsA201 cells

    DEFF Research Database (Denmark)

    Jensen, Anne Bjørnskov; Hoestgaard-Jensen, Kirsten; Jensen, Anders A.

    2014-01-01

    should be made keeping the molecular modifications in the α6 surrogate subunits in mind, this study sheds light on the pharmacological properties of α6β4⁎ nicotinic acetylcholine receptors and demonstrates the applicability of the C6F223L and C16F223L chimeras for studies of these receptors....

  5. Development of novel biosensors to study receptor-mediated activation of the G-protein α subunits Gsand Golf.

    Science.gov (United States)

    Yano, Hideaki; Provasi, Davide; Cai, Ning Sheng; Filizola, Marta; Ferré, Sergi; Javitch, Jonathan A

    2017-12-08

    Gα s (G s ) and Gα olf (G olf ) are highly homologous G-protein α subunits that activate adenylate cyclase, thereby serving as crucial mediators of intracellular signaling. Because of their dramatically different brain expression patterns, we studied similarities and differences between their activation processes with the aim of comparing their receptor coupling mechanisms. We engineered novel luciferase- and Venus-fused Gα constructs that can be used in bioluminescence resonance energy transfer assays. In conjunction with molecular simulations, these novel biosensors were used to determine receptor activation-induced changes in conformation. Relative movements in G s were consistent with the crystal structure of β 2 adrenergic receptor in complex with G s Conformational changes in G olf activation are shown to be similar to those in G s Overall the current study reveals general similarities between G s and G olf activation at the molecular level and provides a novel set of tools to search for G s - and G olf -specific receptor pharmacology. In view of the wide functional and pharmacological roles of G s - and G olf -coupled dopamine D 1 receptor and adenosine A 2A receptor in the brain and other organs, elucidating their differential structure-function relationships with G s and G olf might provide new approaches for the treatment of a variety of neuropsychiatric disorders. In particular, these novel biosensors can be used to reveal potentially therapeutic dopamine D 1 receptor and adenosine A 2A receptor ligands with functionally selective properties between G s and G olf signaling.

  6. Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels.

    Science.gov (United States)

    Asanov, Alexander; Sampieri, Alicia; Moreno, Claudia; Pacheco, Jonathan; Salgado, Alfonso; Sherry, Ryan; Vaca, Luis

    2015-01-01

    Depletion of intracellular calcium ion stores initiates a rapid cascade of events culminating with the activation of the so-called Store-Operated Channels (SOC) at the plasma membrane. Calcium influx via SOC is essential in the initiation of calcium-dependent intracellular signaling and for the refilling of internal calcium stores, ensuring the regeneration of the signaling cascade. In spite of the significance of this evolutionary conserved mechanism, the molecular identity of SOC has been the center of a heated controversy spanning over the last 20 years. Initial studies positioned some members of the transient receptor potential canonical (TRPC) channel superfamily of channels (with the more robust evidence pointing to TRPC1) as a putative SOC. Recent evidence indicates that Stromal Interacting Molecule 1 (STIM1) activates some members from the TRPC family of channels. However, the exact subunit composition of TRPC channels remains undetermined to this date. To identify the subunit composition of STIM1-activated TRPC channels, we developed novel method, which combines single channel electrophysiological measurements based on the patch clamp technique with single molecule fluorescence imaging. We termed this method Single ion Channel Single Molecule Detection technique (SC-SMD). Using SC-SMD method, we have obtained direct evidence of the subunit composition of TRPC channels activated by STIM1. Furthermore, our electrophysiological-imaging SC-SMD method provides evidence at the molecular level of the mechanism by which STIM1 and calmodulin antagonize to modulate TRPC channel activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Low Expression in Xenopus Oocytes and Unusual Functional Properties of α1β2γ2 GABAA Receptors with Non-Conventional Subunit Arrangement.

    Directory of Open Access Journals (Sweden)

    Roland Baur

    Full Text Available The major subunit isoform of GABAA receptors is α1β2γ2. The subunits are thought to surround an ion pore with the counterclockwise arrangement α1γ2β2α1β2 as seen from the outside of the neuron. These receptors have two agonist sites and one high affinity drug binding site specific for benzodiazepines. Recently, this receptor was postulated to assume alternative subunit stoichiometries and arrangements resulting in only one agonist site and one or even two sites for benzodiazepines. In order to force a defined subunit arrangement we expressed a combination of triple and dual concatenated subunits. Here we report that these unconventional receptors express only small current amplitudes in Xenopus oocytes. We determined agonist properties and modulation by diazepam of two of these receptors that resulted in currents large enough for a characterization, that is, β2-α1-γ2/α1-γ2 and β2-α1-γ2/β2-γ2. The first pentamer predicted to have two benzodiazepine binding sites shows similar response to diazepam as the standard receptor. As expected for both receptors with a single predicted agonist site the concentration response curves for GABA were characterized by a Hill coefficient < 1. β2-α1-γ2/β2-γ2 displayed a mM apparent GABA affinity for channel opening instead of the expected μM affinity. Based on their subunit and binding site stoichiometry, that contradicts all previous observations, their unusual functional properties and their very low expression levels in oocytes, we consider it unlikely that these unconventional receptors are expressed in neurons to an appreciable extent.

  8. Kalirin Binds the NR2B Subunit of the NMDA Receptor, Altering Its Synaptic Localization and Function

    KAUST Repository

    Kiraly, D. D.

    2011-08-31

    The ability of dendritic spines to change size and shape rapidly is critical in modulating synaptic strength; these morphological changes are dependent upon rearrangements of the actin cytoskeleton. Kalirin-7 (Kal7), a Rho guanine nucleotide exchange factor localized to the postsynaptic density (PSD), modulates dendritic spine morphology in vitro and in vivo. Kal7 activates Rac and interacts with several PSD proteins, including PSD-95, DISC-1, AF-6, and Arf6. Mice genetically lacking Kal7 (Kal7KO) exhibit deficient hippocampal long-term potentiation (LTP) as well as behavioral abnormalities in models of addiction and learning. Purified PSDs from Kal7KO mice contain diminished levels of NR2B, an NMDA receptor subunit that plays a critical role in LTP induction. Here we demonstrate that Kal7KO animals have decreased levels of NR2B-dependent NMDA receptor currents in cortical pyramidal neurons as well as a specific deficit in cell surface expression of NR2B. Additionally, we demonstrate that the genotypic differences in conditioned place preference and passive avoidance learning seen in Kal7KO mice are abrogated when animals are treated with an NR2B-specific antagonist during conditioning. Finally, we identify a stable interaction between the pleckstrin homology domain of Kal7 and the juxtamembrane region of NR2B preceding its cytosolic C-terminal domain. Binding of NR2B to a protein that modulates the actin cytoskeleton is important, as NMDA receptors require actin integrity for synaptic localization and function. These studies demonstrate a novel and functionally important interaction between the NR2B subunit of the NMDA receptor and Kalirin, proteins known to be essential for normal synaptic plasticity.

  9. Acute Ethanol Administration Upregulates Synaptic α4-Subunit of Neuronal Nicotinic Acetylcholine Receptors within the Nucleus Accumbens and Amygdala

    Directory of Open Access Journals (Sweden)

    Josephine R. Tarren

    2017-10-01

    Full Text Available Alcohol and nicotine are two of the most frequently abused drugs, with their comorbidity well described. Previous data show that chronic exposure to nicotine upregulates high-affinity nicotinic acetylcholine receptors (nAChRs in several brain areas. Effects of ethanol on specific brain nAChR subtypes within the mesolimbic dopaminergic (DA pathway may be a key element in the comorbidity of ethanol and nicotine. However, it is unknown how alcohol affects the abundance of these receptor proteins. In the present study, we measured the effect of acute binge ethanol on nAChR α4 subunit levels in the prefrontal cortex (PFC, nucleus accumbens (NAc, ventral tegmental area (VTA, and amygdala (Amg by western blot analysis using a knock-in mouse line, generated with a normally functioning α4 nAChR subunit tagged with yellow fluorescent protein (YFP. We observed a robust increase in α4-YFP subunit levels in the NAc and the Amg following acute ethanol, with no changes in the PFC and VTA. To further investigate whether this upregulation was mediated by increased local mRNA transcription, we quantified mRNA levels of the Chrna4 gene using qRT-PCR. We found no effect of ethanol on α4 mRNA expression, suggesting that the upregulation of α4 protein rather occurs post-translationally. The quantitative counting of YFP immunoreactive puncta further revealed that α4-YFP protein is upregulated in presynaptic boutons of the dopaminergic axons projecting to the shell and the core regions of the NAc as well as to the basolateral amygdala (BLA, but not to the central or lateral Amg. Together, our results demonstrate that a single exposure to binge ethanol upregulates level of synaptic α4∗ nAChRs in dopaminergic inputs to the NAc and BLA. This upregulation could be linked to the functional dysregulation of dopaminergic signalling observed during the development of alcohol dependence.

  10. Cigarette smoking during pregnancy regulates the expression of specific nicotinic acetylcholine receptor (nAChR) subunits in the human placenta

    Energy Technology Data Exchange (ETDEWEB)

    Machaalani, R., E-mail: rita.machaalani@sydney.edu.au [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Ghazavi, E. [Bosch Institute, The University of Sydney, NSW 2006 (Australia); School of Medical Sciences (Pharmacology), The University of Sydney, NSW 2006 (Australia); Hinton, T. [School of Medical Sciences (Pharmacology), The University of Sydney, NSW 2006 (Australia); Waters, K.A. [Department of Medicine, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Hennessy, A. [School of Medicine, University of Western Sydney, NSW 2751 (Australia); Heart Research Institute, 7 Eliza St Newtown, NSW 2042 (Australia)

    2014-05-01

    Smoking during pregnancy is associated with low birth weight, premature delivery, and neonatal morbidity and mortality. Nicotine, a major pathogenic compound of cigarette smoke, binds to the nicotinic acetylcholine receptors (nAChRs). A total of 16 nAChR subunits have been identified in mammals (9 α, 4 β, and 1 δ, γ and ε subunits). The effect of cigarette smoking on the expression of these subunits in the placenta has not yet been determined, thus constituting the aim of this study. Using RT-qPCR and western blotting, this study investigated all 16 mammalian nAChR subunits in the normal healthy human placenta, and compared mRNA and protein expressions in the placentas from smokers (n = 8) to controls (n = 8). Our data show that all 16 subunit mRNAs are expressed in the normal, non-diseased human placenta and that the expression of α2, α3, α4, α9, β2 and β4 subunits is greater than the other subunits. For mRNA, cigarette smoke exposure was associated with increased expression of the α9 subunit, and decreased expression of the δ subunit. At the protein level, expression of both α9 and δ was increased. Thus, cigarette smoking in pregnancy is sufficient to regulate nAChR subunits in the placenta, specifically α9 and δ subunits, and could contribute to the adverse effects of vasoconstriction and decreased re-epithelialisation (α9), and increased calcification and apoptosis (δ), seen in the placentas of smoking women. - Highlights: • All 16 mammalian nAChR subunits are expressed in the human placenta. • Cigarette smoking increases α9 mRNA and protein in the placenta. • Cigarette smoking decreases δ mRNA but increases δ protein in the placenta.

  11. Progesterone withdrawal increases the α4 subunit of the GABAA receptor in male rats in association with anxiety and altered pharmacology — a comparison with female rats

    OpenAIRE

    Gulinello, M.; Gong, Q. H.; Smith, S. S.

    2002-01-01

    Withdrawal from the neurosteroid 3α,5α-allopregnanolone after chronic administration of progesterone increases anxiety in female rats and up-regulates the α4 subunit of the GABAA receptor (GABAA-R) in the hippocampus. We investigated if these phenomena would also occur in male rats. Progesterone withdrawal (PWD) induced higher α4 subunit expression in the hippocampus of both male and female rats, in association with increased anxiety (assessed in the elevated plus maze) comparable to effects ...

  12. Microsecond simulations indicate that ethanol binds between subunits and could stabilize an open-state model of a glycine receptor.

    Science.gov (United States)

    Murail, Samuel; Wallner, Björn; Trudell, James R; Bertaccini, Edward; Lindahl, Erik

    2011-04-06

    Cys-loop receptors constitute a superfamily of ion channels gated by ligands such as acetylcholine, serotonin, glycine, and γ-aminobutyric acid. All of these receptors are thought to share structural characteristics, but due to high sequence variation and limited structure availability, our knowledge about allosteric binding sites is still limited. These sites are frequent targets of anesthetic and alcohol molecules, and are of high pharmacological importance. We used molecular simulations to study ethanol binding and equilibrium exchange for the homomeric α1 glycine receptor (GlyRα1), modeled on the structure of the Gloeobacter violaceus pentameric ligand-gated channel. Ethanol has a well-known potentiating effect and can be used in high concentrations. By performing two microsecond-scale simulations of GlyR with/without ethanol, we were able to observe spontaneous binding in cavities and equilibrium ligand exchange. Of interest, it appears that there are ethanol-binding sites both between and within the GlyR transmembrane subunits, with the intersubunit site having the highest occupancy and slowest exchange (∼200 ns). This model site involves several residues that were previously identified via mutations as being crucial for potentiation. Finally, ethanol appears to stabilize the GlyR model built on a presumably open form of the ligand-gated channel. This stabilization could help explain the effects of allosteric ligand binding in Cys-loop receptors. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. L-type Calcium Channel Blockers Enhance Trafficking and Function of Epilepsy-associated α1(D219N) Subunits of GABA(A) Receptors.

    Science.gov (United States)

    Han, Dong-Yun; Guan, Bo-Jhih; Wang, Ya-Juan; Hatzoglou, Maria; Mu, Ting-Wei

    2015-09-18

    Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory ion channels in the mammalian central nervous system and play an essential role in regulating inhibition-excitation balance in neural circuits. The α1 subunit harboring the D219N mutation of GABAA receptors was reported to be retained in the endoplasmic reticulum (ER) and traffic inefficiently to the plasma membrane, leading to a loss of function of α1(D219N) subunits and thus idiopathic generalized epilepsy (IGE). We present the use of small molecule proteostasis regulators to enhance the forward trafficking of α1(D219N) subunits to restore their function. We showed that treatment with verapamil (4 μM, 24 h), an L-type calcium channel blocker, substantially increases the α1(D219N) subunit cell surface level in both HEK293 cells and neuronal SH-SY5Y cells and remarkably restores the GABA-induced maximal chloride current in HEK293 cells expressing α1(D219N)β2γ2 receptors to a level that is comparable to wild type receptors. Our drug mechanism study revealed that verapamil treatment promotes the ER to Golgi trafficking of the α1(D219N) subunits post-translationally. To achieve that, verapamil treatment enhances the interaction between the α1(D219N) subunit and β2 subunit and prevents the aggregation of the mutant protein by shifting the protein from the detergent-insoluble fractions to detergent-soluble fractions. By combining (35)S pulse-chase labeling and MG-132 inhibition experiments, we demonstrated that verapamil treatment does not inhibit the ER-associated degradation of the α1(D219N) subunit. In addition, its effect does not involve a dynamin-1 dependent endocytosis. To gain further mechanistic insight, we showed that verapamil increases the interaction between the mutant protein and calnexin and calreticulin, two major lectin chaperones in the ER. Moreover, calnexin binding promotes the forward trafficking of the mutant subunit. Taken together, our data indicate that

  14. Positive modulation of delta-subunit containing GABAA receptors in mouse neurons

    DEFF Research Database (Denmark)

    Vardya, Irina; Hoestgaard-Jensen, Kirsten; Nieto-Gonzalez, Jose Luis

    2012-01-01

    -free environment using Ca²⁺ imaging in cultured neurons, AA29504 showed GABA(A) receptor agonism in the absence of agonist. Finally, AA29504 exerted dose-dependent stress-reducing and anxiolytic effects in mice in vivo. We propose that AA29504 potentiates δ-containing GABA(A) receptors to enhance tonic inhibition...

  15. Identification of grass carp IL-10 receptor subunits: functional evidence for IL-10 signaling in teleost immunity.

    Science.gov (United States)

    Wei, He; Wang, Xinyan; Zhang, Anying; Du, Linyong; Zhou, Hong

    2014-08-01

    Although the functions of teleost IL-10 have been preliminarily determined, functional evidence for its receptor signaling is lacking. Particularly, the identity of fish IL-10 receptor 2 (IL-10R2) is ambiguous. Cytokine receptor family member b4 (CRFB4) and CRFB5 are likely the ortholog of mammalian IL-10R2. In this study, grass carp CRFB4 (gcCRFB4) and gcCRFB5 cDNAs were isolated and characterized. The relatively high expression levels of grass carp IL10 receptor 1 (gcIL-10R1), gcCRFB4 and gcCRFB5 in immune tissues and cells implied their importance in fish immunity. Accordingly, gcIL-10R1, gcCRFB4 and gcCRFB5 were overexpressed in a grass carp kidney cell line to identify the IL-10 receptor subunits upon grass carp IL-10 (gcIL-10) treatment. Results showed that gcIL-10R1 was essential for gcIL-10 stimulation on STAT3 activation and grass carp suppressor of cytokine signaling 3 (gcSOCS3) promoter activity, and also indicated that gcCRFB4 but not gcCRFB5 might be the ortholog of mammalian IL-10R2. Furthermore, mutation of a putative STAT3-binding element in gcSOCS3 promoter attenuated the stimulation of gcIL-10 on gcSOCS3 promoter activity, indicating that gcIL-10 may modulate gcSOCS3 transcription at least partly via STAT3 activation. This notion was further supported by our observation that gcIL-10 was able to induce STAT3 phosphorylation and STAT3 inhibitor could abolish the upregulation of gcSOCS3 mRNA expression by gcIL-10 in grass carp head kidney leukocytes. Taken together, this study for the first time functionally characterized the teleost IL-10 receptor subunits and clarified the conservation of fish IL-10 signaling during evolution, thus laying the ground for further understanding the critical immune events led by IL-10 in teleost. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Differential distribution of GABAA receptor subunits in soma and processes of cerebellar granule cells: effects of maturation and a GABA agonist

    DEFF Research Database (Denmark)

    Elster, L; Hansen, Gert Helge; Belhage, B

    1995-01-01

    or absence of the GABAA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4c]pyridin-3-ol (THIP). THIP (150 microM) induced a 2-fold increase in the number of alpha 1 and beta 2/3 subunits in both cell bodies and processes in 4-day-old cultures. Extending the culture period to 8 days led to a polarization......Quantitative analysis of the density of alpha 1 and beta 2/3 GABAA receptor subunits was performed at the electron microscope level after indirect pre-embedding immunogold labeling with subunit-specific antibodies of rat cerebellar granule cell cultures grown for 4 or 8 days and in the presence...... of the receptor expression, since the increase in the number of subunits selectively was observed in the processes. Moreover, a general subcellular differentiation of the receptor population was observed in all culture conditions, since the ratio between the two subunits (beta 2/3; alpha 1) was four times higher...

  17. Comparing the discriminative stimulus effects of modulators of GABAA receptors containing α4-δ subunits with those of gaboxadol in rats.

    Science.gov (United States)

    Zanettini, Claudio; Pressly, Jeffrey D; Ibarra, Miguel H; Smith, Kelsey R; Gerak, Lisa R

    2016-05-01

    Gaboxadol is a selective agonist at γ-aminobutyric acidA (GABAA) receptors that contain α4-δ subunits, and it produces anxiolytic and sedative effects. Although adverse effects preclude its clinical use, its mechanism of action suggests that those receptors might provide novel therapeutic targets, particularly for modulators of those GABAA receptor subtypes, by retaining therapeutic effects of gaboxadol and not adverse effects. The current study compared discriminative stimulus effects of gaboxadol with those of modulators acting at GABAA receptors containing α4-δ subunits. Eight rats discriminated 5.6 mg/kg gaboxadol from vehicle while responding under a fixed - ratio 10 schedule for food. Modulators acting at GABAA receptors containing α4-δ subunits (pregnanolone, ethanol, and flumazenil) and receptors that do not contain those subunits (midazolam) were studied alone; pregnanolone and ethanol were also combined with gaboxadol. In addition, gaboxadol was studied in separate groups discriminating 0.32 mg/kg midazolam, 3.2 mg/kg pregnanolone, or 0.75 g/kg ethanol from vehicle. Gaboxadol produced ≥80 % gaboxadol-lever responding and did not alter rates. No other drug produced, on average, ≥80 % drug-lever responding up to doses that decreased rates, although 1.78 mg/kg midazolam produced 32 % gaboxadol-lever responding. Ethanol and pregnanolone did not enhance the effects of gaboxadol. Rats discriminating midazolam, pregnanolone, or ethanol from vehicle responded predominantly on the vehicle lever after receiving gaboxadol. Drugs that modulate GABAA receptors containing α4-δ subunits neither mimicked nor enhanced the discriminative stimulus effects of gaboxadol, indicating that at least some effects of gaboxadol are not shared with modulators of that GABAA receptor subtype.

  18. The interleukin 2 receptor (IL-2R): the IL-2R alpha subunit alters the function of the IL-2R beta subunit to enhance IL-2 binding and signaling by mechanisms that do not require binding of IL-2 to IL-2R alpha subunit.

    OpenAIRE

    Grant, A J; Roessler, E; Ju, G; Tsudo, M; Sugamura, K; Waldmann, T A

    1992-01-01

    Interleukin 2 (IL-2)-mediated signaling through its high-affinity receptor involves a complex interrelationship between IL-2 and two IL-2-binding chains, IL-2R alpha and beta chains. Previously with the reagents available it was difficult to define functional interactions between these two IL-2R subunits involved in IL-2 binding and signal transduction. To extend our understanding of the interplay between the two binding subunits we have done studies with the monoclonal antibody HIEI, which i...

  19. Identification of an ideal adjuvant for receptor-binding domain-based subunit vaccines against Middle East respiratory syndrome coronavirus.

    Science.gov (United States)

    Zhang, Naru; Channappanavar, Rudragouda; Ma, Cuiqing; Wang, Lili; Tang, Jian; Garron, Tania; Tao, Xinrong; Tasneem, Sumaiya; Lu, Lu; Tseng, Chien-Te K; Zhou, Yusen; Perlman, Stanley; Jiang, Shibo; Du, Lanying

    2016-03-01

    Middle East respiratory syndrome (MERS), an emerging infectious disease caused by MERS coronavirus (MERS-CoV), has garnered worldwide attention as a consequence of its continuous spread and pandemic potential, making the development of effective vaccines a high priority. We previously demonstrated that residues 377-588 of MERS-CoV spike (S) protein receptor-binding domain (RBD) is a very promising MERS subunit vaccine candidate, capable of inducing potent neutralization antibody responses. In this study, we sought to identify an adjuvant that optimally enhanced the immunogenicity of S377-588 protein fused with Fc of human IgG (S377-588-Fc). Specifically, we compared several commercially available adjuvants, including Freund's adjuvant, aluminum, Monophosphoryl lipid A, Montanide ISA51 and MF59 with regard to their capacity to enhance the immunogenicity of this subunit vaccine. In the absence of adjuvant, S377-588-Fc alone induced readily detectable neutralizing antibody and T-cell responses in immunized mice. However, incorporating an adjuvant improved its immunogenicity. Particularly, among the aforementioned adjuvants evaluated, MF59 is the most potent as judged by its superior ability to induce the highest titers of IgG, IgG1 and IgG2a subtypes, and neutralizing antibodies. The addition of MF59 significantly augmented the immunogenicity of S377-588-Fc to induce strong IgG and neutralizing antibody responses as well as protection against MERS-CoV infection in mice, suggesting that MF59 is an optimal adjuvant for MERS-CoV RBD-based subunit vaccines.

  20. Gene expression of NMDA and AMPA receptors in different facial motor neurons.

    Science.gov (United States)

    Chen, Pei; Song, Jun; Luo, Linghui; Cheng, Qing; Xiao, Hongjun; Gong, Shusheng

    2016-01-01

    Facial motor neurons (FMNs) are involved in the remodeling of the facial nucleus in response to peripheral injury. This study aimed to examine the gene expression of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) and N-methyl-D-aspartate subtype of ionotropic glutamate receptor (NMDAR) in reinnervating dormant FMNs after facial nerve axotomy. Animal study. Rat models of facial-facial anastomosis were set up and raised until the 90th day. By laser capture microdissection (LCM), the reinnervating neurons labeled by Fluoro-Ruby (FR) were first captured, and the remaining (dormant) neurons identified by Nissl staining were captured in the facial nucleus of the operated side. The total RNA of two types of neurons were extracted, and the gene expressions of AMPAR and NMDAR were studied by real-time quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Messenger RNA (mRNA) of AMPAR subunits (GluR1, GluR2, GluR3, and GluR4) and NMDAR subunits (NR1, NR2a, NR2b, NR2c, and NR2d) was detected in reinnervating and dormant neurons. The relative ratios exhibited that the expressions of GluR1, GluR4, NR2a, NR2b, NR2c, and NR2d mRNA were lower, whereas the expressions of GluR2, GluR3, and NR1 mRNA were higher in dormant FMNs than in reinnervating counterparts. LCM in combination with real-time qRT-PCR can be employed for the examination of gene expression of different FMNs in a heterogeneous nucleus. The adaptive changes in AMPAR and NMDAR subunit mRNA might dictate the regenerative fate of FMNs in response to the peripheral axotomy and thereby play a unique role in the pathogenesis of facial nerve injury and regeneration. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Common variants in the regulative regions of GRIA1 and GRIA3 receptor genes are associated with migraine susceptibility

    Directory of Open Access Journals (Sweden)

    Gianfrancesco Fernando

    2010-06-01

    Full Text Available Abstract Background Glutamate is the principal excitatory neurotransmitter in the central nervous system which acts by the activation of either ionotropic (AMPA, NMDA and kainate receptors or G-protein coupled metabotropic receptors. Glutamate is widely accepted to play a major role in the path physiology of migraine as implicated by data from animal and human studies. Genes involved in synthesis, metabolism and regulation of both glutamate and its receptors could be, therefore, considered as potential candidates for causing/predisposing to migraine when mutated. Methods The association of polymorphic variants of GRIA1-GRIA4 genes which encode for the four subunits (GluR1-GluR4 of the alpha-amino-3- hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA receptor for glutamate was tested in migraineurs with and without aura (MA and MO and healthy controls. Results Two variants in the regulative regions of GRIA1 (rs2195450 and GRIA3 (rs3761555 genes resulted strongly associated with MA (P = 0.00002 and P = 0.0001, respectively, but not associated with MO, suggesting their role in cortical spreading depression. Whereas the rs548294 variant in GRIA1 gene showed association primarily with MO phenotype, supporting the hypothesis that MA and MO phenotypes could be genetically related. These variants modify binding sites for transcription factors altering the expression of GRIA1 and GRIA3 genes in different conditions. Conclusions This study represents the first genetic evidence of a link between glutamate receptors and migraine.

  2. Ligand- and subunit-specific conformational changes in the ligand-binding domain and the TM2-TM3 linker of {alpha}1 {beta}2 {gamma}2 GABAA receptors

    DEFF Research Database (Denmark)

    Wang, Qian; Pless, Stephan Alexander; Lynch, Joseph W

    2010-01-01

    Cys-loop receptor ligand binding sites are located at subunit interfaces where they are lined by loops A-C from one subunit and loops D-F from the adjacent subunit. Agonist binding induces large conformational changes in loops C and F. However, it is controversial as to whether these conformation...

  3. Ethanol activation of protein kinase A regulates GABA-A receptor subunit expression in the cerebral cortex and contributes to ethanol-induced hypnosis

    Directory of Open Access Journals (Sweden)

    Sandeep eKumar

    2012-04-01

    Full Text Available Protein kinases are implicated in neuronal cell functions such as modulation of ion channel function, trafficking and synaptic excitability. Both protein kinase C (PKC and A (PKA are involved in regulation of γ-aminobutyric acid type A (GABA-A receptors through phosphorylation. However, the role of PKA in regulating GABA-A receptors following acute ethanol exposure is not known. The present study investigated the role of PKA in ethanol effects on GABA-A receptor α1 subunit expression in the P2 synaptosomal fraction of the rat cerebral cortex. Additionally, GABA-related behaviors were also examined. Rats were administered ethanol (2.0 – 3.5 g/kg or saline and PKC, PKA and GABA-A receptor α1 subunit levels were measured by Western blot analysis. Ethanol (3.5 g/kg transiently increased GABA-A receptor α1 subunit expression and PKA RIIβ subunit expression at similar time points whereas PKA RIIα was increased at later time points. In contrast, PKC isoform expression remained unchanged. Notably, the moderate ethanol dose (2.0g/kg had no effect on GABA-A α1 subunit levels although PKA RIIα and RIIβ were increased at 10 and 60 minutes, when PKC isozymes are also known to be elevated. To determine if PKA activation was responsible for the ethanol-induced elevation of GABA-A α1 subunits, the PKA antagonist H89 was administered to rats prior to ethanol exposure. H89 administration prevented ethanol-induced increases in GABA-A receptor α1 subunit expression. Moreover, increasing PKA activity intracerebroventricularly with Sp-cAMP prior to a hypnotic dose of ethanol increased ethanol-induced loss of righting reflex duration. This effect appears to be mediated in part by GABA-A receptors as increasing PKA activity also increased the duration of muscimol-induced loss of righting reflex. Overall these data suggest that PKA mediates ethanol-induced GABA-A receptor expression and contributes to ethanol behavioral effects involving GABA-A receptors.

  4. Sex-dependent anti-stress effect of an α5 subunit containing GABAA receptor positive allosteric modulator

    Directory of Open Access Journals (Sweden)

    Sean C. Piantadosi

    2016-11-01

    Full Text Available Rationale: Current first-line treatments for stress-related disorders such as Major Depressive Disorder (MDD act on monoaminergic systems and take weeks to achieve a therapeutic effect with poor response and low remission rates. Recent research has implicated the GABAergic system in the pathophysiology of depression, including deficits in interneurons targeting the dendritic compartment of cortical pyramidal cells. Objectives: The present study evaluates whether SH-053-2'F-R-CH3 (denoted α5-PAM, a positive allosteric modulator selective for α5-subunit containing GABAA receptors found predominantly on cortical pyramidal cell dendrites has anti-stress effects. Methods: Female and male C57BL6/J mice were exposed to unpredictable chronic mild stress (UCMS and treated with α5-PAM acutely (30 minutes prior to assessing behavior or chronically before being assessed behaviorally. Results: Acute and chronic α5-PAM treatments produce a pattern of decreased stress-induced behaviors (denoted as behavioral emotionality across various tests in female, but not in male mice. Behavioral Z-scores calculated across a panel of tests designed to best model the range and heterogeneity of human symptomatology confirmed that acute and chronic α5-PAM treatments consistently produce significant decreases in behavioral emotionality in several independent cohorts of females. The behavioral responses to α5-PAM could not be completely accounted for by differences in drug brain disposition between female and male mice. In mice exposed to UCMS, expression of the Gabra5 gene was increased in the frontal cortex after acute treatment and in hippocampus after chronic treatment with α5-PAM in females only, and these expression changes correlated with behavioral emotionality. Conclusions: We showed that acute and chronic positive modulation of α5 subunit-containing GABAA receptors elicit anti-stress effects in a sex-dependent manner, suggesting novel therapeutic modalities.

  5. Circadian and developmental regulation of N-methyl-d-aspartate-receptor 1 mRNA splice variants and N-methyl-d-aspartate-receptor 3 subunit expression within the rat suprachiasmatic nucleus

    DEFF Research Database (Denmark)

    Bendová, Z; Sumová, A; Mikkelsen, Jens D.

    2009-01-01

    The circadian rhythms of mammals are generated by the circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Its intrinsic period is entrained to a 24 h cycle by external cues, mainly by light. Light impinging on the SCN at night causes either advancing or delaying phase...... shifts of the circadian clock. N-methyl-d-aspartate receptors (NMDAR) are the main glutamate receptors mediating the effect of light on the molecular clockwork in the SCN. They are composed of multiple subunits, each with specific characteristics whose mutual interactions strongly determine properties...... of the receptor. In the brain, the distribution of NMDAR subunits depends on the region and developmental stage. Here, we report the circadian expression of the NMDAR1 subunit in the adult rat SCN and depict its splice variants that may constitute the functional receptor channel in the SCN. During ontogenesis...

  6. GABAA/Benzodiazepine receptor binding in patients with schizophrenia using [11C]Ro15-4513, a radioligand with relatively high affinity for alpha5 subunit.

    Science.gov (United States)

    Asai, Yoshiyuki; Takano, Akihiro; Ito, Hiroshi; Okubo, Yoshiro; Matsuura, Masato; Otsuka, Akihiko; Takahashi, Hidehiko; Ando, Tomomichi; Ito, Shigeo; Arakawa, Ryosuke; Asai, Kunihiko; Suhara, Tetsuya

    2008-02-01

    Dysfunction of the GABA system is considered to play a role in the pathology of schizophrenia. Individual subunits of GABA(A)/Benzodiazepine (BZ) receptor complex have been revealed to have different functional properties. alpha5 subunit was reported to be related to learning and memory. Changes of alpha5 subunit in schizophrenia were reported in postmortem studies, but the results were inconsistent. In this study, we examined GABA(A)/BZ receptor using [(11)C]Ro15-4513, which has relatively high affinity for alpha5 subunit, and its relation to clinical symptoms in patients with schizophrenia. [(11)C]Ro15-4513 bindings of 11 patients with schizophrenia (6 drug-naïve and 5 drug-free) were compared with those of 12 age-matched healthy control subjects using positron emission tomography. Symptoms were assessed using the Positive and Negative Syndrome Scale. [(11)C]Ro15-4513 binding was quantified by binding potential (BP) obtained by the reference tissue model. [(11)C]Ro15-4513 binding in the prefrontal cortex and hippocampus was negatively correlated with negative symptom scores in patients with schizophrenia, although there was no significant difference in BP between patients and controls. GABA(A)/BZ receptor including alpha5 subunit in the prefrontal cortex and hippocampus might be involved in the pathophysiology of negative symptoms of schizophrenia.

  7. Biochemical and electrophysiological characterization of N-glycans on NMDA receptor subunits

    Czech Academy of Sciences Publication Activity Database

    Kaniaková, Martina; Lichnerová, Katarina; Skřenková, Kristýna; Vyklický ml., Ladislav; Horák, Martin

    2016-01-01

    Roč. 138, č. 4 (2016), s. 546-556 ISSN 0022-3042 R&D Projects: GA ČR(CZ) GA14-02219S Institutional support: RVO:67985823 Keywords : biochemistry * cerebellar granule cells * glutamate receptor * ion channel * patch-clamp Subject RIV: FH - Neurology Impact factor: 4.083, year: 2016

  8. Influence of GABA(A receptor α subunit isoforms on the benzodiazepine binding site.

    Directory of Open Access Journals (Sweden)

    Benjamin P Lüscher

    Full Text Available Classical benzodiazepines, such as diazepam, interact with α(xβ(2γ(2 GABA(A receptors, x = 1, 2, 3, 5 and modulate their function. Modulation of different receptor isoforms probably results in selective behavioural effects as sedation and anxiolysis. Knowledge of differences in the structure of the binding pocket in different receptor isoforms is of interest for the generation of isoform-specific ligands. We studied here the interaction of the covalently reacting diazepam analogue 3-NCS with α(1S204Cβ(2γ(2, α(1S205Cβ(2γ(2 and α(1T206Cβ(2γ(2 and with receptors containing the homologous mutations in α(2β(2γ(2, α(3β(2γ(2, α(5β(1/2γ(2 and α(6β(2γ(2. The interaction was studied using radioactive ligand binding and at the functional level using electrophysiological techniques. Both strategies gave overlapping results. Our data allow conclusions about the relative apposition of α(1S204Cβ(2γ(2, α(1S205Cβ(2γ(2 and α(1T206Cβ(2γ(2 and homologous positions in α(2, α(3, α(5 and α(6 with C-atom adjacent to the keto-group in diazepam. Together with similar data on the C-atom carrying Cl in diazepam, they indicate that the architecture of the binding site for benzodiazepines differs in each GABA(A receptor isoform α(1β(2γ(2, α(2β(2γ(2, α(3β(2γ(2, α(5β(1/2γ(2 and α(6β(2γ(2.

  9. Involvement of the N-methyl-d-aspartate receptor GluN2D subunit in phencyclidine-induced motor impairment, gene expression, and increased Fos immunoreactivity

    Science.gov (United States)

    2013-01-01

    Background Noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists evoke a behavioral and neurobiological syndrome in experimental animals. We previously reported that phencyclidine (PCP), an NMDA receptor antagonist, increased locomotor activity in wildtype (WT) mice but not GluN2D subunit knockout mice. Thus, the aim of the present study was to determine whether the GluN2D subunit is involved in PCP-induced motor impairment. Results PCP or UBP141 (a GluN2D antagonist) induced potent motor impairment in WT mice but not GluN2D KO mice. By contrast, CIQ, a GluN2C/2D potentiator, induced severe motor impairment in GluN2D KO mice but not WT mice, suggesting that the GluN2D subunit plays an essential role in the effects of PCP and UBP141, and an appropriate balance between GluN2C and GluN2D subunits might be needed for appropriate motor performance. The level of the GluN2D subunit in the mature mouse brain is very low and restricted. GluN2D subunits exist in brainstem structures, the globus pallidus, thalamus, and subthalamic nucleus. We found that the expression of the c-fos gene increased the most among PCP-dependent differentially expressed genes between WT and GluN2D KO mice, and the number of Fos-positive cells increased after PCP administration in the basal ganglia motor circuit in WT mice but not GluN2D KO mice. Conclusion These results suggest that the GluN2D subunit within the motor circuitry is a key subunit for PCP-induced motor impairment, which requires an intricate balance between GluN2C- and GluN2D-mediated excitatory outputs. PMID:24330819

  10. Role of spinal cord alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in complete Freund's adjuvant-induced inflammatory pain

    Directory of Open Access Journals (Sweden)

    Shih Ming-Hung

    2008-12-01

    Full Text Available Abstract Spinal cord α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs mediate acute spinal processing of nociceptive and non-nociceptive information, but whether and how their activation contributes to the central sensitization that underlies persistent inflammatory pain are still unclear. Here, we examined the role of spinal AMPARs in the development and maintenance of complete Freund's adjuvant (CFA-induced persistent inflammatory pain. Intrathecal application of two selective non-competitive AMPAR antagonists, CFM-2 (25 and 50 μg and GYKI 52466 (50 μg, significantly attenuated mechanical and thermal hypersensitivities on the ipsilateral hind paw at 2 and 24 h post-CFA injection. Neither CFM-2 nor GYKI 52466 affected the contralateral basal responses to thermal and mechanical stimuli. Locomotor activity was not altered in any of the drug-treated animals. CFA-induced inflammation did not change total expression or distribution of AMPAR subunits GluR1 and GluR2 in dorsal horn but did alter their subcellular distribution. The amount of GluR2 was markedly increased in the crude cytosolic fraction and decreased in the crude membrane fraction from the ipsilateral L4–5 dorsal horn at 24 h (but not at 2 h post-CFA injection. Conversely, the level of GluR1 was significantly decreased in the crude cytosolic fraction and increased in the crude membrane fraction from the ipsilateral L4–5 dorsal horn at 24 h (but not at 2 h post-CFA injection. These findings suggest that spinal AMPARs might participate in the central spinal mechanism of persistent inflammatory pain.

  11. Cloning and characterization of promoter and 5 '-UTR of the NMDA receptor subunit epsilon(2) : evidence for alternative splicing of 5 '-non-coding exon

    NARCIS (Netherlands)

    Klein, M; Pieri, [No Value; Uhlmann, F; Pfizenmaier, K; Eisel, U

    1998-01-01

    Using rapid amplification of cDNA ends (RACE), we have cloned the 5'-untranslated region (5'-UTR) of the N-methyl-D-aspartate receptor subunit epsilon(2) from murine forebrain-derived mRNA. We identified two distinct types of cDNA species differing in the presence or absence of one exon sequence.

  12. Cloning and characterization of promoter and 5'-UTR of the NMDA receptor subunit ε2 : evidence for alternative splicing of 5'-non-coding exon

    NARCIS (Netherlands)

    Klein, Matthias; Pieri, Isabelle; Uhlmann, Frank; Pfizenmaier, Klaus; Eisel, Ulrich

    1998-01-01

    Using rapid amplification of cDNA ends (RACE), we have cloned the 5'-untranslated region (5'-UTR) of the N-methyl-D-aspartate receptor subunit ε2 from murine forebrain-derived mRNA. We identified two distinct types of cDNA species differing in the presence or absence of one exon sequence. Sequencing

  13. Identification of the subunit of cAMP receptor protein (CRP) that functionally interacts with CytR in CRP-CytR-mediated transcriptional repression

    DEFF Research Database (Denmark)

    Meibom, K L; Kallipolitis, B H; Ebright, R H

    2000-01-01

    At promoters of the Escherichia coli CytR regulon, the cAMP receptor protein (CRP) interacts with the repressor CytR to form transcriptionally inactive CRP-CytR-promoter or (CRP)(2)-CytR-promoter complexes. Here, using "oriented heterodimer" analysis, we show that only one subunit of the CRP dime...

  14. Repeated ketamine administration alters N-methyl-d-aspartic acid receptor subunit gene expression: Implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans

    Science.gov (United States)

    Lipsky, Robert H

    2015-01-01

    For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-d-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis. PMID:25245072

  15. Repeated ketamine administration alters N-methyl-D-aspartic acid receptor subunit gene expression: implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans.

    Science.gov (United States)

    Xu, Ke; Lipsky, Robert H

    2015-02-01

    For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis. © 2014 by the Society for Experimental Biology and Medicine.

  16. Endocytosis of the glutamate receptor subunit GluK3 controls polarized trafficking.

    Science.gov (United States)

    Huyghe, Deborah; Veran, Julien; Labrousse, Virginie F; Perrais, David; Mulle, Christophe; Coussen, Françoise

    2011-08-10

    Kainate receptors (KARs) are widely expressed in the brain and are present at both presynaptic and postsynaptic sites. GluK3-containing KARs are thought to compose presynaptic autoreceptors that facilitate hippocampal mossy fiber synaptic transmission. Here we identify molecular mechanisms that underlie the polarized trafficking of KARs composed of the GluK3b splice variant. Endocytosis followed by degradation is driven by a dileucine motif on the cytoplasmic C-terminal domain of GluK3b in heterologous cells, in cultured hippocampal neurons, and in dentate granule cells from organotypic slice cultures. The internalization of GluK3b is clathrin and dynamin2 dependent. GluK3b is differentially endocytosed in dendrites as compared to the axons. These data suggest that the polarized trafficking of KARs in neurons could be controlled by the regulation of receptor endocytosis.

  17. Changes in Glutamate/NMDA Receptor Subunit 1 Expression in Rat Brain after Acute and Subacute Exposure to Methamphetamine

    Directory of Open Access Journals (Sweden)

    Walailuk Kerdsan

    2009-01-01

    Full Text Available Methamphetamine (METH is a psychostimulant drug of abuse that produces long-term behavioral changes including behavioral sensitization, tolerance, and dependence. METH has been reported to induce neurotoxic effects in several areas of the brain via the dopaminergic system. Changes of dopamine function can induce malfunction of the glutamatergic system. Therefore, the aim of the present study was to examine the effects of METH administration on the expression of glutamate N-methyl-D-aspartate receptor subunit 1 (NMDAR1 in frontal cortex, striatum, and hippocampal formation after acute and subacute exposure to METH by western blotting. Male Sprague-Dawley rats were injected intraperitoneally with a single dose of 8 mg/kg METH, 4 mg/kg/day METH for 14 days and saline in acute, subacute, and control groups, respectively. A significant increase in NMDAR1 immunoreactive protein was found in frontal cortex in the subacute group (P=.036 but not in the acute group (P=.580. Moreover, a significant increase in NMDAR1 was also observed in striatum in both acute (P=.025 and subacute groups (P=.023. However, no significant differences in NMDAR1 in hippocampal formation were observed in either acute or subacute group. The results suggest that an upregulation of NMDA receptor expression may be a consequence of glutamatergic dysfunction induced by METH.

  18. Expression of the GABA(A) receptor alpha6 subunit in cultured cerebellar granule cells is developmentally regulated by activation of GABA(A) receptors

    DEFF Research Database (Denmark)

    Carlson, B X; Belhage, B; Hansen, Gert Helge

    1997-01-01

    Primary cultures of cerebellar granule cells, prepared from cerebella of 7-day-old rats and cultured for 4 or 8 days, were used to study the neurodifferentiative effect of a GABA(A) receptor agonist, 4,5,6,7-tetrahydroisoxazol[5,4-c]pyridin-3-ol (THIP), on the expression of the alpha6 GABA......Da (alpha6 subunit) radioactive peaks in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In contrast, THIP-treated granule cells at 8 DIV demonstrated a small but significant decrease from control cultures in the photoincorporation of [3H]Ro15-4513 in the 51-kDa peak; however......, no significant change in [3H]Ro15-4513 binding was observed for the 56-kDa polypeptide. Immunolabeling of the alpha6 subunit using silver-enhanced, immuno-gold staining of granule cells showed a significant effect with THIP treatment only at 4 DIV and not at 8 DIV. Examination by light microscopy demonstrated...

  19. Reduced levels of the tyrosine phosphatase STEP block β amyloid-mediated GluA1/GluA2 receptor internalization.

    Science.gov (United States)

    Zhang, Yongfang; Kurup, Pradeep; Xu, Jian; Anderson, George M; Greengard, Paul; Nairn, Angus C; Lombroso, Paul J

    2011-11-01

    Striatal-Enriched protein tyrosine Phosphatase of MW 61 kDa (STEP(61)) is a protein tyrosine phosphatase recently implicated in the pathophysiology of Alzheimer's disease (AD). STEP(61) is elevated in human AD prefrontal cortex and in the cortex of several AD mouse models. The elevated levels of active STEP(61) down-regulate surface expression of GluN1/GluN2B (formerly NR1/NR2B) receptor complexes, while genetically reducing STEP levels rescues both the biochemical and cognitive deficits in a triple transgenic AD mouse model (3xTg-AD). Here, we show that increased STEP(61) also plays a role in beta amyloid (Aβ)-mediated internalization of the α-amino-3-hydroxy-5-methyl-4-(AMPA) receptor (AMPAR) subunits GluA1/GluA2 (formerly GluR1/GluR2). We purified Aβ oligomers and determined that oligomers, but not monomers, lead to endocytosis of GluA1/GluA2 receptors in cortical cultures. The decrease in GluA1/GluA2 receptors is reversed in the progeny of STEP knock-out (KO) mice crossed with Tg2576 mice, despite elevated levels of Aβ. These results provide strong support for the hypothesis that STEP(61) is required for Aβ-mediated internalization of GluA1/GluA2 receptors. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  20. The residence time of GABA(A)Rs at inhibitory synapses is determined by direct binding of the receptor α1 subunit to gephyrin

    DEFF Research Database (Denmark)

    Mukherjee, Jayanta; Kretschmannova, Karla; Gouzer, Geraldine

    2011-01-01

    demonstrate that GABA(A)Rs and gephyrin are intimately associated at inhibitory synapses in cultured rat neurons. In vitro we reveal that the E-domain of gephyrin directly binds to the α1 subunit with an affinity of ∼20 μm, mediated by residues 360-375 within the intracellular domain of this receptor subunit....... Mutating residues 360-375 decreases both the accumulation of α1-containing GABA(A)Rs at gephyrin-positive inhibitory synapses in hippocampal neurons and the amplitude of mIPSCs. We also demonstrate that the affinity of gephyrin for the α1 subunit is modulated by Thr375, a putative phosphorylation site....... Mutation of Thr375 to a phosphomimetic, negatively charged amino acid decreases both the affinity of the α1 subunit for gephyrin, and therefore receptor accumulation at synapses, and the amplitude of mIPSCs. Finally, single-particle tracking reveals that gephyrin reduces the diffusion of α1-subunit...

  1. Progesterone withdrawal reduces paired-pulse inhibition in rat hippocampus: dependence on GABA(A) receptor alpha4 subunit upregulation.

    Science.gov (United States)

    Hsu, Fu-Chun; Smith, Sheryl S

    2003-01-01

    Withdrawal from the endogenous steroid progesterone (P) after chronic administration increases anxiety and seizure susceptibility via declining levels of its potent GABA-modulatory metabolite 3alpha-OH-5alpha-pregnan-20-one (3alpha,5alphaTHP). This 3alpha,5alpha-THP withdrawal also results in a decreased decay time constant for GABA-gated current assessed using whole cell patch-clamp techniques on pyramidal cells acutely dissociated from CA1 hippocampus. The purpose of this study was to test the hypothesis that the decreases in total integrated GABA-gated current observed at the level of the isolated pyramidal cell would be manifested as a reduced GABA inhibition at the circuit level following hormone withdrawal. Toward this end, adult, female rats were administered P via subcutaneous capsule for 3 wk using a multiple withdrawal paradigm. We then evaluated paired-pulse inhibition (PPI) of pyramidal neurons in CA1 hippocampus using extracellular recording techniques in hippocampal slices from rats 24 h after removal of the capsule (P withdrawal, P Wd). The population spike (PS) was recorded at the stratum pyramidale following homosynaptic orthodromic stimulation in the nearby stratum radiatum. The threshold for eliciting a response was decreased after P Wd, and the mean PS amplitude was significantly increased compared with control values at this time. Paired pulses with 10-ms inter-pulse intervals were then applied across an intensity range from 2 to 20 times threshold. Evaluation of paired-pulse responses showed a significant 40-50% reduction in PPI for PS recorded in the hippocampal CA1 region after P Wd, suggesting an increase in circuit excitability. At this time, enhancement of PPI by the benzodiazepine lorazepam (LZM; 10 microM) was prevented, while pentobarbital (10 microM) potentiation of PPI was comparable to control levels of response. These data are consistent with upregulation of the alpha4 subunit of the GABA(A) receptor (GABAR) as we have previously

  2. Progesterone Withdrawal Reduces Paired-Pulse Inhibition in Rat Hippocampus: Dependence on GABAA Receptor α4 Subunit Upregulation

    Science.gov (United States)

    Hsu, Fu-Chun; Smith, Sheryl S.

    2010-01-01

    Withdrawal from the endogenous steroid progesterone (P) after chronic administration increases anxiety and seizure susceptibility via declining levels of its potent GABA-modulatory metabolite 3α-OH-5α-pregnan-20-one (3α,5α-THP). This 3α,5α-THP withdrawal also results in a decreased decay time constant for GABA-gated current assessed using whole cell patch-clamp techniques on pyramidal cells acutely dissociated from CA1 hippocampus. The purpose of this study was to test the hypothesis that the decreases in total integrated GABA-gated current observed at the level of the isolated pyramidal cell would be manifested as a reduced GABA inhibition at the circuit level following hormone withdrawal. Toward this end, adult, female rats were administered P via subcutaneous capsule for 3 wk using a multiple withdrawal paradigm. We then evaluated paired-pulse inhibition (PPI) of pyramidal neurons in CA1 hippocampus using extracellular recording techniques in hippocampal slices from rats 24 h after removal of the capsule (P withdrawal, P Wd). The population spike (PS) was recorded at the stratum pyramidale following homosynaptic orthodromic stimulation in the nearby stratum radiatum. The threshold for eliciting a response was decreased after P Wd, and the mean PS amplitude was significantly increased compared with control values at this time. Paired pulses with 10-ms inter-pulse intervals were then applied across an intensity range from 2 to 20 times threshold. Evaluation of paired-pulse responses showed a significant 40–50% reduction in PPI for PS recorded in the hippocampal CA1 region after P Wd, suggesting an increase in circuit excitability. At this time, enhancement of PPI by the benzodiazepine lorazepam (LZM; 10 µM) was prevented, while pentobarbital (10 µM) potentiation of PPI was comparable to control levels of response. These data are consistent with upregulation of the α4 subunit of the GABAA receptor (GABAR) as we have previously shown. Moreover, the

  3. Differential distribution of GABAA receptor subunits in soma and processes of cerebellar granule cells: effects of maturation and a GABA agonist

    DEFF Research Database (Denmark)

    Elster, L; Hansen, G H; Belhage, B

    1995-01-01

    in cell bodies compared to processes. A detailed analysis of the less mature (4-day-old) cultures revealed the existence of two populations of neurons exhibiting differences in the average number of receptors. During maturation neurons with few receptors developed into cells with a higher density...... or absence of the GABAA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4c]pyridin-3-ol (THIP). THIP (150 microM) induced a 2-fold increase in the number of alpha 1 and beta 2/3 subunits in both cell bodies and processes in 4-day-old cultures. Extending the culture period to 8 days led to a polarization...... of the receptor expression, since the increase in the number of subunits selectively was observed in the processes. Moreover, a general subcellular differentiation of the receptor population was observed in all culture conditions, since the ratio between the two subunits (beta 2/3; alpha 1) was four times higher...

  4. Interactions of the bovine brain A1-adenosine receptor with recombinant G protein alpha-subunits. Selectivity for rGi alpha-3.

    Science.gov (United States)

    Freissmuth, M; Schütz, W; Linder, M E

    1991-09-25

    The ability of the bovine brain A1-adenosine receptor to discriminate between different G protein subtypes was tested using G protein alpha-subunits synthesized in Escherichia coli (rG alpha-subunits). When combined with a 3-fold molar excess of beta gamma-subunit purified from bovine brain and used at high concentrations, all three subtypes of rGi alpha (rGi alpha-1, rGi alpha-2, and rGi alpha-3) and rGo alpha were capable of reconstituting guanine nucleotide-sensitive high-affinity binding of the agonist radioligand (-)-N6-3-[125I] (iodo-4-hydroxyphenylisopropyl) adenosine ([125I]HPIA) to the purified A1-adenosine receptor (Kd approximately 1.2 nM). Titration of the A1-adenosine receptor with increasing amounts of rG alpha revealed a approximately 10-fold higher affinity for rGi alpha-3 compared with rGi alpha-1, rGi alpha-2, and rGo alpha. This selectivity was also observed in the absence of beta gamma. Other alpha-subunits (rGs alpha-s, rGs alpha-L, rGs alpha PT, and rGz alpha) did not promote [125I]HPIA binding to the purified receptor. In N-ethylmaleimide-treated bovine brain membranes, rGi alpha-3 was the only rG alpha-subunit capable of reconstituting high-affinity agonist binding. Similarly, rGi alpha-3 competed potently with rGo alpha for activation by the agonist-liganded A1-adenosine receptor, whereas a approximately 50-fold molar excess of rGo alpha was required to quench the receptor-mediated release of [alpha-32P]GDP from rGi alpha-3. Hence, in spite of the extensive homology between alpha-subunits belonging to the Gi/Go group, the A1-adenosine receptor appears to discriminate between the subtypes. This specificity is likely to govern transmembrane signaling pathways in vivo.

  5. Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae.

    Science.gov (United States)

    Bass, Chris; Puinean, Alin M; Andrews, Melanie; Cutler, Penny; Daniels, Miriam; Elias, Jan; Paul, Verity Laura; Crossthwaite, Andrew J; Denholm, Ian; Field, Linda M; Foster, Stephen P; Lind, Rob; Williamson, Martin S; Slater, Russell

    2011-05-31

    Myzus persicae is a globally important aphid pest with a history of developing resistance to insecticides. Unusually, neonicotinoids have remained highly effective as control agents despite nearly two decades of steadily increasing use. In this study, a clone of M. persicae collected from southern France was found, for the first time, to exhibit sufficiently strong resistance to result in loss of the field effectiveness of neonicotinoids. Bioassays, metabolism and gene expression studies implied the presence of two resistance mechanisms in the resistant clone, one based on enhanced detoxification by cytochrome P450 monooxygenases, and another unaffected by a synergist that inhibits detoxifying enzymes. Binding of radiolabeled imidacloprid (a neonicotinoid) to whole body membrane preparations showed that the high affinity [3H]-imidacloprid binding site present in susceptible M. persicae is lost in the resistant clone and the remaining lower affinity site is altered compared to susceptible clones. This confers a significant overall reduction in binding affinity to the neonicotinoid target: the nicotinic acetylcholine receptor (nAChR). Comparison of the nucleotide sequence of six nAChR subunit (Mpα1-5 and Mpβ1) genes from resistant and susceptible aphid clones revealed a single point mutation in the loop D region of the nAChR β1 subunit of the resistant clone, causing an arginine to threonine substitution (R81T). Previous studies have shown that the amino acid at this position within loop D is a key determinant of neonicotinoid binding to nAChRs and this amino acid change confers a vertebrate-like character to the insect nAChR receptor and results in reduced sensitivity to neonicotinoids. The discovery of the mutation at this position and its association with the reduced affinity of the nAChR for imidacloprid is the first example of field-evolved target-site resistance to neonicotinoid insecticides and also provides further validation of exisiting models of

  6. Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae

    Directory of Open Access Journals (Sweden)

    Field Linda M

    2011-05-01

    Full Text Available Abstract Background Myzus persicae is a globally important aphid pest with a history of developing resistance to insecticides. Unusually, neonicotinoids have remained highly effective as control agents despite nearly two decades of steadily increasing use. In this study, a clone of M. persicae collected from southern France was found, for the first time, to exhibit sufficiently strong resistance to result in loss of the field effectiveness of neonicotinoids. Results Bioassays, metabolism and gene expression studies implied the presence of two resistance mechanisms in the resistant clone, one based on enhanced detoxification by cytochrome P450 monooxygenases, and another unaffected by a synergist that inhibits detoxifying enzymes. Binding of radiolabeled imidacloprid (a neonicotinoid to whole body membrane preparations showed that the high affinity [3H]-imidacloprid binding site present in susceptible M. persicae is lost in the resistant clone and the remaining lower affinity site is altered compared to susceptible clones. This confers a significant overall reduction in binding affinity to the neonicotinoid target: the nicotinic acetylcholine receptor (nAChR. Comparison of the nucleotide sequence of six nAChR subunit (Mpα1-5 and Mpβ1 genes from resistant and susceptible aphid clones revealed a single point mutation in the loop D region of the nAChR β1 subunit of the resistant clone, causing an arginine to threonine substitution (R81T. Conclusion Previous studies have shown that the amino acid at this position within loop D is a key determinant of neonicotinoid binding to nAChRs and this amino acid change confers a vertebrate-like character to the insect nAChR receptor and results in reduced sensitivity to neonicotinoids. The discovery of the mutation at this position and its association with the reduced affinity of the nAChR for imidacloprid is the first example of field-evolved target-site resistance to neonicotinoid insecticides and also

  7. Transformation of postingestive glucose responses after deletion of sweet taste receptor subunits or gastric bypass surgery

    Science.gov (United States)

    Geraedts, Maartje C. P.; Takahashi, Tatsuyuki; Vigues, Stephan; Markwardt, Michele L.; Nkobena, Andongfac; Cockerham, Renee E.; Hajnal, Andras; Dotson, Cedrick D.; Rizzo, Mark A.

