WorldWideScience

Sample records for receptor fgfr phosphorylation

  1. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    Science.gov (United States)

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  2. Identification of fibroblast growth factor receptor 3 (FGFR3 as a protein receptor for botulinum neurotoxin serotype A (BoNT/A.

    Directory of Open Access Journals (Sweden)

    Birgitte P S Jacky

    Full Text Available Botulinum neurotoxin serotype A (BoNT/A causes transient muscle paralysis by entering motor nerve terminals (MNTs where it cleaves the SNARE protein Synaptosomal-associated protein 25 (SNAP25206 to yield SNAP25197. Cleavage of SNAP25 results in blockage of synaptic vesicle fusion and inhibition of the release of acetylcholine. The specific uptake of BoNT/A into pre-synaptic nerve terminals is a tightly controlled multistep process, involving a combination of high and low affinity receptors. Interestingly, the C-terminal binding domain region of BoNT/A, HC/A, is homologous to fibroblast growth factors (FGFs, making it a possible ligand for Fibroblast Growth Factor Receptors (FGFRs. Here we present data supporting the identification of Fibroblast Growth Factor Receptor 3 (FGFR3 as a high affinity receptor for BoNT/A in neuronal cells. HC/A binds with high affinity to the two extra-cellular loops of FGFR3 and acts similar to an agonist ligand for FGFR3, resulting in phosphorylation of the receptor. Native ligands for FGFR3; FGF1, FGF2, and FGF9 compete for binding to FGFR3 and block BoNT/A cellular uptake. These findings show that FGFR3 plays a pivotal role in the specific uptake of BoNT/A across the cell membrane being part of a larger receptor complex involving ganglioside- and protein-protein interactions.

  3. Novel mutation detection of fibroblast growth factor receptor 1 (FGFR1) gene, FGFR2IIIa, FGFR2IIIb, FGFR2IIIc, FGFR3, FGFR4 gene for craniosynostosis: A prospective study in Asian Indian patient.

    Science.gov (United States)

    Barik, Mayadhar; Bajpai, Minu; Malhotra, Arun; Samantaray, Jyotish Chandra; Dwivedi, Sadananda; Das, Sambhunath

    2015-01-01

    Craniosynostosis (CS) syndrome is an autosomal dominant condition classically combining craniosynostosis and non-syndromic craniosynostosis with digital anomalies of the hands and feet. The majority of cases are caused by heterozygous mutations in the third immunoglobulin-like domain (IgIII) of FGFR2, whilst a larger number of cases can be attributed to mutations outside this region of the protein. To find out the FGFR1, FGFR2, FGFR3 and FGFR4 gene in craniosynostosis syndrome. A hospital based prospective study. Prospective analysis of clinical records of patients registered in CS clinic from December 2007 to January 2015 was done in patients between 4 months to 13 years of age. We have performed genetic findings in a three generation Indian family with Craniosynostosis syndrome. We report for the first time the clinical and genetic findings in a three generation Indian family with Craniosynostosis syndrome caused by a heterozygous missense mutation, Thr 392 Thr and ser 311 try, located in the IgII domain of FGFR2. FGFR 3 and 4 gene basis syndrome was eponymously named. Genetic analysis demonstrated that 51/56 families to be unrelated. In FGFR3 gene 10/TM location of 1172 the nucleotide changes C>A, Ala 391 Glu 19/56 and Exon-19, 5q35.2 at conserved linker region the changes occurred pro 246 Arg in 25/56 families. Independent genetic origins, but phenotypic similarities in the 51 families add to the evidence supporting the theory of selfish spermatogonial selective advantage for this rare gain-of-function FGFR2 mutation.

  4. The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking

    DEFF Research Database (Denmark)

    Francavilla, Chiara; Cattaneo, Paola; Berezin, Vladimir

    2009-01-01

    different from that elicited by FGF-2. In contrast to FGF-induced degradation of endocytic FGFR1, NCAM promotes the stabilization of the receptor, which is recycled to the cell surface in a Rab11- and Src-dependent manner. In turn, FGFR1 recycling is required for NCAM-induced sustained activation of various...

  5. Fibroblast growth factor receptor (FGFR) alterations in squamous differentiated bladder cancer: a putative therapeutic target for a small subgroup.

    Science.gov (United States)

    Baldia, Philipp H; Maurer, Angela; Heide, Timon; Rose, Michael; Stoehr, Robert; Hartmann, Arndt; Williams, Sarah V; Knowles, Margaret A; Knuechel, Ruth; Gaisa, Nadine T

    2016-11-01

    Although drugable fibroblast growth factor receptor (FGFR) alterations in squamous cell carcinomas (SCC) of various entities are well known, little is known about FGFR modifications in squamous differentiated bladder cancer. Therefore, our study evaluated FGFR1-3 alterations as a putative therapeutic target in this subgroup. We analyzed 73 squamous differentiated bladder cancers (n = 10 pT2, n = 55 pT3, n = 8 pT4) for FGFR1-3 protein expression, FGFR1-3 copy number variations, FGFR3 chromosomal rearrangements (fluorescence in situ hybridization (FISH)) and FGFR3 mutations (SNapShot analysis). Only single cases displayed enhanced protein expression, most frequently FGFR3 overexpression (9.4% (6/64)). FISH showed no amplifications of FGFR1, 2 or 3. Break apart events were only slightly above the cut off in 12.1% (8/66) of cases and no FGFR3-TACC3 rearrangements could be proven by qPCR. FGFR3 mutations (p.S249C) were found in 8.5% (6/71) of tumors and were significantly associated with FGFR3 protein overexpression (p bladder cancer (n = 85), which revealed reduced overall expression of FGFR1 and FGFR2 in tumors compared to normal tissue, while expression of FGFR3 remained high. In the TCGA "squamous-like" subtype FGFR3 mutations were found in 4.9% and correlated with high FGFR3 RNA expression. Mutations of FGFR1 and FGFR2 were less frequent (2.4% and 1.2%). Hence, our comprehensive study provides novel insights into a subgroup of squamous differentiated bladder tumors that hold clues for novel therapeutic regimens and may benefit from FGFR3-targeted therapies.

  6. Tumor heterogeneity of fibroblast growth factor receptor 3 (FGFR3) mutations in invasive bladder cancer: implications for perioperative anti-FGFR3 treatment.

    Science.gov (United States)

    Pouessel, D; Neuzillet, Y; Mertens, L S; van der Heijden, M S; de Jong, J; Sanders, J; Peters, D; Leroy, K; Manceau, A; Maille, P; Soyeux, P; Moktefi, A; Semprez, F; Vordos, D; de la Taille, A; Hurst, C D; Tomlinson, D C; Harnden, P; Bostrom, P J; Mirtti, T; Horenblas, S; Loriot, Y; Houédé, N; Chevreau, C; Beuzeboc, P; Shariat, S F; Sagalowsky, A I; Ashfaq, R; Burger, M; Jewett, M A S; Zlotta, A R; Broeks, A; Bapat, B; Knowles, M A; Lotan, Y; van der Kwast, T H; Culine, S; Allory, Y; van Rhijn, B W G

    2016-07-01

    Fibroblast growth factor receptor 3 (FGFR3) is an actionable target in bladder cancer. Preclinical studies show that anti-FGFR3 treatment slows down tumor growth, suggesting that this tyrosine kinase receptor is a candidate for personalized bladder cancer treatment, particularly in patients with mutated FGFR3. We addressed tumor heterogeneity in a large multicenter, multi-laboratory study, as this may have significant impact on therapeutic response. We evaluated possible FGFR3 heterogeneity by the PCR-SNaPshot method in the superficial and deep compartments of tumors obtained by transurethral resection (TUR, n = 61) and in radical cystectomy (RC, n = 614) specimens and corresponding cancer-positive lymph nodes (LN+, n = 201). We found FGFR3 mutations in 13/34 (38%) T1 and 8/27 (30%) ≥T2-TUR samples, with 100% concordance between superficial and deeper parts in T1-TUR samples. Of eight FGFR3 mutant ≥T2-TUR samples, only 4 (50%) displayed the mutation in the deeper part. We found 67/614 (11%) FGFR3 mutations in RC specimens. FGFR3 mutation was associated with pN0 (P < 0.001) at RC. In 10/201 (5%) LN+, an FGFR3 mutation was found, all concordant with the corresponding RC specimen. In the remaining 191 cases, RC and LN+ were both wild type. FGFR3 mutation status seems promising to guide decision-making on adjuvant anti-FGFR3 therapy as it appeared homogeneous in RC and LN+. Based on the results of TUR, the deep part of the tumor needs to be assessed if neoadjuvant anti-FGFR3 treatment is considered. We conclude that studies on the heterogeneity of actionable molecular targets should precede clinical trials with these drugs in the perioperative setting. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1.

    Directory of Open Access Journals (Sweden)

    Christopher Terranova

    Full Text Available Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.

  8. The fibroblast growth factor receptor (FGFR) agonist FGF1 and the neural cell adhesion molecule-derived peptide FGL activate FGFR substrate 2alpha differently

    DEFF Research Database (Denmark)

    Chen, Yongshuo; Li, Shizhong; Berezin, Vladimir

    2010-01-01

    Activation of fibroblast growth factor (FGF) receptors (FGFRs) both by FGFs and by the neural cell adhesion molecule (NCAM) is crucial in the development and function of the nervous system. We found that FGFR substrate 2alpha (FRS2alpha), Src homologous and collagen A (ShcA), and phospholipase-Cg...

  9. Fibroblast Growth Factor (FGF-2) and Its Receptors FGFR-2 and FGFR-3 May Be Putative Biomarkers of Malignant Transformation of Potentially Malignant Oral Lesions into Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Nayak, Seema; Goel, Madhu Mati; Makker, Annu; Bhatia, Vikram; Chandra, Saumya; Kumar, Sandeep; Agarwal, S P

    2015-01-01

    There are several factors like angiogenesis, lymphangiogenesis, genetic alterations, mutational factors that are involved in malignant transformation of potentially malignant oral lesions (PMOLs) to oral squamous cell carcinoma (OSCC). Fibroblast growth factor-2 (FGF-2) is one of the prototypes of the large family of growth factors that bind heparin. FGF-2 induces angiogenesis and its receptors may play a role in synthesis of collagen. FGFs are involved in transmission of signals between the epithelium and connective tissue, and influence growth and differentiation of a wide variety of tissue including epithelia. The present study was undertaken to analyze expression of FGF-2 and its receptors FGFR-2 and FGFR-3 in 72 PMOLs, 108 OSCC and 52 healthy controls, and their role in risk assessment for malignant transformation of Leukoplakia (LKP) and Oral submucous fibrosis (OSMF) to OSCC. Immunohistochemistry was performed using antibodies against FGF-2, FGFR-2 and FGFR-3. IHC results were validated by Real Time PCR. Expression of FGF-2, FGFR-2 and FGFR-3 was upregulated from PMOLs to OSCC. While 90% (9/10) of PMOLs which showed malignant transformation (transformed) expressed FGF-2, only 24.19% cases (15/62) of PMOLs which were not transformed (untransformed) to OSCC expressed FGF-2. Similarly, FGFR-2 expression was seen in 16/62 (25.81%) of untransformed PMOLs and 8/10 (80%) cases of transformed PMOLs. FGFR-3 expression was observed in 23/62 (37.10%) cases of untransformed PMOLs and 6/10 (60%) cases of transformed PMOLs. A significant association of FGF-2 and FGFR-2 expression with malignant transformation from PMOLs to OSCC was observed both at phenotypic and molecular level. The results suggest that FGF-2 and FGFR-2 may be useful as biomarkers of malignant transformation in patients with OSMF and LKP.

  10. Clinical outcomes of myeloid/lymphoid neoplasms with fibroblast growth factor receptor-1 (FGFR1) rearrangement.

    Science.gov (United States)

    Umino, Kento; Fujiwara, Shin-Ichiro; Ikeda, Takashi; Toda, Yumiko; Ito, Shoko; Mashima, Kiyomi; Minakata, Daisuke; Nakano, Hirofumi; Yamasaki, Ryoko; Kawasaki, Yasufumi; Sugimoto, Miyuki; Yamamoto, Chihiro; Ashizawa, Masahiro; Hatano, Kaoru; Sato, Kazuya; Oh, Iekuni; Ohmine, Ken; Muroi, Kazuo; Kanda, Yoshinobu

    2018-02-28

    Myeloid/lymphoid neoplasms with fibroblast growth factor receptor-1 (FGFR1) rearrangement are hematopoietic stem cell disorders with a poor prognosis, but no established standard therapy. We experienced a patient with T-lymphoblastic lymphoma (LBL) associated with FGFR1 rearrangement who underwent cord blood transplantation, but died of pulmonary complication. We collected the clinical data of patients with FGFR1 rearrangement from the medical literature and analyzed 45 patients, including our patient. The primary diagnoses were myeloproliferative neoplasm (MPN) or myelodysplastic syndromes (MDS) in 14 and acute leukemia or LBL in 31. In MPN and MDS patients, the cumulative incidence of transformation to blast phase (BP) at 12 months was 46.2%. The 1-year overall survival (OS) from diagnosis in all cases was 43.1%. With regard to the impact of treatment response on survival, the achievement of complete response with a landmark at 2 months after diagnosis of BP was associated with a superior OS (40.0% vs. 26.0% P = 0.011 for 1-year OS from BP). Allogeneic hematopoietic stem cell transplantation (HSCT) was performed in 13 patients, and the 1-year OS from allogeneic HSCT was 61.5%. The hazard ratio for mortality was 0.34 (95% CI, 0.08-1.51, P = 0.15) for allogeneic HSCT treated as a time-dependent covariate, which suggests that allogeneic HSCT may confer a clinical benefit. The further accumulation of clinical data is needed to determine the optimal therapeutic approach for these neoplasms.

  11. Common mutations in the fibroblast growth factor receptor 3 (FGFR 3) gene account for achondroplasia, hypochondroplasia, and thanatophoric dwarfism

    Energy Technology Data Exchange (ETDEWEB)

    Bonaventure, J.; Rousseau, F.; Legeai-Mallet, L.; LeMerrer, M.; Munnich, A.; Maroteaux, P. [INSERM, Paris (France)

    1996-05-03

    The mapping of the achondroplasia locus to the short arm of chromosome 4 and the subsequent identification of a recurrent missense mutation (G380R) in the fibroblast growth factor receptor 3 (FGFR-3) gene has been followed by the detection of common FGFR-3 mutations in two clinically related disorders: thanatophoric dwarfism (types I and II) and hypochondroplasia. The relative clinical homogeneity of achondroplasia was substantiated by demonstration of its genetic homogeneity as more than 98% of all patients hitherto reported exhibit mutations in the transmembrane receptor domain. Although most hypochondroplasia cases were accounted for by a recurrent missense substitution (N540K) in the first tyrosine kinase (TK 1) domain of the receptor, a significant proportion (40%) of our patients did not harbor the N540K mutation and three hypochondroplasia families were not linked to the FGFR-3 locus, thus supporting clinical heterogeneity of this condition. In thanatophoric dwarfism (TD), a recurrent FGFR-3 mutation located in the second tyrosine kinase (TK 2) domain of the receptor was originally detected in 100% of TD II cases; in our series, seven distinct mutations in three different protein domains were identified in 25 of 26 TD I patients, suggesting that TD, like achondroplasia, is a genetically homogenous skeletal disorder. 31 refs., 4 figs., 2 tabs.

  12. The transmembrane domain of the p75 neurotrophin receptor stimulates phosphorylation of the TrkB tyrosine kinase receptor.

    Science.gov (United States)

    Saadipour, Khalil; MacLean, Michael; Pirkle, Sean; Ali, Solav; Lopez-Redondo, Maria-Luisa; Stokes, David L; Chao, Moses V

    2017-10-06

    The function of protein products generated from intramembraneous cleavage by the γ-secretase complex is not well defined. The γ-secretase complex is responsible for the cleavage of several transmembrane proteins, most notably the amyloid precursor protein that results in Aβ, a transmembrane (TM) peptide. Another protein that undergoes very similar γ-secretase cleavage is the p75 neurotrophin receptor. However, the fate of the cleaved p75 TM domain is unknown. p75 neurotrophin receptor is highly expressed during early neuronal development and regulates survival and process formation of neurons. Here, we report that the p75 TM can stimulate the phosphorylation of TrkB (tyrosine kinase receptor B). In vitro phosphorylation experiments indicated that a peptide representing p75 TM increases TrkB phosphorylation in a dose- and time-dependent manner. Moreover, mutagenesis analyses revealed that a valine residue at position 264 in the rat p75 neurotrophin receptor is necessary for the ability of p75 TM to induce TrkB phosphorylation. Because this residue is just before the γ-secretase cleavage site, we then investigated whether the p75(αγ) peptide, which is a product of both α- and γ-cleavage events, could also induce TrkB phosphorylation. Experiments using TM domains from other receptors, EGFR and FGFR1, failed to stimulate TrkB phosphorylation. Co-immunoprecipitation and biochemical fractionation data suggested that p75 TM stimulates TrkB phosphorylation at the cell membrane. Altogether, our results suggest that TrkB activation by p75(αγ) peptide may be enhanced in situations where the levels of the p75 receptor are increased, such as during brain injury, Alzheimer's disease, and epilepsy. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Phenobarbital Meets Phosphorylation of Nuclear Receptors.

    Science.gov (United States)

    Negishi, Masahiko

    2017-05-01

    Phenobarbital was the first therapeutic drug to be characterized for its induction of hepatic drug metabolism. Essentially at the same time, cytochrome P450, an enzyme that metabolizes drugs, was discovered. After nearly 50 years of investigation, the molecular target of phenobarbital induction has now been delineated to phosphorylation at threonine 38 of the constitutive androstane receptor (NR1I3), a member of the nuclear receptor superfamily. Determining this mechanism has provided us with the molecular basis to understand drug induction of drug metabolism and disposition. Threonine 38 is conserved as a phosphorylation motif in the majority of both mouse and human nuclear receptors, providing us with an opportunity to integrate diverse functions of nuclear receptors. Here, I review the works and accomplishments of my laboratory at the National Institutes of Health National Institute of Environmental Health Sciences and the future research directions of where our study of the constitutive androstane receptor might take us. U.S. Government work not protected by U.S. copyright.

  14. Expression of FGFR3 during human testis development and in germ cell-derived tumours of young adults.

    Science.gov (United States)

    Ewen, Katherine A; Olesen, Inge A; Winge, Sofia B; Nielsen, Ana R; Nielsen, John E; Graem, Niels; Juul, Anders; Rajpert-De Meyts, Ewa

    2013-01-01

    Observations in patients with an activating mutation of fibroblast growth factor receptor 3 (FGFR3) suggest a role for FGFR3 signalling in promoting proliferation or survival of germ cells. In this study, we aimed to identify the FGFR3 subtype and the ontogeny of expression during human testis development and to ascertain whether FGFR3 signalling is linked to germ cell proliferation and the pathogenesis of testicular germ cell tumours (TGCTs) of young adult men. Using RT-PCR, immunohistochemistry and Western blotting, we examined 58 specimens of human testes throughout development for FGFR3 expression, and then compared expression of FGFR3 with proliferation markers (PCNA or Ki67). We also analysed for FGFR3 expression 30 TGCTs and 28 testes containing the tumour precursor cell, carcinoma in situ (CIS). Fetal and adult testes expressed exclusively the FGFR3IIIc isoform. FGFR3 protein expression was restricted to the cytoplasm/plasma membrane of spermatogonia and was most prevalent at mid-gestation, infancy and from puberty onwards. Phosphorylated (p)FGFR was detected in pre-spermatogonia at mid-gestation and in spermatogonia during puberty and in the adult testis. Throughout normal human testis development, expression of FGFR3 did not directly correlate with proliferation markers. In preinvasive CIS cells and in TGCTs, including classical seminoma and embryonal carcinoma, FGFR3IIIc was detected only in a small number of cells, with a heterogeneous expression pattern. FGFR3 is an excellent marker for human pre-/spermatogonia throughout development. Signalling through this receptor is likely associated with spermatogonial survival rather than proliferation. FGFR3 is not expressed in gonocytes and may not be essential to the aetiology of TGCTs stemming from CIS.

  15. Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model.

    Science.gov (United States)

    Komla-Ebri, Davide; Dambroise, Emilie; Kramer, Ina; Benoist-Lasselin, Catherine; Kaci, Nabil; Le Gall, Cindy; Martin, Ludovic; Busca, Patricia; Barbault, Florent; Graus-Porta, Diana; Munnich, Arnold; Kneissel, Michaela; Di Rocco, Federico; Biosse-Duplan, Martin; Legeai-Mallet, Laurence

    2016-05-02

    Achondroplasia (ACH) is the most frequent form of dwarfism and is caused by gain-of-function mutations in the fibroblast growth factor receptor 3-encoding (FGFR3-encoding) gene. Although potential therapeutic strategies for ACH, which aim to reduce excessive FGFR3 activation, have emerged over many years, the use of tyrosine kinase inhibitor (TKI) to counteract FGFR3 hyperactivity has yet to be evaluated. Here, we have reported that the pan-FGFR TKI, NVP-BGJ398, reduces FGFR3 phosphorylation and corrects the abnormal femoral growth plate and calvaria in organ cultures from embryos of the Fgfr3Y367C/+ mouse model of ACH. Moreover, we demonstrated that a low dose of NVP-BGJ398, injected subcutaneously, was able to penetrate into the growth plate of Fgfr3Y367C/+ mice and modify its organization. Improvements to the axial and appendicular skeletons were noticeable after 10 days of treatment and were more extensive after 15 days of treatment that started from postnatal day 1. Low-dose NVP-BGJ398 treatment reduced intervertebral disc defects of lumbar vertebrae, loss of synchondroses, and foramen-magnum shape anomalies. NVP-BGJ398 inhibited FGFR3 downstream signaling pathways, including MAPK, SOX9, STAT1, and PLCγ, in the growth plates of Fgfr3Y367C/+ mice and in cultured chondrocyte models of ACH. Together, our data demonstrate that NVP-BGJ398 corrects pathological hallmarks of ACH and support TKIs as a potential therapeutic approach for ACH.

  16. Cell responses to FGFR3 signalling: growth, differentiation and apoptosis

    International Nuclear Information System (INIS)

    L'Hote, Corine G.M.; Knowles, Margaret A.

    2005-01-01

    FGFR3 is a receptor tyrosine kinase (RTK) of the FGF receptor family, known to have a negative regulatory effect on long bone growth. Fgfr3 knockout mice display longer bones and, accordingly, most germline-activating mutations in man are associated with dwarfism. Somatically, some of the same activating mutations are associated with the human cancers multiple myeloma, cervical carcinoma and carcinoma of the bladder. How signalling through FGFR3 can lead to either chondrocyte apoptosis or cancer cell proliferation is not fully understood. Although FGFR3 can be expressed as two main splice isoforms (IIIb or IIIc), there is no apparent link with specific cell responses, which may rather be associated with the cell type or its differentiation status. Depending on cell type, differential activation of STAT proteins has been observed. STAT1 phosphorylation seems to be involved in inhibition of chondrocyte proliferation while activation of the ERK pathway inhibits chondrocyte differentiation and B-cell proliferation (as in multiple myeloma). The role of FGFR3 in epithelial cancers (bladder and cervix) is not known. Some of the cell specificity may arise via modulation of signalling by crosstalk with other signalling pathways. Recently, inhibition of the ERK pathway in achondroplastic mice has provided hope for an approach to the treatment of dwarfism. Further understanding of the ability of FGFR3 to trigger different responses depending on cell type and cellular context may lead to treatments for both skeletal dysplasias and cancer

  17. Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia.

    Directory of Open Access Journals (Sweden)

    Masaki Matsushita

    Full Text Available Achondroplasia (ACH is one of the most common skeletal dysplasias with short stature caused by gain-of-function mutations in FGFR3 encoding the fibroblast growth factor receptor 3. We used the drug repositioning strategy to identify an FDA-approved drug that suppresses abnormally activated FGFR3 signaling in ACH. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, facilitates chondrocyte proliferation and mitigates loss of extracellular matrix in FGF2-treated rat chondrosarcoma (RCS cells. Meclozine also ameliorated abnormally suppressed proliferation of human chondrosarcoma (HCS-2/8 cells that were infected with lentivirus expressing constitutively active mutants of FGFR3-K650E causing thanatophoric dysplasia, FGFR3-K650M causing SADDAN, and FGFR3-G380R causing ACH. Similarly, meclozine alleviated abnormally suppressed differentiation of ATDC5 chondrogenic cells expressing FGFR3-K650E and -G380R in micromass culture. We also confirmed that meclozine alleviates FGF2-mediated longitudinal growth inhibition of embryonic tibia in bone explant culture. Interestingly, meclozine enhanced growth of embryonic tibia in explant culture even in the absence of FGF2 treatment. Analyses of intracellular FGFR3 signaling disclosed that meclozine downregulates phosphorylation of ERK but not of MEK in FGF2-treated RCS cells. Similarly, meclozine enhanced proliferation of RCS cells expressing constitutively active mutants of MEK and RAF but not of ERK, which suggests that meclozine downregulates the FGFR3 signaling by possibly attenuating ERK phosphorylation. We used the C-natriuretic peptide (CNP as a potent inhibitor of the FGFR3 signaling throughout our experiments, and found that meclozine was as efficient as CNP in attenuating the abnormal FGFR3 signaling. We propose that meclozine is a potential therapeutic agent for treating ACH and other FGFR3-related skeletal dysplasias.

  18. Meclozine Facilitates Proliferation and Differentiation of Chondrocytes by Attenuating Abnormally Activated FGFR3 Signaling in Achondroplasia

    Science.gov (United States)

    Matsushita, Masaki; Kitoh, Hiroshi; Ohkawara, Bisei; Mishima, Kenichi; Kaneko, Hiroshi; Ito, Mikako; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji

    2013-01-01

    Achondroplasia (ACH) is one of the most common skeletal dysplasias with short stature caused by gain-of-function mutations in FGFR3 encoding the fibroblast growth factor receptor 3. We used the drug repositioning strategy to identify an FDA-approved drug that suppresses abnormally activated FGFR3 signaling in ACH. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, facilitates chondrocyte proliferation and mitigates loss of extracellular matrix in FGF2-treated rat chondrosarcoma (RCS) cells. Meclozine also ameliorated abnormally suppressed proliferation of human chondrosarcoma (HCS-2/8) cells that were infected with lentivirus expressing constitutively active mutants of FGFR3-K650E causing thanatophoric dysplasia, FGFR3-K650M causing SADDAN, and FGFR3-G380R causing ACH. Similarly, meclozine alleviated abnormally suppressed differentiation of ATDC5 chondrogenic cells expressing FGFR3-K650E and -G380R in micromass culture. We also confirmed that meclozine alleviates FGF2-mediated longitudinal growth inhibition of embryonic tibia in bone explant culture. Interestingly, meclozine enhanced growth of embryonic tibia in explant culture even in the absence of FGF2 treatment. Analyses of intracellular FGFR3 signaling disclosed that meclozine downregulates phosphorylation of ERK but not of MEK in FGF2-treated RCS cells. Similarly, meclozine enhanced proliferation of RCS cells expressing constitutively active mutants of MEK and RAF but not of ERK, which suggests that meclozine downregulates the FGFR3 signaling by possibly attenuating ERK phosphorylation. We used the C-natriuretic peptide (CNP) as a potent inhibitor of the FGFR3 signaling throughout our experiments, and found that meclozine was as efficient as CNP in attenuating the abnormal FGFR3 signaling. We propose that meclozine is a potential therapeutic agent for treating ACH and other FGFR3-related skeletal dysplasias. PMID:24324705

  19. Soluble FGFR4 extracellular domain inhibits FGF19-induced activation of FGFR4 signaling and prevents nonalcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiang [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China); The First Affiliated Hospital of Xiamen University, Xiamen (China); Jiang, Yuan; An, Yuan; Zhao, Na; Zhao, Yang [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China); Yu, Chundong, E-mail: cdyu@xmu.edu.cn [State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen (China)

    2011-06-17

    Highlights: {yields} Soluble FGFR4 extracellular domain (FGFR4-ECD) was effectively expressed. {yields} FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling. {yields} FGFR4-ECD reduced palmitic acid-induced steatosis of HepG2 cells. {yields} FGFR4-ECD reduced tetracycline-induced fatty liver in mice. {yields} FGFR4-ECD partially restored tetracycline-repressed PPAR{alpha} expression. -- Abstract: Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whether neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.

  20. Soluble FGFR4 extracellular domain inhibits FGF19-induced activation of FGFR4 signaling and prevents nonalcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Chen, Qiang; Jiang, Yuan; An, Yuan; Zhao, Na; Zhao, Yang; Yu, Chundong

    2011-01-01

    Highlights: → Soluble FGFR4 extracellular domain (FGFR4-ECD) was effectively expressed. → FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling. → FGFR4-ECD reduced palmitic acid-induced steatosis of HepG2 cells. → FGFR4-ECD reduced tetracycline-induced fatty liver in mice. → FGFR4-ECD partially restored tetracycline-repressed PPARα expression. -- Abstract: Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whether neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor α (PPARα), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.

  1. Fibroblast Growth Factor Receptor 3 (FGFR3–Analyses of the S249C Mutation and Protein Expression in Primary Cervical Carcinomas

    Directory of Open Access Journals (Sweden)

    Haiyan Dai

    2001-01-01

    Full Text Available Fibroblast growth factor receptor 3 (FGFR3 seems to play an inhibitory role in bone development, as activating mutations in the gene underlie disorders such as achondroplasia and thanatophoric dysplasia. Findings from multiple myeloma (MM indicate that FGFR3 also can act as an oncogene, and mutation of codon 249 in the fibroblast growth factor receptor 3 (FGFR3 gene was recently detected in 3/12 primary cervical carcinomas. We have analysed 91 cervical carcinomas for this specific S249C mutation using amplification created restriction site methodology (ACRS, and detected no mutations. Immunohistochemistry was performed on 73 of the tumours. Reduced protein staining was seen in 43 (58.8% samples. Six of the tumours (8.2% revealed increased protein staining compared with normal cervical tissue. These patients had a better prognosis than those with reduced or normal levels, although not statistically significant. This report weakens the hypothesis of FGFR3 as an oncogene of importance in cervical carcinomas.

  2. Importance of tyrosine phosphorylation in receptor kinase complexes.

    Science.gov (United States)

    Macho, Alberto P; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-05-01

    Tyrosine phosphorylation is an important post-translational modification that is known to regulate receptor kinase (RK)-mediated signaling in animals. Plant RKs are annotated as serine/threonine kinases, but recent work has revealed that tyrosine phosphorylation is also crucial for the activation of RK-mediated signaling in plants. These initial observations have paved the way for subsequent detailed studies on the mechanism of activation of plant RKs and the biological relevance of tyrosine phosphorylation for plant growth and immunity. In this Opinion article we review recent reports on the contribution of RK tyrosine phosphorylation in plant growth and immunity; we propose that tyrosine phosphorylation plays a major regulatory role in the initiation and transduction of RK-mediated signaling in plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. FGFR2-Driven Signaling Counteracts Tamoxifen Effect on ERα-Positive Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Lukasz Turczyk

    2017-10-01

    Full Text Available Signaling mediated by growth factors receptors has long been suggested as one of the key factors responsible for failure of endocrine treatment in breast cancer (BCa. Herein we present that in the presence of tamoxifen, FGFs (Fibroblast Growth Factors promote BCa cell growth with the strongest effect being produced by FGF7. FGFR2 was identified as a mediator of FGF7 action and the FGFR2-induced signaling was found to underlie cancer-associated fibroblasts-dependent resistance to tamoxifen. FGF7/FGFR2-triggered pathway was shown to induce ER phosphorylation, ubiquitination and subsequent ER proteasomal degradation which counteracted tamoxifen-promoted ER stabilization. We also identified activation of PI3K/AKT signaling targeting ER-Ser167 and regulation of Bcl-2 expression as a mediator of FGFR2-promoted resistance to tamoxifen. Analysis of tissue samples from patients with invasive ductal carcinoma revealed an inversed correlation between expression of FGFR2 and ER, thus supporting our in vitro data. These results unveil the complexity of ER regulation by FGFR2-mediated signaling likely to be associated with BCa resistance to endocrine therapy.

  4. GABAB receptor phosphorylation regulates KCTD12-induced K+ current desensitization

    DEFF Research Database (Denmark)

    Adelfinger, L; Turecek, R; Ivankova, K

    2014-01-01

    released from the G-protein. Receptor-activated K+ currents desensitize in the sustained presence of agonist to avoid excessive effects on neuronal activity. Desensitization of K+ currents integrates distinct mechanistic underpinnings. GABAB receptor activity reduces protein kinase-A activity, which...... reduces phosphorylation of serine-892 in GABAB2 and promotes receptor degradation. This form of desensitization operates on the time scale of several minutes to hours. A faster form of desensitization is induced by the auxiliary subunit KCTD12, which interferes with channel activation by binding to the G......-protein βγ subunits. Here we show that the two mechanisms of desensitization influence each other. Serine-892 phosphorylation in heterologous cells rearranges KCTD12 at the receptor and slows KCTD12-induced desensitization. Likewise, protein kinase-A activation in hippocampal neurons slows fast...

  5. Pan-FGFR inhibition leads to blockade of FGF23 signaling, soft tissue mineralization, and cardiovascular dysfunction.

    Science.gov (United States)

    Yanochko, Gina M; Vitsky, Allison; Heyen, Jonathan R; Hirakawa, Brad; Lam, Justine L; May, Jeff; Nichols, Tim; Sace, Frederick; Trajkovic, Dusko; Blasi, Eileen

    2013-10-01

    The fibroblast growth factor receptors (FGFR) play a major role in angiogenesis and are desirable targets for the development of therapeutics. Groups of Wistar Han rats were dosed orally once daily for 4 days with a small molecule pan-FGFR inhibitor (5mg/kg) or once daily for 6 days with a small molecule MEK inhibitor (3mg/kg). Serum phosphorous and FGF23 levels increased in all rats during the course of the study. Histologically, rats dosed with either drug exhibited multifocal, multiorgan soft tissue mineralization. Expression levels of the sodium phosphate transporter Npt2a and the vitamin D-metabolizing enzymes Cyp24a1 and Cyp27b1 were modulated in kidneys of animals dosed with the pan-FGFR inhibitor. Both inhibitors decreased ERK phosphorylation in the kidneys and inhibited FGF23-induced ERK phosphorylation in vitro in a dose-dependent manner. A separate cardiovascular outcome study was performed to monitor hemodynamics and cardiac structure and function of telemetered rats dosed with either the pan-FGFR inhibitor or MEK inhibitor for 3 days. Both compounds increased blood pressure (~+ 17 mmHg), decreased heart rate (~-75 bpm), and modulated echocardiography parameters. Our data suggest that inhibition of FGFR signaling following administration of either pan-FGFR inhibitor or MEK inhibitor interferes with the FGF23 pathway, predisposing animals to hyperphosphatemia and a tumoral calcinosis-like syndrome in rodents.

  6. A variant of fibroblast growth factor receptor 2 (Fgfr2 regulates left-right asymmetry in zebrafish.

    Directory of Open Access Journals (Sweden)

    Da-Wei Liu

    Full Text Available Many organs in vertebrates are left-right asymmetrical located. For example, liver is at the right side and stomach is at the left side in human. Fibroblast growth factor (Fgf signaling is important for left-right asymmetry. To investigate the roles of Fgfr2 signaling in zebrafish left-right asymmetry, we used splicing blocking morpholinos to specifically block the splicing of fgfr2b and fgfr2c variants, respectively. We found that the relative position of the liver and the pancreas were disrupted in fgfr2c morphants. Furthermore, the left-right asymmetry of the heart became random. Expression pattern of the laterality controlling genes, spaw and pitx2c, also became random in the morphants. Furthermore, lefty1 was not expressed in the posterior notochord, indicating that the molecular midline barrier had been disrupted. It was also not expressed in the brain diencephalon. Kupffer's vesicle (KV size became smaller in fgfr2c morphants. Furthermore, KV cilia were shorter in fgfr2c morphants. We conclude that the fgfr2c isoform plays an important role in the left-right asymmetry during zebrafish development.

  7. A variant of fibroblast growth factor receptor 2 (Fgfr2) regulates left-right asymmetry in zebrafish.

    Science.gov (United States)

    Liu, Da-Wei; Hsu, Chia-Hao; Tsai, Su-Mei; Hsiao, Chung-Der; Wang, Wen-Pin

    2011-01-01

    Many organs in vertebrates are left-right asymmetrical located. For example, liver is at the right side and stomach is at the left side in human. Fibroblast growth factor (Fgf) signaling is important for left-right asymmetry. To investigate the roles of Fgfr2 signaling in zebrafish left-right asymmetry, we used splicing blocking morpholinos to specifically block the splicing of fgfr2b and fgfr2c variants, respectively. We found that the relative position of the liver and the pancreas were disrupted in fgfr2c morphants. Furthermore, the left-right asymmetry of the heart became random. Expression pattern of the laterality controlling genes, spaw and pitx2c, also became random in the morphants. Furthermore, lefty1 was not expressed in the posterior notochord, indicating that the molecular midline barrier had been disrupted. It was also not expressed in the brain diencephalon. Kupffer's vesicle (KV) size became smaller in fgfr2c morphants. Furthermore, KV cilia were shorter in fgfr2c morphants. We conclude that the fgfr2c isoform plays an important role in the left-right asymmetry during zebrafish development.

  8. Stress induces pain transition by potentiation of AMPA receptor phosphorylation.

    Science.gov (United States)

    Li, Changsheng; Yang, Ya; Liu, Sufang; Fang, Huaqiang; Zhang, Yong; Furmanski, Orion; Skinner, John; Xing, Ying; Johns, Roger A; Huganir, Richard L; Tao, Feng

    2014-10-08

    Chronic postsurgical pain is a serious issue in clinical practice. After surgery, patients experience ongoing pain or become sensitive to incident, normally nonpainful stimulation. The intensity and duration of postsurgical pain vary. However, it is unclear how the transition from acute to chronic pain occurs. Here we showed that social defeat stress enhanced plantar incision-induced AMPA receptor GluA1 phosphorylation at the Ser831 site in the spinal cord and greatly prolonged plantar incision-induced pain. Interestingly, targeted mutation of the GluA1 phosphorylation site Ser831 significantly inhibited stress-induced prolongation of incisional pain. In addition, stress hormones enhanced GluA1 phosphorylation and AMPA receptor-mediated electrical activity in the spinal cord. Subthreshold stimulation induced spinal long-term potentiation in GluA1 phosphomimetic mutant mice, but not in wild-type mice. Therefore, spinal AMPA receptor phosphorylation contributes to the mechanisms underlying stress-induced pain transition. Copyright © 2014 the authors 0270-6474/14/3413737-10$15.00/0.

  9. The Adhesion Molecule KAL-1/anosmin-1 Regulates Neurite Branching through a SAX-7/L1CAM–EGL-15/FGFR Receptor Complex

    Directory of Open Access Journals (Sweden)

    Carlos A. Díaz-Balzac

    2015-06-01

    Full Text Available Neurite branching is essential for correct assembly of neural circuits, yet it remains a poorly understood process. For example, the neural cell adhesion molecule KAL-1/anosmin-1, which is mutated in Kallmann syndrome, regulates neurite branching through mechanisms largely unknown. Here, we show that KAL-1/anosmin-1 mediates neurite branching as an autocrine co-factor with EGL-17/FGF through a receptor complex consisting of the conserved cell adhesion molecule SAX-7/L1CAM and the fibroblast growth factor receptor EGL-15/FGFR. This protein complex, which appears conserved in humans, requires the immunoglobulin (Ig domains of SAX-7/L1CAM and the FN(III domains of KAL-1/anosmin-1 for formation in vitro as well as function in vivo. The kinase domain of the EGL-15/FGFR is required for branching, and genetic evidence suggests that ras-mediated signaling downstream of EGL-15/FGFR is necessary to effect branching. Our studies establish a molecular pathway that regulates neurite branching during development of the nervous system.

  10. Phosphorylation site dynamics of early T-cell receptor signaling

    DEFF Research Database (Denmark)

    Chylek, Lily A; Akimov, Vyacheslav; Dengjel, Jörn

    2014-01-01

    In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack...... that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites...... a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found...

  11. Gβ promotes pheromone receptor polarization and yeast chemotropism by inhibiting receptor phosphorylation.

    Science.gov (United States)

    Ismael, Amber; Tian, Wei; Waszczak, Nicholas; Wang, Xin; Cao, Youfang; Suchkov, Dmitry; Bar, Eli; Metodiev, Metodi V; Liang, Jie; Arkowitz, Robert A; Stone, David E

    2016-04-12

    Gradient-directed cell migration (chemotaxis) and growth (chemotropism) are processes that are essential to the development and life cycles of all species. Cells use surface receptors to sense the shallow chemical gradients that elicit chemotaxis and chemotropism. Slight asymmetries in receptor activation are amplified by downstream signaling systems, which ultimately induce dynamic reorganization of the cytoskeleton. During the mating response of budding yeast, a model chemotropic system, the pheromone receptors on the plasma membrane polarize to the side of the cell closest to the stimulus. Although receptor polarization occurs before and independently of actin cable-dependent delivery of vesicles to the plasma membrane (directed secretion), it requires receptor internalization. Phosphorylation of pheromone receptors by yeast casein kinase 1 or 2 (Yck1/2) stimulates their internalization. We showed that the pheromone-responsive Gβγ dimer promotes the polarization of the pheromone receptor by interacting with Yck1/2 and locally inhibiting receptor phosphorylation. We also found that receptor phosphorylation is essential for chemotropism, independently of its role in inducing receptor internalization. A mathematical model supports the idea that the interaction between Gβγ and Yck1/2 results in differential phosphorylation and internalization of the pheromone receptor and accounts for its polarization before the initiation of directed secretion. Copyright © 2016, American Association for the Advancement of Science.

  12. Tyrosine Phosphorylation in Toll-Like Receptor Signaling

    Science.gov (United States)

    Chattopadhyay, Saurabh; Sen, Ganes C.

    2014-01-01

    There is a wealth of knowledge about how different Ser/Thr protein kinases participate in Toll-like receptor (TLR) signaling. In many cases, we know the identities of the Ser/Thr residues of various components of the TLR-signaling pathways that are phosphorylated, the functional consequences of the phosphorylation and the responsible protein kinases. In contrast, the analysis of Tyr-phosphorylation of TLRs and their signaling proteins is currently incomplete, because several existing analyses are not systematic or they do not rely on robust experimental data. Nevertheless, it is clear that many TLRs require, for signaling, ligand-dependent phosphorylation of specific Tyr residues in their cytoplasmic domains; the list includes TLR2, TLR3, TLR4, TLR5, TLR8 and TLR9. In this article, we discuss the current status of knowledge on the effect of Tyr-phosphorylation of TLRs and their signaling proteins on their biochemical and biological functions, the possible identities of the relevant protein tyrosine kinases (PTKs) and the nature of regulations of PTK-mediated activation of TLR signaling pathways. PMID:25022196

  13. Urokinase receptor expression involves tyrosine phosphorylation of phosphoglycerate kinase.

    Science.gov (United States)

    Shetty, Praveenkumar; Velusamy, Thirunavukkarasu; Bhandary, Yashodhar P; Liu, Ming C; Shetty, Sreerama

    2010-02-01

    The interaction of urokinase-type plasminogen activator (uPA) with its receptor, uPAR, plays a central role in several pathophysiological processes, including cancer. uPA induces its own cell surface receptor expression through stabilization of uPAR mRNA. The mechanism involves binding of a 51 nt uPAR mRNA coding sequence with phosphoglycerate kinase (PGK) to down regulate cell surface uPAR expression. Tyrosine phosphorylation of PGK mediated by uPA treatment enhances uPAR mRNA stabilization. In contrast, inhibition of tyrosine phosphorylation augments PGK binding to uPAR mRNA and attenuates uPA-induced uPAR expression. Mapping the specific peptide region of PGK indicated that its first quarter (amino acids 1-100) interacts with uPAR mRNA. To determine if uPAR expression by uPA is regulated through activation of tyrosine residues of PGK, we mutated the specific tyrosine residue and tested mutant PGK for its ability to interfere with uPAR expression. Inhibition of tyrosine phosphorylation by mutating Y76 residue abolished uPAR expression induced by uPA treatment. These findings collectively demonstrate that Y76 residue present in the first quarter of the PGK molecule is involved in lung epithelial cell surface uPAR expression. This region can effectively mimic the function of a whole PGK molecule in inhibiting tumor cell growth.

  14. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation

    Science.gov (United States)

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias

    2016-01-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  15. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression.

    Science.gov (United States)

    Feng, Shu; Shao, Longjiang; Yu, Wendong; Gavine, Paul; Ittmann, Michael

    2012-07-15

    Extensive correlative studies in human prostate cancer as well as studies in vitro and in mouse models indicate that fibroblast growth factor receptor (FGFR) signaling plays an important role in prostate cancer progression. In this study, we used a probe compound for an FGFR inhibitor, which potently inhibits FGFR-1-3 and significantly inhibits FGFR-4. The purpose of this study is to determine whether targeting FGFR signaling from all four FGFRs will have in vitro activities consistent with inhibition of tumor progression and will inhibit tumor progression in vivo. Effects of AZ8010 on FGFR signaling and invasion were analyzed using immortalized normal prostate epithelial (PNT1a) cells and PNT1a overexpressing FGFR-1 or FGFR-4. The effect of AZ8010 on invasion and proliferation in vitro was also evaluated in prostate cancer cell lines. Finally, the impact of AZ8010 on tumor progression in vivo was evaluated using a VCaP xenograft model. AZ8010 completely inhibits FGFR-1 and significantly inhibits FGFR-4 signaling at 100 nmol/L, which is an achievable in vivo concentration. This results in marked inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and invasion in PNT1a cells expressing FGFR-1 and FGFR-4 and all prostate cancer cell lines tested. Treatment in vivo completely inhibited VCaP tumor growth and significantly inhibited angiogenesis and proliferation and increased cell death in treated tumors. This was associated with marked inhibition of ERK phosphorylation in treated tumors. Targeting FGFR signaling is a promising new approach to treating aggressive prostate cancer.

  16. RACK1 forms a complex with FGFR1 and PKM2, and stimulates the growth and migration of squamous lung cancer cells.

    Science.gov (United States)

    Zhou, Chengzhi; Chen, Tao; Xie, Zhanhong; Qin, Yinyin; Ou, Yangming; Zhang, Jiexia; Li, Shiyue; Chen, Rongchang; Zhong, Nanshan

    2017-11-01

    Phosphorylation of Pyruvate Kinase M2 (PKM2) on Tyr105 by fibroblast growth factor receptor 1 (FGFR1) has been shown to promote its nuclear localization as well as cell growth in lung cancer. Better understanding the regulation of this process would benefit the clinical treatment for lung cancer. Here, it has been found that the adaptor protein receptor for activated PKC kinase (RACK1) formed a complex with FGFR1 and PKM2, and activated the FGFR1/PKM2 signaling. Knocking down the expression of RACK1 impaired the phosphorylation on Tyr105 of PKM2 and inhibited the growth and migration of lung cancer cells, while over-expression of RACK1 in lung cancer cells led to the resistance to Erdafitinib. Moreover, knocking down the expression of RACK1 impaired the tumorigenesis of lung cancer driven by LKB loss and mutated Ras (KrasG12D). Taken together, our study demonstrated the pivotal roles of RACK1 in FGFR1/PKM2 signaling, suggesting FGFR1/RACK1/PKM2 might be a therapeutic target for lung cancer treatment. © 2017 Wiley Periodicals, Inc.

  17. Comparative functional analysis of two fibroblast growth factor receptor 1 (FGFR1) mutations affecting the same residue (R254W and R254Q) in isolated hypogonadotropic hypogonadism (IHH).

    Science.gov (United States)

    Koika, Vasiliki; Varnavas, Petros; Valavani, Helen; Sidis, Yisrael; Plummer, Lacey; Dwyer, Andrew; Quinton, Richard; Kanaka-Gantenbein, Christine; Pitteloud, Nelly; Sertedaki, Amalia; Dacou-Voutetakis, Catherine; Georgopoulos, Neoklis A

    2013-03-01

    FGFR1 mutations have been identified in both Kallmann syndrome and normosmic HH (nIHH). To date, few mutations in the FGFR1 gene have been structurally or functionally characterized in vitro to identify molecular mechanisms that contribute to the disease pathogenesis. We attempted to define the in vitro functionality of two FGFR1 mutants (R254W and R254Q), resulting from two different amino acid substitutions of the same residue, and to correlate the in vitro findings to the patient phenotypes. Two unrelated GnRH deficient probands were found to harbor mutations in FGFR1 (R254W and R254Q). Mutant signaling activity and expression levels were evaluated in vitro and compared to a wild type (WT) receptor. Signaling activity was determined by a FGF2/FGFR1 dependent transcription reporter assay. Receptor total expression levels were assessed by Western blot and cell surface expression was measured by a radiolabeled antibody binding assay. The R254W maximal receptor signaling capacity was reduced by 45% (p<0.01) while R254Q activity was not different from WT. However, both mutants displayed diminished total protein expression levels (40 and 30% reduction relative to WT, respectively), while protein maturation was unaffected. Accordingly, cell surface expression levels of the mutant receptors were also significantly reduced (35% p<0.01 and 15% p<0.05, respectively). The p.R254W and p.R254Q are both loss-of-function mutations as demonstrated by their reduced overall and cell surface expression levels suggesting a deleterious effect on receptor folding and stability. It appears that a tryptophan substitution at R254 is more disruptive to receptor structure than the more conserved glutamine substitution. No clear correlation between the severity of in vitro loss-of-function and phenotypic presentation could be assigned. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. An unusual protein kinase phosphorylates the chemotactic receptor of Dictystelium discoideum

    International Nuclear Information System (INIS)

    Meier, K.; Klein, C.

    1988-01-01

    The authors report the cAMP-dependent phosphorylation of the chemotactic receptor of Dictyostelium discoideum in partially purified plasma membranes. The protein kinase responsible for receptor phosphorylation is associated with this fraction and preferentially phosphorylates the ligand-occupied form of the receptor. 8-Azido[ 32 P]cAMP labeling of the cell surface has shown that the cAMP receptor exists in two forms. A 45-kDa protein is predominant on unstimulated cells. cAMP stimulation results in an increased receptor phosphorylation such that the receptor migrates on NaDodSO 4 /PAGE as a 47-kDa protein. Phosphorylation of the chemotactic receptor is not detected in membrane preparations unless cAMP is added to the incubation mixture. Only under those conditions is the phosphorylated 47-kDa form observed. The requirement for cAMP reflects the fact that the kinase involved preferentially uses the ligand-occupied receptor as a substrate. In vitro phosphorylation of the receptor does not involve tyrosine residues. The enzyme does not appear to be a cAMP- or cGMP-dependent protein kinase nor is it sensitive to guanine nucleotides, Ca 2+ /calmodulin, Ca 2+ /phospholipid, or EGTA. Similarities with the β-adrenergic receptor protein kinase are discussed

  19. Sixteen Years and Counting: The Current Understanding of Fibroblast Growth Factor Receptor 3 (FGFR3) Signaling in Skeletal Dysplasias

    Czech Academy of Sciences Publication Activity Database

    Foldynová-Trantírková, Silvie; Wilcox, W. R.; Krejčí, Pavel

    2012-01-01

    Roč. 33, č. 1 (2012), s. 29-41 ISSN 1059-7794 Grant - others:GA CR(CZ) GAP305/11/0752; GA CR(CZ) GA301/09/0587 Program:GA Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z50040507 Keywords : FGFR3 * chondrocyte * skeletal dysplasia * MAP kinase * FGF Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.213, year: 2012 http://onlinelibrary.wiley.com/doi/10.1002/humu.21636/pdf

  20. Distinct Phosphorylation Clusters Determine the Signaling Outcome of Free Fatty Acid Receptor 4/G Protein-Coupled Receptor 120

    DEFF Research Database (Denmark)

    Prihandoko, Rudi; Alvarez-Curto, Elisa; Hudson, Brian D

    2016-01-01

    of these phosphoacceptor sites to alanine completely prevented phosphorylation of mFFA4 but did not limit receptor coupling to extracellular signal regulated protein kinase 1 and 2 (ERK1/2) activation. Rather, an inhibitor of Gq/11proteins completely prevented receptor signaling to ERK1/2. By contrast, the recruitment...... activation. These unique observations define differential effects on signaling mediated by phosphorylation at distinct locations. This hallmark feature supports the possibility that the signaling outcome of mFFA4 activation can be determined by the pattern of phosphorylation (phosphorylation barcode...

  1. A study on genetic variants of Fibroblast growth factor receptor 2 (FGFR2 and the risk of breast cancer from North India.

    Directory of Open Access Journals (Sweden)

    Sarah Siddiqui

    Full Text Available Genome-Wide Association Studies (GWAS have identified Fibroblast growth factor receptor 2 (FGFR2 as a candidate gene for breast cancer with single nucleotide polymorphisms (SNPs located in intron 2 region as the susceptibility loci strongly associated with the risk. However, replicate studies have often failed to extrapolate the association to diverse ethnic regions. This hints towards the existing heterogeneity among different populations, arising due to differential linkage disequilibrium (LD structures and frequencies of SNPs within the associated regions of the genome. It is therefore important to revisit the previously linked candidates in varied population groups to unravel the extent of heterogeneity. In an attempt to investigate the role of FGFR2 polymorphisms in susceptibility to the risk of breast cancer among North Indian women, we genotyped rs2981582, rs1219648, rs2981578 and rs7895676 polymorphisms in 368 breast cancer patients and 484 healthy controls by Polymerase chain reaction-Restriction fragment length polymorphism (PCR-RFLP assay. We observed a statistically significant association with breast cancer risk for all the four genetic variants (P<0.05. In per-allele model for rs2981582, rs1219648, rs7895676 and in dominant model for rs2981578, association remained significant after bonferroni correction (P<0.0125. On performing stratified analysis, significant correlations with various clinicopathological as well as environmental and lifestyle characteristics were observed. It was evident that rs1219648 and rs2981578 interacted with exogenous hormone use and advanced clinical stage III (after Bonferroni correction, P<0.000694, respectively. Furthermore, combined analysis on these four loci revealed that compared to women with 0-1 risk loci, those with 2-4 risk loci had increased risk (OR = 1.645, 95%CI = 1.152-2.347, P = 0.006. In haplotype analysis, for rs2981578, rs2981582 and rs1219648, risk haplotype (GTG was

  2. FGFR3 and P53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma

    NARCIS (Netherlands)

    B.W. van Rhijn (Bas); Th.H. van der Kwast (Theo); A.N. Vis (André); W.J. Kirkels (Wim); E.R. Boeve; A.C. Jobsis; E.C. Zwarthoff (Ellen)

    2004-01-01

    textabstractFibroblast growth factor receptor 3 (FGFR3) and P53 mutations are frequently observed in bladder cancer. We here describe the distribution of FGFR3 mutations and P53 overexpression in 260 primary urothelial cell carcinomas. FGFR3 mutations were observed in 59% and P53

  3. The role of GH receptor tyrosine phosphorylation in Stat5 activation

    DEFF Research Database (Denmark)

    Hansen, J A; Hansen, L H; Wang, X

    1997-01-01

    Stimulation of GH receptors leads to rapid activation of Jak2 kinase and subsequent tyrosine phosphorylation of the GH receptor. Three specific tyrosines located in the C-terminal domain of the GH receptor have been identified as being involved in GH-stimulated transcription of the Spi 2.1 promoter....... Mutated GH receptors lacking all but one of these three tyrosines are able to mediate a transcriptional response when transiently transfected into CHO cells together with a Spi 2.1 promoter/luciferase construct. Similarly, these GH receptors were found to be able to mediate activation of Stat5 DNA......-binding activity, whereas the GH receptor mutant lacking all intracellular tyrosines was not. Synthetic tyrosine phosphorylated peptides corresponding to the GH receptor sequence around the three tyrosines inhibited Stat5 DNA-binding activity while their non-phosphorylated counterparts were ineffective. Tyrosine...

  4. Quantitation of multisite EGF receptor phosphorylation using mass spectrometry and a novel normalization approach

    DEFF Research Database (Denmark)

    Erba, Elisabetta Boeri; Matthiesen, Rune; Bunkenborg, Jakob

    2007-01-01

    Using stable isotope labeling and mass spectrometry, we performed a sensitive, quantitative analysis of multiple phosphorylation sites of the epidermal growth factor (EGF) receptor. Phosphopeptide detection efficiency was significantly improved by using the tyrosine phosphatase inhibitor sodium p...

  5. Genetic variants in FGFR2 and FGFR4 genes and skin cancer risk in the Nurses' Health Study

    International Nuclear Information System (INIS)

    Nan, Hongmei; Qureshi, Abrar A; Hunter, David J; Han, Jiali

    2009-01-01

    The human fibroblast growth factor (FGF) and its receptor (FGFR) play an important role in tumorigenesis. Deregulation of the FGFR2 gene has been identified in a number of cancer sites. Overexpression of the FGFR4 protein has been linked to cutaneous melanoma progression. Previous studies reported associations between genetic variants in the FGFR2 and FGFR4 genes and development of various cancers. We evaluated the associations of four genetic variants in the FGFR2 gene highly related to breast cancer risk and the three common tag-SNPs in the FGFR4 gene with skin cancer risk in a nested case-control study of Caucasians within the Nurses' Health Study (NHS) among 218 melanoma cases, 285 squamous cell carcinoma (SCC) cases, 300 basal cell carcinoma (BCC) cases, and 870 controls. We found no evidence for associations between these seven genetic variants and the risks of melanoma and nonmelanocytic skin cancer. Given the power of this study, we did not detect any contribution of genetic variants in the FGFR2 or FGFR4 genes to inherited predisposition to skin cancer among Caucasian women

  6. G Protein-coupled Receptor Kinases of the GRK4 Protein Subfamily Phosphorylate Inactive G Protein-coupled Receptors (GPCRs).

    Science.gov (United States)

    Li, Lingyong; Homan, Kristoff T; Vishnivetskiy, Sergey A; Manglik, Aashish; Tesmer, John J G; Gurevich, Vsevolod V; Gurevich, Eugenia V

    2015-04-24

    G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in homologous desensitization of GPCRs. It is widely assumed that most GRKs selectively phosphorylate only active GPCRs. Here, we show that although this seems to be the case for the GRK2/3 subfamily, GRK5/6 effectively phosphorylate inactive forms of several GPCRs, including β2-adrenergic and M2 muscarinic receptors, which are commonly used as representative models for GPCRs. Agonist-independent GPCR phosphorylation cannot be explained by constitutive activity of the receptor or membrane association of the GRK, suggesting that it is an inherent ability of GRK5/6. Importantly, phosphorylation of the inactive β2-adrenergic receptor enhanced its interactions with arrestins. Arrestin-3 was able to discriminate between phosphorylation of the same receptor by GRK2 and GRK5, demonstrating preference for the latter. Arrestin recruitment to inactive phosphorylated GPCRs suggests that not only agonist activation but also the complement of GRKs in the cell regulate formation of the arrestin-receptor complex and thereby G protein-independent signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    Science.gov (United States)

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  8. Hemin inhibits internalization of transferrin by reticulocytes and promotes phosphorylation of the membrane transferrin receptor

    International Nuclear Information System (INIS)

    Cox, T.M.; O'Donnell, M.W.; Aisen, P.; London, I.M.

    1985-01-01

    Addition of hemin to reticulocytes inhibits incorporation of iron from transferrin. Heme also regulates protein synthesis in immature erythroid cells through its effects on phosphorylation of the initiation factor eIF-2. The authors have examined its effects on endocytosis of iron-transferrin and phosphorylation of the transferrin receptor. Hemin reduced iron transport but increased cell-associated transferrin. During uptake of 125 I-labeled transferrin in the steady state, the use of a washing technique to dissociate bound transferrin on the cell membrane showed that radioligand accumulated on the surface of hemin-treated cells. Receptor phosphorylation was investigated by immunoprecipitation of reticulocyte extracts after metabolic labeling with [ 32 P]P/sub i/. In the absence of ligand, phosphorylated receptor was chiefly localized on cell stroma. Exposure to transferrin increased cytosolic phosphorylated receptor from 15-30% to approximately 50% of the total, an effect overcome by hemin treatment. The findings suggest a possible relationship of phosphorylation to endocytosis of the transferrin receptor in reticulocytes

  9. FGFR a promising druggable target in cancer: Molecular biology and new drugs.

    Science.gov (United States)

    Porta, Rut; Borea, Roberto; Coelho, Andreia; Khan, Shahanavaj; Araújo, António; Reclusa, Pablo; Franchina, Tindara; Van Der Steen, Nele; Van Dam, Peter; Ferri, Jose; Sirera, Rafael; Naing, Aung; Hong, David; Rolfo, Christian

    2017-05-01

    The Fibroblast Growth Factor Receptor (FGFR) family consists of Tyrosine Kinase Receptors (TKR) involved in several biological functions. Recently, alterations of FGFR have been reported to be important for progression and development of several cancers. In this setting, different studies are trying to evaluate the efficacy of different therapies targeting FGFR. This review summarizes the current status of treatments targeting FGFR, focusing on the trials that are evaluating the FGFR profile as inclusion criteria: Multi-Target, Pan-FGFR Inhibitors and anti-FGF (Fibroblast Growth Factor)/FGFR Monoclonal Antibodies. Most of the TKR share intracellular signaling pathways; therefore, cancer cells tend to overcome the inhibition of one tyrosine kinase receptor by activating another. The future of TKI (Tyrosine Kinase Inhibitor) therapy will potentially come from multi-targeted TKIs that target different TKR simultaneously. It is crucial to understand the interaction of the FGF-FGFR axis with other known driver TKRs. Based on this, it is possible to develop therapeutic strategies targeting multiple connected TKRs at once. One correct step in this direction is the reassessment of multi target inhibitors considering the FGFR status of the tumor. Another opportunity arises from assessing the use of FGFR TKI on patients harboring FGFR alterations. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES SRC-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)

    Science.gov (United States)

    ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES Src-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)Weidong Wu1, Lee M. Graves2, Gordon N. Gill3 and James M. Samet4 1Center for Environmental Medicine and Lung Biology; 2Department of Pharmacology, University o...

  11. Analysis of STAT1 activation by six FGFR3 mutants associated with skeletal dysplasia undermines dominant role of STAT1 in FGFR3 signaling in cartilage.

    Directory of Open Access Journals (Sweden)

    Pavel Krejci

    Full Text Available Activating mutations in FGFR3 tyrosine kinase cause several forms of human skeletal dysplasia. Although the mechanisms of FGFR3 action in cartilage are not completely understood, it is believed that the STAT1 transcription factor plays a central role in pathogenic FGFR3 signaling. Here, we analyzed STAT1 activation by the N540K, G380R, R248C, Y373C, K650M and K650E-FGFR3 mutants associated with skeletal dysplasias. In a cell-free kinase assay, only K650M and K650E-FGFR3 caused activatory STAT1(Y701 phosphorylation. Similarly, in RCS chondrocytes, HeLa, and 293T cellular environments, only K650M and K650E-FGFR3 caused strong STAT1 activation. Other FGFR3 mutants caused weak (HeLa or no activation (293T and RCS. This contrasted with ERK MAP kinase activation, which was strongly induced by all six mutants and correlated with the inhibition of proliferation in RCS chondrocytes. Thus the ability to activate STAT1 appears restricted to the K650M and K650E-FGFR3 mutants, which however account for only a small minority of the FGFR3-related skeletal dysplasia cases. Other pathways such as ERK should therefore be considered as central to pathological FGFR3 signaling in cartilage.

  12. Phorbol ester induced phosphorylation of the estrogen receptor in intact MCF-7 human breast cancer cells

    International Nuclear Information System (INIS)

    Knabbe, C.; Lippman, M.E.; Greene, G.L.; Dickson, R.B.

    1986-01-01

    Recent studies with a variety of cellular receptors have shown that phorbol ester induced phosphorylation modulates ligand binding and function. In this study the authors present direct evidence that the estrogen receptor in MCF-7 human breast cancer cells is a phosphoprotein whose phosphorylation state can be enhanced specifically by phorbol-12-myristate-13-acetate (PMA). Cells were cultured to 6h in the presence of [ 32 P]-orthophosphate. Whole cell extracts were immunoprecipitated with a monoclonal antibody (D58) against the estrogen receptor and subjected to SDS-polyacrylamide electrophoresis. Autoradiography showed a specific band in the region of 60-62 kDa which was significantly increased in preparations from PMA treated cells. Phospho-amino acid analysis demonstrated specific phosphorylation of serine and threonine residues. Cholera toxin or forskolin did not change the phosphorylation state of this protein. In a parallel binding analysis PMA led to a rapid decrease of estrogen binding sites. The estrogen induction of both progesterone receptors and growth in semisolid medium was blocked by PMA, whereas the estrogen induction of the 8kDa protein corresponding to the ps2 gene product and of the 52 kDa protein was not affected. In conclusion, phorbol esters can induce phosphorylation of the estrogen receptor. This process may be associated with the inactivation of certain receptor functions

  13. Clinical and biological characteristics of cervical neoplasias with FGFR3 mutation

    Directory of Open Access Journals (Sweden)

    Thiery Jean

    2005-05-01

    Full Text Available Abstract Background We have previously reported activating mutations of the gene coding for the fibroblast growth factor receptor 3 (FGFR3 in invasive cervical carcinoma. To further analyze the role of FGFR3 in cervical tumor progression, we extended our study to screen a total of 75 invasive tumors and 80 cervical intraepithelial neoplasias (40 low-grade and 40 high-grade lesions. Results Using single strand conformation polymorphism (SSCP followed by DNA sequencing, we found FGFR3 mutation (S249C in all cases in 5% of invasive cervical carcinomas and no mutation in intraepithelial lesions. These results suggest that, unlike in bladder carcinoma, FGFR3 mutation does not or rarely occur in non invasive lesions. Compared to patients with wildtype FGFR3 tumor, patients with S249C FGFR3 mutated tumors were older (mean age 64 vs. 49.4 years, P = 0.02, and were more likely to be associated with a non-16/18 HPV type in their tumor. Gene expression analysis demonstrated that FGFR3 mutated tumors were associated with higher FGFR3b mRNA expression levels compared to wildtype FGFR3 tumors. Supervised analysis of Affymetrix expression data identified a significant number of genes specifically differentially expressed in tumors with respect to FGFR3 mutation status. Conclusion This study suggest that tumors with FGFR3 mutation appear to have distinctive clinical and biological characteristics that may help in defining a population of patients for FGFR3 mutation screening.

  14. Differential regulation of the transcriptional activity of the glucocorticoid receptor through site-specific phosphorylation

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2008-08-01

    Full Text Available Raj Kumar1, William J Calhoun21Division of Gastroenterology; 2Division of Allergy, Pulmonary, Immunology, Critical Care, and Sleep (APICS, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USAAbstract: Post-translational modifications such as phosphorylation are known to play an important role in the gene regulation by the transcription factors including the nuclear hormone receptor superfamily of which the glucocorticoid receptor (GR is a member. Protein phosphorylation often switches cellular activity from one state to another. Like many other transcription factors, the GR is a phosphoprotein, and phosphorylation plays an important role in the regulation of GR activity. Cell signaling pathways that regulate phosphorylation of the GR and its associated proteins are important determinants of GR function under various physiological conditions. While the role of many phosphorylation sites in the GR is still not fully understood, the role of others is clearer. Several aspects of transcription factor function, including DNA binding affinity, interaction of transactivation domains with the transcription initiation complex, and shuttling between the cytoplasmic compartments, have all been linked to site-specific phosphorylation. All major phosphorylation sites in the human GR are located in the N-terminal domain including the major transactivation domain, AF1. Available literature clearly indicates that many of these potential phosphorylation sites are substrates for multiple kinases, suggesting the potential for a very complex regulatory network. Phosphorylated GR interacts favorably with critical coregulatory proteins and subsequently enhances transcriptional activity. In addition, the activities and specificities of coregulators may be subject to similar regulation by phosphorylation. Regulation of the GR activity due to phosphorylation appears to be site-specific and dependent upon specific cell signaling cascade

  15. Phosphorylation of G Protein-Coupled Receptors: From the Barcode Hypothesis to the Flute Model.

    Science.gov (United States)

    Yang, Zhao; Yang, Fan; Zhang, Daolai; Liu, Zhixin; Lin, Amy; Liu, Chuan; Xiao, Peng; Yu, Xiao; Sun, Jin-Peng

    2017-09-01

    Seven transmembrane G protein-coupled receptors (GPCRs) are often phosphorylated at the C terminus and on intracellular loops in response to various extracellular stimuli. Phosphorylation of GPCRs by GPCR kinases and certain other kinases can promote the recruitment of arrestin molecules. The arrestins critically regulate GPCR functions not only by mediating receptor desensitization and internalization, but also by redirecting signaling to G protein-independent pathways via interactions with numerous downstream effector molecules. Accumulating evidence over the past decade has given rise to the phospho-barcode hypothesis, which states that ligand-specific phosphorylation patterns of a receptor direct its distinct functional outcomes. Our recent work using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance ( 19 F-NMR) spectroscopy led to the flute model, which provides preliminary insight into the receptor phospho-coding mechanism, by which receptor phosphorylation patterns are recognized by an array of phosphate-binding pockets on arrestin and are translated into distinct conformations. These selective conformations are recognized by various effector molecules downstream of arrestin. The phospho-barcoding mechanism enables arrestin to recognize a wide range of phosphorylation patterns of GPCRs, contributing to their diverse functions. Copyright © 2017 by The Author(s).

  16. Identification of steroid-binding and phosphorylated sites within the glucocorticoid receptor

    International Nuclear Information System (INIS)

    Smith, L.I.

    1989-01-01

    The primary goal of these studies was to localize the steroid-binding and phosphorylated sites of the glucocorticoid receptor. The synthetic steroid, dexamethasone 21-mesylate (DM) forms a covalent thioether bond via the sulfhydryl group of a cysteine residue in the receptor. To determine the covalent site of attachment of this ligand, receptors in WEHI-7 mouse thymoma cells were labeled with [ 3 H]DM and purified with a monoclonal antibody. The receptor was completely digested with trypsin and a single peptide covalently labeled with steroid identified by reversed-phase HPLC. This peptide was analyzed by automated Edman degradation to determine the location of the steroid-labeled residue. A similar analysis was performed on an overlapping peptide produced by Staphylococcus aureus protease digestion. Analysis of tryptic peptides from receptors labeled with both [ 3 H]DM and L-[ 35 S]methionine indicated that this peptide contained methionine. These analyses, coupled with the published amino acid sequence of the receptor, identified Cysteine-644 in the steroid-binding domain of the mouse glucocorticoid receptor as the residue involved in covalent steroid-binding. A synthetic peptide representing amino acids 640-650 of the mouse receptor was prepared and analyzed to confirm the identification. These biochemical studies represent a direct demonstration of an amino acid important in receptor function. It has been proposed that the receptor functions through a phosphorylation-dephosphorylation cycle to explain the dependence of hormone binding capacity upon cellular ATP. The glucocorticoid receptor has been shown to be a phosphoprotein. As an initial step to identifying a role of phosphorylation in receptor action, phosphorylated sites within the functional domains of the protein were identified

  17. Kinome analysis of receptor-induced phosphorylation in human natural killer cells.

    Directory of Open Access Journals (Sweden)

    Sebastian König

    Full Text Available BACKGROUND: Natural killer (NK cells contribute to the defense against infected and transformed cells through the engagement of multiple germline-encoded activation receptors. Stimulation of the Fc receptor CD16 alone is sufficient for NK cell activation, whereas other receptors, such as 2B4 (CD244 and DNAM-1 (CD226, act synergistically. After receptor engagement, protein kinases play a major role in signaling networks controlling NK cell effector functions. However, it has not been characterized systematically which of all kinases encoded by the human genome (kinome are involved in NK cell activation. RESULTS: A kinase-selective phosphoproteome approach enabled the determination of 188 kinases expressed in human NK cells. Crosslinking of CD16 as well as 2B4 and DNAM-1 revealed a total of 313 distinct kinase phosphorylation sites on 109 different kinases. Phosphorylation sites on 21 kinases were similarly regulated after engagement of either CD16 or co-engagement of 2B4 and DNAM-1. Among those, increased phosphorylation of FYN, KCC2G (CAMK2, FES, and AAK1, as well as the reduced phosphorylation of MARK2, were reproducibly observed both after engagement of CD16 and co-engagement of 2B4 and DNAM-1. Notably, only one phosphorylation on PAK4 was differentally regulated. CONCLUSIONS: The present study has identified a significant portion of the NK cell kinome and defined novel phosphorylation sites in primary lymphocytes. Regulated phosphorylations observed in the early phase of NK cell activation imply these kinases are involved in NK cell signaling. Taken together, this study suggests a largely shared signaling pathway downstream of distinct activation receptors and constitutes a valuable resource for further elucidating the regulation of NK cell effector responses.

