WorldWideScience

Sample records for receptor egfr antibody

  1. Epitope mapping of epidermal growth factor receptor (EGFR) monoclonal antibody and induction of growth-inhibitory polyclonal antibodies by vaccination with EGFR mimotope.

    Science.gov (United States)

    Navari, Mohsen; Zare, Mehrak; Javanmardi, Masoud; Asadi-Ghalehni, Majid; Modjtahedi, Helmout; Rasaee, Mohammad Javed

    2014-10-01

    One of the proposed approaches in cancer therapy is to induce and direct the patient's own immune system against cancer cells. In this study, we determined the epitope mapping of the rat anti-human epidermal growth factor receptor (EGFR) monoclonal antibody ICR-62 using a phage display of random peptide library and identified a 12 amino acids peptide, which was recognized as a mimotope. The peptide was synthesized and conjugated to bovine serum albumin (BSA) as carrier protein (P-BSA). We have shown that ICR-62 can react specifically with P-BSA as well as native EGFR. Two rabbits were immunized either by BSA or P-BSA and the rabbits IgGs were purified and examined for binding to the antigens, mimotope and the EGFR protein purified from the EGFR overexpressing A431 cell line. We showed that the rabbit IgG generated against the mimotope is capable of inhibiting the growth of A431 cells by 15%, but does not have any effect on the growth of EGFR-negative MDA-MB-453 cell line in vitro. Our results support the need for further investigations on the potential of vaccination with either mimotope of the EGFR or epitope displayed on the surface of phage particles for use in active immunotherapy of cancer.

  2. Efficacy of a triple treatment with irradiation, agonistic TRAIL receptor antibodies and EGFR blockade

    Energy Technology Data Exchange (ETDEWEB)

    Niyazi, Maximilian; Marini, Patrizia [Dept. of Radiation Oncology, CCC Tuebingen (Germany); Daniel, Peter T. [Clinical and Molecular Oncology, Charite, Humboldt Univ., Berlin (Germany); Humphreys, Robin [Oncology Research Dept., Human Genome Sciences Inc., Rockville, MD (United States); Jendrossek, Verena [Dept. of Radiation Oncology, CCC Tuebingen (Germany); Dept. of Molecular Cell Biology, Essen (Germany); Belka, Claus [Dept. of Radiation Oncology, CCC Tuebingen (Germany); Dept. of Radiation Oncology, Ludwig Maximilian Univ., Munich (Germany)

    2009-01-15

    Background and purpose: since the efficacy of a single targeted agent in combination with ionizing radiation is limited by putative treatment resistances, a rationally designed triple treatment consisting of an agonistic antibody targeting either TRAIL-R1 (mapatumumab) or TRAIL-R2 (lexatumumab), radiation and an epidermal growth factor receptor-(EGFR-)inhibiting antibody (cetuximab) was tested. Material and methods: induction of apoptosis after triple treatment was determined in Colo205, HCT116 and FaDu cells by Hoechst 33342 stain. The degree of interaction was determined by isobologram analysis. A knockout variant of HCT116 was used to examine Bax dependence of the triple treatment. The role of Akt/PKB signaling was analyzed using the phosphatidylinositol 3-kinase inhibitor LY294002. Clonogenic assays were performed to examine the effect on clonogenic survival of tumor cells. Results: a synergistic effect of radiation, cetuximab and agonistic TRAIL-R antibodies was demonstrated in cell lines derived from colorectal tumors or head-and-neck cancers. The efficacy of this multimodal approach was dependent on Bax and inhibition of Akt/PKB in the cell systems used. The results also show a positive impact on clonogenic cell death in several cell lines. Conclusion: these data suggest that rationally designed multimodal therapy approaches integrating radiation with more than one targeted agent will open new perspectives in radiation oncology. (orig.)

  3. Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab.

    Science.gov (United States)

    Brand, Toni M; Iida, Mari; Wheeler, Deric L

    2011-05-01

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase belonging to the HER family of receptor tyrosine kinases. Receptor activation upon ligand binding leads to down stream activation of the PI3K/AKT, RAS/RAF/MEK/ERK and PLCγ/PKC pathways that influence cell proliferation, survival and the metastatic potential of tumor cells. Increased activation by gene amplification, protein overexpression or mutations of the EGFR has been identified as an etiological factor in a number of human epithelial cancers (e.g., NSCLC, CRC, glioblastoma and breast cancer). Therefore, targeting the EGFR has been intensely pursued as a cancer treatment strategy over the last two decades. To date, five EGFR inhibitors, including three small molecule tyrosine kinase inhibitors (TKIs) and two monoclonal antibodies have gained FDA approval for use in oncology. Both approaches to targeting the EGFR have shown clinical promise and the anti-EGFR antibody cetuximab is used to treat HNSCC and CRC. Despite clinical gains arising from use of cetuximab, both intrinsic resistance and the development of acquired resistance are now well recognized. In this review we focus on the biology of the EGFR, the role of EGFR in human cancer, the development of antibody-based anti-EGFR therapies and a summary of their clinical successes. Further, we provide an in depth discussion of described molecular mechanisms of resistance to cetuximab and potential strategies to circumvent this resistance.

  4. Structure of the Fab fragment of the anti-murine EGFR antibody 7A7 and exploration of its receptor binding site.

    Science.gov (United States)

    Talavera, Ariel; Mackenzie, Jenny; Garrido, Greta; Friemann, Rosmarie; López-Requena, Alejandro; Moreno, Ernesto; Krengel, Ute

    2011-07-01

    The EGF receptor is an important target of cancer immunotherapies. The 7A7 monoclonal antibody has been raised against the murine EGFR, but it cross-reacts with the human receptor. The results from experiments using immune-competent mice can therefore, in principle, be extrapolated to the corresponding scenario in humans. In this work we report the crystal structure of the 7A7 Fab at an effective resolution of 1.4Å. The antibody binding site comprises a deep pocket, located at the interface between the light and heavy chains, with major contributions from CDR loops H1, H2, H3 and L1. Binding experiments show that 7A7 recognizes a site on the EGFR extracellular domain that is not accessible in its most stable conformations, but that becomes exposed upon treatment with a tyrosine kinase inhibitor. This suggests a recognition mechanism similar to that proposed for mAb 806.

  5. Refining EGFR-monoclonal antibody treatment in colorectal cancer

    NARCIS (Netherlands)

    Krens, Lisanne Laura

    2015-01-01

    The use of the epidermal growth factor receptor (EGFR) antibodies cetuximab and panitumumab is limited to colorectal cancer (CRC) patients with KRAS wild type tumors and more recently in RAS wild type only. After having become chemotherapy refractory, treatment options are limited for this substanti

  6. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer

    Science.gov (United States)

    Uchibori, Ken; Inase, Naohiko; Araki, Mitsugu; Kamada, Mayumi; Sato, Shigeo; Okuno, Yasushi; Fujita, Naoya; Katayama, Ryohei

    2017-03-01

    Osimertinib has been demonstrated to overcome the epidermal growth factor receptor (EGFR)-T790M, the most relevant acquired resistance to first-generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs). However, the C797S mutation, which impairs the covalent binding between the cysteine residue at position 797 of EGFR and osimertinib, induces resistance to osimertinib. Currently, there are no effective therapeutic strategies to overcome the C797S/T790M/activating-mutation (triple-mutation)-mediated EGFR-TKI resistance. In the present study, we identify brigatinib to be effective against triple-mutation-harbouring cells in vitro and in vivo. Our original computational simulation demonstrates that brigatinib fits into the ATP-binding pocket of triple-mutant EGFR. The structure-activity relationship analysis reveals the key component in brigatinib to inhibit the triple-mutant EGFR. The efficacy of brigatinib is enhanced markedly by combination with anti-EGFR antibody because of the decrease of surface and total EGFR expression. Thus, the combination therapy of brigatinib with anti-EGFR antibody is a powerful candidate to overcome triple-mutant EGFR.

  7. Inhibition of triple-negative breast cancer models by combinations of antibodies to EGFR

    Science.gov (United States)

    Ferraro, Daniela A.; Gaborit, Nadège; Maron, Ruth; Cohen-Dvashi, Hadas; Porat, Ziv; Pareja, Fresia; Lavi, Sara; Lindzen, Moshit; Ben-Chetrit, Nir; Sela, Michael; Yarden, Yosef

    2013-01-01

    Breast tumors lacking expression of human epidermal growth factor receptor 2 (HER2) and the estrogen and the progesterone receptors (triple negative; TNBC) are more aggressive than other disease subtypes, and no molecular targeted agents are currently available for their treatment. Because TNBC commonly displays EGF receptor (EGFR) expression, and combinations of monoclonal antibodies to EGFR effectively inhibit other tumor models, we addressed the relevance of this strategy to treatment of TNBC. Unlike a combination of the clinically approved monoclonal antibodies, cetuximab and panitumumab, which displaced each other and displayed no cooperative effects, several other combinations resulted in enhanced inhibition of TNBC’s cell growth both in vitro and in animals. The ability of certain antibody mixtures to remove EGFR from the cell surface and to promote its intracellular degradation correlated with the inhibitory potential. However, unlike EGF-induced sorting of EGFR to lysosomal degradation, the antibody-induced pathway displayed independence from the intrinsic kinase activity and dimer formation ability of EGFR, and it largely avoided the recycling route. In conclusion, although TNBC clinical trials testing EGFR inhibitors reported lack of benefit, our results offer an alternative strategy that combines noncompetitive antibodies to achieve robust degradation of EGFR and tumor inhibition. PMID:23319610

  8. Pan-HER - an antibody mixture targeting EGFR, HER2, and HER3 abrogates preformed and ligand-induced EGFR homo- and heterodimers

    DEFF Research Database (Denmark)

    Ellebaek, Sofie; Pedersen, Susanne Brix; Grandal, Michael

    2016-01-01

    Abs is development of acquired resistance through mechanisms such as alterated receptor dimerization patterns and dependencies. Pan-HER is a mixture of six mAbs simultaneously targeting epidermal growth factor receptor (EGFR), HER2, and HER3 with two mAbs against each receptor. Pan-HER has previously demonstrated....... The effect of Pan-HER on cell proliferation and HER-family receptor degradation was superior to treatment with single mAbs targeting either single receptor, and similar to targeting a single receptor with two non-overlapping antibodies. Furthermore, changes in EGFR-dimerization patterns after treatment......-HER and the EGFR-targeting mAb mixture also blocked EGF-binding and thereby ligand-induced changes in EGFR-dimerization levels. These results suggest that Pan-HER reduces the cellular capability to switch HER-dependency and dimerization pattern in response to treatment and thus hold promise for future clinical...

  9. Development of tetravalent IgG1 dual targeting IGF-1R-EGFR antibodies with potent tumor inhibition.

    Science.gov (United States)

    Croasdale, Rebecca; Wartha, Katharina; Schanzer, Juergen M; Kuenkele, Klaus-Peter; Ries, Carola; Mayer, Klaus; Gassner, Christian; Wagner, Martina; Dimoudis, Nikolaos; Herter, Sylvia; Jaeger, Christiane; Ferrara, Claudia; Hoffmann, Eike; Kling, Lothar; Lau, Wilma; Staack, Roland F; Heinrich, Julia; Scheuer, Werner; Stracke, Jan; Gerdes, Christian; Brinkmann, Ulrich; Umana, Pablo; Klein, Christian

    2012-10-15

    In this study we present novel bispecific antibodies that simultaneously target the insulin-like growth factor receptor type I (IGF-1R) and epidermal growth factor receptor (EGFR). For this purpose disulfide stabilized scFv domains of the EGFR/ADCC antibody GA201 were fused via serine-glycine connectors to the C-terminus of the heavy (XGFR2) or light chain (XGFR4), or the N-termini of the light (XGFR5) or heavy chain (XGFR3) of the IGF-1R antibody R1507 as parental IgG1 antibody. The resulting bispecific IGF-1R-EGFR antibodies XGFR2, XGFR3 and XGFR4 were successfully generated with yields and stability comparable to conventional IgG1 antibodies. They effectively inhibited IGF-1R and EGFR phosphorylation and 3D proliferation of H322M and H460M2 tumor cells, induced strong down-modulation of IGF-1R as well as enhanced EGFR down-modulation compared to the parental EGFR antibody GA201 and were ADCC competent. The bispecific XGFR derivatives showed a strong format dependent influence of N- or C-terminal heavy and light chain scFv attachment on ADCC activity and an increase in receptor downregulation over the parental combination in vitro. XGFR2 and XGFR4 were selected for in vivo evaluation and showed potent anti-tumoral efficacy comparable to the combination of monospecific IGF-1R and EGFR antibodies in subcutaneous BxPC3 and H322M xenograft models. In summary, we have managed to overcome issues of stability and productivity of bispecific antibodies, discovered important antibody fusion protein design related differences on ADCC activity and receptor downmodulation and show that IGF-1R-EGFR antibodies represent an attractive therapeutic strategy to simultaneously target two key components de-regulated in multiple cancer types, with the ultimate goal to avoid the formation of resistance to therapy.

  10. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells.

    Science.gov (United States)

    Grugan, Katharine D; Dorn, Keri; Jarantow, Stephen W; Bushey, Barbara S; Pardinas, Jose R; Laquerre, Sylvie; Moores, Sheri L; Chiu, Mark L

    2017-01-01

    Epidermal growth factor receptor (EGFR) mutant non-small cell lung cancers acquire resistance to EGFR tyrosine kinase inhibitors through multiple mechanisms including c-Met receptor pathway activation. We generated a bispecific antibody targeting EGFR and c-Met (JNJ-61186372) demonstrating anti-tumor activity in wild-type and mutant EGFR settings with c-Met pathway activation. JNJ-61186372 was engineered with low fucosylation (<10 %), resulting in enhanced antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. In vitro and in vivo studies with the single-arm EGFR or c-Met versions of JNJ-61186372 identified that the Fc-activity of JNJ-61186372 is mediated by binding of the anti-EGFR arm and required for inhibition of EGFR-driven tumor cells. In a tumor model driven by both EGFR and c-Met, treatment with Fc-silent JNJ-61186372 or with c-Met single-arm antibody reduced tumor growth inhibition compared to treatment with JNJ-61186372, suggesting that the Fc function of JNJ-61186372 is essential for maximal tumor inhibition. Moreover in this same model, downregulation of both EGFR and c-Met receptors was observed upon treatment with Fc-competent JNJ-61186372, suggesting that the Fc interactions are necessary for down-modulation of the receptors in vivo and for efficacy. These Fc-mediated activities, in combination with inhibition of both the EGFR and c-Met signaling pathways, highlight the multiple mechanisms by which JNJ-61186372 combats therapeutic resistance in EGFR mutant patients.

  11. Pan-HER-An antibody mixture targeting EGFR, HER2 and HER3 abrogates preformed and ligand-induced EGFR homo- and heterodimers.

    Science.gov (United States)

    Ellebaek, Sofie; Brix, Susanne; Grandal, Michael; Lantto, Johan; Horak, Ivan D; Kragh, Michael; Poulsen, Thomas Tuxen

    2016-11-01

    The human epidermal growth factor receptor (HER)-family is involved in development of many epithelial cancers. Therefore, HER-family members constitute important targets for anti-cancer therapeutics such as monoclonal antibodies (mAbs). A limitation to the success of single HER-targeting mAbs is development of acquired resistance through mechanisms such as alterted receptor dimerization patterns and dependencies. Pan-HER is a mixture of six mAbs simultaneously targeting epidermal growth factor receptor (EGFR), HER2 and HER3 with two mAbs against each receptor. Pan-HER has previously demonstrated broader efficacy than targeting single or dual receptor combinations also in resistant settings. In light of this broad efficacy, we decided to investigate the effect of Pan-HER compared with single HER-targeting with single and dual mAbs on HER-family cross-talk and dimerization focusing on EGFR. The effect of Pan-HER on cell proliferation and HER-family receptor degradation was superior to treatment with single mAbs targeting either single receptor, and similar to targeting a single receptor with two non-overlapping antibodies. Furthermore, changes in EGFR-dimerization patterns after treatment with Pan-HER were investigated by in situ proximity ligation assay and co-immunoprecipitation, demonstrating that Pan-HER and the EGFR-targeting mAb mixture efficiently down-regulate basal EGFR homo- and heterodimerization in two tested cell lines, whereas single mAbs had limited effects. Pan-HER and the EGFR-targeting mAb mixture also blocked EGF-binding and thereby ligand-induced changes in EGFR-dimerization levels. These results suggest that Pan-HER reduces the cellular capability to switch HER-dependency and dimerization pattern in response to treatment and thus hold promise for future clinical development of Pan-HER in resistant settings.

  12. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials

    DEFF Research Database (Denmark)

    Voldborg, B R; Damstrup, L; Spang-Thomsen, M;

    1997-01-01

    The epidermal growth factor receptor (EGFR) is a growth factor receptor that induces cell differentiation and proliferation upon activation through the binding of one of its ligands. The receptor is located at the cell surface, where the binding of a ligand activates a tyrosine kinase...... in the intracellular region of the receptor. This tyrosine kinase phosphorylates a number of intracellular substrates that activates pathways leading to cell growth, DNA synthesis and the expression of oncogenes such as fos and jun. EGFR is thought to be involved the development of cancer, as the EGFR gene is often...... amplified, and/or mutated in cancer cells. In this review we will focus on: (I) the structure and function of EGFR, (II) implications of receptor/ligand coexpression and EGFR mutations or overexpression, (III) its effect on cancer cells, (IV) the development of the malignant phenotype and (V) the clinical...

  13. EGFR FISH analysis in colorectal cancer as a tool in selecting patients for antiEGFR monoclonal antibodies therapy

    Directory of Open Access Journals (Sweden)

    Mauro Moroni

    2011-12-01

    Full Text Available The recent introduction of targeted therapies in the treatment of patients with metastatic colorectal cancer (mCRC not only improved efficacy but also toxicity and costs of the therapy, therefore requiring the identification of decision-making tools to select patients who are likely to benefit from them. By now, several studies have demonstrated an association between epidermal growth factor receptor (EGFR non-increased gene copy number, evaluated by fluorescence in situ hybridization (FISH, and resistance to the treatment with antiEGFR monoclonal antibodies (moAbs in patients with mCRC. However, the reproducibility of data by standardization of methods still remains an obstacle to be faced for clinical application of the test. We present a review of studies pertaining EGFR FISH analysis as a predictive test of clinical outcome to the treatment with antiEGFR moAbs in mCRC to point out the existing knowledge and the open questions about this issue.

  14. Acetylcholine receptor antibody

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003576.htm Acetylcholine receptor antibody To use the sharing features on this page, please enable JavaScript. Acetylcholine receptor antibody is a protein found in the blood ...

  15. Sym004, a Novel EGFR Antibody Mixture, Can Overcome Acquired Resistance to Cetuximab

    Directory of Open Access Journals (Sweden)

    Mari Iida

    2013-10-01

    Full Text Available The epidermal growth factor receptor (EGFR is a central regulator of tumor progression in a variety of human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for head and neck and colorectal cancer treatment, but many patients treated with cetuximab don't respond or eventually acquire resistance. To determine how tumor cells acquire resistance to cetuximab, we previously developed a model of acquired resistance using the non-small cell lung cancer line NCI-H226. These cetuximab-resistant (CtxR cells exhibit increased steady-state EGFR expression secondary to alterations in EGFR trafficking and degradation and, further, retained dependence on EGFR signaling for enhanced growth potential. Here, we examined Sym004, a novel mixture of antibodies directed against distinct epitopes on the extracellular domain of EGFR, as an alternative therapy for CtxR tumor cells. Sym004 treatment of CtxR clones resulted in rapid EGFR degradation, followed by robust inhibition of cell proliferation and down-regulation of several mitogen-activated protein kinase pathways. To determine whether Sym004 could have therapeutic benefit in vivo, we established de novo CtxR NCI-H226 mouse xenografts and subsequently treated CtxR tumors with Sym004. Sym004 treatment of mice harboring CtxR tumors resulted in growth delay compared to mice continued on cetuximab. Levels of total and phospho-EGFR were robustly decreased in CtxR tumors treated with Sym004. Immunohistochemical analysis of these Sym004-treated xenograft tumors further demonstrated decreased expression of Ki67, and phospho-rpS6, as well as a modest increase in cleaved caspase-3. These results indicate that Sym004 may be an effective targeted therapy for CtxR tumors.

  16. Pan-HER - an antibody mixture targeting EGFR, HER2, and HER3 abrogates preformed and ligand-induced EGFR homo- and heterodimers

    DEFF Research Database (Denmark)

    Ellebaek, Sofie; Pedersen, Susanne Brix; Grandal, Michael

    2016-01-01

    The human epidermal growth factor receptor (HER)-family is involved in development of many epithelial cancers. Therefore, HER-family members constitute important targets for anti-cancer therapeutics such as monoclonal antibodies (mAbs). A limitation to the success of single HER-targeting m...... broader efficacy than targeting single or dual receptor combinations also in resistant settings. In light of this broad efficacy, we decided to investigate the effect of Pan-HER compared with single HER-targeting with single and dual mAbs on HER-family cross-talk and dimerization focusing on EGFR....... The effect of Pan-HER on cell proliferation and HER-family receptor degradation was superior to treatment with single mAbs targeting either single receptor, and similar to targeting a single receptor with two non-overlapping antibodies. Furthermore, changes in EGFR-dimerization patterns after treatment...

  17. In vitro effect of radiation, antibody to epidermal growth factor receptor and Docetaxel in human head and neck squamous carcinoma cells with mutant P53 and over-expressed EGFR.

    Science.gov (United States)

    Laytragoon-Lewin, Nongnit; Ustun, Hasan; Castro, Juan; Friesland, Signe; Ghaderi, Mehran; Lundgren, Jan; Turesson, Ingela; Lewin, Freddi

    2009-02-01

    Radiotherapy is the most frequently used and cheapest treatment both for curative and palliative purposes in HNSCC. Despite advances in technology and intensive treatments with radiation, only half of the patients are cured. New therapeutic approaches focusing on the molecular mechanism that mediate tumour cell growth or cell death in combination with radiotherapy have been suggested. The effects of radiation, antibody to EGFR and Docetaxel as single treatment or in combinations on HNSCC cells were investigated. The established HNSCC cells with mutant (mt) P53 and over-expressed normal EGFR was used as the in vitro model. Gene expression profile, cell cycle progression and cell death were used as the indication of treatment outcome. With c-DNA microarray of well-characterised functional genes, massive changes in the genes expression of HNSCC were detected. The alterations of gene expression profiles do not have any correlation neither on tumour cell growth nor cell death. HNSCC cells with mt P53 and over-expressed normal EGFR did not response to radiation, anti-EGFR monoclonal antibody and their combination therapy. Effective treatment could be obtained from single therapy with Docetaxel. No additive effects on cell cycle arrest or cell death were seen in the combination of Docetaxel to anti-EGFR antibody, radiation or anti-EGFR antibody + radiation. The c-DNA microarray analysis does not indicate any specific target or treatment effects of HNSCC with mt P53 and over-expressed normal EGFR. Single therapy, target at microtubules might be the most suitable treatment modulation in this tumour type.

  18. Quantitative PET of EGFR expression in xenograft-bearing mice using {sup 64}Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Weibo; Chen, Kai; He, Lina; Cao, Qizhen; Chen, Xiaoyuan [Stanford University School of Medicine, The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford, CA (United States); Koong, Albert [Stanford University School of Medicine, Department of Radiation Oncology, Stanford, CA (United States)

    2007-06-15

    Cetuximab, a chimeric monoclonal antibody targeting epidermal growth factor receptor (EGFR) on the surface of cancer cells, was approved by the FDA to treat patients with metastatic colorectal cancer. It is currently also in advanced-stage development for the treatment of several other solid tumors. Here we report for the first time the quantitative positron emission tomography (PET) imaging of EGFR expression in xenograft-bearing mice using {sup 64}Cu-labeled cetuximab. We conjugated cetuximab with macrocyclic chelating agent 1,4,7,10-tetraazadodecane-N,N',N'',N'''-tetraacetic acid (DOTA), labeled with {sup 64}Cu, and tested the resulting {sup 64}Cu-DOTA-cetuximab in seven xenograft tumor models. The tracer uptake measured by PET was correlated with the EGFR expression quantified by western blotting. The estimated human dosimetry based on the PET data in Sprague-Dawley rats was also calculated. MicroPET imaging showed that {sup 64}Cu-DOTA-cetuximab had increasing tumor activity accumulation over time in EGFR-positive tumors but relatively low uptake in EGFR-negative tumors at all times examined (<5%ID/g). There was a good correlation (R {sup 2} = 0.80) between the tracer uptake (measured by PET) and the EGFR expression level (measured by western blotting). Human dosimetry estimation indicated that the tracer may be safely administered to human patients for tumor diagnosis, with the dose-limiting organ being the liver. The success of EGFR-positive tumor imaging using {sup 64}Cu-DOTA-cetuximab can be translated into the clinic to characterize the pharmacokinetics, to select the right population of patients for EGFR-targeted therapy, to monitor the therapeutic efficacy of anti-EGFR treatment, and to optimize the dosage of either cetuximab alone or cetuximab in combination with other therapeutic agents. (orig.)

  19. Cross-arm binding efficiency of an EGFR x c-Met bispecific antibody.

    Science.gov (United States)

    Zheng, Songmao; Moores, Sheri; Jarantow, Stephen; Pardinas, Jose; Chiu, Mark; Zhou, Honghui; Wang, Weirong

    2016-01-01

    Multispecific proteins, such as bispecific antibodies (BsAbs), that bind to two different ligands are becoming increasingly important therapeutic agents. Such BsAbs can exhibit markedly increased target binding and target residence time when both pharmacophores bind simultaneously to their targets. The cross-arm binding efficiency (χ) describes an increase in apparent affinity when a BsAb binds to the second target or receptor (R2) following its binding to the first target or receptor (R1) on the same cell. χ is an intrinsic characteristic of a BsAb mostly related to the binding epitopes on R1 and R2. χ can have significant impacts on the binding to R2 for BsAbs targeting two receptors on the same cell. JNJ-61186372, a BsAb that targets epidermal growth factor receptor (EGFR) and c-Met, was used as the model compound for establishing a method to characterize χ. The χ for JNJ-61186372 was successfully determined via fitting of in vitro cell binding data to a ligand binding model that incorporated χ. The model-derived χ value was used to predict the binding of JNJ-61186372 to individual EGFR and c-Met receptors on tumor cell lines, and the results agreed well with the observed IC50 for EGFR and c-Met phosphorylation inhibition by JNJ-61186372. Consistent with the model, JNJ-61186372 was shown to be more effective than the combination therapy of anti-EGFR and anti-c-Met monovalent antibodies at the same dose level in a mouse xenograft model. Our results showed that χ is an important characteristic of BsAbs, and should be considered for rationale design of BsAbs targeting two membrane bound targets on the same cell.

  20. First-in-human trial of multikinase VEGF inhibitor regorafenib and anti-EGFR antibody cetuximab in advanced cancer patients

    OpenAIRE

    Subbiah, Vivek; Khawaja, Muhammad Rizwan; Hong, David S.; Amini, Behrang; Yungfang, Jiang; Liu,Hui; Johnson, Adrienne; Schrock, Alexa B.; Ali, Siraj M; Sun, James X.; Fabrizio, David; Piha-Paul, Sarina; Fu, Siqing; Tsimberidou, Apostolia M.; Naing, Aung

    2017-01-01

    BACKGROUND. The combination of multikinase VEGF inhibitor regorafenib and anti-EGFR antibody cetuximab overcomes intrinsic and acquired resistance in both EGFR-sensitive and EGFR-resistant preclinical models of colorectal cancer (CRC).

  1. EGFR gene copy number as a predictive biomarker for the treatment of metastatic colorectal cancer with anti-EGFR monoclonal antibodies: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Yang Zu-Yao

    2012-08-01

    Full Text Available Abstract Background Epidermal growth factor receptor gene copy number (EGFR GCN has been heavily investigated as a potential predictive biomarker for the treatment of metastatic colorectal cancer (mCRC with anti-EGFR monoclonal antibodies (MAbs. The objective of this study was to systematically review current evidences on this issue. Methods PubMed, EMBASE, The Cochrane Library, Chinese Biomedical Literature Database, Wanfang Data, and the conference abstracts of American Society of Clinical Oncology and European Society of Medical Oncology were comprehensively searched. Studies that reported the objective response rate (ORR, progression-free survival, and/or overall survival of mCRC patients treated with anti-EGFR MAbs, stratified by EGFR GCN status, were included. The effect measures for binary outcome (response and time-to-event outcomes (progression-free survival and overall survival were risk difference and hazard ratio, respectively. Statistical heterogeneity among the studies was assessed by the Cochran’s Q-test and the I2 statistic. If appropriate, a quantitative synthesis of data from different studies would be conducted with a random-effects model. Results Nineteen eligible studies were identified. The criteria for increased EGFR GCN (GCN+ were highly inconsistent across different studies. The prevalence of GCN + ranged from 6.9% to 88.9%, and the difference in ORR between patients with GCN + and those with non-increased EGFR GCN (GCN- varied from −28% to 84%. Because of the significant heterogeneity, no quantitative synthesis of data was performed. There was a general trend towards higher ORR in patients with GCN+. The difference in ORRs between patients with GCN + and those with GCN- was even greater in KRAS wild-type patients, while in KRAS mutated patients the difference often did not exist. Almost all patients with EGFR amplification responded to the treatment. However, the prevalence of EGFR amplification was

  2. Cetuximab in combination with anti-human IgG antibodies efficiently down-regulates the EGF receptor by macropinocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Christian [Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo (Norway); Madshus, Inger Helene [Institute of Pathology, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo (Norway); Stang, Espen, E-mail: espsta@rr-research.no [Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo (Norway)

    2012-12-10

    The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal growth factor receptor (EGFR). In addition, it is known that incubation with C225 induces endocytosis of the EGFR. This endocytosis has previously been shown to be increased when C225 is combined with an additional monoclonal anti-EGFR antibody. However, the effects of antibody combinations on EGFR activation, endocytosis, trafficking and degradation have been unclear. By binding a secondary antibody to the C225-EGFR complex, we here demonstrate that a combination of antibodies can efficiently internalize and degrade the EGFR. Although the combination of antibodies activated the EGFR kinase and induced ubiquitination of the EGFR, the kinase activity was not required for internalization of the EGFR. In contrast to EGF-induced EGFR down-regulation, the antibody combination efficiently degraded the EGFR without initiating downstream proliferative signaling. The antibody-induced internalization of EGFR was found not to depend on clathrin and/or dynamin, but depended on actin polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause internalization of large membrane areas, and this could explain the highly efficient internalization of the EGFR induced by combination of antibodies. -- Highlight: Black-Right-Pointing-Pointer Cetuximab induced endocytosis of EGFR increases upon combination with anti-human IgG. Black-Right-Pointing-Pointer Antibody combination causes internalization of EGFR by macropinocytosis. Black-Right-Pointing-Pointer Antibody-induced internalization of EGFR is independent of EGFR kinase activity. Black-Right-Pointing-Pointer Antibody combination may have a zipper effect and cross-link EGFRs on neighboring cells.

  3. Epidermal Growth Factor Receptor (EGFR) Crosstalks in Liver Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Berasain, Carmen, E-mail: cberasain@unav.es; Latasa, María Ujue; Urtasun, Raquel; Goñi, Saioa; Elizalde, María; Garcia-Irigoyen, Oihane; Azcona, María [Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona 31008 (Spain); Prieto, Jesús [Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona 31008 (Spain); CIBERehd, University Clinic, University of Navarra, Pamplona 31080 (Spain); Ávila, Matías A. [Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona 31008 (Spain)

    2011-05-18

    Hepatocarcinogenesis is a complex multistep process in which many different molecular pathways have been implicated. Hepatocellular carcinoma (HCC) is refractory to conventional chemotherapeutic agents, and the new targeted therapies are meeting with limited success. Interreceptor crosstalk and the positive feedback between different signaling systems are emerging as mechanisms of targeted therapy resistance. The identification of such interactions is therefore of particular relevance to improve therapeutic efficacy. Among the different signaling pathways activated in hepatocarcinogenesis the epidermal growth factor receptor (EGFR) system plays a prominent role, being recognized as a “signaling hub” where different extracellular growth and survival signals converge. EGFR can be transactivated in response to multiple heterologous ligands through the physical interaction with multiple receptors, the activity of intracellular kinases or the shedding of EGFR-ligands. In this article we review the crosstalk between the EGFR and other signaling pathways that could be relevant to liver cancer development and treatment.

  4. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Kellermeier Silvia

    2010-06-01

    Full Text Available Abstract Background Cholangiocarcinoma (CC is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Methods Expression of EGFR (epithelial growth factor receptor, HGFR (hepatocyte growth factor receptor IGF1R (insulin-like growth factor 1 receptor, IGF2R (insulin-like growth factor 2 receptor and VEGFR1-3 (vascular endothelial growth factor receptor 1-3 were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1. The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. Results EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml, with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D. HuH28, OZ and TFK-1 lacked KRAS mutation. Conclusion CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab.

  5. High-sensitivity epidermal growth factor receptor immunostaining for colorectal carcinomas, compared with EGFR PharmDx™: a study of diagnostic accuracy.

    Science.gov (United States)

    Shiogama, Kazuya; Wongsiri, Trai; Mizutani, Yasuyoshi; Inada, Ken-ichi; Tsutsumi, Yutaka

    2013-01-01

    Immunostaining for epidermal growth factor receptor (EGFR) is important in the contemporary therapeutic strategy of colorectal carcinomas. We tried to increase detection sensitivity, and compared the high-sensitivity EGFR immunostaining with a worldwide standard, EGFR PharmDx™ (Dako). In order to pursue high-sensitivity EGFR detection, deparaffinized sections were pressure-cooked in 1 mM EDTA solution, pH 8.0. Two mouse monoclonal antibodies against EGFR, clone EGFR2.5 and DAK-H1-WT, and six kinds of secondary detection reagents, including biotin-free catalyzed signal amplification (CSA II), Simple Stain MAX-PO, PolyVue, Novolink, EnVision™ FLEX+, and MACH3, were evaluated to compare the results with those with EGFR PharmDx™, employing a combination of 2-18-C9 as the primary monoclonal antibody and EnVision™ as the secondary reagent. Furthermore, we replaced EnVision™ in the EGFR PharmDx™ kit with CSAII. EGFR detection sensitivity was higher with DAK-H1-WT than with EGFR2.5, and among the secondary reagents, the strongest signals were observed with Novolink. All 30 colorectal carcinomas showed distinct expression of EGFR with our high-sensitivity EGFR immunostaining, while only 16 (53%) gave focal positivity with EGFR PharmDx™. When EnVision™ in EGFR PharmDx™ was replaced by CSA II, strong signals were seen in all cases, and the expression pattern was comparable with our sequence. Non-neoplastic crypt epithelial cells often showed weakly signal with the standard EGFR PharmDx™, but consistently revealed strong membrane staining in the two high-sensitivity sequences. EGFR PharmDx™ frequently gave false negativity. Importantly, EGFR was consistently and sensitively detected when the secondary polymer in the EGFR PharmDx™ kit was simply replaced by CSA II.

  6. Novel delivery of Chlorin e6 using anti-EGFR antibody tagged virosomes for fluorescence diagnosis of oral cancer in a hamster cheek pouch model.

    Science.gov (United States)

    Low, Kar Perng; Bhuvaneswari, Ramaswamy; Thong, Patricia S; Bunte, Ralph M; Soo, Khee Chee

    2016-02-15

    Overexpression of epidermal growth factor receptor (EGFR) is observed in oral squamous cell carcinoma (OSCC) and is associated with increased proliferation, metastasis and therapeutic resistance. We aim to develop a novel drug delivery system comprised of a photosensitizer Chlorin e6 (Ce6) that is encapsulated in a viral envelope and tagged with anti-EGFR antibody to target OSCC. Ce6 was encapsulated in both virosomes (Ce6-Vir) and virosomes tagged with anti-EGFR antibody (Ce6-Vir-EGFR'). In vitro studies were conducted to assess the cellular uptake and bioavailability of the photosensitizer in OSCC cells. Ce6 alone or in constructs was then administered in a hamster cheek pouch model and fluorescence imaging and spectroscopy was performed. In vitro results showed that the uptake of Ce6-Vir-EGFR' was lower than that for Ce6-Vir and Ce6 possibly due to its large size. Nevertheless, in vivo results showed significant tumor specificity of Ce6-Vir-EGFR' compared to Ce6. The tumor to normal mucosa ratio showed that Ce6-Vir-EGFR' can successfully target OSCC lesions and therefore shows potential for use in fluorescence diagnosis of OSCC. Both the virosome-Ce6 constructs were internalized by OSCC cells and successfully used for fluorescence imaging. Tagging with anti-EGFR antibody further improved the targeting ability toward OSCC. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The characteristics of human antibody targeting the Epidermal Growth Factor Receptor in vivo for radioimmunotherapy in a small animal model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Jung; Choi, Tae Hyun; Kim, Byoung Soo; Cheon, Gi Jeong [Korea Institue of Radiological and Medical Sciences, Seoul (Korea, Republic of); Hong, Kwang Won; Chang, Ki Hwan; Shin, Yong Won; Ryoo, Kyung Hwan; Shin, Yong Nam; Kim, Se Ho [Green Cross Corp., Yongin (Korea, Republic of)

    2010-05-15

    The identification of epidermal growth factor receptor (EGFR) as an oncogene has led to the development of anticancer therapeutics directed against EGFR, including Erbitux for colon cancer. Many therapeutic approaches are aimed at the EGFR. Erbitux is example of monoclonal antibody inhibitors. The monoclonal antibodies block the extracellular ligand binding domain. EGFR4-2, IgG human monoclonal antibody, has been developed on the basis of human antibody gene library in Green Cross Corp. Small animal imaging is useful for preclinical evaluation of radiolabeled antibody to see biodistribution and targeting ability at serial time points in same animals

  8. Effective therapeutic approach for head and neck cancer by an engineered minibody targeting the EGFR receptor.

    Directory of Open Access Journals (Sweden)

    Young Pil Kim

    Full Text Available Cetuximab, a chimeric monoclonal antibody developed for targeting the Epidermal Growth Factor Receptor (EGFR, has been intensively used to treat cancer patients with metastatic colorectal cancer and head and neck cancer. Intact immunoglobulin G (IgG antibody like cetuximab, however, has some limitations such as high production cost and low penetration rate from vasculature into solid tumor mass due to its large size. In attempt to overcome these limitations, we engineered cetuximab to create single chain variable fragments (scFv-CH3; Minibody that were expressed in bacterial system. Among three engineered minibodies, we found that MI061 minibody, which is composed of the variable heavy (VH and light (VL region joined by an 18-residue peptide linker, displays higher solubility and better extraction properties from bacterial lysate. In addition, we validated that purified MI061 significantly interferes ligand binding to EGFR and blocks EGFR's phosphorylation. By using a protein microarray composed of 16,368 unique human proteins covering around 2,400 plasma membrane associated proteins such as receptors and channels, we also demonstrated that MI061 only recognizes the EGFR but not other proteins as compared with cetuximab. These results indicated that engineered MI061 retains both binding specificity and affinity of cetuximab for EGFR. Although it had relatively short half-life in serum, it was shown to be highly significant anti-tumor effect by inhibiting ERK pathway in A431 xenograft model. Taken together, our present study provides compelling evidence that engineered minibody is more effective and promising agent for in vivo targeting of solid tumors.

  9. Simultaneous inhibition of epidermal growth factor receptor (EGFR) signaling and enhanced activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis induction by an scFv : sTRAIL fusion protein with specificity for human EGFR

    NARCIS (Netherlands)

    Bremer, E; Samplonius, DF; van Genne, L; Dijkstra, MH; Kroesen, BJ; de Leij, LFMH; Helfrich, W

    2005-01-01

    Epidermal growth factor receptor (EGFR) signaling inhibition by monoclonal antibodies and EGFR-specific tyrosine kinase inhibitors has shown clinical efficacy in cancer by restoring susceptibility of tumor cells to therapeutic apoptosis induction. Tumor necrosis factor-related apoptosis-inducing lig

  10. The phosphatase and tensin homolog regulates epidermal growth factor receptor (EGFR) inhibitor response by targeting EGFR for degradation

    OpenAIRE

    Vivanco, Igor; Rohle, Daniel; Versele, Matthias; Iwanami, Akio; Kuga, Daisuke; Oldrini, Barbara; Tanaka, Kazuhiro; Dang, Julie; Kubek, Sara; Palaskas, Nicolaos; Hsueh, Teli; Evans, Michael; Mulholland, David; Wolle, Daniel; Rajasekaran, Sigrid

    2010-01-01

    The phosphatase and tensin homolog (PTEN) is a tumor suppressor that is inactivated in many human cancers. PTEN loss has been associated with resistance to inhibitors of the epidermal growth factor receptor (EGFR), but the molecular basis of this resistance is unclear. It is believed that unopposed phosphatidylinositol-3-kinase (PI3K) activation through multiple receptor tyrosine kinases (RTKs) can relieve PTEN-deficient cancers from their “dependence” on EGFR or any other single RTK for surv...

  11. Differential effects of EGFR ligands on endocytic sorting of the receptor.

    Science.gov (United States)

    Roepstorff, Kirstine; Grandal, Michael Vibo; Henriksen, Lasse; Knudsen, Stine Louise Jeppe; Lerdrup, Mads; Grøvdal, Lene; Willumsen, Berthe Marie; van Deurs, Bo

    2009-08-01

    Endocytic downregulation is a pivotal mechanism turning off signalling from the EGF receptor (EGFR). It is well established that whereas EGF binding leads to lysosomal degradation of EGFR, transforming growth factor (TGF)-alpha causes receptor recycling. TGF-alpha therefore leads to continuous signalling and is a more potent mitogen than EGF. In addition to EGF and TGF-alpha, five EGFR ligands have been identified. Although many of these ligands are upregulated in cancers, very little is known about their effect on EGFR trafficking. We have compared the effect of six different ligands on endocytic trafficking of EGFR. We find that, whereas they all stimulate receptor internalization, they have very diverse effects on endocytic sorting. Heparin-binding EGF-like growth factor and Betacellulin target all EGFRs for lysosomal degradation. In contrast, TGF-alpha and epiregulin lead to complete receptor recycling. EGF leads to lysosomal degradation of the majority but not all EGFRs. Amphiregulin does not target EGFR for lysosomal degradation but causes fast as well as slow EGFR recycling. The Cbl ubiquitin ligases, especially c-Cbl, are responsible for EGFR ubiquitination after stimulation with all ligands, and persistent EGFR phosphorylation and ubiquitination largely correlate with receptor degradation.

  12. Structural basis for EGF receptor inhibition by the therapeutic antibody IMC-11F8.

    Science.gov (United States)

    Li, Shiqing; Kussie, Paul; Ferguson, Kathryn M

    2008-02-01

    Therapeutic anticancer strategies that target and inactivate the epidermal growth factor receptor (EGFR) are under intense study in the clinic. Here we describe the mechanism of EGFR inhibition by an antibody drug IMC-11F8. IMC-11F8 is a fully human antibody that has similar antitumor potency as the chimeric cetuximab/Erbitux and might represent a safer therapeutic alternative. We report the X-ray crystal structure of the Fab fragment of IMC-11F8 (Fab11F8) in complex with the entire extracellular region and with isolated domain III of EGFR. We compare this to our previous study of the cetuximab/EGFR interaction. Fab11F8 interacts with a remarkably similar epitope, but through a completely different set of interactions. Both the similarities and differences in binding of these two antibodies have important implications for the development of inhibitors that could exploit this same mechanism of EGFR inhibition.

  13. Dermatologic Toxicities from Monoclonal Antibodies and Tyrosine Kinase Inhibitors against EGFR: Pathophysiology and Management

    Directory of Open Access Journals (Sweden)

    Shaad E. Abdullah

    2012-01-01

    Full Text Available Epidermal growth factor receptor (EGFR inhibition has now been well established as an effective treatment for various cancers. The EGFR belongs to the ErbB family of tyrosine kinase receptors which regulate tumor cell differentiation, survival and proliferation. Activation of EGFR drives tumorigenesis in lung, head and neck, colorectal and pancreatic cancers. Irrespective of the type of cancer being treated and the mechanism by which tumor EGFR drives tumorigenesis, the major side effect of EGFR inhibition is a papulopustular (also described as maculopapular or acneiform rash which occurs in about two thirds of treated patients. Interestingly, this rash has been commonly correlated with better clinical outcomes (objective tumor response and patient survival. The pathophysiology of dermatological toxicity from EGFR inhibitors is an important area of clinical research, and the proper management of the rash is essential to increase the therapeutic index from this class of drugs. In this paper, we review the dermatologic toxicities associated with EGFR inhibitors with an emphasis on its pathophysiology and clinical management.