    2012-01-01

    The glucose-dependent secretion of the insulinotropic hormone glucagon-like peptide-1 (GLP-1) is a critical step in the regulation of glucose homeostasis. Two molecular mechanisms have separately been suggested as the primary mediator of intestinal glucose-stimulated GLP-1 secretion (GSGS): one is a metabotropic mechanism requiring the sweet taste receptor type 2 (T1R2) + type 3 (T1R3) while the second is a metabolic mechanism requiring ATP-sensitive K+ (KATP) channels. By quantifying sugar-stimulated hormone secretion in receptor knockout mice and in rats receiving Roux-en-Y gastric bypass (RYGB), we found that both of these mechanisms contribute to GSGS; however, the mechanisms exhibit different selectivity, regulation, and localization. T1R3−/− mice showed impaired glucose and insulin homeostasis during an oral glucose challenge as well as slowed insulin granule exocytosis from isolated pancreatic islets. Glucose, fructose, and sucralose evoked GLP-1 secretion from T1R3+/+, but not T1R3−/−, ileum explants; this secretion was not mimicked by the KATP channel blocker glibenclamide. T1R2−/− mice showed normal glycemic control and partial small intestine GSGS, suggesting that T1R3 can mediate GSGS without T1R2. Robust GSGS that was KATP channel-dependent and glucose-specific emerged in the large intestine of T1R3−/− mice and RYGB rats in association with elevated fecal carbohydrate throughout the distal gut. Our results demonstrate that the small and large intestines utilize distinct mechanisms for GSGS and suggest novel large intestine targets that could mimic the improved glycemic control seen after RYGB. PMID:22669246

  8. Expression and biological activity of two recombinant polypeptides related to subunit 1 of the interferon-a receptor

    Directory of Open Access Journals (Sweden)

    S. Yoon

    2000-07-01

    Full Text Available Abnormal production of interferon alpha (IFN-a has been found in certain autoimmune diseases and can be also observed after prolonged therapy with IFN-a. IFN-a can contribute to the pathogenesis of allograft rejection in bone marrow transplants. Therefore, the development of IFN-a inhibitors as a soluble receptor protein may be valuable for the therapeutic control of these diseases. We have expressed two polypeptides encoding amino acids 93-260 (P1 and 261-410 (P2 of the extracellular domain of subunit 1 of the interferon-a receptor (IFNAR 1-EC in E. coli. The activities of the recombinant polypeptides and of their respective antibodies were evaluated using antiproliferative and antiviral assays. Expression of P1 and P2 polypeptides was achieved by transformation of cloned plasmid pRSET A into E. coli BL21(DE3pLysS and by IPTG induction. P1 and P2 were purified by serial sonication steps and by gel filtration chromatography with 8 M urea and refolded by dialysis. Under reducing SDS-PAGE conditions, the molecular weight of P1 and P2 was 22 and 17 kDa, respectively. Polyclonal anti-P1 and anti-P2 antibodies were produced in mice. P1 and P2 and their respective polyclonal antibodies were able to block the antiproliferative activity of 6.25 nM IFN-aB on Daudi cells, but did not block IFN-aB activity at higher concentrations (>6.25 nM. On the other hand, the polypeptides and their respective antibodies did not inhibit the antiviral activity of IFN-aB on Hep 2/c cells challenged with encephalomyocarditis virus.

  9. NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients

    Directory of Open Access Journals (Sweden)

    Manuela eMellone

    2015-07-01

    Full Text Available Levodopa-induced dyskinesias (LIDs are major complications in the pharmacological management of Parkinson’s disease (PD. Abnormal glutamatergic transmission in the striatum is considered a key factor in the development of LIDs. This work aims at i. characterizing NMDA receptor GluN2A/GluN2B subunit ratio as a common synaptic trait in rat and primate models of LIDs and in dyskinetic PD patients, and ii. validating the potential therapeutic effect of a cell-permeable peptide interfering with GluN2A synaptic localization on the dyskinetic behavior of these experimental models of LIDs. Here we demonstrate an altered ratio of synaptic GluN2A/GluN2B-containing NMDA receptors in the striatum of levodopa-treated dyskinetic rats and monkeys as well as in post-mortem tissue from dyskinetic PD patients. The modulation of synaptic NMDA receptor composition by a cell-permeable peptide interfering with GluN2A subunit interaction with the scaffolding protein PSD-95 leads to a reduction in the dyskinetic motor behavior in the two animal models of LIDs. Our results indicate that targeting synaptic NMDA receptor subunit composition may represent an intriguing therapeutic approach aimed at ameliorating levodopa motor side effects.

  10. The contribution of delta subunit-containing GABAA receptors to phasic and tonic conductance changes in cerebellum, thalamus and neocortex.

    Directory of Open Access Journals (Sweden)

    Stephen G Brickley

    2013-12-01

    Full Text Available We have made use of the delta subunit-selective allosteric modulator DS2 (4-chloro-N-[2-(2-thienylimidazo[1,2-a]pyridine-3-yl benzamide to assay the contribution of delta-GABAARs to tonic and phasic conductance changes in the cerebellum, thalamus and neocortex. In cerebellar granule cells, an enhancement of the tonic conductance was observed for DS2 and the orthosteric agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol. As expected, DS2 did not alter the properties of GABAA receptor-mediated inhibitory postsynaptic synaptic currents (IPSCs supporting a purely extrasynaptic role for delta-GABAARs in cerebellar granule cells. DS2 also enhanced the tonic conductance recorded from thalamic relay neurons of the visual thalamus with no alteration in IPSC properties. However, in addition to enhancing the tonic conductance DS2 also slowed the decay of IPSCs recorded from layer II/III neocortical neurons. A slowing of the IPSC decay also occurred in the presence of the voltage-gated sodium channel blocker TTX. Moreover, under conditions of reduced GABA release the ability of DS2 to enhance the tonic conductance was attenuated. These results indicate that delta-GABAARs can be activated following vesicular GABA release onto neocortical neurons and that the actions of DS2 on the tonic conductance may be influenced by the ambient GABA levels present in particular brain regions.

  11. Serine phosphorylation of the integrin beta4 subunit is necessary for epidermal growth factor receptor induced hemidesmosome disruption.

    Science.gov (United States)

    Wilhelmsen, Kevin; Litjens, Sandy H M; Kuikman, Ingrid; Margadant, Coert; van Rheenen, Jacco; Sonnenberg, Arnoud

    2007-09-01

    Hemidesmosomes (HDs) are multiprotein adhesion complexes that promote attachment of epithelial cells to the basement membrane. The binding of alpha6beta4 to plectin plays a central role in their assembly. We have defined three regions on beta4 that together harbor all the serine and threonine phosphorylation sites and show that three serines (S1356, S1360, and S1364), previously implicated in HD regulation, prevent the interaction of beta4 with the plectin actin-binding domain when phosphorylated. We have also established that epidermal growth factor receptor activation, which is known to function upstream of HD disassembly, results in the phosphorylation of only one or more of these three residues and the partial disassembly of HDs in keratinocytes. Additionally, we show that S1360 and S1364 of beta4 are the only residues phosphorylated by PKC and PKA in cells, respectively. Taken together, our studies indicate that multiple kinases act in concert to breakdown the structural integrity of HDs in keratinocytes, which is primarily achieved through the phosphorylation of S1356, S1360, and S1364 on the beta4 subunit.

  12. Genetic association analysis of N-methyl-D-aspartate receptor subunit gene GRIN2B and clinical response to clozapine.

    Science.gov (United States)

    Taylor, Danielle L; Tiwari, Arun K; Lieberman, Jeffrey A; Potkin, Steven G; Meltzer, Herbert Y; Knight, Jo; Remington, Gary; Müller, Daniel J; Kennedy, James L

    2016-03-01

    Approximately 30% of patients with schizophrenia fail to respond to antipsychotic therapy and are classified as having treatment-resistant schizophrenia. Clozapine is the most efficacious drug for treatment-resistant schizophrenia and may deliver superior therapeutic effects partly by modulating glutamate neurotransmission. Response to clozapine is highly variable and may depend on genetic factors as indicated by twin studies. We investigated eight polymorphisms in the N-methyl-D-aspartate glutamate receptor subunit gene GRIN2B with response to clozapine. GRIN2B variants were genotyped using standard TaqMan procedures in 175 European patients with schizophrenia deemed resistant or intolerant to treatment. Response was assessed using change in Brief Psychiatric Rating Scale scores following six months of clozapine therapy. Categorical and continuous response was assessed using chi-squared test and analysis of covariance, respectively. No associations were observed between the variants and response to clozapine. A-allele carriers of rs1072388 responded marginally better to clozapine therapy than GG-homozygotes; however, the difference was not statistically significant (p = 0.067, uncorrected). Our findings do not support a role for these GRIN2B variants in altering response to clozapine in our sample. Investigation of additional glutamate variants in clozapine response is warranted. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Association of the nicotinic receptor α7 subunit gene (CHRNA7 with schizophrenia and visual backward masking

    Directory of Open Access Journals (Sweden)

    George eBakanidze

    2013-10-01

    Full Text Available The nicotinic system is involved in the pathophysiology of schizophrenia. However, very little is known about its genetic basis and how it relates to clinical symptoms and potentially pharmacological intervention. Here, we investigated five single nucleotide polymorphisms (SNPs [rs3826029] [rs2337506] [rs982574] [rs904952] [rs2337980] of the cholinergic nicotinic receptor gene, alpha 7 subunit (CHRNA7 and their association to schizophrenia. We found an association with rs904952 (p=0.009 in a German sample of 224 schizophrenic patients and 224 healthy control subjects. The same trend was shown in an independent Georgian sample of 50 schizophrenic patients, 57 first order unaffected relatives, and 51 healthy controls. In addition, visual backward masking (VBM, a sensitive test for early visual information processing, was assessed in the Georgian sample. In line with prior studies, VBM performance deficits were much more pronounced in schizophrenic patients and their unaffected relatives compared to healthy controls (schizophrenic patients: 156 ms; unaffected relatives: 60 ms; healthy controls: 33 ms. VBM was strongly correlated with SNP rs904952 (H[2]=7.3, p=0.026. Our results further support the notion that changes in the nicotinic system are involved in schizophrenia and open the avenue for pharmacological intervention.

  14. Beyond risk: Prospective effects of GABA Receptor Subunit Alpha-2 (GABRA2) × Positive Peer Involvement on adolescent behavior.

    Science.gov (United States)

    Trucco, Elisa M; Villafuerte, Sandra; Burmeister, Margit; Zucker, Robert A

    2017-08-01

    Research on Gene × Environment interactions typically focuses on maladaptive contexts and outcomes. However, the same genetic factors may also impact susceptibility to positive social contexts, leading to adaptive behavior. This paper examines whether the GABA receptor subunit alpha-2 (GABRA2) single nucleotide polymorphism rs279858 moderates the influence of positive peer affiliation on externalizing behavior and various forms of competence. Regions of significance were calculated to determine whether the form of the interaction supported differential susceptibility (increased sensitivity to both low and high positive peer affiliation) or vantage sensitivity (increased sensitivity to high positive peer affiliation). It was hypothesized that those carrying the homozygous minor allele (GG) would be more susceptible to peer effects. A sample (n = 300) of primarily male (69.7%) and White (93.0%) adolescents from the Michigan Longitudinal Study was assessed from ages 12 to 17. There was evidence for prospective Gene × Environment interactions in three of the four models. At low levels of positive peer involvement, those with the GG genotype were rated as having fewer adaptive outcomes, while at high levels they were rated as having greater adaptive outcomes. This supports differential susceptibility. Conceptualizing GABRA2 variants as purely risk factors may be inaccurate. Genetic differences in susceptibility to adaptive environmental exposures warrants further investigation.

  15. Binding interactions of human interleukin 5 with its receptor alpha subunit. Large scale production, structural, and functional studies of Drosophila-expressed recombinant proteins.

    Science.gov (United States)

    Johanson, K; Appelbaum, E; Doyle, M; Hensley, P; Zhao, B; Abdel-Meguid, S S; Young, P; Cook, R; Carr, S; Matico, R

    1995-04-21

    Human interleukin 5 (hIL5) and soluble forms of its receptor alpha subunit were expressed in Drosophila cells and purified to homogeneity, allowing a detailed structural and functional analysis. B cell proliferation confirmed that the hIL5 was biologically active. Deglycosylated hIL5 remained active, while similarly deglycosylated receptor alpha subunit lost activity. The crystal structure of the deglycosylated hIL5 was determined to 2.6-A resolution and found to be similar to that of the protein produced in Escherichia coli. Human IL5 was shown by analytical ultracentrifugation to form a 1:1 complex with the soluble domain of the hIL5 receptor alpha subunit (shIL5R alpha). Additionally, the relative abundance of ligand and receptor in the hIL5.shIL5R alpha complex was determined to be 1:1 by both titration calorimetry and SDS-polyacrylamide gel electrophoresis analysis of dissolved cocrystals of the complex. Titration microcalorimetry yielded equilibrium dissociation constants of 3.1 and 2.0 nM, respectively, for the binding of hIL5 to shIL5R alpha and to a chimeric form of the receptor containing shIL5R alpha fused to the immunoglobulin Fc domain (shIL5R alpha-Fc). Analysis of the binding thermodynamics of IL5 and its soluble receptor indicates that conformational changes are coupled to the binding reaction. Kinetic analysis using surface plasmon resonance yielded data consistent with the Kd values from calorimetry and also with the possibility of conformational isomerization in the interaction of hIL5 with the receptor alpha subunit. Using a radioligand binding assay, the affinity of hIL5 with full-length hIL5R alpha in Drosophila membranes was found to be 6 nM, in accord with the affinities measured for the soluble receptor forms. Hence, most of the binding energy of the alpha receptor is supplied by the soluble domain. Taken with other aspects of hIL5 structure and biological activity, the data obtained allow a prediction for how 1:1 stoichiometry and

  16. BDNF val66met Polymorphism Impairs Hippocampal Long-Term Depression by Down-Regulation of 5-HT3 Receptors

    Directory of Open Access Journals (Sweden)

    Rui Hao

    2017-10-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a key regulator of neuronal plasticity and cognitive functions. BDNF val66met polymorphism, a human single-nucleotide polymorphism (SNP in the pro-domain of BDNF gene, is associated with deficits in activity-dependent BDNF secretion and hippocampus-dependent memory. However, the underlying mechanism remains unclear. Here we show that in the BDNFMet/Met mouse line mimicking the human SNP, BDNF expression in the hippocampus was decreased. There was a reduction in the total number of cells in hippocampal CA1 region, while hippocampal expression of mRNAs for NR2a, 2b, GluR1, 2 and GABAARβ3 subunits were up-regulated. Although basal glutamatergic neurotransmission was unaltered, hippocampal long-term depression (LTD induced by low-frequency stimulation was impaired, which was partially rescued by exogenous application of BDNF. Interestingly, 5-HT3a receptors were down-regulated in the hippocampus of BDNFMet/Met mice, whereas 5-HT2c receptors were up-regulated. Moreover, impaired LTD in BDNFMet/Met mice was reversed by 5-HT3aR agonist. Thus, these observations indicate that BDNF val66met polymorphism changes hippocampal synaptic plasticity via down-regulation of 5-HT3a receptors, which may underlie cognition dysfunction of Met allele carriers.

  17. Mouse hippocampal GABAB1 but not GABAB2 subunit-containing receptor complex levels are paralleling retrieval in the multiple-T-maze

    Directory of Open Access Journals (Sweden)

    Soheil eKeihan Falsafi

    2015-10-01

    Full Text Available GABAB receptors are heterodimeric G-protein coupled receptors known to be involved in learning and memory. Although a role for GABAB receptors in cognitive processes is evident, there is no information on hippocampal GABAB receptor complexes in a multiple T maze (MTM task, a robust paradigm for evaluation of spatial learning.Trained or untrained (yoked control C57BL/6J male mice (n=10/group were subjected to the MTM task and sacrificed 6 hours following their performance. Hippocampi were taken, membrane proteins extracted and run on blue native PAGE followed by immunoblotting with specific antibodies against GABAB1, GABAB1a and GABAB2. Immunoprecipitation with subsequent mass spectrometric identification of co-precipitates was carried out to show if GABAB1 and GABAB2 as well as other interacting proteins co-precipitate. An antibody shift assay (ASA and a proximity ligation assay (PLA were also used to see if the two GABAB subunits are present in the receptor complex.Single bands were observed on Western blots, each representing GABAB1, GABAB1a or GABAB2 at an apparent molecular weight of approximately 100 kDa. Subsequently, densitometric analysis revealed that levels of GABAB1 and GABAB1a but not GABAB2- containing receptor complexes were significantly higher in trained than untrained groups. Immunoprecipitation followed by mass spectrometric studies confirmed the presence of GABAB1, GABAB2, calcium calmodulin kinases I and II, GluA1 and GluA2 as constituents of the complex. ASA and PLA also showed the presence of the two subunits of GABAB receptor within the complex. It is shown that increased levels of GABAB1 subunit-containing complexes are paralleling performance in a land maze.

  18. Gβ4γ1 as a modulator of M3 muscarinic receptor signalling and novel roles of Gβ1 subunits in the modulation of cellular signalling.

    Science.gov (United States)

    Khan, Shahriar M; Min, Adam; Gora, Sarah; Houranieh, Geeda M; Campden, Rhiannon; Robitaille, Mélanie; Trieu, Phan; Pétrin, Darlaine; Jacobi, Ashley M; Behlke, Mark A; Angers, Stéphane; Hébert, Terence E

    2015-08-01

    Much is known about the how Gβγ subunits regulate effectors in response to G protein-coupled receptor stimulation. However, there is still a lot we don't know about how specific combinations of Gβ and Gγ are wired into different signalling pathways. Here, using an siRNA screen for different Gβ and Gγ subunits, we examined an endogenous M3 muscarinic receptor signalling pathway in HEK 293 cells. We observed that Gβ(4) subunits were critical for calcium signalling and a downstream surrogate measured as ERK1/2 MAP kinase activity. A number of Gγ subunits could partner with Gβ(4) but the best coupling was seen via Gβ(4)γ(1). Intriguingly, knocking down Gβ(1) actually increased signalling through the M3-mAChR most likely via an increase in Gβ(4) levels. We noted that Gβ(1) occupies the promoter of Gβ(4) and may participate in maturation of its mRNA. This highlights a new role for Gβγ signalling beyond their canonical roles in cellular signalling. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A mutation in the glycine binding pocket of the N-methyl-D-aspartate receptor NR1 subunit alters agonist efficacy.

    Science.gov (United States)

    Wood, M W; VanDongen, H M; VanDongen, A M

    1999-11-10

    Alanine 714 of the NMDA receptor NR1 subunit resides in the glycine binding pocket. The Ala714Leu mutation substantially shifts glycine affinity, but here no effect on antagonism by DCK is detected. Ala714Leu is also found to limit the efficacy of a partial agonist without altering its apparent affinity. The differential sensitivity of Ala714Leu to glycine agonists suggests that alanine 714 may be an intermediary in transducing the ligand binding signal.

  20. [Expression of NMDA receptor subunits in rat prefrontal cortex with CCL4-induced hepatic damage after a treatment with Rosmarinus officinalis L].

    Science.gov (United States)

    Soria Fregozo, C; Miranda Beltrán, M L; Flores Soto, M E; Pérez Vega, M I; Beas Zárate, C; Huacuja Ruiz, L

    2012-06-01

    In cirrhosis some toxic substances accumulate in brain and modify the expression of several neuronal receptors. Thus, the use of medicinal plants such as Rosmarinus officinalis L. has been proposed in several pathologies due to its hepatoprotective, antioxidant and neuroprotective activity. In this study we evaluated the expression of the subunits NR1, NR2A and NR2B of the glutamate receptor in rat prefrontal cortex in a model of hepatic damage induced with carbon tetrachloride after a treatment with Rosmarinus officinalis L. We used a total of 24 male Wistar rats weighing 80-90 g. body weight. We formed three study groups: control group (C) without a treatment, carbon tetrachloride group (CC14), and CC14 group plus Rosmarinus officinalis L (CCl4+ROM; 1.5 g/kg of extract orally). The expression of the NR1, NR2A and NR2B subunits in cirrhotic animals increased compared to the control group, however treatment with Rosmarinus officinalis L. was able to reduce this expression to normal levels compared with CC14 and CCl4+ROM groups. These results could be due to an improvement in hepatic function. Treatment with extract of Rosmarinus officinalis L. in cirrhotic animals modifies the expression of subunits of the NMDA receptor due to an improvement in hepatocellular function in the presence of antioxidant compounds and flavonoids. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  1. Identification of synaptic pattern of NMDA receptor subunits upon direction-selective retinal ganglion cells in developing and adult mouse retina.

    Science.gov (United States)

    Lee, Jun-Seok; Kim, Hang-Gu; Jeon, Chang-Jin

    2017-06-01

    Direction selectivity of the retina is a unique mechanism and critical function of eyes for surviving. Direction-selective retinal ganglion cells (DS RGCs) strongly respond to preferred directional stimuli, but rarely respond to the opposite or null directional stimuli. These DS RGCs are sensitive to glutamate, which is secreted from bipolar cells. Using immunocytochemistry, we studied with the distributions of N-methyl-d-aspartate (NMDA) receptor subunits on the dendrites of DS RGCs in the developing and adult mouse retina. DS RGCs were injected with Lucifer yellow for identification of dendritic morphology. The triple-labeled images of dendrites, kinesin II, and NMDA receptor subunits were visualized using confocal microscopy and were reconstructed from high-resolution confocal images. Although our results revealed that the synaptic pattern of NMDA receptor subunits on dendrites of DS RGCs was not asymmetric in developing and adult mouse retina, they showed the anatomical connectivity of NMDA glutamatergic synapses onto DS RGCs and the developmental formation of the direction selectivity in the mouse retina. Through the comprehensive interpretation of the direction-selective neural circuit, this study, therefore, implies that the direction selectivity may be generated by the asymmetry of the excitatory glutamatergic inputs and the inhibitory inputs onto DS RGCs. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. A hot spot on interferon α/β receptor subunit 1 (IFNAR1) underpins its interaction with interferon-β and dictates signaling

    OpenAIRE

    De Weerd, Nicola A.; Matthews, Anthony Y.; Pattie, Philip R.; Bourke, Nollaig M.; Lim, San S.; Vivian, Julian P; Rossjohn, Jamie; Hertzog, Paul J.

    2017-01-01

    The interaction of IFN-β with its receptor IFNAR1 (interferon α/β receptor subunit 1) is vital for host-protective anti-viral and anti-proliferative responses, but signaling via this interaction can be detrimental if dysregulated. Whereas it is established that IFNAR1 is an essential component of the IFNAR signaling complex, the key residues underpinning the IFN-β-IFNAR1 interaction are unknown. Guided by the crystal structure of the IFN-β-IFNAR1 complex, we used truncation variants and site-...

  3. Association of GABAA receptor α2 subunit gene (GABRA2) with alcohol dependence-related aggressive behavior.

    Science.gov (United States)

    Strac, Dubravka Svob; Erjavec, Gordana Nedic; Perkovic, Matea Nikolac; Sviglin, Korona Nenadic; Borovecki, Fran; Pivac, Nela

    2015-12-03

    Alcohol dependence is a common chronic disorder precipitated by the complex interaction between biological, genetic and environmental risk factors. Recent studies have demonstrated that polymorphisms of the gene encoding the GABAA receptor α2 subunit (GABRA2) are associated with alcohol dependence in different populations of European ancestry. As aggression often occurs in the context of alcohol dependence, the aim of this study was to examine the allelic and haplotypic association of GABRA2 gene with alcohol dependence and related aggressive behavior in subjects of Eastern European (Croatian) origin. Genotyping of the 3 single nucleotide polymorphisms (SNPs) across the GABRA2 gene (rs567926, rs279858 and rs9291283) was performed in patients with alcohol dependence (N=654) and healthy control subjects (N=574). Alcohol-dependent participants were additionally subdivided according to the presence/absence of aggressive behavior and type of alcohol dependence according to the Cloninger's classification. The association of rs279858 with alcohol dependence yielded nominal significance level. Haplotype analysis revealed a high degree of linkage disequilibrium (LD) for rs567926 and rs279858, but not for rs9291283 polymorphism in the GABRA2 gene. In patients with alcohol dependence, the A-C (rs567926 and rs279858) haplotype carriers were more likely to demonstrate aggressive behavior. The same haplotype (present only in 1.6% of all subjects) was significantly more often present in patients with a combination of early onset alcohol abuse and aggression, corresponding to the Cloninger's type II alcoholism subgroup. These findings support the involvement of GABRA2 gene in alcohol dependence-related aggressive behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Delta Subunit-Containing Gamma-Aminobutyric Acid A Receptor Disinhibits Lateral Amygdala and Facilitates Fear Expression in Mice.

    Science.gov (United States)

    Liu, Zhi-Peng; He, Qing-Hai; Pan, Han-Qing; Xu, Xiao-Bin; Chen, Wen-Bing; He, Ye; Zhou, Jin; Zhang, Wen-Hua; Zhang, Jun-Yu; Ying, Xiao-Ping; Han, Ren-Wen; Li, Bao-Ming; Gao, Tian-Ming; Pan, Bing-Xing

    2017-06-15

    Maintaining gamma-aminobutyric acidergic (GABAergic) inhibition in the amygdala within a physiological range is critical for the appropriate expression of emotions such as fear and anxiety. The synaptic GABA type A receptor (GABA A R) is generally known to mediate the primary component of amygdala inhibition and prevent inappropriate expression of fear. However, little is known about the contribution of the extrasynaptic GABA A R to amygdala inhibition and fear. By using mice expressing green fluorescent protein in interneurons (INs) and lacking the δ subunit-containing GABA A R (GABA A (δ)R), which is exclusively situated in the extrasynaptic membrane, we systematically investigated the role of GABA A (δ)R in regulating inhibition in the lateral amygdala (LA) and fear learning using the combined approaches of immunohistochemistry, electrophysiology, and behavior. In sharp contrast to the established role of synaptic GABA A R in mediating LA inhibition, we found that either pharmacological or physiological recruitment of GABA A (δ)R resulted in the weakening of GABAergic transmission onto projection neurons in LA while leaving the glutamatergic transmission unaltered, suggesting disinhibition by GABA A (δ)R. The disinhibition arose from IN-specific expression of GABA A (δ)R with its activation decreasing the input resistance of local INs and suppressing their activation. Genetic deletion of GABA A (δ)R attenuated its role in suppressing LA INs and disinhibiting LA. Importantly, the GABA A (δ)R facilitated long-term potentiation in sensory afferents to LA and permitted the expression of learned fear. Our findings suggest that GABA A (δ)R serves as a brake rather than a mediator of GABAergic inhibition in LA. The disinhibition by GABA A (δ)R may help to prevent excessive suppression of amygdala activity and thus ensure the expression of emotion. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Ovarian cycle-linked plasticity of δ-GABAA receptor subunits in hippocampal interneurons affects γ oscillations in vivo

    Directory of Open Access Journals (Sweden)

    Albert Miklos Barth

    2014-08-01

    Full Text Available GABAA receptors containing δ subunits (δ-GABAARs are GABA-gated ion channels with extra- and perisynaptic localization, strong sensitivity to neurosteroids (NS, and a high degree of plasticity. In selective brain regions they are expressed on specific principal cells and interneurons (INs, and generate a tonic conductance that controls neuronal excitability and oscillations. Plasticity of δ-GABAARs in principal cells has been described during states of altered NS synthesis including acute stress, puberty, ovarian cycle, pregnancy and the postpartum period, with direct consequences on neuronal excitability and network dynamics. The defining network events implicated in cognitive function, memory formation and encoding are γ oscillations (30-120 Hz, a well-timed loop of excitation and inhibition between principal cells and PV-expressing INs (PV+INs. The δ-GABAARs of INs can modify γ oscillations, and a lower expression of δ-GABAARs on INs during pregnancy alters γ frequency recorded in vitro. The ovarian cycle is another physiological event with large fluctuations in NS levels and δ-GABAARs. Stages of the cycle are paralleled by swings in memory performance, cognitive function, and mood in both humans and rodents. Here we show δ-GABAARs changes during the mouse ovarian cycle in hippocampal cell types, with enhanced expression during diestrus in principal cells and specific INs. The plasticity of δ-GABAARs on PV-INs decreases the magnitude of γ oscillations continuously recorded in area CA1 throughout several days in vivo during diestrus and increases it during estrus. Such recurring changes in γ magnitude were not observed in non-cycling wild-type (WT females, cycling females lacking δ-GABAARs only on PV-INs (PV-Gabrd-/-, and in male mice during a time course equivalent to the ovarian cycle. Our findings may explain the impaired memory and cognitive performance experienced by women with premenstrual syndrome (PMS or premenstrual

  6. Poly I:C facilitates the phosphorylation of Ctenopharyngodon idellus type I IFN receptor subunits and JAK kinase.

    Science.gov (United States)

    Hou, Qunhao; Gong, Ruiyue; Liu, Xiancheng; Mao, Huiling; Xu, Xiaowen; Liu, Dan; Dai, Zao; Wang, Haizhou; Wang, Binhua; Hu, Chengyu

    2017-01-01

    Members of the Janus kinase (JAK) family, JAK1 and TYK2 take part in JAK-STAT signaling pathway mediated by interferon in mammalian cells. Similar to the mammalian counterparts, fish JAK1 and TYK2 also perform their potential biological activities by phosphorylating cytokine receptors and STAT. In the present study, Ctenopharyngodon idellus JAK1 (CiJAK1) and TYK2 (CiTYK2) were cloned and identified. The full-length cDNA of CiJAK1 (KT724352.1) is 3829 bp, with an Open Reading Frame (ORF) of 3465 bp encoding a putative protein of 1154 amino acids. The full-length cDNA of CiTYK2 (KT724353.1) is 4337 bp, including an ORF of 3168 bp encoding 1055 amino acids. Structurally, both of them have B41, SH2, TyrKc and TyrKc common domains. CiJAK1 and CiTYK2 share a high degree of homology with their respective counterparts from Danio rerio and Cyprinus carpio by phylogenetic tree analysis. Polyinosinic-polycytidylic acid (Poly I:C), a synthetic dsRNA analogue, can launch the JAK-STAT antiviral signaling pathway. To elucidate the molecular mechanism of Poly I:C initiating the antiviral signaling pathway in fish, C. idellus kidney (CIK) cells were stimulated with Poly I:C and then the cell lysates were separated on 10% SDS-PAGE. The results showed that not only Poly I:C drastically increased the expression level of CiJAK1 and CiTYK2, but also it induced the phosphorylation of CiJAK1 and CiTYK2, as well as C. idellus type I IFN receptor subunits, CiCRFB1 and CiCRFB5. In detail, the levels of p-CiJAK1 and p-CiTYK2 were evidently up-regulated at 3 h post stimulation; however the phosphorylation levels of CiCRFB1 and CiCRFB5 displayed a sharp up-regulation at 12 h post stimulation of Poly I:C. As a basic mechnism of feedback regulation of JAK-STAT signaling pathway, overexpression of CiCRFB1 and CiCRFB5 in CIK cells facilitated the phosphorylation of CiJAK1 and CiTYK2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. NMDA receptor subunits in the adult rat hippocampus undergo similar changes after 5 minutes in an open field and after LTP induction.

    Directory of Open Access Journals (Sweden)

    Maria Veronica Baez

    Full Text Available NMDA receptor subunits change during development and their synaptic expression is modified rapidly after synaptic plasticity induction in hippocampal slices. However, there is scarce information on subunits expression after synaptic plasticity induction or memory acquisition, particularly in adults. GluN1, GluN2A and GluN2B NMDA receptor subunits were assessed by western blot in 1 adult rats that had explored an open field (OF for 5 minutes, a time sufficient to induce habituation, 2 mature rat hippocampal neuron cultures depolarized by KCl and 3 hippocampal slices from adult rats where long term potentiation (LTP was induced by theta-burst stimulation (TBS. GluN1 and GluN2A, though not GluN2B, were significantly higher 70 minutes--but not 30 minutes--after a 5 minutes session in an OF. GluN1 and GluN2A total immunofluorescence and puncta in neurites increased in cultures, as evaluated 70 minutes after KCl stimulation. Similar changes were found in hippocampal slices 70 minutes after LTP induction. To start to explore underlying mechanisms, hippocampal slices were treated either with cycloheximide (a translation inhibitor or actinomycin D (a transcription inhibitor during electrophysiological assays. It was corroborated that translation was necessary for LTP induction and expression. The rise in GluN1 depends on transcription and translation, while the increase in GluN2A appears to mainly depend on translation, though a contribution of some remaining transcriptional activity during actinomycin D treatment could not be rouled out. LTP effective induction was required for the subunits to increase. Although in the three models same subunits suffered modifications in the same direction, within an apparently similar temporal course, further investigation is required to reveal if they are related processes and to find out whether they are causally related with synaptic plasticity, learning and memory.

  8. Ahsg-fetuin blocks the metabolic arm of insulin action through its interaction with the 95-kD β-subunit of the insulin receptor.

    Science.gov (United States)

    Goustin, Anton Scott; Derar, Nada; Abou-Samra, Abdul B

    2013-04-01

    We previously have shown that Ahsg, a liver glycoprotein, inhibits insulin receptor (InsR) tyrosine kinase (TK) activity and the ERK1/2 mitogenic signaling arm of insulin signaling. Here we show that Ahsg blocks insulin-stimulated GLUT4 translocation and Akt activation in intact cells (mouse myoblasts). Furthermore, Ahsg inhibits InsR autophosphorylation of highly-purified insulin holoreceptors in a cell-free, ATP-dependent system, with an IC50 within the range of single-chain Ahsg concentrations in human serum. Binding of (125)I-insulin to living cells overexpressing the InsR shows a dissociation constant (KD) of 250pM, unaltered in the presence of 300 nM Ahsg. A mutant InsR cDNA encoding the signal peptide, the β-subunit and the furin processing site, but deleting the α-subunit, was stably expressed in HEK293 cells. Treatment with peroxovanadate, but not insulin, dramatically increased the 95 kD β-subunit tyrosine phosphoryation. The level of tyrosine phosphorylation of the 95-kD β-subunit can be driven down sharply by treatment of living HEK293 transfectant cells with physiological doses of Ahsg. Treatment of myogenic cells with Ahsg blunts insulin-stimulated InsR autophosphorylation and AKT phosphorylation. Taken together, we show that Ahsg antagonizes the metabolic functions initiated by InsR activation without interference in insulin binding. The experiments suggest a direct interaction of Ahsg with the InsR ectodomain β-subunit in a mode that does not significantly alter the high-affinity binding of insulin to the holoreceptor's two complementing α-subunits. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Intracellular Mg2+ interacts with structural determinants of the narrow constriction contributed by the NR1-subunit in the NMDA receptor channel.

    Science.gov (United States)

    Wollmuth, L P; Kuner, T; Sakmann, B

    1998-01-01

    1. N-methyl-D-aspartate (NMDA) receptor channels are blocked by intracellular Mg2+ in a voltage-dependent manner. Amino acid residues positioned at or near the narrow constriction that interact with intracellular Mg2+ were identified in recombinant NR1-NR2A channels expressed in Xenopus oocytes or human embryonic kidney (HEK) 293 cells. 2. In the absence of extracellular Ca2+, the block of wild-type channel by intracellular Mg2+ measured using macroscopic currents showed a voltage dependence (delta) of around 0.38 and a voltage-independent affinity for the channel of 4 mM. These parameters were independent of the Mg2+ concentration (0.05-10mM), and were indistinguishable from those found for the reduction of single channel amplitudes under the same ionic conditions. Under bionic conditions with high intracellular Mg2+ and K+ extracellularly, Mg2+ was weakly permeant. Mg2+ efflux, however, attenuated the block only at positive potentials (> +80 mV). 3. Substitutions of the N-site asparagine in the NR1-subunit altered intracellular Mg2+ block over physiological membrane potentials (+10 to +50 mV). Substitution of glycine, glutamine or serine attenuated the extent of block whereas the negatively charged aspartate enhanced it, consistent with the side chain of the native asparagine at this position contributing to a blocking site for intracellular Mg2+. 4. Substitutions of the N-site or N + 1 site asparagine in the NR2A-subunit, which form a blocking site for extracellular Mg2+, also altered the block by intracellular Mg2+. However, for the NR2A-subunit N-site asparagine, the block was reduced but only at non-physiological high potentials (> +70 mV). 5. The NR2A-subunit N + 1 site asparagine, which together with NR1-subunit N-site asparagine forms the narrow constriction of the channel, also contributed to a blocking site for intracellular Mg2+. However, it did so to lesser extent than the NR1-subunit N-site and in a manner different from its contribution to a blocking

  10. The N-terminal third of the BinB subunit from the Bacillus sphaericus binary toxin is sufficient for its interaction with midgut receptors in Culex quinquefasciatus.

    Science.gov (United States)

    Romão, Tatiany Patrícia; de-Melo-Neto, Osvaldo Pompílio; Silva-Filha, Maria Helena Neves Lobo

    2011-08-01

    Heterodimeric binary (Bin) toxin, the major insecticidal protein from Bacillus sphaericus, acts on Culex quinquefasciatus larvae through specific binding to the midgut receptor Cqm1, a role mediated by its 448-amino-acid-long BinB subunit. The molecular basis for receptor recognition is not well understood and this study attempted to identify protein segments and amino acid motifs within BinB that are required for this event. First, N- and C-terminally truncated constructs were evaluated for their capacity to bind to native Cqm1 through pull-down assays. These showed that residues N33 to L158 of the subunit are required for Cqm1 binding. Nine different full-length mutants were then generated in which selected blocks of three amino acids were replaced by alanines. In new pull-down assays, two mutants, in which residues (85) IRF(87) and (147) FQF(149) were targeted, failed to bind the receptor. Competition binding assays confirmed the requirements for the N-terminal 158 residues, and the (147) FQF(149) epitope, for the mutant proteins to compete with native Bin toxin when binding to membrane fractions from the insect midgut. The data from this work rule out the involvement of C-terminal segments in receptor binding, highlighting the need for multiple elements within the protein's N-terminal third for it to occur. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Effects of Traumatic Stress Induced in the Juvenile Period on the Expression of Gamma-Aminobutyric Acid Receptor Type A Subunits in Adult Rat Brain.

    Science.gov (United States)

    Lu, Cui Yan; Liu, De Xiang; Jiang, Hong; Pan, Fang; Ho, Cyrus S H; Ho, Roger C M

    2017-01-01

    Studies have found that early traumatic experience significantly increases the risk of posttraumatic stress disorder (PTSD). Gamma-aminobutyric acid (GABA) deficits were proposed to be implicated in development of PTSD, but the alterations of GABA receptor A (GABAAR) subunits induced by early traumatic stress have not been fully elucidated. Furthermore, previous studies suggested that exercise could be more effective than medications in reducing severity of anxiety and depression but the mechanism is unclear. This study used inescapable foot-shock to induce PTSD in juvenile rats and examined their emotional changes using open-field test and elevated plus maze, memory changes using Morris water maze, and the expression of GABAAR subunits (γ2, α2, and α5) in subregions of the brain in the adulthood using western blotting and immunohistochemistry. We aimed to observe the role of GABAAR subunits changes induced by juvenile trauma in the pathogenesis of subsequent PTSD in adulthood. In addition, we investigated the protective effects of exercise for 6 weeks and benzodiazepine (clonazepam) for 2 weeks. This study found that juvenile traumatic stress induced chronic anxiety and spatial memory loss and reduced expression of GABAAR subunits in the adult rat brains. Furthermore, exercise led to significant improvement as compared to short-term BZ treatment.

  12. Effects of Traumatic Stress Induced in the Juvenile Period on the Expression of Gamma-Aminobutyric Acid Receptor Type A Subunits in Adult Rat Brain

    Directory of Open Access Journals (Sweden)

    Cui Yan Lu

    2017-01-01

    Full Text Available Studies have found that early traumatic experience significantly increases the risk of posttraumatic stress disorder (PTSD. Gamma-aminobutyric acid (GABA deficits were proposed to be implicated in development of PTSD, but the alterations of GABA receptor A (GABAAR subunits induced by early traumatic stress have not been fully elucidated. Furthermore, previous studies suggested that exercise could be more effective than medications in reducing severity of anxiety and depression but the mechanism is unclear. This study used inescapable foot-shock to induce PTSD in juvenile rats and examined their emotional changes using open-field test and elevated plus maze, memory changes using Morris water maze, and the expression of GABAAR subunits (γ2, α2, and α5 in subregions of the brain in the adulthood using western blotting and immunohistochemistry. We aimed to observe the role of GABAAR subunits changes induced by juvenile trauma in the pathogenesis of subsequent PTSD in adulthood. In addition, we investigated the protective effects of exercise for 6 weeks and benzodiazepine (clonazepam for 2 weeks. This study found that juvenile traumatic stress induced chronic anxiety and spatial memory loss and reduced expression of GABAAR subunits in the adult rat brains. Furthermore, exercise led to significant improvement as compared to short-term BZ treatment.

  13. Functional Properties of Human NMDA Receptors Associated with Epilepsy-Related Mutations of GluN2A Subunit

    Science.gov (United States)

    Sibarov, Dmitry A.; Bruneau, Nadine; Antonov, Sergei M.; Szepetowski, Pierre; Burnashev, Nail; Giniatullin, Rashid

    2017-01-01

    Genetic variants of the glutamate activated N-methyl-D-aspartate (NMDA) receptor (NMDAR) subunit GluN2A are associated with the hyperexcitable states manifested by epileptic seizures and interictal discharges in patients with disorders of the epilepsy-aphasia spectrum (EAS). The variants found in sporadic cases and families are of different types and include microdeletions encompassing the corresponding GRIN2A gene as well as nonsense, splice-site and missense GRIN2A defects. They are located at different functional domains of GluN2A and no clear genotype-phenotype correlation has emerged yet. Moreover, GluN2A variants may be associated with phenotypic pleiotropy. Deciphering the consequences of pathogenic GRIN2A variants would surely help in better understanding of the underlying mechanisms. This emphasizes the need for functional studies to unravel the basic functional properties of each specific NMDAR variant. In the present study, we have used patch-clamp recordings to evaluate kinetic changes of mutant NMDARs reconstituted after co-transfection of cultured cells with the appropriate expression vectors. Three previously identified missense variants found in patients or families with disorders of the EAS and situated in the N-terminal domain (p.Ile184Ser) or in the ligand-binding domain (p.Arg518His and p.Ala716Thr) of GluN2A were studied in both the homozygous and heterozygous conditions. Relative surface expression and current amplitude were significantly reduced for NMDARs composed of mutant p.Ile184Ser and p.Arg518His, but not p.Ala716His, as compared with wild-type (WT) NMDARs. Amplitude of whole-cell currents was still drastically decreased when WT and mutant p.Arg518His-GluN2A subunits were co-expressed, suggesting a dominant-negative mechanism. Activation times were significantly decreased in both homozygous and heterozygous conditions for the two p.Ile184Ser and p.Arg518His variants, but not for p.Ala716His. Deactivation also significantly increased for

  14. Cloning and phylogenetic analysis of NMDA receptor subunits NR1, NR2A and NR2B in Xenopus laevis tadpoles

    Directory of Open Access Journals (Sweden)

    Rebecca C Ewald

    2009-09-01

    Full Text Available N-methyl-D-aspartate receptors (NMDARs play an important role in many aspects of nervous system function such as synaptic plasticity and neuronal development. NMDARs are heteromers consisting of an obligate NR1 and most commonly one or two kinds of NR2 subunits. While the receptors have been well characterized in some vertebrate and invertebrate systems, information about NMDARs in Xenopus laevis brain is incomplete. Here we provide biochemical evidence that the NR1, NR2A and NR2B subunits of NMDARs are expressed in the central nervous system of X. laevis tadpoles. The NR1-4a/b splice variants appear to be the predominant isoforms while the NR1-3a/b variants appear to be expressed at low levels. We cloned the X. laevis NR2A and NR2B subunits and provide a detailed annotation of their functional domains in comparison with NR2A and NR2B proteins from 10 and 13 other species, respectively. Both NR2A and NR2B proteins are remarkably well conserved between species, consistent with the importance of NMDARs in nervous system function.

  15. Age-dependent modifications of AMPA receptor subunit expression levels and related cognitive effects in 3xTg-AD mice

    Directory of Open Access Journals (Sweden)

    Pamela eCantanelli

    2014-08-01

    Full Text Available GluA1, GluA2, GluA3, and GluA4 are the constitutive subunits of AMPA receptors (AMPARs, the major mediators of fast excitatory transmission in the mammalian central nervous system. Most AMPARs are Ca2+-impermeable because of the presence of the GluA2 subunit. GluA2 mRNA undergoes an editing process that results in a Q to R substitution, a key factor in the regulation of AMPAR Ca2+-permeability. AMPARs lacking GluA2 or containing the unedited subunit are permeable to Ca2+ and Zn2+. The phenomenon physiologically modulates synaptic plasticity while, in pathologic conditions, leads to increased vulnerability to excitotoxic neuronal death. Given the importance of these subunits, we have therefore evaluated possible associations between changes in expression levels of AMPAR subunits and development of cognitive deficits in 3xTg-AD mice, a widely investigated transgenic mouse model of Alzheimer’s disease. With qRT-PCR, we assayed hippocampal mRNA expression levels of GluA1-4 subunits occurring in young [3 months of age (m.o.a.] and old (12 m.o.a Tg-AD mice and made comparisons with levels found in age-matched wild type (WT mice. Efficiency of GluA2 RNA editing was also analyzed. All animals were cognitively tested for short- and long-term spatial memory with the Morris Water Maze (MWM navigation task. 3xTg-AD mice showed age-dependent decreases of mRNA levels for all the AMPAR subunits, with the exception of GluA2. Editing remained fully efficient with aging in 3xTg-AD and WT mice. A one-to-one correlation analysis between MWM performances and GluA1-4 mRNA expression profiles showed negative correlations between GluA2 levels and MWM performances in young 3xTg-AD mice. On the contrary, positive correlations between GluA2 mRNA and MWM performances were found in young WT mice. Our data suggest that increases of AMPARs that contain GluA1, GluA3, and GluA4 subunits may help in maintaining cognition in pre-symptomatic 3xTg-AD mice.

  16. The nicotinic acetylcholine receptors of the parasitic nematode Ascaris suum: formation of two distinct drug targets by varying the relative expression levels of two subunits.

    Science.gov (United States)

    Williamson, Sally M; Robertson, Alan P; Brown, Laurence; Williams, Tracey; Woods, Debra J; Martin, Richard J; Sattelle, David B; Wolstenholme, Adrian J

    2009-07-01

    Parasitic nematodes are of medical and veterinary importance, adversely affecting human health and animal welfare. Ascaris suum is a gastrointestinal parasite of pigs; in addition to its veterinary significance it is a good model of the human parasite Ascaris lumbricoides, estimated to infect approximately 1.4 billion people globally. Anthelmintic drugs are essential to control nematode parasites, and nicotinic acetylcholine receptors (nAChRs) on nerve and muscle are the targets of cholinergic anthelmintics such as levamisole and pyrantel. Previous genetic analyses of nematode nAChRs have been confined to Caenorhabditis elegans, which is phylogenetically distinct from Ascaris spp. and many other important parasites. Here we report the cloning and expression of two nAChR subunit cDNAs from A. suum. The subunits are very similar in sequence to C. elegans UNC-29 and UNC-38, are expressed on muscle cells and can be expressed robustly in Xenopus oocytes to form acetylcholine-, nicotine-, levamisole- and pyrantel-sensitive channels. We also demonstrate that changing the stoichiometry of the receptor by injecting different ratios of the subunit cRNAs can reproduce two of the three pharmacological subtypes of nAChR present in A. suum muscle cells. When the ratio was 5:1 (Asu-unc-38ratioAsu-unc-29), nicotine was a full agonist and levamisole was a partial agonist, and oocytes responded to oxantel, but not pyrantel. At the reverse ratio (1:5 Asu-unc-38ratioAsu-unc-29), levamisole was a full agonist and nicotine was a partial agonist, and the oocytes responded to pyrantel, but not oxantel. These results represent the first in vitro expression of any parasitic nicotinic receptor and show that their properties are substantially different from those of C. elegans. The results also show that changing the expression level of a single receptor subunit dramatically altered the efficacy of some anthelmintic drugs. In vitro expression of these subunits may permit the development of

  17. The nicotinic acetylcholine receptors of the parasitic nematode Ascaris suum: formation of two distinct drug targets by varying the relative expression levels of two subunits.

    Directory of Open Access Journals (Sweden)

    Sally M Williamson

    2009-07-01

    Full Text Available Parasitic nematodes are of medical and veterinary importance, adversely affecting human health and animal welfare. Ascaris suum is a gastrointestinal parasite of pigs; in addition to its veterinary significance it is a good model of the human parasite Ascaris lumbricoides, estimated to infect approximately 1.4 billion people globally. Anthelmintic drugs are essential to control nematode parasites, and nicotinic acetylcholine receptors (nAChRs on nerve and muscle are the targets of cholinergic anthelmintics such as levamisole and pyrantel. Previous genetic analyses of nematode nAChRs have been confined to Caenorhabditis elegans, which is phylogenetically distinct from Ascaris spp. and many other important parasites. Here we report the cloning and expression of two nAChR subunit cDNAs from A. suum. The subunits are very similar in sequence to C. elegans UNC-29 and UNC-38, are expressed on muscle cells and can be expressed robustly in Xenopus oocytes to form acetylcholine-, nicotine-, levamisole- and pyrantel-sensitive channels. We also demonstrate that changing the stoichiometry of the receptor by injecting different ratios of the subunit cRNAs can reproduce two of the three pharmacological subtypes of nAChR present in A. suum muscle cells. When the ratio was 5:1 (Asu-unc-38ratioAsu-unc-29, nicotine was a full agonist and levamisole was a partial agonist, and oocytes responded to oxantel, but not pyrantel. At the reverse ratio (1:5 Asu-unc-38ratioAsu-unc-29, levamisole was a full agonist and nicotine was a partial agonist, and the oocytes responded to pyrantel, but not oxantel. These results represent the first in vitro expression of any parasitic nicotinic receptor and show that their properties are substantially different from those of C. elegans. The results also show that changing the expression level of a single receptor subunit dramatically altered the efficacy of some anthelmintic drugs. In vitro expression of these subunits may permit the

  18. The Sleep–Wake Cycle in the Nicotinic Alpha-9 Acetylcholine Receptor Subunit Knock-Out Mice

    Directory of Open Access Journals (Sweden)

    Natalia Madrid-López

    2017-10-01

    Full Text Available There is a neural matrix controlling the sleep–wake cycle (SWC embedded within high ranking integrative mechanisms in the central nervous system. Nicotinic alpha-9 acetylcholine receptor subunit (alpha-9 nAChR participate in physiological processes occurring in sensory, endocrine and immune systems. There is a relationship between the SWC architecture, body homeostasis and sensory afferents so that disruption of afferent signaling is expected to affect the temporal organization of sleep and wake states. The analysis of the SWC of 9 nAChR knock-out animals may help to reveal the contribution of alpha-9 nAChR to sleep chronobiological determinants. Here we explore the polysomnogram in chronically implanted alpha-9 nAChR knock-out (KO and wild-type (WT individuals of the hybrid CBA/Sv129 mouse strain. Records were obtained in isolation chambers under a stable 12:12 light:dark cycle (LD. To unmask the 24-h modulation of the SWC a skeleton photoperiod (SP protocol was performed. Under LD the daily quota (in % of wakefulness (W, NREM sleep and REM sleep obtained in KO and WT animals were 45, 48 and 7, and 46, 46 and 8 respectively. Both groups exhibit nocturnal phase preference of W as well as diurnal and unimodal phase preference of NREM and REM sleep. The acrophase mean angles of KO vs. WT genotypes were not different (Zeitgeber Time: 6.5 vs. 14.9 for W, 4.3 vs. 2.8 for NREM sleep and 5.3 vs. 3.4 for REM sleep, respectively. Transference to SP do not affect daily state quotas, phase preferences and acrophases among genotypes. Unmasking phenomena of the SWC such as wake increment during the rest phase under SP was evident only among WT mice suggesting the involvement of retinal structures containing alpha-9 nAChR in masking processes. Furthermore, KO animals exhibit longer NREM and REM sleep episodes that is independent of illumination conditions. Consolidated diurnal NREM sleep contributed to obtain higher values of NREM sleep delta-EEG activity

  19. Single residues in the surface subunits of oncogenic sheep retrovirus envelopes distinguish receptor-mediated triggering for fusion at low pH and infection

    Energy Technology Data Exchange (ETDEWEB)

    Cote, Marceline [Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3A 2B4 (Canada); Zheng, Yi-Min [Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 (United States); Albritton, Lorraine M. [Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Liu, Shan-Lu, E-mail: liushan@missouri.edu [Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3A 2B4 (Canada); Department of Molecular Microbiology and Immunology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 (United States)

    2011-12-20

    Jaagsiekte sheep retrovirus (JSRV) and enzootic nasal tumor virus (ENTV) are two closely related oncogenic retroviruses that share the same cellular receptor yet exhibit distinct fusogenicity and infectivity. Here, we find that the low fusogenicity of ENTV envelope protein (Env) is not because of receptor binding, but lies in its intrinsic insensitivity to receptor-mediated triggering for fusion at low pH. Distinct from JSRV, shedding of ENTV surface (SU) subunit into culture medium was not enhanced by a soluble form of receptor, Hyal2 (sHyal2), and sHyal2 was unable to effectively inactivate the ENTV pseudovirions. Remarkably, replacing either of the two amino acid residues, N191 or S195, located in the ENTV SU with the corresponding JSRV residues, H191 or G195, markedly increased the Env-mediated membrane fusion activity and infection. Reciprocal amino acid substitutions also partly switched the sensitivities of ENTV and JSRV pseudovirions to sHyal2-mediated SU shedding and inactivation. While N191 is responsible for an extra N-linked glycosylation of ENTV SU relative to that of JSRV, S195 possibly forms a hydrogen bond with a surrounding amino acid residue. Molecular modeling of the pre-fusion structure of JSRV Env predicts that the segment of SU that contains H191 to G195 contacts the fusion peptide and suggests that the H191N and G195S changes seen in ENTV may stabilize its pre-fusion structure against receptor priming and therefore modulate fusion activation by Hyal2. In summary, our study reveals critical determinants in the SU subunits of JSRV and ENTV Env proteins that likely regulate their local structures and thereby differential receptor-mediated fusion activation at low pH, and these findings explain, at least in part, their distinct viral infectivity.

  20. Intramolecular ex vivo Fluorescence Resonance Energy Transfer (FRET) of Dihydropyridine Receptor (DHPR) β1a Subunit Reveals Conformational Change Induced by RYR1 in Mouse Skeletal Myotubes

    Science.gov (United States)

    Bhattacharya, Dipankar; Mehle, Andrew; Kamp, Timothy J.; Balijepalli, Ravi C.