  18. The role of glucocorticoid receptor phosphorylation in Mcl-1 and NOXA gene expression

    Directory of Open Access Journals (Sweden)

    Demonacos Constantinos

    2010-02-01

    Full Text Available Abstract Background The cyclin-dependent kinase (CDK and mitogen-activated protein kinase (MAPK mediated phosphorylation of glucocorticoid receptor (GR exerts opposite effects on GR transcriptional activity and affects other posttranslational modifications within this protein. The major phosphorylation site of human GR targeted by MAPK family is the serine 226 and multiple kinase complexes phosphorylate receptor at the serine 211 residue. We hypothesize that GR posttranslational modifications are involved in the determination of the cellular fate in human lymphoblastic leukemia cells. We investigated whether UV signalling through alternative GR phosphorylation determined the cell type specificity of glucocorticoids (GCs mediated apoptosis. Results We have identified putative Glucocorticoid Response Elements (GREs within the promoter regulatory regions of the Bcl-2 family members NOXA and Mcl-1 indicating that they are direct GR transcriptional targets. These genes were differentially regulated in CEM-C7-14, CEM-C1-15 and A549 cells by glucocorticoids and JNK pathway. In addition, our results revealed that the S211 phosphorylation was dominant in CEM-C7-14, whereas the opposite was the case in CEM-C1-15 where prevalence of S226 GR phosphorylation was observed. Furthermore, multiple GR isoforms with cell line specific patterns were identified in CEM-C7-14 cells compared to CEM-C1-15 and A549 cell lines with the same antibodies. Conclusions GR phosphorylation status kinetics, and site specificity as well as isoform variability differ in CEM-C7-14, CEM-C1-15, and A549 cells. The positive or negative response to GCs induced apoptosis in these cell lines is a consequence of the variable equilibrium of NOXA and Mcl-1 gene expression potentially mediated by alternatively phosphorylated GR, as well as the balance of MAPK/CDK pathways controlling GR phosphorylation pattern. Our results provide molecular base and valuable knowledge for improving the GC

  19. Effect of the G375C and G346E achondroplasia mutations on FGFR3 activation.

    Directory of Open Access Journals (Sweden)

    Lijuan He

    Full Text Available Two mutations in FGFR3, G380R and G375C are known to cause achondroplasia, the most common form of human dwarfism. The G380R mutation accounts for 98% of the achondroplasia cases, and thus has been studied extensively. Here we study the effect of the G375C mutation on the phosphorylation and the cross-linking propensity of full-length FGFR3 in HEK 293 cells, and we compare the results to previously published results for the G380R mutant. We observe identical behavior of the two achondroplasia mutants in these experiments, a finding which supports a direct link between the severity of dwarfism phenotypes and the level and mechanism of FGFR3 over-activation. The mutations do not increase the cross-linking propensity of FGFR3, contrary to previous expectations that the achondroplasia mutations stabilize the FGFR3 dimers. Instead, the phosphorylation efficiency within un-liganded FGFR3 dimers is increased, and this increase is likely the underlying cause for pathogenesis in achondroplasia. We further investigate the G346E mutation, which has been reported to cause achondroplasia in one case. We find that this mutation does not increase FGFR3 phosphorylation and decreases FGFR3 cross-linking propensity, a finding which raises questions whether this mutation is indeed a genetic cause for human dwarfism.

  20. Effect of the G375C and G346E achondroplasia mutations on FGFR3 activation.

    Science.gov (United States)

    He, Lijuan; Serrano, Christopher; Niphadkar, Nitish; Shobnam, Nadia; Hristova, Kalina

    2012-01-01

    Two mutations in FGFR3, G380R and G375C are known to cause achondroplasia, the most common form of human dwarfism. The G380R mutation accounts for 98% of the achondroplasia cases, and thus has been studied extensively. Here we study the effect of the G375C mutation on the phosphorylation and the cross-linking propensity of full-length FGFR3 in HEK 293 cells, and we compare the results to previously published results for the G380R mutant. We observe identical behavior of the two achondroplasia mutants in these experiments, a finding which supports a direct link between the severity of dwarfism phenotypes and the level and mechanism of FGFR3 over-activation. The mutations do not increase the cross-linking propensity of FGFR3, contrary to previous expectations that the achondroplasia mutations stabilize the FGFR3 dimers. Instead, the phosphorylation efficiency within un-liganded FGFR3 dimers is increased, and this increase is likely the underlying cause for pathogenesis in achondroplasia. We further investigate the G346E mutation, which has been reported to cause achondroplasia in one case. We find that this mutation does not increase FGFR3 phosphorylation and decreases FGFR3 cross-linking propensity, a finding which raises questions whether this mutation is indeed a genetic cause for human dwarfism.

  1. Retraction: Borroto-Escuela et al., The existence of FGFR1-5-HT1A receptor heterocomplexes in midbrain 5-HT neurons of the rat: relevance for neuroplasticity.

    Science.gov (United States)

    2013-07-10

    The Journal of Neuroscience has received a report describing an investigation by the Karolinska Institutet, which found substantial data misrepresentation in the article "The Existence of FGFR1-5-HT1A Receptor Heterocomplexes in Midbrain 5-HT Neurons of the Rat: Relevance for Neuroplasticity" by Dasiel O. Borroto-Escuela, Wilber Romero-Fernandez, Mileidys Pérez-Alea, Manuel Narvaez, Alexander O. Tarakanov, Giuseppa Mudó , Luigi F. Agnati, Francisco Ciruela, Natale Belluardo, and Kjell Fuxe, which appeared on pages 6295-6303 of the May 2, 2012 issue. Because the results cannot be considered reliable, the editors of The Journal are retracting the paper.

  2. Phosphorylation and Internalization of Lysophosphatidic Acid Receptors LPA1, LPA2, and LPA3.

    Directory of Open Access Journals (Sweden)

    Rocío Alcántara-Hernández

    Full Text Available The lysophosphatidic acid receptors LPA1, LPA2, and LPA3 were individually expressed in C9 cells and their signaling and regulation were studied. Agonist-activation increases intracellular calcium concentration in a concentration-dependent fashion. Phorbol myristate acetate markedly inhibited LPA1- and LPA3-mediated effect, whereas that mediated by LPA2 was only partially diminished; the actions of the phorbol ester were inhibited by bisindolylmaleimide I and by overnight incubation with the protein kinase C activator, which leads to down regulation of this protein kinase. Homologous desensitization was also observed for the three LPA receptors studied, with that of LPA2 receptors being consistently of lesser magnitude; neither inhibition nor down-regulation of protein kinase C exerted any effect on homologous desensitization. Activation of LPA1-3 receptors induced ERK 1/2 phosphorylation; this effect was markedly attenuated by inhibition of epidermal growth factor receptor tyrosine kinase activity, suggesting growth factor receptor transactivation in this effect. Lysophosphatidic acid and phorbol myristate acetate were able to induce LPA1-3 phosphorylation, in time- and concentration-dependent fashions. It was also clearly observed that agonists and protein kinase C activation induced internalization of these receptors. Phosphorylation of the LPA2 subtype required larger concentrations of these agents and its internalization was less intense than that of the other subtypes.Our data show that these three LPA receptors are phosphoproteins whose phosphorylation state is modulated by agonist-stimulation and protein kinase C-activation and that differences in regulation and cellular localization exist, among the subtypes.

  3. Growth hormone-dependent phosphorylation of tyrosine 333 and/or 338 of the growth hormone receptor

    DEFF Research Database (Denmark)

    VanderKuur, J A; Wang, X; Zhang, L

    1995-01-01

    and a reduction of GH-dependent phosphorylation of the full-length receptor. Consistent with Tyr333 and/or Tyr338 serving as substrates of JAK2, these substitutions resulted in a loss of tyrosyl phosphorylation of truncated receptor in an in vitro kinase assay using substantially purified GH.GHR.JAK2 complexes...

  4. Expression of FGFR3 during human testis development and in germ cell-derived tumours of young adults

    DEFF Research Database (Denmark)

    Ewen, Katherine A; Olesen, Inge A; Winge, Sofia B

    2013-01-01

    development and to ascertain whether FGFR3 signalling is linked to germ cell proliferation and the pathogenesis of testicular germ cell tumours (TGCTs) of young adult men. Using RT-PCR, immunohistochemistry and Western blotting, we examined 58 specimens of human testes throughout development for FGFR3...... expression, and then compared expression of FGFR3 with proliferation markers (PCNA or Ki67). We also analysed for FGFR3 expression 30 TGCTs and 28 testes containing the tumour precursor cell, carcinoma in situ (CIS). Fetal and adult testes expressed exclusively the FGFR3IIIc isoform. FGFR3 protein expression...... was restricted to the cytoplasm/plasma membrane of spermatogonia and was most prevalent at mid-gestation, infancy and from puberty onwards. Phosphorylated (p)FGFR was detected in pre-spermatogonia at mid-gestation and in spermatogonia during puberty and in the adult testis. Throughout normal human testis...

  5. Understanding the Differential Selectivity of Arrestins toward the Phosphorylation State of the Receptor

    NARCIS (Netherlands)

    Sensoy, Ozge; de Sousa Moreira, Irina; Morra, Giulia

    2016-01-01

    Proteins in the arrestin family exhibit a conserved structural fold that nevertheless allows for significant differences in their selectivity for G-protein coupled receptors (GPCRs) and their phosphorylation states. To reveal the mechanism of activation that prepares arrestin for selective

  6. Determination of sites of U50,488H-promoted phosphorylation of the mouse κ opioid receptor (KOPR): disconnect between KOPR phosphorylation and internalization.

    Science.gov (United States)

    Chen, Chongguang; Chiu, Yi-Ting; Wu, Wenman; Huang, Peng; Mann, Anika; Schulz, Stefan; Liu-Chen, Lee-Yuan

    2016-02-15

    Phosphorylation sites of KOPR (κ opioid receptor) following treatment with the selective agonist U50,488H {(-)(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidiny)cyclo-hexyl]benzeneacetamide} were identified after affinity purification, SDS/PAGE, in-gel digestion with Glu-C and HPLC-MS/MS. Single- and double-phosphorylated peptides were identified containing phosphorylated Ser(356), Thr(357), Thr(363) and Ser(369) in the C-terminal domain. Antibodies were generated against three phosphopeptides containing pSer(356)/pThr(357), pThr(363) and pSer(369) respectively, and affinity-purified antibodies were found to be highly specific for phospho-KOPR. U50,488H markedly enhanced staining of the KOPR by pThr(363)-, pSer(369)- and pSer(356)/pThr(357)-specific antibodies in immunoblotting, which was blocked by the selective KOPR antagonist norbinaltorphimine. Ser(369) phosphorylation affected Thr(363) phosphorylation and vice versa, and Thr(363) or Ser(369) phosphorylation was important for Ser(356)/Thr(357) phosphorylation, revealing a phosphorylation hierarchy. U50,488H, but not etorphine, promoted robust KOPR internalization, although both were full agonists. U50,488H induced higher degrees of phosphorylation than etorphine at Ser(356)/Thr(357), Thr(363) and Ser(369) as determined by immunoblotting. Using SILAC (stable isotope labelling by amino acids in cell culture) and HPLC-MS/MS, we found that, compared with control (C), U50,488H (U) and etorphine (E) KOPR promoted single phosphorylation primarily at Thr(363) and Ser(369) with U/E ratios of 2.5 and 2 respectively. Both induced double phosphorylation at Thr(363)+Ser(369) and Thr(357)+Ser(369) with U/E ratios of 3.3 and 3.4 respectively. Only U50,488H induced triple phosphorylation at Ser(356)+Thr(357)+Ser(369). An unphosphorylated KOPR-(354-372) fragment containing all of the phosphorylation sites was detected with a C/E/U ratio of 1/0.7/0.4, indicating that ∼60% and ∼30% of the mouse KOPR are phosphorylated

  7. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    International Nuclear Information System (INIS)

    Kewley, Robyn J.; Whitelaw, Murray L.

    2005-01-01

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer

  8. Switching addictions between HER2 and FGFR2 in HER2-positive breast tumor cells: FGFR2 as a potential target for salvage after lapatinib failure

    International Nuclear Information System (INIS)

    Azuma, Koichi; Tsurutani, Junji; Sakai, Kazuko; Kaneda, Hiroyasu; Fujisaka, Yasuhito; Takeda, Masayuki; Watatani, Masahiro; Arao, Tokuzo; Satoh, Taroh; Okamoto, Isamu; Kurata, Takayasu; Nishio, Kazuto; Nakagawa, Kazuhiko

    2011-01-01

    Highlights: → A lapatinib-resistant breast cancer cell line, UACC812 (UACC812/LR), was found to harbor amplification of the FGFR2 gene. → Inhibition of the molecule by a specific inhibitor of FGFR dramatically induced growth inhibition accompanied by cell death. → Immunohistochemical analysis of patients with HER2-positive breast cancer demonstrated an association between FGFR2 expression and poor outcome for lapatinib-containing chemotherapy. -- Abstract: Agents that target HER2 have improved the prognosis of patients with HER2-amplified breast cancers. However, patients who initially respond to such targeted therapy eventually develop resistance to the treatment. We have established a line of lapatinib-resistant breast cancer cells (UACC812/LR) by chronic exposure of HER2-amplified and lapatinib-sensitive UACC812 cells to the drug. The mechanism by which UACC812/LR acquired resistance to lapatinib was explored using comprehensive gene hybridization. The FGFR2 gene in UACC812/LR was highly amplified, accompanied by overexpression of FGFR2 and reduced expression of HER2, and a cell proliferation assay showed that the IC 50 of PD173074, a small-molecule inhibitor of FGFR tyrosine kinase, was 10,000 times lower in UACC812/LR than in the parent cells. PD173074 decreased the phosphorylation of FGFR2 and substantially induced apoptosis in UACC812/LR, but not in the parent cells. FGFR2 appeared to be a pivotal molecule for the survival of UACC812/LR as they became independent of the HER2 pathway, suggesting that a switch of addiction from the HER2 to the FGFR2 pathway enabled cancer cells to become resistant to HER2-targeted therapy. The present study is the first to implicate FGFR in the development of resistance to lapatinib in cancer, and suggests that FGFR-targeted therapy might become a promising salvage strategy after lapatinib failure in patients with HER2-positive breast cancer.

  9. Switching addictions between HER2 and FGFR2 in HER2-positive breast tumor cells: FGFR2 as a potential target for salvage after lapatinib failure

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, Koichi [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 (Japan); Tsurutani, Junji, E-mail: tsurutani_j@dotd.med.kindai.ac.jp [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 (Japan); Sakai, Kazuko; Kaneda, Hiroyasu [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 (Japan); Fujisaka, Yasuhito; Takeda, Masayuki [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 (Japan); Watatani, Masahiro [Department of Surgery, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 (Japan); Arao, Tokuzo [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 (Japan); Satoh, Taroh; Okamoto, Isamu; Kurata, Takayasu [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 (Japan); Nishio, Kazuto [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 (Japan); Nakagawa, Kazuhiko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511 (Japan)

    2011-04-01

    Highlights: {yields} A lapatinib-resistant breast cancer cell line, UACC812 (UACC812/LR), was found to harbor amplification of the FGFR2 gene. {yields} Inhibition of the molecule by a specific inhibitor of FGFR dramatically induced growth inhibition accompanied by cell death. {yields} Immunohistochemical analysis of patients with HER2-positive breast cancer demonstrated an association between FGFR2 expression and poor outcome for lapatinib-containing chemotherapy. -- Abstract: Agents that target HER2 have improved the prognosis of patients with HER2-amplified breast cancers. However, patients who initially respond to such targeted therapy eventually develop resistance to the treatment. We have established a line of lapatinib-resistant breast cancer cells (UACC812/LR) by chronic exposure of HER2-amplified and lapatinib-sensitive UACC812 cells to the drug. The mechanism by which UACC812/LR acquired resistance to lapatinib was explored using comprehensive gene hybridization. The FGFR2 gene in UACC812/LR was highly amplified, accompanied by overexpression of FGFR2 and reduced expression of HER2, and a cell proliferation assay showed that the IC{sub 50} of PD173074, a small-molecule inhibitor of FGFR tyrosine kinase, was 10,000 times lower in UACC812/LR than in the parent cells. PD173074 decreased the phosphorylation of FGFR2 and substantially induced apoptosis in UACC812/LR, but not in the parent cells. FGFR2 appeared to be a pivotal molecule for the survival of UACC812/LR as they became independent of the HER2 pathway, suggesting that a switch of addiction from the HER2 to the FGFR2 pathway enabled cancer cells to become resistant to HER2-targeted therapy. The present study is the first to implicate FGFR in the development of resistance to lapatinib in cancer, and suggests that FGFR-targeted therapy might become a promising salvage strategy after lapatinib failure in patients with HER2-positive breast cancer.

  10. FGFR4 role in epithelial-mesenchymal transition and its therapeutic value in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Alberto Peláez-García

    Full Text Available Fibroblast growth factor receptor 4 (FGFR4 is vital in early development and tissue repair. FGFR4 expression levels are very restricted in adult tissues, except in several solid tumors including colorectal cancer, which showed overexpression of FGFR4. Here, FGFR4 mutation analysis discarded the presence of activating mutations, other than Arg(388, in different colorectal cancer cell lines and tumoral samples. Stable shRNA FGFR4-silencing in SW480 and SW48 cell lines resulted in a significant decrease in cell proliferation, adhesion, cell migration and invasion. This decrease in the tumorigenic and invasive capabilities of colorectal cancer cells was accompanied by a decrease of Snail, Twist and TGFβ gene expression levels and an increase of E-cadherin, causing a reversion to a more epithelial phenotype, in three different cell lines. In addition, FGFR4-signaling activated the oncogenic SRC, ERK1/2 and AKT pathways in colon cancer cells and promoted an increase in cell survival. The relevance of FGFR4 in tumor growth was supported by two different strategies. Kinase inhibitors abrogated FGFR4-related cell growth and signaling pathways at the same extent than FGFR4-silenced cells. Specific FGFR4-targeting using antibodies provoked a similar reduction in cell growth. Moreover, FGFR4 knock-down cells displayed a reduced capacity for in vivo tumor formation and angiogenesis in nude mice. Collectively, our data support a crucial role for FGFR4 in tumorigenesis, invasion and survival in colorectal cancer. In addition, FGFR4 targeting demonstrated its applicability for colorectal cancer therapy.

  11. FGFR4 Role in Epithelial-Mesenchymal Transition and Its Therapeutic Value in Colorectal Cancer

    Science.gov (United States)

    Torres, Sofía; Hernández-Varas, Pablo; Teixidó, Joaquín; Bonilla, Félix; de Herreros, Antonio Garcia; Casal, J. Ignacio

    2013-01-01

    Fibroblast growth factor receptor 4 (FGFR4) is vital in early development and tissue repair. FGFR4 expression levels are very restricted in adult tissues, except in several solid tumors including colorectal cancer, which showed overexpression of FGFR4. Here, FGFR4 mutation analysis discarded the presence of activating mutations, other than Arg388, in different colorectal cancer cell lines and tumoral samples. Stable shRNA FGFR4-silencing in SW480 and SW48 cell lines resulted in a significant decrease in cell proliferation, adhesion, cell migration and invasion. This decrease in the tumorigenic and invasive capabilities of colorectal cancer cells was accompanied by a decrease of Snail, Twist and TGFβ gene expression levels and an increase of E-cadherin, causing a reversion to a more epithelial phenotype, in three different cell lines. In addition, FGFR4-signaling activated the oncogenic SRC, ERK1/2 and AKT pathways in colon cancer cells and promoted an increase in cell survival. The relevance of FGFR4 in tumor growth was supported by two different strategies. Kinase inhibitors abrogated FGFR4-related cell growth and signaling pathways at the same extent than FGFR4-silenced cells. Specific FGFR4-targeting using antibodies provoked a similar reduction in cell growth. Moreover, FGFR4 knock-down cells displayed a reduced capacity for in vivo tumor formation and angiogenesis in nude mice. Collectively, our data support a crucial role for FGFR4 in tumorigenesis, invasion and survival in colorectal cancer. In addition, FGFR4 targeting demonstrated its applicability for colorectal cancer therapy. PMID:23696849

  12. A Role for Estrogen Receptor Phosphorylation in the Resistance to Tamoxifen

    International Nuclear Information System (INIS)

    De Leeuw, R.; Neefjes, J.; Michalides, R.

    2011-01-01

    About two thirds of all human breast cancer cases are estrogen receptor positive. The drug of first choice for these patients is tamoxifen. However, about half of the recurrences after removal of the primary tumor are or become resistant to this drug. While many mechanisms have been identified for tamoxifen resistance in the lab, at present only a few have been translated to the clinic. This paper highlights the role in tamoxifen resistance of phosphorylation by different kinases on different sites of the estrogen receptor. We will discuss the molecular pathways and kinases that are involved in phosphorylation of ERa and how these affect tamoxifen resistance. Finally, we will elaborate on the clinical translation of these observations and the possibility to predict tamoxifen responses in patient tumor samples before treatment onset. The findings made originally on the bench may translate into a better and personalized treatment of breast cancer patients using an old and safe anticancer drug: tamoxifen

  13. FGFR Family Members Protein Expression as Prognostic Markers in Oral Cavity and Oropharyngeal Squamous Cell Carcinoma

    NARCIS (Netherlands)

    Koole, Koos; Clausen, Martijn J. A. M.; van Es, Robert J. J.; van Kempen, Pauline M. W.; Melchers, Lieuwe J.; Koole, Ron; Langendijk, Johannes A.; van Diest, Paul J.; Roodenburg, Jan L. N.; Schuuring, Ed; Willems, Stefan M.

    Introduction Fibroblast growth factor receptor family member proteins (FGFR1-4) have been identified as promising novel therapeutic targets and prognostic markers in a wide spectrum of solid tumors. The present study investigates the expression and prognostic value of four FGFR family member

  14. Noradrenaline, oxymetazoline and phorbol myristate acetate induce distinct functional actions and phosphorylation patterns of α1A-adrenergic receptors.

    Science.gov (United States)

    Alcántara-Hernández, Rocío; Hernández-Méndez, Aurelio; Romero-Ávila, M Teresa; Alfonzo-Méndez, Marco A; Pupo, André S; García-Sáinz, J Adolfo

    2017-12-01

    In LNCaP cells that stably express α 1A -adrenergic receptors, oxymetazoline increased intracellular calcium and receptor phosphorylation, however, this agonist was a weak partial agonist, as compared to noradrenaline, for calcium signaling. Interestingly, oxymetazoline-induced receptor internalization and desensitization displayed greater effects than those induced by noradrenaline. Phorbol myristate acetate induced modest receptor internalization and minimal desensitization. α 1A -Adrenergic receptor interaction with β-arrestins (colocalization/coimmunoprecipitation) was induced by noradrenaline and oxymetazoline and, to a lesser extent, by phorbol myristate acetate. Oxymetazoline was more potent and effective than noradrenaline in inducing ERK 1/2 phosphorylation. Mass spectrometric analysis of immunopurified α 1A -adrenergic receptors from cells treated with adrenergic agonists and the phorbol ester clearly showed that phosphorylated residues were present both at the third intracellular loop and at the carboxyl tail. Distinct phosphorylation patterns were observed under the different conditions. The phosphorylated residues were: a) Baseline and all treatments: T233; b) noradrenaline: S220, S227, S229, S246, S250, S389; c) oxymetazoline: S227, S246, S381, T384, S389; and d) phorbol myristate acetate: S246, S250, S258, S351, S352, S401, S402, S407, T411, S413, T451. Our novel data, describing the α 1A -AR phosphorylation sites, suggest that the observed different phosphorylation patterns may participate in defining adrenoceptor localization and action, under the different conditions examined. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Phosphorylation of the dimeric cytoplasmic domain of the phytosulfokine receptor, PSKR1

    KAUST Repository

    Muleya, V.; Marondedze, Claudius; Wheeler, J. I.; Thomas, Ludivine; Mok, Y.-F.; Griffin, M. D. W.; Manallack, D. T.; Kwezi, L.; Lilley, K. S.; Gehring, Christoph A; Irving, H. R.

    2016-01-01

    Phytosulfokines (PSKs) are plant peptide hormones that co-regulate plant growth, differentiation and defense responses. PSKs signal through a plasma membrane localized leucine-rich repeat receptor-like kinase (phytosulfokine receptor 1, PSKR1) that also contains a functional cytosolic guanylate cyclase with its cyclase catalytic center embedded within the kinase domain. To functionally characterize this novel type of overlapping dual catalytic function, we investigated the phosphorylation of PSKR1 in vitro Tandem mass spectrometry of the cytoplasmic domain of PSKR1 (PSKR1cd) revealed at least 11 phosphorylation sites (8 serines, 2 threonines and 1 tyrosine) within the PSKR1cd. Phosphomimetic mutations of three serine residues (Ser686, Ser696 and Ser698) in tandem at the juxta-membrane position resulted in enhanced kinase activity in the on-mutant that was suppressed in the off-mutant, but both mutations reduced guanylate cyclase activity. Both the on and off phosphomimetic mutations of the phosphotyrosine (Tyr888) residue in the activation loop suppressed kinase activity, while neither mutation affected guanylate cyclase activity. Size exclusion and analytical ultracentrifugation analysis of the PSKR1cd suggest that it is reversibly dimeric in solution, which was further confirmed by biflourescence complementation. Taken together, these data suggest that in this novel type of receptor domain architecture, specific phosphorylation and dimerization are possibly essential mechanisms for ligand-mediated catalysis and signaling.

  16. Phosphorylation of the dimeric cytoplasmic domain of the phytosulfokine receptor, PSKR1

    KAUST Repository

    Muleya, V.

    2016-08-04

    Phytosulfokines (PSKs) are plant peptide hormones that co-regulate plant growth, differentiation and defense responses. PSKs signal through a plasma membrane localized leucine-rich repeat receptor-like kinase (phytosulfokine receptor 1, PSKR1) that also contains a functional cytosolic guanylate cyclase with its cyclase catalytic center embedded within the kinase domain. To functionally characterize this novel type of overlapping dual catalytic function, we investigated the phosphorylation of PSKR1 in vitro Tandem mass spectrometry of the cytoplasmic domain of PSKR1 (PSKR1cd) revealed at least 11 phosphorylation sites (8 serines, 2 threonines and 1 tyrosine) within the PSKR1cd. Phosphomimetic mutations of three serine residues (Ser686, Ser696 and Ser698) in tandem at the juxta-membrane position resulted in enhanced kinase activity in the on-mutant that was suppressed in the off-mutant, but both mutations reduced guanylate cyclase activity. Both the on and off phosphomimetic mutations of the phosphotyrosine (Tyr888) residue in the activation loop suppressed kinase activity, while neither mutation affected guanylate cyclase activity. Size exclusion and analytical ultracentrifugation analysis of the PSKR1cd suggest that it is reversibly dimeric in solution, which was further confirmed by biflourescence complementation. Taken together, these data suggest that in this novel type of receptor domain architecture, specific phosphorylation and dimerization are possibly essential mechanisms for ligand-mediated catalysis and signaling.

  17. Endocytosis of G protein-coupled receptors is regulated by clathrin light chain phosphorylation.

    Science.gov (United States)

    Ferreira, Filipe; Foley, Matthew; Cooke, Alex; Cunningham, Margaret; Smith, Gemma; Woolley, Robert; Henderson, Graeme; Kelly, Eamonn; Mundell, Stuart; Smythe, Elizabeth

    2012-08-07

    Signaling by transmembrane receptors such as G protein-coupled receptors (GPCRs) occurs at the cell surface and throughout the endocytic pathway, and signaling from the cell surface may differ in magnitude and downstream output from intracellular signaling. As a result, the rate at which signaling molecules traverse the endocytic pathway makes a significant contribution to downstream output. Modulation of the core endocytic machinery facilitates differential uptake of individual cargoes. Clathrin-coated pits are a major entry portal where assembled clathrin forms a lattice around invaginating buds that have captured endocytic cargo. Clathrin assembles into triskelia composed of three clathrin heavy chains and associated clathrin light chains (CLCs). Despite the identification of clathrin-coated pits at the cell surface over 30 years ago, the functions of CLCs in endocytosis have been elusive. In this work, we identify a novel role for CLCs in the regulated endocytosis of specific cargoes. Small interfering RNA-mediated knockdown of either CLCa or CLCb inhibits the uptake of GPCRs. Moreover, we demonstrate that phosphorylation of Ser204 in CLCb is required for efficient endocytosis of a subset of GPCRs and identify G protein-coupled receptor kinase 2 (GRK2) as a kinase that can phosphorylate CLCb on Ser204. Overexpression of CLCb(S204A) specifically inhibits the endocytosis of those GPCRs whose endocytosis is GRK2-dependent. Together, these results indicate that CLCb phosphorylation acts as a discriminator for the endocytosis of specific GPCRs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Integrated regulation of AMPA glutamate receptor phosphorylation in the striatum by dopamine and acetylcholine.

    Science.gov (United States)

    Xue, Bing; Chen, Elton C; He, Nan; Jin, Dao-Zhong; Mao, Li-Min; Wang, John Q

    2017-01-01

    Dopamine (DA) and acetylcholine (ACh) signals converge onto protein kinase A (PKA) in medium spiny neurons of the striatum to control cellular and synaptic activities of these neurons, although underlying molecular mechanisms are less clear. Here we measured phosphorylation of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) at a PKA site (S845) as an indicator of AMPAR responses in adult rat brains in vivo to explore how DA and ACh interact to modulate AMPARs. We found that subtype-selective activation of DA D1 receptors (D1Rs), D2 receptors (D2Rs), or muscarinic M4 receptors (M4Rs) induced specific patterns of GluA1 S845 responses in the striatum. These defined patterns support a local multitransmitter interaction model in which D2Rs inhibited an intrinsic inhibitory element mediated by M4Rs to enhance the D1R efficacy in modulating AMPARs. Consistent with this, selective enhancement of M4R activity by a positive allosteric modulator resumed the cholinergic inhibition of D1Rs. In addition, D1R and D2R coactivation recruited GluA1 and PKA preferentially to extrasynaptic sites. In sum, our in vivo data support an existence of a dynamic DA-ACh balance in the striatum which actively modulates GluA1 AMPAR phosphorylation and trafficking. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Coordinate phosphorylation of insulin-receptor kinase and its 175,000-Mr endogenous substrate in rat hepatocytes

    International Nuclear Information System (INIS)

    Okamoto, M.; Karasik, A.; White, M.F.; Kahn, C.R.

    1991-01-01

    To investigate the early events in insulin signal transmission in liver, isolated rat hepatocytes were labeled with 32 P, and proteins phosphorylated in response to insulin were detected by immunoprecipitation with anti-phosphotyrosine and anti-receptor antibodies and analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and autoradiography. In these cells, insulin rapidly stimulated tyrosine phosphorylation of the 95,000-Mr beta-subunit of the insulin receptor and a 175,000-Mr phosphoprotein (pp175). Both proteins were precipitated by anti-phosphotyrosine antibody, whereas only the insulin receptor was recognized with anti-insulin-receptor antibody. In the insulin-stimulated state, both pp175 and the receptor beta-subunit were found to be phosphorylated on tyrosine and serine residues. Based on precipitation by the two antibodies, receptor phosphorylation was biphasic with an initial increase in tyrosine phosphorylation followed by a more gradual increase in serine phosphorylation over the first 30 min of stimulation. The time course of phosphorylation of pp175 was rapid and paralleled that of the beta-subunit of the insulin receptor. The pp175 was clearly distinguished from the insulin receptor, because it was detected only when boiling SDS was used to extract cellular phosphoproteins, whereas the insulin receptor was extracted with either Triton X-100 or SDS. In addition, the tryptic peptide maps of the two proteins were distinct. The dose-response curve for insulin stimulation was shifted slightly to the left of the insulin receptor, suggesting some signal amplification at this step. These data suggest that pp175 is a major endogenous substrate of the insulin receptor in liver and may be a cytoskeletal-associated protein

  20. FGFR2 amplification is predictive of sensitivity to regorafenib in gastric and colorectal cancers in vitro.

    Science.gov (United States)

    Cha, Yongjun; Kim, Hwang-Phill; Lim, Yoojoo; Han, Sae-Won; Song, Sang-Hyun; Kim, Tae-You

    2018-03-24

    Although regorafenib has demonstrated survival benefits in patients with metastatic colorectal and gastrointestinal stromal tumors, no proven biomarker has been identified for predicting sensitivity to regorafenib. Here, we investigated preclinical activity of regorafenib in gastric and colorectal cancer cells to identify genetic alterations associated with sensitivity to regorafenib. Mutation profiles and copy number assays of regorafenib target molecules indicated that amplification of FGFR2 was the only genetic alteration associated with in vitro sensitivity to regorafenib. Regorafenib effectively inhibited phosphorylation of FGFR2 and its downstream signaling molecules in a dose-dependent manner and selectively in FGFR2 amplified cells. Regorafenib induced G1 arrest (SNU-16, KATO-III) and apoptosis (NCI-H716), however, no significant changes were seen in cell lines without FGFR2 amplification. In SNU-16 mice xenografts, regorafenib significantly inhibited tumor growth, proliferation, and FGFR signaling compared to treatment with control vehicle. Regorafenib effectively abrogates activated FGFR2 signaling in FGFR2 amplified gastric and colorectal cancer and therefore, might be considered for integration into treatment in patients with FGFR2 amplified gastric and colorectal cancers. This article is protected by copyright. All rights reserved. Molecular Oncology (2018) © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  1. Phosphorylation of SLP-76 by the ZAP-70 protein-tyrosine kinase is required for T-cell receptor function.

    Science.gov (United States)

    Bubeck Wardenburg, J; Fu, C; Jackman, J K; Flotow, H; Wilkinson, S E; Williams, D H; Johnson, R; Kong, G; Chan, A C; Findell, P R

    1996-08-16

    Two families of tyrosine kinases, the Src and Syk families, are required for T-cell receptor activation. While the Src kinases are responsible for phosphorylation of receptor-encoded signaling motifs and for up-regulation of ZAP-70 activity, the downstream substrates of ZAP-70 are unknown. Evidence is presented herein that the Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76) is a substrate of ZAP-70. Phosphorylation of SLP-76 is diminished in T cells that express a catalytically inactive ZAP-70. Moreover, SLP-76 is preferentially phosphorylated by ZAP-70 in vitro and in heterologous cellular systems. In T cells, overexpression of wild-type SLP-76 results in a hyperactive receptor, while expression of a SLP-76 molecule that is unable to be tyrosine-phosphorylated attenuates receptor function. In addition, the SH2 domain of SLP-76 is required for T-cell receptor function, although its role is independent of the ability of SLP-76 to undergo tyrosine phosphorylation. As SLP-76 interacts with both Grb2 and phospholipase C-gamma1, these data indicate that phosphorylation of SLP-76 by ZAP-70 provides an important functional link between the T-cell receptor and activation of ras and calcium pathways.

  2. FGFR3 expression in primary and metastatic urothelial carcinoma of the bladder

    International Nuclear Information System (INIS)

    Guancial, Elizabeth A; Werner, Lillian; Bellmunt, Joaquim; Bamias, Aristotle; Choueiri, Toni K; Ross, Robert; Schutz, Fabio A; Park, Rachel S; O'Brien, Robert J; Hirsch, Michelle S; Barletta, Justine A; Berman, David M; Lis, Rosina; Loda, Massimo; Stack, Edward C; Garraway, Levi A; Riester, Markus; Michor, Franziska; Kantoff, Philip W; Rosenberg, Jonathan E

    2014-01-01

    While fibroblast growth factor receptor 3 (FGFR3) is frequently mutated or overexpressed in nonmuscle-invasive urothelial carcinoma (UC), the prevalence of FGFR3 protein expression and mutation remains unknown in muscle-invasive disease. FGFR3 protein and mRNA expression, mutational status, and copy number variation were retrospectively analyzed in 231 patients with formalin-fixed paraffin-embedded primary UCs, 33 metastases, and 14 paired primary and metastatic tumors using the following methods: immunohistochemistry, NanoString nCounterTM, OncoMap or Affymetrix OncoScanTM array, and Gain and Loss of Analysis of DNA and Genomic Identification of Significant Targets in Cancer software. FGFR3 immunohistochemistry staining was present in 29% of primary UCs and 49% of metastases and did not impact overall survival (P = 0.89, primary tumors; P = 0.78, metastases). FGFR3 mutations were observed in 2% of primary tumors and 9% of metastases. Mutant tumors expressed higher levels of FGFR3 mRNA than wild-type tumors (P < 0.001). FGFR3 copy number gain and loss were rare events in primary and metastatic tumors (0.8% each; 3.0% and 12.3%, respectively). FGFR3 immunohistochemistry staining is present in one third of primary muscle-invasive UCs and half of metastases, while FGFR3 mutations and copy number changes are relatively uncommon

  3. Multikinase activity of fibroblast growth factor receptor (FGFR) inhibitors SU5402, PD173074, AZD1480, AZD4547 and BGJ398 compromises the use of small chemicals targeting FGFR catalytic activity for therapy of short-stature syndromes

    Czech Academy of Sciences Publication Activity Database

    Gudernová, I.; Veselá, Iva; Balek, L.; Buchtová, Marcela; Dosedělová, Hana; Kunová, M.; Pivnička, J.; Jelínková, I.; Roubalová, L.; Kozubík, Alois; Krejčí, P.

    2016-01-01

    Roč. 25, č. 1 (2016), s. 9-23 ISSN 0964-6906 R&D Projects: GA ČR(CZ) GA14-31540S Institutional support: RVO:67985904 ; RVO:68081707 Keywords : fibroblast growth factor receptor * tyrosine kinase domain * ERK MAP kinase Subject RIV: EA - Cell Biology Impact factor: 5.340, year: 2016

  4. Prognostic value of FGFR gene amplification in patients with different types of cancer: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Jinjia Chang

    Full Text Available BACKGROUND: Fibroblast growth factor receptor (FGFR gene amplification has been reported in different types of cancer. We performed an up-to-date meta-analysis to further characterize the prognostic value of FGFR gene amplification in patients with cancer. METHODS: A search of several databases, including MEDLINE (PubMed, EMBASE, Web of Science, and China National Knowledge Infrastructure, was conducted to identify studies examining the association between FGFR gene amplification and cancer. A total of 24 studies met the inclusion criteria, and overall incidence rates, hazard risk (HR, overall survival, disease-free survival, and 95% confidence intervals (CIs were calculated employing fixed- or random-effects models depending on the heterogeneity of the included studies. RESULTS: In the meta-analysis of 24 studies, the prevalence of FGFR gene amplification was FGFR1: 0.11 (95% CI: 0.08-0.13 and FGFR2: 0.04 (95% CI: 0.02-0.06. Overall survival was significantly worse among patients with FGFR gene amplification: FGFR1 [HR 1.57 (95% CI: 1.23-1.99; p = 0.0002] and FGFR2 [HR 2.27 (95% CI: 1.73-3.00; p<0.00001]. CONCLUSIONS: Current evidence supports the conclusion that the outcomes of patients with FGFR gene amplified cancers is worse than for those with non-FGFR gene amplified cancers.

  5. Myeloproliferative disorder FOP-FGFR1 fusion kinase recruits phosphoinositide-3 kinase and phospholipase Cγ at the centrosome

    Directory of Open Access Journals (Sweden)

    Tassin Anne-Marie

    2008-04-01

    Full Text Available Abstract Background The t(6;8 translocation found in rare and agressive myeloproliferative disorders results in a chimeric gene encoding the FOP-FGFR1 fusion protein. This protein comprises the N-terminal region of the centrosomal protein FOP and the tyrosine kinase of the FGFR1 receptor. FOP-FGFR1 is localized at the centrosome where it exerts a constitutive kinase activity. Results We show that FOP-FGFR1 interacts with the large centrosomal protein CAP350 and that CAP350 is necessary for FOP-FGFR1 localisation at centrosome. FOP-FGFR1 activates the phosphoinositide-3 kinase (PI3K pathway. We show that p85 interacts with tyrosine 475 of FOP-FGFR1, which is located in a YXXM consensus binding sequence for an SH2 domain of p85. This interaction is in part responsible for PI3K activation. Ba/F3 cells that express FOP-FGFR1 mutated at tyrosine 475 have reduced proliferative ability. Treatment with PI3K pathway inhibitors induces death of FOP-FGFR1 expressing cells. FOP-FGFR1 also recruits phospholipase Cγ1 (PLCγ1 at the centrosome. We show that this enzyme is recruited by FOP-FGFR1 at the centrosome during interphase. Conclusion These results delineate a particular type of oncogenic mechanism by which an ectopic kinase recruits its substrates at the centrosome whence unappropriate signaling induces continuous cell growth and MPD.

  6. Discovery and Biological Evaluation of a Series of Pyrrolo[2,3-b]pyrazines as Novel FGFR Inhibitors.

    Science.gov (United States)

    Zhang, Yan; Liu, Hongchun; Zhang, Zhen; Wang, Ruifeng; Liu, Tongchao; Wang, Chaoyun; Ma, Yuchi; Ai, Jing; Zhao, Dongmei; Shen, Jingkang; Xiong, Bing

    2017-04-05

    Abnormality of fibroblast growth factor receptor (FGFR)-mediated signaling pathways were frequently found in various human malignancies, making FGFRs hot targets for cancer treatment. To address the consistent need for a new chemotype of FGFR inhibitors, here, we started with a hit structure identified from our internal hepatocyte growth factor receptor (also called c-Met) inhibitor project, and conducted a chemical optimization. After exploring three parts of the hit compound, we finally discovered a new series of pyrrolo[2,3- b ]pyrazine FGFR inhibitors, which contain a novel scaffold and unique molecular shape. We believe that our findings can help others to further develop selective FGFR inhibitors.

  7. Insight into resistance mechanisms of AZD4547 and E3810 to FGFR1 gatekeeper mutation via theoretical study

    Directory of Open Access Journals (Sweden)

    Liang D

    2017-02-01

    Full Text Available Donglou Liang,1,* Qiaowan Chen,2,* Yujin Guo,1 Ting Zhang,3 Wentao Guo4 1Pharmacy Department, Jining First People’s Hospital, 2Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 3Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, 4School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China *These authors contributed equally to this work Abstract: Inhibitors targeting the amplification of the fibroblast growth factor receptor 1 (FGFR1 have found success in the treatment of FGFR1-positive squamous cell lung and breast cancers. A secondary mutation of gatekeeper residue (V561M in the binding site has been linked to the acquired resistance. Recently, two well-known small molecule inhibitors of FGFR1, AZD4547 and E3810, reported that the V561M mutation confers significant resistance to E3810, while retaining affinity for AZD4547. FGFR1 is widely investigated as potential therapeutic target, while there are few computational studies made to understand the resistance mechanisms about FGFR1 V561M gatekeeper mutation. In this study, molecular docking, classical molecular dynamics simulations, molecular mechanics/generalized born surface area (MM/GBSA free energy calculations, and umbrella sampling (US simulations were carried out to make clear the principle of the binding preference of AZD4547 and E3810 toward FGFR1 V561M gatekeeper mutation. The results provided by MM/GBSA reveal that AZD4547 has similar binding affinity to both FGFR1WT and FGFR1V561M, whereas E3810 has much higher binding affinity to FGFR1WT than to FGFR1V561M. Comparison of individual energy terms indicates that the major variation of E3810 between FGFR1WT and FGFR1V561M are van der Waals interactions. In addition, US simulations prove that the potential of mean force (PMF profile of AZD4547 toward FGFR1WT and FGFR1V561M has similar PMF depth. However, the PMF profile

  8. Homologous desensitization of adenylate cyclase: the role of β-adrenergic receptor phosphorylation and dephosphorylation

    International Nuclear Information System (INIS)

    Sibley, D.R.; Strasser, R.H.; Daniel, K.; Lefkowitz, R.J.

    1986-01-01

    The authors utilized the frog erythrocyte (FE) as a β-adreneric receptor (βAR) model system in which to study homologous desensitization. Preincubation with isoproterenol (ISO) leads to a 50% decline in ISO-stimulated adenylate cyclase (AC) activity without significant changes in basal, PGE 1 -, NaF-, GppNHp-, forskolin-, or MnCl 2 -stimulated AC activities. ISO treatment also induces the sequestration of βAR from the cell surface as evidenced by a 35% decline in [ 3 H]CGP-12177 binding sites on the surface of intact FE. Treatment of intact FE with ISO also promotes βAR phosphorylation to 2 mol PO 4 /mol of βAR. At 25 0 C, the time courses of ISO-induced AC desensitization, βAR sequestration and βAR phosphorylation are identical occurring without a lag and exhibiting a t 1/2 of 30 min and a maximal response at 2.5 hrs. The sequestered βAR can be partially recovered upon cell lysis in a light membrane fraction (LMF), separable from the plasma membranes using sucrose gradients or differential centrifugation. βAR phosphorylation is reversed in the sequestered LMF exhibiting a PO 4 /βAR stoichiometry of 0.7 mol/mol - similar to that observed under basal conditions. These data suggest that phosphorylation of βAR in the plasma membrane promotes their translocation away from the cell surface into a sequestered membrane domain where the phosphorylation is reversed, thus, enabling the return of βAR back to the cell surface and recoupling with AC

  9. Postnatal soluble FGFR3 therapy rescues achondroplasia symptoms and restores bone growth in mice.

    Science.gov (United States)

    Garcia, Stéphanie; Dirat, Béatrice; Tognacci, Thomas; Rochet, Nathalie; Mouska, Xavier; Bonnafous, Stéphanie; Patouraux, Stéphanie; Tran, Albert; Gual, Philippe; Le Marchand-Brustel, Yannick; Gennero, Isabelle; Gouze, Elvire

    2013-09-18

    Achondroplasia is a rare genetic disease characterized by abnormal bone development, resulting in short stature. It is caused by a single point mutation in the gene coding for fibroblast growth factor receptor 3 (FGFR3), which leads to prolonged activation upon ligand binding. To prevent excessive intracellular signaling and rescue the symptoms of achondroplasia, we have developed a recombinant protein therapeutic approach using a soluble form of human FGFR3 (sFGFR3), which acts as a decoy receptor and prevents FGF from binding to mutant FGFR3. sFGFR3 was injected subcutaneously to newborn Fgfr3(ach/+) mice-the mouse model of achondroplasia-twice per week throughout the growth period during 3 weeks. Effective maturation of growth plate chondrocytes was restored in bones of treated mice, with a dose-dependent enhancement of skeletal growth in Fgfr3(ach/+) mice. This resulted in normal stature and a significant decrease in mortality and associated complications, without any evidence of toxicity. These results describe a new approach for restoring bone growth and suggest that sFGFR3 could be a potential therapy for children with achondroplasia and related disorders.

  10. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2012-02-01

    BACKGROUND: Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. RESULTS: Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. CONCLUSION: Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  11. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2011-08-22

    Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  12. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Hatt Hanns

    2011-08-01

    Full Text Available Abstract Background Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation. Results Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells. Conclusion Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

  13. Lapatinib Plasma and Tumor Concentrations and Effects on HER Receptor Phosphorylation in Tumor.

    Directory of Open Access Journals (Sweden)

    Neil L Spector

    Full Text Available The paradigm shift in cancer treatment from cytotoxic drugs to tumor targeted therapies poses new challenges, including optimization of dose and schedule based on a biologically effective dose, rather than the historical maximum tolerated dose. Optimal dosing is currently determined using concentrations of tyrosine kinase inhibitors in plasma as a surrogate for tumor concentrations. To examine this plasma-tumor relationship, we explored the association between lapatinib levels in tumor and plasma in mice and humans, and those effects on phosphorylation of human epidermal growth factor receptors (HER in human tumors.Mice bearing BT474 HER2+ human breast cancer xenografts were dosed once or twice daily (BID with lapatinib. Drug concentrations were measured in blood, tumor, liver, and kidney. In a randomized phase I clinical trial, 28 treatment-naïve female patients with early stage HER2+ breast cancer received lapatinib 1000 or 1500 mg once daily (QD or 500 mg BID before evaluating steady-state lapatinib levels in plasma and tumor.In mice, lapatinib levels were 4-fold higher in tumor than blood with a 4-fold longer half-life. Tumor concentrations exceeded the in vitro IC90 (~ 900 nM or 500 ng/mL for inhibition of HER2 phosphorylation throughout the 12-hour dosing interval. In patients, tumor levels were 6- and 10-fold higher with QD and BID dosing, respectively, compared to plasma trough levels. The relationship between tumor and plasma concentration was complex, indicating multiple determinants. HER receptor phosphorylation varied depending upon lapatinib tumor concentrations, suggestive of changes in the repertoire of HER homo- and heterodimers.Plasma lapatinib concentrations underestimated tumor drug levels, suggesting that optimal dosing should be focused on the site of action to avoid to inappropriate dose escalation. Larger clinical trials are required to determine optimal dose and schedule to achieve tumor concentrations that maximally

  14. Carboxyl-terminal multi-site phosphorylation regulates internalization and desensitization of the human sst2 somatostatin receptor.

    Science.gov (United States)

    Lehmann, Andreas; Kliewer, Andrea; Schütz, Dagmar; Nagel, Falko; Stumm, Ralf; Schulz, Stefan

    2014-04-25

    The somatostatin receptor 2 (sst2) is the pharmacological target of somatostatin analogs that are widely used in the diagnosis and treatment of human neuroendocrine tumors. We have recently shown that the stable somatostatin analogs octreotide and pasireotide (SOM230) stimulate distinct patterns of sst2 receptor phosphorylation and internalization. Like somatostatin, octreotide promotes the phosphorylation of at least six carboxyl-terminal serine and threonine residues namely S341, S343, T353, T354, T356 and T359, which in turn leads to a robust receptor endocytosis. Unlike somatostatin, pasireotide stimulates a selective phosphorylation of S341 and S343 of the human sst2 receptor followed by a partial receptor internalization. Here, we show that exchange of S341 and S343 by alanine is sufficient to block pasireotide-driven internalization, whereas mutation of T353, T354, T356 and T359 to alanine is required to strongly inhibited both octreotide- and somatostatin-induced internalization. Yet, combined mutation of T353, T354, T356 and T359 is not sufficient to prevent somatostatin-driven β-arrestin mobilization and receptor desensitization. Replacement of all fourteen carboxyl-terminal serine and threonine residues by alanine completely abrogates sst2 receptor internalization and β-arrestin mobilization in HEK293 cells. Together, our findings demonstrate for the first time that agonist-selective sst2 receptor internalization is regulated by multi-site phosphorylation of its carboxyl-terminal tail. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    Directory of Open Access Journals (Sweden)

    John G Koland

    2014-01-01

    Full Text Available Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR, the intrinsic protein tyrosine kinase (PTK activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites in either of the two C-terminal (CT domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in

  16. Germline variant FGFR4  p.G388R exposes a membrane-proximal STAT3 binding site.

    Science.gov (United States)

    Ulaganathan, Vijay K; Sperl, Bianca; Rapp, Ulf R; Ullrich, Axel

    2015-12-24

    Variant rs351855-G/A is a commonly occurring single-nucleotide polymorphism of coding regions in exon 9 of the fibroblast growth factor receptor FGFR4 (CD334) gene (c.1162G>A). It results in an amino-acid change at codon 388 from glycine to arginine (p.Gly388Arg) in the transmembrane domain of the receptor. Despite compelling genetic evidence for the association of this common variant with cancers of the bone, breast, colon, prostate, skin, lung, head and neck, as well as soft-tissue sarcomas and non-Hodgkin lymphoma, the underlying biological mechanism has remained elusive. Here we show that substitution of the conserved glycine 388 residue to a charged arginine residue alters the transmembrane spanning segment and exposes a membrane-proximal cytoplasmic signal transducer and activator of transcription 3 (STAT3) binding site Y(390)-(P)XXQ(393). We demonstrate that such membrane-proximal STAT3 binding motifs in the germline of type I membrane receptors enhance STAT3 tyrosine phosphorylation by recruiting STAT3 proteins to the inner cell membrane. Remarkably, such germline variants frequently co-localize with somatic mutations in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Using Fgfr4 single nucleotide polymorphism knock-in mice and transgenic mouse models for breast and lung cancers, we validate the enhanced STAT3 signalling induced by the FGFR4 Arg388-variant in vivo. Thus, our findings elucidate the molecular mechanism behind the genetic association of rs351855 with accelerated cancer progression and suggest that germline variants of cell-surface molecules that recruit STAT3 to the inner cell membrane are a significant risk for cancer prognosis and disease progression.

  17. SP600125 Induces Src and Type I IGF Receptor Phosphorylation Independent of JNK

    Directory of Open Access Journals (Sweden)

    Qingbin Kong

    2014-09-01

    Full Text Available c-Jun N-terminal kinases (JNK are members of the mitogen-activated protein kinase (MAPK family that have important roles in signal transduction. The small molecule SP600125 is widely used in biochemical studies as a JNK inhibitor. However, recent studies indicate that SP600125 may also act independent of JNK. Here, we report that SP600125 can induce Src, type I insulin-like growth factor receptor (IGF-IR, Akt and Erk1/2 phosphorylation. Notably, these effects are independent of its inhibition of JNK. Inhibition of Src abrogates the stimulation of IGF-IR, Akt and Erk1/2 phosphorylation. IGF-IR knockdown blunts the induction of both Akt and Erk1/2 phosphorylation by SP600125. Moreover, combination of SP600125 and the Src inhibitor saracatinib synergistically inhibits cell proliferation. We conclude that SP600125 can activate Src-IGF-IR-Akt/Erk1/2 signaling pathways independent of JNK.

  18. Growth factors FGF8 and FGF2 and their receptor FGFR1, transcriptional factors Msx-1 and MSX-2, and apoptotic factors p19 and RIP5 participate in the early human limb development.

    Science.gov (United States)

    Becic, Tina; Kero, Darko; Vukojevic, Katarina; Mardesic, Snjezana; Saraga-Babic, Mirna

    2018-04-01

    The expression pattern of fibroblast growth factors FGF8 and FGF2 and their receptor FGFR1, transcription factors MSX-1 and MSX-2, as well as cell proliferation (Ki-67) and cell death associated caspase-3, p19 and RIP5 factors were analyzed in histological sections of eight 4th-9th-weeks developing human limbs by immunohistochemistry and semi-thin sectioning. Increasing expression of all analyzed factors (except FGF8) characterized both the multilayered human apical ectodermal ridge (AER), sub-ridge mesenchyme (progress zone) and chondrocytes in developing human limbs. While cytoplasmic co-expression of MSX-1 and MSX-2 was observed in both limb epithelium and mesenchyme, p19 displayed strong cytoplasmic expression in non-proliferating cells. Nuclear expression of Ki-67 proliferating cells, and partly of MSX-1 and MSX-2 was detected in the whole limb primordium. Strong expression of factors p19 and RIP5, both in the AER and mesenchyme of human developing limbs indicates their possible involvement in control of cell senescence and cell death. In contrast to animal studies, expression of FGFR1 in the surface ectoderm and p19 in the whole limb primordium might reflect interspecies differences in limb morphology. Expression of FGF2 and downstream RIP5 gene, and transcription factors Msx-1 and MSX-2 did not show human-specific changes in expression pattern. Based on their spatio-temporal expression during human limb development, our study indicates role of FGFs and Msx genes in stimulation of cell proliferation, limb outgrowth, digit elongation and separation, and additionally MSX-2 in control of vasculogenesis. The cascade of orchestrated gene expressions, including the analyzed developmental factors, jointly contribute to the complex human limb development. Copyright © 2018 Elsevier GmbH. All rights reserved.

  19. Phosphorylation of the Transient Receptor Potential Ankyrin 1 by Cyclin-dependent Kinase 5 affects Chemo-nociception

    OpenAIRE

    Hall, Bradford E.; Prochazkova, Michaela; Sapio, Matthew R.; Minetos, Paul; Kurochkina, Natalya; Binukumar, B. K.; Amin, Niranjana D.; Terse, Anita; Joseph, John; Raithel, Stephen J.; Mannes, Andrew J.; Pant, Harish C.; Chung, Man-Kyo; Iadarola, Michael J.; Kulkarni, Ashok B.

    2018-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a key neuronal kinase that is upregulated during inflammation, and can subsequently modulate sensitivity to nociceptive stimuli. We conducted an in silico screen for Cdk5 phosphorylation sites within proteins whose expression was enriched in nociceptors and identified the chemo-responsive ion channel Transient Receptor Potential Ankyrin 1 (TRPA1) as a possible Cdk5 substrate. Immunoprecipitated full length TRPA1 was shown to be phosphorylated by Cdk5 and th...

  20. Characterization of phosphorylation sites in the cytoplasmic domain of the 300 kDa mannose-6-phosphate receptor

    DEFF Research Database (Denmark)

    Rosorius, O; Mieskes, G; Issinger, O G

    1993-01-01

    The human 300 kDa mannose-6-phosphate receptor (MPR 300) is phosphorylated in vivo at serine residues of its cytoplasmic domain. Two-dimensional separation can resolve tryptic phosphopeptides into four major species. To identify the kinases involved in MPR 300 phosphorylation and the phosphorylat......The human 300 kDa mannose-6-phosphate receptor (MPR 300) is phosphorylated in vivo at serine residues of its cytoplasmic domain. Two-dimensional separation can resolve tryptic phosphopeptides into four major species. To identify the kinases involved in MPR 300 phosphorylation...... and the phosphorylation sites the entire coding sequence of the cytoplasmic tail was expressed in Escherichia coli. The isolated cytoplasmic domain was used as a substrate for four purified serine/threonine kinases [casein kinase II (CK II), protein kinase A (PKA), protein kinase C and Ca2+/calmodulin kinase]. All...... kinases phosphorylate the cytoplasmic tail exclusively on serine residues. Inhibition studies using synthetic peptides, partial sequencing of isolated tryptic phosphopeptides and co-migration with tryptic phosphopeptides from MPR 300 labelled in vivo showed that (i) PKA phosphorylates the cytoplasmic MPR...

  1. Conserved intron positions in FGFR genes reflect the modular structure of FGFR and reveal stepwise addition of domains to an already complex ancestral FGFR.

    Science.gov (United States)

    Rebscher, Nicole; Deichmann, Christina; Sudhop, Stefanie; Fritzenwanker, Jens Holger; Green, Stephen; Hassel, Monika

    2009-10-01

    We have analyzed the evolution of fibroblast growth factor receptor (FGFR) tyrosine kinase genes throughout a wide range of animal phyla. No evidence for an FGFR gene was found in Porifera, but we tentatively identified an FGFR gene in the placozoan Trichoplax adhaerens. The gene encodes a protein with three immunoglobulin-like domains, a single-pass transmembrane, and a split tyrosine kinase domain. By superimposing intron positions of 20 FGFR genes from Placozoa, Cnidaria, Protostomia, and Deuterostomia over the respective protein domain structure, we identified ten ancestral introns and three conserved intron groups. Our analysis shows (1) that the position of ancestral introns correlates to the modular structure of FGFRs, (2) that the acidic domain very likely evolved in the last common ancestor of triploblasts, (3) that splicing of IgIII was enabled by a triploblast-specific insertion, and (4) that IgI is subject to substantial loss or duplication particularly in quickly evolving genomes. Moreover, intron positions in the catalytic domain of FGFRs map to the borders of protein subdomains highly conserved in other serine/threonine kinases. Nevertheless, these introns were introduced in metazoan receptor tyrosine kinases exclusively. Our data support the view that protein evolution dating back to the Cambrian explosion took place in such a short time window that only subtle changes in the domain structure are detectable in extant representatives of animal phyla. We propose that the first multidomain FGFR originated in the last common ancestor of Placozoa, Cnidaria, and Bilateria. Additional domains were introduced mainly in the ancestor of triploblasts and in the Ecdysozoa.

  2. Aberrant Receptor Internalization and Enhanced FRS2-dependent Signaling Contribute to the Transforming Activity of the Fibroblast Growth Factor Receptor 2 IIIb C3 Isoform*

    Science.gov (United States)

    Cha, Jiyoung Y.; Maddileti, Savitri; Mitin, Natalia; Harden, T. Kendall; Der, Channing J.

    2009-01-01

    Alternative splice variants of fibroblast growth factor receptor 2 (FGFR2) IIIb, designated C1, C2, and C3, possess progressive reduction in their cytoplasmic carboxyl termini (822, 788, and 769 residues, respectively), with preferential expression of the C2 and C3 isoforms in human cancers. We determined that the progressive deletion of carboxyl-terminal sequences correlated with increasing transforming potency. The highly transforming C3 variant lacks five tyrosine residues present in C1, and we determined that the loss of Tyr-770 alone enhanced FGFR2 IIIb C1 transforming activity. Because Tyr-770 may compose a putative YXXL sorting motif, we hypothesized that loss of Tyr-770 in the 770YXXL motif may cause disruption of FGFR2 IIIb C1 internalization and enhance transforming activity. Surprisingly, we found that mutation of Leu-773 but not Tyr-770 impaired receptor internalization and increased receptor stability and activation. Interestingly, concurrent mutations of Tyr-770 and Leu-773 caused 2-fold higher transforming activity than caused by the Y770F or L773A single mutations, suggesting loss of Tyr and Leu residues of the 770YXXL773 motif enhances FGFR2 IIIb transforming activity by distinct mechanisms. We also determined that loss of Tyr-770 caused persistent activation of FRS2 by enhancing FRS2 binding to FGFR2 IIIb. Furthermore, we found that FRS2 binding to FGFR2 IIIb is required for increased FRS2 tyrosine phosphorylation and enhanced transforming activity by Y770F mutation. Our data support a dual mechanism where deletion of the 770YXXL773 motif promotes FGFR2 IIIb C3 transforming activity by causing aberrant receptor recycling and stability and persistent FRS2-dependent signaling. PMID:19103595

  3. Characterization of phosphorylated beta-adrenergic receptors from desensitized turkey erythrocytes

    International Nuclear Information System (INIS)

    Rebar, R.; Crooke, S.T.; Stadel, J.M.

    1986-01-01

    Catecholamine-induced desensitization of turkey erythrocyte (TE) adenylate cyclase results in a 40-50 percent decrease in agonist stimulated cyclase activity. Desensitization is accompanied by decreased mobility on SDS-PAGE of beta-adrenergic receptor (BAR) proteins photoaffinity labeled with [ 125 I]-p-azidobenzylcarazolol compared to control. Using a low crosslinked gel, the M/sub r/ = 42,000 band of BAR from desensitized TE was further resolved into a doublet compared to a single M/sub r/ = 38,000 band for control. The formation of the doublet appears to correlate with the amount of adenylate cyclase desensitization. Preincubating TE for 20 hr at 37 0 C with 32 P-/sub i/ labels BAR. 32 P-BAR was partially purified by affinity chromatography over alprenolol-Sepharose. Limited digest peptide maps of 32 P-BAR using papain identified a unique peptide (M/sub r/ = 2800) from BAR of desensitized TE which was absent in control. This unique 32 P-peptide was found only in the upper band of the doublet of BAR from desensitized TE. These data indicate that BAR is not uniformly phosphorylated following agonist-induced desensitization of TE and identify a peptide of BAR which is a site of phosphorylation correlating with desensitization of TE adenylate cyclase

  4. Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B

    DEFF Research Database (Denmark)

    Stofega, M R; Herrington, J; Billestrup, Nils

    2000-01-01

    phosphorylation. Consistent with the effects on STAT5B phosphorylation, tyrosine-to-phenylalanine mutation of tyrosine 595 prolongs the duration of tyrosyl phosphorylation of GHR and JAK2. These data suggest that tyrosine 595 is a major site of interaction of GHR with SHP-2, and that GHR-bound SHP-2 negatively......Binding of GH to GH receptor (GHR) rapidly and transiently activates multiple signal transduction pathways that contribute to the growth-promoting and metabolic effects of GH. While the events that initiate GH signal transduction, such as activation of the Janus tyrosine kinase JAK2, are beginning...

  5. Activation of Aurora A kinase through the FGF1/FGFR signaling axis sustains the stem cell characteristics of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Yi-Chao [Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan (China); Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan (China); Kao, Chien-Yu [Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan (China); Graduate Program of Biotechnology in Medicine, Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan (China); Chung, Yu-Fen; Lee, Don-Ching [Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan (China); Liu, Jen-Wei [Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan (China); Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chiu, Ing-Ming, E-mail: ingming@nhri.org.tw [Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan (China); Graduate Program of Biotechnology in Medicine, Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan (China); Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan (China)

    2016-06-10

    Fibroblast growth factor 1 (FGF1) binds and activates FGF receptors, thereby regulating cell proliferation and neurogenesis. Human FGF1 gene 1B promoter (−540 to +31)-driven SV40 T antigen has been shown to result in tumorigenesis in the brains of transgenic mice. FGF1B promoter (−540 to +31)-driven green fluorescent protein (F1BGFP) has also been used in isolating neural stem cells (NSCs) with self-renewal and multipotency from developing and adult mouse brains. In this study, we provide six lines of evidence to demonstrate that FGF1/FGFR signaling is implicated in the expression of Aurora A (AurA) and the activation of its kinase domain (Thr288 phosphorylation) in the maintenance of glioblastoma (GBM) cells and NSCs. First, treatment of FGF1 increases AurA expression in human GBM cell lines. Second, using fluorescence-activated cell sorting, we observed that F1BGFP reporter facilitates the isolation of F1BGFP(+) GBM cells with higher expression levels of FGFR and AurA. Third, both FGFR inhibitor (SU5402) and AurA inhibitor (VX680) could down-regulate F1BGFP-dependent AurA activity. Fourth, inhibition of AurA activity by two different AurA inhibitors (VX680 and valproic acid) not only reduced neurosphere formation but also induced neuronal differentiation of F1BGFP(+) GBM cells. Fifth, flow cytometric analyses demonstrated that F1BGFP(+) GBM cells possessed different NSC cell surface markers. Finally, inhibition of AurA by VX680 reduced the neurosphere formation of different types of NSCs. Our results show that activation of AurA kinase through FGF1/FGFR signaling axis sustains the stem cell characteristics of GBM cells. Implications: This study identified a novel mechanism for the malignancy of GBM, which could be a potential therapeutic target for GBM. - Highlights: • We report that FGF1 treatment can stimulate AurA kinase expression in human GBM cells. • FGF1/FGFR signaling is involved in the activation of AurA kinase. • FGF1 sustains the self

  6. Activation of Aurora A kinase through the FGF1/FGFR signaling axis sustains the stem cell characteristics of glioblastoma cells

    International Nuclear Information System (INIS)

    Hsu, Yi-Chao; Kao, Chien-Yu; Chung, Yu-Fen; Lee, Don-Ching; Liu, Jen-Wei; Chiu, Ing-Ming

    2016-01-01

    Fibroblast growth factor 1 (FGF1) binds and activates FGF receptors, thereby regulating cell proliferation and neurogenesis. Human FGF1 gene 1B promoter (−540 to +31)-driven SV40 T antigen has been shown to result in tumorigenesis in the brains of transgenic mice. FGF1B promoter (−540 to +31)-driven green fluorescent protein (F1BGFP) has also been used in isolating neural stem cells (NSCs) with self-renewal and multipotency from developing and adult mouse brains. In this study, we provide six lines of evidence to demonstrate that FGF1/FGFR signaling is implicated in the expression of Aurora A (AurA) and the activation of its kinase domain (Thr288 phosphorylation) in the maintenance of glioblastoma (GBM) cells and NSCs. First, treatment of FGF1 increases AurA expression in human GBM cell lines. Second, using fluorescence-activated cell sorting, we observed that F1BGFP reporter facilitates the isolation of F1BGFP(+) GBM cells with higher expression levels of FGFR and AurA. Third, both FGFR inhibitor (SU5402) and AurA inhibitor (VX680) could down-regulate F1BGFP-dependent AurA activity. Fourth, inhibition of AurA activity by two different AurA inhibitors (VX680 and valproic acid) not only reduced neurosphere formation but also induced neuronal differentiation of F1BGFP(+) GBM cells. Fifth, flow cytometric analyses demonstrated that F1BGFP(+) GBM cells possessed different NSC cell surface markers. Finally, inhibition of AurA by VX680 reduced the neurosphere formation of different types of NSCs. Our results show that activation of AurA kinase through FGF1/FGFR signaling axis sustains the stem cell characteristics of GBM cells. Implications: This study identified a novel mechanism for the malignancy of GBM, which could be a potential therapeutic target for GBM. - Highlights: • We report that FGF1 treatment can stimulate AurA kinase expression in human GBM cells. • FGF1/FGFR signaling is involved in the activation of AurA kinase. • FGF1 sustains the self

  7. Heterologous activation of protein kinase C stimulates phosphorylation of delta-opioid receptor at serine 344, resulting in beta-arrestin- and clathrin-mediated receptor internalization

    DEFF Research Database (Denmark)

    Xiang, B; Yu, G H; Guo, J

    2001-01-01

    The purpose of the current study is to investigate the effect of opioid-independent, heterologous activation of protein kinase C (PKC) on the responsiveness of opioid receptor and the underlying molecular mechanisms. Our result showed that removing the C terminus of delta opioid receptor (DOR......) containing six Ser/Thr residues abolished both DPDPE- and phorbol 12-myristate 13-acetate (PMA)-induced DOR phosphorylation. The phosphorylation levels of DOR mutants T352A, T353A, and T358A/T361A/S363S were comparable to that of the wild-type DOR, whereas S344G substitution blocked PMA-induced receptor......, and ionomycin resulted in DOR internalization that required phosphorylation of Ser-344. Expression of dominant negative beta-arrestin and hypertonic sucrose treatment blocked PMA-induced DOR internalization, suggesting that PKC mediates DOR internalization via a beta-arrestin- and clathrin-dependent mechanism...

  8. In vitro phosphorylation of insulin receptor substrate 1 by protein kinase C-zeta: functional analysis and identification of novel phosphorylation sites.

    Science.gov (United States)

    Sommerfeld, Mark R; Metzger, Sabine; Stosik, Magdalene; Tennagels, Norbert; Eckel, Jürgen

    2004-05-18

    Protein kinase C-zeta (PKC-zeta) participates both in downstream insulin signaling and in the negative feedback control of insulin action. Here we used an in vitro approach to identify PKC-zeta phosphorylation sites within insulin receptor substrate 1 (IRS-1) and to characterize the functional implications. A recombinant IRS-1 fragment (rIRS-1(449)(-)(664)) containing major tyrosine motifs for interaction with phosphatidylinositol (PI) 3-kinase strongly associated to the p85alpha subunit of PI 3-kinase after Tyr phosphorylation by the insulin receptor. Phosphorylation of rIRS-1(449)(-)(664) by PKC-zeta induced a prominent inhibition of this process with a mixture of classical PKC isoforms being less effective. Both PKC-zeta and the classical isoforms phosphorylated rIRS-1(449)(-)(664) on Ser(612). However, modification of this residue did not reduce the affinity of p85alpha binding to pTyr-containing peptides (amino acids 605-615 of rat IRS-1), as determined by surface plasmon resonance. rIRS-1(449)(-)(664) was then phosphorylated by PKC-zeta using [(32)P]ATP and subjected to tryptic phosphopeptide mapping based on two-dimensional HPLC coupled to mass spectrometry. Ser(498) and Ser(570) were identified as novel phosphoserine sites targeted by PKC-zeta. Both sites were additionally confirmed by phosphopeptide mapping of the corresponding Ser --> Ala mutants of rIRS-1(449)(-)(664). Ser(570) was specifically targeted by PKC-zeta, as shown by immunoblotting with a phosphospecific antiserum against Ser(570) of IRS-1. Binding of p85alpha to the S570A mutant was less susceptible to inhibition by PKC-zeta, when compared to the S612A mutant. In conclusion, our in vitro data demonstrate a strong inhibitory action of PKC-zeta at the level of IRS-1/PI 3-kinase interaction involving multiple serine phosphorylation sites. Whereas Ser(612) appears not to participate in the negative control of insulin signaling, Ser(570) may at least partly contribute to this process.