  14. Dermatologic Toxicities from Monoclonal Antibodies and Tyrosine Kinase Inhibitors against EGFR: Pathophysiology and Management

    Science.gov (United States)

    Abdullah, Shaad E.; Haigentz, Missak; Piperdi, Bilal

    2012-01-01

    Epidermal growth factor receptor (EGFR) inhibition has now been well established as an effective treatment for various cancers. The EGFR belongs to the ErbB family of tyrosine kinase receptors which regulate tumor cell differentiation, survival and proliferation. Activation of EGFR drives tumorigenesis in lung, head and neck, colorectal and pancreatic cancers. Irrespective of the type of cancer being treated and the mechanism by which tumor EGFR drives tumorigenesis, the major side effect of EGFR inhibition is a papulopustular (also described as maculopapular or acneiform) rash which occurs in about two thirds of treated patients. Interestingly, this rash has been commonly correlated with better clinical outcomes (objective tumor response and patient survival). The pathophysiology of dermatological toxicity from EGFR inhibitors is an important area of clinical research, and the proper management of the rash is essential to increase the therapeutic index from this class of drugs. In this paper, we review the dermatologic toxicities associated with EGFR inhibitors with an emphasis on its pathophysiology and clinical management. PMID:22997576

  15. KIR Genes and Their Ligands Predict the Response to Anti-EGFR Monoclonal Antibodies in Solid Tumors.

    Science.gov (United States)

    Morales-Estevez, Cristina; De la Haba-Rodriguez, Juan; Manzanares-Martin, Barbara; Porras-Quintela, Ignacio; Rodriguez-Ariza, Antonio; Moreno-Vega, Alberto; Ortiz-Morales, Maria J; Gomez-España, Maria A; Cano-Osuna, Maria T; Lopez-Gonzalez, Javier; Chia-Delgado, Beatriz; Gonzalez-Fernandez, Rafael; Aranda-Aguilar, Enrique

    2016-01-01

    Killer-cell immunoglobulin-like receptors (KIRs) regulate the killing function of natural killer cells, which play an important role in the antibody-dependent cell-mediated cytotoxicity response exerted by therapeutic monoclonal antibodies (mAbs). However, it is unknown whether the extensive genetic variability of KIR genes and/or their human leukocyte antigen (HLA) ligands might influence the response to these treatments. This study aimed to explore whether the variability in KIR/HLA genes may be associated with the variable response observed to mAbs based anti-epidermal growth factor receptor (EGFR) therapies. Thirty-nine patients treated with anti-EGFR mAbs (trastuzumab for advanced breast cancer, or cetuximab for advanced colorectal or advanced head and neck cancer) were included in the study. All the patients had progressed to mAbs therapy and were grouped into two categories taking into account time to treatment failure (TTF ≤6 and ≥10 months). KIR genotyping (16 genetic variability) was performed in genomic DNA from peripheral blood by PCR sequence-specific primer technique, and HLA ligand typing was performed for HLA-B and -C loci by reverse polymerase chain reaction sequence-specific oligonucleotide methodology. Subjects carrying the KIR/HLA ligand combinations KIR2DS1/HLAC2C2-C1C2 and KIR3DS1/HLABw4w4-w4w6 showed longer TTF than non-carriers counterparts (14.76 vs. 3.73 months, p KIR/HLA ligand combinations predict better response of patients to anti-EGFR therapy. These findings increase the overall knowledge on the role of specific gene variants related to responsiveness to anti-EGFR treatment in solid tumors and highlight the importance of assessing gene polymorphisms related to cancer medications.

  16. Biomarkers for predicting the efficacy of anti-epidermal growth factor receptor antibody in the treatment of colorectal cancer.

    Science.gov (United States)

    Okada, Yasuyuki; Miyamoto, Hiroshi; Goji, Takahiro; Takayama, Tetsuji

    2014-01-01

    Anti-epidermal growth factor receptor (EGFR) antibodies have been widely utilized as a standard treatment for metastatic colorectal cancer (CRC). Anti-EGFR antibodies bind competitively to EGFRs to inhibit receptor activation and subsequent signal transduction of the RAS/RAF/MEK pathway and PI3K/AKT pathway. By inhibiting EGFR-mediated signal transduction, anti-EGFR antibodies inhibit cell growth, invasion, metastasis and angiogenesis, and they induce apoptosis. The IgG1-type antibody cetuximab is also capable of inducing antibody-dependent cellular cytotoxicity. Several studies have shown that KRAS mutation is a useful biomarker for predicting the efficacy of anti-EGFR agents, and the major guidelines for the treatment of CRC recommend the use of anti-EGFR antibody only for the cancers with wild-type KRAS. Alterations of other genes, including BRAF, NRAS, PTEN and AKT, and EGFR expression/gene copy number have also been reported to be candidate biomarkers for predicting the efficacy of anti-EGFR agents. The predictive values of these biomarkers are still controversial and further investigations are required.

  17. MAXIMIZATION OF DNA DAMAGE TO MGMT(+ EGFR(+ GBM CELLS USING OPTIMAL COMBINATION OF TEMOZOLOMIDE-ANTI EGFR MONOCLONAL ANTIBODY NIMOTUZUMAB

    Directory of Open Access Journals (Sweden)

    M. A. M. Inggas

    2015-09-01

    Full Text Available Background: Glioblastoma multiforme (GBM is the most aggressive primary brain tumor in adultswith dismal prognosis due to the unavailability of an effective therapy. Up to now, there had been no definitive studies published on EGFR inhibition therapy as a chemosensitizer for GBM therapy using Temozolomide (TMZ. This study aims to reveal the most effective method and timing to administer TMZ-anti EGFR targeted therapy which causes maximal DNA damage on GBM cells.Methods: Various regimens of anti EGFR monoclonal antibody Nimotuzumab (NMZ was administered in different combinations with TMZ, performed on U87MG MGMT(+ EGFR(+ cells. The effectiveness of the combinations were evaluated by measuring yH2AX levels which reflects the degree of DNA damage. One-way Anova and LSD tests were performed to determine the effects of each treatment with p<0.05. Results and discussion: the mean SD of yH2AX of each treatment was: 11,90±1,25 for the control group; 29.33±1.91 for NMZ alone; 28.13±1.58 for TMZ alone; 41.53±3.51 for concurrent use; 35.67 ±2.65 for NMZ after 24 hours TMZ; 31.87±2.94 for NMZ after 48 hours TMZ; 39.57±4.2 for TMZ after 24 hours NMZ; and 35.93 ±3.56 for TMZ after 48 hours NMZ. The administration of TMZ concurrent with or after 24 hours NMZ gives the highest amount of DNA damage to GBM cells. Conclusion: The administration of Nimotuzumab targeted therapy up to 24 hours before Temozolomide chemotherapy has been proven to be effective in maximizing the amount of DNA damage done to GBM cells in vitro. 

  18. Quantum dots immunofluorescence histochemical detection of EGFR gene mutations in the non-small cell lung cancers using mutation-specific antibodies

    Directory of Open Access Journals (Sweden)

    Qu YG

    2014-12-01

    Full Text Available Yan-Gang Qu,1 Qian Zhang,2 Qi Pan,3 Xian-Da Zhao,4 Yan-Hua Huang,2 Fu-Chun Chen,3 Hong-Lei Chen41Department of Pathology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, 2Department of Molecular Pathology, Wuhan Nano Tumor Diagnosis Engineering Research Center, Wuhan, Hubei, People’s Republic of China; 3Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang, People’s Republic of China; 4Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei, People’s Republic of ChinaBackground: Epidermal growth factor receptor (EGFR mutation status plays an important role in therapeutic decision making for non-small cell lung cancer (NSCLC patients. Since EGFR mutation-specific antibodies (E746-A750del and L858R have been developed, EGFR mutation detection by immunohistochemistry (IHC is a suitable screening test. On this basis, we want to establish a new screening test, quantum dots immunofluorescence histochemistry (QDs-IHC, to assess EGFR gene mutation in NSCLC tissues, and we compared it to traditional IHC and amplification refractory mutation system (ARMS.Materials and methods: EGFR gene mutations were detected by QDs-IHC, IHC, and ADx-ARMS in 65 cases of NSCLC composed of 55 formalin-fixed, paraffin-embedded specimens and ten pleural effusion cell blocks, including 13 squamous cell carcinomas, two adenosquamous carcinomas, and 50 adenocarcinomas.Results: Positive rates of EGFR gene mutations detected by QDs-IHC, IHC, and ADx-ARMS were 40.0%, 36.9%, and 46.2%, respectively, in 65 cases of NSCLC patients. The sensitivity of QDs-IHC when detecting EGFR mutations, as compared to ADx-ARMS, was 86.7% (26/30; the specificity for both antibodies was 100.0% (26/26. IHC sensitivity was 80.0% (24/30 and the specificity was 92.31% (24/26. When detecting EGFR mutations, QDs-IHC and ADx-ARMS had perfect consistency (κ=0.882; P<0.01. Excellent agreement was observed

  19. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: dawidson@ufmg.br [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)

    2016-09-09

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  20. KIR Genes and their Ligands Predict the Response to Anti-2 EGFR Monoclonal Antibodies in Solid Tumors

    Directory of Open Access Journals (Sweden)

    Cristina Morales-Estevez

    2016-12-01

    Full Text Available Killer-cell immunoglobulin-like receptors (KIRs regulate the killing function of NK cells, which play an important role in the antibody-dependent cell-mediated cytotoxicity (ADCC response exerted by therapeutic monoclonal antibodies (mAbs. However, it is unknown whether the extensive genetic variability of KIR genes and/or their HLA ligands might influence the response to these treatments. This study aimed to explore whether the variability in KIR/HLA genes may be associated to the variable response observed to mAbs-based anti-EGFR therapies. Thirty-nine patients treated with anti-EGFR mAbs (trastuzumab for advanced breast cancer, or cetuximab for advanced colorectal or advanced head and neck cancer, were included in the study. All the patients had progressed to mAbs therapy and were grouped into two categories taking into account time to treatment failure (TTF ≤6 months and TTF ≥10 months. KIR genotyping (16 genetic variability was performed in genomic DNA from peripheral blood by PCR sequence-specific primer technique and HLA ligand typing was performed for HLA-B & -C loci by reverse PCR-SSO methodology. Subjects carrying the KIR/HLA ligand combinations KIR2DS1/HLAC2C2-C1C2 and KIR3DS1/HLABw4w4-w4w6 showed longer TTF than non-carriers counterparts (14,76 m vs 3,73 m, p<0.001, and 14,93 m vs 4,6 m, p=0.005 respectively. No other significant differences were observed. Two activating KIR/HLA ligand combinations predict better response of patients to anti-EGFR therapy. These findings increase the overall knowledge on the role of specific gene variants related with responsivenessto anti-EGFR treatment in solid tumours and highlight the importance of assessing gene polymorphisms related with cancer medications.

  1. HER2 Oncogenic Function Escapes EGFR Tyrosine Kinase Inhibitors via Activation of Alternative HER Receptors in Breast Cancer Cells

    Science.gov (United States)

    Kong, Anthony; Calleja, Véronique; Leboucher, Pierre; Harris, Adrian; Parker, Peter J.; Larijani, Banafshé

    2008-01-01

    Background The response rate to EGFR tyrosine kinase inhibitors (TKIs) may be poor and unpredictable in cancer patients with EGFR expression itself being an inadequate response indicator. There is limited understanding of the mechanisms underlying this resistance. Furthermore, although TKIs suppress the growth of HER2-overexpressing breast tumor cells, they do not fully inhibit HER2 oncogenic function at physiological doses. Methodology and Principal Findings Here we have provided a molecular mechanism of how HER2 oncogenic function escapes TKIs' inhibition via alternative HER receptor activation as a result of autocrine ligand release. Using both Förster Resonance Energy Transfer (FRET) which monitors in situ HER receptor phosphorylation as well as classical biochemical analysis, we have shown that the specific tyrosine kinase inhibitors (TKIs) of EGFR, AG1478 and Iressa (Gefitinib) decreased EGFR and HER3 phosphorylation through the inhibition of EGFR/HER3 dimerization. Consequent to this, we demonstrate that cleavage of HER4 and dimerization of HER4/HER2 occur together with reactivation of HER3 via HER2/HER3, leading to persistent HER2 phosphorylation in the now resistant, surviving cells. These drug treatment–induced processes were found to be mediated by the release of ligands including heregulin and betacellulin that activate HER3 and HER4 via HER2. Whereas an anti-betacellulin antibody in combination with Iressa increased the anti-proliferative effect in resistant cells, ligands such as heregulin and betacellulin rendered sensitive SKBR3 cells resistant to Iressa. Conclusions and Significance These results demonstrate the role of drug-induced autocrine events leading to the activation of alternative HER receptors in maintaining HER2 phosphorylation and in mediating resistance to EGFR tyrosine kinase inhibitors (TKIs) in breast cancer cells, and hence specify treatment opportunities to overcome resistance in patients. PMID:18682844

  2. A CLONALLY DERIVED CELL LINE,9L-EGFR IS USEFUL FOR THE STUDIES OF CANCER CELLS BEARING EGF RECEPTOR

    Institute of Scientific and Technical Information of China (English)

    Lin Qi; Rajesh Agarwal; Rana Singh; Gail S. Harrisona; L.Michael Glodea

    2003-01-01

    Since the epidermal growth factor receptor (EGFR) is a key regulator in cell signaling pathways of cancer cell. To investigate the mechanism between cancer cells survival and its EGFR expression, drug selection of cancer cells target therapy, we generated a cell line, 9L-EGFR, which stably expressed human EGFR; the parental rat glioma cell line, 9L, does not contain endogenous EGFR message or protein. Our results show that 9L-EGFR cells had high levels of EGFR on their cell surface by using RT-PCR, Western analysis and Flow cytometry analysis. The EGFR transfected into 9L cells was capable of being activated by EGF, in which either phosphorylated (p-EGFR) or total (EGFR) was showed by Western blot. This investigation may contribute to the further studies of cancer cells bearing EGFR.

  3. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B. [Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology/Oncology, Boston, MA (United States)

    2014-09-05

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC.

  4. Epidermal growth factor receptor (EGFR mutations in lung cancer: preclinical and clinical data

    Directory of Open Access Journals (Sweden)

    S.E.D.C. Jorge

    2014-11-01

    Full Text Available Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC, the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs. Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686 and hold promise to further boost the median survival of patients with EGFR mutated NSCLC.

  5. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer

    Directory of Open Access Journals (Sweden)

    Chen H

    2013-10-01

    Full Text Available Hongwei Chen,1,* Liya Wang,1,2,* Qiqi Yu,1,2 Weiping Qian,3 Diana Tiwari,1 Hong Yi,4 Andrew Y Wang,5 Jing Huang,1,2 Lily Yang,3 Hui Mao1,2 1Department of Radiology and Imaging Sciences, 2Center for Systems Imaging, 3Department of Surgery, Emory University School of Medicine, 4Robert Apkarian Electron Microscopy Core, Emory University, Atlanta, GA, 5Ocean NanoTech LLC, Springdale, AK, USA *These authors contributed equally to this work Abstract: Antifouling magnetic iron oxide nanoparticles (IONPs coated with block copolymer poly(ethylene oxide-block-poly(γ-methacryloxypropyltrimethoxysilane (PEO-b-PγMPS were investigated for improving cell targeting by reducing nonspecific uptake. Conjugation of a HER2 antibody, Herceptin®, or a single chain fragment (ScFv of antibody against epidermal growth factor receptor (ScFvEGFR to PEO-b-PγMPS-coated IONPs resulted in HER2-targeted or EGFR-targeted IONPs (anti-HER2-IONPs or ScFvEGFR-IONPs. The anti-HER2-IONPs bound specifically to SK-BR-3, a HER2-overexpressing breast cancer cell line, but not to MDA-MB-231, a HER2-underexpressing cell line. On the other hand, the ScFvEGFR-IONPs showed strong reactivity with MDA-MB-231, an EGFR-positive human breast cancer cell line, but not with MDA-MB-453, an EGFR-negative human breast cancer cell line. Transmission electron microscopy revealed internalization of the receptor-targeted nanoparticles by the targeted cancer cells. In addition, both antibody-conjugated and non-antibody-conjugated IONPs showed reduced nonspecific uptake by RAW264.7 mouse macrophages in vitro. The developed IONPs showed a long blood circulation time (serum half-life 11.6 hours in mice and low accumulation in both the liver and spleen. At 24 hours after systemic administration of ScFvEGFR-IONPs into mice bearing EGFR-positive breast cancer 4T1 mouse mammary tumors, magnetic resonance imaging revealed signal reduction in the tumor as a result of the accumulation of the targeted IONPs

  6. Efficient heterologous expression and secretion in Aspergillus oryzae of a llama variable heavy-chain antibody fragment V(HH) against EGFR.

    Science.gov (United States)

    Okazaki, Fumiyoshi; Aoki, Jun-ichi; Tabuchi, Soichiro; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2012-10-01

    We have constructed a filamentous fungus Aspergillus oryzae that secretes a llama variable heavy-chain antibody fragment (V(HH)) that binds specifically to epidermal growth factor receptor (EGFR) in a culture medium. A major improvement in yield was achieved by fusing the V(HH) with a Taka-amylase A signal sequence (sTAA) and a segment of 28 amino acids from the N-terminal region of Rhizopus oryzae lipase (N28). The yields of secreted, immunologically active anti-EGFR V(HH) reached 73.8 mg/1 in a Sakaguchi flask. The V(HH) fragments were released from the sTAA or N28 proteins by an indigenous A. oryzae protease during cultivation. The purified recombinant V(HH) fragment was specifically recognized and could bind to the EGFR with a high affinity.

  7. Tumor Targeting Using Anti–Epidermal Growth Factor Receptor (ior egf/r3 Immunoconjugate with a Tetraaza Macrocyclic Agent (DO3A-EA

    Directory of Open Access Journals (Sweden)

    Gauri Mishra

    2012-09-01

    Full Text Available Epidermal growth factor receptor (EGFR signaling inhibition represents a highly promising arena for the application of molecularly targeted cancer therapies. EGFR conjugated metal chelates have been proposed as potential imaging agents for cancers that overexpress EGFR receptors. Through improved understanding of EGFR biology in human cancers, there is anticipation that more tumor-selective therapy approaches with diminished collateral normal tissue toxicity can be advanced. We report here on the results with a thermodynamically stable chelate, 1,4,7-tris(carboxymethyl-10-(2-aminoethyl-1,4,7,10-tetraazacyclododecane (DO3A-EA and anti-EGFr (ior egf/r3 conjugate to develop immunospecifc imaging agent. Conjugation and labelling with anti-EGFr was performed using standard procedure and subjected to purification on size exclusion chromatography. The conjugated antibodies were labeled with a specific activity 20-30 mCi/mg of protein. Labeling efficiencies were measured by ascending paper chromatography on ITLC-SG strips. Radiolabeling of the immunoconjugate was found to be 98.5 ± 0.30%. 99mTc-DO3A-EA-EGFr conjugate was studied in athymic mice bearing U-87MG, MDA-MB-468 tumors following intravenous injection. Pharmacokinetic and biodistribution studies confirmed long circulation times (t1/2(fast= 45 min and t1/2(slow=4 hours 40 min and efficient accumulation in tumors. Biodistribution studies in athymic mice grafted with U-87MG human glioblastoma multiforme and Hela human cervical carcinoma tumors revealed significant localization of 99mTc-labeled antibodies conjugate in tumors and reduced accumulation in normal organs. This new chelating agent is promising for immunoscintigraphy since good tumour-to-normal organ contrast could be demonstrated. These properties can be exploited for immunospecifc contrast agents in nuclear medicine and SPECT imaging.

  8. Expression of epidermal growth factor receptor (EGFR) and activated EGFR predict poor response to (chemo)radiation and survival in cervical cancer

    NARCIS (Netherlands)

    Noordhuis, M.G.; Eijsink, J.J.H.; ten Hoor, K.A.; Roossink, F.; Hollema, H.; Arts, H.J.G.; Pras, Elisabeth; Maduro, John; Reyners, A.K.L.; de Bock, G.H.; Wisman, G.B.A.; Schuuring, E.; van der Zee, A.G.J.

    2009-01-01

    PURPOSE: Activation of the epidermal growth factor receptor (EGFR) signaling pathway has been reported to induce resistance to (chemo)radiation in cancers, such as head and neck cancer, whereas EGFR-targeted agents in combination with (chemo)radiation seem to improve treatment efficacy. The aim of t

  9. High epidermal growth factor receptor immunohistochemical expression in urothelial carcinoma of the bladder is not associated with EGFR mutations in exons 19 and 21: a study using formalin-fixed, paraffin-embedded archival tissues.

    Science.gov (United States)

    Chaux, Alcides; Cohen, Julie S; Schultz, Luciana; Albadine, Roula; Jadallah, Sana; Murphy, Kathleen M; Sharma, Rajni; Schoenberg, Mark P; Netto, George J

    2012-10-01

    Epidermal growth factor receptor (EGFR) is a member of the erbB tyrosine kinase family reported to be overexpressed in a variety of solid malignancies. Mutations in exons 19 to 21 of the tyrosine kinase domain have been detected in a subset of these tumors and its presence associated with a better response to EGFR inhibitors. Several clinical trials are currently underway to evaluate the performance of such drugs in patients with bladder cancer, but data on EGFR mutation status are limited. The current study assesses EGFR immunohistochemical expression and the presence of mutations in exons 19 and 21 by polymerase chain reaction in 19 bladder urothelial carcinomas from formalin-fixed, paraffin-embedded tissues. Representative paraffin sections were microdissected for DNA extraction using a pinpoint isolation system. Parallel sections were immunostained using a monoclonal anti-EGFR antibody. No mutations in exons 19 and 21 of EGFR were identified in any of the cases. Immunohistochemical EGFR positivity was observed in 14 of 19 cases. In summary, we found EGFR protein expression in 74% of urothelial carcinomas, but we failed to detect EGFR mutations at exons 19 to 21, suggesting that EGFR overexpression is not related to the presence of mutations in the tyrosine kinase domain of the gene. Mutation analysis of EGFR exons 19 and 21 is feasible in microdissected paraffin sections from archival tissues. Immunohistochemical expression of EGFR may not be useful to predict therapeutic response to EGFR inhibitors in patients with urothelial carcinomas. To explain EGFR immunohistochemical overexpression, other mechanisms besides mutations in the EGFR kinase domain should be investigated in future studies.

  10. Correlation between Grade in Transitional Cell Carcinoma (TCC and Expression of Epidermal Growth Factor Receptor (EGFR

    Directory of Open Access Journals (Sweden)

    MR Jallali Nadoushan

    2007-08-01

    Full Text Available Background: The present study was undertaken to investigate the correlation of Epidermal Growth Factor Receptor (EGFR expression with grade of Transitional Cell Carcinoma (TCC. Methods: Tumor samples of 75 patients from Mostafa Khomaini Hospital with Transitional Cell Carcinoma of the bladder were analyzed by immunohistochemistry for expression of EGFR. In this context, we assigned the bladder tumors a grade accord¬ing WHO classification. Results analyzed for possible correlation with the expression status of the Epidermal Growth Factor Receptor (EGFR. Results: This cross-sectional study showed that all grades of Transitional Cell Carcinoma expressed EGFR, and 14 cases were LMP (18.9% which 10 cases among them had negative cells according EGFR point of view(71.4% and 4 cases had re¬ported positive (28.6%. Thirty five cases were low grade (46.7% which 18 cases among them had reported negative cells (51.4% and 17 cases had positive cells (48.6%. Twenty six cases were high grade (34.7% that 9 cases among them had reported negative cells (34.6%. Seventeen cases had positive cells (65.4%. Mann-Witney test showed relation between grade and expression of EGFR (P<0.05. Conclusions: This study showed that expression of EGFR is correlated with grade of tumor.

  11. Receptor antibodies as novel therapeutics for diabetes

    DEFF Research Database (Denmark)

    Ussar, Siegfried; Vienberg, Sara Gry; Kahn, C Ronald

    2011-01-01

    Antibodies to receptors can block or mimic hormone action. Taking advantage of receptor isoforms, co-receptors, and other receptor modulating proteins, antibodies and other designer ligands can enhance tissue specificity and provide new approaches to the therapy of diabetes and other diseases....

  12. Long-term survival after a favorable response to anti-EGFR antibody plus chemotherapy to treat bone marrow metastasis: a case report of KRAS-wildtype rectal cancer

    Science.gov (United States)

    Nakamura, Sho; Fukui, Tadahisa; Suzuki, Shuhei; Takeda, Hiroyuki; Watanabe, Kaname; Yoshioka, Takashi

    2017-01-01

    Bone marrow metastasis is a rare consequence of colorectal cancer that results in a poor prognosis; few reports describe a favorable response to doublet chemotherapy combined with targeted therapy, which is currently the standard treatment. We experienced a case where anti-epidermal growth factor receptor (EGFR) antibody produced a marked anti-tumor response to bone marrow metastasis that led to long-term survival. A 51-year-old man was diagnosed with a primary KRAS-wildtype rectal cancer with multiple metastases, including the bone marrow. Disease control was achieved for 10.8 months following chemotherapy with a modified FOLFOX6 regimen combined with an anti-EGFR antibody. He died of cancer 22.7 and 16.6 months after disease onset and first-line chemotherapy, respectively. This case shows that early tumor shrinkage and deepness of response to the anti-EGFR antibody were observed even in a patient with bone marrow metastasis. Anti-EGFR antibody therapy should therefore be considered even when a patient’s medical condition appears to be poor owing to bone marrow metastasis. Moreover, tumors that are likely to be sensitive to chemotherapy, such as RAS-wildtype colorectal cancers, can be considered for anti-EGFR antibody therapy even if the patient is considered unfit for chemotherapy.

  13. Safety and Activity of the First-in-Class Sym004 Anti-EGFR Antibody Mixture in Patients with Refractory Colorectal Cancer

    NARCIS (Netherlands)

    Dienstmann, R.; Patnaik, A.; Garcia-Carbonero, R.; Cervantes, A.; Benavent, M.; Rosello, S.; Tops, B.B.J.; Post, R.S. van der; Argiles, G.; Skartved, N.J.; Hansen, U.H.; Hald, R.; Pedersen, M.W.; Kragh, M.; Horak, I.D.; Braun, S.; Cutsem, E. Van; Tolcher, A.W.; Tabernero, J.

    2015-01-01

    Tumor growth in the context of EGFR inhibitor resistance may remain EGFR-dependent and is mediated by mechanisms including compensatory ligand upregulation and de novo gene alterations. Sym004 is a two-antibody mixture targeting nonoverlapping EGFR epitopes. In preclinical models, Sym004 causes sign

  14. Boron neutron capture therapy of EGFR or EGFRvIII positive gliomas using either boronated monoclonal antibodies or epidermal growth factor as molecular targeting agents

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W. [Department of Pathology, Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210 (United States); Barth, R.F. [Department of Pathology, Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210 (United States)], E-mail: rolf.barth@osumc.edu; Wu, G. [Department of Pathology, Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210 (United States); Tjarks, W. [College of Pharmacy, Ohio State University, Columbus, OH 43210 (United States); Binns, P.; Riley, K. [Nuclear Reactor Laboratory and Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, MA 02215 (United States)

    2009-07-15

    In the present report we have summarized studies carried out over the past five years on molecular targeting of the epidermal growth factor receptor (EGFR) and its mutant isoform, EFGRvIII, for BNCT of genetically engineered F98 rat gliomas, expressing either wildtype (F98{sub EGFR}) or mutant receptors (F98{sub npEGFRvIII}). EGF or the monoclonal antibodies (mAbs), cetuximab (IMC-C225) and L8A4, which recognize wildtype EGFR and EGFRvIII, respectively, were heavily boronated using polyamidoamine (PAMAM) dendrimers (BD) linked to the targeting vehicles by means of heterobifunctional reagents. Boronated EGF or mAbs, alone or in combination with i.v. boronophenylalanine (BPA), were administered intracerebrally (i.c.) by either intratumoral (i.t.) injection or convection enhanced delivery (CED) to rats bearing F98 gliomas following which BNCT was initiated. The best survival data were obtained in rats bearing F98{sub npEGFRvIII} gliomas that had received CED of BD-L8A4 either alone or in combination with i.v. boronophenylalanine (BPA). Studies carried out in rats bearing composite tumors (F98{sub EGFR}/F98{sub npEGFRvIII}) demonstrated that it was essential to target both tumor cell populations in order to obtain an optimal therapeutic effect. Based on these observations, we have concluded that EGFR targeting vehicles are useful, but not stand-alone boron delivery agents due to the heterogeneity of receptor expression in brain tumors. They could, however, be quite useful in combination with the two drugs that currently are being used clinically, BPA and sodium borocaptate (BSH) for BNCT of either brain tumors or head and neck cancers.

  15. BRAF V600E Mutation as a Predictive Factor of Anti-EGFR Monoclonal Antibodies Therapeutic Effects in Metastatic Colorectal Cancer:a Meta-analysis

    Institute of Scientific and Technical Information of China (English)

    Jia Wei

    2014-01-01

    Objective To investigate the correlation between BRAF V600E mutation and anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (MoAbs) therapeutic effects in metastatic colorectal cancer. Methods Studies were included into meta-analysis to investigate the association between BRAF V600E mutation and clinical outcome in metastatic colorectal cancer patients treated with anti-EGFR MoAbs. Results A total of 7 studies were included in this meta-analysis. The 7 studies included 1352 patients in total, sample sizes ranged from 67 to 493. Objective response rate (ORR), progression-free survival (PFS) and overall survival (OS) were collected from included studies and were used to assess the strength of the relation. In patients with wild-type KRAS, the pooled odds ratio for ORR of mutant BRAF over wild-type BRAF was 0.27 (95%CI=0.10-0.70). BRAF mutation predicted a deterioration in PFS and OS in wild-type KRAS patients treated with anti-EGFR MoAbs (hazard ratio=2.78, 95% CI=1.62-4.76;hazard ratio=2.54, 95%CI=1.93-3.32). Conclusion BRAF V600E mutation is related to lack of response and worse survival in wild-type KRAS metastatic colorectal cancer patients treated with anti-EGFR MoAbs.

  16. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies...... not require NCAM-mediated fibroblast growth factor receptor activation....... on axon guidance in Drosophila suggest that NCAM also regulates the epidermal growth factor receptor (EGFR) (Molecular and Cellular Neuroscience, 28, 2005, 141). A possible interaction between NCAM and EGFR in mammalian cells has not been investigated. The present study demonstrates for the first time...

  17. Receptor-Based Virtual Screening of EGFR Kinase Inhibitors from the NCI Diversity Database

    Directory of Open Access Journals (Sweden)

    Kiattawee Choowongkomon

    2010-06-01

    Full Text Available Epidermal growth factor receptor (EGFR abnormalities have been associated with several types of human cancer. The crystal structures of its tyrosine kinase domain (EGFR-TK complexed with small molecule inhibitors revealed the kinase inhibition modes, prompting us to search for novel anti-cancer drugs. A total of 1,990 compounds from the National Cancer Institute (NCI diversity set with nonredundant structures have been tested to inhibit cancer cell lines with unknown mechanism. Cancer inhibition through EGFR-TK is one of the mechanisms of these compounds. In this work, we performed receptor-based virtual screening against the NCI diversity database. Using two different docking algorithms, AutoDock and Gold, combined with subsequent post-docking analyses, we found eight candidate compounds with high scoring functions that all bind to the ATP-competitive site of the kinase. None of these compounds belongs to the main group of the currently known EGFR-TK inhibitors. Binding mode analyses revealed that the way these compounds complexed with EGFR-TK differs from quinazoline inhibitor binding and the interaction mainly involves hydrophobic interactions. Also, the common kinase-inhibitor (NH---N and CO---HC hydrogen bonds between the hinge region and the hit compounds are rarely observed. Our results suggest that these molecules could be developed as novel lead compounds in anti-cancer drug design.

  18. Selected Reaction Monitoring (SRM Analysis of Epidermal Growth Factor Receptor (EGFR in Formalin Fixed Tumor Tissue

    Directory of Open Access Journals (Sweden)

    Hembrough Todd

    2012-05-01

    Full Text Available Abstract Background Analysis of key therapeutic targets such as epidermal growth factor receptor (EGFR in clinical tissue samples is typically done by immunohistochemistry (IHC and is only subjectively quantitative through a narrow dynamic range. The development of a standardized, highly-sensitive, linear, and quantitative assay for EGFR for use in patient tumor tissue carries high potential for identifying those patients most likely to benefit from EGFR-targeted therapies. Methods A mass spectrometry-based Selected Reaction Monitoring (SRM assay for the EGFR protein (EGFR-SRM was developed utilizing the Liquid Tissue®-SRM technology platform. Tissue culture cells (n = 4 were analyzed by enzyme-linked immunosorbent assay (ELISA to establish quantitative EGFR levels. Matching formalin fixed cultures were analyzed by the EGFR-SRM assay and benchmarked against immunoassay of the non-fixed cultured cells. Xenograft human tumor tissue (n = 10 of non-small cell lung cancer (NSCLC origin and NSCLC patient tumor tissue samples (n = 23 were microdissected and the EGFR-SRM assay performed on Liquid Tissue lysates prepared from microdissected tissue. Quantitative curves and linear regression curves for correlation between immunoassay and SRM methodology were developed in Excel. Results The assay was developed for quantitation of a single EGFR tryptic peptide for use in FFPE patient tissue with absolute specificity to uniquely distinguish EGFR from all other proteins including the receptor tyrosine kinases, IGF-1R, cMet, Her2, Her3, and Her4. The assay was analytically validated against a collection of tissue culture cell lines where SRM analysis of the formalin fixed cells accurately reflects EGFR protein levels in matching non-formalin fixed cultures as established by ELISA sandwich immunoassay (R2 = 0.9991. The SRM assay was applied to a collection of FFPE NSCLC xenograft tumors where SRM data range from 305amol/μg to 12,860amol/μg and

  19. Generation of a canine anti-EGFR (ErbB-1) antibody for passive immunotherapy in dog cancer patients.

    Science.gov (United States)

    Singer, Josef; Fazekas, Judit; Wang, Wei; Weichselbaumer, Marlene; Matz, Miroslawa; Mader, Alexander; Steinfellner, Willibald; Meitz, Sarah; Mechtcheriakova, Diana; Sobanov, Yuri; Willmann, Michael; Stockner, Thomas; Spillner, Edzard; Kunert, Renate; Jensen-Jarolim, Erika

    2014-07-01

    Passive immunotherapy with monoclonal antibodies represents a cornerstone of human anticancer therapies, but has not been established in veterinary medicine yet. As the tumor-associated antigen EGFR (ErbB-1) is highly conserved between humans and dogs, and considering the effectiveness of the anti-EGFR antibody cetuximab in human clinical oncology, we present here a "caninized" version of this antibody, can225IgG, for comparative oncology studies. Variable region genes of 225, the murine precursor of cetuximab, were fused with canine constant heavy gamma and kappa chain genes, respectively, and transfected into Chinese hamster ovary (CHO) DUKX-B11 cells. Of note, 480 clones were screened and the best clones were selected according to productivity and highest specificity in EGFR-coated ELISA. Upon purification with Protein G, the recombinant cetuximab-like canine IgG was tested for integrity, correct assembly, and functionality. Specific binding to the surface of EGFR-overexpressing cells was assessed by flow cytometry and immunofluorescence; moreover, binding to canine mammary tissue was demonstrated by immunohistochemistry. In cell viability and proliferation assays, incubation with can225IgG led to significant tumor cell growth inhibition. Moreover, this antibody mediated significant tumor cell killing via phagocytosis in vitro. We thus present here, for the first time, the generation of a canine IgG antibody and its hypothetical structure. On the basis of its cetuximab-like binding site, on the one hand, and the expression of a 91% homologous EGFR molecule in canine cancer, on the other hand, this antibody may be a promising research compound to establish passive immunotherapy in dog patients with cancer.

  20. Epidermal growth factor receptor (EGFR-RAS signaling pathway in penile squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Hong-Feng Gou

    Full Text Available Penile Squamous Cell Carcinoma (SCC is a rare cancer with poor prognosis and limited response to conventional chemotherapy. The genetic and epigenetic alterations of Epidermal Growth Factor Receptor (EGFR-RAS-RAF signaling in penile SCC are unclear. This study aims to investigate four key members of this pathway in penile SCC. We examined the expression of EGFR and RAS-association domain family 1 A (RASSF1A as well as the mutation status of K-RAS and BRAF in 150 cases of penile SCC. EGFR and RASSF1A expression was evaluated by immunohistochemistry. KRAS mutations at codons 12 and 13, and the BRAF mutation at codon 600 were analyzed on DNA isolated from formalin fixed paraffin embedded tissues by direct genomic sequencing. EGFR expression was positive in all specimens, and its over-expression rate was 92%. RASSF1A expression rate was only 3.42%. Significant correlation was not found between the expression of EGFR or RASSF1A and tumor grade, pT stage or lymph node metastases. The detection of KRAS and BRAF mutations analysis was performed in 94 and 83 tumor tissues, respectively. We found KRAS mutation in only one sample and found no BRAF V600E point mutation. In summary, we found over-expression of EGFR in the majority cases of penile SCC, but only rare expression of RASSF1A, rare KRAS mutation, and no BRAF mutation in penile SCC. These data suggest that anti-EGFR agents may be potentially considered as therapeutic options in penile SCC.

  1. Protein phosphorylation profiling using an in situ proximity ligation assay: phosphorylation of AURKA-elicited EGFR-Thr654 and EGFR-Ser1046 in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Tzu-Chi Chen

    Full Text Available The epidermal growth factor receptor (EGFR, which is up-regulated in lung cancer, involves the activation of mitogenic signals and triggers multiple signaling cascades. To dissect these EGFR cascades, we used 14 different phospho-EGFR antibodies to quantify protein phosphorylation using an in situ proximity ligation assay (in situ PLA. Phosphorylation at EGFR-Thr654 and -Ser1046 was EGF-dependent in the wild-type (WT receptor but EGF-independent in a cell line carrying the EGFR-L858R mutation. Using a ProtoAarray™ containing ∼5000 recombinant proteins on the protein chip, we found that AURKA interacted with the EGFR-L861Q mutant. Moreover, overexpression of EGFR could form a complex with AURKA, and the inhibitors of AURKA and EGFR decreased EGFR-Thr654 and -Ser1046 phosphorylation. Immunohistochemical staining of stage I lung adenocarcinoma tissues demonstrated a positive correlation between AURKA expression and phosphorylation of EGFR at Thr654 and Ser1046 in EGFR-mutant specimens, but not in EGFR-WT specimens. The interplay between EGFR and AURKA provides an explanation for the difference in EGF dependency between EGFR-WT and EGFR-mutant cells and may provide a new therapeutic strategy for lung cancer patients carrying EGFR mutations.

  2. Photothermolysis mediated by gold nanorods modified with EGFR monoclonal antibody induces Hep-2 cells apoptosis in vitro and in vivo.

    Science.gov (United States)

    Zhang, Shiwen; Li, Yunlong; He, Xiaoguang; Dong, Shouan; Huang, Yunchao; Li, Xiaojiang; Li, Yuxiao; Jin, Congguo; Zhang, Yingying; Wang, Yuanling

    2014-01-01

    Gold nanorods (AuNRs) have been used in plasmonic photothermal therapy (PPTT), which is thought to be more efficient and selective than conventional photothermal therapy. The efficiency and safety of PPTT can be improved by functionally modifying the gold nanorods with proteins or biomolecules. In this study, AuNRs were modified with anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb), and the apoptotic potential of EGFRmAb-AuNR was assessed in Hep-2 cells in vitro and in vivo. The EGFRmAb modification had no obvious influence on the original optical property of the AuNRs, but it significantly increased the entry of AuNRs into Hep-2 cells. EGFRmAb-AuNRs, with appropriate laser irradiation, resulted in higher Hep-2 cells apoptosis than AuNRs did alone, in vitro, and was accompanied by alteration of reactive oxygen species (ROS) production, Ca(2+) release, change in mitochondrial membrane potential (ΔΨm), cytochrome c (Cyt-c) release, active caspase-3 expression, and level of B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma 2 protein-associated X protein (Bax). EGFRmAb-AuNR-mediated apoptosis in Hep-2 cells was also observed in vivo and had an inhibitive effect on growth of Hep-2 tumor xenografts. Our data suggest that the EGFRmAb modification improves AuNR-mediated apoptosis and may have the potential to be used clinically.

  3. Strategies to overcome resistance to epidermal growth factor receptor monoclonal antibody therapy in metastatic colorectal cancer.

    Science.gov (United States)

    Jeong, Woo-Jeong; Cha, Pu-Hyeon; Choi, Kang-Yell

    2014-08-07

    Administration of monoclonal antibodies (mAbs) against epidermal growth factor receptor (EGFR) such as cetuximab and panitumumab in combination with conventional chemotherapy substantially prolongs survival of patients with metastatic colorectal cancer (mCRC). However, the efficacy of these mAbs is limited due to genetic variation among patients, in particular K-ras mutations. The discovery of K-ras mutation as a predictor of non-responsiveness to EGFR mAb therapy has caused a major change in the treatment of mCRC. Drugs that inhibit transformation caused by oncogenic alterations of Ras and its downstream components such as BRAF, MEK and AKT seem to be promising cancer therapeutics as single agents or when given with EGFR inhibitors. Although multiple therapeutic strategies to overcome EGFR mAb-resistance are under investigation, our understanding of their mode of action is limited. Rational drug development based on stringent preclinical data, biomarker validation, and proper selection of patients is of paramount importance in the treatment of mCRC. In this review, we will discuss diverse approaches to overcome the problem of resistance to existing anti-EGFR therapies and potential future directions for cancer therapies related to the mutational status of genes associated with EGFR-Ras-ERK and PI3K signalings.

  4. High specificity but low sensitivity of mutation-specific antibodies against EGFR mutations in non-small-cell lung cancer

    DEFF Research Database (Denmark)

    Bondgaard, Anna-Louise; Høgdall, Estrid; Mellemgaard, Anders;

    2014-01-01

    Determination of epidermal growth factor receptor (EGFR) mutations has a pivotal impact on treatment of non-small-cell lung cancer (NSCLC). A standardized test has not yet been approved. So far, Sanger DNA sequencing has been widely used. Its rather low sensitivity has led to the development...

  5. EGFR as a therapeutic target in glioblastoma

    Directory of Open Access Journals (Sweden)

    David M Siebert

    2012-01-01

    Full Text Available The tyrosine kinase receptor epidermal growth factor receptor (EGFR can be activated by several ligands, thus triggering downstream pathways regulating cell growth and survival. Its dysregula­tion is particularly important for the development and progression of astrocytomas. After the description of its role in glioblastomas (WHO grade IV astrocytomas, an overview on the therapeutic strategies target­ing EGFR is provided. It analyzes the past and ongoing trials concerning the small molecule tyro­sine kinase inhibitors, i.e. gefitinib, erlotinib and the combination therapies, the EGFR vaccina­tion strategies, the antibodies directed against EGFR and finally the intracranially administered EGFR-targeted therapies. As our understanding of the underlying molecular aberrancies in glioblastoma grows, our ability to better target specific subtypes of glioblastoma should improve. Molecular biomarker enriched clinical trials may lead to improved patient outcomes.

  6. Development of EMab-51, a Sensitive and Specific Anti-Epidermal Growth Factor Receptor Monoclonal Antibody in Flow Cytometry, Western Blot, and Immunohistochemistry.

    Science.gov (United States)

    Itai, Shunsuke; Kaneko, Mika K; Fujii, Yuki; Yamada, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Handa, Saori; Chang, Yao-Wen; Suzuki, Hiroyoshi; Harada, Hiroyuki; Kato, Yukinari

    2017-09-11

    The epidermal growth factor receptor (EGFR) is a member of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases and is involved in cell growth and differentiation. EGFR homodimers or heterodimers with other HER members, such as HER2 and HER3, activate downstream signaling cascades in many cancers. In this study, we developed novel anti-EGFR monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. First, we expressed the full-length or ectodomain of EGFR in LN229 glioblastoma cells and then immunized mice with LN229/EGFR or ectodomain of EGFR, and performed the first screening using enzyme-linked immunosorbent assays. Subsequently, we selected mAbs according to their efficacy in flow cytometry (second screening), Western blot (third screening), and immunohistochemical (fourth screening) analyses. Among 100 mAbs, only one clone EMab-51 (IgG1, kappa) reacted with EGFR in Western blot analysis. Finally, immunohistochemical analyses with EMab-51 showed sensitive and specific reactions against oral cancer cells, warranting the use of EMab-51 to detect EGFR in pathological analyses of EGFR-expressing cancers.