    2015-01-01

    The dihydropyridine receptor (DHPR) β1a subunit is essential for skeletal muscle excitation-contraction coupling, but the structural organization of β1a as part of the macromolecular DHPR-ryanodine receptor type I (RyR1) complex is still debatable. We used fluorescence resonance energy transfer (FRET) to probe proximity relationships within the β1a subunit in cultured skeletal myotubes lacking or expressing RyR1. The fluorescein biarsenical reagent FlAsH was used as the FRET acceptor, which exhibits fluorescence upon binding to specific tetracysteine motifs, and enhanced cyan fluorescent protein (CFP) was used as the FRET donor. Ten β1a reporter constructs were generated by inserting the CCPGCC FlAsH binding motif into five positions probing the five domains of β1a with either carboxyl or amino terminal fused CFP. FRET efficiency was largest when CCPGCC was positioned next to CFP, and significant intramolecular FRET was observed for all constructs suggesting that in situ the β1a subunit has a relatively compact conformation in which the carboxyl and amino termini are not extended. Comparison of the FRET efficiency in wild type to that in dyspedic (lacking RyR1) myotubes revealed that in only one construct (H458 CCPGCC β1a -CFP) FRET efficiency was specifically altered by the presence of RyR1. The present study reveals that the C-terminal of the β1a subunit changes conformation in the presence of RyR1 consistent with an interaction between the C-terminal of β1a and RyR1 in resting myotubes. PMID:26114725

  1. Intramolecular ex vivo Fluorescence Resonance Energy Transfer (FRET of Dihydropyridine Receptor (DHPR β1a Subunit Reveals Conformational Change Induced by RYR1 in Mouse Skeletal Myotubes.

    Directory of Open Access Journals (Sweden)

    Dipankar Bhattacharya

    Full Text Available The dihydropyridine receptor (DHPR β1a subunit is essential for skeletal muscle excitation-contraction coupling, but the structural organization of β1a as part of the macromolecular DHPR-ryanodine receptor type I (RyR1 complex is still debatable. We used fluorescence resonance energy transfer (FRET to probe proximity relationships within the β1a subunit in cultured skeletal myotubes lacking or expressing RyR1. The fluorescein biarsenical reagent FlAsH was used as the FRET acceptor, which exhibits fluorescence upon binding to specific tetracysteine motifs, and enhanced cyan fluorescent protein (CFP was used as the FRET donor. Ten β1a reporter constructs were generated by inserting the CCPGCC FlAsH binding motif into five positions probing the five domains of β1a with either carboxyl or amino terminal fused CFP. FRET efficiency was largest when CCPGCC was positioned next to CFP, and significant intramolecular FRET was observed for all constructs suggesting that in situ the β1a subunit has a relatively compact conformation in which the carboxyl and amino termini are not extended. Comparison of the FRET efficiency in wild type to that in dyspedic (lacking RyR1 myotubes revealed that in only one construct (H458 CCPGCC β1a -CFP FRET efficiency was specifically altered by the presence of RyR1. The present study reveals that the C-terminal of the β1a subunit changes conformation in the presence of RyR1 consistent with an interaction between the C-terminal of β1a and RyR1 in resting myotubes.

  2. Decrease in neuronal nicotinic acetylcholine receptor subunit and PSD-93 transcript levels in the male mouse MPG after cavernous nerve injury or explant culture

    Science.gov (United States)

    Girard, Beatrice M.; Merriam, Laura A.; Tompkins, John D.; Vizzard, Margaret A.

    2013-01-01

    Quantitative real-time PCR was used to test whether cavernous nerve injury leads to a decrease in major pelvic ganglia (MPG) neuronal nicotinic ACh receptor (nAChR) subunit and postsynaptic density (PSD)-93 transcript levels. Subunits α3, β4, and α7, commonly expressed in the MPG, were selected for analysis. After 72 h in explant culture, MPG transcript levels for α3, β4, α7, and PSD-93 were significantly depressed. Three days after cavernous nerve axotomy or crush in vivo, transcript levels for α3, β4, and PSD-93, but not for α7, were significantly depressed. Three days after dissection of the cavernous nerve free of underlying tissue and application of a 5-mm lateral stretch (manipulation), transcript levels for α3 and PSD-93 were also significantly decreased. Seven days after all three surgical procedures, α3 transcript levels remained depressed, but PSD-93 transcript levels were still decreased only after axotomy or nerve crush. At 30 days postsurgery, transcript levels for the nAChR subunits and PSD-93 had recovered. ACh-induced currents were significantly smaller in MPG neurons dissociated from 3-day explant cultured ganglia than from those recorded in neurons dissociated from acutely isolated ganglia; this observation provides direct evidence showing that a decrease in nAChR function was coincident with a decrease in nAChR subunit transcript levels. We conclude that a downregulation of nAChR subunit and PSD-93 expression after cavernous nerve injury, or even manipulation, could interrupt synaptic transmission within the MPG and thus contribute to the loss of neural control of urogenital organs after pelvic surgeries. PMID:24049141

  3. Molecular determinants of desensitization and assembly of the chimeric GABA(A) receptor subunits (alpha1/gamma2) and (gamma2/alpha1) in combinations with beta2 and gamma2

    DEFF Research Database (Denmark)

    Elster, L; Kristiansen, U; Pickering, D S

    2001-01-01

    Two gamma-aminobutyric acid(A) (GABA(A)) receptor chimeras were designed in order to elucidate the structural requirements for GABA(A) receptor desensitization and assembly. The (alpha1/gamma2) and (gamma2/alpha1) chimeric subunits representing the extracellular N-terminal domain of alpha1 or gamma...... for assembly. However, the (alpha1/gamma2) chimeric subunit had characteristics different from the alpha1 subunit, since the (alpha1/gamma2) chimera gave rise to no desensitization after GABA stimulation in whole-cell patch-clamp recordings, which was independent of whether the chimera was expressed......, as opposed to the staining of the (gamma2/alpha1)-containing receptors, which was only slightly higher than background. To explain this, the (alpha1/gamma2) and (gamma2/alpha1) chimeras may act like alpha1 and gamma2 subunits, respectively, indicating that the extracellular N-terminal segment is important...

  4. Amino acids of the Torpedo marmorata acetylcholine receptor. cap alpha. subunit labeled by a photoaffinity ligand for the acetylcholine binding site

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, M.; Giraudat, J.; Kotzyba-Hibert, F.; Goeldner, M.; Hirth, C.; Chang, J.Y.; Lazure, C.; Chretien, M.; Changeux, J.P.

    1988-04-05

    The acetylcholine-binding sites on the native, membrane-bound acetylcholine receptor from Torpedo marmorata were covalently labeled with the photoaffinity reagent (/sup 3/H)-p-(dimethylamino)-benzenediazonium fluoroborate (DDF) in the presence of phencyclidine by employing an energy-transfer photolysis procedure. The ..cap alpha..-chains isolated from receptor-rich membranes photolabeled in the absence or presence of carbamoylcholine were cleaved with CNBr and the radiolabeled fragments purified by high-performance liquid chromatography. Amino acid and/or sequence analysis demonstrated that the ..cap alpha..-chain residues Trp-149, Tyr-190, Cys-192, and Cys-193 and an unidentified residue(s) in the segment ..cap alpha.. 31-105 were all labeled by the photoaffinity reagent in an agonist-protectable manner. The labeled amino acids are located within three distinct regions of the large amino-terminal hydrophilic domain of the ..cap alpha..-subunit primary structure and plausibly lie in proximity to one another at the level of the acetylcholine-binding sites in the native receptor. These findings are in accord with models proposed for the transmembrane topology of the ..cap alpha..-chain that assign the amino-terminal segment ..cap alpha.. 1-210 to the synaptic cleft. Furthermore, the results suggest that the four identified (/sup 3/H)DDF-labeled resides, which are conserved in muscle and neuronal ..cap alpha..-chains but not in the other subunits, may be directly involved in agonist binding.

  5. MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit.

    Directory of Open Access Journals (Sweden)

    Robert A Volkmann

    Full Text Available GluN2A is the most abundant of the GluN2 NMDA receptor subunits in the mammalian CNS. Physiological and genetic evidence implicate GluN2A-containing receptors in susceptibility to autism, schizophrenia, childhood epilepsy and neurodevelopmental disorders such as Rett Syndrome. However, GluN2A-selective pharmacological probes to explore the therapeutic potential of targeting these receptors have been lacking. Here we disclose a novel series of pyrazine-containing GluN2A antagonists exemplified by MPX-004 (5-(((3-chloro-4-fluorophenylsulfonamidomethyl-N-((2-methylthiazol-5-ylmethylpyrazine-2-carboxamide and MPX-007 (5-(((3-fluoro-4-fluorophenylsulfonamidomethyl-N-((2-methylthiazol-5-ylmethylmethylpyrazine-2-carboxamide. MPX-004 and MPX-007 inhibit GluN2A-containing NMDA receptors expressed in HEK cells with IC50s of 79 nM and 27 nM, respectively. In contrast, at concentrations that completely inhibited GluN2A activity these compounds have no inhibitory effect on GluN2B or GluN2D receptor-mediated responses in similar HEK cell-based assays. Potency and selectivity were confirmed in electrophysiology assays in Xenopus oocytes expressing GluN2A-D receptor subtypes. Maximal concentrations of MPX-004 and MPX-007 inhibited ~30% of the whole-cell current in rat pyramidal neurons in primary culture and MPX-004 inhibited ~60% of the total NMDA receptor-mediated EPSP in rat hippocampal slices. GluN2A-selectivity at native receptors was confirmed by the finding that MPX-004 had no inhibitory effect on NMDA receptor mediated synaptic currents in cortical slices from GRIN2A knock out mice. Thus, MPX-004 and MPX-007 offer highly selective pharmacological tools to probe GluN2A physiology and involvement in neuropsychiatric and developmental disorders.

  6. Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+.

    Science.gov (United States)

    Wollmuth, L P; Kuner, T; Sakmann, B

    1998-01-01

    1. The voltage-dependent block of N-methyl-D-aspartate (NMDA) receptor channels by extracellular Mg2+ is a critical determinant of its contribution to CNS synaptic physiology. The function of the narrow constriction of the channel in determining the block was investigated by analysing the effects of a set different amino acid substitutions at exposed residues positioned at or near this region. NMDA receptor channels, composed of wild-type and mutant NR1- and NR2A-subunits, were expressed in Xenopus oocytes or human embryonic kidney (HEK) 293 cells. 2. In wild-type channels, the voltage dependence (delta) of the block Mg2+ was concentration dependent with values of delta of integral of 0.82 in 0.07 mM and higher concentrations. Under bionic conditions with high extracellular Mg2+ and K+ as the reference ion, Mg2+ weakly permeated the channel. Over intermediate potentials (approximately -60 to -10 mV), this weak permeability had no apparent effect on the block but at potentials negative to approximately -60mV, it attenuated the extent and voltage dependence of the block. 3. Substitutions of glycine, serine, glutamine or aspartate for the N-site asparagine in the NR1-subunit enhanced the extent of block over intermediate potentials but left the voltage dependence of the block unchanged indicating that structural determinants of the block remained. These same substitutions either attenuated or left unchanged the apparent Mg2+ permeability. 4. In channels containing substitutions of glycine, serine or glutamine for the N-site asparagine in the NR2A-subunit, the block Mg2+ was reduced at negative potentials. Over intermediate potentials, the block was not strongly attenuated except for the glutamine substitution which reduced the voltage dependence of the block to integral of 0.57 in 0.7 mM Mg2+. 5. Equivalent substitutions for the N + 1 site asparagine in the NR2A-subunit strongly attenuated the block over the entire voltage range. In 0.7 mM Mg2+, the voltage dependence

  7. Short-term exposure to a neuroactive steroid increases α4 GABAA receptor subunit levels in association with increased anxiety in the female rat

    OpenAIRE

    Gulinello, M.; Gong, Q. H.; Li, X.; Smith, S. S.

    2001-01-01

    Previous work from this laboratory has demonstrated that withdrawal from the neuroactive steroid 3α,5α-THP (3α-hydroxy-5α-pregnan-20-one) after 3-week exposure to its parent compound, progesterone (P), increases anxiety and produces benzodiazepine (BDZ) insensitivity in female rats. These events were linked to upregulation of the α4 subunit of the GABAA receptor (GABAR) in the hippocampus [Brain Res. 507 (1998) 91; Nature 392 (1998) 926; J. Neurosci. 18 (1998) 5275]. The present study investi...

  8. Progesterone withdrawal increases the α4 subunit of the GABAA receptor in male rats in association with anxiety and altered pharmacology — a comparison with female rats

    Science.gov (United States)

    Gulinello, M.; Gong, Q. H.; Smith, S. S.

    2010-01-01

    Withdrawal from the neurosteroid 3α,5α-allopregnanolone after chronic administration of progesterone increases anxiety in female rats and up-regulates the α4 subunit of the GABAA receptor (GABAA-R) in the hippocampus. We investigated if these phenomena would also occur in male rats. Progesterone withdrawal (PWD) induced higher α4 subunit expression in the hippocampus of both male and female rats, in association with increased anxiety (assessed in the elevated plus maze) comparable to effects previously reported. Because α4-containing GABAA-R are insensitive to the benzodiazepine (BDZ) lorazepam (LZM), and are positively modulated by flumazenil (FLU, a BDZ antagonist), we therefore tested the effects of these compounds following PWD. Using whole-cell patch clamp techniques, LZM-potentiation of GABA (EC20)-gated current was markedly reduced in CA1 pyramidal cells of male rats undergoing PWD compared to controls, whereas FLU had no effect on GABA-gated current in control animals but increased it in PWD animals. Behaviorally, both male and female rats were significantly less sensitive to the anxiolytic effects of LZM. In contrast, FLU demonstrated significant anxiolytic effects following PWD. These data suggest that neurosteroid regulation of the α4 GABAA-R subunit may be a relevant mechanism underlying anxiety disorders, and that this phenomenon is not sex-specific. PMID:12367616

  9. Progesterone withdrawal increases the alpha4 subunit of the GABA(A) receptor in male rats in association with anxiety and altered pharmacology - a comparison with female rats.

    Science.gov (United States)

    Gulinello, M; Gong, Q H; Smith, S S

    2002-09-01

    Withdrawal from the neurosteroid 3alpha,5alpha-allopregnanolone after chronic administration of progesterone increases anxiety in female rats and up-regulates the alpha4 subunit of the GABA(A) receptor (GABA(A)-R) in the hippocampus. We investigated if these phenomena would also occur in male rats. Progesterone withdrawal (PWD) induced higher alpha4 subunit expression in the hippocampus of both male and female rats, in association with increased anxiety (assessed in the elevated plus maze) comparable to effects previously reported. Because alpha4-containing GABA(A)-R are insensitive to the benzodiazepine (BDZ) lorazepam (LZM), and are positively modulated by flumazenil (FLU, a BDZ antagonist), we therefore tested the effects of these compounds following PWD. Using whole-cell patch clamp techniques, LZM-potentiation of GABA ((EC20))-gated current was markedly reduced in CA1 pyramidal cells of male rats undergoing PWD compared to controls, whereas FLU had no effect on GABA-gated current in control animals but increased it in PWD animals. Behaviorally, both male and female rats were significantly less sensitive to the anxiolytic effects of LZM. In contrast, FLU demonstrated significant anxiolytic effects following PWD. These data suggest that neurosteroid regulation of the alpha4 GABA(A)-R subunit may be a relevant mechanism underlying anxiety disorders, and that this phenomenon is not sex-specific.

  10. Palmitoylation of interferon-alpha (IFN-alpha) receptor subunit IFNAR1 is required for the activation of Stat1 and Stat2 by IFN-alpha.

    Science.gov (United States)

    Claudinon, Julie; Gonnord, Pauline; Beslard, Emilie; Marchetti, Marta; Mitchell, Keith; Boularan, Cédric; Johannes, Ludger; Eid, Pierre; Lamaze, Christophe

    2009-09-04

    Type I interferons (IFNs) bind IFNAR receptors and activate Jak kinases and Stat transcription factors to stimulate the transcription of genes downstream from IFN-stimulated response elements. In this study, we analyze the role of protein palmitoylation, a reversible post-translational lipid modification, in the functional properties of IFNAR. We report that pharmacological inhibition of protein palmitoylation results in severe defects of IFN receptor endocytosis and signaling. We generated mutants of the IFNAR1 subunit of the type I IFN receptor, in which each or both of the two cysteines present in the cytoplasmic domain are replaced by alanines. We show that cysteine 463 of IFNAR1, the more proximal of the two cytoplasmic cysteines, is palmitoylated. A thorough microscopic and biochemical analysis of the palmitoylation-deficient IFNAR1 mutant revealed that IFNAR1 palmitoylation is not required for receptor endocytosis, intracellular distribution, or stability at the cell surface. However, the lack of IFNAR1 palmitoylation affects selectively the activation of Stat2, which results in a lack of efficient Stat1 activation and nuclear translocation and IFN-alpha-activated gene transcription. Thus, receptor palmitoylation is a previously undescribed mechanism of regulating signaling activity by type I IFNs in the Jak/Stat pathway.

  11. Immunocytochemical mapping of an RDL-like GABA receptor subunit and of GABA in brain structures related to learning and memory in the cricket Acheta domesticus.

    Science.gov (United States)

    Strambi, C; Cayre, M; Sattelle, D B; Augier, R; Charpin, P; Strambi, A

    1998-01-01

    The distribution of putative RDL-like GABA receptors and of gamma-aminobutyric acid (GABA) in the brain of the adult house cricket Acheta domesticus was studied using specific antisera. Special attention was given to brain structures known to be related to learning and memory. The main immunostaining for the RDL-like GABA receptor was observed in mushroom bodies, in particular the upper part of mushroom body peduncle and the two arms of the posterior calyx. Weaker immunostaining was detected in the distal part of the peduncle and in the alpha and beta lobes. The dorso- and ventrolateral protocerebrum neuropils appeared rich in RDL-like GABA receptors. Staining was also detected in the glomeruli of the antennal lobe, as well as in the ellipsoid body of the central complex. Many neurons clustered in groups exhibit GABA-like immunoreactivity. Tracts that were strongly immunostained innervated both the calyces and the lobes of mushroom bodies. The glomeruli of the antennal lobe, the ellipsoid body, as well as neuropils of the dorso- and ventrolateral protocerebrum were also rich in GABA-like immunoreactivity. The data demonstrated a good correlation between the distribution of the GABA-like and of the RDL-like GABA receptor immunoreactivity. The prominent distribution of RDL-like GABA receptor subunits, in particular areas of mushroom bodies and antennal lobes, underlines the importance of inhibitory signals in information processing in these major integrative centers of the insect brain.

  12. Dopamine D3 receptor-dependent changes in alpha6 GABAA subunit expression in striatum modulate anxiety-like behaviour: Responsiveness and tolerance to diazepam.

    Science.gov (United States)

    Leggio, Gian Marco; Torrisi, Sebastiano Alfio; Castorina, Alessandro; Platania, Chiara Bianca Maria; Impellizzeri, Agata Antonia Rita; Fidilio, Annamaria; Caraci, Filippo; Bucolo, Claudio; Drago, Filippo; Salomone, Salvatore

    2015-09-01

    Increasing evidence indicates that central dopamine (DA) neurotransmission is involved in pathophysiology of anxiety, in particular the DA receptor subtype 3 (D3R). We previously reported that D3R null mice (D3R(-/-)) exhibit low baseline anxiety levels and that acutely administrated diazepam is more effective in D3R(-/-) than in wild type (WT) when tested in the elevated plus maze test (EPM). Here we tested the hypothesis that genetic deletion or pharmacological blockade of D3R affect GABAA subunit expression, which in turn modulates anxiety-like behaviour as well as responsiveness and tolerance to diazepam. D3R(-/-) mice exhibited tolerance to diazepam (0.5mg/kg, i.p.), assessed by EPM, as fast as after 3 day-treatment, performing similarly to untreated D3R(-/-) mice; conversely, WT exhibited tolerance to diazepam after a 14-21 day-treatment. Analysis of GABAA α6 subunit mRNA expression by qPCR in striatum showed that it was about 15-fold higher in D3R(-/-) than in WT. Diazepam treatment did not modify α6 expression in D3R(-/-), but progressively increased α6 expression in WT, to the level of untreated D3R(-/-) after 14-21 day-treatment. BDNF mRNA expression in striatum was remarkably (>10-fold) increased after 3 days of diazepam-treatment in both WT and D3R(-/-); such expression level, however, slowly declined below control levels, by 14-21 days. Following a 7 day-treatment with the selective D3R antagonist SB277011A, WT exhibited a fast tolerance to diazepam accompanied by a robust increase in α6 subunit expression. In conclusion, genetic deletion or pharmacological blockade of D3R accelerate the development of tolerance to repeated administrations of diazepam and increase α6 subunit expression, a GABAA subunit that has been linked to diazepam insensitivity. Modulation of GABAA receptor by DA transmission may be involved in the mechanisms of anxiety and, if occurring in humans, may have therapeutic relevance following repeated use of drugs targeting D3R

  13. Acoustic trauma slows AMPA receptor-mediated EPSCs in the auditory brainstem, reducing GluA4 subunit expression as a mechanism to rescue binaural function.

    Science.gov (United States)

    Pilati, Nadia; Linley, Deborah M; Selvaskandan, Haresh; Uchitel, Osvaldo; Hennig, Matthias H; Kopp-Scheinpflug, Cornelia; Forsythe, Ian D

    2016-07-01

    Lateral superior olive (LSO) principal neurons receive AMPA receptor (AMPAR) - and NMDA receptor (NMDAR)-mediated EPSCs and glycinergic IPSCs. Both EPSCs and IPSCs have slow kinetics in prehearing animals, which during developmental maturation accelerate to sub-millisecond decay time-constants. This correlates with a change in glutamate and glycine receptor subunit composition quantified via mRNA levels. The NMDAR-EPSCs accelerate over development to achieve decay time-constants of 2.5 ms. This is the fastest NMDAR-mediated EPSC reported. Acoustic trauma (AT, loud sounds) slow AMPAR-EPSC decay times, increasing GluA1 and decreasing GluA4 mRNA. Modelling of interaural intensity difference suggests that the increased EPSC duration after AT shifts interaural level difference to the right and compensates for hearing loss. Two months after AT the EPSC decay times recovered to control values. Synaptic transmission in the LSO matures by postnatal day 20, with EPSCs and IPSCs having fast kinetics. AT changes the AMPAR subunits expressed and slows the EPSC time-course at synapses in the central auditory system. Damaging levels of sound (acoustic trauma, AT) diminish peripheral synapses, but what is the impact on the central auditory pathway? Developmental maturation of synaptic function and hearing were characterized in the mouse lateral superior olive (LSO) from postnatal day 7 (P7) to P96 using voltage-clamp and auditory brainstem responses. IPSCs and EPSCs show rapid acceleration during development, so that decay kinetics converge to similar sub-millisecond time-constants (τ, 0.87 ± 0.11 and 0.77 ± 0.08 ms, respectively) in adult mice. This correlated with LSO mRNA levels for glycinergic and glutamatergic ionotropic receptor subunits, confirming a switch from Glyα2 to Glyα1 for IPSCs and increased expression of GluA3 and GluA4 subunits for EPSCs. The NMDA receptor (NMDAR)-EPSC decay τ accelerated from >40 ms in prehearing animals to 2.6 ± 0.4 ms in

  14. Reduction in mRNA and protein expression of a nicotinic acetylcholine receptor α8 subunit is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Zhang, Yixi; Wang, Xin; Yang, Baojun; Hu, Yuanyuan; Huang, Lixin; Bass, Chris; Liu, Zewen

    2015-11-01

    Target-site resistance is commonly caused by qualitative changes in insecticide target-receptors and few studies have implicated quantitative changes in insecticide targets in resistance. Here we show that resistance to imidacloprid in a selected strain of Nilaparvata lugens is associated with a reduction in expression levels of the nicotinic acetylcholine receptor (nAChR) subunit Nlα8. Synergism bioassays of the selected strain suggested resistance was conferred, in part, by a target-site mechanism. Sequencing of N. lugens nAChR subunit genes identified no mutations associated with resistance, however, a decrease in mRNA and protein levels of Nlα8 was observed during selection. RNA interference knockdown of Nlα8 decreased the sensitivity of N. lugens to imidacloprid, demonstrating that a decrease in Nlα8 expression is sufficient to confer resistance in vivo. Radioligand binding assays revealed that the affinity of the high-affinity imidacloprid-binding site of native nAChRs was reduced by selection, and reducing the amount of Nlα8 cRNA injected into Xenopus oocytes significantly decreased imidacloprid potency on recombinant receptors. Taken together, these results provide strong evidence that a decrease in Nlα8 levels confers resistance to imidacloprid in N. lugens, and thus provides a rare example of target-site resistance associated with a quantitative rather than qualitative change. In insects, target-site mutations often cause high resistance to insecticides, such as neonicotinoids acting on nicotinic acetylcholine receptors (nAChRs). Here we found that a quantitative change in target-protein level, decrease in mRNA and protein levels of Nlα8, contributed importantly to imidacloprid resistance in Nilaparvata lugens. This finding provides a new target-site mechanism of insecticide resistance. © 2015 International Society for Neurochemistry.

  15. Cloning of the gabaB Receptor Subunits B1 and B2 and their Expression in the Central Nervous System of the Adult Sea Lamprey

    Directory of Open Access Journals (Sweden)

    Daniel Romaus-Sanjurjo

    2016-12-01

    Full Text Available In vertebrates, γ-aminobutyric acid (GABA is the main inhibitory transmitter in the central nervous system acting through ionotropic (GABAA and metabotropic (GABAB receptors. The GABAB receptor produces a slow inhibition since it activates second messenger systems through the binding and activation of guanine nucleotide-binding proteins G-protein-coupled receptors (GPCRs. Lampreys are a key reference to understand molecular evolution in vertebrates. The importance of the GABAB receptor for the modulation of the circuits controlling locomotion and other behaviors has been shown in pharmacological/physiological studies in lampreys. However, there is no data about the sequence of the GABAB subunits or their expression in the central nervous system (CNS of lampreys. Our aim was to identify the sea lamprey gabab1 and gabab2 transcripts and study their expression in the CNS of adults. We cloned two partial sequences corresponding to the gabab1 and gabab2 cDNAs of the sea lamprey as confirmed by sequence analysis and comparison with known gabab sequences of other vertebrates. In phylogenetic analyses, the sea lamprey GABAB sequences clustered together with GABABs sequences of vertebrates and emerged as an outgroup to all gnathostome sequences. We observed a broad and overlapping expression of both transcripts in the entire CNS. Expression was mainly observed in neuronal somas of the periventricular regions including the identified reticulospinal cells. No expression was observed in identifiable fibers. Comparison of our results with those reported in other vertebrates indicates that a broad and overlapping expression of the GABAB subunits in the CNS is a conserved character shared by agnathans and gnathostomes.

  16. Cloning of the GABAB Receptor Subunits B1 and B2 and their Expression in the Central Nervous System of the Adult Sea Lamprey

    Science.gov (United States)

    Romaus-Sanjurjo, Daniel; Fernández-López, Blanca; Sobrido-Cameán, Daniel; Barreiro-Iglesias, Antón; Rodicio, María Celina

    2016-01-01

    In vertebrates, γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the central nervous system (CNS) acting through ionotropic (GABAA) and metabotropic (GABAB) receptors. The GABAB receptor produces a slow inhibition since it activates second messenger systems through the binding and activation of guanine nucleotide-binding proteins [G-protein-coupled receptors (GPCRs)]. Lampreys are a key reference to understand molecular evolution in vertebrates. The importance of the GABAB receptor for the modulation of the circuits controlling locomotion and other behaviors has been shown in pharmacological/physiological studies in lampreys. However, there is no data about the sequence of the GABAB subunits or their expression in the CNS of lampreys. Our aim was to identify the sea lamprey GABAB1 and GABAB2 transcripts and study their expression in the CNS of adults. We cloned two partial sequences corresponding to the GABAB1 and GABAB2 cDNAs of the sea lamprey as confirmed by sequence analysis and comparison with known GABAB sequences of other vertebrates. In phylogenetic analyses, the sea lamprey GABAB sequences clustered together with GABABs sequences of vertebrates and emerged as an outgroup to all gnathostome sequences. We observed a broad and overlapping expression of both transcripts in the entire CNS. Expression was mainly observed in neuronal somas of the periventricular regions including the identified reticulospinal cells. No expression was observed in identifiable fibers. Comparison of our results with those reported in other vertebrates indicates that a broad and overlapping expression of the GABAB subunits in the CNS is a conserved character shared by agnathans and gnathostomes. PMID:28008311

  17. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice

    Directory of Open Access Journals (Sweden)

    Pascal Jorratt

    2017-11-01

    Full Text Available The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through olivocochlear (OC neurons. Medial OC neurons make cholinergic synapses with outer hair cells (OHCs through nicotinic receptors constituted by α9 and α10 subunits. One of the physiological functions of the α9 nicotinic receptor subunit (α9-nAChR is the suppression of auditory distractors during selective attention to visual stimuli. In a recent study we demonstrated that the behavioral performance of alpha-9 nicotinic receptor knock-out (KO mice is altered during selective attention to visual stimuli with auditory distractors since they made less correct responses and more omissions than wild type (WT mice. As the inhibition of the behavioral responses to irrelevant stimuli is an important mechanism of the selective attention processes, behavioral errors are relevant measures that can reflect altered inhibitory control. Errors produced during a cued attention task can be classified as premature, target and perseverative errors. Perseverative responses can be considered as an inability to inhibit the repetition of an action already planned, while premature responses can be considered as an index of the ability to wait or retain an action. Here, we studied premature, target and perseverative errors during a visual attention task with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer perseverative errors with longer latencies than WT mice in the presence of auditory distractors. In addition, although we found no significant difference in the number of target error between genotypes, KO mice made more short-latency target errors than WT mice during the presentation of auditory distractors. The fewer perseverative error made by α9-KO mice could be explained by a reduced motivation for reward and an increased impulsivity during decision making with auditory distraction in KO mice.

  18. Induction of Antiviral Immune Response through Recognition of the Repeating Subunit Pattern of Viral Capsids Is Toll-Like Receptor 2 Dependent

    Directory of Open Access Journals (Sweden)

    Kelly M. Shepardson

    2017-11-01

    Full Text Available Although viruses and viral capsids induce rapid immune responses, little is known about viral pathogen-associated molecular patterns (PAMPs that are exhibited on their surface. Here, we demonstrate that the repeating protein subunit pattern common to most virus capsids is a molecular pattern that induces a Toll-like-receptor-2 (TLR2-dependent antiviral immune response. This early antiviral immune response regulates the clearance of subsequent bacterial superinfections, which are a primary cause of morbidities associated with influenza virus infections. Utilizing this altered susceptibility to subsequent bacterial challenge as an outcome, we determined that multiple unrelated, empty, and replication-deficient capsids initiated early TLR2-dependent immune responses, similar to intact influenza virus or murine pneumovirus. These TLR2-mediated responses driven by the capsid were not dependent upon the capsid’s shape, size, origin, or amino acid sequence. However, they were dependent upon the multisubunit arrangement of the capsid proteins, because unlike intact capsids, individual capsid subunits did not enhance bacterial clearance. Further, we demonstrated that even a linear microfilament protein built from repeating protein subunits (F-actin, but not its monomer (G-actin, induced similar kinetics of subsequent bacterial clearance as did virus capsid. However, although capsids and F-actin induced similar bacterial clearance, in macrophages they required distinct TLR2 heterodimers for this response (TLR2/6 or TLR2/1, respectively and different phagocyte populations were involved in the execution of these responses in vivo. Our results demonstrate that TLR2 responds to invading viral particles that are composed of repeating protein subunits, indicating that this common architecture of virus capsids is a previously unrecognized molecular pattern.

  19. Short-term exposure to a neuroactive steroid increases alpha4 GABA(A) receptor subunit levels in association with increased anxiety in the female rat.

    Science.gov (United States)

    Gulinello, M; Gong, Q H; Li, X; Smith, S S

    2001-08-10

    Previous work from this laboratory has demonstrated that withdrawal from the neuroactive steroid 3alpha,5alpha-THP (3alpha-hydroxy-5alpha-pregnan-20-one) after 3-week exposure to its parent compound, progesterone (P), increases anxiety and produces benzodiazepine (BDZ) insensitivity in female rats. These events were linked to upregulation of the alpha4 subunit of the GABA(A) receptor (GABAR) in the hippocampus [Brain Res. 507 (1998) 91; Nature 392 (1998) 926; J. Neurosci. 18 (1998) 5275]. The present study investigates the role of shorter term hormone treatment on alpha4 subunit levels as well as relevant behavioral and pharmacological end-points related to GABAR function. After 2-3 days of P exposure, two- to threefold increases in alpha4 protein levels were observed, which declined to control values after 5-6 days of hormone exposure. This effect was due to the GABA-modulatory metabolite of P, 3alpha,5alpha-THP. alpha4 upregulation was inversely correlated with BDZ potentiation of GABA-gated current, assessed using whole cell patch clamp techniques on acutely isolated hippocampal pyramidal cells. A near total BDZ insensitivity was observed by 2-3 days of hormone exposure in association with the maximal increase in alpha4 levels. Up-regulation of the alpha4 GABAR subunit was also reflected by an increase in anxiety in the elevated plus maze. A significant decrease in open arm entries was observed after 72-h exposure to P, an effect which recovered by 6 days of P treatment. As demonstrated in vitro, alpha4 upregulation also resulted in a relative insensitivity to the anxiolytic actions of BDZ. These results suggest that short-term exposure to 3alpha,5alpha-THP produces changes in GABAR subunit composition similar to those that occur after chronic exposure and withdrawal from the steroid.

  20. Short-term exposure to a neuroactive steroid increases α4 GABAA receptor subunit levels in association with increased anxiety in the female rat

    Science.gov (United States)

    Gulinello, M.; Gong, Q.H.; Li, X.; Smith, S.S.

    2014-01-01

    Previous work from this laboratory has demonstrated that withdrawal from the neuroactive steroid 3α,5α-THP (3α-hydroxy-5α-pregnan-20-one) after 3-week exposure to its parent compound, progesterone (P), increases anxiety and produces benzodiazepine (BDZ) insensitivity in female rats. These events were linked to upregulation of the α4 subunit of the GABAA receptor (GABAR) in the hippocampus [Brain Res. 507 (1998) 91; Nature 392 (1998) 926; J. Neurosci. 18 (1998) 5275]. The present study investigates the role of shorter term hormone treatment on α4 subunit levels as well as relevant behavioral and pharmacological end-points related to GABAR function. After 2–3 days of P exposure, two- to threefold increases in α4 protein levels were observed, which declined to control values after 5–6 days of hormone exposure. This effect was due to the GABA-modulatory metabolite of P, 3α,5α-THP. α4 upregulation was inversely correlated with BDZ potentiation of GABA-gated current, assessed using whole cell patch clamp techniques on acutely isolated hippocampal pyramidal cells. A near total BDZ insensitivity was observed by 2–3 days of hormone exposure in association with the maximal increase in α4 levels. Up-regulation of the α4 GABAR subunit was also reflected by an increase in anxiety in the elevated plus maze. A significant decrease in open arm entries was observed after 72-h exposure to P, an effect which recovered by 6 days of P treatment. As demonstrated in vitro, α4 upregulation also resulted in a relative insensitivity to the anxiolytic actions of BDZ. These results suggest that short-term exposure to 3α,5α-THP produces changes in GABAR subunit composition similar to those that occur after chronic exposure and withdrawal from the steroid. PMID:11489254

  1. Immunogold electron microscopic evidence of differential regulation of GluN1, GluN2A, and GluN2B, NMDA-type glutamate receptor subunits in rat hippocampal CA1 synapses during benzodiazepine withdrawal.

    Science.gov (United States)

    Das, Paromita; Zerda, Ricardo; Alvarez, Francisco J; Tietz, Elizabeth I

    2010-11-01

    Benzodiazepine withdrawal-anxiety is associated with enhanced α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR)-mediated glutamatergic transmission in rat hippocampal CA1 synapses due to enhanced synaptic insertion and phosphorylation of GluA1 homomers. Interestingly, attenuation of withdrawal-anxiety is associated with a reduction in N-methyl-D-aspartate receptor (NMDAR)-mediated currents and subunit expression, secondary to AMPA receptor potentiation. Therefore, in this study ultrastructural evidence for possible reductions in NMDAR GluN1, GluN2A, and GluN2B subunits was sought at CA1 stratum radiatum synapses in proximal dendrites using postembedding immunogold labeling of tissues from rats withdrawn for 2 days from 1-week daily oral administration of the benzodiazepine, flurazepam (FZP). GluN1-immunogold density and the percentage of immunopositive synapses were significantly decreased in tissues from FZP-withdrawn rats. Similar decreases were observed for GluN2B subunits; however, the relative lateral distribution of GluN2B-immunolabeling within the postsynaptic density did not change after BZ withdrawal. In contrast to the GluN2B subunit, the percentage of synapses labeled with the GluN2A subunit antibody and the density of immunogold labeling for this subunit was unchanged. The spatial localization of immunogold particles associated with each NMDAR subunit was consistent with a predominantly postsynaptic localization. The data therefore provide direct evidence for reduced synaptic GluN1/GluN2B receptors and preservation of GluN1/GluN2A receptors in the CA1 stratum radiatum region during BZ withdrawal. Based on collective findings in this benzodiazepine withdrawal-anxiety model, we propose a functional model illustrating the changes in glutamate receptor populations at excitatory synapses during benzodiazepine withdrawal. © 2010 Wiley-Liss, Inc.

  2. Ghrelin upregulates the phosphorylation of the GluN2B subunit of the NMDA receptor by activating GHSR1a and Fyn in the rat hippocampus.

    Science.gov (United States)

    Berrout, Liza; Isokawa, Masako

    2018-01-01

    Ghrelin and its receptor GHSR1a have been shown to exert numerous physiological functions in the brain, in addition to the well-established orexigenic role in the hypothalamus. Earlier work indicated that ghrelin stimulated the phosphorylation of the GluN1 subunit of the NMDA receptor (NMDAR) and enhanced synaptic transmission in the hippocampus. In the present study, we report that the exogenous application of ghrelin increased GluN2B phosphorylation. This increase was independent of GluN2B subunit activity or NMDAR channel activity. However, it depended on the activation of GHSR1a and Fyn as it was blocked by D-Lys3-GHRP-6 and PP2, respectively. Inhibitors for G-protein-regulated second messengers, such as Rp-cAMP, H89, TBB, ryanodine, and thapsigargin, unexpectedly enhanced GluN2B phosphorylation, suggesting that cAMP, PKA, casein kinase II, and cytosolic calcium signaling may oppose to the effect of ghrelin on the phosphorylation of GluN2B. Our findings suggest that 1) GluN2B is likely a molecular target of ghrelin and GHSR1a-driven signaling cascades, and 2) the ghrelin-mediated phosphorylation of GluN2B depends on Fyn activation under complex negative regulation by other second messengers. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Reduced benzodiazepine tolerance, but increased flumazenil-precipitated withdrawal in AMPA-receptor GluR-A subunit-deficient mice.

    Science.gov (United States)

    Aitta-Aho, Teemu; Vekovischeva, Olga Y; Neuvonen, Pertti J; Korpi, Esa R

    2009-04-01

    Pharmacotherapy with benzodiazepines is compromised by rapid sedative tolerance and diverse withdrawal symptoms. To assess the role of AMPA-type glutamate receptor GluR-A subunits in neuroadaptation to subchronic benzodiazepine treatment, GluR-A subunit-deficient mice were rendered tolerant by a high-dose seven-day flurazepam treatment (40 mg/kg, s.c., twice a day for 4 days, 60 mg/kg twice a day for 3 days). The acute effects to flurazepam were not changed in the GluR-/- mice compared with their littermate control mice. GluR-A-/- mice developed less tolerance than their controls as demonstrated in behavioral tests for muscle relaxation and sensory functions. Actually, the knockout mice exhibited slower recovery than their littermates from impaired gait and pelvic position after an acute 40 mg/kg dose of flurazepam. The apparent elimination of flurazepam was similarly increased in the knockout and control mice as assessed by blood and brain concentrations 2 h after acute and chronic treatments, but the active metabolite desalkylflurazepam cumulated similarly in both mouse lines. Withdrawal symptoms, precipitated by flumazenil (20 mg/kg, s.c.) 48 h after discontinuation of the flurazepam treatment, were enhanced in the GluR-A-/- mice. The results stress the importance of the AMPA-receptor system in neuroadaptation to acute and chronic effects of benzodiazepines.

  4. Förster Resonance Energy Transfer (FRET) Correlates of Altered Subunit Stoichiometry in Cys-Loop Receptors, Exemplified by Nicotinic α4β2

    Science.gov (United States)

    Srinivasan, Rahul; Richards, Christopher I.; Dilworth, Crystal; Moss, Fraser J.; Dougherty, Dennis A.; Lester, Henry A.

    2012-01-01

    We provide a theory for employing Förster resonance energy transfer (FRET) measurements to determine altered heteropentameric ion channel stoichiometries in intracellular compartments of living cells. We simulate FRET within nicotinic receptors (nAChRs) whose α4 and β2 subunits contain acceptor and donor fluorescent protein moieties, respectively, within the cytoplasmic loops. We predict FRET and normalized FRET (NFRET) for the two predominant stoichiometries, (α4)3(β2)2 vs. (α4)2(β2)3. Studying the ratio between FRET or NFRET for the two stoichiometries, minimizes distortions due to various photophysical uncertainties. Within a range of assumptions concerning the distance between fluorophores, deviations from plane pentameric geometry, and other asymmetries, the predicted FRET and NFRET for (α4)3(β2)2 exceeds that of (α4)2(β2)3. The simulations account for published data on transfected Neuro2a cells in which α4β2 stoichiometries were manipulated by varying fluorescent subunit cDNA ratios: NFRET decreased monotonically from (α4)3(β2)2 stoichiometry to mostly (α4)2(β2)3. The simulations also account for previous macroscopic and single-channel observations that pharmacological chaperoning by nicotine and cytisine increase the (α4)2(β2)3 and (α4)3(β2)2 populations, respectively. We also analyze sources of variability. NFRET-based monitoring of changes in subunit stoichiometry can contribute usefully to studies on Cys-loop receptors. PMID:22949846

  5. Distribution of the P2X2 receptor subunit of the ATP-gated ion channels in the rat central nervous system.

    Science.gov (United States)

    Kanjhan, R; Housley, G D; Burton, L D; Christie, D L; Kippenberger, A; Thorne, P R; Luo, L; Ryan, A F

    1999-04-28

    The distribution of the P2X2 receptor subunit of the adenosine 5'-triphosphate (ATP)-gated ion channels was examined in the adult rat central nervous system (CNS) by using P2X2 receptor-specific antisera and riboprobe-based in situ hybridisation. P2X2 receptor mRNA expression matched the P2X2 receptor protein localisation. An extensive expression pattern was observed, including: olfactory bulb, cerebral cortex, hippocampus, habenula, thalamic and subthalamic nuclei, caudate putamen, posteromedial amygdalo-hippocampal and amygdalo-cortical nuclei, substantia nigra pars compacta, ventromedial and arcuate hypothalamic nuclei, supraoptic nucleus, tuberomammillary nucleus, mesencephalic trigeminal nucleus, dorsal raphe, locus coeruleus, medial parabrachial nucleus, tegmental areas, pontine nuclei, red nucleus, lateral superior olive, cochlear nuclei, spinal trigeminal nuclei, cranial motor nuclei, ventrolateral medulla, area postrema, nucleus of solitary tract, and cerebellar cortex. In the spinal cord, P2X2 receptor expression was highest in the dorsal horn, with significant neuronal labeling in the ventral horn and intermediolateral cell column. The identification of extensive P2X2 receptor immunoreactivity and mRNA distribution within the CNS demonstrated here provides a basis for the P2X receptor antagonist pharmacology reported in electrophysiological studies. These data support the role for extracellular ATP acting as a fast neurotransmitter at pre- and postsynaptic sites in processes such as sensory transmission, sensory-motor integration, motor and autonomic control, and in neuronal phenomena such as long-term potentiation (LTP) and depression (LTD). Additionally, labelling of neuroglia and fibre tracts supports a diverse role for extracellular ATP in CNS homeostasis.

  6. Early continuous white noise exposure alters auditory spatial sensitivity and expression of GAD65 and GABAA receptor subunits in rat auditory cortex.

    Science.gov (United States)

    Xu, Jinghong; Yu, Liping; Cai, Rui; Zhang, Jiping; Sun, Xinde

    2010-04-01

    Sensory experiences have important roles in the functional development of the mammalian auditory cortex. Here, we show how early continuous noise rearing influences spatial sensitivity in the rat primary auditory cortex (A1) and its underlying mechanisms. By rearing infant rat pups under conditions of continuous, moderate level white noise, we found that noise rearing markedly attenuated the spatial sensitivity of A1 neurons. Compared with rats reared under normal conditions, spike counts of A1 neurons were more poorly modulated by changes in stimulus location, and their preferred locations were distributed over a larger area. We further show that early continuous noise rearing induced significant decreases in glutamic acid decarboxylase 65 and gamma-aminobutyric acid (GABA)(A) receptor alpha1 subunit expression, and an increase in GABA(A) receptor alpha3 expression, which indicates a returned to the juvenile form of GABA(A) receptor, with no effect on the expression of N-methyl-D-aspartate receptors. These observations indicate that noise rearing has powerful adverse effects on the maturation of cortical GABAergic inhibition, which might be responsible for the reduced spatial sensitivity.

  7. Detection of Nitric Oxide Induced by Angiotensin II Receptor Type 1 Using Soluble Guanylate Cyclase beta1 Subunit Fused to a Yellow Fluorescent Protein, Venus.

    Science.gov (United States)

    Tsuji, Yuichi; Ozawa, Kentaro; Komatsubara, Akira T; Zhao, Jing; Nishi, Mayumi; Yoshizumi, Masanori

    2017-01-01

    Nitric oxide (NO) is an important gaseous molecule involved in many physiological and pathophysiological processes, including the regulation of G protein-coupled receptors (GPCRs). Here, we report the development of a high-affinity method to detect NO using soluble guanylate cyclase beta1 subunit fused to Venus, a variant of yellow fluorescent protein (sGC-Venus). We measured the fluorescence intensity of sGC-Venus with and without an NO donor using purified probes. At 560 nm emission, the fluorescence intensity of sGC-Venus at 405 nm excitation was increased by approximately 2.5-fold by the NO donor, but the fluorescence intensities of sGC-Venus excited by other wavelengths showed much less of an increase or no significant increase. To measure NO in living cells, the fluorescence intensity of sGC-Venus at 405 nm excitation was normalized to that at 488 nm excitation because it showed no significant difference with or without the NO donor. In HEK293 cells overexpressing the angiotensin II receptor type 1 (AT1 receptor), the production of NO induced by activation of the AT1 receptor was detected using sGC-Venus. These data indicate that sGC-Venus will be a useful tool for visualizing intracellular NO in living cells and that NO might be a common tool to regulate GPCRs.

  8. Subunit Arrangement and Phenylethanolamine Binding in GluN1/GluN2B NMDA Receptors

    Energy Technology Data Exchange (ETDEWEB)

    E Karakas; N Simorowski; H Furukawa

    2011-12-31

    Since it was discovered that the anti-hypertensive agent ifenprodil has neuroprotective activity through its effects on NMDA (N-methyl-D-aspartate) receptors, a determined effort has been made to understand the mechanism of action and to develop improved therapeutic compounds on the basis of this knowledge. Neurotransmission mediated by NMDA receptors.

  9. GABAB1 and GABAB2 receptor subunits co-expressed in cultured human RPE cells regulate intracellular Ca2+ via Gi/o-protein and phospholipase C pathways.

    Science.gov (United States)

    Cheng, Z-Y; Wang, X-P; Schmid, K L; Han, X-G

    2014-11-07

    GABAB receptors associate with Gi/o-proteins that regulate voltage-gated Ca(2+) channels and thus the intracellular Ca(2+) concentration ([Ca(2+)]i), there is also reported cross-regulation of phospholipase C. These associations have been studied extensively in the brain and also shown to occur in non-neural cells (e.g. human airway smooth muscle). More recently GABAB receptors have been observed in chick retinal pigment epithelium (RPE). The aims were to investigate whether the GABAB receptor subunits, GABAB1 and GABAB2, are co-expressed in cultured human RPE cells, and then determine if the GABAB receptor similarly regulates the [Ca(2+)]i of RPE cells and if phospholipase C is involved. Human RPE cells were cultured from five donor eye cups. Evidence for GABAB1 and GABAB2 mRNAs and proteins in the RPE cell cultures was investigated using real time polymerase chain reaction, western blots and immunofluorescence. The effects of the GABAB receptor agonist baclofen, antagonist CGP46381, a Gi/o-protein inhibitor pertussis toxin, and the phospholipase C inhibitor U73122 on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo-3. Both GABAB1 and GABAB2 mRNA and protein were identified in cell cultures of human RPE; antibody staining was co-localized to the cell membrane and cytoplasm. One-hundred micromolars of baclofen caused a transient increase in the [Ca(2+)]i of RPE cells regardless of whether Ca(2+) was added to the buffer. Baclofen-induced increases in the [Ca(2+)]i were attenuated by pre-treatment with CGP46381, pertussis toxin, and U73122. GABAB1 and GABAB2 are co-expressed in cell cultures of human RPE. GABAB receptors in RPE regulate the [Ca(2+)]i via a Gi/o-protein and phospholipase C pathway. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Binding sites for. alpha. -bungarotoxin and the noncompetitive inhibitor phencyclidine on a synthetic peptide comprising residues 172-227 of the. alpha. -subunit of the nicotinic acetylcholine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly-Roberts, D.L.; Lentz, T.L. (Yale Univ., New Haven, CT (United States))

    1991-07-30

    The binding of the competitive antagonist {alpha}-bungarotoxin ({alpha}-Btx) and the noncompetitive inhibitor phencyclidine (PCP) to a synthetic peptide comprising residues 172-227 of the {alpha}-subunit of the Torpedo acetylcholine receptor has been characterized. {sup 125}I-{alpha}-Btx bound to the 172-227 peptide in a solid-phase assay and was competed by {alpha}-Btx d-tubocurarine and NaCl. In the presence of 0.02% sodium dodecyl sulfate, {sup 125}I-{alpha}-Btx bound to the 56-residue peptide with a K{sub D} of 3.5 nM, as determined by equilibrium saturation binding studies. Because {alpha}Btx binds to a peptide comprising residues 173-204 with the same affinity and does not bind to a peptide comprising residues 205-227, the competitive antagonist and hence agonist binding site lies between residues 173 and 204. After photoaffinity labeling, ({sup 3}H)PCP was bound to the 172-227 peptide. ({sup 3}H)PCP binding was inhibited by chlorpromazine, tetracaine, and dibucaine. It is concluded that a high-affinity binding site for PCP is located between residues 205 and 227, which includes the first 18 residues of transmembrane segment M1, and that a low-affinity site is located in the competitive antagonist binding site between residues 173 and 204. These results show that a synthetic peptide comprising residues 172-227 of the {alpha} subunit contains three binding sites, one for {alpha}-Btx and two for PCP. Previous studies on the intact receptor indicate high-affinity PCP binding occurs in the receptor channel.

  11. Adenosine Deaminase That Acts on RNA 3 (ADAR3) Binding to Glutamate Receptor Subunit B Pre-mRNA Inhibits RNA Editing in Glioblastoma.

    Science.gov (United States)

    Oakes, Eimile; Anderson, Ashley; Cohen-Gadol, Aaron; Hundley, Heather A

    2017-03-10

    RNA editing is a cellular process that precisely alters nucleotide sequences, thus regulating gene expression and generating protein diversity. Over 60% of human transcripts undergo adenosine to inosine RNA editing, and editing is required for normal development and proper neuronal function of animals. Editing of one adenosine in the transcript encoding the glutamate receptor subunit B, glutamate receptor ionotropic AMPA 2 (GRIA2), modifies a codon, replacing the genomically encoded glutamine (Q) with arginine (R); thus this editing site is referred to as the Q/R site. Editing at the Q/R site of GRIA2 is essential, and reduced editing of GRIA2 transcripts has been observed in patients suffering from glioblastoma. In glioblastoma, incorporation of unedited GRIA2 subunits leads to a calcium-permeable glutamate receptor, which can promote cell migration and tumor invasion. In this study, we identify adenosine deaminase that acts on RNA 3 (ADAR3) as an important regulator of Q/R site editing, investigate its mode of action, and detect elevated ADAR3 expression in glioblastoma tumors compared with adjacent brain tissue. Overexpression of ADAR3 in astrocyte and astrocytoma cell lines inhibits RNA editing at the Q/R site of GRIA2 Furthermore, the double-stranded RNA binding domains of ADAR3 are required for repression of RNA editing. As the Q/R site of GRIA2 is specifically edited by ADAR2, we suggest that ADAR3 directly competes with ADAR2 for binding to GRIA2 transcript, inhibiting RNA editing, as evidenced by the direct binding of ADAR3 to the GRIA2 pre-mRNA. Finally, we provide evidence that both ADAR2 and ADAR3 expression contributes to the relative level of GRIA2 editing in tumors from patients suffering from glioblastoma. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. GABAAα1 and GABAAρ1 subunits are expressed in cultured human RPE cells and GABAA receptor agents modify the intracellular calcium concentration.

    Science.gov (United States)

    Cheng, Zhen-Ying; Wang, Xu-Ping; Schmid, Katrina L; Han, Xu-Guang; Song, Hui; Tang, Xin

    2015-01-01

    Gamma-aminobutyric acid A (GABAA) receptors (GABAARs), which are ionotropic receptors involving chloride channels, have been identified in various neural (e.g., mouse retinal ganglion cells) and nonneural cells (e.g., mouse lens epithelial cells) regulating the intracellular calcium concentration ([Ca(2+)]i). GABAAR β-subunit protein has been isolated in the cultured human and rat RPE, and GABAAα1 and GABAAρ1 mRNAs and proteins are present in the chick RPE. The purpose of this study was to investigate the expression of GABAAα1 and GABAAρ1, two important subunits in forming functional GABAARs, in the cultured human RPE, and further to explore whether altering receptor activation modifies [Ca(2+)]i. Human RPE cells were separately cultured from five donor eye cups. Real-time PCR, western blots, and immunofluorescence were used to test for GABAAα1 and GABAAρ1 mRNAs and proteins. The effects of the GABAAR agonist muscimol, antagonist picrotoxin, or the specific GABAAρ antagonist 1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo3-AM. Both GABAAα1 and GABAAρ1 mRNAs and proteins were identified in cultured human RPE cells; antibody staining was mainly localized to the cell membrane and was also present in the cytoplasm but not in the nucleus. Muscimol (100 μM) caused a transient increase of the [Ca(2+)]i in RPE cells regardless of whether Ca(2+) was added to the buffer. Muscimol-induced increases in the [Ca(2+)]i were inhibited by pretreatment with picrotoxin (300 μM) or TPMPA (500 μM). GABAAα1 and GABAAρ1 are expressed in cultured human RPE cells, and GABAA agents can modify [Ca(2+)]i.

  13. Nicotinic acetylcholine receptor subunit variants are associated with blood pressure; findings in the Old Order Amish and replication in the Framingham Heart Study

    Directory of Open Access Journals (Sweden)

    Ott Sandy

    2008-07-01

    Full Text Available Abstract Background Systemic blood pressure, influenced by both genetic and environmental factors, is regulated via sympathetic nerve activity. We assessed the role of genetic variation in three subunits of the neuromuscular nicotinic acetylcholine receptor positioned on chromosome 2q, a region showing replicated evidence of linkage to blood pressure. Methods We sequenced CHRNA1, CHRND and CHRNG in 24 Amish subjects from the Amish Family Diabetes Study (AFDS and identified 20 variants. We then performed association analysis of non-redundant variants (n = 12 in the complete AFDS cohort of 1,189 individuals, and followed by genotyping blood pressure-associated variants (n = 5 in a replication sample of 1,759 individuals from the Framingham Heart Study (FHS. Results The minor allele of a synonymous coding SNP, rs2099489 in CHRNG, was associated with higher systolic blood pressure in both the Amish (p = 0.0009 and FHS populations (p = 0.009 (minor allele frequency = 0.20 in both populations. Conclusion CHRNG is currently thought to be expressed only during fetal development. These findings support the Barker hypothesis, that fetal genotype and intra-uterine environment influence susceptibility to chronic diseases later in life. Additional studies of this variant in other populations, as well as the effect of this variant on acetylcholine receptor expression and function, are needed to further elucidate its potential role in the regulation of blood pressure. This study suggests for the first time in humans, a possible role for genetic variation in the neuromuscular nicotinic acetylcholine receptor, particularly the gamma subunit, in systolic blood pressure regulation.

  14. Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV receptor-binding domain as an antigen.