  9. HDAC6 deficiency or inhibition blocks FGFR3 accumulation and improves bone growth in a model of achondroplasia.

    Science.gov (United States)

    Ota, Sara; Zhou, Zi-Qiang; Romero, Megan P; Yang, Guang; Hurlin, Peter J

    2016-10-01

    Mutations that cause increased and/or inappropriate activation of FGFR3 are responsible for a collection of short-limbed chondrodysplasias. These mutations can alter receptor trafficking and enhance receptor stability, leading to increased receptor accumulation and activity. Here, we show that wildtype and mutant activated forms of FGFR3 increase expression of the cytoplasmic deacetylase HDAC6 (Histone Deacetylase 6) and that FGFR3 accumulation is compromised in cells lacking HDAC6 or following treatment of fibroblasts or chondrocytes with small molecule inhibitors of HDAC6. The reduced accumulation of FGFR3 was linked to increased FGFR3 degradation that occurred through a lysosome-dependent mechanism. Using a mouse model of Thanatophoric Dysplasia Type II (TDII) we show that both HDAC6 deletion and treatment with the small molecule HDAC6 inhibitor tubacin reduced FGFR3 accumulation in the growth plate and improved endochondral bone growth. Defective endochondral growth in TDII is associated with reduced proliferation and poor hypertrophic differentiation and the improved bone growth was associated with increased chondrocyte proliferation and expansion of the differentiation compartment within the growth plate. These findings further define the mechanisms that control FGFR3 accumulation and contribute to skeletal pathology caused by mutations in FGFR3. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Glycoprotein VI/Fc receptor γ chain-independent tyrosine phosphorylation and activation of murine platelets by collagen

    OpenAIRE

    Jarvis, Gavin E.; Best, Denise; Watson, Steve P.

    2004-01-01

    We have investigated the ability of collagen to induce signalling and functional responses in suspensions of murine platelets deficient in the FcRγ (Fc receptor γ) chain, which lack the collagen receptor GPVI (glycoprotein VI). In the absence of the FcRγ chain, collagen induced a unique pattern of tyrosine phosphorylation which was potentiated by the thromboxane analogue U46619. Immunoprecipitation studies indicated that neither collagen alone nor the combination of collagen plus U46619 induc...

  11. Polyguluronate sulfate and its oligosaccharides but not heparin promotes FGF19/FGFR1c signaling

    Science.gov (United States)

    Lan, Ying; Zeng, Xuan; Guo, Zhihua; Zeng, Pengjiao; Hao, Cui; Zhao, Xia; Yu, Guangli; Zhang, Lijuan

    2017-06-01

    Fibroblast growth factor 19(FGF19) functions as a hormone by affecting glucose metabolism. FGF19 improves glucose tolerance when overexpressed in mice with impaired glucose tolerance or diabetes. A functional cellular FGF19 receptor consists of FGF receptor (FGFR) and glycosaminoglycan complexed with either α Klotho or β Klotho. Interestingly, in mice with diet-induced diabetes, a single injection of FGF1 is enough to restore blood sugar levels to a healthy range. FGF1 binds heparin with high affinity whereas FGF19 does not, indicating that polysaccharides other than heparin might enhance FGF19/FGFR signaling. Using a FGFs/FGFR1c signaling-dependent BaF3 cell proliferation assay, we discovered that polyguluronate sulfate (PGS) and its oligosaccharides, PGS12 and PGS25, but not polyguluronate (PG), a natural marine polysaccharide, enhanced FGF19/FGFR1c signaling better than that of heparin based on 3H-thymidine incorporation. Interestingly, PGS6, PGS8, PGS10, PGS12, PGS25, and PGS, but not PG, had comparable FGF1/FGFR1c signal-stimulating activity compared to that of heparin. These results indicated that PGS and its oligosaccharides were excellent FGF1/FGFR1c and FGF19/FGFR1c signaling enhancers at cellular level. Since the inexpensive PGS and PGS oligosaccharides can be absorbed through oral route, these seaweed-derived compounds merit further investigation as novel agents for the treatment of type 2 diabetes through enhancing FGF1/FGFR1c and FGF19/FGFR1c signaling in future.

  12. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    Science.gov (United States)

    Prolactin-Induced Tyrosine Phosphorylation, Activation and ReceptorAssociation of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells. Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental ProtectionAgency, MD-72, Research Triangle Park, NC 27711, and

  13. Structural insights into FRS2α PTB domain recognition by neurotrophin receptor TrkB.

    Science.gov (United States)

    Zeng, Lei; Kuti, Miklos; Mujtaba, Shiraz; Zhou, Ming-Ming

    2014-07-01

    The fibroblast growth factor receptor (FGFR) substrate 2 (FRS2) family proteins function as scaffolding adapters for receptor tyrosine kinases (RTKs). The FRS2α proteins interact with RTKs through the phosphotyrosine-binding (PTB) domain and transfer signals from the activated receptors to downstream effector proteins. Here, we report the nuclear magnetic resonance structure of the FRS2α PTB domain bound to phosphorylated TrkB. The structure reveals that the FRS2α-PTB domain is comprised of two distinct but adjacent pockets for its mutually exclusive interaction with either nonphosphorylated juxtamembrane region of the FGFR, or tyrosine phosphorylated peptides TrkA and TrkB. The new structural insights suggest rational design of selective small molecules through targeting of the two conjunct pockets in the FRS2α PTB domain. © 2014 Wiley Periodicals, Inc.

  14. Fibroblast growth factor receptor 3 interacts with and activates TGFβ-activated kinase 1 tyrosine phosphorylation and NFκB signaling in multiple myeloma and bladder cancer.

    Directory of Open Access Journals (Sweden)

    Lisa Salazar

    Full Text Available Cancer is a major public health problem worldwide. In the United States alone, 1 in 4 deaths is due to cancer and for 2013 a total of 1,660,290 new cancer cases and 580,350 cancer-related deaths are projected. Comprehensive profiling of multiple cancer genomes has revealed a highly complex genetic landscape in which a large number of altered genes, varying from tumor to tumor, impact core biological pathways and processes. This has implications for therapeutic targeting of signaling networks in the development of treatments for specific cancers. The NFκB transcription factor is constitutively active in a number of hematologic and solid tumors, and many signaling pathways implicated in cancer are likely connected to NFκB activation. A critical mediator of NFκB activity is TGFβ-activated kinase 1 (TAK1. Here, we identify TAK1 as a novel interacting protein and target of fibroblast growth factor receptor 3 (FGFR3 tyrosine kinase activity. We further demonstrate that activating mutations in FGFR3 associated with both multiple myeloma and bladder cancer can modulate expression of genes that regulate NFκB signaling, and promote both NFκB transcriptional activity and cell adhesion in a manner dependent on TAK1 expression in both cancer cell types. Our findings suggest TAK1 as a potential therapeutic target for FGFR3-associated cancers, and other malignancies in which TAK1 contributes to constitutive NFκB activation.

  15. FGFR3 Deficiency Causes Multiple Chondroma-like Lesions by Upregulating Hedgehog Signaling.

    Directory of Open Access Journals (Sweden)

    Siru Zhou

    2015-06-01

    Full Text Available Most cartilaginous tumors are formed during skeletal development in locations adjacent to growth plates, suggesting that they arise from disordered endochondral bone growth. Fibroblast growth factor receptor (FGFR3 signaling plays essential roles in this process; however, the role of FGFR3 in cartilaginous tumorigenesis is not known. In this study, we found that postnatal chondrocyte-specific Fgfr3 deletion induced multiple chondroma-like lesions, including enchondromas and osteochondromas, adjacent to disordered growth plates. The lesions showed decreased extracellular signal-regulated kinase (ERK activity and increased Indian hedgehog (IHH expression. The same was observed in Fgfr3-deficient primary chondrocytes, in which treatment with a mitogen-activated protein kinase (MEK inhibitor increased Ihh expression. Importantly, treatment with an inhibitor of IHH signaling reduced the occurrence of chondroma-like lesions in Fgfr3-deficient mice. This is the first study reporting that the loss of Fgfr3 function leads to the formation of chondroma-like lesions via downregulation of MEK/ERK signaling and upregulation of IHH, suggesting that FGFR3 has a tumor suppressor-like function in chondrogenesis.

  16. Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies.

    Science.gov (United States)

    Bocharov, Eduard V; Lesovoy, Dmitry M; Goncharuk, Sergey A; Goncharuk, Marina V; Hristova, Kalina; Arseniev, Alexander S

    2013-11-05

    Fibroblast growth factor receptor 3 (FGFR3) transduces biochemical signals via lateral dimerization in the plasma membrane, and plays an important role in human development and disease. Eight different pathogenic mutations, implicated in cancers and growth disorders, have been identified in the FGFR3 transmembrane segment. Here, we describe the dimerization of the FGFR3 transmembrane domain in membrane-mimicking DPC/SDS (9/1) micelles. In the solved NMR structure, the two transmembrane helices pack into a symmetric left-handed dimer, with intermolecular stacking interactions occurring in the dimer central region. Some pathogenic mutations fall within the helix-helix interface, whereas others are located within a putative alternative interface. This implies that although the observed dimer structure is important for FGFR3 signaling, the mechanism of FGFR3-mediated transduction across the membrane is complex. We propose an FGFR3 signaling mechanism that is based on the solved structure, available structures of isolated soluble FGFR domains, and published biochemical and biophysical data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Nitric oxide generated by ionizing radiation and EGF is implicated in EGF receptor phosphorylation in A549 lung carcinoma cells

    International Nuclear Information System (INIS)

    Park, In Chul; Lee, Hyung Chahn; Rhee, Chang Hun; Hong, Seok Il

    2004-01-01

    Although it has been demonstrated that ionizing radiation (IR) control various cell functions in a different cell types, the mechanisms of its action via NO are not well understood. NO may potentially affect every type of mammalian cells, owing to its ubiquitous production and participate in the control of cell proliferation in a great variety of cell types. The epidermal growth factor (EGF) receptor is a transmembrane glycoprotein of Mr 170,000. When EGF binds to its receptor, the receptor is dimerized and autophosphorylated at the carboxyl-terminal tyrosine 992, 1608, 1086, 1148 and 1173. This phosphorylated receptor initiates a series of signal tranduction events through interacting proteins of SH2 family including Shc, Grb2 and Sos, which in turn trigger ativation of MAPK cascades. Although the number of signaling events mediated by IR-induced NO is growing, it is still unclear how NO activate cellular signaling events. Thus, we examined the effect of NO on cellular phosphorylation and found that NO was produced by ionizing radiation in A549 lung adenocarcinoma cells and enhances the unique tyrosine phosphorylation on EGF receptor

  18. Receptor tyrosine phosphatase R-PTP-alpha is tyrosine-phosphorylated and associated with the adaptor protein Grb2

    DEFF Research Database (Denmark)

    Su, J; Batzer, A; Sap, J

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) have generated interest because of their suspected involvement in cellular signal transduction. The adaptor protein Grb2 has been implicated in coupling receptor tyrosine kinases to Ras. We report that a ubiquitous R-PTPase, R-PTP-alpha, is tyrosine......-phosphorylated and associated in vivo with the Grb2 protein. This association can be reproduced in stably and transiently transfected cells, as well as in vitro using recombinant Grb2 protein. Association requires the presence of an intact SH2 domain in Grb2, as well as tyrosine phosphorylation of R-PTP-alpha. This observation...... links a receptor tyrosine phosphatase with a key component of a central cellular signalling pathway and provides a basis for addressing R-PTP-alpha function....

  19. Frequency of the allelic variant c.1150T > C in exon 10 of the fibroblast growth factor receptor 3 (FGFR3 gene is not increased in patients with pathogenic mutations and related chondrodysplasia phenotypes

    Directory of Open Access Journals (Sweden)

    Thatiane Yoshie Kanazawa

    2014-12-01

    Full Text Available Mutations in the FGFR3 gene cause the phenotypic spectrum of FGFR3 chondrodysplasias ranging from lethal forms to the milder phenotype seen in hypochondroplasia (Hch. The p.N540K mutation in the FGFR3 gene occurs in ~70% of individuals with Hch, and nearly 30% of individuals with the Hch phenotype have no mutations in the FGFR3, which suggests genetic heterogeneity. The identification of a severe case of Hch associated with the typical mutation c.1620C > A and the occurrence of a c.1150T > C change that resulted in a p.F384L in exon 10, together with the suspicion that this second change could be a modulator of the phenotype, prompted us to investigate this hypothesis in a cohort of patients. An analysis of 48 patients with FGFR3 chondrodysplasia phenotypes and 330 healthy (control individuals revealed no significant difference in the frequency of the C allele at the c.1150 position (p = 0.34. One patient carrying the combination `pathogenic mutation plus the allelic variant c.1150T > C' had a typical achondroplasia (Ach phenotype. In addition, three other patients with atypical phenotypes showed no association with the allelic variant. Together, these results do not support the hypothesis of a modulatory role for the c.1150T > C change in the FGFR3 gene.

  20. Resistance to EGF receptor inhibitors in glioblastoma mediated by phosphorylation of the PTEN tumor suppressor at tyrosine 240.

    Science.gov (United States)

    Fenton, Tim R; Nathanson, David; Ponte de Albuquerque, Claudio; Kuga, Daisuke; Iwanami, Akio; Dang, Julie; Yang, Huijun; Tanaka, Kazuhiro; Oba-Shinjo, Sueli Mieko; Uno, Miyuki; Inda, Maria del Mar; Wykosky, Jill; Bachoo, Robert M; James, C David; DePinho, Ronald A; Vandenberg, Scott R; Zhou, Huilin; Marie, Suely K N; Mischel, Paul S; Cavenee, Webster K; Furnari, Frank B

    2012-08-28

    Glioblastoma multiforme (GBM) is the most aggressive of the astrocytic malignancies and the most common intracranial tumor in adults. Although the epidermal growth factor receptor (EGFR) is overexpressed and/or mutated in at least 50% of GBM cases and is required for tumor maintenance in animal models, EGFR inhibitors have thus far failed to deliver significant responses in GBM patients. One inherent resistance mechanism in GBM is the coactivation of multiple receptor tyrosine kinases, which generates redundancy in activation of phosphoinositide-3'-kinase (PI3K) signaling. Here we demonstrate that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor is frequently phosphorylated at a conserved tyrosine residue, Y240, in GBM clinical samples. Phosphorylation of Y240 is associated with shortened overall survival and resistance to EGFR inhibitor therapy in GBM patients and plays an active role in mediating resistance to EGFR inhibition in vitro. Y240 phosphorylation can be mediated by both fibroblast growth factor receptors and SRC family kinases (SFKs) but does not affect the ability of PTEN to antagonize PI3K signaling. These findings show that, in addition to genetic loss and mutation of PTEN, its modulation by tyrosine phosphorylation has important implications for the development and treatment of GBM.

  1. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell

    International Nuclear Information System (INIS)

    Chen, Yi; Xie, Xiaoyan; Li, Xinyi; Wang, Peiqi; Jing, Qian; Yue, Jiaqi; Liu, Yang; Cheng, Zhong; Li, Jingyi; Song, Haixing; Li, Guoyu; Liu, Rui; Wang, Jinhui

    2016-01-01

    Breast cancer, representing approximately 30% of all gynecological cancer cases diagnosed yearly, is a leading cause of cancer-related mortality for women. Amplification of FGFR1 is frequently observed in breast cancers and is associated with poor prognosis. Though FGFRs have long been considered as anti-cancer drug targets, and a cluster of FGFR antagonists are currently under clinical trials, the precise cellular responses under the treatment of FGFR antagonists remains unclear. Here, we show that PD166866, an FGFR1-selective inhibitor, inhibits proliferation and triggers anoikis in FGFR1-amplified breast cancer cell lines. Notably, we demonstrate that PD166866 induces autophagy in FGFR1-amplified breast cancer cell lines, while blockage of autophagy by Atg5 knockdown further enhances the anti-proliferative activities of PD166866. Moreover, mechanistic study reveals that PD166866 induces autophagy through repressing Akt/mTOR signaling pathway. Together, the present study provides new insights into the molecular mechanisms underlying the anti-tumor activities of FGFR antagonists, and may further assist the FGFRs-based drug discovery. -- Highlights: •FGFR1 antagonist inhibits cell viability in FGFR1-amplified breast cancer cells. •FGFR1 antagonist induces autophagy in FGFR1-amplified breast cancer cells. •FGFR1 antagonist-induced autophagy is protective. •FGFR1 antagonist induces autophagy by inhibiting Akt/mTOR pathway.

  2. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu (China); Xie, Xiaoyan; Li, Xinyi; Wang, Peiqi [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University (China); Jing, Qian; Yue, Jiaqi; Liu, Yang [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Cheng, Zhong [Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu (China); Li, Jingyi, E-mail: li--jingyi@hotmail.com [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Song, Haixing [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Li, Guoyu, E-mail: liguoyulisa@163.com [School of Pharmacy, Shihezi University, Shihezi 832003 (China); Liu, Rui, E-mail: liurui_scu@hotmail.com [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University (China); Wang, Jinhui [School of Pharmacy, Shihezi University, Shihezi 832003 (China)

    2016-05-20

    Breast cancer, representing approximately 30% of all gynecological cancer cases diagnosed yearly, is a leading cause of cancer-related mortality for women. Amplification of FGFR1 is frequently observed in breast cancers and is associated with poor prognosis. Though FGFRs have long been considered as anti-cancer drug targets, and a cluster of FGFR antagonists are currently under clinical trials, the precise cellular responses under the treatment of FGFR antagonists remains unclear. Here, we show that PD166866, an FGFR1-selective inhibitor, inhibits proliferation and triggers anoikis in FGFR1-amplified breast cancer cell lines. Notably, we demonstrate that PD166866 induces autophagy in FGFR1-amplified breast cancer cell lines, while blockage of autophagy by Atg5 knockdown further enhances the anti-proliferative activities of PD166866. Moreover, mechanistic study reveals that PD166866 induces autophagy through repressing Akt/mTOR signaling pathway. Together, the present study provides new insights into the molecular mechanisms underlying the anti-tumor activities of FGFR antagonists, and may further assist the FGFRs-based drug discovery. -- Highlights: •FGFR1 antagonist inhibits cell viability in FGFR1-amplified breast cancer cells. •FGFR1 antagonist induces autophagy in FGFR1-amplified breast cancer cells. •FGFR1 antagonist-induced autophagy is protective. •FGFR1 antagonist induces autophagy by inhibiting Akt/mTOR pathway.

  3. ARQ 087 inhibits FGFR signaling and rescues aberrant cell proliferation and differentiation in experimental models of craniosynostoses and chondrodysplasias caused by activating mutations in FGFR1, FGFR2 and FGFR3

    Czech Academy of Sciences Publication Activity Database

    Bálek, L.; Gudernová, I.; Veselá, Iva; Hampl, Marek; Oralová, Veronika; Kunová Bosáková, M.; Vařecha, M.; Němec, P.; Hall, T.C.; Abbadessa, G.; Hatch, N.; Buchtová, Marcela; Krejčí, P.

    2017-01-01

    Roč. 105, č. 1 (2017), s. 57-66 ISSN 8756-3282 R&D Projects: GA ČR(CZ) GA17-09525S; GA ČR(CZ) GA14-31540S Institutional support: RVO:67985904 Keywords : ARQ087 * fibroblast growth factor receptor * FGFR Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Developmental biology Impact factor: 4.140, year: 2016

  4. Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1

    DEFF Research Database (Denmark)

    Argetsinger, L S; Hsu, G W; Myers, M G

    1995-01-01

    ), the principle substrate of the insulin receptor. Tyrosyl phosphorylation of IRS-1 is a critical step in insulin signaling and provides binding sites for proteins with the appropriate Src homology 2 domains, including the 85-kDa regulatory subunit of phosphatidylinositol (PI) 3'-kinase. In 3T3-F442A fibroblasts......., Campbell, G. S., Allevato, G., Billestrup, N., Norstedt, G., and Carter-Su, C. (1994) J. Biol. Chem. 269, 21709-21717). When other cytokines that activate JAK2 were tested for the ability to stimulate the tyrosyl phosphorylation of IRS-1, stimulation was detected with interferon-gamma and leukemia...... to JAK2. GH is also shown to stimulate binding of IRS-1 to the 85-kDa regulatory subunit of PI 3'-kinase. The ability of GH to stimulate tyrosyl phosphorylation of IRS-1 and its association with PI 3'-kinase provides a biochemical basis for responses shared by insulin and GH including the well...

  5. Discovery and Biological Evaluation of a Series of Pyrrolo[2,3-b]pyrazines as Novel FGFR Inhibitors

    OpenAIRE

    Yan Zhang; Hongchun Liu; Zhen Zhang; Ruifeng Wang; Tongchao Liu; Chaoyun Wang; Yuchi Ma; Jing Ai; Dongmei Zhao; Jingkang Shen; Bing Xiong

    2017-01-01

    Abnormality of fibroblast growth factor receptor (FGFR)-mediated signaling pathways were frequently found in various human malignancies, making FGFRs hot targets for cancer treatment. To address the consistent need for a new chemotype of FGFR inhibitors, here, we started with a hit structure identified from our internal hepatocyte growth factor receptor (also called c-Met) inhibitor project, and conducted a chemical optimization. After exploring three parts of the hit compound, we finally dis...

  6. Mild achondroplasia/hypochondroplasia with acanthosis nigricans, normal development, and a p.Ser348Cys FGFR3 mutation.

    Science.gov (United States)

    Couser, Natario L; Pande, Chetna K; Turcott, Christie M; Spector, Elaine B; Aylsworth, Arthur S; Powell, Cynthia M

    2017-04-01

    Pathogenic allelic variants in the fibroblast growth factor receptor 3 (FGFR3) gene have been associated with a number of phenotypes including achondroplasia, hypochondroplasia, thanatophoric dysplasia, Crouzon syndrome with acanthosis nigricans (Crouzonodermoskeletal syndrome), and SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans). Crouzon syndrome with acanthosis nigricans is caused by the pathogenic variant c.1172C>A (p.Ala391Glu) in the FGFR3 gene. The p.Lys650Thr pathogenic variant in FGFR3 has been linked to acanthosis nigricans without significant craniofacial or skeletal abnormalities. Recently, an infant with achondroplasia and a novel p.Ser348Cys FGFR3 mutation was reported. We describe the clinical history of an 8-year-old child with a skeletal dysplasia in the achondroplasia-hypochondroplasia spectrum, acanthosis nigricans, typical development, and the recently described p.Ser348Cys FGFR3 mutation. © 2017 Wiley Periodicals, Inc.

  7. Bisphenol-A rapidly enhanced passive avoidance memory and phosphorylation of NMDA receptor subunits in hippocampus of young rats

    International Nuclear Information System (INIS)

    Xu Xiaohong; Li Tao; Luo Qingqing; Hong Xing; Xie Lingdan; Tian Dong

    2011-01-01

    Bisphenol-A (BPA), an endocrine disruptor, is found to influence development of brain and behaviors in rodents. The previous study indicated that perinatal exposure to BPA impaired learning-memory and inhibited N-methyl-D-aspartate receptor (NMDAR) subunits expressions in hippocampus during the postnatal development in rats; and in cultured hippocampal neurons, BPA rapidly promotes dynamic changes in dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDAR subunit NR2B. In the present study, we examined the rapid effect of BPA on passive avoidance memory and NMDAR in the developing hippocampus of Sprague-Dawley rats at the age of postnatal day 18. The results showed that BPA or estradiol benzoate (EB) rapidly extended the latency to step down from the platform 1 h after footshock and increased the phosphorylation levels of NR1, NR2B, and mitogen-activated extracellular signal-regulated kinase (ERK) in hippocampus within 1 h. While 24 h after BPA or EB treatment, the improved memory and the increased phosphorylation levels of NR1, NR2B, ERK disappeared. Furthermore, pre-treatment with an estrogen receptors (ERs) antagonist, ICI182,780, or an ERK-activating kinase inhibitor, U0126, significantly attenuated EB- or BPA-induced phosphorylations of NR1, NR2B, and ERK within 1 h. These data suggest that BPA rapidly enhanced short-term passive avoidance memory in the developing rats. A non-genomic effect via ERs may mediate the modulation of the phosphorylation of NMDAR subunits NR1 and NR2B through ERK signaling pathway. - Highlights: → BPA rapidly extended the latency to step down from platform 1 h after footshock. → BPA rapidly increased pNR1, pNR2B, and pERK in hippocampus within 1 h. → ERs antagonist or MEK inhibitor attenuated BPA-induced pNR1, pNR2B, and pERK.

  8. Inhibition of fibroblast growth factor receptor with AZD4547 mitigates juvenile nasopharyngeal angiofibroma.

    Science.gov (United States)

    Le, Tran; New, Jacob; Jones, Joel W; Usman, Shireen; Yalamanchali, Sreeya; Tawfik, Ossama; Hoover, Larry; Bruegger, Dan E; Thomas, Sufi Mary

    2017-10-01

    Juvenile nasopharyngeal angiofibroma (JNA) is a benign tumor that presents in adolescent males. Although surgical excision is the mainstay of treatment, recurrences complicate treatment. There is a need to develop less invasive approaches for management. JNA tumors are composed of fibroblasts and vascular endothelial cells. We identified fibroblast growth factor receptor (FGFR) and vascular endothelial growth factor (VEGF) expression in JNA-derived fibroblasts. FGFR influences fibroblast proliferation and VEGF is necessary for angiogenesis. We hypothesized that targeting FGFR would mitigate JNA fibroblast proliferation, invasion, and migration, and that targeting the VEGF receptor would attenuate endothelial tubule formation. After informed consent, fibroblasts from JNA explants of 3 patients were isolated. Fibroblasts were treated with FGFR inhibitor AZD4547, 0 to 25 μg/mL for 72 hours and proliferation was quantified using CyQuant assay. Migration and invasion of JNA were assessed using 24-hour transwell assays with subsequent fixation and quantification. Mitigation of FGFR and downstream signaling was evaluated by immunoblotting. Tubule formation was assessed in human umbilical vein endothelial cells (HUVECs) treated with vehicle control (dimethylsulfoxide [DMSO]) or semaxanib (SU5416) as well as in serum-free media (SFM) or JNA conditioned media (CM). Tubule length was compared between treatment groups. Compared to control, AZD4547 inhibited JNA fibroblast proliferation, migration, and invasion through inhibition of FGFR and downstream signaling, specifically phosphorylation of - p44/42 mitogen activated protein kinase (p44/42 MAPK). JNA fibroblast CM significantly increased HUVEC tubule formation (p = 0.0039). AZD4547 effectively mitigates FGFR signaling and decreases JNA fibroblast proliferation, migration, and invasion. SU5416 attenuated JNA fibroblast-induced tubule formation. AZD4547 may have therapeutic potential in the treatment of JNA. © 2017 ARS

  9. NF449 is a novel inhibitor of fibroblast growth factor receptor 3 (FGFR3) signaling active in chondrocytes and multiple myeloma cells

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Murakami, S.; Procházková, J.; Trantírek, L.; Chlebová, K.; Ouyang, Z.; Aklian, A.; Smutný, J.; Bryja, Vítězslav; Kozubík, Alois; Wilcox, W.R.

    2010-01-01

    Roč. 285, č. 27 (2010), s. 20644-20653 ISSN 0021-9258 Grant - others:GA ČR(CZ) GA301/09/0587 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : NF449 * fibroblast growth factor receptor * antagonist Subject RIV: BO - Biophysics Impact factor: 5.328, year: 2010

  10. Selective inhibition reveals cyclin-dependent kinase 2 as another kinase that phosphorylates the androgen receptor at serine 81

    Czech Academy of Sciences Publication Activity Database

    Jorda, Radek; Bučková, Zuzana; Řezníčková, Eva; Bouchal, J.; Kryštof, Vladimír

    2018-01-01

    Roč. 1865, č. 2 (2018), s. 354-363 ISSN 0167-4889 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk(CZ) LO1304 Institutional support: RVO:61389030 Keywords : Androgen receptor * Cyclin-dependent kinase * Inhibitor * Phosphorylation * Serine 81 Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 4.521, year: 2016

  11. Activation of p38 MAPK pathway in the skull abnormalities of Apert syndrome Fgfr2+P253R mice

    Directory of Open Access Journals (Sweden)

    Hill Cheryl A

    2010-02-01

    Full Text Available Abstract Background Apert syndrome is characterized by craniosynostosis and limb abnormalities and is primarily caused by FGFR2 +/P253R and +/S252W mutations. The former mutation is present in approximately one third whereas the latter mutation is present in two-thirds of the patients with this condition. We previously reported an inbred transgenic mouse model with the Fgfr2 +/S252W mutation on the C57BL/6J background for Apert syndrome. Here we present a mouse model for the Fgfr2+/P253R mutation. Results We generated inbred Fgfr2+/P253R mice on the same C56BL/6J genetic background and analyzed their skeletal abnormalities. 3D micro-CT scans of the skulls of the Fgfr2+/P253R mice revealed that the skull length was shortened with the length of the anterior cranial base significantly shorter than that of the Fgfr2+/S252W mice at P0. The Fgfr2+/P253R mice presented with synostosis of the coronal suture and proximate fronts with disorganized cellularity in sagittal and lambdoid sutures. Abnormal osteogenesis and proliferation were observed at the developing coronal suture and long bones of the Fgfr2+/P253R mice as in the Fgfr2+/S252W mice. Activation of mitogen-activated protein kinases (MAPK was observed in the Fgfr2+/P253R neurocranium with an increase in phosphorylated p38 as well as ERK1/2, whereas phosphorylated AKT and PKCα were not obviously changed as compared to those of wild-type controls. There were localized phenotypic and molecular variations among individual embryos with different mutations and among those with the same mutation. Conclusions Our in vivo studies demonstrated that the Fgfr2 +/P253R mutation resulted in mice with cranial features that resemble those of the Fgfr2+/S252W mice and human Apert syndrome. Activated p38 in addition to the ERK1/2 signaling pathways may mediate the mutant neurocranial phenotype. Though Apert syndrome is traditionally thought to be a consistent phenotype, our results suggest localized and regional

  12. FGFR3 regulates brain size by controlling progenitor cell proliferation and apoptosis during embryonic development.

    Science.gov (United States)

    Inglis-Broadgate, Suzanne L; Thomson, Rachel E; Pellicano, Francesca; Tartaglia, Michael A; Pontikis, Charlie C; Cooper, Jonathan D; Iwata, Tomoko

    2005-03-01

    Mice with the K644E kinase domain mutation in fibroblast growth factor receptor 3 (Fgfr3) (EIIa;Fgfr3(+/K644E)) exhibited a marked enlargement of the brain. The brain size was increased as early as E11.5, not secondary to the possible effect of Fgfr3 activity in the skeleton. Furthermore, the mutant brains showed a dramatic increase in cortical thickness, a phenotype opposite to that in FGF2 knockout mice. Despite this increased thickness, cortical layer formation was largely unaffected and no cortical folding was observed during embryonic days 11.5-18.5 (E11.5-E18.5). Measurement of cortical thickness revealed an increase of 38.1% in the EIIa;Fgfr3(+/K644E) mice at E14.5 and the advanced appearance of the cortical plate was frequently observed at this stage. Unbiased stereological analysis revealed that the volume of the ventricular zone (VZ) was increased by more than two fold in the EIIa;Fgfr3(+/K644E) mutants at E14.5. A relatively mild increase in progenitor cell proliferation and a profound decrease in developmental apoptosis during E11.5-E14.5 most likely accounts for the dramatic increase in total telecephalic cell number. Taken together, our data suggest a novel function of Fgfr3 in controlling the development of the cortex, by regulating proliferation and apoptosis of cortical progenitors.

  13. Combinatorial Pharmacophore-Based 3D-QSAR Analysis and Virtual Screening of FGFR1 Inhibitors

    Directory of Open Access Journals (Sweden)

    Nannan Zhou

    2015-06-01

    Full Text Available The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR signaling pathway plays crucial roles in cell proliferation, angiogenesis, migration, and survival. Aberration in FGFRs correlates with several malignancies and disorders. FGFRs have proved to be attractive targets for therapeutic intervention in cancer, and it is of high interest to find FGFR inhibitors with novel scaffolds. In this study, a combinatorial three-dimensional quantitative structure-activity relationship (3D-QSAR model was developed based on previously reported FGFR1 inhibitors with diverse structural skeletons. This model was evaluated for its prediction performance on a diverse test set containing 232 FGFR inhibitors, and it yielded a SD value of 0.75 pIC50 units from measured inhibition affinities and a Pearson’s correlation coefficient R2 of 0.53. This result suggests that the combinatorial 3D-QSAR model could be used to search for new FGFR1 hit structures and predict their potential activity. To further evaluate the performance of the model, a decoy set validation was used to measure the efficiency of the model by calculating EF (enrichment factor. Based on the combinatorial pharmacophore model, a virtual screening against SPECS database was performed. Nineteen novel active compounds were successfully identified, which provide new chemical starting points for further structural optimization of FGFR1 inhibitors.

  14. Vitamin D treatment attenuates cardiac FGF23/FGFR4 signaling and hypertrophy in uremic rats.

    Science.gov (United States)

    Leifheit-Nestler, Maren; Grabner, Alexander; Hermann, Laura; Richter, Beatrice; Schmitz, Karin; Fischer, Dagmar-Christiane; Yanucil, Christopher; Faul, Christian; Haffner, Dieter

    2017-09-01

    Vitamin D deficiency and excess of circulating fibroblast growth factor 23 (FGF23) contribute to cardiovascular mortality in patients with chronic kidney disease (CKD). FGF23 activates FGF receptor 4 and (FGFR4) calcineurin/nuclear factor of activated T cells (NFAT) signaling in cardiac myocytes, thereby causing left ventricular hypertrophy (LVH). Here, we determined if 1,25-dihydroxyvitamin D (calcitriol) inhibits FGF23-induced cardiac signaling and LVH. 5/6 nephrectomized (5/6 Nx) rats were treated with different doses of calcitriol for 4 or 10 weeks and cardiac expression of FGF23/FGFR4 and activation of calcineurin/NFAT as well as LVH were analyzed. FGFR4 activation and hypertrophic cell growth were studied in cultured cardiac myocytes that were co-treated with FGF23 and calcitriol. In 5/6Nx rats with LVH, we detected elevated FGF23 expression in bone and myocardium, increased cardiac expression of FGFR4 and elevated cardiac activation of calcineurin/NFAT signaling. Cardiac expression levels of FGF23 and FGFR4 significantly correlated with the presence of LVH in uremic rats. Treatment with calcitriol reduced LVH as well as cardiac FGFR4 expression and calcineurin/NFAT activation. Bone and cardiac FGF23 expression were further stimulated by calcitriol in a dose-dependent manner, but levels of intact cardiac FGF23 protein were suppressed by high-dose calcitriol. In cultured cardiac myocytes, co-treatment with calcitriol blocked FGF23-induced activation of FGFR4 and hypertrophic cell growth. Our data suggest that in CKD, cardioprotective effects of calcitriol stem from its inhibitory actions on the cardiac FGF23/FGFR4 system, and based on their counterbalancing effects on cardiac myocytes, high FGF23 and low calcitriol synergistically contribute to cardiac hypertrophy. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  15. A highly phosphorylated subpopulation of insulin-like growth factor II/mannose 6-phosphate receptors is concentrated in a clathrin-enriched plasma membrane fraction

    International Nuclear Information System (INIS)

    Corvera, S.; Folander, K.; Clairmont, K.B.; Czech, M.P.

    1988-01-01

    Insulin-like growth factor II (IGF-II)/mannose 6-phosphate (Man-6-P) receptors immunoprecipitated from purified plasma membranes of 32 P-labeled rat adipocytes are markedly heterogenous in their phosphorylation state. Approximately 80% of the plasma membrane receptors are solubilized in 1% (vol/vol) Triton X-100 and are phosphorylated on serine residues at a stoichiometry of ∼ 0.1-0.2 mol of phosphate per mol of receptor. In contrast, 15-20% of the receptors are Triton X-100-insoluble and are phosphorylated on serine and threonine residues at ∼ 4 or 5 mol of phosphate per mol of receptor. This Triton X-100-insoluble membrane subfraction contains only 5% of the total plasma membrane protein and yet contains all of the clathrin heavy chain associated with plasma membrane. Based on the relative yields of protein in the detergent-insoluble material, IGF-II/Man-6-P receptors are concentrated ∼ 3-fold in this clathrin-enriched subfraction. Taken together, these results indicate that insulin decreases the phosphorylation state of a highly phosphorylated subpopulation of IGF-II/Man-6-P receptors on the plasma membrane. In addition, insulin action may prevent the concentration of these receptors in a clathrin-enriched membrane subfraction

  16. Phosphorylation of the cytoplasmic tail of the 300-kDa mannose 6-phosphate receptor is required for the interaction with a cytosolic protein

    DEFF Research Database (Denmark)

    Rosorius, O; Issinger, O G; Braulke, T

    1993-01-01

    The cytoplasmic tail of the human 300-kDa mannose 6-phosphate receptor (MPR 300-CT) is an excellent substrate for casein kinase II in vitro. The phosphorylated MPR 300-CT was cross-linked by means of bis(sulfosuccinimidyl)suberate mainly to a cytosolic protein of 35 kDa (referred to as TIP 35...... with TIP 35 is phosphorylation-specific. Furthermore, TIP 35 was only cross-linked to the MPR 300-CT phosphorylated by casein kinase II whereas the MPR 300-CT phosphorylated by protein kinase A failed to cross-link to TIP 35. These results indicate that the cytoplasmic tail of the MPR 300 interacts...

  17. Receptor-type Protein Tyrosine Phosphatase β Regulates Met Phosphorylation and Function in Head and Neck Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Yiru Xu

    2012-11-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC is the sixth most common cancer and has a high rate of mortality. Emerging evidence indicates that hepatocyte growth factor receptor (or Met pathway plays a pivotal role in HNSCC metastasis and resistance to chemotherapy. Met function is dependent on tyrosine phosphorylation that is under direct control by receptor-type protein tyrosine phosphatase β (RPTP-β. We report here that RPTP-β expression is significantly downregulated in HNSCC cells derived from metastatic tumors compared to subject-matched cells from primary tumors. Knockdown of endogenous RPTP-β in HNSCC cells from primary tumor potentiated Met tyrosine phosphorylation, downstream mitogen-activated protein (MAP kinase pathway activation, cell migration, and invasion. Conversely, restoration of RPTP-β expression in cells from matched metastatic tumor decreased Met tyrosine phosphorylation and downstream functions. Furthermore, we observed that six of eight HNSCC tumors had reduced levels of RPTP-β protein in comparison with normal oral tissues. Collectively, the results demonstrate the importance of RPTP-β in tumor biology of HNSCC through direct dephosphorylation of Met and regulation of downstream signal transduction pathways. Reduced RPTP-β levels, with or without Met overexpression, could promote Met activation in HNSCC tumors.

  18. Discovery and Biological Evaluation of a Series of Pyrrolo[2,3-b]pyrazines as Novel FGFR Inhibitors

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2017-04-01

    Full Text Available Abnormality of fibroblast growth factor receptor (FGFR-mediated signaling pathways were frequently found in various human malignancies, making FGFRs hot targets for cancer treatment. To address the consistent need for a new chemotype of FGFR inhibitors, here, we started with a hit structure identified from our internal hepatocyte growth factor receptor (also called c-Met inhibitor project, and conducted a chemical optimization. After exploring three parts of the hit compound, we finally discovered a new series of pyrrolo[2,3-b]pyrazine FGFR inhibitors, which contain a novel scaffold and unique molecular shape. We believe that our findings can help others to further develop selective FGFR inhibitors.

  19. PEST Motif Serine and Tyrosine Phosphorylation Controls Vascular Endothelial Growth Factor Receptor 2 Stability and Downregulation ▿

    Science.gov (United States)

    Meyer, Rosana D.; Srinivasan, Srimathi; Singh, Amrik J.; Mahoney, John E.; Gharahassanlou, Kobra Rezazadeh; Rahimi, Nader

    2011-01-01

    The internalization and degradation of vascular endothelial growth factor receptor 2 (VEGFR-2), a potent angiogenic receptor tyrosine kinase, is a central mechanism for the regulation of the coordinated action of VEGF in angiogenesis. Here, we show that VEGFR-2 is ubiquitinated in response to VEGF, and Lys 48-linked polyubiquitination controls its degradation via the 26S proteosome. The degradation and ubiquitination of VEGFR-2 is controlled by its PEST domain, and the phosphorylation of Ser1188/Ser1191 is required for the ubiquitination of VEGFR-2. F-box-containing β-Trcp1 ubiquitin E3 ligase is recruited to S1188/S1191 VEGFR-2 and mediates the ubiquitination and degradation of VEGFR-2. The PEST domain also controls the activation of p38 mitogen-activated protein kinase (MAPK) through phospho-Y1173. The activation of p38 stabilizes VEGFR-2, and its inactivation accelerates VEGFR-2 downregulation. The VEGFR-2-mediated activation of p38 is established through the protein kinase A (PKA)/MKK6 pathway. PKA is recruited to VEGFR-2 through AKAP1/AKAP149, and its phosphorylation requires Y1173 of VEGFR-2. The study has identified a unique mechanism in which VEGFR-2 stability and degradation is modulated. The PEST domain acts as a dual modulator of VEGFR-2; the phosphorylation of S1188/S1191 controls ubiquitination and degradation via β-Trcp1, where the phosphorylation of Y1173 through PKA/p38 MAPK controls the stability of VEGFR-2. PMID:21402774

  20. miR-24-3p/FGFR3 Signaling as a Novel Axis Is Involved in Epithelial-Mesenchymal Transition and Regulates Lung Adenocarcinoma Progression

    Directory of Open Access Journals (Sweden)

    Pengyu Jing

    2018-01-01

    Full Text Available Our previous studies showed that Fibroblast growth factor receptor 3 (FGFR3 contributed to cell growth in lung cancer. However, the correlation between FGFR3 and tumor progression, coupled with the underlying mechanisms, are not fully understood. The clinical significance of FGFR3 was determined in two cohorts of clinical samples (n=22, n=78. A panel of biochemical assays and functional experiments was utilized to elucidate the underlying mechanisms and effects of FGFR3 and miR-24-3p on lung adenocarcinoma progression. Upregulated FGFR3 expression indicated an adverse prognosis for lung adenocarcinoma individuals and promoted metastatic potential of lung adenocarcinoma cells. Owing to the direct regulation towards FGFR3, miR-24-3p could interfere with the potential of proliferation, migration, and invasion in lung adenocarcinoma, following variations of EMT-related protein expression. As a significant marker of EMT, E-cadherin was negatively correlated with FGFR3, of which ectopic overexpression could neutralize the antitumour effects of miR-24-3p and reverse its regulatory effects on EMT markers. Taken together, these findings define a novel insight into the miR-24-3p/FGFR3 signaling axis in regulating lung adenocarcinoma progression and suggest that targeting the miR-24-3p/FGFR3 axis could be an effective and efficient way to prevent tumor progression.

  1. Phosphorylation of the dimeric cytoplasmic domain of the phytosulfokine receptor, PSKR1

    CSIR Research Space (South Africa)

    Muleya, V

    2016-10-01

    Full Text Available Phytosulfokines (PSKs) are plant peptide hormones that co-regulate plant growth, differentiation and defense responses. PSKs signal through a plasma membrane localized leucine-rich repeat receptor-like kinase (phytosulfokine receptor 1, PSKR1...

  2. Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice.

    Science.gov (United States)

    Ong, Qi-Rui; Chan, Elizabeth S; Lim, Mei-Li; Cole, Gregory M; Wong, Boon-Seng

    2014-01-17

    Human ApoE4 accelerates memory decline in ageing and in Alzheimer's disease. Although intranasal insulin can improve cognition, this has little effect in ApoE4 subjects. To understand this ApoE genotype-dependent effect, we examined brain insulin signaling in huApoE3 and huApoE4 targeted replacement (TR) mice. At 32 weeks, lower insulin receptor substrate 1 (IRS1) at S636/639 and Akt phosphorylation at T308 were detected in fasting huApoE4 TR mice as compared to fasting huApoE3 TR mice. These changes in fasting huApoE4 TR mice were linked to lower brain glucose content and have no effect on plasma glucose level. However, at 72 weeks of age, these early changes were accompanied by reduction in IRS2 expression, IRS1 phosphorylation at Y608, Akt phosphorylation at S473, and MAPK (p38 and p44/42) activation in the fasting huApoE4 TR mice. The lower brain glucose was significantly associated with higher brain insulin in the aged huApoE4 TR mice. These results show that ApoE4 reduces brain insulin signaling and glucose level leading to higher insulin content.

  3. Acyclic retinoid in chemoprevention of hepatocellular carcinoma: Targeting phosphorylated retinoid X receptor-α for prevention of liver carcinogenesis

    Directory of Open Access Journals (Sweden)

    Masahito Shimizu

    2012-01-01

    Full Text Available One of the key features of hepatocellular carcinoma (HCC is the high rate of intrahepatic recurrence that correlates with poor prognosis. Therefore, in order to improve the clinical outcome for patients with HCC, development of a chemopreventive agent that can decrease or delay the incidence of recurrence is a critical issue for urgent investigation. Acyclic retinoid (ACR, a synthetic retinoid, successfully improves HCC patient survival by preventing recurrence and the formation of secondary tumors. A malfunction of the retinoid X receptor-α (RXRα due to phosphorylation by the Ras-MAPK signaling pathway plays a critical role in liver carcinogenesis, and ACR exerts chemopreventive effects on HCC development by inhibiting RXRα phosphorylation. Here, we review the relationship between retinoid signaling abnormalities and liver disease, the mechanisms of how RXRα phosphorylation contributes to liver carcinogenesis, and the detailed effects of ACR on preventing HCC development, especially based on the results of our basic and clinical research. We also outline the concept of "clonal deletion and inhibition" therapy, which is defined as the removal and inhibition of latent malignant clones from the liver before they expand into clinically detectable HCC, because ACR prevents the development of HCC by implementing this concept. Looking toward the future, we discuss "combination chemoprevention" using ACR as a key drug since it can generate a synergistic effect, and may thus be an effective new strategy for the prevention of HCC.

  4. NADPH oxidase 1 deficiency alters caveolin phosphorylation and angiotensin II-receptor localization in vascular smooth muscle.

    Science.gov (United States)

    Basset, Olivier; Deffert, Christine; Foti, Michelangelo; Bedard, Karen; Jaquet, Vincent; Ogier-Denis, Eric; Krause, Karl-Heinz

    2009-10-01

    The superoxide-generating NADPH oxidase NOX1 is thought to be involved in signaling by the angiotensin II-receptor AT1R. However, underlying signaling steps are poorly understood. In this study, we investigated the effect of AngII on aortic smooth muscle from wild-type and NOX1-deficient mice. NOX1-deficient cells showed decreased basal ROS generation and did not produce ROS in response to AngII. Unexpectedly, AngII-dependent Ca(2+) signaling was markedly decreased in NOX1-deficient cells. Immunostaining demonstrated that AT1R was localized on the plasma membrane in wild-type, but intracellularly in NOX1-deficient cells. Immunohistochemistry and immunoblotting showed a decreased expression of AT1R in the aorta of NOX1-deficient mice. To investigate the basis of the abnormal AT1R targeting, we studied caveolin expression and phosphorylation. The amounts of total caveolin and of caveolae were not different in NOX1-deficient mice, but a marked decrease occurred in the phosphorylated form of caveolin. Exogenous H(2)O(2) or transfection of a NOX1 plasmid restored AngII responses in NOX1-deficient cells. Based on these findings, we propose that NOX1-derived reactive oxygen species regulate cell-surface expression of AT1R through mechanisms including caveolin phosphorylation. The lack cell-surface AT1R expression in smooth muscle could be involved in the decreased blood pressure in NOX1-deficient mice.

  5. The phosphorylation state of CD3gamma influences T cell responsiveness and controls T cell receptor cycling

    DEFF Research Database (Denmark)

    Dietrich, J; Bäckström, T; Lauritsen, J P

    1998-01-01

    The T cell receptor (TCR) is internalized following activation of protein kinase C (PKC) via a leucine (Leu)-based motif in CD3gamma. Some studies have indicated that the TCR is recycled back to the cell surface following PKC-mediated internalization. The functional state of recycled TCR and the ......The T cell receptor (TCR) is internalized following activation of protein kinase C (PKC) via a leucine (Leu)-based motif in CD3gamma. Some studies have indicated that the TCR is recycled back to the cell surface following PKC-mediated internalization. The functional state of recycled TCR...... the phosphorylation state of CD3gamma and T cell responsiveness. Based on these observations a physiological role of CD3gamma and TCR cycling is proposed....

  6. Tyrosine phosphorylation of platelet derived growth factor β receptors in coronary artery lesions: implications for vascular remodelling after directional coronary atherectomy and unstable angina pectoris

    Science.gov (United States)

    Abe, J; Deguchi, J; Takuwa, Y; Hara, K; Ikari, Y; Tamura, T; Ohno, M; Kurokawa, K

    1998-01-01

    Background—Growth factors such as platelet derived growth factor (PDGF) have been postulated to be important mediators of neointimal proliferation observed in atherosclerotic plaques and restenotic lesions following coronary interventions. Binding of PDGF to its receptor results in intrinsic receptor tyrosine kinase activation and subsequent cellular migration, proliferation, and vascular contraction.
Aims—To investigate whether the concentration of PDGF β receptor tyrosine phosphorylation obtained from directional coronary atherectomy (DCA) samples correlate with atherosclerotic plaque burden, the ability of diseased vessels to remodel, coronary risk factors, and clinical events.
Methods—DCA samples from 59 patients and 15 non-atherosclerotic left internal thoracic arteries (LITA) were analysed for PDGF β receptor tyrosine phosphorylation content by receptor immunoprecipitation and antiphosphotyrosine western blot. The amount of PDGF β receptor phosphorylation was analysed in relation to angiographic follow up data and clinical variables.
Results—PDGF β receptor tyrosine phosphorylation in the 59 DCA samples was greater than in the 15 non-atherosclerotic LITA (mean (SD) 0.84 (0.67) v 0.17 (0.08) over a control standard, p atherectomy;  restenosis PMID:9616351

  7. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.

    Science.gov (United States)

    Yu, Xing Xian; Watts, Lynnetta M; Manchem, Vara Prasad; Chakravarty, Kaushik; Monia, Brett P; McCaleb, Michael L; Bhanot, Sanjay

    2013-01-01

    Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4) in peripheral tissues. Treatment of diet-induce obese (DIO) mice with FGFR4 antisense oligonucleotides (ASO) specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW) and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.

  8. FGF/FGFR Signaling Coordinates Skull Development by Modulating Magnitude of Morphological Integration: Evidence from Apert Syndrome Mouse Models

    Science.gov (United States)

    Martínez-Abadías, Neus; Heuzé, Yann; Wang, Yingli; Jabs, Ethylin Wang; Aldridge, Kristina; Richtsmeier, Joan T.

    2011-01-01

    The fibroblast growth factor and receptor system (FGF/FGFR) mediates cell communication and pattern formation in many tissue types (e.g., osseous, nervous, vascular). In those craniosynostosis syndromes caused by FGFR1-3 mutations, alteration of signaling in the FGF/FGFR system leads to dysmorphology of the skull, brain and limbs, among other organs. Since this molecular pathway is widely expressed throughout head development, we explore whether and how two specific mutations on Fgfr2 causing Apert syndrome in humans affect the pattern and level of integration between the facial skeleton and the neurocranium using inbred Apert syndrome mouse models Fgfr2+/S252W and Fgfr2+/P253R and their non-mutant littermates at P0. Skull morphological integration (MI), which can reflect developmental interactions among traits by measuring the intensity of statistical associations among them, was assessed using data from microCT images of the skull of Apert syndrome mouse models and 3D geometric morphometric methods. Our results show that mutant Apert syndrome mice share the general pattern of MI with their non-mutant littermates, but the magnitude of integration between and within the facial skeleton and the neurocranium is increased, especially in Fgfr2+/S252W mice. This indicates that although Fgfr2 mutations do not disrupt skull MI, FGF/FGFR signaling is a covariance-generating process in skull development that acts as a global factor modulating the intensity of MI. As this pathway evolved early in vertebrate evolution, it may have played a significant role in establishing the patterns of skull MI and coordinating proper skull development. PMID:22053191

  9. FGF/FGFR signaling coordinates skull development by modulating magnitude of morphological integration: evidence from Apert syndrome mouse models.

    Directory of Open Access Journals (Sweden)

    Neus Martínez-Abadías

    Full Text Available The fibroblast growth factor and receptor system (FGF/FGFR mediates cell communication and pattern formation in many tissue types (e.g., osseous, nervous, vascular. In those craniosynostosis syndromes caused by FGFR1-3 mutations, alteration of signaling in the FGF/FGFR system leads to dysmorphology of the skull, brain and limbs, among other organs. Since this molecular pathway is widely expressed throughout head development, we explore whether and how two specific mutations on Fgfr2 causing Apert syndrome in humans affect the pattern and level of integration between the facial skeleton and the neurocranium using inbred Apert syndrome mouse models Fgfr2(+/S252W and Fgfr2(+/P253R and their non-mutant littermates at P0. Skull morphological integration (MI, which can reflect developmental interactions among traits by measuring the intensity of statistical associations among them, was assessed using data from microCT images of the skull of Apert syndrome mouse models and 3D geometric morphometric methods. Our results show that mutant Apert syndrome mice share the general pattern of MI with their non-mutant littermates, but the magnitude of integration between and within the facial skeleton and the neurocranium is increased, especially in Fgfr2(+/S252W mice. This indicates that although Fgfr2 mutations do not disrupt skull MI, FGF/FGFR signaling is a covariance-generating process in skull development that acts as a global factor modulating the intensity of MI. As this pathway evolved early in vertebrate evolution, it may have played a significant role in establishing the patterns of skull MI and coordinating proper skull development.

  10. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Xing Xian Yu

    Full Text Available Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4 in peripheral tissues. Treatment of diet-induce obese (DIO mice with FGFR4 antisense oligonucleotides (ASO specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.

  11. Severe complications in a child with achondroplasia and two FGFR3 mutations on the same allele

    NARCIS (Netherlands)

    Rump, P; Letteboer, TGW; Gille, JJP; Torringa, MJL; Baerts, W; van Gestel, JPJ; Verheij, JBGM; van Essen, AJ

    2006-01-01

    We describe a unique case of achondroplasia with associated complications, including severe respiratory problems. Molecular analysis of the fibroblast growth factor receptor type 3 (FGFR3) gene in this patient showed the common p.G380R mutation and a second novel p.L377R Mutation. An allele-specific

  12. Fine-Scale Mapping of the FGFR2 Breast Cancer Risk Locus

    DEFF Research Database (Denmark)

    Meyer, Kerstin B; O'Reilly, Martin; Michailidou, Kyriaki

    2013-01-01

    The 10q26 locus in the second intron of FGFR2 is the locus most strongly associated with estrogen-receptor-positive breast cancer in genome-wide association studies. We conducted fine-scale mapping in case-control studies genotyped with a custom chip (iCOGS), comprising 41 studies (n = 89,050) of...

  13. AMPA receptor phosphorylation and recognition memory: learning-related, time-dependent changes in the chick brain following filial imprinting.

    Science.gov (United States)

    Solomonia, Revaz O; Meparishvili, Maia; Mikautadze, Ekaterine; Kunelauri, Nana; Apkhazava, David; McCabe, Brian J

    2013-04-01

    There is strong evidence that a restricted part of the chick forebrain, the intermediate medial mesopallium (IMM), stores information acquired through the learning process of visual imprinting. We have previously demonstrated that at 1 h but not 24 h after imprinting training, a learning-specific increase in the amount of membrane Thr286-autophosphorylated α-calcium/calmodulin-dependent protein kinase II (αCaMKII), and in the proportion of total αCaMKII that is phosphorylated, occurs in the IMM but not in a control brain region, the posterior pole of the nidopallium (PPN). αCaMKII directly phosphorylates Ser831 in the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. In the present study we have inquired whether the learning-related increase in αCaMKII autophosphorylation is followed by changes in the Ser831 phosphorylation of GluA1 (P-GluA1) and in the total amount of this subunit (T-GluA1). Trained chicks together with untrained control chicks were killed either 1 or 24 h after training. Tissue was removed from the IMM together with tissue from the PPN as a control. Amounts of P-GluA1 and T-GluA1 were measured. In the left IMM of the 1 h group the P-GluA1/T-GluA1 ratio increased in a learning-specific way. No learning-related changes were observed in other brain regions at 1 h or in any region 24 h after training. The results indicate that a time- and regionally-dependent, learning-specific increase in GluA1 phosphorylation occurs early in recognition memory formation.

  14. Mutation of androgen receptor N-terminal phosphorylation site Tyr-267 leads to inhibition of nuclear translocation and DNA binding.

    Directory of Open Access Journals (Sweden)

    Mehmet Karaca

    Full Text Available Reactivation of androgen receptor (AR may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity.

  15. Deficiency of Lipoprotein Lipase in Neurons Decreases AMPA Receptor Phosphorylation and Leads to Neurobehavioral Abnormalities in Mice.

    Directory of Open Access Journals (Sweden)

    Tian Yu

    Full Text Available Alterations in lipid metabolism have been found in several neurodegenerative disorders, including Alzheimer's disease. Lipoprotein lipase (LPL hydrolyzes triacylglycerides in lipoproteins and regulates lipid metabolism in multiple organs and tissues, including the central nervous system (CNS. Though many brain regions express LPL, the functions of this lipase in the CNS remain largely unknown. We developed mice with neuron-specific LPL deficiency that became obese on chow by 16 wks in homozygous mutant mice (NEXLPL-/- and 10 mo in heterozygous mice (NEXLPL+/-. In the present study, we show that 21 mo NEXLPL+/- mice display substantial cognitive function decline including poorer learning and memory, and increased anxiety with no difference in general motor activities and exploratory behavior. These neurobehavioral abnormalities are associated with a reduction in the 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl propanoic acid (AMPA receptor subunit GluA1 and its phosphorylation, without any alterations in amyloid β accumulation. Importantly, a marked deficit in omega-3 and omega-6 polyunsaturated fatty acids (PUFA in the hippocampus precedes the development of the neurobehavioral phenotype of NEXLPL+/- mice. And, a diet supplemented with n-3 PUFA can improve the learning and memory of NEXLPL+/- mice at both 10 mo and 21 mo of age. We interpret these findings to indicate that LPL regulates the availability of PUFA in the CNS and, this in turn, impacts the strength of synaptic plasticity in the brain of aging mice through the modification of AMPA receptor and its phosphorylation.

  16. Sigma-1 receptor regulates Tau phosphorylation and axon extension by shaping p35 turnover via myristic acid.

    Science.gov (United States)

    Tsai, Shang-Yi A; Pokrass, Michael J; Klauer, Neal R; Nohara, Hiroshi; Su, Tsung-Ping

    2015-05-26

    Dysregulation of cyclin-dependent kinase 5 (cdk5) per relative concentrations of its activators p35 and p25 is implicated in neurodegenerative diseases. P35 has a short t½ and undergoes rapid proteasomal degradation in its membrane-bound myristoylated form. P35 is converted by calpain to p25, which, along with an extended t½, promotes aberrant activation of cdk5 and causes abnormal hyperphosphorylation of tau, thus leading to the formation of neurofibrillary tangles. The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum chaperone that is implicated in neuronal survival. However, the specific role of the Sig-1R in neurodegeneration is unclear. Here we found that Sig-1Rs regulate proper tau phosphorylation and axon extension by promoting p35 turnover through the receptor's interaction with myristic acid. In Sig-1R-KO neurons, a greater accumulation of p35 is seen, which results from neither elevated transcription of p35 nor disrupted calpain activity, but rather to the slower degradation of p35. In contrast, Sig-1R overexpression causes a decrease of p35. Sig-1R-KO neurons exhibit shorter axons with lower densities. Myristic acid is found here to bind Sig-1R as an agonist that causes the dissociation of Sig-1R from its cognate partner binding immunoglobulin protein. Remarkably, treatment of Sig-1R-KO neurons with exogenous myristic acid mitigates p35 accumulation, diminishes tau phosphorylation, and restores axon elongation. Our results define the involvement of Sig-1Rs in neurodegeneration and provide a mechanistic explanation that Sig-1Rs help maintain proper tau phosphorylation by potentially carrying and providing myristic acid to p35 for enhanced p35 degradation to circumvent the formation of overreactive cdk5/p25.

  17. FGFR2c-mediated ERK-MAPK activity regulates coronal suture development

    Science.gov (United States)

    Pfaff, Miles J.; Xue, Ke; Li, Li; Horowitz, Mark C.; Steinbacher, Derek M.; Eswarakumar, Jacob V.P.

    2017-01-01

    Fibroblast growth factor receptor 2 (FGFR2) signaling is critical for proper craniofacial development. A gain-of-function mutation in the 2c splice variant of the receptor’s gene is associated with Crouzon syndrome, which is characterized by craniosynostosis, the premature fusion of one or more of the cranial vault sutures, leading to craniofacial maldevelopment. Insight into the molecular mechanism of craniosynostosis has identified the ERK-MAPK signaling cascade as a critical regulator of suture patency. The aim of this study is to investigate the role of FGFR2c-induced ERK-MAPK activation in the regulation of coronal suture development. Loss-of-function and gain-of-function Fgfr2c mutant mice have overlapping phenotypes, including coronal synostosis and craniofacial dysmorphia. In vivo analysis of coronal sutures in loss-of-function and gain-of-function models demonstrated fundamentally different pathogenesis underlying coronal suture synostosis. Calvarial osteoblasts from gain-of-function mice demonstrated enhanced osteoblastic function and maturation with concomitant increase in ERK-MAPK activation. In vitro inhibition with the ERK protein inhibitor U0126 mitigated ERK protein activation levels with a concomitant reduction in alkaline phosphatase activity. This study identifies FGFR2c-mediated ERK-MAPK signaling as a key mediator of craniofacial growth and coronal suture development. Furthermore, our results solve the apparent paradox between loss-of-function and gain-of-function FGFR2c mutants with respect to coronal suture synostosis. PMID:27034231

  18. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hofmann, Matthias [Department of Dermatology, Venereology and Allergology, Goethe University, Frankfurt (Germany); Kusachi, Shozo [Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama (Japan); Ninomiya, Yoshifumi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hirohata, Satoshi, E-mail: hirohas@cc.okayama-u.ac.jp [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); International Center, Okayama University, Okayama (Japan)

    2014-05-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC.

  19. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    International Nuclear Information System (INIS)

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi; Hofmann, Matthias; Kusachi, Shozo; Ninomiya, Yoshifumi; Hirohata, Satoshi

    2014-01-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC

  20. A novel mouse Fgfr2 mutant, hobbyhorse (hob, exhibits complete XY gonadal sex reversal.

    Directory of Open Access Journals (Sweden)

    Pam Siggers

    Full Text Available The secreted molecule fibroblast growth factor 9 (FGF9 plays a critical role in testis determination in the mouse. In embryonic gonadal somatic cells it is required for maintenance of SOX9 expression, a key determinant of Sertoli cell fate. Conditional gene targeting studies have identified FGFR2 as the main gonadal receptor for FGF9 during sex determination. However, such studies can be complicated by inefficient and variable deletion of floxed alleles, depending on the choice of Cre deleter strain. Here, we report a novel, constitutive allele of Fgfr2, hobbyhorse (hob, which was identified in an ENU-based forward genetic screen for novel testis-determining loci. Fgr2hob is caused by a C to T mutation in the invariant exon 7, resulting in a polypeptide with a mis-sense mutation at position 263 (Pro263Ser in the third extracellular immunoglobulin-like domain of FGFR2. Mutant homozygous embryos show severe limb and lung defects and, when on the sensitised C57BL/6J (B6 genetic background, undergo complete XY gonadal sex reversal associated with failure to maintain expression of Sox9. Genetic crosses employing a null mutant of Fgfr2 suggest that Fgr2hob is a hypomorphic allele, affecting both the FGFR2b and FGFR2c splice isoforms of the receptor. We exploited the consistent phenotype of this constitutive mutant by analysing MAPK signalling at the sex-determining stage of gonad development, but no significant abnormalities in mutant embryos were detected.

  1. K-Ras and β-catenin mutations cooperate with Fgfr3 mutations in mice to promote tumorigenesis in the skin and lung, but not in the bladder

    Directory of Open Access Journals (Sweden)

    Imran Ahmad

    2011-07-01

    The human fibroblast growth factor receptor 3 (FGFR3 gene is frequently mutated in superficial urothelial cell carcinoma (UCC. To test the functional significance of FGFR3 activating mutations as a ‘driver’ of UCC, we targeted the expression of mutated Fgfr3 to the murine urothelium using Cre-loxP recombination driven by the uroplakin II promoter. The introduction of the Fgfr3 mutations resulted in no obvious effect on tumorigenesis up to 18 months of age. Furthermore, even when the Fgfr3 mutations were introduced together with K-Ras or β-catenin (Ctnnb1 activating mutations, no urothelial dysplasia or UCC was observed. Interestingly, however, owing to a sporadic ectopic Cre recombinase expression in the skin and lung of these mice, Fgfr3 mutation caused papilloma and promoted lung tumorigenesis in cooperation with K-Ras and β-catenin activation, respectively. These results indicate that activation of FGFR3 can cooperate with other mutations to drive tumorigenesis in a context-dependent manner, and support the hypothesis that activation of FGFR3 signaling contributes to human cancer.

  2. GABA(B) receptor phosphorylation regulates KCTD12-induced K+ current desensitization

    Czech Academy of Sciences Publication Activity Database

    Adelfinger, L.; Tureček, Rostislav; Ivankova, K.; Jensen, A. A.; Moss, S. J.; Gassmann, M.; Bettler, B.

    2014-01-01

    Roč. 91, č. 3 (2014), s. 369-379 ISSN 0006-2952 Institutional support: RVO:68378041 Keywords : GABA-B * G-protein coupled receptor * GPCR Subject RIV: FH - Neurology Impact factor: 5.009, year: 2014

  3. Pregnenolone sulfate modulation of N-methyl-d-aspartate receptors is phosphorylation dependent

    Czech Academy of Sciences Publication Activity Database

    Petrovič, Miloš; Sedláček, Miloslav; Cais, Ondřej; Horák, Martin; Chodounská, Hana; Vyklický ml., Ladislav

    2009-01-01

    Roč. 160, č. 3 (2009), s. 616-628 ISSN 0306-4522 R&D Projects: GA ČR(CZ) GA309/07/0271; GA ČR(CZ) GA203/08/1498; GA MŠk(CZ) LC554; GA MŠk(CZ) 1M0517 Grant - others:EC(XE) LSHM-CT-2007-037765 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z40550506 Keywords : NMDA * patch-clamp * phosphorylation Subject RIV: ED - Physiology Impact factor: 3.292, year: 2009

  4. Recombinant expression in E. coli of human FGFR2 with its transmembrane and extracellular domains

    Directory of Open Access Journals (Sweden)

    Adam Bajinting

    2017-06-01

    Full Text Available Fibroblast growth factor receptors (FGFRs are a family of receptor tyrosine kinases containing three domains: an extracellular receptor domain, a single transmembrane helix, and an intracellular tyrosine kinase domain. FGFRs are activated by fibroblast growth factors (FGFs as part of complex signal transduction cascades regulating angiogenesis, skeletal formation, cell differentiation, proliferation, cell survival, and cancer. We have developed the first recombinant expression system in E. coli to produce a construct of human FGFR2 containing its transmembrane and extracellular receptor domains. We demonstrate that the expressed construct is functional in binding heparin and dimerizing. Size exclusion chromatography demonstrates that the purified FGFR2 does not form a complex with FGF1 or adopts an inactive dimer conformation. Progress towards the successful recombinant production of intact FGFRs will facilitate further biochemical experiments and structure determination that will provide insight into how extracellular FGF binding activates intracellular kinase activity.

  5. Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation

    International Nuclear Information System (INIS)

    Yarden, Y.; Schlessinger, J.

    1987-01-01

    The membrane receptor for epidermal growth factor (EGF) is a 170,000 dalton glycoprotein composed of an extracellular EGF-binding domain and a cytoplasmic kinase domain connected by a stretch of 23 amino acids traversing the plasma membrane. The binding of EGF to the extracellular domain activates the cytoplasmic kinase function even in highly purified preparations of EGF receptor, suggesting that the activation occurs exclusively within the EGF receptor moiety. Conceivably, kinase activation may require the transfer of a conformational change through the single transmembrane region from the ligand binding domain to the cytoplasmic kinase region. Alternatively, ligand-induced receptor-receptor interactions may activate the kinase and thus bypass this requirement. Both mechanisms were contrasted by employing independent experimental approaches. On the basis of these results, an allosteric aggregation model is formulated for the activation of the cytoplasmic kinase function of the receptor by EGF. This model may be relevant to the mechanism by which the mitogenic signal of EGF is transferred across the membrane

  6. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-Kinase Inhibitors.

    Science.gov (United States)

    Marlowe, Timothy A; Lenzo, Felicia L; Figel, Sheila A; Grapes, Abigail T; Cance, William G

    2016-12-01

    Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms that drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTK) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK's critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein-protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. In addition, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: (i) the rapid phosphorylation and activation of RTK signaling pathways in RTK High cells and (ii) the long-term acquisition of RTKs novel to the parental cell line in RTK Low cells. Finally, HER2 +: cancer cells displayed resistance to FAK-kinase inhibition in 3D growth assays using a HER2 isogenic system and HER2 + cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. Mol Cancer Ther; 15(12); 3028-39. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. The phosphorylation state of CD3gamma influences T cell responsiveness and controls T cell receptor cycling

    DEFF Research Database (Denmark)

    Dietrich, J; Backstrom, T; Lauritsen, JP

    1998-01-01

    The T cell receptor (TCR) is internalized following activation of protein kinase C (PKC) via a leucine (Leu)-based motif in CD3gamma. Some studies have indicated that the TCR is recycled back to the cell surface following PKC-mediated internalization. The functional state of recycled TCR...... the phosphorylation state of CD3gamma and T cell responsiveness. Based on these observations a physiological role of CD3gamma and TCR cycling is proposed....... and the mechanisms involved in the sorting events following PKC-induced internalization are not known. In this study, we demonstrated that following PKC-induced internalization, the TCR is recycled back to the cell surface in a functional state. TCR recycling was dependent on dephosphorylation of CD3gamma, probably...

  8. Crystal Structure of the FGFR4/LY2874455 Complex Reveals Insights into the Pan-FGFR Selectivity of LY2874455.

    Science.gov (United States)

    Wu, Daichao; Guo, Ming; Philips, Michael A; Qu, Lingzhi; Jiang, Longying; Li, Jun; Chen, Xiaojuan; Chen, Zhuchu; Chen, Lin; Chen, Yongheng

    2016-01-01

    Aberrant FGFR4 signaling has been documented abundantly in various human cancers. The majority of FGFR inhibitors display significantly reduced potency toward FGFR4 compared to FGFR1-3. However, LY2874455 has similar inhibition potency for FGFR1-4 with IC50 less than 6.4 nM. To date, there is no published crystal structure of LY2874455 in complex with any kinase. To better understand the pan-FGFR selectivity of LY2874455, we have determined the crystal structure of the FGFR4 kinase domain bound to LY2874455 at a resolution of 2.35 Å. LY2874455, a type I inhibitor for FGFR4, binds to the ATP-binding pocket of FGFR4 in a DFG-in active conformation with three hydrogen bonds and a number of van der Waals contacts. After alignment of the kinase domain sequence of 4 FGFRs, and superposition of the ATP binding pocket of 4 FGFRs, our structural analyses reveal that the interactions of LY2874455 to FGFR4 are largely conserved in 4 FGFRs, explaining at least partly, the broad inhibitory activity of LY2874455 toward 4 FGFRs. Consequently, our studies reveal new insights into the pan-FGFR selectivity of LY2874455 and provide a structural basis for developing novel FGFR inhibitors that target FGFR1-4 broadly.

  9. Spinal Tolerance and Dependence: Some Observations on the Role of Spinal N-Methyl-D-Aspartate Receptors and Phosphorylation in the Loss of Opioid Analgesic Responses

    Directory of Open Access Journals (Sweden)

    Tony L Yaksh

    2000-01-01

    Full Text Available The continuous delivery of opiates can lead to a reduction in analgesic effects. In humans, as in other animals, some component of this change in sensitivity seems likely to have a strong pharmacodynamic component. Such loss of effect, deemed to be tolerance in the present article, can be readily demonstrated in animals with repeated bolus and continuous intrathecal infusion of mu and delta opioids and alpha-2 adrenergic agonists. Research has shown that this loss of effect can be diminished by concurrent treatment with N-methyl-D-aspartate (NMDA receptor antagonists and by the suppression of the activity of spinal protein kinase C (PKC. This suggests in part the probable role of PKC-mediated phosphorylation in the right shift in the dose-effect curves observed with continuous opiate or adrenergic exposure. Importantly, this right shift is seen to occur in parallel with an increase in the phosphorylating activity in the dorsal horn and in the expression of several PKC isozymes. The target of this phosphorylation is not certain. Phosphorylation of the NMDA receptor enhances its functionality, while phosphorylation of the opioid receptor or associated channels seems to diminish their activity or to enhance internalization. While the focus is on several specific components, the accumulating data emphasize the biological complexity of these changes in spinal drug reactivity.