  7. The EGFR family of receptors sensitizes cancer cells towards UV light

    Science.gov (United States)

    Petersen, Steffen; Neves-Petersen, Maria Teresa; Olsen, Birgitte

    2008-02-01

    A combination of bioinformatics, biophysical, advanced laser studies and cell biology lead to the realization that laser-pulsed UV light stops cancer growth and induces apoptosis. We have previously shown that laser-pulsed UV (LP-UV) illumination of two different skin-derived cancer cell lines both over expressing the EGF receptor, lead to arrest of the EGFR signaling pathway. We have investigated the available sequence and experimental 3D structures available in the Protein Data Bank. The EGF receptor contains a Furin like cystein rich extracellular domain. The cystein content is highly unusual, 25 disulphide bridges supports the 621 amino acid extracellular protein domain scaffold (1mb6.pdb). In two cases a tryptophan is neighboring a cystein in the primary sequence, which in itself is a rare observation. Aromatic residues is observed to be spatially close to all observed 25 disulphide bridges. The EGF receptor is often overexpressed in cancers and other proliferative skin disorders, it might be possible to significantly reduce the proliferative potential of these cells making them good targets for laser-pulsed UV-light treatment. The discovery that UV light can be used to open disulphide bridges in proteins upon illumination of nearby aromatic amino acids was the first step that lead to the hypothesis that UV light could modulate the structure and therefore the function of these key receptor proteins. The observation that membrane receptors (EGFR) contained exactly the motifs that are sensitive to UV light lead to the prediction that UV light could modify these receptors permanently and stop cancer proliferation. We hereby show that the EGFR family of receptors has the necessary structural motifs that make this family of proteins highly sensitive to UV light.

  8. Activation of the epidermal growth factor receptor (EGFR) by a novel metalloprotease pathway.

    LENUS (Irish Health Repository)

    Bergin, David A

    2008-11-14

    Neutrophil Elastase (NE) is a pro-inflammatory protease present at higher than normal levels in the lung during inflammatory disease. NE regulates IL-8 production from airway epithelial cells and can activate both EGFR and TLR4. TACE\\/ADAM17 has been reported to trans-activate EGFR in response to NE. Here, using 16HBE14o-human bronchial epithelial cells we demonstrate a new mechanism by which NE regulates both of these events. A high molecular weight soluble metalloprotease activity detectable only in supernatants from NE-treated cells by gelatin and casein zymography was confirmed to be meprin alpha by Western immunoblotting. In vitro studies demonstrated the ability of NE to activate meprin alpha, which in turn could release soluble TGFalpha and induce IL-8 production from 16HBE14o- cells. These effects were abrogated by actinonin, a specific meprin inhibitor. NE-induced IL-8 expression was also inhibited by meprin alpha siRNA. Immunoprecipitation studies detected EGFR\\/TLR4 complexes in NE-stimulated cells overexpressing these receptors. Confocal studies confirmed colocalization of EGFR and TLR4 in 16HBE14o- cells stimulated with meprin alpha. NFkappaB was also activated via MyD88 in these cells by meprin alpha. In bronchoalveolar lavage fluid from NE knock-out mice infected intra-tracheally with Pseudomonas aeruginosa meprin alpha was significantly decreased compared with control mice, and was significantly increased and correlated with NE activity, in bronchoalveolar lavage fluid from individuals with cystic fibrosis but not healthy controls. The data describe a previously unidentified lung metalloprotease meprin alpha, and its role in NE-induced EGFR and TLR4 activation and IL-8 production.

  9. Impact of active smoking on survival of patients with metastatic lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR) mutation.

    Science.gov (United States)

    Erdogan, Bulent; Kodaz, Hilmi; Karabulut, Senem; Cinkaya, Ahmet; Tozkir, Hilmi; Tanriverdi, Ozgur; Cabuk, Devrim; Hacioglu, Muhammed Bekir; Turkmen, Esma; Hacibekiroglu, Ilhan; Uzunoglu, Sernaz; Cicin, Irfan

    2016-11-10

    Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR) function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01), however, smoking status had no impact on the response rate (p = 0.1). The EGFR-mutant active smokers progressed earlier than the non-smokers (p Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49) but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01).The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03). Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively). Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.

  10. Impact of Cell-surface Antigen Expression on Target Engagement and Function of an Epidermal Growth Factor Receptor × c-MET Bispecific Antibody*

    Science.gov (United States)

    Jarantow, Stephen W.; Bushey, Barbara S.; Pardinas, Jose R.; Boakye, Ken; Lacy, Eilyn R.; Sanders, Renouard; Sepulveda, Manuel A.; Moores, Sheri L.; Chiu, Mark L.

    2015-01-01

    The efficacy of engaging multiple drug targets using bispecific antibodies (BsAbs) is affected by the relative cell-surface protein levels of the respective targets. In this work, the receptor density values were correlated to the in vitro activity of a BsAb (JNJ-61186372) targeting epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (c-MET). Simultaneous binding of the BsAb to both receptors was confirmed in vitro. By using controlled Fab-arm exchange, a set of BsAbs targeting EGFR and c-MET was generated to establish an accurate receptor quantitation of a panel of lung and gastric cancer cell lines expressing heterogeneous levels of EGFR and c-MET. EGFR and c-MET receptor density levels were correlated to the respective gene expression levels as well as to the respective receptor phosphorylation inhibition values. We observed a bias in BsAb binding toward the more highly expressed of the two receptors, EGFR or c-MET, which resulted in the enhanced in vitro potency of JNJ-61186372 against the less highly expressed target. On the basis of these observations, we propose an avidity model of how JNJ-61186372 engages EGFR and c-MET with potentially broad implications for bispecific drug efficacy and design. PMID:26260789

  11. Impact of Cell-surface Antigen Expression on Target Engagement and Function of an Epidermal Growth Factor Receptor × c-MET Bispecific Antibody.

    Science.gov (United States)

    Jarantow, Stephen W; Bushey, Barbara S; Pardinas, Jose R; Boakye, Ken; Lacy, Eilyn R; Sanders, Renouard; Sepulveda, Manuel A; Moores, Sheri L; Chiu, Mark L

    2015-10-09

    The efficacy of engaging multiple drug targets using bispecific antibodies (BsAbs) is affected by the relative cell-surface protein levels of the respective targets. In this work, the receptor density values were correlated to the in vitro activity of a BsAb (JNJ-61186372) targeting epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (c-MET). Simultaneous binding of the BsAb to both receptors was confirmed in vitro. By using controlled Fab-arm exchange, a set of BsAbs targeting EGFR and c-MET was generated to establish an accurate receptor quantitation of a panel of lung and gastric cancer cell lines expressing heterogeneous levels of EGFR and c-MET. EGFR and c-MET receptor density levels were correlated to the respective gene expression levels as well as to the respective receptor phosphorylation inhibition values. We observed a bias in BsAb binding toward the more highly expressed of the two receptors, EGFR or c-MET, which resulted in the enhanced in vitro potency of JNJ-61186372 against the less highly expressed target. On the basis of these observations, we propose an avidity model of how JNJ-61186372 engages EGFR and c-MET with potentially broad implications for bispecific drug efficacy and design.

  12. Immunohistochemical detections of EGFR status in NSCLC

    Directory of Open Access Journals (Sweden)

    Jie WANG

    2015-04-01

    Full Text Available Background and objective Patients with non-small cell lung cancer (NSCLC harboring mutations of the epidermal growth factor receptor (EGFR respond well to EGFR-tyrosine kinase inhibitor therapy. Immunohistochemistry (IHC is a simple and widely used technique in clinical pathology laboratories. IHC also features cost effectiveness and rapid detection of EGFR mutations compared with molecular methods. This study aims to determine the accuracy of IHC for EGFR mutation detection in NSCLC. Methods Specimens (obtained from surgery or biopsy from 97 NSCLC cases were stained through IHC with mutation-specific antibodies. The clinicopathological features of patients with positive immunostaining results were analyzed. Positive specimens were subjected to liquid chip technology to detect the actual EGFR status. Forty NSCLC specimens obtained from surgery and confirmed to have EGFR mutations through liquid chip technology were collected. These specimens were then subjected to IHC analyses with mutation-specific antibodies. The sensitivity of IHC in detecting EGFR mutations was calculated. Results Seventeen of the 97 NSCLC specimens were stained positive, and positive results were mostly observed in females, patients with adenocarcinoma, and non-smokers. About 76.9% of specimens with positive IHC results harbored mutations. The sensitivity of IHC was 40% among the 40 cases identified as containing EGFR mutations through liquid chip technology. Conclusion The strong positive immunostaining result is accurate, but the sensitivity of the method may not be optimal and significantly varies in different studies. The widespread application of IHC in clinics must be further investigated.

  13. Expression of Intracellular Domain of Epidermal Growth Factor Receptor and Generation of Its Monoclonal Antibody

    Institute of Scientific and Technical Information of China (English)

    Ying Lin; Zhiduo Liu; Jianmin Jiang; Ziqing Jiang; Yongyong Ji; Bing Sun

    2004-01-01

    To prepare monoclonal antibody specific to epidermal growth factor receptor (EGFR) intracellular domain, its gene was amplified from total RNA of A431 cell by RT-PCR. Then the gene was cloned into prokaryotic vector pET30a(+). The recombinant plasmid was transformed into E. Coli BL21 (DE3) strain for protein expression.Recombinant protein was induced with IPTG and purified using Ni2+-NTA agarose. Then the anti-EGFR monoclonal antibody (nAb) was prepared with classical hybridoma technique. Positive clones were selected using indirect enzyme-linked inmunoabsorbent assay (ELISA). Totally 4 hybridoma clones were obtained and these mAbs were IgG1 (3 clones) and IgG2a (1 clone), respectively. Their light chains were all kappa chains.Western blotting analysis and confocal immunofluorescence assays demonstrated that mAbs could specifically recognize EGFR expressing on A431 carcinoma cell line. The mAbs will be useful in the study of EGFR-mediated signal transduction.

  14. Expression of Intracellular Domain of Epidermal Growth Factor Receptor and Generation of Its Monoclonal Antibody

    Institute of Scientific and Technical Information of China (English)

    YingLin; ZhiduoLiu; JianminJiang; ZiqingJiang; Yongyongji; BingSun

    2004-01-01

    To prepare monoclonal antibody specific to epidermal growth factor receptor (EGFR) intracellular domain, its gene was amplified from total RNA of A431 cell by RT-PCR. Then the gene was cloned into prokaryotic vector pET30a(+). The recombinant plasmid was transformed into E. coli BL21 (DE3) strain for protein expression. Recombinant protein was induced with IPTG and purified using Nie2+-NTA agarose. Then the anti-EGFR monoclonal antibody (mAb) was prepared with classical hybridoma technique. Positive clones were selected using indirect enzyme-linked immunoabsorbent assay (ELISA). Totally 4 hybridoma clones were obtained and these mAbs were IgG1 (3 clones) and IgG2a (1 clone), respectively. Their light chains were all kappa chains. Western blotting analysis and confocal immunofluorescence assays demonstrated that mAbs could specifically recognize EGFR expressing on A431 carcinoma cell line. The mAbs will be useful in the study of EGFR-mediated signal transduction. Cellular & Molecular Immunology. 2004;1(2):137-141.

  15. Semiology of skin toxicity associated with epidermal growth factor receptor (EGFR) inhibitors.

    Science.gov (United States)

    Peuvrel, L; Bachmeyer, C; Reguiai, Z; Bachet, J B; André, T; Bensadoun, R J; Bouché, O; Ychou, M; Dréno, B

    2012-05-01

    Advances in the understanding of the mechanisms involved in oncogenesis have led to the development of so-called targeted therapies such as epidermal growth factor receptor (EGFR) inhibitors, which take on an increasingly important role in the management of cancer. These treatments have the advantage not to trigger the adverse effects traditionally encountered with chemotherapy, such as nausea, vomiting or haematological toxicity. However, they do cause new forms of toxicity: the most common one is skin toxicity. It is important to be aware of it because it can be debilitating, adversely impacting patients' quality of life and altering treatment compliance, although it appears to be correlated with treatment response in certain series. Non-specialists can have difficulty in recognising this unusual skin toxicity. The dermatologic side effects most frequently triggered by EGFR inhibitors are discussed in this article. They are divided into three categories depending on their target: inflammation of the pilo-sebaceous follicle, represented by EGFR inhibitor-associated folliculitis, which occurs at an early stage and is frequent; alteration in the skin barrier, primarily responsible for xerosis, fissures and pruritus, which are frequent and delayed; and lesions of the skin appendages (paronychia, pyogenic granuloma, hair changes), which are delayed and less frequent. It is essential for all practitioners concerned to know about these dermatologic side effects in order to ensure better global management of patients, particularly in terms of quality of life.

  16. Research progress in treatment of metastatic colorectal cancer with EGFR monoclonal antibody%EGFR单抗治疗转移性结直肠癌的研究进展

    Institute of Scientific and Technical Information of China (English)

    李晓佳; 韩宇; 黄鹏; 李燕京; 白玉贤

    2013-01-01

    Epidermal growth factor receptor(EGFR) monoclonal antibody is increasingly important in the treatment of metastatic colorectal cancer. Monoclonal antibody, especially, cetuximab and panitumumab have a high efficiency opposed to the uselessness of chemotherapy. In this paper, we provide several clinical trials to explored that either first-line or second-line and preoperative chemotherapy, EGFR monoclonal antibody in combination with chemotherapy maybe superior to anti-EGFR monoclonal alone to extend survival for patient with metastatic colorectal cancer. In order to improve the curative effect, the bio-maker researches is necessary for individualized treatment, such as EGFR GCN and KRAS, BRAF, PIK3CAin the downstream of the EGFR signal pathway. The aim of this paper is to introduce the research progress about the EGFR monoclonal antibody.%目前随着晚期结直肠癌分子生物学研究的不断深入,表皮生长因子受体(EGFR)单抗在转移性结直肠癌的治疗中变得尤为重要,尤其是西妥昔单抗和帕尼单抗,在标准化疗方案失败的患者中具有很高的疗效。大量临床试验表明,在晚期结直肠癌的治疗中,无论一线、二线抑或是转化化疗,标准化疗方案联合EGFR单抗靶向药物治疗的疗效均优于单纯化疗。为了进一步筛检EGFR单抗疗效的有效性,对相关基因研究的结果为此提供了依据,例如 EGFR 基因拷贝量的多少,及其下游通路的 KRAS,BRAF, PIK3CA基因的状态等。本文结合最新报道,就EGFR单抗治疗转移性结直肠癌的疗效及预测因子做一综述。

  17. The EGFR family of receptors sensitizes cancer cells towards UV light

    DEFF Research Database (Denmark)

    Petersen, Steffen B.; Neves Petersen, Teresa; Olsen, Birgitte

    2008-01-01

    bridges. The EGF receptor is often overexpressed in cancers and other proliferative skin disorders, it might be possible to significantly reduce the proliferative potential of these cells making them good targets for laser-pulsed UV-light treatment. The discovery that UV light can be used to open......A combination of bioinformatics, biophysical, advanced laser studies and cell biology lead to the realization that laser-pulsed UV light stops cancer growth and induces apoptosis. We have previously shown that laser-pulsed UV (LP-UV) illumination of two different skin-derived cancer cell lines both...... disulphide bridges in proteins upon illumination of nearby aromatic amino acids was the first step that lead to the hypothesis that UV light could modulate the structure and therefore the function of these key receptor proteins. The observation that membrane receptors (EGFR) contained exactly the motifs...

  18. Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumors

    Energy Technology Data Exchange (ETDEWEB)

    Abourbeh, Galith [Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University, Jerusalem 91120 (Israel); Unit of Cellular Signaling, Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904 (Israel); Dissoki, Samar [Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University, Jerusalem 91120 (Israel); Jacobson, Orit [Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University, Jerusalem 91120 (Israel); Litchi, Amir [Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University, Jerusalem 91120 (Israel); Daniel, Revital Ben [Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University, Jerusalem 91120 (Israel); Laki, Desirediu [Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University, Jerusalem 91120 (Israel); Levitzki, Alexander [Unit of Cellular Signaling, Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904 (Israel); Mishani, Eyal [Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University, Jerusalem 91120 (Israel)]. E-mail: mishani@md.huji.ac.il

    2007-01-15

    Overexpression of epidermal growth factor receptor (EGFR) has been implicated in tumor development and malignancy. Evaluating the degree of EGFR expression in tumors could aid in identifying patients for EGFR-targeted therapies and in monitoring treatment. Nevertheless, no currently available assay can reliably quantify receptor content in tumors. Radiolabeled inhibitors of EGFR-TK could be developed as bioprobes for positron emission tomography imaging. Such imaging agents would not only provide a noninvasive quantitative measurement of EGFR content in tumors but also serve as radionuclide carriers for targeted radiotherapy. The potency, reversibility, selectivity and specific binding characteristics of ML04, an alleged irreversible inhibitor of EGFR, were established in vitro. The distribution of the F-18-labeled compound and the extent of EGFR-specific tumor uptake were evaluated in tumor-bearing mice. ML04 demonstrated potent, irreversible and selective inhibition of EGFR, combined with specific binding to the receptor in intact cells. In vivo distribution of the radiolabeled compound revealed tumor/blood and tumor/muscle activity uptake ratios of about 7 and 5, respectively, 3 h following administration of a radiotracer. Nevertheless, only minor EGFR-specific uptake of the compound was detected in these studies, using either EGFR-negative tumors or blocking studies as controls. To improve the in vivo performance of ML04, administration via prolonged intravenous infusion is proposed. Detailed pharmacokinetic characterization of this bioprobe could assist in the development of a kinetic model that would afford accurate measurement of EGFR content in tumors.

  19. Preparation and Characterization of {sup 177}Lu Labeled Antibody against Tyrosine Kinase Receptor Her2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So-Young; Hong, Young-Don; Choi, Sun-Ju [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    The tyrosine kinase receptor Her2, also known in humans as erbB2, is a member of the epidermal growth factor receptor (EGFR or erbB1) family. The Her2 is highly expressed in many cancer types and over expressed in approximately 30% of all primary breast cancer. Overexpression of Her2 is associated with a poor prognosis. Her2 is a suitable target because it involves an extracellular domain that can be targeted by antibodies produced by B cells. Based on these advantages, we tried to prepare the {sup 177}Lu labeled Her2 antibody. This radioimmunoconjugate could act by not only blocking the Her2 signalling pathway using antibody but also killing the tumour cell using {beta} energy of {sup 177}Lu.

  20. Targeted cancer therapies based on antibodies directed against epidermal growth factor receptor: status and perspectives

    Institute of Scientific and Technical Information of China (English)

    Zhenping ZHU

    2007-01-01

    Compelling experimental and clinical evidence suggests that epidermal growth factor receptor (EGFR) plays an important role in the pathogenesis of a variety of human cancers; thus, providing a strong rationale for the development of receptor antagonists as effective and specific therapeutic strategies for the treatment of EGFR-expressing cancers. Monoclonal antibodies (mAb), owing to their high specificity towards a given target, represent a unique class of novel cancer therapeutics. A number of anti-EGFR mAb are currently being developed in our clinic, including two that have been approved by the United States Food and Drug Administration for the treatment of refractory metastatic colorectal cancer (mCRC) and squamous cell carcinomas of the head and neck (SCCHN). Cetuximab (Erbitux, IMC-C225), an IgG 1 mAb, has demonstrated significant antitumor activity,both as a single agent and in combination with chemotherapeutics and radiation,in patients with refractory mCRC and SCCHN, respectively. Panitumumab(Vectibix), an IgG2 mAb, has been approved as a single agent for the treatment of patients with refractory mCRC. These mAb, via blocking ligand/receptor interactions, exert their biological activity via multiple mechanisms, includinginhibition of cell cycle progression, potentiation of cell apoptosis, inhibition of DNA repair, inhibition of angiogenesis, tumor cell invasion and metastasis and,potentially, induction of immunological effector mechanisms. Anti-EGFR anti-bodies have demonstrated good safety profiles and potent anticancer activity in our clinic and may prove to be efficacious agents in the treatment of a variety of human malignancies.

  1. Regulation of EGF-induced ERK/MAPK Activation and EGFR Internalization by G Protein-coupled Receptor Kinase 2

    Institute of Scientific and Technical Information of China (English)

    Jingxia GAO; Jiali LI; Lan MA

    2005-01-01

    G protein-coupled receptor kinases (GRKs) mediate agonist-induced phosphorylation and desensitization of various G protein-coupled receptors (GPCRs). We investigate the role of GRK2 on epidermal growth factor (EGF) receptor signaling, including EGF-induced extracellular signal-regulated kinase and mitogen-activated protein kinase (ERK/MAPK) activation and EGFR internalization. Immunoprecipitation and immunofluorescence experiments show that EGF stimulates GRK2 binding to EGFR complex and GRK2 translocating from cytoplasm to the plasma membrane in human embryonic kidney 293 cells. Western blotting assay shows that EGF-induced ERK/MAPK phosphorylation increases 1.9-fold, 1.1-fold and 1.5-fold (P<0.05) at time point 30, 60 and 120 min, respectively when the cells were transfected with GRK2,suggesting the regulatory role of GRK2 on EGF-induced ERK/MAPK activation. Flow cytometry experiments show that GRK2 overexpression has no effect on EGF-induced EGFR internalization, however, it increases agonist-induced G protein-coupled δ opioid receptor internalization by approximately 40% (P<0.01). Overall,these data suggest that GRK2 has a regulatory role in EGF-induced ERK/MAPK activation, and that the mechanisms underlying the modulatory role of GRK2 in EGFR and GPCR signaling pathways are somewhat different at least in receptor internalization.

  2. Photothermolysis mediated by gold nanorods modified with EGFR monoclonal antibody induces Hep-2 cells apoptosis in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Zhang S

    2014-04-01

    Full Text Available Shiwen Zhang,1,2,* Yunlong Li,3,4,* Xiaoguang He,2 Shouan Dong,5 Yunchao Huang,6 Xiaojiang Li,1 Yuxiao Li,2 Congguo Jin,7 Yingying Zhang,8 Yuanling Wang91Department of Head and Neck, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province, Kunming, 2Department of Head and Neck, The First Affiliated Hospital of Kunming Medical University, Kunming, 3Medical Faculty, Kunming University of Science and Technology, Kunming, 4The First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 5Kunming Institute of Precious Metals, Kunming, 6Department of cardiothoracic surgery, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province, Kunming, 7Institute of Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province, Kunming, 8Clinical skills training center of Kunming Medical University, Kunming, 9Department of Anesthesiology, Yan An Hospital, Kunming, Yunnan, The People's Republic of China *These authors contributed equally to this workAbstract: Gold nanorods (AuNRs have been used in plasmonic photothermal therapy (PPTT, which is thought to be more efficient and selective than conventional photothermal therapy. The efficiency and safety of PPTT can be improved by functionally modifying the gold nanorods with proteins or biomolecules. In this study, AuNRs were modified with anti-epidermal growth factor receptor (EGFR monoclonal antibody (mAb, and the apoptotic potential of EGFRmAb-AuNR was assessed in Hep-2 cells in vitro and in vivo. The EGFRmAb modification had no obvious influence on the original optical property of the AuNRs, but it significantly increased the entry of AuNRs into Hep-2 cells. EGFRmAb-AuNRs, with appropriate laser irradiation, resulted in higher Hep-2 cells apoptosis than AuNRs did alone, in vitro, and was accompanied by alteration of reactive oxygen

  3. EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR AND HUMAN PAPILLOMAVIRUS (HPV L1 CAPSID PROTEIN IN CERVICAL SQUAMOUS INTRAEPITHELIAL LESIONS

    Directory of Open Access Journals (Sweden)

    Balan Raluca

    2010-09-01

    Full Text Available We analyzed the immunohistochemical pattern of epidermal growth factor receptor (EGFR in cervical squamous intraepithelial lesions (SILs in correlation with L1 HPV capsid protein, in order to determine the relationship between EGFR expression and the infection status of human papillomavirus (HPV. The study included 40 cases, 24 LSIL (low grade SIL (CIN1, cervical intraepithelial neoplasia and 16 HSIL (high grade SIL (6 cases of CIN2 and 10 cases of CIN3. The immunoexpression of L1 HPV protein was assessed on conventional cervico-vaginal smears and EGFR was immunohistochemically evaluated on the corresponding cervical biopsies. The HPV L1 capsid protein was expressed in 45.83% of LSIL and 25% of HSIL. EGFR was overexpressed in 62,4% of HSIL (58,4% CIN2 and 41,6% CIN3 and 37,6% LSIL. The immunoexpression of L1 HPV has clinical application in the progression assessment of the cervical precancerous lesions without a correlation to the grade of the cervical SIL. EGFR is expressed by all proliferating squamous epithelial cells, thus corresponding with the grade of SIL. The evaluation of EGFR status, correlated with L1 HPV protein expression, can provide useful data of progression risk of cervical squamous intraepithelial lesions

  4. Epidermal growth factor receptor (EGFR mutations and expression in squamous cell carcinoma of the esophagus in central Asia

    Directory of Open Access Journals (Sweden)

    Abedi-Ardekani Behnoush

    2012-12-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC shows geographic variations in incidence, with high incidences (>50/105 person-years in central Asia, including North Eastern Iran (Golestan and Northern India (Kashmir. In contrast to Western countries, smoking does not appear to be a significant risk factor for ESCC in central Asia. In lung adenocarcinoma, activating mutations in the gene encoding epidermal growth factor receptor (EGFR are frequent in tumors of never smokers of Asian origin, predicting therapeutic sensitivity to Egfr-targeting drugs. Methods In this study 152 cases of histologically confirmed ESCC from Iran (Tehran and Golestan Province and North India (Kashmir Valley have been analyzed for EGFR mutation by direct sequencing of exons 18–21. Egfr protein expression was evaluated by immunohistochemistry in 34 samples from Tehran and HER2 mutations were analyzed in 54 cases from Kashmir. Results A total of 14 (9.2% EGFR variations were detected, including seven variations in exons. Among those, four (2.6% were already documented in lung cancers, two were reported as polymorphisms and one was a potentially new activating mutation. All but one variation in introns were previously identified as polymorphisms. Over-expression of Egfr was detected in 22/34 (65% of tested cases whereas no HER2 mutation was found in 54 cases from Kashmir. Conclusion Overall, EGFR mutations appear to be a rare event in ESCC in high incidence areas of central Asia, although a very small proportion of cases may harbor mutations predicting sensitivity to anti-Egfr drugs.

  5. Development of epidermal growth factor receptor tyrosine kinase inhibitors against EGFR T790M. Mutation in non small-cell lung carcinoma

    Directory of Open Access Journals (Sweden)

    Wang Yuli

    2016-01-01

    Full Text Available Individualized therapies targeting epidermal growth factor receptor (EGFR mutations show promises for the treatment of non small-cell lung carcinoma (NSCLC. However, disease progression almost invariably occurs 1 year after tyrosine kinase inhibitor (TKI treatment. The most prominent mechanism of acquired resistance involves the secondary EGFR mutation, namely EGFR T790M, which accounts for 50%–60% of resistant tumors. A large amount of studies have focused on the development of effective strategies to treat TKI-resistant EGFR T790M mutation in lung tumors. Novel generations of EGFR inhibitors are producing encouraging results in patients with acquired resistance against EGFR T790M mutation. This review will summarize the novel inhibitors, which might overcome resistance against EGFR T790M mutation.

  6. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis.

    Science.gov (United States)

    Venkataraman, Thiagarajan; Frieman, Matthew B

    2017-07-01

    Many survivors of the 2003 outbreak of severe acute respiratory syndrome (SARS) developed residual pulmonary fibrosis with increased severity seen in older patients. Autopsies of patients that died from SARS also showed fibrosis to varying extents. Pulmonary fibrosis can be occasionally seen as a consequence to several respiratory viral infections but is much more common after a SARS coronavirus (SARS-CoV) infection. Given the threat of future outbreaks of severe coronavirus disease, including Middle East respiratory syndrome (MERS), it is important to understand the mechanisms responsible for pulmonary fibrosis, so as to support the development of therapeutic countermeasures and mitigate sequelae of infection. In this article, we summarize pulmonary fibrotic changes observed after a SARS-CoV infection, discuss the extent to which other respiratory viruses induce fibrosis, describe available animal models to study the development of SARS-CoV induced fibrosis and review evidence that pulmonary fibrosis is caused by a hyperactive host response to lung injury mediated by epidermal growth factor receptor (EGFR) signaling. We summarize work from our group and others indicating that inhibiting EGFR signaling may prevent an excessive fibrotic response to SARS-CoV and other respiratory viral infections and propose directions for future research. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Humanized versus murine anti-human epidermal growth factor receptor monoclonal antibodies for immunoscintigraphic studies

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Alejo A. Morales; Duconge, Jorge; Alvarez-Ruiz, Daniel; Becquer-Viart, Maria de Los Angeles; Nunez-Gandolff, Gilda; Fernandez, Eduardo; Caballero-Torres, Idania; Iznaga-Escobar, Normando

    2000-02-01

    The anti-human epidermal growth factor receptor (EGF-R) humanized antibody h-R3 (IgG{sub 1}), which binds to an extracellular domain of EGF-R, was used to evaluate the biodistribution on nude mice xenografted with A431 epidermoid carcinoma cell line. Results are compared with its murine version ior egf/r3 monoclonal antibody (mAb). Twenty-one athymic female 4NMRI nu/nu mice were injected intravenously with 10 {mu}g/100 {mu}Ci of {sup 99m}Tc-labeled mAbs. The mAb ior C5 that recognizes an antigen expressed preferentially on the surface of malignant and cytoplasm of normal colorectal cells was used as negative control. Immunoreactivity of {sup 99m}Tc-labeled mAbs was measured by enzyme linked immunosorbent assay on A431 cell line and the immunoreactive fractions determined by Lindmo method. Among all organs significant accumulation was found in tumor (6.14{+-}2.50 %ID/g, 5.06{+-}2.61 %ID/g for murine and humanized mAbs, respectively) 4 h after injection. The immunoreactive fractions were found to be 0.88 and 0.81 for murine and humanized mAb, respectively. Thus, we expect better results using the humanized mAb h-R3 for diagnostic immunoscintigraphy.

  8. Validating Antibodies to the Cannabinoid CB2 Receptor: Antibody Sensitivity Is Not Evidence of Antibody Specificity.

    Science.gov (United States)

    Marchalant, Yannick; Brownjohn, Philip W; Bonnet, Amandine; Kleffmann, Torsten; Ashton, John C

    2014-06-01

    Antibody-based methods for the detection and quantification of membrane integral proteins, in particular, the G protein-coupled receptors (GPCRs), have been plagued with issues of primary antibody specificity. In this report, we investigate one of the most commonly utilized commercial antibodies for the cannabinoid CB2 receptor, a GPCR, using immunoblotting in combination with mass spectrometry. In this way, we were able to develop powerful negative and novel positive controls. By doing this, we are able to demonstrate that it is possible for an antibody to be sensitive for a protein of interest-in this case CB2-but still cross-react with other proteins and therefore lack specificity. Specifically, we were able to use western blotting combined with mass spectrometry to unequivocally identify CB2 protein in over-expressing cell lines. This shows that a common practice of validating antibodies with positive controls only is insufficient to ensure antibody reliability. In addition, our work is the first to develop a label-free method of protein detection using mass spectrometry that, with further refinement, could provide unequivocal identification of CB2 receptor protein in native tissues.

  9. Quantitative proteomic analysis reveals effects of epidermal growth factor receptor (EGFR) on invasion-promoting proteins secreted by glioblastoma cells.

    Science.gov (United States)

    Sangar, Vineet; Funk, Cory C; Kusebauch, Ulrike; Campbell, David S; Moritz, Robert L; Price, Nathan D

    2014-10-01

    Glioblastoma multiforme is a highly invasive and aggressive brain tumor with an invariably poor prognosis. The overexpression of epidermal growth factor receptor (EGFR) is a primary influencer of invasion and proliferation in tumor cells and the constitutively active EGFRvIII mutant, found in 30-65% of Glioblastoma multiforme, confers more aggressive invasion. To better understand how EGFR contributes to tumor aggressiveness, we investigated the effect of EGFR on the secreted levels of 65 rationally selected proteins involved in invasion. We employed selected reaction monitoring targeted mass spectrometry using stable isotope labeled internal peptide standards to quantity proteins in the secretome from five GBM (U87) isogenic cell lines in which EGFR, EGFRvIII, and/or PTEN were expressed. Our results show that cell lines with EGFR overexpression and constitutive EGFRvIII expression differ remarkably in the expression profiles for both secreted and intracellular signaling proteins, and alterations in EGFR signaling result in reproducible changes in concentrations of secreted proteins. Furthermore, the EGFRvIII-expressing mutant cell line secretes the majority of the selected invasion-promoting proteins at higher levels than other cell lines tested. Additionally, the intracellular and extracellular protein measurements indicate elevated oxidative stress in the EGFRvIII-expressing cell line. In conclusion, the results of our study demonstrate that EGFR signaling has a significant effect on the levels of secreted invasion-promoting proteins, likely contributing to the aggressiveness of Glioblastoma multiforme. Further characterization of these proteins may provide candidates for new therapeutic strategies and targets as well as biomarkers for this aggressive disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Effects of the EGFR Inhibitor Erlotinib on Magnesium Handling

    DEFF Research Database (Denmark)

    Dimke, Henrik Anthony; van der Wijst, Jenny; Alexander, Todd R;

    2010-01-01

    A mutation in pro-EGF causes isolated hypomagnesemia, and monoclonal antibodies targeting the extracellular domain of the EGF receptor (EGFR) affect epithelial Mg(2+) transport. The effect of the EGFR tyrosine kinase inhibitor erlotinib on Mg(2+) homeostasis, however, remains unknown. Here, we...... in renal expression of transient receptor potential melastatin 6 (TRPM6) protein, the channel that mediates Mg(2+) reabsorption. Patch clamp analysis in TRPM6-expressing cells demonstrated that 30 muM erlotinib inhibited EGF-induced changes in TRPM6 current density and tyrosine phosphorylation of EGFR; 0...... that observed with antibody-based EGFR inhibitors. These data suggest that typical human dosages of erlotinib are unlikely to severely affect serum Mg(2+) concentrations....

  11. Adaptive Upregulation of EGFR Limits Attenuation of Tumor Growth by Neutralizing IL6 Antibodies, with Implications for Combined Therapy in Ovarian Cancer.

    Science.gov (United States)

    Milagre, Carla S; Gopinathan, Ganga; Everitt, Gemma; Thompson, Richard G; Kulbe, Hagen; Zhong, Haihong; Hollingsworth, Robert E; Grose, Richard; Bowtell, David D L; Hochhauser, Daniel; Balkwill, Frances R

    2015-04-01

    Excess production of the proinflammatory IL6 has both local and systemic tumor-promoting activity in many cancers, including ovarian cancer. However, treatment of advanced ovarian cancer patients with a neutralizing IL6 antibody yielded little efficacy in a previous phase II clinical trial. Here, we report results that may explain this outcome, based on the finding that neutralizing antibodies to IL6 and STAT3 inhibition are sufficient to upregulate the EGFR pathway in high-grade serous and other ovarian cancer cells. Cell treatment with the EGFR inhibitor gefitinib abolished upregulation of the EGFR pathway. Combining neutralizing IL6 antibodies and gefitinib inhibited malignant cell growth in 2D and 3D culture. We found that ErbB-1 was localized predominantly in the nucleus of ovarian cancer cells examined, contrasting with plasma membrane localization in lung cancer cells. Treatment with anti-IL6, gefitinib, or their combination all led to partial restoration of ErbB-1 on the plasma membrane. In vivo experiments confirmed the effects of IL6 inhibition on the EGFR pathway and the enhanced activity of a combination of anti-IL6 antibodies and gefitinib on malignant cell growth. Taken together, our results offer a preclinical rationale to combine anti-IL6 and gefitinib to treat patients with advanced stage ovarian cancer.

  12. CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness.

    Science.gov (United States)

    Grass, G Daniel; Tolliver, Lauren B; Bratoeva, Momka; Toole, Bryan P

    2013-09-06

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777-788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer.

  13. Hepatitis C virus induces epidermal growth factor receptor activation via CD81 binding for viral internalization and entry.

    Science.gov (United States)

    Diao, Jingyu; Pantua, Homer; Ngu, Hai; Komuves, Laszlo; Diehl, Lauri; Schaefer, Gabriele; Kapadia, Sharookh B

    2012-10-01

    While epidermal growth factor receptor (EGFR) has been shown to be important in the entry process for multiple viruses, including hepatitis C virus (HCV), the molecular mechanisms by which EGFR facilitates HCV entry are not well understood. Using the infectious cell culture HCV model (HCVcc), we demonstrate that the binding of HCVcc particles to human hepatocyte cells induces EGFR activation that is dependent on interactions between HCV and CD81 but not claudin 1. EGFR activation can also be induced by antibody mediated cross-linking of CD81. In addition, EGFR ligands that enhance the kinetics of HCV entry induce EGFR internalization and colocalization with CD81. While EGFR kinase inhibitors inhibit HCV infection primarily by preventing EGFR endocytosis, antibodies that block EGFR ligand binding or inhibitors of EGFR downstream signaling have no effect on HCV entry. These data demonstrate that EGFR internalization is critical for HCV entry and identify a hitherto-unknown association between CD81 and EGFR.

  14. First-in-human trial of multikinase VEGF inhibitor regorafenib and anti-EGFR antibody cetuximab in advanced cancer patients

    Science.gov (United States)

    Khawaja, Muhammad Rizwan; Hong, David S.; Amini, Behrang; Yungfang, Jiang; Liu, Hui; Johnson, Adrienne; Schrock, Alexa B.; Ali, Siraj M.; Sun, James X.; Fabrizio, David; Piha-Paul, Sarina; Fu, Siqing; Tsimberidou, Apostolia M.; Naing, Aung; Janku, Filip; Karp, Daniel D.; Overman, Michael; Eng, Cathy; Meric-Bernstam, Funda; Falchook, Gerald S.

    2017-01-01

    BACKGROUND. The combination of multikinase VEGF inhibitor regorafenib and anti-EGFR antibody cetuximab overcomes intrinsic and acquired resistance in both EGFR-sensitive and EGFR-resistant preclinical models of colorectal cancer (CRC). METHODS. Utilizing a standard 3+3 design, a phase I study was designed to determine safety, maximum tolerated dose (MTD), and dose-limiting toxicities (DLTs) of the regorafenib plus cetuximab combination among patients with advanced cancer including CRC. Comprehensive genomic profiling was performed on the exceptional responder. RESULTS. Among the 27 patients enrolled the median age was 54 years. None of 19 patients treated at dose level 1 (cetuximab i.v. 200 mg/m2 followed by 150 mg/m2 weekly + regorafenib 80 mg daily) experienced a DLT, and 2 of 5 patients treated at dose level 2 (cetuximab i.v. 200 mg/m2 followed by 150 mg/m2 weekly + regorafenib 120 mg daily) experienced a DLT (grade 3 thrombocytopenia [n = 1] and grade 3 intra-abdominal bleed [n = 1]). Most common adverse events were grade 1 or 2 rash (20 patients). Of 24 evaluable patients, 11 (46%) patients had clinical benefit (stable disease > 6 cycles or partial response [PR]) (CRC n = 8, one patient each with head and neck cancer, carcinoma of unknown primary, and glioblastoma). A CRC patient, who progressed on anti-EGFR and regorafenib, achieved a PR (46% decrease per RECIST v1.1) lasting 15 months. Genomic profiling of an exceptional responder with response for over 27 cycles revealed hypermutated genotype with microsatellite instability (MSI). CONCLUSION. Regorafenib 80 mg daily plus cetuximab 200 mg/m2 loading dose, followed by 150 mg/m2 every week is the MTD/recommended phase II dose. The combination demonstrated early signals of activity in wild-type CRC, including 1 exceptional responder with MSI high. TRIAL REGISTRATION. clinicaltrials.gov NCT02095054 FUNDING. The University of Texas MD Anderson Cancer Center is supported by the NIH Cancer Center Support Grant CA

  15. Bisphenol A and Related Alkylphenols Exert Nongenomic Estrogenic Actions Through a G Protein-Coupled Estrogen Receptor 1 (Gper)/Epidermal Growth Factor Receptor (Egfr) Pathway to Inhibit Meiotic Maturation of Zebrafish Oocytes.

    Science.gov (United States)

    Fitzgerald, Amanda C; Peyton, Candace; Dong, Jing; Thomas, Peter

    2015-12-01

    Xenobiotic estrogens, such as bisphenol A (BPA), disrupt a wide variety of genomic estrogen actions, but their nongenomic estrogen actions remain poorly understood. We investigated nongenomic estrogenic effects of low concentrations of BPA and three related alkylphenols on the inhibition of zebrafish oocye maturation (OM) mediated through a G protein-coupled estrogen receptor 1 (Gper)-dependent epidermal growth factor receptor (Egfr) pathway. BPA (10-100 nM) treatment for 3 h mimicked the effects of estradiol-17beta (E2) and EGF, decreasing spontaneous maturation of defolliculated zebrafish oocytes, an effect not blocked by coincubation with actinomycin D, but blocked by coincubation with a Gper antibody. BPA displayed relatively high binding affinity (15.8% that of E2) for recombinant zebrafish Gper. The inhibitory effects of BPA were attenuated by inhibition of upstream regulators of Egfr, intracellular tyrosine kinase (Src) with PP2, and matrix metalloproteinase with ilomastat. Treatment with an inhibitor of Egfr transactivation, AG1478, and an inhibitor of the mitogen-activated protein kinase (MAPK) 3/1 pathway, U0126, increased spontaneous OM and blocked the inhibitory effects of BPA, E2, and the selective GPER agonist, G-1. Western blot analysis showed that BPA (10-200 nM) mimicked the stimulatory effects of E2 and EGF on Mapk3/1 phosphorylation. Tetrabromobisphenol A, 4-nonylphenol, and tetrachlorobisphenol A (5-100 nM) also inhibited OM, an effect blocked by cotreatment with AG1478, as well as with the GPER antagonist, G-15, and displayed similar binding affinities as BPA to zebrafish Gper. The results suggest that BPA and related alkylphenols disrupt zebrafish OM by a novel nongenomic estrogenic mechanism involving activation of the Gper/Egfr/Mapk3/1 pathway.

  16. Estrogen receptor β exerts tumor repressive functions in human malignant pleural mesothelioma via EGFR inactivation and affects response to gefitinib.

    Directory of Open Access Journals (Sweden)

    Giulia Pinton

    Full Text Available BACKGROUND: The role of estrogen and estrogen receptors in oncogenesis has been investigated in various malignancies. Recently our group identified estrogen receptor beta (ERβ expression as an independent prognostic factor in the progression of human Malignant Pleural Mesothelioma (MMe, but the underlying mechanism by which ERβ expression in tumors determines clinical outcome remains largely unknown. This study is aimed at investigating the molecular mechanisms of ERβ action in MMe cells and disclosing the potential translational implications of these results. METHODS: We modulated ERβ expression in REN and MSTO-211H MMe cell lines and evaluated cell proliferation and EGF receptor (EGFR activation. RESULTS: Our data indicate that ERβ knockdown in ER positive cells confers a more invasive phenotype, increases anchorage independent proliferation and elevates the constitutive activation of EGFR-coupled signal transduction pathways. Conversely, re-expression of ERβ in ER negative cells confers a more epithelioid phenotype, decreases their capacity for anchorage independent growth and down-modulates proliferative signal transduction pathways. We identify a physical interaction between ERβ, EGFR and caveolin 1 that results in an altered internalization and in a selective reduced activation of EGFR-coupled signaling, when ERβ is over-expressed. We also demonstrate that differential expression of ERβ influences MMe tumor cell responsiveness to the therapeutic agent: Gefitinib. CONCLUSIONS: This study describes a role for ERβ in the modulation of cell proliferation and EGFR activation and provides a rationale to facilitate the targeting of a subgroup of MMe patients who would benefit most from therapy with Gefitinib alone or in combination with Akt inhibitors.

  17. Preparation and Characterization of Polyclonal Antibodies against VLDL Receptor

    Institute of Scientific and Technical Information of China (English)

    屈伸; 陈涛; 吴凡; 尹燕华; 毕昊

    2004-01-01

    Summary: The polyclonal antibodies against VLDL receptor were prepared and identified. Rabbits were immunized with polypeptide fragment of VLDL receptor as antigen. The collected blood serum of the immunized rabbits was analyzed and identified by using ELISA and Western Blot. The results showed that the rabbit against mouse and human VLDL receptor antibodies were obtained with high titer and could recognize the natural VLDL receptors through Western blot. The prepared poly clonal antibodies against VLDL receptor provide a new tool to study the protein of VLDL receptor.

  18. EGFR-Targeting as a Biological Therapy: Understanding Nimotuzumab's Clinical Effects

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Rolando, E-mail: rolando@cim.sld.cu; Moreno, Ernesto; Garrido, Greta; Crombet, Tania [Center of Molecular Immunology, P.O. Box 16040, Havana 11600 (Cuba)

    2011-04-18

    Current clinical trials of epidermal growth factor receptor (EGFR)-targeted therapies are mostly guided by a classical approach coming from the cytotoxic paradigm. The predominant view is that the efficacy of EGFR antagonists correlates with skin rash toxicity and induction of objective clinical response. Clinical benefit from EGFR-targeted therapies is well documented; however, chronic use in advanced cancer patients has been limited due to cumulative and chemotherapy-enhanced toxicity. Here we analyze different pieces of data from mechanistic and clinical studies with the anti-EGFR monoclonal antibody Nimotuzumab, which provides several clues to understand how this antibody may induce a biological control of tumor growth while keeping a low toxicity profile. Based on these results and the current state of the art on EGFR-targeted therapies, we discuss the need to evaluate new therapeutic approaches using anti-EGFR agents, which would have the potential of transforming advanced cancer into a long-term controlled chronic disease.