    Directory of Open Access Journals (Sweden)

    Jiaming Lan

    Full Text Available The development of an effective vaccine is critical for prevention of a Middle East respiratory syndrome coronavirus (MERS-CoV pandemic. Some studies have indicated the receptor-binding domain (RBD protein of MERS-CoV spike (S is a good candidate antigen for a MERS-CoV subunit vaccine. However, highly purified proteins are typically not inherently immunogenic. We hypothesised that humoral and cell-mediated immunity would be improved with a modification of the vaccination regimen. Therefore, the immunogenicity of a novel MERS-CoV RBD-based subunit vaccine was tested in mice using different adjuvant formulations and delivery routes. Different vaccination regimens were compared in BALB/c mice immunized 3 times intramuscularly (i.m. with a vaccine containing 10 µg of recombinant MERS-CoV RBD in combination with either aluminium hydroxide (alum alone, alum and polyriboinosinic acid (poly I:C or alum and cysteine-phosphate-guanine (CpG oligodeoxynucleotides (ODN. The immune responses of mice vaccinated with RBD, incomplete Freund's adjuvant (IFA and CpG ODN by a subcutaneous (s.c. route were also investigated. We evaluated the induction of RBD-specific humoral immunity (total IgG and neutralizing antibodies and cellular immunity (ELISpot assay for IFN-γ spot-forming cells and splenocyte cytokine production. Our findings indicated that the combination of alum and CpG ODN optimized the development of RBD-specific humoral and cellular immunity following subunit vaccination. Interestingly, robust RBD-specific antibody and T-cell responses were induced in mice immunized with the rRBD protein in combination with IFA and CpG ODN, but low level of neutralizing antibodies were elicited. Our data suggest that murine immunity following subunit vaccination can be tailored using adjuvant combinations and delivery routes. The vaccination regimen used in this study is promising and could improve the protection offered by the MERS-CoV subunit vaccine by eliciting

  15. Molecular basis of the γ-aminobutyric acid A receptor α3 subunit interaction with the clustering protein gephyrin

    DEFF Research Database (Denmark)

    Tretter, Verena; Kerschner, Bernd; Milenkovic, Ivan

    2011-01-01

    subunit and gephyrin, mapping reciprocal binding sites using mutagenesis, overlay, and yeast two-hybrid assays. This analysis reveals that critical determinants of this interaction are located in the motif FNIVGTTYPI in the GABA(A)R α3 M3-M4 domain and the motif SMDKAFITVL at the N terminus...... of the gephyrin E domain. GABA(A)R α3 gephyrin binding-site mutants were unable to co-localize with endogenous gephyrin in transfected hippocampal neurons, despite being able to traffic to the cell membrane and form functional benzodiazepine-responsive GABA(A)Rs in recombinant systems. Interestingly, motifs...

  16. Caffeine and an adenosine A(2A) receptor antagonist prevent memory impairment and synaptotoxicity in adult rats triggered by a convulsive episode in early life.

    Science.gov (United States)

    Cognato, Giana P; Agostinho, Paula M; Hockemeyer, Jörg; Müller, Christa E; Souza, Diogo O; Cunha, Rodrigo A

    2010-01-01

    Seizures early in life cause long-term behavioral modifications, namely long-term memory deficits in experimental animals. Since caffeine and adenosine A(2A) receptor (A(2A)R) antagonists prevent memory deficits in adult animals, we now investigated if they also prevented the long-term memory deficits caused by a convulsive period early in life. Administration of kainate (KA, 2 mg/kg) to 7-days-old (P7) rats caused a single period of self-extinguishable convulsions which lead to a poorer memory performance in the Y-maze only when rats were older than 90 days, without modification of locomotion or anxiety-like behavior in the elevated-plus maze. In accordance with the relationship between synaptotoxicity and memory dysfunction, the hippocampus of these adult rats treated with kainate at P7 displayed a lower density of synaptic proteins such as SNAP-25 and syntaxin (but not synaptophysin), as well as vesicular glutamate transporters type 1 (but not vesicular GABA transporters), with no changes in PSD-95, NMDA receptor subunits (NR1, NR2A, NR2B) or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor subunits (GluR1, GluR2) compared with controls. Caffeine (1 g/L) or the A(2A)R antagonist, KW6002 (3 mg/kg) applied in the drinking water from P21 onwards, prevented these memory deficits in P90 rats treated with KA at P7, as well as the accompanying synaptotoxicity. These results show that a single convulsive episode in early life causes a delayed memory deficit in adulthood accompanied by a glutamatergic synaptotoxicity that was prevented by caffeine or adenosine A(2A)R antagonists.

  17. Microsecond Simulations Indicate that Ethanol Binds between Subunits and Could Stabilize an Open-State Model of a Glycine Receptor

    OpenAIRE

    Murail, Samuel; Wallner, Björn; Trudell, James R.; Bertaccini, Edward; Lindahl, Erik

    2011-01-01

    Cys-loop receptors constitute a superfamily of ion channels gated by ligands such as acetylcholine, serotonin, glycine, and γ-aminobutyric acid. All of these receptors are thought to share structural characteristics, but due to high sequence variation and limited structure availability, our knowledge about allosteric binding sites is still limited. These sites are frequent targets of anesthetic and alcohol molecules, and are of high pharmacological importance. We used molecular simulations to...

  18. Characterization of Two Mutations, M287L and Q266I, in the α1 Glycine Receptor Subunit That Modify Sensitivity to Alcohols

    Science.gov (United States)

    Borghese, Cecilia M.; Blednov, Yuri A.; Quan, Yu; Iyer, Sangeetha V.; Xiong, Wei; Mihic, S. John; Zhang, Li; Lovinger, David M.; Trudell, James R.; Homanics, Gregg E.

    2012-01-01

    Glycine receptors (GlyRs) are inhibitory ligand-gated ion channels. Ethanol potentiates glycine activation of the GlyR, and putative binding sites for alcohol are located in the transmembrane (TM) domains between and within subunits. To alter alcohol sensitivity of GlyR, we introduced two mutations in the GlyR α1 subunit, M287L (TM3) and Q266I (TM2). After expression in Xenopus laevis oocytes, both mutants showed a reduction in glycine sensitivity and glycine-induced maximal currents. Activation by taurine, another endogenous agonist, was almost abolished in the M287L GlyR. The ethanol potentiation of glycine currents was reduced in the M287L GlyR and eliminated in Q266I. Physiological levels of zinc (100 nM) potentiate glycine responses in wild-type GlyR and also enhance the ethanol potentiation of glycine responses. Although zinc potentiation of glycine responses was unchanged in both mutants, zinc enhancement of ethanol potentiation of glycine responses was absent in M287L GlyRs. The Q266I mutation decreased conductance but increased mean open time (effects not seen in M287L). Two lines of knockin mice bearing these mutations were developed. Survival of homozygous knockin mice was impaired, probably as a consequence of impaired glycinergic transmission. Glycine showed a decreased capacity for displacing strychnine binding in heterozygous knockin mice. Electrophysiology in isolated neurons of brain stem showed decreased glycine-mediated currents and decreased ethanol potentiation in homozygous knockin mice. Molecular models of the wild-type and mutant GlyRs show a smaller water-filled cavity within the TM domains of the Q266I α1 subunit. The behavioral characterization of these knockin mice is presented in a companion article (J Pharmacol Exp Ther 340:317–329, 2012). PMID:22037201

  19. Gene knockout of the alpha6 subunit of the gamma-aminobutyric acid type A receptor: lack of effect on responses to ethanol, pentobarbital, and general anesthetics.

    Science.gov (United States)

    Homanics, G E; Ferguson, C; Quinlan, J J; Daggett, J; Snyder, K; Lagenaur, C; Mi, Z P; Wang, X H; Grayson, D R; Firestone, L L

    1997-04-01

    The alpha6 subunit of the gamma-aminobutyric acid type A receptor (GABA(A)-R) has been implicated in mediating the intoxicating effects of ethanol and the motor ataxic effects of general anesthetics. To test this hypothesis, we used gene targeting in embryonic stem cells to create mice lacking a functional alpha6 gene. Homozygous mice are viable and fertile and have grossly normal cerebellar cytoarchitecture. Northern blot and reverse transcriptase-polymerase chain reaction analyses demonstrated that the targeting event disrupted production of functional alpha6 mRNA. Autoradiography of histological sections of adult brains demonstrated that diazepam-insensitive binding of [3H]Ro15-4513 to the cerebellar granule cell layer of wild-type mice was completely absent in homozygous mice. Cerebellar GABA(A)-R density was unchanged in the mutant mice; however, the apparent affinity for muscimol was markedly reduced. Sleep time response to injection of ethanol after pretreatment with vehicle or Ro15-4513 did not differ between genotypes. Sleep time response to injection of pentobarbital and loss of righting reflex and response to tail clamp stimulus in mice anesthetized with volatile anesthetics also did not differ between genotypes. Thus, the alpha6 subunit of the GABA(A)-R is not required for normal development, viability, and fertility and does not seem to be a critical or unique component of the neuronal pathway mediating the hypnotic effect of ethanol and its antagonism by Ro15-4513 in mice. Similarly, the alpha6 subunit does not seem to be involved in the behavioral responses to general anesthetics or pentobarbital.

  20. The α1, α2, α3, and γ2 subunits of GABAA receptors show characteristic spatial and temporal expression patterns in rhombencephalic structures during normal human brain development.

    Science.gov (United States)

    Stojanovic, Tamara; Capo, Ivan; Aronica, Eleonora; Adle-Biassette, Homa; Höger, Harald; Sieghart, Werner; Kovacs, Gabor G; Milenkovic, Ivan

    2016-06-15

    γ-Aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in adult mammalian brain, mediating its actions chiefly via a pentameric chloride ion channel, the GABAA receptor. Nineteen different subunits (α1-6, β1-3, γ1-3, δ, ε, π, θ, ρ1-3) can give rise to multiple receptor subtypes that are the site of action of many clinically important drugs. In the developing brain, however, GABAA receptors mediate excitatory actions due to an increased chloride concentration within neurons and seem to control cell proliferation, migration, differentiation, synapse maturation, and cell death. Little is known about the distribution of single subunits in the human brain. Here we describe developmental changes in the immunohistochemical distribution of four subunits (α1, α2, α3, and γ2) in the human rhombencephalon. The γ2 was the most abundant subunit in all rhombencephalic structures during development and in adults, whereas α subunits showed a structure- and age-characteristic distribution. The α1 was expressed prenatally in the molecular and Purkinje cell layer, but only postnatally in the granule cell layer and the dentate nucleus. Expression was completely absent in the inferior olivary nucleus. The α2 gradually increased during development, showing some layer specificity in the cerebellar cortex. The α3-immunoreactivity in the cerebellar cortex was relatively weak, but it was abundantly observed in different cell populations in the subcortical cerebellar structures. Structure- and age-characteristic colocalization between subunits during development suggests differences in GABAA receptor composition. Interestingly, subunit expression in several instances differed between human and rodent brain, underlining the importance of immunohistochemical studies in humans. © 2015 Wiley Periodicals, Inc.

  1. Alcohol Selectivity of β3-Containing GABAA Receptors: Evidence for a Unique Extracellular Alcohol/Imidazobenzodiazepine Ro15-4513 Binding Site at the α+β− Subunit Interface in αβ3δ GABAA Receptors

    Science.gov (United States)

    Wallner, M.; Hanchar, H. J.; Olsen, R. W.

    2014-01-01

    GABAA receptors (GABARs) have long been the focus for acute alcohol actions with evidence for behaviorally relevant low millimolar alcohol actions on tonic GABA currents and extrasynaptic α4/6, δ, and β3 subunit-containing GABARs. Using recombinant expression in oocytes combined with two electrode voltage clamp, we show with chimeric β2/β3 subunits that differences in alcohol sensitivity among β subunits are determined by the extracellular N-terminal part of the protein. Furthermore, by using point mutations, we show that the β3 alcohol selectivity is determined by a single amino acid residue in the N-terminus that differs between GABAR β subunits (β3Y66, β2A66, β1S66). The β3Y66 residue is located in a region called “loop D” which in γ subunits contributes to the imidazobenzodiazepine (iBZ) binding site at the classical α+γ2− subunit interface. In structural homology models β3Y66 is the equivalent of γ2T81 which is one of three critical residues lining the benzodiazepine binding site in the γ2 subunit loop D, opposite to the “100H/R-site” benzodiazepine binding residue in GABAR α subunits. We have shown that the α6R100Q mutation at this site leads to increased alcohol-induced motor in-coordination in alcohol non-tolerant rats carrying the α6R100Q mutated allele. Based on the identification of these two amino acid residues α6R100 and β66 we propose a model in which β3 and δ containing GABA receptors contain a unique ethanol site at the α4/6+β3− subunit interface. This site is homologous to the classical benzodiazepine binding site and we propose that it not only binds ethanol at relevant concentrations (EC50– 17 mM), but also has high affinity for a few selected benzodiazepine site ligands including alcohol antagonistic iBZs (Ro15-4513, RY023, RY024, RY80) which have in common a large moiety at the C7 position of the benzodiazepine ring. We suggest that large moieties at the C7-BZ ring compete with alcohol for its binding

  2. Alcohol selectivity of β3-containing GABAA receptors: evidence for a unique extracellular alcohol/imidazobenzodiazepine Ro15-4513 binding site at the α+β- subunit interface in αβ3δ GABAA receptors.

    Science.gov (United States)

    Wallner, M; Hanchar, H J; Olsen, R W

    2014-06-01

    GABAA receptors (GABARs) have long been the focus for acute alcohol actions with evidence for behaviorally relevant low millimolar alcohol actions on tonic GABA currents and extrasynaptic α4/6, δ, and β3 subunit-containing GABARs. Using recombinant expression in oocytes combined with two electrode voltage clamp, we show with chimeric β2/β3 subunits that differences in alcohol sensitivity among β subunits are determined by the extracellular N-terminal part of the protein. Furthermore, by using point mutations, we show that the β3 alcohol selectivity is determined by a single amino acid residue in the N-terminus that differs between GABAR β subunits (β3Y66, β2A66, β1S66). The β3Y66 residue is located in a region called "loop D" which in γ subunits contributes to the imidazobenzodiazepine (iBZ) binding site at the classical α+γ2- subunit interface. In structural homology models β3Y66 is the equivalent of γ2T81 which is one of three critical residues lining the benzodiazepine binding site in the γ2 subunit loop D, opposite to the "100H/R-site" benzodiazepine binding residue in GABAR α subunits. We have shown that the α6R100Q mutation at this site leads to increased alcohol-induced motor in-coordination in alcohol non-tolerant rats carrying the α6R100Q mutated allele. Based on the identification of these two amino acid residues α6R100 and β66 we propose a model in which β3 and δ containing GABA receptors contain a unique ethanol site at the α4/6+β3- subunit interface. This site is homologous to the classical benzodiazepine binding site and we propose that it not only binds ethanol at relevant concentrations (EC50-17 mM), but also has high affinity for a few selected benzodiazepine site ligands including alcohol antagonistic iBZs (Ro15-4513, RY023, RY024, RY80) which have in common a large moiety at the C7 position of the benzodiazepine ring. We suggest that large moieties at the C7-BZ ring compete with alcohol for its binding pocket at a α4

  3. Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation through activating the NR2B subunits of NMDA receptors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wen-Zhu [Anesthesia and Operation Center, Hainan Branch of Chinese PLA General Hospital, Hainan 572013 (China); Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853 (China); Miao, Yu-Liang [Department of Anesthesiology, PLA No. 306 Hospital, Beijing 100101 (China); Guo, Wen-Zhi [Department of Anesthesiology, Beijing Military General Hospital of Chinese People’s Liberation Army, Beijing 100700 (China); Wu, Wei, E-mail: wwzwgk@163.com [Department of Head and Neck Surgery of Otolaryngology, PLA No. 306 Hospital, Beijing 100101 (China); Li, Bao-Wei [Department of Head and Neck Surgery of Otolaryngology, PLA No. 306 Hospital, Beijing 100101 (China); An, Li-Na [Department of Anesthesiology, Armed Police General Hospital, Beijing 100039 (China); Fang, Wei-Wu [Department of Anesthesiology, PLA No. 306 Hospital, Beijing 100101 (China); Mi, Wei-Dong, E-mail: elite2005gg@163.com [Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853 (China)

    2014-04-25

    Highlights: • Leptin promotes the proliferation of neural stem cells isolated from embryonic mouse hippocampus. • Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation. • The effects of leptin are partially mediated by upregulating NR2B subunits. - Abstract: Corticosterone inhibits the proliferation of hippocampal neural stem cells (NSCs). The removal of corticosterone-induced inhibition of NSCs proliferation has been reported to contribute to neural regeneration. Leptin has been shown to regulate brain development, improve angiogenesis, and promote neural regeneration; however, its effects on corticosterone-induced inhibition of NSCs proliferation remain unclear. Here we reported that leptin significantly promoted the proliferation of hippocampal NSCs in a concentration-dependent pattern. Also, leptin efficiently reversed the inhibition of NSCs proliferation induced by corticosterone. Interestingly, pre-treatment with non-specific NMDA antagonist MK-801, specific NR2B antagonist Ro 25-6981, or small interfering RNA (siRNA) targeting NR2B, significantly blocked the effect of leptin on corticosterone-induced inhibition of NSCs proliferation. Furthermore, corticosterone significantly reduced the protein expression of NR2B, whereas pre-treatment with leptin greatly reversed the attenuation of NR2B expression caused by corticosterone in cultured hippocampal NSCs. Our findings demonstrate that leptin reverses the corticosterone-induced inhibition of NSCs proliferation. This process is, at least partially mediated by increased expression of NR2B subunits of NMDA receptors.

  4. Modulation of sweet taste by umami compounds via sweet taste receptor subunit hT1R2.

    Science.gov (United States)

    Shim, Jaewon; Son, Hee Jin; Kim, Yiseul; Kim, Ki Hwa; Kim, Jung Tae; Moon, Hana; Kim, Min Jung; Misaka, Takumi; Rhyu, Mee-Ra

    2015-01-01

    Although the five basic taste qualities-sweet, sour, bitter, salty and umami-can be recognized by the respective gustatory system, interactions between these taste qualities are often experienced when food is consumed. Specifically, the umami taste has been investigated in terms of whether it enhances or reduces the other taste modalities. These studies, however, are based on individual perception and not on a molecular level. In this study we investigated umami-sweet taste interactions using umami compounds including monosodium glutamate (MSG), 5'-mononucleotides and glutamyl-dipeptides, glutamate-glutamate (Glu-Glu) and glutamate-aspartic acid (Glu-Asp), in human sweet taste receptor hT1R2/hT1R3-expressing cells. The sensitivity of sucrose to hT1R2/hT1R3 was significantly attenuated by MSG and umami active peptides but not by umami active nucleotides. Inhibition of sweet receptor activation by MSG and glutamyl peptides is obvious when sweet receptors are activated by sweeteners that target the extracellular domain (ECD) of T1R2, such as sucrose and acesulfame K, but not by cyclamate, which interact with the T1R3 transmembrane domain (TMD). Application of umami compounds with lactisole, inhibitory drugs that target T1R3, exerted a more severe inhibitory effect. The inhibition was also observed with F778A sweet receptor mutant, which have the defect in function of T1R3 TMD. These results suggest that umami peptides affect sweet taste receptors and this interaction prevents sweet receptor agonists from binding to the T1R2 ECD in an allosteric manner, not to the T1R3. This is the first report to define the interaction between umami and sweet taste receptors.

  5. Modulation of sweet taste by umami compounds via sweet taste receptor subunit hT1R2.

    Directory of Open Access Journals (Sweden)

    Jaewon Shim

    Full Text Available Although the five basic taste qualities-sweet, sour, bitter, salty and umami-can be recognized by the respective gustatory system, interactions between these taste qualities are often experienced when food is consumed. Specifically, the umami taste has been investigated in terms of whether it enhances or reduces the other taste modalities. These studies, however, are based on individual perception and not on a molecular level. In this study we investigated umami-sweet taste interactions using umami compounds including monosodium glutamate (MSG, 5'-mononucleotides and glutamyl-dipeptides, glutamate-glutamate (Glu-Glu and glutamate-aspartic acid (Glu-Asp, in human sweet taste receptor hT1R2/hT1R3-expressing cells. The sensitivity of sucrose to hT1R2/hT1R3 was significantly attenuated by MSG and umami active peptides but not by umami active nucleotides. Inhibition of sweet receptor activation by MSG and glutamyl peptides is obvious when sweet receptors are activated by sweeteners that target the extracellular domain (ECD of T1R2, such as sucrose and acesulfame K, but not by cyclamate, which interact with the T1R3 transmembrane domain (TMD. Application of umami compounds with lactisole, inhibitory drugs that target T1R3, exerted a more severe inhibitory effect. The inhibition was also observed with F778A sweet receptor mutant, which have the defect in function of T1R3 TMD. These results suggest that umami peptides affect sweet taste receptors and this interaction prevents sweet receptor agonists from binding to the T1R2 ECD in an allosteric manner, not to the T1R3. This is the first report to define the interaction between umami and sweet taste receptors.

  6. Modulation of Sweet Taste by Umami Compounds via Sweet Taste Receptor Subunit hT1R2

    Science.gov (United States)

    Kim, Yiseul; Kim, Ki Hwa; Kim, Jung Tae; Moon, Hana; Kim, Min Jung; Misaka, Takumi; Rhyu, Mee-Ra

    2015-01-01

    Although the five basic taste qualities—sweet, sour, bitter, salty and umami—can be recognized by the respective gustatory system, interactions between these taste qualities are often experienced when food is consumed. Specifically, the umami taste has been investigated in terms of whether it enhances or reduces the other taste modalities. These studies, however, are based on individual perception and not on a molecular level. In this study we investigated umami-sweet taste interactions using umami compounds including monosodium glutamate (MSG), 5’-mononucleotides and glutamyl-dipeptides, glutamate-glutamate (Glu-Glu) and glutamate-aspartic acid (Glu-Asp), in human sweet taste receptor hT1R2/hT1R3-expressing cells. The sensitivity of sucrose to hT1R2/hT1R3 was significantly attenuated by MSG and umami active peptides but not by umami active nucleotides. Inhibition of sweet receptor activation by MSG and glutamyl peptides is obvious when sweet receptors are activated by sweeteners that target the extracellular domain (ECD) of T1R2, such as sucrose and acesulfame K, but not by cyclamate, which interact with the T1R3 transmembrane domain (TMD). Application of umami compounds with lactisole, inhibitory drugs that target T1R3, exerted a more severe inhibitory effect. The inhibition was also observed with F778A sweet receptor mutant, which have the defect in function of T1R3 TMD. These results suggest that umami peptides affect sweet taste receptors and this interaction prevents sweet receptor agonists from binding to the T1R2 ECD in an allosteric manner, not to the T1R3. This is the first report to define the interaction between umami and sweet taste receptors. PMID:25853419

  7. Serotonin Transporter (5-HTT) and gamma-Aminobutyric Acid Receptor Subunit beta3 (GABRB3) Gene Polymorphisms are not Associated with Autism in the IMGSA Families

    DEFF Research Database (Denmark)

    Maestrini, E.; Lai, C.; Marlow, A.

    1999-01-01

    on the collection of families grom the International Molecular Genetic Study of Autism (IMGSA) Consortium, using the transmission disequilibrium test. Two polymorphisms in the 5-HTT gene (a functional insertion-deletion polymorphism in the promoter and a variable nubmer tandem repeat in the second intron) were...... and the GABRB3 genes are unlikely to play a major role in the aetiology of autism in our family data set.......Previous studies have suggested that the serotonin transporter (5-HTT) gene and the gamma-aminobutyric acid receptor subunit beta3 (GABRB3) gene, or other genes in the 15q11-q13 region, are possibly involved in susceptibility to autism. To test this hypothesis we performed an association study...

  8. Association of Common Polymorphisms in the Nicotinic Acetylcholine Receptor Alpha4 Subunit Gene with an Electrophysiological Endophenotype in a Large Population-Based Sample.

    Directory of Open Access Journals (Sweden)

    A Mobascher

    Full Text Available Variation in genes coding for nicotinic acetylcholine receptor (nAChR subunits affect cognitive processes and may contribute to the genetic architecture of neuropsychiatric disorders. Single nucleotide polymorphisms (SNPs in the CHRNA4 gene that codes for the alpha4 subunit of alpha4/beta2-containing receptors have previously been implicated in aspects of (mostly visual attention and smoking-related behavioral measures. Here we investigated the effects of six synonymous but functional CHRNA4 exon 5 SNPs on the N100 event-related potential (ERP, an electrophysiological endophenotype elicited by a standard auditory oddball. A total of N = 1,705 subjects randomly selected from the general population were studied with electroencephalography (EEG as part of the German Multicenter Study on nicotine addiction. Two of the six variants, rs1044396 and neighboring rs1044397, were significantly associated with N100 amplitude. This effect was pronounced in females where we also observed an effect on reaction time. Sequencing of the complete exon 5 region in the population sample excluded the existence of additional/functional variants that may be responsible for the observed effects. This is the first large-scale population-based study investigation the effects of CHRNA4 SNPs on brain activity measures related to stimulus processing and attention. Our results provide further evidence that common synonymous CHRNA4 exon 5 SNPs affect cognitive processes and suggest that they also play a role in the auditory system. As N100 amplitude reduction is considered a schizophrenia-related endophenotype the SNPs studied here may also be associated with schizophrenia outcome measures.

  9. Nicotinic acetylcholine receptors containing the α7-like subunit mediate contractions of muscles responsible for space positioning of the snail, Helix pomatia L. tentacle.

    Directory of Open Access Journals (Sweden)

    Tibor Kiss

    Full Text Available Three recently discovered tentacle muscles are crucial to perform patterned movements of upper tentacles of the terrestrial snail, Helix pomatia. The muscles receive central and peripheral excitatory cholinergic innervation lacking inhibitory innervation. Here, we investigate the pharmacology of acetylcholine (ACh responses in muscles to determine the properties of the ACh receptor (AChR, the functional availability of which was assessed using isotonic contraction measurement. Using broad spectrum of nicotinic and muscarinic ligands, we provide the evidence that contractions in the muscles are attributable to the activation of nAChRs that contain the α7-like subunit. Contractions could be evoked by nicotine, carbachol, succinylchloride, TMA, the selective α7-nAChR agonist choline chloride, 3-Bromocytisine and PNU-282987, and blocked by nAChR selective antagonists such as mytolon, hexamethonium, succinylchloride, d-tubocurarine, hemicholinium, DMDA (decamethonium, methyllycaconitine, α-Bungarotoxin (αBgTx and α-Conotoxin IMI. The specific muscarinic agonist oxotremorine and arecoline failed to elicit contractions. Based on these pharmacological properties we conclude that the Na+ and Ca2+ permeable AChRs of the flexor muscle are nicotinic receptors that contain the α7-like subunit. Immunodetection experiments confirmed the presence of α7- or α7-like AChRs in muscle cells, and α4-AChRs in nerves innervating the muscle. These results support the conclusion that the slowly desensitizing αBgTx-sensitive responses obtained from flexor muscles are produced by activation of α7- like AChRs. This is the first demonstration of postsynaptic expression and an obligatory role for a functional α7-like nAChR in the molluscan periphery.

  10. Glucocorticoids curtail stimuli-induced CREB phosphorylation in TRH neurons through interaction of the glucocorticoid receptor with the catalytic subunit of protein kinase A.

    Science.gov (United States)

    Sotelo-Rivera, Israim; Cote-Vélez, Antonieta; Uribe, Rosa-María; Charli, Jean-Louis; Joseph-Bravo, Patricia

    2017-03-01

    Corticosterone prevents cold-induced stimulation of thyrotropin-releasing hormone (Trh) expression in rats, and the stimulatory effect of dibutyryl cyclic-adenosine monophosphate (dB-cAMP) on Trh transcription in hypothalamic cultures. We searched for the mechanism of this interference. Immunohistochemical analyses of phosphorylated cAMP-response element binding protein (pCREB) were performed in the paraventricular nucleus (PVN) of Wistar rats, and in cell cultures of 17-day old rat hypothalami, or neuroblastoma SH-SY5Y cells. Cultures were incubated 1h with dB-cAMP, dexamethasone and both drugs combined; their nuclear extracts were used for chromatin immunoprecipitation; cytosolic or nuclear extracts for coimmunoprecipitation analyses of catalytic subunit of protein kinase A (PKAc) and of glucocorticoid receptor (GR); their subcellular distribution was analyzed by immunocytochemistry. Cold exposure increased pCREB in TRH neurons of rats PVN, effect blunted by corticosterone previous injection. Dexamethasone interfered with forskolin increase in nuclear pCREB and its binding to Trh promoter; antibodies against histone deacetylase-3 precipitated chromatin from nuclear extracts of hypothalamic cells treated with tri-iodothyronine but not with dB-cAMP + dexamethasone, discarding chromatin compaction as responsible mechanism. Co-immunoprecipitation analyses of cytosolic or nuclear extracts showed protein:protein interactions between activated GR and PKAc. Immunocytochemical analyses of hypothalamic or SH-SY5Y cells revealed diminished nuclear translocation of PKAc and GR in cells incubated with forskolin + dexamethasone, compared to either forskolin or dexamethasone alone. Glucocorticoids and cAMP exert mutual inhibition of Trh transcription through interaction of activated glucocorticoid receptor with protein kinase A catalytic subunit, reducing their nuclear translocation, limiting cAMP-response element binding protein phosphorylation and its binding to Trh promoter.

  11. Single-trial properties of place cells in control and CA1 NMDA receptor subunit 1-KO mice

    NARCIS (Netherlands)

    Cabral, H.O.; Fouquet, C.; Rondi-Reig, L.; Pennartz, C.M.A.; Battaglia, F.P.

    2014-01-01

    The NMDA receptor plays a key role in synaptic plasticity and its disruption leads to impaired spatial representation in the CA1 area of the hippocampus, with place cells exhibiting larger place fields (McHugh et al., 1996). Place fields are defined by the spatial and nonspatial inputs of a given

  12. Pituitary gonadotrophic hormone synthesis, secretion, subunit gene expression and cell structure in normal and follicle-stimulating hormone β knockout, follicle-stimulating hormone receptor knockout, luteinising hormone receptor knockout, hypogonadal and ovariectomised female mice.

    Science.gov (United States)

    Abel, M H; Widen, A; Wang, X; Huhtaniemi, I; Pakarinen, P; Kumar, T R; Christian, H C

    2014-11-01

    To investigate the relationship between gonadotroph function and ultrastructure, we have compared, in parallel in female mice, the effects of several different mutations that perturb the hypothalamic-pituitary-gonadal axis. Specifically, serum and pituitary gonadotrophin concentrations, gonadotrophin gene expression, gonadotroph structure and number were measured. Follicle-stimulating hormone β knockout (FSHβKO), follicle-stimulating hormone receptor knockout (FSHRKO), luteinising hormone receptor knockout (LuRKO), hypogonadal (hpg) and ovariectomised mice were compared with control wild-type or heterozygote female mice. Serum levels of LH were elevated in FSHβKO and FSHRKO compared to heterozygote females, reflecting the likely decreased oestrogen production in KO females, as demonstrated by the threadlike uteri and acyclicity. As expected, there was no detectable FSH in the serum or pituitary and an absence of expression of the FSHβ subunit gene in FSHβKO mice. However, there was a significant increase in expression of the FSHβ and LHβ subunit genes in FSHRKO female mice. The morphology of FSHβKO and FSHRKO gonadotrophs was not significantly different from the control, except that secretory granules in FSHRKO gonadotrophs were larger in diameter. In LuRKO and ovariectomised mice, stimulation of LHβ and FSHβ mRNA, as well as serum protein concentrations, were reflected in subcellular changes in gonadotroph morphology, including more dilated rough endoplasmic reticula and fewer, larger secretory granules. In the gonadotophin-releasing hormone deficient hpg mouse, gonadotrophin mRNA and protein levels were significantly lower than in control mice and gonadotrophs were correspondingly smaller with less abundant endoplasmic reticula and reduced numbers of secretory granules. In summary, major differences in pituitary content and serum concentrations of the gonadotrophins LH and FSH were found between control and mutant female mice. These changes were

  13. Zolpidem, a selective GABA(A) receptor alpha1 subunit agonist, induces comparable Fos expression in oxytocinergic neurons of the hypothalamic paraventricular and accessory but not supraoptic nuclei in the rat

    DEFF Research Database (Denmark)

    Kiss, Alexander; Søderman, Andreas; Bundzikova, Jana

    2006-01-01

    Functional activation of oxytocinergic (OXY) cells in the hypothalamic paraventricular (PVN), supraoptic (SON), and accessory (ACC) nuclei was investigated in response to acute treatment with Zolpidem (a GABA(A) receptor agonist with selectivity for alpha(1) subunits) utilizing dual Fos/OXY immun...

  14. A case of autism with an interstitial deletion on 4q leading to hemizygosity for genes encoding for glutamine and glycine neurotransmitter receptor sub-units (AMPA 2, GLRA3, GLRB and neuropeptide receptors NPY1R, NPY5R

    Directory of Open Access Journals (Sweden)

    Steinberg-Epstein Robin

    2004-04-01

    Full Text Available Abstract Background Autism is a pervasive developmental disorder characterized by a triad of deficits: qualitative impairments in social interactions, communication deficits, and repetitive and stereotyped patterns of behavior. Although autism is etiologically heterogeneous, family and twin studies have established a definite genetic basis. The inheritance of idiopathic autism is presumed to be complex, with many genes involved; environmental factors are also possibly contributory. The analysis of chromosome abnormalities associated with autism contributes greatly to the identification of autism candidate genes. Case presentation We describe a child with autistic disorder and an interstitial deletion on chromosome 4q. This child first presented at 12 months of age with developmental delay and minor dysmorphic features. At 4 years of age a diagnosis of Pervasive Developmental Disorder was made. At 11 years of age he met diagnostic criteria for autism. Cytogenetic studies revealed a chromosome 4q deletion. The karyotype was 46, XY del 4 (q31.3-q33. Here we report the clinical phenotype of the child and the molecular characterization of the deletion using molecular cytogenetic techniques and analysis of polymorphic markers. These studies revealed a 19 megabase deletion spanning 4q32 to 4q34. Analysis of existing polymorphic markers and new markers developed in this study revealed that the deletion arose on a paternally derived chromosome. To date 33 genes of known or inferred function are deleted as a consequence of the deletion. Among these are the AMPA 2 gene that encodes the glutamate receptor GluR2 sub-unit, GLRA3 and GLRB genes that encode glycine receptor subunits and neuropeptide Y receptor genes NPY1R and NPY5R. Conclusions The deletion in this autistic subject serves to highlight specific autism candidate genes. He is hemizygous for AMPA 2, GLRA3, GLRB, NPY1R and NPY5R. GluR2 is the major determinant of AMPA receptor structure. Glutamate

  15. Afferent-specific AMPA receptor subunit composition and regulation of synaptic plasticity in midbrain dopamine neurons by abused drugs

    OpenAIRE

    Good, Cameron H.; Lupica, Carl R.

    2010-01-01

    Ventral tegmental area (VTA) dopamine (DA) neurons play a pivotal role in processing reward-related information and are involved in drug addiction and mental illness in humans. Information is conveyed to the VTA in large part by glutamatergic afferents that arise in various brain nuclei, including the pedunculopontine nucleus (PPN). Using a unique rat brain slice preparation, we found that PPN stimulation activates afferents targeting GluR2-containing AMPA receptors (AMPAR) on VTA DA neurons,...

  16. Nicotinic acetylcholine receptor β2 subunit gene implicated in a systems-based candidate gene study of smoking cessation

    OpenAIRE

    Conti, DV; Lee, W.; D. Li; Liu, J.; Van Den Berg, D.; Thomas, PD; Bergen, AW; Swan, GE; Tyndale, RF; Benowitz, NL; Lerman, C

    2008-01-01

    Although the efficacy of pharmacotherapy for tobacco dependence has been previously demonstrated, there is substantial variability among individuals in treatment response. We performed a systems-based candidate gene study of 1295 single nucleotide polymorphisms (SNPs) in 58 genes within the neuronal nicotinic receptor and dopamine systems to investigate their role in smoking cessation in a bupropion placebo-controlled randomized clinical trial. Putative functional variants were supplemented w...

  17. The nicotinic α6 subunit gene determines variability in chronic pain sensitivity via cross-inhibition of P2X2/3 receptors

    DEFF Research Database (Denmark)

    Wieskopf, Jeffrey S; Mathur, Jayanti; Limapichat, Walrati

    2015-01-01

    Chronic pain is a highly prevalent and poorly managed human health problem. We used microarray-based expression genomics in 25 inbred mouse strains to identify dorsal root ganglion (DRG)-expressed genetic contributors to mechanical allodynia, a prominent symptom of chronic pain. We identified exp......-inhibition of α6* nAChRs with P2X2/3 receptors in DRG nociceptors. Finally, we establish the relevance of our results to humans by the observation of genetic association in patients suffering from chronic postsurgical and temporomandibular pain.......Chronic pain is a highly prevalent and poorly managed human health problem. We used microarray-based expression genomics in 25 inbred mouse strains to identify dorsal root ganglion (DRG)-expressed genetic contributors to mechanical allodynia, a prominent symptom of chronic pain. We identified...... expression levels of Chrna6, which encodes the α6 subunit of the nicotinic acetylcholine receptor (nAChR), as highly associated with allodynia. We confirmed the importance of α6* (α6-containing) nAChRs by analyzing both gain- and loss-of-function mutants. We find that mechanical allodynia associated...

  18. The effect of 1800MHz radio-frequency radiation on NMDA receptor subunit NR1 expression and peroxidation in the rat brain in healthy and inflammatory states.

    Science.gov (United States)

    Bodera, Paweł; Makarova, Katerina; Zawada, Katarzyna; Antkowiak, Bożena; Paluch, Małgorzata; Sobiczewska, Elżbieta; Sirav, Bahriye; Siwicki, Andrzej K; Stankiewicz, Wanda

    2017-08-01

    The aim of this study was to evaluate the effect of repeated exposure (5 times for 15min) of 1800MHz radio-frequency radiation (RFR) on N-methyl-d-aspartate receptor subunit NR1 (NMDA-NR1) expression in the brains of rats in a persistent inflammatory state. We also measured the effect of RFR combined with tramadol (TRAM) to determine the potential antioxidant capacity of this agent. The effects of the Global System for Mobile Communication (GSM) modulated 1800MHz RFR exposure on the expression and activity of glutamate receptor channels with antioxidative activity in brain tissue was measured using oxygen radical absorbance capacity (ORAC) and electron spin resonance (ESR) detection of the hydroxyl radical generated by the Fenton reaction. NMDA-NR1 was measured in the cerebral tissue of rats with inflammation (complete Freund's adjuvent) and those injected with tramadol after RFR exposure (RFR, RFR/TRAM) and in non-exposed (baseline, TRAM) rats. No differences between the baseline group and the exposed group (RFR) were observed. NMDA-NR1 expression decreased after CFA injection and RFR exposure, and an elevated expression of NMDA-NR1 was observed in healthy control rats of both groups: TRAM/RFR and RFR. ORAC assessment revealed a robust effect of RFR, however the other experiments revealed equivocal effects. Further studies examining the combination of ORAC with NMDA are warranted to elucidate more clearly the effect of RFR on the brain. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Essential role of NMDA receptor channel ε4 subunit (GluN2D in the effects of phencyclidine, but not methamphetamine.

    Directory of Open Access Journals (Sweden)

    Yoko Hagino

    Full Text Available Phencyclidine (PCP, a noncompetitive N-methyl-D-aspartate (NMDA receptor antagonist, increases locomotor activity in rodents and causes schizophrenia-like symptoms in humans. Although activation of the dopamine (DA pathway is hypothesized to mediate these effects of PCP, the precise mechanisms by which PCP induces its effects remain to be elucidated. The present study investigated the effect of PCP on extracellular levels of DA (DA(ex in the striatum and prefrontal cortex (PFC using in vivo microdialysis in mice lacking the NMDA receptor channel ε1 or ε4 subunit (GluRε1 [GluN2A] or GluRε4 [GluN2D] and locomotor activity. PCP significantly increased DA(ex in wildtype and GluRε1 knockout mice, but not in GluRε4 knockout mice, in the striatum and PFC. Acute and repeated administration of PCP did not increase locomotor activity in GluRε4 knockout mice. The present results suggest that PCP enhances dopaminergic transmission and increases locomotor activity by acting at GluRε4.

  20. The Human IL-22 Receptor Is Regulated through the Action of the Novel E3 Ligase Subunit FBXW12, Which Functions as an Epithelial Growth Suppressor

    Directory of Open Access Journals (Sweden)

    Joseph Franz

    2015-01-01

    Full Text Available Interleukin- (IL- 22 signaling is protective in animal models of pneumonia and bacteremia by Klebsiella pneumoniae and mediates tissue recovery from influenza and Staph aureus infection. We recently described processing of mouse lung epithelial IL-22 receptor (IL-22R by ubiquitination on the intracellular C-terminal. To identify cellular factors that regulate human IL-22R, we screened receptor abundance while overexpressing constituents of the ubiquitin system and identify that IL-22R can be shuttled for degradation by multiple previously uncharacterized F-box protein E3 ligase subunits. We observe that in human cells IL-22R is destabilized by FBXW12. FBXW12 causes depletion of endogenous and plasmid-derived IL-22R in lung epithelia, binds the E3 ligase constituent Skp-1, and facilitates ubiquitination of IL-22R in vitro. FBXW12 knockdown with shRNA increases IL-22R abundance and STAT3 phosphorylation in response to IL-22 cytokine treatment. FBXW12 shRNA increases human epithelial cell growth and cell cycle progression with enhanced constitutive activity of map kinases JNK and ERK. These findings indicate that the heretofore-undescribed protein FBXW12 functions as an E3 ligase constituent to ubiquitinate and degrade IL-22R and that therapeutic FBXW12 inhibition may enhance IL-22 signaling and bolster mucosal host defense and infection containment.

  1. Spatial working memory deficits in GluA1 AMPA receptor subunit knockout mice reflect impaired short-term habituation: Evidence for Wagner's dual-process memory model

    Science.gov (United States)

    Sanderson, David J.; McHugh, Stephen B.; Good, Mark A.; Sprengel, Rolf; Seeburg, Peter H.; Rawlins, J. Nicholas P.; Bannerman, David M.

    2010-01-01

    Genetically modified mice, lacking the GluA1 AMPA receptor subunit, are impaired on spatial working memory tasks, but display normal acquisition of spatial reference memory tasks. One explanation for this dissociation is that working memory, win-shift performance engages a GluA1-dependent, non-associative, short-term memory process through which animals choose relatively novel arms in preference to relatively familiar options. In contrast, spatial reference memory, as exemplified by the Morris water maze task, reflects a GluA1-independent, associative, long-term memory mechanism. These results can be accommodated by Wagner's dual-process model of memory in which short and long-term memory mechanisms exist in parallel and, under certain circumstances, compete with each other. According to our analysis, GluA1−/− mice lack short-term memory for recently experienced spatial stimuli. One consequence of this impairment is that these stimuli should remain surprising and thus be better able to form long-term associative representations. Consistent with this hypothesis, we have recently shown that long-term spatial memory for recently visited locations is enhanced in GluA1−/− mice, despite impairments in hippocampal synaptic plasticity. Taken together, these results support a role for GluA1-containing AMPA receptors in short-term habituation, and in modulating the intensity or perceived salience of stimuli. PMID:20350557

  2. Involvement of a Heptad Repeat in the Carboxyl Terminus of the Dihydropyridine Receptor β1a Subunit in the Mechanism of Excitation-Contraction Coupling in Skeletal Muscle

    Science.gov (United States)

    Sheridan, David C.; Cheng, Weijun; Carbonneau, Leah; Ahern, Chris A.; Coronado, Roberto

    2004-01-01

    Chimeras consisting of the homologous skeletal dihydropyridine receptor (DHPR) β1a subunit and the heterologous cardiac/brain β2a subunit were used to determine which regions of β1a were responsible for the skeletal-type excitation-contraction (EC) coupling phenotype. Chimeras were transiently transfected in β1 knockout myotubes and then voltage-clamped with simultaneous measurement of confocal fluo-4 fluorescence. All chimeras expressed a similar density of DHPR charge movements, indicating that the membrane density of DHPR voltage sensors was not a confounding factor in these studies. The data indicates that a β1a-specific domain present in the carboxyl terminus, namely the D5 region comprising the last 47 residues (β1a 478–524), is essential for expression of skeletal-type EC coupling. Furthermore, the location of β1aD5 immediately downstream from conserved domain D4 is also critical. In contrast, chimeras in which β1aD5 was swapped by the D5 region of β2a expressed Ca2+ transients triggered by the Ca2+ current, or none at all. A hydrophobic heptad repeat is present in domain D5 of β1a (L478, V485, V492). To determine the role of this motif, residues in the heptad repeat were mutated to alanines. The triple mutant β1a(L478A/V485A/V492A) recovered weak skeletal-type EC coupling (ΔF/Fmax = 0.4 ± 0.1 vs. 2.7 ± 0.5 for wild-type β1a). However, a triple mutant with alanine substitutions at positions out of phase with the heptad repeat, β1a(S481A/L488A/S495A), was normal (ΔF/Fmax = 2.1 ± 0.4). In summary, the presence of the β1a-specific D5 domain, in its correct position after conserved domain D4, is essential for skeletal-type EC coupling. Furthermore, a heptad repeat in β1aD5 controls the EC coupling activity. The carboxyl terminal heptad repeat of β1a might be involved in protein-protein interactions with ryanodine receptor type 1 required for DHPR to ryanodine receptor type 1 signal transmission. PMID:15298900

  3. Changes in glutamate receptor subunits within the medulla in goats after section of the carotid sinus nerves

    Science.gov (United States)

    Miller, Justin Robert; Neumueller, Suzanne; Muere, Clarissa; Olesiak, Samantha; Pan, Lawrence; Bukowy, John D.; Daghistany, Asem O.; Hodges, Matthew R.

    2014-01-01

    The mechanisms which contribute to the time-dependent recovery of resting ventilation and the ventilatory CO2 chemoreflex after carotid body denervation (CBD) are poorly understood. Herein we tested the hypothesis that there are time-dependent changes in the expression of specific AMPA, NMDA, and/or neurokinin-1 (NK1R) receptors within respiratory-related brain stem nuclei acutely or chronically after CBD in adult goats. Brain stem tissues were collected acutely (5 days) or chronically (30 days) after sham or bilateral CBD, immunostained with antibodies targeting AMPA (GluA1 or GluA2), NMDA (GluN1), or NK-1 receptors, and optical density (OD) compared. Physiological measurement confirmed categorization of each group and showed ventilatory effects consistent with bilateral CBD (Miller et al. J Appl Physiol 115: 1088–1098, 2013). Acutely after CBD, GluA1 OD was unchanged or slightly increased, but GluA2 and GluN1 OD were reduced 15–30% within the nucleus tractus solitarius (NTS) and in other medullary respiratory nuclei. Chronically after CBD, GluA1 was reduced (P < 0.05) within the caudal NTS and in other nuclei, but there was significant recovery of GluA2 and GluN1 OD. NK1 OD was not significantly different from control after CBD. We conclude that the initial decrease in GluA2 and GluN1 after CBD likely contributes to hypoventilation and the reduced CO2 chemoreflex. The partial recovery of ventilation and the CO2 chemoreflex after CBD parallel a time-dependent return of these receptors to near control levels but likely depend upon additional initiating and maintenance factors for neuroplasticity. PMID:24790015

  4. Human genetic polymorphisms in T1R1 and T1R3 taste receptor subunits affect their function.

    OpenAIRE

    Raliou, Mariam; Grauso, Marta; Hoffmann, Brice; Schlegel-Le-Poupon, Claire; Nespoulous, Claude; Débat, Hélène; Belloir, Christine; Wiencis, Anna; Sigoillot, Maud; Bano, Singh Preet; Trotier, Didier; Pernollet, Jean-Claude; MONTMAYEUR, Jean-Pierre; Faurion, Annick; Briand, Loïc

    2011-01-01

    International audience; Umami is the typical taste induced by monosodium glutamate (MSG), which is thought to be detected by the heterodimeric G protein-coupled receptor, T1R1 and T1R3. Previously, we showed that MSG detection thresholds differ substantially between individuals and we further showed that nontaster and hypotaster subjects are associated with nonsynonymous single polymorphisms occurring in the T1R1 and T1R3 genes. Here, we show using functional expression that both amino acid s...

  5. Human Genetic Polymorphisms in T1R1 and T1R3 Taste Receptor Subunits Affect Their Function

    OpenAIRE

    Raliou, Mariam; Grauso, Marta; Hoffmann, Brice; Schlegel-Le-Poupon, Claire; Nespoulous, Claude; Debat, Helene; Belloir, Christine; Wiencis, Ana; Sigoillot, Maud; Bano, Singh Preet; Trotier, Didier; Pernollet, J Claude; MONTMAYEUR, Jean-Pierre; Faurion, Annick

    2011-01-01

    International audience; Umami is the typical taste induced by monosodium glutamate (MSG), which is thought to be detected by the heterodimeric G protein-coupled receptor, T1R1 and T1R3. Previously, we showed that MSG detection thresholds differ substantially between individuals and we further showed that nontaster and hypotaster subjects are associated with nonsynonymous single polymorphisms occurring in the T1R1 and T1R3 genes. Here, we show using functional expression that both amino acid s...

  6. Trace amines inhibit insect odorant receptor function through antagonism of the co-receptor subunit [v1; ref status: indexed, http://f1000r.es/35u

    Directory of Open Access Journals (Sweden)

    Sisi Chen

    2014-04-01

    Full Text Available Many insect behaviors are driven by olfaction, making insect olfactory receptors (ORs appealing targets for insect control.  Insect ORs are odorant-gated ion channels, with each receptor thought to be composed of a representative from a large, variable family of odorant binding subunits and a highly conserved co-receptor subunit (Orco, assembled in an unknown stoichiometry.  Synthetic Orco directed agonists and antagonists have recently been identified.  Several Orco antagonists have been shown to act via an allosteric mechanism to inhibit OR activation by odorants.  The high degree of conservation of Orco across insect species results in Orco antagonists having broad activity at ORs from a variety of insect species and suggests that the binding site for Orco ligands may serve as a modulatory site for compounds endogenous to insects or may be a target of exogenous compounds, such as those produced by plants.  To test this idea, we screened a series of biogenic and trace amines, identifying several as Orco antagonists.  Of particular interest were tryptamine, a plant-produced amine, and tyramine, an amine endogenous to the insect nervous system.  Tryptamine was found to be a potent antagonist of Orco, able to block Orco activation by an Orco agonist and to allosterically inhibit activation of ORs by odorants.  Tyramine had effects similar to those of tryptamine, but was less potent.  Importantly, both tryptamine and tyramine displayed broad activity, inhibiting odorant activation of ORs of species from three different insect orders (Diptera, Lepidoptera and Coleoptera, as well as odorant activation of six diverse ORs from a single species (the human malaria vector mosquito, Anopheles gambiae.  Our results suggest that endogenous and exogenous natural compounds serve as Orco ligands modulating insect olfaction and that Orco can be an important target for the development of novel insect repellants.

  7. Alternative-splicing in the exon-10 region of GABA(A receptor beta(2 subunit gene: relationships between novel isoforms and psychotic disorders.

    Directory of Open Access Journals (Sweden)

    Cunyou Zhao

    Full Text Available BACKGROUND: Non-coding single nucleotide polymorphisms (SNPs in GABRB2, the gene for beta(2-subunit of gamma-aminobutyric acid type A (GABA(A receptor, have been associated with schizophrenia (SCZ and quantitatively correlated to mRNA expression and alternative splicing. METHODS AND FINDINGS: Expression of the Exon 10 region of GABRB2 from minigene constructs revealed this region to be an "alternative splicing hotspot" that readily gave rise to differently spliced isoforms depending on intron sequences. This led to a search in human brain cDNA libraries, and the discovery of two novel isoforms, beta(2S1 and beta(2S2, bearing variations in the neighborhood of Exon-10. Quantitative real-time PCR analysis of postmortem brain samples showed increased beta(2S1 expression and decreased beta(2S2 expression in both SCZ and bipolar disorder (BPD compared to controls. Disease-control differences were significantly correlated with SNP rs187269 in BPD males for both beta(2S1 and beta(2S2 expressions, and significantly correlated with SNPs rs2546620 and rs187269 in SCZ males for beta(2S2 expression. Moreover, site-directed mutagenesis indicated that Thr(365, a potential phosphorylation site in Exon-10, played a key role in determining the time profile of the ATP-dependent electrophysiological current run-down. CONCLUSION: This study therefore provided experimental evidence for the importance of non-coding sequences in the Exon-10 region in GABRB2 with respect to beta(2-subunit splicing diversity and the etiologies of SCZ and BPD.

  8. Mutation (G275E) of the nicotinic acetylcholine receptor α6 subunit is associated with high levels of resistance to spinosyns in Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae).

    Science.gov (United States)

    Silva, Wellington M; Berger, Madeleine; Bass, Chris; Williamson, Martin; Moura, Danielle M N; Ribeiro, Lílian M S; Siqueira, Herbert A A

    2016-07-01

    The tomato leafminer, Tuta absoluta, now a major pest of tomato crops worldwide, is primarily controlled using chemical insecticides. Recently, high levels of resistance to the insecticide spinosad have been described in T. absoluta populations in Brazil. Selection of a resistant field-collected strain led to very high levels of resistance to spinosad and cross-resistance to spinetoram, but not to other insecticides that target the nicotinic acetylcholine receptor (nAChR). In this study the mechanisms underlying resistance to spinosad were investigated using toxicological, biochemical and molecular approaches. Inhibition of metabolic enzymes using synergists and biochemical assessment of detoxification enzyme activity provided little evidence of metabolic resistance in the selected strain. Cloning and sequencing of the nAChR α6 subunit from T. absoluta, the spinosad target-site, from susceptible and spinosad-resistant strains were done to investigate the role of a target-site mechanism in resistance. A single nucleotide change was identified in exon 9 of the α6 subunit of the resistant strain, resulting in the replacement of the glycine (G) residue at position 275 observed in susceptible T. absoluta strains with a glutamic acid (E). A high-throughput DNA-based diagnostic assay was developed and used to assess the prevalence of the G275E mutation in 17 field populations collected from different geographical regions of Brazil. The resistant allele was found at low frequency, and in the heterozygous form, in seven of these populations but at much higher frequency and in the homozygous form in a population collected in the Iraquara municipality. The frequency of the mutation was significantly correlated with the mortality of these populations in discriminating dose bioassays. In summary our results provide evidence that the G275E mutation is an important mechanism of resistance to spinosyns in T. absoluta, and may be used as a marker for resistance monitoring in

  9. Hydroxyproline-induced Helical Disruption in Conantokin Rl-B Affects Subunit-selective Antagonistic Activities toward Ion Channels of N-Methyl-d-aspartate Receptors*

    Science.gov (United States)

    Kunda, Shailaja; Yuan, Yue; Balsara, Rashna D.; Zajicek, Jaroslav; Castellino, Francis J.

    2015-01-01

    Conantokins are ∼20-amino acid peptides present in predatory marine snail venoms that function as allosteric antagonists of ion channels of the N-methyl-d-aspartate receptor (NMDAR). These peptides possess a high percentage of post-/co-translationally modified amino acids, particularly γ-carboxyglutamate (Gla). Appropriately spaced Gla residues allow binding of functional divalent cations, which induces end-to-end α-helices in many conantokins. A smaller number of these peptides additionally contain 4-hydroxyproline (Hyp). Hyp should prevent adoption of the metal ion-induced full α-helix, with unknown functional consequences. To address this disparity, as well as the role of Hyp in conantokins, we have solved the high resolution three-dimensional solution structure of a Gla/Hyp-containing 18-residue conantokin, conRl-B, by high field NMR spectroscopy. We show that Hyp10 disrupts only a small region of the α-helix of the Mn2+·peptide complex, which displays cation-induced α-helices on each terminus of the peptide. The function of conRl-B was examined by measuring its inhibition of NMDA/Gly-mediated current through NMDAR ion channels in mouse cortical neurons. The conRl-B displays high inhibitory selectivity for subclasses of NMDARs that contain the functionally important GluN2B subunit. Replacement of Hyp10 with N8Q results in a Mg2+-complexed end-to-end α-helix, accompanied by attenuation of NMDAR inhibitory activity. However, replacement of Hyp10 with Pro10 allowed the resulting peptide to retain its inhibitory property but diminished its GluN2B specificity. Thus, these modified amino acids, in specific peptide backbones, play critical roles in their subunit-selective inhibition of NMDAR ion channels, a finding that can be employed to design NMDAR antagonists that function at ion channels of distinct NMDAR subclasses. PMID:26048991

  10. Implementation of a fluorescence-based screening assay identifies histamine H3 receptor antagonists clobenpropit and iodophenpropit as subunit-selective N-methyl-D-aspartate receptor antagonists

    DEFF Research Database (Denmark)

    Hansen, Kasper Bø; Mullasseril, Praseeda; Dawit, Sara

    2010-01-01

    N-Methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca(2+)-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describ...

  11. α7 and β2 Nicotinic Acetylcholine Receptor Subunits Form Heteromeric Receptor Complexes that Are Expressed in the Human Cortex and Display Distinct Pharmacological Properties

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Zwart, Ruud; Ursu, Daniel

    2015-01-01

    The existence of α7β2 nicotinic acetylcholine receptors (nAChRs) has recently been demonstrated in both the rodent and human brain. Since α7-containing nAChRs are promising drug targets for schizophrenia and Alzheimer's disease, it is critical to determine whether α7β2 nAChRs are present...