  10. A neuroligin-1-derived peptide stimulates phosphorylation of the NMDA receptor NR1 subunit and rescues MK-801-induced decrease in long-term potentiation and memory impairment

    DEFF Research Database (Denmark)

    Korshunova, Irina; Gjørlund, Michelle D; Jacobsen, Sylwia Owczarek

    2015-01-01

    neurolide-1 effects on short- and long-term social and spatial memory in social recognition, Morris water-maze, and Y-maze tests. We found that subcutaneous neurolide-1 administration, restored hippocampal LTP compromised by NMDA receptor inhibitor MK-801. It counteracted MK-801-induced memory deficit...... in the water-maze and Y-maze tests after long-term treatment (24 h and 1-2 h before the test), but not after short-term exposure (1-2 h). Long-term exposure to neurolide-1 also facilitated social recognition memory. In addition, neurolide-1-induced phosphorylation of the NMDA receptor NR1 subunit on a site...... receptor phosphorylation after treatment with NL1 or a mimetic peptide, neurolide-1, was quantified by immunoblotting. Subsequently, we investigated effects of neurolide-1 on long-term potentiation (LTP) induction in hippocampal slices compromised by NMDA receptor inhibitor MK-801. Finally, we investigated...

  11. Generation of high-affinity, internalizing anti-FGFR2 single-chain variable antibody fragment fused with Fc for targeting gastrointestinal cancers.

    Science.gov (United States)

    Borek, Aleksandra; Sokolowska-Wedzina, Aleksandra; Chodaczek, Grzegorz; Otlewski, Jacek

    2018-01-01

    Fibroblast growth factor receptors (FGFRs) are promising targets for antibody-based cancer therapies, as their substantial overexpression has been found in various tumor cells. Aberrant activation of FGF receptor 2 (FGFR2) signaling through overexpression of FGFR2 and/or its ligands, mutations, or receptor amplification has been reported in multiple cancer types, including gastric, colorectal, endometrial, ovarian, breast and lung cancer. In this paper, we describe application of the phage display technology to produce a panel of high affinity single chain variable antibody fragments (scFvs) against the extracellular ligand-binding domain of FGFR2 (ECD_FGFR2). The binders were selected from the human single chain variable fragment scFv phage display libraries Tomlinson I + J and showed high specificity and binding affinity towards human FGFR2 with nanomolar KD values. To improve the affinity of the best binder selected, scFvF7, we reformatted it to a bivalent diabody format, or fused it with the Fc region (scFvF7-Fc). The scFvF7-Fc antibody construct presented the highest affinity for FGFR2, with a KD of 0.76 nM, and was selectively internalized into cancer cells overexpressing FGFR2, Snu-16 and NCI-H716. Finally, we prepared a conjugate of scFvF7-Fc with the cytotoxic drug monomethyl-auristatin E (MMAE) and evaluated its cytotoxicity. The conjugate delivered MMAE selectively to FGFR2-positive tumor cells. These results indicate that scFvF7-Fc-vcMMAE is a highly potent molecule for the treatment of cancers with FGFR2 overexpression.

  12. Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zong-Sian, E-mail: gary810426@hotmail.com [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Liu, Che Fu, E-mail: s9823002@m98.nthu.edu.tw [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Fu, Brian, E-mail: brianfu9@gmail.com [Northwood High School, Irvine, CA (United States); Chou, Ruey-Hwang, E-mail: rhchou@mail.cmu.edu.tw [Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Department of Biotechnology, Asia University, Taiwan (China); Yu, Chin, E-mail: cyu.nthu@gmail.com [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2016-09-02

    The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs. - Highlights: • The interfacial residues on hFGF1-FGFR2 D2 and hFGF1-Suramin contact surface were mapped by {sup 1}H-{sup 15}N HSQC experiments. • hFGF1-FGFR2 D2 and hFGF1-Suramin complex models were generated from NMR restraints by using HADDOCK program. • We analyzed hFGF1-Suramin complex models and found the interaction between hFGF1-Suramin is hydrophobic. • The bioactivity of the hFGF1-FGFR2 D2 and hFGF1-Suramin complex was studied by using WST1 assay.

  13. Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity

    International Nuclear Information System (INIS)

    Wu, Zong-Sian; Liu, Che Fu; Fu, Brian; Chou, Ruey-Hwang; Yu, Chin

    2016-01-01

    The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs. - Highlights: • The interfacial residues on hFGF1-FGFR2 D2 and hFGF1-Suramin contact surface were mapped by "1H-"1"5N HSQC experiments. • hFGF1-FGFR2 D2 and hFGF1-Suramin complex models were generated from NMR restraints by using HADDOCK program. • We analyzed hFGF1-Suramin complex models and found the interaction between hFGF1-Suramin is hydrophobic. • The bioactivity of the hFGF1-FGFR2 D2 and hFGF1-Suramin complex was studied by using WST1 assay.

  14. Concomitant action of structural elements and receptor phosphorylation determines arrestin-3 interaction with the free fatty acid receptor FFA4

    DEFF Research Database (Denmark)

    Butcher, Adrian J; Hudson, Brian D; Shimpukade, Bharat

    2014-01-01

    In addition to being nutrients, free fatty acids act as signaling molecules by activating a family of G protein-coupled receptors. Among these is FFA4, previously called GPR120, which responds to medium and long chain fatty acids, including health-promoting ω-3 fatty acids, which have been implic...

  15. New insight on FGFR3-related chondrodysplasias molecular physiopathology revealed by human chondrocyte gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Laurent Schibler

    Full Text Available Endochondral ossification is the process by which the appendicular skeleton, facial bones, vertebrae and medial clavicles are formed and relies on the tight control of chondrocyte maturation. Fibroblast growth factor receptor (FGFR3 plays a role in bone development and maintenance and belongs to a family of proteins which differ in their ligand affinities and tissue distribution. Activating mutations of the FGFR3 gene lead to craniosynostosis and multiple types of skeletal dysplasia with varying degrees of severity: thanatophoric dysplasia (TD, achondroplasia and hypochondroplasia. Despite progress in the characterization of FGFR3-mediated regulation of cartilage development, many aspects remain unclear. The aim and the novelty of our study was to examine whole gene expression differences occurring in primary human chondrocytes isolated from normal cartilage or pathological cartilage from TD-affected fetuses, using Affymetrix technology. The phenotype of the primary cells was confirmed by the high expression of chondrocytic markers. Altered expression of genes associated with many cellular processes was observed, including cell growth and proliferation, cell cycle, cell adhesion, cell motility, metabolic pathways, signal transduction, cell cycle process and cell signaling. Most of the cell cycle process genes were down-regulated and consisted of genes involved in cell cycle progression, DNA biosynthesis, spindle dynamics and cytokinesis. About eight percent of all modulated genes were found to impact extracellular matrix (ECM structure and turnover, especially glycosaminoglycan (GAG and proteoglycan biosynthesis and sulfation. Altogether, the gene expression analyses provide new insight into the consequences of FGFR3 mutations in cell cycle regulation, onset of pre-hypertrophic differentiation and concomitant metabolism changes. Moreover, impaired motility and ECM properties may also provide clues about growth plate disorganization. These

  16. Meclozine promotes longitudinal skeletal growth in transgenic mice with achondroplasia carrying a gain-of-function mutation in the FGFR3 gene.

    Science.gov (United States)

    Matsushita, Masaki; Hasegawa, Satoru; Kitoh, Hiroshi; Mori, Kensaku; Ohkawara, Bisei; Yasoda, Akihiro; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji

    2015-02-01

    Achondroplasia (ACH) is one of the most common skeletal dysplasias causing short stature owing to a gain-of-function mutation in the FGFR3 gene, which encodes the fibroblast growth factor receptor 3. We found that meclozine, an over-the-counter drug for motion sickness, inhibited elevated FGFR3 signaling in chondrocytic cells. To examine the feasibility of meclozine administration in clinical settings, we investigated the effects of meclozine on ACH model mice carrying the heterozygous Fgfr3(ach) transgene. We quantified the effect of meclozine in bone explant cultures employing limb rudiments isolated from developing embryonic tibiae from Fgfr3(ach) mice. We found that meclozine significantly increased the full-length and cartilaginous primordia of embryonic tibiae isolated from Fgfr3(ach) mice. We next analyzed the skeletal phenotypes of growing Fgfr3(ach) mice and wild-type mice with or without meclozine treatment. In Fgfr3(ach) mice, meclozine significantly increased the body length after 2 weeks of administration. At skeletal maturity, the bone lengths including the cranium, radius, ulna, femur, tibia, and vertebrae were significantly longer in meclozine-treated Fgfr3(ach) mice than in untreated Fgfr3(ach) mice. Interestingly, meclozine also increased bone growth in wild-type mice. The plasma concentration of meclozine during treatment was within the range that has been used in clinical settings for motion sickness. Increased longitudinal bone growth in Fgfr3(ach) mice by oral administration of meclozine in a growth period suggests potential clinical feasibility of meclozine for the improvement of short stature in ACH.

  17. Tyrosine 769 of the keratinocyte growth factor receptor is required for receptor signaling but not endocytosis

    International Nuclear Information System (INIS)

    Ceridono, Mara; Belleudi, Francesca; Ceccarelli, Simona; Torrisi, Maria Rosaria

    2005-01-01

    Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase expressed on epithelial cells which belongs to the family of fibroblast growth factor receptors (FGFRs). Following ligand binding, KGFR is rapidly autophosphorylated on specific tyrosine residues in the intracellular domain, recruits substrate proteins, and is rapidly internalized by clathrin-mediated endocytosis. The role of different autophosphorylation sites in FGFRs, and in particular the role of the tyrosine 766 in FGFR1, first identified as PLCγ binding site, has been extensively studied. We analyzed here the possible role of the tyrosine 769 in KGFR, corresponding to tyrosine 766 in FGFR1, in the regulation of KGFR signal transduction and MAPK activation as well as in the control of the endocytic process of KGFR. A mutant KGFR in which tyrosine 769 was substituted by phenylalanine was generated and transfected in NIH3T3 and HeLa cells. Our results indicate that tyrosine 769 is required for the binding to KGFR and tyrosine phosphorylation of PLCγ as well as for the full activation of MAPKs and for cell proliferation through the regulation of FRS2 tyrosine phosphorylation, suggesting that this residue represents a key regulator of KGFR signal transduction. Our data also show that tyrosine 769 is not involved in the regulation of the endocytic process of KGFR

  18. Characterization of fibroblast growth factor receptor 2 overexpression in the human breast cancer cell line SUM-52PE

    International Nuclear Information System (INIS)

    Tannheimer, Stacey L; Rehemtulla, Alnawaz; Ethier, Stephen P

    2000-01-01

    The fibroblast growth factor receptor (FGFR)2 gene has been shown to be amplified in 5-10% of breast cancer patients. A breast cancer cell line developed in our laboratory, SUM-52PE, was shown to have a 12-fold amplification of the FGFR2 gene, and FGFR2 message was found to be overexpressed 40-fold in SUM-52PE cells as compared with normal human mammary epithelial (HME) cells. Both human breast cancer (HBC) cell lines and HME cells expressed two FGFR2 isoforms, whereas SUM-52PE cells overexpressed those two isoforms, as well as several unique FGFR2 polypeptides. SUM-52PE cells expressed exclusively FGFR2-IIIb isoforms, which are high-affinity receptors for fibroblast growth factor (FGF)-1 and FGF-7. Differences were identified in the expression of the extracellular Ig-like domains, acid box and carboxyl termini, and several variants not previously reported were isolated from these cells. The FGFR family of receptor tyrosine kinases includes four members, all of which are highly alternatively spliced and glycosylated. For FGFR2, alternative splicing of the second half of the third Ig-like domain, involving exons IIIb and IIIc, is a mutually exclusive choice that affects ligand binding specificity and affinity [1,2,3]. It appears that the second half of the third Ig-like domain can dictate high affinity for FGF-2 or keratinocyte growth factor (KGF), whereas affinity for FGF-1 appears to remain the same [3]. Alternative splicing of the carboxyl terminus has been shown to involve at least two different exons that can produce at least three different variants. The C1-type and C2-type carboxyl termini are encoded by the same exon, and have two different splice acceptor sites, whereas the C3-type carboxyl terminus is encoded by a separate exon [4]. The biologic significance of the C1 carboxyl terminus, as compared with the shorter C3 variant found primarily in tumorigenic samples, has been studied in NIH3T3 transfection assays, in which C3 variants were able to produce

  19. Prostate Cancer Cell–Stromal Cell Cross-Talk via FGFR1 Mediates Antitumor Activity of Dovitinib in Bone Metastases

    Science.gov (United States)

    Wan, Xinhai; Corn, Paul G.; Yang, Jun; Palanisamy, Nallasivam; Starbuck, Michael W.; Efstathiou, Eleni; Li-Ning Tapia, Elsa M.; Zurita, Amado J.; Aparicio, Ana; Ravoori, Murali K.; Vazquez, Elba S.; Robinson, Dan R.; Wu, Yi-Mi; Cao, Xuhong; Iyer, Matthew K.; McKeehan, Wallace; Kundra, Vikas; Wang, Fen; Troncoso, Patricia; Chinnaiyan, Arul M.; Logothetis, Christopher J.; Navone, Nora M.

    2015-01-01

    Bone is the most common site of prostate cancer (PCa) progression to a therapy-resistant, lethal phenotype. We found that blockade of fibroblast growth factor receptors (FGFRs) with the receptor tyrosine kinase inhibitor dovitinib has clinical activity in a subset of men with castration-resistant PCa and bone metastases. Our integrated analyses suggest that FGF signaling mediates a positive feedback loop between PCa cells and bone cells and that blockade of FGFR1 in osteoblasts partially mediates the antitumor activity of dovitinib by improving bone quality and by blocking PCa cell–bone cell interaction. These findings account for clinical observations such as reductions in lesion size and intensity on bone scans, lymph node size, and tumor-specific symptoms without proportional declines in prostate-specific antigen concentration. Our findings suggest that targeting FGFR has therapeutic activity in advanced PCa and provide direction for the development of therapies with FGFR inhibitors. PMID:25186177

  20. Disruption of δ-opioid receptor phosphorylation at threonine 161 attenuates morphine tolerance in rats with CFA-induced inflammatory hypersensitivity.

    Science.gov (United States)

    Chen, Hai-Jing; Xie, Wei-Yan; Hu, Fang; Zhang, Ying; Wang, Jun; Wang, Yun

    2012-04-01

    Our previous study identified Threonine 161 (Thr-161), located in the second intracellular loop of the δ-opioid receptor (DOR), as the only consensus phosphorylation site for cyclin-dependent kinase 5 (Cdk5). The aim of this study was to assess the function of DOR phosphorylation by Cdk5 in complete Freund's adjuvant (CFA)-induced inflammatory pain and morphine tolerance. Dorsal root ganglion (DRG) neurons of rats with CFA-induced inflammatory pain were acutely dissociated and the biotinylation method was used to explore the membrane localization of phosphorylated DOR at Thr-161 (pThr-161-DOR), and paw withdrawal latency was measured after intrathecal delivery of drugs or Tat-peptide, using a radiant heat stimulator in rats with CFA-induced inflammatory pain. Both the total amount and the surface localization of pThr-161-DOR were significantly enhanced in the ipsilateral DRG following CFA injection. Intrathecal delivery of the engineered Tat fusion-interefering peptide corresponding to the second intracellular loop of DOR (Tat-DOR-2L) increased inflammatory hypersensitivity, and inhibited DOR- but not µ-opioid receptor-mediated spinal analgesia in CFA-treated rats. However, intrathecal delivery of Tat-DOR-2L postponed morphine antinociceptive tolerance in rats with CFA-induced inflammatory pain. Phosphorylation of DOR at Thr-161 by Cdk5 attenuates hypersensitivity and potentiates morphine tolerance in rats with CFA-induced inflammatory pain, while disruption of the phosphorylation of DOR at Thr-161 attenuates morphine tolerance.

  1. Ghrelin upregulates the phosphorylation of the GluN2B subunit of the NMDA receptor by activating GHSR1a and Fyn in the rat hippocampus.

    Science.gov (United States)

    Berrout, Liza; Isokawa, Masako

    2018-01-01

    Ghrelin and its receptor GHSR1a have been shown to exert numerous physiological functions in the brain, in addition to the well-established orexigenic role in the hypothalamus. Earlier work indicated that ghrelin stimulated the phosphorylation of the GluN1 subunit of the NMDA receptor (NMDAR) and enhanced synaptic transmission in the hippocampus. In the present study, we report that the exogenous application of ghrelin increased GluN2B phosphorylation. This increase was independent of GluN2B subunit activity or NMDAR channel activity. However, it depended on the activation of GHSR1a and Fyn as it was blocked by D-Lys3-GHRP-6 and PP2, respectively. Inhibitors for G-protein-regulated second messengers, such as Rp-cAMP, H89, TBB, ryanodine, and thapsigargin, unexpectedly enhanced GluN2B phosphorylation, suggesting that cAMP, PKA, casein kinase II, and cytosolic calcium signaling may oppose to the effect of ghrelin on the phosphorylation of GluN2B. Our findings suggest that 1) GluN2B is likely a molecular target of ghrelin and GHSR1a-driven signaling cascades, and 2) the ghrelin-mediated phosphorylation of GluN2B depends on Fyn activation under complex negative regulation by other second messengers. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Determination of HER2 phosphorylation at tyrosine 1221/1222 improves prediction of poor survival for breast cancer patients with hormone receptor-positive tumors

    DEFF Research Database (Denmark)

    Frogne, Thomas; Laenkholm, Anne-Vibeke; Lyng, Maria B

    2009-01-01

    INTRODUCTION: High expression of total HER2 protein confers poor prognosis for breast cancer patients. HER2 is a member of the HER family consisting of four receptors, HER1 to HER4. HER receptor activity is regulated by a variety of mechanisms, and phosphorylation of the C-terminal part of the HER...... metastases, by evaluating the expression of phosphorylated HER1, HER2, HER3, Erk, Akt and the total level of HER4 and HER2. METHODS: Immunohistochemical analysis was performed on 268 primary breast tumors and 30 paired metastatic lesions from postmenopausal women with hormone receptor-positive breast tumors...... of Akt and Erk were quite uniformly expressed in the categories; negative, moderate or strong. In univariate analysis, expression of total HER2, pHER1, pHER2 and pHER3 was significantly associated with poor disease-free survival. Strong HER4 expression was associated with prolonged disease-free as well...

  3. Helicobacter pylori VacA, acting through receptor protein tyrosine phosphatase ?, is crucial for CagA phosphorylation in human duodenum carcinoma cell line AZ-521

    OpenAIRE

    Nakano, Masayuki; Yahiro, Kinnosuke; Yamasaki, Eiki; Kurazono, Hisao; Akada, Junko; Yamaoka, Yoshio; Niidome, Takuro; Hatakeyama, Masanori; Suzuki, Hidekazu; Yamamoto, Taro; Moss, Joel; Isomoto, Hajime; Hirayama, Toshiya

    2016-01-01

    ABSTRACT Helicobacter pylori, a major cause of gastroduodenal diseases, produces vacuolating cytotoxin (VacA) and cytotoxin-associated gene A (CagA), which seem to be involved in virulence. VacA exhibits pleiotropic actions in gastroduodenal disorders via its specific receptors. Recently, we found that VacA induced the phosphorylation of cellular Src kinase (Src) at Tyr418 in AZ-521 cells. Silencing of receptor protein tyrosine phosphatase (RPTP)?, a VacA receptor, reduced VacA-induced Src ph...

  4. IGF-I Stimulates Cooperative Interaction between the IGF-I Receptor and CSK Homologous Kinase that Regulates SHPS-1 Phosphorylation in Vascular Smooth Muscle Cells

    Science.gov (United States)

    Radhakrishnan, Yashwanth; Shen, Xinchun; Maile, Laura A.; Xi, Gang

    2011-01-01

    IGF-I plays an important role in smooth muscle cell proliferation and migration. In vascular smooth muscle cells cultured in 25 mm glucose, IGF-I stimulated a significant increase in Src homology 2 domain containing protein tyrosine phosphatase substrate-1 (SHPS-1) phosphorylation compared with 5 mm glucose and this increase was required for smooth muscle cell proliferation. A proteome-wide screen revealed that carboxyl-terminal SRC kinase homologous kinase (CTK) bound directly to phosphotyrosines in the SHPS-1 cytoplasmic domain. Because the kinase(s) that phosphorylates these tyrosines in response to IGF-I is unknown, we determined the roles of IGF-I receptor (IGF-IR) and CTK in mediating SHPS-1 phosphorylation. After IGF-I stimulation, CTK was recruited to IGF-IR and subsequently to phospho-SHPS-1. Expression of an IGF-IR mutant that eliminated CTK binding reduced CTK transfer to SHPS-1, SHPS-1 phosphorylation, and cell proliferation. IGF-IR phosphorylated SHPS-1, which provided a binding site for CTK. CTK recruitment to SHPS-1 resulted in a further enhancement of SHPS-1 phosphorylation. CTK knockdown also impaired IGF-I-stimulated SHPS-1 phosphorylation and downstream signaling. Analysis of specific tyrosines showed that mutation of tyrosines 428/452 in SHPS-1 to phenylalanine reduced SHPS-1 phosphorylation but allowed CTK binding. In contrast, the mutation of tyrosines 469/495 inhibited IGF-IR-mediated the phosphorylation of SHPS-1 and CTK binding, suggesting that IGF-IR phosphorylated Y469/495, allowing CTK binding, and that CTK subsequently phosphorylated Y428/452. Based on the above findings, we conclude that after IGF-I stimulation, CTK is recruited to IGF-IR and its recruitment facilitates CTK's subsequent association with phospho-SHPS-1. This results in the enhanced CTK transfer to SHPS-1, and the two kinases then fully phosphorylate SHPS-1, which is necessary for IGF-I stimulated cellular proliferation. PMID:21799000

  5. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways.

    Directory of Open Access Journals (Sweden)

    Ai-Luen Wu

    Full Text Available Fibroblast growth factor 19 (FGF19 is a hormone-like protein that regulates carbohydrate, lipid and bile acid metabolism. At supra-physiological doses, FGF19 also increases hepatocyte proliferation and induces hepatocellular carcinogenesis in mice. Much of FGF19 activity is attributed to the activation of the liver enriched FGF Receptor 4 (FGFR4, although FGF19 can activate other FGFRs in vitro in the presence of the coreceptor βKlotho (KLB. In this report, we investigate the role of FGFR4 in mediating FGF19 activity by using Fgfr4 deficient mice as well as a variant of FGF19 protein (FGF19v which is specifically impaired in activating FGFR4. Our results demonstrate that FGFR4 activation mediates the induction of hepatocyte proliferation and the suppression of bile acid biosynthesis by FGF19, but is not essential for FGF19 to improve glucose and lipid metabolism in high fat diet fed mice as well as in leptin-deficient ob/ob mice. Thus, FGF19 acts through multiple receptor pathways to elicit pleiotropic effects in regulating nutrient metabolism and cell proliferation.

  6. Differential regulation of renal Klotho and FGFR1 in normal and uremic rats.

    Science.gov (United States)

    Muñoz-Castañeda, Juan R; Herencia, Carmen; Pendón-Ruiz de Mier, Maria Victoria; Rodriguez-Ortiz, Maria Encarnación; Diaz-Tocados, Juan M; Vergara, Noemi; Martínez-Moreno, Julio M; Salmerón, Maria Dolores; Richards, William G; Felsenfeld, Arnold; Kuro-O, Makoto; Almadén, Yolanda; Rodríguez, Mariano

    2017-09-01

    In renal failure, hyperphosphatemia occurs despite a marked elevation in serum fibroblast growth factor (FGF)-23. Abnormal regulation of the FGFR1-Klotho receptor complex may cause a resistance to the phosphaturic action of FGF23. The purpose of the present study was to investigate the regulation of renal Klotho and FGF receptor (FEFR)-1 in healthy and uremic rats induced by 5/6 nephrectomy. In normal rats, the infusion of rat recombinant FGF23 enhanced phosphaturia and increased renal FGFR1 expression; however, Klotho expression was reduced. Uremic rats on a high-phosphate (HP) diet presented hyperphosphatemia with marked elevation of FGF23 and an increased fractional excretion of phosphate (P) that was associated with a marked reduction of Klotho expression and an increase in FGFR1. After neutralization of FGF23 by anti-FGF23 administration, phosphaturia was still abundant, Klotho expression remained low, and the FGFR1 level was reduced. These results suggest that the expression of renal Klotho is modulated by phosphaturia, whereas the FGFR1 expression is regulated by FGF23. Calcitriol (CTR) administration prevented a decrease in renal Klotho expression. In HEK293 cells HP produced nuclear translocation of β-catenin, together with a reduction in Klotho. Wnt/β-catenin inhibition with Dkk-1 prevented the P-induced down-regulation of Klotho. The addition of CTR to HP medium was able to recover Klotho expression. In summary, high FGF23 levels increase FGFR1, whereas phosphaturia decreases Klotho expression through the activation of Wnt/β-catenin pathway.-Muñoz-Castañeda, J. R., Herencia, C., Pendón-Ruiz de Mier, M. V., Rodriguez-Ortiz, M. E., Diaz-Tocados, J. M., Vergara, N., Martínez-Moreno, J. M., Salmerón, M. D., Richards, W. G., Felsenfeld, A., Kuro-O, M., Almadén, Y., Rodríguez, M. Differential regulation of renal Klotho and FGFR1 in normal and uremic rats. © FASEB.

  7. Temporal and occipital lobe features in children with hypochondroplasia/FGFR3 gene mutation.

    Science.gov (United States)

    Philpott, Cristina M; Widjaja, Elysa; Raybaud, Charles; Branson, Helen M; Kannu, Peter; Blaser, Susan

    2013-09-01

    Thanatophoric dysplasia (TD) and hypochondroplasia are both caused by FGFR3 (fibroblast growth factor receptor 3) gene mutations. Temporal lobe dysplasia has been well described in thanatophoric dysplasia; however, only a couple of anecdotal cases of temporal lobe dysplasia in hypochondroplasia have been described. To define temporal lobe abnormalities in patients with hypochondroplasia, given that they share the same genetic mutation. We identified brain imaging studies of nine children with hypochondroplasia. The temporal lobes were assessed on CT and MRI for size and configuration of the temporal horn and aberrant sulcation of the inferior surface of the temporal lobe. All children had a triangular-shape temporal horn and deep transverse fissures of the inferior temporal lobe surface. Neuroimaging in our cohort revealed enlarged temporal lobes and oversulcation of the mesial temporal and occipital lobes, with abnormal inferomedial orientation of these redundant gyri. Hippocampal dysplasia was also universal. We confirmed frequent inferomesial temporal and occipital lobe abnormalities in our cohort of children with hypochondroplasia. Murine models with mutant fgfr3 display increased neuroprogenitor proliferation, cortical thickness and surface area in the temporo-occipital cortex. This is thought to result in excessive convolution and likely explains the imaging findings in this patient cohort. (Note that fgfr3 is the same genetic mutation in mice as FGFR3 is in humans.).

  8. The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site.

    Science.gov (United States)

    Bae, Jae Hyun; Lew, Erin Denise; Yuzawa, Satoru; Tomé, Francisco; Lax, Irit; Schlessinger, Joseph

    2009-08-07

    SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. However, the modest binding affinity of SH2 domains to pY containing peptides may not account for and likely represents an oversimplified mechanism for regulation of selectivity of signaling pathways in living cells. Here we describe the crystal structure of the activated tyrosine kinase domain of FGFR1 in complex with a phospholipase Cgamma fragment. The structural and biochemical data and experiments with cultured cells show that the selectivity of phospholipase Cgamma binding and signaling via activated FGFR1 are determined by interactions between a secondary binding site on an SH2 domain and a region in FGFR1 kinase domain in a phosphorylation independent manner. These experiments reveal a mechanism for how SH2 domain selectivity is regulated in vivo to mediate a specific cellular process.

  9. Intense resistance exercise induces early and transient increases in ryanodine receptor 1 phosphorylation in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Sebastian Gehlert

    Full Text Available BACKGROUND: While ryanodine receptor 1 (RyR1 critically contributes to skeletal muscle contraction abilities by mediating Ca²⁺ion oscillation between sarcoplasmatic and myofibrillar compartments, AMP-activated protein kinase (AMPK senses contraction-induced energetic stress by phosphorylation at Thr¹⁷². Phosphorylation of RyR1 at serine²⁸⁴³ (pRyR1Ser²⁸⁴³ results in leaky RyR1 channels and impaired Ca²⁺homeostasis. Because acute resistance exercise exerts decreased contraction performance in skeletal muscle, preceded by high rates of Ca²⁺-oscillation and energetic stress, intense myofiber contractions may induce increased RyR1 and AMPK phosphorylation. However, no data are available regarding the time-course and magnitude of early RyR1 and AMPK phosphorylation in human myofibers in response to acute resistance exercise. PURPOSE: Determine the effects and early time-course of resistance exercise on pRyR1Ser²⁸⁴³ and pAMPKThr¹⁷² in type I and II myofibers. METHODS: 7 male subjects (age 23±2 years, height: 185±7 cm, weight: 82±5 kg performed 3 sets of 8 repetitions of maximum eccentric knee extensions. Muscle biopsies were taken at rest, 15, 30 and 60 min post exercise. pRyR1Ser²⁸⁴³ and pAMPKThr¹⁷² levels were determined by western blot and semi-quantitative immunohistochemistry techniques. RESULTS: While total RyR1 and total AMPK levels remained unchanged, RyR1 was significantly more abundant in type II than type I myofibers. pRyR1Ser²⁸⁴³ increased 15 min and peaked 30 min (p<0.01 post exercise in both myofiber types. Type I fibers showed relatively higher increases in pRyR1Ser²⁸⁴³ levels than type II myofibers and remained elevated up to 60 min post resistance exercise (p<0.05. pAMPKThr¹⁷² also increased 15 to 30 min post exercise (p<0.01 in type I and II myofibers and in whole skeletal muscle. CONCLUSION: Resistance exercise induces acutely increased pRyR1Ser²⁸⁴³ and

  10. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment.

    Science.gov (United States)

    Gasparotto, Juciano; Girardi, Carolina S; Somensi, Nauana; Ribeiro, Camila T; Moreira, José C F; Michels, Monique; Sonai, Beatriz; Rocha, Mariane; Steckert, Amanda V; Barichello, Tatiana; Quevedo, João; Dal-Pizzol, Felipe; Gelain, Daniel P

    2018-01-05

    Patients recovering from sepsis have higher rates of CNS morbidities associated with long-lasting impairment of cognitive functions, including neurodegenerative diseases. However, the molecular etiology of these sepsis-induced impairments is unclear. Here, we investigated the role of the receptor for advanced glycation end products (RAGE) in neuroinflammation, neurodegeneration-associated changes, and cognitive dysfunction arising after sepsis recovery. Adult Wistar rats underwent cecal ligation and perforation (CLP), and serum and brain (hippocampus and prefrontal cortex) samples were obtained at days 1, 15, and 30 after the CLP. We examined these samples for systemic and brain inflammation; amyloid-β peptide (Aβ) and Ser-202-phosphorylated Tau (p-Tau Ser-202 ) levels; and RAGE, RAGE ligands, and RAGE intracellular signaling. Serum markers associated with the acute proinflammatory phase of sepsis (TNFα, IL-1β, and IL-6) rapidly increased and then progressively decreased during the 30-day period post-CLP, concomitant with a progressive increase in RAGE ligands (S100B, N ϵ-[carboxymethyl]lysine, HSP70, and HMGB1). In the brain, levels of RAGE and Toll-like receptor 4, glial fibrillary acidic protein and neuronal nitric-oxide synthase, and Aβ and p-Tau Ser-202 also increased during that time. Of note, intracerebral injection of RAGE antibody into the hippocampus at days 15, 17, and 19 post-CLP reduced Aβ and p-Tau Ser-202 accumulation, Akt/mechanistic target of rapamycin signaling, levels of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein, and behavioral deficits associated with cognitive decline. These results indicate that brain RAGE is an essential factor in the pathogenesis of neurological disorders following acute systemic inflammation. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Social isolation stress induces ATF-7 phosphorylation and impairs silencing of the 5-HT 5B receptor gene

    Science.gov (United States)

    Maekawa, Toshio; Kim, Seungjoon; Nakai, Daisuke; Makino, Chieko; Takagi, Tsuyoshi; Ogura, Hiroo; Yamada, Kazuyuki; Chatton, Bruno; Ishii, Shunsuke

    2010-01-01

    Many symptoms induced by isolation rearing of rodents may be relevant to neuropsychiatric disorders, including depression. However, identities of transcription factors that regulate gene expression in response to chronic social isolation stress remain elusive. The transcription factor ATF-7 is structurally related to ATF-2, which is activated by various stresses, including inflammatory cytokines. Here, we report that Atf-7-deficient mice exhibit abnormal behaviours and increased 5-HT receptor 5B (Htr5b) mRNA levels in the dorsal raphe nuclei. ATF-7 silences the transcription of Htr5B by directly binding to its 5′-regulatory region, and mediates histone H3-K9 trimethylation via interaction with the ESET histone methyltransferase. Isolation-reared wild-type (WT) mice exhibit abnormal behaviours that resemble those of Atf-7-deficient mice. Upon social isolation stress, ATF-7 in the dorsal raphe nucleus is phosphorylated via p38 and is released from the Htr5b promoter, leading to the upregulation of Htr5b. Thus, ATF-7 may have a critical role in gene expression induced by social isolation stress. PMID:19893493

  12. Follicle-stimulating hormone (FSH) activates extracellular signal-regulated kinase phosphorylation independently of beta-arrestin- and dynamin-mediated FSH receptor internalization

    Science.gov (United States)

    Piketty, Vincent; Kara, Elodie; Guillou, Florian; Reiter, Eric; Crepieux, Pascale

    2006-01-01

    Background The follicle-stimulating hormone receptor (FSH-R) is a seven transmembrane spanning receptor (7TMR) which plays a crucial role in male and female reproduction. Upon FSH stimulation, the FSH-R activates the extracellular signal-regulated kinases (ERK). However, the mechanisms whereby the agonist-stimulated FSH-R activates ERK are poorly understood. In order to activate ERK, some 7 TMRs require beta-arrestin-and dynamin-dependent internalization to occur, whereas some others do not. In the present study, we examined the ability of the FSH-activated FSH-R to induce ERK phosphorylation, in conditions where its beta-arrestin- and dynamin-mediated internalization was impaired. Methods Human embryonic kidney (HEK) 293 cells were transiently transfected with the rat FSH-R. Internalization of the FSH-R was manipulated by co-expression of either a beta-arrestin (319–418) dominant negative peptide, either an inactive dynamin K44A mutant or of wild-type beta-arrestin 1 or 2. The outcomes on the FSH-R internalization were assayed by measuring 125I-FSH binding at the cell surface when compared to internalized 125I-FSH binding. The resulting ERK phosphorylation level was visualized by Western blot analysis. Results In HEK 293 cells, FSH stimulated ERK phosphorylation in a dose-dependent manner. Co-transfection of the beta- arrestin (319–418) construct, or of the dynamin K44A mutant reduced FSH-R internalization in response to FSH, without affecting ERK phosphorylation. Likewise, overexpression of wild-type beta-arrestin 1 or 2 significantly increased the FSH-R internalization level in response to FSH, without altering FSH-induced ERK phosphorylation. Conclusion From these results, we conclude that the FSH-R does not require beta-arrestin- nor dynamin-mediated internalization to initiate ERK phosphorylation in response to FSH. PMID:16787538

  13. Dual Targeting of PDGFRα and FGFR1 Displays Synergistic Efficacy in Malignant Rhabdoid Tumors

    Directory of Open Access Journals (Sweden)

    Jocelyn P. Wong

    2016-10-01

    Full Text Available Subunits of the SWI/SNF chromatin remodeling complex are mutated in a significant proportion of human cancers. Malignant rhabdoid tumors (MRTs are lethal pediatric cancers characterized by a deficiency in the SWI/SNF subunit SMARCB1. Here, we employ an integrated molecular profiling and chemical biology approach to demonstrate that the receptor tyrosine kinases (RTKs PDGFRα and FGFR1 are coactivated in MRT cells and that dual blockade of these receptors has synergistic efficacy. Inhibitor combinations targeting both receptors and the dual inhibitor ponatinib suppress the AKT and ERK1/2 pathways leading to apoptosis. MRT cells that have acquired resistance to the PDGFRα inhibitor pazopanib are susceptible to FGFR inhibitors. We show that PDGFRα levels are regulated by SMARCB1 expression, and assessment of clinical specimens documents the expression of both PDGFRα and FGFR1 in rhabdoid tumor patients. Our findings support a therapeutic approach in cancers with SWI/SNF deficiencies by exploiting RTK coactivation dependencies.

  14. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie; Coppola, Thierry [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France); Mazella, Jean, E-mail: mazella@ipmc.cnrs.fr [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France)

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation in HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.

  15. Detection of low frequency FGFR3 mutations in the urine of bladder cancer patients using next-generation deep sequencing

    Directory of Open Access Journals (Sweden)

    Millholl

    2012-06-01

    Full Text Available John M Millholland, Shuqiang Li, Cecilia A Fernandez, Anthony P ShuberPredictive Biosciences Inc, Lexington, MA, USAAbstract: Biological fluid-based noninvasive biomarker assays for monitoring and diagnosing disease are clinically powerful. A major technical hurdle for developing these assays is the requirement of high analytical sensitivity so that biomarkers present at very low levels can be consistently detected. In the case of biological fluid-based cancer diagnostic assays, sensitivities similar to those of tissue-based assays are difficult to achieve with DNA markers due to the high abundance of normal DNA background present in the sample. Here we describe a new urine-based assay that uses ultradeep sequencing technology to detect single mutant molecules of fibroblast growth factor receptor 3 (FGFR3 DNA that are indicative of bladder cancer. Detection of FGFR3 mutations in urine would provide clinicians with a noninvasive means of diagnosing early-stage bladder cancer. The single-molecule assay detects FGFR3 mutant DNA when present at as low as 0.02% of total urine DNA and results in 91% concordance with the frequency that FGFR3 mutations are detected in bladder cancer tumors, significantly improving diagnostic performance. To our knowledge, this is the first practical application of next-generation sequencing technology for noninvasive cancer diagnostics.Keywords: FGFR3, mutation, urine, single molecule, sequencing, bladder cancer

  16. NK cell cytotoxicity mediated by 2B4 and NTB-A is dependent on SAP acting downstream of receptor phosphorylation

    Directory of Open Access Journals (Sweden)

    Stephan eMeinke

    2013-01-01

    Full Text Available 2B4 (CD244 and NK-T-B-antigen (NTB-A, CD352 are activating receptors on human NK cells and belong to the family of SLAM-related receptors. Engagement of these receptors leads to phosphorylation of their cytoplasmic tails and recruitment of the adapter proteins SAP and EAT-2. X-linked lymphoproliferative syndrome (XLP is a severe immunodeficiency that results from mutations in the SAP gene. 2B4 and NTB-A-mediated cytotoxicity are abrogated in XLP NK cells. To elucidate the molecular basis for this defect we analyzed early signaling events in SAP knockdown cells. Similar to XLP NK cells, knockdown of SAP in primary human NK cells leads to a reduction of 2B4 and NTB-A-mediated cytotoxicity. We found that early signaling events such as raft recruitment and receptor phosphorylation are not affected by the absence of SAP, indicating the defect in the absence of SAP is downstream of these events. In addition, knockdown of EAT-2 does not impair 2B4 or NTB-A-mediated cytotoxicity. Surprisingly, EAT-2 recruitment to both receptors is abrogated in the absence of SAP, revealing a novel cooperativity between these adapters.

  17. The A2b adenosine receptor antagonist PSB-603 promotes oxidative phosphorylation and ROS production in colorectal cancer cells via adenosine receptor-independent mechanism.

    Science.gov (United States)

    Mølck, Christina; Ryall, James; Failla, Laura M; Coates, Janine L; Pascussi, Jean-Marc; Heath, Joan K; Stewart, Gregory; Hollande, Frédéric

    2016-12-01

    Adenosine is a multifaceted regulator of tumor progression. It modulates immune cell activity as well as acting directly on tumor cells. The A 2b adenosine receptor (A 2b -AR) is thought to be an important mediator of these effects. In this study we sought to analyze the contribution of the A 2b -AR to the behavior of colorectal cancer cells. The A 2b -AR antagonist PSB-603 changed cellular redox state without affecting cellular viability. Quantification of cellular bioenergetics demonstrated that PSB-603 increased basal oxygen consumption rates, indicative of enhanced mitochondrial oxidative phosphorylation. Unexpectedly, pharmacological and genetic approaches to antagonize AR-related signalling of PSB-603 did not abolish the response, suggesting that it was AR-independent. PSB-603 also induced acute increases in reactive oxygen species, and PSB-603 synergized with chemotherapy treatment to increase colorectal cancer cell death, consistent with the known link between cellular metabolism and chemotherapy response. PSB-603 alters cellular metabolism in colorectal cancer cells and increases their sensitivity to chemotherapy. Although requiring more mechanistic insight into its A 2b -AR-independent activity, our results show that PSB-603 may have clinical value as an anti-colorectal cancer therapeutic. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Odontogenic differentiation of human dental pulp cells by calcium silicate materials stimulating via FGFR/ERK signaling pathway

    International Nuclear Information System (INIS)

    Liu, Chao-Hsin; Hung, Chi-Jr; Huang, Tsui-Hsien; Lin, Chi-Chang; Kao, Chia-Tze; Shie, Ming-You

    2014-01-01

    Bone healing needs a complex interaction of growth factors that establishes an environment for efficient bone formation. We examine how calcium silicate (CS) and tricalcium phosphate (β-TCP) cements influence the behavior of human dental pulp cells (hDPCs) through fibroblast growth factor receptor (FGFR) and active MAPK pathways, in particular ERK. The hDPCs are cultured with β-TCP and CS, after which the cells' viability and odontogenic differentiation markers are determined by using PrestoBlue® assay and western blot, respectively. The effect of small interfering RNA (siRNA) transfection targeting FGFR was also evaluated. The results showed that CS promoted cell proliferation and enhances FGFR expression. It was also found that CS increases ERK and p38 activity in hDPCs, and furthermore, raises the expression and secretion of DSP, and DMP-1. Additionally, statistically significant differences (p < 0.05) have been found in the calcium deposition in si-FGFR transfection and ERK inhibitor between CS and β-TCP; these variations indicated that ERK/MAPK signaling is involved in the silicon-induced odontogenic differentiation of hDPCs. The current study shows that CS substrates play a key role in odontoblastic differentiation of hDPCs through FGFR and modulate ERK/MAPK activation. - Highlights: • CS influences the behavior of hDPCs through fibroblast growth factor receptor. • CS increases ERK and p38 activity in hDPCs. • ERK/MAPK signaling is involved in the Si-induced odontogenic differentiation of hDPCs. • Ca staining shows that FGFR regulates hDPC differentiation on CS, but not on β-TCP

  19. Relationship between tyrosine phosphorylation and protein expression of insulin receptor and insulin resistance in gestational diabetes mellitus.

    Science.gov (United States)

    Chu, Yong-li; Gong, Yu-dian; Su, Zhi-hui; Yu, Hong-na; Cui, Qing; Jiang, Hai-yang; Qu, Hong-mei

    2014-06-01

    The relationship between tyrosine phosphorylation (TP) and protein expression of insulin receptor (InsR) and insulin resistance (IR) in patients with gestational diabetes mellitus (GDM) was investigated. The InsR expression and TP in skeleton muscle tissue were determined by Western blotting and immunoprecipitation in women with GDM (GDM group, n=22), normal pregnant women (normal pregnancy group, n=22) and normal non-pregnant women (normal non-pregnant group, n=13). Fasting plasma glucose (FPG) and fasting insulin (FINS) were measured by oxidase assay and immunoradioassay. The results showed that the levels of FPG (5.61±0.78 mmol/L), FINS (15.42±5.13 mU/L) and Homeostasis model assessment-IR (HOMA-IR) (1.21±0.52) in GDM group were significantly higher than those in normal pregnancy group (4.43±0.46 mmol/L, 10.56±3.07 mU/L and 0.80±0.31 respectively) (Ppregnant group (7.56±2.31 mU/L and 0.47±0.26 respectively) (P0.05). TP of InsR with insulin stimulation was significantly decreased in GDM group (0.20±0.05) as compared with normal pregnancy group (0.26±0.06) (Pinsulin stimulation in normal pregnancy group was lower than that in normal non-pregnant group (0.31±0.06) (Pinsulin stimulation was negatively related with HOMA-IR in GDM group (r=-0.525, P0.05). It was suggested that there is no significant correlation between the protein expression of InsR in skeletal muscle and IR in GDM, but changes in TP of InsR are associated with IR in GDM.

  20. The influences of reproductive status and acute stress on the levels of phosphorylated mu opioid receptor immunoreactivity in rat hippocampus

    Directory of Open Access Journals (Sweden)

    Keith L. Gonzales

    2011-08-01

    Full Text Available Opioids play a critical role in hippocampally dependent behavior and plasticity. In the hippocampal formation, mu opioid receptors (MOR are prominent in parvalbumin (PARV containing interneurons. Previously we found that gonadal hormones modulate the trafficking of MORs in PARV interneurons. Although sex differences in response to stress are well documented, the point at which opioids, sex and stress interact to influence hippocampal function remains elusive. Thus, we used quantitative immunocytochemistry in combination with light and electron microscopy for the phosphorylated MOR at the SER375 carboxy-terminal residue (pMOR in male and female rats to assess these interactions. In both sexes, pMOR-immunoreactivity (ir was prominent in axons and terminals and in a few neuronal somata and dendrites, some of which contained PARV in the mossy fiber pathway region of the dentate gyrus (DG hilus and CA3 stratum lucidum. In unstressed rats, the levels of pMOR-ir in the DG or CA3 were not affected by sex or estrous cycle stage. However, immediately following 30 minutes of acute immobilization stress (AIS, males had higher levels of pMOR-ir whereas females at proestrus and estrus (high estrogen stages had lower levels of pMOR-ir within the DG. In contrast, the number and types of neuronal profiles with pMOR-ir were not altered by AIS in either males or proestrus females. These data demonstrate that although gonadal steroids do not affect pMOR levels at resting conditions, they are differentially activated both pre- and post-synaptic MORs following stress. These interactions may contribute to the reported sex differences in hippocampally dependent behaviors in stressed animals.

  1. The IkappaB kinase family phosphorylates the Parkinson's disease kinase LRRK2 at Ser935 and Ser910 during Toll-like receptor signaling.

    Directory of Open Access Journals (Sweden)

    Nicolas Dzamko

    Full Text Available Mutations in leucine-rich repeat kinase 2 (LRRK2 are strongly associated with late-onset autosomal dominant Parkinson's disease. LRRK2 is highly expressed in immune cells and recent work points towards a link between LRRK2 and innate immunity. Here we demonstrate that stimulation of the Toll-Like Receptor (TLR pathway by MyD88-dependent agonists in bone marrow-derived macrophages (BMDMs or RAW264.7 macrophages induces marked phosphorylation of LRRK2 at Ser910 and Ser935, the phosphorylation sites that regulate the binding of 14-3-3 to LRRK2. Phosphorylation of these residues is prevented by knock-out of MyD88 in BMDMs, but not the alternative TLR adaptor protein TRIF. Utilising both pharmacological inhibitors, including a new TAK1 inhibitor, NG25, and genetic models, we provide evidence that both the canonical (IKKα and IKKβ and IKK-related (IKKε and TBK1 kinases mediate TLR agonist induced phosphorylation of LRRK2 in vivo. Moreover, all four IKK members directly phosphorylate LRRK2 at Ser910 and Ser935 in vitro. Consistent with previous work describing Ser910 and Ser935 as pharmacodynamic biomarkers of LRRK2 activity, we find that the TLR independent basal phosphorylation of LRRK2 at Ser910 and Ser935 is abolished following treatment of macrophages with LRRK2 kinase inhibitors. However, the increased phosphorylation of Ser910 and Ser935 induced by activation of the MyD88 pathway is insensitive to LRRK2 kinase inhibitors. Finally, employing LRRK2-deficient BMDMs, we present data indicating that LRRK2 does not play a major role in regulating the secretion of inflammatory cytokines induced by activation of the MyD88 pathway. Our findings provide the first direct link between LRRK2 and the IKKs that mediate many immune responses. Further work is required to uncover the physiological roles that phosphorylation of LRRK2 by IKKs play in controlling macrophage biology and to determine how phosphorylation of LRRK2 by IKKs impacts upon the use of Ser

  2. CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation

    Directory of Open Access Journals (Sweden)

    Capra Valérie

    2006-03-01

    Full Text Available Abstract Background Cysteine-containing leukotrienes (cysteinyl-LTs are pivotal inflammatory mediators that play important roles in the pathophysiology of asthma, allergic rhinitis, and other inflammatory conditions. In particular, cysteinyl-LTs exert a variety of effects with relevance to the aetiology of asthma such as smooth muscle contraction, eosinophil recruitment, increased microvascular permeability, enhanced mucus secretion and decreased mucus transport and, finally, airway smooth muscle cells (ASMC proliferation. We used human ASMC (HASMC to identify the signal transduction pathway(s of the leukotriene D4 (LTD4-induced DNA synthesis. Methods Proliferation of primary HASMC was measured by [3H]thymidine incorporation. Phosphorylation of EGF receptor (EGF-R and ERK1/2 was assessed with a polyclonal anti-EGF-R or anti-phosphoERKl/2 monoclonal antibody. A Ras pull-down assay kit was used to evaluate Ras activation. The production of reactive oxygen species (ROS was estimated by measuring dichlorodihydrofluorescein (DCF oxidation. Results We demonstrate that in HASMC LTD4-stimulated thymidine incorporation and potentiation of EGF-induced mitogenic signaling mostly depends upon EGF-R transactivation through the stimulation of CysLT1-R. Accordingly, we found that LTD4 stimulation was able to trigger the increase of Ras-GTP and, in turn, to activate ERK1/2. We show here that EGF-R transactivation was sensitive to pertussis toxin (PTX and phosphoinositide 3-kinase (PI3K inhibitors and that it occurred independently from Src activity, despite the observation of a strong impairment of LTD4-induced DNA synthesis following Src inhibition. More interestingly, CysLT1-R stimulation increased the production of ROS and N-acetylcysteine (NAC abolished LTD4-induced EGF-R phosphorylation and thymidine incorporation. Conclusion Collectively, our data demonstrate that in HASMC LTD4 stimulation of a Gi/o coupled CysLT1-R triggers the transactivation of the EGF

  3. Ligand binding affinity at the insulin receptor isoform A (IR-A and subsequent IR-A tyrosine phosphorylation kinetics are important determinants of mitogenic biological outcomes.

    Directory of Open Access Journals (Sweden)

    Harinda eRajapaksha

    2015-07-01

    Full Text Available The insulin receptor (IR is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A arises from alternative splicing of exon 11 and has different ligand binding and signalling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival and migration by activating some unique signalling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signalling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signalling (MAPK and Akt and receptor internalisation rates (related to mitogenic signalling. We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic ([His4, Tyr15, Thr49, Ile51] IGF-I, qIGF-I or metabolic (S597 peptide biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signalling through the IR-A. The 3-fold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316 and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and the kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I.

  4. Bent bone dysplasia (BBD)-FGFR2 type: the radiologic manifestations in early gestation

    Energy Technology Data Exchange (ETDEWEB)

    Handa, Atsuhiko; Okajima, Yuka; Kurihara, Yasuyuki [St. Luke' s International Hospital, Department of Radiology, Tokyo (Japan); Izumi, Noriko; Yamanaka, Michiko [St. Luke' s International Hospital, Department of Integrated Women' s Health, Tokyo (Japan)

    2016-02-15

    Bent bone dysplasia-fibroblast growth factor receptor 2 type (BBD-FGFR2) is a recently identified skeletal dysplasia caused by specific FGFR2 mutations, characterized by craniosynostosis and prenatal bowing of the long bones. Only a few cases have been published. We report an affected fetus terminated at 21 weeks of gestation. The clinical and radiologic manifestations mostly recapitulate previous descriptions; however we suggest additional hallmarks of this disorder in early gestation. These hallmarks include distinctive short, thick clavicles and wavy ribs, as well as vertebral bodies that showed striking anteroposterior shortening. Femoral fractures were also present in our case. Although craniosynostosis is a hallmark of the disease, clinicians should be aware that craniosynostosis might not be readily apparent on plain films early in gestation. (orig.)

  5. A common FGFR3 gene mutation is present in achondroplasia but not in hypochondroplasia

    Energy Technology Data Exchange (ETDEWEB)

    Stoilov, I.; Kilpatrick, M.W.; Tsipouras, P. [Univ. of Connecticut Health Center, Farmington, CT (United States)

    1995-01-02

    Achondroplasia is the most common type of genetic dwarfism. It is characterized by disproportionate short stature and other skeletal anomalies resulting from a defect in the maturation of the chondrocytes in the growth plate of the cartilage. Recent studies mapped the achondroplasia gene on chromosome region 4p16.3 and identified a common mutation in the gene encoding the fibroblast growth factor receptor 3 (FGFR3). In an analysis of 19 achondroplasia families from a variety of ethnic backgrounds we confirmed the presence of the G380R mutation in 21 of 23 achondroplasia chromosomes studied. In contrast, the G380R mutation was not found in any of the 8 hypochondroplasia chromosomes studied. Futhermore, linkage studies in a 3-generation family with hypochondroplasia show discordant segregation with markers in the 4p16.3 region suggesting that at least some cases of hypochondroplasia are caused by mutations in a gene other than FGFR3. 27 refs., 2 figs.

  6. The adhesion molecule NCAM promotes ovarian cancer progression via FGFR signalling

    DEFF Research Database (Denmark)

    Zecchini, Silvia; Bombardelli, Lorenzo; Decio, Alessandra

    2011-01-01

    glycoprotein involved in brain development and plasticity, in EOC. NCAM is absent from normal ovarian epithelium but becomes highly expressed in a subset of human EOC, in which NCAM expression is associated with high tumour grade, suggesting a causal role in cancer aggressiveness. We demonstrate that NCAM......Epithelial ovarian carcinoma (EOC) is an aggressive neoplasm, which mainly disseminates to organs of the peritoneal cavity, an event mediated by molecular mechanisms that remain elusive. Here, we investigated the expression and functional role of neural cell adhesion molecule (NCAM), a cell surface...... stimulates EOC cell migration and invasion in vitro and promotes metastatic dissemination in mice. This pro-malignant function of NCAM is mediated by its interaction with fibroblast growth factor receptor (FGFR). Indeed, not only FGFR signalling is required for NCAM-induced EOC cell motility, but targeting...

  7. A de novo missense mutation of FGFR2 causes facial dysplasia syndrome in Holstein cattle

    DEFF Research Database (Denmark)

    Agerholm, Jørgen Steen; McEvoy, Fintan; Heegaard, Steffen

    2017-01-01

    was suspected as all recorded cases were progeny of the same sire. Detailed investigations were performed to characterize the syndrome and to reveal its cause. Results Seven malformed calves were submitted examination. All cases shared a common morphology with the most striking lesions being severe facial...... chromosome 26 where whole genome sequencing of a case-parent trio revealed two de novo variants perfectly associated with the disease: an intronic SNP in the DMBT1 gene and a single non-synonymous variant in the FGFR2 gene. This FGFR2 missense variant (c.927G>T) affects a gene encoding a member...... of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and across species. It is predicted to change an evolutionary conserved tryptophan into a cysteine residue (p.Trp309Cys). Both variant alleles were proven to result from de novo mutation events...

  8. C1qTNF-related protein 1 improve insulin resistance by reducing phosphorylation of serine 1101 in insulin receptor substrate 1.

    Science.gov (United States)

    Xin, Yaping; Zhang, Dongming; Fu, Yanqin; Wang, Chongxian; Li, Qingju; Tian, Chenguang; Zhang, Suhe; Lyu, Xiaodong

    2017-08-30

    C1qTNF-related protein 1 (CTRP1) is independently associated with type 2 diabetes. However, the relationship between CTRP1 and insulin resistance is still not established. This study aimed to explore the role of CTRP1 under the situation of insulin resistance in adipose tissue. Plasma CTRP1 level was investigated in type 2 diabetic subjects (n = 35) and non-diabetic subjects (n = 35). The relationship between CTRP1 and phosphorylation of multi insulin receptor substrate 1 (IRS-1) serine (Ser) sites was further explored. Our data showed that Plasma CTRP1 was higher and negative correlation with insulin resistance in diabetic subjects (r = -0.283, p = 0.018). Glucose utilisation test revealed that the glucose utilisation rate of mature adipocytes was improved by CTRP1 in the presence of insulin. CTRP1 was not only related to IRS-1 protein, but also negatively correlated with IRS-1 Ser1101 phosphorylation (r = -0.398, p = 0.031). Furthermore, Phosphorylation levels of IRS-1 Ser1101 were significantly lower after incubation with 40 ng/mL CTRP1 in mature adipocytes than those with no intervention (p insulin resistance by reducing the phosphorylation of IRS-1 Ser1101, induced in the situation of insulin resistance as a feedback adipokine.

  9. Distinct phosphorylation sites on the ghrelin receptor, GHSR1a, establish a code that determines the functions of ß-arrestins

    Science.gov (United States)

    Bouzo-Lorenzo, Monica; Santo-Zas, Icía; Lodeiro, Maria; Nogueiras, Rubén; Casanueva, Felipe F.; Castro, Marian; Pazos, Yolanda; Tobin, Andrew B; Butcher, Adrian J.; Camiña, Jesús P.

    2016-01-01

    The growth hormone secretagogue receptor, GHSR1a, mediates the biological activities of ghrelin, which includes the secretion of growth hormone, as well as the stimulation of appetite, food intake and maintenance of energy homeostasis. Mapping phosphorylation sites on GHSR1a and knowledge of how these sites control specific functional consequences unlocks new strategies for the development of therapeutic agents targeting individual functions. Herein, we have identified the phosphorylation of different sets of sites within GHSR1a which engender distinct functionality of ß-arrestins. More specifically, the Ser362, Ser363 and Thr366 residues at the carboxyl-terminal tail were primarily responsible for ß-arrestin 1 and 2 binding, internalization and ß-arrestin-mediated proliferation and adipogenesis. The Thr350 and Ser349 are not necessary for ß-arrestin recruitment, but are involved in the stabilization of the GHSR1a-ß-arrestin complex in a manner that determines the ultimate cellular consequences of ß-arrestin signaling. We further demonstrated that the mitogenic and adipogenic effect of ghrelin were mainly dependent on the ß-arrestin bound to the phosphorylated GHSR1a. In contrast, the ghrelin function on GH secretion was entirely mediated by G protein signaling. Our data is consistent with the hypothesis that the phosphorylation pattern on the C terminus of GHSR1a determines the signaling and physiological output. PMID:26935831

  10. Interleukins 2, 4, 7, and 15 stimulate tyrosine phosphorylation of insulin receptor substrates 1 and 2 in T cells. Potential role of JAK kinases.

    Science.gov (United States)

    Johnston, J A; Wang, L M; Hanson, E P; Sun, X J; White, M F; Oakes, S A; Pierce, J H; O'Shea, J J

    1995-12-01

    The signaling molecules insulin receptor substrate (IRS)-1 and the newly described IRS-2 (4PS) molecule are major insulin and interleukin 4 (IL-4)-dependent phosphoproteins. We report here that IL-2, IL-7, and IL-15, as well as IL-4, rapidly stimulate the tyrosine phosphorylation of IRS-1 and IRS-2 in human peripheral blood T cells, NK cells, and in lymphoid cell lines. In addition, we show that the Janus kinases, JAK1 and JAK3, associate with IRS-1 and IRS-2 in T cells. Coexpression studies demonstrate that these kinases can tyrosine-phosphorylate IRS-2, suggesting a possible mechanism by which cytokine receptors may induce the tyrosine phosphorylation of IRS-1 and IRS-2. We further demonstrate that the p85 subunit of phosphoinositol 3-kinase associates with IRS-1 in response to IL-2 and IL-4 in T cells. Therefore, these data indicate that IRS-1 and IRS-2 may have important roles in T lymphocyte activation not only in response to IL-4, but also in response to IL-2, IL-7, and IL-15.

  11. Identification of serine 348 on the apelin receptor as a novel regulatory phosphorylation site in apelin-13-induced G protein-independent biased signaling.

    Science.gov (United States)

    Chen, Xiaoyu; Bai, Bo; Tian, Yanjun; Du, Hui; Chen, Jing

    2014-11-07

    Phosphorylation plays vital roles in the regulation of G protein-coupled receptor (GPCR) functions. The apelin and apelin receptor (APJ) system is involved in the regulation of cardiovascular function and central control of body homeostasis. Here, using tandem mass spectrometry, we first identified phosphorylated serine residues in the C terminus of APJ. To determine the role of phosphorylation sites in APJ-mediated G protein-dependent and -independent signaling and function, we induced a mutation in the C-terminal serine residues and examined their effects on the interaction between APJ with G protein or GRK/β-arrestin and their downstream signaling. Mutation of serine 348 led to an elimination of both GRK and β-arrestin recruitment to APJ induced by apelin-13. Moreover, APJ internalization and G protein-independent ERK signaling were also abolished by point mutation at serine 348. In contrast, this mutant at serine residues had no demonstrable impact on apelin-13-induced G protein activation and its intracellular signaling. These findings suggest that mutation of serine 348 resulted in inactive GRK/β-arrestin. However, there was no change in the active G protein thus, APJ conformation was biased. These results provide important information on the molecular interplay and impact of the APJ function, which may be extrapolated to design novel drugs for cardiac hypertrophy based on this biased signal pathway. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Increased Level of Phosphorylated ShcA Measured by Chemiluminescence-Linked Immunoassay Is a Predictor of Good Prognosis in Primary Breast Cancer Expressing Low Levels of Estrogen Receptor

    Directory of Open Access Journals (Sweden)

    Serenella Eppenberger-Castori

    2010-03-01

    Full Text Available The SH2 domain-containing adaptor protein ShcA is a proto-oncogene involved in growth factor receptor signaling. The role of phosphorylated ShcA is to link receptor tyrosine kinases with the SH2-containing adaptor protein Grb2, thus facilitating signal transduction from receptor tyrosine kinases to Ras, leading to MAPK activation. The present study was designed to investigate the prognostic significance of phosphorylated ShcA in primary breast cancer and its association in the interactions between the ER and ErbB2 pathways. Using a two-site chemiluminescence-linked immunosorbent assay, we detected the quantitative expression levels of total tyrosine- and threonine-phosphorylated ShcA in cytosol fractions obtained from fresh frozen tissue samples of 153 selected primary breast cancer patients. ShcA phosphorylation was not associated with nodal status, estrogen receptor (ER status or grading. High levels of both tyrosine (pYShcA and serine (pSShcA phosphorylated ShcA correlated with good prognosis (p < 0.01, with respect to both disease-free (DFS and overall survival (OS. In addition, pShcA levels were found to correlate with threonine-phosphorylated ErbB2 and inversely with phosphorylated Akt (pAkt, as well as ErbB2 and ER expression levels. Our findings demonstrate that ShcA activation in primary breast cancer patients correlates with low levels of ER, and is associated with good prognosis.

  13. Increased Level of Phosphorylated ShcA Measured by Chemiluminescence-Linked Immunoassay Is a Predictor of Good Prognosis in Primary Breast Cancer Expressing Low Levels of Estrogen Receptor

    International Nuclear Information System (INIS)

    Cicenas, Jonas; Küng, Willy; Eppenberger, Urs; Eppenberger-Castori, Serenella

    2010-01-01

    The SH2 domain-containing adaptor protein ShcA is a proto-oncogene involved in growth factor receptor signaling. The role of phosphorylated ShcA is to link receptor tyrosine kinases with the SH2-containing adaptor protein Grb2, thus facilitating signal transduction from receptor tyrosine kinases to Ras, leading to MAPK activation. The present study was designed to investigate the prognostic significance of phosphorylated ShcA in primary breast cancer and its association in the interactions between the ER and ErbB2 pathways. Using a two-site chemiluminescence-linked immunosorbent assay, we detected the quantitative expression levels of total tyrosine- and threonine-phosphorylated ShcA in cytosol fractions obtained from fresh frozen tissue samples of 153 selected primary breast cancer patients. ShcA phosphorylation was not associated with nodal status, estrogen receptor (ER) status or grading. High levels of both tyrosine (pYShcA) and serine (pSShcA) phosphorylated ShcA correlated with good prognosis (p < 0.01), with respect to both disease-free (DFS) and overall survival (OS). In addition, pShcA levels were found to correlate with threonine-phosphorylated ErbB2 and inversely with phosphorylated Akt (pAkt), as well as ErbB2 and ER expression levels. Our findings demonstrate that ShcA activation in primary breast cancer patients correlates with low levels of ER, and is associated with good prognosis

  14. H2O2 attenuates IGF-1R tyrosine phosphorylation and its survival signaling properties in neuronal cells via NR2B containing NMDA receptor.

    Science.gov (United States)

    Zeng, Zhiwen; Wang, Dejun; Gaur, Uma; Rifang, Liao; Wang, Haitao; Zheng, Wenhua

    2017-09-12

    Impairment of insulin-like growth factor I (IGF-I) signaling plays an important role in the development of neurodegeneration. In the present study, we investigated the effect of H 2 O 2 on the survival signaling of IGF-1 and its underlying mechanisms in human neuronal cells SH-SY5Y. Our results showed that IGF-1 promoted cell survival and stimulated phosphorylation of IGF-1R as well as its downstream targets like AKT and ERK1/2 in these cells. Meanwhile, these effects of IGF-1 were abolished by H 2 O 2 at 200μM concentration which did not cause any significant toxicity to cells itself in our experiments. Moreover, studies using various glutamate receptor subtype antagonists displayed that N-methyl-D -aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) blocked the effects of H 2 O 2 , whereas other glutamate receptor subtype antagonists, such as non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX), metabolic glutamate receptor antagonists LY341495 and CPCCOEt, had no effect. Further studies revealed that NR2B-containing NMDARs are responsible for these effects as its effects were blocked by pharmacological inhibitor Ro25-698 or specific siRNA for NR2B, but not NR2A. Finally, our data also showed that Ca 2+ influx contributes to the effects of H 2 O 2 . Similar results were obtained in primary cultured cortical neurons. Taken together, the results from the present study suggested that H 2 O 2 attenuated IGF-1R tyrosine phosphorylation and its survival signaling properties via NR2B containing NMDA receptors and Ca 2+ influx in SH-SY5Y cells. Therefore, NMDAR antagonists, especially NR2B-selective ones, combined with IGF-1 may serve as an alternative therapeutic agent for oxidative stress related neurodegenerative disease.

  15. FGFR3 mutation causes abnormal membranous ossification in achondroplasia.

    Science.gov (United States)

    Di Rocco, Federico; Biosse Duplan, Martin; Heuzé, Yann; Kaci, Nabil; Komla-Ebri, Davide; Munnich, Arnold; Mugniery, Emilie; Benoist-Lasselin, Catherine; Legeai-Mallet, Laurence

    2014-06-01

    FGFR3 gain-of-function mutations lead to both chondrodysplasias and craniosynostoses. Achondroplasia (ACH), the most frequent dwarfism, is due to an FGFR3-activating mutation which results in impaired endochondral ossification. The effects of the mutation on membranous ossification are unknown. Fgfr3(Y367C/+) mice mimicking ACH and craniofacial analysis of patients with ACH and FGFR3-related craniosynostoses provide an opportunity to address this issue. Studying the calvaria and skull base, we observed abnormal cartilage and premature fusion of the synchondroses leading to modifications of foramen magnum shape and size in Fgfr3(Y367C/+) mice, ACH and FGFR3-related craniosynostoses patients. Partial premature fusion of the coronal sutures and non-ossified gaps in frontal bones were also present in Fgfr3(Y367C/+) mice and ACH patients. Our data provide strong support that not only endochondral ossification but also membranous ossification is severely affected in ACH. Demonstration of the impact of FGFR3 mutations on craniofacial development should initiate novel pharmacological and surgical therapeutic approaches.

  16. FGFR4 Downregulation of Cell Adhesion in Prostate Cancer

    Science.gov (United States)

    2008-09-01

    in Figure 1, all constructs were stably incorporated into 293-RXR cells and were inducible upon treatment with Ponasterone A. Though we had created...through the transmembrane domain, similar to the FGFR3 Gly380Arg mutation responsible for human dwarfism , or achondroplasia. In this model, the FGFR4

  17. The O-β-linked N-acetylglucosaminylation of the Lamin B receptor and its impact on DNA binding and phosphorylation.

    Science.gov (United States)

    Smet-Nocca, Caroline; Page, Adeline; Cantrelle, François-Xavier; Nikolakaki, Eleni; Landrieu, Isabelle; Giannakouros, Thomas

    2018-04-01

    Lamin B Receptor (LBR) is an integral protein of the interphase inner nuclear membrane that is implicated in chromatin anchorage to the nuclear envelope. Phosphorylation of a stretch of arginine-serine (RS) dipeptides in the amino-terminal nucleoplasmic domain of LBR regulates the interactions of the receptor with other nuclear proteins, DNA and RNA and thus modulates tethering of heterochromatin to the nuclear envelope. While phosphorylation has been extensively studied, very little is known about other post-translational modifications of the protein. There is only one report on the O-β-linked N-acetyl-glucosaminylation (O-GlcNAcylation) of a serine residue downstream of the RS domain of rat LBR. In the present study we identify additional O-GlcNAcylation sites by using as substrates of O-β-N-acetylglucosaminyltransferase (OGT) a set of peptides containing the entire LBR RS domain or parts of it as well as flanking sequences. The in vitro activity of OGT was assessed by tandem mass spectrometry and NMR spectroscopy. Furthermore, we provide evidence that O-GlcNAcylation hampers DNA binding while it marginally affects RS domain phosphorylation mediated by SRPK1, Akt2 and cdk1 kinases. Our methodology providing a quantitative description of O-GlcNAc patterns based on a combination of mass spectrometry and high resolution NMR spectroscopy on short peptide substrates allows subsequent functional analyses. Hence, our approach is of general interest to a wide audience of biologists aiming at deciphering the functional role of O-GlcNAc glycosylation and its crosstalk with phosphorylation. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Insulin receptors mediate growth effects in cultured fetal neurons. II. Activation of a protein kinase that phosphorylates ribosomal protein S6

    International Nuclear Information System (INIS)

    Heidenreich, K.A.; Toledo, S.P.