  19. Oligomerization of epidermal growth factor receptors (EGFR) on A431 cells studied by time-resolved fluorescence imaging microscopy: a stereochemical model for tyrosine kinase receptor activation

    NARCIS (Netherlands)

    Gadella, Th.W.J.; Jovin, T.M.

    1995-01-01

    The aggregation states of the epidermal growth factor receptor (EGFR) on single A431 human epidermoid carcinoma cells were assessed with two new techniques for determining fluorescence resonance en- ergy transfer: donor photobleaching fluorescence reso- nance energy transfer (pbFRET) microscopy and

  20. Oligomerization of epidermal growth factor receptors (EGFR) on A431 cells studied by time-resolved fluorescence imaging microscopy: a stereochemical model for tyrosine kinase receptor activation

    NARCIS (Netherlands)

    Th.W.J. Gadella; T.M. Jovin

    1995-01-01

    The aggregation states of the epidermal growth factor receptor (EGFR) on single A431 human epidermoid carcinoma cells were assessed with two new techniques for determining fluorescence resonance en- ergy transfer: donor photobleaching fluorescence reso- nance energy transfer (pbFRET) microscopy and

  1. Lipopolysaccharide (LPS-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR.

    Directory of Open Access Journals (Sweden)

    Christy E Trussoni

    Full Text Available Cholangiocytes (biliary epithelial cells actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells, or low passage normal human cholangiocytes (NHC, were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (p<0.05 and proliferation (p<0.01. Additionally, cholangiocytes from LPS-treated mouse livers and human primary sclerosing cholangitis (PSC livers exhibited increased phospho-EGFR (p<0.01. Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes.

  2. Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR).

    Science.gov (United States)

    Trussoni, Christy E; Tabibian, James H; Splinter, Patrick L; O'Hara, Steven P

    2015-01-01

    Cholangiocytes (biliary epithelial cells) actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells), or low passage normal human cholangiocytes (NHC), were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE) inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (pphospho-EGFR (p<0.01). Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes.

  3. Modular anti-EGFR and anti-Her2 targeting of SK-BR-3 and BT474 breast cancer cell lines in the presence of ErbB receptor-specific growth factors.

    Science.gov (United States)

    Diermeier-Daucher, Simone; Breindl, Stefanie; Buchholz, Stefan; Ortmann, Olaf; Brockhoff, Gero

    2011-09-01

    Over the last decade, a number of monoclonal antibodies and small molecule inhibitors emerged as potent therapeutic agents in the treatment of Her2/neu overexpressing breast cancer. Numerous patients, however, do not adequately respond to anti-epidermal growth factor receptor (EGFR)/Her2 receptor targeting. Receptor- and, in turn, growth-stimulating effects, which potentially hamper antiproliferative cell treatment, have barely been investigated. BT474 and SK-BR-3 breast cancer cell lines were treated with Trastuzumab, Pertuzumab, and Lapatinib alone using different combinations and concentrations. Moreover, epidermal growth factor (EGF) or heregulin (HRG) was added to reveal potential growth factor-mediated compensatory effects. Receptor and intracellular signaling were analyzed as a function of cell treatment. Read-out parameters were cell proliferation and apoptosis. BT474 cells were efficiently driven into quiescence by Trastuzumab, but not by Pertuzumab treatment. Simultaneous EGF or HRG administration, however, restored the BT474 cell proliferation capacity. In contrast, neither therapeutic antibody treatment caused a profound inhibition of SK-BR-3 cell-cycle progress. Lapatinib turned out to be the most potent cell-cycle inhibitor in both cell lines even though its impact was significantly abrogated in the presence of EGF and HRG. The compensatory effect of EGF on Lapatinib-induced cell-cycle inhibition was reversed by Trastuzumab as well as by Pertuzumab treatment. Most importantly, HRG-caused compensation of Lapatinib-induced cell-cycle exit was reversed by Pertuzumab but not by Trastuzumab. Apparently, multiple anti-EGFR/Her2 targeting by using Trastuzumab, Pertuzumab, and Lapatinib more efficiently affects receptor function (interaction and activation) and consequently enhances their antiproliferative capacity. Growth inhibition by anticancer drugs targeted to Her/ErbB receptors, however, can be significantly undermined in the presence of EGF and in

  4. Markers for EGFR pathway activation as predictor of outcome in metastatic colorectal cancer patients treated with or without cetuximab.

    NARCIS (Netherlands)

    Tol, J.; Dijkstra, J.R.; Klomp, M.; Teerenstra, S.; Dommerholt, M.; Vink-Borger, M.E.; Cleef, P.H. van; Krieken, J.H.J.M. van; Punt, C.J.A.; Nagtegaal, I.D.

    2010-01-01

    BACKGROUND: Anti-EGFR monoclonal antibodies in metastatic colorectal cancer (mCRC) treatment are only effective in patients with KRAS wild type tumours. Here we assess the predictive value of other potential relevant markers involved in the epidermal growth factor receptor (EGFR) signalling pathways

  5. The epidermal growth factor receptor (EGFR / HER-1 gatekeeper mutation T790M is present in European patients with early breast cancer.

    Directory of Open Access Journals (Sweden)

    Vahid Bemanian

    Full Text Available The epidermal growth factor receptor (EGFR is one of the major oncogenes identified in a variety of human malignancies including breast cancer (BC. EGFR-mutations have been studied in lung cancer for some years and are established as important markers in guiding therapy with tyrosine kinase inhibitors (TKIs. In contrast, EGFR-mutations have been reported to be rare if not absent in human BC, although recent evidence has suggested a significant worldwide variation in somatic EGFR-mutations. Therefore, we investigated the presence of EGFR-mutations in 131 norwegian patients diagnosed with early breast cancer using real-time PCR methods. In the present study we identified three patients with an EGFR-T790M-mutation. The PCR-findings were confirmed by direct Sanger sequencing. Two patients had triple-negative BC (TNBC while the third was classified as luminal-A subtype. The difference in incidence of T790M mutations comparing the TNBC subgroup with the other BC subgroups was statistical significant (P = 0.023. No other EGFR mutations were identified in the entire cohort. Interestingly, none of the patients had received any previous cancer treatment. To our best knowledge, the EGFR-T790M-TKI-resistance mutation has not been previously detected in breast cancer patients. Our findings contrast with the observations made in lung cancer patients where the EGFR-T790M-mutation is classified as a typical "second mutation"causing resistance to TKI-therapy during ongoing anticancer therapy. In conclusion, we have demonstrated for the first time that the EGFR-T790M-mutation occurs in primary human breast cancer patients. In the present study the EGFR-T790M mutation was not accompanied by any simultaneous EGFR-activating mutation.

  6. Anti-NMDA-receptor antibody encephalitis in infants

    Directory of Open Access Journals (Sweden)

    Amr A. Matoq

    2015-01-01

    Conclusion: Infants with anti-NMDA-receptor antibody encephalitis can present with frank seizures or seizure mimics. Regardless, prompt recognition and aggressive treatment of anti-NMDA-receptor antibody encephalitis, while challenging, can quickly arrest deterioration and hasten recovery, thereby, limiting neurological morbidity.

  7. Frequently increased epidermal growth factor receptor (EGFR copy numbers and decreased BRCA1 mRNA expression in Japanese triple-negative breast cancers

    Directory of Open Access Journals (Sweden)

    Sugiura Hiroshi

    2008-10-01

    Full Text Available Abstract Background Triple-negative breast cancer (estrogen receptor-, progesterone receptor-, and HER2-negative (TNBC is a high risk breast cancer that lacks specific therapy targeting these proteins. Methods We studied 969 consecutive Japanese patients diagnosed with invasive breast cancer from January 1981 to December 2003, and selected TNBCs based on the immunohistochemical data. Analyses of epidermal growth factor receptor (EGFR gene mutations and amplification, and BRCA1 mRNA expression were performed on these samples using TaqMan PCR assays. The prognostic significance of TNBCs was also explored. Median follow-up was 8.3 years. Results A total of 110 (11.3% patients had TNBCs in our series. Genotyping of the EGFR gene was performed to detect 14 known EGFR mutations, but none was identified. However, EGFR gene copy number was increased in 21% of TNBCs, while only 2% of ER- and PgR-positive, HER2-negative tumors showed slightly increased EGFR gene copy numbers. Thirty-one percent of TNBCs stained positive for EGFR protein by immunohistochemistry. BRCA1 mRNA expression was also decreased in TNBCs compared with controls. Triple negativity was significantly associated with grade 3 tumors, TP53 protein accumulation, and high Ki67 expression. TNBC patients had shorter disease-free survival than non-TNBC in node-negative breast cancers. Conclusion TNBCs have an aggressive clinical course, and EGFR and BRCA1 might be candidate therapeutic targets in this disease.

  8. Prognostic impact of epidermal growth factor receptor (EGFR expression on loco-regional recurrence after preoperative radiotherapy in rectal cancer

    Directory of Open Access Journals (Sweden)

    Ychou Marc

    2005-06-01

    Full Text Available Abstract Background Epidermal growth factor receptor (EGFR represents a major target for current radiosensitizing strategies. We wished to ascertain whether a correlation exists between the expression of EGFR and treatment outcome in a group of patients with rectal adenocarcinoma who had undergone preoperative radiotherapy (RT. Methods Within a six-year period, 138 patients underwent preoperative radiotherapy and curative surgery for rectal cancer (UICC stages II-III at our institute. Among them, 77 pretherapeutic tumor biopsies were available for semi-quantitative immunohistochemical investigation evaluating the intensity and the number (extent of tumor stained cells. Statistical analyses included Cox regression for calculating risk ratios of survival endpoints and logistic regression for determining odds ratios for the development of loco-regional recurrences. Results Median age was 64 years (range: 30–88. Initial staging showed 75% and 25% stage II and III tumors, respectively. RT consisted of 44-Gy pelvic irradiation in 2-Gy fractions using 18-MV photons. In 25 very low-rectal-cancer patients the primary tumor received a boost dose of up to 16 Gy for a sphincter-preservation approach. Concomitant chemotherapy was used in 17% of the cases. All patients underwent complete total mesorectal resection. Positive staining (EGFR+ was observed in 43 patients (56%. Median follow-up was 36 months (range: 6–86. Locoregional recurrence rates were 7 and 20% for EGFR extent inferior and superior to 25%, respectively. The corresponding locoregional recurrence-free survival rate at two years was 94% (95% confidence interval, CI, 92–98% and 84% (CI 95%, 58–95%, respectively (P = 0.06. Multivariate analyses showed a significant correlation between the rate of loco-regional recurrence and three parameters: EGFR extent superior to 25% (hazard ratio = 7.18, CI 95%, 1.17–46, P = 0.037, rectal resection with microscopic residue (hazard ratio = 6.92, CI 95

  9. Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer.

    Science.gov (United States)

    Feng, Kaichao; Guo, Yelei; Dai, Hanren; Wang, Yao; Li, Xiang; Jia, Hejin; Han, Weidong

    2016-05-01

    The successes achieved by chimeric antigen receptor-modified T (CAR-T) cells in hematological malignancies raised the possibility of their use in non-small lung cancer (NSCLC). In this phase I clinical study (NCT01869166), patients with epidermal growth factor receptor (EGFR)-positive (>50% expression), relapsed/refractory NSCLC received escalating doses of EGFR-targeted CAR-T cell infusions. The EGFR-targeted CAR-T cells were generated from peripheral blood after a 10 to 13-day in vitro expansion. Serum cytokines in peripheral blood and copy numbers of CAR-EGFR transgene in peripheral blood and in tissue biopsy were monitored periodically. Clinical responses were evaluated with RECIST1.1 and immune- related response criteria, and adverse events were graded with CTCAE 4.0. The EGFR-targeted CAR-T cell infusions were well-tolerated without severe toxicity. Of 11 evaluable patients, two patients obtained partial response and five had stable disease for two to eight months. The median dose of transfused CAR(+) T cells was 0.97×10(7) cells kg(-1) (interquartile range (IQR), 0.45 to 1.09×10(7) cells kg(-1)). Pathological eradication of EGFR positive tumor cells after EGFR-targeted CAR-T cell treatment can be observed in tumor biopsies, along with the CAR-EGFR gene detected in tumor-infiltrating T cells in all four biopsied patients. The EGFR-targeted CAR-T cell therapy is safe and feasible for EGFR-positive advanced relapsed/refractory NSCLC.

  10. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer: A systematic review and cost-effectiveness analysis

    NARCIS (Netherlands)

    M. Westwood (Marie); M.A. Joore (Manuela); P. Whiting (Penny); T. van Asselt (Thea); B.L.T. Ramaekers (Bram); N. Armstrong (Nigel); K. Misso (Kate); J.L. Severens (Hans); J. Kleijnen (Jos)

    2014-01-01

    markdownabstract__Abstract__ Background: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Some epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutations make tumours responsive to treatment with EGFR-TK inhibitors (EGFR-TKIs) but less responsive to treatment wit

  11. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer : a systematic review and cost-effectiveness analysis

    NARCIS (Netherlands)

    Westwood, Marie; Joore, Manuela; Whiting, Penny; van Asselt, Thea; Ramaekers, Bram; Armstrong, Nigel; Misso, Kate; Severens, Johan; Kleijnen, Jos

    2014-01-01

    BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Some epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutations make tumours responsive to treatment with EGFR-TK inhibitors (EGFR-TKIs) but less responsive to treatment with standard chemotherapy. Patie

  12. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer: A systematic review and cost-effectiveness analysis

    NARCIS (Netherlands)

    M. Westwood (Marie); M.A. Joore (Manuela); P. Whiting (Penny); T. van Asselt (Thea); B.L.T. Ramaekers (Bram); N. Armstrong (Nigel); K. Misso (Kate); J.L. Severens (Hans); J. Kleijnen (Jos)

    2014-01-01

    markdownabstract__Abstract__ Background: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Some epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutations make tumours responsive to treatment with EGFR-TK inhibitors (EGFR-TKIs) but less responsive to treatment wit

  13. 与晚期结直肠癌EGFR单克隆抗体靶向药物选择相关的分子标志物%Molecular markers associated with anti-EGFR monodonal antibody in treatment selection for advanced colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    李凡; 韩琤波; 马洁韬

    2011-01-01

    对于转移性结直肠癌而言,如何在标准化疗的基础上进行个体化靶向治疗是目前关注的热点.KRAS基因突变被认为是转移性结直肠癌对抗表皮生长因子受体(epidermal growth factor receptor,EGFR)单克隆抗体(anti-EGFR monoclonal antibody,anti-EGFR)靶向治疗反应不佳的独立预测因素.35%~45%的转移性结直肠癌患者存在KRAS基因的突变,且对anti-EGFR治疗抵抗;同时只有50%的野生型KRAS患者对anti-EGFR治疗有效,提示EGFR下游信号通路其他分子的激活和变异可能影响了其治疗反应.EGFR依赖的2条主要信号通路RAS-RAF-MAPK和PI3K-PTEN-AKT均与anti-EGFR治疗失败有关.EGFR基因拷贝数(gene copy number,GCN)增加与结肠癌anti-EGFR的疗效相关,但EGFR GCN增加并不意味着EGFR蛋白表达增加,且EGFR表达与anti-EGFR疗效无相关性.在野生型KRAS转移性结直肠癌患者中增加对BRAF和PIK3CA基因突变以及PTEN基因表达缺失的检测可能有助于筛选anti-EGFR抵抗患者.本研究对近年来转移性结直肠癌研究中所涉及的疗效预测和预后分子标志物进行综述,以进一步指导转移性结直肠癌的个体化分子靶向治疗.%Personalized targeted therapy in addition to standard chemotherapy has become a hot topic in the treatment of metastatic colorectal cancer (Mcrc). KRAS gene mutation has been considered as a predictor for poor response to anti-epidermal growth factor receptor monoclonal antibody (anti-EGFR) therapy in patients with Mcrc. The percentage of KRAS mutation is 35%-45% in patients with Mcrc, and these patients have poor response to anti-EGFR; while only 50% of patients with wild-type KRAS respond to anti-EGFR, which suggests that the activation and variation of other molecules in the downstream of EGFR signaling pathway can influence the therapeutic effects. The two major EGFR-dependent signaling pathways-RAS-RAF-MAPK and PI3K-PTEN-AKT may be involved in poor response to anti-EGFR

  14. The genomic landscape of response to EGFR blockade in colorectal cancer.

    Science.gov (United States)

    Bertotti, Andrea; Papp, Eniko; Jones, Siân; Adleff, Vilmos; Anagnostou, Valsamo; Lupo, Barbara; Sausen, Mark; Phallen, Jillian; Hruban, Carolyn A; Tokheim, Collin; Niknafs, Noushin; Nesselbush, Monica; Lytle, Karli; Sassi, Francesco; Cottino, Francesca; Migliardi, Giorgia; Zanella, Eugenia R; Ribero, Dario; Russolillo, Nadia; Mellano, Alfredo; Muratore, Andrea; Paraluppi, Gianluca; Salizzoni, Mauro; Marsoni, Silvia; Kragh, Michael; Lantto, Johan; Cassingena, Andrea; Li, Qing Kay; Karchin, Rachel; Scharpf, Robert; Sartore-Bianchi, Andrea; Siena, Salvatore; Diaz, Luis A; Trusolino, Livio; Velculescu, Victor E

    2015-10-08

    Colorectal cancer is the third most common cancer worldwide, with 1.2 million patients diagnosed annually. In late-stage colorectal cancer, the most commonly used targeted therapies are the monoclonal antibodies cetuximab and panitumumab, which prevent epidermal growth factor receptor (EGFR) activation. Recent studies have identified alterations in KRAS and other genes as likely mechanisms of primary and secondary resistance to anti-EGFR antibody therapy. Despite these efforts, additional mechanisms of resistance to EGFR blockade are thought to be present in colorectal cancer and little is known about determinants of sensitivity to this therapy. To examine the effect of somatic genetic changes in colorectal cancer on response to anti-EGFR antibody therapy, here we perform complete exome sequence and copy number analyses of 129 patient-derived tumour grafts and targeted genomic analyses of 55 patient tumours, all of which were KRAS wild-type. We analysed the response of tumours to anti-EGFR antibody blockade in tumour graft models and in clinical settings and functionally linked therapeutic responses to mutational data. In addition to previously identified genes, we detected mutations in ERBB2, EGFR, FGFR1, PDGFRA, and MAP2K1 as potential mechanisms of primary resistance to this therapy. Novel alterations in the ectodomain of EGFR were identified in patients with acquired resistance to EGFR blockade. Amplifications and sequence changes in the tyrosine kinase receptor adaptor gene IRS2 were identified in tumours with increased sensitivity to anti-EGFR therapy. Therapeutic resistance to EGFR blockade could be overcome in tumour graft models through combinatorial therapies targeting actionable genes. These analyses provide a systematic approach to evaluating response to targeted therapies in human cancer, highlight new mechanisms of responsiveness to anti-EGFR therapies, and delineate new avenues for intervention in managing colorectal cancer.

  15. Inhibitory Mechanism of an Allosteric Antibody Targeting the Glucagon Receptor*

    OpenAIRE

    Mukund, Susmith; Shang, Yonglei; Clarke, Holly J.; Madjidi, Azadeh; Jacob E Corn; Kates, Lance; Kolumam, Ganesh; Chiang, Vicky; Luis, Elizabeth; Murray, Jeremy; Zhang, Yingnan; Hötzel, Isidro; Koth, Christopher M.; Allan, Bernard B.

    2013-01-01

    Elevated glucagon levels and increased hepatic glucagon receptor (GCGR) signaling contribute to hyperglycemia in type 2 diabetes. We have identified a monoclonal antibody that inhibits GCGR, a class B G-protein coupled receptor (GPCR), through a unique allosteric mechanism. Receptor inhibition is mediated by the binding of this antibody to two distinct sites that lie outside of the glucagon binding cleft. One site consists of a patch of residues that are surface-exposed on the face of the ext...

  16. EGFR soluble isoforms and their transcripts are expressed in meningiomas.

    Science.gov (United States)

    Guillaudeau, Angélique; Durand, Karine; Bessette, Barbara; Chaunavel, Alain; Pommepuy, Isabelle; Projetti, Fabrice; Robert, Sandrine; Caire, François; Rabinovitch-Chable, Hélène; Labrousse, François

    2012-01-01

    The EGFR (epidermal growth factor receptor) is involved in the oncogenesis of many tumors. In addition to the full-length EGFR (isoform a), normal and tumor cells produce soluble EGFR isoforms (sEGFR) that lack the intracellular domain. sEGFR isoforms b, c and d are encoded by EGFR variants 2 (v2), 3 (v3) and 4 (v4) mRNA resulting from gene alternative splicing. Accordingly, the results of EGFR protein expression analysis depend on the domain targeted by the antibodies. In meningiomas, EGFR expression investigations mainly focused on EGFR isoform a. sEGFR and EGFRvIII mutant, that encodes a constitutively active truncated receptor, have not been studied. In a 69 meningiomas series, protein expression was analyzed by immunohistochemistry using extracellular domain targeted antibody (ECD-Ab) and intracellular domain targeted antibody (ICD-Ab). EGFRv1 to v4 and EGFRvIII mRNAs were quantified by RT-PCR and EGFR amplification revealed by MLPA. Results were analyzed with respect to clinical data, tumor resection (Simpson grade), histological type, tumor grade, and patient outcome.Immunochemical staining was stronger with ECD-Ab than with ICD-Ab. Meningiomas expressed EGFRv1 to -v4 mRNAs but not EGFRvIII mutant. Intermediate or high ECD-Ab staining and high EGFRv1 to v4 mRNA levels were associated to a better progression free survival (PFS). PFS was also improved in women, when tumor resection was evaluated as Simpson 1 or 2, in grade I vs. grade II and III meningiomas and when Ki67 labeling index was lower than 10%. Our results suggest that, EGFR protein isoforms without ICD and their corresponding mRNA variants are expressed in meningiomas in addition to the whole isoform a. EGFRvIII was not expressed. High expression levels seem to be related to a better prognosis. These results indicate that the oncogenetic mechanisms involving the EGFR pathway in meningiomas could be different from other tumor types.

  17. EGFR soluble isoforms and their transcripts are expressed in meningiomas.

    Directory of Open Access Journals (Sweden)

    Angélique Guillaudeau

    Full Text Available The EGFR (epidermal growth factor receptor is involved in the oncogenesis of many tumors. In addition to the full-length EGFR (isoform a, normal and tumor cells produce soluble EGFR isoforms (sEGFR that lack the intracellular domain. sEGFR isoforms b, c and d are encoded by EGFR variants 2 (v2, 3 (v3 and 4 (v4 mRNA resulting from gene alternative splicing. Accordingly, the results of EGFR protein expression analysis depend on the domain targeted by the antibodies. In meningiomas, EGFR expression investigations mainly focused on EGFR isoform a. sEGFR and EGFRvIII mutant, that encodes a constitutively active truncated receptor, have not been studied. In a 69 meningiomas series, protein expression was analyzed by immunohistochemistry using extracellular domain targeted antibody (ECD-Ab and intracellular domain targeted antibody (ICD-Ab. EGFRv1 to v4 and EGFRvIII mRNAs were quantified by RT-PCR and EGFR amplification revealed by MLPA. Results were analyzed with respect to clinical data, tumor resection (Simpson grade, histological type, tumor grade, and patient outcome.Immunochemical staining was stronger with ECD-Ab than with ICD-Ab. Meningiomas expressed EGFRv1 to -v4 mRNAs but not EGFRvIII mutant. Intermediate or high ECD-Ab staining and high EGFRv1 to v4 mRNA levels were associated to a better progression free survival (PFS. PFS was also improved in women, when tumor resection was evaluated as Simpson 1 or 2, in grade I vs. grade II and III meningiomas and when Ki67 labeling index was lower than 10%. Our results suggest that, EGFR protein isoforms without ICD and their corresponding mRNA variants are expressed in meningiomas in addition to the whole isoform a. EGFRvIII was not expressed. High expression levels seem to be related to a better prognosis. These results indicate that the oncogenetic mechanisms involving the EGFR pathway in meningiomas could be different from other tumor types.

  18. The human epidermal growth factor receptor (EGFR gene in European patients with advanced colorectal cancer harbors infrequent mutations in its tyrosine kinase domain

    Directory of Open Access Journals (Sweden)

    Delvenne Philippe

    2011-10-01

    Full Text Available Abstract Background The epidermal growth factor receptor (EGFR, a member of the ErbB family of receptors, is a transmembrane tyrosine kinase (TK activated by the binding of extracellular ligands of the EGF-family and involved in triggering the MAPK signaling pathway, which leads to cell proliferation. Mutations in the EGFR tyrosine kinase domain are frequent in non-small-cell lung cancer (NSCLC. However, to date, only very few, mainly non-European, studies have reported rare EGFR mutations in colorectal cancer (CRC. Methods We screened 236 clinical tumor samples from European patients with advanced CRC by direct DNA sequencing to detect potential, as yet unknown mutations, in the EGFR gene exons 18 to 21, mainly covering the EGFR TK catalytic domain. Results EGFR sequences showed somatic missense mutations in exons 18 and 20 at a frequency of 2.1% and 0.4% respectively. Somatic SNPs were also found in exons 20 and 21 at a frequency of about 3.1% and 0.4% respectively. Of these mutations, four have not yet been described elsewhere. Conclusions These mutation frequencies are higher than in a similarly sized population characterized by Barber and colleagues, but still too low to account for a major role played by the EGFR gene in CRC.

  19. The prognostic role of BRAF mutation in metastatic colorectal cancer receiving anti-EGFR monoclonal antibodies: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Zi-Xu Yuan

    Full Text Available BACKGROUND: BRAF mutation has been investigated as a prognostic factor in metastatic colorectal cancer (mCRC undergoing anti-EGFR monoclonal antibodies (moAbs, but current results are still inconclusive. The aim of this meta-analysis was to evaluate the relationship between BRAF mutation status and the prognosis of mCRC patients treated with moAbs. METHODS: Eligible studies were identified by systematically searching Pubmed, the Cochrane Library, Web of Knowledge, and OVID. Risk ratio (RR for overall response rate (ORR, Hazard ratios (HRs for Progression free survival (PFS and Overall survival (OS were extracted or calculated. Prespecified subgroup analyses were conducted in KRAS wild-type and in different study types. The source of between-trial variation was explored by sensitivity analyses. Quality assessment was conducted by the Hayden's criteria. RESULTS: A total of twenty one trials including 5229 patients were identified for the meta-analysis. 343 patients displayed BRAF mutations of 4616 (7.4% patients with known BRAF status. Patients with BRAF wild-type (WT showed decreased risks of progression and death with an improved PFS(HR 0.38, 95% confidence intervals 0.29-0.51 and an improved OS (HR 0.35 [0.29-0.42], compared to BRAF mutant. In KRAS WT population, there were even larger PFS benefit (HR 0.29[0.19,0.43] and larger OS benefit (HR 0.26 [0.20,0.35] in BRAF WT. A response benefit for BRAF WT was observed (RR 0.31[0.18,0.53] in KRAS WT patients, but not observed in unselected patients (RR 0.76 [0.43-1.33]. The results were consistent in the subgroup analysis of different study types. Heterogeneity between trials decreased in the subgroup and explained by sensitivity analysis. No publication bias of ORR, PFS and OS were detected. CONCLUSIONS: The results indicate that BRAF mutant is a predictive biomarker for poor prognosis in mCRC patients undergoing anti-EGFR MoAbs therapy, especially in KRAS WT patients. Additional large prospective

  20. Generation, use, and validation of receptor-selective antibodies.

    Science.gov (United States)

    Mackrill, John J

    2004-01-01

    Antibodies have proved invaluable in the study of G-protein-coupled receptors (GPCRs). The utility of these immunoglobulin probes for investigation of protein structures and functions arises from their selectivity as well as their versatility. Antibodies can be used to analyze GPCR size, abundance, distribution, turnover, modification, interaction with other proteins, and functional properties. In this chapter, techniques for the generation and characterization of receptor-selective antibodies are described. Two protocols are given for the generation of antibodies: (1) development of polyclonal antibodies (PAbs) against synthetic peptides corresponding to a specific site within a GPCR and (2) selection of synthetic single-chain fragment variable (scFv) monoclonal antibodies (MAbs) from libraries expressed on the surface of bacteriophage. Immunoblot and enzyme-linked immunosorbent assays for characterization of the selectivity and affinity of such antibodies are described. Finally, methods are given for improvement of the titer and specificity of PAbs.

  1. The Epidermal Growth Factor Receptor (EGFR) Inhibitor Gefitinib Reduces but Does Not Prevent Tumorigenesis in Chemical and Hormonal Induced Hepatocarcinogenesis Rat Models

    OpenAIRE

    Silvia Ribback; Verena Sailer; Enrico Böhning; Julia Günther; Jaqueline Merz; Frauke Steinmüller; Kirsten Utpatel; Antonio Cigliano; Kristin Peters; Pilo, Maria G.; Matthias Evert; Calvisi, Diego F.; Frank Dombrowski

    2016-01-01

    Activation of the epidermal growth factor receptor (EGFR) signaling pathway promotes the development of hepatocellular adenoma (HCA) and carcinoma (HCC). The selective EGFR inhibitor Gefitinib was found to prevent hepatocarcinogenesis in rat cirrhotic livers. Thus, Gefitinib might reduce progression of pre-neoplastic liver lesions to HCC. In short- and long-term experiments, administration of N-Nitrosomorpholine (NNM) or intrahepatic transplantation of pancreatic islets in diabetic (PTx), thy...

  2. Rational bases for the development of EGFR inhibitors for cancer treatment.

    Science.gov (United States)

    Bianco, Roberto; Gelardi, Teresa; Damiano, Vincenzo; Ciardiello, Fortunato; Tortora, Giampaolo

    2007-01-01

    Growth factor receptors and their ligands not only regulate normal cell processes but have been also identified as key regulators of human cancer formation. The epidermal growth factor receptor (EGFR/ErbB1/HER1) belongs to the ErbB/HER-family of tyrosine kinase receptors (RTKs). These trans-membrane proteins are activated following binding with peptide growth factors of the EGF-family of proteins. Several evidences suggest that cooperation of multiple ErbB receptors and ligands is required for the induction of cell transformation. In this respect, EGFR, upon activation, sustains a complex and redundant network of signal transduction pathways with the contribution of other trans-membrane receptors. EGFR has been found to be expressed and altered in a variety of malignancies and clearly it plays a significant role in tumor development and progression, including cell proliferation, regulation of apoptotic cell death, angiogenesis and metastatic spread. Moreover, amplification of the EGFR gene and mutations in the EGFR tyrosine kinase domain have been recently reported in human carcinomas. As a result, investigators have developed approaches to inhibit the effects of EGFR activation, with the aim of blocking tumor growth and invasion. A number of agents targeting EGFR, including specific antibodies directed against its ligand-binding domain and small molecules inhibiting its tyrosine kinase activity are either in clinical trials or are already approved for clinical treatment. This article reviews the EGFR role in carcinogenesis and tumor progression as rational bases for the development of specific therapeutic inhibitors.

  3. Genetic Polymorphisms in the EGFR (R521K and Estrogen Receptor (T594T Genes, EGFR and ErbB-2 Protein Expression, and Breast Cancer Risk in Tunisia

    Directory of Open Access Journals (Sweden)

    Imen Kallel

    2009-01-01

    Full Text Available We evaluated the association of epidermal growth factor receptor (EGFR 142285G>A (R521K and estrogen receptor alpha (ESR1 2014G>A (T594T single nucleotide polymorphisms with breast cancer risk and prognosis in Tunisian patients. EGFR 142285G>A and ESR1 2014G>A were genotyped in a sample of 148 Tunisian breast cancer patients and 303 controls using PCR-RFLP method. Immunohistochemitsry was used to evaluate the expression levels of EGFR, HER2, ESR1, progesterone receptor and BCL2 in tumors. We found no evidence for an association between EGFR R521K polymorphism and breast cancer risk. However, we found that the homozygous GG (Arg genotype was more prevalent in patients with lymph node metastasis (=.03 and high grade tumors (=.011. The ESR1 2014G allele showed significant association with breast cancer risk (=.025. The GG genotype was associated with HER2 overexpression and this association withstood univariate and multivariate analyses (=.009; =.021, resp.. These data suggest that the R521K might be a prognostic factor, because it correlates with both tumor grade and nodule status. The higher expression of HER2 in ESR1 T594T GG patients suggests the possibility that ESR1 gene polymorphisms accompanied by HER2 expression might influence the pathogenesis of breast cancers.

  4. Blockade of EGFR and MEK intercepts heterogeneous mechanisms of acquired resistance to anti-EGFR therapies in colorectal cancer.

    Science.gov (United States)

    Misale, Sandra; Arena, Sabrina; Lamba, Simona; Siravegna, Giulia; Lallo, Alice; Hobor, Sebastijan; Russo, Mariangela; Buscarino, Michela; Lazzari, Luca; Sartore-Bianchi, Andrea; Bencardino, Katia; Amatu, Alessio; Lauricella, Calogero; Valtorta, Emanuele; Siena, Salvatore; Di Nicolantonio, Federica; Bardelli, Alberto

    2014-02-19

    Colorectal cancers (CRCs) that are sensitive to the anti-epidermal growth factor receptor (EGFR) antibodies cetuximab or panitumumab almost always develop resistance within several months of initiating therapy. We report the emergence of polyclonal KRAS, NRAS, and BRAF mutations in CRC cells with acquired resistance to EGFR blockade. Regardless of the genetic alterations, resistant cells consistently displayed mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK) activation, which persisted after EGFR blockade. Inhibition of MEK1/2 alone failed to impair the growth of resistant cells in vitro and in vivo. An RNA interference screen demonstrated that suppression of EGFR, together with silencing of MEK1/2, was required to hamper the proliferation of resistant cells. Indeed, concomitant pharmacological blockade of MEK and EGFR induced prolonged ERK inhibition and severely impaired the growth of resistant tumor cells. Heterogeneous and concomitant mutations in KRAS and NRAS were also detected in plasma samples from patients who developed resistance to anti-EGFR antibodies. A mouse xenotransplant from a CRC patient who responded and subsequently relapsed upon EGFR therapy showed exquisite sensitivity to combinatorial treatment with MEK and EGFR inhibitors. Collectively, these results identify genetically distinct mechanisms that mediate secondary resistance to anti-EGFR therapies, all of which reactivate ERK signaling. These observations provide a rational strategy to overcome the multifaceted clonal heterogeneity that emerges when tumors are treated with targeted agents. We propose that MEK inhibitors, in combination with cetuximab or panitumumab, should be tested in CRC patients who become refractory to anti-EGFR therapies.

  5. Anterior Gradient 2 (AGR2) Induced Epidermal Growth Factor Receptor (EGFR) Signaling Is Essential for Murine Pancreatitis-Associated Tissue Regeneration

    Science.gov (United States)

    Wodziak, Dariusz; Dong, Aiwen; Basin, Michael F.; Lowe, Anson W.

    2016-01-01

    A recently published study identified Anterior Gradient 2 (AGR2) as a regulator of EGFR signaling by promoting receptor presentation from the endoplasmic reticulum to the cell surface. AGR2 also promotes tissue regeneration in amphibians and fish. Whether AGR2-induced EGFR signaling is essential for tissue regeneration in higher vertebrates was evaluated using a well-characterized murine model for pancreatitis. The impact of AGR2 expression and EGFR signaling on tissue regeneration was evaluated using the caerulein-induced pancreatitis mouse model. EGFR signaling and cell proliferation were examined in the context of the AGR2-/- null mouse or with the EGFR-specific tyrosine kinase inhibitor, AG1478. In addition, the Hippo signaling coactivator YAP1 was evaluated in the context of AGR2 expression during pancreatitis. Pancreatitis-induced AGR2 expression enabled EGFR translocation to the plasma membrane, the initiation of cell signaling, and cell proliferation. EGFR signaling and tissue regeneration were partially inhibited by the tyrosine kinase inhibitor AG1478, but absent in the AGR2-/- null mouse. AG1478-treated and AGR2-/- null mice with pancreatitis died whereas all wild-type controls recovered. YAP1 activation was also dependent on pancreatitis-induced AGR2 expression. AGR2-induced EGFR signaling was essential for tissue regeneration and recovery from pancreatitis. The results establish tissue regeneration as a major function of AGR2-induced EGFR signaling in adult higher vertebrates. Enhanced AGR2 expression and EGFR signaling are also universally present in human pancreatic cancer, which support a linkage between tissue injury, regeneration, and cancer pathogenesis. PMID:27764193

  6. Changes in epidermal growth factor receptor expression during chemotherapy in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Santoni-Rugiu, Eric; Sørensen, Jens Benn

    2014-01-01

    BACKGROUND: Antibodies targeting epidermal growth factor receptor (EGFR), such as cetuximab, may potentially improve outcome in non-small cell lung cancer (NSCLC) patients with high EGFR expression. The EGFR expression may be heterogeneously distributed within tumors, and small biopsies may thus...

  7. Immunohistochemical Characterization of Three Monoclonal Antibodies Raised against the Epidermal Growth Factor and Its Receptor in Non-Small-Cell Lung Cancer: Their Potential Use in the Selection of Patients for Immunotherapy

    Directory of Open Access Journals (Sweden)

    Charles E. Rengifo

    2013-01-01

    Full Text Available Adequate methods to identify which lung cancer patients are most likely to benefit from the targeted drugs against both epidermal growth factor receptor/epidermal growth factor (EGFR/EGF are needed. For this reason, we evaluated both the tissue reactivity of ior egf/r3 monoclonal antibody (Mab in human lung carcinomas and its biological activity in NCI-H125 cells. Additionally, we assessed the tissue expression of EGF using two Mabs, CB-EGF1 and CB-EGF2. The overexpression of EGFR was detected in 33.33% and 62.71% of small-cell lung carcinoma (SCLC and non-small-cell lung carcinoma (NSCLC, respectively. The ability of ior egf/r3 Mab to bind the extracellular domain of EGFR inhibiting cell proliferation and inducing apoptosis in NCI-H125 cells was also demonstrated. The EGF expression was observed in about 17% and 70% of SCLC and NSCLC, respectively. However, differences in the reactivity of CB-EGF1 and CB-EGF2 were evidenced. A dual expression of EGFR and EGF was observed in 16.67% and 57.63% of SCLC and NSCLC patients, respectively. But, a correlation between them was only obtained in NSCLC. Our results permit to recommend the development of diagnostic kits using ior egf/r3 and/or CB-EGF1 Mabs in order to achieve a better selection of patients to EGFR/EGF-targeting treatment.

  8. Immunohistochemical Characterization of Three Monoclonal Antibodies Raised against the Epidermal Growth Factor and Its Receptor in Non-Small-Cell Lung Cancer: Their Potential Use in the Selection of Patients for Immunotherapy.

    Science.gov (United States)

    Rengifo, Charles E; Blanco, Rancés; Blanco, Damián; Cedeño, Mercedes; Frómeta, Milagros; Calzado, Enrique Rengifo

    2013-01-01

    Adequate methods to identify which lung cancer patients are most likely to benefit from the targeted drugs against both epidermal growth factor receptor/epidermal growth factor (EGFR/EGF) are needed. For this reason, we evaluated both the tissue reactivity of ior egf/r3 monoclonal antibody (Mab) in human lung carcinomas and its biological activity in NCI-H125 cells. Additionally, we assessed the tissue expression of EGF using two Mabs, CB-EGF1 and CB-EGF2. The overexpression of EGFR was detected in 33.33% and 62.71% of small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC), respectively. The ability of ior egf/r3 Mab to bind the extracellular domain of EGFR inhibiting cell proliferation and inducing apoptosis in NCI-H125 cells was also demonstrated. The EGF expression was observed in about 17% and 70% of SCLC and NSCLC, respectively. However, differences in the reactivity of CB-EGF1 and CB-EGF2 were evidenced. A dual expression of EGFR and EGF was observed in 16.67% and 57.63% of SCLC and NSCLC patients, respectively. But, a correlation between them was only obtained in NSCLC. Our results permit to recommend the development of diagnostic kits using ior egf/r3 and/or CB-EGF1 Mabs in order to achieve a better selection of patients to EGFR/EGF-targeting treatment.

  9. Validation of a Flow Cytometry Based Binding Assay for Evaluation of Monoclonal Antibody Recognizing EGF Receptor

    Science.gov (United States)

    Cedeño-Arias, Mercedes; Sánchez-Ramírez, Javier; Blanco-Santana, Rancés; Rengifo-Calzado, Enrique

    2011-01-01

    An ideal test used to characterize a product must be appropriate for the measurement of product quality, manufacturing consistency, product stability, and comparability studies. Flow cytometry has been successfully applied to the examination of antibodies and receptors on membrane surfaces; however, to date, the analytical validation of cytometry based assays is limited. Here we report on the validation of a flow cytometry-based assay used in the evaluation of nimotuzumab binding to cells over-expressing EGFR on cell surface. The assay was validated by examining, assay robustness, specificity, repeatability and intermediate precision. The assay was highly specific, robust for all studied factors except for cell fixation with 1% paraformaldehyde and met criteria for precision with RSD < 2%. In addition the assay has stability-indicating properties evidenced by the ability to detect changes in mAb degraded samples. Most importantly, the assay demonstrated to be useful for its intended use. PMID:21886904

  10. A monoclonal antibody for G protein-coupled receptor crystallography.

    Science.gov (United States)

    Day, Peter W; Rasmussen, Søren G F; Parnot, Charles; Fung, Juan José; Masood, Asna; Kobilka, Tong Sun; Yao, Xiao-Jie; Choi, Hee-Jung; Weis, William I; Rohrer, Daniel K; Kobilka, Brian K

    2007-11-01

    G protein-coupled receptors (GPCRs) constitute the largest family of signaling proteins in mammals, mediating responses to hormones, neurotransmitters, and senses of sight, smell and taste. Mechanistic insight into GPCR signal transduction is limited by a paucity of high-resolution structural information. We describe the generation of a monoclonal antibody that recognizes the third intracellular loop (IL3) of the native human beta(2) adrenergic (beta(2)AR) receptor; this antibody was critical for acquiring diffraction-quality crystals.

  11. Differences in the interaction of acetylcholine receptor antibodies with receptor from normal, denervated and myasthenic human muscle.

    OpenAIRE

    Lefvert, A. K.

    1982-01-01

    The interaction of acetylcholine receptor antibodies with different kinds of human skeletal muscle receptor was investigated. The reaction of most receptor antibodies was strongest with receptor from a patient with myasthenia gravis and with receptor from denervated muscle. Results obtained with these receptors were well correlated. The binding of most receptor antibodies to receptor from functionally normal muscle was much weaker and also qualitatively different. In a few patients with moder...

  12. Niacin activates the PI3K/Akt cascade via PKC- and EGFR-transactivation-dependent pathways through hydroxyl-carboxylic acid receptor 2.

    Directory of Open Access Journals (Sweden)

    Huawang Sun

    Full Text Available Niacin has been demonstrated to activate a PI3K/Akt signaling cascade to prevent brain damage after stroke and UV-induced skin damage; however, the underlying molecular mechanisms for HCA2-induced Akt activation remain to be elucidated. Using CHO-K1 cells stably expressing HCA2 and A431 cells, a human epidermoid cell line with high levels of endogenous expression of functional HCA2 receptors, we first demonstrated that niacin induced a robust Akt phosphorylation at both Thr308 and Ser473 in a time-dependent fashion, with a maximal activation at 5 min and a subsequent reduction to baseline by 30 min through HCA2, and that the activation was significantly blocked by pertussis toxin. The HCA2-mediated activation of Akt was also significantly inhibited by the PKC inhibitors GF109203x and Go6983 in both cell lines, by the PDGFR-selective inhibitor tyrphostin A9 in CHO-HCA2 cells and by the MMP inhibitor GM6001 and EGFR-specific inhibitor AG1478 in A431 cells. These results suggest that the PKC pathway and PDGFR/EGFR transactivation pathway play important roles in HCA2-mediated Akt activation. Further investigation indicated that PI3K and the Gβγ subunit were likely to play an essential role in HCA2-induced Akt activation. Moreover, Immunobloting analyses using an antibody that recognizes p70S6K1 phosphorylated at Thr389 showed that niacin evoked p70S6K1 activation via the PI3K/Akt pathway. The results of our study provide new insight into the signaling pathways involved in HCA2 activation.

  13. The Inflammasome and the Epidermal Growth Factor Receptor (EGFR Are Involved in the Staphylococcus aureus-Mediated Induction of IL-1alpha and IL-1beta in Human Keratinocytes.