  12. Phenotypic consequences of deletion of the {gamma}{sub 3}, {alpha}{sub 5}, or {beta}{sub 3} subunit of the type A {gamma}-aminobutyric acid receptor in mice

    Energy Technology Data Exchange (ETDEWEB)

    Culia, C.T.; Stubbs, L.J.; Montgomery, C.S.; Russell, L.B.; Rinchik, E.M. [Oak Ridge National Lab., TN (United States)

    1994-03-29

    Three genes (Gabrg3, Gabra5, and Gabrb3) encoding the {gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3} subunits of the type A {gamma}-aminobutyric acid receptor, respectively, are known to map near the pink-eyed dilution (p) locus in mouse chromosome 7. This region shares homology with a segment of human chromosome 15 that is implicated in Angelman syndrome, an inherited neurobehavioral disorder. By mapping Gabrg3-Gabra5-Gabrb3-telomere. Like Gabrb3, neither the Gabra5 nor Gabrg3 gene is functionally imprinted in adult mouse brain. Mice deleted for all three subunits die at birth with a cleft palate, although there are rare survivors ({approximately} 5%) that do not have a cleft palate but do exhibit a neurological abnormality characterized by tremor, jerky gait, and runtiness. The authors have previously suggested that deficiency of the {beta}{sub 3} subunit may be responsible for the clefting defect. Most notably, however, in this report they describe mice carrying two overlapping, complementing p deletions that fail to express the {gamma}{sub 3} transcript, as well as mice from another line that express neither the {gamma}{sub 3} nor {alpha}{sub 5} transcripts. Surprisingly, mice from both of these lines are phenotypically normal and do not exhibit any of the neurological symptoms characteristic of the rare survivors that are deleted for all three ({gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3}) subunits. These mice therefore provide a whole-organism type A {gamma}-aminobutyric-acid receptor background that is devoid of any receptor subtypes that normally contain the {gamma}{sub 3} and/or {alpha}{sub 5} subunits. The absence of an overt neurological phenotype in mice lacking the {gamma}{sub 3} and/or {alpha}{sub 5} subunits also suggests that mutations in these genes are unlikely to provide useful animal models for Angelman syndrome in humans.

  13. High frequency stimulation alters motor maps, impairs skilled reaching performance and is accompanied by an upregulation of specific GABA, glutamate and NMDA receptor subunits.

    Science.gov (United States)

    Henderson, A K; Pittman, Q J; Teskey, G C

    2012-07-26

    High frequency stimulation (HFS) has the potential to interfere with learning and memory. HFS and motor skill training both lead to potentiation of the stimulated network and alter motor map expression. However, the extent to which HFS can interfere with the learning and performance of a skilled motor task and the resulting effect on the representation of movement has not been examined. Moreover, the molecular mechanisms associated with HFS and skilled motor training on the motor cortex are not known. We hypothesized that HFS would impair performance on a skilled reaching task, and would be associated with alterations in motor map expression and protein levels compared to non-stimulated and untrained controls. Long Evans Hooded rats were chronically implanted with stimulating and recording electrodes in the corpus callosum and frontal neocortex, respectively. High frequency theta burst stimulation or sham stimulation was applied once daily for 20 sessions. The rats were divided into five groups: control, HFS and assessed at 1 week post stimulation, HFS and assessed 3 weeks post stimulation, reach trained, and HFS and reach trained. A subset of rats from each group was assessed with either intracortical microstimulation (ICMS) to examine motor map expression or Western blot techniques to determine protein expression of several excitatory and inhibitory receptor subunits. Firstly, we found that HFS resulted in larger and reorganized motor maps, and lower movement thresholds compared to controls. This was associated with an up-regulation of the GABA(A)α1 and NR1 receptor subunits 3 weeks after the last stimulation session only. Stimulation affected skilled reaching performance in a subset of all stimulated rats. Rats that were poor performers had larger rostral forelimb areas, higher proximal and lower distal movement thresholds compared to rats that were good performers after stimulation. Reach training alone was associated with an up-regulation of GABA(A)α1, α2

  14. Hunger States Control the Directions of Synaptic Plasticity via Switching Cell Type-Specific Subunits of NMDA Receptors.

    Science.gov (United States)

    Qi, Yong; Yang, Yunlei

    2015-09-23

    It remains largely unknown whether and how hunger states control activity-dependent synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD). We here report that both LTP and LTD of excitatory synaptic strength within the appetite control circuits residing in hypothalamic arcuate nucleus (ARC) behave in a manner of hunger states dependence and cell type specificity. For instance, we find that tetanic stimulation induces LTP at orexigenic agouti-related protein (AgRP) neurons in ad libitum fed mice, whereas it induces LTD in food-deprived mice. In an opposite direction, the same induction protocol induces LTD at anorexigenic pro-opiomelanocortin (POMC) neurons in fed mice but weak LTP in deprived mice. Mechanistically, we also find that food deprivation increases the expressions of NR2C/NR2D/NR3-containing NMDA receptors (NMDARs) at AgRP neurons that contribute to the inductions of LTD, whereas it decreases their expressions at POMC neurons. Collectively, our data reveal that hunger states control the directions of activity-dependent synaptic plasticity by switching NMDA receptor subpopulations in a cell type-specific manner, providing insights into NMDAR-mediated interactions between energy states and associative memory. Significance statement: Based on the experiments performed in this study, we demonstrate that activity-dependent synaptic plasticity is also under the control of energy states by regulating NMDAR subpopulations in a cell type-specific manner. We thus propose a reversible memory configuration constructed from energy states-dependent cell type-specific bidirectional conversions of LTP and LTD. Together with the distinct functional roles played by NMDAR signaling in the control of food intake and energy states, these findings reveal a new reciprocal interaction between energy states and associative memory, one that might serve as a target for therapeutic treatments of the energy-related memory disorders or vice versa

  15. Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer's disease, Huntington's disease and schizophrenia

    Science.gov (United States)

    Akbarian, S.; Smith, M. A.; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Animal studies and cell culture experiments demonstrated that posttranscriptional editing of the transcript of the GluR-2 gene, resulting in substitution of an arginine for glutamine in the second transmembrane region (TM II) of the expressed protein, is associated with a reduction in Ca2+ permeability of the receptor channel. Thus, disturbances in GluR-2 RNA editing with alteration of intracellular Ca2+ homeostasis could lead to neuronal dysfunction and even neuronal degeneration. The present study determined the proportions of edited and unedited GluR-2 RNA in the prefrontal cortex of brains from patients with Alzheimer's disease, in the striatum of brains from patients with Huntington's disease, and in the same areas of brains from age-matched schizophrenics and controls, by using reverse transcriptase-polymerase chain reaction, restriction endonuclease digestion, gel electrophoresis and scintillation radiometry. In the prefrontal cortex of controls, 99.9% were edited; in the prefrontal cortex both of schizophrenics and of Alzheimer's patients approximately 1.0% of all GluR-2 RNA molecules were unedited and 99% were edited. In the striatum of controls and of schizophrenics, approximately 0.5% of GluR-2 RNA molecules were unedited and 99.5% were edited; in the striatum of Huntington's patients nearly 5.0% of GluR-2 RNA was unedited. In the prefrontal white matter of controls, approximately 7.0% of GluR-2 RNA was unedited. In the normal human prefrontal cortex and striatum, the large majority of GluR-2 RNA molecules contains a CGG codon for arginine in the TMII coding region; this implies that the corresponding AMPA receptors have a low Ca2+ permeability, as previously demonstrated for the rat brain. The process of GluR-2 RNA editing is compromised in a region-specific manner in schizophrenia, in Alzheimer's disease and Huntington's Chorea although in each of these disorders there is still a large excess of edited GluR-2 RNA molecules. Disturbances of GluR-2 RNA

  16. Search for mutations in the {beta}1 GABA{sub A} receptor subunit gene in patients with schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Coon, H.; Hoff, M.; Holik, J. [Univ. of Utah Medical Center, Salt Lake City, UT (United States)] [and others

    1994-03-15

    We have reported an association between schizophrenia and homozygosity of a Bal I polymorphism in the first exon of the dopamine D3 receptor gene (Crocq et al.: Journal of Medical Genetics 2j9:858-860, 1992). The present study consists of an attempt to replicate this finding in a further sample of 66 patients and 97 controls. Once again more patients than controls were homozygous, but the effect was not as strong as in our first study ({chi}{sup 2}=2.53, P = 0.05, one tailed). This reflected a departure from Hardy-Weinberg equilibrium in the patients (P - 0.24). This led us to explore the possibility that there might be important differences between the patients in our two studies and that excess homozygosity might be a characteristic of particular subgroups of schizophrenics. Our findings suggest that the effect is consistently at its strongest in those patients who have a high familial loading and in those who have a good response to neuroleptic treatment, and that differences between our two samples might have contributed to the quantitatively different outcomes. 27 refs., 1 tab.

  17. Phosphorylation and specific ubiquitin acceptor sites are required for ubiquitination and degradation of the IFNAR1 subunit of type I interferon receptor.

    Science.gov (United States)

    Kumar, K G Suresh; Krolewski, John J; Fuchs, Serge Y

    2004-11-05

    Ubiquitination, endocytosis, and lysosomal degradation of the IFNAR1 (interferon alpha receptor 1) subunit of the type I interferon (IFN) receptor is mediated by the SCFbeta-Trcp (Skp1-Cullin1-F-box protein beta transducin repeat-containing protein) E3 ubiquitin ligase in a phosphorylation-dependent manner. In addition, stability of IFNAR1 is regulated by its binding to Tyk2 kinase. Here we characterize the determinants of IFNAR1 ubiquitination and degradation. We found that the integrity of two Ser residues at positions 535 and 539 within the specific destruction motif present in the cytoplasmic tail of IFNAR1 is essential for the ability of IFNAR1 to recruit beta-Trcp as well as to undergo efficient ubiquitination and degradation. Using an antibody that specifically recognizes IFNAR1 phosphorylated on Ser535 we found that IFNAR1 is phosphorylated on this residue in cells. This phosphorylation is promoted by treatment of cells with IFNalpha. Although the cytoplasmic tail of IFNAR1 contains seven Lys residues that could function as potential ubiquitin acceptor sites, we found that only three (Lys501, Lys525, and Lys526), all located proximal to the destruction motif, are essential for ubiquitination and degradation of IFNAR1. Expression of Tyk2 stabilized IFNAR1 in a manner that was dependent neither on its binding to beta-Trcp nor IFNAR1 ubiquitination. We discuss the complexities and specifics of the ubiquitination and degradation of IFNAR1, which is a beta-Trcp substrate that undergoes degradation via a lysosomal pathway.

  18. A hot spot on interferon α/β receptor subunit 1 (IFNAR1) underpins its interaction with interferon-β and dictates signaling.

    Science.gov (United States)

    de Weerd, Nicole A; Matthews, Antony Y; Pattie, Phillip R; Bourke, Nollaig M; Lim, San S; Vivian, Julian P; Rossjohn, Jamie; Hertzog, Paul J

    2017-05-05

    The interaction of IFN-β with its receptor IFNAR1 (interferon α/β receptor subunit 1) is vital for host-protective anti-viral and anti-proliferative responses, but signaling via this interaction can be detrimental if dysregulated. Whereas it is established that IFNAR1 is an essential component of the IFNAR signaling complex, the key residues underpinning the IFN-β-IFNAR1 interaction are unknown. Guided by the crystal structure of the IFN-β-IFNAR1 complex, we used truncation variants and site-directed mutagenesis to investigate domains and residues enabling complexation of IFN-β to IFNAR1. We have identified an interface on IFNAR1-subdomain-3 that is differentially utilized by IFN-β and IFN-α for signal transduction. We used surface plasmon resonance and cell-based assays to investigate this important IFN-β binding interface that is centered on IFNAR1 residues Tyr240 and Tyr274 binding the C and N termini of the B and C helices of IFN-β, respectively. Using IFNAR1 and IFN-β variants, we show that this interface contributes significantly to the affinity of IFN-β for IFNAR1, its ability to activate STAT1, the expression of interferon stimulated genes, and ultimately to the anti-viral and anti-proliferative properties of IFN-β. These results identify a key interface created by IFNAR1 residues Tyr240 and Tyr274 interacting with IFN-β residues Phe63, Leu64, Glu77, Thr78, Val81, and Arg82 that underlie IFN-β-IFNAR1-mediated signaling and biological processes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Bacopa monnieri Extract (CDRI-08 Modulates the NMDA Receptor Subunits and nNOS-Apoptosis Axis in Cerebellum of Hepatic Encephalopathy Rats

    Directory of Open Access Journals (Sweden)

    Papia Mondal

    2015-01-01

    Full Text Available Hepatic encephalopathy (HE, characterized by impaired cerebellar functions during chronic liver failure (CLF, involves N-methyl-D-aspartate receptor (NMDAR overactivation in the brain cells. Bacopa monnieri (BM extract is a known neuroprotectant. The present paper evaluates whether BM extract is able to modulate the two NMDAR subunits (NR2A and NR2B and its downstream mediators in cerebellum of rats with chronic liver failure (CLF, induced by administration of 50 mg/kg bw thioacetamide (TAA i.p. for 14 days, and in the TAA group rats orally treated with 200 mg/kg bw BM extract from days 8 to 14. NR2A is known to impart neuroprotection and that of NR2B induces neuronal death during NMDAR activation. Neuronal nitric oxide synthase- (nNOS- apoptosis pathway is known to mediate NMDAR led excitotoxicity. The level of NR2A was found to be significantly reduced with a concomitant increase of NR2B in cerebellum of the CLF rats. This was consistent with significantly enhanced nNOS expression, nitric oxide level, and reduced Bcl2/Bax ratio. Moreover, treatment with BM extract reversed the NR2A/NR2B ratio and also normalized the levels of nNOS-apoptotic factors in cerebellum of those rats. The findings suggest modulation of NR2A and NR2B expression by BM extract to prevent neurochemical alterations associated with HE.

  20. The association between the nicotinic acetylcholine receptor α4 subunit gene (CHRNA4 rs1044396 and Internet gaming disorder in Korean male adults.

    Directory of Open Access Journals (Sweden)

    Jo-Eun Jeong

    Full Text Available The primary aim of this study was to investigate the genetic predisposition of Internet gaming disorder (IGD, and the secondary aim was to compare the results to those of alcohol dependence (AD. Two independent case-control studies were conducted. A total of 30 male participants with IGD, diagnosed according to the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5 criteria, and 30 sex-matched controls participated in study 1. We designed targeted exome sequencing (TES to test for 72 candidate genes that have been implicated in the pathogenesis of addiction. The genes included seven neurotransmitter (dopamine, serotonin, glutamate, r-aminobutyric acid (GABA, norepinephrine, acetylcholine, and opioid system genes. A total of 31 male in-patients with AD and 29 normal male controls (NC were enrolled in study 2. The same 72 genes included in study 1 and ten additional genes related to alcohol-metabolic enzyme were selected as the target genes, and we identified the genetic variants using the same method (TES. The IGD group had a lower frequency of the T allele of rs1044396 in the nicotinic acetylcholine receptor alpha 4 subunit (CHRNA4, and this variant represents a protective allele against IGD. However, we did not find a significant difference in the polymorphisms of the 72 genes that encode neurotransmitter systems between the AD and NC groups. This study demonstrated that rs1044396 of CHRNA4 was significantly associated with IGD.

  1. A new splice variant of the major subunit of human asialoglycoprotein receptor encodes a secreted form in hepatocytes.

    Directory of Open Access Journals (Sweden)

    Jia Liu

    Full Text Available BACKGROUND: The human asialoglycoprotein receptor (ASGPR is composed of two polypeptides, designated H1 and H2. While variants of H2 have been known for decades, the existence of H1 variants has never been reported. PRINCIPAL FINDINGS: We identified two splice variants of ASGPR H1 transcripts, designated H1a and H1b, in human liver tissues and hepatoma cells. Molecular cloning of ASGPR H1 variants revealed that they differ by a 117 nucleotide segment corresponding to exon 2 in the ASGPR genomic sequence. Thus, ASGPR variant H1b transcript encodes a protein lacking the transmembrane domain. Using an H1b-specific antibody, H1b protein and a functional soluble ASGPR (sASGPR composed of H1b and H2 in human sera and in hepatoma cell culture supernatant were identified. The expression of ASGPR H1a and H1b in Hela cells demonstrated the different cellular loctions of H1a and H1b proteins at cellular membranes and in intracellular compartments, respectively. In vitro binding assays using fluorescence-labeled sASGPR or the substract ASOR revealed that the presence of sASGPR reduced the binding of ASOR to cells. However, ASOR itself was able to enhance the binding of sASGPR to cells expressing membrane-bound ASGPR. Further, H1b expression is reduced in liver tissues from patients with viral hepatitis. CONCLUSIONS: We conclude that two naturally occurring ASGPR H1 splice variants are produced in human hepatocytes. A hetero-oligomeric complex sASGPR consists of the secreted form of H1 and H2 and may bind to free substrates in circulation and carry them to liver tissue for uptake by ASGPR-expressing hepatocytes.

  2. Nuclear respiratory factor 2 regulates the expression of the same NMDA receptor subunit genes as NRF-1: both factors act by a concurrent and parallel mechanism to couple energy metabolism and synaptic transmission.

    Science.gov (United States)

    Priya, Anusha; Johar, Kaid; Wong-Riley, Margaret T T

    2013-01-01

    Neuronal activity and energy metabolism are tightly coupled processes. Previously, we found that nuclear respiratory factor 1 (NRF-1) transcriptionally co-regulates energy metabolism and neuronal activity by regulating all 13 subunits of the critical energy generating enzyme, cytochrome c oxidase (COX), as well as N-methyl-d-aspartate (NMDA) receptor subunits 1 and 2B, GluN1 (Grin1) and GluN2B (Grin2b). We also found that another transcription factor, nuclear respiratory factor 2 (NRF-2 or GA-binding protein) regulates all subunits of COX as well. The goal of the present study was to test our hypothesis that NRF-2 also regulates specific subunits of NMDA receptors, and that it functions with NRF-1 via one of three mechanisms: complementary, concurrent and parallel, or a combination of complementary and concurrent/parallel. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation of mouse neuroblastoma cells and rat visual cortical tissue, promoter mutations, real-time quantitative PCR, and western blot analysis, NRF-2 was found to functionally regulate Grin1 and Grin2b genes, but not any other NMDA subunit genes. Grin1 and Grin2b transcripts were up-regulated by depolarizing KCl, but silencing of NRF-2 prevented this up-regulation. On the other hand, over-expression of NRF-2 rescued the down-regulation of these subunits by the impulse blocker TTX. NRF-2 binding sites on Grin1 and Grin2b are conserved among species. Our data indicate that NRF-2 and NRF-1 operate in a concurrent and parallel manner in mediating the tight coupling between energy metabolism and neuronal activity at the molecular level. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. The number and distribution of AMPA receptor channels containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the target cells.

    Science.gov (United States)

    Rubio, María E; Matsui, Ko; Fukazawa, Yugo; Kamasawa, Naomi; Harada, Harumi; Itakura, Makoto; Molnár, Elek; Abe, Manabu; Sakimura, Kenji; Shigemoto, Ryuichi

    2017-11-01

    The neurotransmitter receptor subtype, number, density, and distribution relative to the location of transmitter release sites are key determinants of signal transmission. AMPA-type ionotropic glutamate receptors (AMPARs) containing GluA3 and GluA4 subunits are prominently expressed in subsets of neurons capable of firing action potentials at high frequencies, such as auditory relay neurons. The auditory nerve (AN) forms glutamatergic synapses on two types of relay neurons, bushy cells (BCs) and fusiform cells (FCs) of the cochlear nucleus. AN-BC and AN-FC synapses have distinct kinetics; thus, we investigated whether the number, density, and localization of GluA3 and GluA4 subunits in these synapses are differentially organized using quantitative freeze-fracture replica immunogold labeling. We identify a positive correlation between the number of AMPARs and the size of AN-BC and AN-FC synapses. Both types of AN synapses have similar numbers of AMPARs; however, the AN-BC have a higher density of AMPARs than AN-FC synapses, because the AN-BC synapses are smaller. A higher number and density of GluA3 subunits are observed at AN-BC synapses, whereas a higher number and density of GluA4 subunits are observed at AN-FC synapses. The intrasynaptic distribution of immunogold labeling revealed that AMPAR subunits, particularly GluA3, are concentrated at the center of the AN-BC synapses. The central distribution of AMPARs is absent in GluA3-knockout mice, and gold particles are evenly distributed along the postsynaptic density. GluA4 gold labeling was homogenously distributed along both synapse types. Thus, GluA3 and GluA4 subunits are distributed at AN synapses in a target-cell-dependent manner.

  4. The gamma chain subunit of Fc receptors is required for alpha-synuclein-induced pro-inflammatory signaling in microglia

    Directory of Open Access Journals (Sweden)

    Cao Shuwen

    2012-11-01

    Full Text Available Abstract Background The protein alpha-synuclein (α-SYN, which is found in the Lewy bodies of dopamine-producing (DA neurons in the substantia nigra (SN, has an important role in the pathogenesis of Parkinson’s disease (PD. Previous studies have shown that neuroinflammation plays a key role in PD pathogenesis. In an AAV-synuclein mouse model of PD, we have found that over-abundance of α-SYN triggers the expression of NF-κB p65, and leads to microglial activation and DA neurodegeneration. We also have observed that Fcγ receptors (FcγR, proteins present on the surface of microglia that bind immunoglobulin G (IgG and other ligands, are key modulators of α-SYN-induced neurodegeneration. Methods In order to study the role of FcγRs in the interactions of α-SYN and microglia, we treated the primary microglial cultures from wild-type (WT and FcγR−/− mice with aggregated human α-SYN in vitro. Results Using immunocytochemistry, we found that α-SYN was taken up by both WT and FcγR−/− microglia, however, their patterns of internalization were different, with aggregation in autophagosomes in WT cells and more diffuse localization in FcγR−/− microglia. In WT microglia, α-SYN induced the nuclear accumulation of NF-κB p65 protein and downstream chemokine expression while in FcγR−/− mouse microglia, α-SYN failed to trigger the enhancement of nuclear NF-κB p65, and the pro-inflammatory signaling was reduced. Conclusions Our results suggest that α-SYN can interact directly with microglia and can be internalized and trafficked to autophagosomes. FcγRs mediate this interaction, and in the absence of the gamma chain, there is altered intracellular trafficking and attenuation of pro-inflammatory NF-κB signaling. Therefore, blocking either FcγR signaling or downstream NF-κB activation may be viable therapeutic strategies in PD.

  5. The noncompetitive blocker ( sup 3 H)chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: Implications for the alpha-helical organization of regions MII and for the structure of the ion channel

    Energy Technology Data Exchange (ETDEWEB)

    Revah, F.; Galzi, J.L.; Giraudat, J.; Haumont, P.Y.; Lederer, F.; Changeux, J.P. (Centre National de la Recherche Scientifique, Paris (France))

    1990-06-01

    Labeling studies of Torpedo marmorata nicotinic acetylcholine receptor with the noncompetitive channel blocker ({sup 3}H)chlorpromazine have led to the initial identification of amino acids plausibly participating to the walls of the ion channel on the alpha, beta, and delta subunits. We report here results obtained with the gamma subunit, which bring additional information on the structure of the channel. After photolabeling of the membrane-bound receptor under equilibrium conditions in the presence of agonist and with or without phencyclidine (a specific ligand for the high-affinity site for noncompetitive blockers), the purified labeled gamma subunit was digested with trypsin, and the resulting fragments were fractionated by HPLC. Sequence analysis of peptide mixtures containing various amounts of highly hydrophobic fragments showed that three amino acids are labeled by ({sup 3}H)chlorpromazine in a phencyclidine-sensitive manner: Thr-253, Ser-257, and Leu-260. These residues all belong to the hydrophobic and putative transmembrane region MII of the gamma subunit. Their distribution along the sequence is consistent with an alpha-helical organization of this segment. The ({sup 3}H)chlorpromazine-labeled amino acids are conserved at homologous positions in the known sequences of other ligand-gated ion channels and may, thus, play a critical role in ion-transport mechanisms.

  6. Hydroxyproline-induced Helical Disruption in Conantokin Rl-B Affects Subunit-selective Antagonistic Activities toward Ion Channels of N-Methyl-d-aspartate Receptors.

    Science.gov (United States)

    Kunda, Shailaja; Yuan, Yue; Balsara, Rashna D; Zajicek, Jaroslav; Castellino, Francis J

    2015-07-17

    Conantokins are ~20-amino acid peptides present in predatory marine snail venoms that function as allosteric antagonists of ion channels of the N-methyl-d-aspartate receptor (NMDAR). These peptides possess a high percentage of post-/co-translationally modified amino acids, particularly γ-carboxyglutamate (Gla). Appropriately spaced Gla residues allow binding of functional divalent cations, which induces end-to-end α-helices in many conantokins. A smaller number of these peptides additionally contain 4-hydroxyproline (Hyp). Hyp should prevent adoption of the metal ion-induced full α-helix, with unknown functional consequences. To address this disparity, as well as the role of Hyp in conantokins, we have solved the high resolution three-dimensional solution structure of a Gla/Hyp-containing 18-residue conantokin, conRl-B, by high field NMR spectroscopy. We show that Hyp(10) disrupts only a small region of the α-helix of the Mn(2+)·peptide complex, which displays cation-induced α-helices on each terminus of the peptide. The function of conRl-B was examined by measuring its inhibition of NMDA/Gly-mediated current through NMDAR ion channels in mouse cortical neurons. The conRl-B displays high inhibitory selectivity for subclasses of NMDARs that contain the functionally important GluN2B subunit. Replacement of Hyp(10) with N(8)Q results in a Mg(2+)-complexed end-to-end α-helix, accompanied by attenuation of NMDAR inhibitory activity. However, replacement of Hyp(10) with Pro(10) allowed the resulting peptide to retain its inhibitory property but diminished its GluN2B specificity. Thus, these modified amino acids, in specific peptide backbones, play critical roles in their subunit-selective inhibition of NMDAR ion channels, a finding that can be employed to design NMDAR antagonists that function at ion channels of distinct NMDAR subclasses. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Temperature affects sexual maturation through the control of kisspeptin, kisspeptin receptor, GnRH and GTH subunit gene expression in the grass puffer during the spawning season.

    Science.gov (United States)

    Shahjahan, Md; Kitahashi, Takashi; Ando, Hironori

    2017-03-01

    Water temperature is an environmental factor of primary importance that influences reproductive function in fish. To understand the molecular and physiological mechanisms underlying the regulation of reproduction by temperature, we examined changes in expression of genes encoding kisspeptin (kiss2), kisspeptin receptor (kiss2r) and three gonadotropin-releasing hormones (gnrh1, gnrh2 and gnrh3) in the brain and genes encoding gonadotropin (GTH) subunits (gpa, fshb and lhb) in the pituitary of grass puffer exposed to a low temperature (14°C), normal temperature (21°C) and high temperature (28°C) for 7days. In addition, the plasma levels of cortisol were examined after exposed to three temperature conditions. The gonadosomatic index was significantly decreased in both low and high temperature conditions. The levels of kiss2 and kiss2r mRNAs were significantly decreased at both low and high temperature conditions compared to normal temperature (control) condition. gnrh1 but not gnrh2 were significantly decreased in both temperature conditions, while gnrh3 showed a decreasing tendency in low temperature. Consequently, the levels of fshb and lhb mRNAs were significantly decreased in both low and high temperature conditions. Interestingly, the plasma levels of cortisol were significantly increased in low temperature but remain unchanged in high temperature, suggesting that the fish were under stress in the low temperature conditions but not in the high temperature conditions. Taken together, the present results indicate that anomalous temperature have an inhibitory effect on reproductive function through suppressing kiss2/kiss2r/gnrh1/fshb and lhb expression and these changes may occur in a normal physiological response as well as in a malfunctional stress response. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Cysteine protease antigens cleave CD123, the α subunit of murine IL-3 receptor, on basophils and suppress IL-3-mediated basophil expansion

    Energy Technology Data Exchange (ETDEWEB)

    Nishikado, Hideto [Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo (Japan); Fujimura, Tsutomu; Taka, Hikari; Mineki, Reiko [Laboratory of Proteomics and Biomolecular Science, BioMedical Research Center, Juntendo University Graduate School of Medicine, Tokyo (Japan); Ogawa, Hideoki; Okumura, Ko [Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo (Japan); Takai, Toshiro, E-mail: t-takai@juntendo.ac.jp [Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo (Japan)

    2015-05-01

    Th2 type immune responses are essential for protective immunity against parasites and play crucial roles in allergic disorders. Helminth parasites secrete a variety of proteases for their infectious cycles including for host entry, tissue migration, and suppression of host immune effector cell function. Furthermore, a number of pathogen-derived antigens, as well as allergens such as papain, belong to the family of cysteine proteases. Although the link between protease activity and Th2 type immunity is well documented, the mechanisms by which proteases regulate host immune responses are largely unknown. Here, we demonstrate that the cysteine proteases papain and bromelain selectively cleave the α subunit of the IL-3 receptor (IL-3Rα/CD123) on the surface of murine basophils. The decrease in CD123 expression on the cell surface, and the degradation of the extracellular domain of recombinant CD123 were dependent on the protease activity of papain and bromelain. Pre-treatment of murine basophils with papain resulted in inhibition of IL-3-IL-3R signaling and suppressed IL-3- but not thymic stromal lymphopoietin-induced expansion of basophils in vitro. Our unexpected findings illuminate a novel mechanism for the regulation of basophil functions by protease antigens. Because IL-3 plays pivotal roles in the activation and proliferation of basophils and in protective immunity against helminth parasites, pathogen-derived proteases might contribute to the pathogenesis of infections by regulating IL-3-mediated functions in basophils. - Highlights: • We identified the murine IL3R as a novel target of papain-family cysteine proteases. • Papain-family cysteine proteases cleaved IL3Rα/CD123 on murine basophils. • Papain suppressed IL3- but not TSLP-induced expansion of murine basophils. • The inactivation of IL3R might be a strategy for pathogens to suppress host immunity.

  9. Mice Lacking the β4 Subunit of the Nicotinic Acetylcholine Receptor Show Memory Deficits, Altered Anxiety- and Depression-Like Behavior, and Diminished Nicotine-Induced Analgesia

    Science.gov (United States)

    Semenova, Svetlana; Contet, Candice; Roberts, Amanda J.

    2012-01-01

    Rationale: The role of β4-containing nicotinic acetylcholine receptors (nAChRs) in cognition, anxiety, depression, and analgesia in the absence of nicotine is unclear. Methods: Wild-type (β4+/+) and knockout (β4−/−) mice for the nAChR β4 subunit were tested in behavioral tests assessing cognitive function, affective behaviors, and nociception. Results: There were no learning and memory deficits in β4−/− mice compared with β4+/+ mice during the acquisition of the Barnes maze, contextual fear conditioning, and Y maze tasks. In the Barnes maze memory retention test, male β4−/− mice showed reduced use of the spatial search strategy, indicating small spatial memory deficits compared with β4+/+ mice. In the cue-induced fear conditioning memory retention test, β4−/− mice exhibited reduced freezing time compared with β4+/+ mice. Compared with β4+/+ mice, β4−/− mice exhibited decreased anxiety-like behavior in the light–dark box. Depression-like behavior in β4−/− mice was decreased in the tail suspension test and increased in the forced swim test compared with β4+/+ mice. β4−/− mice did not differ from β4+/+ mice in basal nociception but were less sensitive to the antinociceptive effect of nicotine in 2 tests of acute thermal pain. Conclusions: Lack of β4-containing nAChRs resulted in small deficits in hippocampus- and amygdala-dependent memory retention functions. β4-containing nAChRs are involved in anxiety- and depression-like behaviors and contribute to the analgesic effects of nicotine. PMID:22573727

  10. Targeting the Binding Interface on a Shared Receptor Subunit of a Cytokine Family Enables the Inhibition of Multiple Member Cytokines with Selectable Target Spectrum*

    Science.gov (United States)

    Nata, Toshie; Basheer, Asjad; Cocchi, Fiorenza; van Besien, Richard; Massoud, Raya; Jacobson, Steven; Azimi, Nazli; Tagaya, Yutaka

    2015-01-01

    The common γ molecule (γc) is a shared signaling receptor subunit used by six γc-cytokines. These cytokines play crucial roles in the differentiation of the mature immune system and are involved in many human diseases. Moreover, recent studies suggest that multiple γc-cytokines are pathogenically involved in a single disease, thus making the shared γc-molecule a logical target for therapeutic intervention. However, the current therapeutic strategies seem to lack options to treat such cases, partly because of the lack of appropriate neutralizing antibodies recognizing the γc and, more importantly, because of the inherent and practical limitations in the use of monoclonal antibodies. By targeting the binding interface of the γc and cytokines, we successfully designed peptides that not only inhibit multiple γc-cytokines but with a selectable target spectrum. Notably, the lead peptide inhibited three γc-cytokines without affecting the other three or non-γc-cytokines. Biological and mutational analyses of our peptide provide new insights to our current understanding on the structural aspect of the binding of γc-cytokines the γc-molecule. Furthermore, we provide evidence that our peptide, when conjugated to polyethylene glycol to gain stability in vivo, efficiently blocks the action of one of the target cytokines in animal models. Collectively, our technology can be expanded to target various combinations of γc-cytokines and thereby will provide a novel strategy to the current anti-cytokine therapies against immune, inflammatory, and malignant diseases. PMID:26183780

  11. Neuraminidase-1, a Subunit of the Cell Surface Elastin Receptor, Desialylates and Functionally Inactivates Adjacent Receptors Interacting with the Mitogenic Growth Factors PDGF-BB and IGF-2

    Science.gov (United States)

    Hinek, Aleksander; Bodnaruk, Tetyana D.; Bunda, Severa; Wang, Yanting; Liu, Kela

    2008-01-01

    We recently established that the elastin-binding protein, which is identical to the spliced variant of β-galactosidase, forms a cell surface-targeted complex with two proteins considered “classic lysosomal enzymes”: protective protein/cathepsin A and neuraminidase-1 (Neu1). We also found that cell surface-residing Neu1 can desialylate neighboring microfibrillar glycoproteins and facilitate the deposition of insoluble elastin, which contributes to the maintenance of cellular quiescence. Here we provide evidence that cell surface-residing Neu1 contributes to a novel mechanism that limits cellular proliferation by desialylating cell membrane-residing sialoglycoproteins that directly propagate mitogenic signals. We demonstrated that treatment of cultured human aortic smooth muscle cells (SMCs) with either a sialidase inhibitor or an antibody that blocks Neu1 activity induced significant up-regulation in SMC proliferation in response to fetal bovine serum. Conversely, treatment with Clostridium perfringens neuraminidase (which is highly homologous to Neu1) decreased SMC proliferation, even in cultures that did not deposit elastin. Further, we found that pretreatment of aortic SMCs with exogenous neuraminidase abolished their mitogenic responses to recombinant platelet-derived growth factor (PDGF)-BB and insulin-like growth factor (IGF)-2 and that sialidosis fibroblasts (which are exclusively deficient in Neu1) were more responsive to PDGF-BB and IGF-2 compared with normal fibroblasts. Furthermore, we provide direct evidence that neuraminidase caused the desialylation of both PDGF and IGF-1 receptors and diminished the intracellular signals induced by the mitogenic ligands PDGF-BB and IGF-2. PMID:18772331

  12. Influence of estradiol, progesterone, and nutrition on concentrations of gonadotropins and GnRH receptors, and abundance of mRNA for GnRH receptors and gonadotropin subunits in pituitary glands of beef cows.

    Science.gov (United States)

    Looper, M L; Vizcarra, J A; Wettemann, R P; Malayer, J R; Braden, T D; Geisert, R D; Morgan, G L

    2003-01-01

    Nutritionally induced anovulatory cows (n = 28) were used to determine the effect of steroids on regulation of synthesis and secretion of gonadotropins. Anovulatory cows were ovariectomized and received intravaginal inserts containing estradiol (E2), progesterone (P4), E2 and P4 (E2P4), or a sham intravaginal insert (C) for 7 d. Concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were quantified in serum and E2 and P4 were quantified in plasma. Cows were exsanguinated within 1 to 2 h after removal of intravaginal inserts and pituitary glands were collected and stored at -80 degrees C until messenger ribonucleic acid (mRNA) for gonadotropin-releasing hormone receptor (GnRH-R) and gonadotropin subunits, pituitary content of GnRH-R, and LH and FSH were quantified. Pituitary glands from five proestrous cows were harvested to compare gonadotropin characteristics between ovariectomized, anovulatory cows and intact cows. Plasma concentrations of E2 were greater (P cows than in sham-treated cows. Concentrations of P4 were greater (P cows treated with P4 than in sham-treated cows. Mean serum concentrations of LH and FSH were not significantly influenced by steroid treatments. However, frequency of LH pulses of ovariectomized, nutritionally induced anovulatory cows was increased (P cows treated with E2 or P4 than in cows treated with E2P4 or sham-treated. Quantity of mRNA for LHbeta in the pituitary gland was greater when cows were treated with P4. Concentrations of LH in the pituitary gland were not affected by steroid treatments; however, pituitary concentrations of FSH were less (P cows than in sham-treated cows. The number of GnRH-R was increased (P cows treated with E2, but P4 treatment did not influence the number of GnRH-R. Abundance of mRNA for GnRH-R, common alpha-subunit, and FSHbeta were not affected by treatments. Pituitary concentrations of LH were greater (P cows than in ovariectomized, anovulatory cows treated with or without

  13. Genetic Variability of the High-affinity IgE Receptor α Subunit (Fc ε RI α is Related to Total Serum IgE levels in Allergic Subjects

    Directory of Open Access Journals (Sweden)

    Marek Sanak

    2007-01-01

    Full Text Available Known susceptibility genes to atopy and asthma have been identified by linkage or associations with clinical phenotypes, including total serum IgE levels. IgE-mediated sensitivity reactions require a high-affinity IgE receptor (FcεRI, which immobilizes the immunoglobulin on the surface of the effector cells, mostly mast cells and basophils. In this mini-review, recent findings are presented on genetic variation of this receptor, as related to atopy. Transcription of FCER1A gene encoding the receptor α subunit can be initiated from two separate promoters, the proximal one and the distal one, which results in a transcript containing two novel untranslated exons (1A, 2A. Our knowledge on the role of this mechanism in allergic diseases is still at an infancy stage. Within regulatory elements of FCER1A some common single nucleotide polymorphisms have functional associations, which were recently reported and replicated in different ethnical groups. Interestingly, these associations do not confer susceptibility to allergic diseases, but rather modulate serum concentrations of IgE. Similarly to the previously investigated β subunit of the receptor, FCER1A is a good candidate for a quantitative trait locus (QTL in allergic diseases, and appears to participate in the systemic regulation of IgE levels.

  14. Arginine 260 of the amino-terminal domain of NR1 subunit is critical for tissue-type plasminogen activator-mediated enhancement of N-methyl-D-aspartate receptor signaling.

    Science.gov (United States)

    Fernández-Monreal, Mónica; López-Atalaya, José P; Benchenane, Karim; Cacquevel, Mathias; Dulin, Fabienne; Le Caer, Jean-Pierre; Rossier, Jean; Jarrige, Anne-Charlotte; Mackenzie, Eric T; Colloc'h, Nathalie; Ali, Carine; Vivien, Denis

    2004-12-03

    Tissue-type plasminogen activator (tPA) has been involved in both physiological and pathological glutamatergic-dependent processes, such as synaptic plasticity, seizure, trauma, and stroke. In a previous study, we have shown that the proteolytic activity of tPA enhances the N-methyl-D-aspartate (NMDA) receptor-mediated signaling in neurons (Nicole, O., Docagne, F., Ali, C., Margaill, I., Carmeliet, P., MacKenzie, E. T., Vivien, D., and Buisson, A. (2001) Nat. Med. 7, 59-64). Here, we show that tPA forms a direct complex with the amino-terminal domain (ATD) of the NR1 subunit of the NMDA receptor and cleaves this subunit at the arginine 260. Furthermore, point mutation analyses show that arginine 260 is necessary for both tPA-induced cleavage of the ATD of NR1 and tPA-induced potentiation of NMDA receptor signaling. Thus, tPA is the first binding protein described so far to interact with the ATD of NR1 and to modulate the NMDA receptor function.

  15. Identification of Interleukin-27 (IL-27)/IL-27 Receptor Subunit Alpha as a Critical Immune Axis for In Vivo HIV Control.

    Science.gov (United States)

    Ruiz-Riol, M; Berdnik, D; Llano, A; Mothe, B; Gálvez, C; Pérez-Álvarez, S; Oriol-Tordera, B; Olvera, A; Silva-Arrieta, S; Meulbroek, M; Pujol, F; Coll, J; Martinez-Picado, J; Ganoza, C; Sanchez, J; Gómez, G; Wyss-Coray, T; Brander, C

    2017-08-15

    blood is a key conduit for transporting such factors. Investigating the communication factors promoting effective immune responses and having potentially antiviral functions against HIV using a novel focused omics approach ("communicome") has the potential to significantly improve our knowledge of effective host immunity and accelerate the HIV cure agenda. Including 140 subjects with variable viral loads and measuring the plasma levels of >600 soluble proteins, our data highlight the importance of Th17 cells and Wnt/β-catenin signaling in HIV control and especially identify the IL-27/IL-27 receptor subunit alpha (IL-27RA) axis as a predictor of plasma viral load and proviral copy number in the peripheral blood. These data may provide important guidance to therapeutic approaches in the HIV cure agenda. Copyright © 2017 Ruiz-Riol et al.

  16. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits {alpha}7 and {beta}2 in the sudden infant death syndrome (SIDS) brainstem

    Energy Technology Data Exchange (ETDEWEB)

    Machaalani, Rita, E-mail: rita.machaalani@sydney.edu.au [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Say, Meichien [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); Waters, Karen A. [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia)

    2011-12-15

    It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared {alpha}7 and {beta}2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n = 46) and non-SIDS infants (n = 14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared to non-SIDS infants, SIDS infants had significantly decreased {alpha}7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased {beta}2 in the cNTS and increased {beta}2 in the facial. When considering only the SIDS cohort: 1-cigarette smoke exposure was associated with increased {alpha}7 in the vestibular nucleus and increased {beta}2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2-there was a gender interaction for {alpha}7 in the gracile and cuneate, and {beta}2 in the cNTS and rostral arcuate nucleus, and 3-there was no effect of sleep position on {alpha}7, but prone sleep was associated with decreased {beta}2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of {alpha}7 and {beta}2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure ({beta}2), gender ({alpha}7 and {beta}2) and sleep position ({beta}2) evident. -- Highlights: Black-Right-Pointing-Pointer The 'normal' response to smoke exposure is decreased {alpha}7 and {beta}2 in certain nuclei. Black-Right-Pointing-Pointer SIDS infants have decreased {alpha}7 in cNTS, Grac and Cun. Black

  17. Orchestrated regulation of Nogo receptors, LOTUS, AMPA receptors and BDNF in an ECT model suggests opening and closure of a window of synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Max Nordgren

    Full Text Available Electroconvulsive therapy (ECT is an efficient and relatively fast acting treatment for depression. However, one severe side effect of the treatment is retrograde amnesia, which in certain cases can be long-term. The mechanisms behind the antidepressant effect and the amnesia are not well understood. We hypothesized that ECT causes transient downregulation of key molecules needed to stabilize synaptic structure and to prevent Ca2+ influx, and a simultaneous increase in neurotrophic factors, thus providing a short time window of increased structural synaptic plasticity. Here we followed regulation of NgR1, NgR3, LOTUS, BDNF, and AMPA subunits GluR1 and GluR2 flip and flop mRNA levels in hippocampus at 2, 4, 12, 24, and 72 hours after a single episode of induced electroconvulsive seizures (ECS in rats. NgR1 and LOTUS mRNA levels were transiently downregulated in the dentate gyrus 2, 4, 12 and 4, 12, 24 h after ECS treatment, respectively. GluR2 flip, flop and GluR1 flop were downregulated at 4 h. GluR2 flip remained downregulated at 12 h. In contrast, BDNF, NgR3 and GluR1 flip mRNA levels were upregulated. Thus, ECS treatment induces a transient regulation of factors important for neuronal plasticity. Our data provide correlations between ECS treatment and molecular events compatible with the hypothesis that both effects and side effects of ECT may be caused by structural synaptic rearrangements.

  18. The effect of intra-nucleus accumbens administration of allopregnanolone on δ and γ2 GABA(A) receptor subunit mRNA expression in the hippocampus and on depressive-like and grooming behaviors in rats.

    Science.gov (United States)

    Nin, Maurício S; Ferri, Marcelo K; Couto-Pereira, Natividade S; Souza, Marilise F; Azeredo, Lucas A; Agnes, Grasiela; Gomez, Rosane; Barros, Helena M T

    2012-12-01

    Alterations in GABA(A) receptor expression have been associated with the allopregnanolone (3α-hydroxy-5α-pregnan-20-one; 3α,5α-THP) antidepressant-like effect in rats. The present study aimed to verify the effect of bilateral, intra-nucleus accumbens core (intra-AcbC) administration of the neurosteroid allopregnanolone on behaviors in the forced swim and grooming microstructure tests and in the δ and γ2 GABA(A) receptor subunit mRNA expression in right and left hippocampus of rats. The results of this study showed that bilateral, intra-AcbC allopregnanolone administration (5μg/rat) presented antidepressant-like activity in the forced swim test concomitant with an increase in climbing. Allopregnanolone at doses of 1.25 and 5μg/rat also decreased the percentage of correct transitions in the grooming microstructure test. Both δ and γ2 GABA(A) subunit expressions increased in the rat hippocampus after allopregnanolone intra-AcbC treatment. Our findings point to asymmetrical GABA(A) receptor expression changes in the hippocampus of animals treated with allopregnanolone. Further investigation should evaluate the antidepressant-like effect of allopregnanolone not only in other directly infused regions but also with respect to changes in other brain areas of the limbic system to understand allopregnanolone's mechanism of action. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. High-resolution mapping of the [gamma]-aminobutyric acid receptor subunit [beta]3 and [alpha]5 gene cluster on chromosome 15q11-q13, and localization of breakpoints in two Angelman syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Sinnett, D.; Wagstaff, J.; Woolf, E. (Children' s Hospital, Boston, MA (United States) Harvard Medical School, Boston, MA (United States)); Glatt, K. (Children' s Hospital, Boston, MA (United States)); Kirkness, E.J. (National Inst. of Alcohol Abuse and Alcoholism, Rockville, MD (United States))Lalande, M. (Children' s Hospital, Boston, MA (United States) Harvard Medical School, Boston, MA (United States) Howard Hughes Medical Inst., Boston, MA (United States))

    1993-06-01

    The [gamma]-aminobutyric acid (GABA[sub A]) receptors are a family of ligand-gated chloride channels constituting the major inhibitory neurotransmitter receptors in the nervous system. In order to determine the genomic organization of the GABA[sub A] receptor [beta]3 subunit gene (GABRB3) and [alpha]5 subunit gene (GABRA5) in chromosome 15q11-q13, the authors have constructed a high-resolution physical map using the combined techniques of field-inversion gel electrophoresis and phage genomic library screening. This map, which covers nearly 1.0 Mb, shows that GABRB3 and GABRA5 are separated by less than 100 kb and are arranged in a head-to-head configuration. GABRB3 encompasses approximately 250 kb, while GABRA5 is contained within 70 kb. This difference in size is due in large part to an intron of 150 kb within GABRB3. The authors have also identified seven putative CpG islands within a 600-kb interval. Chromosomal rearrangement breakpoints -- in one Angelman syndrome (AS) patient with an unbalanced translocation and in another patient with a submicroscopic deletion -- are located within the large GABRB3 intron. These findings will facilitate chromosomal walking strategies for cloning the regions disrupted by the DNA rearrangements in these AS patients and will be valuable for mapping new genes to the AS chromosomal region. 64 refs., 6 figs., 2 tabs.

  20. The Neuroprotective Peptide Poly-Arginine-12 (R12) Reduces Cell Surface Levels of NMDA NR2B Receptor Subunit in Cortical Neurons; Investigation into the Involvement of Endocytic Mechanisms.

    Science.gov (United States)

    MacDougall, Gabriella; Anderton, Ryan S; Edwards, Adam B; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    We have previously reported that cationic poly-arginine and arginine-rich cell-penetrating peptides display high-level neuroprotection and reduce calcium influx following in vitro excitotoxicity, as well as reduce brain injury in animal stroke models. Using the neuroprotective peptides poly-arginine R12 (R12) and the NR2B9c peptide fused to the arginine-rich carrier peptide TAT (TAT-NR2B9c; also known as NA-1), we investigated the mechanisms whereby poly-arginine and arginine-rich peptides reduce glutamate-induced excitotoxic calcium influx. Using cell surface biotin protein labeling and western blot analysis, we demonstrated that R12 and TAT-NR2B9c significantly reduced cortical neuronal cell surface expression of the NMDA receptor subunit NR2B. Chemical endocytic inhibitors used individually or in combination prior to glutamate excitotoxicity did not significantly affect R12 peptide neuroprotective efficacy. Similarly, pretreatment of neurons with enzymes to degrade anionic cell surface proteoglycans, heparan sulfate proteoglycan (HSPG), and chondroitin sulfate proteoglycan (CSPG), as well as sialic acid residues, did not significantly affect peptide neuroprotective efficacy. While the exact mechanisms responsible for R12 peptide-mediated NMDA receptor NR2B subunit cell surface downregulation were not identified, an endocytic process could not be ruled out. The study supports our hypothesis that arginine-rich peptides reduce excitotoxic calcium influx by reducing the levels of cell surface ion channels.

  1. An analysis paradigm for investigating multi-locus effects in complex disease: examination of three GABA receptor subunit genes on 15q11-q13 as risk factors for autistic disorder.

    Science.gov (United States)

    Ashley-Koch, A E; Mei, H; Jaworski, J; Ma, D Q; Ritchie, M D; Menold, M M; Delong, G R; Abramson, R K; Wright, H H; Hussman, J P; Cuccaro, M L; Gilbert, J R; Martin, E R; Pericak-Vance, M A

    2006-05-01

    Gene-gene interactions are likely involved in many complex genetic disorders and new statistical approaches for detecting such interactions are needed. We propose a multi-analytic paradigm, relying on convergence of evidence across multiple analysis tools. Our paradigm tests for main and interactive effects, through allele, genotype and haplotype association. We applied our paradigm to genotype data from three GABAA receptor subunit genes (GABRB3, GABRA5, and GABRG3) on chromosome 15 in 470 Caucasian autism families. Previously implicated in autism, we hypothesized these genes interact to contribute to risk. We detected no evidence of main effects by allelic (PDT, FBAT) or genotypic (genotype-PDT) association at individual markers. However, three two-marker haplotypes in GABRG3 were significant (HBAT). We detected no significant multi-locus associations using genotype-PDT analysis or the EMDR data reduction program. However, consistent with the haplotype findings, the best single locus EMDR model selected a GABRG3 marker. Further, the best pairwise genotype-PDT result involved GABRB3 and GABRG3, and all multi-locus EMDR models also selected GABRB3 and GABRG3 markers. GABA receptor subunit genes do not significantly interact to contribute to autism risk in our overall data set. However, the consistency of results across analyses suggests that we have defined a useful framework for evaluating gene-gene interactions.

  2. Molecular Aspects of HTLV-1 Entry: Functional Domains of the HTLV-1 Surface Subunit (SU and Their Relationships to the Entry Receptors

    Directory of Open Access Journals (Sweden)

    Sophie Lambert

    2011-06-01

    Full Text Available The initial step in retroviral infection involves specific interactions between viral envelope proteins (Env and specific receptors on the surface of target cells. For many years, little was known about the entry receptors for HTLV-1. During this time, however, functional domains of the HTLV-1 Env were identified by analyzing the effects of neutralizing antibodies and specific mutations in Env on HTLV-1 infectivity. More recent studies have revealed that HTLV-1 infectivity involves interactions with three different molecules: heparan sulfate proteoglycans (HSPG, the VEGF-165 receptor Neuropilin 1 (NRP-1 and glucose transporter type 1 (GLUT1. Here, we revisit previously published data on the functional domains of Env in regard to the recent knowledge acquired about this multi-receptor complex. We also discuss the similarities and differences between HTLV-1 and other deltaretroviruses in regards to receptor usage.

  3. Kinetic characterization of the interaction of biotinylated human interleukin 5 with an Fc chimera of its receptor alpha subunit and development of an ELISA screening assay using real-time interaction biosensor analysis.

    Science.gov (United States)

    Bennett, D; Morton, T; Breen, A; Hertzberg, R; Cusimano, D; Appelbaum, E; McDonnell, P; Young, P; Matico, R; Chaiken, I

    1995-01-01

    The interaction of biotinylated human interleukin 5 ([BT]hIL5) with immobilized receptor was measured with a real-time biosensor, and these results were used as a basis for configuring an ELISA for screening antagonists of hIL5-receptor binding. The recombinant proteins used, hIL5 and shIL5R alpha-Fc (chimeric fusion receptor constructed by linking the soluble component of the hIL5 receptor alpha subunit to the constant domain (Fc) of immunoglobulin G), were produced by the expression of cloned vectors in Drosophila schneider (S2) cells. Initial attempts to develop a screening assay by direct immobilization of soluble IL5 receptor to microtiter plates proved unsatisfactory and led to use of the Fc chimera attached by oriented immobilization via protein A. Hence, shIL5R alpha-Fc was bound to protein A covalently immobilized on a carboxymethyl dextran (CM-5) biosensor chip. Specific binding was demonstrated of [BT]hIL5 to protein A/shIL5R alpha-Fc receptor complex. The binding was high affinity (Kdapp = 6 nM), reversible and saturable. The affinity of [BT]hIL5 was similar to that determined with the biosensor assay for unmodified hIL5. The observed kinetics of the interactions of Fc chimera with protein A (slow dissociation) and of [BT]hIL5 with immobilized Fc chimera (faster dissociation) were favorable for subsequently establishing a microtiter plate based ELISA assay. In the latter, Fc chimera was immobilized to the plate via protein A as in the biosensor experiment. Binding of [BT]hIL5 to immobilized Fc chimera in the ELISA was concentration dependent and was competed by both hIL5 and shIL5R alpha.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression

    Directory of Open Access Journals (Sweden)

    Brandon H. Cline

    2015-02-01

    Full Text Available Central insulin receptor-mediated signalling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response and neuropsychiatric disorders including depression. Dicholine succinate (DS, a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviours and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioural and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signalling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies.

  5. Deficits in LTP induction by 5-HT2A receptor antagonist in a mouse model for fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Zhao-hui Xu

    Full Text Available Fragile X syndrome is a common inherited form of mental retardation caused by the lack of fragile X mental retardation protein (FMRP because of Fmr1 gene silencing. Serotonin (5-HT is significantly increased in the null mutants of Drosophila Fmr1, and elevated 5-HT brain levels result in cognitive and behavioral deficits in human patients. The serotonin type 2A receptor (5-HT2AR is highly expressed in the cerebral cortex; it acts on pyramidal cells and GABAergic interneurons to modulate cortical functions. 5-HT2AR and FMRP both regulate synaptic plasticity. Therefore, the lack of FMRP may affect serotoninergic activity. In this study, we determined the involvement of FMRP in the 5-HT modulation of synaptic potentiation with the use of primary cortical neuron culture and brain slice recording. Pharmacological inhibition of 5-HT2AR by R-96544 or ketanserin facilitated long-term potentiation (LTP in the anterior cingulate cortex (ACC of WT mice. The prefrontal LTP induction was dependent on the activation of NMDARs and elevation of postsynaptic Ca(2+ concentrations. By contrast, inhibition of 5-HT2AR could not restore the induction of LTP in the ACC of Fmr1 knock-out mice. Furthermore, 5-HT2AR inhibition induced AMPA receptor GluR1 subtype surface insertion in the cultured ACC neurons of Fmr1 WT mice, however, GluR1 surface insertion by inhibition of 5-HT2AR was impaired in the neurons of Fmr1KO mice. These findings suggested that FMRP was involved in serotonin receptor signaling and contributed in GluR1 surface expression induced by 5-HT2AR inactivation.

  6. Down-regulation of synaptic GluN2B subunit-containing N-methyl-D-aspartate receptors: a physiological brake on CA1 neuron α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid hyperexcitability during benzodiazepine withdrawal.

    Science.gov (United States)

    Shen, Guofu; Tietz, Elizabeth I

    2011-01-01

    A significant link was previously established between benzodiazepine withdrawal anxiety and a progressive increase in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) potentiation in hippocampal CA1 neurons from rats withdrawn up to 2 days from 1-week oral administration of the benzodiazepine flurazepam (FZP). Despite AMPAR current potentiation, withdrawal anxiety was masked by a 2-fold reduction in CA1 neuron N-methyl-D-aspartate receptor (NMDAR) currents since preinjection of an NMDA antagonist restored NMDAR currents and unmasked anxiety in 2-day FZP-withdrawn rats. In the current study, GluN subunit levels in postsynaptic density (PSD)-enriched subfractions of CA1 minislices were compared with GluN2B-mediated whole-cell currents evoked in CA1 neurons in hippocampal slices from 1- and 2-day FZP-withdrawn rats. GluN1 and GluN2B, although not the phosphoSer1303-GluN2B ratio or GluN2A subunit levels, were decreased in PSD subfractions from 2-day, but not 1-day, FZP-withdrawn rats. Consistent with immunoblot analyses, GluN2B-mediated NMDAR currents evoked in slices from 2-day FZP-withdrawn rats were decreased in the absence, but not the presence, of the GluN2B subunit-selective antagonist ifenprodil. In contrast, ifenprodil-sensitive NMDAR currents were unchanged in slices from 1-day withdrawn rats. Because AMPA (1 μM) preincubation of slices from 1-day FZP-withdrawn rats induced depression of GluN2B subunit-mediated currents, depression of NMDAR currents was probably secondary to AMPAR potentiation. CA1 neuron NMDAR currents were depressed ∼50% after 2-day withdrawal and offset potentiation of AMPAR-mediated currents, leaving total charge transfer unchanged between groups. Collectively, these findings suggest that a reduction of GluN2B-containing NMDAR may serve as a homeostatic feedback mechanism to modulate glutamatergic synaptic strength during FZP withdrawal to alleviate benzodiazepine withdrawal symptoms.