    1989-01-01

    As an initial attempt to identify early steps in insulin action that may be involved in the growth responses of neurons to insulin, we investigated whether insulin receptor activation increases the phosphorylation of ribosomal protein S6 in cultured fetal neurons and whether activation of a protein kinase is involved in this process. When neurons were incubated for 2 h with 32Pi, the addition of insulin (100 ng/ml) for the final 30 min increased the incorporation of 32Pi into a 32K microsomal protein. The incorporation of 32Pi into the majority of other neuronal proteins was unaltered by the 30-min exposure to insulin. Cytosolic extracts from insulin-treated neurons incubated in the presence of exogenous rat liver 40S ribosomes and [gamma-32P]ATP displayed a 3- to 8-fold increase in the phosphorylation of ribosomal protein S6 compared to extracts from untreated cells. Inclusion of cycloheximide during exposure of the neurons to insulin did not inhibit the increased cytosolic kinase activity. Activation of S6 kinase activity by insulin was dose dependent (seen at insulin concentration as low as 0.1 ng/ml) and reached a maximum after 20 min of incubation. Addition of phosphatidylserine, diolein, and Ca2+ to the in vitro kinase reaction had no effect on the phosphorylation of ribosomal protein S6. Likewise, treatment of neurons with (Bu)2cAMP did not alter the phosphorylation of ribosomal protein S6 by neuronal cytosolic extracts. We conclude that insulin activates a cytosolic protein kinase that phosphorylates ribosomal S6 in neurons and is distinct from protein kinase-C and cAMP-dependent protein kinase. Stimulation of this kinase may play a role in insulin signal transduction in neurons

  19. Sphingosine-1-Phosphate and the S1P3 Receptor Initiate Neuronal Retraction via RhoA/ROCK Associated with CRMP2 Phosphorylation

    Science.gov (United States)

    Quarta, Serena; Camprubí-Robles, Maria; Schweigreiter, Rüdiger; Matusica, Dusan; Haberberger, Rainer V.; Proia, Richard L.; Bandtlow, Christine E.; Ferrer-Montiel, Antonio; Kress, Michaela

    2017-01-01

    The bioactive lipid sphingosine-1-phosphate (S1P) is an important regulator in the nervous system. Here, we explored the role of S1P and its receptors in vitro and in preclinical models of peripheral nerve regeneration. Adult sensory neurons and motor neuron-like cells were exposed to S1P in an in vitro assay, and virtually all neurons responded with a rapid retraction of neurites and growth cone collapse which were associated with RhoA and ROCK activation. The S1P1 receptor agonist SEW2871 neither activated RhoA or neurite retraction, nor was S1P-induced neurite retraction mitigated in S1P1-deficient neurons. Depletion of S1P3 receptors however resulted in a dramatic inhibition of S1P-induced neurite retraction and was on the contrary associated with a significant elongation of neuronal processes in response to S1P. Opposing responses to S1P could be observed in the same neuron population, where S1P could activate S1P1 receptors to stimulate elongation or S1P3 receptors and retraction. S1P was, for the first time in sensory neurons, linked to the phosphorylation of collapsin response-mediated protein-2 (CRMP2), which was inhibited by ROCK inhibition. The improved sensory recovery after crush injury further supported the relevance of a critical role for S1P and receptors in fine-tuning axonal outgrowth in peripheral neurons. PMID:29066950

  20. Cannabinoid receptor expression and phosphorylation are differentially regulated between male and female cerebellum and brain stem after repeated stress: implication for PTSD and drug abuse.

    Science.gov (United States)

    Xing, Guoqiang; Carlton, Janis; Zhang, Lei; Jiang, Xiaolong; Fullerton, Carol; Li, He; Ursano, Robert

    2011-09-08

    Recent study demonstrated a close relationship between cerebellum atrophy and symptom severity of pediatric maltreatment-related posttraumatic stress disorder (PTSD). It has also been known that females are more vulnerable than males in developing anxiety disorders after exposure to traumatic stress. The mechanisms are unknown. Because cannabinoid receptors (CB₁ and CB₂) are neuroprotective and highly expressed in the cerebellum, we investigated cerebellar CB expression in stressed rats. Young male and female Sprague-Dawley rats were given 40 unpredictable electric tail-shocks for 2h daily on 3 consecutive days. CB₁ and CB₂ mRNA and protein levels in rat cerebellum and brain stem were determined using quantitative real-time PCR and Western blot, respectively. Two-way ANOVA revealed significant gender and stress effects on cerebellar CB₁ mRNA expression, with females and non-stressed rats exhibiting higher CB₁ mRNA levels than the males (3 fold, pstressed rats (30%, pstress increased the level of phosphorylated CB₁ receptors, the inactivated CB₁, in rat cerebellum (pstress interaction. Thus, repeated severe stress caused greater CB₁ mRNA suppression and CB₁ receptor phosphorylation in female cerebellum that could lead to increased susceptibility to stress-related anxiety disorders including PTSD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Protein kinase A mediates adenosine A2a receptor modulation of neurotransmitter release via synapsin I phosphorylation in cultured cells from medulla oblongata.

    Science.gov (United States)

    Matsumoto, Joao Paulo Pontes; Almeida, Marina Gomes; Castilho-Martins, Emerson Augusto; Costa, Maisa Aparecida; Fior-Chadi, Debora Rejane

    2014-08-01

    Synaptic transmission is an essential process for neuron physiology. Such process is enabled in part due to modulation of neurotransmitter release. Adenosine is a synaptic modulator of neurotransmitter release in the Central Nervous System, including neurons of medulla oblongata, where several nuclei are involved with neurovegetative reflexes. Adenosine modulates different neurotransmitter systems in medulla oblongata, specially glutamate and noradrenaline in the nucleus tractussolitarii, which are involved in hypotensive responses. However, the intracellular mechanisms involved in this modulation remain unknown. The adenosine A2a receptor modulates neurotransmitter release by activating two cAMP protein effectors, the protein kinase A and the exchange protein activated by cAMP. Therefore, an in vitro approach (cultured cells) was carried out to evaluate modulation of neurotransmission by adenosine A2a receptor and the signaling intracellular pathway involved. Results show that the adenosine A2a receptor agonist, CGS 21680, increases neurotransmitter release, in particular, glutamate and noradrenaline and such response is mediated by protein kinase A activation, which in turn increased synapsin I phosphorylation. This suggests a mechanism of A2aR modulation of neurotransmitter release in cultured cells from medulla oblongata of Wistar rats and suggest that protein kinase A mediates this modulation of neurotransmitter release via synapsin I phosphorylation. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  2. P2X7, NMDA and BDNF receptors converge on GSK3 phosphorylation and cooperate to promote survival in cerebellar granule neurons.

    Science.gov (United States)

    Ortega, Felipe; Pérez-Sen, Raquel; Morente, Verónica; Delicado, Esmerilda G; Miras-Portugal, Maria Teresa

    2010-05-01

    Glycogen synthase kinase-3 (GSK3) is a key player in the regulation of neuronal survival. Herein, we report evidence of an interaction between P2X7 receptors with NMDA and BDNF receptors at the level of GSK3 signalling and neuroprotection. The activation of these receptors in granule neurons led to a sustained pattern of GSK3 phosphorylation that was mainly PKC-dependent. BDNF was the most potent at inducing GSK3 phosphorylation, which was also dependent on PI3K. The P2X7 agonist, BzATP, exhibited additive effects with both NMDA and BDNF to rescue granule neurons from cell death induced by PI3K inhibition. This survival effect was mediated by the PKC-dependent GSK3 pathway. In addition, ERK1/2 proteins were also involved in BDNF protective effect. These results show the function of ATP in amplifying neuroprotective actions of glutamate and neurotrophins, and support the role of GSK3 as an important convergence point for these survival promoting factors in granule neurons.

  3. Vascular endothelin ET(B) receptor-mediated contraction requires phosphorylation of ERK1/2 proteins

    DEFF Research Database (Denmark)

    Luo, Guogang; Jamali, Roya; Cao, Yong-Xiao

    2006-01-01

    In cardiovascular diseases, endothelin type B (ET(B)) receptors in arterial smooth muscle cells are upregulated. The present study revealed that organ culture of rat mesenteric artery segments enhanced endothelin ET(B) receptor-mediated contraction paralleled with increase in the receptor mRNA an...

  4. Tyrosine phosphorylation of the BRI1 receptor kinase occurs via a posttranslational modification and is activated by the juxtamembrane domain

    Science.gov (United States)

    In metazoans, receptor kinases control many essential processes related to growth and development and response to the environment. The receptor kinases in plants and animals are structurally similar but evolutionarily distinct from one another, and thus while most animal receptor kinases are tyrosin...

  5. Involvement of Fibroblast Growth Factor Receptor Genes in Benign Prostate Hyperplasia in a Korean Population

    Directory of Open Access Journals (Sweden)

    Hae Jeong Park

    2013-01-01

    Full Text Available Fibroblast growth factors (FGFs and their receptors (FGFRs have been implicated in prostate growth and are overexpressed in benign prostatic hyperplasia (BPH. In this study, we investigated whether single nucleotide polymorphisms (SNPs of the FGFR genes (FGFR1 and FGFR2 were associated with BPH and its clinical phenotypes in a population of Korean men. We genotyped four SNPs in the exons of FGFR1 and FGFR2 (rs13317 in FGFR1; rs755793, rs1047100, and rs3135831 in FGFR2 using direct sequencing in 218 BPH patients and 213 control subjects. No SNPs of FGFR1 or FGFR2 genes were associated with BPH. However, analysis according to clinical phenotypes showed that rs1047100 of FGFR2 was associated with prostate volume in BPH in the dominant model (GA/AA versus GG, P = 0.010. In addition, a significant association was observed between rs13317 of FGFR1 and international prostate symptom score (IPSS in the additive (TC versus CC versus TT, P = 0.0022 and dominant models (TC/CC versus TT, P = 0.005. Allele frequency analysis also showed significant association between rs13317 and IPSS (P = 0.005. These results suggested that FGFR genes could be related to progression of BPH.

  6. Insulin receptor substrate proteins create a link between the tyrosine phosphorylation cascade and the Ca2+-ATPases in muscle and heart.

    Science.gov (United States)

    Algenstaedt, P; Antonetti, D A; Yaffe, M B; Kahn, C R

    1997-09-19

    Following phosphorylation by the insulin receptor kinase, the insulin receptor substrates (IRS)-1 and IRS-2 bind to and activate several Src homology 2 (SH2) domain proteins. To identify novel proteins that interact with IRS proteins in muscle, a human skeletal muscle cDNA expression library was created in the lambdaEXlox system and probed with baculovirus-produced and tyrosine-phosphorylated human IRS-1. One clone of the 10 clones which was positive through three rounds of screening represented the C terminus of the human homologue of the adult fast twitch skeletal muscle Ca2+-ATPase (SERCA1) including the cytoplasmic tail and part of transmembrane region 10. Western blot analysis of extracts of rat muscle demonstrated co-immunoprecipitation of both IRS-1 and IRS-2 with the skeletal muscle Ca2+-ATPase (SERCA1) and the cardiac muscle isoform (SERCA2). In both cases, injection of insulin stimulated a 2- to 6-fold increase in association of which was maximal within 5 min. In primary cultures of aortic smooth muscle cells and C2C12 cells, the insulin-stimulated interaction between IRS proteins and SERCA1 and -2 was dose-dependent with a maximum induction at 100 nM insulin. This interaction was confirmed in a "pull down" experiment using a glutathione S-transferase fusion protein containing the C terminus of the human SERCA isoform and phosphorylated IRS-1 in vitro and could be blocked by a FLVRES-like domain peptide present in the human SERCA sequence. Affinity chromatography of phosphopeptide libraries using the glutathione S-transferase fusion protein of the C terminus of SERCA1 indicated a consensus sequence for binding of XpYGSS; this is identical to potential tyrosine phosphorylation sites at position 431 of human IRS-1 and at position 500 of human IRS-2. In streptozotocin diabetic rats the interaction between IRS proteins and SERCA1 in skeletal muscle and SERCA2 in cardiac muscle was significantly reduced. Taken together, these results indicate that the IRS

  7. Hypochondroplasia, Acanthosis Nigricans, and Insulin Resistance in a Child with FGFR3 Mutation: Is It Just an Association?

    Directory of Open Access Journals (Sweden)

    Manal Mustafa

    2014-01-01

    Full Text Available FGFR3 mutations cause wide spectrum of disorders ranging from skeletal dysplasias (hypochondroplasia, achondroplasia, and thanatophoric dysplasia, benign skin tumors (epidermal nevi, seborrhaeic keratosis, and acanthosis nigricans, and epithelial malignancies (multiple myeloma and prostate and bladder carcinoma. Hypochondroplasia is the most common type of short-limb dwarfism in children resulting from fibroblast growth factor receptor 3 (FGFR3 mutation. Acanthosis nigricans might be seen in severe skeletal dysplasia, including thanatophoric dysplasia and SADDAN syndrome, without a biochemical evidence of hyperinsulinemia. Insulin insensitivity and acanthosis nigricans are uncommonly seen in hypochondroplasia patients with FGFR3 mutations which may represent a new association. We aim to describe the association of hypochondroplasia, acanthosis nigricans, and insulin resistance in a child harboring FGFR3 mutation. To our knowledge, this is the first case report associating the p.N540 with acanthosis nigricans and the second to describe hyperinsulinemia in hypochondroplasia. This finding demonstrates the possible coexistence of insulin insensitivity and acanthosis nigricans in hypochondroplasia patients.

  8. Acanthosis nigricans in a Japanese boy with hypochondroplasia due to a K650T mutation in FGFR3

    Science.gov (United States)

    Hirai, Hiroki; Hamada, Junpei; Hasegawa, Kosei; Ishii, Eiichi

    2017-01-01

    Abstract. Acanthosis nigricans (AN) is observed in some cases of skeletal dysplasia. However, AN has occasionally been reported in patients with hypochondroplasia (HCH), and a clinical diagnosis is sometimes difficult when its physical and radiological features are mild. Mutations in the gene encoding the fibroblast growth factor receptor 3 (FGFR3) have been identified as the cause of some types of skeletal dysplasia, which is diagnostically useful. Here, we report the case of a 3-yr-old Japanese boy who presented with AN. His height, weight, head circumference, and arm span were 91.7 cm (–1.95 SD), 16.3 kg, 54.0 cm (+2.6 SD), and 88.0 cm, respectively. In addition to the AN, he also exhibited a mild height deficit and macrocephaly, which prompted a search for FGFR3 mutations, although no skeletal disproportion, exaggerated lumbar lordosis, or facial dysmorphism was observed, and only slight radiological abnormalities were noted. A definitive diagnosis of HCH was made based on FGFR3 gene analysis, which detected a heterozygous K650T mutation. Insulin insensitivity was not found to have contributed to the development of AN. In individuals with AN, careful assessments for symptoms of HCH are important, regardless of the presence or absence of a short stature, and FGFR3 gene analysis is recommended in such cases. PMID:29026271

  9. Antitumor Effect of AZD4547 in a Fibroblast Growth Factor Receptor 2–Amplified Gastric Cancer Patient–Derived Cell Model

    Directory of Open Access Journals (Sweden)

    Jiryeon Jang

    2017-08-01

    Full Text Available BACKGROUND: FGFR2 amplification is associated with aggressive gastric cancer (GC, and targeted drugs have been developed for treatment of GC. We evaluated the antitumor activity of an FGFR inhibitor in FGFR2-amplified GC patients with peritoneal carcinomatosis. METHODS: Two GC patients with FGFR2 amplification confirmed by fluorescence in situ hybridization showed peritoneal seeding and malignant ascites. We used the patient-derived xenograft model; patient-derived cells (PDCs from malignant ascites were used to assess FGFR2 expression and its downstream pathway using immunofluorescence analysis and immunoblot assay in vitro. Apoptosis and cell cycle arrest after treatment of FGFR inhibitor were analyzed by Annexin V-FITC assay and cell cycle analysis. RESULTS: FGFR2 amplification was verified in both PDC lines. AZD4547 as an FGFR inhibitor decreased proliferation of PDCs, and the IC50 value was estimated to be 250 nM in PDC#1 and 210 nM in PDC#2. FGFR inhibitor also significantly decreased levels of phosphorylated FGFR2 and downstream signaling molecules in FGFR2-amplified PDC lines. In cell cycle analysis, apoptosis was significantly increased in AZD4547-treated cells compared with nontreated cells. The proportion of cells in the sub-G1 stage was significantly higher in AZD4547-treated PDCs than in control cells. CONCLUSION: Our findings suggest that FGFR2 amplification is a relevant therapeutic target in GC with peritoneal carcinomatosis.

  10. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yogi, Alvaro; Callera, Glaucia E. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Mecawi, André S. [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Batalhão, Marcelo E.; Carnio, Evelin C. [Department of General and Specialized Nursing, College of Nursing of Ribeirão Preto, USP, São Paulo (Brazil); Antunes-Rodrigues, José [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Queiroz, Regina H. [Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences, USP, São Paulo (Brazil); Touyz, Rhian M. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Tirapelli, Carlos R., E-mail: crtirapelli@eerp.usp.br [Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP (Brazil)

    2012-11-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation.

  11. Interaction of the phosphorylated DNA-binding domain in nuclear receptor CAR with its ligand-binding domain regulates CAR activation.

    Science.gov (United States)

    Shizu, Ryota; Min, Jungki; Sobhany, Mack; Pedersen, Lars C; Mutoh, Shingo; Negishi, Masahiko

    2018-01-05

    The nuclear protein constitutive active/androstane receptor (CAR or NR1I3) regulates several liver functions such as drug and energy metabolism and cell growth or death, which are often involved in the development of diseases such as diabetes and hepatocellular carcinoma. CAR undergoes a conversion from inactive homodimers to active heterodimers with retinoid X receptor α (RXRα), and phosphorylation of the DNA-binding domain (DBD) at Thr-38 in CAR regulates this conversion. Here, we uncovered the molecular mechanism by which this phosphorylation regulates the intramolecular interaction between CAR's DBD and ligand-binding domain (LBD), enabling the homodimer-heterodimer conversion. Phosphomimetic substitution of Thr-38 with Asp increased co-immunoprecipitation of the CAR DBD with CAR LBD in Huh-7 cells. Isothermal titration calorimetry assays also revealed that recombinant CAR DBD-T38D, but not nonphosphorylated CAR DBD, bound the CAR LBD peptide. This DBD-LBD interaction masked CAR's dimer interface, preventing CAR homodimer formation. Of note, EGF signaling weakened the interaction of CAR DBD T38D with CAR LBD, converting CAR to the homodimer form. The DBD-T38D-LBD interaction also prevented CAR from forming a heterodimer with RXRα. However, this interaction opened up a CAR surface, allowing interaction with protein phosphatase 2A. Thr-38 dephosphorylation then dissociated the DBD-LBD interaction, allowing CAR heterodimer formation with RXRα. We conclude that the intramolecular interaction of phosphorylated DBD with the LBD enables CAR to adapt a transient monomer configuration that can be converted to either the inactive homodimer or the active heterodimer.

  12. Phosphorylation of ERK in neurokinin 1 receptor-expressing neurons in laminae III and IV of the rat spinal dorsal horn following noxious stimulation

    Directory of Open Access Journals (Sweden)

    Watanabe Masahiko

    2007-02-01

    Full Text Available Abstract Background There is a population of large neurons with cell bodies in laminae III and IV of the spinal dorsal horn which express the neurokinin 1 receptor (NK1r and have dendrites that enter the superficial laminae. Although it has been shown that these are all projection neurons and that they are innervated by substance P-containing (nociceptive primary afferents, we know little about their responses to noxious stimuli. In this study we have looked for phosphorylation of extracellular signal-regulated kinases (ERKs in these neurons in response to different types of noxious stimulus applied to one hindlimb of anaesthetised rats. The stimuli were mechanical (repeated pinching, thermal (immersion in water at 52°C or chemical (injection of 2% formaldehyde. Results Five minutes after each type of stimulus we observed numerous cells with phosphorylated ERK (pERK in laminae I and IIo, together with scattered positive cells in deeper laminae. We found that virtually all of the lamina III/IV NK1r-immunoreactive neurons contained pERK after each of these stimuli and that in the great majority of cases there was internalisation of the NK1r on the dorsal dendrites of these cells. In addition, we also saw neurons in lamina III that were pERK-positive but lacked the NK1r, and these were particularly evident in animals that had had the pinch stimulus. Conclusion Our results demonstrate that lamina III/IV NK1r-immunoreactive neurons show receptor internalisation and ERK phosphorylation after mechanical, thermal or chemical noxious stimuli.

  13. Fasciola hepatica Surface Coat Glycoproteins Contain Mannosylated and Phosphorylated N-glycans and Exhibit Immune Modulatory Properties Independent of the Mannose Receptor.

    Directory of Open Access Journals (Sweden)

    Alessandra Ravidà

    2016-04-01

    Full Text Available Fascioliasis, caused by the liver fluke Fasciola hepatica, is a neglected tropical disease infecting over 1 million individuals annually with 17 million people at risk of infection. Like other helminths, F. hepatica employs mechanisms of immune suppression in order to evade its host immune system. In this study the N-glycosylation of F. hepatica's tegumental coat (FhTeg and its carbohydrate-dependent interactions with bone marrow derived dendritic cells (BMDCs were investigated. Mass spectrometric analysis demonstrated that FhTeg N-glycans comprised mainly of oligomannose and to a lesser extent truncated and complex type glycans, including a phosphorylated subset. The interaction of FhTeg with the mannose receptor (MR was investigated. Binding of FhTeg to MR-transfected CHO cells and BMDCs was blocked when pre-incubated with mannan. We further elucidated the role played by MR in the immunomodulatory mechanism of FhTeg and demonstrated that while FhTeg's binding was significantly reduced in BMDCs generated from MR knockout mice, the absence of MR did not alter FhTeg's ability to induce SOCS3 or suppress cytokine secretion from LPS activated BMDCs. A panel of negatively charged monosaccharides (i.e. GlcNAc-4P, Man-6P and GalNAc-4S were used in an attempt to inhibit the immunoregulatory properties of phosphorylated oligosaccharides. Notably, GalNAc-4S, a known inhibitor of the Cys-domain of MR, efficiently suppressed FhTeg binding to BMDCs and inhibited the expression of suppressor of cytokine signalling (SOCS 3, a negative regulator the TLR and STAT3 pathway. We conclude that F. hepatica contains high levels of mannose residues and phosphorylated glycoproteins that are crucial in modulating its host's immune system, however the role played by MR appears to be limited to the initial binding event suggesting that other C-type lectin receptors are involved in the immunomodulatory mechanism of FhTeg.

  14. A1 adenosine receptor-induced phosphorylation and modulation of transglutaminase 2 activity in H9c2 cells: A role in cell survival.

    Science.gov (United States)

    Vyas, Falguni S; Hargreaves, Alan J; Bonner, Philip L R; Boocock, David J; Coveney, Clare; Dickenson, John M

    2016-05-01

    The regulation of tissue transglutaminase (TG2) activity by the GPCR family is poorly understood. In this study, we investigated the modulation of TG2 activity by the A1 adenosine receptor in cardiomyocyte-like H9c2 cells. H9c2 cells were lysed following stimulation with the A1 adenosine receptor agonist N(6)-cyclopentyladenosine (CPA). Transglutaminase activity was determined using an amine incorporating and a protein cross linking assay. TG2 phosphorylation was assessed via immunoprecipitation and Western blotting. The role of TG2 in A1 adenosine receptor-induced cytoprotection was investigated by monitoring hypoxia-induced cell death. CPA induced time and concentration-dependent increases in amine incorporating and protein crosslinking activity of TG2. CPA-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Responses to CPA were blocked by PKC (Ro 31-8220), MEK1/2 (PD 98059), p38 MAPK (SB 203580) and JNK1/2 (SP 600125) inhibitors and by removal of extracellular Ca(2+). CPA triggered robust increases in the levels of TG2-associated phosphoserine and phosphothreonine, which were attenuated by PKC, MEK1/2 and JNK1/2 inhibitors. Fluorescence microscopy revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (Histone H4) and novel (Hexokinase 1) protein substrates for TG2. CPA pre-treatment reversed hypoxia-induced LDH release and decreases in MTT reduction. TG2 inhibitors R283 and Z-DON attenuated A1 adenosine receptor-induced cytoprotection. TG2 activity was stimulated by the A1 adenosine receptor in H9c2 cells via a multi protein kinase dependent pathway. These results suggest a role for TG2 in A1 adenosine receptor-induced cytoprotection. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Internalization of the human CRF receptor 1 is independent of classical phosphorylation sites and of beta-arrestin 1 recruitment

    DEFF Research Database (Denmark)

    Rasmussen, Trine N; Novak, Ivana; Nielsen, Søren M

    2004-01-01

    The corticotropin releasing factor receptor 1 (CRFR1) belongs to the superfamily of G-protein coupled receptors. Though CRF is involved in the aetiology of several stress-related disorders, including depression and anxiety, details of CRFR1 regulation such as internalization remain uncharacterized...

  16. Basal Levels of AMPA Receptor GluA1 Subunit Phosphorylation at Threonine 840 and Serine 845 in Hippocampal Neurons

    Science.gov (United States)

    Babiec, Walter E.; Guglietta, Ryan; O'Dell, Thomas J.

    2016-01-01

    Dephosphorylation of AMPA receptor (AMPAR) GluA1 subunits at two sites, serine 845 (S845) and threonine 840 (T840), is thought to be involved in NMDA receptor-dependent forms of long-term depression (LTD). Importantly, the notion that dephosphorylation of these sites contributes to LTD assumes that a significant fraction of GluA1 subunits are…

  17. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice

    Directory of Open Access Journals (Sweden)

    Takamitsu Sasaki

    2007-12-01

    Full Text Available The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR and vascular endothelial growth factor receptor (VEGFR signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α and vascular endothelial growth factor (VEGF but were negative for EGFR, human epidermal growth factor receptor 2 (HER2, VEGFR. Double immunofluorescence staining revealed that tumorassociated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR, phosphorylated VEGFR (pVEGFR. Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01; this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001. AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, increased the level of apoptosis in both tumorassociated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer.

  18. Adaptor Protein Complex-2 (AP-2) and Epsin-1 Mediate Protease-activated Receptor-1 Internalization via Phosphorylation- and Ubiquitination-dependent Sorting Signals*

    Science.gov (United States)

    Chen, Buxin; Dores, Michael R.; Grimsey, Neil; Canto, Isabel; Barker, Breann L.; Trejo, JoAnn

    2011-01-01

    Signaling by protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is regulated by desensitization and internalization. PAR1 desensitization is mediated by β-arrestins, like most classic GPCRs. In contrast, internalization of PAR1 occurs through a clathrin- and dynamin-dependent pathway independent of β-arrestins. PAR1 displays two modes of internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), where the μ2-adaptin subunit binds directly to a tyrosine-based motif localized within the receptor C-tail domain. However, AP-2 depletion only partially inhibits agonist-induced internalization of PAR1, suggesting a function for other clathrin adaptors in this process. Here, we now report that AP-2 and epsin-1 are both critical mediators of agonist-stimulated PAR1 internalization. We show that ubiquitination of PAR1 and the ubiquitin-interacting motifs of epsin-1 are required for epsin-1-dependent internalization of activated PAR1. In addition, activation of PAR1 promotes epsin-1 de-ubiquitination, which may increase its endocytic adaptor activity to facilitate receptor internalization. AP-2 also regulates activated PAR1 internalization via recognition of distal C-tail phosphorylation sites rather than the canonical tyrosine-based motif. Thus, AP-2 and epsin-1 are both required to promote efficient internalization of activated PAR1 and recognize discrete receptor sorting signals. This study defines a new pathway for internalization of mammalian GPCRs. PMID:21965661

  19. Impaired degradation followed by enhanced recycling of epidermal growth factor receptor caused by hypo-phosphorylation of tyrosine 1045 in RBE cells

    International Nuclear Information System (INIS)

    Gui, Anping; Kobayashi, Akira; Motoyama, Hiroaki; Kitazawa, Masato; Takeoka, Michiko; Miyagawa, Shinichi

    2012-01-01

    Since cholangiocarcinoma has a poor prognosis, several epidermal growth factor receptor (EGFR)-targeted therapies with antibody or small molecule inhibitor treatment have been proposed. However, their effect remains limited. The present study sought to understand the molecular genetic characteristics of cholangiocarcinoma related to EGFR, with emphasis on its degradation and recycling. We evaluated EGFR expression and colocalization by immunoblotting and immunofluorescence, cell surface EGFR expression by fluorescence-activated cell sorting (FACS), and EGFR ubiquitination and protein binding by immunoprecipitation in the human cholangiocarcinoma RBE and immortalized cholangiocyte MMNK-1 cell lines. Monensin treatment and Rab11a depletion by siRNA were adopted for inhibition of EGFR recycling. Upon stimulation with EGF, ligand-induced EGFR degradation was impaired and the expression of phospho-tyrosine 1068 and phospho-p44/42 MAPK was sustained in RBE cells as compared with MMNK-1 cells. In RBE cells, the process of EGFR sorting for lysosomal degradation was blocked at the early endosome stage, and non-degradated EGFR was recycled to the cell surface. A disrupted association between EGFR and the E3 ubiquitin ligase c-Cbl, as well as hypo-phosphorylation of EGFR at tyrosine 1045 (Tyr1045), were also observed in RBE cells. In RBE cells, up-regulation of EGFR Tyr1045 phosphorylation is a potentially useful molecular alteration in EGFR-targeted therapy. The combination of molecular-targeted therapy determined by the characteristics of individual EGFR phosphorylation events and EGFR recycling inhibition show promise in future treatments of cholangiocarcinoma

  20. Decreased phosphorylation of δ and ε subunits of the acetylcholine receptor coincides with delayed postsynaptic maturation in PKC θ deficient mouse.

    Science.gov (United States)

    Lanuza, Maria A; Besalduch, Núria; González, Carmen; Santafé, Manel M; Garcia, Neus; Tomàs, Marta; Nelson, Phillip G; Tomàs, Josep

    2010-09-01

    Protein kinase C (PKC) activity is involved in the nicotinic acetylcholine receptor (nAChR) redistribution at the neuromuscular junction in vivo during postnatal maturation. Here we studied, in PKC theta (PKCtheta) deficient mice (KO), how the theta isoform of PKC is involved in the nAChR cluster maturation that is accompanied by the developmental activity-dependent neuromuscular synapse elimination process. We found that axonal elimination and dispersion of nAChR from the postsynaptic plaques and its redistribution to form the mature postsynaptic apparatus were delayed but not totally suppressed in PKCtheta deficient mice. Moreover, the delay in the maturation of the morphology of the nAChR clusters during the early postnatal synapse elimination period in the PKCtheta deficient mice coincides with a reduction in the PKCtheta-mediated phosphorylation on the delta subunit of the nAChR. In addition, we show evidence for PKCtheta regulation of PKA in normally phosphorylating the epsilon subunit of nAChR. We have also found that the theta isoform of PKC is located on the postsynaptic component of the neuromuscular junction but is also expressed by motoneurons in the spinal cord and in the motor nerve terminals. The results allow us to hypothesize that a spatially specific and opposing action of PKCtheta and PKA may result in activity-dependent alterations to synaptic connectivity at both the nerve inputs and the postsynaptic nAChR clusters. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Hyperinsulinemia enhances interleukin-17-induced inflammation to promote prostate cancer development in obese mice through inhibiting glycogen synthase kinase 3-mediated phosphorylation and degradation of interleukin-17 receptor

    Science.gov (United States)

    Chen, Chong; Ge, Dongxia; Qu, Yine; Chen, Rongyi; Fan, Yi-Ming; Li, Nan; Tang, Wendell W.; Zhang, Wensheng; Zhang, Kun; Wang, Alun R.; Rowan, Brian G.; Hill, Steven M.; Sartor, Oliver; Abdel, Asim B.; Myers, Leann; Lin, Qishan; You, Zongbing

    2016-01-01

    Interleukin-17 (IL-17) plays important roles in inflammation, autoimmune diseases, and some cancers. Obese people are in a chronic inflammatory state with increased serum levels of IL-17, insulin, and insulin-like growth factor 1 (IGF1). How these factors contribute to the chronic inflammatory status that promotes development of aggressive prostate cancer in obese men is largely unknown. We found that, in obese mice, hyperinsulinemia enhanced IL-17-induced expression of downstream proinflammatory genes with increased levels of IL-17 receptor A (IL-17RA), resulting in development of more invasive prostate cancer. Glycogen synthase kinase 3 (GSK3) constitutively bound to and phosphorylated IL-17RA at T780, leading to ubiquitination and proteasome-mediated degradation of IL-17RA, thus inhibiting IL-17-mediated inflammation. IL-17RA phosphorylation was reduced, while the IL-17RA levels were increased in the proliferative human prostate cancer cells compared to the normal cells. Insulin and IGF1 enhanced IL-17-induced inflammatory responses through suppressing GSK3, which was shown in the cultured cell lines in vitro and obese mouse models of prostate cancer in vivo. These findings reveal a mechanism underlying the intensified inflammation in obesity and obesity-associated development of aggressive prostate cancer, suggesting that targeting GSK3 may be a potential therapeutic approach to suppress IL-17-mediated inflammation in the prevention and treatment of prostate cancer, particularly in obese men. PMID:26871944

  2. Prostate cancer cell-stromal cell crosstalk via FGFR1 mediates antitumor activity of dovitinib in bone metastases.

    Science.gov (United States)

    Wan, Xinhai; Corn, Paul G; Yang, Jun; Palanisamy, Nallasivam; Starbuck, Michael W; Efstathiou, Eleni; Li Ning Tapia, Elsa M; Tapia, Elsa M Li-Ning; Zurita, Amado J; Aparicio, Ana; Ravoori, Murali K; Vazquez, Elba S; Robinson, Dan R; Wu, Yi-Mi; Cao, Xuhong; Iyer, Matthew K; McKeehan, Wallace; Kundra, Vikas; Wang, Fen; Troncoso, Patricia; Chinnaiyan, Arul M; Logothetis, Christopher J; Navone, Nora M

    2014-09-03

    Bone is the most common site of prostate cancer (PCa) progression to a therapy-resistant, lethal phenotype. We found that blockade of fibroblast growth factor receptors (FGFRs) with the receptor tyrosine kinase inhibitor dovitinib has clinical activity in a subset of men with castration-resistant PCa and bone metastases. Our integrated analyses suggest that FGF signaling mediates a positive feedback loop between PCa cells and bone cells and that blockade of FGFR1 in osteoblasts partially mediates the antitumor activity of dovitinib by improving bone quality and by blocking PCa cell-bone cell interaction. These findings account for clinical observations such as reductions in lesion size and intensity on bone scans, lymph node size, and tumor-specific symptoms without proportional declines in serum prostate-specific antigen concentration. Our findings suggest that targeting FGFR has therapeutic activity in advanced PCa and provide direction for the development of therapies with FGFR inhibitors. Copyright © 2014, American Association for the Advancement of Science.

  3. Insulin and insulin-like growth factor-I (IGF-I) receptor phosphorylation in µ-calpain knockout mice

    Science.gov (United States)

    Numerous cellular processes are controlled by insulin and IGF-I signaling pathways. Due to previous work in our laboratories, we hypothesized that insulin (IR) and type 1 IGF-I (IGF-IR) receptor signaling is decreased due to increased protein tyrosine phosphatase 1B (PTP1B) activity. C57BL/6J mice...

  4. Ligand-induced tyrosine phosphorylation of cysteinyl leukotriene receptor 1 triggers internalization and signaling in intestinal epithelial cells

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Sime, Wondossen; Yudina, Yuliana

    2010-01-01

    Leukotriene D(4) (LTD(4)) belongs to the bioactive lipid group known as eicosanoids and has implications in pathological processes such as inflammation and cancer. Leukotriene D(4) exerts its effects mainly through two different G-protein-coupled receptors, CysLT(1) and CysLT(2). The high affinit...

  5. Parainfluenza virus 3 blocks antiviral mediators downstream of the interferon lambda receptor by modulating stat1 phosphorylation

    Science.gov (United States)

    Paramyxoviruses are known to inhibit type I interferon (IFN) production, however there is a lack of information regarding the type III IFN response during infection. Type III IFNs signal through a unique heterodimeric receptor, the IFN-'R1/IL-10R2, which is primarily expressed by epithelial cells. ...

  6. Phosphorylation of Ser1928 mediates the enhanced activity of the L-type Ca2+ channel Cav1.2 by the β2-adrenergic receptor in neurons.

    Science.gov (United States)

    Qian, Hai; Patriarchi, Tommaso; Price, Jennifer L; Matt, Lucas; Lee, Boram; Nieves-Cintrón, Madeline; Buonarati, Olivia R; Chowdhury, Dhrubajyoti; Nanou, Evanthia; Nystoriak, Matthew A; Catterall, William A; Poomvanicha, Montatip; Hofmann, Franz; Navedo, Manuel F; Hell, Johannes W

    2017-01-24

    The L-type Ca 2+ channel Ca v 1.2 controls multiple functions throughout the body including heart rate and neuronal excitability. It is a key mediator of fight-or-flight stress responses triggered by a signaling pathway involving β-adrenergic receptors (βARs), cyclic adenosine monophosphate (cAMP), and protein kinase A (PKA). PKA readily phosphorylates Ser 1928 in Ca v 1.2 in vitro and in vivo, including in rodents and humans. However, S1928A knock-in (KI) mice have normal PKA-mediated L-type channel regulation in the heart, indicating that Ser 1928 is not required for regulation of cardiac Ca v 1.2 by PKA in this tissue. We report that augmentation of L-type currents by PKA in neurons was absent in S1928A KI mice. Furthermore, S1928A KI mice failed to induce long-term potentiation in response to prolonged theta-tetanus (PTT-LTP), a form of synaptic plasticity that requires Ca v 1.2 and enhancement of its activity by the β 2 -adrenergic receptor (β 2 AR)-cAMP-PKA cascade. Thus, there is an unexpected dichotomy in the control of Ca v 1.2 by PKA in cardiomyocytes and hippocampal neurons. Copyright © 2017, American Association for the Advancement of Science.

  7. The ectodomain of cadherin-11 binds to erbB2 and stimulates Akt phosphorylation to promote cranial neural crest cell migration.

    Directory of Open Access Journals (Sweden)

    Ketan Mathavan

    Full Text Available During development, a multi-potent group of cells known as the cranial neural crest (CNC migrate to form craniofacial structures. Proper migration of these cells requires proteolysis of cell adhesion molecules, such as cadherins. In Xenopus laevis, preventing extracellular cleavage of cadherin-11 impairs CNC migration. However, overexpression of the soluble cleavage product (EC1-3 is capable of rescuing this phenotype. The mechanism by which EC1-3 promotes CNC migration has not been investigated until now. Here we show that EC1-3 stimulates phosphorylation of Akt, a target of PI3K, in X.laevis CNC. Through immunoprecipitation experiments, we determined that EC1-3 interacts with all ErbB receptors, PDGFRα, and FGFR1. Of these receptors, only ErbB2 was able to produce an increase in Akt phosphorylation upon treatment with a recombinant EC1-3. This increase was abrogated by mubritinib, an inhibitor of ErbB2. We were able to recapitulate this decrease in Akt phosphorylation in vivo by knocking down ErbB2 in CNC cells. Knockdown of the receptor also significantly reduced CNC migration in vivo. We confirmed the importance of ErbB2 and ErbB receptor signaling in CNC migration using mubritinib and canertinib, respectively. Mubritinib and the PI3K inhibitor LY294002 significantly decreased cell migration while canertinib nearly prevented it altogether. These data show that ErbB2 and Akt are important for CNC migration and implicate other ErbB receptors and Akt-independent signaling pathways. Our findings provide the first example of a functional interaction between the extracellular domain of a type II classical cadherin and growth factor receptors.

  8. Spatial relationship of phosphorylated epidermal growth factor receptor and activated AKT in head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Nijkamp, Monique M.; Hoogsteen, Ilse J.; Span, Paul N.; Takes, Robert P.; Lok, Jasper; Rijken, Paul F.; Kogel, Albert J. van der; Bussink, Johan; Kaanders, Johannes H.A.M.

    2011-01-01

    Background: Overexpression of EGFR correlates with decreased survival after radiotherapy in head and neck squamous cell carcinoma (HNSCC). However, the contribution of the activated form, pEGFR, and its downstream signaling (PI3-K/AKT) pathway is not clear yet. Methods: Fifty-eight patients with HNSCC were included in the study. pEGFR, pAKT, hypoxia, and vessels were visualized using immunohistochemistry. Fractions (defined as the tumor area positive for the respective markers relative to the total tumor area) were calculated by automated image analysis and related to clinical outcome. Results: Both pEGFR (median 0.6%, range 0–34%) and pAKT (median 1.8%, range 0–16%) expression differed between tumors. Also, a large variation in hypoxia was found (median pimonidazole fraction 3.9% 0–20%). A significant correlation between pEGFR and pAKT (r s 0.44, p = 0.004) was seen, however, analysis revealed that this was not always based on spatial coexpression. Low pAKT expression was associated with increased risk of regional recurrence (p < 0.05, log-rank) and distant metastasis (p = 0.04). Conclusion: The correlation between expression of pEGFR and pAKT is indicative of activation of the PI3-K/AKT pathway through phosphorylation of EGFR. Since not all tumors show coexpression to the same extent, other factors must be involved in the activation of this pathway as well.

  9. Expression of FGFR3 Protein and Gene Amplification in Urinary Bladder Lesions in Relation to Schistosomiasis

    Directory of Open Access Journals (Sweden)

    Olfat Hammam

    2017-04-01

    CONCLUSIONS: FGFR3 overexpression in malignant cases was significantly higher than in chronic cystitis. FGFR3 gene amplification was reported mainly in low grade and NNMBIC tumours. FGFR3 may be further studied as a subject for target therapy of bladder cancer.

  10. Prenatal stress affects insulin-like growth factor-1 (IGF-1) level and IGF-1 receptor phosphorylation in the brain of adult rats.

    Science.gov (United States)

    Basta-Kaim, Agnieszka; Szczesny, Ewa; Glombik, Katarzyna; Stachowicz, Katarzyna; Slusarczyk, Joanna; Nalepa, Irena; Zelek-Molik, Agnieszka; Rafa-Zablocka, Katarzyna; Budziszewska, Boguslawa; Kubera, Marta; Leskiewicz, Monika; Lason, Wladyslaw

    2014-09-01

    It has been shown that stressful events occurring in early life have a powerful influence on the development of the central nervous system. Insulin-like growth factor-1 (IGF-1) promotes the growth, differentiation and survival of both neurons and glial cells and is thought to exert antidepressant-like activity. Thus, it is possible that disturbances in the function of the IGF-1 system may be responsible for disturbances observed over the course of depression. Prenatal stress was used as a valid model of depression. Adult male offspring of control and stressed rat dams were subjected to behavioural testing (forced swim test). The level of IGF-1 in the blood and the expression of IGF-1, IGF-1R, and IRS-1/2 in the hippocampus and frontal cortex using RT-PCR, ELISA and western blotting were measured. In addition the effect of intracerebroventricularly administered IGF-1 and/or the IGF-1R receptor antagonist JB1 in the forced swim test was studied. Prenatally stressed rats showed depressive like behaviour, including increased immobility time as well as decreased mobility and climbing. Intracerebroventricular administration of IGF-1 reversed these effects in stressed animals, whereas concomitant administration of the IGF-1R antagonist JB1 completely blocked the effects. Biochemical analysis of homogenates from the hippocampus and frontal cortex revealed decreases in IGF-1 level and IGF-1R phosphorylation along with disturbances in IRS-1 phosphorylation. These findings reveal that prenatal stress alters IGF-1 signalling, which may contribute to the behavioural changes observed in depression. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  11. Nuclear insulin-like growth factor 1 receptor phosphorylates proliferating cell nuclear antigen and rescues stalled replication forks after DNA damage.

    Science.gov (United States)

    Waraky, Ahmed; Lin, Yingbo; Warsito, Dudi; Haglund, Felix; Aleem, Eiman; Larsson, Olle

    2017-11-03

    We have previously shown that the insulin-like growth factor 1 receptor (IGF-1R) translocates to the cell nucleus, where it binds to enhancer-like regions and increases gene transcription. Further studies have demonstrated that nuclear IGF-1R (nIGF-1R) physically and functionally interacts with some nuclear proteins, i.e. the lymphoid enhancer-binding factor 1 (Lef1), histone H3, and Brahma-related gene-1 proteins. In this study, we identified the proliferating cell nuclear antigen (PCNA) as a nIGF-1R-binding partner. PCNA is a pivotal component of the replication fork machinery and a main regulator of the DNA damage tolerance (DDT) pathway. We found that IGF-1R interacts with and phosphorylates PCNA in human embryonic stem cells and other cell lines. In vitro MS analysis of PCNA co-incubated with the IGF-1R kinase indicated tyrosine residues 60, 133, and 250 in PCNA as IGF-1R targets, and PCNA phosphorylation was followed by mono- and polyubiquitination. Co-immunoprecipitation experiments suggested that these ubiquitination events may be mediated by DDT-dependent E2/E3 ligases ( e.g. RAD18 and SHPRH/HLTF). Absence of IGF-1R or mutation of Tyr-60, Tyr-133, or Tyr-250 in PCNA abrogated its ubiquitination. Unlike in cells expressing IGF-1R, externally induced DNA damage in IGF-1R-negative cells caused G 1 cell cycle arrest and S phase fork stalling. Taken together, our results suggest a role of IGF-1R in DDT. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Augmenter of liver regeneration causes different kinetics of ERK1/2 and Akt/PKB phosphorylation than EGF and induces hepatocyte proliferation in an EGF receptor independent and liver specific manner

    Energy Technology Data Exchange (ETDEWEB)

    Ilowski, Maren; Putz, Christine [Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich (Germany); Weiss, Thomas S. [Department of Surgery, University of Regensburg Hospital, Regensburg (Germany); Brand, Stephan [Department of Internal Medicine II, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich (Germany); Jauch, Karl-Walter [Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich (Germany); Hengstler, Jan G. [Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Dortmund (Germany); Thasler, Wolfgang Erwin, E-mail: wolfgang.thasler@med.uni-muenchen.de [Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich (Germany)

    2010-04-16

    Background/Aim: Augmenter of liver regeneration (ALR) is a potent growth factor which supports liver regeneration in experimental animals. The aim of this study was to compare proliferation as well as the kinetics of ERK1/2 and Akt/PKB phosphorylation by recombinant human ALR (rhALR) and EGF in human hepatocytes and extrahepatic cells. Methods: Kinetics of ERK1/2 and Akt/PKB phosphorylation were determined in primary human hepatocytes (phh) after stimulation with rhALR and EGF. Induction of proliferation was analyzed in phh and several cell lines of hepatic and extrahepatic origin by the MTT and [{sup 3}H]-thymidine assay. Results: The kinetics of ERK phosphorylation showed clear differences, whereby rhALR caused a transient and EGF a permanent increase during the observation period of 60 min. For both, Akt and ERK phosphorylation, EGF caused a faster effect with maximal levels observed already after 2 min, whereas rhALR caused maximal phosphorylation between 10 and 15 min. Using the EGF receptor inhibitor AG1478 we provide evidence of an EGF receptor independent induction of proliferation by rhALR. Furthermore, rhALR induced proliferation only in phh and the human liver derived cell lines HepG2 and Chang. In contrast, EGF enhanced proliferation in all analyzed cell types including cell lines of colon, bronchial, pancreatic and gastric origin (SW480, BC1, L36PL and GC1). Conclusion: rhALR and EGF induce different kinetics of ERK and Akt phosphorylation in human hepatocytes. The mitogenic effect of rhALR is liver specific and seems to be at least partially independent from EGF receptor mediated signaling.

  13. A de novo missense mutation of FGFR2 causes facial dysplasia syndrome in Holstein cattle.

    Science.gov (United States)

    Agerholm, Jørgen S; McEvoy, Fintan J; Heegaard, Steffen; Charlier, Carole; Jagannathan, Vidhya; Drögemüller, Cord

    2017-08-02

    Surveillance for bovine genetic diseases in Denmark identified a hitherto unreported congenital syndrome occurring among progeny of a Holstein sire used for artificial breeding. A genetic aetiology due to a dominant inheritance with incomplete penetrance or a mosaic germline mutation was suspected as all recorded cases were progeny of the same sire. Detailed investigations were performed to characterize the syndrome and to reveal its cause. Seven malformed calves were submitted examination. All cases shared a common morphology with the most striking lesions being severe facial dysplasia and complete prolapse of the eyes. Consequently the syndrome was named facial dysplasia syndrome (FDS). Furthermore, extensive brain malformations, including microencephaly, hydrocephalus, lobation of the cerebral hemispheres and compression of the brain were present. Subsequent data analysis of progeny of the sire revealed that around 0.5% of his offspring suffered from FDS. High density single nucleotide polymorphism (SNP) genotyping data of the seven cases and their parents were used to map the defect in the bovine genome. Significant genetic linkage was obtained for three regions, including chromosome 26 where whole genome sequencing of a case-parent trio revealed two de novo variants perfectly associated with the disease: an intronic SNP in the DMBT1 gene and a single non-synonymous variant in the FGFR2 gene. This FGFR2 missense variant (c.927G>T) affects a gene encoding a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and across species. It is predicted to change an evolutionary conserved tryptophan into a cysteine residue (p.Trp309Cys). Both variant alleles were proven to result from de novo mutation events in the germline of the sire. FDS is a novel genetic disorder of Holstein cattle. Mutations in the human FGFR2 gene are associated with various dominant inherited craniofacial dysostosis syndromes. Given

  14. Differential effects of FGFR2 mutations on syndactyly and cleft palate in Apert syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Slaney, S.F.; Oldridge, M.; Wilkie, A.O.M. [Univ. of Oxford (United Kingdom)] [and others

    1996-05-01

    Apert syndrome is a distinctive human malformation characterized by craniosynostosis and severe syndactyly of the hands and feet. It is caused by specific missense substitutions involving adjacent amino acids (Ser252Trp or Pro253Arg) in the linker between the second and third extracellular immunoglobulin domains of fibroblast growth factor receptor 2 (FGFR2). We have developed a simple PCR assay for these mutations in genomic DNA, based on the creation of novel SfiI and BstUI restriction sites. Analysis of DNA from 70 unrelated patients with Apert syndrome showed that 45 had the Ser252Trp mutation and 25 had the Pro253Arg mutation. Phenotypic differences between these two groups of patients were investigated. Significant differences were found for severity of syndactyly and presence of cleft palate. The syndactyly was more severe with the Pro253Arg mutation, for both the hands and the feet. In contrast, cleft palate was significantly more common in the Ser252Trp patients. No convincing differences were found in the prevalence of other malformations associated with Apert syndrome. We conclude that, although the phenotype attributable to the two mutations is very similar, there are subtle differences. The opposite trends for severity of syndactyly and cleft palate in relation to the two mutations may relate to the varying patterns of temporal and tissue-specific expression of different fibroblast growth factors, the ligands for FGFR2. 54 refs., 5 figs., 3 tabs.

  15. Screening of mutations affecting protein stability and dynamics of FGFR1—A simulation analysis

    Directory of Open Access Journals (Sweden)

    C. George Priya Doss

    2012-12-01

    Full Text Available Single amino acid substitutions in Fibroblast Growth Factor Receptor 1 (FGFR1 destabilize protein and have been implicated in several genetic disorders like various forms of cancer, Kallamann syndrome, Pfeiffer syndrome, Jackson Weiss syndrome, etc. In order to gain functional insight into mutation caused by amino acid substitution to protein function and expression, special emphasis was laid on molecular dynamics simulation techniques in combination with in silico tools such as SIFT, PolyPhen 2.0, I-Mutant 3.0 and SNAP. It has been estimated that 68% nsSNPs were predicted to be deleterious by I-Mutant, slightly higher than SIFT (37%, PolyPhen 2.0 (61% and SNAP (58%. From the observed results, P722S mutation was found to be most deleterious by comparing results of all in silico tools. By molecular dynamics approach, we have shown that P722S mutation leads to increase in flexibility, and deviated more from the native structure which was supported by the decrease in the number of hydrogen bonds. In addition, biophysical analysis revealed a clear insight of stability loss due to P722S mutation in FGFR1 protein. Majority of mutations predicted by these in silico tools were in good concordance with the experimental results.

  16. Ibrutinib (ImbruvicaTM) potently inhibits ErbB receptor phosphorylation and cell viability of ErbB2-positive breast cancer cells.

    Science.gov (United States)

    Grabinski, Nicole; Ewald, Florian

    2014-12-01

    Ibrutinib (formerly PCI-32765) is a specific, irreversible, and potent inhibitor of Burton's tyrosine kinase (BTK) developed for the treatment of several forms of blood cancer. It is now an FDA-approved drug marketed under the name Imbruvica(TM) (Pharmacyclics, Inc.) and successfully used as an orally administered second-line drug in the treatment of mantle cell lymphoma. Since BTK is predominantly expressed in hematopoietic cells, the sensitivity of solid tumor cells to Ibrutinib has not been analyzed. In this study, we determined the effect of Ibrutinib on breast cancer cells. We demonstrate that Ibrutinib efficiently reduces the phosphorylation of the receptor tyrosine kinases ErbB1, ErbB2 and ErbB3, thereby suppressing AKT and MAPK signaling in ErbB2-positive (ErbB2+) breast cancer cell lines. Treatment with Ibrutinib significantly reduced the viability of ErbB2+ cell lines with IC50 values at nanomolar concentrations, suggesting therapeutic potential of Ibrutinib in breast cancer. Combined treatment with Ibrutinib and the dual PI3K/mTOR inhibitor BEZ235 synergistically reduces cell viability of ErbB2+ breast cancer cells. Combination indices below 0.25 at 50% inhibition of cell viability were determined by the Chou-Talalay method. Therefore, the combination of Ibrutinib and canonical PI3K pathway inhibitors could be a new and effective approach in the treatment of breast cancer with activated ErbB receptors. Ibrutinib could thus become a valuable component of targeted therapy in aggressive ErbB2+ breast cancer.

  17. Phosphorylated hepatocyte growth factor receptor/c-Met is associated with tumor growth and prognosis in patients with bladder cancer: correlation with matrix metalloproteinase-2 and -7 and E-cadherin.

    Science.gov (United States)

    Miyata, Yasuyoshi; Sagara, Yuji; Kanda, Shigeru; Hayashi, Tomayoshi; Kanetake, Hiroshi

    2009-04-01

    Hepatocyte growth factor receptor/c-Met is associated with malignant aggressiveness and survival in various cancers including bladder cancer. Although phosphorylation of hepatocyte growth factor receptor/c-Met is essential for its function, the pathologic significance of phosphorylated hepatocyte growth factor receptor/c-Met in bladder cancer remains elusive. We investigated the clinical significance of its expression, and its correlation with cancer cell progression-related molecules. The expression levels of 2 tyrosine residues of hepatocyte growth factor receptor/c-Met (pY1234/1235 and pY1349) were examined immunohistochemically in 133 specimens with nonmetastatic bladder cancer. We also investigated their correlation with matrix metalloproteinase-1, -2, -7, and -14; urokinase-type plasminogen activator; E-cadherin; CD44 standard, variant 3, and variant 6; and vascular endothelial growth factor. Expression of phosphorylated hepatocyte growth factor receptor/c-Met was detected in cancer cells, but was rare in normal urothelial cells. Although hepatocyte growth factor receptor/c-Met, pY1234/1235 hepatocyte growth factor receptor/c-Met, and pY1349 hepatocyte growth factor receptor/c-Met were associated with pT stage, multivariate analysis identified pY1349 hepatocyte growth factor receptor/c-met expression only as a significant factor for high pT stage. Expression of pY1349 hepatocyte growth factor receptor/c-Met was a marker of metastasis and (P = .001) and cause-specific survival (P = .003). Expressions of matrix metalloproteinase-2, matrix metalloproteinase-7, and E-cadherin correlated with pY1349 hepatocyte growth factor receptor/c-Met expression. Our results demonstrated that pY1349 hepatocyte growth factor receptor/c-Met plays an important role in tumor development, and its expression is a significant predictor of metastasis and survival of patients with bladder cancer. The results suggest that these activities are mediated, at least in part, by matrix

  18. Interplay between estrogen receptor and AKT in estradiol-induced alternative splicing.

    Science.gov (United States)

    Bhat-Nakshatri, Poornima; Song, Eun-Kyung; Collins, Nikail R; Uversky, Vladimir N; Dunker, A Keith; O'Malley, Bert W; Geistlinger, Tim R; Carroll, Jason S; Brown, Myles; Nakshatri, Harikrishna

    2013-06-11

    Alternative splicing is critical for generating complex proteomes in response to extracellular signals. Nuclear receptors including estrogen receptor alpha (ERα) and their ligands promote alternative splicing. The endogenous targets of ERα:estradiol (E2)-mediated alternative splicing and the influence of extracellular kinases that phosphorylate ERα on E2-induced splicing are unknown. MCF-7 and its anti-estrogen derivatives were used for the majority of the assays. CD44 mini gene was used to measure the effect of E2 and AKT on alternative splicing. ExonHit array analysis was performed to identify E2 and AKT-regulated endogenous alternatively spliced apoptosis-related genes. Quantitative reverse transcription polymerase chain reaction was performed to verify alternative splicing. ERα binding to alternatively spliced genes was verified by chromatin immunoprecipitation assay. Bromodeoxyuridine incorporation-ELISA and Annexin V labeling assays were done to measure cell proliferation and apoptosis, respectively. We identified the targets of E2-induced alternative splicing and deconstructed some of the mechanisms surrounding E2-induced splicing by combining splice array with ERα cistrome and gene expression array. E2-induced alternatively spliced genes fall into at least two subgroups: coupled to E2-regulated transcription and ERα binding to the gene without an effect on rate of transcription. Further, AKT, which phosphorylates both ERα and splicing factors, influenced ERα:E2 dependent splicing in a gene-specific manner. Genes that are alternatively spliced include FAS/CD95, FGFR2, and AXIN-1. E2 increased the expression of FGFR2 C1 isoform but reduced C3 isoform at mRNA level. E2-induced alternative splicing of FAS and FGFR2 in MCF-7 cells correlated with resistance to FAS activation-induced apoptosis and response to keratinocyte growth factor (KGF), respectively. Resistance of MCF-7 breast cancer cells to the anti-estrogen tamoxifen was associated with ER

  19. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    Directory of Open Access Journals (Sweden)

    Yongjun Yin

    2016-05-01

    Full Text Available Activating mutations in fibroblast growth factor receptor 3 (FGFR3 have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9, a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11 with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3.

  20. Quantitative assessment of fibroblast growth factor receptor 1 expression in neurons and glia

    Directory of Open Access Journals (Sweden)

    Lisha Choubey

    2017-04-01

    Full Text Available Background Fibroblast growth factors (FGFs and their receptors (FGFRs have numerous functions in the developing and adult central nervous system (CNS. For example, the FGFR1 receptor is important for proliferation and fate specification of radial glial cells in the cortex and hippocampus, oligodendrocyte proliferation and regeneration, midline glia morphology and soma translocation, Bergmann glia morphology, and cerebellar morphogenesis. In addition, FGFR1 signaling in astrocytes is required for postnatal maturation of interneurons expressing parvalbumin (PV. FGFR1 is implicated in synapse formation in the hippocampus, and alterations in the expression of Fgfr1 and its ligand, Fgf2 accompany major depression. Understanding which cell types express Fgfr1 during development may elucidate its roles in normal development of the brain as well as illuminate possible causes of certain neuropsychiatric disorders. Methods Here, we used a BAC transgenic reporter line to trace Fgfr1 expression in the developing postnatal murine CNS. The specific transgenic line employed was created by the GENSAT project, tgFGFR1-EGFPGP338Gsat, and includes a gene encoding enhanced green fluorescent protein (EGFP under the regulation of the Fgfr1 promoter, to trace Fgfr1 expression in the developing CNS. Unbiased stereological counts were performed for several cell types in the cortex and hippocampus. Results This model reveals that Fgfr1 is primarily expressed in glial cells, in both astrocytes and oligodendrocytes, along with some neurons. Dual labeling experiments indicate that the proportion of GFP+ (Fgfr1+ cells that are also GFAP+ increases from postnatal day 7 (P7 to 1 month, illuminating dynamic changes in Fgfr1 expression during postnatal development of the cortex. In postnatal neurogenic areas, GFP expression was also observed in SOX2, doublecortin (DCX, and brain lipid-binding protein (BLBP expressing cells. Fgfr1 is also highly expressed in DCX positive cells of

  1. γ-aminobutyric acidA (GABAA) receptor regulates ERK1/2 phosphorylation in rat hippocampus in high doses of Methyl Tert-Butyl Ether (MTBE)-induced impairment of spatial memory

    International Nuclear Information System (INIS)

    Zheng Gang; Zhang Wenbin; Zhang Yun; Chen Yaoming; Liu Mingchao; Yao Ting; Yang Yanxia; Zhao Fang; Li Jingxia; Huang Chuanshu; Luo Wenjing; Chen Jingyuan

    2009-01-01

    Experimental and occupational exposure to Methyl Tert-Butyl Ether (MTBE) has been reported to induce neurotoxicological and neurobehavioral effects, such as headache, nausea, dizziness, and disorientation, etc. However, the molecular mechanisms involved in MTBE-induced neurotoxicity are still not well understood. In the present study, we investigated the effects of MTBE on spatial memory and the expression and function of GABA A receptor in the hippocampus. Our results demonstrated that intraventricular injection of MTBE impaired the performance of the rats in a Morris water maze task, and significantly increased the expression of GABA A receptor α1 subunit in the hippocampus. The phosphorylation of ERK1/2 decreased after the MTBE injection. Furthermore, the decreased ability of learning and the reduction of phosphorylated ERK1/2 level of the MTBE-treated rats was partly reversed by bicuculline injected 30 min before the training. These results suggested that MTBE exposure could result in impaired spatial memory. GABA A receptor may play an important role in the MTBE-induced impairment of learning and memory by regulating the phosphorylation of ERK in the hippocampus.

  2. Fibroblast growth factor and canonical WNT/beta-catenin signaling cooperate in suppression of chondrocyte differentiation in experimental models of FGFR signaling in cartilage

    Czech Academy of Sciences Publication Activity Database

    Buchtová, Marcela; Oralová, Veronika; Aklian, A.; Mašek, J.; Veselá, I.; Ouyang, Z.; Obadalová, T.; Konečná, Ž.; Spoustová, T.; Pospíšilová, T.; Matula, P.; Vařecha, M.; Balek, L.; Gudernová, I.; Jelínková, I.; Ďuran, I.; Červenková, I.; Murakami, S.; Kozubík, Alois; Dvořák, P.; Bryja, Vítězslav; Krejčí, P.

    2015-01-01

    Roč. 1852, č. 5 (2015), s. 839-850 ISSN 0925-4439 R&D Projects: GA ČR GCP302/12/J059; GA ČR GBP302/12/G157; GA ČR(CZ) GA14-31540S Institutional support: RVO:67985904 ; RVO:68081707 Keywords : fibroblast growth factor receptor * FGFR3 * WNT Subject RIV: EA - Cell Biology Impact factor: 5.158, year: 2015

  3. Polysaccharides purified from wild Cordyceps activate FGF2/FGFR1c signaling

    Science.gov (United States)

    Zeng, Yangyang; Han, Zhangrun; Yu, Guangli; Hao, Jiejie; Zhang, Lijuan

    2015-02-01

    Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when exposed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chinese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also from Cordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccharides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.

  4. Early nongenomic events in aldosterone action in renal collecting duct cells: PKCalpha activation, mineralocorticoid receptor phosphorylation, and cross-talk with the genomic response.

    Science.gov (United States)

    Le Moëllic, Cathy; Ouvrard-Pascaud, Antoine; Capurro, Claudia; Cluzeaud, Francoise; Fay, Michel; Jaisser, Frederic; Farman, Nicolette; Blot-Chabaud, Marcel

    2004-05-01

    Effects of aldosterone on its target cells have long been considered to be mediated exclusively through the genomic pathway; however, evidence has been provided for rapid effects of the hormone that may involve nongenomic mechanisms. Whether an interaction exists between these two signaling pathways is not yet established. In this study, the authors show that aldosterone triggers both early nongenomic and late genomic increase in sodium transport in the RCCD(2) rat cortical collecting duct cell line. In these cells, the early (up to 2.5 h) aldosterone-induced increase in short-circuit current (Isc) is not blocked by the mineralocorticoid receptor (MR) antagonist RU26752, it does not require mRNA or protein synthesis, and it involves the PKCalpha signaling pathway. In addition, this early response is reproduced by aldosterone-BSA, which acts at the cell surface and presumably does not enter the cells (aldo-BSA is unable to trigger the late response). The authors also show that MR is rapidly phosphorylated on serine and threonine residues by aldosterone or aldosterone-BSA. In contrast, the late (4 to 24 h) aldosterone-induced increase in ion transport occurs through activation of the MR and requires mRNA and protein synthesis. Interestingly, nongenomic and genomic aldosterone actions appear to be interdependent. Blocking the PKCalpha pathway results in the inhibition of the late genomic response to aldosterone, as demonstrated by the suppression of aldosterone-induced increase in MR transactivation activity, alpha1 Na(+)/K(+)/ATPase mRNA, and Isc. These data suggest cross-talk between the nongenomic and genomic responses to aldosterone in renal cells and suggest that the aldosterone-MR mediated increase in mRNA/protein synthesis and ion transport depends, at least in part, upon PKCalpha activation. E-mail: marcel.blot-chabaud@pharmacie.univ-mrs.fr

  5. Acetylcholine receptor (AChR) clustering is regulated both by glycogen synthase kinase 3β (GSK3β)-dependent phosphorylation and the level of CLIP-associated protein 2 (CLASP2) mediating the capture of microtubule plus-ends.

    Science.gov (United States)

    Basu, Sreya; Sladecek, Stefan; Pemble, Hayley; Wittmann, Torsten; Slotman, Johan A; van Cappellen, Wiggert; Brenner, Hans-Rudolf; Galjart, Niels

    2014-10-31

    The postsynaptic apparatus of the neuromuscular junction (NMJ) traps and anchors acetylcholine receptors (AChRs) at high density at the synapse. We have previously shown that microtubule (MT) capture by CLASP2, a MT plus-end-tracking protein (+TIP), increases the size and receptor density of AChR clusters at the NMJ through the delivery of AChRs and that this is regulated by a pathway involving neuronal agrin and several postsynaptic kinases, including GSK3. Phosphorylation by GSK3 has been shown to cause CLASP2 dissociation from MT ends, and nine potential phosphorylation sites for GSK3 have been mapped on CLASP2. How CLASP2 phosphorylation regulates MT capture at the NMJ and how this controls the size of AChR clusters are not yet understood. To examine this, we used myotubes cultured on agrin patches that induce AChR clustering in a two-dimensional manner. We show that expression of a CLASP2 mutant, in which the nine GSK3 target serines are mutated to alanine (CLASP2-9XS/9XA) and are resistant to GSK3β-dependent phosphorylation, promotes MT capture at clusters and increases AChR cluster size, compared with myotubes that express similar levels of wild type CLASP2 or that are noninfected. Conversely, myotubes expressing a phosphomimetic form of CLASP2 (CLASP2-8XS/D) show enrichment of immobile mutant CLASP2 in clusters, but MT capture and AChR cluster size are reduced. Taken together, our data suggest that both GSK3β-dependent phosphorylation and the level of CLASP2 play a role in the maintenance of AChR cluster size through the regulated capture and release of MT plus-ends. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Diverse phosphorylation patterns of B cell receptor-associated signaling in naïve and memory human B cells revealed by phosphoflow, a powerful technique to study signaling at the single cell level

    Directory of Open Access Journals (Sweden)

    Franklin R Toapanta

    2012-10-01

    Full Text Available Following interaction with cognate antigens, B cells undergo cell activation, proliferation and differentiation. Ligation of the B cell receptor (BCR leads to the phosphorylation of BCR-associated signaling proteins within minutes of antigen binding, a process with profound consequences for the fate of the cells and development of effector immunity. Phosphoflow allows a rapid evaluation of various signaling pathways in complex heterogenous cell subsets. This novel technique was used in combination with multi-chromatic flow cytometry and fluorescent-cell barcoding to study phosphorylation of BCR-associated signaling pathways in naïve and memory human B cell subsets. Proteins of the initiation (Syk, propagation (Btk, Akt and integration (p38MAPK and Erk1/2 signaling units were studied. Switched memory (Sm CD27+ and Sm CD27- phosphorylation patterns were similar when stimulated with anti-IgA or -IgG. In contrast, naïve and unswitched memory (Um cells showed significant differences following IgM stimulation. Enhanced phosphorylation of Syk was observed in Um cells, suggesting a lower activation threshold. This is likely the result of higher amounts of IgM on the cell surface, higher pan-Syk levels and enhanced susceptibility to phosphatase inhibition. All other signaling proteins evaluated also showed some degree of enhanced phosphorylation in Um cells. Furthermore, both the PLC-γ2 and PI3K pathways were activated in Um cells, while only the PI3K pathway was activated on naïve cells. Um cells were the only ones that activated signaling pathways when stimulated with fluorescently-labeled S. Typhi and S. pneumoniae. Finally, simultaneous evaluation of signaling proteins at the single cell level (multi-phosphorylated cells revealed that interaction with gram positive and negative bacteria resulted in complex and diverse signaling patterns. Phosphoflow holds great potential to accelerate vaccine development by identifying signaling profiles in good

  7. Fibroblastic growth factor receptor 1 amplification in osteosarcoma is associated with poor response to neo-adjuvant chemotherapy

    International Nuclear Information System (INIS)

    Fernanda Amary, M; Ye, Hongtao; Berisha, Fitim; Khatri, Bhavisha; Forbes, Georgina; Lehovsky, Katie; Frezza, Anna M; Behjati, Sam; Tarpey, Patrick; Pillay, Nischalan; Campbell, Peter J; Tirabosco, Roberto; Presneau, Nadège; Strauss, Sandra J; Flanagan, Adrienne M

    2014-01-01

    Osteosarcoma, the most common primary bone sarcoma, is a genetically complex disease with no widely accepted biomarker to allow stratification of patients for treatment. After a recent report of one osteosarcoma cell line and one tumor exhibiting fibroblastic growth factor receptor 1 (FGFR1) gene amplification, the aim of this work was to assess the frequency of FGFR1 amplification in a larger cohort of osteosarcoma and to determine if this biomarker could be used for stratification of patients for treatment. About 352 osteosarcoma samples from 288 patients were analyzed for FGFR1 amplification by interphase fluorescence in situ hybridization. FGFR1 amplification was detected in 18.5% of patients whose tumors revealed a poor response to chemotherapy, and no patients whose tumors responded well to therapy harbored this genetic alteration. FGFR1 amplification is present disproportionately in the rarer histological variants of osteosarcoma. This study provides a rationale for inclusion of patients with osteosarcoma in clinical trials using FGFR kinase inhibitors

  8. Lipoxin A4 regulates expression of the estrogen receptor and inhibits 17β-estradiol induced p38 mitogen-activated protein kinase phosphorylation in human endometriotic stromal cells.

    Science.gov (United States)

    Chen, Shuo; Wu, Rong-Feng; Su, Lin; Zhou, Wei-Dong; Zhu, Mao-Bi; Chen, Qiong-Hua

    2014-07-01

    To study the role of lipoxin A4 (LXA4) in endometriosis. Molecular analysis in human samples and primary human endometriotic stromal cells (ESCs). University hospital. Forty-nine premenopausal women (30 patients with endometriosis and 19 controls). Normal and ectopic endometrial biopsies obtained during surgery performed during the proliferative phase of the menstrual cycle; ESCs used for in vitro studies. Levels of LXA4 measured by enzyme-linked immunosorbent assay (ELISA); mRNA levels of the estrogen receptor (ER), progestogen receptor (PR), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) quantified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR); and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation evaluated by Western blotting. The LXA4 expression level decreased in ectopic tissue as well as ERα and PR, although the expression of ERβ increased in ectopic endometrium compared with the controls. Investigations with correlation analysis revealed the expression of LXA4 was positively correlated with ERα and negatively correlated with ERβ in vivo. Moreover, administering LXA4 could augment ERβ expression in ESCs and inhibit the 17β-estradiol-induced phosphorylation of p38 MAPK very likely through ERβ. Our findings indicate that LXA4 regulates ERβ expression and inhibits 17β-estradiol-induced phosphorylation of p38 MAPK, very likely through ERβ in ESCs. Copyright © 2014. Published by Elsevier Inc.

  9. FGF receptor genes and breast cancer susceptibility

    DEFF Research Database (Denmark)

    Agarwal, D; Pineda, S; Michailidou, K

    2014-01-01

    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying...... genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium.Methods:Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry......, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression.Results:Little evidence of association with breast cancer risk...

  10. FGFR3 gene mutation plus GRB10 gene duplication in a patient with achondroplasia plus growth delay with prenatal onset.

    Science.gov (United States)

    Yuan, Haiming; Huang, Linhuan; Hu, Xizi; Li, Qian; Sun, Xiaofang; Xie, Yingjun; Kong, Shu; Wang, Xiaoman

    2016-07-02

    Achondroplasia is a well-defined and common bone dysplasia. Genotype- and phenotype-level correlations have been found between the clinical symptoms of achondroplasia and achondroplasia-specific FGFR3 mutations. A 2-year-old boy with clinical features consistent with achondroplasia and Silver-Russell syndrome-like symptoms was found to carry a mutation in the fibroblast growth factor receptor-3 (FGFR3) gene at c.1138G > A (p.Gly380Arg) and a de novo 574 kb duplication at chromosome 7p12.1 that involved the entire growth-factor receptor bound protein 10 (GRB10) gene. Using quantitative real-time PCR analysis, GRB10 was over-expressed, and, using enzyme-linked immunosorbent assays for IGF1 and IGF-binding protein-3 (IGFBP3), we found that IGF1 and IGFBP3 were low-expressed in this patient. We demonstrate that a combination of uncommon, rare and exceptional molecular defects related to the molecular bases of particular birth defects can be analyzed and diagnosed to potentially explain the observed variability in the combination of molecular defects.