    Directory of Open Access Journals (Sweden)

    Maren Simanski

    Full Text Available Staphylococcus (S. aureus is an important pathogen causing various infections including those of the skin. Keratinocytes are able to sense invading S. aureus and to initiate a fast defense reaction by the rapid release of innate defense mediators such as antimicrobial peptides and cytokines. There is increasing evidence that the cytokines IL-1alpha and IL-1beta, which both signal through the IL-1 receptor, play an important role in cutaneous defense against S. aureus. The aim of this study was to gain more insight into the underlying mechanisms leading to the S. aureus-induced IL-1alpha and IL-1beta expression in keratinocytes. Infection of human primary keratinocytes with S. aureus led to the induction of gene expression and protein secretion of IL-1alpha and IL-1beta. Full S. aureus-induced IL-1 protein release required the inflammasome components caspase-1 and ASC (apoptosis-associated speck-like protein containing a CARD whereas gene induction of IL-1alpha and IL-beta by S. aureus was not dependent on caspase-1 and ASC. Since patients receiving anti-cancer therapy by inhibition of the epidermal growth factor receptor (EGFR often suffer from skin infections caused by S. aureus we additionally evaluated whether the EGFR pathway may be involved in the IL-1alpha and IL-1beta induction by S. aureus. Inactivation of the EGFR with a blocking antibody decreased the S. aureus-mediated IL-1alpha and IL-1beta induction in primary keratinocytes. Moreover, the use of siRNA experiments revealed that ADAM17 (A Disintegrin and A Metalloprotease 17, a metalloproteinase known to mediate the shedding and release of EGFR ligands, was required for full induction of IL-1alpha and IL-1beta in keratinocytes infected with S. aureus. A failure of keratinocytes to adequately upregulate IL-1alpha and IL-1beta may promote S. aureus skin infections.

  14. The Inflammasome and the Epidermal Growth Factor Receptor (EGFR) Are Involved in the Staphylococcus aureus-Mediated Induction of IL-1alpha and IL-1beta in Human Keratinocytes.

    Science.gov (United States)

    Simanski, Maren; Rademacher, Franziska; Schröder, Lena; Gläser, Regine; Harder, Jürgen

    2016-01-01

    Staphylococcus (S.) aureus is an important pathogen causing various infections including those of the skin. Keratinocytes are able to sense invading S. aureus and to initiate a fast defense reaction by the rapid release of innate defense mediators such as antimicrobial peptides and cytokines. There is increasing evidence that the cytokines IL-1alpha and IL-1beta, which both signal through the IL-1 receptor, play an important role in cutaneous defense against S. aureus. The aim of this study was to gain more insight into the underlying mechanisms leading to the S. aureus-induced IL-1alpha and IL-1beta expression in keratinocytes. Infection of human primary keratinocytes with S. aureus led to the induction of gene expression and protein secretion of IL-1alpha and IL-1beta. Full S. aureus-induced IL-1 protein release required the inflammasome components caspase-1 and ASC (apoptosis-associated speck-like protein containing a CARD) whereas gene induction of IL-1alpha and IL-beta by S. aureus was not dependent on caspase-1 and ASC. Since patients receiving anti-cancer therapy by inhibition of the epidermal growth factor receptor (EGFR) often suffer from skin infections caused by S. aureus we additionally evaluated whether the EGFR pathway may be involved in the IL-1alpha and IL-1beta induction by S. aureus. Inactivation of the EGFR with a blocking antibody decreased the S. aureus-mediated IL-1alpha and IL-1beta induction in primary keratinocytes. Moreover, the use of siRNA experiments revealed that ADAM17 (A Disintegrin and A Metalloprotease 17), a metalloproteinase known to mediate the shedding and release of EGFR ligands, was required for full induction of IL-1alpha and IL-1beta in keratinocytes infected with S. aureus. A failure of keratinocytes to adequately upregulate IL-1alpha and IL-1beta may promote S. aureus skin infections.

  15. Quantum dot-based quantification revealed differences in subcellular localization of EGFR and E-cadherin between EGFR-TKI sensitive and insensitive cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang Donghai; Su Ling; Peng Xianghong; Zhang Hongzheng; Khuri, Fadlo R; Shin, Dong M; Chen Zhuo [Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA (United States)], E-mail: gzchen@emory.edu

    2009-06-03

    Nanoparticle quantum dots (QDs) provide sharper and more photostable fluorescent signals than organic dyes, allowing quantification of multiple biomarkers simultaneously. In this study, we quantified the expression of epidermal growth factor receptor (EGFR) and E-cadherin (E-cad) in the same cells simultaneously by using secondary antibody-conjugated QDs with two different emission wavelengths (QD605 and QD565) and compared the cellular distribution of EGFR and E-cad between EGFR-tyrosine kinase inhibitor (TKI)-insensitive and -sensitive lung and head and neck cancer cell lines. Relocalization of EGFR and E-cad upon treatment with the EGFR-TKI erlotinib in the presence of EGF was visualized and analyzed quantitatively. Our results showed that QD-immunocytochemistry (ICC)-based technology can not only quantify basal levels of multiple biomarkers but also track the localization of the biomarkers upon biostimulation. With this new technology we found that in EGFR-TKI-insensitive cells, EGFR and E-cad were located mainly in the cytoplasm; while in sensitive cells, they were found mainly on the cell membrane. After induction with EGF, both EGFR and E-cad internalized to the cytoplasm, but the internalization capability in sensitive cells was greater than that in insensitive cells. Quantification also showed that inhibition of EGF-induced EGFR and E-cad internalization by erlotinib in the sensitive cells was stronger than that in the insensitive cells. These studies demonstrate substantial differences between EGFR-TKI-insensitive and -sensitive cancer cells in EGFR and E-cad expression and localization both at the basal level and in response to EGF and erlotinib. QD-based analysis facilitates the understanding of the features of EGFR-TKI-insensitive versus -sensitive cancer cells and may be used in the prediction of patient response to EGFR-targeted therapy.

  16. The use of receptor-specific antibodies to study G-protein-coupled receptors.

    Science.gov (United States)

    Gupta, Achla; Devi, Lakshmi A

    2006-07-01

    The identification of G-protein-coupled receptor (GPCR) cDNAs has facilitated a number of studies characterizing the biochemical properties of the receptor protein. Most of these studies have used antibodies directed against the epitope-tagged receptor expressed in heterologous cells, because of the lack of sensitive and selective antibodies capable of recognizing endogenous receptors in their native state. In order to facilitate studies with endogenous receptors, efforts have been made to generate receptor-type selective, sensitive antibodies that are able to recognize endogenous receptors. In this review, we discuss the strategies as well as the details of the techniques used for the generation of monoclonal and polyclonal antibodies with a focus on family A GPCRs.

  17. Antibodies recognizing different domains of the polymeric immunoglobulin receptor.

    Science.gov (United States)

    Solari, R; Kühn, L; Kraehenbuhl, J P

    1985-01-25

    The receptor responsible for the transepithelial transport of IgA dimer antibodies is a transmembrane glycoprotein known as membrane secretory component (SCm). During transport, the membrane anchoring domain is cleaved and the ectoplasmic domain of the receptor (SCs) remains tightly bound to the IgA dimer in exosecretions. We have produced monoclonal antibodies with distinct specificities against both cytoplasmic and ectoplasmic epitopes of rabbit SCm. One antibody (anti-SC303) reacted both with SCm and free SCs but not with SCs bound to IgA dimer (SIgA). Therefore, it recognized an epitope close to the IgA dimer binding site. The other monoclonal antibody (anti-SC166), which was unable to react with SCs, bound to the 15-kDa cytoplasmic extension of the membrane-spanning domain of the receptor. A polyclonal antibody (GaR-SC), raised in a goat against rabbit milk SCs, reacted with a subpopulation of SCs not recognized by the anti-SC303 monoclonal antibody and in addition also reacted with covalently bound sIgA. The three antibodies cross-reacted with rat SCm. We demonstrate the ability of the anti-SC166 monoclonal antibody to immunoadsorb subcellular organelles as a result of the cytoplasmic orientation of its epitope. Our data indicate that there are functional differences between the high- and low-molecular-weight families of SC in terms of IgA dimer binding.

  18. Chemokine receptor specific antibodies in cancer immunotherapy: achievements and challenges

    Directory of Open Access Journals (Sweden)

    Maria eVela

    2015-01-01

    Full Text Available The 1990s brought a burst of information regarding the structure, expression pattern, and role in leukocyte migration and adhesion of chemokines and their receptors. At that time, the FDA approved the first therapeutic antibodies for cancer treatment. A few years later it was reported that the chemokine receptors CXCR4 and CCR7 were involved on directing metastases to liver, lung, bone marrow or lymph nodes, and the over-expression of CCR4, CCR6 and CCR9 by certain tumors. The possibility of inhibiting the interaction of chemokine receptors present on the surface of tumor cells with their ligands emerged as a new therapeutic approach. Therefore, many research groups and companies began to develop small-molecule antagonists and specific antibodies, aiming to neutralize signaling from these receptors. Despite great expectations, so far, only one anti-chemokine receptor antibody has been approved for its clinical use, mogamulizumab, an anti-CCR4 antibody, granted in Japan to treat refractory adult T cell leukemia and lymphoma. Here we review the main achievements obtained with anti-chemokine receptor antibodies for cancer immunotherapy, including discovery and clinical studies, proposed mechanisms of action and therapeutic applications.

  19. EGFR signaling in colorectal cancer: a clinical perspective

    Directory of Open Access Journals (Sweden)

    Saletti P

    2015-01-01

    Full Text Available Piercarlo Saletti,1 Francesca Molinari,2 Sara De Dosso,1 Milo Frattini2 1Oncology Institute of Southern Switzerland, Bellinzona, 2Laboratory of Molecular Pathology, Institute of Pathology, Locarno, Switzerland Abstract: Colorectal cancer (CRC remains a formidable health burden worldwide, with up to 50% of patients developing metastases during the course of their disease. This group of CRC patients, characterized by the worst prognosis, has been extensively investigated to improve their life expectancy. Main efforts, focused on the epidermal growth-factor receptor (EGFR, which plays a pivotal role in CRC pathogenesis, have led to the development and introduction in clinical practice of specific targeted therapies (ie, monoclonal antibodies. Subsequently, the scientific community has tried to identify molecular predictors of the efficacy of such therapies. However, it has become clear that EGFR alterations occurring in CRC are difficult to investigate, and therefore their predictive role is unclear. In contrast, the clinical role of two downstream members (KRAS and NRAS has been clearly demonstrated. Currently, EGFR-targeted therapies can be administered only to patients with wild-type KRAS and NRAS genes. Our review addresses the medical management of metastatic CRC. Specifically, we describe in detail the molecular biology of metastatic CRC, focusing on the EGFR signaling pathway, and we discuss the role of current and emerging related biomarkers and therapies in this field. We also summarize the clinical evidence regarding anti-EGFR monoclonal antibodies and examine potential future perspectives. Keywords: colorectal cancer, EGFR, gene mutations, cetuximab, panitumumab

  20. Antibody mimetic receptor proteins for label-free biosensors.

    Science.gov (United States)

    Raina, M; Sharma, R; Deacon, S E; Tiede, C; Tomlinson, D; Davies, A G; McPherson, M J; Wälti, C

    2015-02-07

    The development of high sensitivity biosensors, for example for clinical diagnostics, requires the identification of suitable receptor molecules which offer high stability, specificity and affinity, even when embedded into solid-state biosensor transducers. Here, we present an electrochemical biosensor employing small synthetic receptor proteins (Mw pM and 6.7 nM. These findings demonstrate that these non-antibody receptor proteins are excellent candidates for recognition molecules in label-free biosensors.

  1. Targeting the epidermal growth factor receptor in solid tumor malignancies

    DEFF Research Database (Denmark)

    Nedergaard, Mette K; Hedegaard, Chris J; Poulsen, Hans S

    2012-01-01

    The epidermal growth factor receptor (EGFR) is over-expressed, as well as mutated, in many types of cancers. In particular, the EGFR variant type III mutant (EGFRvIII) has attracted much attention as it is frequently and exclusively found on many tumor cells, and hence both EGFR and EGFRvIII have...... been proposed as valid targets in many cancer therapy settings. Different strategies have been developed in order to either inhibit EGFR/EGFRvIII activity or to ablate EGFR/EGFRvIII-positive tumor cells. Drugs that inhibit these receptors include monoclonal antibodies (mAbs) that bind...

  2. Taurolithocholic acid promotes intrahepatic cholangiocarcinoma cell growth via muscarinic acetylcholine receptor and EGFR/ERK1/2 signaling pathway.

    Science.gov (United States)

    Amonyingcharoen, Sumet; Suriyo, Tawit; Thiantanawat, Apinya; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2015-01-01

    Cholangiocarcinoma (CCA) is a malignant cancer of the biliary tract and its occurrence is associated with chronic cholestasis which causes an elevation of bile acids in the liver and bile duct. The present study aimed to investigate the role and mechanistic effect of bile acids on the CCA cell growth. Intrahepatic CCA cell lines, RMCCA-1 and HuCCA-1, were treated with bile acids and their metabolites to determine the growth promoting effect. Cell viability, cell cycle analysis, EdU incorporation assays were conducted. Intracellular signaling proteins were detected by western immunoblotting. Among eleven forms of bile acids and their metabolites, only taurolithocholic acid (TLCA) concentration dependently (1-40 µM) increased the cell viability of RMCCA-1, but not HuCCA-1 cells. The cell cycle analysis showed induction of cells in the S phase and the EdU incorporation assay revealed induction of DNA synthesis in the TLCA-treated RMCCA-1 cells. Moreover, TLCA increased the phosphorylation of EGFR, ERK 1/2 and also increased the expression of cyclin D1 in RMCCA-1 cells. Furthermore, TLCA-induced RMCCA-1 cell growth could be inhibited by atropine, a non-selective muscarinic acetylcholine receptor (mAChR) antagonist, AG 1478, a specific EGFR inhibitor, or U 0126, a specific MEK 1/2 inhibitor. These results suggest that TLCA induces CCA cell growth via mAChR and EGFR/EKR1/2 signaling pathway. Moreover, the functional presence of cholinergic system plays a certain role in TLCA-induced CCA cell growth.

  3. IMC-C225, an anti-epidermal growth factor receptor monoclonal antibody for treatment of head and neck cancer.

    Science.gov (United States)

    Herbst, Roy S; Hong, Waun Ki

    2002-10-01

    Squamous cell carcinoma of the head and neck remains a clinical challenge because of the high rate of locoregional disease recurrence. The importance of the epidermal growth factor receptor (EGFR) in the development and progression of many solid tumors, including squamous cell carcinoma of the head and neck, is well understood; increased expression is associated with enhanced tumor invasiveness, resistance to chemotherapy, and a lower patient survival rate. Several approaches have been developed to achieve EGFR blockade as an anticancer treatment strategy, including the anti-EGFR monoclonal antibody IMC-C225, which competitively binds to the extracellular receptor site and prevents binding by the natural EGFR ligands EGF and transforming growth factor-alpha. Preclinical studies to evaluate IMC-225 in human cancer cell lines in vitro and human tumor xenografts in vivo have shown its potent antitumor activity. Clinical efficacy of IMC-C225 appears to involve multiple mechanisms, including inhibition of cell cycle progression, induction of apoptosis, inhibition of angiogenesis, inhibition of metastasis, and enhancement of the response to chemotherapy and radiation therapy. Phase I studies of IMC-C225 combined with chemotherapy or radiation showed promising response rates in patients with recurrent or refractory squamous cell carcinoma of the head and neck. Phase II and III trials to examine the efficacy and safety of these combinations are currently underway. To date, IMC-C225 has been well tolerated, with skin rashes and allergic reactions being the most clinically important adverse events reported. IMC-C225 displays dose-dependent elimination characteristics and a half-life of approximately 7 days. Current recommendations for dosing include a 400 mg/m(2) loading dose, followed by weekly infusions at 250 mg/m(2).

  4. Stability engineering of anti-EGFR scFv antibodies by rational design of a lambda-to-kappa swap of the VL framework using a structure-guided approach.

    Science.gov (United States)

    Lehmann, Andreas; Wixted, Josephine H F; Shapovalov, Maxim V; Roder, Heinrich; Dunbrack, Roland L; Robinson, Matthew K

    2015-01-01

    Phage-display technology facilitates rapid selection of antigen-specific single-chain variable fragment (scFv) antibodies from large recombinant libraries. ScFv antibodies, composed of a VH and VL domain, are readily engineered into multimeric formats for the development of diagnostics and targeted therapies. However, the recombinant nature of the selection strategy can result in VH and VL domains with sub-optimal biophysical properties, such as reduced thermodynamic stability and enhanced aggregation propensity, which lead to poor production and limited application. We found that the C10 anti-epidermal growth factor receptor (EGFR) scFv, and its affinity mutant, P2224, exhibit weak production from E. coli. Interestingly, these scFv contain a fusion of lambda3 and lambda1 V-region (LV3 and LV1) genes, most likely the result of a PCR aberration during library construction. To enhance the biophysical properties of these scFvs, we utilized a structure-based approach to replace and redesign the pre-existing framework of the VL domain to one that best pairs with the existing VH. We describe a method to exchange lambda sequences with a more stable kappa3 framework (KV3) within the VL domain that incorporates the original lambda DE-loop. The resulting scFvs, C10KV3_LV1DE and P2224KV3_LV1DE, are more thermodynamically stable and easier to produce from bacterial culture. Additionally, C10KV3_LV1DE and P2224KV3_LV1DE retain binding affinity to EGFR, suggesting that such a dramatic framework swap does not significantly affect scFv binding. We provide here a novel strategy for redesigning the light chain of problematic scFvs to enhance their stability and therapeutic applicability.

  5. EGFR trans-activation by urotensin II receptor is mediated by β-arrestin recruitment and confers cardioprotection in pressure overload-induced cardiac hypertrophy.

    Science.gov (United States)

    Esposito, Giovanni; Perrino, Cinzia; Cannavo, Alessandro; Schiattarella, Gabriele G; Borgia, Francesco; Sannino, Anna; Pironti, Gianluigi; Gargiulo, Giuseppe; Di Serafino, Luigi; Franzone, Anna; Scudiero, Laura; Grieco, Paolo; Indolfi, Ciro; Chiariello, Massimo

    2011-06-01

    Urotensin II (UTII) and its seven trans-membrane receptor (UTR) are up-regulated in the heart under pathological conditions. Previous in vitro studies have shown that UTII trans-activates the epidermal growth factor receptor (EGFR), however, the role of such novel signalling pathway stimulated by UTII is currently unknown. In this study, we hypothesized that EGFR trans-activation by UTII might exert a protective effect in the overloaded heart. To test this hypothesis, we induced cardiac hypertrophy by transverse aortic constriction (TAC) in wild-type mice, and tested the effects of the UTII antagonist Urantide (UR) on cardiac function, structure, and EGFR trans-activation. After 7 days of pressure overload, UR treatment induced a rapid and significant impairment of cardiac function compared to vehicle. In UR-treated TAC mice, cardiac dysfunction was associated with reduced phosphorylation levels of the EGFR and extracellular-regulated kinase (ERK), increased apoptotic cell death and fibrosis. In vitro UTR stimulation induced membrane translocation of β-arrestin 1/2, EGFR phosphorylation/internalization, and ERK activation in HEK293 cells. Furthermore, UTII administration lowered apoptotic cell death induced by serum deprivation, as shown by reduced TUNEL/Annexin V staining and caspase 3 activation. Interestingly, UTII-mediated EGFR trans-activation could be prevented by UR treatment or knockdown of β-arrestin 1/2. Our data show, for the first time in vivo, a new UTR signalling pathway which is mediated by EGFR trans-activation, dependent by β-arrestin 1/2, promoting cell survival and cardioprotection.

  6. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma.

    Science.gov (United States)

    Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R

    2016-01-01

    Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase

  7. The preparation of the anti-CD3/anti-EGFR bispecific antibody and investigation on its cytotoxicity activity against gastric cancer cell%抗人EGFR/抗CD3双功能抗体的制备、检测及对胃癌细胞毒性作用的实验研究

    Institute of Scientific and Technical Information of China (English)

    张林; 侯艳红; 张健; 胡静; 张静

    2012-01-01

    目的 探讨抗EGFR/抗CD3双功能抗体体外对胃癌细胞的杀伤能力,为临床应用该抗体治疗胃癌打下实验基础.方法 采取化学偶联法合成抗EGFR/抗CD3双功能抗体并使用间接细胞免疫荧光法检测该抗体的功能.通过细胞结合率检测及MTT杀伤实验检测其对胃癌细胞结合及杀伤的能力并与单纯的EGFR单抗和CD3单抗比较.结果 抗EGFR/抗CD3双功能抗体联合效应细胞与胃癌细胞株SGC7901结合率显著高于两组单抗对照组(P<0.05);MTT细胞杀伤实验结果提示:抗EGFR/抗CD3双功能抗体组对胃癌细胞株SGC7901杀伤率显著高两组单抗对照组(P<0.05).结论 初步的体外实验显示由化学偶联法合成的抗EG-FR/抗CD3双功能抗体可能对胃癌有一定的治疗作用,具有进一步研究的价值.%Objective To evaluate the effect of anti-CD3/anti-EGFR bispecific antibody as a targeted therapeutic a-gents for gastric cancer. Methods The mAb of anti-CD3 and anti-EGFR were cross-linked to prepare the bispecific antibody (BsAb) by chemical synthesis. The cytotoxicity activity of this antibody was analyzed by the cell combination rate assay and MTT assay, then the comparison of the cytotoxicity activity among the bispecific antibody, EGFR mAb and CD3 mAb was conducted in vitro. Results The combination rate and the cell lysis rate of the anti-CD3/anti-EGFR bispecific antibody were higher than those of two control groups significantly (P<0.05). Conclusion The anti-CD3/an-ti-EGFR bispecific antibody could have some curative effect on gastric cancer.

  8. MATRIX METALLOPROTEINS (MMP)-MEDIATED PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZINC (ZN)

    Science.gov (United States)

    Matrix Metalloproteinase (MMP)-Mediated Phosphorylation of The Epidermal Growth Factor Receptor (EGFR) in Human Airway Epithelial Cells (HAEC) Exposed to Zinc (Zn)Weidong Wu, James M. Samet, Robert Silbajoris, Lisa A. Dailey, Lee M. Graves, and Philip A. BrombergCenter fo...

  9. Efficacy of Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors for Advanced Squamous Cell Lung Carcinoma Patients with Sensitive EGFR Mutations%EGFR-TKI治疗EGFR敏感突变的晚期肺鳞癌的疗效分析

    Institute of Scientific and Technical Information of China (English)

    刘咏梅; 赵倩; 唐源; 张衍; 李艳莹; 王永生; 卢铀

    2015-01-01

    目的 探讨表皮生长因子酪氨酸激酶抑制剂(Epidermal growth factor receptor-tyrosine kinase inhibitor,EGFR-TKI)治疗EGFR敏感突变的晚期肺鳞癌患者的疗效.方法 收集20例四川大学华西医院经病理确诊、EGFR检测敏感突变、并接受EGFR-TKI治疗的Ⅳ期或术后复发转移肺鳞癌患者,分析其与EGFR-TKI的疗效关系.结果 20例EGFR敏感突变的晚期鳞癌患者接受EGFR-TKI治疗,随访资料完整.10例19-del(+),8例L858R(+),1例同时存在外显子21(L858R)点突变和外显子20(T790M)突变,1例外显子18(G719X)突变.其中部分缓解(PR)9例,疾病稳定(SD)7例,疾病进展(PD)4例.客观缓解率(ORR) 45%,疾病控制率80%,中位无进展生存期(mPFS)为5.0月,中位生存期(mOS)为14.7月.结论 EGFR-TKI对部分EGFR敏感突变的鳞癌患者有一定疗效.在临床工作中,应重视这部分患者的EGFR基因检测,以便明确获益的患者.

  10. In Vivo Molecular Imaging to Diagnose and Subtype Tumors through Receptor-Targeted Optically Labeled Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Yoshinori Koyama

    2007-12-01

    Full Text Available Molecular imaging of cell surface receptors can potentially diagnose tumors based on their distinct expression profiles. Using multifilter spectrally resolved optical imaging with three fluorescently labeled antibodies, we simultaneously imaged three different cell surface receptors to distinguish tumor types noninvasively. We selected tumors overexpressing different subtypes of EGFR receptor: HER-1 (A431 and HER-2 (NIH3T3/HER2+, or interleukin-2 receptor α-subunit receptor (IL-2Rα; SP2/Tac. After tumor establishment, a cocktail of three fluorescently labeled monoclonal antibodies was injected: cetuximab-Cy5 (targeting HER-1, trastuzumab-Cy7 (HER-2, daclizumab-AIexaFluor700 (IL-2Ra. Optical fluorescence imaging was performed after 24 hours with both a red filter set and three successive filter sets (yellow, red, deep red. Spectrally resolved imaging of 10 mice clearly distinguished A431, NIH3T3/HER2+, SP2-Tac tumors based on their distinct optical spectra. Three-filter sets significantly increased the signal-to-background ratio compared to a single-filter set by reducing the background signal, thus significantly improving the differentiation of each of the receptors targeted (P < .022. In conclusion, following multifilter spectrally resolved imaging, different tumor types can be simultaneously distinguished and diagnosed in vivo. Multiple filter sets increase the signal-to-noise ratio by substantially reducing the background signal, may allow more optical dyes to be resolved within the narrow limits of the near-infrared spectrum.

  11. EGFR antisense RNA blocks expression of the epidermal growth factor receptor and partially reverse the malignant phenotype of human breast cancer MDA—MB—231 cells

    Institute of Scientific and Technical Information of China (English)

    FANWENHONG; YINGLINLU; 等

    1998-01-01

    The effects of human EGFR to the malignant phenotype of human breast cancer cell line MDA-MB-231 were investigated experimentally.A retroviral vector containing a 5'1350bp fragment of the human EGFR cDNA in the antisense orientation was transfected into targeted cells by lipofectamine.The effects on cell proliferation,cell cycle and adherent ability to extracellular matrix(ECM) components were studied after the expression of antisense transcripts to EGFR5'1350bp fragment in target cells,In vitro studies showed that the growth ability of the transfected cells was partialy inhibited in comparison to parental cells and to cells transfected with the plasmid containing the neomycin resistance gene only.It was found that EGF(10ng/ml) had an augmenation effect on the growth of transfected MDA-AS10 cells but not MDA-MB-231 cells.Flow cytometric analysis showed that the cell cycle of the transfected cells was abnormal with a decrease of cells in G2/M and S phases and an increase of cells in G1 phase,indicating a blockage in phase G1.Immunofluorescence of EGFR expression in transfectants stained with an antiEGFR antibody was decreased and their growth in soft agarose was also severely imparired.The transfected cells showed less adherence to laminin(LN) and fibronectin (FN).In short,EGFR antisense RNA decreases the expression of EGFR on MDA-MB-231 cells and partially reverses their malignant phenotype as well.

  12. Activation of platelet-activating factor receptor and pleiotropic effects on tyrosine phospho-EGFR/Src/FAK/paxillin in ovarian cancer.

    Science.gov (United States)

    Aponte, Margarita; Jiang, Wei; Lakkis, Montaha; Li, Ming-Jiang; Edwards, Dale; Albitar, Lina; Vitonis, Allison; Mok, Samuel C; Cramer, Daniel W; Ye, Bin

    2008-07-15

    Among the proinflammatory mediators, platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) is a major primary and secondary messenger involved in intracellular and extracellular communication. Evidence suggests that PAF plays a significant role in oncogenic transformation, tumor growth, angiogenesis, and metastasis. However, PAF, with its receptor (PAFR) and their downstream signaling targets, has not been thoroughly studied in cancer. Here, we characterized the PAFR expression pattern in 4 normal human ovarian surface epithelial (HOSE) cell lines, 13 ovarian cancer cell lines, paraffin blocks (n = 84), and tissue microarrays (n = 230) from patients with ovarian cancer. Overexpression of PAFR was found in most nonmucinous types of ovarian cancer but not in HOSE and mucinous cancer cells. Correspondingly, PAF significantly induced cell proliferation and invasion only in PAFR-positive cells (i.e., OVCA429 and OVCA432), but not in PAFR-negative ovarian cells (HOSE and mucinous RMUG-L). The dependency of cell proliferation and invasion on PAFR was further confirmed using PAFR-specific small interfering RNA gene silencing probes, antibodies against PAFR and PAFR antagonist, ginkgolide B. Using quantitative multiplex phospho-antibody array technology, we found that tyrosine phosphorylation of EGFR/Src/FAK/paxillin was coordinately activated by PAF treatment, which was correlated with the activation of phosphatidylinositol 3-kinase and cyclin D1 as markers for cell proliferation, as well as matrix metalloproteinase 2 and 9 for invasion. Specific tyrosine Src inhibitor (PP2) reversibly blocked PAF-activated cancer cell proliferation and invasion. We suggest that PAFR is an essential upstream target of Src and other signal pathways to control the PAF-mediated cancer progression.

  13. [Anti-NMDA Receptor Antibody-Related Encephalitis].

    Science.gov (United States)

    Nagayama, Shigemi; Tanaka, Keiko

    2016-09-01

    Recently, the search for diagnostic antibody markers has drawn considerable attention in relation to autoimmune encephalitis. Among the antibody markers, the most frequently detected is the anti-N-methyl-D-aspartate receptor (NMDAR)antibody. Patients with this antibody develop characteristic clinical features. This disease tends to affect young women, and starts with psychiatric symptoms followed by seizures, involuntary movements, autonomic failure, and respiratory failure. Nearly half of these female patients have ovarian teratoma. Some of the patients with anti-NMDAR antibody show atypical clinical features. Approximately 4% show only psychiatric symptoms, which might lead to a diagnosis of malignant catatonia. Other reports describe patients experiencing refractory seizures to have the anti-NMDAR antibody. Some of the antibody-positive patients are associated with demyelinating disorders, and some develop anti-NMDAR encephalitis after recovery from herpes simplex encephalitis. It is important to test the anti-NMDAR antibody in these groups since immunotherapy ameliorates their symptoms. The anti-NMDAR antibody binds to the constitutional epitope at the extracellular domain of GluN1 and disrupts its function. Early introduction of immunotherapy together with tumor resection will results in improvement of neurological symptoms.

  14. Specific antibody-receptor interactions trigger InlAB-independent uptake of listeria monocytogenes into tumor cell lines

    Directory of Open Access Journals (Sweden)

    Hotz Christian

    2011-07-01

    Full Text Available Abstract Background Specific cell targeting is an important, yet unsolved problem in bacteria-based therapeutic applications, like tumor or gene therapy. Here, we describe the construction of a novel, internalin A and B (InlAB-deficient Listeria monocytogenes strain (Lm-spa+, which expresses protein A of Staphylococcus aureus (SPA and anchors SPA in the correct orientation on the bacterial cell surface. Results This listerial strain efficiently binds antibodies allowing specific interaction of the bacterium with the target recognized by the antibody. Binding of Trastuzumab (Herceptin® or Cetuximab (Erbitux® to Lm-spa+, two clinically approved monoclonal antibodies directed against HER2/neu and EGFR/HER1, respectively, triggers InlAB-independent internalization into non-phagocytic cancer cell lines overexpressing the respective receptors. Internalization, subsequent escape into the host cell cytosol and intracellular replication of these bacteria are as efficient as of the corresponding InlAB-positive, SPA-negative parental strain. This specific antibody/receptor-mediated internalization of Lm-spa+ is shown in the murine 4T1 tumor cell line, the isogenic 4T1-HER2 cell line as well as the human cancer cell lines SK-BR-3 and SK-OV-3. Importantly, this targeting approach is applicable in a xenograft mouse tumor model after crosslinking the antibody to SPA on the listerial cell surface. Conclusions Binding of receptor-specific antibodies to SPA-expressing L. monocytogenes may represent a promising approach to target L. monocytogenes to host cells expressing specific receptors triggering internalization.

  15. Interferencia del receptor del factor de crecimiento epidermoide (EGFR) y su utilidad como adyuvante en el tratamiento del cáncer avanzado de cabeza y cuello

    OpenAIRE

    Cortez V,Pedro; Torrente A,Mariela

    2014-01-01

    El receptor del factor de crecimiento epidermoide (EGFR) se encuentra sobreexpresado en más del 90% de los tumores escamosos de cabeza y cuello. Se han desarrollado diversos métodos para interferir con el EGFR entre los cuales el más utilizado es el anticuerpo monoclonal cetuximab. En esta revisión se discuten los resultados disponibles a la fecha del uso de cetuximab como adyuvante al tratamiento de pacientes con carcinomas avanzados de cabeza y cuello.

  16. Human antibody fragments specific for the epidermal growth factor receptor selected from large non-immunised phage display libraries.

    Science.gov (United States)

    Souriau, Christelle; Rothacker, Julie; Hoogenboom, Hennie R; Nice, Edouard

    2004-09-01

    Antibodies to EGFR have been shown to display anti-tumour effects mediated in part by inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis. Humanised antibodies are preferred for clinical use to reduce complications with HAMA and HAHA responses frequently seen with murine and chimaeric antibodies. We have used depletion and subtractive selection strategies on cells expressing the EGFR to sample two large antibody fragment phage display libraries for the presence of human antibodies which are specific for the EGFR. Four Fab fragments and six scFv fragments were identified, with affinities of up to 2.2nM as determined by BIAcore analysis using global fitting of the binding curves to obtain the individual rate constants (ka and kd). This overall approach offers a generic screening method for the identification of growth factor specific antibodies and antibody fragments from large expression libraries and has potential for the rapid development of new therapeutic and diagnostic reagents.

  17. EXPRESIÓN DEL RECEPTOR DE FACTOR DE CRECIMIENTO EPIDÉRMICO (EGFR EN EL CARCINOMA COLORRECTAL PRIMARIO Y METASTÁSICO.

    Directory of Open Access Journals (Sweden)

    Manuel Claver Criado

    2008-01-01

    Full Text Available We studied Epidermal Growth Factor Receptor (EGFR expression in primary and metastatic tumor of 50 consecutive patients treated at the Oncology Service in General Yag�e Hospital in Burgos, with metastatic disease of colorectal tumours.In addition to evaluate EGFR expression in primary and metastatic tumor, we analyzed the relationship between the histological type or degree of tumor differentiation, and the degree of cytologic atypia with EGFR expression, and the differences in time to progression of the disease and the tumor differentiation when EGFR is expressed both in the primary tumor and metastasis, or when that expression occurs only in the primary tumor or metastasis only.Our data show that EGFR expression can appear on the primary tumour, metastasis, or both, but we can not predict whether or not metastasis expressed that factor from its expression in the primary tumor. On the other hand, Epidermal Growth Factor expression is not related to cytologic atypia alone regarding the tumor differentiation, but yes if tumor differentiation is considered. It is more frequent in more undifferentiated tumors, and this relationship have statistical significance.

  18. New strategies in colorectal cancer: biomarkers of response to epidermal growth factor receptor monoclonal antibodies and potential therapeutic targets in phosphoinositide 3-kinase and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Dasari, Arvind; Messersmith, Wells A

    2010-08-01

    Initial experience with the epidermal growth factor receptor monoclonal antibodies (EGFR MoAb) in unselected patients with metastatic colorectal cancer (mCRC) showed that most of the treated patients did not derive therapeutic benefit. This outcome has driven the search for biomarkers for this population. Recent advances have further shown the heterogeneous nature of this disease with multiple interlinked pathways being implicated. Two such pathways downstream to the EGFR, mitogen-activated protein kinase (MAPK) and (phosphoinositide 3-kinase) PI3K, have gained increasing attention and become targets for development of novel biomarkers and therapeutic agents. Here, we highlight recent progress.

  19. Inhibitory mechanism of an allosteric antibody targeting the glucagon receptor.

    Science.gov (United States)

    Mukund, Susmith; Shang, Yonglei; Clarke, Holly J; Madjidi, Azadeh; Corn, Jacob E; Kates, Lance; Kolumam, Ganesh; Chiang, Vicky; Luis, Elizabeth; Murray, Jeremy; Zhang, Yingnan; Hötzel, Isidro; Koth, Christopher M; Allan, Bernard B

    2013-12-13

    Elevated glucagon levels and increased hepatic glucagon receptor (GCGR) signaling contribute to hyperglycemia in type 2 diabetes. We have identified a monoclonal antibody that inhibits GCGR, a class B G-protein coupled receptor (GPCR), through a unique allosteric mechanism. Receptor inhibition is mediated by the binding of this antibody to two distinct sites that lie outside of the glucagon binding cleft. One site consists of a patch of residues that are surface-exposed on the face of the extracellular domain (ECD) opposite the ligand-binding cleft, whereas the second binding site consists of residues in the αA helix of the ECD. A docking model suggests that the antibody does not occlude the ligand-binding cleft. We solved the crystal structure of GCGR ECD containing a naturally occurring G40S mutation and found a shift in the register of the αA helix that prevents antibody binding. We also found that alterations in the αA helix impact the normal function of GCGR. We present a model for the allosteric inhibition of GCGR by a monoclonal antibody that may form the basis for the development of allosteric modulators for the treatment of diabetes and other class B GPCR-related diseases.

  20. Response to epidermal growth factor receptor inhibitors in non-small cell lung cancer cells : Limited antiproliferative effects and absence of apoptosis associated with persistent activity of extracellular signal-regulated kinase or Akt kinase pathways

    NARCIS (Netherlands)

    Janmaat, ML; Kruyt, FAE; Rodriguez, JA; Giaccone, G

    2003-01-01

    The epidermal growth factor receptor (EGFR) is an important novel target for anticancer therapy. In this study, we examined the molecular mechanisms that underlie the antitumor effects of the anti-EGFR monoclonal antibody C225 (Cetuximab) and the selective EGFR tyrosine kinase inhibitor ZD1839 (Ires

  1. Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Andrea Sartore-Bianchi

    Full Text Available BACKGROUND: KRAS mutations occur in 35-45% of metastatic colorectal cancers (mCRC and preclude responsiveness to EGFR-targeted therapy with cetuximab or panitumumab. However, less than 20% patients displaying wild-type KRAS tumors achieve objective response. Alterations in other effectors downstream of the EGFR, such as BRAF, and deregulation of the PIK3CA/PTEN pathway have independently been found to give rise to resistance. We present a comprehensive analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression in mCRC patients treated with cetuximab or panitumumab, with the aim of clarifying the relative contribution of these molecular alterations to resistance. METHODOLOGY/PRINCIPAL FINDINGS: We retrospectively analyzed objective tumor response, progression-free (PFS and overall survival (OS together with the mutational status of KRAS, BRAF, PIK3CA and expression of PTEN in 132 tumors from cetuximab or panitumumab treated mCRC patients. Among the 106 non-responsive patients, 74 (70% had tumors with at least one molecular alteration in the four markers. The probability of response was 51% (22/43 among patients with no alterations, 4% (2/47 among patients with 1 alteration, and 0% (0/24 for patients with > or =2 alterations (p or =2 molecular alteration(s (p<0.001. CONCLUSIONS/SIGNIFICANCE: When expression of PTEN and mutations of KRAS, BRAF and PIK3CA are concomitantly ascertained, up to 70% of mCRC patients unlikely to respond to anti-EGFR therapies can be identified. We propose to define as 'quadruple negative', the CRCs lacking alterations in KRAS, BRAF, PTEN and PIK3CA. Comprehensive molecular dissection of the EGFR signaling pathways should be considered to select mCRC patients for cetuximab- or panitumumab-based therapies.

  2. Epidermal growth factor receptor-targeted antibody therapy - Mechanisms of action and modulators of therapeutic efficacy

    NARCIS (Netherlands)

    Lammerts van Bueren, Jeroen Jilles

    2008-01-01

    Cancer is an increasing disease in the world population, and in recent years there has been substantial interest in the development of novel therapeutic agents specifically targeting growth factor receptors on tumor cells. The epidermal growth factor receptor (EGFR) represents a tyrosine kinase cell

  3. BRAF V600E mutation and resistance to anti-EGFR monoclonal antibodies in patients with metastatic colorectal cancer: a meta-analysis.

    Science.gov (United States)

    Mao, Chen; Liao, Ru-Yan; Qiu, Li-Xin; Wang, Xi-Wen; Ding, Hong; Chen, Qing

    2011-04-01

    Epidemiologic studies have evaluated the association between BRAF mutations and resistance to the treatment of anti-EGFR monoclonal antibodies (MoAb) in patients with metastatic colorectal cancer (mCRC). However, the results are still inconclusive. To derive a more precise estimation of the relationship, we performed this meta-analysis. A total of 11 studies were included in the final meta-analysis. There were seven studies for unselected mCRC patients and four studies for patients with wild type KRAS mCRC. Among unselected mCRC patients, BRAF V600E mutation was detected in 48 of 546 primary tumors (8.8%). The objective response rate (ORR) of patients with mutant BRAF was 29.2% (14/48), whereas the ORR of patients with wild-type BRAF was 33.5% (158/472).The overall RR for ORR of mutant BRAF patients over wild-type BRAF patients was 0.86 (95% CI=0.57-1.30; P=0.48). For patients with KRAS wild-type mCRC, BRAF V600E mutation was detected in 40 of 376 primary tumors (10.6%). The ORR of patients with mutant BRAF was 0.0% (0/40), whereas the ORR of patients with wild-type BRAF was 36.3% (122/336). The pooled RR of mutant BRAF patients over wild-type BRAF patients was 0.14 (95% CI=0.04-0.53; P=0.004). In conclusion, this meta-analysis provides evidence that BRAF V600E mutation is associated with lack of response in wild-type KRAS mCRC treated with anti-EGFR MoAbs. BRAF mutation may be used as an additional biomarker for the selection of mCRC patients who might benefit from anti-EGFR MoAbs therapy.

  4. A view on EGFR-targeted therapies from the oncogene-addiction perspective

    Directory of Open Access Journals (Sweden)

    Rolando ePerez

    2013-04-01

    Full Text Available Tumor cell growth and survival can often be impaired by inactivating a single oncogen – a phenomenon that has been called as 'oncogene addiction'. It is in such scenarios that molecular targeted therapies may succeed. Among known oncogenes, the epidermal growth factor receptor (EGFR has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. A critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the 'EGFR addiction' phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.

  5. Targeting EGFR-overexpressed A431 cells with EGF-labeled silica-coated magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kralj, Slavko, E-mail: slavko.kralj@ijs.si [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia); Rojnik, Matija; Kos, Janko [University of Ljubljana, Faculty of Pharmacy (Slovenia); Makovec, Darko [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia)

    2013-05-15

    Human epidermal growth-factor receptor (EGFR) has emerged as an attractive target for cancer therapy. In this study, amino- or carboxyl-functionalized silica-coated maghemite nanoparticles were conjugated with epidermal growth-factor (EGF) using five different binding modes: carbodiimide chemistry, two types of homo-bifunctional cross-linking reagents, and electrostatic interactions between the nanoparticles and the EGF. The nanoparticles and their aqueous suspensions were characterized by transmission electron microscopy, zeta-potential measurements and dynamic light scattering. The binding efficiency of the EGF to the nanoparticles was measured by flow cytometry using a specific anti-EGF antibody. The ability of EGF bioconjugates to target the EGF receptors was tested using EGFR over-expressing A431 cells in comparison to EGFR negative HeLa cells. Our results showed that the bioconjugates where the EGF was bonded by carbodiimide chemistry are the most effective for the specific targeting of EGFR-expressing cells in vitro.

  6. Epidermal Growth Factor Receptor (EGFR gene copy number (GCN correlates with clinical activity of irinotecan-cetuximab in K-RAS wild-type colorectal cancer: a fluorescence in situ (FISH and chromogenic in situ hybridization (CISH analysis

    Directory of Open Access Journals (Sweden)

    Scartozzi Mario

    2009-08-01

    Full Text Available Abstract Background K-RAS wild type colorectal tumors show an improved response rate to anti-EGFR monoclonal antibodies. Nevertheless 70% to 40% of these patients still does not seem to benefit from this therapeutic approach. FISH EGFR GCN has been previously demonstrated to correlate with clinical outcome of colorectal cancer treated with anti-EGFR monoclonal antibodies. CISH also seemed able to provide accurate EGFR GCN information with the advantage of a simpler and reproducible technique involving immunohistochemistry and light microscopy. Based on these findings we investigated the correlation between both FISH and CISH EGFR GCN and clinical outcome in K-RAS wild-type colorectal cancer treated with irinotecan-cetuximab. Methods Patients with advanced K-RAS wild-type, colorectal cancer receiving irinotecan-cetuximab after failure of irinotecan-based chemotherapy were eligible. A cut-off value for EGFR GCN of 2.6 and 2.12 for FISH and CISH respectively was derived from ROC curve analysis. Results Forty-four patients were available for analysis. We observed a partial remission in 9 (60% and 2 (9% cases with a FISH EGFR GCN ≥ 2.6 and Conclusion FISH and CISH EGFR GCN may both represent effective tools for a further patients selection in K-RAS wild-type colorectal cancer treated with cetuximab.

  7. Cross-talk between estradiol receptor and EGFR/IGF-IR signaling pathways in estrogen-responsive breast cancers: focus on the role and impact of proteoglycans.