  7. A neuroligin-1-derived peptide stimulates phosphorylation of the NMDA receptor NR1 subunit and rescues MK-801-induced decrease in long-term potentiation and memory impairment

    DEFF Research Database (Denmark)

    Korshunova, Irina; Gjørlund, Michelle D; Jacobsen, Sylwia Owczarek

    2015-01-01

    , neurolide-2, reduces sociability and increase animal aggression. We hypothesized that interfering with NL1 function at the excitatory synapses might regulate synaptic plasticity and learning, and counteract memory deficits induced by N-methyl-d-aspartate (NMDA) receptor inhibition. First, neuronal NMDA...... important for synaptic trafficking, potentially favoring synaptic receptor retention. Our findings emphasize the role of NL1-NMDA receptor interaction in cognition, and identify neurolide-1, as a valuable pharmacological tool to examine the in vivo role of postsynaptic NL1 in cognitive behavior...

  8. Both point mutations and low expression levels of the nicotinic acetylcholine receptor β1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China.

    Science.gov (United States)

    Chen, Xuewei; Li, Fen; Chen, Anqi; Ma, Kangsheng; Liang, Pingzhuo; Liu, Ying; Song, Dunlun; Gao, Xiwu

    2017-09-01

    Aphis gossypii Glover is a destructive pest of numerous crops throughout the world. Although the expansion of Bt cotton cultivation has helped to control some insect pests, the damage from cotton aphids has not been mitigated. The evolution of aphid resistance to imidacloprid has made its chemical control more difficult since its introduction in 1991. Field populations of A. gossypii that were collected from different transgenic (Bt) cotton planting areas of China in 2014 developed different levels of resistance to imidacloprid. The IMI_R strain has developed high resistance to imidacloprid with the resistance ratio >1200-fold. Compared with the susceptible IMI_S strain, the IMI_R strain also developed a high level cross resistance to sulfoxaflor and acetamiprid. The limited synergism with either PBO or DEF suggests that resistance may be due to the site mutation of molecular target rather than to enhanced detoxification. Three target-site mutations within the nicotinic acetylcholine receptor (nAChR) β1 subunit were detected in the IMI_R strain. The R81T mutation has been reported to be responsible for imidacloprid resistance in A. gossypii and M. persicae. Both V62I and K264E were first detected in A. gossypii. These point mutations are also present in field populations, suggesting that they play a role in the resistance to imidacloprid. Furthermore, the expression level of transcripts encoding β1 subunit was decreased significantly in the IMI_R strain compared with the IMI_S strain, suggesting that both point mutations and the down-regulation of nAChR β1 subunit expression may be involved in the resistance mechanism for imidacloprid in A. gossypii. These results should be useful for the management of imidacloprid-resistant cotton aphids in Bt cotton fields in China. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Alterations in Hippocampal Oxidative Stress, Expression of AMPA Receptor GluR2 Subunit and Associated Spatial Memory Loss by Bacopa monnieri Extract (CDRI-08) in Streptozotocin-Induced Diabetes Mellitus Type 2 Mice.

    Science.gov (United States)

    Pandey, Surya P; Singh, Hemant K; Prasad, S

    2015-01-01

    Bacopa monnieri extract has been implicated in the recovery of memory impairments due to various neurological disorders in animal models and humans. However, the precise molecular mechanism of the role of CDRI-08, a well characterized fraction of Bacopa monnieri extract, in recovery of the diabetes mellitus-induced memory impairments is not known. Here, we demonstrate that DM2 mice treated orally with lower dose of CDRI-08 (50- or 100 mg/kg BW) is able to significantly enhance spatial memory in STZ-DM2 mice and this is correlated with a significant decline in oxidative stress and up regulation of the AMPA receptor GluR2 subunit gene expression in the hippocampus. Treatment of DM2 mice with its higher dose (150 mg/kg BW or above) shows anti-diabetic effect in addition to its ability to recover the spatial memory impairment by reversing the DM2-induced elevated oxidative stress and decreased GluR2 subunit expression near to their values in normal and CDRI-08 treated control mice. Our results provide evidences towards molecular basis of the memory enhancing and anti diabetic role of the Bacopa monnieri extract in STZ-induced DM2 mice, which may have therapeutic implications.

  10. Direct interaction of Gβγ with a C-terminal Gβγ-binding domain of the Ca2+ channel α1 subunit is responsible for channel inhibition by G protein-coupled receptors

    Science.gov (United States)

    Qin, Ning; Platano, Daniela; Olcese, Riccardo; Stefani, Enrico; Birnbaumer, Lutz

    1997-01-01

    Several classes of voltage-gated Ca2+ channels (VGCCs) are inhibited by G proteins activated by receptors for neurotransmitters and neuromodulatory peptides. Evidence has accumulated to indicate that for non-L-type Ca2+ channels the executing arm of the activated G protein is its βγ dimer (Gβγ). We report below the existence of two Gβγ-binding sites on the A-, B-, and E-type α1 subunits that form non-L-type Ca2+ channels. One, reported previously, is in loop 1 connecting transmembrane domains I and II. The second is located approximately in the middle of the ca. 600-aa-long C-terminal tails. Both Gβγ-binding regions also bind the Ca2+ channel β subunit (CCβ), which, when overexpressed, interferes with inhibition by activated G proteins. Replacement in α1E of loop 1 with that of the G protein-insensitive and Gβγ-binding-negative loop 1 of α1C did not abolish inhibition by G proteins, but the exchange of the α1E C terminus with that of α1C did. This and properties of α1E C-terminal truncations indicated that the Gβγ-binding site mediating the inhibition of Ca2+ channel activity is the one in the C terminus. Binding of Gβγ to this site was inhibited by an α1-binding domain of CCβ, thus providing an explanation for the functional antagonism existing between CCβ and G protein inhibition. The data do not support proposals that Gβγ inhibits α1 function by interacting with the site located in the loop I–II linker. These results define the molecular mechanism by which presynaptic G protein-coupled receptors inhibit neurotransmission. PMID:9238069

  11. Direct interaction of gbetagamma with a C-terminal gbetagamma-binding domain of the Ca2+ channel alpha1 subunit is responsible for channel inhibition by G protein-coupled receptors.

    Science.gov (United States)

    Qin, N; Platano, D; Olcese, R; Stefani, E; Birnbaumer, L

    1997-08-05

    Several classes of voltage-gated Ca2+ channels (VGCCs) are inhibited by G proteins activated by receptors for neurotransmitters and neuromodulatory peptides. Evidence has accumulated to indicate that for non-L-type Ca2+ channels the executing arm of the activated G protein is its betagamma dimer (Gbetagamma). We report below the existence of two Gbetagamma-binding sites on the A-, B-, and E-type alpha1 subunits that form non-L-type Ca2+ channels. One, reported previously, is in loop 1 connecting transmembrane domains I and II. The second is located approximately in the middle of the ca. 600-aa-long C-terminal tails. Both Gbetagamma-binding regions also bind the Ca2+ channel beta subunit (CCbeta), which, when overexpressed, interferes with inhibition by activated G proteins. Replacement in alpha1E of loop 1 with that of the G protein-insensitive and Gbetagamma-binding-negative loop 1 of alpha1C did not abolish inhibition by G proteins, but the exchange of the alpha1E C terminus with that of alpha1C did. This and properties of alpha1E C-terminal truncations indicated that the Gbetagamma-binding site mediating the inhibition of Ca2+ channel activity is the one in the C terminus. Binding of Gbetagamma to this site was inhibited by an alpha1-binding domain of CCbeta, thus providing an explanation for the functional antagonism existing between CCbeta and G protein inhibition. The data do not support proposals that Gbetagamma inhibits alpha1 function by interacting with the site located in the loop I-II linker. These results define the molecular mechanism by which presynaptic G protein-coupled receptors inhibit neurotransmission.

  12. Nanometer-scale organization of the alpha subunits of the receptors for IL2 and IL15 in human T lymphoma cells

    NARCIS (Netherlands)

    de Bakker, B.I.; Bodnar, Andrea; van Dijk, E.M.H.P.; Vamosi, Gyorgy; Damjanovich, Sandor; Waldmann, Thomas A.; van Hulst, N.F.; Jenei, Attila; Garcia Parajo, M.F.

    2008-01-01

    Interleukin 2 and interleukin 15 (IL2 and IL15, respectively) provide quite distinct contributions to T-cell-mediated immunity, despite having similar receptor composition and signaling machinery. As most of the proposed mechanisms underlying this apparent paradox attribute key significance to the

  13. Altered learning, memory, and social behavior in type 1 taste receptor subunit 3 knock-out mice are associated with neuronal dysfunction.

    Science.gov (United States)

    Martin, Bronwen; Wang, Rui; Cong, Wei-Na; Daimon, Caitlin M; Wu, Wells W; Ni, Bin; Becker, Kevin G; Lehrmann, Elin; Wood, William H; Zhang, Yongqing; Etienne, Harmonie; van Gastel, Jaana; Azmi, Abdelkrim; Janssens, Jonathan; Maudsley, Stuart

    2017-07-07

    The type 1 taste receptor member 3 (T1R3) is a G protein-coupled receptor involved in sweet-taste perception. Besides the tongue, the T1R3 receptor is highly expressed in brain areas implicated in cognition, including the hippocampus and cortex. As cognitive decline is often preceded by significant metabolic or endocrinological dysfunctions regulated by the sweet-taste perception system, we hypothesized that a disruption of the sweet-taste perception in the brain could have a key role in the development of cognitive dysfunction. To assess the importance of the sweet-taste receptors in the brain, we conducted transcriptomic and proteomic analyses of cortical and hippocampal tissues isolated from T1R3 knock-out (T1R3KO) mice. The effect of an impaired sweet-taste perception system on cognition functions were examined by analyzing synaptic integrity and performing animal behavior on T1R3KO mice. Although T1R3KO mice did not present a metabolically disrupted phenotype, bioinformatic interpretation of the high-dimensionality data indicated a strong neurodegenerative signature associated with significant alterations in pathways involved in neuritogenesis, dendritic growth, and synaptogenesis. Furthermore, a significantly reduced dendritic spine density was observed in T1R3KO mice together with alterations in learning and memory functions as well as sociability deficits. Taken together our data suggest that the sweet-taste receptor system plays an important neurotrophic role in the extralingual central nervous tissue that underpins synaptic function, memory acquisition, and social behavior. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Protein Kinase D and Gβγ Subunits Mediate Agonist-evoked Translocation of Protease-activated Receptor-2 from the Golgi Apparatus to the Plasma Membrane.

    Science.gov (United States)

    Jensen, Dane D; Zhao, Peishen; Jimenez-Vargas, Nestor N; Lieu, TinaMarie; Gerges, Marina; Yeatman, Holly R; Canals, Meritxell; Vanner, Stephen J; Poole, Daniel P; Bunnett, Nigel W

    2016-05-20

    Agonist-evoked endocytosis of G protein-coupled receptors has been extensively studied. The mechanisms by which agonists stimulate mobilization and plasma membrane translocation of G protein-coupled receptors from intracellular stores are unexplored. Protease-activated receptor-2 (PAR2) traffics to lysosomes, and sustained protease signaling requires mobilization and plasma membrane trafficking of PAR2 from Golgi stores. We evaluated the contribution of protein kinase D (PKD) and Gβγ to this process. In HEK293 and KNRK cells, the PAR2 agonists trypsin and 2-furoyl-LIGRLO-NH2 activated PKD in the Golgi apparatus, where PKD regulates protein trafficking. PAR2 activation induced translocation of Gβγ, a PKD activator, to the Golgi apparatus, determined by bioluminescence resonance energy transfer between Gγ-Venus and giantin-Rluc8. Inhibitors of PKD (CRT0066101) and Gβγ (gallein) prevented PAR2-stimulated activation of PKD. CRT0066101, PKD1 siRNA, and gallein all inhibited recovery of PAR2-evoked Ca(2+) signaling. PAR2 with a photoconvertible Kaede tag was expressed in KNRK cells to examine receptor translocation from the Golgi apparatus to the plasma membrane. Irradiation of the Golgi region (405 nm) induced green-red photo-conversion of PAR2-Kaede. Trypsin depleted PAR2-Kaede from the Golgi apparatus and repleted PAR2-Kaede at the plasma membrane. CRT0066101 inhibited PAR2-Kaede translocation to the plasma membrane. CRT0066101 also inhibited sustained protease signaling to colonocytes and nociceptive neurons that naturally express PAR2 and mediate protease-evoked inflammation and nociception. Our results reveal a major role for PKD and Gβγ in agonist-evoked mobilization of intracellular PAR2 stores that is required for sustained signaling by extracellular proteases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. The CD3-gamma and CD3-delta subunits of the T cell antigen receptor can be expressed within distinct functional TCR/CD3 complexes.

    OpenAIRE

    Alarcón, B; Ley, S C; Sánchez-Madrid, F.; Blumberg, R. S.; Ju, S T; Fresno, M; Terhorst, C

    1991-01-01

    The T cell receptor for antigen (TCR) consists of two glycoproteins containing variable regions (TCR-alpha/beta or TCR-gamma/delta) which are expressed on the cell surface in association with at least four invariant proteins (CD3-gamma, -delta, -epsilon and -zeta). CD3-gamma and CD3-delta chains are highly homologous, especially in the cytoplasmic domain. The similarity observed in their genomic organization and their proximity in the chromosome indicate that both genes arose from duplication...

  16. Two N-glycosylation Sites in the GluN1 Subunit Are Essential for Releasing N-methyl-D-aspartate (NMDA) Receptors from the Endoplasmic Reticulum

    Czech Academy of Sciences Publication Activity Database

    Lichnerová, Katarina; Kaniaková, Martina; Park, S. P.; Skřenková, Kristýna; Wang, Y.- X.; Petralia, R. S.; Suh, Y. H.; Horák, Martin

    2015-01-01

    Roč. 290, č. 30 (2015), s. 18379-18390 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA14-02219S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : peptide-N-glycosidase * NMDAR * NMDA receptor * endoplasmic reticulum Subject RIV: FH - Neurology Impact factor: 4.258, year: 2015

  17. STEP activation by Gαq coupled GPCRs opposes Src regulation of NMDA receptors containing the GluN2A subunit.

    Science.gov (United States)

    Tian, Meng; Xu, Jian; Lei, Gang; Lombroso, Paul J; Jackson, Michael F; MacDonald, John F

    2016-11-18

    N-methyl-D-aspartate receptors (NMDARs) are necessary for the induction of synaptic plasticity and for the consolidation of learning and memory. NMDAR function is tightly regulated by functionally opposed families of kinases and phosphatases. Herein we show that the striatal-enriched protein tyrosine phosphatase (STEP) is recruited by Gαq-coupled receptors, including the M1 muscarinic acetylcholine receptor (M1R), and opposes the Src tyrosine kinase-mediated increase in the function of NMDARs composed of GluN2A. STEP activation by M1R stimulation requires IP3Rs and can depress NMDA-evoked currents with modest intracellular Ca2+ buffering. Src recruitment by M1R stimulation requires coincident NMDAR activation and can augment NMDA-evoked currents with high intracellular Ca2+ buffering. Our findings suggest that Src and STEP recruitment is contingent on differing intracellular Ca2+ dynamics that dictate whether NMDAR function is augmented or depressed following M1R stimulation.

  18. The beta subunit of the type I Fcepsilon receptor is a target for peptides inhibiting IgE-mediated secretory response of mast cells.

    Science.gov (United States)

    Andrásfalvy, Márton; Péterfy, Hajna; Tóth, Gábor; Matkó, János; Abramson, Jakub; Kerekes, Krisztina; Vámosi, György; Pecht, Israel; Erdei, Anna

    2005-09-01

    Peptides originally derived from complement component C3a were earlier shown to inhibit the type I FcepsilonR (FcepsilonRI)-mediated degranulation of mucosal type mast cells. In the present study, we show that C3a7, a peptide with a natural sequence, and its modified derivative, C3a9, are powerful inhibitors of the above response of both serosal and mucosal type mastocytes. We demonstrate that these peptides inhibit FcepsilonRI-induced membrane proximal events, suppress phosphorylation of the FcepsilonRI beta subunit, the protein tyrosine kinase Lyn, as well as the transient rise in free cytosolic Ca2+ level. The late phase of cellular response was also inhibited, as demonstrated by the reduced TNF-alpha secretion. Experiments using two independent methods provided evidence that the interaction site of complement-derived peptides is the FcepsilonRI beta-chain. This was further supported by fluorescence confocal microscopic colocalization and resonance energy transfer measurements. Taken together, these results suggest the presence of distinct "activating" and "inhibitory" motifs in the C3a sequence. Response to both is in balance under physiologic conditions. Furthermore, present data predict that such inhibitory peptides may serve as potent agents for future therapeutic intervention.

  19. Mutation of a zinc-binding residue in the glycine receptor α1 subunit changes ethanol sensitivity in vitro and alcohol consumption in vivo.

    Science.gov (United States)

    McCracken, Lindsay M; Blednov, Yuri A; Trudell, James R; Benavidez, Jillian M; Betz, Heinrich; Harris, R Adron

    2013-02-01

    Ethanol is a widely used drug, yet an understanding of its sites and mechanisms of action remains incomplete. Among the protein targets of ethanol are glycine receptors (GlyRs), which are potentiated by millimolar concentrations of ethanol. In addition, zinc ions also modulate GlyR function, and recent evidence suggests that physiologic concentrations of zinc enhance ethanol potentiation of GlyRs. Here, we first built a homology model of a zinc-bound GlyR using the D80 position as a coordination site for a zinc ion. Next, we investigated in vitro the effects of zinc on ethanol action at recombinant wild-type (WT) and mutant α1 GlyRs containing the D80A substitution, which eliminates zinc potentiation. At D80A GlyRs, the effects of 50 and 200 mM ethanol were reduced as compared with WT receptors. Also, in contrast to what was seen with WT GlyRs, neither adding nor chelating zinc changed the magnitude of ethanol enhancement of mutant D80A receptors. Next, we evaluated the in vivo effects of the D80A substitution by using heterozygous Glra1(D80A) knock-in (KI) mice. The KI mice showed decreased ethanol consumption and preference, and they displayed increased startle responses compared with their WT littermates. Other behavioral tests, including ethanol-induced motor incoordination and strychnine-induced convulsions, revealed no differences between the KI and WT mice. Together, our findings indicate that zinc is critical in determining the effects of ethanol at GlyRs and suggest that zinc binding at the D80 position may be important for mediating some of the behavioral effects of ethanol action at GlyRs.

  20. Mutation of a Zinc-Binding Residue in the Glycine Receptor α1 Subunit Changes Ethanol Sensitivity In Vitro and Alcohol Consumption In Vivo

    Science.gov (United States)

    McCracken, Lindsay M.; Blednov, Yuri A.; Trudell, James R.; Benavidez, Jillian M.; Betz, Heinrich

    2013-01-01

    Ethanol is a widely used drug, yet an understanding of its sites and mechanisms of action remains incomplete. Among the protein targets of ethanol are glycine receptors (GlyRs), which are potentiated by millimolar concentrations of ethanol. In addition, zinc ions also modulate GlyR function, and recent evidence suggests that physiologic concentrations of zinc enhance ethanol potentiation of GlyRs. Here, we first built a homology model of a zinc-bound GlyR using the D80 position as a coordination site for a zinc ion. Next, we investigated in vitro the effects of zinc on ethanol action at recombinant wild-type (WT) and mutant α1 GlyRs containing the D80A substitution, which eliminates zinc potentiation. At D80A GlyRs, the effects of 50 and 200 mM ethanol were reduced as compared with WT receptors. Also, in contrast to what was seen with WT GlyRs, neither adding nor chelating zinc changed the magnitude of ethanol enhancement of mutant D80A receptors. Next, we evaluated the in vivo effects of the D80A substitution by using heterozygous Glra1(D80A) knock-in (KI) mice. The KI mice showed decreased ethanol consumption and preference, and they displayed increased startle responses compared with their WT littermates. Other behavioral tests, including ethanol-induced motor incoordination and strychnine-induced convulsions, revealed no differences between the KI and WT mice. Together, our findings indicate that zinc is critical in determining the effects of ethanol at GlyRs and suggest that zinc binding at the D80 position may be important for mediating some of the behavioral effects of ethanol action at GlyRs. PMID:23230213

  1. Expression of N-methyl D-aspartate receptor subunits in amoeboid microglia mediates production of nitric oxide via NF-κB signaling pathway and oligodendrocyte cell death in hypoxic postnatal rats.

    Science.gov (United States)

    Murugan, Madhuvika; Sivakumar, Viswanathan; Lu, Jia; Ling, Eng-Ang; Kaur, Charanjit

    2011-04-01

    The present study was focused on identifying the expression of N-methyl D-aspartate receptor (NMDAR) subunits on activated microglia and to determine their role in the pathogenesis of periventricular white matter damage (PWMD) in neonatal rats following hypoxia. One day old wistar rats were subjected to hypoxia (5% O(2) ; 95% N(2) ) and the mRNA and protein expression of NMDAR subunits (NR1, NR2A-D, and NR3A) in the periventricular white matter (PWM) was determined at different time points (3,24 h, 3, 7, and 14 days) following hypoxic exposure. Immunoexpression of NR1 and NR2A-D was localized in amoeboid microglial cells (AMC) suggesting the presence of functional NMDARs in them. The expression of NMDAR in primary microglial cultures was ascertained by RT-PCR analysis and double immunofluorescence studies. The functionality of the microglial NMDAR in cultured microglial cells was examined by monitoring calcium movements in cells with fura-2. In primary microglial cultures, hypoxia induced the nuclear translocation of NF-κB which was suppressed by administration of MK801, an NMDAR antagonist. MK801 also down regulated the hypoxia-induced expression of tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase (iNOS), and nitric oxide (NO) production by microglia which may be mediated by the NF-κB signaling pathway. NO produced by microglia is known to cause death of oligodendrocytes in the developing PWM. In this connection, pharmacological agents such as MK801, BAY (NF-κB inhibitor), and 1400w (iNOS inhibitor) proved to be beneficial since they reduced the hypoxia-induced iNOS expression, NO production, and a corresponding reduction in the death of oligodendrocytes following hypoxia. Copyright © 2011 Wiley-Liss, Inc.

  2. Discerning the Role of the Hydroxyproline Residue in the Structure of Conantokin Rl-B and Its Role in GluN2B Subunit-Selective Antagonistic Activity toward N-Methyl-d-Aspartate Receptors.

    Science.gov (United States)

    Yuan, Yue; Balsara, Rashna D; Zajicek, Jaroslav; Kunda, Shailaja; Castellino, Francis J

    2016-12-27

    Conantokins (con) are short γ-carboxyglutamate (Gla)-containing polypeptides expressed by marine snails that function as antagonists of N-methyl-d-aspartate receptor (NMDAR) ion channels. The Gla residues govern structural conformations and antagonistic activities of the conantokins. In addition to Gla, some conantokins, e.g., conRl-B, also contain a hydroxyproline (HyP or O) residue, which in this case is centrally located in the peptide at position 10. Because conRl-B specifically inhibits ion channels of GluN2B subunit-containing heterotetrameric NMDARs, we evaluated the unusual role of HyP(10) in this effect. To accomplish this goal, we examined synthetic variants of conRl-B in which HyP(10) was either deleted (conRl-B[ΔO(10)]) or replaced with alanine (conRl-B[O(10)A]) or proline (conRl-B[O(10)P]). The solution structures of these variants were determined by nuclear magnetic resonance spectroscopy. Deletion of HyP(10), or replacement of HyP(10) with Ala(10), attenuated the distortion in the central region of the apo-conRl-B helix and allowed Mg(2+)-complexed end-to-end α-helix formation. The inhibitory properties of these variants were assessed by measuring NMDA/Gly-stimulated intracellular Ca(2+) influx in mice neurons. ConRl-B[O(10)P] retained its NMDAR ion channel inhibitory activity in wild-type (WT) neurons but lost its GluN2B specificity, whereas conRl-B[ΔO(10)] showed overall diminished inhibitory function. ConRl-B[O(10)A] showed attenuated inhibitory function but retained its GluN2B specificity. Thus, HyP(10) plays a critical role in maintaining the structural integrity of conRl-B, which can be correlated with its GluN2B subunit-selective inhibition. Weakened inhibition by conRl-B was also observed in neurons lacking either the GluN2C or GluN2D subunit, compared to WT neurons. This suggests that GluN2C and GluN2D are also required for inhibition by conRl-B.

  3. Selective influence on contextual memory: physiochemical properties associated with selectivity of benzodiazepine ligands at GABAA receptors containing the alpha5 subunit.

    Science.gov (United States)

    Harris, Danni; Clayton, Terry; Cook, James; Sahbaie, Peyman; Halliwell, Robert F; Furtmüller, Roman; Huck, Sigismund; Sieghart, Werner; DeLorey, Timothy M

    2008-07-10

    Ligands that bind to the benzodiazepine binding site on the GABA A receptor can attenuate or potentiate cognition. To investigate this property, the chemical determinants favoring selective binding or selective activation of the alpha5beta2gamma2 and alpha1beta2gamma2 GABA A receptor isoforms were examined. A 3D-pharmacophore, developed from a diverse set of BDZR ligands, was used as an initial basis for multivariate discriminant, fragment, and 3D-quantitative structure-activity relationship analyses, which formed the criteria for selection of additional compounds for study. We found that the electrostatic potential near the ligands' terminal substituent correlated with its binding selectivity toward the alpha5beta2gamma2 versus alpha1beta2gamma2 isoform; while the fragment length and frontier molecular orbital energetics correlated with a compounds influence on electrophysiological activity. Compounds with promising alpha5 profiles were further assessed for their ability to attenuate scopolamine-induced contextual memory impairment in mice. Surprisingly, both weak inverse agonist and antagonists that display binding selectivity toward the alpha5beta2gamma2 isoform were able to attenuate contextual memory impairment.

  4. Pharmacological characterisation of murine α4β1δ GABAA receptors expressed in Xenopus oocytes

    DEFF Research Database (Denmark)

    Villumsen, Inge S; Wellendorph, Petrine; Smart, Trevor G

    2015-01-01

    BACKGROUND: GABAA receptor subunit composition has a profound effect on the receptor's physiological and pharmacological properties. The receptor β subunit is widely recognised for its importance in receptor assembly, trafficking and post-translational modifications, but its influence on extrasyn...

  5. The Corticofugal Effects of Auditory Cortex Microstimulation on Auditory Nerve and Superior Olivary Complex Responses Are Mediated via Alpha-9 Nicotinic Receptor Subunit.

    Directory of Open Access Journals (Sweden)

    Cristian Aedo

    Full Text Available The auditory efferent system is a complex network of descending pathways, which mainly originate in the primary auditory cortex and are directed to several auditory subcortical nuclei. These descending pathways are connected to olivocochlear neurons, which in turn make synapses with auditory nerve neurons and outer hair cells (OHC of the cochlea. The olivocochlear function can be studied using contralateral acoustic stimulation, which suppresses auditory nerve and cochlear responses. In the present work, we tested the proposal that the corticofugal effects that modulate the strength of the olivocochlear reflex on auditory nerve responses are produced through cholinergic synapses between medial olivocochlear (MOC neurons and OHCs via alpha-9/10 nicotinic receptors.We used wild type (WT and alpha-9 nicotinic receptor knock-out (KO mice, which lack cholinergic transmission between MOC neurons and OHC, to record auditory cortex evoked potentials and to evaluate the consequences of auditory cortex electrical microstimulation in the effects produced by contralateral acoustic stimulation on auditory brainstem responses (ABR.Auditory cortex evoked potentials at 15 kHz were similar in WT and KO mice. We found that auditory cortex microstimulation produces an enhancement of contralateral noise suppression of ABR waves I and III in WT mice but not in KO mice. On the other hand, corticofugal modulations of wave V amplitudes were significant in both genotypes.These findings show that the corticofugal modulation of contralateral acoustic suppressions of auditory nerve (ABR wave I and superior olivary complex (ABR wave III responses are mediated through MOC synapses.

  6. Altered sedative effects of ethanol in mice with α1 glycine receptor subunits that are insensitive to Gβγ modulation.

    Science.gov (United States)

    Aguayo, Luis G; Castro, Patricio; Mariqueo, Trinidad; Muñoz, Braulio; Xiong, Wei; Zhang, Li; Lovinger, David M; Homanics, Gregg E

    2014-10-01

    Alcohol abuse and alcoholism are major health problems and one of the leading preventable causes of death. Before achieving better treatments for alcoholism, it is necessary to understand the critical actions of alcohol on membrane proteins that regulate fundamental functions in the central nervous system. After generating a genetically modified knock-in (KI) mouse having a glycine receptor (GlyR) with phenotypical silent mutations at KK385/386AA, we studied its cellular and in vivo ethanol sensitivity. Analyses with western blotting and immunocytochemistry indicated that the expression of α1 GlyRs in nervous tissues and spinal cord neurons (SCNs) were similar between WT and KI mice. The analysis of synaptic currents recorded from KI mice showed that the glycinergic synaptic transmission had normal properties, but the sensitivity to ethanol was significantly reduced. Furthermore, the glycine-evoked current in SCNs from KI was resistant to ethanol and G-protein activation by GTP-γ-S. In behavioral studies, KI mice did not display the foot-clasping behavior upon lifting by the tail and lacked an enhanced startle reflex response that are characteristic of other glycine KI mouse lines with markedly impaired glycine receptor function. The most notable characteristic of the KI mice was their significant lower sensitivity to ethanol (∼40%), expressed by shorter times in loss of righting reflex (LORR) in response to a sedative dose of ethanol (3.5 g/Kg). These data provide the first evidence to link a molecular site in the GlyR with the sedative effects produced by intoxicating doses of ethanol.

  7. The site specific demethylation in the 5'-regulatory area of NMDA receptor 2B subunit gene associated with CIE-induced up-regulation of transcription.

    Directory of Open Access Journals (Sweden)

    Mei Qiang

    Full Text Available BACKGROUND: The NMDA receptor represents a particularly important site of ethanol action in the CNS. We recently reported that NMDA receptor 2B (NR2B gene expression was persistently up-regulated following chronic intermittent ethanol (CIE treatment. Increasing evidence that epigenetic mechanisms are involved in dynamic and long-lasting regulation of gene expression in multiple neuroadaptive processes prompted us to investigate the role of DNA methylation in mediating CIE-induced up-regulation of NR2B gene transcription. To dissect the changes of DNA methylation in the NR2B gene, we have screened a large number of CpG sites within its 5'-regulatory area following CIE treatment. METHODS: Primary cortical cultured neurons were subjected to ethanol treatment in a CIE paradigm. Bisulfite conversion followed by pyrosequencing was used for quantitative measurement and analysis of CpG methylation status within the 5'-regulatory area of the NR2B gene; chromatin immunoprecipitation (ChIP assay was used to examine DNA levels associated with methylation and transcription factor binding. Electrophoretic mobility shift assay (EMSA and in vitro DNA methylation assays were performed to determine the direct impact of DNA methylation on the interaction between DNA and transcription factor and promoter activity. RESULTS: Analysis of individual CpG methylation sites within the NR2B 5'regulatory area revealed three regions with clusters of site-specific CpG demethylation following CIE treatment and withdrawal. This was confirmed by ChIP showing similar decreases of methylated DNA in the same regions. The CIE-induced demethylation is characterized by being located near certain transcription factor binding sequences, AP-1 and CRE, and occurred during treatment as well as after ethanol withdrawal. Furthermore, the increase in vitro of methylated DNA decreased transcription factor binding activity and promoter activity. An additional ChIP assay indicated that the CIE

  8. CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins.

    Science.gov (United States)

    Kurschner, C; Mermelstein, P G; Holden, W T; Surmeier, D J

    1998-06-01

    We report a novel multivalent PDZ domain protein, CIPP (for channel-interacting PDZ domain protein), which is expressed exclusively in brain and kidney. Within the brain, the highest CIPP mRNA levels were found in neurons of the cerebellum, inferior colliculus, vestibular nucleus, facial nucleus, and thalamus. Furthermore, we identified the inward rectifier K+ (Kir) channel, Kir4.1 (also called "Kir1.2"), as a cellular CIPP ligand. Among several other Kir channels tested, only the closely related Kir4.2 (or "Kir1.3") also interacted with CIPP. In addition, specific PDZ domains within CIPP associated selectively with the C-termini of N-methyl-D-aspartate subtypes of glutamate receptors, as well as neurexins and neuroligins, cell surface molecules enriched in synaptic membranes. Thus, CIPP may serve as a scaffold that brings structurally diverse but functionally connected proteins into close proximity at the synapse. The functional consequences of CIPP expression on Kir4.1 channels were studied using whole-cell voltage clamp techniques in Kir4.1 transfected COS-7 cells. On average, Kir4.1 current densities were doubled by cotransfection with CIPP. Copyright 1998 Academic Press.

  9. The human [gamma]-aminobutyric acid receptor subunit [beta]3 and [alpha]5 gene cluster in chromosome 15q11-q13 is rich in highly polymorphic (CA)[sub n] repeats

    Energy Technology Data Exchange (ETDEWEB)

    Glatt, K.; Lalande, M. (Howard Hughes Medical Institute, Boston, MA (United States)); Sinnett, D. (Harvard Medical School, Boston, MA (United States))

    1994-01-01

    The [gamma]-aminobutyric acid (GABA[sub A]) receptor [beta]33 (GABRB3) and [alpha]5 (GABRA5) subunit genes have been localized to the Angelman and Prader-Willi syndrome region of chromosome 15q11-q13. GABRB3, which encompasses 250 kb, is located 100 kb proximal of GABRA5, with the two genes arranged in head-to-head transcriptional orientation. In screening 135 kb of cloned DNA within a 260-kb interval extending from within GABRB3 to the 5[prime] end of GABRA5, 10 new (CA), repeats have been identified. Five of these have been analyzed in detail and found to be highly polymorphic, with the polymorphism information content (PIC) ranging from 0.7 to 0.85 and with heterozygosities of 67 to 94%. In the clones from GABRB3/GABRA5 region, therefore, the frequency of (CA)[sub n] with PICs [ge] 0.7 is 1 per 27 kb. Previous estimates of the density of (CA)[sub n] with PICs [ge] 0.7 in the human genome have been approximately 10-fold lower. The GABRB3/GABRA5 region appears, therefore, to be enriched for highly informative (CA)[sub n]. This set of closely spaced, short tandem repeat polymorphisms will be useful in the molecular analyses of Prader-Willi and Angelman syndromes and in high-resolution studies of genetic recombination within this region. 21 refs., 2 figs., 1 tab.

  10. A multilevel prediction of physiological response to challenge: Interactions among child maltreatment, neighborhood crime, endothelial nitric oxide synthase gene (eNOS), and GABA(A) receptor subunit alpha-6 gene (GABRA6).

    Science.gov (United States)

    Lynch, Michael; Manly, Jody Todd; Cicchetti, Dante

    2015-11-01

    Physiological response to stress has been linked to a variety of healthy and pathological conditions. The current study conducted a multilevel examination of interactions among environmental toxins (i.e., neighborhood crime and child maltreatment) and specific genetic polymorphisms of the endothelial nitric oxide synthase gene (eNOS) and GABA(A) receptor subunit alpha-6 gene (GABRA6). One hundred eighty-six children were recruited at age 4. The presence or absence of child maltreatment as well as the amount of crime that occurred in their neighborhood during the previous year were determined at that time. At age 9, the children were brought to the lab, where their physiological response to a cognitive challenge (i.e., change in the amplitude of the respiratory sinus arrhythmia) was assessed and DNA samples were collected for subsequent genotyping. The results confirmed that complex Gene × Gene, Environment × Environment, and Gene × Environment interactions were associated with different patterns of respiratory sinus arrhythmia reactivity. The implications for future research and evidence-based intervention are discussed.

  11. Optimized subunit vaccine protects against experimental leishmaniasis.

    Science.gov (United States)

    Bertholet, Sylvie; Goto, Yasuyuki; Carter, Lauren; Bhatia, Ajay; Howard, Randall F; Carter, Darrick; Coler, Rhea N; Vedvick, Thomas S; Reed, Steven G

    2009-11-23

    Development of a protective subunit vaccine against Leishmania spp. depends on antigens and adjuvants that induce appropriate immune responses. We evaluated a second generation polyprotein antigen (Leish-110f) in different adjuvant formulations for immunogenicity and protective efficacy against Leishmania spp. challenges. Vaccine-induced protection was associated with antibody and T cell responses to Leish-110f. CD4 T cells were the source of IFN-gamma, TNF, and IL-2 double- and triple-positive populations. This study establishes the immunogenicity and protective efficacy of the improved Leish-110f subunit vaccine antigen adjuvanted with natural (MPL-SE) or synthetic (EM005) Toll-like receptor 4 agonists.

  12. Quantitative analysis of interferon alpha receptor subunit 1 and suppressor of cytokine signaling 1 gene transcription in blood cells of patients with chronic hepatitis C.

    Science.gov (United States)

    Sedeño-Monge, Virginia; Santos-López, Gerardo; Rocha-Gracia, Rosa C; Meléndez-Mena, Daniel; Ramírez-Mata, Alberto; Vallejo-Ruiz, Verónica; Reyes-Leyva, Julio

    2010-09-18

    Interferon (IFN)-α receptor 1 (ifnar1) and suppressor of cytokine signaling 1 (socs1) transcription levels were quantified in peripheral blood mononuclear cells (PBMC) of 59 patients infected with hepatitis C virus (HCV) and 17 non-infected individuals. Samples were obtained from patients infected with HCV that were either untreated or treated with IFN-α2 plus ribavirin for 1 year and divided into responders and non-responders based on viral load reduction 6 months after treatment. Ifnar1 and socs1 transcription was quantified by real-time RT-PCR, and the fold difference (2(⁻ΔΔCT)) with respect to hprt housekeeping gene was calculated. Ifnar1 transcription increased significantly in HCV-infected patients either untreated (3.26 ± 0.31), responders (3.1 ± 0.23) and non-responders (2.18 ± 0.23) with respect to non-infected individuals (1 ± 0.34; P = 0.005). Ifnar1 transcription increased significantly (P = 0.003) in patients infected with HCV genotypes 1a (4.74 ± 0.25) and 1b (2.81 ± 0.25) but not in 1a1b (1.58 ± 0.21). No association was found of Ifnar1 transcription with disease progress, initial viral load or other clinical factors. With respect to socs1 transcription, values were similar for non-infected individuals (1 ± 0.28) and untreated patients (0.99 ± 0.41) but increased in responders (2.81 ± 0.17) and non-responder patients (1.67 ± 0.41). Difference between responder and non-responder patients was not statistically significant. Socs1 transcription increased in patients infected with HCV genotypes 1a and 1b (2.87 ± 0.45 and 2.22 ± 0.17, respectively) but not in 1a1b (1.28 ± 0.40). Socs1 transcript was absent in three patients infected with HCV genotype 1b. A weak correlation between ifnar1 and socs1 transcription was found, when Spearman's correlation coefficient was calculated. Our results suggest that HCV infection may up-regulate ifnar1 transcription. HCV genotypes differ in their capacity to affect ifnar1 and socs1 transcription, as

  13. Quantitative analysis of interferon alpha receptor subunit 1 and suppressor of cytokine signaling 1 gene transcription in blood cells of patients with chronic hepatitis C

    Directory of Open Access Journals (Sweden)

    Sedeño-Monge Virginia

    2010-09-01

    Full Text Available Abstract Background Interferon (IFN-α receptor 1 (ifnar1 and suppressor of cytokine signaling 1 (socs1 transcription levels were quantified in peripheral blood mononuclear cells (PBMC of 59 patients infected with hepatitis C virus (HCV and 17 non-infected individuals. Samples were obtained from patients infected with HCV that were either untreated or treated with IFN-α2 plus ribavirin for 1 year and divided into responders and non-responders based on viral load reduction 6 months after treatment. Ifnar1 and socs1 transcription was quantified by real-time RT-PCR, and the fold difference (2-ΔΔCT with respect to hprt housekeeping gene was calculated. Results Ifnar1 transcription increased significantly in HCV-infected patients either untreated (3.26 ± 0.31, responders (3.1 ± 0.23 and non-responders (2.18 ± 0.23 with respect to non-infected individuals (1 ± 0.34; P = 0.005. Ifnar1 transcription increased significantly (P = 0.003 in patients infected with HCV genotypes 1a (4.74 ± 0.25 and 1b (2.81 ± 0.25 but not in 1a1b (1.58 ± 0.21. No association was found of Ifnar1 transcription with disease progress, initial viral load or other clinical factors. With respect to socs1 transcription, values were similar for non-infected individuals (1 ± 0.28 and untreated patients (0.99 ± 0.41 but increased in responders (2.81 ± 0.17 and non-responder patients (1.67 ± 0.41. Difference between responder and non-responder patients was not statistically significant. Socs1 transcription increased in patients infected with HCV genotypes 1a and 1b (2.87 ± 0.45 and 2.22 ± 0.17, respectively but not in 1a1b (1.28 ± 0.40. Socs1 transcript was absent in three patients infected with HCV genotype 1b. A weak correlation between ifnar1 and socs1 transcription was found, when Spearman's correlation coefficient was calculated. Conclusion Our results suggest that HCV infection may up-regulate ifnar1 transcription. HCV genotypes differ in their capacity to affect

  14. Loss of Ethanol Inhibition of N-Methyl-D-Aspartate Receptor-Mediated Currents and Plasticity of Cerebellar Synapses in Mice Expressing the GluN1(F639A) Subunit.

    Science.gov (United States)

    Zamudio-Bulcock, Paula A; Homanics, Gregg E; Woodward, John J

    2018-01-11

    Glutamatergic N-methyl-d-aspartate receptors (NMDARs) are well known for their sensitivity to ethanol (EtOH) inhibition. However, the specific manner in which EtOH inhibits channel activity and how such inhibition affects neurotransmission, and ultimately behavior, remains unclear. Replacement of phenylalanine 639 with alanine (F639A) in the GluN1 subunit reduces EtOH inhibition of recombinant NMDARs. Mice expressing this subunit show reduced EtOH-induced anxiolysis, blunted locomotor stimulation following low-dose EtOH administration, and faster recovery of motor function after moderate doses of EtOH, suggesting that cerebellar dysfunction may contribute to some of these behaviors. In the mature mouse cerebellum, NMDARs at the cerebellar climbing fiber (CF) to Purkinje cell (PC) synapse are inhibited by low concentrations of EtOH and the long-term depression (LTD) of parallel fiber (PF)-mediated currents induced by concurrent activation of PFs and CFs (PF-LTD) requires activation of EtOH-sensitive NMDARs. In this study, we examined cerebellar NMDA responses and NMDA-mediated synaptic plasticity in wild-type (WT) and GluN1(F639A) mice. Patch-clamp electrophysiological recordings were performed in acute cerebellar slices from adult WT and GluN1(F639A) mice. NMDAR-mediated currents at the CF-PC synapse and NMDAR-dependent PF-LTD induction were compared for genotype-dependent differences. Stimulation of CFs evoked robust NMDA-mediated excitatory postsynaptic currents (EPSCs) in PCs that were similar in amplitude and kinetics between WT and GluN1(F639A) mice. NMDA-mediated CF-PC EPSCs in WT mice were significantly inhibited by EtOH (50 mM) while those in mutant mice were unaffected. Concurrent stimulation of CF and PF inputs induced synaptic depression of PF-PC EPSCs in both WT and mutant mice, and this depression was blocked by the NMDA antagonist DL-APV. The synaptic depression of PF-PC EPSCs in WT mice was also blocked by a low concentration of EtOH (10 mM) that had

  15. Paradoxical (REM) Sleep Deprivation Causes a Large and Rapidly Reversible Decrease in Long-Term Potentiation, Synaptic Transmission, Glutamate Receptor Protein Levels, and ERK/MAPK Activation in the Dorsal Hippocampus

    Science.gov (United States)

    Ravassard, Pascal; Pachoud, Bastien; Comte, Jean-Christophe; Mejia-Perez, Camila; Scoté-Blachon, Céline; Gay, Nadine; Claustrat, Bruno; Touret, Monique; Luppi, Pierre-Hervé; Salin, Paul Antoine

    2009-01-01

    Study Objectives: It has been shown that wake (W) and slow wave sleep (SWS) modulate synaptic transmission in neocortical projections. However the impact of paradoxical sleep (PS) quantities on synaptic transmission remains unknown. We examined whether PS modulated the excitatory transmission and expression of glutamate receptor subtypes and phosphorylated extracellular signal-regulated kinases (p-ERK1/2). Design: PS deprivation (PSD) was carried out with the multiple platforms method on adult male Sprague-Dawley rats. LTP, late-LTP, and synaptic transmission were studied in the dorsal and ventral hippocampus of controls, 75-h PSD and 150-min PS rebound (PSR). GluR1 and NR1 protein and mRNA expression were evaluated by western blot and real-time PCR. P-ERK1/2 level was quantified by western blot and immunohistochemistry. Measurement and Results: PSD decreased synaptic transmission and LTP selectively in dorsal CA1 and PSR rescued these deficits. PSD-induced synaptic modifications in CA1 were associated with a decrease in GluR1, NR1, and p-ERK1/2 levels in dorsal CA1 without change in GluR1 and NR1 mRNA expression. Regression analysis shows that LTP is positively correlated with both PS quantities and SWS episodes duration, whereas synaptic transmission and late-LTP are positively correlated with PS quantities and negatively correlated with SWS quantities. Conclusions: These findings unveil previously unrecognized roles of PSD on synaptic transmission and LTP in the dorsal, but not in the ventral, hippocampus. The fact that the decrease in protein expression of GluR1 and NR1 was not associated with a change in mRNA expression of these receptors suggests that a sleep-induced modulation of translational mechanisms occurs in dorsal CA1. Citation: Ravassard P; Pachoud B; Comte JC; Mejia-Perez C; Scoté-Blachon C; Gay N; Claustrat B; Touret M; Luppi PH; Salin PA. Paradoxical (REM) sleep deprivation causes a large and rapidly reversible decrease in long-term potentiation

  16. Chronic SO2 inhalation above environmental standard impairs neuronal behavior and represses glutamate receptor gene expression and memory-related kinase activation via neuroinflammation in rats.

    Science.gov (United States)

    Yao, Gaoyi; Yue, Huifeng; Yun, Yang; Sang, Nan

    2015-02-01

    Sulfur dioxide (SO2), as a ubiquitous air pollutant implicated in the genesis of pulmonary disease, is now being considered to be involved in neurotoxicity and increased risk for hospitalization of brain disorders. However, comparatively little is known about the impact of chronically SO2 inhalation on neuronal function. In the present study, by exposing male Wistar rats to SO2 at 3.50 and 7.00 mg/m(3) (approximately 1225 and 2450 ppb, 4.08-8.16 (24h average concentration) times higher than the EPA standard for environmental air concentrations) or filtered air for 90 days, we investigated the impact of chronic SO2 inhalation on performance in Morris water maze, and probed the accompanying neurobiological effects, including activity-regulated cytoskeletal associated gene (Arc) and glutamate receptor gene expression, memory-related kinase level and inflammatory cytokine release in the hippocampus. Here, we found that SO2 exposure reduced the number of target zone crossings and time spent in the target quadrant during the test session in the spatial memory retention of the Morris water maze. Following the neuro-functional abnormality, we detected that SO2 inhalation reduced the expression of Arc and glutamate receptor subunits (GluR1, GluR2, NR1, NR2A, and NR2B) with a concentration-dependent property in comparison to controls. Additionally, the expression of memory kinases was attenuated statistically in the animals receiving the higher concentration, including protein kinase A (PKA), protein kinase C (PKC) and calcium/calmodulin-dependent protein kinaseIIα (CaMKIIα). And the inflammatory cytokine release was increased in rats exposed to SO2. Taken together, our results suggest that long-term exposure to SO2 air pollution at concentrations above the environmental standard in rats impaired spatial learning and memory, and indicate a close link between the neurobiological changes highlighted in the brain and the behavioral disturbances. Copyright © 2014 Elsevier Inc

  17. Withdrawal from 3alpha-OH-5alpha-pregnan-20-One using a pseudopregnancy model alters the kinetics of hippocampal GABAA-gated current and increases the GABAA receptor alpha4 subunit in association with increased anxiety.

    Science.gov (United States)

    Smith, S S; Gong, Q H; Li, X; Moran, M H; Bitran, D; Frye, C A; Hsu, F C

    1998-07-15

    In the present study, we have characterized properties of steroid withdrawal using a pseudopregnant rat model. This paradigm results in increased production of endogenous progesterone from ovarian sources and as such is a useful physiological model. "Withdrawal" from progesterone induced by ovariectomy on day 12 of pseudopregnancy resulted in increased anxiety, as determined by a decrease in open arm entries on the elevated plus maze compared to control rats and pseudopregnant animals not undergoing withdrawal. Similar findings were obtained 24 hr after administration of a 5alpha-reductase blocker to a pseudopregnant animal, suggesting that it is the GABAA-modulatory 3alpha-OH-5alpha-pregnan-20-one (3alpha, 5alpha-THP) that produces anxiogenic withdrawal symptoms. Twenty-four hours after steroid withdrawal, the time constant for decay of GABAA-gated current was also reduced sixfold, assessed using whole- cell patch-clamp procedures on pyramidal neurons acutely dissociated from CA1 hippocampus. Thus, 3alpha,5alpha-THP withdrawal results in a marked decrease in total GABAA current, a possible mechanism for its anxiogenic, proconvulsant sequelae. In addition, 3alpha,5alpha-THP withdrawal resulted in insensitivity to the normally potentiating effect of the benzodiazepine lorazepam (LZM) on GABAA-gated Cl- current. This withdrawal profile is similar to that reported for other GABAA-modulatory drugs such as the benzodiazepines (BDZs), barbiturates, and ethanol. These changes were also associated with significant two and threefold increases in both the mRNA and protein for the alpha4 subunit of the GABAA receptor, respectively, in hippocampus. The pseudopregnancy paradigm may be a useful model for periods of endogenous 3alpha,5alpha-THP withdrawal such as premenstrual syndrome and postpartum or postmenopausal dysphoria, when increased emotional lability and BDZ insensitivity have been reported.

  18. Ghrelin receptor activity amplifies hippocampal N-methyl-d-aspartate receptor-mediated postsynaptic currents and increases phosphorylation of the GluN1 subunit at Ser896 and Ser897.

    Science.gov (United States)

    Muniz, Brandon G; Isokawa, Masako

    2015-12-01

    Although ghrelin and its cognate receptor growth hormone secretagogue receptor (GHSR1a) are highly localized in the hypothalamic nuclei for the regulation of metabolic states and feeding, GHSR1a is also highly localized in the hippocampus, suggesting its involvement in extra-hypothalamic functions. Indeed, exogenous application of ghrelin has been reported to improve hippocampal learning and memory. However, the underlying mechanism of ghrelin regulation of hippocampal functions is poorly understood. Here, we report ghrelin-promoted phosphorylation of GluN1 and amplified N-methyl-d-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents in the CA1 pyramidal cells of the hippocampus in slice preparations. The ghrelin-induced responses were sensitive to a GHSR1a antagonist and inverse agonist, and were absent in GHSR1a homozygous knock-out mice. These results indicated that activation of GHSR1a was critical in the ghrelin-induced enhancement of the NMDAR function. Interestingly, heterozygous mouse hippocampi were also insensitive to ghrelin treatment, suggesting that a slight reduction in the availability of GHSR1a may be sufficient to negate the effect of ghrelin on GluN1 phosphorylation and NMDAR channel activities. In addition, NMDAR-mediated spike currents, which are of dendritic origin, were blocked by the GHSR1a antagonist, suggesting the presence of GHSR1a on the pyramidal cell dendrites in physical proximity to NMDAR. Together with our findings on the localization of GHSR1a in the CA1 region of the hippocampus, which was shown by fluorescent ghrelin binding, immunoreactivity, and enhanced green fluorescent protein reporter gene expression, we conclude that the activation of GHSR1a favours rapid modulation of the NMDAR-mediated glutamatergic synaptic transmission by phosphorylating GluN1 in the hippocampus. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Cloning and characterization of GABAA α subunits and GABAB subunits in Xenopus laevis during development.

    Science.gov (United States)

    Kaeser, Gwendolyn E; Rabe, Brian A; Saha, Margaret S

    2011-04-01

    Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the adult nervous system, acts via two classes of receptors, the ionotropic GABA(A) and metabotropic GABA(B) receptors. During the development of the nervous system, GABA acts in a depolarizing, excitatory manner and plays an important role in various neural developmental processes including cell proliferation, migration, synapse formation, and activity-dependent differentiation. Here we describe the spatial and temporal expression patterns of the GABA(A) and GABA(B) receptors during early development of Xenopus laevis. Using in situ hybridization and qRT-PCR, GABA(A) α2 was detected as a maternal mRNA. All other α-subunits were first detected by tailbud through hatching stages. Expression of the various subunits was seen in the brain, spinal cord, cranial ganglia, olfactory epithelium, pineal, and pituitary gland. Each receptor subunit showed a distinctive, unique expression pattern, suggesting these receptors have specific functions and are regulated in a precise spatial and temporal manner. Copyright © 2011 Wiley-Liss, Inc.

  20. DHEAS increases levels of GluR2/3 and GluR2, AMPA receptor subunits, in C57BL/6 mice hippocampus El DHEAS incrementa la expresión de GluR2/3 y GLUR2 del receptor AMPA en el hipocampo de ratones C57/BL6

    Directory of Open Access Journals (Sweden)

    Diego Sepúlveda Falla

    2010-05-01

    Full Text Available

    Dehydroepiandrosterone sulfate (DHEA-S is a neurosteroid that has effects such as neuromodulator of synaptic transmission and neuroprotection. The specific signaling pathways for these effects are not elucidated yet. Given that, some neurosteroids act through the activation of ionotropic glutamate receptors, therefore the effect of DHEA-S on the subunits GluR2  and GluR3 of the AMPA receptor was evaluated.  Either DHEA-S or a control substance was administered to C57/BL6 mice. Subunit expression of the AMPA receptor was analyzed by Western blotting.

     

     

    Results show that long-term DHEA-S administration to C57/BL6 mice, increases the protein levels of the subunits GluR2 and GluR2/3 of the AMPA receptors located in the hippocampus.

  1. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  2. Mapping of the {alpha}{sub 4} subunit gene (GABRA4) to human chromosome 4 defines an {alpha}{sub 2}-{alpha}{sub 4}-{beta}{sub 1}-{gamma}{sub 1} gene cluster: Further evidence that modern GABA{sub a} receptor gene clusters are derived from an ancestral cluster

    Energy Technology Data Exchange (ETDEWEB)

    McLean, P.J.; Farb, D.H.; Russek, S.J. [Boston Univ. School of Medicine, MA (United States)] [and others

    1995-04-10

    We demonstrated previously that an {alpha}{sub 1}-{beta}{sub 2}-{gamma}{sub 2} gene cluster of the {gamma}-aminobutyric acid (GABA{sub A}) receptor is located on human chromosome 5q34-q35 and that an ancestral {alpha}-{beta}-{gamma} gene cluster probably spawned clusters on chromosomes 4, 5, and 15. Here, we report that the {alpha}{sub 4} gene (GABRA4) maps to human chromosome 4p14-q12, defining a cluster comprising the {alpha}{sub 2}, {alpha}{sub 4}, {beta}{sub 1}, and {gamma}{sub 1} genes. The existence of an {alpha}{sub 2}-{alpha}{sub 4}-{beta}{sub 1}-{gamma}{sub 2} cluster on chromosome 4 and an {alpha}{sub 1}-{alpha}{sub 6}-{beta}{sub 2}-{gamma}{sub 2} cluster on chromosome 5 provides further evidence that the number of ancestral GABA{sub A} receptor subunit genes has been expanded by duplication within an ancestral gene cluster. Moreover, if duplication of the {alpha} gene occurred before duplication of the ancestral gene cluster, then a heretofore undiscovered subtype of a subunit should be located on human chromosome 15q11-q13 within an {alpha}{sub 5}-{alpha}{sub x}-{beta}{sub 3}-{gamma}{sub 3} gene cluster at the locus for Angelman and Prader-Willi syndromes. 34 refs., 6 figs., 1 tab.

  3. Identification of the binding subunit of the sigma-type opiate receptor by photoaffinity labeling with 1-(4-azido-2-methyl(6-/sup 3/H)phenyl)-3-(2-methyl(4,6-/sup 3/H)phenyl)guanidine

    Energy Technology Data Exchange (ETDEWEB)

    Kavanaugh, M.P.; Tester, B.C.; Scherz, M.W.; Keana, J.F.W.; Weber, E.