  11. Transcription, Signaling Receptor Activity, Oxidative Phosphorylation, and Fatty Acid Metabolism Mediate the Presence of Closely Related Species in Distinct Intertidal and Cold-Seep Habitats.

    Science.gov (United States)

    Van Campenhout, Jelle; Vanreusel, Ann; Van Belleghem, Steven; Derycke, Sofie

    2015-12-03

    Bathyal cold seeps are isolated extreme deep-sea environments characterized by low species diversity while biomass can be high. The Håkon Mosby mud volcano (Barents Sea, 1,280 m) is a rather stable chemosynthetic driven habitat characterized by prominent surface bacterial mats with high sulfide concentrations and low oxygen levels. Here, the nematode Halomonhystera hermesi thrives in high abundances (11,000 individuals 10 cm(-2)). Halomonhystera hermesi is a member of the intertidal Halomonhystera disjuncta species complex that includes five cryptic species (GD1-5). GD1-5's common habitat is characterized by strong environmental fluctuations. Here, we compared the transcriptomes of H. hermesi and GD1, H. hermesi's closest relative. Genes encoding proteins involved in oxidative phosphorylation are more strongly expressed in H. hermesi than in GD1, and many genes were only observed in H. hermesi while being completely absent in GD1. Both observations could in part be attributed to high sulfide concentrations and low oxygen levels. Additionally, fatty acid elongation was also prominent in H. hermesi confirming the importance of highly unsaturated fatty acids in this species. Significant higher amounts of transcription factors and genes involved in signaling receptor activity were observed in GD1 (many of which were completely absent in H. hermesi), allowing fast signaling and transcriptional reprogramming which can mediate survival in dynamic intertidal environments. GC content was approximately 8% higher in H. hermesi coding unigenes resulting in differential codon usage between both species and a higher proportion of amino acids with GC-rich codons in H. hermesi. In general our results showed that most pathways were active in both environments and that only three genes are under natural selection. This indicates that also plasticity should be taken in consideration in the evolutionary history of Halomonhystera species. Such plasticity, as well as possible

  12. FGFR2 promotes breast tumorigenicity through maintenance of breast tumor-initiating cells.

    Directory of Open Access Journals (Sweden)

    Sungeun Kim

    Full Text Available Emerging evidence suggests that some cancers contain a population of stem-like TICs (tumor-initiating cells and eliminating TICs may offer a new strategy to develop successful anti-cancer therapies. As molecular mechanisms underlying the maintenance of the TIC pool are poorly understood, the development of TIC-specific therapeutics remains a major challenge. We first identified and characterized TICs and non-TICs isolated from a mouse breast cancer model. TICs displayed increased tumorigenic potential, self-renewal, heterogeneous differentiation, and bipotency. Gene expression analysis and immunostaining of TICs and non-TICs revealed that FGFR2 was preferentially expressed in TICs. Loss of FGFR2 impaired self-renewal of TICs, thus resulting in marked decreases in the TIC population and tumorigenic potential. Restoration of FGFR2 rescued the defects in TIC pool maintenance, bipotency, and breast tumor growth driven by FGFR2 knockdown. In addition, pharmacological inhibition of FGFR2 kinase activity led to a decrease in the TIC population which resulted in suppression of breast tumor growth. Moreover, human breast TICs isolated from patient tumor samples were found enriched in a FGFR2+ population that was sufficient to initiate tumor growth. Our data suggest that FGFR2 is essential in sustaining the breast TIC pool through promotion of self-renewal and maintenance of bipotent TICs, and raise the possibility of FGFR2 inhibition as a strategy for anti-cancer therapy by eradicating breast TICs.

  13. Vitamin K2 downregulates the expression of fibroblast growth factor receptor 3 in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Cao, Ke; Liu, Weidong; Nakamura, Hideji; Enomoto, Hirayuki; Yamamoto, Teruhisa; Saito, Masaki; Imanishi, Hiroyasu; Shimomura, Soji; Cao, Peiguo; Nishiguchi, Shuhei

    2009-11-01

    Vitamin K2 exerts an antitumor activity on human hepatocellular carcinoma (HCC), however, its inhibitory mechanism has not yet been clarified. This study was designed to identify the attractive target molecule of vitamin K2 and shed some light on its effects on fibroblast growth factor receptor (FGFR)3 in HCC cells. The changes in the gene expression of HuH-7 after vitamin K2 treatment were evaluated by a DNA chip analysis. The mRNA and protein levels of FGFR were evaluated by semiquantitative reverse transcription polymerase chain reaction (RT-PCR), real-time PCR and western blot analysis. The promoter activity of the FGFR3 gene was measured by a dual-luciferase assay. The DNA chip analysis revealed different inhibitory rates of gene expression of FGFR3 (60.6%) and FGFR1 (19.4%) after vitamin K2 treatment. Vitamin K2 suppresses the proliferation of HuH-7 in a dose-dependent manner and its inhibitory rate reached approximately 61.8% at the dose of 30 microM. FGFR3 mRNA was significantly reduced based on semiquantitative RT-PCR and decreased 61.5% by a real-time PCR method after vitamin K2 treatment, but FGFR1 mRNA was not. The level of FGFR3 protein was also reduced by vitamin K2 treatment. The luciferase assay demonstrated that vitamin K2 significantly suppressed the promoter activity of FGFR3. Furthermore, the FGFR3-ERK1/2 signaling pathway was suppressed by vitamin K2 treatment. These findings suggest that vitamin K2 may suppress the proliferation of HCC cells through the downregulation of the FGFR3 expression. The transcriptional suppression of FGFR3 may be a novel mechanism of the vitamin K2 action for HCC cells.

  14. Fibronectin type III (FN3) modules of the neuronal cell adhesion molecule L1 interact directly with the fibroblast growth factor (FGF) receptor

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Li, Shizhong; Hinsby, Anders Mørkeberg

    2008-01-01

    The neuronal cell adhesion molecule (CAM) L1 promotes axonal outgrowth, presumably through an interaction with the fibroblast growth factor receptor (FGFR). The present study demonstrates a direct interaction between L1 fibronectin type III (FN3) modules I-V and FGFR1 immunoglobulin (Ig) modules II...

  15. FGFR-1 amplification in metastatic lymph-nodal and haematogenous lobular breast carcinoma

    Directory of Open Access Journals (Sweden)

    Brunello Eleonora

    2012-12-01

    Full Text Available Abstract Background Lobular breast carcinoma usually shows poor responsiveness to chemotherapies and often lacks targeted therapies. Since FGFR1 expression has been shown to play pivotal roles in primary breast cancer tumorigenesis, we sought to analyze the status of FGFR1 gene in a metastatic setting of lobular breast carcinoma, since promising FGFR1 inhibitors has been recently developed. Methods Fifteen tissue metastases from lobular breast carcinomas with matched primary infiltrative lobular breast carcinoma were recruited. Eleven cases showed loco-regional lymph-nodal and four haematogenous metastases. FGFR-1 gene (8p12 amplification was evaluated by chromogenic in situ hybridization (CISH analysis. Her-2/neu and topoisomerase-IIα gene status was assessed. E-cadherin and Hercept Test were also performed. We distinguished amplification (>6 or cluster of signals versus gains (3–6 signals of the locus specific FGFR-1 gene. Results Three (20% primary lobular breast carcinomas showed >6 or cluster of FGFR1 signals (amplification, six cases (40% had a mean of three (range 3–6 chromogenic signals (gains whereas in 6 (40% was not observed any abnormality. Three of 15 metastasis (20% were amplified, 2/15 (13,4% did not. The ten remaining cases (66,6% showed three chromogenic signals. The three cases with FGFR-1 amplification matched with those primary breast carcinomas showing FGFR-1 amplification. The six cases showing FGFR-1 gains in the primary tumour again showed FGFR-1 gains in the metastases. Four cases showed gains of FGFR-1 gene signals in the metastases and not in the primary tumours. Her-2/neu gene amplification was not observed in all cases but one (6% case. Topoisomerase-IIα was not amplified in all cases. Conclusions 1 a subset of metastatic lobular breast carcinoma harbors FGFR-1 gene amplification or gains of chromogenic signals; 2 a minor heterogeneity has been observed after matching primary and metastatic carcinomas; 3 in the

  16. Formation of intestinal atresias in the Fgfr2IIIb-/- mice is not associated with defects in notochord development or alterations in Shh expression.

    Science.gov (United States)

    Reeder, Amy L; Botham, Robert A; Franco, Marta; Zaremba, Krzysztof M; Nichol, Peter F

    2012-09-01

    The etiology of intestinal atresia remains elusive but has been ascribed to a number of possible events including in utero vascular accidents, failure of recanalization of the intestinal lumen, and mechanical compression. Another such event that has been postulated to be a cause in atresia formation is disruption in notochord development. This hypothesis arose from clinical observations of notochord abnormalities in patients with intestinal atresias as well as abnormal notochord development observed in a pharmacologic animal model of intestinal atresia. Atresias in this model result from in utero exposure to Adriamycin, wherein notochord defects were noted in up to 80% of embryos that manifested intestinal atresias. Embryos with notochord abnormalities were observed to have ectopic expression of Sonic Hedgehog (Shh), which in turn was postulated to be causative in atresia formation. We were interested in determining whether disruptions in notochord development or Shh expression occurred in an established genetic model of intestinal atresia and used the fibroblast growth factor receptor 2IIIb homozygous mutant (Fgfr2IIIb-/-) mouse model. These embryos develop colonic atresias (100% penetrance) and duodenal atresias (42% penetrance). Wild-type and Fgfr2IIIb-/- mouse embryos were harvested at embryonic day (E) 10.5, E11.5, E12.5, and E13.5. Whole-mount in situ hybridization was performed on E10.5 embryos for Shh. Embryos at each time point were harvested and sectioned for hematoxylin-eosin staining. Sections were photographed specifically for the notochord and resulting images reconstructed in 3-D using Amira software. Colons were isolated from wild-type and Fgfr2IIIb-/- embryos at E10.5, then cultured for 48 hours in Matrigel with FGF10 in the presence or absence of exogenous Shh protein. Explants were harvested, fixed in formalin, and photographed. Fgfr2IIIb-/- mouse embryos exhibit no disruptions in Shh expression at E10.5, when the first events in atresia

  17. Insulin treatment promotes tyrosine phosphorylation of PKR and inhibits polyIC induced PKR threonine phosphorylation.

    Science.gov (United States)

    Swetha, Medchalmi; Ramaiah, Kolluru V A

    2015-11-01

    Tyrosine phosphorylation of insulin receptor beta (IRβ) in insulin treated HepG2 cells is inversely correlated to ser(51) phosphorylation in the alpha-subunit of eukaryotic initiation factor 2 (eIF2α) that regulates protein synthesis. Insulin stimulates interaction between IRβ and PKR, double stranded RNA-dependent protein kinase, also known as EIF2AK2, and phosphorylation of tyrosine residues in PKR, as analyzed by immunoprecipitation and pull down assays using anti-IRβ and anti-phosphotyrosine antibodies, recombinant IRβ and immunopurified PKR. Further polyIC or synthetic double stranded RNA-induced threonine phosphorylation or activation of immunopurified and cellular PKR is suppressed in the presence of insulin treated purified IRβ and cell extracts. Acute, but not chronic, insulin treatment enhances tyrosine phosphorylation of IRβ, its interaction with PKR and tyrosine phosphorylation of PKR. In contrast, lipopolysaccharide that stimulates threonine phosphorylation of PKR and eIF2α phosphorylation and AG 1024, an inhibitor of the tyrosine kinase activity of IRβ, reduces PKR association with the receptor, IRβ in HepG2 cells. These findings therefore may suggest that tyrosine phosphorylated PKR plays a role in the regulation of insulin induced protein synthesis and in maintaining insulin sensitivity, whereas, suppression of polyIC-mediated threonine phosphorylation of PKR by insulin compromises its ability to fight against virus infection in host cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Insulin-Mimetic Action of Rhoifolin and Cosmosiin Isolated from Citrus grandis (L. Osbeck Leaves: Enhanced Adiponectin Secretion and Insulin Receptor Phosphorylation in 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Yerra Koteswara Rao

    2011-01-01

    Full Text Available Citrus grandis (L. Osbeck (red wendun leaves have been used in traditional Chinese medicine to treat several illnesses including diabetes. However, there is no scientific evidence supporting these actions and its active compounds. Two flavone glycosides, rhoifolin and cosmosiin were isolated for the first time from red wendun leaves and, identified these leaves are rich source for rhoifolin (1.1%, w/w. In differentiated 3T3-L1 adipocytes, rhoifolin and cosmosiin showed dose-dependent response in concentration range of o.oo1–5 μM and 1–20 μM, respectively, in biological studies beneficial to diabetes. Particularly, rhoifolin and cosmosiin at 0.5 and 20 μM, respectively showed nearly similar response to that 10 nM of insulin, on adiponectin secretion level. Furthermore, 5 μM of rhoifolin and 20 μM of cosmosiin showed equal potential with 10 nM of insulin to increase the phosphorylation of insulin receptor-β, in addition to their positive effect on GLUT4 translocation. These findings indicate that rhoifolin and cosmosiin from red wendun leaves may be beneficial for diabetic complications through their enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and GLUT4 translocation.

  19. Changes in FGFR2 amino-acid residue Asn549 lead to Crouzon and Pfeiffer syndrome with hydrocephalus

    Directory of Open Access Journals (Sweden)

    Caroline Apra

    2016-10-01

    Full Text Available Mutations in Fibroblast Growth Factor Receptor II (FGFR2 have been identified in patients with Crouzon and Pfeiffer syndrome, among which rare mutations of the intracellular tyrosine kinase domain. Correlating subtle phenotypes with each rare mutation is still in progress. In Necker-Enfants Malades Hospital, we identified three patients harboring three different pathogenic variants of the same amino acid residue Asn-549 located in this domain: in addition to a very typical crouzonoid appearance, they all developed clinically relevant hydrocephalus, which is an inconstant feature of Crouzon and Pfeiffer syndrome. Overall, FGFR2 tyrosine kinase domain mutations account for 5/67 (7.4% cases in our hospital. We describe a novel mutation, p.Asn549Ser, and new cases of p.Asn549His and p.Asn549Thr mutations, each reported once before. Our three cases of Asn-549 mutations, alongside with rare previously reported cases, show that these patients are at higher risk of hydrocephalus. Clinical and imaging follow-up, with possible early surgery, may help prevent secondary intellectual disability.

  20. Dorsal hippocampal NMDA receptor blockade impairs extinction of naloxone-precipitated conditioned place aversion in acute morphine-treated rats by suppressing ERK and CREB phosphorylation in the basolateral amygdala.

    Science.gov (United States)

    Wang, Wei-Sheng; Chen, Zhong-Guo; Liu, Wen-Tao; Chi, Zhi-Qiang; He, Ling; Liu, Jing-Gen

    2015-01-01

    Substantial evidence shows that negative reinforcement resulting from the aversive affective consequences of opiate withdrawal may play a crucial role in drug relapse. Understanding the mechanisms underlying the loss (extinction) of conditioned aversion of drug withdrawal could facilitate the treatment of drug addiction. Naloxone-induced conditioned place aversion (CPA) of Sprague-Dawley rats was used to measure conditioned aversion. An NMDA receptor antagonist and MAPK kinase inhibitor were applied through intracranial injections. The phosphorylation of ERK and cAMP response element-binding protein (CREB) was detected using Western blot. The extinction of CPA behaviour increased the phosphorylation of ERK and CREB in the dorsal hippocampus (DH) and basolateral amygdala (BLA), but not in the central amygdala (CeA). Intra-DH injection of AP5 or intra-BLA injection of AP-5 or U0126 before extinction training significantly attenuated ERK and CREB phosphorylation in the BLA and impaired the extinction of CPA behaviour. Although intra-DH injections of AP-5 attenuated extinction training-induced activation of the ERK-CREB pathway in the BLA, intra-BLA injection of AP5 had no effect on extinction training-induced activation of the ERK-CREB pathway in the DH. These results suggest that activation of ERK and CREB in the BLA and DH is involved in the extinction of CPA behaviour and that the DH, via a direct or indirect pathway, modulates the activity of ERK and CREB in the BLA through activation of NMDA receptors after extinction training. Understanding the mechanisms underlying the extinction of conditioned aversion could facilitate the treatment of drug addiction. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British Pharmacological Society.

  1. Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination

    Science.gov (United States)

    Kim, Yuna; Bingham, Nathan; Sekido, Ryohei; Parker, Keith L.; Lovell-Badge, Robin; Capel, Blanche

    2007-01-01

    Targeted mutagenesis of Fgf9 in mice causes male-to-female sex reversal. Among the four FGF receptors, FGFR2 showed two highly specific patterns based on antibody staining, suggesting that it might be the receptor-mediating FGF9 signaling in the gonad. FGFR2 was detected at the plasma membrane in proliferating coelomic epithelial cells and in the nucleus in Sertoli progenitor cells. This expression pattern suggested that Fgfr2 might play more than one role in testis development. To test the hypothesis that Fgfr2 is required for male sex determination, we crossed mice carrying a floxed allele of Fgfr2 with two different Cre lines to induce a temporal or cell-specific deletion of this receptor. Results show that deletion of Fgfr2 in embryonic gonads phenocopies deletion of Fgf9 and leads to male-to-female sex reversal. Using these two Cre lines, we provide the first genetic evidence that Fgfr2 plays distinct roles in proliferation and Sertoli cell differentiation during testis development. PMID:17940049

  2. ABA renewal involves enhancements in both GluA2-lacking AMPA receptor activity and GluA1 phosphorylation in the lateral amygdala.

    Directory of Open Access Journals (Sweden)

    Kyungjoon Park

    Full Text Available Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when assessed in the original acquisition context (ABA renewal or in a context distinct from the conditioning and extinction contexts (ABC renewal. We have previously identified Ser831 phosphorylation of GluA1 subunit in the lateral amygdala (LA as a key molecular mechanism for ABC renewal. However, molecular mechanisms underlying ABA renewal remain to be elucidated. Here, we found that both the excitatory synaptic efficacy and GluA2-lacking AMPAR activity at thalamic input synapses onto the LA (T-LA synapses were enhanced upon ABA renewal. GluA2-lacking AMPAR activity was also increased during low-threshold potentiation, a potential cellular substrate of renewal, at T-LA synapses. The microinjection of 1-naphtylacetyl-spermine (NASPM, a selective blocker of GluA2-lacking AMPARs, into the LA attenuated ABA renewal, suggesting a critical role of GluA2-lacking AMPARs in ABA renewal. We also found that Ser831 phosphorylation of GluA1 in the LA was increased upon ABA renewal. We developed a short peptide mimicking the Ser831-containing C-tail region of GluA1, which can be phosphorylated upon renewal (GluA1S; thus, the phosphorylated GluA1S may compete with Ser831-phosphorylated GluA1. This GluA1S peptide blocked the low-threshold potentiation when dialyzed into a recorded neuron. The microinjection of a cell-permeable form of GluA1S peptide into the LA attenuated ABA renewal. In support of the GluA1S experiments, a GluA1D peptide (in which the serine at 831 is replaced with a phosphomimetic amino acid, aspartate attenuated ABA renewal when microinjected into the LA. These findings suggest that enhancements

  3. ABA renewal involves enhancements in both GluA2-lacking AMPA receptor activity and GluA1 phosphorylation in the lateral amygdala.

    Science.gov (United States)

    Park, Kyungjoon; Song, Beomjong; Kim, Jeongyeon; Hong, Ingie; Song, Sangho; Lee, Junuk; Park, Sungmo; Kim, Jihye; An, Bobae; Lee, Hyun Woo; Lee, Seungbok; Kim, Hyun; Lee, Justin C; Lee, Sukwon; Choi, Sukwoo

    2014-01-01

    Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD) and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when assessed in the original acquisition context (ABA renewal) or in a context distinct from the conditioning and extinction contexts (ABC renewal). We have previously identified Ser831 phosphorylation of GluA1 subunit in the lateral amygdala (LA) as a key molecular mechanism for ABC renewal. However, molecular mechanisms underlying ABA renewal remain to be elucidated. Here, we found that both the excitatory synaptic efficacy and GluA2-lacking AMPAR activity at thalamic input synapses onto the LA (T-LA synapses) were enhanced upon ABA renewal. GluA2-lacking AMPAR activity was also increased during low-threshold potentiation, a potential cellular substrate of renewal, at T-LA synapses. The microinjection of 1-naphtylacetyl-spermine (NASPM), a selective blocker of GluA2-lacking AMPARs, into the LA attenuated ABA renewal, suggesting a critical role of GluA2-lacking AMPARs in ABA renewal. We also found that Ser831 phosphorylation of GluA1 in the LA was increased upon ABA renewal. We developed a short peptide mimicking the Ser831-containing C-tail region of GluA1, which can be phosphorylated upon renewal (GluA1S); thus, the phosphorylated GluA1S may compete with Ser831-phosphorylated GluA1. This GluA1S peptide blocked the low-threshold potentiation when dialyzed into a recorded neuron. The microinjection of a cell-permeable form of GluA1S peptide into the LA attenuated ABA renewal. In support of the GluA1S experiments, a GluA1D peptide (in which the serine at 831 is replaced with a phosphomimetic amino acid, aspartate) attenuated ABA renewal when microinjected into the LA. These findings suggest that enhancements in both the

  4. Spared pre-irradiated area in pustular lesions induced by icotinib showing decreased expressions of CD1a+ langerhans cells and FGFR2

    International Nuclear Information System (INIS)

    Zhao Qiong; Wang Yi Na; Wang Bo

    2013-01-01

    Icotinib hydrochloride, a novel inhibitor of epidermal growth factor receptor tyrosine kinase, has been approved by the State Food and Drug Administration for the treatment of advanced non-small-cell lung cancer. Up to date, cutaneous response to icotinib is largely unknown. Here we report an uncommon lesional phenomenon in a 56-year-old Chinese male with non-small-cell lung cancer, who received icotinib as a second-line treatment. Characteristic papulopustular rash on the chest and back was observed 4 days later. Interestingly, the rash completely spares a pre-irradiated area. The immunohistochemical study in the lesional skin area and spared skin area revealed a significant decrease in CD1a + Langerhans cells, Ki-67 as well as FGFR2 in the spared area than in the lesional area. Thus, the present case indicated that loss of the basal layer of proliferative cells and antigen-presenting cells (Langerhans cell), as well as the down-regulation of FGFR2 signaling in the pre-irradiated skin area, may join forces in inhibiting icotinib-associated cutaneous reactions. To our knowledge, this is the first report of both lesional area and lesion-spared area in a Chinese male receiving treatment with a new epidermal growth factor receptor-tyrosine kinase inhibitor (icotinib). The immunohistochemical reactions described here also provide new insight into the pathogenesis of epidermal growth factor receptor-tyrosine kinase inhibitor-related skin toxicities, and the role that other tyrosine kinase receptors (including FGFR) played in non-small-cell lung cancer. (author)

  5. Spared pre-irradiated area in pustular lesions induced by icotinib showing decreased expressions of CD1a+ langerhans cells and FGFR2.

    Science.gov (United States)

    Zhao, Qiong; Wang, Yi Na; Wang, Bo

    2013-02-01

    Icotinib hydrochloride, a novel inhibitor of epidermal growth factor receptor tyrosine kinase, has been approved by the State Food and Drug Administration for the treatment of advanced non-small-cell lung cancer. Up to date, cutaneous response to icotinib is largely unknown. Here we report an uncommon lesional phenomenon in a 56-year-old Chinese male with non-small-cell lung cancer, who received icotinib as a second-line treatment. Characteristic papulopustular rash on the chest and back was observed 4 days later. Interestingly, the rash completely spares a pre-irradiated area. The immunohistochemical study in the lesional skin area and spared skin area revealed a significant decrease in CD1a(+) Langerhans cells, Ki-67 as well as FGFR2 in the spared area than in the lesional area. Thus, the present case indicated that loss of the basal layer of proliferative cells and antigen-presenting cells (Langerhans cell), as well as the down-regulation of FGFR2 signaling in the pre-irradiated skin area, may join forces in inhibiting icotinib-associated cutaneous reactions. To our knowledge, this is the first report of both lesional area and lesion-spared area in a Chinese male receiving treatment with a new epidermal growth factor receptor-tyrosine kinase inhibitor (icotinib). The immunohistochemical reactions described here also provide new insight into the pathogenesis of epidermal growth factor receptor-tyrosine kinase inhibitor-related skin toxicities, and the role that other tyrosine kinase receptors (including FGFR) played in non-small-cell lung cancer.

  6. The radioprotector O-phospho-tyrosine stimulates DNA-repair via epidermal growth factor receptor- and DNA-dependent kinase phosphorylation

    International Nuclear Information System (INIS)

    Dittmann, Klaus; Mayer, Claus; Wanner, Gabriele; Kehlbach, Rainer; Rodemann, H. Peter

    2007-01-01

    Background and purpose: Purpose of the study was to elucidate the underlying molecular mechanism of the radioprotector O-phospho-tyrosine (P-Tyr). Methods: Molecular effects of P-Tyr at the level of EGFR responses were investigated in vitro with bronchial carcinoma cell line A549. Nuclear EGFR transport and DNA-PK activation were quantified after Western blotting. Residual DNA-damages were quantified by help of γH 2 AX focus assay. Results: As determined by dose-response curves, treatment of cells with P-Tyr for 16 h before irradiation results in radioprotection. Simultaneous treatment with EGFR blocking antibody Cetuximab abolished P-Tyr associated radioprotection. At the molecular level P-Tyr mediated a general phosphorylation of EGFR and a pronounced phosphorylation of nuclear EGFR at residue Thr No. 654, also observed after treatment with ionizing radiation. This phosphorylation was associated with nuclear EGFR accumulation. Moreover, P-Tyr-triggered EGFR nuclear accumulation was associated with phosphorylation of DNA-PK at Thr 2609. This activated form of DNA-PK was not DNA associated, but after radiation, DNA binding increased, particularly after P-Tyr pre-treatment. These molecular effects of P-Tyr resulted in a reduction of residual DNA-damage after irradiation. Conclusions: Radioprotection by P-Tyr is mediated through its stimulation of nuclear EGFR transport and concurrent, but DNA-damage independent, activation of DNA-PK. Thus, subsequent irradiation results in increased binding of DNA-PK to DNA, improved DNA-repair and increased cell survival

  7. Odor preference learning and memory modify GluA1 phosphorylation and GluA1 distribution in the neonate rat olfactory bulb: testing the AMPA receptor hypothesis in an appetitive learning model.

    Science.gov (United States)

    Cui, Wen; Darby-King, Andrea; Grimes, Matthew T; Howland, John G; Wang, Yu Tian; McLean, John H; Harley, Carolyn W

    2011-01-01

    An increase in synaptic AMPA receptors is hypothesized to mediate learning and memory. AMPA receptor increases have been reported in aversive learning models, although it is not clear if they are seen with memory maintenance. Here we examine AMPA receptor changes in a cAMP/PKA/CREB-dependent appetitive learning model: odor preference learning in the neonate rat. Rat pups were given a single pairing of peppermint and 2 mg/kg isoproterenol, which produces a 24-h, but not a 48-h, peppermint preference in the 7-d-old rat pup. GluA1 PKA-dependent phosphorylation peaked 10 min after the 10-min training trial and returned to baseline within 90 min. At 24 h, GluA1 subunits did not change overall but were significantly increased in synaptoneurosomes, consistent with increased membrane insertion. Immunohistochemistry revealed a significant increase in GluA1 subunits in olfactory bulb glomeruli, the targets of olfactory nerve axons. Glomerular increases were seen at 3 and 24 h after odor exposure in trained pups, but not in control pups. GluA1 increases were not seen as early as 10 min after training and were no longer observed 48 h after training when odor preference is no longer expressed behaviorally. Thus, the pattern of increased GluA1 membrane expression closely follows the memory timeline. Further, blocking GluA1 insertion using an interference peptide derived from the carboxyl tail of the GluA1 subunit inhibited 24 h odor preference memory providing causative support for our hypothesis. PKA-mediated GluA1 phosphorylation and later GluA1 insertion could, conjointly, provide increased AMPA function to support both short-term and long-term appetitive memory.

  8. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyungjun [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Song, Mi-Ryoung, E-mail: msong@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Bioimaging Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2010-05-07

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  9. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    International Nuclear Information System (INIS)

    Kang, Kyungjun; Song, Mi-Ryoung

    2010-01-01

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  10. Arsenic interferes with the signaling transduction pathway of T cell receptor activation by increasing basal and induced phosphorylation of Lck and Fyn in spleen cells

    International Nuclear Information System (INIS)

    Soto-Pena, Gerson A.; Vega, Libia

    2008-01-01

    Arsenic is known to produce inhibition as well as induction of immune cells proliferative responses depending on the doses as one of its mechanisms of immunotoxicity. Here we evaluate the effect of arsenic exposure on the activation of splenic mononuclear cells (SMC) in male CD57BL6N mice. Intra-gastric exposure to arsenic (as sodium arsenite) for 30 days (1, 0.1, or 0.01 mg/kg/day), reduced the proportion of CD4+ cells and the CD4+/CD8+ ratio in the spleen, increasing the proportion of CD11b+ cells. Arsenic exposure did not modify the proportion of B cells. SMC showed an increased level of phosphorylation of lck and fyn kinases (first kinases associated to TCR complex when activated). Although normal levels of apoptosis were observed on freshly isolated SMC, an increase in apoptotic cells related with the increase in phosphorylation of lck and fyn was observed when SMC were activated with Concanavalin-A (Con-A). Arsenic exposure reduced the proliferative response of SMC to Con-A, and also reduced secretion of IL-2, IL-6, IL-12 and IFNγ. No effect was observed on IL-4, and IL-10 secretion. The same effects were observed when SMC of exposed animals were activated with anti-CD3/CD28 antibodies for 24 h, but these effects were transitory since a recovery, up to control levels or even higher, were observed after 72 h of stimulation. This study demonstrates that repeated and prolonged exposure to arsenic alters cell populations and produces functional changes depending on the specific activation pathway, and could be related with the phosphorylation status of lck and fyn kinases

  11. PD173074, a selective FGFR inhibitor, reverses MRP7 (ABCC10-mediated MDR

    Directory of Open Access Journals (Sweden)

    Nagaraju Anreddy

    2014-06-01

    Full Text Available Multidrug resistance protein 7 (MRP7, ABCC10 is a recently identified member of the ATP-binding cassette (ABC transporter family, which adequately confers resistance to a diverse group of antineoplastic agents, including taxanes, vinca alkaloids and nucleoside analogs among others. Clinical studies indicate an increased MRP7 expression in non-small cell lung carcinomas (NSCLC compared to a normal healthy lung tissue. Recent studies revealed increased paclitaxel sensitivity in the Mrp7−/− mouse model compared to their wild-type counterparts. This demonstrates that MRP7 is a key contributor in developing drug resistance. Recently our group reported that PD173074, a specific fibroblast growth factor receptor (FGFR inhibitor, could significantly reverse P-glycoprotein-mediated MDR. However, whether PD173074 can interact with and inhibit other MRP members is unknown. In the present study, we investigated the ability of PD173074 to reverse MRP7-mediated MDR. We found that PD173074, at non-toxic concentration, could significantly increase the cellular sensitivity to MRP7 substrates. Mechanistic studies indicated that PD173074 (1 μmol/L significantly increased the intracellular accumulation and in-turn decreased the efflux of paclitaxel by inhibiting the transport activity without altering expression levels of the MRP7 protein, thereby representing a promising therapeutic agent in the clinical treatment of chemoresistant cancer patients.

  12. N-terminal truncation of the dopamine transporter abolishes phorbol ester- and substance P receptor-stimulated phosphorylation without impairing transporter internalization

    DEFF Research Database (Denmark)

    Granas, Charlotta; Ferrer, Jasmine; Loland, Claus Juul

    2003-01-01

    (q)-coupled human substance P receptor (hNK-1) co-expressed with hDAT in HEK293 cells and in N2A neuroblastoma cells. In both cell lines, activation of the hNK-1 receptor by substance P reduced the V(max) for [(3)H]dopamine uptake to the same degree as did PMA ( approximately 50 and approximately 20% in HEK293...

  13. Oxidative phosphorylation revisited

    DEFF Research Database (Denmark)

    Nath, Sunil; Villadsen, John

    2015-01-01

    The fundamentals of oxidative phosphorylation and photophosphorylation are revisited. New experimental data on the involvement of succinate and malate anions respectively in oxidative phosphorylation and photophosphorylation are presented. These new data offer a novel molecular mechanistic...

  14. Increased activity of the Vesicular Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor TI-VAMP/VAMP7 by Tyrosine Phosphorylation in the Longin Domain*

    Science.gov (United States)

    Burgo, Andrea; Casano, Alessandra M.; Kuster, Aurelia; Arold, Stefan T.; Wang, Guan; Nola, Sébastien; Verraes, Agathe; Dingli, Florent; Loew, Damarys; Galli, Thierry

    2013-01-01

    Vesicular (v)- and target (t)-SNAREs play essential roles in intracellular membrane fusion through the formation of cytoplasmic α-helical bundles. Several v-SNAREs have a Longin N-terminal extension that, by promoting a closed conformation, plays an autoinhibitory function and decreases SNARE complex formation and membrane fusion efficiency. The molecular mechanism leading to Longin v-SNARE activation is largely unknown. Here we find that exocytosis mediated by the Longin v-SNARE TI-VAMP/VAMP7 is activated by tonic treatment with insulin and insulin-like growth factor-1 but not by depolarization and intracellular calcium rise. In search of a potential downstream mechanism, we found that TI-VAMP is phosphorylated in vitro by c-Src kinase on tyrosine 45 of the Longin domain. Accordingly, a mutation of tyrosine 45 into glutamate, but not phenylalanine, activates both t-SNARE binding and exocytosis. Activation of TI-VAMP-mediated exocytosis thus relies on tyrosine phosphorylation. PMID:23471971

  15. ­Glial and stem cell expression of murine Fibroblast Growth Factor Receptor 1 in the embryonic and perinatal nervous system

    Directory of Open Access Journals (Sweden)

    Jantzen C. Collette

    2017-06-01

    Full Text Available Background Fibroblast growth factors (FGFs and their receptors (FGFRs are involved in the development and function of multiple organs and organ systems, including the central nervous system (CNS. FGF signaling via FGFR1, one of the three FGFRs expressed in the CNS, stimulates proliferation of stem cells during prenatal and postnatal neurogenesis and participates in regulating cell-type ratios in many developing regions of the brain. Anomalies in FGFR1 signaling have been implicated in certain neuropsychiatric disorders. Fgfr1 expression has been shown, via in situ hybridization, to vary spatially and temporally throughout embryonic and postnatal development of the brain. However, in situ hybridization lacks sufficient resolution to identify which cell-types directly participate in FGF signaling. Furthermore, because antibodies raised against FGFR1 commonly cross-react with other members of the FGFR family, immunocytochemistry is not alone sufficient to accurately document Fgfr1 expression. Here, we elucidate the identity of Fgfr1 expressing cells in both the embryonic and perinatal mouse brain. Methods To do this, we utilized a tgFGFR1-EGFPGP338Gsat BAC line (tgFgfr1-EGFP+ obtained from the GENSAT project. The tgFgfr1-EGFP+ line expresses EGFP under the control of a Fgfr1 promoter, thereby causing cells endogenously expressing Fgfr1 to also present a positive GFP signal. Through simple immunostaining using GFP antibodies and cell-type specific antibodies, we were able to accurately determine the cell-type of Fgfr1 expressing cells. Results This technique revealed Fgfr1 expression in proliferative zones containing BLBP+ radial glial stem cells, such as the cortical and hippocampal ventricular zones, and cerebellar anlage of E14.5 mice, in addition to DCX+ neuroblasts. Furthermore, our data reveal Fgfr1 expression in proliferative zones containing BLBP+ cells of the anterior midline, hippocampus, cortex, hypothalamus, and cerebellum of P0.5 mice

  16. Direct Assessment of the Effect of the Gly380Arg Achondroplasia Mutation on FGFR3 Dimerization Using Quantitative Imaging FRET

    Science.gov (United States)

    Placone, Jesse; Hristova, Kalina

    2012-01-01

    The Gly380Arg mutation in FGFR3 is the genetic cause for achondroplasia (ACH), the most common form of human dwarfism. The mutation has been proposed to increase FGFR3 dimerization, but the dimerization propensities of wild-type and mutant FGFR3 have not been compared. Here we use quantitative imaging FRET to characterize the dimerization of wild-type FGFR3 and the ACH mutant in plasma membrane-derived vesicles from HEK293T cells. We demonstrate a small, but statistically significant increase in FGFR3 dimerization due to the ACH mutation. The data are consistent with the idea that the ACH mutation causes a structural change which affects both the stability and the activity of FGFR3 dimers in the absence of ligand. PMID:23056398

  17. Direct assessment of the effect of the Gly380Arg achondroplasia mutation on FGFR3 dimerization using quantitative imaging FRET.

    Directory of Open Access Journals (Sweden)

    Jesse Placone

    Full Text Available The Gly380Arg mutation in FGFR3 is the genetic cause for achondroplasia (ACH, the most common form of human dwarfism. The mutation has been proposed to increase FGFR3 dimerization, but the dimerization propensities of wild-type and mutant FGFR3 have not been compared. Here we use quantitative imaging FRET to characterize the dimerization of wild-type FGFR3 and the ACH mutant in plasma membrane-derived vesicles from HEK293T cells. We demonstrate a small, but statistically significant increase in FGFR3 dimerization due to the ACH mutation. The data are consistent with the idea that the ACH mutation causes a structural change which affects both the stability and the activity of FGFR3 dimers in the absence of ligand.

  18. The Epstein-Barr virus BILF1 gene encodes a G protein-coupled receptor that inhibits phosphorylation of RNA-dependent protein kinase

    NARCIS (Netherlands)

    Beisser, P.S.; Verzijl, D.; Gruijthuijsen, Y.K.; Beuken, E.V.; Smit, M.J.; Leurs, R.; Bruggeman, C.A.; Vink, C.

    2005-01-01

    Epstein-Barr vires (EBV) infection is associated with many lymphoproliferative diseases, such as infectious mononucleosis and Burkitt's lymphoma. Consequently, EBV is one of the most extensively studied herpesvirases. Surprisingly, a putative G protein-coupled receptor (GPCR) gene of EBV, BILF1, has

  19. The Cu-Zn superoxide dismutase (SOD1) inhibits ERK phosphorylation by muscarinic receptor modulation in rat pituitary GH3 cells

    International Nuclear Information System (INIS)

    Secondo, Agnese; De Mizio, Mariarosaria; Zirpoli, Laura; Santillo, Mariarosaria; Mondola, Paolo

    2008-01-01

    The Cu-Zn superoxide dismutase (SOD1) belongs to a family of isoenzymes that are able to dismutate the oxygen superoxide in hydrogen peroxide and molecular oxygen. This enzyme is secreted by many cellular lines and it is also released trough a calcium-dependent depolarization mechanism involving SNARE protein SNAP 25. Using rat pituitary GH3 cells that express muscarinic receptors we found that SOD1 inhibits P-ERK1/2 pathway trough an interaction with muscarinic M1 receptor. This effect is strengthened by oxotremorine, a muscarinic M agonist and partially reverted by pyrenzepine, an antagonist of M1 receptor; moreover this effect is independent from increased intracellular calcium concentration induced by SOD1. Finally, P-ERK1/2 inhibition was accompanied by the reduction of GH3 cell proliferation. These data indicate that SOD1 beside the well studied antioxidant properties can be considered as a neuromodulator able to affect mitogen-activated protein kinase in rat pituitary cells trough a M1 muscarinic receptor

  20. TGF beta-1 dependent fast stimulation of ATM and p53 phosphorylation following exposure to ionizing radiation does not involve TGF beta-receptor I signalling

    NARCIS (Netherlands)

    Wiegman, Erwin M.; Blaese, Marcet A.; Loeffler, Heidi; Coppes, Rob P.; Rodemann, H. Peter

    Background and purpose: It has been proposed that radiation induced stimulation of ATM and downstream components involves activation of TGF beta-1 and that this may be due to TGF beta-1-receptor I-Smad signalling. Therefore, the aim of this study was to clarify the distinct role of TGF

  1. Tyrosine phosphorylation of Grb14 by Tie2

    Directory of Open Access Journals (Sweden)

    Dumont Daniel J

    2010-10-01

    Full Text Available Abstract Background Growth factor receptor bound (Grb proteins 7, 10 and 14 are a family of structurally related multi-domain adaptor proteins involved in a variety of biological processes. Grb7, 10 and 14 are known to become serine and/or threonine phosphorylated in response to growth factor (GF stimulation. Grb7 and 10 have also been shown to become tyrosine phosphorylated under certain conditions. Under experimental conditions Grb7 is tyrosine phosphorylated by the Tie2/Tie-2/Tek angiogenic receptor tyrosine kinase (RTK. Furthermore, Grb14 has also been shown to interact with Tie2, however tyrosine phosphorylation of this Grb family member has yet to be reported. Results Here we report for the first time tyrosine phosphorylation of Grb14. This phosphorylation requires a kinase competent Tie2 as well as intact tyrosines 1100 and 1106 (Y1100 and Y1106 on the receptor. Furthermore, a complete SH2 domain on Grb14 is required for Grb14 tyrosine phosphorylation by Tie2. Grb14 was also able to become tyrosine phosphorylated in primary endothelial cells when treated with a soluble and potent variant of the Tie2 ligand, cartilage oligomeric matrix protein (COMP Ang1. Conclusion Our results show that Grb14, like its family members Grb7 and Grb10, is able to be tyrosine phosphorylated. Furthermore, our data indicate a role for Grb14 in endothelial signaling downstream of the Tie2 receptor.

  2. Fc gamma receptor activation induces the tyrosine phosphorylation of both phospholipase C (PLC)-gamma 1 and PLC-gamma 2 in natural killer cells

    OpenAIRE

    1992-01-01

    Crosslinking of the low affinity immunoglobulin G (IgG) Fc receptor (Fc gamma R type III) on natural killer (NK) cells initiates antibody- dependent cellular cytotoxicity. During this process, Fc gamma R stimulation results in the rapid activation of phospholipase C (PLC), which hydrolyzes membrane phosphoinositides, generating inositol-1,4,5- trisphosphate and sn-1,2-diacylglycerol as second messengers. We have recently reported that PLC activation after Fc gamma R stimulation can be inhibit...

  3. Phosphorylation of mouse serine racemase regulates D-serine synthesis

    DEFF Research Database (Denmark)

    Foltyn, Veronika N; Zehl, Martin; Dikopoltsev, Elena

    2010-01-01

    Serine racemase (SR) catalyses the synthesis of the transmitter/neuromodulator D-serine, which plays a major role in synaptic plasticity and N-methyl D-aspartate receptor neurotoxicity. We now report that SR is phosphorylated at Thr71 and Thr227 as revealed by mass spectrometric analysis and in v...... with a phosphorylation-deficient SR mutant indicate that Thr71 phosphorylation increases SR activity, suggesting a novel mechanism for regulating D-serine production....

  4. Dopamine D1 receptors and phosphorylation of dopamine- and cyclic AMP-regulated phosphoprotein-32 in the medial preoptic area are involved in experience-induced enhancement of male sexual behavior in rats.

    Science.gov (United States)

    McHenry, Jenna A; Bell, Genevieve A; Parrish, Bradley P; Hull, Elaine M

    2012-08-01

    The medial preoptic area (MPOA) is an integral site for male sexual behavior. Dopamine is released in the MPOA before and during copulation and facilitates male rat sexual behavior. Repeated sexual experience and noncopulatory exposures to an estrous female facilitate subsequent copulation. However, the neurobiological mechanisms that mediate such enhancement remain unclear. Here, we examined the role of dopamine D₁ receptors in the MPOA in experience-induced enhancement of male sexual behavior in rats. In experiment 1, microinjections of the D₁ antagonist SCH-23390 into the MPOA before each of seven daily 30-min noncopulatory exposures to a receptive female impaired copulation on a drug-free test on Day 8, compared to vehicle-treated female-exposed animals. Copulatory performance in drug-treated animals was similar to that of vehicle-treated males that had not been preexposed to females. This effect was site specific. There were no group differences in locomotor activity in an open field on the copulation test day. In experiment 2, a separate cohort of animals was used to examine phosphorylation of dopamine- and cAMP-regulated phosphoprotein (DARPP-32) in the MPOA of animals with acute and/or chronic sexual experience. DARPP-32 is a downstream marker of D₁ receptor signaling and substrate of cAMP-dependent protein kinase (PKA). Western immunoblot analysis revealed that p-DARPP-32 expression was greatest in the MPOA of males that received both acute and chronic sexual experience, compared to all other mated conditions and naïve controls. These data suggest that D₁ receptors in the MPOA contribute to experience-induced enhancement of male sexual behavior, perhaps through a PKA regulated mechanism.

  5. Involvement of Angiopoietin-2 and Tie2 Receptor Phosphorylation in STEC-HUS Mediated by Escherichia coli O104:H4

    Directory of Open Access Journals (Sweden)

    Alexander Lukasz

    2015-01-01

    Full Text Available Escherichia coli O104:H4-associated hemolytic uremic syndrome (HUS is characterized by Shiga toxin-induced vascular damage. As indicated by recent studies, dysregulation of the angiopoietin (Angpt/Tie2 ligand receptor system may be crucial for endothelial dysfunction in HUS. Early Angpt-2 levels quantified in 48 adult HUS patients were predictive for a complicated clinical course, in particular for need of hemodialysis and mechanical ventilation as well as occurrence of seizures. In vitro challenge of human umbilical vein endothelial cells with patients’ sera indicated an injurious mediator role of Angpt-2 opening future perspectives for mitigating endothelial activation in HUS.

  6. Development of RNA-FISH Assay for Detection of Oncogenic FGFR3-TACC3 Fusion Genes in FFPE Samples.

    Directory of Open Access Journals (Sweden)

    Masahiro Kurobe

    Full Text Available Oncogenic FGFR3-TACC3 fusions and FGFR3 mutations are target candidates for small molecule inhibitors in bladder cancer (BC. Because FGFR3 and TACC3 genes are located very closely on chromosome 4p16.3, detection of the fusion by DNA-FISH (fluorescent in situ hybridization is not a feasible option. In this study, we developed a novel RNA-FISH assay using branched DNA probe to detect FGFR3-TACC3 fusions in formaldehyde-fixed paraffin-embedded (FFPE human BC samples.The RNA-FISH assay was developed and validated using a mouse xenograft model with human BC cell lines. Next, we assessed the consistency of the RNA-FISH assay using 104 human BC samples. In this study, primary BC tissues were stored as frozen and FFPE tissues. FGFR3-TACC3 fusions were independently detected in FFPE sections by the RNA-FISH assay and in frozen tissues by RT-PCR. We also analyzed the presence of FGFR3 mutations by targeted sequencing of genomic DNA extracted from deparaffinized FFPE sections.FGFR3-TACC3 fusion transcripts were identified by RNA-FISH and RT-PCR in mouse xenograft FFPE tissues using the human BC cell lines RT112 and RT4. These cell lines have been reported to be fusion-positive. Signals for FGFR3-TACC3 fusions by RNA-FISH were positive in 2/60 (3% of non-muscle-invasive BC (NMIBC and 2/44 (5% muscle-invasive BC (MIBC patients. The results of RT-PCR of all 104 patients were identical to those of RNA-FISH. FGFR3 mutations were detected in 27/60 (45% NMIBC and 8/44 (18% MIBC patients. Except for one NMIBC patient, FGFR3 mutation and FGFR3-TACC3 fusion were mutually exclusive.We developed an RNA-FISH assay for detection of the FGFR3-TACC3 fusion in FFPE samples of human BC tissues. Screening for not only FGFR3 mutations, but also for FGFR3-TACC3 fusion transcripts has the potential to identify additional patients that can be treated with FGFR inhibitors.

  7. Mutational screening of FGFR1, CER1, and CDON in a large cohort of trigonocephalic patients.

    Science.gov (United States)

    Jehee, Fernanda Sarquis; Alonso, Luis G; Cavalcanti, Denise P; Kim, Chong; Wall, Steven A; Mulliken, John B; Sun, Miao; Jabs, Ethylin Wang; Boyadjiev, Simeon A; Wilkie, Andrew O M; Passos-Bueno, Maria Rita

    2006-03-01

    Screen the known craniosynostotic related gene, FGFR1 (exon 7), and two new identified potential candidates, CER1 and CDON, in patients with syndromic and nonsyndromic metopic craniosynostosis to determine if they might be causative genes. Using single-strand conformational polymorphisms (SSCPs), denaturing high-performance liquid chromatography, and/or direct sequencing, we analyzed a total of 81 patients for FGFR1 (exon 7), 70 for CER1, and 44 for CDON. Patients were ascertained in the Centro de Estudos do Genoma Humano in São Paulo, Brazil (n = 39), the Craniofacial Unit, Oxford, U.K. (n = 23), and the Johns Hopkins University, Baltimore, Maryland (n = 31). Clinical inclusion criteria included a triangular head and/or forehead, with or without a metopic ridge, and a radiographic documentation of metopic synostosis. Both syndromic and nonsyndromic patients were studied. No sequence alterations were found for FGFR1 (exon 7). Different patterns of SSCP migration for CER1 compatible with the segregation of single nucleotide polymorphisms reported in the region were identified. Seventeen sequence alterations were detected in the coding region of CDON, seven of which are new, but segregation analysis in parents and homology studies did not indicate a pathological role. FGFR1 (exon 7), CER1, and CDON are not related to trigonocephaly in our sample and should not be considered as causative genes for metopic synostosis. Screening of FGFR1 (exon 7) for diagnostic purposes should not be performed in trigonocephalic patients.

  8. Intrinsic fluorescence of the clinically approved multikinase inhibitor nintedanib reveals lysosomal sequestration as resistance mechanism in FGFR-driven lung cancer.

    Science.gov (United States)

    Englinger, Bernhard; Kallus, Sebastian; Senkiv, Julia; Heilos, Daniela; Gabler, Lisa; van Schoonhoven, Sushilla; Terenzi, Alessio; Moser, Patrick; Pirker, Christine; Timelthaler, Gerald; Jäger, Walter; Kowol, Christian R; Heffeter, Petra; Grusch, Michael; Berger, Walter

    2017-09-07

    Studying the intracellular distribution of pharmacological agents, including anticancer compounds, is of central importance in biomedical research. It constitutes a prerequisite for a better understanding of the molecular mechanisms underlying drug action and resistance development. Hyperactivated fibroblast growth factor receptors (FGFRs) constitute a promising therapy target in several types of malignancies including lung cancer. The clinically approved small-molecule FGFR inhibitor nintedanib exerts strong cytotoxicity in FGFR-driven lung cancer cells. However, subcellular pharmacokinetics of this compound and its impact on therapeutic efficacy remain obscure. 3-dimensional fluorescence spectroscopy was conducted to asses cell-free nintedanib fluorescence properties. MTT assay was used to determine the impact of the lysosome-targeting agents bafilomycin A1 and chloroquine combined with nintedanib on lung cancer cell viability. Flow cytometry and live cell as well as confocal microscopy were performed to analyze uptake kinetics as well as subcellular distribution of nintedanib. Western blot was conducted to investigate protein expression. Cryosections of subcutaneous tumor allografts were generated to detect intratumoral nintedanib in mice after oral drug administration. Here, we report for the first time drug-intrinsic fluorescence properties of nintedanib in living and fixed cancer cells as well as in cryosections derived from allograft tumors of orally treated mice. Using this feature in conjunction with flow cytometry and confocal microscopy allowed to determine cellular drug accumulation levels, impact of the ABCB1 efflux pump and to uncover nintedanib trapping into lysosomes. Lysosomal sequestration - resulting in an organelle-specific and pH-dependent nintedanib fluorescence - was identified as an intrinsic resistance mechanism in FGFR-driven lung cancer cells. Accordingly, combination of nintedanib with agents compromising lysosomal acidification

  9. Tyrosine phosphorylation in signal transduction

    International Nuclear Information System (INIS)

    Roberts, T.M.; Kaplan, D.; Morgan, W.; Keller, T.; Mamon, H.; Piwnica-Worms, H.; Druker, B.; Whitman, M.; Morrison, D.; Cohen, B.; Schaffhausen, B.; Cantley, L.; Rapp, U.

    1988-01-01

    Recent work has focused on the elucidation of the mechanisms by which membrane-bound tyrosine kinases transmit signals within the cell. To examine the role of tyrosine phosphorylation the authors have employed the following strategy. First, they have utilized antibodies to phosphotyrosine (anti-P.Tyr) to identify candidate substrates of various tyrosine kinases, such as pp60 c-src , the CSF- receptor, or the platelet-derived growth factor (PDGF) receptor. Second, they have attempted to characterize the biochemical properties of the putative substrates and to determine in what manner these properties are modified by phosphorylation on tyrosine residues. In this endeavor, they are recapitulating the classic biochemical analysis used to study the effect of kinases on metabolism. The final portion of our work consists of using modern molecular biological strategies to clone the genes or cDNAs for the substrates and overproduce the relevant proteins for studies in vitro in defined systems. This paper describes the first and second aspects of this strategy, the identification and characterization of novel substrate molecules

  10. Fibroblast growth factor 10-fibroblast growth factor receptor 2b mediated signaling is not required for adult glandular stomach homeostasis.

    Directory of Open Access Journals (Sweden)

    Allison L Speer

    Full Text Available The signaling pathways that are essential for gastric organogenesis have been studied in some detail; however, those that regulate the maintenance of the gastric epithelium during adult homeostasis remain unclear. In this study, we investigated the role of Fibroblast growth factor 10 (FGF10 and its main receptor, Fibroblast growth factor receptor 2b (FGFR2b, in adult glandular stomach homeostasis. We first showed that mouse adult glandular stomach expressed Fgf10, its receptors, Fgfr1b and Fgfr2b, and most of the other FGFR2b ligands (Fgf1, Fgf7, Fgf22 except for Fgf3 and Fgf20. Fgf10 expression was mesenchymal whereas FGFR1 and FGFR2 expression were mostly epithelial. Studying double transgenic mice that allow inducible overexpression of Fgf10 in adult mice, we showed that Fgf10 overexpression in normal adult glandular stomach increased epithelial proliferation, drove mucous neck cell differentiation, and reduced parietal and chief cell differentiation. Although a similar phenotype can be associated with the development of metaplasia, we found that Fgf10 overexpression for a short duration does not cause metaplasia. Finally, investigating double transgenic mice that allow the expression of a soluble form of Fgfr2b, FGF10's main receptor, which acts as a dominant negative, we found no significant changes in gastric epithelial proliferation or differentiation in the mutants. Our work provides evidence, for the first time, that the FGF10-FGFR2b signaling pathway is not required for epithelial proliferation and differentiation during adult glandular stomach homeostasis.

  11. [Mutation analysis of FGFR3 gene in a family featuring hereditary dwarfism].

    Science.gov (United States)

    Zhang, Qiong; Jiang, Hai-ou; Quan, Qing-li; Li, Jun; He, Ting; Huang, Xue-shuang

    2011-12-01

    To investigate the clinical symptoms and potential mutation in FGFR3 gene for a family featuring hereditary dwarfism in order to attain diagnosis and provide prenatal diagnosis. Five patients and two unaffected relatives from the family, in addition with 100 healthy controls, were recruited. Genome DNA was extracted. Exons 10 and 13 of the FGFR3 gene were amplified using polymerase chain reaction (PCR). PCR products were sequenced in both directions. All patients had similar features including short stature, short limbs, lumbar hyperlordosis but normal craniofacial features. A heterozygous mutation G1620T (N540K) was identified in the cDNA from all patients but not in the unaffected relatives and 100 control subjects. A heterozygous G380R mutation was excluded. The hereditary dwarfism featured by this family has been caused by hypochondroplasia (HCH) due to a N540K mutation in the FGFR3 gene.

  12. Src kinase regulation by phosphorylation and dephosphorylation

    International Nuclear Information System (INIS)

    Roskoski, Robert

    2005-01-01

    Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTPα, PTPε, and PTPλ. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined

  13. Common developmental genome deprogramming in schizophrenia - Role of Integrative Nuclear FGFR1 Signaling (INFS).

    Science.gov (United States)

    Narla, S T; Lee, Y-W; Benson, C A; Sarder, P; Brennand, K J; Stachowiak, E K; Stachowiak, M K

    2017-07-01

    The watershed-hypothesis of schizophrenia asserts that over 200 different mutations dysregulate distinct pathways that converge on an unspecified common mechanism(s) that controls disease ontogeny. Consistent with this hypothesis, our RNA-sequencing of neuron committed cells (NCCs) differentiated from established iPSCs of 4 schizophrenia patients and 4 control subjects uncovered a dysregulated transcriptome of 1349 mRNAs common to all patients. Data reveals a global dysregulation of developmental genome, deconstruction of coordinated mRNA networks, and the formation of aberrant, new coordinated mRNA networks indicating a concerted action of the responsible factor(s). Sequencing of miRNA transcriptomes demonstrated an overexpression of 16 miRNAs and deconstruction of interactive miRNA-mRNA networks in schizophrenia NCCs. ChiPseq revealed that the nuclear (n) form of FGFR1, a pan-ontogenic regulator, is overexpressed in schizophrenia NCCs and overtargets dysregulated mRNA and miRNA genes. The nFGFR1 targeted 54% of all human gene promoters and 84.4% of schizophrenia dysregulated genes. The upregulated genes reside within major developmental pathways that control neurogenesis and neuron formation, whereas downregulated genes are involved in oligodendrogenesis. Our results indicate (i) an early (preneuronal) genomic etiology of schizophrenia, (ii) dysregulated genes and new coordinated gene networks are common to unrelated cases of schizophrenia, (iii) gene dysregulations are accompanied by increased nFGFR1-genome interactions, and (iv) modeling of increased nFGFR1 by an overexpression of a nFGFR1 lead to up or downregulation of selected genes as observed in schizophrenia NCCs. Together our results designate nFGFR1 signaling as a potential common dysregulated mechanism in investigated patients and potential therapeutic target in schizophrenia. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. FGFR3, PIK3CA and RAS mutations in benign lichenoid keratosis.

    Science.gov (United States)

    Groesser, L; Herschberger, E; Landthaler, M; Hafner, C

    2012-04-01

    Benign lichenoid keratoses (BLKs) are solitary skin lesions which have been proposed to represent a regressive form of pre-existent epidermal tumours such as solar lentigo or seborrhoeic keratosis. However, the genetic basis of BLK is unknown. FGFR3, PIK3CA and RAS mutations have been shown to be involved in the pathogenesis of seborrhoeic keratosis and solar lentigo. We thus investigated whether these mutations are also present in BLK. After manual microdissection and DNA isolation, 52 BLKs were screened for FGFR3, PIK3CA and RAS hotspot mutations using SNaPshot(®) multiplex assays. We identified 6/52 (12%) FGFR3 mutations, 10/52 (19%) PIK3CA mutations, 6/52 (12%) HRAS mutations and 2/52 (4%) KRAS mutations. FGFR3 and RAS mutations were mutually exclusive. One BLK showed a simultaneous PIK3CA and HRAS mutation. In nine BLKs with a mutation, nonlesional control tissue from the epidermal margin and the dermal lymphocytic infiltrate were wild-type, indicating that these mutations are somatic. To demonstrate that these findings are specific, 10 samples of lichen planus were analysed without evidence for FGFR3, PIK3CA or RAS mutations. Our results indicate that FGFR3, PIK3CA and RAS mutations are present in approximately 50% of BLKs. These findings support the concept on the molecular genetic level that at least a proportion of BLKs represents regressive variants resulting from former benign epidermal tumours such as seborrhoeic keratosis and solar lentigo. © 2011 The Authors. BJD © 2011 British Association of Dermatologists 2011.

  15. Tyrosine phosphorylation switching of a G protein.

    Science.gov (United States)

    Li, Bo; Tunc-Ozdemir, Meral; Urano, Daisuke; Jia, Haiyan; Werth, Emily G; Mowrey, David D; Hicks, Leslie M; Dokholyan, Nikolay V; Torres, Matthew P; Jones, Alan M

    2018-03-30

    Heterotrimeric G protein complexes are molecular switches relaying extracellular signals sensed by G protein-coupled receptors (GPCRs) to downstream targets in the cytoplasm, which effect cellular responses. In the plant heterotrimeric GTPase cycle, GTP hydrolysis, rather than nucleotide exchange, is the rate-limiting reaction and is accelerated by a receptor-like regulator of G signaling (RGS) protein. We hypothesized that posttranslational modification of the Gα subunit in the G protein complex regulates the RGS-dependent GTPase cycle. Our structural analyses identified an invariant phosphorylated tyrosine residue (Tyr 166 in the Arabidopsis Gα subunit AtGPA1) located in the intramolecular domain interface where nucleotide binding and hydrolysis occur. We also identified a receptor-like kinase that phosphorylates AtGPA1 in a Tyr 166 -dependent manner. Discrete molecular dynamics simulations predicted that phosphorylated Tyr 166 forms a salt bridge in this interface and potentially affects the RGS protein-accelerated GTPase cycle. Using a Tyr 166 phosphomimetic substitution, we found that the cognate RGS protein binds more tightly to the GDP-bound Gα substrate, consequently reducing its ability to accelerate GTPase activity. In conclusion, we propose that phosphorylation of Tyr 166 in AtGPA1 changes the binding pattern with AtRGS1 and thereby attenuates the steady-state rate of the GTPase cycle. We coin this newly identified mechanism "substrate phosphoswitching." © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Interaction of the p85 subunit of PI 3-kinase and its N-terminal SH2 domain with a PDGF receptor phosphorylation site: structural features and analysis of conformational changes.

    Science.gov (United States)

    Panayotou, G; Bax, B; Gout, I; Federwisch, M; Wroblowski, B; Dhand, R; Fry, M J; Blundell, T L; Wollmer, A; Waterfield, M D

    1992-01-01

    Circular dichroism and fluorescence spectroscopy were used to investigate the structure of the p85 alpha subunit of the PI 3-kinase, a closely related p85 beta protein, and a recombinant SH2 domain-containing fragment of p85 alpha. Significant spectral changes, indicative of a conformational change, were observed on formation of a complex with a 17 residue peptide containing a phosphorylated tyrosine residue. The sequence of this peptide is identical to the sequence surrounding Tyr751 in the kinase-insert region of the platelet-derived growth factor beta-receptor (beta PDGFR). The rotational correlation times measured by fluorescence anisotropy decay indicated that phosphopeptide binding changed the shape of the SH2 domain-containing fragment. The CD and fluorescence spectroscopy data support the secondary structure prediction based on sequence analysis and provide evidence for flexible linker regions between the various domains of the p85 proteins. The significance of these results for SH2 domain-containing proteins is discussed. Images PMID:1330535

  17. p.Ser252Trp and p.Pro253Arg mutations in FGFR2 gene causing Apert syndrome: the first clinical and molecular report of Indonesian patients.

    Science.gov (United States)

    Mundhofir, Farmaditya E P; Sistermans, Erik A; Faradz, Sultana M H; Hamel, Ben C J

    2013-03-01

    Apert syndrome (AS) is a rare autosomal dominant disorder characterised by craniosynostosis and limb malformations, and is associated with congenital heart disease and other systemic malformations, including intellectual disability. We report two Indonesian patients with AS, in whom molecular analysis detected p.Ser252Trp (c.755C>G) and p.Pro253Arg (c.758C>G) mutations in the fibroblast growth factor receptor 2 (FGFR2) gene, respectively. Although the syndrome has been frequently described, this is the first clinical report of AS confirmed by molecular analysis in Indonesia. The difference in severity of clinical features in the two patients may be consistent with a genotype-phenotype correlation of the FGFR2mutation. The management of individuals with AS is best achieved within a multidisciplinary setting. However, in most developing countries, early intervention may be delayed due to late diagnosis, a lack of facilities and financial constraints. This report underpins the benefits of early diagnosis for AS management.

  18. Early postnatal soluble FGFR3 therapy prevents the atypical development of obesity in achondroplasia.

    Science.gov (United States)

    Saint-Laurent, Celine; Garcia, Stephanie; Sarrazy, Vincent; Dumas, Karine; Authier, Florence; Sore, Sophie; Tran, Albert; Gual, Philippe; Gennero, Isabelle; Salles, Jean-Pierre; Gouze, Elvire

    2018-01-01

    Achondroplasia is a rare genetic disease is characterized by abnormal bone development and early obesity. While the bone aspect of the disease has been thoroughly studied, early obesity affecting approximately 50% of them during childhood has been somewhat neglected. It nevertheless represents a major health problem in these patients, and is associated to life-threatening complications including increasing risk of cardiovascular pathologies. We have thus decided to study obesity in patients and to use the mouse model to evaluate if soluble FGFR3 therapy, an innovative treatment approach for achondroplasia, could also impact the development of this significant complication. To achieve this, we have first fully characterized the metabolic deregulations in these patients by conducting a longitudinal retrospective study, in children with achondroplasia Anthropometric, densitometric measures as well as several blood parameters were recorded and compared between three age groups ranging from [0-3], [4-8] and [9-18] years old. Our results show unexpected results with the development of an atypical obesity with preferential fat deposition in the abdomen that is remarkably not associated with classical complications of obesity such as diabetes or hypercholosterolemia. Because it is not associated with diabetes, the atypical obesity has not been studied in the past even though it is recognized as a real problem in these patients. These results were validated in a murine model of achondroplasia (Fgfr3ach/+) where similar visceral adiposity was observed. Unexpected alterations in glucose metabolism were highlighted during high-fat diet. Glucose, insulin or lipid levels remained low, without the development of diabetes. Very interestingly, in achondroplasia mice treated with soluble FGFR3 during the growth period (from D3 to D22), the development of these metabolic deregulations was prevented in adult animals (between 4 and 14 weeks of age). The lean-over-fat tissues ratio was

  19. Early postnatal soluble FGFR3 therapy prevents the atypical development of obesity in achondroplasia

    Science.gov (United States)

    Sarrazy, Vincent; Dumas, Karine; Authier, Florence; Sore, Sophie; Tran, Albert; Gual, Philippe; Gennero, Isabelle; Salles, Jean-Pierre; Gouze, Elvire

    2018-01-01

    Background Achondroplasia is a rare genetic disease is characterized by abnormal bone development and early obesity. While the bone aspect of the disease has been thoroughly studied, early obesity affecting approximately 50% of them during childhood has been somewhat neglected. It nevertheless represents a major health problem in these patients, and is associated to life-threatening complications including increasing risk of cardiovascular pathologies. We have thus decided to study obesity in patients and to use the mouse model to evaluate if soluble FGFR3 therapy, an innovative treatment approach for achondroplasia, could also impact the development of this significant complication. Methods and findings To achieve this, we have first fully characterized the metabolic deregulations in these patients by conducting a longitudinal retrospective study, in children with achondroplasia Anthropometric, densitometric measures as well as several blood parameters were recorded and compared between three age groups ranging from [0–3], [4–8] and [9–18] years old. Our results show unexpected results with the development of an atypical obesity with preferential fat deposition in the abdomen that is remarkably not associated with classical complications of obesity such as diabetes or hypercholosterolemia. Because it is not associated with diabetes, the atypical obesity has not been studied in the past even though it is recognized as a real problem in these patients. These results were validated in a murine model of achondroplasia (Fgfr3ach/+) where similar visceral adiposity was observed. Unexpected alterations in glucose metabolism were highlighted during high-fat diet. Glucose, insulin or lipid levels remained low, without the development of diabetes. Very interestingly, in achondroplasia mice treated with soluble FGFR3 during the growth period (from D3 to D22), the development of these metabolic deregulations was prevented in adult animals (between 4 and 14 weeks of age

  20. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis

    DEFF Research Database (Denmark)

    Confalonieri, S; Salcini, A E; Puri, C

    2000-01-01

    for endocytosis of the epidermal growth factor receptor (EGFR), the prototypical ligand-inducible receptor, but not of the transferrin receptor (TfR), the prototypical constitutively internalized receptor. Eps15, an endocytic protein that is tyrosine phosphorylated by EGFR, is a candidate for such a function....... Here, we show that tyrosine phosphorylation of Eps15 is necessary for internalization of the EGFR, but not of the TfR. We mapped Tyr 850 as the major in vivo tyrosine phosphorylation site of Eps15. A phosphorylation-negative mutant of Eps15 acted as a dominant negative on the internalization...... of the EGFR, but not of the TfR. A phosphopeptide, corresponding to the phosphorylated sequence of Eps15, inhibited EGFR endocytosis, suggesting that phosphotyrosine in Eps15 serves as a docking site for a phosphotyrosine binding protein. Thus, tyrosine phosphorylation of Eps15 represents the first molecular...

  1. Fibroblast growth factor receptor 4 regulates tumor invasion by coupling fibroblast growth factor signaling to extracellular matrix degradation

    DEFF Research Database (Denmark)

    Sugiyama, Nami; Varjosalo, Markku; Meller, Pipsa

    2010-01-01

    /stroma border and tumor invasion front. The strongest overall coexpression was found in prostate carcinoma. Studies with cultured prostate carcinoma cell lines showed that the FGFR4-R388 variant, which has previously been associated with poor cancer prognosis, increased MT1-MMP-dependent collagen invasion......Aberrant expression and polymorphism of fibroblast growth factor receptor 4 (FGFR4) has been linked to tumor progression and anticancer drug resistance. We describe here a novel mechanism of tumor progression by matrix degradation involving epithelial-to-mesenchymal transition in response...... to membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14) induction at the edge of tumors expressing the FGFR4-R388 risk variant. Both FGFR4 and MT1-MMP were upregulated in tissue biopsies from several human cancer types including breast adenocarcinomas, where they were partially coexpressed at the tumor...

  2. Novel Role of Src in Priming Pyk2 Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    Full Text Available Proline-rich tyrosine kinase 2 (Pyk2 is a member of the focal adhesion kinase (FAK family of non-receptor tyrosine kinases and plays an important role in diverse cellular events downstream of the integrin-family of receptors, including cell migration, proliferation and survival. Here, we have identified a novel role for Src kinase in priming Pyk2 phosphorylation and subsequent activation upon cell attachment on the integrin-ligand fibronectin. By using complementary methods, we show that Src activity is indispensable for the initial Pyk2 phosphorylation on the Y402 site observed in response to cell attachment. In contrast, the initial fibronectin-induced autophosphorylation of FAK in the homologous Y397 site occurs in a Src-independent manner. We demonstrate that the SH2-domain of Src is required for Src binding to Pyk2 and for Pyk2 phosphorylation at sites Y402 and Y579. Moreover, Y402 phosphorylation is a prerequisite for the subsequent Y579 phosphorylation. While this initial phosphorylation of Pyk2 by Src is independent of Pyk2 kinase activity, subsequent autophosphorylation of Pyk2 in trans is required for full Pyk2 phosphorylation and activation. Collectively, our studies reveal a novel function of Src in priming Pyk2 (but not FAK phosphorylation and subsequent activation downstream of integrins, and shed light on the signaling events that regulate the function of Pyk2.

  3. Peptides derived from specific interaction sites of the fibroblast growth factor 2 - FGF receptor complexes induce receptor activation and signaling

    DEFF Research Database (Denmark)

    Manfè, Valentina; Kochoyan, Artur; Bock, Elisabeth

    2010-01-01

    J. Neurochem. (2010) 10.1111/j.1471-4159.2010.06718.x Abstract Basic fibroblast growth factor (FGF2, bFGF) is the most extensively studied member of the FGF family and is involved in neurogenesis, differentiation, neuroprotection, and synaptic plasticity in the CNS. FGF2 executes its pleiotropic...... biologic actions by binding, dimerizing, and activating FGF receptors (FGFRs). The present study reports the physiologic impact of various FGF2-FGFR1 contact sites employing three different synthetic peptides, termed canofins, designed based on structural analysis of the interactions between FGF2 and FGFR1...