    Science.gov (United States)

    Skandalis, Spyros S; Afratis, Nikolaos; Smirlaki, Gianna; Nikitovic, Dragana; Theocharis, Achilleas D; Tzanakakis, George N; Karamanos, Nikos K

    2014-04-01

    In hormone-dependent breast cancer, estrogen receptors are the principal signaling molecules that regulate several cell functions either by the genomic pathway acting directly as transcription factors in the nucleus or by the non-genomic pathway interacting with other receptors and their adjacent pathways like EGFR/IGFR. It is well established in literature that EGFR and IGFR signaling pathways promote cell proliferation and differentiation. Moreover, recent data indicate the cross-talk between ERs and EGFR/IGFR signaling pathways causing a transformation of cell functions as well as deregulation on normal expression pattern of matrix molecules. Specifically, proteoglycans, a major category of extracellular matrix (ECM) and cell surface macromolecules, are modified during malignancy and cause alterations in cancer cell signaling, affecting eventually functional cell properties such as proliferation, adhesion and migration. The on-going strategies to block only one of the above signaling effectors result cancer cells to overcome such inactivation using alternative signaling pathways. In this article, we therefore review the underlying mechanisms in respect to the role of ERs and the involvement of cross-talk between ERs, IGFR and EGFR in breast cancer cell properties and expression of extracellular secreted and cell bound proteoglycans involved in cancer progression. Understanding such signaling pathways may help to establish new potential pharmacological targets in terms of using ECM molecules to design novel anticancer therapies.

  8. Ultraviolet-B induced expression of hypoxia-inducible factor 1α,transferrin receptor through EGFR/PI3K/AKT/DEC1 pathway

    Institute of Scientific and Technical Information of China (English)

    LI Yanhua; BI Zhigang

    2007-01-01

    The aim of this research was to explore the effects and signaling pathway of ultraviolet-B (UVB) irradiation on the expression of hypoxia-inducible factor 1α (HIF-1α) and transferrin receptor (TfR).HIF-1α protein was measured by Western blot method.Expressions of epidermal growth factor receptor (EGFR),phosphor-EGF-R and TfR after UVB irradiation were determined with flow cytometry.After UVB irradiation,mRNA levels of HIF-1α and TfR were detected by real time-PCR.Results showed that compared with control groups,UVB was able to induce HIF1α and TfR protein expression in a dose- and time-dependent manner in HaCat cells (P < 0.05).TfR mRNA was expressed in a dose-dependent manner and reached a peak at the 8th hour in HaCat cells (P<0.05) whereas HIF-1α mRNA expression was not affected by UVB treatment (P>0.05).The EGFR/PI3K/AKT signaling pathway was required for the induction of HIF-lcx and TfR expression induced by UVB.UVB induced activation of EGFR in HaCat cells and EGFR regulated expression of TfR and HIF-1α.EGFR (-/-) MEF did not increase the HIF 1 expression following UVB irradiation (P>0.05).In contrast,EGFR (+/+) MEF strongly enhanced HIF 1α expression after UVB irradiation (P < 0.05).PD153035,a selective inhibitor of EGFR tyrosine kinase,inhibited the TfR protein expression in UVB-treated cells in a dose-dependent manner (P<0.05).PI3K inhibitors,LY294002 and wortmannin,inhibited HIF-1α and TfR expressions induced by UVB (P < 0.05).The DEC1 (-/-) Ha-Cat cells did not increase their TfR and HIF-1α expressions following UVB irradiation (P>0.05).In contrast,DEC1 (+/+) HaCat cells strongly enhanced TfR and HIF-1α protein expression after UVB irradiation (P<0.05).We conclude that UVB induces TfR and HIF-1α expressions via EGFR/PI3K/AKT/DEC1 signaling pathway.

  9. PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response

    KAUST Repository

    Liao, Hsin-Wei

    2015-11-16

    Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth. Moreover, increased EGFR methylation sustained signaling activation and cell proliferation in the presence of the therapeutic EGFR monoclonal antibody cetuximab. In colorectal cancer patients, EGFR methylation level also correlated with a higher recurrence rate after cetuximab treatment and reduced overall survival. Together, these data indicate that R198/R200 methylation of the EGFR plays an important role in regulating EGFR functionality and resistance to cetuximab treatment.

  10. Monoclonal Antibodies to the Thyrotropin Receptor

    Directory of Open Access Journals (Sweden)

    Takao Ando

    2005-01-01

    Full Text Available The thyrotropin receptor (TSHR is a seven transmembrane G-protein linked glycoprotein expressed on the thyroid cell surface and which, under the regulation of TSH, controls the production and secretion of thyroid hormone from the thyroid gland. This membrane protein is also a major target antigen in the autoimmune thyroid diseases. In Graves' disease, autoantibodies to the TSHR (TSHR-Abs stimulate the TSHR to produce thyroid hormone excessively. In autoimmune thyroid failure, some patients exhibit TSHR-Abs which block TSH action on the receptor. There have been many attempts to generate human stimulating TSHR-mAbs, but to date, only one pathologically relevant human stimulating TSHR-mAb has been isolated. Most mAbs to the TSHR have been derived from rodents immunized with TSHR antigen from bacteria or insect cells. These antigens lacked the native conformation of the TSHR and the resulting mAbs were exclusively blocking or neutral TSHR-mAbs. However, mAbs raised against intact native TSHR antigen have included stimulating mAbs. One such stimulating mAb has demonstrated a number of differences in its regulation of TSHR post-translational processing. These differences are likely to be reflective of TSHR-Abs seen in Graves' disease.

  11. Localization of somatostatin receptors at the light and electron microscopical level by using antibodies raised against fusion proteins

    DEFF Research Database (Denmark)

    Helboe, Lone; Møller, Morten

    2000-01-01

    Somatostatin, antibodies against somatostatin receptors, hypothalamus, Müller cells, fusion protein technique......Somatostatin, antibodies against somatostatin receptors, hypothalamus, Müller cells, fusion protein technique...

  12. Immunotherapy of anti-CD3/anti-EGFR bispecific antibody on the mice borne human gastric cancer%抗EGFR/抗CD3双功能抗体对胃癌荷瘤小鼠的免疫治疗研究

    Institute of Scientific and Technical Information of China (English)

    张林; 侯艳红; 张健; 胡静; 张静

    2012-01-01

    目的 通过抗EGFR/抗CD3双功能抗体(EGFR/CD3 BsAb)治疗SGC7901胃癌细胞移植瘤小鼠模型,初步验证该抗体在体内对胃癌细胞的杀伤能力.方法 采取化学偶联法合成的EGFR/CD3 BsAb联合人外周血淋巴细胞(PBLS)经尾静脉给药注入荷5GC7901胃癌细胞移植瘤小鼠体内.实验裸鼠随机分为抗EGFR单抗联合PBLS组(抗EGFR组)、抗CD3单抗联合PBIS组(抗CD3组)、EGFR/CD3 BsAb联合PBLS组(EGFR/CD3 BsAb组)和空白对照组(生理盐水组).治疗后检测并比较加药各组对胃癌细胞的杀伤能力.结果 EGFR/CD3 BsAb成功制备,分子量为43kD.ECFR/CD3 BsAb组裸鼠的肿瘤抑制率为(57.2±8.6)%,显著高于抗EGFR组的(38.5±6.1)%和抗CD3组的(6.9±7.6)%(P<0.05);治疗结束时EGFR/CD3 BsAb组的瘤重为(517.1±45.4)mg,显著低于抗EGFR组的(737.4±54.3)mg和抗CD3组的(1097.9±167.7)mg(P<0.05).各组移植瘤组织EGFR免疫组化染色均为强阳性.EGFR/CD3 BsAb组裸鼠肿瘤组织CD3免疫组化染色可见部分细胞呈阳性.透射电镜观察显示,EGFR/CD3 BsAb组和抗EGFR组可见肿瘤坏死.结论 EGFR/CD3 BsAb在体内条件下可能对胃癌有治疗作用.%Objective To investigate the effect of the immunotherapy mediated by anti-CD3/anti-EGFR bispecific antibody ( BsAb) on the mice bome human gastric cancer and evaluate the effect of anti-CD3/anti-EGFR BsAb as a targeted therapeutic agent for gastric cancer. Methods The monoclonal antibody(mAb) of anti-CD3 and anti-EGFR were cross-linked to prepare the BsAb by chemical synthesis. The experimental therapy combined with PBLS as effector cells on the mice borne SGC7901 human gastric cancer was performed. Experimental mice were divided in to EGFR mAb group, CD3 mAb group, anti-CD3/anti-EGFR BsAb group and saline group. The comparisons of the curative activity among the anti-CD3/anti-EGFR BsAb, EGFR mAb and CD3 mAb groups were conducted in vivo. Results Anti-CD3/anti-EGFR BsAb was established successfully, and

  13. A fusogenic dengue virus-derived peptide enhances antitumor efficacy of an antibody-ribonuclease fusion protein targeting the EGF receptor.

    Science.gov (United States)

    Kiesgen, Stefan; Liebers, Nora; Cremer, Martin; Arnold, Ulrich; Weber, Tobias; Keller, Armin; Herold-Mende, Christel; Dyckhoff, Gerhard; Jäger, Dirk; Kontermann, Roland E; Arndt, Michaela A E; Krauss, Jürgen

    2014-10-01

    Due to its frequent overexpression in a variety of solid tumors the epidermal growth factor receptor (EGFR) is a well-established target for therapeutic interventions in epithelial cancers. In order to target EGFR in head and neck cancer, we have generated a ribonuclease (RNase) fusion protein comprising a humanized anti-EGFR antibody single-chain Fv fragment (scFv) and Ranpirnase, an RNase from Rana pipiens. Fusion of Ranpirnase to the N-terminus of the scFv via a flexible glycine-serine linker (G4S)3 resulted in very poor cytotoxicity of the fusion protein. As endosomal accumulation and lysosomal degradation have been reported to diminish the antitumor efficacy of ribonuclease or toxin-based immunoagents, we explored a fusion peptide from dengue virus that has been reported to be involved in the endosomal escape of the virus. This peptide was introduced as a linker between Ranpirnase and the scFv moiety. The modified immunoRNase exhibited exceptionally high cytotoxicity toward EGFR-expressing head and neck cell lines without affecting specificity. These results indicate that endosomal entrapment needs to be considered for Ranpirnase-based immunoagents and might be overcome by the use of tailored transduction domains from viral proteins.

  14. Thrombin stimulates VSMC proliferation through an EGFR-dependent pathway: involvement of MMP-2.

    Science.gov (United States)

    Smiljanic, Katarina; Obradovic, Milan; Jovanovic, Aleksandra; Djordjevic, Jelena; Dobutovic, Branislava; Jevremovic, Danimir; Marche, Pierre; Isenovic, Esma R

    2014-11-01

    In this study, the role of epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK1/2), heparin-binding EGF-like growth factor (HB-EGF), general metalloproteinases, matrix metalloproteinases-2 (MMP-2) in mediating the mitogenic action of thrombin in rat vascular smooth muscle cells (VSMC) was investigated. The incubation of rat VSMC with thrombin (1 U/ml) for 5 min resulted in significant (p EGFR phosphorylation by 8.5 ± 1.3-fold (p EGFR tyrosine kinase irreversible inhibitor, 10 µM PD169540 (PD), and 20 µM anti-HB-EGF antibody significantly reduced thrombin-stimulated EGFR and ERK1/2 phosphorylation by 81, 72 % and by 48 and 61 %, respectively. Furthermore, the same pretreatments with PD or anti-HB-EGF antibody reduced thrombin-induced VSMC proliferation by 44 and 45 %, respectively. In addition, 30-min pretreatments with 10 µM specific MMP-2 inhibitor significantly reduced thrombin-stimulated phosphorylation of both EGFR and ERK1/2 by 25 %. Moreover, the same pretreatment with MMP-2 inhibitor reduced thrombin-induced VSMC proliferation by 45 %. These results show that the thrombin-induced DNA synthesis correlates with the level of ERK1/2 activation rather than EGFR activation. These results further suggest that thrombin acts through EGFR and ERK 1/2 signaling pathways involving MMP-2 to upregulate proliferation of VSMC.

  15. Targeting EGFR in bilio-pancreatic and liver carcinoma.

    Science.gov (United States)

    Fratto, Maria Elisabetta; Santini, Daniele; Vincenzi, Bruno; Silvestris, Nicola; Azzariti, Amalia; Tommasi, Stefania; Zoccoli, Alice; Galluzzo, Sara; Maiello, Evaristo; Colucci, Giuseppe; Tonini, Giuseppe

    2011-01-01

    The key role of epidermal growth factor receptor(EGFR) in tumorigenesis has been demonstrated in several cancer types, so recent clinical trials have investigated their activity/efficacy in different settings. Two different types of EGFR-targeted agents were developed: monoclonal antibodies such as cetuximab and panitumumab, and tyrosine kinase inhibitors, such as gefitinib and erlotinib. In this review, we summarize the preclinical rational of potential activity and the most important clinical trials evaluated anti-EGFR targeted agents in non-colorectal digestive cancer, both in monotherapy and in combination with other chemotherapeutic or targeted agents. Patient selection by use of biologic markers will identify which patients are more likely to respond, contributing to the successful use of these agents.

  16. Treatment of triple-negative breast cancer using anti-EGFR-directed radioimmunotherapy combined with radiosensitizing chemotherapy and PARP inhibitor.

    Science.gov (United States)

    Al-Ejeh, Fares; Shi, Wei; Miranda, Mariska; Simpson, Peter T; Vargas, Ana Cristina; Song, Sarah; Wiegmans, Adrian P; Swarbrick, Alex; Welm, Alana L; Brown, Michael P; Chenevix-Trench, Georgia; Lakhani, Sunil R; Khanna, Kum Kum

    2013-06-01

    Triple-negative breast cancer (TNBC) is associated with poor survival. Chemotherapy is the only standard treatment for TNBC. The prevalence of BRCA1 inactivation in TNBC has rationalized clinical trials of poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors. Similarly, the overexpression of epidermal growth factor receptor (EGFR) rationalized anti-EGFR therapies in this disease. However, clinical trials using these 2 strategies have not reached their promise. In this study, we used EGFR as a target for radioimmunotherapy and hypothesized that EGFR-directed radioimmunotherapy can deliver a continuous lethal radiation dose to residual tumors that are radiosensitized by PARP inhibitors and chemotherapy. We analyzed EGFR messenger RNA in published gene expression array studies and investigated EGFR protein expression by immunohistochemistry in a cohort of breast cancer patients to confirm EGFR as a target in TNBC. Preclinically, using orthotopic and metastatic xenograft models of EGFR-positive TNBC, we investigated the effect of the novel combination of (177)Lu-labeled anti-EGFR monoclonal antibody, chemotherapy, and PARP inhibitors on cell death and the survival of breast cancer stem cells. In this first preclinical study of anti-EGFR radioimmunotherapy in breast cancer, we found that anti-EGFR radioimmunotherapy is safe and that TNBC orthotopic tumors and established metastases were eradicated in mice treated with anti-EGFR radioimmunotherapy combined with chemotherapy and PARP inhibitors. We showed that the superior response to this triple-agent combination therapy was associated with apoptosis and eradication of putative breast cancer stem cells. Our data support further preclinical investigations toward the development of combination therapies using systemic anti-EGFR radioimmunotherapy for the treatment of recurrent and metastatic TNBC.

  17. Activating PIK3CA Mutations Induce an Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-regulated Kinase (ERK) Paracrine Signaling Axis in Basal-like Breast Cancer.

    Science.gov (United States)

    Young, Christian D; Zimmerman, Lisa J; Hoshino, Daisuke; Formisano, Luigi; Hanker, Ariella B; Gatza, Michael L; Morrison, Meghan M; Moore, Preston D; Whitwell, Corbin A; Dave, Bhuvanesh; Stricker, Thomas; Bhola, Neil E; Silva, Grace O; Patel, Premal; Brantley-Sieders, Dana M; Levin, Maren; Horiates, Marina; Palma, Norma A; Wang, Kai; Stephens, Philip J; Perou, Charles M; Weaver, Alissa M; O'Shaughnessy, Joyce A; Chang, Jenny C; Park, Ben Ho; Liebler, Daniel C; Cook, Rebecca S; Arteaga, Carlos L

    2015-07-01

    Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K) have been shown to transform human mammary epithelial cells (MECs). These mutations are present in all breast cancer subtypes, including basal-like breast cancer (BLBC). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified 72 protein expression changes in human basal-like MECs with knock-in E545K or H1047R PIK3CA mutations versus isogenic MECs with wild-type PIK3CA. Several of these were secreted proteins, cell surface receptors or ECM interacting molecules and were required for growth of PIK3CA mutant cells as well as adjacent cells with wild-type PIK3CA. The proteins identified by MS were enriched among human BLBC cell lines and pointed to a PI3K-dependent amphiregulin/EGFR/ERK signaling axis that is activated in BLBC. Proteins induced by PIK3CA mutations correlated with EGFR signaling and reduced relapse-free survival in BLBC. Treatment with EGFR inhibitors reduced growth of PIK3CA mutant BLBC cell lines and murine mammary tumors driven by a PIK3CA mutant transgene, all together suggesting that PIK3CA mutations promote tumor growth in part by inducing protein changes that activate EGFR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Activating PIK3CA Mutations Induce an Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-regulated Kinase (ERK) Paracrine Signaling Axis in Basal-like Breast Cancer*

    Science.gov (United States)

    Young, Christian D.; Zimmerman, Lisa J.; Hoshino, Daisuke; Formisano, Luigi; Hanker, Ariella B.; Gatza, Michael L.; Morrison, Meghan M.; Moore, Preston D.; Whitwell, Corbin A.; Dave, Bhuvanesh; Stricker, Thomas; Bhola, Neil E.; Silva, Grace O.; Patel, Premal; Brantley-Sieders, Dana M.; Levin, Maren; Horiates, Marina; Palma, Norma A.; Wang, Kai; Stephens, Philip J.; Perou, Charles M.; Weaver, Alissa M.; O'Shaughnessy, Joyce A.; Chang, Jenny C.; Park, Ben Ho; Liebler, Daniel C.; Cook, Rebecca S.; Arteaga, Carlos L.

    2015-01-01

    Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K) have been shown to transform human mammary epithelial cells (MECs). These mutations are present in all breast cancer subtypes, including basal-like breast cancer (BLBC). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified 72 protein expression changes in human basal-like MECs with knock-in E545K or H1047R PIK3CA mutations versus isogenic MECs with wild-type PIK3CA. Several of these were secreted proteins, cell surface receptors or ECM interacting molecules and were required for growth of PIK3CA mutant cells as well as adjacent cells with wild-type PIK3CA. The proteins identified by MS were enriched among human BLBC cell lines and pointed to a PI3K-dependent amphiregulin/EGFR/ERK signaling axis that is activated in BLBC. Proteins induced by PIK3CA mutations correlated with EGFR signaling and reduced relapse-free survival in BLBC. Treatment with EGFR inhibitors reduced growth of PIK3CA mutant BLBC cell lines and murine mammary tumors driven by a PIK3CA mutant transgene, all together suggesting that PIK3CA mutations promote tumor growth in part by inducing protein changes that activate EGFR. PMID:25953087

  19. Development of syngeneic monoclonal anti-idiotype antibodies to mouse monoclonal anti-asialoglycoprotein receptor antibody.

    Directory of Open Access Journals (Sweden)

    Hirai M

    2002-06-01

    Full Text Available Anti-idiotype antibodies (Ab2 play an important role in the homeostasis of immune responses and are related to the development and the disease activity of certain autoimmune diseases. The asialoglycoprotein receptor (ASGPR is considered one of the target antigens in the pathogenesis of autoimmune chronic active hepatitis (AIH. We previously developed a mouse monoclonal antibody (clone 8D7 which recognizes rat and human ASGPR. In this study, to help investigate the anti-ASGPR antibody-anti-idiotype antibody network in patients with AIH, we developed a syngeneic mouse monoclonal Ab2 to the 8D7 anti-ASGPR antibody (Ab1. One clone, designated as 3C8, tested positive for specific reactivity to 8D7-Ab1 and did not bind to other irrelevant immunoglobulins. By competitive inhibition assays, the binding of 8D7-Ab1 to liver membrane extracts, i.e., the crude antigen preparation, was inhibited by 3C8-Ab2 in a dose-dependent manner, and the binding of 8D7-Ab1 to 3C8-Ab2 was inhibited by the liver membrane extracts. In the immunohistochemical analysis, 3C8-Ab2 blocked the specific staining of sinusoidal margins of rat hepatocytes by 8D7-Ab1. These results suggest that 3C8 anti-idiotype antibody recognizes the specific idiotypic determinants within the antigen-binding site of 8D7-Ab1.

  20. Modified epidermal growth factor receptor (EGFR-bearing liposomes (MRBLs are sensitive to EGF in solution.

    Directory of Open Access Journals (Sweden)

    Albert Wong

    Full Text Available Cancers often overexpress EGF and other growth factors to promote cell replication and migration. Previous work has not produced targeted drug carriers sensitive to abnormal amounts of growth factors. This work demonstrates that liposomes bearing EGF receptors covalently crosslinked to p-toluic acid or methyl-PEO(4-NHS ester (or, in short, MRBLs exhibit an increased rate of release of encapsulated drug compounds when EGF is present in solution. Furthermore, the modified EGF receptors retain the abilities to form dimers in the presence of EGF and bind specifically to EGF. These results demonstrate that MRBLs are sensitive to EGF in solution and indicate that MRBL-reconstituted modified EGF receptors, in the presence of EGF in solution, form dimers which increase MRBL permeability to encapsulated compounds.

  1. Adult celiac disease with acetylcholine receptor antibody positive myasthenia gravis

    Institute of Scientific and Technical Information of China (English)

    Hugh J Freeman; Helen R Gillett; Peter M Gillett; Joel Oger

    2009-01-01

    Celiac disease has been associated with some autoimmune disorders. A 40-year-old competitive strongman with celiac disease responded to a glutenfree diet, but developed profound and generalized motor weakness with acetylcholine receptor antibody positive myasthenia gravis, a disorder reported to occur in about 1 in 5000. This possible relationship between myasthenia gravis and celiac disease was further explored in serological studies. Frozen stored serum samples from 23 acetylcholine receptor antibody positive myasthenia gravis patients with no intestinal symptoms were used to screen for celiac disease. Both endomysial and tissue transglutaminase antibodies were examined. One of 23 (or, about 4.3%) was positive for both IgA-endomysial and IgA tissue transglutaminase antibodies. Endoscopic studies subsequently showed duodenal mucosal scalloping and biopsies confirmed the histopathological changes of celiac disease. Celiac disease and myasthenia gravis may occur together more often than is currently appreciated. The presence of motor weakness in celiac disease may be a clue to occult myasthenia gravis, even in the absence of intestinal symptoms.

  2. Interrogation of EGFR Targeted Uptake of TiO2 Nanoconjugates by X-ray Fluorescence Microscopy

    Science.gov (United States)

    Yuan, Ye; Paunesku, Tatjana; Arora, Hans; Ward, Jesse; Vogt, Stefan; Woloschak, Gayle

    2013-01-01

    We are developing TiO2 nanoconjugates that can be used as therapeutic and diagnostic agents. Nanoscale TiO2 can be surface conjugated with various molecules and has the unique ability to induce the production of reactive oxygen species after radiation activation. One way to improve the potential clinical usefulness of TiO2 nanoparticles is to control their delivery to malignant cells by targeting them to cancer cell specific antigens. Epidermal Growth Factor Receptor is one potential target that is enriched in epithelial cancers and is rapidly internalized after ligand binding. Hence, we have synthesized TiO2 nanoparticles and functionalized them with a short EGFR binding peptide to create EGFR-targeted NCs. X-ray Fluorescence Microscopy was used to image nanoconjugates within EGFR positive HeLa cells. Further labeling of fixed cells with antibodies against EGFR and Protein A nanogold showed that TiO2 nanoconjugates can colocalize with receptors at the cell’s plasma membrane. Interestingly, with increased incubation times, EGFR targeted nanoconjugates could also be found colocalized with EGFR within the cell nucleus. This suggests that EGFR-targeted nanoconjugates can bind the receptor at the cell membrane, which leads to the internalization of NC-receptor complexes and the subsequent transport of nanoconjugates into the nucleus. PMID:25284907

  3. Bispecific designed ankyrin repeat proteins (DARPins) targeting epidermal growth factor receptor inhibit A431 cell proliferation and receptor recycling

    NARCIS (Netherlands)

    Boersma, Ykelien L; Chao, Ginger; Steiner, Daniel; Wittrup, K Dane; Plückthun, Andreas

    2011-01-01

    The EGF receptor (EGFR) has been implicated in the development and progression of many tumors. Although monoclonal antibodies directed against EGFR have been approved for the treatment of cancer in combination with chemotherapy, there are limitations in their clinical efficacy, necessitating the

  4. Bispecific designed ankyrin repeat proteins (DARPins) targeting epidermal growth factor receptor inhibit A431 cell proliferation and receptor recycling

    NARCIS (Netherlands)

    Boersma, Ykelien L; Chao, Ginger; Steiner, Daniel; Wittrup, K Dane; Plückthun, Andreas

    2011-01-01

    The EGF receptor (EGFR) has been implicated in the development and progression of many tumors. Although monoclonal antibodies directed against EGFR have been approved for the treatment of cancer in combination with chemotherapy, there are limitations in their clinical efficacy, necessitating the sea

  5. neu(c-erbB-2/HER2) and the epidermal growth factor receptor (EGFR) in breast cancer.

    Science.gov (United States)

    Jardines, L; Weiss, M; Fowble, B; Greene, M

    1993-01-01

    One hundred and eighty thousand new cases of invasive breast cancer were diagnosed in 1992 within the United States. This disease affects approximately 1 out of 8 women in the US. Chemotherapy and/or hormonal therapy have shown some improved disease-free and/or overall survival rates. Unfortunately, this type of therapy is not directed specifically to the malignant cells, and systemic toxicities are observed. In order to develop site-specific treatment, the biology of the disease must be understood such that certain genes or their products which are involved in the pathogenesis of the disease can be targeted. Two structurally related tyrosine kinase growth factors, the epidermal growth factor receptor (EGFR) and c-erbB-2 (neu) have been identified in human breast cancer tissue and, in many instances, may function as oncogenes. The clinical data related to these two growth factor receptors as prognostic factors for the disease have been critically evaluated. Several problems with the critical studies were identified, and solutions were proposed to clarify the conflicting results reported in the studies which have attempted to examine whether c-erbB-2 (neu), in particular, is a prognostic indicator for breast cancer. In addition, data related to the structure of, ligands for and interaction between the proteins have been reviewed and presented with respect to their role in breast cancer development. A more thorough understanding of the genetic changes which contribute to the development of breast cancer will lead to more specific and less toxic treatment for this disease.

  6. EGFR-targeted TRAIL and a Smac mimetic synergize to overcome apoptosis resistance in KRAS mutant colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Yvonne Möller

    Full Text Available TRAIL is a death receptor ligand that induces cell death preferentially in tumor cells. Recombinant soluble TRAIL, however, performs poorly as an anti-cancer therapeutic because oligomerization is required for potent biological activity. We previously generated a diabody format of tumor-targeted TRAIL termed Db(αEGFR-scTRAIL, comprising single-stranded TRAIL molecules (scTRAIL and the variable domains of a humanized variant of the EGFR blocking antibody Cetuximab. Here we define the bioactivity of Db(αEGFR-scTRAIL with regard to both EGFR inhibition and TRAIL receptor activation in 3D cultures of Caco-2 colorectal cancer cells, which express wild-type K-Ras. Compared with conventional 2D cultures, Caco-2 cells displayed strongly enhanced sensitivity toward Db(αEGFR-scTRAIL in these 3D cultures. We show that the antibody moiety of Db(αEGFR-scTRAIL not only efficiently competed with ligand-induced EGFR function, but also determined the apoptotic response by specifically directing Db(αEGFR-scTRAIL to EGFR-positive cells. To address how aberrantly activated K-Ras, which leads to Cetuximab resistance, affects Db(αEGFR-scTRAIL sensitivity, we generated stable Caco-2tet cells inducibly expressing oncogenic K-Ras(G12V. In the presence of doxycycline, these cells showed increased resistance to Db(αEGFR-scTRAIL, associated with the elevated expression of the anti-apoptotic proteins cIAP2, Bcl-xL and FlipS. Co-treatment of cells with the Smac mimetic SM83 restored the Db(αEGFR-scTRAIL-induced apoptotic response. Importantly, this synergy between Db(αEGFR-scTRAIL and SM83 also translated to 3D cultures of oncogenic K-Ras expressing HCT-116 and LoVo colorectal cancer cells. Our findings thus support the notion that Db(αEGFR-scTRAIL therapy in combination with apoptosis-sensitizing agents may be promising for the treatment of EGFR-positive colorectal cancers, independently of their KRAS status.

  7. Heterogeneous EGFR gene copy number increase is common in colorectal cancer and defines response to anti-EGFR therapy.

    Directory of Open Access Journals (Sweden)

    Annika Ålgars

    Full Text Available Anti-EGFR therapy is commonly used to treat colorectal cancer (CRC, although only a subset of patients benefit from the treatment. While KRAS mutation predicts non-responsiveness, positive predictive markers are not in clinical practice. We previously showed that immunohistochemistry (IHC-guided EGFR gene copy number (GCN analysis may identify CRC patients benefiting from anti-EGFR treatment. Here we tested the predictive value of such analysis in chemorefractory metastatic CRC, elucidated EGFR GCN heterogeneity within the tumors, and evaluated the association between EGFR GCN, KRAS status, and anti-EGFR antibody response in CRC cell lines. The chemorefractory patient cohort consisted of 54 KRAS wild-type (WT metastatic CRC patients. EGFR GCN status was analyzed by silver in situ hybridization using a cut-off value of 4.0 EGFR gene copies/cell. KRAS-WT and KRAS mutant CRC cell lines with different EGFR GCN were used in in vitro studies. The chemorefractory CRC tumors with EGFR GCN increase (≥4.0 responded better to anti-EGFR therapy than EGFR GCN (<4.0 tumors (clinical benefit, P = 0.0004; PFS, HR = 0.23, 95% CI 0.12-0.46. EGFR GCN counted using EGFR IHC guidance was significantly higher than the value from randomly selected areas verifying intratumoral EGFR GCN heterogeneity. In CRC cell lines, EGFR GCN correlated with EGFR expression. Best anti-EGFR response was seen with KRAS-WT, EGFR GCN = 4 cells and poorest response with KRAS-WT, EGFR GCN = 2 cells. Anti-EGFR response was associated with AKT and ERK1/2 phosphorylation, which was effectively inhibited only in cells with KRAS-WT and increased EGFR GCN. In conclusion, IHC-guided EGFR GCN is a promising predictor of anti-EGFR treatment efficacy in chemorefractory CRC.

  8. Synergistic anti-proliferative and pro-apoptotic activity of combined therapy with bortezomib, a proteasome inhibitor, with anti-epidermal growth factor receptor (EGFR) drugs in human cancer cells.

    Science.gov (United States)

    Cascone, Tina; Morelli, Maria Pia; Morgillo, Floriana; Kim, Woo-Young; Rodolico, Gabriella; Pepe, Stefano; Tortora, Giampaolo; Berrino, Liberato; Lee, Ho-Young; Heymach, John V; Ciardiello, Fortunato

    2008-09-01

    The proteasome plays a pivotal role in the turnover of regulatory transduction proteins induced by activated cell membrane growth factor receptors. The epidermal growth factor receptor (EGFR) pathway is crucial in the development and progression of human epithelial cancers. Proteasome inhibition may sensitize human cancer cell lines to EGFR inhibitors. We investigated the growth inhibitory and pro-apoptotic effects of the proteasome inhibitor bortezomib in combination with anti-EGFR drugs, such as gefitinib, vandetanib, and cetuximab in EGFR-expressing human cancer cell lines. Bortezomib determined dose-dependent growth inhibition in a nine cancer cell line panel (IC(50) values, range 6-42 nM). A significant synergistic growth inhibitory effect was observed with the combination of bortezomib and each EGFR inhibitor in all cell lines (combination index, CI, range 0.10-0.55), which was accompanied by a significant induction in apoptosis by the combined treatment with bortezomib, cetuximab and vandetanib. In HCT-116 colon cancer and A549 lung adenocarcinoma cells, bortezomib plus EGFR inhibitor treatment induced a more effective inhibition of EGFR-activated down-stream signals, including a marked suppression in activated, phosphorylated Akt (P-Akt). In contrast, overexpression of a constitutively active P-Akt protected A549 cells by cell growth inhibition and apoptosis following treatment with bortezomib and EGFR inhibitors. The combined treatment with bortezomib and EGFR inhibitors has a synergistic growth inhibitory and pro-apoptotic activity in different human cancer cells which possess a functional EGFR-dependent autocrine growth pathway through to a more efficient and sustained inhibition of Akt.

  9. Antibody protection reveals extended epitopes on the human TSH receptor.

    Directory of Open Access Journals (Sweden)

    Rauf Latif

    Full Text Available Stimulating, and some blocking, antibodies to the TSH receptor (TSHR have conformation-dependent epitopes reported to involve primarily the leucine rich repeat region of the ectodomain (LRD. However, successful crystallization of TSHR residues 22-260 has omitted important extracellular non-LRD residues including the hinge region which connects the TSHR ectodomain to the transmembrane domain and which is involved in ligand induced signal transduction. The aim of the present study, therefore, was to determine if TSHR antibodies (TSHR-Abs have non-LRD binding sites outside the LRD. To obtain this information we employed the method of epitope protection in which we first protected TSHR residues 1-412 with intact TSHR antibodies and then enzymatically digested the unprotected residues. Those peptides remaining were subsequently delineated by mass spectrometry. Fourteen out of 23 of the reported stimulating monoclonal TSHR-Ab crystal contact residues were protected by this technique which may reflect the higher binding energies of certain residues detected in this approach. Comparing the protected epitopes of two stimulating TSHR-Abs we found both similarities and differences but both antibodies also contacted the hinge region and the amino terminus of the TSHR following the signal peptide and encompassing cysteine box 1 which has previously been shown to be important for TSH binding and activation. A monoclonal blocking TSHR antibody revealed a similar pattern of binding regions but the residues that it contacted on the LRD were again distinct. These data demonstrated that conformationally dependent TSHR-Abs had epitopes not confined to the LRDs but also incorporated epitopes not revealed in the available crystal structure. Furthermore, the data also indicated that in addition to overlapping contact regions within the LRD, there are unique epitope patterns for each of the antibodies which may contribute to their functional heterogeneity.

  10. Vasopressin V1A receptor mediates cell proliferation through GRK2-EGFR-ERK1/2 pathway in A7r5 cells.

    Science.gov (United States)

    Zhang, Lingling; Wang, Xiaojun; Cao, Hong; Chen, Yunxuan; Chen, Xianfan; Zhao, Xi; Xu, Feifei; Wang, Yifan; Woo, Anthony Yiu-Ho; Zhu, Weizhong

    2016-12-05

    Abnormal proliferation and hypertrophy of vascular smooth muscle (VSMC), as the main structural component of the vasculature, is an important pathological mechanism of hypertension. Recently, increased levels of arginine vasopressin (AVP) and copeptin, the C-terminal fragment of provasopressin, have been shown to correlate with the development of preeclampsia. AVP targets on the Gq-coupled vasopressin V1A receptor and the Gs-coupled V2 receptor in VSMC and the kidneys to regulate vascular tone and water homeostasis. However, the role of the vasopressin receptor on VSM cell proliferation during vascular remodeling is unclear. Here, we studied the effects of AVP on the proliferation of the rat VSMC-derived A7r5 cells. AVP, in a time- and concentration-dependent manner, promoted A7r5 cell proliferation as indicated by the induction of proliferating cell nuclear antigen expression, methylthiazolyldiphenyl-tetrazolium reduction and incorporation of 5'-bromodeoxyuridine into cellular DNA. These effects, coupled with the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), were blocked by a V1A receptor antagonist SR45059 but not by a V2 receptor antagonist lixivaptan. Although acute activation of V1A receptor induced ERK1/2 phosphorylation via a protein kinase C-dependent pathway, this effect was not involved in cell proliferation. Cell proliferation and ERK1/2 phosphorylation in response to prolonged stimulation with AVP were abolished by inhibition of G protein-coupled receptor kinase 2 (GRK2) and epidermal growth factor receptor (EGFR) using specific inhibitors or small hairpin RNA knock-down. These results suggest that activation of V1A, but not V2 receptor, produces a cell proliferative signal in A7r5 cells via a GRK2/EGFR/ERK1/2-dependent mechanism.

  11. Synthesis and purification of a toxin-linked conjugate targeting epidermal growth factor receptor in Escherichia coli.

    Science.gov (United States)

    Ma, Chengyuan; Li, Yang; Li, Zhixin; Huang, Haiyan; Xu, Kan; Xu, Haiyang; Bai, Jieying; Li, Xiao; Zhao, Gang

    2012-05-01

    Aberrant epidermal growth factor receptor (EGFR) signaling is a common feature of multiple tumor types, including glioblastoma (GBM). As such, EGFR has emerged as an attractive target for antitumor therapy. In the present study, we sought to develop an immunotoxin capable of specifically targeting EGFR-expressing cells and mediating inhibition of cell growth and cell killing. The Luffin P1 (LP1) ribosome inactivating protein was chosen to generate a fusion protein, antiEGFR/LP1, based upon its potent protein synthesis inhibition and small size (5 kDa). LP1 was fused to the C-terminus of an anti-EGFR single-chain antibody (scFv). The recombinant antiEGFR/LP1 protein was expressed in Escherichia coli, and refolded and purified on an immobilized Ni(2+)-affinity chromatography column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting analysis revealed that antiEGFR/LP1 was sufficiently expressed. Confocal microscopy and flow cytometry demonstrated that antiEGFR/LP1 bound specifically to EGFR-positive cells (U251), as almost no binding to EGFR-negative (Jurkat cells) was observed under identical time and dosage conditions. Finally, the MTT cell viability assay showed that antiEGFR/LP1 elicited obvious cytotoxicity toward EGFR-positive tumor cells. Collectively, these results suggest that antiEGFR/LP1 is biologically active and specific toward EGFR-positive tumor cells and may represent an effective EGFR-targeted cancer therapy.

  12. Engineering therapeutic antibodies targeting G-protein-coupled receptors.

    Science.gov (United States)

    Jo, Migyeong; Jung, Sang Taek

    2016-02-05

    G-protein-coupled receptors (GPCRs) are one of the most attractive therapeutic target classes because of their critical roles in intracellular signaling and their clinical relevance to a variety of diseases, including cancer, infection and inflammation. However, high conformational variability, the small exposed area of extracellular epitopes and difficulty in the preparation of GPCR antigens have delayed both the isolation of therapeutic anti-GPCR antibodies as well as studies on the structure, function and biochemical mechanisms of GPCRs. To overcome the challenges in generating highly specific anti-GPCR antibodies with enhanced efficacy and safety, various forms of antigens have been successfully designed and employed for screening with newly emerged systems based on laboratory animal immunization and high-throughput-directed evolution.

  13. Photonic modulation of EGFR: 280nm low level light arrests cancer cell activation and migration

    Science.gov (United States)

    Botelho, Cláudia M.; Marques, Rogério; Viruthachalam, Thiagarajan; Gonçalves, Odete; Vorum, Henrik; Gomes, Andreia C.; Neves-Petersen, Maria Teresa

    2017-02-01

    Overexpression of the Epidermal Growth Factor Receptor (EGFR) by cancer cells is associated with a poor prognosis for the patient. For several decades, therapies targeting EGFR have been designed, including the use of monoclonal antibodies and small molecule tyrosine kinase inhibitors. The use of these molecules had good clinical results, although its efficiency (and specificity) is still far from being optimal. In this paper, we present a new approach for a possible new cancer therapy targeting EGFR and using low intensity 280nm light. The influence of 280nm UVB illumination on cancer cells stimulated with 2nM of EGF was followed by time-lapse confocal microscopy. The 280nm illumination of the cancer cells blocks EGFR activation, inhibiting EGFR internalization and cell migration thus inhibiting the transition to the metastatic phenotype. Exposure time is a very important factor. The higher the illumination time the more significant differences were observed: 280nm light delayed or completely halted EGFR activation in the cell membrane, mainly at the cell junction level, and delayed or halted EGFR endocytic internalization, filopodia formation and cell migration.

  14. Tyrosine kinase domain mutations of EGFR gene in head and neck squamous cell carcinoma

    Science.gov (United States)

    Vatte, Chittibabu; Al Amri, Ali M; Cyrus, Cyril; Chathoth, Shahanas; Acharya, Sadananda; Hashim, Tariq Mohammad; Al Ali, Zhara; Alshreadah, Saleh Tawfeeq; Alsayyah, Ahmed; Al-Ali, Amein K

    2017-01-01

    Background Epidermal growth factor receptor (EGFR) is a commonly altered gene that is identified in various cancers, including head and neck squamous cell carcinoma (HNSCC). Therefore, EGFR is a promising molecular marker targeted by monoclonal antibodies and small molecule inhibitors targeting the tyrosine kinase (TK) domain. Objective The objective of this study was to investigate the spectrum of mutations in exons 18, 19, 20, and 21 of the EGFR gene in HNSCC patients. Materials and methods This retrospective study included 47 confirmed HNSCC cases. Mutations in the TK domain, exons 18, 19, 20, and 21 of the EGFR gene, were detected by Scorpion® chemistry and ARMS® technologies on Rotor-Gene Q real-time polymerase chain reaction. Results The tumors exhibited EGFR-TK domain mutations in 57% of cases. Four cases of T790M mutations were reported for the first time among HNSCC patients. Out of the total mutations, L861Q (exon 21), exon 20 insertions and deletions of exon 19 accounted for the majority of mutations (21%, 19%, and 17%, respectively). EGFR mutation status was correlated with the higher grade (P=0.026) and advanced stage (P=0.034) of HNSCC tumors. Conclusion Higher frequency of EGFR-TK domain mutations together with the presence of the T790M mutation suggests that identification of these mutations might streamline the therapy and provide a better prognosis in HNSCC cases. PMID:28352186

  15. PGE2-induced hypertrophy of cardiac myocytes involves EP4 receptor-dependent activation of p42/44 MAPK and EGFR transactivation.

    Science.gov (United States)

    Mendez, Mariela; LaPointe, Margot C

    2005-05-01

    Upon induction of cyclooxygenase-2 (COX-2), neonatal ventricular myocytes (VMs) mainly synthesize prostaglandin E2 (PGE2). The biological effects of PGE2 are mediated through four different G protein-coupled receptor (GPCR) subtypes (EP(1-4)). We have previously shown that PGE2 stimulates cAMP production and induces hypertrophy of VMs. Because the EP4 receptor is coupled to adenylate cyclase and increases in cAMP, we hypothesized that PGE2 induces hypertrophic growth of cardiac myocytes through a signaling cascade that involves EP4-cAMP and activation of protein kinase A (PKA). To test this, we used primary cultures of VMs and measured [3H]leucine incorporation into total protein. An EP4 antagonist was able to partially block PGE2 induction of protein synthesis and prevent PGE2-dependent increases in cell surface area and activity of the atrial natriuretic factor promoter, which are two other indicators of hypertrophic growth. Surprisingly, a PKA inhibitor had no effect. In other cell types, G protein-coupled receptor activation has been shown to transactivate the epidermal growth factor receptor (EGFR) and result in p42/44 mitogen-activated protein kinase (MAPK) activation and cell growth. Immunoprecipitation of myocyte lysates demonstrated that the EGFR was rapidly phosphorylated by PGE2 in VMs, and the EP4 antagonist blocked this. In addition, the selective EGFR inhibitor AG-1478 completely blocked PGE2-induced protein synthesis. We also found that PGE2 rapidly phosphorylated p42/44 MAPK, which was inhibited by the EP4 antagonist and by AG-1478. Finally, the p42/44 MAPK inhibitor PD-98053 (25 micromol/l) blocked PGE2-induced protein synthesis. Altogether, we believe these are the first data to suggest that PGE2 induces protein synthesis in cardiac myocytes in part via activation of the EP4 receptor and subsequent activation of p42/44 MAPK. Activation of p42/44 MAPK is independent of the common cAMP-PKA pathway and involves EP4-dependent transactivation of EGFR.

  16. Validation of endothelin B receptor antibodies reveals two distinct receptor-related bands on Western blot.

    Science.gov (United States)

    Barr, Travis P; Kornberg, Daniel; Montmayeur, Jean-Pierre; Long, Melinda; Reichheld, Stephen; Strichartz, Gary R

    2015-01-01

    Antibodies are important tools for the study of protein expression but are often used without full validation. In this study, we used Western blots to characterize antibodies targeted to the N or C terminal (NT or CT, respectively) and the second or third intracellular loop (IL2 or IL3, respectively) of the endothelin B receptor (ETB). The IL2-targeted antibody accurately detected endogenous ETB expression in rat brain and cultured rat astrocytes by labeling a 50-kDa band, the expected weight of full-length ETB. However, this antibody failed to detect transfected ETB in HEK293 cultures. In contrast, the NT-targeted antibody accurately detected endogenous ETB in rat astrocyte cultures and transfected ETB in HEK293 cultures by labeling a 37-kDa band but failed to detect endogenous ETB in rat brain. Bands detected by the CT- or IL3-targeted antibody were found to be unrelated to ETB. Our findings show that functional ETB can be detected at 50 or 37kDa on Western blot, with drastic differences in antibody affinity for these bands. The 37-kDa band likely reflects ETB processing, which appears to be dependent on cell type and/or culture condition. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Systems approach for the selection of micro-RNAs as therapeutic biomarkers of anti-EGFR monoclonal antibody treatment in colorectal cancer

    Science.gov (United States)

    Deyati, Avisek; Bagewadi, Shweta; Senger, Philipp; Hofmann-Apitius, Martin; Novac, Natalia

    2015-01-01

    miRNA plays an important role in tumourgenesis by regulating expression of oncogenes and tumour suppressors. Thus affects cell proliferation and differentiation, apoptosis, invasion and angiogenesis. miRNAs are potential biomarkers for diagnosis, prognosis and therapies of different forms of cancer. However, relationship between response of cancer patients towards targeted therapy and the resulting modifications of the miRNA transcriptome in the context of pathway regulation is poorly understood. With ever-increasing pathways and miRNA-mRNA interaction databases, freely available mRNA and miRNA expression data in multiple cancer therapy have produced an unprecedented opportunity to decipher the role of miRNAs in early prediction of therapeutic efficacy in diseases. Efficient translation of -omics data and accumulated knowledge to clinical decision-making are of paramount scientific and public health interest. Well-structured translational algorithms are needed to bridge the gap from databases to decisions. Herein, we present a novel SMARTmiR algorithm to prospectively predict the role of miRNA as therapeutic biomarker for an anti-EGFR monoclonal antibody i.e. cetuximab treatment in colorectal cancer.