    1988-04-01

    The sigma-type opiate receptor is a distinct binding site in the brain that may mediate some of the psychotomimetic effects caused by benzomorphan opiates and phencyclidine in humans. The authors have developed a synthetic, highly selective ligand for this receptor, 1,3-di-o-tolylguanidine (DTG). To identify the binding protein(s) of the sigma receptor, they have now synthesized a radiolabeled azide derivative of DTG, ((/sup 3/H)N/sub 3/DTG). In guinea pig brain membrane binding assays conducted in the dark, (/sup 3/H)N/sub 3/DTG bound reversibly, selectively, and with high affinity to sigma receptors. The drug specificity profile of reversible (/sup 3/H)-N/sub 3/DTG binding was identical to that of (/sup 3/H)DTG and /sup 3/H-labeled (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine binding indicating that (/sup 3/H)N/sub 3/DTG is a selective sigma receptor ligand. Guinea pig brain membranes were photoaffinity-labeled with (/sup 3/H)N/sub 3/DTG. NaDodSO/sub 4//PAGE of detergent-solubilized membrane extract identified a single 29-kDa radioactive band. Sepharose Cl-6B gel chromatography of photolabeled brain membranes solubilized with the nondenaturing detergent sodium cholate showed a radioactive complex with a Stoke's radius of 4.6 nm (M/sub r/, 150,000) that may represent the intact sigma receptor complex. NaDodSO/sub 4//PAGE of this complex showed the radiolabeled material was a 29-kDa polypeptide that may be binding subunit of the sigma receptor.

  4. [GABAC receptors: structure and functions].

    Science.gov (United States)

    Perfilova, V N; Tiurenkov, I N

    2011-01-01

    Data on the structure, localization, physiology and pharmacology of GABA(C) receptors are reviewed. Thece receptors belong to cys-loop receptors and consist of rho1-3 subunits representing pentamers with five subunits that form a chloride channel. They are found in both central nervous system and peripheral organs. The pentamer can be homomeric, consisting of five similar protomers (e.g., p1), or heteromeric (pseudo-homomeric), consisting of rho1 and rho2 subunits. Chloride channel function also depends on the GABA(C) receptor subunit composition. The activation of GABAc receptors is accompanied by a change in the permeability of plasmatic membranes for C1 ions, which is followed by depolarization (presynaptic inhibition) or hyperpolarization (postsynaptic inhibition). There are a great number of the allosteric modulators, agonists and antagonists of GABA(C) receptors.

  5. A Special Extract of Bacopa monnieri (CDRI-08 Restores Learning and Memory by Upregulating Expression of the NMDA Receptor Subunit GluN2B in the Brain of Scopolamine-Induced Amnesic Mice

    Directory of Open Access Journals (Sweden)

    Rakesh Rai

    2015-01-01

    Full Text Available In the present communication, we have investigated effects of the CDRI-08, a well characterized extract of Bacopa monnieri, on expression of the GluN2B subunit of NMDAR in various brain regions of the scopolamine-induced amnesic mice. Our behavioral data reveal that scopolamine-treated amnesic mice exhibit significant decline in the spatial memory compared to the normal control mice. Our RT-PCR and immunoblotting data revealed that the scopolamine treatment resulted in a significant downregulation of the NMDAR GluN2B subunit expression in prefrontal cortex and hippocampus. Our enzyme assay data revealed that scopolamine caused a significant increase in the acetylcholinesterase activity in both the brain regions. Further, oral administration of the CDRI-08 to scopolamine-treated amnesic mice restored the spatial memory which was found to be associated with significant upregulation of the GluN2B subunit expression and decline in the acetylcholinesterase activity in prefrontal cortex as well as hippocampus towards their levels in the normal control mice. Our study provides the evidence for the mechanism underlying role of the Bacopa monnieri extract (CDRI-08 in restoring spatial memory in amnesic mice, which may have therapeutic implications.

  6. AChR deficiency due to ε-subunit mutations: Two common mutations in the Netherlands

    NARCIS (Netherlands)

    C.G. Faber (Carin); P.C. Molenaar (Peter); J.S.H. Vles (Johannes); D.M. Bonifati (Domenic); J.J. Verschuuren (Jan); P.A. van Doorn (Pieter); J.B.M. Kuks (Jan); J.H.J. Wokke (John); D. Beeson (David); M.H. de Baets (Marc)

    2009-01-01

    textabstractCongenital myasthenic syndromes are a clinically and genetically heterogeneous group of hereditary disorders affecting neuromuscular transmission. We have identified mutations within the acetylcholine receptor (AChR) ε-subunit gene underlying congenital myasthenic syndromes in nine

  7. AChR deficiency due to epsilon-subunit mutations : two common mutations in the Netherlands

    NARCIS (Netherlands)

    Faber, Catharina G.; Molenaar, Peter C.; Vles, Johannes S. H.; Bonifati, Domenic M.; Verschuuren, Jan J. G. M.; van Doorn, Pieter A.; Kuks, Jan B. M.; Wokke, John H. J.; Beeson, David; De Baets, Marc

    2009-01-01

    Congenital myasthenic syndromes are a clinically and genetically heterogeneous group of hereditary disorders affecting neuromuscular transmission. We have identified mutations within the acetylcholine receptor (AChR) epsilon-subunit gene underlying congenital myasthenic syndromes in nine patients

  8. GABAB receptor phosphorylation regulates KCTD12-induced K+ current desensitization

    DEFF Research Database (Denmark)

    Adelfinger, L; Turecek, R; Ivankova, K

    2014-01-01

    GABAB receptors assemble from GABAB1 and GABAB2 subunits. GABAB2 additionally associates with auxiliary KCTD subunits (named after their K+ channel tetramerization-domain). GABAB receptors couple to heterotrimeric G-proteins and activate inwardly-rectifying K+ channels through the βγ subunits rel...

  9. Clinical utility of circulating anti-N-methyl-d-aspartate receptor subunits NR2A/B antibody for the diagnosis of neuropsychiatric syndromes in systemic lupus erythematosus and Sjögren's syndrome: An updated meta-analysis.

    Science.gov (United States)

    Tay, Sen Hee; Fairhurst, Anna-Marie; Mak, Anselm

    2017-02-01

    Neuropsychiatric (NP) events are found in patients with rheumatic diseases, commonly in systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS). The standard nomenclature and case definitions for 19 NPSLE syndromes by the American College of Rheumatology (ACR) Committee on Research cover a wide range of NP events seen in both SLE and SS. Despite advances in the understanding of SLE and SS, NP syndromes continue to pose diagnostic challenges. Correct attribution of NP events is critical in determining the correct treatment and prognosis. Anti-N-methyl-d-aspartate receptor subunits NR2A/B (anti-NR2A/B) antibodies have been demonstrated in the sera of SLE and SS patients and have been associated with collective or specific NP syndromes, though not consistently. Interpretation of anti-NR2A/B antibody data in the medical literature is rendered difficult by small sample size of patient groups. By combining different studies to generate a pooled effect size, a meta-analysis can increase the power to detect differences in the presence or absence of NP syndromes. Hence, we set out to perform a meta-analysis to assess the association between anti-NR2A/B antibodies and NP syndromes in SLE and SS. A literature search was conducted using PubMed and other databases from inception to June 2016. We abstracted data relating to anti-NR2A/B antibodies from the identified studies. The random effects model was used to calculate overall combined odds ratio (OD) with its corresponding 95% confidence interval (CI) to evaluate the relationship between anti-NR2A/B antibodies and NP syndromes in SLE and SS patients with and without NP events. We also included our own cohort of 57 SLE patients fulfilling the ACR 1997 revised classification criteria and 58 healthy controls (HCs). In total, 17 studies with data on anti-NR2A/B antibodies in 2212 SLE patients, 66 SS patients, 99 disease controls (DCs) (e.g. antiphospholipid syndrome, myasthenia gravis and autoimmune polyendocrine syndrome

  10. Imaging of Kiss-and-Run Exocytosis of Surface Receptors in Neuronal Cultures

    Directory of Open Access Journals (Sweden)

    Cristina eRoman-Vendrell

    2014-11-01

    Full Text Available Transmembrane proteins are continuously shuttled from the endosomal compartment to the neuronal plasma membrane by highly regulated and complex trafficking steps. These events are involved in many homeostatic and physiological processes such as neuronal growth, signaling, learning and memory among others. We have previously shown that endosomal exocytosis of the B2 adrenergic receptor (B2AR and the GluR1-containing AMPA receptor to the neuronal plasma membrane is mediated by two different types of vesicular fusion. Transient events in which receptors are delivered to the plasma membrane in a single kinetic step, and persistent events in which receptors remain clustered at the insertion site for a variable period of time before delivery to the cell surface. Here, by comparing the exocytosis of multiple receptors in dissociated hippocampal and striatal cultures, we show that persistent events are a general mechanism of vesicular delivery. Persistent events were only observed after 10 days in vitro, and their frequency increased with use of the calcium ionophore A23187 and with depolarization induced by KCl. Finally, we determined that vesicles producing persistent events remain at the plasma membrane, closing and reopening their fusion pore for a consecutive release of cargo in a mechanism reminiscent of synaptic kiss-and-run. These results indicate that the delivery of transmembrane receptors to the cell surface can be dynamically regulated by kiss-and-run exocytosis.

  11. Extinction-induced neuroplasticity attenuates stress-induced cocaine seeking: a state-dependent learning hypothesis.

    Science.gov (United States)

    Self, David W; Choi, Kwang-Ho

    2004-09-01

    Chronic drug use weakens excitatory neocortical input to the nucleus accumbens (NAc). We previously reported that extinction training, a form of inhibitory learning that progressively reduces cocaine-seeking behaviour when reward is withheld, reverses this deficit by up-regulating GluR1 and GluR2/3 subunits of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptors in the NAc. The level of GluR1 up-regulation is positively associated with a reduction in cocaine seeking, suggesting that extinction-induced up-regulation in AMPA receptors in the NAc opposes motivational influences that maintain cocaine seeking. This hypothesis is supported by the finding that over-expression of GluR1 and GluR2 in the NAc facilitates extinction of cocaine self-administration. Furthermore, a single extinction training session conducted during GluR1 and GluR2 over-expression strongly and selectively attenuates the ability of an environmental stressor to trigger relapse to cocaine seeking long after GluR1 and GluR2 over-expression declines. These results could suggest that excitatory input to the NAc promotes extinction learning, but only when memory is recalled under stressful situations. Recent studies indicate that both environmental stress and the frustrative stress of withholding reward during extinction of drug self-administration induce similar neurochemical events in the NAc. These neurochemical events could impose a "state-dependency" on extinction learning such that subsequent exposure to stress acts as a cue to enhance retrieval of extinction memory. Our results suggest that extinction-induced up-regulation in NAc AMPA receptors acts reciprocally to facilitate state-dependent extinction learning, as stressful situations evoke extinction memories that exert powerful inhibitory control over drug-seeking behaviour. These results may have important therapeutic implications for behaviour-based approaches aimed at treating drug addiction.

  12. Regulation of AMPA receptors in spinal nociception

    Directory of Open Access Journals (Sweden)

    Lin Qing

    2010-01-01

    Full Text Available Abstract The functional properties of α-amino-3-hydroxy-5-methy-4-isoxazole propionate (AMPA receptors in different brain regions, such as hippocampus and cerebellum, have been well studied in vitro and in vivo. The AMPA receptors present a unique characteristic in the mechanisms of subunit regulation during LTP (long-term potentiation and LTD (long-term depression, which are involved in the trafficking, altered composition and phosphorylation of AMPA receptor subunits. Accumulated data have demonstrated that spinal AMPA receptors play a critical role in the mechanism of both acute and persistent pain. However, less is known about the biochemical regulation of AMPA receptor subunits in the spinal cord in response to painful stimuli. Recent studies have shown that some important regulatory processes, such as the trafficking of AMPA receptor subunit, subunit compositional changes, phosphorylation of AMPA receptor subunits, and their interaction with partner proteins may contribute to spinal nociceptive transmission. Of all these regulation processes, the phosphorylation of AMPA receptor subunits is the most important since it may trigger or affect other cellular processes. Therefore, these study results may suggest an effective strategy in developing novel analgesics targeting AMPA receptor subunit regulation that may be useful in treating persistent and chronic pain without unacceptable side effects in the clinics.

  13. A highly conserved glycine within linker I and the extreme C terminus of G protein alpha subunits interact cooperatively in switching G protein-coupled receptor-to-effector specificity

    DEFF Research Database (Denmark)

    Kostenis, Evi; Martini, Lene; Ellis, James

    2004-01-01

    recognition by Galpha(q) proteins. Herein, we explored whether both modules (linker I and extreme C terminus) interact cooperatively in switching G protein-coupled receptor (GPCR)-to-effector specificity and created as models mutant Galpha(q) proteins in which glycine was replaced with various amino acids...... on GPCR-to-effector specificity. Dually modified Galpha proteins were also superior in conferring high-affinity agonist sites onto a coexpressed GPCR in the absence, but not in the presence, of guanine nucleotides. Together, our data suggest that receptor-G protein coupling selectivity involves...

  14. Both NR2A and NR2B Subunits of the NMDA Receptor Are Critical for Long-Term Potentiation and Long-Term Depression in the Lateral Amygdala of Horizontal Slices of Adult Mice

    Science.gov (United States)

    Muller, Tobias; Albrecht, Doris; Gebhardt, Christine

    2009-01-01

    The lateral nucleus of the amygdala (LA) is implicated in emotional and social behaviors. We recently showed that in horizontal brain slices, activation of NMDA receptors (NMDARs) is a requirement for persistent synaptic alterations in the LA, such as long-term potentiation (LTP) and long-term depression (LTD). In the LA, NR2A- and NR2B-type NMDRs…

  15. The role of GluN2A and GluN2B NMDA receptor subunits in AgRP and POMC neurons on body weight and glucose homeostasis

    Directory of Open Access Journals (Sweden)

    Aykut Üner

    2015-10-01

    Conclusions: GluN2B-containing NMDA receptors in AgRP neurons play a critical role in central control of body weight homeostasis and blood glucose balance via mechanisms that likely involve regulation of AgRP neuronal survival and structure, and modulation of hypothalamic leptin action.

  16. Molecular pharmacology of the calcium channel: evidence for subtypes, multiple drug-receptor sites, channel subunits, and the development of a radioiodinated 1,4-dihydropyridine calcium channel label, (/sup 125/I)iodipine

    Energy Technology Data Exchange (ETDEWEB)

    Glossmann, H.; Ferry, D.R.; Goll, A.; Rombusch, M.

    1984-01-01

    Radiolabeled Ca2+ antagonists (1,4-dihydropyridines, verapamil, and D-cis-diltiazem) were used to study voltage-operated Ca2+ channels in different excitable tissues. The concept of three subtypes of Ca2+ channels, represented by brain, heart, and skeletal-muscle isoreceptors for 1,4-dihydropyridines, is developed. The three subtypes are characterized by a variety of criteria. Despite the biochemical differences between the subtypes, they have the same Mr in situ by target-size analysis (Mr approximately equal to 180,000, when evaluated by (/sub 3/H)nimodipine). The concept of the metalloprotein nature of the channel and the interaction of channel drugs with the Me2+ binding sites of the ionic pore is demonstrated. Distinct but interacting drug-receptor sites of the Ca2+ channel are found by direct labeling as well as indirectly by drug competition studies. The authors distinguish between the 1,4-dihydropyridine site, the verapamil site, and the D-cis-diltiazem site. Each receptor site can exist in high and low-affinity state; the distribution of receptor sites in these states is regulated by temperature, ions, and drugs. The concept of intrinsic activity of drugs to stabilize the high-affinity state is exemplified for the 1,4-dihydropyridines. A change in the channel architecture is induced by binding of D-cis-diltiazem to its drug receptor site. This is proven by target-size analysis of the channel in situ. Partially purified t-tubule membranes from skeletal muscle are an extremely rich source of Ca2+ channel drug-receptor sites. The stoichiometry was determined in this preparation and found to be four verapamil:two 1,4-dihydropyridine:one D-cis-diltiazem site. A novel Ca2+ channel probe, (/sup 125/I)iodipine (2,200 Ci/mmol), was synthetized, and the properties of this ligand are presented.

  17. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    Directory of Open Access Journals (Sweden)

    Signe Tandrup Schmidt

    2016-03-01

    Full Text Available The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI. Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs, which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the

  18. Evaluation of peptide designing strategy against subunit reassociation in mucin 1: A steered molecular dynamics approach.

    Directory of Open Access Journals (Sweden)

    J Lesitha Jeeva Kumari

    Full Text Available Subunit reassociation in mucin 1, a breast cancer tumor marker, is reported as one of the critical factors for its cytoplasmic activation. Inhibition of its heterodimeric association would therefore result in loss of its function and alter disease progression. The present study aimed at evaluating peptide inhibitor designing strategies that may serve as antagonist against this receptor-ligand alliance. Several peptides and their derivatives were designed based on native residues, subunit interface, hydrogen bonding and secondary structure. Docking studies with the peptides were carried on the receptor subunit and their binding affinities were evaluated using steered molecular dynamics simulation and umbrella sampling. Our results showed that among all the different classes of peptides evaluated, the receptor based peptide showed the highest binding affinity. This result was concurrent with the experimental observation that the receptor-ligand alliance in mucin 1 is highly specific. Our results also show that peptide ligand against this subunit association is only stabilized through native residue inter-protein interaction irrespective of the peptide structure, peptide length and number of hydrogen bonds. Consistency in binding affinity, pull force and free energy barrier was observed with only the receptor derived peptides which resulted in favorable interprotein interactions at the interface. Several observations were made and discussed which will eventually lead to designing efficient peptide inhibitors against mucin 1 heterodimeric subunit reassociation.

  19. Expression of a highly antigenic and native-like folded extracellular domain of the human α1 subunit of muscle nicotinic acetylcholine receptor, suitable for use in antigen specific therapies for Myasthenia Gravis.

    Directory of Open Access Journals (Sweden)

    Athanasios Niarchos

    Full Text Available We describe the expression of the extracellular domain of the human α1 nicotinic acetylcholine receptor (nAChR in lepidopteran insect cells (i-α1-ECD and its suitability for use in antigen-specific therapies for Myasthenia Gravis (MG. Compared to the previously expressed protein in P. pastoris (y-α1-ECD, i-α1-ECD had a 2-fold increased expression yield, bound anti-nAChR monoclonal antibodies and autoantibodies from MG patients two to several-fold more efficiently and resulted in a secondary structure closer to that of the crystal structure of mouse α1-ECD. Our results indicate that i-α1-ECD is an improved protein for use in antigen-specific MG therapeutic strategies.

  20. Characterization of fimbrial subunits from Bordetella species

    NARCIS (Netherlands)

    Mooi, F.R.; Heide, H.G.J. van der; Avest, A.R. ter; Welinder, K.G.; Livey, I.; Zeijst, B.A.M. van der; Gaastra, W.

    Using antisera raised against serotype 2 and 3 fimbrial subunits from Bordetella pertussis, serologically related polypeptides were detected in Bordetella bronchiseptica, Bordetella parapertussis and Bordetella avium strains. The two B. pertussis fimbrial subunits, and three of the serologically

  1. Subunit mass analysis for monitoring antibody oxidation

    National Research Council Canada - National Science Library

    Sokolowska, Izabela; Mo, Jingjie; Dong, Jia; Lewis, Michael J; Hu, Ping

    2017-01-01

    ... (light chain, Fd' and single chain Fc). These subunits were analyzed by reversed phase-ultra performance liquid chromatography coupled with an online quadrupole time-of-flight mass spectrometer and the levels of oxidation on each subunit...

  2. The beta subunit of casein kinase II

    DEFF Research Database (Denmark)

    Boldyreff, B; Piontek, K; Schmidt-Spaniol, I

    1991-01-01

    cDNAs encoding the beta subunit of pig and mouse CKII were isolated. The porcine cDNA was expressed as a fusion protein in Escherichia coli and used for the production of anti-CKII-beta subunit specific antibodies.......cDNAs encoding the beta subunit of pig and mouse CKII were isolated. The porcine cDNA was expressed as a fusion protein in Escherichia coli and used for the production of anti-CKII-beta subunit specific antibodies....

  3. Structural biology of GABAB receptor.

    Science.gov (United States)

    Frangaj, Aurel; Fan, Qing R

    2017-10-12

    Metabotropic GABAB receptor is a G protein-coupled receptor (GPCR) that mediates slow and prolonged inhibitory neurotransmission in the brain. It functions as a constitutive heterodimer composed of the GABAB1 and GABAB2 subunits. Each subunit contains three domains; the extracellular Venus flytrap module, seven-helix transmembrane region and cytoplasmic tail. In recent years, the three-dimensional structures of GABAB receptor extracellular and intracellular domains have been elucidated. These structures reveal the molecular basis of ligand recognition, receptor heterodimerization and receptor activation. Here we provide a brief review of the GABAB receptor structures, with an emphasis on describing the different ligand-bound states of the receptor. We will also compare these with the known structures of related GPCRs to shed light on the molecular mechanisms of activation and regulation in the GABAB system, as well as GPCR dimers in general. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of Different Training Loads on Emotional State and mRNA and Protein Expressions of N-Methyl-D-Aspartate Receptor Subunits, Postsynaptic Density 95, and Kinesin Family Member 17 in Hippocampus of Rats

    Science.gov (United States)

    Ren, Hefei; Yu, Xinyi; Yu, Liren; Zhang, Yinguo; Xie, Hong; Shi, Na; Chen, Lijun

    2017-01-01

    Background Emotional state can be affected by different training loads. The aim of this study was to explore the changes of rat emotional state, as well as the mRNA and protein expressions of N-methyl-D-aspartate receptors (NMDARs), postsynaptic density 95 (PSD-95), and kinesin family member 17 (KIF-17) in the hippocampus, by long-term moderate-intensity and high-intensity training models in rats. Material/Methods The exercise model of SD rats was set up by treadmill running of moderate and high intensities for 4 weeks. The rats in the moderate-intensity training group were given endurance training with increasing intensity, while rats in the high-intensity training group were given high-speed training, and those in the normal control group were also established. The body weights of rats were measured before and after exercise to determine weight reduction. Real-time PCR and Western blotting were used to detect the mRNA and protein expressions of NMDARs, PSD-95, and KIF-17 in hippocampus of rats under different training loads. Results Compared with the control group, the rats in the moderate-intensity training group had better body condition and emotional state, while the rats in the high-intensity training group had poor body condition and emotional state. The mRNA and protein expression of PSD-95, KIF-17, and NMDARs in the moderate-intensity training group were significantly elevated (Ptraining group were suppressed (Ptraining loads have remarkable influences on the cognition, emotion, and mental status of rats, and can affect the mRNA and protein expressions of NMDARs, PSD-95, and KIF-17 in rats. Appropriate training loads alleviate hypoxia damage to the hippocampus, and also effectively improve hippocampus function. PMID:29038420

  5. Hippocampal proteoglycans brevican and versican are linked to spatial memory of Sprague-Dawley rats in the morris water maze.

    Science.gov (United States)

    Saroja, Sivaprakasam R; Sase, Ajinkya; Kircher, Susanne G; Wan, Jia; Berger, Johannes; Höger, Harald; Pollak, Arnold; Lubec, Gert

    2014-09-01

    Proteoglycans (PGs) are major constituents of the extracellular matrix and have recently been proposed to contribute to synaptic plasticity. Hippocampal PGs have not yet been studied or linked to memory. The aim of the study, therefore, was to isolate and characterize rat hippocampal PGs and determine their possible role in spatial memory. PGs were extracted from rat hippocampi by anion-exchange chromatography and analyzed by nano LC-MS/MS. Twenty male Sprague-Dawley rats were tested in the morris water maze. PGs agrin, amyloid beta A4 protein, brevican, glypican-1, neurocan, phosphacan, syndecan-4, and versican were identified in the hippocampi. Brevican and versican levels in the membrane fraction were higher in the trained group, correlating with the time spent in the target quadrant. α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor GluR1 was co-precipitated with brevican and versican. Levels for a receptor complex containing GluR1 was higher in trained while GluR2 and GluR3-containing complex levels were higher in yoked rats. The findings provide information about the PGs present in the rat hippocampus, demonstrating that versican and brevican are linked to memory retrieval in the morris water maze and that PGs interact with α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor GluR1, which is linked to memory retrieval. Proteoglycans (PGs) are major constituents of the extracellular matrix of the brain and were proposed to contribute to synaptic plasticity. This report addressed PGs in rat hippocampus and suggests that PGs brevican and versican are linked to spatial memory, and form a complex with the GluR1 subunit of the AMPA receptor, a key signaling molecule in memory mechanisms. © 2014 International Society for Neurochemistry.

  6. Membrane invagination induced by Shiga toxin B-subunit

    DEFF Research Database (Denmark)

    Pezeshkian, W.; Hansen, Allan Grønhøj; Johannes, Ludger

    2016-01-01

    The bacterial Shiga toxin is composed of an enzymatically active A-subunit, and a receptor-binding homopentameric B-subunit (STxB) that mediates intracellular toxin trafficking. Upon STxB-mediated binding to the glycolipid globotriaosylceramide (Gb3) at the plasma membrane of target cells, Shiga...... toxin is internalized by clathrin-dependent and independent endocytosis. The formation of tubular membrane invaginations is an essential step in the clathrin-independent STxB uptake process. However, the mechanism by which STxB induces these invaginations has remained unclear. Using a combination of all...... toxin molecules then creates a tubular membrane invagination that drives toxin entry into the cell. This mechanism requires: (1) a precise molecular architecture of the STxB binding sites; (2) a fluid bilayer in order for the tubular invagination to form. Although, STxB binding to the membrane requires...

  7. The alpha 1-alpha 6 subunits of integrins are characteristically expressed in distinct segments of developing and adult human nephron.

    Science.gov (United States)

    Korhonen, M; Ylänne, J; Laitinen, L; Virtanen, I

    1990-09-01

    We studied the distribution of the alpha 1-alpha 6 subunits of beta 1 integrins in developing and adult human kidney using a panel of mAbs in indirect immunofluorescence microscopy. Uninduced mesenchyme displayed a diffuse immunoreactivity for only the alpha 1 integrin subunit. At the S-shaped body stage of nephron development, several of the alpha subunits were characteristically expressed in distinct fetal nephron segments, and the pattern was retained also in the adult nephron. Thus, the alpha 1 subunit was characteristically expressed in mesangial and endothelial cells, the alpha 2 in glomerular endothelium and distal tubules, the alpha 3 in podocytes, Bowman's capsule, and distal tubules, and the alpha 6 subunit basally in all tubules, and only transiently in podocytes during development. Unlike the alpha 3 and alpha 6 subunits, the alpha 2 subunit displayed an overall cell surface distribution in distal tubules. It was also distinctly expressed in glomerular endothelia during glomerulogenesis. The beta 4 subunit was expressed only in fetal collecting ducts, and hence the alpha 6 subunit seems to be complexed with the beta 1 rather than beta 4 subunit in human kidney. Of the two fibronectin receptor alpha subunits, alpha 4 and alpha 5, only the latter was expressed, confined to endothelia of developing and adult blood vessels, suggesting that these receptor complexes play a minor role during nephrogenesis. The present results suggest that distinct integrins play a role during differentiation of specific nephron segments. They also indicate that alpha 3 beta 1 and alpha 6 beta 1 integrin complexes may function as basement membrane receptors in podocytes and tubular epithelial cells.

  8. Efficient expression of functional (α6β22β3 AChRs in Xenopus oocytes from free subunits using slightly modified α6 subunits.

    Directory of Open Access Journals (Sweden)

    Carson Kai-Kwong Ley

    Full Text Available Human (α6β2(α4β2β3 nicotinic acetylcholine receptors (AChRs are essential for addiction to nicotine and a target for drug development for smoking cessation. Expressing this complex AChR is difficult, but has been achieved using subunit concatamers. In order to determine what limits expression of α6* AChRs and to efficiently express α6* AChRs using free subunits, we investigated expression of the simpler (α6β22β3 AChR. The concatameric form of this AChR assembles well, but is transported to the cell surface inefficiently. Various chimeras of α6 with the closely related α3 subunit increased expression efficiency with free subunits and produced pharmacologically equivalent functional AChRs. A chimera in which the large cytoplasmic domain of α6 was replaced with that of α3 increased assembly with β2 subunits and transport of AChRs to the oocyte surface. Another chimera replacing the unique methionine 211 of α6 with leucine found at this position in transmembrane domain 1 of α3 and other α subunits increased assembly of mature subunits containing β3 subunits within oocytes. Combining both α3 sequences in an α6 chimera increased expression of functional (α6β22β3 AChRs to 12-fold more than with concatamers. This is pragmatically useful, and provides insights on features of α6 subunit structure that limit its expression in transfected cells.

  9. Qualitative variation of photolabelled benzodiazepine receptors in different species.

    Science.gov (United States)

    Hebebrand, J; Friedl, W; Lentes, K U; Propping, P

    1986-01-01

    In order to examine whether species differences of benzodiazepine receptor subunits exist, we compared the fluorographic pattern of photoaffinity labelled subunits after SDS-PAGE in five species: fish, frog, chicken, mouse and calf. Each species showed a distinct pattern of specifically labelled proteins. We conclude that species variation of benzodiazepine receptor does indeed exist.

  10. Immunochemical Localization of GABAAReceptor Subunits in the Freshwater Polyp Hydra vulgaris (Cnidaria, Hydrozoa).

    Science.gov (United States)

    Concas, A; Imperatore, R; Santoru, F; Locci, A; Porcu, P; Cristino, L; Pierobon, P

    2016-11-01

    γ-aminobutyric acid (GABA) receptors, responding to GABA positive allosteric modulators, are present in the freshwater polyp Hydra vulgaris (Cnidaria, Hydrozoa), one of the most primitive metazoans to develop a nervous system. We examined the occurrence and distribution of GABA A receptor subunits in Hydra tissues by western blot and immunohistochemistry. Antibodies against different GABA A receptor subunits were used in Hydra membrane preparations. Unique protein bands, inhibited by the specific peptide, appeared at 35, 60, ∼50 and ∼52 kDa in membranes incubated with α3, β1, γ3 or δ antibodies, respectively. Immunohistochemical screening of whole mount Hydra preparations revealed diffuse immunoreactivity to α3, β1 or γ3 antibodies in tentacles, hypostome, and upper part of the gastric region; immunoreactive fibers were also present in the lower peduncle. By contrast, δ antibodies revealed a strong labeling in the lower gastric region and peduncle, as well as in tentacles. Double labeling showed colocalization of α3/β1, α3/γ3 and α3/δ immunoreactivity in granules or cells in tentacles and gastric region. In the peduncle, colocalization of both α3/β1 and α3/γ3 immunoreactivity was found in fibers running horizontally above the foot. These data indicate that specific GABA A receptor subunits are present and differentially distributed in Hydra body regions. Subunit colocalization suggests that Hydra GABA receptors are heterologous multimers, possibly sub-serving different physiological activities.

  11. Subunit heterogeneity in the lima bean lectin.

    Science.gov (United States)

    Roberts, D D; Etzler, M E; Goldstein, I J

    1982-08-10

    Three forms of lectin (components I, II, and III) from lima beans (Phaseolus lunatus) have been purified on an affinity support containing the synthetic type A blood group trisaccharide alpha-D-GalNAc-(1 leads to 3)-[alpha-L-Fuc-(1 leads to 2)]-beta-D-Gal-(1 leads to). Conversion of components I and II to component III has been achieved by reduction in 10(-2) M dithiothreitol. Isoelectric focusing of lima bean lectin in the presence of 8 M urea and beta-mercaptoethanol revealed charge heterogeneity of the lectin subunits. Three major subunit classes of apparent pI 7.05, 6.65, and 6.45, designated alpha, beta, and alpha', respectively, were identified; they occur in a relative abundance of 2:5:3. Green lima beans harvested before maturity lacked the alpha' subunit (pI 6.45) which appears to accumulate during seed maturation. The three subunits are glycoproteins of identical size and immunochemical reactivity. Identical NH2-terminal sequences were found for the three subunits. Amino acid analysis and tryptic peptide mapping indicated that the observed charge heterogeneity is probably due to differences in the primary structure of the subunits. Studies of subunit composition of charge isolectins provided evidence of nonrandom subunit assembly. A model is proposed involving pairing of a pI 6.65 subunit with either a pI 7.06 or 6.45 subunit to form dimeric units. Possible roles for subunit heterogeneity and ordered subunit assembly in determining the metal and sugar binding properties of lima bean lectin are discussed.

  12. Ionotropic crustacean olfactory receptors.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Corey

    Full Text Available The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs, the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs, as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  13. GABAA-receptor plasticity during long-term exposure to and withdrawal from progesterone.

    Science.gov (United States)

    Biggio, G; Follesa, P; Sanna, E; Purdy, R H; Concas, A

    2001-01-01

    The subunit composition of native gamma-aminobutyric acid type A (GABAA) receptors is an important determinant of the role of these receptors in the physiological and pharmacological modulation of neuronal excitability and associated behavior. GABAA receptors containing the alpha 1 subunit mediate the sedative-hypnotic effects of benzodiazepines (Rudolph et al., 1999; McKernan et al., 2000), whereas the anxiolytic effects of these drugs are mediated by receptors that contain the alpha 2 subunit (Löw et al., 2000). In contrast, GABAA receptors containing the alpha 4 or alpha 6 subunits are insensitive to benzodiazepines (Barnard et al., 1998). Characterization of the functions of GABAA-receptors thus requires an understanding of the mechanisms by which the receptor subunit composition is regulated. The expression of specific GABAA-receptor subunit genes in neurons is affected by endogenous and pharmacological modulators of receptor function. The expression of GABAA-receptor subunit genes is thus regulated by neuroactive steroids both in vitro and in vivo. Such regulation occurs both during physiological conditions, such as pregnancy, and during pharmacologically induced conditions, such as pseudo-pregnancy and long-term treatment with steroid derivatives or anxiolytic-hypnotic drugs. Here, we summarize results obtained by our laboratory and by other groups pertaining to the effects of long-term exposure to, and subsequent withdrawal from, progesterone and its metabolite 3 alpha,5 alpha-tetrahydroprogesterone on both the expression of GABAA-receptor subunits and GABAA-receptor function.

  14. [GABA receptors: structure and functions].

    Science.gov (United States)

    Tiurenkov, I N; Perfilova, V N

    2010-10-01

    Data on the structure, localization, physiology, and pharmacology of GABA receptors are reviewed. These receptors belong to cis-loop receptors and consist of 16 subunits in various combinations and occur in both central nervous system and peripheral organs. There are a great number of their allosteric modulators, agonists and antagonists. Activation of GABA receptors is accompanied by changes in the permeability of plasmatic membranes for chloride ions, which is followed by depolarization (presynaptic inhibition) or hyperpolarization (postsynaptic inhibition). GABA receptors contain some topographically different binding sites, intended for the interaction both with the main mediator (GABA) and with allosteric regulators such as benzodiazepines, barbiturates, convulsants, ethanol, and neurosteroids.

  15. Role of the Rubisco Small Subunit

    Energy Technology Data Exchange (ETDEWEB)

    Spreitzer, Robert Joseph [Univ. of Nebraska, Lincoln, NE (United States)

    2016-11-05

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO2 fixation in photosynthesis. However, it is a slow enzyme, and O2 competes with CO2 at the active site. Oxygenation initiates the photorespiratory pathway, which also results in the loss of CO2. If carboxylation could be increased or oxygenation decreased, an increase in net CO2 fixation would be realized. Because Rubisco provides the primary means by which carbon enters all life on earth, there is much interest in engineering Rubisco to increase the production of food and renewable energy. Rubisco is located in the chloroplasts of plants, and it is comprised of two subunits. Much is known about the chloroplast-gene-encoded large subunit (rbcL gene), which contains the active site, but much less is known about the role of the nuclear-gene-encoded small subunit in Rubisco function (rbcS gene). Both subunits are coded by multiple genes in plants, which makes genetic engineering difficult. In the eukaryotic, green alga Chlamydomonas reinhardtii, it has been possible to eliminate all the Rubisco genes. These Rubisco-less mutants can be maintained by providing acetate as an alternative carbon source. In this project, focus has been placed on determining whether the small subunit might be a better genetic-engineering target for improving Rubisco. Analysis of a variable-loop structure (βA-βB loop) of the small subunit by genetic selection, directed mutagenesis, and construction of chimeras has shown that the small subunit can influence CO2/O2 specificity. X-ray crystal structures of engineered chimeric-loop enzymes have indicated that additional residues and regions of the small subunit may also contribute to Rubisco function. Structural dynamics of the small-subunit carboxyl terminus was also investigated. Alanine-scanning mutagenesis of the most-conserved small-subunit residues has identified a

  16. 4 subunit of nicotinic acetylcholine receptor polymorphisms exhibit ...

    African Journals Online (AJOL)

    A.B. Ruzilawati

    2015-09-06

    Sep 6, 2015 ... chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The PCR product was digested with restriction enzymes AfeI and Sau96I, respectively. Results and conclusion: We found that the AA genotype frequency for CHRNA4 rs2236196 polymorphism in the smoker group was 80.6% ...

  17. Editing modifies the GABA(A) receptor subunit alpha3

    DEFF Research Database (Denmark)

    Ohlson, Johan; Pedersen, Jakob Skou; Haussler, David

    2007-01-01

    Adenosine to inosine (A-to-I) pre-mRNA editing by the ADAR enzyme family has the potential to increase the variety of the proteome. This editing by adenosine deamination is essential in mammals for a functional brain. To detect novel substrates for A-to-I editing we have used an experimental meth...

  18. 28 CFR 51.6 - Political subunits.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All political...

  19. Complex GABAB receptor complexes: how to generate multiple functionally distinct units from a single receptor

    Directory of Open Access Journals (Sweden)

    Chanjuan eXU

    2014-02-01

    Full Text Available The main inhibitory neurotransmitter, GABA, acts on both ligand-gated and G protein-coupled receptors, the GABAA/C and GABAB receptors, respectively. The later play important roles in modulating many synapses, both at the pre- and post-synaptic levels, and are then still considered as interesting targets to treat a number of brain diseases, including addiction. For many years, several subtypes of GABAB receptors were expected, but cloning revealed only two genes that work in concert to generate a single type of GABAB receptor composed of two subunits. Here we will show that the signaling complexity of this unit receptor type can be largely increased through various ways, including receptor stoichiometry, subunit isoforms, membrane expression and localization, crosstalk with other receptors or interacting proteins. These recent data revealed how complexity of a receptor unit can be increased, observation that certainly are not unique to the GABAB receptor.

  20. Shear stress-dependent downregulation of the adhesion-G protein-coupled receptor CD97 on circulating leukocytes upon contact with its ligand CD55

    NARCIS (Netherlands)

    Karpus, Olga N.; Veninga, Henrike; Hoek, Robert M.; Flierman, Dennis; van Buul, Jaap D.; Vandenakker, Corianne C.; VanBavel, Ed; Medof, M. Edward; van Lier, René A. W.; Reedquist, Kris A.; Hamann, Jörg

    2013-01-01

    Adhesion G protein-coupled receptors (aGPCRs) are two-subunit molecules, consisting of an adhesive extracellular α subunit that couples noncovalently to a seven-transmembrane β subunit. The cooperation between the two subunits and the effect of endogenous ligands on the functioning of aGPCRs is

  1. Subunit mass analysis for monitoring antibody oxidation.

    Science.gov (United States)

    Sokolowska, Izabela; Mo, Jingjie; Dong, Jia; Lewis, Michael J; Hu, Ping

    2017-04-01

    Methionine oxidation is a common posttranslational modification (PTM) of monoclonal antibodies (mAbs). Oxidation can reduce the in-vivo half-life, efficacy and stability of the product. Peptide mapping is commonly used to monitor the levels of oxidation, but this is a relatively time-consuming method. A high-throughput, automated subunit mass analysis method was developed to monitor antibody methionine oxidation. In this method, samples were treated with IdeS, EndoS and dithiothreitol to generate three individual IgG subunits (light chain, Fd' and single chain Fc). These subunits were analyzed by reversed phase-ultra performance liquid chromatography coupled with an online quadrupole time-of-flight mass spectrometer and the levels of oxidation on each subunit were quantitated based on the deconvoluted mass spectra using the UNIFI software. The oxidation results obtained by subunit mass analysis correlated well with the results obtained by peptide mapping. Method qualification demonstrated that this subunit method had excellent repeatability and intermediate precision. In addition, UNIFI software used in this application allows automated data acquisition and processing, which makes this method suitable for high-throughput process monitoring and product characterization. Finally, subunit mass analysis revealed the different patterns of Fc methionine oxidation induced by chemical and photo stress, which makes it attractive for investigating the root cause of oxidation.

  2. The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rong-Guang; Westbrook, M.L. [Argonne National Lab., IL (United States); Maulik, P.R.; Reed, R.A.; Shipley, G. [Boston Univ., MA (United States). School of Medicine; Westbrook, E.M. [Argonne National Lab., IL (United States)]|[Northwestern Univ., Evanston, IL (United States); Scott, D.L.; Otwinowski, Z. [Yale Univ., New Haven, CT (United States)

    1996-02-01

    Cholera toxin, a heterohexameric AB{sub 5} enterotoxin released by Vibrio cholera, induces a profuse secretory diarrhea in susceptible hosts. Choleragenoid, the B subunit pentamer of cholera toxin, directs the enzymatic A subunit to its target by binding to GM{sub 1} gangliosides exposed on the luminal surface of intestinal epithelial cells. We have solved the crystal structure of choleragenoid at 2.3 {Angstrom} resolution by combining single isomorphous replacement with non-crystallographic symmetry averaging. The structure of the B subunits, and their pentameric arrangement, closely resembles that reported for the intact holotoxin (choleragen), the heat-labile enterotoxin from E. coli, and for a choleragenoid-GM{sub 1} pentasaccharide complex. In the absence of the A subunit the central cavity of the B pentamer is a highly solvated channel. The binding of the A subunit or the receptor pentasaccharide to choleragenoid has only a modest effect on the local stereochemistry and does not perceptibly alter the subunit interface.

  3. Molecular basis for amino acid sensing by family C G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Bräuner-Osborne, Hans

    2009-01-01

    Family C of human G-protein-coupled receptors (GPCRs) is constituted by eight metabotropic glutamate receptors, two gamma-aminobutyric acid type B (GABA(B1-2)) subunits forming the heterodimeric GABA(B) receptor, the calcium-sensing receptor, three taste1 receptors (T1R1-3), a promiscuous L...

  4. Risk capital allocation with autonomous subunits

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Smilgins, Aleksandrs

    2016-01-01

    the sum of the risks of the individual subunits. The question is how to allocate the risk capital of the group among the subunits in a fair way. In this paper we propose to use the Lorenz set as an allocation method. We show that the Lorenz set is operational and coherent. Moreover, we propose three......Risk capital allocation problems have been widely discussed in the academic literature. We consider a set of independent subunits collaborating in order to reduce risk: that is, when subunit portfolios are merged a diversification benefit arises and the risk of the group as a whole is smaller than...... fairness tests related directly to the problem of risk capital allocation and show that the Lorenz set satisfies all three tests in contrast to other well-known coherent methods. Finally, we discuss how to deal with non-uniqueness of the Lorenz set....

  5. Alternative Splicing of AMPA subunits in Prefrontal Cortical Fields of Cynomolgus Monkeys following Chronic Ethanol Self-Administration

    Directory of Open Access Journals (Sweden)

    Glen eAcosta

    2012-01-01

    Full Text Available Functional impairment of the orbital and medial prefrontal cortex underlies deficits in executive control that characterize addictive disorders, including alcohol addiction. Previous studies indicate that alcohol alters glutamate neurotransmission and one substrate of these effects may be through the reconfiguration of the subunits constituting ionotropic glutamate receptor (iGluR complexes. Glutamatergic transmission is integral to cortico-cortical and cortico-subcortical communication and alcohol-induced changes in the abundance of the receptor subunits and/or their splice variants may result in critical functional impairments of prefrontal cortex in alcohol dependence. To this end, the effects of chronic ethanol self-administration on glutamate receptor ionotropic AMPA (GRIA subunit variant and kainate (GRIK subunit mRNA expression were studied in the orbitofrontal cortex (OFC, dorsolateral prefrontal cortex (DLPFC and anterior cingulate cortex (ACC of male cynomolgus monkeys. In DLPFC, total AMPA splice variant expression and total kainate receptor subunit expression were significantly decreased in alcohol drinking monkeys. Expression levels of GRIA3 flip and flop and GRIA4 flop mRNAs in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. In OFC, AMPA subunit splice variant expression was reduced in the alcohol treated group. GRIA2 flop mRNA levels in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. Results from these studies provide further evidence of transcriptional regulation of iGluR subunits in the primate brain following chronic alcohol self-administration. Additional studies examining the cellular localization of such effects in the framework of primate prefrontal cortical circuitry are warranted.

  6. Variation in the interleukin-6 receptor gene associates with type 2 diabetes in Danish whites

    DEFF Research Database (Denmark)

    Hamid, Yasmin H; Urhammer, Søren A; Jensen, Dorit P

    2004-01-01

    Interleukin-6 (IL-6) is a pleiotropic cytokine involved in the pathophysiology of various human diseases such as type 2 diabetes and obesity. IL-6 signals via a heterodimeric receptor complex consisting of a soluble IL-6 alpha-subunit (IL-6 receptor [IL6R]) and a signal transducing subunit (gp130...

  7. SynDIG1 promotes excitatory synaptogenesis independent of AMPA receptor trafficking and biophysical regulation.

    Directory of Open Access Journals (Sweden)

    Kathryn L Lovero

    Full Text Available AMPA receptors-mediators of fast, excitatory transmission and synaptic plasticity in the brain-achieve great functional diversity through interaction with different auxiliary subunits, which alter both the trafficking and biophysical properties of these receptors. In the past several years an abundance of new AMPA receptor auxiliary subunits have been identified, adding astounding variety to the proteins known to directly bind and modulate AMPA receptors. SynDIG1 was recently identified as a novel AMPA receptor interacting protein that directly binds to the AMPA receptor subunit GluA2 in heterologous cells. Functionally, SynDIG1 was found to regulate the strength and density of AMPA receptor containing synapses in hippocampal neurons, though the way in which SynDIG1 exerts these effects remains unknown. Here, we aimed to determine if SynDIG1 acts as a traditional auxiliary subunit, directly regulating the function and localization of AMPA receptors in the rat hippocampus. We find that, unlike any of the previously characterized AMPA receptor auxiliary subunits, SynDIG1 expression does not impact AMPA receptor gating, pharmacology, or surface trafficking. Rather, we show that SynDIG1 regulates the number of functional excitatory synapses, altering both AMPA and NMDA receptor mediated transmission. Our findings suggest that SynDIG1 is not a typical auxiliary subunit to AMPA receptors, but instead is a protein critical to excitatory synaptogenesis.

  8. YC-1 BINDING TO THE BETA SUBUNIT OF SOLUBLE GUANYLYL CYCLASE OVERCOMES ALLOSTERIC INHIBITION BY THE ALPHA SUBUNIT

    Science.gov (United States)

    Purohit, Rahul; Fritz, Bradley G.; The, Juliana; Issaian, Aaron; Weichsel, Andrzej; David, Cynthia L.; Campbell, Eric; Hausrath, Andrew C.; Rassouli-Taylor, Leida; Garcin, Elsa D.; Gage, Matthew J.; Montfort, William R.

    2014-01-01

    Soluble guanylate cyclase (sGC) is a heterodimeric heme protein and the primary nitric oxide receptor. NO binding stimulates cyclase activity, leading to regulation of cardiovascular physiology and making sGC an attractive target for drug discovery. YC-1 and related compounds stimulate sGC both independently and synergistically with NO and CO binding; however, where the compounds bind and how they work remains unknown. Using linked-equilibria binding measurements, surface plasmon resonance, and domain truncations in Manduca sexta and bovine sGC, we demonstrate that YC-1 binds near or directly to the heme-containing domain of the beta subunit. In the absence of CO, YC-1 binds with Kd = 9–21 μM, depending on construct. In the presence of CO, these values decrease to 0.6–1.1 μM. Pfizer compound 25 bound ~10-fold weaker than YC-1 in the absence of CO whereas compound BAY 41–2272 bound particularly tightly in the presence of CO (Kd = 30–90 nM). Additionally, we found that CO binding is much weaker to heterodimeric sGC proteins (Kd = 50–100 μM) than to the isolated heme domain (Kd = 0.2 μM for Manduca beta H-NOX/PAS). YC-1 greatly enhanced CO binding to heterodimeric sGC, as expected (Kd = ~1 μM). These data indicate the alpha subunit induces a heme pocket conformation with lower affinity for CO and NO. YC-1 family compounds bind near the heme domain, overcoming the alpha subunit effect and inducing a heme pocket conformation with high affinity. We propose this high-affinity conformation is required for the full-length protein to achieve high catalytic activity. PMID:24328155

  9. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors

    DEFF Research Database (Denmark)

    Pandey, A; Podtelejnikov, A V; Blagoev, B

    2000-01-01

    Oligomerization of receptor protein tyrosine kinases such as the epidermal growth factor receptor (EGFR) by their cognate ligands leads to activation of the receptor. Transphosphorylation of the receptor subunits is followed by the recruitment of signaling molecules containing src homology 2 (SH2...

  10. Haemocytes from Pseudoplusia includens express multiple alpha and beta integrin subunits.

    Science.gov (United States)

    Lavine, M D; Strand, M R

    2003-10-01

    Cellular immune responses such as encapsulation involve the adhesion of one or more classes of haemocytes. How insect haemocytes recognize encapsulation targets as foreign or the identity of the molecules regulating haemocyte adhesion is unknown. One of the most important classes of adhesion receptors in mammalian immune cells is the integrins, which form functional heterodimers through different combinations of alpha and beta subunits. Prior studies with the moth Pseudoplusia includens indicated that encapsulation depends on two classes of haemocytes called granulocytes and plasmatocytes. Here we report the cloning and identification of three alpha integrin subunits (alphaPi1-3) and one beta subunit (betaPi1) from P. includens. Northern blot analysis indicated that all four subunits are expressed in granulocytes and that three of the four subunits are expressed in plasmatocytes. Quantification of transcription patterns using real-time PCR revealed that expression of alphaPi2 and betaPi1 increased in granulocytes and plasmatocytes when binding to a foreign surface or forming a capsule. alphaPi2 transcription in plasmatocytes was further increased by granulocyte conditioned medium, plasmatocyte spreading peptide, and the integrin recognition peptide RGD. Collectively, these results suggest that one or more integrins play an important role in regulating haemocyte adhesion during encapsulation.

  11. Amygdala Infusions of an NR2B-Selective or an NR2A-Preferring NMDA Receptor Antagonist Differentially Influence Fear Conditioning and Expression in the Fear-Potentiated Startle Test

    Science.gov (United States)

    Walker, David L.; Davis, Michael

    2008-01-01

    Within the amygdala, most N-methyl-D-aspartic acid (NMDA) receptors consist of NR1 subunits in combination with either NR2A or NR2B subunits. Because the particular subunit composition greatly influences the receptors' properties, we investigated the contribution of both subtypes to fear conditioning and expression. To do so, we infused the…

  12. Analysis of odorant receptor protein function in the yellow fever mosquito, aedes aegypti

    Science.gov (United States)

    Odorant receptors (ORs) in insects are ligand-gated ion channels comprised of two subunits: a variable receptor and an obligatory co-receptor (Orco). This protein receptor complex of unknown stoichiometry interacts with an odor molecule leading to changes in permeability of the sensory dendrite, th...

  13. Neonatal Diabetes Caused by Activating Mutations in the Sulphonylurea Receptor

    Directory of Open Access Journals (Sweden)

    Peter Proks

    2013-06-01

    Full Text Available Adenosine triphosphate (ATP-sensitive potassium (KATP channels in pancreatic β-cells play a crucial role in insulin secretion and glucose homeostasis. These channels are composed of two subunits: a pore-forming subunit (Kir6.2 and a regulatory subunit (sulphonylurea receptor-1. Recent studies identified large number of gain of function mutations in the regulatory subunit of the channel which cause neonatal diabetes. Majority of mutations cause neonatal diabetes alone, however some lead to a severe form of neonatal diabetes with associated neurological complications. This review focuses on the functional effects of these mutations as well as the implications for treatment.

  14. Decreased surface expression of the δ subunit of the GABAAreceptor contributes to reduced tonic inhibition in dentate granule cells in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Zhang, Nianhui; Peng, Zechun; Tong, Xiaoping; Lindemeyer, A Kerstin; Cetina, Yliana; Huang, Christine S; Olsen, Richard W; Otis, Thomas S; Houser, Carolyn R

    2017-11-01

    While numerous changes in the GABA system have been identified in models of Fragile X Syndrome (FXS), alterations in subunits of the GABA A receptors (GABA A Rs) that mediate tonic inhibition are particularly intriguing. Considering the key role of tonic inhibition in controlling neuronal excitability, reduced tonic inhibition could contribute to FXS-associated disorders such as hyperactivity, hypersensitivity, and increased seizure susceptibility. The current study has focused on the expression and function of the δ subunit of the GABA A R, a major subunit involved in tonic inhibition, in granule cells of the dentate gyrus in the Fmr1 knockout (KO) mouse model of FXS. Electrophysiological studies of dentate granule cells revealed a marked, nearly four-fold, decrease in tonic inhibition in the Fmr1 KO mice, as well as reduced effects of two δ subunit-preferring pharmacological agents, THIP and DS2, supporting the suggestion that δ subunit-containing GABA A Rs are compromised in the Fmr1 KO mice. Immunohistochemistry demonstrated a small but statistically significant decrease in δ subunit labeling in the molecular layer of the dentate gyrus in Fmr1 KO mice compared to wildtype (WT) littermates. The discrepancy between the large deficits in GABA-mediated tonic inhibition in granule cells in the Fmr1 KO mice and only modest reductions in immunolabeling of the δ subunit led to studies of surface expression of the δ subunit. Cross-linking experiments followed by Western blot analysis demonstrated a small, non-significant decrease in total δ subunit protein in the hippocampus of Fmr1 KO mice, but a four-fold decrease in surface expression of the δ subunit in these mice. No significant changes were observed in total or surface expression of the α4 subunit protein, a major partner of the δ subunit in the forebrain. Postembedding immunogold labeling for the δ subunit demonstrated a large, three-fold, decrease in the number of symmetric synapses with

  15. Effect of the N-methyl-D-aspartate NR2B subunit antagonist ifenprodil on precursor cell proliferation in the hippocampus.

    OpenAIRE

    Bunk, Eva C; König, Hans-Georg; Prehn, Jochen HM; Kirby, Brian P

    2014-01-01

    The N-methyl-D-aspartate (NMDA) receptor, one of the ionotropic glutamate receptor, plays important physiological and pathological roles in learning and memory, neuronal development, acute and chronic neurological diseases, and neurogenesis. This work examines the contribution of the NR2B NMDA receptor subunit to adult neurogenesis/cell proliferation under physiological conditions and following an excitotoxic insult. We have previously shown in vitro that a discrete NMDA-induced, excitotoxic ...

  16. Three homologous subunits form a high affinity peptide-gated ion channel in Hydra.

    Science.gov (United States)

    Dürrnagel, Stefan; Kuhn, Anne; Tsiairis, Charisios D; Williamson, Michael; Kalbacher, Hubert; Grimmelikhuijzen, Cornelis J P; Holstein, Thomas W; Gründer, Stefan

    2010-04-16

    Recently, three ion channel subunits of the degenerin (DEG)/epithelial Na(+) channel (ENaC) gene family have been cloned from the freshwater polyp Hydra magnipapillata, the Hydra Na(+) channels (HyNaCs) 2-4. Two of them, HyNaC2 and HyNaC3, co-assemble to form an ion channel that is gated by the neuropeptides Hydra-RFamides I and II. The HyNaC2/3 channel is so far the only cloned ionotropic receptor from cnidarians and, together with the related ionotropic receptor FMRFamide-activated Na(+) channel (FaNaC) from snails, the only known peptide-gated ionotropic receptor. The HyNaC2/3 channel has pore properties, like a low Na(+) selectivity and a low amiloride affinity, that are different from other channels of the DEG/ENaC gene family, suggesting that a component of the native Hydra channel might still be lacking. Here, we report the cloning of a new ion channel subunit from Hydra, HyNaC5. The new subunit is closely related to HyNaC2 and -3 and co-localizes with HyNaC2 and -3 to the base of the tentacles. Coexpression in Xenopus oocytes of HyNaC5 with HyNaC2 and -3 largely increases current amplitude after peptide stimulation and affinity of the channel to Hydra-RFamides I and II. Moreover, the HyNaC2/3/5 channel has altered pore properties and amiloride affinity, more similarly to other DEG/ENaC channels. Collectively, our results suggest that the three homologous subunits HyNaC2, -3, and -5 form a peptide-gated ion channel in Hydra that could contribute to fast synaptic transmission.