  4. Fibroblast growth factor receptor 4 polymorphism is associated with liver cirrhosis in hepatocarcinoma.

    Directory of Open Access Journals (Sweden)

    Ming-Jen Sheu

    Full Text Available Fibroblast growth factor receptor 4 (FGFR4 polymorphisms are positively correlated with tumor progression in numerous malignant tumors. However, the association between FGFR4 genetic variants and the risk of hepatocellular carcinoma (HCC has not yet been determined. In this study, we investigated the potential associations of FGFR4 single nucleotide polymorphisms (SNPs with HCC susceptibility and its clinicopathological characteristics.Four SNPs in FGFR4 (rs1966265, rs351855, rs2011077, and rs7708357 were analyzed among 884 participants, including 595 controls and 289 patients with HCC. The samples were further analyzed to clarify the associations between these gene polymorphisms and the risk of HCC, and the impact of these SNPs on the susceptibility and clinicopathological characteristics of HCC. After adjusting for other covariants, HCC patients who carrying at least one A genotype (GA and AA at rs351855 were observed to have a higher risk of liver cirrhosis compared with those carrying the wild-type genotype (GG (OR: 2.113, 95% CI: 1.188-3.831. Moreover, the patients with at least one A genotype were particularly showed a high level of alpha-fetoprotein (AFP.Our findings suggest that genetic polymorphism in FGFR4 rs351855 may be associated with the risk of HCC coupled with liver cirrhosis and may markedly increase the AFP level in Taiwanese patients with HCC. In addition, this is the first study that evaluated the risk factors associated with FGFR4 polymorphism variants in Taiwanese patients with HCC.

  5. Covalent Targeting of Fibroblast Growth Factor Receptor Inhibits Metastatic Breast Cancer.

    Science.gov (United States)

    Brown, Wells S; Tan, Li; Smith, Andrew; Gray, Nathanael S; Wendt, Michael K

    2016-09-01

    Therapeutic targeting of late-stage breast cancer is limited by an inadequate understanding of how tumor cell signaling evolves during metastatic progression and by the currently available small molecule inhibitors capable of targeting these processes. Herein, we demonstrate that both β3 integrin and fibroblast growth factor receptor-1 (FGFR1) are part of an epithelial-mesenchymal transition (EMT) program that is required to facilitate metastatic outgrowth in response to fibroblast growth factor-2 (FGF2). Mechanistically, β3 integrin physically disrupts an interaction between FGFR1 and E-cadherin, leading to a dramatic redistribution of FGFR1 subcellular localization, enhanced FGF2 signaling and increased three-dimensional (3D) outgrowth of metastatic breast cancer cells. This ability of β3 integrin to drive FGFR signaling requires the enzymatic activity of focal adhesion kinase (FAK). Consistent with these mechanistic data, we demonstrate that FGFR, β3 integrin, and FAK constitute a molecular signature capable of predicting decreased survival of patients with the basal-like subtype of breast cancer. Importantly, covalent targeting of a conserved cysteine in the P-loop of FGFR1-4 with our newly developed small molecule, FIIN-4, more effectively blocks 3D metastatic outgrowth as compared with currently available FGFR inhibitors. In vivo application of FIIN-4 potently inhibited the growth of metastatic, patient-derived breast cancer xenografts and murine-derived metastases growing within the pulmonary microenvironment. Overall, the current studies demonstrate that FGFR1 works in concert with other EMT effector molecules to drive aberrant downstream signaling, and that these events can be effectively targeted using our novel therapeutics for the treatment of the most aggressive forms of breast cancer. Mol Cancer Ther; 15(9); 2096-106. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. Cellular Internalization of Fibroblast Growth Factor-12 Exerts Radioprotective Effects on Intestinal Radiation Damage Independently of FGFR Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Fumiaki, E-mail: f_naka@nirs.go.jp [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, Chiba (Japan); Umeda, Sachiko [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, Chiba (Japan); Yasuda, Takeshi [Radiation Emergency Medicine Research Program, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, Chiba (Japan); Fujita, Mayumi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, Chiba (Japan); Asada, Masahiro [Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Meineke, Viktor [Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich (Germany); Imamura, Toru [Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Imai, Takashi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, Chiba (Japan)

    2014-02-01

    Purpose: Several fibroblast growth factors (FGFs) were shown to inhibit radiation-induced tissue damage through FGF receptor (FGFR) signaling; however, this signaling was also found to be involved in the pathogenesis of several malignant tumors. In contrast, FGF12 cannot activate any FGFRs. Instead, FGF12 can be internalized readily into cells using 2 cell-penetrating peptide domains (CPP-M, CPP-C). Therefore, this study focused on clarifying the role of FGF12 internalization in protection against radiation-induced intestinal injury. Methods and Materials: Each FGF or peptide was administered intraperitoneally to BALB/c mice in the absence of heparin 24 hours before or after total body irradiation with γ rays at 9 to 12 Gy. Several radioprotective effects were examined in the jejunum. Results: Administration of FGF12 after radiation exposure was as effective as pretreatment in significantly promoting intestinal regeneration, proliferation of crypt cells, and epithelial differentiation. Two domains, comprising amino acid residues 80 to 109 and 140 to 169 of FGF12B, were identified as being responsible for the radioprotective activity, so that deletion of both domains from FGF12B resulted in a reduction in activity. Interestingly, these regions included the CPP-M and CPP-C domains, respectively; however, CPP-C by itself did not show an antiapoptotic effect. In addition, FGF1, prototypic FGF, possesses a domain corresponding to CPP-M, whereas it lacks CPP-C, so the fusion of FGF1 with CPP-C (FGF1/CPP-C) enhanced cellular internalization and increased radioprotective activity. However, FGF1/CPP-C reduced in vitro mitogenic activity through FGFRs compared with FGF1, implying that FGFR signaling might not be essential for promoting the radioprotective effect of FGF1/CPP-C. In addition, internalized FGF12 suppressed the activation of p38α after irradiation, resulting in reduced radiation-induced apoptosis. Conclusions: These findings indicate that FGF12 can protect the

  7. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    Energy Technology Data Exchange (ETDEWEB)

    Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa; Cavallaro, Ugo [IFOM-IEO Campus, Via Adamello 16, 20139 Milano (Italy); Marco, Ario de, E-mail: ario.demarco@ung.si [IFOM-IEO Campus, Via Adamello 16, 20139 Milano (Italy); Dept. Environmental Sciences, University of Nova Gorica (UNG), Vipavska 13, P.O. Box 301-SI-5000, Rozna Dolina, Nova Gorica (Slovenia)

    2011-05-20

    Highlights: {yields} Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. {yields} These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. {yields} The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. These antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.

  8. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    International Nuclear Information System (INIS)

    Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa; Cavallaro, Ugo; Marco, Ario de

    2011-01-01

    Highlights: → Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. → These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. → The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. These antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.

  9. Effect of the achondroplasia mutation on FGFR3 dimerization and FGFR3 structural response to fgf1 and fgf2: A quantitative FRET study in osmotically derived plasma membrane vesicles.

    Science.gov (United States)

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-07-01

    The G380R mutation in the transmembrane domain of FGFR3 is a germline mutation responsible for most cases of Achondroplasia, a common form of human dwarfism. Here we use quantitative Fӧster Resonance Energy Transfer (FRET) and osmotically derived plasma membrane vesicles to study the effect of the achondroplasia mutation on the early stages of FGFR3 signaling in response to the ligands fgf1 and fgf2. Using a methodology that allows us to capture structural changes on the cytoplasmic side of the membrane in response to ligand binding to the extracellular domain of FGFR3, we observe no measurable effects of the G380R mutation on FGFR3 ligand-bound dimer configurations. Instead, the most notable effect of the achondroplasia mutation is increased propensity for FGFR3 dimerization in the absence of ligand. This work reveals new information about the molecular events that underlie the achondroplasia phenotype, and highlights differences in FGFR3 activation due to different single amino-acid pathogenic mutations. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Molecular grading of tumors of the upper urothelial tract using FGFR3 mutation status identifies patients with favorable prognosis

    OpenAIRE

    Fernandez, Cecilia; Lyle,Stephen; Hsieh,; Shuber,Anthony

    2012-01-01

    Stephen R Lyle,1 Chung-Cheng Hsieh,1 Cecilia A Fernandez,2 Anthony P Shuber21University of Massachusetts, Worcester, MA, 2Predictive Biosciences Inc., Lexington, MA, USABackground: Mutations in FGFR3 have been shown to occur in tumors of the upper urothelial tract and may be indicative of a good prognosis. In bladder tumors, the combination of FGFR3 mutation status and Ki-67 level has been used to define a tumor's molecular grade and predict survival. Pathological evaluation of upper ...

  11. Ketamine inhibits tumor necrosis factor-α and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    International Nuclear Information System (INIS)

    Wu, G.-J.; Chen, T.-L.; Ueng, Y.-F.; Chen, R.-M.

    2008-01-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 μM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 μM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-α and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-α and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 μM) significantly inhibited LPS-induced TNF-α and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-α and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-α and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated

  12. Dehydroeburicoic Acid from Antrodia camphorata Prevents the Diabetic and Dyslipidemic State via Modulation of Glucose Transporter 4, Peroxisome Proliferator-Activated Receptor α Expression and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice

    Directory of Open Access Journals (Sweden)

    Yueh-Hsiung Kuo

    2016-06-01

    Full Text Available This study investigated the potential effects of dehydroeburicoic acid (TT, a triterpenoid compound from Antrodia camphorata, in vitro and examined the effects and mechanisms of TT on glucose and lipid homeostasis in high-fat-diet (HFD-fed mice. The in vitro study examined the effects of a MeOH crude extract (CruE of A. camphorata and Antcin K (AnK; the main constituent of fruiting body of this mushroom on membrane glucose transporter 4 (GLUT4 and phospho-Akt in C2C12 myoblasts cells. The in vitro study demonstrated that treatment with CruE, AnK and TT increased the membrane levels of glucose transporter 4 (GLUT4 and phospho-Akt at different concentrations. The animal experiments were performed for 12 weeks. Diabetic mice were randomly divided into six groups after 8 weeks of HFD-induction and treated with daily oral gavage doses of TT (at three dose levels, fenofibrate (Feno (at 0.25 g/kg body weight, metformin (Metf (at 0.3 g/kg body weight or vehicle for another 4 weeks while on an HFD diet. HFD-fed mice exhibited increased blood glucose levels. TT treatment dramatically lowered blood glucose levels by 34.2%~43.4%, which was comparable to the antidiabetic agent-Metf (36.5%. TT-treated mice reduced the HFD-induced hyperglycemia, hypertriglyceridemia, hyperinsulinemia, hyperleptinemia, and hypercholesterolemia. Membrane levels of GLUT4 were significantly higher in CruE-treated groups in vitro. Skeletal muscle membrane levels of GLUT4 were significantly higher in TT-treated mice. These groups of mice also displayed lower mRNA levels of glucose-6-phosphatase (G6 Pase, an inhibitor of hepatic glucose production. The combination of these agents produced a net hypoglycemic effect in TT-treated mice. TT treatment enhanced the expressions of hepatic and skeletal muscle AMP-activated protein kinase (AMPK phosphorylation in mice. TT-treated mice exhibited enhanced expression of hepatic fatty acid oxidation enzymes, including peroxisome proliferator

  13. Effect of FGFR inhibitors on chicken limb development

    Czech Academy of Sciences Publication Activity Database

    Horáková, D.; Celá, Petra; Krejčí, P.; Balek, L.; Moravcová Balková, Simona; Matalová, Eva; Buchtová, Marcela

    2014-01-01

    Roč. 56, č. 8 (2014), s. 555-572 ISSN 0012-1592 R&D Projects: GA ČR GA304/09/0725; GA ČR(CZ) GA14-31540S Grant - others:GA ČR(CZ) GAP305/11/0752 Program:GA Institutional support: RVO:67985904 Keywords : chondrogenesis * fibroblast growth factor receptor * mesenchymal condensation Subject RIV: EA - Cell Biology Impact factor: 2.420, year: 2014

  14. NMR structure of the first Ig module of mouse FGFR1

    DEFF Research Database (Denmark)

    Kiselyov, V.V.; Bock, Elisabeth Marianne; Berezin, V.

    2006-01-01

    of this module. We describe here the NMR structure of the Ig1 module of mouse FGFR1. The three-dimensional fold of the module belongs to the intermediate Ig subgroup and can be described as a beta-barrel consisting of two beta-sheets. One sheet is formed by A', G, F, C, and C', and the other by A, B, B', E...

  15. Apert Syndrome With FGFR2 758 C > G Mutation: A Chinese Case Report

    Directory of Open Access Journals (Sweden)

    Yahong Li

    2018-05-01

    Full Text Available Background: Apert syndrome is considered as one of the most common craniosynostosis syndromes with a prevalence of 1 in 65,000 individuals, and has a close relationship with point mutations in FGFR2 gene.Case report: Here, we described a Apert syndrome case, who was referred to genetic consultation in our hospital with the symptom of craniosynostosis and syndactyly of the hands and feet. Craniosynostosis, midfacial retrusion, steep wide forehead, larger head circumference, marked depression of the nasal bridge, short and wide nose and proptosis could be found obviously, apart from these, ears were mildly low compared with normal children and there was no cleft lip and palate. Mutation was identified by sanger sequencing and a mutation in the exon 7 of FGFR2 gene was detected: p.Pro253Arg (P253R 758 C > G, which was not found in his parents.Conclusion: The baby had Apert syndrome caused by 758 C > G mutation in the exon 7 of FGFR2 gene, considering no this mutation in his parents, it was spontaneous.

  16. About phosphorylation of lappaconitine

    International Nuclear Information System (INIS)

    Burdelnaya, E.V.; Turmukhambetov, A.Zh.

    2005-01-01

    In the article chemical modifications of alkaloid lappaconitine are investigated. It was shown that synthesis of the phosphorylated derivatives are the ways to create new biologically active compounds. Interaction of lappaconitine with phosphorus pentachloride was used to obtain new phosphoric derivatives of alkaloid. The composition and structure of the new phosphorus-containing compounds were confirmed by elemental analysis: IR, UV and 13 C, 1 H, 31 P NMR -spectroscopy

  17. Fibroblast growth factor receptor 1 and cytokeratin 20 expressions and their relation to prognostic variables in bladder cancer.

    Science.gov (United States)

    Abdul-Maksoud, Rehab S; Shalaby, Sally M; Elsayed, Walid S H; Elkady, Saad

    2016-10-15

    Tumor grade and stage are currently the most important prognostic variables in bladder cancer but establishing additional criteria is still needed for effective treatment. The aim of the study was to assess the expression of fibroblast growth factor receptor 1 (FGFR1) and cytokeratin 20 (CK20) in cancer bladder (CB) and to evaluate their association with the clinicopathological features of the disease. The study included 80 patients diagnosed as bladder cancer of different stages and grades and 80 patients with nonmalignant urothelial diseases of matched age and sex to the malignant group. The expressions of FGFR1 and CK20 in tissue samples were determined by RT-PCR and immunohistochemistry. The expression levels of FGFR1 and CK20 were increased in the malignant group when compared to the control group (Pbladder cancer reached 97.5% and 92.5%, respectively. Our results determined overexpression of both FGFR1 and CK20 in CB specimens. The alterations in the expression of FGFR1 and CK20 were associated with disease stage and grade. Lastly, combined detection of FGFR1 and CK20 had a high predictive prognostic value in differentiating invasive from non-invasive carcinoma. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. FGFR1OP tagSNP but not CCR6 polymorphisms are associated with Vogt-Koyanagi-Harada syndrome in Chinese Han.

    Directory of Open Access Journals (Sweden)

    Xianglong Yi

    Full Text Available BACKGROUND: Polymorphisms of the CC chemokine receptor 6 (CCR6 and FGFR10P tagSNP (locus close to CCR6 at 6q27 have recently been reported to be associated with the susceptibility to several immune-related diseases. This study was designed to determine the association of CCR6 and FGFR10P (tagSNPs with Vogt-Koyanagi-Harada (VKH syndrome, an autoimmune disease directed against melanocytes, in two independent Chinese Han populations. METHODOLOGY/PRINCIPAL FINDINGS: A total of 601 VKH patients and 725 healthy controls from two Chinese Han populations were genotyped by the polymerase chain reaction-restriction fragment length polymorphism method. Hardy-Weinberg equilibrium was tested using the χ(2 test. Genotype frequencies were estimated by direct counting. Allele and genotype frequencies were compared between patients and controls using the χ(2 test. The frequency of the A allele of rs2301436 was significantly higher both in Cohort 1 and Cohort 2 as compared with two separate controls (P = 0.044; P = 0.049, respectively. The significance was lost after Bonferroni correction in both cohorts (Pc = 0.516; Pc = 0.392, respectively. The frequency of the A allele was significantly higher in the combined patient group as compared with all controls before and after Bonferroni correction (P = 0.005, Pc = 0.025. The genotype and allele frequencies of rs3093024, rs6902119, rs3093023 and rs968334 were not different between patients with VKH and healthy controls based on analysis either for both cohorts or for the patients and controls in total. Analysis according to extra ocular clinical findings including headache, alopecia and poliosis, vitiligo and tinnitus did not show any association of the five polymorphisms with these parameters. CONCLUSION: These results suggest that the rs2301436 tagSNP of FGFR10P is positively associated with susceptibility to VKH syndrome in the tested Chinese Han populations. No association was found for

  19. The diminished expression of proangiogenic growth factors and their receptors in gastric ulcers of cirrhotic patients.

    Science.gov (United States)

    Luo, Jiing-Chyuan; Peng, Yen-Ling; Hou, Ming-Chih; Huang, Kuang-Wei; Huang, Hui-Chun; Wang, Ying-Wen; Lin, Han-Chieh; Lee, Fa-Yauh; Lu, Ching-Liang

    2013-01-01

    The pathogenesis of the higher occurrence of peptic ulcer disease in cirrhotic patients is complex. Platelets can stimulate angiogenesis and promote gastric ulcer healing. We compared the expressions of proangiogenic growth factors and their receptors in the gastric ulcer margin between cirrhotic patients with thrombocytopenia and those of non-cirrhotic patients to elucidate possible mechanisms. Eligible cirrhotic patients (n = 55) and non-cirrhotic patients (n = 55) who had gastric ulcers were enrolled. Mucosa from the gastric ulcer margin and non-ulcer areas were sampled and the mRNA expressions of the proangiogenic growth factors (vascular endothelial growth factor [VEGF], platelet derived growth factor [PDGF], basic fibroblast growth factor [bFGF]) and their receptors (VEGFR1, VEGFR2, PDGFRA, PDGFRB, FGFR1, FGFR2) were measured and compared. Platelet count and the expressions of these growth factors and their receptors were correlated with each other. The two groups were comparable in terms of gender, ulcer size and infection rate of Helicobacter pylori. However, the cirrhotic group were younger in age, had a lower platelet count than those in the non-cirrhotic group (pexpressions of PDGFB, VEGFR2, FGFR1, and FGFR2 in gastric ulcer margin when compared with those of the non-cirrhotic patients (pexpressions of PDGFB and VEGFR2, FGFR1, and FGFR2 were well correlated with the degree of thrombocytopenia in these cirrhotic patients (ρ>0.5, pimplied that diminished activity of proangiogenic factors and their receptors may contribute to the pathogenesis of gastric ulcers in cirrhotic patients.

  20. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  1. Odor Preference Learning and Memory Modify GluA1 Phosphorylation and GluA1 Distribution in the Neonate Rat Olfactory Bulb: Testing the AMPA Receptor Hypothesis in an Appetitive Learning Model

    Science.gov (United States)

    Cui, Wen; Darby-King, Andrea; Grimes, Matthew T.; Howland, John G.; Wang, Yu Tian; McLean, John H.; Harley, Carolyn W.

    2011-01-01

    An increase in synaptic AMPA receptors is hypothesized to mediate learning and memory. AMPA receptor increases have been reported in aversive learning models, although it is not clear if they are seen with memory maintenance. Here we examine AMPA receptor changes in a cAMP/PKA/CREB-dependent appetitive learning model: odor preference learning in…

  2. The MET/AXL/FGFR Inhibitor S49076 Impairs Aurora B Activity and Improves the Antitumor Efficacy of Radiotherapy.

    Science.gov (United States)

    Clémenson, Céline; Chargari, Cyrus; Liu, Winchygn; Mondini, Michele; Ferté, Charles; Burbridge, Mike F; Cattan, Valérie; Jacquet-Bescond, Anne; Deutsch, Eric

    2017-10-01

    Several therapeutic agents targeting HGF/MET signaling are under clinical development as single agents or in combination, notably with anti-EGFR therapies in non-small cell lung cancer (NSCLC). However, despite increasing data supporting a link between MET, irradiation, and cancer progression, no data regarding the combination of MET-targeting agents and radiotherapy are available from the clinic. S49076 is an oral ATP-competitive inhibitor of MET, AXL, and FGFR1-3 receptors that is currently in phase I/II clinical trials in combination with gefitinib in NSCLC patients whose tumors show resistance to EGFR inhibitors. Here, we studied the impact of S49076 on MET signaling, cell proliferation, and clonogenic survival in MET-dependent (GTL16 and U87-MG) and MET-independent (H441, H460, and A549) cells. Our data show that S49076 exerts its cytotoxic activity at low doses on MET-dependent cells through MET inhibition, whereas it inhibits growth of MET-independent cells at higher but clinically relevant doses by targeting Aurora B. Furthermore, we found that S49076 improves the antitumor efficacy of radiotherapy in both MET-dependent and MET-independent cell lines in vitro and in subcutaneous and orthotopic tumor models in vivo In conclusion, our study demonstrates that S49076 has dual antitumor activity and can be used in combination with radiotherapy for the treatment of both MET-dependent and MET-independent tumors. These results support the evaluation of combined treatment of S49076 with radiation in clinical trials without patient selection based on the tumor MET dependency status. Mol Cancer Ther; 16(10); 2107-19. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Insulin stimulates the tyrosine phosphorylation of a Mr = 160,000 glycoprotein in adipocyte plasma membranes

    International Nuclear Information System (INIS)

    Yu, K.T.; Khalaf, N.; Czech, M.P.

    1986-01-01

    In an attempt to identify putative substrates for the insulin receptor kinase, adipocyte plasma membranes were incubated with [γ- 32 P]ATP in the presence and absence of insulin. Insulin stimulates the tyrosine phosphorylation of its receptor β subunit but does not detectably alter the phosphorylation of other membrane proteins. In contrast, when plasma membranes from insulin-treated adipocytes are phosphorylated, the 32 P-labeling of a Mr=160,000 species (p160) and insulin receptor β subunit are markedly increased when compared to controls. p160 exhibits a rapid response (max. at 1 min) and high sensitivity (ED 50 = 2 x 10 -10 M) to insulin. The stimulatory effect of insulin on the phosphorylation of p160 is rapidly reversed following the addition of anti-insulin serum. Cold chase experiments indicate that insulin promotes the phosphorylation of p160 rather than inhibiting its dephosphorylation. p160 is a glycoprotein as evidenced by its adsorption to immobilized lectins and does not represent the insulin receptor precursor. The action of insulin on p160 tyrosine phosphorylation is mimicked by concanavalin A but not by EGF and other insulin-like agents such as hydrogen peroxide and vanadate. These results suggest that p160 tyrosine phosphorylation is an insulin receptor-mediated event and may participate in signalling by the insulin receptor

  4. Functional Proteomics Defines the Molecular Switch Underlying FGF Receptor Trafficking and Cellular Outputs

    DEFF Research Database (Denmark)

    Francavilla, Chiara; Rigbolt, Kristoffer T.G.; Emdal, Kristina B

    2013-01-01

    The stimulation of fibroblast growth factor receptors (FGFRs) with distinct FGF ligands generates specific cellular responses. However, the mechanisms underlying this paradigm have remained elusive. Here, we show that FGF-7 stimulation leads to FGFR2b degradation and, ultimately, cell proliferation...

  5. Tyrosine Phosphorylation of Jak2 in the JH2 Domain Inhibits Cytokine Signaling

    OpenAIRE

    Feener, Edward P.; Rosario, Felicia; Dunn, Sarah L.; Stancheva, Zlatina; Myers, Martin G.

    2004-01-01

    Jak family tyrosine kinases mediate signaling by cytokine receptors to regulate diverse biological processes. Although Jak2 and other Jak kinase family members are phosphorylated on numerous sites during cytokine signaling, the identity and function of most of these sites remains unknown. Using tandem mass spectroscopic analysis of activated Jak2 protein from intact cells, we identified Tyr221 and Tyr570 as novel sites of Jak2 phosphorylation. Phosphorylation of both sites was stimulated by c...

  6. Properties of phosphorylated thymidylate synthase

    DEFF Research Database (Denmark)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr

    2015-01-01

    by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were...... also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent....

  7. A 3-plex methylation assay combined with the FGFR3 mutation assay sensitively detects recurrent bladder cancer in voided urine

    DEFF Research Database (Denmark)

    Kandimalla, Raju; Masius, Roy; Beukers, Willemien

    2013-01-01

    is to determine the sensitivity and specificity of a urine assay for the diagnosis of recurrences in patients with a previous primary NMIBC G1/G2 by using cystoscopy as the reference standard. Experimental Design: We selected eight CpG islands (CGI) methylated in bladder cancer from our earlier genome-wide study......Purpose: DNA methylation is associated with bladder cancer and these modifications could serve as useful biomarkers. FGFR3 mutations are present in 60% to 70% of non–muscle invasive bladder cancer (NMIBC). Low-grade bladder cancer recurs in more than 50% of patients. The aim of this study......, and nonmalignant urines (n = 130). Results: The 3-plex assay identified recurrent bladder cancer in voided urine with a sensitivity of 74% in the validation set. In combination with the FGFR3 mutation assay, a sensitivity of 79% was reached (specificity of 77%). Sensitivity of FGFR3 and cytology was 52% and 57...

  8. Kallmann syndrome: 14 novel mutations in KAL1 and FGFR1 (KAL2).

    Science.gov (United States)

    Albuisson, Juliette; Pêcheux, Chistophe; Carel, Jean-Claude; Lacombe, Didier; Leheup, Bruno; Lapuzina, Pablo; Bouchard, Philippe; Legius, Eric; Matthijs, Gert; Wasniewska, Malgorzata; Delpech, Marc; Young, Jacques; Hardelin, Jean-Pierre; Dodé, Catherine

    2005-01-01

    Kallmann syndrome (KAL) combines hypogonadotropic hypogonadism and anosmia. Hypogonadism is due to Gonadotropin Releasing Hormone (GnRH) deficiency and anosmia is related to hypoplasia of the olfactory bulbs. Occasional symptoms include renal agenesis, bimanual synkinesia, cleft lip palate, dental agenesis. KAL is genetically heterogeneous and two genes have so far been identified, namely KAL1 (Xp22.3) and FGFR1/KAL2 (8p12), which underlie the X chromosome-linked form and an autosomal dominant form of the disease, respectively. We studied a cohort of 98 unrelated Caucasian KAL patients. We identified KAL1 mutations in 14 patients, of which 7 (c.3G>A (p.M1?), g.IVS1+1G>T, c.570_571insA (p.R191fsX14), c.784G>C (p.R262P), c.958G>T (p.E320X), c.1651_1654delinsAGCT (p.P551_E552delinsSX), c.1711T>A (p.W571R)) have not been previously reported. In addition, we found FGFR1 mutations in 7 patients, namely c.303G>A (p.V102I), C.385A>C (p.D129A), c.810G>A (p.V273M), c.1093_1094delAG (p.R365fsX41), c.1561G>A (p.A520T), c.1836_1837insT (p.Y613fsX42), c.2190C>G (p.Y730X), all of which were novel mutations. In this study, unilateral renal agenesis and bimanual synkinesia were exclusively found associated with KAL1mutations, cleft palate and dental agenesia with FGFR1mutations. (c) 2004 Wiley-Liss, Inc.

  9. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy

    Directory of Open Access Journals (Sweden)

    Szlachcic A

    2016-08-01

    Full Text Available Anna Szlachcic, Malgorzata Zakrzewska, Michal Lobocki, Piotr Jakimowicz, Jacek Otlewski Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland Abstract: Fibroblast growth factor receptors (FGFRs are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V, was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE, and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. Keywords: fibroblast growth factor 1, FGF receptor, targeted cancer therapy, cytotoxic conjugates, FGFR-dependent cancer, MMAE, auristatin

  10. The C-terminal SH2 domain of p85 accounts for the high affinity and specificity of the binding of phosphatidylinositol 3-kinase to phosphorylated platelet-derived growth factor beta receptor.

    Science.gov (United States)

    Klippel, A; Escobedo, J A; Fantl, W J; Williams, L T

    1992-01-01

    Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor. Images PMID:1312663

  11. FGFR1 tyrosine kinase domain duplication in pilocytic astrocytoma with anaplasia.

    Science.gov (United States)

    Ballester, Leomar Y; Penas-Prado, Marta; Leeds, Norman E; Huse, Jason T; Fuller, Gregory N

    2018-04-01

    We report the case of a 27-yr-old male with visual field loss who had a 4.9-cm complex cystic mass in the right occipital lobe. Histologic examination showed pilocytic astrocytoma (PA) with anaplasia, and molecular characterization revealed FGFR1 duplication with additional variants of unknown significance in several genes ( ARID1A, ARID1B, CHEK2, EPHA5, and MLL2 ). This is one of only a very few reported cases of anaplastic PA with characterization of molecular alterations. © 2018 Ballester et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Monitoring the native phosphorylation state of plasma membrane proteins from a single mouse cerebellum

    DEFF Research Database (Denmark)

    Schindler, J.; Ye, J. Y.; Jensen, Ole Nørregaard

    2013-01-01

    Neuronal processing in the cerebellum involves the phosphorylation and dephosphorylation of various plasma membrane proteins such as AMPA or NMDA receptors. Despite the importance of changes in phosphorylation pattern, no global phospho-proteome analysis has yet been performed. As plasma membrane...

  13. A meta-analysis of the relationship between FGFR3 and TP53 mutations in bladder cancer.

    Science.gov (United States)

    Neuzillet, Yann; Paoletti, Xavier; Ouerhani, Slah; Mongiat-Artus, Pierre; Soliman, Hany; de The, Hugues; Sibony, Mathilde; Denoux, Yves; Molinie, Vincent; Herault, Aurélie; Lepage, May-Linda; Maille, Pascale; Renou, Audrey; Vordos, Dimitri; Abbou, Claude-Clément; Bakkar, Ashraf; Asselain, Bernard; Kourda, Nadia; El Gaaied, Amel; Leroy, Karen; Laplanche, Agnès; Benhamou, Simone; Lebret, Thierry; Allory, Yves; Radvanyi, François

    2012-01-01

    TP53 and FGFR3 mutations are the most common mutations in bladder cancers. FGFR3 mutations are most frequent in low-grade low-stage tumours, whereas TP53 mutations are most frequent in high-grade high-stage tumours. Several studies have reported FGFR3 and TP53 mutations to be mutually exclusive events, whereas others have reported them to be independent. We carried out a meta-analysis of published findings for FGFR3 and TP53 mutations in bladder cancer (535 tumours, 6 publications) and additional unpublished data for 382 tumours. TP53 and FGFR3 mutations were not independent events for all tumours considered together (OR = 0.25 [0.18-0.37], p = 0.0001) or for pT1 tumours alone (OR = 0.47 [0.28-0.79], p = 0.0009). However, if the analysis was restricted to pTa tumours or to muscle-invasive tumours alone, FGFR3 and TP53 mutations were independent events (OR = 0.56 [0.23-1.36] (p = 0.12) and OR = 0.99 [0.37-2.7] (p = 0.35), respectively). After stratification of the tumours by stage and grade, no dependence was detected in the five tumour groups considered (pTaG1 and pTaG2 together, pTaG3, pT1G2, pT1G3, pT2-4). These differences in findings can be attributed to the putative existence of two different pathways of tumour progression in bladder cancer: the CIS pathway, in which FGFR3 mutations are rare, and the Ta pathway, in which FGFR3 mutations are frequent. TP53 mutations occur at the earliest stage of the CIS pathway, whereas they occur would much later in the Ta pathway, at the T1G3 or muscle-invasive stage.

  14. A meta-analysis of the relationship between FGFR3 and TP53 mutations in bladder cancer.

    Directory of Open Access Journals (Sweden)

    Yann Neuzillet

    Full Text Available TP53 and FGFR3 mutations are the most common mutations in bladder cancers. FGFR3 mutations are most frequent in low-grade low-stage tumours, whereas TP53 mutations are most frequent in high-grade high-stage tumours. Several studies have reported FGFR3 and TP53 mutations to be mutually exclusive events, whereas others have reported them to be independent. We carried out a meta-analysis of published findings for FGFR3 and TP53 mutations in bladder cancer (535 tumours, 6 publications and additional unpublished data for 382 tumours. TP53 and FGFR3 mutations were not independent events for all tumours considered together (OR = 0.25 [0.18-0.37], p = 0.0001 or for pT1 tumours alone (OR = 0.47 [0.28-0.79], p = 0.0009. However, if the analysis was restricted to pTa tumours or to muscle-invasive tumours alone, FGFR3 and TP53 mutations were independent events (OR = 0.56 [0.23-1.36] (p = 0.12 and OR = 0.99 [0.37-2.7] (p = 0.35, respectively. After stratification of the tumours by stage and grade, no dependence was detected in the five tumour groups considered (pTaG1 and pTaG2 together, pTaG3, pT1G2, pT1G3, pT2-4. These differences in findings can be attributed to the putative existence of two different pathways of tumour progression in bladder cancer: the CIS pathway, in which FGFR3 mutations are rare, and the Ta pathway, in which FGFR3 mutations are frequent. TP53 mutations occur at the earliest stage of the CIS pathway, whereas they occur would much later in the Ta pathway, at the T1G3 or muscle-invasive stage.

  15. Fibroblast growth factor receptor 1 activation in mammary tumor cells promotes macrophage recruitment in a CX3CL1-dependent manner.

    Directory of Open Access Journals (Sweden)

    Johanna R Reed

    Full Text Available Tumor formation is an extensive process requiring complex interactions that involve both tumor cell-intrinsic pathways and soluble mediators within the microenvironment. Tumor cells exploit the intrinsic functions of many soluble molecules, including chemokines and their receptors, to regulate pro-tumorigenic phenotypes that are required for growth and progression of the primary tumor. Previous studies have shown that activation of inducible FGFR1 (iFGFR1 in mammary epithelial cells resulted in increased proliferation, migration, and invasion in vitro and tumor formation in vivo. These studies also demonstrated that iFGFR1 activation stimulated recruitment of macrophages to the epithelium where macrophages contributed to iFGFR1-mediated epithelial cell proliferation and angiogenesis. The studies presented here further utilize this model to identify the mechanisms that regulate FGFR1-induced macrophage recruitment. Results from this study elucidate a novel role for the inflammatory chemokine CX3CL1 in FGFR1-induced macrophage migration. Specifically, we illustrate that activation of both the inducible FGFR1 construct in mouse mammary epithelial cells and endogenous FGFR in the triple negative breast cancer cell line, HS578T, leads to expression of the chemokine CX3CL1. Furthermore, we demonstrate that FGFR-induced CX3CL1 is sufficient to recruit CX3CR1-expressing macrophages in vitro. Finally, blocking CX3CR1 in vivo leads to decreased iFGFR1-induced macrophage recruitment, which correlates with decreased angiogenesis. While CX3CL1 is a known target of FGF signaling in the wound healing environment, these studies demonstrate that FGFR activation also leads to induction of CX3CL1 in a tumor setting. Furthermore, these results define a novel role for CX3CL1 in promoting macrophage recruitment during mammary tumor formation, suggesting that the CX3CL1/CX3CR1 axis may represent a potential therapeutic approach for targeting breast cancers associated

  16. Receptor tyrosine kinase signaling: a view from quantitative proteomics

    DEFF Research Database (Denmark)

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2009-01-01

    Growth factor receptor signaling via receptor tyrosine kinases (RTKs) is one of the basic cellular communication principals found in all metazoans. Extracellular signals are transferred via membrane spanning receptors into the cytoplasm, reversible tyrosine phosphorylation being the hallmark of all...

  17. Phosphorylation of chicken growth hormone

    International Nuclear Information System (INIS)

    Aramburo, C.; Montiel, J.L.; Donoghue, D.; Scanes, C.G.; Berghman, L.R.

    1990-01-01

    The possibility that chicken growth hormone (cGH) can be phosphorylated has been examined. Both native and biosynthetic cGH were phosphorylated by cAMP-dependent protein kinase (and γ- 32 P-ATP). The extent of phosphorylation was however less than that observed with ovine prolactin. Under the conditions employed, glycosylated cGH was not phosphorylated. Chicken anterior pituitary cells in primary culture were incubated in the presence of 32 P-phosphate. Radioactive phosphate was incorporated in vitro into the fraction immunoprecipitable with antisera against cGH. Incorporation was increased with cell number and time of incubation. The presence of GH releasing factor (GRF) increased the release of 32 P-phosphate labeled immunoprecipitable GH into the incubation media but not content of immunoprecipitable GH in the cells. The molecular weight of the phosphorylated immunoreactive cGH in the cells corresponded to cGH dimer

  18. Sphingosine-1-phosphate receptors: Zooming in on ligand-induced intracellular trafficking and its functional implications

    NARCIS (Netherlands)

    Verzijl, Dennis; Peters, Stephan L. M.; Alewijnse, Astrid E.

    2010-01-01

    Regulatory processes including receptor phosphorylation and intracellular trafficking, also referred to as receptor internalization, are important processes to terminate G protein-coupled receptor (GPCR) signaling. Compelling evidence now indicates that internalization of a receptor is not

  19. PPARγ1 phosphorylation enhances proliferation and drug resistance in human fibrosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xiaojuan; Shu, Yuxin; Niu, Zhiyuan; Zheng, Wei; Wu, Haochen [State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Lu, Yan, E-mail: luyan@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Shen, Pingping, E-mail: ppshen@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing (China); Model Animal Research Center (MARC), Nanjing University, Nanjing (China)

    2014-03-10

    Post-translational regulation plays a critical role in the control of cell growth and proliferation. The phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) is the most important post-translational modification. The function of PPARγ phosphorylation has been studied extensively in the past. However, the relationship between phosphorylated PPARγ1 and tumors remains unclear. Here we investigated the role of PPARγ1 phosphorylation in human fibrosarcoma HT1080 cell line. Using the nonphosphorylation (Ser84 to alanine, S84A) and phosphorylation (Ser84 to aspartic acid, S84D) mutant of PPARγ1, the results suggested that phosphorylation attenuated PPARγ1 transcriptional activity. Meanwhile, we demonstrated that phosphorylated PPARγ1 promoted HT1080 cell proliferation and this effect was dependent on the regulation of cell cycle arrest. The mRNA levels of cyclin-dependent kinase inhibitor (CKI) p21{sup Waf1/Cip1} and p27{sup Kip1} descended in PPARγ1{sup S84D} stable HT1080 cell, whereas the expression of p18{sup INK4C} was not changed. Moreover, compared to the PPARγ1{sup S84A}, PPARγ1{sup S84D} up-regulated the expression levels of cyclin D1 and cyclin A. Finally, PPARγ1 phosphorylation reduced sensitivity to agonist rosiglitazone and increased resistance to anticancer drug 5-fluorouracil (5-FU) in HT1080 cell. Our findings establish PPARγ1 phosphorylation as a critical event in human fibrosarcoma growth. These findings raise the possibility that chemical compounds that prevent the phosphorylation of PPARγ1 could act as anticancer drugs. - Highlights: • Phosphorylation attenuates PPARγ1 transcriptional activity. • Phosphorylated PPARγ1 promotes HT1080 cells proliferation. • PPARγ1 phosphorylation regulates cell cycle by mediating expression of cell cycle regulators. • PPARγ1 phosphorylation reduces sensitivity to agonist and anticancer drug. • Our findings establish PPARγ1 phosphorylation as a critical event in HT1080

  20. Preserved fertility in a non-mosaic Klinefelter patient with a mutation in the fibroblast growth factor receptor 3 gene

    DEFF Research Database (Denmark)

    Juul, A; Aksglaede, L; Lund, A M

    2007-01-01

    receptor 3 (FGFR3) gene, which is a gain-of-function mutation resulting in achondroplasia. The patient had phenotypic characteristics of achondroplasia (e.g. short limbed dwarfism and frontal bossing). Testicular volume was 8 ml at 27 years of age and repeated semen samples showed sperm concentrations of 0...

  1. Positive fibroblast growth factor receptor 3 immunoreactivity is associated with low-grade non-invasive urothelial bladder cancer

    NARCIS (Netherlands)

    C. Poyet (Cédric); T. Hermanns (Thomas); Q. Zhong (Qing); E. Drescher (Eva); D. Eberli (Daniel); M. Burger (Maximilian); F. Hofstaedter (Ferdinand); A. Hartmann (Arndt); R. Stöhr (Robert); E.C. Zwarthoff (Ellen); T. Sulser (Tullio); P.J. Wild (Peter J.)

    2015-01-01

    textabstractIn addition to conventional clinicopathological parameters, molecular markers are also required in order to predict the course of disease in patients with urothelial bladder cancer (BC). Little is known about fibroblast growth factor receptor 3 (FGFR3) immunoreactivity and the clinical

  2. Sustained Brown Fat Stimulation and Insulin Sensitization by a Humanized Bispecific Antibody Agonist for Fibroblast Growth Factor Receptor 1/βKlotho Complex

    Directory of Open Access Journals (Sweden)

    Ganesh Kolumam

    2015-07-01

    Full Text Available Dissipating excess calories as heat through therapeutic stimulation of brown adipose tissues (BAT has been proposed as a potential treatment for obesity-linked disorders. Here, we describe the generation of a humanized effector-less bispecific antibody that activates fibroblast growth factor receptor (FGFR 1/βKlotho complex, a common receptor for FGF21 and FGF19. Using this molecule, we show that antibody-mediated activation of FGFR1/βKlotho complex in mice induces sustained energy expenditure in BAT, browning of white adipose tissue, weight loss, and improvements in obesity-associated metabolic derangements including insulin resistance, hyperglycemia, dyslipidemia and hepatosteatosis. In mice and cynomolgus monkeys, FGFR1/βKlotho activation increased serum high-molecular-weight adiponectin, which appears to contribute over time by enhancing the amplitude of the metabolic benefits. At the same time, insulin sensitization by FGFR1/βKlotho activation occurs even before the onset of weight loss in a manner that is independent of adiponectin. Together, selective activation of FGFR1/βKlotho complex with a long acting therapeutic antibody represents an attractive approach for the treatment of type 2 diabetes and other obesity-linked disorders through enhanced energy expenditure, insulin sensitization and induction of high-molecular-weight adiponectin.

  3. Reversible Congenital Hypogonadotropic Hypogonadism in Patients with CHD7, FGFR1 or GNRHR Mutations

    Science.gov (United States)

    Laitinen, Eeva-Maria; Tommiska, Johanna; Sane, Timo; Vaaralahti, Kirsi; Toppari, Jorma; Raivio, Taneli

    2012-01-01

    Background Congenital hypogonadotropic hypogonadism (HH) is a rare cause for delayed or absent puberty. These patients may recover from HH spontaneously in adulthood. To date, it is not possible to predict who will undergo HH reversal later in life. Herein we investigated whether Finnish patients with reversal of congenital hypogonadotropic hypogonadism (HH) have common phenotypic or genotypic features. Methods and Findings Thirty-two male HH patients with anosmia/hyposmia (Kallmann Syndrome, KS; n = 26) or normal sense of smell (nHH; n = 6) were enrolled (age range, 18–61 yrs). The patients were clinically examined, and reversal of HH was assessed after treatment withdrawal. KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7, WDR11, GNRHR, GNRH1, KISS1R, KISS1, TAC3, TACR3, and LHβ were screened for mutations. Six HH patients (2 KS, 4 nHH) were verified to have reversal of HH. In the majority of cases, reversal occurred early in adulthood (median age, 23 yrs; range, 21–39 yrs). All had spontaneous testicular growth while on testosterone replacement therapy (TRT). One nHH subject was restarted on TRT due to a decline in serum T. Two reversal variants had a same GNRHR mutation (R262Q), which was accompanied by another GNRHR mutation (R139H or del309F). In addition, both of the KS patients had a mutation in CHD7 (p.Q51X) or FGFR1 (c.91+2T>A). Conclusions Considerable proportion of patients with HH (8% of KS probands) may recover in early adulthood. Spontaneous testicular enlargement during TRT was highly suggestive for reversal of HH. Those with the GNRHR mutation R262Q accompanied by another GNRHR mutation may be prone to reversal, although even patients with a truncating mutation in CHD7 or a splice-site mutation in FGFR1 can recover. We recommend that all adolescents and young adults with congenital HH should be informed on the possibility of reversal. PMID:22724017

  4. Reversible congenital hypogonadotropic hypogonadism in patients with CHD7, FGFR1 or GNRHR mutations.

    Directory of Open Access Journals (Sweden)

    Eeva-Maria Laitinen

    Full Text Available BACKGROUND: Congenital hypogonadotropic hypogonadism (HH is a rare cause for delayed or absent puberty. These patients may recover from HH spontaneously in adulthood. To date, it is not possible to predict who will undergo HH reversal later in life. Herein we investigated whether Finnish patients with reversal of congenital hypogonadotropic hypogonadism (HH have common phenotypic or genotypic features. METHODS AND FINDINGS: Thirty-two male HH patients with anosmia/hyposmia (Kallmann Syndrome, KS; n = 26 or normal sense of smell (nHH; n = 6 were enrolled (age range, 18-61 yrs. The patients were clinically examined, and reversal of HH was assessed after treatment withdrawal. KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7, WDR11, GNRHR, GNRH1, KISS1R, KISS1, TAC3, TACR3, and LHβ were screened for mutations. Six HH patients (2 KS, 4 nHH were verified to have reversal of HH. In the majority of cases, reversal occurred early in adulthood (median age, 23 yrs; range, 21-39 yrs. All had spontaneous testicular growth while on testosterone replacement therapy (TRT. One nHH subject was restarted on TRT due to a decline in serum T. Two reversal variants had a same GNRHR mutation (R262Q, which was accompanied by another GNRHR mutation (R139H or del309F. In addition, both of the KS patients had a mutation in CHD7 (p.Q51X or FGFR1 (c.91+2T>A. CONCLUSIONS: Considerable proportion of patients with HH (8% of KS probands may recover in early adulthood. Spontaneous testicular enlargement during TRT was highly suggestive for reversal of HH. Those with the GNRHR mutation R262Q accompanied by another GNRHR mutation may be prone to reversal, although even patients with a truncating mutation in CHD7 or a splice-site mutation in FGFR1 can recover. We recommend that all adolescents and young adults with congenital HH should be informed on the possibility of reversal.

  5. Oncogenic role of fibroblast growth factor receptor 3 in tumorigenesis of urinary bladder cancer.

    Science.gov (United States)

    Pandith, Arshad A; Shah, Zafar A; Siddiqi, Mushtaq A

    2013-05-01

    Bladder cancer is the second most common genitourinary tumor and constitutes a very heterogeneous disease. Molecular and pathologic studies suggest that low-grade noninvasive and high-grade invasive urothelial cell carcinoma (UCC) arise via distinct pathways. Low-grade noninvasive UCC represent the majority of tumors at presentation. A high proportion of patients with low-grade UCC develop recurrences but usually with no progression to invasive disease. At presentation, a majority of the bladder tumors (70%-80%) are low-grade noninvasive (pTa). Several genetic changes may occur in bladder cancer, but activating mutations in the fibroblast growth factor receptor 3 (FGFR3) genes are the most common and most specific genetic abnormality in bladder cancer. Interestingly, these mutations are associated with bladder tumors of low stage and grade, which makes the FGFR3 mutation the first marker that can be used for diagnosis of noninvasive bladder tumors. Since the first report of FGFR3 involvement in bladder tumors, numerous studies have been conducted to understand its function and thereby confirm the oncogenic role of this receptor particularly in noninvasive groups. Efforts are on to exploit this receptor as a therapeutic target, which holds much promise in the treatment of bladder cancer, particularly low-grade noninvasive tumors. Further studies need to explore the potential use of FGFR3 mutations in bladder cancer diagnosis, prognosis, and in surveillance of patients with bladder cancer. This review focuses on the role of FGFR3 in bladder tumors in the backdrop of various studies published. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Plk1 phosphorylation of IRS2 prevents premature mitotic exit via AKT inactivation

    Science.gov (United States)

    Chen, Long; Li, Zhiguo; Ahmad, Nihal; Liu, Xiaoqi

    2016-01-01

    Insulin receptor substrate (IRS) proteins play important roles by acting as a platform in transducing signals from transmembrane receptors upon growth factor stimulation. Although tyrosine phosphorylation on IRS proteins plays critical roles in signal transduction, phosphorylation of IRS proteins on serine/threonine residues are believed to play various regulatory roles on IRS protein function. However, studies on serine/threonine phosphorylation of IRS proteins are very limited, especially for insulin receptor substrate 2 (IRS2), one member of the IRS protein family. In this study, we identify Polo-like kinase 1 (Plk1) as the responsible kinase for phosphorylation of IRS2 on two serine residues, Ser 556 and Ser 1098. Phosphorylation of IRS2 on these two serine residues by Plk1 prevents the activation of the PI3K pathway upon growth factor stimulation by inhibiting the binding between IRS2 and the PI3K pathway components and increasing IRS2 protein degradation. Of significance, we show that IRS2 phosphorylation is cell cycle regulated and that Plk1 phosphorylation of IRS2 prevents premature mitotic exit via AKT inactivation. PMID:25830382

  7. Glycogen phosphorylation and Lafora disease.

    Science.gov (United States)

    Roach, Peter J

    2015-12-01

    Covalent phosphorylation of glycogen, first described 35 years ago, was put on firm ground through the work of the Whelan laboratory in the 1990s. But glycogen phosphorylation lay fallow until interest was rekindled in the mid 2000s by the finding that it could be removed by a glycogen-binding phosphatase, laforin, and that mutations in laforin cause a fatal teenage-onset epilepsy, called Lafora disease. Glycogen phosphorylation is due to phosphomonoesters at C2, C3 and C6 of glucose residues. Phosphate is rare, ranging from 1:500 to 1:5000 phosphates/glucose depending on the glycogen source. The mechanisms of glycogen phosphorylation remain under investigation but one hypothesis to explain C2 and perhaps C3 phosphate is that it results from a rare side reaction of the normal synthetic enzyme glycogen synthase. Lafora disease is likely caused by over-accumulation of abnormal glycogen in insoluble deposits termed Lafora bodies in neurons. The abnormality in the glycogen correlates with elevated phosphorylation (at C2, C3 and C6), reduced branching, insolubility and an enhanced tendency to aggregate and become insoluble. Hyperphosphorylation of glycogen is emerging as an important feature of this deadly childhood disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Propofol directly increases tau phosphorylation.

    Directory of Open Access Journals (Sweden)

    Robert A Whittington

    2011-01-01

    Full Text Available In Alzheimer's disease (AD and other tauopathies, the microtubule-associated protein tau can undergo aberrant hyperphosphorylation potentially leading to the development of neurofibrillary pathology. Anesthetics have been previously shown to induce tau hyperphosphorylation through a mechanism involving hypothermia-induced inhibition of protein phosphatase 2A (PP2A activity. However, the effects of propofol, a common clinically used intravenous anesthetic, on tau phosphorylation under normothermic conditions are unknown. We investigated the effects of a general anesthetic dose of propofol on levels of phosphorylated tau in the mouse hippocampus and cortex under normothermic conditions. Thirty min following the administration of propofol 250 mg/kg i.p., significant increases in tau phosphorylation were observed at the AT8, CP13, and PHF-1 phosphoepitopes in the hippocampus, as well as at AT8, PHF-1, MC6, pS262, and pS422 epitopes in the cortex. However, we did not detect somatodendritic relocalization of tau. In both brain regions, tau hyperphosphorylation persisted at the AT8 epitope 2 h following propofol, although the sedative effects of the drug were no longer evident at this time point. By 6 h following propofol, levels of phosphorylated tau at AT8 returned to control levels. An initial decrease in the activity and expression of PP2A were observed, suggesting that PP2A inhibition is at least partly responsible for the hyperphosphorylation of tau at multiple sites following 30 min of propofol exposure. We also examined tau phosphorylation in SH-SY5Y cells transfected to overexpress human tau. A 1 h exposure to a clinically relevant concentration of propofol in vitro was also associated with tau hyperphosphorylation. These findings suggest that propofol increases tau phosphorylation both in vivo and in vitro under normothermic conditions, and further studies are warranted to determine the impact of this anesthetic on the acceleration of

  9. Computational mouse atlases and their application to automatic assessment of craniofacial dysmorphology caused by the Crouzon mutation Fgfr2

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Darvann, Tron Andre; Hermann, Nuno V.

    2007-01-01

    Crouzon syndrome is characterised by premature fusion of sutures and synchondroses. Recently the first mouse model of the syndrome was generated, having the mutation Cys342Tyr in Fgfr2c, equivalent to the most common human Crouzon/Pfeiffer syndrome mutation. In this study, a set of Micro CT scann....... Furthermore, the nonrigid approach is essential when it comes to analysing local, nonlinear shape differences.......Crouzon syndrome is characterised by premature fusion of sutures and synchondroses. Recently the first mouse model of the syndrome was generated, having the mutation Cys342Tyr in Fgfr2c, equivalent to the most common human Crouzon/Pfeiffer syndrome mutation. In this study, a set of Micro CT....... Subsequently, the atlas was deformed to match each subject from the two groups of mice. The accuracy of these registrations was measured by a comparison of manually placed landmarks from two different observers and automatically assessed landmarks. Both of the automatic approaches were within the inter...

  10. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells.

    Science.gov (United States)

    Ito, Mai; Arakawa, Toshiya; Okayama, Miki; Shitara, Akiko; Mizoguchi, Itaru; Takuma, Taishin

    2014-11-01

    The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement. © 2013 Wiley Publishing Asia Pty Ltd.

  11. Glutamatergic induction of CREB phosphorylation and Fos expression in primary cultures of the suprachiasmatic hypothalamus in vitro is mediated by co-ordinate activity of NMDA and non-NMDA receptors.

    Science.gov (United States)

    Schurov, I L; McNulty, S; Best, J D; Sloper, P J; Hastings, M H

    1999-01-01

    Exposure of Syrian hamsters to light 1 h after lights-off rapidly (10 min) induced nuclear immunoreactivity (-ir) to the phospho-Ser133 form of the Ca2+/cAMP response element (CRE) binding protein (pCREB) in the retinorecipient zone of the suprachiasmatic nuclei (SCN). Light also induced nuclear Fos-ir in the same region of the SCN after 1 h. The glutamatergic N-methyl-D-aspartate (NMDA) receptor blocker MK801 attenuated the photic induction of both factors. To investigate glutamatergic regulation of pCREB and Fos further, tissue blocks and primary cultures of neonatal hamster SCN were examined by Western blotting and immunocytochemistry in vitro. On Western blots of SCN tissue, the pCREB-ir signal at 45 kDa was enhanced by glutamate or a mixture of glutamatergic agonists (NMDA, amino-methyl proprionic acid (AMPA), and Kainate (KA)), whereas total CREB did not change. Glutamate or the mixture of agonists also induced a 56 kDa band identified as Fos protein in SCN tissue. In dissociated cultures of SCN, glutamate caused a rapid (15 min) induction of nuclear pCREB-ir and Fos-ir (after 60 min) exclusively in neurones, both GABA-ir and others. Treatment with NMDA alone had no effect on pCREB-ir. AMPA alone caused a slight increase in pCREB-ir. However, kainate alone or in combination with NMDA and AMPA induced nuclear pCREB-ir equal to that induced by glutamate. The effects of glutamate on pCREB-ir and Fos-ir were blocked by antagonists of both NMDA (MK801) and AMPA/KA (NBQX) receptors. In the absence of extracellular Mg2+, MK801 blocked glutamatergic induction of Fos-ir. However, the AMPA/KA receptor antagonist was no longer effective at blocking glutamatergic induction of either Fos-ir or pCREB-ir, consistent with the model that glutamate regulates gene expression in the SCN by a co-ordinate action through both NMDA and AMPA/KA receptors. Glutamatergic induction of nuclear pCREB-ir in GABA-ir neurones was blocked by KN-62 an inhibitor of Ca2+/Calmodulin (Ca

  12. Novel FGFR1 and KISS1R Mutations in Chinese Kallmann Syndrome Males with Cleft Lip/Palate

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2015-01-01

    Full Text Available Kallmann syndrome (KS is characterized by isolated hypogonadotropic hypogonadism (IHH with anosmia and is sometimes associated with cleft lip/palate (CLP. In order to describe the clinical features, genetic etiology, and treatment outcome of KS males with CLP, we performed genetic screening for 15 known causal IHH genes (KAL1, FGFR1, NELF, FGF8, CHD7, WDR11, SEMA3A, KISS1R, KISS1, PROKR2, PROK2, TAC3, TACR3, GNRH1, and GNRHR in four KS with CLP patients and six IHH patients without CLP. Two novel heterozygous missense mutations in FGFR1, (NM_001174066: c.776G>A (p.G259E and (NM_001174066: c.358C>T (p.R120C, were identified in a 23-year-old KS male with cleft lip and an 18-year-old KS patient with cleft lip and palate, dental agenesis, and high arched palate, respectively. These two mutations were not presented in their healthy parents and 200 normal controls. One novel heterozygous missense mutation in KISS1R, (NM_032551: c.587C>A (p.P196H, was identified in an 18-year-old KS male with cleft lip and dental agenesis who developed sperm after being treated with gonadotropin. This mutation was also presented in his healthy father and grandfather. These results have implications for the diagnosis, genetic counseling, and treatment of KS and CLP males with mutations in FGFR1 gene.

  13. [Rapid detection of hot spot mutations of FGFR3 gene with PCR-high resolution melting assay].

    Science.gov (United States)

    Li, Shan; Wang, Han; Su, Hua; Gao, Jinsong; Zhao, Xiuli

    2017-08-10

    To identify the causative mutations in five individuals affected with dyschondroplasia and develop an efficient procedure for detecting hot spot mutations of the FGFR3 gene. Genomic DNA was extracted from peripheral blood samples with a standard phenol/chloroform method. PCR-Sanger sequencing was used to analyze the causative mutations in the five probands. PCR-high resolution melting (HRM) was developed to detect the identified mutations. A c.1138G>A mutation in exon 8 was found in 4 probands, while a c.1620C>G mutation was found in exon 11 of proband 5 whom had a mild phenotype. All patients were successfully distinguished from healthy controls with the PCR-HRM method. The results of HRM analysis were highly consistent with that of Sanger sequencing. The Gly380Arg and Asn540Lys are hot spot mutations of the FGFR3 gene among patients with ACH/HCH. PCR-HRM analysis is more efficient for detecting hot spot mutations of the FGFR3 gene.

  14. SYMPOSIUM ON PLANT PROTEIN PHOSPHORYLATION

    Energy Technology Data Exchange (ETDEWEB)

    JOHN C WALKER

    2011-11-01

    Protein phosphorylation and dephosphorylation play key roles in many aspects of plant biology, including control of cell division, pathways of carbon and nitrogen metabolism, pattern formation, hormonal responses, and abiotic and biotic responses to environmental signals. A Symposium on Plant Protein Phosphorylation was hosted on the Columbia campus of the University of Missouri from May 26-28, 2010. The symposium provided an interdisciplinary venue at which scholars studying protein modification, as it relates to a broad range of biological questions and using a variety of plant species, presented their research. It also provided a forum where current international challenges in studies related to protein phosphorylation could be examined. The symposium also stimulated research collaborations through interactions and networking among those in the research community and engaged students and early career investigators in studying issues in plant biology from an interdisciplinary perspective. The proposed symposium, which drew 165 researchers from 13 countries and 21 States, facilitated a rapid dissemination of acquired knowledge and technical expertise regarding protein phosphorylation in plants to a broad range of plant biologists worldwide.

  15. Tyrosine phosphorylation in human lymphomas

    NARCIS (Netherlands)

    Haralambieva, E; Jones, M.; Roncador, GM; Cerroni, L; Lamant, L; Ott, G; Rosenwald, A; Sherman, C; Thorner, P; Kusec, R; Wood, KM; Campo, E; Falini, B; Ramsay, A; Marafioti, T; Stein, H; Kluin, PM; Pulford, K; Mason, DY

    2002-01-01

    In a previous study, we showed that the high level of protein tyrosine phosphorylation present in lymphomas containing an anaplastic lymphoma kinase (ALK) can be demonstrated in routinely processed paraffin tissue sections using immunolabelling techniques. In the present study we investigated

  16. Insulin rapidly stimulates phosphorylation of a 46-kDa membrane protein on tyrosine residues as well as phosphorylation of several soluble proteins in intact fat cells

    International Nuclear Information System (INIS)

    Haering, H.U.; White, M.F.; Machicao, F.; Ermel, B.; Schleicher, E.; Obermaier, B.

    1987-01-01

    It is speculated that the transmission of an insulin signal across the plasma membrane of cells occurs through activation of the tyrosine-specific receptor kinase, autophosphorylation of the receptor, and subsequent phosphorylation of unidentified substrates in the cell. In an attempt to identify possible substrates, the authors labeled intact rat fat cells with [ 32 P]orthophosphate and used an antiphosphotyrosine antibody to identify proteins that become phosphorylated on tyrosine residues in an insulin-stimulated way. In the membrane fraction of the fat cells, they found, in addition to the 95-kDa β-subunit of the receptor, a 46-kDa phosphoprotein that is phosphorylated exclusively on tyrosine residues. This protein is not immunoprecipitated by antibodies against different regions of the insulin receptor and its HPLC tryptic peptide map is different from the tryptic peptide map of the insulin receptor, suggesting that it is not derived from the receptor β-subunit. Insulin stimulates the tyrosine phosphorylation of the 46-kDa protein within 150 sec in the intact cell 3- to 4-fold in a dose-dependent way at insulin concentrations between 0.5 nM and 100 nM. Insulin (0.5 nM, 100 nM) stimulated within 2 min the 32 P incorporation into a 116-kDa band, a 62 kDa band, and three bands between 45 kDa and 50 kDa 2- to 10-fold. They suggest that the 46-kDa membrane protein and possibly also the soluble proteins are endogenous substrates of the receptor tyrosine kinase in fat cells and that their phosphorylation is an early step in insulin signal transmission

  17. Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation

    OpenAIRE

    Metzger, Eric; Yin, Na; Wissmann, Melanie; Kunowska, Natalia; Fischer, Kristin; Friedrichs, Nicolaus; Patnaik, Debasis; Higgins, Jonathan M.G.; Potier, Noelle; Scheidtmann, Karl-Heinz; Buettner, Reinhard; Schüle, Roland

    2007-01-01

    Posttranslational modifications of histones such as methylation, acetylation, and phosphorylation regulate chromatin structure and gene expression. Here we show that protein kinase C-related kinase 1 (PRK1) phosphorylates histone H3 at threonine 11 (H3T11) upon ligand-dependent recruitment to androgen receptor (AR) target genes. PRK1 is pivotal to AR function since PRK1 knockdown or inhibition impedes AR-dependent transcription. Blocking PRK1 function abrogates androgen-induced H3T11 phosphor...

  18. Tyrosine phosphorylation in T cells is regulated by phosphatase activity: studies with phenylarsine oxide.

    OpenAIRE

    Garcia-Morales, P; Minami, Y; Luong, E; Klausner, R D; Samelson, L E

    1990-01-01

    Activation of T cells induces rapid tyrosine phosphorylation on the T-cell receptor zeta chain and other substrates. These phosphorylations can be regulated by a number of protein-tyrosine kinases (ATP: protein-tyrosine O-phosphotransferase, EC 2.7.1.112) and protein-tyrosine-phosphatases (protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48). In this study, we demonstrate that phenylarsine oxide can inhibit tyrosine phosphatases while leaving tyrosine kinase function intact. We use this ...

  19. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  20. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  1. Alterations in vasodilator-stimulated phosphoprotein (VASP) phosphorylation: associations with asthmatic phenotype, airway inflammation and β2-agonist use

    Science.gov (United States)

    Hastie, Annette T; Wu, Min; Foster, Gayle C; Hawkins, Gregory A; Batra, Vikas; Rybinski, Katherine A; Cirelli, Rosemary; Zangrilli, James G; Peters, Stephen P

    2006-01-01

    Background Vasodilator-stimulated phosphoprotein (VASP) mediates focal adhesion, actin filament binding and polymerization in a variety of cells, thereby inhibiting cell movement. Phosphorylation of VASP via cAMP and cGMP dependent protein kinases releases this "brake" on cell motility. Thus, phosphorylation of VASP may be necessary for epithelial cell repair of damage from allergen-induced inflammation. Two hypotheses were examined: (1) injury from segmental allergen challenge increases VASP phosphorylation in airway epithelium in asthmatic but not nonasthmatic normal subjects, (2) regular in vivo β2-agonist use increases VASP phosphorylation in asthmatic epithelium, altering cell adhesion. Methods Bronchial epithelium was obtained from asthmatic and non-asthmatic normal subjects before and after segmental allergen challenge, and after regularly inhaled albuterol, in three separate protocols. VASP phosphorylation was examined in Western blots of epithelial samples. DNA was obtained for β2-adrenergic receptor haplotype determination. Results Although VASP phosphorylation increased, it was not significantly greater after allergen challenge in asthmatics or normals. However, VASP phosphorylation in epithelium of nonasthmatic normal subjects was double that observed in asthmatic subjects, both at baseline and after challenge. Regularly inhaled albuterol significantly increased VASP phosphorylation in asthmatic subjects in both unchallenged and antigen challenged lung segment epithelium. There was also a significant increase in epithelial cells in the bronchoalveolar lavage of the unchallenged lung segment after regular inhalation of albuterol but not of placebo. The haplotypes of the β2-adrenergic receptor did not appear to associate with increased or decreased phosphorylation of VASP. Conclusion Decreased VASP phosphorylation was observed in epithelial cells of asthmatics compared to nonasthmatic normals, despite response to β-agonist. The decreased

  2. Alterations in vasodilator-stimulated phosphoprotein (VASP phosphorylation: associations with asthmatic phenotype, airway inflammation and β2-agonist use

    Directory of Open Access Journals (Sweden)

    Cirelli Rosemary

    2006-02-01

    Full Text Available Abstract Background Vasodilator-stimulated phosphoprotein (VASP mediates focal adhesion, actin filament binding and polymerization in a variety of cells, thereby inhibiting cell movement. Phosphorylation of VASP via cAMP and cGMP dependent protein kinases releases this "brake" on cell motility. Thus, phosphorylation of VASP may be necessary for epithelial cell repair of damage from allergen-induced inflammation. Two hypotheses were examined: (1 injury from segmental allergen challenge increases VASP phosphorylation in airway epithelium in asthmatic but not nonasthmatic normal subjects, (2 regular in vivo β2-agonist use increases VASP phosphorylation in asthmatic epithelium, altering cell adhesion. Methods Bronchial epithelium was obtained from asthmatic and non-asthmatic normal subjects before and after segmental allergen challenge, and after regularly inhaled albuterol, in three separate protocols. VASP phosphorylation was examined in Western blots of epithelial samples. DNA was obtained for β2-adrenergic receptor haplotype determination. Results Although VASP phosphorylation increased, it was not significantly greater after allergen challenge in asthmatics or normals. However, VASP phosphorylation in epithelium of nonasthmatic normal subjects was double that observed in asthmatic subjects, both at baseline and after challenge. Regularly inhaled albuterol significantly increased VASP phosphorylation in asthmatic subjects in both unchallenged and antigen challenged lung segment epithelium. There was also a significant increase in epithelial cells in the bronchoalveolar lavage of the unchallenged lung segment after regular inhalation of albuterol but not of placebo. The haplotypes of the β2-adrenergic receptor did not appear to associate with increased or decreased phosphorylation of VASP. Conclusion Decreased VASP phosphorylation was observed in epithelial cells of asthmatics compared to nonasthmatic normals, despite response to

  3. Haloperidol Regulates the State of Phosphorylation of Ribosomal Protein S6 via Activation of PKA and Phosphorylation of DARPP-32

    Science.gov (United States)

    Valjent, Emmanuel; Bertran-Gonzalez, Jesus; Bowling, Heather; Lopez, Sébastien; Santini, Emanuela; Matamales, Miriam; Bonito-Oliva, Alessandra; Hervé, Denis; Hoeffer, Charles; Klann, Eric; Girault, Jean-Antoine; Fisone, Gilberto

    2011-01-01

    Administration of typical antipsychotic drugs, such as haloperidol, promotes cAMP-dependent signaling in the medium spiny neurons (MSNs) of the striatum. In this study, we have examined the effect of haloperidol on the state of phosphorylation of the ribosomal protein S6 (rpS6), a component of the small 40S ribosomal subunit. We found that haloperidol increases the phosphorylation of rpS6 at the dual site Ser235/236, which is involved in the regulation of mRNA translation. This effect was exerted in the MSNs of the indirect pathway, which express specifically dopamine D2 receptors (D2Rs) and adenosine A2 receptors (A2ARs). The effect of haloperidol was decreased by blockade of A2ARs or by genetic attenuation of the Gαolf protein, which couples A2ARs to activation of adenylyl cyclase. Moreover, stimulation of cAMP-dependent protein kinase A (PKA) increased Ser235/236 phosphorylation in cultured striatal neurons. The ability of haloperidol to promote rpS6 phosphorylation was abolished in knock-in mice deficient for PKA activation of the protein phosphatase-1 inhibitor, dopamine- and cAMP-regulated phosphoprotein of 32 kDa. In contrast, pharmacological or genetic inactivation of p70 rpS6 kinase 1, or extracellular signal-regulated kinases did not affect haloperidol-induced rpS6 phosphorylation. These results identify PKA as a major rpS6 kinase in neuronal cells and suggest that regulation of protein synthesis through rpS6 may be a potential target of antipsychotic drugs. PMID:21814187

  4. Aberrant Receptor Internalization and Enhanced FRS2-dependent Signaling Contribute to the Transforming Activity of the Fibroblast Growth Factor Receptor 2 IIIb C3 Isoform*

    OpenAIRE

    Cha, Jiyoung Y.; Maddileti, Savitri; Mitin, Natalia; Harden, T. Kendall; Der, Channing J.

    2009-01-01

    Alternative splice variants of fibroblast growth factor receptor 2 (FGFR2) IIIb, designated C1, C2, and C3, possess progressive reduction in their cytoplasmic carboxyl termini (822, 788, and 769 residues, respectively), with preferential expression of the C2 and C3 isoforms in human cancers. We determined that the progressive deletion of carboxyl-terminal sequences correlated with increasing transforming potency. The highly transforming C3 variant lacks five tyrosine r...

  5. Analysis of α-Klotho, Fibroblast Growth Factor-, Vitamin-D and Calcium-Sensing Receptor in 70 Patients with Secondary Hyperparathyroidism

    Directory of Open Access Journals (Sweden)

    Joerg Latus

    2013-03-01

    Full Text Available Background/Aims: Secondary hyperparathyroidism (sHPT is known as a very common complication in patients with chronic kidney disease, and G-protein-coupled calcium-sensing receptor (CaSR, Vitamin D receptor (VDR and Fibroblast growth factor receptor (FGFR/Klotho complexes seem to be involved in its development. Methods: Hyperplastic parathyroid glands from 70 sHPT patients and normal parathyroid tissue from 7 patients were obtained during parathyroidectomy. Conventional morphological and immunohistochemical analysis of parathyroid glands was performed after dividing each slide in a 3x3 array. Results: The presence of lipocytes in the normal parathyroid gland and tissue architecture (nodal in patients with sHPT allows for discrimination between normal parathyroid glands and parathyroid glands of patients with sHPT. Protein expression of Klotho, FGFR, CaSR and VDR was higher in the normal parathyroid glands compared to the sHPT group (p0.05. Conclusions: CaSR, VDR and an impaired Klotho-FGFR-axis seem to be the major players in the development of sHPT. Whether the detected correlation between FGFR and VDR and the shift to a more mixed nuclear/cytoplasmic staining of VDR will yield new insights into the pathogenesis of the disease has to be evaluated in further studies.

  6. Syndecan-4 Phosphorylation Is a Control Point for Integrin Recycling

    Science.gov (United States)

    Morgan, Mark R.; Hamidi, Hellyeh; Bass, Mark D.; Warwood, Stacey; Ballestrem, Christoph; Humphries, Martin J.