  18. Antibody-protein A conjugated quantum dots for multiplexed imaging of surface receptors in living cells.

    Science.gov (United States)

    Jin, Takashi; Tiwari, Dhermendra K; Tanaka, Shin-Ichi; Inouye, Yasushi; Yoshizawa, Keiko; Watanabe, Tomonobu M

    2010-11-01

    To use quantum dots (QDs) as fluorescent probes for receptor imaging, QD surface should be modified with biomolecules such as antibodies, peptides, carbohydrates, and small-molecule ligands for receptors. Among these QDs, antibody conjugated QDs are the most promising fluorescent probes. There are many kinds of coupling reactions that can be used for preparing antibody conjugated QDs. Most of the antibody coupling reactions, however, are non-selective and time-consuming. In this paper, we report a facile method for preparing antibody conjugated QDs for surface receptor imaging. We used ProteinA as an adaptor protein for binding of antibody to QDs. By using ProteinA conjugated QDs, various types of antibodies are easily attached to the surface of the QDs via non-covalent binding between the F(c) (fragment crystallization) region of antibody and ProteinA. To show the utility of ProteinA conjugated QDs, HER2 (anti-human epidermal growth factor receptor 2) in KPL-4 human breast cancer cells were stained by using anti-HER2 antibody conjugated ProteinA-QDs. In addition, multiplexed imaging of HER2 and CXCR4 (chemokine receptor) in the KPL-4 cells was performed. The result showed that CXCR4 receptors coexist with HER2 receptors in the membrane surface of KPL-4 cells. ProteinA mediated antibody conjugation to QDs is very useful to prepare fluorescent probes for multiplexed imaging of surface receptors in living cells.

  19. Current Approaches for Predicting a Lack of Response to Anti-EGFR Therapy in KRAS Wild-Type Patients

    Directory of Open Access Journals (Sweden)

    Tze-Kiong Er

    2014-01-01

    Full Text Available Targeting epidermal growth factor receptor (EGFR has been one of the most effective colorectal cancer strategies. Anti-EGFR antibodies function by binding to the extracellular domain of EGFR, preventing its activation, and ultimately providing clinical benefit. KRAS mutations in codons 12 and 13 are recognized prognostic and predictive biomarkers that should be analyzed at the clinic prior to the administration of anti-EGFR therapy. However, still an important fraction of KRAS wild-type patients do not respond to the treatment. The identification of additional genetic determinants of primary or secondary resistance to EGFR targeted therapy for further improving the selection of patients is urgent. Herein, we review the latest published literature highlighting the most important genes that may predict resistance to anti-EGFR monoclonal antibodies in colorectal cancer patients. According to the available findings, the evaluation of BRAF, NRAS, PIK3CA, and PTEN status could be the right strategy to select patients who are likely to respond to anti-EGFR therapies. In the future, the combination of those biomarkers will help establish consensus that can be introduced into clinical practice.

  20. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Brunetto de Farias, Caroline [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Children' s Cancer Institute, 90420-140 Porto Alegre, RS (Brazil); Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Heinen, Tiago Elias; Pereira dos Santos, Rafael [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Abujamra, Ana Lucia [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Children' s Cancer Institute, 90420-140 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Schwartsmann, Gilberto [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Department of Internal Medicine, School of Medicine, Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); and others

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. Black-Right-Pointing-Pointer TrkB inhibition potentiated the antitumor effect of cetuximab. Black-Right-Pointing-Pointer BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling can protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.

  1. Oncogenic fingerprint of epidermal growth factor receptor pathway and emerging epidermal growth factor receptor blockade resistance in colorectal cancer

    Science.gov (United States)

    Sobani, Zain A; Sawant, Ashwin; Jafri, Mikram; Correa, Amit Keith; Sahin, Ibrahim Halil

    2016-01-01

    Epidermal growth factor receptor (EGFR) has been an attractive target for treatment of epithelial cancers, including colorectal cancer (CRC). Evidence from clinical trials indicates that cetuximab and panitumumab (anti-EGFR monoclonal antibodies) have clinical activity in patients with metastatic CRC. The discovery of intrinsic EGFR blockade resistance in Kirsten RAS (KRAS)-mutant patients led to the restriction of anti-EGFR antibodies to KRAS wild-type patients by Food and Drug Administration and European Medicine Agency. Studies have since focused on the evaluation of biomarkers to identify appropriate patient populations that may benefit from EGFR blockade. Accumulating evidence suggests that patients with mutations in EGFR downstream signaling pathways including KRAS, BRAF, PIK3CA and PTEN could be intrinsically resistant to EGFR blockade. Recent whole genome studies also suggest that dynamic alterations in signaling pathways downstream of EGFR leads to distinct oncogenic signatures and subclones which might have some impact on emerging resistance in KRAS wild-type patients. While anti-EGFR monoclonal antibodies have a clear potential in the management of a subset of patients with metastatic CRC, further studies are warranted to uncover exact mechanisms related to acquired resistance to EGFR blockade. PMID:27777877

  2. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-Garcia, Estefania; Saceda, Miguel [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Grasso, Silvina; Rocamora-Reverte, Lourdes; Conde, Mariano; Gomez-Martinez, Angeles [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Garcia-Morales, Pilar [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Ferragut, Jose A. [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Martinez-Lacaci, Isabel, E-mail: imlacaci@umh.es [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad AECC de Investigacion Traslacional en Cancer, Hospital Universitario Virgen de la Arrixaca, 30120 Murcia (Spain)

    2011-06-10

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.

  3. Frequent activation of EGFR in advanced chordomas

    Directory of Open Access Journals (Sweden)

    Dewaele Barbara

    2011-07-01

    Full Text Available Abstract Background Chordomas are rare neoplasms, arising from notochordal remnants in the midline skeletal axis, for which the current treatment is limited to surgery and radiotherapy. Recent reports suggest that receptor tyrosine kinases (RTK might be essential for the survival or proliferation of chordoma cells, providing a rationale for RTK targeted therapy. Nevertheless, the reported data are conflicting, most likely due to the assorted tumor specimens used for the studies and the heterogeneous methodological approaches. In the present study, we performed a comprehensive characterization of this rare entity using a wide range of assays in search for relevant therapeutic targets. Methods Histopathological features of 42 chordoma specimens, 21 primary and 21 advanced, were assessed by immunohistochemistry and fluorescent in situ hybridization (FISH using PDGFRB, CSF1R, and EGFR probes. Twenty-two of these cases, for which frozen material was available (nine primary and 13 advanced tumors, were selectively analyzed using the whole-genome 4.3 K TK-CGH-array, phospho-kinase antibody array or Western immunoblotting. The study was supplemented by direct sequencing of KIT, PDGFRB, CSF1R and EGFR. Results We demonstrated that EGFR is frequently and the most significantly activated RTK in chordomas. Furthermore, concurrent to EGFR activation, the tumors commonly reveal co-activation of alternative RTK. The consistent activation of AKT, the frequent loss of the tumor suppressor PTEN allele, the recurrent activation of upstream RTK and of downstream effectors like p70S6K and mTOR, all indicate the PI3K/AKT pathway as an important mediator of transformation in chordomas. Conclusions Given the complexity of the signaling in chordomas, combined treatment regimens targeting multiple RTK and downstream effectors are likely to be the most effective in these tumors. Personalized therapy with careful selection of the patients, based on the molecular profile of

  4. Dual Inhibition of EGFR with Afatinib and Cetuximab in Kinase Inhibitor-Resistant EGFR-Mutant Lung Cancer with and without T790M Mutations

    NARCIS (Netherlands)

    Janjigian, Yelena Y.; Smit, Egbert F.; Groen, Harry J. M.; Horn, Leora; Gettinger, Scott; Camidge, D. Ross; Riely, Gregory J.; Wang, Bushi; Fu, Yali; Chand, Vikram K.; Miller, Vincent A.; Pao, William

    2014-01-01

    EGFR-mutant lung cancers responsive to reversible EGFR inhibitors (gefitinib/erlotinib) develop acquired resistance, mediated by second-site EGFR T790M mutation in >50% of cases. Preclinically, afatinib (irreversible ErbB family blocker) plus cetuximab (anti-EGFR monoclonal antibody) overcomes T790M

  5. Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing.

    Directory of Open Access Journals (Sweden)

    Sumitra Mohan

    2014-03-01

    Full Text Available Monoclonal antibodies targeting the Epidermal Growth Factor Receptor (EGFR, such as cetuximab and panitumumab, have evolved to important therapeutic options in metastatic colorectal cancer (CRC. However, almost all patients with clinical response to anti-EGFR therapies show disease progression within a few months and little is known about mechanism and timing of resistance evolution. Here we analyzed plasma DNA from ten patients treated with anti-EGFR therapy by whole genome sequencing (plasma-Seq and ultra-sensitive deep sequencing of genes associated with resistance to anti-EGFR treatment such as KRAS, BRAF, PIK3CA, and EGFR. Surprisingly, we observed that the development of resistance to anti-EGFR therapies was associated with acquired gains of KRAS in four patients (40%, which occurred either as novel focal amplifications (n = 3 or as high level polysomy of 12p (n = 1. In addition, we observed focal amplifications of other genes recently shown to be involved in acquired resistance to anti-EGFR therapies, such as MET (n = 2 and ERBB2 (n = 1. Overrepresentation of the EGFR gene was associated with a good initial anti-EGFR efficacy. Overall, we identified predictive biomarkers associated with anti-EGFR efficacy in seven patients (70%, which correlated well with treatment response. In contrast, ultra-sensitive deep sequencing of KRAS, BRAF, PIK3CA, and EGFR did not reveal the occurrence of novel, acquired mutations. Thus, plasma-Seq enables the identification of novel mutant clones and may therefore facilitate early adjustments of therapies that may delay or prevent disease progression.

  6. Molecular assays in detecting EGFR gene aberrations: an updated HER2-dependent algorithm for interpreting gene signals; a short technical report.

    Science.gov (United States)

    Tsiambas, Evangelos; Ragos, Vasileios; Lefas, Alicia Y; Georgiannos, Stavros N; Rigopoulos, Dimitrios N; Georgakopoulos, Georgios; Stamatelopoulos, Athanasios; Grapsa, Dimitra; Syrigos, Konstantinos

    2016-01-01

    Purpose: Among oncogenes that have already been identified and cloned, Epidermal Growth Factor Receptor (EGFR) remains one of the most significant. Understanding its deregulation mechanisms improves critically patients' selection for personalized therapies based on modern molecular biology and oncology guidelines. Anti-EGFR targeted therapeutic strategies have been developed based on specific genetic profiles and applied in subgroups of patients suffering by solid cancers of different histogenetic origin. Detection of specific EGFR somatic mutations leads to tyrosine kinase inhibitors (TKIs) application in subsets of them. Concerning EGFR gene numerical imbalances, identification of pure gene amplification is critical for targeting the molecule via monoclonal antibodies (mAbs). In the current technical paper we demonstrate the main molecular methods applied in EGFR analyses focused also on new data in interpreting numerical imbalances based on ASCO/ACAP guidelines for HER2 in situ hybridization (ISH) clarifications.

  7. Phase I/II clinical and pharmacokinetic study evaluating a fully human monoclonal antibody against EGFr (HuMax-EGFr) in patients with advanced squamous cell carcinoma of the head and neck

    DEFF Research Database (Denmark)

    Bastholt, Lars; Specht, Lena; Jensen, Kenneth;

    2007-01-01

    reactions varied from few days to 2 months. No DLTs were observed and MTD was not reached. In the two highest dose groups, 7 of 11 patients obtained a PR or SD and 9 patients obtained metabolic PR or SD. CONCLUSIONS: HuMax-EGFr can be safely administered in doses up to 8 mg/kg, and preliminary data...

  8. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation

    Science.gov (United States)

    Yu, Huangfei; Xia, Hongwei; Tang, Qiulin; Xu, Huanji; Wei, Guoqing; Chen, Ying; Dai, Xinyu; Gong, Qiyong; Bi, Feng

    2017-01-01

    Acetylcholine (ACh), known as a neurotransmitter, regulates the functions of numerous fundamental central and peripheral nervous system. Recently, emerging evidences indicate that ACh also plays an important role in tumorigenesis. However, little is known about the role of ACh in gastric cancer. Here, we reported that ACh could be auto-synthesized and released from MKN45 and BGC823 gastric cancer cells. Exogenous ACh promoted cell proliferation in a does-dependent manner. The M3R antagonist 4-DAMP, but not M1R antagonist trihexyphenidyl and M2/4 R antagonist AFDX-116, could reverse the ACh-induced cell proliferation. Moreover, ACh, via M3R, activated the EGFR signaling to induce the phosphorylation of ERK1/2 and AKT, and blocking EGFR pathway by specific inhibitor AG1478 suppressed the ACh induced cell proliferation. Furthermore, the M3R antagonist 4-DAMP and darifenacin could markedly inhibit gastric tumor formation in vivo. 4-DAMP could also significantly enhance the cytotoxic activity of 5-Fu against the MKN45 and BGC823 cells, and induce the expression of apoptosis-related proteins such as Bax and Caspase-3. Together, these findings indicated that the autocrine ACh could act through M3R and the EGFR signaling to promote gastric cancer cells proliferation, targeting M3R or EGFR may provide us a potential therapeutic strategy for gastric cancer treatment. PMID:28102288

  9. Androgen receptor in Sertoli cells regulates DNA double-strand break repair and chromosomal synapsis of spermatocytes partially through intercellular EGF-EGFR signaling.

    Science.gov (United States)

    Chen, Su-Ren; Hao, Xiao-Xia; Zhang, Yan; Deng, Shou-Long; Wang, Zhi-Peng; Wang, Yu-Qian; Wang, Xiu-Xia; Liu, Yi-Xun

    2016-04-01

    Spermatogenesis does not progress beyond the pachytene stages of meiosis in Sertoli cell-specific AR knockout (SCARKO) mice. However, further evidence of meiotic arrest and underlying paracrine signals in SCARKO testes is still lacking. We utilized co-immunostaining of meiotic surface spreads to examine the key events during meiotic prophase I. SCARKO spermatocytes exhibited a failure in chromosomal synapsis observed by SCP1/SCP3 double-staining and CREST foci quantification. In addition, DNA double-strand breaks (DSBs) were formed but were not repaired in the mutant spermatocytes, as revealed by γ-H2AX staining and DNA-dependent protein kinase (DNA-PK) activity examination. The later stages of DSB repair, such as the accumulation of the RAD51 strand exchange protein and the localization of mismatch repair protein MLH1, were correspondingly altered in SCARKO spermatocytes. Notably, the expression of factors that guide RAD51 loading onto sites of DSBs, including TEX15, BRCA1/2 and PALB2, was severely impaired when either AR was down-regulated or EGF was up-regulated. We observed that some ligands in the epidermal growth factor (EGF) family were over-expressed in SCARKO Sertoli cells and that some receptors in the EGF receptor (EGFR) family were ectopically activated in the mutant spermatocytes. When EGF-EGFR signaling was repressed to approximately normal by the specific inhibitor AG1478 in the cultured SCARKO testis tissues, the arrested meiosis was partially rescued, and functional haploid cells were generated. Based on these data, we propose that AR in Sertoli cells regulates DSB repair and chromosomal synapsis of spermatocytes partially through proper intercellular EGF-EGFR signaling.

  10. Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Kai-chao Feng

    2017-01-01

    Full Text Available Abstract Background Cholangiocarcinoma (CCA is one of the most fatal malignant tumors with increasing incidence, mortality, and insensitivity to traditional chemo-radiotherapy and targeted therapy. Chimeric antigen receptor-modified T cell (CART immunotherapy represents a novel strategy for the management of many malignancies. However, the potential of CART therapy in treating advanced unresectable/metastatic CCA is uncharted so far. Case presentation In this case, a 52-year-old female who was diagnosed as advanced unresectable/metastatic CCA and resistant to the following chemotherapy and radiotherapy was treated with CART cocktail immunotherapy, which was composed of successive infusions of CART cells targeting epidermal growth factor receptor (EGFR and CD133, respectively. The patient finally achieved an 8.5-month partial response (PR from the CART-EGFR therapy and a 4.5-month-lasting PR from the CART133 treatment. The CART-EGFR cells induced acute infusion-related toxicities such as mild chills, fever, fatigue, vomiting and muscle soreness, and a 9-day duration of delayed lower fever, accompanied by escalation of IL-6 and C reactive protein (CRP, acute increase of glutamic-pyruvic transaminase and glutamic-oxalacetic transaminase, and grade 2 lichen striatus-like skin pathological changes. The CART133 cells induced an intermittent upper abdominal dull pain, chills, fever, and rapidly deteriorative grade 3 systemic subcutaneous hemorrhages and congestive rashes together with serum cytokine release, which needed emergent medical intervention including intravenous methylprednisolone. Conclusions This case suggests that CART cocktail immunotherapy may be feasible for the treatment of CCA as well as other solid malignancies; however, the toxicities, especially the epidermal/endothelial damages, require a further investigation. Trial registration ClinicalTrials.gov NCT01869166 and NCT02541370 .

  11. Cutaneous consequences of inhibiting EGF receptor signaling in vivo: normal hair follicle development, but retarded hair cycle induction and inhibition of adipocyte growth in Egfr(Wa5) mice.

    Science.gov (United States)

    Sugawara, Koji; Schneider, Marlon R; Dahlhoff, Maik; Kloepper, Jennifer E; Paus, Ralf

    2010-03-01

    The epidermal growth factor receptor (EGFR) network is essential for proper development and homeostasis of skin and hair. However, detailed dissection of the role of the EGFR in hair follicle development and cycling have been impaired by the early mortality of EGFR knockout mice. We have studied in Waved-5 mice carrying an antimorphic EGFR allele (Egfr(wa5)), whose product acts as a dominant-negative receptor, whether strongly reduced EGFR signaling impacts on the hair and skin phenotype. Histomorphometry and immunohistochemistry were employed to study hair follicle morphogenesis stages and cycle induction in Waved-5 mice and control littermates during embryonic development and postnatal life. By routine histology and quantitative histomorphometry, no significant abnormalities in the epidermis and in hair follicle morphogenesis were detected, while the initiation of hair follicle cycling was slightly, but significantly retarded. Proliferation and apoptosis of epidermal and hair matrix keratinocytes of Waved-5 mice appeared unaltered. Intriguingly, the thickness of the subcutis and the percentage of proliferating subcutaneous adipocytes were significantly reduced in Waved-5 mice around days P8.5 to P10.5. Although no differences in total body weight gain could be detected, Wa5 mice showed a significant reduction in the percentage of body fat at P8.5. Our results suggest the presence of effective compensatory mechanisms in murine skin in vivo that ensure nearly normal epidermal and hair follicle keratinocyte function despite very low levels of EGFR-mediated signaling. Our unexpected findings of transiently reduced subcutaneous adipose tissue indicate a role for the EGFR in regulating subcutaneous fat. 2009 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Circulating antibodies against nicotinic acetylcholine receptors in chagasic patients

    Science.gov (United States)

    GOIN, J C; VENERA, G; BONINO, M BISCOGLIO DE JIMÉNEZ; STERIN-BORDA, L

    1997-01-01

    Human and experimental Chagas' disease causes peripheral nervous system damage involving neuromuscular transmission alterations at the neuromuscular junction. Additionally, autoantibodies directed to peripheral nerves and sarcolemmal proteins of skeletal muscle have been described. In this work, we analyse the ability of serum immunoglobulin factors associated with human chagasic infection to bind the affinity-purified nicotinic acetylcholine receptor (nAChR) from electric organs of Discopyge tschudii and to identify the receptor subunits involved in the interaction. The frequency of serum anti-nAChR reactivity assayed by dot-blot was higher in seropositive chagasic patients than in uninfected subjects. Purified IgG obtained from chagasic patients immunoprecipitated a significantly higher fraction of the solubilized nAChR than normal IgG. Furthermore, immunoblotting assays indicated that α and β are the main subunits involved in the interaction. Chagasic IgG was able to inhibit the binding of α-bungarotoxin to the receptor in a concentration-dependent manner, confirming the contribution of the α-subunit in the autoantibody-receptor interaction. The presence of anti-nAChR antibodies was detected in 73% of chagasic patients with impairment of neuromuscular transmission in conventional electromyographical studies, indicating a strong association between seropositive reactivity against nAChR and electromyographical abnormalities in chagasic patients. The chronic binding of these autoantibodies to the nAChR could induce a decrease in the population of functional nAChRs at the neuromuscular junction and consequently contribute to the electrophysiological neuromuscular alterations described in the course of chronic Chagas' disease. PMID:9367405

  13. In vivo Cytotoxicity of Type I CD20 Antibodies Critically Depends on Fc Receptor ITAM Signaling

    NARCIS (Netherlands)

    de Haij, Simone; Jansen, J. H. Marco; Boross, Peter; Beurskens, Frank J.; Bakema, Jantine E.; Bos, Desiree L.; Martens, Anton; Verbeek, J. Sjef; Parren, Paul W. H. I.; van de Winkel, Jan G. J.; Leusen, Jeanette H. W.

    2010-01-01

    Antibody-Fc receptor (FcR) interactions play an important role in the mechanism of action of most therapeutic antibodies against cancer. Effector cell activation through FcR triggering may induce tumor cell killing via antibody-dependent cellular cytotoxicity (ADCC). Reciprocally, FcR cross-linking

  14. ON THE NOTION OF SYNERGY OF MONOCLONAL ANTIBODIES AS DRUGS

    Directory of Open Access Journals (Sweden)

    Michael Sela

    2013-08-01

    Full Text Available History of developing synergy between monoclonal antibodies, anti-tumor activity of monoclonal antibodies against tyrosine-kinases receptors EGFR/ErbB-1 and HER2/ErbB-2 as well as growth factor VEGF in various combinations are considered in the article. There were proposed hypotheses about potential molecular mechanisms underlay synergy between monoclonal antibodies (for homo- and hetero combinations of antibodies appropriately specific for antigenic determinants on the same or different receptors. Future trends in researches necessary to deeper understanding causes of this phenomenon and perspectives for practical application of monoclonal antibodies acted synergistically as immunotherapeutic drugs for human tumors treatment are reviewed.

  15. Differential sensitivities of trastuzumab (Herceptin)-resistant human breast cancer cells to phosphoinositide-3 kinase (PI-3K) and epidermal growth factor receptor (EGFR) kinase inhibitors.

    Science.gov (United States)

    Chan, Carmel T; Metz, Marianne Z; Kane, Susan E

    2005-05-01

    Her2 (erbB2/neu) is overexpressed in 25-30% of human breast cancers. Herceptin is a recombinant humanized Her2 antibody used to treat breast cancer patients with Her2 overexpression. Over a 5-month selection process, we isolated clones of BT474 (BT) human breast carcinoma cells (BT/Her(R)) that were resistant to Herceptin in vitro. In BT/Her(R) subclones, cell-surface, phosphorylated and total cellular Her2 protein remained high in the continuous presence of Herceptin. Likewise, the levels of cell-surface, phosphorylated, and total cellular Her3 and EGFR were either unchanged or only slightly elevated in BT/Her(R) subclones relative to BT cells. One BT/Her(R) subclone had substantially upregulated cell-surface EGFR, but this did not correlate with a higher relative resistance to Herceptin. In looking at the downstream PI-3K/Akt signaling pathway, phosphorylated and total Akt levels and Akt kinase activities were all sustained in BT/Her(R) subclones in the presence of Herceptin, but significantly downregulated in BT cells exposed to Herceptin. Whereas BT cells lost sensitivity to the PI-3K inhibitor LY294002 in the presence of Herceptin, BT/Her(R) subclones were equally sensitive to this agent in the presence and absence of Herceptin. This suggests that BT/Her(R) subclones acquired a Herceptin-resistant mechanism of PI-3K signaling. BT/Her(R) subclones were also sensitive to the EGFR kinase inhibitor AG1478 in the presence of Herceptin, to the same extent as BT cells. The BT/Her(R) subclones provide new insights into mechanisms of Herceptin resistance and suggest new treatment strategies in combination with other inhibitors targeted to signal transduction pathways.

  16. Anti-phospholipase A₂ receptor antibodies in recurrent membranous nephropathy.

    Science.gov (United States)

    Kattah, A; Ayalon, R; Beck, L H; Sethi, S; Sandor, D G; Cosio, F G; Gandhi, M J; Lorenz, E C; Salant, D J; Fervenza, F C

    2015-05-01

    About 70% of patients with primary membranous nephropathy (MN) have circulating anti-phospholipase A2 receptor (PLA2R) antibodies that correlate with disease activity, but their predictive value in post-transplant (Tx) recurrent MN is uncertain. We evaluated 26 patients, 18 with recurrent MN and 8 without recurrence, with serial post-Tx serum samples and renal biopsies to determine if patients with pre-Tx anti-PLA2R are at increased risk of recurrence as compared to seronegative patients and to determine if post-Tx changes in anti-PLA2R correspond to the clinical course. In the recurrent group, 10/17 patients had anti-PLA2R at the time of Tx versus 2/7 patients in the nonrecurrent group. The positive predictive value of pre-Tx anti-PLA2R for recurrence was 83%, while the negative predictive value was 42%. Persistence or reappearance of post-Tx anti-PLA2R was associated with increasing proteinuria and resistant disease in 6/18 cases; little or no proteinuria occurred in cases with pre-Tx anti-PLA2R and biopsy evidence of recurrence in which the antibodies resolved with standard immunosuppression. Some cases with positive pre-Tx anti-PLA2R were seronegative at the time of recurrence. In conclusion, patients with positive pre-Tx anti-PLA2R should be monitored closely for recurrent MN. Persistence or reappearance of antibody post-Tx may indicate a more resistant disease.

  17. Integrated pharmacokinetic-pharmacodynamic modeling and allometric scaling for optimizing the dosage regimen of the monoclonal ior EGF/r3 antibody.

    Science.gov (United States)

    Duconge, Jorge; Castillo, Rubén; Crombet, Tania; Alvarez, Daniel; Matheu, Janet; Vecino, Gloria; Alonso, Katia; Beausoleil, Irene; Valenzuela, Carmen; Becquer, Maria A; Fernández-Sánchez, Eduardo

    2004-02-01

    The multiple-dose strategy with the monoclonal ior EGF/r3 antibody, in xenograft bearing nude mice, was supported upon the basis of its integrated pharmacokinetic-pharmacodynamic relationship, according to both the temporal (K(e0)=0.0015+/-0.000035h(-1)) and the time-independent sensitivity (C(50%)(ss), 9.23+/-0.17microg/ml; C(max,eff)(ss), 12.5microg/ml) components of its tumor growth delay action. This relationship was consistent with a sigmoidal E(max) pharmacodynamic model postulating a hypothetical effect compartment that permits us to estimate an effective steady-state concentration range (7.5-12microg/ml). Using this information we calculated both the cumulative and non-cumulative dosage regimens to compare their response patterns with respect to the control group. It follows that the differences in the estimated tumor growth inhibition ratio were statistically significant between the control group and either of the treated ones (P<0.05). The median survival time in treated mice under non-cumulative regimen (72+/-10 days), predicted an increase in this parameter as compared to the control one (55+/-6 days). Finally, using the allometric paradigm, the empiric power equation for dose scaling across mammalian species allowed the calculation of the dosage schedule for further clinical trial. The estimated maintenance dose in human (70kg) was 200mg/m(2) to be given weekly, and the corresponding loading dose was 600mg/m(2).

  18. Lipid raft localization of EGFR alters the response of cancer cells to the EGFR tyrosine kinase inhibitor gefitinib.

    Science.gov (United States)

    Irwin, Mary E; Mueller, Kelly L; Bohin, Natacha; Ge, Yubin; Boerner, Julie L

    2011-09-01

    Epidermal growth factor receptor (EGFR) is overexpressed in many cancer types including ~30% of breast cancers. Several small molecule tyrosine kinase inhibitors (TKIs) targeting EGFR have shown clinical efficacy in lung and colon cancers, but no benefit has been noted in breast cancer. Thirteen EGFR expressing breast cancer cell lines were analyzed for response to EGFR TKIs. Seven were found to be EGFR TKI resistant; while shRNA knockdown of EGFR determined that four of these cell lines retained the requirement of EGFR protein expression for growth. Interestingly, EGFR localized to plasma membrane lipid rafts in all four of these EGFR TKI-resistant cell lines, as determined by biochemical raft isolation and immunofluorescence. When lipid rafts were depleted of cholesterol using lovastatin, all four cell lines were sensitized to EGFR TKIs. In fact, the effects of the cholesterol biosynthesis inhibitors and gefitinib were synergistic. While gefitinib effectively abrogated phosphorylation of Akt- and mitogen-activated protein kinase in an EGFR TKI-sensitive cell line, phosphorylation of Akt persisted in two EGFR TKI-resistant cell lines, however, this phosphorylation was abrogated by lovastatin treatment. Thus, we have shown that lipid raft localization of EGFR correlates with resistance to EGFR TKI-induced growth inhibition and pharmacological depletion of cholesterol from lipid rafts decreases this resistance in breast cancer cell lines. Furthermore, we have presented evidence to suggest that when EGFR localizes to lipid rafts, these rafts provide a platform to facilitate activation of Akt signaling in the absence of EGFR kinase activity.

  19. Anti-phospholipase A2 receptor antibody in membranous nephropathy.

    Science.gov (United States)

    Qin, Weisong; Beck, Laurence H; Zeng, Caihong; Chen, Zhaohong; Li, Shijun; Zuo, Ke; Salant, David J; Liu, Zhihong

    2011-06-01

    The M-type phospholipase A2 receptor (PLA2R) is a target autoantigen in adult idiopathic membranous nephropathy (MN), but the prevalence of autoantibodies against PLA2R is unknown among Chinese patients with MN. Here, we measured anti-PLA2R antibody in the serum of 60 patients with idiopathic MN, 20 with lupus-associated MN, 16 with hepatitis B (HBV)-associated MN, and 10 with tumor-associated MN. Among patients with idiopathic MN, 49 (82%) had detectable anti-PLA2R autoantibodies using a Western blot assay; an assay with greater sensitivity detected very low titers of anti-PLA2R in 10 of the remaining 11 patients. Using the standard assay, we detected anti-PLA2R antibody in only 1 patient with lupus, 1 with HBV, and 3 with cancer, producing an overall specificity of 89% in this cohort limited to patients with secondary MN. The enhanced assay detected low titers of anti-PLA2R in only 2 additional samples of HBV-associated MN. In summary, these results suggest that PLA2R is a major target antigen in Chinese idiopathic MN and that detection of anti-PLA2R is a sensitive test for idiopathic MN.

  20. Effect of BRAF V600E mutation on tumor response of anti-EGFR monoclonal antibodies for first-line metastatic colorectal cancer treatment: a meta-analysis of randomized studies.

    Science.gov (United States)

    Cui, Dandan; Cao, Dan; Yang, Yu; Qiu, Meng; Huang, Ying; Yi, Cheng

    2014-03-01

    Anti-EGFR monoclonal antibodies (anti-EGFR MoAbs) in metastatic colorectal cancer (mCRC) treatment are still not effective in all patients. This study aimed to evaluate the relationship between BRAF V600E mutation and the tumor response of anti-EGFR MoAbs for first-line treatment in mCRC patients. We searched the MEDLINE and EMBASE databases, using the key words that included colorectal cancer, cetuximab, panitumumab, and BRAF mutation and retrieved 445 articles. Among them four were included in the systematic review. Relative risks (RRs) with 95% confidence intervals (CI) for response rate were calculated. BRAF mutation carriers had worse ORR than non-carriers in mCRC patients with KRAS wild-type in first-line treatment whether adding anti-EGFR MoAb to chemotherapy or not (RR = 0.43, [95% CI 0.16-0.75]; RR = 0.38, [95% CI 0.20-0.73]). But in the unselected patients whose KRAS mutation were unknown, BRAF mutation carriers had similar ORR whether adding cetuximab to chemotherapy or not (RR = 0.45, [95% CI 0.18-1.09]; RR = 0.57, [95% CI 0.15-2.23]). In BRAF mutation carriers adding anti-EGFR MoAb to chemotherapy was similar to chemotherapy alone whether in patients with wild-type KRAS or unselected patients (RR = 1.61, [95% CI 0.57-4.47]; RR = 0.71, [95% CI 0.18-2.77]). But in the BRAF mutation non-carriers, adding anti-EGFR MoAb produced a clear benefit in response rate than chemotherapy alone and this advantage was restricted to KRAS wild-type patients (RR = 1.48, [95% CI 1.28-1.71]). BRAF mutation decreases tumor response in first-line treatment whether cetuximab was given or not in patients with KRAS wild-type, and anti-EGFR MoAb produces a clear benefit in response rate in patients with BRAF and KRAS wild-type.

  1. Novel antigen design for the generation of antibodies to G-protein-coupled receptors.

    Science.gov (United States)

    Larsson, K; Hofström, C; Lindskog, C; Hansson, M; Angelidou, P; Hökfelt, T; Uhlén, M; Wernérus, H; Gräslund, T; Hober, S

    2011-07-29

    Antibodies are important tools for the study of G-protein-coupled receptors, key proteins in cellular signaling. Due to their large hydrophobic membrane spanning regions and often very short loops exposed on the surface of the cells, generation of antibodies able to recognize the receptors in the endogenous environment has been difficult. Here, we describe an antigen-design method where the extracellular loops and N-terminus are combined to a single antigen for generation of antibodies specific to three selected GPCRs: NPY5R, B2ARN and GLP1R. The design strategy enabled straightforward antigen production and antibody generation. Binding of the antibodies to intact receptors was analyzed using flow cytometry and immunofluorescence based confocal microscopy on A-431 cells overexpressing the respective GPCR. The antibody-antigen interactions were characterized using epitope mapping, and the antibodies were applied in immunohistochemical staining of human tissues. Most of the antibodies showed specific binding to their respective overexpressing cell line but not to the non-transfected cells, thus indicating binding to their respective target receptor. The epitope mapping showed that sub-populations within the purified antibody pool recognized different regions of the antigen. Hence, the genetic combination of several different epitopes enables efficient generation of specific antibodies with potential use in several applications for the study of endogenous receptors.

  2. Rational combination of targeted therapies as a strategy to overcome the mechanisms of resistance to inhibitors of EGFR signaling.

    Science.gov (United States)

    Bianco, Roberto; Damiano, Vincenzo; Gelardi, Teresa; Daniele, Gennaro; Ciardiello, Fortunato; Tortora, Giampaolo

    2007-01-01

    The epidermal growth factor receptor (EGFR) has been widely used as a target for novel anticancer agents, such as blocking antibodies and small molecular weight tyrosine kinase compounds. In spite of recent advances in cancer cell biology, leading to the introduction of clinically active new drugs, such as cetuximab, panitumumab and erlotinib, unfortunately disease control remains unsuccessful due to the presence of constitutive resistance to EGFR inhibitors in most patients and the development of acquired resistance in the responders. A large number of molecular abnormalities in tumor cells seem to partly contribute to their resistance to anti-EGFR therapy: increased angiogenesis, constitutive activation of downstream mediators, overexpression of other tyrosine kinase receptors. Moreover, some mutations in the EGFR receptor kinase domain seem to play a crucial role in determining the sensitivity of cancer cells to specific inhibitors by altering the conformation of the receptor and its activity. The development of rational combinations of anticancer agents and EGFR inhibitors, able to exert synergistic cytotoxic interactions, has been widely accepted and used in both preclinical and clinical studies. Although the failure of large clinical trial based on empirical combination of anti-EGFR and classic chemotherapeutic agents, several preclinical data seems to support the hypothesis that combining EGFR inhibitors and other novel agents could efficiently inhibit tumor growth and overcome intrinsic resistance to a single-agent based therapy. This review focuses on the role of complementary signalling pathways in the development of resistance to EGFR targeting agents and the rationale to combine novel inhibitors as anticancer therapy.

  3. Ultrasonography-Guided Core Biopsy of Supraclavicular Lymph Nodes for Diagnosis of Metastasis and Identification of Epidermal Growth Factor Receptor (EGFR) Mutation in Advanced Lung Cancer.

    Science.gov (United States)

    Choe, Jooae; Kim, Mi Young; Baek, Jung Hwan; Choi, Chang-Min; Kim, Hwa Jung

    2015-07-01

    The aim of this study was to evaluate the diagnostic performance of ultrasonography (US)-guided core biopsy of a supraclavicular lymph node (SCN) for detecting metastasis and epidermal growth factor receptor (EGFR) mutations. We included 229 patients who underwent US-guided core biopsy of SCN with lung cancer from January 2011 to December 2013. We evaluated the morphologic characteristics and measured the sizes of SCNs on US and chest computed tomography (CT). The clinical stage, maximum standardized uptake value (SUV max) on 18F-fluorodeoxyglucose positron emission tomography, and the morphology on US and CT in the positive metastasis were compared with those in the negative metastasis. The prevalence of EGFR mutations of the adenocarcinoma and procedure-related complication was investigated. The accuracy of US-guided core biopsy of SCN diagnosing metastasis was 97.8% (224/229). The cutoff values (sensitivity; specificity; area under the receiver operating characteristic curve, 95% confidence interval [CI]) of the short-axis dimension of SCN on CT were 0.85 cm (72.3%; 80.6%; 0.808, 95% CI: 0.740-0.875), on US 0.75 cm (73.5%; 84.8%; 0.843, 95% CI: 0.788-0.897), and that of SUV max 4.05 (79.1%; 81.8%; 0.853, 95% CI: 0.780-0.925). The mutations were positive in 35.8% with adenocarcinoma. There were no procedure-related complications of US-guided SCN core biopsy. US-guided SCN core biopsy is a reliable and safe method for detecting metastasis, histologic subtyping, and identifying the EGFR mutation in the advanced lung cancers. It may be a substitute for more invasive lung biopsy as an initial tissue confirmation in the advanced disease.

  4. Decreased autocrine EGFR signaling in metastatic breast cancer cells inhibits tumor growth in bone and mammary fat pad.

    Science.gov (United States)

    Nickerson, Nicole K; Mohammad, Khalid S; Gilmore, Jennifer L; Crismore, Erin; Bruzzaniti, Angela; Guise, Theresa A; Foley, John

    2012-01-01

    Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR) and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231), and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01), reduced osteolytic lesion tumor volume (p<0.01), increased survivorship in vivo (p<0.001), and resulted in decreased MDA-231 growth in the fat pad (p<0.01). Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1) and matrix metalloproteinase 9 (MMP9), both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland.

  5. Decreased autocrine EGFR signaling in metastatic breast cancer cells inhibits tumor growth in bone and mammary fat pad.

    Directory of Open Access Journals (Sweden)

    Nicole K Nickerson

    Full Text Available Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231, and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01, reduced osteolytic lesion tumor volume (p<0.01, increased survivorship in vivo (p<0.001, and resulted in decreased MDA-231 growth in the fat pad (p<0.01. Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1 and matrix metalloproteinase 9 (MMP9, both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland.

  6. Sulforaphane attenuates EGFR signaling in NSCLC cells.

    Science.gov (United States)

    Chen, Chi-Yuan; Yu, Zhu-Yun; Chuang, Yen-Shu; Huang, Rui-Mei; Wang, Tzu-Chien V

    2015-06-03

    EGFR, a receptor tyrosine kinase (RTK), is frequently overexpressed and mutated in non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors (TKIs) have been widely used in the treatment of many cancers, including NSCLC. However, intrinsic and acquired resistance to TKI remains a common obstacle. One strategy that may help overcome EGFR-TKI resistance is to target EGFR for degradation. As EGFR is a client protein of heat-shock protein 90 (HSP90) and sulforaphane is known to functionally regulate HSP90, we hypothesized that sulforaphane could attenuate EGFR-related signaling and potentially be used to treat NSCLC. Our study revealed that sulforaphane displayed antitumor activity against NSCLC cells both in vitro and in vivo. The sensitivity of NSCLC cells to sulforaphane appeared to positively correlate with the inhibition of EGFR-related signaling, which was attributed to the increased proteasomal degradation of EGFR. Combined treatment of NSCLC cells with sulforaphane plus another HSP90 inhibitor (17-AAG) enhanced the inhibition of EGFR-related signaling both in vitro and in vivo. We have shown that sulforaphane is a novel inhibitory modulator of EGFR expression and is effective in inhibiting the tumor growth of EGFR-TKI-resistant NSCLC cells. Our findings suggest that sulforaphane should be further explored for its potential clinical applications against NSCLC.

  7. Diet-derived 25-hydroxyvitamin D3 activates vitamin D receptor target gene expression and suppresses EGFR mutant non-small cell lung cancer growth in vitro and in vivo.

    Science.gov (United States)

    Verone-Boyle, Alissa R; Shoemaker, Suzanne; Attwood, Kristopher; Morrison, Carl D; Makowski, Andrew J; Battaglia, Sebastiano; Hershberger, Pamela A

    2016-01-05

    Epidemiologic studies implicate vitamin D status as a factor that influences growth of EGFR mutant lung cancers. However, laboratory based evidence of the biological effect of vitamin D in this disease is lacking. To fill this knowledge gap, we determined vitamin D receptor (VDR) expression in human lung tumors using a tissue microarray constructed of lung cancer cases from never-smokers (where EGFR gene mutations are prevalent). Nuclear VDR was detected in 19/19 EGFR mutant tumors. Expression tended to be higher in tumors with EGFR exon 19 deletions than those with EGFR L858R mutations. To study anti-proliferative activity and signaling, EGFR mutant lung cancer cells were treated with the circulating metabolite of vitamin D, 25-hydroxyvitamin D3 (25D3). 25D3 inhibited clonogenic growth in a dose-dependent manner. CYP27B1 encodes the 1α-hydroxylase (1αOHase) that converts 25D3 to the active metabolite, 1,25-dihydroxyvitamin D3 (1,25D3). Studies employing VDR siRNA, CYP27B1 zinc finger nucleases, and pharmacologic inhibitors of the vitamin D pathway indicate that 25D3 regulates gene expression in a VDR-dependent manner but does not strictly require 1αOHase-mediated conversion of 25D3 to 1,25D3. To determine the effects of modulating serum 25D3 levels on growth of EGFR mutant lung tumor xenografts, mice were fed diets containing 100 or 10,000 IU vitamin D3/kg. High dietary vitamin D3 intake resulted in elevated serum 25D3 and significant inhibition of tumor growth. No toxic effects of supplementation were observed. These results identify EGFR mutant lung cancer as a vitamin D-responsive disease and diet-derived 25D3 as a direct VDR agonist and therapeutic agent.

  8. Binding of antibodies to acetylcholine receptors in Electrophorus and Torpedo electroplax membranes

    Science.gov (United States)

    1978-01-01

    Antisera against purified acetylcholine receptors from the electric tissues of Torpedo californica and of Electrophorus electricus were raised in rabbits. The antisera contain antibodies which bind to both autologous and heterologous receptors in solution as shown by an immunoprecipitation assay. Antibodies in both types of antisera bind specifically to the postjunctional membrane on the innervated surface of the intact electroplax from Electrophorus electric tissue as demonstrated by an indirect immunohistochemical procedure using horseradish peroxidase conjugated to anti-rabbit IgG. Only anti- Electrophorus receptor antisera, however, cause inhibition of the receptor-mediated depolarization of the intact Electrophorus electroplax. The lack of inhibition by anti-Torpedo receptor antibodies, which do bind, suggests that the receptor does not undergo extensive movement during activity. The binding of anti-Torpedo antibodies to receptor-rich vesicles prepared by subcellular fractionation of Torpedo electric tissue was demonstrated by both direct and indirect immunohistochemical methods using ferritin conjugates. These vesicles can be conveniently collected and prepared for electron microscopy on Millipore filters, a procedure requiring only 25 micrograms of membrane protein per filter. In addition, it was possible to visualize the binding of anti-Torpedo receptor antibodies directly, without ferritin. These anti-Torpedo receptor antibodies, however, do not inhibit the binding of acetylcholine or of alpha- neurotoxin to receptor in Torpedo microsacs but do inhibit binding of alpha-neurotoxin to Torpedo receptor in Triton X-100 solution. It is likely that the principal antigenic determinants on receptor are at sites other than the acetylcholine-binding sites and that inhibition of receptor function, when it occurs, may be due to a stabilization by antibody binding of an inactive conformational state. PMID:344325

  9. Differences in human skin between the epidermal growth factor receptor distribution detected by EGF binding and monoclonal antibody recognition

    DEFF Research Database (Denmark)

    Green, M R; Couchman, J R

    1985-01-01

    , the eccrine sweat glands, capillary system, and the hair follicle outer root sheath, generally similar in pattern to that previously reported for full-thickness rat skin and human epidermis. The same areas also bound EGF-R1 but in addition the monoclonal antibody recognized a cone of melanin containing...