  17. Altered nicotine reward-associated behavior following α4 nAChR subunit deletion in ventral midbrain.

    Directory of Open Access Journals (Sweden)

    Can Peng

    Full Text Available Nicotinic acetylcholine receptors containing α4 subunits (α4β2* nAChRs are critical for nicotinic cholinergic transmission and the addictive action of nicotine. To identify specific activities of these receptors in the adult mouse brain, we coupled targeted deletion of α4 nAChR subunits with behavioral and and electrophysiological measures of nicotine sensitivity. A viral-mediated Cre/lox approach allowed us to delete α4 from ventral midbrain (vMB neurons. We used two behavioral assays commonly used to assess the motivational effects of drugs of abuse: home-cage oral self-administration, and place conditioning. Mice lacking α4 subunits in vMB consumed significantly more nicotine at the highest offered nicotine concentration (200 μg/mL compared to control mice. Deletion of α4 subunits in vMB blocked nicotine-induced conditioned place preference (CPP without affecting locomotor activity. Acetylcholine-evoked currents as well as nicotine-mediated increases in synaptic potentiation were reduced in mice lacking α4 in vMB. Immunostaining verified that α4 subunits were deleted from both dopamine and non-dopamine neurons in the ventral tegmental area (VTA. These results reveal that attenuation of α4* nAChR function in reward-related brain circuitry of adult animals may increase nicotine intake by enhancing the rewarding effects and/or reducing the aversive effects of nicotine.

  18. Altered nicotine reward-associated behavior following α4 nAChR subunit deletion in ventral midbrain.

    Science.gov (United States)

    Peng, Can; Engle, Staci E; Yan, Yijin; Weera, Marcus M; Berry, Jennifer N; Arvin, Matthew C; Zhao, Guiqing; McIntosh, J Michael; Chester, Julia A; Drenan, Ryan M

    2017-01-01

    Nicotinic acetylcholine receptors containing α4 subunits (α4β2* nAChRs) are critical for nicotinic cholinergic transmission and the addictive action of nicotine. To identify specific activities of these receptors in the adult mouse brain, we coupled targeted deletion of α4 nAChR subunits with behavioral and and electrophysiological measures of nicotine sensitivity. A viral-mediated Cre/lox approach allowed us to delete α4 from ventral midbrain (vMB) neurons. We used two behavioral assays commonly used to assess the motivational effects of drugs of abuse: home-cage oral self-administration, and place conditioning. Mice lacking α4 subunits in vMB consumed significantly more nicotine at the highest offered nicotine concentration (200 μg/mL) compared to control mice. Deletion of α4 subunits in vMB blocked nicotine-induced conditioned place preference (CPP) without affecting locomotor activity. Acetylcholine-evoked currents as well as nicotine-mediated increases in synaptic potentiation were reduced in mice lacking α4 in vMB. Immunostaining verified that α4 subunits were deleted from both dopamine and non-dopamine neurons in the ventral tegmental area (VTA). These results reveal that attenuation of α4* nAChR function in reward-related brain circuitry of adult animals may increase nicotine intake by enhancing the rewarding effects and/or reducing the aversive effects of nicotine.

  19. Development of inflammation-induced hyperalgesia and allodynia is associated with the upregulation of extrasynaptic AMPA receptors in tonically firing lamina II dorsal horn neurons

    Directory of Open Access Journals (Sweden)

    Olga eKopach

    2012-10-01

    Full Text Available Persistent peripheral inflammation changes AMPA receptor (AMPAR trafficking in dorsal horn neurons by promoting internalization of GluR2-containing, Ca2+-impermeable AMPARs from the synapses and by increasing insertion of GluR1-containing, Ca2+-permeable AMPARs in extrasynaptic plasma membrane. These changes contribute to the maintenance of persistent inflammatory pain. However, much less is known about AMPAR trafficking during development of persistent inflammatory pain and direct studies of extrasynaptic AMPARs functioning during this period are still lacking. Using Complete Freund’s adjuvant (CFA-induced model of long-lasting peripheral inflammation, we showed that remarkable hyperalgesia and allodynia developes in 1–3 h after intraplantar CFA injection. By utilizing patch-clamp recording combined with Ca2+ imaging, we found a significant upregulation of extrasynaptic AMPARs in substantia gelatinosa (SG neurons of the rat spinal cord 2–3 h after CFA injection. This upregulation was manifested as a robust increase in the amplitude of AMPAR-mediated currents 2–3 h post-CFA. These changes were observed specifically in SG neurons characterized by intrinsic tonic firing properties, but not in those that exhibited strong adaptation. Our results indicate that CFA-induced inflammation increases functional expression of extrasynaptic AMPARs in tonically firing SG neurons during development of pain hypersensitivity and that this increase may contribute to the development of peripheral persistent pain.

  20. Cleft Lip Repair: The Hybrid Subunit Method

    OpenAIRE

    Tollefson, TT

    2016-01-01

    Copyright © 2016 by Thieme Medical Publishers, Inc. The unilateral cleft lip repair is one of the most rewarding and challenging of plastic surgery procedures. Surgeons have introduced a variety of straight line, geometric, and rotation-advancement designs, while in practice the majority of North American surgeons have been using hybrids of the rotation-advancement techniques. The anatomic subunit approach was introduced in 2005 by Fisher and has gained popularity, with early adopters of the ...

  1. allelic variation of hmw glutenin subunits of ethiopian bread wheat ...

    African Journals Online (AJOL)

    journal

    reduced subunits of glutenin proteins bands are separated: the high molecular weight (HMW) and low molecular weight (LMW) subunits (Payne et al.,1980; Jackson et al., 1983). The HMW glutenin subunits (GS) of wheat protein are quantitatively minor, but functionally an important group of gluten proteins in the process of ...

  2. 3D structure of muscle dihydropyridine receptor

    Directory of Open Access Journals (Sweden)

    Montserrat Samsó

    2015-01-01

    Full Text Available Excitation contraction coupling, the rapid and massive Ca2+ release under control of an action potential that triggers muscle contraction, takes places at specialized regions of the cell called triad junctions. There, a highly ordered supramolecular complex between the dihydropyridine receptor (DHPR and the ryanodine receptor (RyR1 mediates the quasi‐instantaneous conversion from T‐tubule depolarization into Ca2+ release from the sarcoplasmic reticulum (SR. The DHPR has several key modules required for EC coupling: the voltage sensors and II‐III loop in the alpha1s subunit, and the beta subunit. To gain insight into their molecular organization, this review examines the most updated 3D structure of the DHPR as obtained by transmission electron microscopy and image reconstruction. Although structure determination of a heteromeric membrane protein such as the DHPR is challenging, novel technical advances in protein expression and 3D labeling facilitated this task. The 3D structure of the DHPR complex consists of a main body with five irregular corners around its perimeter encompassing the transmembrane alpha 1s subunit besides the intracellular beta subunit, an extended extracellular alpha 2 subunit, and a bulky intracellular II‐III loop. The structural definition attained at 19 Å resolution enabled docking of the atomic coordinates of structural homologs of the alpha1s and beta subunits. These structural features, together with their relative location with respect to the RyR1, are discussed in the context of the functional data.

  3. Rice heterotrimeric G-protein gamma subunits (RGG1 and RGG2) are differentially regulated under abiotic stress.

    Science.gov (United States)

    Yadav, Dinesh Kumar; Islam, S M Shahinul; Tuteja, Narendra

    2012-07-01

    Heterotrimeric G-proteins (α, β and γ subunits) are primarily involved in diverse signaling processes by transducing signals from an activated transmembrane G-protein coupled receptor (GPCR) to appropriate downstream effectors within cells. The role of α and β G-protein subunits in salinity and heat stress has been reported but the regulation of γ subunit of plant G-proteins in response to abiotic stress has not heretofore been described. In the present study we report the isolation of full-length cDNAs of two isoforms of Gγ [RGG1(I), 282 bp and RGG2(I), 453 bp] from rice (Oryza sativa cv Indica group Swarna) and described their transcript regulation in response to abiotic stresses. Protein sequence alignment and pairwise comparison of γ subunits of Indica rice [RGG(I)] with other known plant G-protein γ subunits demonstrated high homology to barley (HvGs) while soybean (GmG2) and Arabidopsis (AGG1) were least related. The numbers of the exons and introns were found to be similar between RGG1(I) and RGG2(I), but their sizes were different. Analyses of promoter sequences of RGG(I) confirmed the presence of stress-related cis-regulatory signature motifs suggesting their active and possible independent roles in abiotic stress signaling. The transcript levels of RGG1(I) and RGG2(I) were upregulated following NaCl, cold, heat and ABA treatments. However, in drought stress only RGG1(I) was upregulated. Strong support by transcript profiling suggests that γ subunits play a critical role via cross talk in signaling pathways. These findings provide first direct evidence for roles of Gγ subunits of rice G-proteins in regulation of abiotic stresses. These findings suggest the possible exploitation of γ subunits of G-protein machinery for promoting stress tolerance in plants.

  4. Furosemide interactions with brain GABAA receptors

    OpenAIRE

    Korpi, Esa R; Lüddens, Hartmut

    1997-01-01

    The loop diuretic furosemide is known to antagonize the function of γ-aminobutyric acid type A (GABAA) receptors. The purpose of the present study was to examine the direct interaction of furosemide with the GABAA receptors by autoradiography and ligand binding studies with native rat and human receptors and with recombinant receptors composed of rat subunits.Autoradiography with [35S]-t-butylbicyclophosphorothionate ([35S]-TBPS) as a ligand indicated that furosemide (0.1–1 mM) reversed the 5...

  5. Gastrodin relieved complete Freund's adjuvant-induced spontaneous pain by inhibiting inflammatory response.

    Science.gov (United States)

    Sun, Ting; Wang, Jian; Li, Xiang; Li, Yu-Jiao; Feng, Dan; Shi, Wen-Long; Zhao, Ming-Gao; Wang, Jian-Bo; Wu, Yu-Mei

    2016-12-01

    The analgesic effects of gastrodin (GAS), an active component derived from the Chinese herb Tian ma (Gastrodia elata Blume), on chronic inflammatory pain of mice and the involved molecular mechanisms were investigated. GAS significantly attenuated mice chronic inflammatory pain induced by hindpaw injection of complete Freund's adjuvant (CFA) and the accompanying anxiety-like behaviors. GAS administration reduced CFA-induced up-regulation of GluR1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, GluN2A- and GluN2B-containing N-methyl-d-aspartate (NMDA) receptors, and Ca(2+)/calmodulin-dependent protein kinase II-alpha (CaMKII-α) in the anterior cingulate cortex (ACC). The GluN2A and GluN2B subunits of NMDA receptors, the GluR1 type of AMPA receptor, and CaMKII-α are key molecules responsible for neuroplasticity involved in chronic pain and the accompanying anxiety. Moreover, GAS administration reduced the activation of astrocyte and microglia and the induction of TNF-α and IL-6 in the ACC of the CFA-injected mice. Therefore, GAS administration relieved chronic pain, exerted anxiolytic effects by regulating neuroplasticity molecules, and attenuated the inflammatory response by reducing the induction of TNF-α and IL-6 in the ACC of the CFA-injected mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Global functions of extracellular, transmembrane and cytoplasmic domains of organic solute transporter β-subunit.

    Science.gov (United States)

    Christian, Whitney V; Hinkle, Patricia M

    2017-05-25

    Transport of bile acids across the basolateral membrane of the intestinal enterocyte is carried out by the organic solute transporter (Ost) composed of a seven-transmembrane domain (TMD) subunit (Ostα) and an ancillary single TMD subunit (Ostβ). Although previous investigations have demonstrated the importance of the TMD of Ostβ for its activity, further studies were conducted to assess the contributions of other regions of the Ostβ subunit. Transport activity was retained when Ostβ was truncated to contain only the TMD with 15 additional residues on each side and co-expressed with Ostα, whereas shorter fragments were inactive. To probe the broader functions of Ostβ segments, chimeric proteins were constructed in which N-terminal, TMD or C-terminal regions of Ostβ were fused to corresponding regions of receptor activity-modifying protein (RAMP1), a single TMD protein required by several seven-TMD G-protein-coupled receptors including the calcitonin receptor-like receptor (CLR). Ostβ/RAMP1 chimeras were expressed with Ostα and CLR. As expected, replacing the Ostβ TMD abolished transport activity; however, replacing either the entire N-terminal or entire C-terminal domain of Ostβ with RAMP1 sequences did not prevent plasma membrane localization or the ability to support [3H]taurocholate uptake. Co-immunoprecipitation experiments revealed that the C-terminus of Ostβ is a previously unrecognized site of interaction with Ostα. All chimeras containing N-terminal RAMP1 segments allowed co-expressed CLR to respond to agonists with strong increases in cyclic AMP. These results provide new insights into the structure and function of the heteromeric Ost transporter complex. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  7. G protein βγ subunits inhibit TRPM3 ion channels in sensory neurons.

    Science.gov (United States)

    Quallo, Talisia; Alkhatib, Omar; Gentry, Clive; Andersson, David A; Bevan, Stuart

    2017-08-15

    Transient receptor potential (TRP) ion channels in peripheral sensory neurons are functionally regulated by hydrolysis of the phosphoinositide PI(4,5)P2 and changes in the level of protein kinase mediated phosphorylation following activation of various G protein coupled receptors. We now show that the activity of TRPM3 expressed in mouse dorsal root ganglion (DRG) neurons is inhibited by agonists of the Gi-coupled µ opioid, GABA-B and NPY receptors. These agonist effects are mediated by direct inhibition of TRPM3 by Gβγ subunits, rather than by a canonical cAMP mediated mechanism. The activity of TRPM3 in DRG neurons is also negatively modulated by tonic, constitutive GPCR activity as TRPM3 responses can be potentiated by GPCR inverse agonists. GPCR regulation of TRPM3 is also seen in vivo where Gi/o GPCRs agonists inhibited and inverse agonists potentiated TRPM3 mediated nociceptive behavioural responses.

  8. Neurosteroid regulation of GABAA receptors

    Science.gov (United States)

    Smith, Sheryl S.; Shen, Hui; Gong, Qi Hua; Zhou, Xiangping

    2007-01-01

    Neurosteroids, such as the progesterone metabolite 3α-OH-5α[β]-pregnan-20-one (THP or [allo]pregnanolone), function as potent positive modulators of the GABAA receptor (GABAR) when acutely administered. However, fluctuations in the circulating levels of this steroid at puberty, across endogenous ovarian cycles, during pregnancy or following chronic stress produce periods of prolonged exposure and withdrawal, where changes in GABAR subunit composition may occur as compensatory responses to sustained levels of inhibition. A number of laboratories have demonstrated that both chronic administration of THP as well as its withdrawal transiently increase expression of the α4 subunit of the GABAR in several areas of the central nervous system (CNS) as well as in in vitro neuronal systems. Receptors containing this subunit are insensitive to benzodiazepine (BDZ) modulation and display faster deactivation kinetics, which studies suggest underlie hyperexcitability states. Similar increases in α4 expression are triggered by withdrawal from other GABA-modulatory compounds, such as ethanol and BDZ, suggesting a common mechanism. Other studies have reported puberty or estrous cycle-associated increases in δ-GABAR, the most sensitive target of these steroids which underlies a tonic inhibitory current. In the studies reported here, the effect of steroids on inhibition, which influence anxiety state and seizure susceptibility, depend not only on the subunit composition of the receptor but also on the direction of Cl- current generated by these target receptors. The effect of neurosteroids on GABAR function thus results in behavioral outcomes relevant for pubertal mood swings, premenstrual dysphoric disorder and catamenial epilepsy, which are due to fluctuations in endogenous steroids. PMID:17512983

  9. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    DEFF Research Database (Denmark)

    Schmidt, Signe Tandrup; Foged, Camilla; Korsholm, Karen Smith

    2016-01-01

    The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens...... for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce...... been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly...

  10. PRODUCTION AND PURIFICATION OF IgY ANTIBODIES AS A NOVEL TOOL TO PURIFY THE NR1 SUBUNIT OF NMDA RECEPTO

    Directory of Open Access Journals (Sweden)

    Edgar Antonio Reyes Montaño

    2011-12-01

    Full Text Available Producing polyclonal antibodies (IgY inchickens has advantages over those obtainedin other animal models, since theyhave been used as a tool for studyingdifferent proteins (NMDA glutamate receptorin our case, specifically the NR1subunit. We produced specific antibodiesagainst expression products by thealternative splicing of the gene encodingNMDA receptor NR1 subunit in adult ratbrain. Three peptides corresponding tothe splicing sites (N1, C1 and C2’ cassetteswere designed, synthesised and usedindividually as antigens in hens. Specificimmunoglobulins were purified fromyolks. The antibodies were then used forpurifying the NMDA receptor NR1 subunitusing affinity chromatography couplingthe three antibodies to the support.R

  11. The type I interferon receptor: structure, function, and evolution of a family business.

    Science.gov (United States)

    Mogensen, K E; Lewerenz, M; Reboul, J; Lutfalla, G; Uzé, G

    1999-10-01

    Recent results indicate that coherent models of how multiple interferons (IFN) are recognized and signal selectively through a common receptor are now feasible. A proposal is made that the IFN receptor, with its subunits IFNAR-1 and IFNAR-2, presents two separate ligand binding sites, and this double structure is both necessary and sufficient to ensure that the different IFN are recognized and can act selectively. The key feature is the duplication of the extracellular domain of the IFNAR-1 subunit and the configurational geometry that this imposes on the intracellular domains of the receptor subunits and their associated tyrosine kinases.

  12. Extensive neuroadaptive changes in cortical gene-transcript expressions of the glutamate system in response to repeated intermittent MDMA administration in adolescent rats

    Directory of Open Access Journals (Sweden)

    Malki Rana

    2008-04-01

    Full Text Available Abstract Background Many studies have focused on the implication of the serotonin and dopamine systems in neuroadaptive responses to the recreational drug 3,4-methylenedioxy-metamphetamine (MDMA. Less attention has been given to the major excitatory neurotransmitter glutamate known to be implicated in schizophrenia and drug addiction. The aim of the present study was to investigate the effect of repeated intermittent MDMA administration upon gene-transcript expression of the glutamate transporters (EAAT1, EAAT2-1, EAAT2-2, the glutamate receptor subunits of AMPA (GluR1, GluR2, GluR3, the glutamate receptor subunits of NMDA (NR1, NR2A and NR2B, as well as metabotropic glutamate receptors (mGluR1, mGluR2, mGluR3, mGluR5 in six different brain regions. Adolescent male Sprague Dawley rats received MDMA at the doses of 3 × 1 and 3 × 5 mg/kg/day, or 3× vehicle 3 hours apart, every 7th day for 4 weeks. The gene-transcript levels were assessed using real-time PCR validated with a range of housekeeping genes. Results The findings showed pronounced enhancements in gene-transcript expression of GluR2, mGluR1, mGluR5, NR1, NR2A, NR2B, EAAT1, and EAAT2-2 in the cortex at bregma +1.6. In the caudate putamen, mRNA levels of GluR3, NR2A, and NR2B receptor subunits were significantly increased. In contrast, the gene-transcript expression of GluR1 was reduced in the hippocampus. In the hypothalamus, there was a significant increase of GluR1, GluR3, mGluR1, and mGluR3 gene-transcript expressions. Conclusion Repeated intermittent MDMA administration induces neuroadaptive changes in gene-transcript expressions of glutamatergic NMDA and AMPA receptor subunits, metabotropic receptors and transporters in regions of the brain regulating reward-related associative learning, cognition, and memory and neuro-endocrine functions.

  13. Mutations in the extracellular domains of glutamate-gated chloride channel alpha3 and beta subunits from ivermectin-resistant Cooperia oncophora affect agonist sensitivity.

    Science.gov (United States)

    Njue, Annete I; Hayashi, Jon; Kinne, Lyle; Feng, Xiao-Peng; Prichard, Roger K

    2004-06-01

    Two full-length glutamate-gated chloride channel (GluCl) cDNAs, encoding GluClalpha3 and GluClbeta subunits, were cloned from ivermectin-susceptible (IVS) and -resistant (IVR) Cooperia oncophora adult worms. The IVS and IVR GluClalpha3 subunits differ at three amino acid positions, while the IVS and IVR GluClbeta subunits differ at two amino acid positions. The aim of this study was to determine whether mutations in the IVR subunits affect agonist sensitivity. The subunits were expressed singly and in combination in Xenopus laevis oocytes. Electrophysiological whole-cell voltage-clamp recordings showed that mutations in the IVR GluClalpha3 caused a modest but significant threefold loss of sensitivity to glutamate, the natural ligand for GluCl receptors. As well, a significant decrease in sensitivity to the anthelmintics ivermectin and moxidectin was observed in the IVR GluClalpha3 receptor. Mutations in the IVR GluClbeta subunit abolished glutamate sensitivity. Co-expressing the IVS GluClalpha3 and GluClbeta subunits resulted in heteromeric channels that were more sensitive to glutamate than the respective homomeric channels, demonstrating co-assembly of the subunits. In contrast, the heteromeric IVR channels were less sensitive to glutamate than the homomeric IVR GluClalpha3 channels. The heteromeric IVS channels were significantly more sensitive to glutamate than the heteromeric IVR channels. Of the three amino acids distinguishing the IVS and IVR GluClalpha3 subunits, only one of them, L256F, accounted for the differences in response between the IVS and IVR GluClalpha3 homomeric channels.

  14. The role of striatal NMDA receptors in drug addiction.

    Science.gov (United States)

    Ma, Yao-Ying; Cepeda, Carlos; Cui, Cai-Lian

    2009-01-01

    The past decade has witnessed an impressive accumulation of evidence indicating that the excitatory amino acid glutamate and its receptors, in particular the N-methyl-D-aspartate (NMDA) receptor subtype, play an important role in drug addiction. Various lines of research using animal models of drug addiction have demonstrated that drug-induced craving is accompanied by significant upregulation of NR2B subunit expression. Furthermore, selective blockade of NR2B-containing NMDA receptors in the striatum, especially in the nucleus accumbens (NAc) can inhibit drug craving and reinstatement. The purpose of this review is to examine the role of striatal NMDA receptors in drug addiction. After a brief description of glutamatergic innervation and NMDA receptor subunit distribution in the striatum, we discuss potential mechanisms to explain the role of striatal NMDA receptors in drug addiction by elucidating signaling cascades involved in the regulation of subunit expression and redistribution, phosphorylation of receptor subunits, as well as activation of intracellular signals triggered by drug experience. Understanding the mechanisms regulating striatal NMDA receptor changes in drug addiction will provide more specific and rational targets to counteract the deleterious effects of drug addiction.

  15. Fucosylation and protein glycosylation create functional receptors for cholera toxin

    DEFF Research Database (Denmark)

    Wands, Amberlyn M; Fujita, Akiko; McCombs, Janet E

    2015-01-01

    Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors using its B subunit (CTB). The ganglioside (glycolipid) GM1 is thought to be the sole CT receptor; however, the mechanism by which CTB binding to GM1 mediates internalization of CT remains enigmatic. Here we...... in normal human intestinal epithelia and could play a role in cholera....

  16. Diffusion barriers constrain receptors at synapses.

    Directory of Open Access Journals (Sweden)

    Marianne Renner

    Full Text Available The flux of neurotransmitter receptors in and out of synapses depends on receptor interaction with scaffolding molecules. However, the crowd of transmembrane proteins and the rich cytoskeletal environment may constitute obstacles to the diffusion of receptors within the synapse. To address this question, we studied the membrane diffusion of the γ-aminobutyric acid type A receptor (GABA(AR subunits clustered (γ2 or not (α5 at inhibitory synapses in rat hippocampal dissociated neurons. Relative to the extrasynaptic region, γ2 and α5 showed reduced diffusion and increased confinement at both inhibitory and excitatory synapses but they dwelled for a short time at excitatory synapses. In contrast, γ2 was ~3-fold more confined and dwelled ~3-fold longer in inhibitory synapses than α5, indicating faster synaptic escape of α5. Furthermore, using a gephyrin dominant-negative approach, we showed that the increased residency time of γ2 at inhibitory synapses was due to receptor-scaffold interactions. As shown for GABA(AR, the excitatory glutamate receptor 2 subunit (GluA2 of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR had lower mobility in both excitatory and inhibitory synapses but a higher residency time at excitatory synapses. Therefore barriers impose significant diffusion constraints onto receptors at synapses where they accumulate or not. Our data further reveal that the confinement and the dwell time but not the diffusion coefficient report on the synapse specific sorting, trapping and accumulation of receptors.

  17. Characterization of the receptor for the 1,4-dihydropyridine Ca sup 2+ channel modulators in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Leung, A.T.

    1989-01-01

    The 1,4-dihydropyridine receptor was purified in high yield from isolated rabbit skeletal muscle triads. The purified receptor contains four integral subunits: {alpha}{sub 1} (170 kDa), {alpha}{sub 2} (175/150 kDa), {beta} (52 kDa) and {gamma} (32 kDa) in a 1:1:1:1 stoichiometry. The {alpha}{sub 2} subunit is a glycoprotein that binds wheat germ agglutinin and its electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels is increased upon reduction whereas the {alpha}{sub 1} subunit does not exhibit these properties but is recognized by specific monoclonal antibodies. These monoclonal antibodies to the {alpha}{sub 1} subunit, as well as a specific monoclonal antibody to the {beta} subunit, are capable of immunoprecipitating dihydropyridine binding activity from digitonin-solubilized skeletal muscle triads as well as co-immunoprecipitating the {alpha}{sub 1} and {beta} subunits. The {alpha}{sub 1} and {beta} subunits are highly labile to mild trypsin digestion in isolated triads but the dihydropyridine binding activity of the receptor does not depend on an intact {alpha}{sub 1} (dihydropyridine binding) subunit. The {alpha}{sub 2} and {gamma} subunits are resistant to trypsin digestion and the proteolytic fragments of the {alpha} subunit remain associated with the {alpha}{sub 2} subunit even after solubilization of the receptor with digitonin. A binding site for the dihydropyridines is proposed based on the identification of a 28 kDa peptide that is both photoaffinity labeled with ({sup 3}H)azidopine and contains the epitope of a specific monoclonal antibody. Polyclonal antibodies raised against a synthetic peptide corresponding to the deduced carboxyl-terminus of the {alpha}{sub 1} subunit of the receptor did not react with the purified dihydropyridine receptor and skeletal muscle membranes from various sources.

  18. Three homologous subunits form a high affinity peptide-gated ion channel in Hydra

    DEFF Research Database (Denmark)

    Dürrnagel, Stefan; Kuhn, Anne; Tsiairis, Charisios D

    2010-01-01

    Recently, three ion channel subunits of the degenerin (DEG)/epithelial Na(+) channel (ENaC) gene family have been cloned from the freshwater polyp Hydra magnipapillata, the Hydra Na(+) channels (HyNaCs) 2-4. Two of them, HyNaC2 and HyNaC3, co-assemble to form an ion channel that is gated...... by the neuropeptides Hydra-RFamides I and II. The HyNaC2/3 channel is so far the only cloned ionotropic receptor from cnidarians and, together with the related ionotropic receptor FMRFamide-activated Na(+) channel (FaNaC) from snails, the only known peptide-gated ionotropic receptor. The HyNaC2/3 channel has pore...... properties, like a low Na(+) selectivity and a low amiloride affinity, that are different from other channels of the DEG/ENaC gene family, suggesting that a component of the native Hydra channel might still be lacking. Here, we report the cloning of a new ion channel subunit from Hydra, HyNaC5. The new...

  19. Hypersecretion of the alpha-subunit in clinically non-functioning pituitary adenomas: Diagnostic accuracy is improved by adding alpha-subunit/gonadotropin ratio to levels of alpha-subunit

    DEFF Research Database (Denmark)

    Andersen, Marianne; Ganc-Petersen, Joanna; Jørgensen, Jens O L

    2010-01-01

    In vitro, the majority of clinically non-functioning pituitary adenomas (NFPAs) produce gonadotropins or their alpha-subunit; however, in vivo, measurements of alpha-subunit levels may not accurately detect the hypersecretion of the alpha-subunit.......In vitro, the majority of clinically non-functioning pituitary adenomas (NFPAs) produce gonadotropins or their alpha-subunit; however, in vivo, measurements of alpha-subunit levels may not accurately detect the hypersecretion of the alpha-subunit....

  20. Postsynaptic GABAB receptors enhance extrasynaptic GABAA receptor function in dentate gyrus granule cells.

    Science.gov (United States)

    Tao, Wucheng; Higgs, Matthew H; Spain, William J; Ransom, Christopher B

    2013-02-27

    Ambient GABA in the brain tonically activates extrasynaptic GABA(A) receptors, and activity-dependent changes in ambient GABA concentration can also activate GABA(B) receptors. To investigate an interaction between postsynaptic GABA(B) and GABA(A) receptors, we recorded GABA(A) currents elicited by exogenous GABA (10 μm) from dentate gyrus granule cells (DGGCs) in adult rat hippocampal slices. The GABA(B) receptor agonist baclofen (20 μm) enhanced GABA(A) currents. This enhancement was blocked by the GABA(B) receptor antagonist CGP 55845 and intracellular solutions containing the GTP analog GDP-β-s, indicating that baclofen was acting on postsynaptic GABA(B) receptors. Modulation of GABA(A) currents by postsynaptic GABA(B) receptors was not observed in CA1 pyramidal cells or layer 2/3 cortical pyramidal neurons. Baclofen reduced the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) but did not alter sIPSC amplitude or kinetics. Thus, GABA(A) receptors activated at synapses were not modulated by postsynaptic GABA(B) receptors. In contrast, tonic GABA currents and currents activated by the GABA(A) receptor δ subunit-selective agonist THIP (10 μm) were potentiated by baclofen. Our data indicate that postsynaptic GABA(B) receptors enhance the function of extrasynaptic GABA(A) receptors, including δ subunit-containing receptors that mediate tonic inhibition in DGGCs. The modulation of GABA(A) receptor function by postsynaptic GABA(B) receptors is a newly identified mechanism that will influence the inhibitory tone of DGGCs when GABA(B) and GABA(A) receptors are both activated.

  1. A novel functional screening assay to monitor sweet taste receptor activation in vitro

    NARCIS (Netherlands)

    Bastiaan-Net, Shanna; Berg-Somhorst, van den Dianne B.P.M.; Ariëns, Renata M.C.; Paques, Marcel; Mes, Jurriaan J.

    2017-01-01

    The human sweet taste receptor is a heterodimer comprised of the class C G protein-coupled receptor (GPCR) subunits TAS1R2 and TAS1R3. A wide collection of sweet tasting compounds and modulators of sweet taste interact with this receptor. Although TAS1R2/TAS1R3-mediated signaling is well-studied,

  2. Stimulation of the Sigma-1 Receptor by DHEA Enhances Synaptic Efficacy and Neurogenesis in the Hippocampal Dentate Gyrus of Olfactory Bulbectomized Mice

    Science.gov (United States)

    Moriguchi, Shigeki; Shinoda, Yasuharu; Yamamoto, Yui; Sasaki, Yuzuru; Miyajima, Kosuke; Tagashira, Hideaki; Fukunaga, Kohji

    2013-01-01

    Dehydroepiandrosterone (DHEA) is the most abundant neurosteroid synthesized de novo in the central nervous system. We previously reported that stimulation of the sigma-1 receptor by DHEA improves cognitive function by activating calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C and extracellular signal-regulated kinase in the hippocampus in olfactory bulbectomized (OBX) mice. Here, we asked whether DHEA enhances neurogenesis in the subgranular zone of the hippocampal dentate gyrus (DG) and improves depressive-like behaviors observed in OBX mice. Chronic treatment with DHEA at 30 or 60 mg/kg p.o. for 14 days significantly improved hippocampal LTP impaired in OBX mice concomitant with increased CaMKII autophosphorylation and GluR1 (Ser-831) phosphorylation in the DG. Chronic DHEA treatment also ameliorated depressive-like behaviors in OBX mice, as assessed by tail suspension and forced swim tests, while a single DHEA treatment had no affect. DHEA treatment also significantly increased the number of BrdU-positive neurons in the subgranular zone of the DG of OBX mice, an increase inhibited by treatment with NE-100, a sigma-1 receptor antagonist. DHEA treatment also significantly increased phosphorylation of Akt (Ser-473), Akt (Ser-308) and ERK in the DG. Furthermore, GSK-3β (Ser-9) phosphorylation increased in the DG of OBX mice possibly accounting for increased neurogenesis through Akt activation. Finally, we confirmed that DHEA treatment of OBX mice increases the number of BrdU-positive neurons co-expressing β-catenin, a downstream GSK-3βtarget. Overall, we conclude that sigma-1 receptor stimulation by DHEA ameliorates OBX-induced depressive-like behaviors by increasing neurogenesis in the DG through activation of the Akt/GSK-3β/β-catenin pathway. PMID:23593332

  3. Stimulation of the sigma-1 receptor by DHEA enhances synaptic efficacy and neurogenesis in the hippocampal dentate gyrus of olfactory bulbectomized mice.

    Directory of Open Access Journals (Sweden)

    Shigeki Moriguchi

    Full Text Available Dehydroepiandrosterone (DHEA is the most abundant neurosteroid synthesized de novo in the central nervous system. We previously reported that stimulation of the sigma-1 receptor by DHEA improves cognitive function by activating calcium/calmodulin-dependent protein kinase II (CaMKII, protein kinase C and extracellular signal-regulated kinase in the hippocampus in olfactory bulbectomized (OBX mice. Here, we asked whether DHEA enhances neurogenesis in the subgranular zone of the hippocampal dentate gyrus (DG and improves depressive-like behaviors observed in OBX mice. Chronic treatment with DHEA at 30 or 60 mg/kg p.o. for 14 days significantly improved hippocampal LTP impaired in OBX mice concomitant with increased CaMKII autophosphorylation and GluR1 (Ser-831 phosphorylation in the DG. Chronic DHEA treatment also ameliorated depressive-like behaviors in OBX mice, as assessed by tail suspension and forced swim tests, while a single DHEA treatment had no affect. DHEA treatment also significantly increased the number of BrdU-positive neurons in the subgranular zone of the DG of OBX mice, an increase inhibited by treatment with NE-100, a sigma-1 receptor antagonist. DHEA treatment also significantly increased phosphorylation of Akt (Ser-473, Akt (Ser-308 and ERK in the DG. Furthermore, GSK-3β (Ser-9 phosphorylation increased in the DG of OBX mice possibly accounting for increased neurogenesis through Akt activation. Finally, we confirmed that DHEA treatment of OBX mice increases the number of BrdU-positive neurons co-expressing β-catenin, a downstream GSK-3βtarget. Overall, we conclude that sigma-1 receptor stimulation by DHEA ameliorates OBX-induced depressive-like behaviors by increasing neurogenesis in the DG through activation of the Akt/GSK-3β/β-catenin pathway.

  4. Identification of the sites for CaMK-II-dependent phosphorylation of GABA(A) receptors.

    Science.gov (United States)

    Houston, Catriona M; Lee, Henry H C; Hosie, Alastair M; Moss, Stephen J; Smart, Trevor G

    2007-06-15

    Phosphorylation can affect both the function and trafficking of GABA(A) receptors with significant consequences for neuronal excitability. Serine/threonine kinases can phosphorylate the intracellular loops between M3-4 of GABA(A) receptor beta and gamma subunits thereby modulating receptor function in heterologous expression systems and in neurons (1, 2). Specifically, CaMK-II has been demonstrated to phosphorylate the M3-4 loop of GABA(A) receptor subunits expressed as GST fusion proteins (3, 4). It also increases the amplitude of GABA(A) receptor-mediated currents in a number of neuronal cell types (5-7). To identify which substrate sites CaMK-II might phosphorylate and the consequent functional effects, we expressed recombinant GABA(A) receptors in NG108-15 cells, which have previously been shown to support CaMK-II modulation of GABA(A) receptors containing the beta3 subunit (8). We now demonstrate that CaMK-II mediates its effects on alpha1beta3 receptors via phosphorylation of Ser(383) within the M3-4 domain of the beta subunit. Ablation of beta3 subunit phosphorylation sites for CaMK-II revealed that for alphabetagamma receptors, CaMK-II has a residual effect on GABA currents that is not mediated by previously identified sites of CaMK-II phosphorylation. This residual effect is abolished by mutation of tyrosine phosphorylation sites, Tyr(365) and Tyr(367), on the gamma2S subunit, and by the tyrosine kinase inhibitor genistein. These results suggested that CaMK-II is capable of directly phosphorylating GABA(A) receptors and activating endogenous tyrosine kinases to phosphorylate the gamma2 subunit in NG108-15 cells. These findings were confirmed in a neuronal environment by expressing recombinant GABA(A) receptors in cerebellar granule neurons.

  5. Immunohistochemical localization of ionotropic glutamate receptors in the rat red nucleus.

    Science.gov (United States)

    Minbay, Zehra; Serter Kocoglu, Sema; Gok Yurtseven, Duygu; Eyigor, Ozhan

    2017-02-21

    In this study, we aimed to determine the presence as well as the diverse distribution of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptor subunits in the rat red nucleus. Using adult Sprague-Dawley rats as the experimental animals, immunohistochemistry was performed on 30 µm thick coronal brain sections with antibodies against α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (GluA1-4), kainate (GluK1, GluK2/3, and GluK5), and NMDA (GluN1 and GluN2A) receptor subunits. The results showed that all ionotropic glutamate receptor subunits are expressed in the red nucleus. Specific staining was localized in the neuron bodies and processes. However, the pattern of immunoreactivity and the number of labeled neurons changed depending on the type of ionotropic glutamate receptor subunits and the localization of neurons in the red nucleus. The neurons localized in the magnocellular part of the red nucleus were particularly immunopositive for GluA2, GluA4, GluK2/3, GluK5, GluN1, and GluN2A receptor proteins. In the parvocellular part of the red nucleus, ionotropic glutamate receptor subunit immunoreactivity of variable intensity (lightly to moderately stained) was detected in the neurons. These results suggest that red nucleus neurons in rat heterogeneously express ionotropic glutamate receptor subunits to form functional receptor channels. In addition, the likelihood of the coexpression of different subunits in the same subgroup of neurons suggests the formation of receptor channels with diverse structure by way of different subunit combination, and the possibility of various neuronal functions through these channels in the red nucleus.

  6. Diversity of heterotrimeric G-protein γ subunits in plants

    Directory of Open Access Journals (Sweden)

    Trusov Yuri

    2012-10-01

    Full Text Available Abstract Background Heterotrimeric G-proteins, consisting of three subunits Gα, Gβ and Gγ are present in most eukaryotes and mediate signaling in numerous biological processes. In plants, Gγ subunits were shown to provide functional selectivity to G-proteins. Three unconventional Gγ subunits were recently reported in Arabidopsis, rice and soybean but no structural analysis has been reported so far. Their relationship with conventional Gγ subunits and taxonomical distribution has not been yet demonstrated. Results After an extensive similarity search through plant genomes, transcriptomes and proteomes we assembled over 200 non-redundant proteins related to the known Gγ subunits. Structural analysis of these sequences revealed that most of them lack the obligatory C-terminal prenylation motif (CaaX. According to their C-terminal structures we classified the plant Gγ subunits into three distinct types. Type A consists of Gγ subunits with a putative prenylation motif. Type B subunits lack a prenylation motif and do not have any cysteine residues in the C-terminal region, while type C subunits contain an extended C-terminal domain highly enriched with cysteines. Comparative analysis of C-terminal domains of the proteins, intron-exon arrangement of the corresponding genes and phylogenetic studies suggested a common origin of all plant Gγ subunits. Conclusion Phylogenetic analyses suggest that types C and B most probably originated independently from type A ancestors. We speculate on a potential mechanism used by those Gγ subunits lacking isoprenylation motifs to anchor the Gβγ dimer to the plasma membrane and propose a new flexible nomenclature for plant Gγ subunits. Finally, in the light of our new classification, we give a word of caution about the interpretation of Gγ research in Arabidopsis and its generalization to other plant species.

  7. Assembly of catalytic subunits of aspartate transcarbamoylase from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.L.; Schachman, H.K.

    1980-10-01

    Although extensive studies have been conducted on the assembly of the allosteric enzyme, aspartate transcarbamoylase (ATCase) from isolate, intact catalytic (C) and regulatory (R) subunits, there has been little research on the formation of these subunits from individual catalytic (c) and regulatory (r) polypeptide chains. Such studies would be useful for evaluating the strengths of the interchain bonding domains within the subunits just as earlier experiments provided valuable data regarding interactions between the subunits in ATCase. The intact enzyme comprising two C trimers and three R dimers is designated as C/sub 2/R/sub 3/ or c/sub 6/r/sub 6/.

  8. Subcellular distribution of GABAB receptor homo- and hetero-dimers

    OpenAIRE

    Villemure, Josée-France; Adam, Lynda; Bevan, Nicola J.; Gearing, Katy; Chénier, Sébastien; Bouvier, Michel

    2005-01-01

    GBRs (GABAB receptors; where GABA stands for γ-aminobutyric acid) are G-protein-coupled receptors that mediate slow synaptic inhibition in the brain and spinal cord. In vitro assays have previously demonstrated that these receptors are heterodimers assembled from two homologous subunits, GBR1 and GBR2, neither of which is capable of producing functional GBR on their own. We have used co-immunoprecipitation in combination with bioluminescence and fluorescence resonance energy transfer approach...

  9. Localization of the AMPA subunit GluR2 in the outer plexiform layer of goldfish retina.

    Science.gov (United States)

    Klooster, J; Studholme, K M; Yazulla, S

    2001-12-10

    L-glutamate, the photoreceptor neurotransmitter, depolarizes horizontal cells and OFF bipolar cells by ionotropic AMPA-glutamate receptors. The AMPA-receptor subunit (GluR4) is localized to dendrites of OFF bipolar cells in goldfish retina. Here, we used immunohistochemical techniques to identify AMPA-receptor subunits on horizontal cell dendrites. A monoclonal antibody against rat GluR2, with high sequence homology to the recently cloned goldfish GluR2a receptor, was used for light- and electron-microscopical immunocytochemistry. Light- and dark-adapted retinas were analyzed, with no major difference in results. GluR2-immunoreactivity (IR) was restricted to a narrow band in the outer plexiform layer, in which it appeared as bright dome-shaped structures amidst numerous puncta. At the ultrastructural level, GluR2-IR was found in horizontal cell dendrites that invaginated cones and rods. Dendrites of OFF bipolar cells were not labeled. GluR2-IR was present mostly in horizontal cell dendrites that were the lateral elements of the triad, rather than in dendrites that were the central elements. In light-adapted retinas, GluR2-IR was found in many horizontal cell spinules. GluR2-IR was observed, on occasion, in a mixed rod/cone (Mb) ON bipolar cell process that innervated rod spherules. Verification of the Mb ON bipolar cell was made by protein kinase C and metabotropic mGluR1alpha immunolabeling. The presence of GluR2-IR in lateral elements suggests that lateral horizontal cell dendrites are postsynaptic to cones rather than only sites of feedback inhibition. All horizontal cell types express the GluR2 subunit, uniquely differentiating themselves from OFF bipolar cells that express the GluR4 subunit. This differentiation most likely has a major influence on the glutamate pharmacology and response kinetics of these cell types to glutamate. Copyright 2001 Wiley-Liss, Inc.

  10. Reconstruction of the nasal soft triangle subunit.

    Science.gov (United States)

    Constantine, Fadi C; Lee, Michael R; Sinno, Sammy; Thornton, James F

    2013-05-01

    Of all nine subunits, the soft triangle is perhaps the most challenging to recreate. The complexity of soft triangle reconstruction resides in its proximity to such important structures as the nasal tip, nasal ala, and distal columella. If the soft triangle is not properly reconstructed, problems with nasal function and aesthetics often arise. Anatomical asymmetries in the lower third and abnormal shadowing can occur following insufficient restoration. A retrospective review was completed of all patients undergoing reconstruction of the nasal soft triangle subunit at the University of Texas Southwestern Medical Center in Dallas, Texas, from 1995 to 2010. Defects with only external skin intact were classified as type I. Defects involving both skin and underlying soft tissue with intact mucosa were classified as type II. Finally, transmural defects with violated mucosa were classified as type III. Surgical outcomes were graded on a scale of I to IV. Grades given were based on the complexity of the existing defect and restoration of the soft triangle, with higher grades given when adjacent structures were not distorted. Of the 14 cases reviewed, two (14 percent) were type I defects, nine (64 percent) were type II defects, and three (21 percent) were type III defects. Three patients (21 percent) required revision with subsequent resurfacing and two (14 percent) required resurfacing alone. All but one patient (93 percent) had a grade of 2.0 or better, with the one patient opting not to undergo revision. The authors believe their method of soft triangle reconstruction using the proposed algorithm is an easy approach to soft triangle reconstruction that will yield consistent surgical and clinical success from aesthetic and functional perspectives. Furthermore, the authors were able to achieve excellent aesthetic outcomes without compromise or facing any structural complications. Therapeutic, IV.

  11. Interactions between subunits in heterodimeric Ncd molecules.

    Science.gov (United States)

    Kocik, Elzbieta; Skowronek, Krzysztof J; Kasprzak, Andrzej A

    2009-12-18

    The nonprocessive minus-end-directed kinesin-14 Ncd is involved in the organization of the microtubule (MT) network during mitosis. Only one of the two motor domains is involved in the interaction with the MT. The other head is tethered to the bound one. Here we prepared, purified, and characterized mutated Ncd molecules carrying point mutations in one of the heads, thus producing heterodimeric motors. The mutations tested included substitutions in Switch I and II: R552A, E585A, and E585D; the decoupling mutant N600K; and a deletion in the motor domain in one of the subunits resulting in a single-headed molecule (NcN). These proteins were isolated by two sequential affinity chromatography steps, followed by measurements of their affinities to MT, enzymatic properties, and the velocity of the microtubule gliding test in vitro. A striking observation is a low affinity of the single-headed NcN for MT both without nucleotides and in the presence of 5'-adenylyl-beta,gamma-imidodiphosphate, implying that the tethered head has a profound effect on the structure of the Ncd-MT complex. Mutated homodimers had no MT-activated ATPase and no motility, whereas NcN had motility comparable with that of the wild type Ncd. Although the heterodimers had one fully active and one inactive head, the ATPase and motility of Ncd heterodimers varied dramatically, clearly demonstrating that interactions between motor domains exist in Ncd. We also show that the bulk property of dimeric proteins that interact with the filament with only one of its heads depends also on the distribution of the filament-interacting subunits.

  12. Alpha-nicotinic acetylcholine receptor and tobacco smoke exposure : Effects on bronchial hyperresponsiveness in children

    NARCIS (Netherlands)

    Torjussen, Tale M.; Carlsen, Karin C. Lodrup; Munthe-Kaas, Monica C.; Mowinckel, Petter; Carlsen, Kai-Hakon; Helms, Peter J.; Gerritsen, Jorrit; Whyte, Moira K.; Lenney, Warren; Undlien, Dag E.; Shianna, Kevin V.; Zhu, Guohua; Pillai, Sreekumar G.

    Background: The CHRNA 3 and 5 genes on chromosome 15 encode the alpha subunits of the nicotinic acetylcholine receptor, mediating airway cholinergic activity. Polymorphisms are associated with cigarette smoking, chronic obstructive pulmonary disease, and lung cancer. Aims: To determine possible

  13. Dss1 Is a 26S Proteasome Ubiquitin Receptor

    OpenAIRE

    Paraskevopoulos, Konstantinos; Kriegenburg, Franziska; Tatham, Michael H; Rösner, Heike I; Medina, Bethan; Larsen, Ida B; Brandstrup, Rikke; Hardwick, Kevin G; Hay, Ronald T; Kragelund, Birthe B; Hartmann-Petersen, Rasmus; Gordon, Colin

    2014-01-01

    Summary The ubiquitin-proteasome system is the major pathway for protein degradation in eukaryotic cells. Proteins to be degraded are conjugated to ubiquitin chains that act as recognition signals for the 26S proteasome. The proteasome subunits Rpn10 and Rpn13 are known to bind ubiquitin, but genetic and biochemical data suggest the existence of at least one other substrate receptor. Here, we show that the phylogenetically conserved proteasome subunit Dss1 (Sem1) binds ubiquitin chains linked...

  14. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits

    Science.gov (United States)

    Robinson, James E.; Hastie, Kathryn M.; Cross, Robert W.; Yenni, Rachael E.; Elliott, Deborah H.; Rouelle, Julie A.; Kannadka, Chandrika B.; Smira, Ashley A.; Garry, Courtney E.; Bradley, Benjamin T.; Yu, Haini; Shaffer, Jeffrey G.; Boisen, Matt L.; Hartnett, Jessica N.; Zandonatti, Michelle A.; Rowland, Megan M.; Heinrich, Megan L.; Martínez-Sobrido, Luis; Cheng, Benson; de la Torre, Juan C.; Andersen, Kristian G.; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Gbakie, Michael; Kanneh, Lansana; Koroma, Veronica J.; Fonnie, Richard; Jalloh, Simbirie C.; Kargbo, Brima; Vandi, Mohamed A.; Gbetuwa, Momoh; Ikponmwosa, Odia; Asogun, Danny A.; Okokhere, Peter O.; Follarin, Onikepe A.; Schieffelin, John S.; Pitts, Kelly R.; Geisbert, Joan B.; Kulakoski, Peter C.; Wilson, Russell B.; Happi, Christian T.; Sabeti, Pardis C.; Gevao, Sahr M.; Khan, S. Humarr; Grant, Donald S.; Geisbert, Thomas W.; Saphire, Erica Ollmann; Branco, Luis M.; Garry, Robert F.

    2016-01-01

    Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design. PMID:27161536

  15. In silico comparative genomic analysis of GABAA receptor transcriptional regulation

    Directory of Open Access Journals (Sweden)

    Joyce Christopher J

    2007-06-01

    Full Text Available Abstract Background Subtypes of the GABAA receptor subunit exhibit diverse temporal and spatial expression patterns. In silico comparative analysis was used to predict transcriptional regulatory features in individual mammalian GABAA receptor subunit genes, and to identify potential transcriptional regulatory components involved in the coordinate regulation of the GABAA receptor gene clusters. Results Previously unreported putative promoters were identified for the β2, γ1, γ3, ε, θ and π subunit genes. Putative core elements and proximal transcriptional factors were identified within these predicted promoters, and within the experimentally determined promoters of other subunit genes. Conserved intergenic regions of sequence in the mammalian GABAA receptor gene cluster comprising the α1, β2, γ2 and α6 subunits were identified as potential long range transcriptional regulatory components involved in the coordinate regulation of these genes. A region of predicted DNase I hypersensitive sites within the cluster may contain transcriptional regulatory features coordinating gene expression. A novel model is proposed for the coordinate control of the gene cluster and parallel expression of the α1 and β2 subunits, based upon the selective action of putative Scaffold/Matrix Attachment Regions (S/MARs. Conclusion The putative regulatory features identified by genomic analysis of GABAA receptor genes were substantiated by cross-species comparative analysis and now require experimental verification. The proposed model for the coordinate regulation of genes in the cluster accounts for the head-to-head orientation and parallel expression of the α1 and β2 subunit genes, and for the disruption of transcription caused by insertion of a neomycin gene in the close vicinity of the α6 gene, which is proximal to a putative critical S/MAR.

  16. Sez6l2 regulates phosphorylation of ADD and neuritogenesis.

    Science.gov (United States)

    Yaguchi, Hiroaki; Yabe, Ichiro; Takahashi, Hidehisa; Watanabe, Masashi; Nomura, Taichi; Kano, Takahiro; Matsumoto, Masaki; Nakayama, Keiichi I; Watanabe, Masahiko; Hatakeyama, Shigetsugu

    2017-10-12

    Increasing evidence shows that immune-mediated mechanisms may contribute to the pathogenesis of central nervous system disorders including cerebellar ataxias, as indicated by the aberrant production of neuronal surface antibodies. We previously reported a patient with cerebellar ataxia associated with production of a new anti-neuronal antibody, anti-seizure-related 6 homolog like 2 (Sez6l2). Sez6l2 is a type 1 membrane protein that is highly expressed in the hippocampus and cerebellar cortex and mice lacking Sez6l2 protein family members develop ataxia. Here we used a proteomics-based approach to show that serum derived from this patient recognizes the extracellular domain of Sez6l2 and that Sez6l2 protein binds to both adducin (ADD) and glutamate receptor 1 (GluR1). Our results indicate that Sez6l2 is one of the auxiliary subunits of the AMPA receptor and acts as a scaffolding protein to link GluR1 to ADD. Furthermore, Sez6l2 overexpression upregulates ADD phosphorylation, whereas siRNA-mediated downregulation of Sez612 prevents ADD phosphorylation, suggesting that Sez6l2 modulates AMPA-ADD signal transduction. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A STEP forward in neural function and degeneration.

    Science.gov (United States)

    Baum, Matthew L; Kurup, Pradeep; Xu, Jian; Lombroso, Paul J

    2010-09-01

    STriatal-Enriched Phosphatase (STEP) is a brain-specific protein tyrosine phosphatase that plays a role in synaptic plasticity and has recently been implicated in neurodegenerative disease. STEP opposes the development of synaptic strengthening by dephosphorylating and inactivating key signaling proteins that include the MAP kinases ERK1/2 and p38, as well as the tyrosine kinase Fyn. STEP also dephosphorylates the GluR2 subunit of the AMPAR and the NR2B subunit of the NMDAR, which leads to internalization of the NR1/NR2B and GluR1/GluR2 receptors. STEP levels and activity are regulated through phosphorylation, local translation, ubiquitination and degradation and proteolytic cleavage. Here we review recent progress in understanding the normal regulation of STEP and how this regulation is disrupted in Alzheimer's disease, in which abnormally increased STEP levels and activity contribute to the cognitive deficits.

  18. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels

    Science.gov (United States)

    Neely, Alan; Hidalgo, Patricia

    2014-01-01

    Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826

  19. Structure-function of proteins interacting with the alpha1 pore-forming subunit of high voltage-activated calcium channel

    Directory of Open Access Journals (Sweden)

    Alan eNeely

    2014-06-01

    Full Text Available Openings of high-voltage-activated calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, high-voltage-activated calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1 associated with four additional polypeptide chains β, α2, δ and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of high-voltage-activated calcium channels.

  20. Expression and purification of the central stalk subunits of Na + ...

    African Journals Online (AJOL)

    , NtpD and NtpG subunits. The aim of the present study was cloning and expression of these central stalk subunits of E. hirae V-type Na+-ATPase. Here we cloned the synthesized DNA fragments, corresponding to ntpC, ntpD and ntpG genes, ...

  1. Differential Alteration in Expression of Striatal GABAAR Subunits in Mouse Models of Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Zhuowei Du

    2017-06-01

    Full Text Available Huntington’s disease (HD is a neurodegenerative disorder characterized by progressive motor symptoms that are preceded by cognitive deficits and is considered as a disorder that primarily affects forebrain striatal neurons. To gain a better understanding of the molecular and cellular mechanisms associated with disease progression, we analyzed the expression of proteins involved in GABAergic neurotransmission in the striatum of the R6/1 transgenic mouse model. Western blot, quantitative PCR and immunohistochemical analyses were conducted on male R6/1 mice and age-matched wild type littermates. Analyses were performed on 2 and 6 month-old animals, respectively, before and after the onset of motor symptoms. Expression of GAD 67, GAD 65, NL2, or gephyrin proteins, involved in GABA synthesis or synapse formation did not display major changes. In contrast, expression of α1, α3 and α5 GABAAR subunits was increased while the expression of δ was decreased, suggesting a change in tonic- and phasic inhibitory transmission. Western blot analysis of the striatum from 8 month-old Hdh Q111, a knock-in mouse model of HD with mild deficits, confirmed the α1 subunit increased expression. From immunohistochemical analyses, we also found that α1 subunit expression is increased in medium-sized spiny projection neurons (MSN and decreased in parvalbumin (PV-expressing interneurons at 2 and 6 months in R6/1 mice. Moreover, α2 subunit labeling on the PV and MSN cell membranes was increased at 2 months and decreased at 6 months. Alteration of gene expression in the striatum and modification of GABAA receptor subtypes in both interneurons and projection neurons suggested that HD mutation has a profound effect on synaptic plasticity at an early stage, before the onset of motor symptoms. These results also indicate that cognitive and other behavioral deficits may be associated with changes in GABAergic neurotransmission that consequently could be a relevant target

  2. INTRINSIC REGULATION OF HEMOGLOBIN EXPRESSION BY VARIABLE SUBUNIT INTERFACE STRENGTHS

    Science.gov (United States)

    Manning, James M.; Popowicz, Anthony M.; Padovan, Julio C.; Chait, Brian T.; Manning, Lois R.

    2012-01-01

    SUMMARY The expression of the six types of human hemoglobin subunits over time is currently considered to be regulated mainly by transcription factors that bind to upstream control regions of the gene (the “extrinsic” component of regulation). Here we describe how subunit pairing and further assembly to tetramers in the liganded state is influenced by the affinity of subunits for one another (the “intrinsic” component of regulation). The adult hemoglobin dimers have the strongest subunit interfaces and the embryonic hemoglobins are the weakest with fetal hemoglobins of intermediate strength, corresponding to the temporal order of their expression. These variable subunit binding strengths and the attenuating effects of acetylation contribute to the differences with which these hemoglobin types form fu