    2013-01-01

    Summary Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration. PMID:23453597

  7. Tyrosine phosphorylation of WW proteins

    Science.gov (United States)

    Reuven, Nina; Shanzer, Matan

    2015-01-01

    A number of key regulatory proteins contain one or two copies of the WW domain known to mediate protein–protein interaction via proline-rich motifs, such as PPxY. The Hippo pathway components take advantage of this module to transduce tumor suppressor signaling. It is becoming evident that tyrosine phosphorylation is a critical regulator of the WW proteins. Here, we review the current knowledge on the involved tyrosine kinases and their roles in regulating the WW proteins. PMID:25627656

  8. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype

    Science.gov (United States)

    Murakami, Shunichi; Balmes, Gener; McKinney, Sandra; Zhang, Zhaoping; Givol, David; de Crombrugghe, Benoit

    2004-01-01

    We generated transgenic mice that express a constitutively active mutant of MEK1 in chondrocytes. These mice showed a dwarf phenotype similar to achondroplasia, the most common human dwarfism, caused by activating mutations in FGFR3. These mice displayed incomplete hypertrophy of chondrocytes in the growth plates and a general delay in endochondral ossification, whereas chondrocyte proliferation was unaffected. Immunohistochemical analysis of the cranial base in transgenic embryos showed reduced staining for collagen type X and persistent expression of Sox9 in chondrocytes. These observations indicate that the MAPK pathway inhibits hypertrophic differentiation of chondrocytes and negatively regulates bone growth without inhibiting chondrocyte proliferation. Expression of a constitutively active mutant of MEK1 in chondrocytes of Fgfr3-deficient mice inhibited skeletal overgrowth, strongly suggesting that regulation of bone growth by FGFR3 is mediated at least in part by the MAPK pathway. Although loss of Stat1 restored the reduced chondrocyte proliferation in mice expressing an achondroplasia mutant of Fgfr3, it did not rescue the reduced hypertrophic zone, the delay in formation of secondary ossification centers, and the achondroplasia-like phenotype. These observations suggest a model in which Fgfr3 signaling inhibits bone growth by inhibiting chondrocyte differentiation through the MAPK pathway and by inhibiting chondrocyte proliferation through Stat1. PMID:14871928

  9. Tyrosine Phosphorylation in Brassinosteroid Signaling

    Science.gov (United States)

    Brassinosteroids (BRs) regulate plant growth and development through a complex signal transduction pathway involving BRASSINOSTEROID INSENSITIVE 1 (BRI1), which is the BR receptor, and its co-receptor BRI1-ASSOCIATED KINASE 1 (BAK1). Both proteins are classified as Ser/Thr protein kinases. Recently,...

  10. Receptor⁻Receptor Interactions in Multiple 5-HT1A Heteroreceptor Complexes in Raphe-Hippocampal 5-HT Transmission and Their Relevance for Depression and Its Treatment.

    Science.gov (United States)

    Borroto-Escuela, Dasiel O; Narváez, Manuel; Ambrogini, Patrizia; Ferraro, Luca; Brito, Ismel; Romero-Fernandez, Wilber; Andrade-Talavera, Yuniesky; Flores-Burgess, Antonio; Millon, Carmelo; Gago, Belen; Narvaez, Jose Angel; Odagaki, Yuji; Palkovits, Miklos; Diaz-Cabiale, Zaida; Fuxe, Kjell

    2018-06-03

    Due to the binding to a number of proteins to the receptor protomers in receptor heteromers in the brain, the term "heteroreceptor complexes" was introduced. A number of serotonin 5-HT1A heteroreceptor complexes were recently found to be linked to the ascending 5-HT pathways known to have a significant role in depression. The 5-HT1A⁻FGFR1 heteroreceptor complexes were involved in synergistically enhancing neuroplasticity in the hippocampus and in the dorsal raphe 5-HT nerve cells. The 5-HT1A protomer significantly increased FGFR1 protomer signaling in wild-type rats. Disturbances in the 5-HT1A⁻FGFR1 heteroreceptor complexes in the raphe-hippocampal 5-HT system were found in a genetic rat model of depression (Flinders sensitive line (FSL) rats). Deficits in FSL rats were observed in the ability of combined FGFR1 and 5-HT1A agonist cotreatment to produce antidepressant-like effects. It may in part reflect a failure of FGFR1 treatment to uncouple the 5-HT1A postjunctional receptors and autoreceptors from the hippocampal and dorsal raphe GIRK channels, respectively. This may result in maintained inhibition of hippocampal pyramidal nerve cell and dorsal raphe 5-HT nerve cell firing. Also, 5-HT1A⁻5-HT2A isoreceptor complexes were recently demonstrated to exist in the hippocampus and limbic cortex. They may play a role in depression through an ability of 5-HT2A protomer signaling to inhibit the 5-HT1A protomer recognition and signaling. Finally, galanin (1⁻15) was reported to enhance the antidepressant effects of fluoxetine through the putative formation of GalR1⁻GalR2⁻5-HT1A heteroreceptor complexes. Taken together, these novel 5-HT1A receptor complexes offer new targets for treatment of depression.

  11. Receptor–Receptor Interactions in Multiple 5-HT1A Heteroreceptor Complexes in Raphe-Hippocampal 5-HT Transmission and Their Relevance for Depression and Its Treatment

    Directory of Open Access Journals (Sweden)

    Dasiel O. Borroto-Escuela

    2018-06-01

    Full Text Available Due to the binding to a number of proteins to the receptor protomers in receptor heteromers in the brain, the term “heteroreceptor complexes” was introduced. A number of serotonin 5-HT1A heteroreceptor complexes were recently found to be linked to the ascending 5-HT pathways known to have a significant role in depression. The 5-HT1A–FGFR1 heteroreceptor complexes were involved in synergistically enhancing neuroplasticity in the hippocampus and in the dorsal raphe 5-HT nerve cells. The 5-HT1A protomer significantly increased FGFR1 protomer signaling in wild-type rats. Disturbances in the 5-HT1A–FGFR1 heteroreceptor complexes in the raphe-hippocampal 5-HT system were found in a genetic rat model of depression (Flinders sensitive line (FSL rats. Deficits in FSL rats were observed in the ability of combined FGFR1 and 5-HT1A agonist cotreatment to produce antidepressant-like effects. It may in part reflect a failure of FGFR1 treatment to uncouple the 5-HT1A postjunctional receptors and autoreceptors from the hippocampal and dorsal raphe GIRK channels, respectively. This may result in maintained inhibition of hippocampal pyramidal nerve cell and dorsal raphe 5-HT nerve cell firing. Also, 5-HT1A–5-HT2A isoreceptor complexes were recently demonstrated to exist in the hippocampus and limbic cortex. They may play a role in depression through an ability of 5-HT2A protomer signaling to inhibit the 5-HT1A protomer recognition and signaling. Finally, galanin (1–15 was reported to enhance the antidepressant effects of fluoxetine through the putative formation of GalR1–GalR2–5-HT1A heteroreceptor complexes. Taken together, these novel 5-HT1A receptor complexes offer new targets for treatment of depression.

  12. Brain Region-Specific Effects of cGMP-Dependent Kinase II Knockout on AMPA Receptor Trafficking and Animal Behavior

    Science.gov (United States)

    Kim, Seonil; Pick, Joseph E.; Abera, Sinedu; Khatri, Latika; Ferreira, Danielle D. P.; Sathler, Matheus F.; Morison, Sage L.; Hofmann, Franz; Ziff, Edward B.

    2016-01-01

    Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO…

  13. Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response

    Science.gov (United States)

    Lee, Hong-Jen; Lan, Li; Peng, Guang; Chang, Wei-Chao; Hsu, Ming-Chuan; Wang, Ying-Nai; Cheng, Chien-Chia; Wei, Leizhen; Nakajima, Satoshi; Chang, Shih-Shin; Liao, Hsin-Wei; Chen, Chung-Hsuan; Lavin, Martin; Ang, K Kian; Lin, Shiaw-Yih; Hung, Mien-Chie

    2015-01-01

    Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition. PMID:25601159

  14. Tyrosine phosphorylation of LRP6 by Src and Fer inhibits Wnt/β-catenin signalling

    Science.gov (United States)

    Chen, Qing; Su, Yi; Wesslowski, Janine; Hagemann, Anja I; Ramialison, Mirana; Wittbrodt, Joachim; Scholpp, Steffen; Davidson, Gary

    2014-01-01

    Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) function as transmembrane receptors to transduce Wnt signals. A key mechanism for signalling is Wnt-induced serine/threonine phosphorylation at conserved PPPSPxS motifs in the LRP6 cytoplasmic domain, which promotes pathway activation. Conserved tyrosine residues are positioned close to all PPPSPxS motifs, which suggests they have a functional significance. Using a cell culture-based cDNA expression screen, we identified the non-receptor tyrosine kinases Src and Fer as novel LRP6 modifiers. Both Src and Fer associate with LRP6 and phosphorylate LRP6 directly. In contrast to the known PPPSPxS Ser/Thr kinases, tyrosine phosphorylation by Src and Fer negatively regulates LRP6-Wnt signalling. Epistatically, they function upstream of β-catenin to inhibit signalling and in agreement with a negative role in regulating LRP6, MEF cells lacking these kinases show enhanced Wnt signalling. Wnt3a treatment of cells enhances tyrosine phosphorylation of endogenous LRP6 and, mechanistically, Src reduces cell surface LRP6 levels and disrupts LRP6 signalosome formation. Interestingly, CK1γ inhibits Fer-induced LRP6 phosphorylation, suggesting a mechanism whereby CK1γ acts to de-represses inhibitory LRP6 tyrosine phosphorylation. We propose that LRP6 tyrosine phosphorylation by Src and Fer serves a negative regulatory function to prevent over-activation of Wnt signalling at the level of the Wnt receptor, LRP6. Subject Categories Membrane & Intracellular Transport; Post-translational Modifications, Proteolysis & Proteomics PMID:25391905

  15. Binding of IGF I and IGF I-stimulated phosphorylation in canine renal basolateral membranes

    International Nuclear Information System (INIS)

    Hammerman, M.R.; Gavin, J.R. III.

    1986-01-01

    To characterize the interaction of the renal proximal tubular cell with insulin like growth factor I (IGF I), we measured binding of 125 I-IGF I to proximal tubular basolateral membranes from dog kidney and induced IGF I-stimulated phosphorylation of basolateral membranes. Specific binding of 125 I-IGF I to basolateral membranes was observed that was half-maximal at between 10(-9) and 10(-8) M IGF I. 125 I-IGF I was affinity cross-linked to a 135,000 Mr protein in basolateral membranes that was distinct from the alpha-subunit of the insulin receptor and from the IGF II receptor. IGF I-stimulated phosphorylation of a 92,000 Mr protein was effected in detergent-solubilized membranes incubated with 100 microM [gamma- 32 P]ATP. The 32 P-labeled protein was distinct from the beta-subunit of the insulin receptor, the 32 P phosphorylation of which was stimulated by insulin. We conclude that specific receptors for IGF I are present in the basolateral membrane of the renal proximal tubular cell. Physiological actions of IGF I at this nephron site may occur through the binding of this peptide circulating in plasma, to specific basolateral membrane receptors, followed by IGF I stimulated phosphorylation

  16. The significance of fibroblast growth factors 8, 17, and 18 and the fibroblast growth factor receptor 4 for malignant behaviour of hepatocarcinoma cells

    International Nuclear Information System (INIS)

    Gauglhofer, C. L.

    2010-01-01

    Hepatocellular carcinoma (HCC) represents the most frequent type of primary liver cancer and is the fifth most common cancer type worldwide. Effective therapeutic options are still limited to early cancer stages, resulting in a high mortality. Etiological factors for this disease are well known and it is widely accepted that most of the HCCs develop on the base of a chronic inflammatory liver disease. However, the molecular mechanisms underlying the pathogenesis of HCC are still incompletely understood. Aberrant fibroblast growth factor (FGF)-mediated signaling plays an important part in growth autonomy and tumor progression in a wide variety of cancer types. Thus far, the role of FGFs in HCC has only been studied in part. Therefore, the aim of this study was to investigate the contribution of the members of the FGF8-subfamily (FGF8, FGF17, and FGF18) and the FGF receptor 4 (FGFR4) to the malignant behaviour of hepatocarcinoma cell lines. In this study one or more FGF8-subfamily members were found to be upregulated in the tissue of the majority (20/34) of human HCC cases studied. Endogenous mRNA levels of FGF8, FGF17, and FGF18 in hepatocarcinoma cell lines were increased further when cells had been subjected to serum withdrawal or hypoxia. Furthermore, addition of recombinant FGF8, FGF17, or FGF18 suppressed the elevated apoptotic activity of starved cells and activated the MAPK pathway. These findings suggest that FGF8-family members may act as survival factors in liver tumors suffering from insufficient blood supply due to rapid growth. Accordingly, knock-down of endogenous FGF18 expression reduced the viability and the clone formation capacity of the cell lines. In addition, FGF8, FGF17, and/or FGF18 enhanced growth in tumor-associated myofibroblasts and induced DNA replication of hepatic endothelial cells. This points towards a role of FGF8-family members in the epithelial-mesenchymal interplay between the various cell types of HCC. FGFR4, which is expressed

  17. Phosphorylation regulates SIRT1 function.

    Directory of Open Access Journals (Sweden)

    Tsutomu Sasaki

    Full Text Available BACKGROUND: SIR2 is an NAD(+-dependent deacetylase [1]-[3] implicated in the regulation of lifespan in species as diverse as yeast [4], worms [5], and flies [6]. We previously reported that the level of SIRT1, the mammalian homologue of SIR2 [7], [8], is coupled to the level of mitotic activity in cells both in vitro and in vivo[9]. Cells from long-lived mice maintained SIRT1 levels of young mice in tissues that undergo continuous cell replacement by proliferating stem cells. Changes in SIRT1 protein level were not associated with changes in mRNA level, suggesting that SIRT1 could be regulated post-transcriptionally. However, other than a recent report on sumoylation [10] and identification of SIRT1 as a nuclear phospho-protein by mass spectrometry [11], post-translational modifications of this important protein have not been reported. METHODOLOGY/PRINCIPAL FINDINGS: We identified 13 residues in SIRT1 that are phosphorylated in vivo using mass spectrometry. Dephosphorylation by phosphatases in vitro resulted in decreased NAD(+-dependent deacetylase activity. We identified cyclinB/Cdk1 as a cell cycle-dependent kinase that forms a complex with and phosphorylates SIRT1. Mutation of two residues phosphorylated by Cyclin B/Cdk1 (threonine 530 and serine 540 disturbs normal cell cycle progression and fails to rescue proliferation defects in SIRT1-deficient cells [12], [13]. CONCLUSIONS/SIGNIFICANCE: Pharmacological manipulation of SIRT1 activity is currently being tested as a means of extending lifespan in mammals. Treatment of obese mice with resveratrol, a pharmacological activator of SIRT1, modestly but significantly improved longevity and, perhaps more importantly, offered some protection against the development of type 2 diabetes mellitus and metabolic syndrome [14]-[16]. Understanding the endogenous mechanisms that regulate the level and activity of SIRT1, therefore, has obvious relevance to human health and disease. Our results identify

  18. The selective phosphorylation of a guanine nucleotide-binding regulatory protein

    International Nuclear Information System (INIS)

    Carlson, K.E.

    1989-01-01

    Receptor-activated signal transduction pathways regulate the responsiveness of cells to external stimuli. These transduction pathways themselves are subject to regulation, most commonly by phosphorylation. Guanine nucleotide-binding regulatory proteins (G Proteins), as requisite signal transducing elements for many plasma membrane receptors, are considered likely targets for regulation by phosphorylation. Protein kinase C (PKC) has been shown to phosphorylate the α subunit of G i and other G proteins in solution. However, the occurrence of the phosphorylation of G 1 within intact cells in response to activation of PKC has not been rigorously demonstrated. In this thesis, the extent to which the α subunits of G i undergo phosphorylation within human platelets in response to activation of PKC was examined by means of radiolabeling and immunoprecipitation. Incubation of platelets with phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, promoted the phosphorylation of several proteins within saponin-permeabilized and intact platelets incubated with [γ 32 P]ATP and [ 32 P]H 3 PO 4 , respectively. None of the phosphoproteins, however, were precipitated by either of two antisera containing antibodies differing in specificities for epitopes within G iα -despite precipitation of a substantial fraction of the subunit itself. In contrast, other antisera, containing antibodies specific for the recently describe G zα , or antibodies for both G zα and G iα , precipitated a 40-kDa phosphoprotein

  19. The clinical pathological characteristics and prognosis of FGFR1 gene amplification in non-small-cell lung cancer: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Xie FJ

    2016-01-01

    Full Text Available Fa-Jun Xie,1,2 Hong-Yang Lu,1,3 Qiu-Qing Zheng,3 Jing Qin,1,3 Yun Gao,3 Yi-Ping Zhang,1,3 Xun Hu,2 Wei-Min Mao3,4 1Department of Medical Oncology, Zhejiang Cancer Hospital, 2Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences, Second Affiliated Hospital, Zhejiang University School of Medicine,3Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus, Hangzhou, 4Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China Abstract: FGFR1 amplification is recognized as a novel therapy target for non-small-cell lung cancer (NSCLC, especially in squamous cell carcinoma (SCC. However, the association between FGFR1 amplification and the clinicopathological characteristics of NSCLC remains controversial. We performed a meta-analysis of 17 eligible studies to examine the correlation between FGFR1 gene amplification and clinicopathological characteristics. FGFR1 amplification was closely related to these clinicopathological features, including sex (odds ratio [OR] 2.05, 95% confidence interval [CI] 1.50–2.80, smoking (OR 3.31, 95% CI 2.02–5.44, and histology (OR 3.60, 95% CI 2.82–4.59. FGFR1 amplification was associated with shorter overall survival, and no significant heterogeneity existed between studies (I2=3.8%. We should note that publication bias may partly account for these results, but our findings remained significant after the trim-and-fill method (hazard ratio 1.22, 95% CI 1.06–1.40. However, no significant correlation was found with poor disease-free survival (hazard ratio 1.43, 95% CI 0.96–2.12. In conclusion, this study showed that FGFR1 amplification was significantly associated with sex, smoking, and histology. FGFR1 amplification could be a marker of poor prognosis in NSCLC patients, especially in SCC patients

  20. Phosphorylated nano-diamond/ Polyimide Nanocomposites

    International Nuclear Information System (INIS)

    Beyler-Çiǧil, Asli; Çakmakçi, Emrah; Kahraman, Memet Vezir

    2014-01-01

    In this study, a novel route to synthesize polyimide (PI)/phosphorylated nanodiamond films with improved thermal and mechanical properties was developed. Surface phosphorylation of nano-diamond was performed in dichloromethane. Phosphorylation dramatically enhanced the thermal stability of nano-diamond. Poly(amic acid) (PAA), which is the precursor of PI, was successfully synthesized with 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydianiline (4,4'-ODA) in the solution of N,N- dimethylformamide (DMF). Pure BTDA-ODA polyimide films and phosphorylated nanodiamond containing BTDA-ODA PI films were prepared. The PAA displayed good compatibility with phosphorylated nano-diamond. The morphology of the polyimide (PI)/phosphorylated nano-diamond was characterized by scanning electron microscopy (SEM). Chemical structure of polyimide and polyimide (PI)/phosphorylated nano-diamond was characterized by FTIR. SEM and FTIR results showed that the phosphorylated nano-diamond was successfully prepared. Thermal properties of the polyimide (PI)/phosphorylated nanodiamond was characterized by thermogravimetric analysis (TGA). TGA results showed that the thermal stability of (PI)/phosphorylated nano-diamond film was increased

  1. syk kinase activation by a src kinase-initiated activation loop phosphorylation chain reaction

    Science.gov (United States)

    El-Hillal, O.; Kurosaki, T.; Yamamura, H.; Kinet, J.-P.; Scharenberg, A. M.

    1997-01-01

    Activation of the syk tyrosine kinase occurs almost immediately following engagement of many types of antigen receptors, including Fc receptors, but the mechanism through which syk is activated is currently unclear. Here we demonstrate that Fc receptor-induced syk activation occurs as the result of phosphorylation of the syk activation loop by both src family kinases and other molecules of activated syk, suggesting that syk activation occurs as the result of a src kinase-initiated activation loop phosphorylation chain reaction. This type of activation mechanism predicts that syk activation would exhibit exponential kinetics, providing a potential explanation for its rapid and robust activation by even weak antigen receptor stimuli. We propose that a similar mechanism may be responsible for generating rapid activation of other cytoplasmic tyrosine kinases, such as those of the Bruton tyrosine kinase/tec family, as well. PMID:9050880

  2. Molecular characterization of the di-leucine-based internalization motif of the T cell receptor

    DEFF Research Database (Denmark)

    Dietrich, J; Hou, X; Wegener, A M

    1996-01-01

    Several cell surface receptors including the T cell receptor (TCR) are phosphorylated and down-regulated following activation of protein kinases. We have recently shown that both phosphorylation of Ser-126 and the presence of the di-leucine sequence Leu-131 and Leu-132 in CD3 gamma are required f...... are important. 2) Recognition of phosphorylated CD3 gamma by molecules involved in receptor internalization. In this process Ser(P)-126, Asp-127, Leu-131, and Leu-132 are important....

  3. Conformational Clusters of Phosphorylated Tyrosine.

    Science.gov (United States)

    Abdelrasoul, Maha; Ponniah, Komala; Mao, Alice; Warden, Meghan S; Elhefnawy, Wessam; Li, Yaohang; Pascal, Steven M

    2017-12-06

    Tyrosine phosphorylation plays an important role in many cellular and intercellular processes including signal transduction, subcellular localization, and regulation of enzymatic activity. In 1999, Blom et al., using the limited number of protein data bank (PDB) structures available at that time, reported that the side chain structures of phosphorylated tyrosine (pY) are partitioned into two conserved conformational clusters ( Blom, N.; Gammeltoft, S.; Brunak, S. J. Mol. Biol. 1999 , 294 , 1351 - 1362 ). We have used the spectral clustering algorithm to cluster the increasingly growing number of protein structures with pY sites, and have found that the pY residues cluster into three distinct side chain conformations. Two of these pY conformational clusters associate strongly with a narrow range of tyrosine backbone conformation. The novel cluster also highly correlates with the identity of the n + 1 residue, and is strongly associated with a sequential pYpY conformation which places two adjacent pY side chains in a specific relative orientation. Further analysis shows that the three pY clusters are associated with distinct distributions of cognate protein kinases.

  4. Tyrosine phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    Science.gov (United States)

    Zhong, Li; Li, Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.; Weigel-Van Aken, Kirsten A.; Hobbs, Jacqueline A.; Zolotukhin, Sergei; Muzyczka, Nicholas; Srivastava, Arun

    2008-01-01

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by ~68% and ~74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which leads to ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy. PMID:18834608

  5. Threonine phosphorylation of rat liver glycogen synthase

    International Nuclear Information System (INIS)

    Arino, J.; Arro, M.; Guinovart, J.J.

    1985-01-01

    32 P-labeled glycogen synthase specifically immunoprecipitated from 32 P-phosphate incubated rat hepatocytes contains, in addition to [ 32 P] phosphoserine, significant levels of [ 32 P] phosphothreonine. When the 32 P-immunoprecipitate was cleaved with CNBr, the [ 32 P] phosphothreonine was recovered in the large CNBr fragment (CB-2, Mapp 28 Kd). Homogeneous rat liver glycogen synthase was phosphorylated by all the protein kinases able to phosphorylate CB-2 in vitro. After analysis of the immunoprecipitated enzyme for phosphoaminoacids, it was observed that only casein kinase II was able to phosphorylate on threonine and 32 P-phosphate was only found in CB-2. These results demonstrate that rat liver glycogen synthase is phosphorylated at threonine site(s) contained in CB-2 and strongly indicate that casein kinase II may play a role in the ''in vivo'' phosphorylation of liver glycogen synthase. This is the first protein kinase reported to phosphorylate threonine residues in liver glycogen synthase

  6. Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation

    DEFF Research Database (Denmark)

    Satpathy, Shankha; Wagner, Sebastian A; Beli, Petra

    2015-01-01

    B-cell receptor (BCR) signaling is essential for the development and function of B cells; however, the spectrum of proteins involved in BCR signaling is not fully known. Here we used quantitative mass spectrometry-based proteomics to monitor the dynamics of BCR signaling complexes (signalosomes......) and to investigate the dynamics of downstream phosphorylation and ubiquitylation signaling. We identify most of the previously known components of BCR signaling, as well as many proteins that have not yet been implicated in this system. BCR activation leads to rapid tyrosine phosphorylation and ubiquitylation...... of the receptor-proximal signaling components, many of which are co-regulated by both the modifications. We illustrate the power of multilayered proteomic analyses for discovering novel BCR signaling components by demonstrating that BCR-induced phosphorylation of RAB7A at S72 prevents its association...

  7. Dietary α-lactalbumin induced fatty liver by enhancing nuclear liver X receptor αβ/sterol regulatory element-binding protein-1c/PPARγ expression and minimising PPARα/carnitine palmitoyltransferase-1 expression and AMP-activated protein kinase α phosphorylation associated with atherogenic dyslipidaemia, insulin resistance and oxidative stress in Balb/c mice.

    Science.gov (United States)

    López-Oliva, María Elvira; Garcimartin, Alba; Muñoz-Martínez, Emilia

    2017-12-01

    The effect and the role played by dietary α-lactalbumin (α-LAC) on hepatic fat metabolism are yet to be fully elucidated. We reported previously that α-LAC intake induced atherogenic dyslipidaemia in Balb/c mice. The aim of the present study was to investigate if this atherogenic effect could be due to a possible α-LAC-induced hepatic steatosis. We examine the ability of dietary α-LAC to induce liver steatosis, identifying the molecular mechanisms underlying hepatic lipid metabolism in association with the lipid profile, peripheral insulin resistance (IR) and changes in the hepatic oxidative environment. Male Balb/c mice (n 6) were fed with diets containing either chow or 14 % α-LAC for 4 weeks. The α-LAC-fed mice developed abdominal adiposity and IR. Moderate liver steatosis with increased TAG and NEFA contents was correlated with atherogenic dyslipidaemia. There was increased nuclear expression of liver X receptor αβ (LXRαβ), sterol regulatory element-binding protein-1c (SREBP-1c) and PPARγ transcription factors and of the cytosolic enzymes acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase involved in the hepatic de novo lipogenesis. The opposite was found for the nuclear receptor PPARα and the mitochondrial enzyme carnitine palmitoyltransferase-1 (CPT-1), leading to reduced fatty acid β-oxidation (FAO). These changes were associated with a significant decrease in both p-Thr172-AMP-activated protein kinase α (AMPKα) (inactivation) and p-Ser79-ACC1 (activation) and with a more oxidative liver environment increasing lipid peroxidation and protein oxidation and reducing GSH:GSSG ratio in the α-LAC-fed mice. In conclusion, 4 weeks of 14 % α-LAC feeding induced liver steatosis associated with atherogenic dyslipidaemia, IR and oxidative stress by enhancing nuclear LXRαβ/SREBP-1c/PPARγ expression and diminishing PPARα/CPT-1 expression and AMPKα phosphorylation shifting the hepatic FAO toward fatty acid synthesis in Balb/c mice.

  8. Mapping of p140Cap phosphorylation sites

    DEFF Research Database (Denmark)

    Repetto, Daniele; Aramu, Simona; Boeri Erba, Elisabetta

    2013-01-01

    phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y) within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA) as well as on three serine...... residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant...

  9. Genetic inhibition of PKA phosphorylation of RyR2 prevents dystrophic cardiomyopathy

    NARCIS (Netherlands)

    Sarma, Satyam; Li, Na; van Oort, Ralph J.; Reynolds, Corey; Skapura, Darlene G.; Wehrens, Xander H. T.

    2010-01-01

    Aberrant intracellular Ca(2+) regulation is believed to contribute to the development of cardiomyopathy in Duchenne muscular dystrophy. Here, we tested whether inhibition of protein kinase A (PKA) phosphorylation of ryanodine receptor type 2 (RyR2) prevents dystrophic cardiomyopathy by reducing SR

  10. [Children with idiopathic hypogonadotropic hypogonadism: clinical data analysis and mutations analysis of KAL1 and FGFR1 gene].

    Science.gov (United States)

    Qin, Miao; Gong, Chunxiu; Qi, Zhan; Wu, Di; Liu, Min; Gu, Yi; Cao, Bingyan; Li, Wenjing; Liang, Xuejun

    2014-12-01

    To summarize the clinical features of idiopathic hypogonadotropic hypogonadism (IHH) diagnosed during childhood, and detect mutations in KAL1 and FGFR1, acting as key clues for diagnoses. We collected and analyzed clinical data of 21 cases (including demographic data, chief complaint, history of present illness, family history, physical examination, laboratory tests and imaging studies, etc.) diagnosed with IHH from December 2008 to February 2013. Polymerase chain reaction and gene sequencing was applied to detect mutations on KAL1 and FGFR1. Fifty healthy unrelated individuals were choosen as controls. Of 21 patients with IHH, 19 were males and 2 females, they visited us initially from 8-17 years old, with an average of (13.58 ± 2.38) years old. Sixteen cases were KS patients (76%). One boy reported abnormal sense of smelling but having olfactory perfect picture on MRI; 2/19 male cases had no puberty when they were over 13-14 years old without abnormal external genitalia. 8/19 cases only had small penis, 8/19 had both of cryptorchidism and small penis, and the Case 2 also had hypospadias. One boy had cryptorchidism combined with a normal penis. Only 2 girls diagnosed as IHH who visited us because of no puberty signs when they were 13 and 16 years old, respectively. Other clinical manifestations included: one with gynecomastia, 2 had mental retardation, and one was deaf; one with high palatal arch; one with mirror-movement and one with left renal agenesis but normal renal function respectively. Laboratory tests showed that the basic testosterone (T) is low and with inappropriately low or normal gonadotropin hormones. The results of cases of standard human chorionic gonadotropin (HCG) test of 7 cases out of 19 male children's were normal (testosterone>1 100 ng/L), and another nine cases continued to complete the extended HCG test, and the testosterone levels of two of them (cases 6, 8) were still lower than 1 000 ng/L. Family history: the parents in 9/21 family had

  11. B cell antigen receptor signaling and internalization are mutually exclusive events.

    Directory of Open Access Journals (Sweden)

    Ping Hou

    2006-07-01

    Full Text Available Engagement of the B cell antigen receptor initiates two concurrent processes, signaling and receptor internalization. While both are required for normal humoral immune responses, the relationship between these two processes is unknown. Herein, we demonstrate that following receptor ligation, a small subpopulation of B cell antigen receptors are inductively phosphorylated and selectively retained at the cell surface where they can serve as scaffolds for the assembly of signaling molecules. In contrast, the larger population of non-phosphorylated receptors is rapidly endocytosed. Each receptor can undergo only one of two mutually exclusive fates because the tyrosine-based motifs that mediate signaling when phosphorylated mediate internalization when not phosphorylated. Mathematical modeling indicates that the observed competition between receptor phosphorylation and internalization enhances signaling responses to low avidity ligands.

  12. Phosphorylation of human link proteins

    International Nuclear Information System (INIS)

    Oester, D.A.; Caterson, B.; Schwartz, E.R.

    1986-01-01

    Three link proteins of 48, 44 and 40 kDa were purified from human articular cartilage and identified with monoclonal anti-link protein antibody 8-A-4. Two sets of lower molecular weight proteins of 30-31 kDa and 24-26 kDa also contained link protein epitopes recognized by the monoclonal antibody and were most likely degradative products of the intact link proteins. The link proteins of 48 and 40 kDa were identified as phosphoproteins while the 44 kDa link protein did not contain 32 P. The phosphorylated 48 and 40 kDa link proteins contained approximately 2 moles PO 4 /mole link protein

  13. SIMAC - A phosphoproteomic strategy for the rapid separation of mono-phosphorylated from multiply phosphorylated peptides

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N; Robinson, Phillip J

    2008-01-01

    spectrometric analysis, such as immobilized metal affinity chromatography or titanium dioxide the coverage of the phosphoproteome of a given sample is limited. Here we report a simple and rapid strategy - SIMAC - for sequential separation of mono-phosphorylated peptides and multiply phosphorylated peptides from...... and an optimized titanium dioxide chromatographic method. More than double the total number of identified phosphorylation sites was obtained with SIMAC, primarily from a three-fold increase in recovery of multiply phosphorylated peptides....

  14. Design, synthesis, and biological evaluation of 3-vinyl-quinoxalin-2(1H-one derivatives as novel antitumor inhibitors of FGFR1

    Directory of Open Access Journals (Sweden)

    Liu Z

    2016-05-01

    Full Text Available Zhiguo Liu,1,* Shufang Yu,1,* Di Chen,1 Guoliang Shen,1 Yu Wang,1 Leping Hou,2 Dan Lin,1 Jinsan Zhang,1 Faqing Ye1 1School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 2Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: FGFR1 is well known as a molecular target in anticancer drug design. TKI258 plays an important role in RTK inhibitors. Utilizing TKI258 as a lead compound that contains a quinazolinone nucleus, we synthesized four series of 3-vinyl-quinoxalin-2(1H-one derivatives, a total of 27 compounds. We further evaluated these compounds for FGFR1 inhibition ability as well as cytotoxicity against four cancer cell lines (H460, B16-F10, Hela229, and Hct116 in vitro. Some compounds displayed good-to-excellent potency against the four tested cancer cell lines compared with TKI258. Structure–activity relationship analyses indicated that small substituents at the side chain of the 3-vinyl-quinoxalin-2(1H-one were more effective than large substituents. Lastly, we used molecular docking to obtain further insight into the interactions between the compounds and FGFR1. Keywords: FGFR1, synthesis, quinoxaline, antitumor activity, kinase inhibitor

  15. Prenatal and postnatal presentation of severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN) due to the FGFR3 Lys650Met mutation.

    NARCIS (Netherlands)

    Zankl, A.; Elakis, G.; Susman, R.D.; Inglis, G.; Gardener, G.; Buckley, M.F.; Roscioli, T.

    2008-01-01

    We present prenatal and postnatal features of a patient with severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN). Mutation analysis confirmed the clinical diagnosis by detecting the FGFR3 Lys650Met mutation. This case, one of only six with molecular analysis reported in

  16. Identification of Cyclin-dependent Kinase 1 Specific Phosphorylation Sites by an In Vitro Kinase Assay.

    Science.gov (United States)

    Cui, Heying; Loftus, Kyle M; Noell, Crystal R; Solmaz, Sozanne R

    2018-05-03

    Cyclin-dependent kinase 1 (Cdk1) is a master controller for the cell cycle in all eukaryotes and phosphorylates an estimated 8 - 13% of the proteome; however, the number of identified targets for Cdk1, particularly in human cells is still low. The identification of Cdk1-specific phosphorylation sites is important, as they provide mechanistic insights into how Cdk1 controls the cell cycle. Cell cycle regulation is critical for faithful chromosome segregation, and defects in this complicated process lead to chromosomal aberrations and cancer. Here, we describe an in vitro kinase assay that is used to identify Cdk1-specific phosphorylation sites. In this assay, a purified protein is phosphorylated in vitro by commercially available human Cdk1/cyclin B. Successful phosphorylation is confirmed by SDS-PAGE, and phosphorylation sites are subsequently identified by mass spectrometry. We also describe purification protocols that yield highly pure and homogeneous protein preparations suitable for the kinase assay, and a binding assay for the functional verification of the identified phosphorylation sites, which probes the interaction between a classical nuclear localization signal (cNLS) and its nuclear transport receptor karyopherin α. To aid with experimental design, we review approaches for the prediction of Cdk1-specific phosphorylation sites from protein sequences. Together these protocols present a very powerful approach that yields Cdk1-specific phosphorylation sites and enables mechanistic studies into how Cdk1 controls the cell cycle. Since this method relies on purified proteins, it can be applied to any model organism and yields reliable results, especially when combined with cell functional studies.

  17. Tyrosine phosphorylation of the human guanylyl cyclase C receptor

    Indian Academy of Sciences (India)

    Unknown

    **Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, National Institute of Health, .... This construct expresses the N-terminal 330 amino acids ... C-terminal 112 amino acids of GCC as fusion with GST.

  18. Prostate Cell Specific Regulation of Androgen Receptor Phosphorylation in Vivo

    Science.gov (United States)

    2009-11-01

    average counts per minute ( CPM ). Columns, mean (*, P = 0.006); error bars, SE. ART-27 Inhibits AR Target Genes www.aacrjournals.org 3145 Cancer Res 2009; 69...publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with

  19. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    Science.gov (United States)

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  20. Identification and in silico characterization of p.G380R substitution in FGFR3, associated with achondroplasia in a non-consanguineous Pakistani family.

    Science.gov (United States)

    Ajmal, Muhammad; Mir, Asif; Shoaib, Muhammad; Malik, Salman Akbar; Nasir, Muhammad

    2017-07-05

    The dimerization efficiency of FGFR3 transmembrane domain plays a critical role in the formation of a normal skeleton through the negative regulation of bone development. Recently, gain-of-function mutations in the transmembrane domain of FGFR3 has been described associated with an aberrant negative regulation, leading to the development of achondroplasia-group disorders, including achondroplasia (ACH), hypochondroplasia (HCH) and thanatophoric dysplasia (TD). Here, we describe a non-consanguineous Pakistani family with achondroplasia to explain hereditary basis of the disease. PCR-based linkage analysis using microsatellite markers was employed to localize the disease gene. Gene specific intronic primers were used to amplify the genomic DNA from all affected as well as phenotypically healthy individuals. Amplified PCR products were then subjected to Sanger sequencing and RFLP analysis to identify a potentially pathogenic mutation. The impact of identified mutation on FGFR3 protein's structure and stability was highlighted through different bioinformatics tools. Genetic screening of the family revealed a previously reported heterozygous c.1138 G > A (p.G380R) mutation in the coding exon 8 of FGFR3 gene. Identified genetic variation was confirmed in all affected individuals while healthy individuals and controls were found genotypically normal. The results were further validated by RFLP analysis as c.1138 G > A substitution generates a unique recognition site for SfcI endonuclease. Following SfcI digestion, the electrophoretic pattern of three bands/DNA fragments for each patient is indicative of heterozygous status of the disease allele. In silico studies of the mutant FGFR3 protein predicted to adversely affect the stability of FGFR3 protein. Mutation in the transmembrane domain may adversely affect the dimerization efficiency and overall stability of the FGFR3, leading to a constitutively active protein. As a result, an uncontrolled intracellular signaling

  1. The three α1-adrenoceptor subtypes show different spatio-temporal mechanisms of internalization and ERK1/2 phosphorylation.

    Science.gov (United States)

    Perez-Aso, M; Segura, V; Montó, F; Barettino, D; Noguera, M A; Milligan, G; D'Ocon, P

    2013-10-01

    We analyzed the kinetic and spatial patterns characterizing activation of the MAP kinases ERK 1 and 2 (ERK1/2) by the three α1-adrenoceptor (α1-AR) subtypes in HEK293 cells and the contribution of two different pathways to ERK1/2 phosphorylation: protein kinase C (PKC)-dependent ERK1/2 activation and internalization-dependent ERK1/2 activation. The different pathways of phenylephrine induced ERK phosphorylation were determined by western blot, using the PKC inhibitor Ro 31-8425, the receptor internalization inhibitor concanavalin A and the siRNA targeting β-arrestin 2. Receptor internalization properties were studied using CypHer5 technology and VSV-G epitope-tagged receptors. Activation of α1A- and α1B-ARs by phenylephrine elicited rapid ERK1/2 phosphorylation that was directed to the nucleus and inhibited by Ro 31-8425. Concomitant with phenylephrine induced receptor internalization α1A-AR, but not α1B-AR, produced a maintained and PKC-independent ERK phosphorylation, which was restricted to the cytosol and inhibited by β-arrestin 2 knockdown or concanavalin A treatment. α1D-AR displayed constitutive ERK phosphorylation, which was reduced by incubation with prazosin or the selective α1D antagonist BMY7378. Following activation by phenylephrine, α1D-AR elicited rapid, transient ERK1/2 phosphorylation that was restricted to the cytosol and not inhibited by Ro 31-8425. Internalization of the α1D-AR subtype was not observed via CypHer5 technology. The three α1-AR subtypes present different spatio-temporal patterns of receptor internalization, and only α1A-AR stimulation translates to a late, sustained ERK1/2 phosphorylation that is restricted to the cytosol and dependent on β-arrestin 2 mediated internalization. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Construction and Deciphering of Human Phosphorylation-Mediated Signaling Transduction Networks.

    Science.gov (United States)

    Zhang, Menghuan; Li, Hong; He, Ying; Sun, Han; Xia, Li; Wang, Lishun; Sun, Bo; Ma, Liangxiao; Zhang, Guoqing; Li, Jing; Li, Yixue; Xie, Lu

    2015-07-02

    Protein phosphorylation is the most abundant reversible covalent modification. Human protein kinases participate in almost all biological pathways, and approximately half of the kinases are associated with disease. PhoSigNet was designed to store and display human phosphorylation-mediated signal transduction networks, with additional information related to cancer. It contains 11 976 experimentally validated directed edges and 216 871 phosphorylation sites. Moreover, 3491 differentially expressed proteins in human cancer from dbDEPC, 18 907 human cancer variation sites from CanProVar, and 388 hyperphosphorylation sites from PhosphoSitePlus were collected as annotation information. Compared with other phosphorylation-related databases, PhoSigNet not only takes the kinase-substrate regulatory relationship pairs into account, but also extends regulatory relationships up- and downstream (e.g., from ligand to receptor, from G protein to kinase, and from transcription factor to targets). Furthermore, PhoSigNet allows the user to investigate the impact of phosphorylation modifications on cancer. By using one set of in-house time series phosphoproteomics data, the reconstruction of a conditional and dynamic phosphorylation-mediated signaling network was exemplified. We expect PhoSigNet to be a useful database and analysis platform benefiting both proteomics and cancer studies.

  3. Targeting the TAM Receptors in Leukemia.

    Science.gov (United States)

    Huey, Madeline G; Minson, Katherine A; Earp, H Shelton; DeRyckere, Deborah; Graham, Douglas K

    2016-11-08

    Targeted inhibition of members of the TAM (TYRO-3, AXL, MERTK) family of receptor tyrosine kinases has recently been investigated as a novel strategy for treatment of hematologic malignancies. The physiologic functions of the TAM receptors in innate immune control, natural killer (NK) cell differentiation, efferocytosis, clearance of apoptotic debris, and hemostasis have previously been described and more recent data implicate TAM kinases as important regulators of erythropoiesis and megakaryopoiesis. The TAM receptors are aberrantly or ectopically expressed in many hematologic malignancies including acute myeloid leukemia, B- and T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. TAM receptors contribute to leukemic phenotypes through activation of pro-survival signaling pathways and interplay with other oncogenic proteins such as FLT3, LYN, and FGFR3. The TAM receptors also contribute to resistance to both cytotoxic chemotherapeutics and targeted agents, making them attractive therapeutic targets. A number of translational strategies for TAM inhibition are in development, including small molecule inhibitors, ligand traps, and monoclonal antibodies. Emerging areas of research include modulation of TAM receptors to enhance anti-tumor immunity, potential roles for TYRO-3 in leukemogenesis, and the function of the bone marrow microenvironment in mediating resistance to TAM inhibition.

  4. Targeting the TAM Receptors in Leukemia

    Directory of Open Access Journals (Sweden)

    Madeline G. Huey

    2016-11-01

    Full Text Available Targeted inhibition of members of the TAM (TYRO-3, AXL, MERTK family of receptor tyrosine kinases has recently been investigated as a novel strategy for treatment of hematologic malignancies. The physiologic functions of the TAM receptors in innate immune control, natural killer (NK cell differentiation, efferocytosis, clearance of apoptotic debris, and hemostasis have previously been described and more recent data implicate TAM kinases as important regulators of erythropoiesis and megakaryopoiesis. The TAM receptors are aberrantly or ectopically expressed in many hematologic malignancies including acute myeloid leukemia, B- and T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. TAM receptors contribute to leukemic phenotypes through activation of pro-survival signaling pathways and interplay with other oncogenic proteins such as FLT3, LYN, and FGFR3. The TAM receptors also contribute to resistance to both cytotoxic chemotherapeutics and targeted agents, making them attractive therapeutic targets. A number of translational strategies for TAM inhibition are in development, including small molecule inhibitors, ligand traps, and monoclonal antibodies. Emerging areas of research include modulation of TAM receptors to enhance anti-tumor immunity, potential roles for TYRO-3 in leukemogenesis, and the function of the bone marrow microenvironment in mediating resistance to TAM inhibition.

  5. Tyrosine Phosphorylation of the Guanine Nucleotide Exchange Factor GIV Promotes Activation of PI3K During Cell Migration

    Science.gov (United States)

    Lin, Changsheng; Ear, Jason; Pavlova, Yelena; Mittal, Yash; Kufareva, Irina; Ghassemian, Majid; Abagyan, Ruben; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2014-01-01

    GIV (Gα-interacting vesicle-associated protein; also known as Girdin), enhances Akt activation downstream of multiple growth factor– and G-protein–coupled receptors to trigger cell migration and cancer invasion. Here we demonstrate that GIV is a tyrosine phosphoprotein that directly binds to and activates phosphoinositide 3-kinase (PI3K). Upon ligand stimulation of various receptors, GIV was phosphorylated at Tyr1764 and Tyr1798 by both receptor and non-receptor tyrosine kinases. These phosphorylation events enabled direct binding of GIV to the N- and C-terminal SH2 domains of p85α, a regulatory subunit of PI3K, stabilized receptor association with PI3K, and enhanced PI3K activity at the plasma membrane to trigger cell migration. Tyrosine phosphorylation of GIV and its association with p85α increased during metastatic progression of a breast carcinoma. These results suggest a mechanism by which multiple receptors activate PI3K through tyrosine phosphorylation of GIV, thereby making the GIVPI3K interaction a potential therapeutic target within the PI3K-Akt pathway. PMID:21954290

  6. Insulin increase in MAP kinase phosphorylation is shifted to early time-points by overexpressing APS, while Akt phosphorylation is not influenced.

    Science.gov (United States)

    Onnockx, Sheela; Xie, Jingwei; Degraef, Chantal; Erneux, Christophe; Pirson, Isabelle

    2009-09-10

    Upon insulin stimulation, the adaptor protein APS is recruited to the insulin receptor and tyrosine phosphorylated. APS initiates the insulin-induced TC10 cascade which participates to GLUT4 translocation to the plasma membrane. Nevertheless, the molecular mechanism that governs APS and its SH2 and PH domains action on the insulin transduction cascade is not yet fully understood. Here, we show that APS co-immunoprecipitates with the class I PI 3-kinase regulatory subunit p85, through its SH2 domain but that APS does not modulate neither PtdIns(3,4,5)P3 levels nor Akt phosphorylation provoked by insulin. We have confirmed a previously described positive effect of APS overexpression on insulin-induced MAPK phosphorylation upregulation. Consequently, we analyzed the role of SH2 and PH domains of APS in the APS increased MAPK phosphorylation observed upon insulin stimulation and correlated this with the membrane localization of the protein. The effect observed on MAPK phosphorylation requires the intact PH binding domain of APS as well as its SH2 domain.

  7. Apert Syndrome: Molecularly Confirmed C.758C>G (P.Pro253Arg) in FGFR2

    Energy Technology Data Exchange (ETDEWEB)

    Cha Gon, Lee, E-mail: leechagon@eulji.ac.kr [Department of Pediatrics, Eulji General Hospital, College of Medicine, Eulji University, 68 Hangeulbiseok-ro, Nowon-gu, Seoul 139-711 (Korea, Republic of)

    2016-03-21

    A 5-day-old girl was referred to our clinic for evaluation of congenital malformations. She was identified with a pathogenic mutation c.758C>G (p.Pro253Arg) in FGFR2 gene using targeted exome sequencing. The de novo mutation was confirmed with Sanger sequencing in the patient and her parents. She showed occipital plagiocephaly with frontal bossing (Figure A and B). Skull frontal and lateral radiography revealed fusion of most of the sutures except coronal suture, with convolutional markings (Figure D and E). She had complete cleft palate (Figure C). Her fused bilateral hands showed type II syndactyly with complete syndactyly between the ring and the little fingers (Figure F1-F3). Both toes were simple syndactyly with side-to-side fusion of skin (Figure G1-)

  8. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors

    DEFF Research Database (Denmark)

    Goriely, Anne; Hansen, Ruth M S; Taylor, Indira B

    2009-01-01

    Genes mutated in congenital malformation syndromes are frequently implicated in oncogenesis, but the causative germline and somatic mutations occur in separate cells at different times of an organism's life. Here we unify these processes to a single cellular event for mutations arising in male germ...... cells that show a paternal age effect. Screening of 30 spermatocytic seminomas for oncogenic mutations in 17 genes identified 2 mutations in FGFR3 (both 1948A>G, encoding K650E, which causes thanatophoric dysplasia in the germline) and 5 mutations in HRAS. Massively parallel sequencing of sperm DNA...... a common 'selfish' pathway supporting proliferation in the testis, leading to diverse phenotypes in the next generation including fetal lethality, congenital syndromes and cancer predisposition....

  9. Apert Syndrome: Molecularly Confirmed C.758C>G (P.Pro253Arg) in FGFR2

    International Nuclear Information System (INIS)

    Cha Gon, Lee

    2016-01-01

    A 5-day-old girl was referred to our clinic for evaluation of congenital malformations. She was identified with a pathogenic mutation c.758C>G (p.Pro253Arg) in FGFR2 gene using targeted exome sequencing. The de novo mutation was confirmed with Sanger sequencing in the patient and her parents. She showed occipital plagiocephaly with frontal bossing (Figure A and B). Skull frontal and lateral radiography revealed fusion of most of the sutures except coronal suture, with convolutional markings (Figure D and E). She had complete cleft palate (Figure C). Her fused bilateral hands showed type II syndactyly with complete syndactyly between the ring and the little fingers (Figure F1-F3). Both toes were simple syndactyly with side-to-side fusion of skin (Figure G1-)

  10. Exogenous Restoration of TUSC2 Expression Induces Responsiveness to Erlotinib in Wildtype Epidermal Growth Factor Receptor (EGFR Lung Cancer Cells through Context Specific Pathways Resulting in Enhanced Therapeutic Efficacy.

    Directory of Open Access Journals (Sweden)

    Bingbing Dai

    Full Text Available Expression of the tumor suppressor gene TUSC2 is reduced or absent in most lung cancers and is associated with worse overall survival. In this study, we restored TUSC2 gene expression in several wild type EGFR non-small cell lung cancer (NSCLC cell lines resistant to the epidermal growth factor receptor (EGFR tyrosine kinase inhibitor erlotinib and analyzed their sensitivity to erlotinib in vitro and in vivo. A significant inhibition of cell growth and colony formation was observed with TUSC2 transient and stable expression. TUSC2-erlotinib cooperativity in vitro could be reproduced in vivo in subcutaneous tumor growth and lung metastasis formation lung cancer xenograft mouse models. Combination treatment with intravenous TUSC2 nanovesicles and erlotinib synergistically inhibited tumor growth and metastasis, and increased apoptotic activity. High-throughput qRT-PCR array analysis enabling multi-parallel expression profile analysis of eighty six receptor and non-receptor tyrosine kinase genes revealed a significant decrease of FGFR2 expression level, suggesting a potential role of FGFR2 in TUSC2-enhanced sensitivity to erlotinib. Western blots showed inhibition of FGFR2 by TUSC2 transient transfection, and marked increase of PARP, an apoptotic marker, cleavage level after TUSC2-erlotinb combined treatment. Suppression of FGFR2 by AZD4547 or gene knockdown enhanced sensitivity to erlotinib in some but not all tested cell lines. TUSC2 inhibits mTOR activation and the latter cell lines were responsive to the mTOR inhibitor rapamycin combined with erlotinib. These results suggest that TUSC2 restoration in wild type EGFR NSCLC may overcome erlotinib resistance, and identify FGFR2 and mTOR as critical regulators of this activity in varying cellular contexts. The therapeutic activity of TUSC2 could extend the use of erlotinib to lung cancer patients with wildtype EGFR.

  11. PKB/Akt phosphorylation of ERRγ contributes to insulin-mediated inhibition of hepatic gluconeogenesis.

    Science.gov (United States)

    Kim, Don-Kyu; Kim, Yong-Hoon; Hynx, Debby; Wang, Yanning; Yang, Keum-Jin; Ryu, Dongryeol; Kim, Kyung Seok; Yoo, Eun-Kyung; Kim, Jeong-Sun; Koo, Seung-Hoi; Lee, In-Kyu; Chae, Ho-Zoon; Park, Jongsun; Lee, Chul-Ho; Biddinger, Sudha B; Hemmings, Brian A; Choi, Hueng-Sik

    2014-12-01

    Insulin resistance, a major contributor to the pathogenesis of type 2 diabetes, leads to increased hepatic glucose production (HGP) owing to an impaired ability of insulin to suppress hepatic gluconeogenesis. Nuclear receptor oestrogen-related receptor γ (ERRγ) is a major transcriptional regulator of hepatic gluconeogenesis. In this study, we investigated insulin-dependent post-translational modifications (PTMs) altering the transcriptional activity of ERRγ for the regulation of hepatic gluconeogenesis. We examined insulin-dependent phosphorylation and subcellular localisation of ERRγ in cultured cells and in the liver of C57/BL6, leptin receptor-deficient (db/db), liver-specific insulin receptor knockout (LIRKO) and protein kinase B (PKB) β-deficient (Pkbβ (-/-)) mice. To demonstrate the role of ERRγ in the inhibitory action of insulin on hepatic gluconeogenesis, we carried out an insulin tolerance test in C57/BL6 mice expressing wild-type or phosphorylation-deficient mutant ERRγ. We demonstrated that insulin suppressed the transcriptional activity of ERRγ by promoting PKB/Akt-mediated phosphorylation of ERRγ at S179 and by eliciting translocation of ERRγ from the nucleus to the cytoplasm through interaction with 14-3-3, impairing its ability to promote hepatic gluconeogenesis. In addition, db/db, LIRKO and Pkbβ (-/-) mice displayed enhanced ERRγ transcriptional activity due to a block in PKBβ-mediated ERRγ phosphorylation during refeeding. Finally, the phosphorylation-deficient mutant ERRγ S179A was resistant to the inhibitory action of insulin on HGP. These results suggest that ERRγ is a major contributor to insulin action in maintaining hepatic glucose homeostasis.

  12. Membrane phosphorylation and nerve cell function

    International Nuclear Information System (INIS)

    Baer, P.R.

    1982-01-01

    This thesis deals with the phosphorylation of membrane components. In part I a series of experiments is described using the hippocampal slice as a model system. In part II a different model system - cultured hybrid cells - is used to study protein and lipid phosphorylation, influenced by incubation with neuropeptides. In part III in vivo and in vitro studies are combined to study protein phosphorylation after neuroanatomical lesions. In a section of part II (Page 81-90) labelling experiments of the membrane inositol-phospholipids are described. 32 P-ATP was used to label phospholipids in intact hybrid cells, and short incubations were found to be the most favourable. (C.F.)

  13. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.

    2005-01-01

    phosphorylation, indicating that this post-translational modifi cation could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this fi eld was done in Bacillus subtilis , and we here present the current state of knowledge...... on protein-tyrosine phosphorylation in this gram-positive model organism. With its two kinases, two kinase modulators, three phosphatases and at least four different tyrosine-phosphorylated substrates, B. subtilis is the bacterium with the highest number of presently known participants in the global network...

  14. Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified broad protein.

    Science.gov (United States)

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-09-19

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Juvenile Hormone Prevents 20-Hydroxyecdysone-induced Metamorphosis by Regulating the Phosphorylation of a Newly Identified Broad Protein*

    Science.gov (United States)

    Cai, Mei-Juan; Liu, Wen; Pei, Xu-Yang; Li, Xiang-Ru; He, Hong-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2014-01-01

    The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5′-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7. PMID:25096576

  16. Protein phosphorylation and bacterial chemotaxis

    International Nuclear Information System (INIS)

    Hess, J.F.; Bourret, R.B.; Oosawa, K.; Simon, M.I.; Matsumura, P.

    1988-01-01

    Bacteria are able to respond to changes in concentration of a large variety of chemicals and to changes in physical parameters, including viscosity, osmolarity, and temperature, by swimming toward a more favorable location (for review, see Stewart and Dahlquist 1987). Most chemotactic responses are mediated by a series of transmembrane receptor proteins that interact with or bind specific chemicals and thus monitor environmental conditions. Over the past 10 years, work in a number of laboratories has resulted in the identification and characterization of many of the genes and proteins required for the signal transduction process. The authors postulated that rapid and transient covalent modification of the chemotaxis gene products could function to transmit information from the receptor by regulating protein-protein interaction between the chemotaxis gene products. To test this idea, the authors purified the proteins corresponding to the cheA, cheY, cheZ, cheW, and cheB genes and tested the purified polypeptides to determine whether they could be covalently modified and whether they would interact with each other in vitro

  17. p38 Inhibition ameliorates skin and skull abnormalities in Fgfr2 Beare-Stevenson mice

    Czech Academy of Sciences Publication Activity Database

    Wang, Y.L.; Zhou, X.Y.; Oberoi, K.; Phelps, R.; Couwenhoven, R.; Sun, M.; Rezza, A.; Holmes, G.; Percival, C.J.; Friedenthal, J.; Krejčí, Pavel

    2012-01-01

    Roč. 122, č. 6 (2012), s. 2153-2164 ISSN 0021-9738 Institutional support: RVO:68081707 Keywords : CUTIS-GYRATA-SYNDROME * ACTIVATED PROTEIN-KINASE * GROWTH-FACTOR RECEPTOR-2 Subject RIV: BO - Biophysics Impact factor: 12.812, year: 2012

  18. Protein phosphorylation in bcterial signaling and regulation

    KAUST Repository

    Mijakovic, Ivan

    2016-01-01

    . Evolutionary studies based on genome comparison indicate that BY-kinases exist only in bacteria. They are non-essential (present in about 40% bacterial genomes), and their knockouts lead to pleiotropic phenotypes, since they phosphorylate many substrates

  19. Fibronectin phosphorylation by ecto-protein kinase

    International Nuclear Information System (INIS)

    Imada, Sumi; Sugiyama, Yayoi; Imada, Masaru

    1988-01-01

    The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with [γ- 32 ]ATP for 10 min at 37 degree C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with [γ- 32 P]ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation

  20. Phosphorylation of human skeletal muscle myosin

    International Nuclear Information System (INIS)

    Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

    1986-01-01

    Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30 0 C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with ( 30 P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ

  1. Protein phosphorylation during coconut zygotic embryo development

    International Nuclear Information System (INIS)

    Islas-Flores, I.; Oropeza, C.; Hernandez-Sotomayor, S.M.T.

    1998-01-01

    Evidence was obtained on the occurrence of protein threonine, serine, and tyrosine (Tyr) kinases in developing coconut (Cocos nucifera L.) zygotic embryos, based on in vitro phosphorylation of proteins in the presence of [gamma-32P]ATP, alkaline treatment, and thin-layer chromatography analysis, which showed the presence of [32P]phosphoserine, [32P]phosphothreonine, and [32P]phosphotyrosine in [32P]-labeled protein hydrolyzates. Tyr kinase activity was further confirmed in extracts of embryos at different stages of development using antiphosphotyrosine monoclonal antibodies and the synthetic peptide derived from the amino acid sequence surrounding the phosphorylation site in pp60src (RR-SRC), which is specific for Tyr kinases. Anti-phosphotyrosine western blotting revealed a changing profile of Tyr-phosphorylated proteins during embryo development. Tyr kinase activity, as assayed using RR-SRC, also changed during embryo development, showing two peaks of activity, one during early and another during late embryo development. In addition, the use of genistein, a Tyr kinase inhibitor, diminished the ability of extracts to phosphorylate RR-SRC. Results presented here show the occurrence of threonine, serine, and Tyr kinases in developing coconut zygotic embryos, and suggest that protein phosphorylation, and the possible inference of Tyr phosphorylation in particular, may play a role in the coordination of the development of embryos in this species

  2. The significance of fibroblast growth factors 8, 17, and 18 and the fibroblast growth factor receptor 4 for malignant behaviour of hepatocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Gauglhofer, C L

    2010-07-01

    Hepatocellular carcinoma (HCC) represents the most frequent type of primary liver cancer and is the fifth most common cancer type worldwide. Effective therapeutic options are still limited to early cancer stages, resulting in a high mortality. Etiological factors for this disease are well known and it is widely accepted that most of the HCCs develop on the base of a chronic inflammatory liver disease. However, the molecular mechanisms underlying the pathogenesis of HCC are still incompletely understood. Aberrant fibroblast growth factor (FGF)-mediated signaling plays an important part in growth autonomy and tumor progression in a wide variety of cancer types. Thus far, the role of FGFs in HCC has only been studied in part. Therefore, the aim of this study was to investigate the contribution of the members of the FGF8-subfamily (FGF8, FGF17, and FGF18) and the FGF receptor 4 (FGFR4) to the malignant behaviour of hepatocarcinoma cell lines. In this study one or more FGF8-subfamily members were found to be upregulated in the tissue of the majority (20/34) of human HCC cases studied. Endogenous mRNA levels of FGF8, FGF17, and FGF18 in hepatocarcinoma cell lines were increased further when cells had been subjected to serum withdrawal or hypoxia. Furthermore, addition of recombinant FGF8, FGF17, or FGF18 suppressed the elevated apoptotic activity of starved cells and activated the MAPK pathway. These findings suggest that FGF8-family members may act as survival factors in liver tumors suffering from insufficient blood supply due to rapid growth. Accordingly, knock-down of endogenous FGF18 expression reduced the viability and the clone formation capacity of the cell lines. In addition, FGF8, FGF17, and/or FGF18 enhanced growth in tumor-associated myofibroblasts and induced DNA replication of hepatic endothelial cells. This points towards a role of FGF8-family members in the epithelial-mesenchymal interplay between the various cell types of HCC. FGFR4, which is expressed

  3. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas tranplant recipient

    DEFF Research Database (Denmark)

    Bouzakri, K; Karlsson, HRK; Vestergaard, Henrik

    2006-01-01

    Insulin-dependent diabetic recipients of successful pancreas allografts achieve self-regulatory insulin secretion and discontinue exogenous insulin therapy; however, chronic hyperinsulinemia and impaired insulin sensitivity generally develop. To determine whether insulin resistance is accompanied....... In conclusion, peripheral insulin resistance in pancreas-kidney transplant recipients may arise from a negative feedback regulation of the canonical insulin-signaling cascade from excessive serine phosphorylation of IRS-1, possibly as a consequence of immunosuppressive therapy and hyperinsulinemia....... insulin receptor substrate (IRS)-1 Ser (312) and Ser (616) phosphorylation, IRS-1-associated phosphatidylinositol 3-kinase activity, and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation were elevated in pancreas-kidney transplant recipients, coincident with fasting hyperinsulinemia. Basal...

  4. PKA regulates calcineurin function through the phosphorylation of RCAN1: Identification of a novel phosphorylation site

    International Nuclear Information System (INIS)

    Kim, Seon Sook; Lee, Eun Hye; Lee, Kooyeon; Jo, Su-Hyun; Seo, Su Ryeon

    2015-01-01

    Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Ala (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression. - Highlights: • We identify novel phosphorylation sites in RCAN1 by LC-MS/MS analysis. • PKA-dependent phosphorylation of RCAN1 at Ser 93 inhibits calcineurin-mediated intracellular signaling. • We show the immunosuppressive function of RCAN1 phosphorylation at Ser 93 in suppressing cytokine expression

  5. Primary Blast-Induced Changes in Akt and GSK3β Phosphorylation in Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Yushan Wang

    2017-08-01

    Full Text Available Traumatic brain injury (TBI due to blast from improvised explosive devices has been a leading cause of morbidity and mortality in recent conflicts in Iraq and Afghanistan. However, the mechanisms of primary blast-induced TBI are not well understood. The Akt signal transduction pathway has been implicated in various brain pathologies including TBI. In the present study, the effects of simulated primary blast waves on the phosphorylation status of Akt and its downstream effector kinase, glycogen synthase kinase 3β (GSK3β, in rat hippocampus, were investigated. Male Sprague-Dawley (SD rats (350–400 g were exposed to a single pulse shock wave (25 psi; ~7 ms duration and sacrificed 1 day, 1 week, or 6 weeks after exposure. Total and phosphorylated Akt, as well as phosphorylation of its downstream effector kinase GSK3β (at serine 9, were detected with western blot analysis and immunohistochemistry. Results showed that Akt phosphorylation at both serine 473 and threonine 308 was increased 1 day after blast on the ipsilateral side of the hippocampus, and this elevation persisted until at least 6 weeks postexposure. Similarly, phosphorylation of GSK3β at serine 9, which inhibits GSK3β activity, was also increased starting at 1 day and persisted until at least 6 weeks after primary blast on the ipsilateral side. In contrast, p-Akt was increased at 1 and 6 weeks on the contralateral side, while p-GSK3β was increased 1 day and 1 week after primary blast exposure. No significant changes in total protein levels of Akt and GSK were observed on either side of the hippocampus at any time points. Immunohistochemical results showed that increased p-Akt was mainly of neuronal origin in the CA1 region of the hippocampus and once phosphorylated, the majority was translocated to the dendritic and plasma membranes. Finally, electrophysiological data showed that evoked synaptic N-methyl-d-aspartate (NMDA receptor activity was

  6. Effects of insulin and exercise training on FGF21, its receptors and target genes in obesity and type 2 diabetes

    DEFF Research Database (Denmark)

    Sørensen, Rikke Kruse; Vienberg, Sara Gry; Vind, Birgitte F

    2017-01-01

    obesity with and without type 2 diabetes led to reduced expression of KLB, but increased FGFR1c expression. However, the expression of most FGF21 target genes was unaltered except for reduced CIDEA expression in individuals with type 2 diabetes. CONCLUSIONS....../INTERPRETATION: Insulin-induced expression of muscle FGF21 correlates strongly with a rise in serum FGF21, and this response appears intact in overweight/obesity and type 2 diabetes. FGF21 resistance may involve reduced KLB expression in WAT. However, increased FGFR1c expression or other mechanisms seem to ensure...... that insulin and exercise increase FGF21 in plasma. Obesity and type 2 diabetes are potentially FGF21-resistant states, but to what extent FGF21 responses to insulin and exercise training are preserved, and whether FGF21, its receptors and target genes are altered, remains to be established. METHODS...

  7. Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes.

    Science.gov (United States)

    Santhosh, K T; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, A J; Dakshinamurti, S

    2011-07-01

    Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor-mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca(2+) response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. TP receptor sensitivity and EC(50) for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca(2+) mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  8. Optimization of 1H-indazol-3-amine derivatives as potent fibroblast growth factor receptor inhibitors.

    Science.gov (United States)

    Cui, Jing; Peng, Xia; Gao, Dingding; Dai, Yang; Ai, Jing; Li, Yingxia

    2017-08-15

    Fibroblast growth factor receptor (FGFR) is a potential target for cancer therapy because of its critical role in promoting cancer formation and progression. In a continuing effort to improve the cellular activity of hit compound 7r bearing an indazole scaffold, which was previously discovered by our group, several compounds harnessing fluorine substituents were designed, synthesized and biological evaluated. Besides, the region extended out to the ATP binding pocket toward solvent was also explored. Among them, compound 2a containing 2,6-difluoro-3-methoxyphenyl residue exhibited the most potent activities (FGFR1: less than 4.1nM, FGFR2: 2.0±0.8nM). More importantly, compound 2a showed an improved antiproliferative effect against KG1 cell lines and SNU16 cell lines with IC 50 values of 25.3±4.6nM and 77.4±6.2nM respectively. Copyright © 2017. Published by Elsevier Ltd.

  9. Pervanadate induces Mammalian Ste20 Kinase 3 (MST3) tyrosine phosphorylation but not activation.

    Science.gov (United States)

    Kan, Wei-Chih; Lu, Te-Ling; Ling, Pin; Lee, Te-Hsiu; Cho, Chien-Yu; Huang, Chi-Ying F; Jeng, Wen-Yih; Weng, Yui-Ping; Chiang, Chun-Yen; Wu, Jin Bin; Lu, Te-Jung

    2016-07-01

    The yeast Ste20 (sterile) protein kinase, which is a serine/threonine kinase, responds to the stimulation of the G proteincoupled receptor (GPCR) pheromone receptor. Ste20 protein kinase serves as the critical component that links signaling from the GPCR/G proteins to the mitogen-activated protein kinase (MAPK) cascade in yeast. The yeast Ste20p functions as a MAP kinase kinase kinase kinase (MAP4K) in the pheromone response. Ste20-like kinases are structurally conserved from yeast to mammals. The mechanism by which MAP4K links GPCR to the MAPK pathway is less clearly defined in vertebrates. In addition to MAP4K, the tyrosine kinase cascade bridges G proteins and the MAPK pathway in vertebrate cells. Mammalian Ste20 Kinase 3 (MST3) has been categorized into the Ste20 family and has been reported to function in the regulation of cell polarity and migration. However, whether MST3 tyrosine phosphorylation regulates diverse signaling pathways is unknown. In this study, the tyrosine phosphatase inhibitor pervanadate was found to induce MST3 tyrosine phosphorylation in intact cells, and the activity of tyrosine-phosphorylated MST3 was measured. This tyrosine-directed phosphorylation was independent of MST3 activity. Parameters including protein conformation, Triton concentration and ionic concentration influenced the sensitivity of MST3 activity. Taken together, our data suggests that the serine/threonine kinase MST3 undergoes tyrosinedirected phosphorylation. The tyrosine-phosphorylated MST3 may create a docking site for the structurally conserved SH2/SH3 (Src Homology 2 and 3) domains within the Src oncoprotein. The unusual tyrosinephosphorylated MST3 may recruit MST3 to various signaling components. Copyright © 2016. Published by Elsevier Inc.

  10. Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4.

    Directory of Open Access Journals (Sweden)

    Jenifer L Marks

    2007-05-01

    Full Text Available Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis.We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16 of FGFR4 (Glu681Lys, identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr in a lung adenocarcinoma cell line.This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas.

  11. Detection of a de novo Y278C mutation in FGFR3 in a pregnancy with severe fetal hypochondroplasia: prenatal diagnosis and literature review.

    Science.gov (United States)

    Chen, Chih-Ping; Su, Yi-Ning; Lin, Tzu-Hung; Chang, Tung-Yao; Su, Jun-Wei; Wang, Wayseen

    2013-12-01

    We describe a prenatal molecular diagnosis of hypochondroplasia (HCH) in a pregnancy not at risk of HCH and review the literature on prenatal diagnosis of HCH. A 28-year-old primigravid woman was referred for genetic counseling at 30 weeks of gestation because of short-limbed dwarfism in the fetus. The woman had a body height of 152 cm. Her husband had a body height of 180 cm. Level II ultrasound showed a normal amount of amniotic fluid and a singleton fetus with fetal biometry equivalent to 30 weeks except for short limbs. Fetal biometry measurements were as follows: biparietal diameter = 7.38 cm (30 weeks); head circumference = 28.14 cm (30 weeks); abdominal circumference (AC) = 24.64 cm (30 weeks); femur length (FL) = 3.97 cm ( 0.18); humerus = 3.64 cm (diagnosis of achondroplasia (ACH) was made. DNA testing for the FGFR3 gene and whole-genome array comparative genomic hybridization (aCGH) analysis were performed using cord blood DNA obtained by cordocentesis. FGFR3 mutation analysis revealed a de novo heterozygous c.833A > G, TAC > TGC transversion in exon 7 leading to a p.Tyr278Cys (Y278C) mutation in the FGFR3 protein. aCGH analysis revealed no genomic imbalance in cord blood. After delivery, the fetus had short limbs, a narrow thorax, brachydactyly, and relative macrocephaly. Cytogenetic analysis of cultured placental cells revealed a karyotype of 46,XX. Prenatal diagnosis of abnormal ultrasound findings suspicious of ACH should include a differential diagnosis of HCH by molecular analysis of FGFR3. Copyright © 2013. Published by Elsevier B.V.

  12. Immunohistochemistry of colorectal cancer biomarker phosphorylation requires controlled tissue fixation.

    Directory of Open Access Journals (Sweden)

    Abbey P Theiss

    Full Text Available Phosphorylated signaling molecules are biomarkers of cancer pathophysiology and resistance to therapy, but because phosphoprotein analytes are often labile, poorly controlled clinical laboratory practices could prevent translation of research findings in this area from the bench to the bedside. We therefore compared multiple biomarker and phosphoprotein immunohistochemistry (IHC results in 23 clinical colorectal carcinoma samples after either a novel, rapid tissue fixation protocol or a standard tissue fixation protocol employed by clinical laboratories, and we also investigated the effect of a d