  10. EGFR and KRAS quality assurance schemes in pathology: generating normative data for molecular predictive marker analysis in targeted therapy.

    NARCIS (Netherlands)

    Thunnissen, E.; Bovee, J.V.; Bruinsma, H.; Brule, A.J. van den; Dinjens, W.; Heideman, D.A.; Meulemans, E.; Nederlof, P.; Noesel, C. van; Prinsen, C.F.M.; Scheidel, K.; Ven, P.M. van de; Weger, R. de; Schuuring, E.; Ligtenberg, M.J.

    2011-01-01

    INTRODUCTION: The aim of this study was to compare the reproducibility of epidermal growth factor receptor (EGFR) immunohistochemistry (IHC), EGFR gene amplification analysis, and EGFR and KRAS mutation analysis among different laboratories performing routine diagnostic analyses in pathology in The

  11. EGFR and EGFRvIII undergo stress- and EGFR kinase inhibitor-induced mitochondrial translocalization: A potential mechanism of EGFR-driven antagonism of apoptosis

    Directory of Open Access Journals (Sweden)

    Ali-Osman Francis

    2011-03-01

    Full Text Available Abstract Background Epidermal growth factor receptor (EGFR plays an essential role in normal development, tumorigenesis and malignant biology of human cancers, and is known to undergo intracellular trafficking to subcellular organelles. Although several studies have shown that EGFR translocates into the mitochondria in cancer cells, it remains unclear whether mitochondrially localized EGFR has an impact on the cells and whether EGFRvIII, a constitutively activated variant of EGFR, undergoes mitochondrial transport similar to EGFR. Results We report that both receptors translocate into the mitochondria of human glioblastoma and breast cancer cells, following treatments with the apoptosis inducers, staurosporine and anisomycin, and with an EGFR kinase inhibitor. Using mutant EGFR/EGFRvIII receptors engineered to undergo enriched intracellular trafficking into the mitochondria, we showed that glioblastoma cells expressing the mitochondrially enriched EGFRvIII were more resistant to staurosporine- and anisomycin-induced growth suppression and apoptosis and were highly resistant to EGFR kinase inhibitor-mediated growth inhibition. Conclusions These findings indicate that apoptosis inducers and EGFR-targeted inhibitors enhance mitochondrial translocalization of both EGFR and EGFRvIII and that mitochondrial accumulation of these receptors contributes to tumor drug resistance. The findings also provide evidence for a potential link between the mitochondrial EGFR pathway and apoptosis.

  12. The epidermal growth factor receptor is frequently overexpressed in penile squamous cell carcinomas: a tissue microarray and digital image analysis study of 112 cases.

    Science.gov (United States)

    Chaux, Alcides; Munari, Enrico; Katz, Betina; Sharma, Rajni; Lecksell, Kristen; Cubilla, Antonio L; Burnett, Arthur L; Netto, George J

    2013-12-01

    Disseminated penile cancer is usually treated with chemotherapy. However, response rates are far from acceptable. Recently, anti-epidermal growth factor receptor (EGFR) monoclonal antibodies have shown to be clinically useful in penile carcinomas. Nevertheless, only a few cases of penile carcinomas have been evaluated for EGFR expression. In this study, we assessed the immunohistochemical expression of EGFR in 112 patients with penile squamous cell carcinoma. We built 4 tissue microarrays and evaluated EGFR expression using a monoclonal mouse anti-EGFR antibody. For digital image analysis, we used the open-source software ImageJ version 1.47 (NIH, Bethesda, MD) along with the immunomembrane plug-in. Membranous EGFR expression was evaluated, taking into account staining completeness (0-10 points) and staining intensity (0-10 points) for a combined score (0-20 points). We classified the cases as follows: negative EGFR expression, 0 to 3 points; low EGFR expression, 4 to 8 points; and high EGFR expression, 9 to 20 points. The distribution of EGFR immunohistochemical expression was as follows: 13 cases (12%) were EGFR negative, 49 cases (44%) had low EGFR expression, and 50 cases (44%) had high EGFR expression. EGFR expression was not associated with histologic subtype (P = .47), histologic grade (P = .77), or human papillomavirus status (P = .14). In conclusion, immunohistochemical EGFR expression appears to be a common feature of penile carcinomas, independently of histologic subtype, histologic grade, and human papillomavirus presence. Whether or not EGFR expression is associated with EGFR gene mutation or if it can be used to predict response to therapy in patients with disseminated penile cancer should be evaluated in future studies.

  13. Whacking a mole-cule: clinical activity and mechanisms of resistance to third generation EGFR inhibitors in EGFR mutated lung cancers with EGFR-T790M.

    Science.gov (United States)

    Costa, Daniel B; Kobayashi, Susumu S

    2015-12-01

    Epidermal growth factor receptor (EGFR) mutations, especially EGFR-exon 19 deletions and EGFR-L858R, are the most frequent actionable genomic events in lung adenocarcinomas. Tumors arise due to constitutively activated EGFR signaling and are susceptible to EGFR tyrosine kinase inhibitors (TKIs). First generation EGFR TKIs (gefitinib and erlotinib) and the second generation EGFR TKI afatinib are approved worldwide. Although targeted therapies against EGFR mutants induce dramatic initial responses, acquired resistance (through multiple biological mechanisms) to erlotinib, gefitinib and afatinib emerges within the first 1-2 years of continued monotherapy. EGFR-T790M accounts for more than half of acquired resistance to first or second generation EGFR TKIs by modifying ATP affinity and drug binding kinetics. Two new studies have shown that two covalent pyrimidine inhibitors-AZD9291 and rociletinib of EGFR-T790M (i.e., third generation EGFR TKIs) shown remarkable clinical activity in patients with acquired resistance to erlotinib, gefitinib and afatinib when the tumor carries EGFR-T790M in conjunction with an activating mutation. However, and regrettably, acquired resistance to these third generation EGFR TKIs has already been reported in preclinical models and clinical specimens; such as a tertiary mutation at EGFR-C797S that prevents covalent binding of EGFR TKIs. The experience with sequential EGFR TKI monotherapy highlights tumor heterogeneity and adaptability (i.e., relentless game of whack-a-mole played between TKIs and cancer), and will help shape future clinical development of novel combinatory approaches to manage EGFR mutated lung adenocarcinomas.

  14. Targeting the EGFR pathway for cancer therapy

    DEFF Research Database (Denmark)

    Johnston, JB; Navaratnam, S; Pitz, MW

    2006-01-01

    Clinical studies have shown that HER-2/Neu is over-expressed in up to one-third of patients with a variety of cancers, including B-cell acute lymphoblastic leukemia (B-ALL), breast cancer and lung cancer, and that these patients are frequently resistant to conventional chemo-therapies. Additionally......, in most patients with multiple myeloma, the malignant cells over-express a number of epidermal growth factor receptors (EGFR)s and their ligands, HB-EGF and amphiregulin, thus this growth-factor family may be an important aspect in the patho-biology of this disease. These and other, related findings have...... effects associated with the therapeutic inhibition of components of the EGFR-pathways. Alongside small inhibitors, such as Lapatinib (Tykerb, GW572016), Gefitinib (Iressa, ZD1839), and Erlotinib (Tarceva, OSI-774), a significant part of the review is also dedicated to therapeutic antibodies (e...

  15. Combined use of anti-ErbB monoclonal antibodies and erlotinib enhances antibody-dependent cellular cytotoxicity of wild-type erlotinib-sensitive NSCLC cell lines

    Directory of Open Access Journals (Sweden)

    Cavazzoni Andrea

    2012-12-01

    Full Text Available Abstract Background The epidermal growth factor receptor (EGFR is an established target for anti-cancer treatment in different tumour types. Two different strategies have been explored to inhibit this pivotal molecule in epithelial cancer development: small molecules TKIs and monoclonal antibodies. ErbB/HER-targeting by monoclonal antibodies such as cetuximab and trastuzumab or tyrosine-kinase inhibitors as gefitinib or erlotinib has been proven effective in the treatment of advanced NSCLC. Results In this study we explored the potential of combining either erlotinib with cetuximab or trastuzumab to improve the efficacy of EGFR targeted therapy in EGFR wild-type NSCLC cell lines. Erlotinib treatment was observed to increase EGFR and/or HER2 expression at the plasma membrane level only in NSCLC cell lines sensitive to the drug inducing protein stabilization. The combined treatment had marginal effect on cell proliferation but markedly increased antibody-dependent, NK mediated, cytotoxicity in vitro. Moreover, in the Calu-3 xenograft model, the combination significantly inhibited tumour growth when compared with erlotinib and cetuximab alone. Conclusion Our results indicate that erlotinib increases surface expression of EGFR and/or HER2 only in EGFR-TKI sensitive NSCLC cell lines and, in turns, leads to increased susceptibility to ADCC both in vitro and in a xenograft models. The combination of erlotinib with monoclonal antibodies represents a potential strategy to improve the treatment of wild-type EGFR NSCLC patients sensitive to erlotinib.

  16. Expression of epidermal growth factor receptors in human endometrial carcinoma

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Ottesen, B

    1993-01-01

    Little data exist on the expression of epidermal growth factor receptors (EGF-Rs) in human endometrial cancer. EGF-R status was studied in 65 patients with endometrial carcinomas and in 26 women with nonmalignant postmenopausal endometria, either inactive/atrophic endometrium or adenomatous...... hyperplasia. EGF-R was identified on frozen tissue sections by means of an indirect immunoperoxidase technique with a monoclonal antibody against the external domain of the EGF-R. Seventy-one percent of the carcinomas expressed positive EGF-R immunoreactivity. In general, staining was most prominent....../inactive endometria and seven of 13 (54%) endometria with adenomatous hyperplasia were EGF-R positive, with an immunostaining pattern rather similar to that of the carcinomas....

  17. YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is negatively regulated by the non-receptor type protein tyrosine phosphatase 14.

    Science.gov (United States)

    Huang, J-M; Nagatomo, I; Suzuki, E; Mizuno, T; Kumagai, T; Berezov, A; Zhang, H; Karlan, B; Greene, M I; Wang, Q

    2013-04-25

    The Yes-associated protein (YAP) is a transcriptional factor involved in tissue development and tumorigenesis. Although YAP has been recognized as a key element of the Hippo signaling pathway, the mechanisms that regulate YAP activities remain to be fully characterized. In this study, we demonstrate that the non-receptor type protein tyrosine phosphatase 14 (PTPN14) functions as a negative regulator of YAP. We show that YAP forms a protein complex with PTPN14 through the WW domains of YAP and the PPXY motifs of PTPN14. In addition, PTPN14 inhibits YAP-mediated transcriptional activities. Knockdown of YAP sensitizes cancer cells to various anti-cancer agents, such as cisplatin, the EGFR tyrosine kinase inhibitor erlotinib and the small-molecule antagonist of survivin, S12. YAP-targeted modalities may be used in combination with other cancer drugs to achieve maximal therapeutic effects.

  18. Erkitinib, a novel EGFR tyrosine kinase inhibitor screened using a ProteoChip system from a phytochemical library

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eung-Yoon; Choi, Young-Jin [Biochip Research Center, Hoseo University, Asan 336-795 (Korea, Republic of); Innopharmascreen, Inc., Asan 336-795 (Korea, Republic of); Park, Chan-Won [Biochip Research Center, Hoseo University, Asan 336-795 (Korea, Republic of); Dept. of Biological Science, Hoseo University, Asan 336-795 (Korea, Republic of); Kang, In-Cheol, E-mail: ickang@hoseo.edu [Biochip Research Center, Hoseo University, Asan 336-795 (Korea, Republic of); Dept. of Biological Science, Hoseo University, Asan 336-795 (Korea, Republic of); Innopharmascreen, Inc., Asan 336-795 (Korea, Republic of)

    2009-11-20

    Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer. Therefore PTK inhibitors are currently under intensive investigation as potential drug candidates. Herein, we report on a ProteoChip-based screening of an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, Erkitinibs, from phytochemical libraries. PLC-{gamma}-1 was used as a substrate immobilized on a ProteoChip and incubated with an EGFR kinase to phosphorylate tyrosine residues of the substrate, followed by a fluorescence detection of the substrate recognized by a phospho-specific monoclonal antibody. Erkitinibs inhibited HeLa cell proliferation in a dose-dependent manner. In conclusion, these data suggest that Erkitinibs can be a specific inhibitor of an EGFR kinase and can be further developed as a potent anti-tumor agent.

  19. Affinity Maturation of an Epidermal Growth Factor Receptor Targeting Human Monoclonal Antibody ER414 by CDR Mutation

    OpenAIRE

    2012-01-01

    It is well established that blocking the interaction of EGFR with growth factors leads to the arrest of tumor growth, resulting in tumor cell death. ER414 is a human monoclonal antibody (mAb) derived by guided selection of the mouse mAb A13. The ER414 exhibited a ~17-fold lower affinity and, as a result, lower efficacy of inhibition of the EGF-mediated tyrosine phosphorylation of EGFR when compared with mAb A13 and cetuximab. We performed a stepwise in vitro affinity maturation to improve the...

  20. Pharmacogenomics of EGFR-targeted therapies in non-small cell lung cancer:EGFR and beyond

    Institute of Scientific and Technical Information of China (English)

    Christopher Delaney; Samuel Frank; R Stephanie Huang

    2015-01-01

    Commonly observed aberrations in epidermal growth factor receptor (EGFR) signaling have led to the development of EGFR-targeted therapies for various cancers, including non–small cell lung cancer (NSCLC). EGFR mutations and overexpression have further been shown to modulate sensitivity to these EGFR-targeted therapies in NSCLC and several other types of cancers. However, it is clear that mutations and/or genetic variations in EGFR alone cannot explain all of the variability in the responses of patients with NSCLC to EGFR-targeted therapies. For instance, in addition to EGFR genotype, genetic variations in other members of the signaling pathway downstream of EGFR or variations in paral el receptor tyrosine kinase (RTK) pathways are now recognized to have a significant impact on the efficacy of certain EGFR-targeted therapies. In this review, we highlight the mutations and genetic variations in such genes downstream of EGFR and in parallel RTK pathways. Specifically, the directional effects of these pharmacogenetic factors are discussed with a focus on two commonly prescribed EGFR inhibitors:cetuximab and erlotinib. The results of this comprehensive review can be used to optimize the treatment of NSCLC with EGFR inhibitors. Furthermore, they may provide the rationale for the design of subsequent combination therapies that involve the inhibition of EGFR.

  1. Maintenance immunosuppression with intermittent intravenous IL-2 receptor antibody therapy in renal transplant recipients.

    LENUS (Irish Health Repository)

    Gabardi, Steven

    2011-09-01

    To report what we believe to be the first 2 cases of long-term (>24 months) intermittent intravenous interleukin-2 receptor antibody (IL-2RA) therapy for maintenance immunosuppression following renal transplantation.

  2. No Incidence of BRAF Mutations in Salivary Gland Carcinomas—Implications for Anti-EGFR Therapies

    Directory of Open Access Journals (Sweden)

    Regine Dahse

    2009-01-01

    These findings imply that SGC rarely acquires mutations that result in a constitutive activation of the signaling cascade downstream of EGFR and this pleads in favor of further therapeutic trials with EGFR-targeting monoclonal antibodies.

  3. Fc receptor inside-out signaling and possible impact on antibody therapy

    NARCIS (Netherlands)

    Brandsma, Arianne M; Jacobino, Shamir R; Meyer, Saskia; ten Broeke, Toine; Leusen, Jeanette H W

    2015-01-01

    Fc receptors (FcR) are expressed on immune cells and bind to the Fc tail of antibodies. This interaction is essential for FcR-mediated signaling and triggering of cellular effector functions. FcR activation is tightly regulated to prevent immune responses by non-antigen bound antibodies or in the ab

  4. A variety of human monoclonal antibodies against epidermal growth factor receptor isolated from a phage antibody library.

    Science.gov (United States)

    Kurosawa, Gene; Kondo, Mariko; Kurosawa, Yoshikazu

    2016-11-04

    When the technology for constructing human antibody (Ab) libraries using a phage-display system was developed, many researchers in Ab-related fields anticipated that it would be widely applied to the development of pharmaceutical drugs against various diseases, including cancers. However, successful examples of such applications are very limited. Moreover, researchers who utilize phage-display technology now show divergent ways of thinking about phage Ab libraries. For example, there is debate about what should be the source of VH and VL genes for the construction of libraries to cover the whole repertoire of Abs present in the human body. In the immune system, the introduction of mutations into V genes followed by selection based on binding activity, termed Ab maturation, is required for the production of Abs exhibiting high affinity to the antigen (Ag). Therefore, introduction of mutations and selection are required for isolation of Abs with high affinity after isolation of clones from phage Ab libraries. We constructed a large human Ab library termed AIMS, developed a screening method termed ICOS, and succeeded in isolating many human monoclonal Abs (mAbs) that specifically and strongly bind to various tumor-associated Ags. Eight anti-EGFR mAbs were included, which we characterized. These mAbs showed various different activities against EGFR-expressing cancer cells. In this paper, we describe these data and discuss the possibility and necessity that the mAbs isolated from the AIMS library might be developed as therapeutic drugs against cancers without introduction of mutations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Agonist-induced activation of histamine H3 receptor signals to extracellular signal-regulated kinases 1 and 2 through PKC-, PLD-, and EGFR-dependent mechanisms.

    Science.gov (United States)

    Lai, Xiangru; Ye, Lingyan; Liao, Yuan; Jin, Lili; Ma, Qiang; Lu, Bing; Sun, Yi; Shi, Ying; Zhou, Naiming

    2016-04-01

    The histamine H3 receptor (H3R), abundantly expressed in the central and the peripheral nervous system, has been recognized as a promising target for the treatment of various important CNS diseases including narcolepsy, Alzheimer's disease, and attention deficit hyperactivity disorder. The H3R acts via Gi/o -proteins to inhibit adenylate cyclase activity and modulate MAPK activity. However, the underlying molecular mechanisms for H3R mediation of the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) remain to be elucidated. In this study, using HEK293 cells stably expressing human H3R and mouse primary cortical neurons endogenously expressing mouse H3R, we found that the H3R-mediated activation of ERK1/2 was significantly blocked by both the pertussis toxin and the MEK1/2 inhibitor U0126. Upon stimulation by H3R agonist histamine or imetit, H3R was shown to rapidly induce ERK1/2 phosphorylation via PLC/PKC-, PLDs-, and epidermal growth factor receptor (EGFR) transactivation-dependent pathways. Furthermore, it was also indicated that while the βγ-subunits play a key role in H3R-activated ERK1/2 phosphorylation, β-arrestins were not required for ERK1/2 activation. In addition, when the cultured mouse cortical neurons were exposed to oxygen and glucose deprivation conditions (OGD), imetit exhibited neuroprotective properties through the H3R. Treatment of cells with the inhibitor UO126 abolished these protective effects. This suggests a possible neuroprotective role of the H3R-mediated ERK1/2 pathway under hypoxia conditions. These observations may provide new insights into the pharmacological effects and the physiological functions modulated by the H3R-mediated activation of ERK1/2. Histamine H3 receptors are abundantly expressed in the brain and play important roles in various CNS physiological functions. However, the underlying mechanisms for H3R-induced activation of extracellular signal-regulated kinase (ERK)1/2 remain largely unknown. Here

  6. Thyroid-Stimulating Hormone Receptor Antibodies in Pregnancy: Clinical Relevance

    Directory of Open Access Journals (Sweden)

    Ines Bucci

    2017-06-01

    Full Text Available Graves’ disease is the most common cause of thyrotoxicosis in women of childbearing age. Approximately 1% of pregnant women been treated before, or are being treated during pregnancy for Graves’ hyperthyroidism. In pregnancy, as in not pregnant state, thyroid-stimulating hormone (TSH receptor (TSHR antibodies (TRAbs are the pathogenetic hallmark of Graves’ disease. TRAbs are heterogeneous for molecular and functional properties and are subdivided into activating (TSAbs, blocking (TBAbs, or neutral (N-TRAbs depending on their effect on TSHR. The typical clinical features of Graves’ disease (goiter, hyperthyroidism, ophthalmopathy, dermopathy occur when TSAbs predominate. Graves’ disease shows some peculiarities in pregnancy. The TRAbs disturb the maternal as well as the fetal thyroid function given their ability to cross the placental barrier. The pregnancy-related immunosuppression reduces the levels of TRAbs in most cases although they persist in women with active disease as well as in women who received definitive therapy (radioiodine or surgery before pregnancy. Changes of functional properties from stimulating to blocking the TSHR could occur during gestation. Drug therapy is the treatment of choice for hyperthyroidism during gestation. Antithyroid drugs also cross the placenta and therefore decrease both the maternal and the fetal thyroid hormone production. The management of Graves’ disease in pregnancy should be aimed at maintaining euthyroidism in the mother as well as in the fetus. Maternal and fetal thyroid dysfunction (hyperthyroidism as well as hypothyroidism are in fact associated with several morbidities. Monitoring of the maternal thyroid function, TRAbs measurement, and fetal surveillance are the mainstay for the management of Graves’ disease in pregnancy. This review summarizes the biochemical, immunological, and therapeutic aspects of Graves’ disease in pregnancy focusing on the role of the TRAbs in maternal and

  7. Structural Basis for Antibody Discrimination between Two Hormones That Recognize the Parathyroid Hormone Receptor

    Energy Technology Data Exchange (ETDEWEB)

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Ho, Patricia W.M.; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T.; Martin, T. John; Parker, Michael W.; (SVIMR-A); (Chugai); (Melbourne)

    2009-08-18

    Parathyroid hormone-related protein (PTHrP) plays a vital role in the embryonic development of the skeleton and other tissues. When it is produced in excess by cancers it can cause hypercalcemia, and its local production by breast cancer cells has been implicated in the pathogenesis of bone metastasis formation in that disease. Antibodies have been developed that neutralize the action of PTHrP through its receptor, parathyroid hormone receptor 1, without influencing parathyroid hormone action through the same receptor. Such neutralizing antibodies against PTHrP are therapeutically effective in animal models of the humoral hypercalcemia of malignancy and of bone metastasis formation. We have determined the crystal structure of the complex between PTHrP (residues 1-108) and a neutralizing monoclonal anti-PTHrP antibody that reveals the only point of contact is an {alpha}-helical structure extending from residues 14-29. Another striking feature is that the same residues that interact with the antibody also interact with parathyroid hormone receptor 1, showing that the antibody and the receptor binding site on the hormone closely overlap. The structure explains how the antibody discriminates between the two hormones and provides information that could be used in the development of novel agonists and antagonists of their common receptor.

  8. PGE2/EP3/SRC signaling induces EGFR nuclear translocation and growth through EGFR ligands release in lung adenocarcinoma cells

    Science.gov (United States)

    Bazzani, Lorenzo; Donnini, Sandra; Finetti, Federica; Christofori, Gerhard; Ziche, Marina

    2017-01-01

    Prostaglandin E2 (PGE2) interacts with tyrosine kinases receptor signaling in both tumor and stromal cells supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, A549 and GLC82, PGE2 promotes nuclear translocation of epidermal growth factor receptor (nEGFR), affects gene expression and induces cell growth. Indeed, cyclin D1, COX-2, iNOS and c-Myc mRNA levels are upregulated following PGE2 treatment. The nuclear localization sequence (NLS) of EGFR as well as its tyrosine kinase activity are required for the effect of PGE2 on nEGFR and downstream signaling activities. PGE2 binds its bona fide receptor EP3 which by activating SRC family kinases, induces ADAMs activation which, in turn, releases EGFR-ligands from the cell membrane and promotes nEGFR. Amphiregulin (AREG) and Epiregulin (EREG) appear to be involved in nEGFR promoted by the PGE2/EP3-SRC axis. Pharmacological inhibition or silencing of the PGE2/EP3/SRC-ADAMs signaling axis or EGFR ligands i.e. AREG and EREG expression abolishes nEGFR induced by PGE2. In conclusion, PGE2 induces NSCLC cell proliferation by EP3 receptor, SRC-ADAMs activation, EGFR ligands shedding and finally, phosphorylation and nEGFR. Since nuclear EGFR is a hallmark of cancer aggressiveness, our findings reveal a novel mechanism for the contribution of PGE2 to tumor progression. PMID:28415726

  9. 利用多克隆抗体有效识别中草药中抗表皮生长因子抑制剂%The Novel Application of Polyclonal Antibodies in Recognizing Anti-EGFR Inhibitors Directly from Herb

    Institute of Scientific and Technical Information of China (English)

    朱丽荔; 徐筱杰

    2003-01-01

    用一种已知的抗表皮生长因子受体抑制剂 (piceatannol) 作为半抗原与载体牛血清白蛋白 (BSA) 连接后免疫制备相应的多克隆抗体 (PcAb).利用该多克隆抗体来模拟酶制成亲和色谱柱,从一种藏药粗提物中将包括该半抗原在内的几种结构不同的抗表皮生长因子受体抑制剂识别出来 .研究采用前沿亲和色谱质谱联用技术对样品进行分析,可以直接从中药复杂体系中识别出有效成分并进行鉴定,实现中药有效成分的筛选与鉴定一体化技术 .%A polyclonal antibody (PcAb) prepared with piceatannol,a known inhibitor against the epidermal growth factor receptor (EGFR),was adopted as a stationary phase in the chromatographic system.Using the antibody to mimic the enzyme,several anti-EGFR inhibitors were recognized directly from a crude extract of Tibetan herb.Frontal affinity chromatography (FAC) was used here for analyzing molecular interactions between the analytes and an immobilized ligand (in this case the PcAb conjugated to Sepharose CL-4B) by calculating the extent of retardation of the elution front.By combining FAC with mass spectrometry (MS) in the current study,a very efficient and straightforward procedure was developed for analyzing the binding properties of different inhibitors.The novel effective screening of anti-EGFR inhibitors using PcAb from natural resources affords us a new feasible approach for the discovery of lead compounds.

  10. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist.

    Science.gov (United States)

    Lan, Hainan; Zheng, Xin; Khan, Muhammad Akram; Li, Steven

    2015-11-01

    In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3-GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    Science.gov (United States)

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed.

  12. EGFR CA repeat polymorphism predict clinical outcome in EGFR mutation positive NSCLC patients treated with erlotinib

    DEFF Research Database (Denmark)

    Winther Larsen, Anne; Nissen, Peter Henrik; Meldgaard, Peter;

    2014-01-01

    OBJECTIVES: Somatic mutations in the epidermal growth factor receptor (EGFR) are predictors of efficacy for treatment with the EGFR tyrosine kinase inhibitor erlotinib in non-small cell lung cancer (NSCLC). A CA repeat polymorphism in intron 1 of the EGFR gene influences the transcription...... of the EGFR gene. This study evaluates the association between the CA repeat polymorphism and outcome in NSCLC patients treated with erlotinib.MATERIALS AND METHODS: Number of CA repeats in the EGFR gene was evaluated with PCR-fragment length analysis by capillary electrophoresis in 432 advanced NSCLC...... patients treated with erlotinib irrespective of EGFR mutation status. Patients were dichotomized into harboring short allele (CA≤16 in any allele) or long alleles (CA>16 in both alleles). Number of repeats was correlated with clinical characteristic and outcome. A subgroup analysis was performed based...

  13. Drug resistance of epidermal growth factor receptor-tyrosine kinase inhibitors in treatment of advanced non-small cell lung cancer——A new dawn in challenge%晚期非小细胞肺癌EGFR-TKIs治疗的耐药机制研究——挑战中蕴含新的曙光

    Institute of Scientific and Technical Information of China (English)

    吴国明; 钱桂生

    2012-01-01

    Currently, molecularly target therapy has increasingly altered the strategies in advanced non-small cell lung cancer ( NSCLC). Epidermal growth factor receptor tyrosine kinase inhibitors ( EGFR-TKIs) , gefitinib and erlotinib, are regarded as the most successful target drugs. However, EGFR-TKIs resistance has become a major clinical challenge. EGFR-TKIs resistance includes the primary resistance and the acquired resistance. The primary resistance' s mechanisms are associated with other non-sensitive EGFR mutations such as exon 20 insertions and other gene mutations such as KRAS, BRAF and EML4-ALK. The acquired resistance' s mechanisms are often associated with the secondary T790 mutation and MET gene amplification. At present, new strategies in overcoming EGFR-TKIs resistance are mainly focusing on irreversible EGFR inhibitors and MET inhibitors.

  14. Antibodies to probe endogenous G protein-coupled receptor heteromer expression, regulation and function.

    Directory of Open Access Journals (Sweden)

    Ivone eGomes

    2014-12-01

    Full Text Available Over the last decade an increasing number of studies have focused on the ability of G protein-coupled receptors to form heteromers and explored how receptor heteromerization modulates the binding, signaling and trafficking properties of individual receptors. Most of these studies were carried out in heterologous cells expressing epitope tagged receptors. Very little information is available about the in vivo physiological role of G protein-coupled receptor heteromers due to a lack of tools to detect their presence in endogenous tissue. Recent advances such as the generation of mouse models expressing fluorescently labeled receptors, of TAT based peptides that can disrupt a given heteromer pair, or of heteromer-selective antibodies that recognize the heteromer in endogenous tissue have begun to elucidate the physiological and pathological roles of receptor heteromers. In this review we have focused on heteromer-selective antibodies and describe how a subtractive immunization strategy can be successfully used to generate antibodies that selectively recognize a desired heteromer pair. We also describe the uses of these antibodies to detect the presence of heteromers, to study their properties in endogenous tissues, and to monitor changes in heteromer levels under pathological conditions. Together, these findings suggest that G protein-coupled receptor heteromers represent unique targets for the development of drugs with reduced side-effects.

  15. Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib.

    Science.gov (United States)

    Younes, Mohamad; Wu, Zherui; Dupouy, Sandra; Lupo, Audrey Mansuet; Mourra, Najat; Takahashi, Takashi; Fléjou, Jean François; Trédaniel, Jean; Régnard, Jean François; Damotte, Diane; Alifano, Marco; Forgez, Patricia

    2014-09-30

    Alterations in the signaling pathways of epidermal growth factor receptors (HERs) are associated with tumor aggressiveness. Neurotensin (NTS) and its high affinity receptor (NTSR1) are up regulated in 60% of lung cancers. In a previous clinical study, NTSR1 overexpression was shown to predict a poor prognosis for 5 year overall survival in a selected population of stage I lung adenocarcinomas treated by surgery alone. In a second study, shown here, the frequent and high expression of NTSR1 was correlated with a pejorative prognosis in 389 patients with stage I to III lung adenocarcinoma, and was an independent prognosis marker. Interactions between NTS and NTSR1 induce pro-oncogenic biological effects associated with neoplastic processes and tumor progression. Here we highlight the cellular mechanisms activated by Neurotensin (NTS) and its high affinity receptor (NTSR1) contributing to lung cancer cell aggressiveness. We show that the NTS autocrine and/or paracrine regulation causes EGFR, HER2, and HER3 over-expression and activation in lung tumor cells. The EGFR and HER3 autocrine activation is mediated by MMP1 activation and EGF "like" ligands (HB-EGF, Neuregulin 1) release. By establishing autocrine and/or paracrine NTS regulation, we show that tumor growth is modulated according to NTS expression, with a low growth rate in those tumors that do not express NTS. Accordingly, xenografted tumors expressing NTS and NTSR1 showed a positive response to erlotinib, whereas tumors void of NTSR1 expression had no detectable response. This is consistent with the presence of a NTS autocrine loop, leading to the sustained activation of EGFR and responsible for cancer aggressiveness. We propose the use of NTS/NTSR1 tumor expression, as a biomarker for the use of EGFR tyrosine kinase inhibitors in patients lacking EGFR mutation.

  16. Individualized therapies in colorectal cancer: KRAS as a marker for response to EGFR-targeted therapy

    Directory of Open Access Journals (Sweden)

    Li Kuiyuan

    2009-04-01

    Full Text Available Abstract Individualized therapies that are tailored to a patient's genetic composition will be of tremendous value for treatment of cancer. Recently, Kirsten ras (KRAS status has emerged as a predictor of response to epidermal growth factor receptor (EGFR targeted therapies. In this article, we will discuss targeted therapies for colorectal cancers (CRC based on EGFR signaling pathway and review published data about the potential usefulness of KRAS as a biological marker for response to these therapies. Results from relevant studies published since 2005 and unpublished results presented at national meetings were retrieved and summarized. These studies reflected response (or lack of response to EGFR-targeted therapies in patients with metastatic CRC as a function of KRAS status. It has become clear that patients with colorectal cancer whose tumor has an activating mutation in KRAS do not respond to monoclonal antibody therapies targeting EGFR. It should now become a standard practice that any patients being considered for EGFR targeted therapies have their tumors tested for KRAS status and only those with wild-type KRAS being offered such therapies.

  17. Ability of the Met kinase inhibitor crizotinib and new generation EGFR inhibitors to overcome resistance to EGFR inhibitors.

    Directory of Open Access Journals (Sweden)

    Shigeki Nanjo

    Full Text Available PURPOSE: Although EGF receptor tyrosine kinase inhibitors (EGFR-TKI have shown dramatic effects against EGFR mutant lung cancer, patients ultimately develop resistance by multiple mechanisms. We therefore assessed the ability of combined treatment with the Met inhibitor crizotinib and new generation EGFR-TKIs to overcome resistance to first-generation EGFR-TKIs. EXPERIMENTAL DESIGN: Lung cancer cell lines made resistant to EGFR-TKIs by the gatekeeper EGFR-T790M mutation, Met amplification, and HGF overexpression and mice with tumors induced by these cells were treated with crizotinib and a new generation EGFR-TKI. RESULTS: The new generation EGFR-TKI inhibited the growth of lung cancer cells containing the gatekeeper EGFR-T790M mutation, but did not inhibit the growth of cells with Met amplification or HGF overexpression. In contrast, combined therapy with crizotinib plus afatinib or WZ4002 was effective against all three types of cells, inhibiting EGFR and Met phosphorylation and their downstream molecules. Crizotinib combined with afatinib or WZ4002 potently inhibited the growth of mouse tumors induced by these lung cancer cell lines. However, the combination of high dose crizotinib and afatinib, but not WZ4002, triggered severe adverse events. CONCLUSIONS: Our results suggest that the dual blockade of mutant EGFR and Met by crizotinib and a new generation EGFR-TKI may be promising for overcoming resistance to reversible EGFR-TKIs but careful assessment is warranted clinically.

  18. Analysis of TRAIL receptor expression using anti-TRAIL death receptor-5 monoclonal antibodies

    Institute of Scientific and Technical Information of China (English)

    马远方; 杨东亮; 陈有海

    2003-01-01

    ObjectiveTo establish hybridomas that produce anti-death receptor-5 (DR5) monoclonal antibodies (mAbs) and check the surface expression of DR5 (sDR5) on cell lines.MethodsThe cDNA of human DR5 was cloned into pGAPZα. Recombinant Pichia pastoris clones generated via homologous recombination secreted high levels of sDR5. The sDR5 was purified using a nickel ion column. BALB/c mice were immunized with sDR5 and spleen cells were fused with the SP2/0-Ag 14. Monoclonal antibodies were tested by ELISA for their abilities binding to sDR5 and by flow cytometry for thereactivities to surface DR5 of Jurkat cells. Surface expression of the TRAIL receptor was determined by flow cytometric analysis measuring the binding of anti-DR5 mAb. Resultse to sDR5 as observed through ELISA. It was discovered using flow cytometry that only IgG was able to bind to DR5 on the plasma membrane of Jurkat cells. sDR5was found to completely inhibit anti-DR5 mAb binding to Jurkat cells. Pproximately 95% of Jurkat cells, 98% SW480, 99% U937, 100% U87, 86% HCT116, 64% HL-60, 47% HeLa and 13% K562 cells express membrane DR5. ConclusionsThese results demonstrate that anti-DR5 mAb is able to specifically bind to DR5and that DR5 is expressed at high levels on Jurkat, SW480, U87, U937 and HCT116cell lines, and at medium levels on HL-60 and HeLa cell lines. The expressionof DR5 on K562 cell line is low.

  19. Therapeutic targeting of epidermal growth factor receptor in human cancer: successes and limitations%Therapeutic targeting of epidermal growth factor receptor in humancancer: successes and limitations

    Institute of Scientific and Technical Information of China (English)

    Jill Wykosky; Tim Fenton; Frank Furnari; Webster K. Cavenee

    2011-01-01

    Epidermal growth factor receptor (EGFR) is one of the most commonly altered genes in human cancer by way of over-expression, amplification, and mutation. Targeted inhibition of EGFR activity suppresses signal transduction pathways which control tumor cell growth, proliferation, and resistance to apoptosis. Small molecule tyrosine kinase inhibitors and monoclonal antibodies are among the most common EGFR-targeting agents and have been used clinically for treating various malignancies. This review discusses the successes and challenges of targeting EGFR in human cancer. The genetic alterations of EGFR tend to occur more often in some solid tumors than others, as do the mechanisms of resistance to targeted inhibition. The clinical and basic science experiences with these agents thus far have important implications for the future of therapeutic targeting of EGFR.

  20. Chemokine receptor-specific antibodies in cancer immunotherapy: achievements and challenges.

    Science.gov (United States)

    Vela, Maria; Aris, Mariana; Llorente, Mercedes; Garcia-Sanz, Jose A; Kremer, Leonor

    2015-01-01

    The 1990s brought a burst of information regarding the structure, expression pattern, and role in leukocyte migration and adhesion of chemokines and their receptors. At that time, the FDA approved the first therapeutic antibodies for cancer treatment. A few years later, it was reported that the chemokine receptors CXCR4 and CCR7 were involved on directing metastases to liver, lung, bone marrow, or lymph nodes, and the over-expression of CCR4, CCR6, and CCR9 by certain tumors. The possibility of inhibiting the interaction of chemokine receptors present on the surface of tumor cells with their ligands emerged as a new therapeutic approach. Therefore, many research groups and companies began to develop small molecule antagonists and specific antibodies, aiming to neutralize signaling from these receptors. Despite great expectations, so far, only one anti-chemokine receptor antibody has been approved for its clinical use, mogamulizumab, an anti-CCR4 antibody, granted in Japan to treat refractory adult T-cell leukemia and lymphoma. Here, we review the main achievements obtained with anti-chemokine receptor antibodies for cancer immunotherapy, including discovery and clinical studies, proposed mechanisms of action, and therapeutic applications.

  1. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins

    Science.gov (United States)

    Guix, Marta; Faber, Anthony C.; Wang, Shizhen Emily; Olivares, Maria Graciela; Song, Youngchul; Qu, Sherman; Rinehart, Cammie; Seidel, Brenda; Yee, Douglas; Arteaga, Carlos L.; Engelman, Jeffrey A.

    2008-01-01

    Although some cancers are initially sensitive to EGFR tyrosine kinase inhibitors (TKIs), resistance invariably develops. We investigated mechanisms of acquired resistance to the EGFR TKI gefitinib by generating gefitinib-resistant (GR) A431 squamous cancer cells. In GR cells, gefitinib reduced phosphorylation of EGFR, ErbB-3, and Erk but not Akt. These cells also showed hyperphosphorylation of the IGFI receptor (IGFIR) and constitutive association of IRS-1 with PI3K. Inhibition of IGFIR signaling disrupted the association of IRS-1 with PI3K and restored the ability of gefitinib to downregulate PI3K/Akt signaling and to inhibit GR cell growth. Gene expression analyses revealed that GR cells exhibited markedly reduced IGF-binding protein 3 (IGFBP-3) and IGFBP-4 RNA. Addition of recombinant IGFBP-3 restored the ability of gefitinib to downregulate PI3K/Akt signaling and to inhibit cell growth. Finally, gefitinib treatment of mice with A431 xenografts in combination with an IGFIR-specific monoclonal antibody prevented tumor recurrence, whereas each drug given alone was unable to do so. These data suggest that loss of expression of IGFBPs in tumor cells treated with EGFR TKIs derepresses IGFIR signaling, which in turn mediates resistance to EGFR antagonists. Moreover, combined therapeutic inhibition of EGFR and IGFIR may abrogate this acquired mechanism of drug resistance and is thus worthy of prospective clinical investigation. PMID:18568074

  2. Synergistic cytotoxicity of afatinib and cetuximab against EGFR T790M involves Rab11-dependent EGFR recycling.

    Science.gov (United States)

    Watanuki, Zenta; Kosai, Hitomi; Osanai, Nanae; Ogama, Naoko; Mochizuki, Mai; Tamai, Keiichi; Yamaguchi, Kazunori; Satoh, Kennichi; Fukuhara, Tatsuro; Maemondo, Makoto; Ichinose, Masakazu; Nukiwa, Toshihiro; Tanaka, Nobuyuki

    2014-12-12

    EGFR is an important therapeutic target for non-small cell lung cancers (NSCLCs). Tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib, are effective in cases with EGFR-activating mutations. However, most such cases become resistant through a secondary EGFR mutation, T790M. While the second-generation TKI afatinib has a higher affinity for double-mutant EGFRs, better efficacy is needed. Combining afatinib with the anti-EGFR monoclonal antibody cetuximab improves clinical outcomes, but the mechanism is unclear. Here we examined this effect using erythroleukemic K562 cells. The activating EGFR mutation L858R is sensitive to first-generation TKIs, and adding T790M confers resistance to these drugs. This double-mutant EGFR was moderately sensitive to afatinib, but responded weakly to cetuximab. Combined afatinib and cetuximab synergistically increased their cytotoxicity for K562 cells expressing the double-mutant EGFR. Apoptosis in these cells followed induction of the pro-apoptotic protein BIM. Unexpectedly, afatinib caused redistribution of EGFR to the cell surface through Rab11a-dependent recycling. Cetuximab reduced cell-surface EGFR, and total EGFR decreased synergistically when cetuximab was combined with afatinib. Our results suggest that the synergistic effect exerted by afatinib and cetuximab on NSCLCs is associated with BIM induction and alterations in EGFR status.

  3. Nimotuzumab promotes radiosensitivity of EGFR-overexpression esophageal squamous cell carcinoma cells by upregulating IGFBP-3

    Directory of Open Access Journals (Sweden)

    Zhao Lei

    2012-12-01

    Full Text Available Abstract Background Epidermal growth factor receptor (EGFR is suggested to predict the radiosensitivity and/or prognosis of human esophageal squamous cell carcinoma (ESCC. The objective of this study was to investigate the efficacy of Nimotuzumab (an anti-EGFR monoclonal antibody on ESCC radiotherapy (RT and underlying mechanisms. Methods Nimotuzumab was administrated to 2 ESCC cell lines KYSE30 and TE-1 treated with RT. Cell growth, colony formation and apoptosis were used to measure anti-proliferation effects. The method of RNA interference was used to investigate the role of insulin-like growth factor binding protein-3 (IGFBP-3 in ESCC cells radiosensitivity treated with Nimotuzumab. In vivo effect of Nimotuzumab on ESCC radiotherapy was done using a mouse xenograft model. Results Nimotuzumab enhanced radiation response of KYSE30 cells (with high EGFR expression in vitro, as evidenced by increased radiation-inhibited cell growth and colony formation and radiation-mediated apoptosis. Mechanism study revealed that Nimotuzumab inhibited phosphorylated EGFR (p-EGFR induced by EGF in KYSE30 cells. In addition, knockdown of IGFBP-3 by short hairpin RNA significantly reduced KYSE30 cells radiosensitivity (PP>0.05. In KYSE30 cell xenografts, Nimotuzumab combined with radiation led to significant tumor growth delay, compared with that of radiation alone (P=0.029, and also with IGFBP-3 up-regulation in tumor tissue. Conclusions Nimotuzumab could enhance the RT effect of ESCC cells with a functional active EGFR pathway. In particular, the increased ESCC radiosensitivity by Nimotuzumab might be dependent on the up-regulation of IGFBP-3 through EGFR-dependent pathway.

  4. Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo.

    Science.gov (United States)

    Nitta, Yusuke; Shimizu, Saki; Shishido-Hara, Yukiko; Suzuki, Kaori; Shiokawa, Yoshiaki; Nagane, Motoo

    2016-03-01

    A mutant form of epidermal growth factor receptor (EGFR), EGFRvIII, is common in glioblastoma (GBM) and confers enhanced tumorigenic activity and drug resistance. Nimotuzumab, an anti-EGFR antibody, has shown preclinical and clinical activity to GBM, but its specific activity against EGFRvIII has not been fully investigated. Human glioma U87MG or LNZ308 cells overexpressing either wild-type (wt) EGFR or EGFRvIII were treated with nimotuzumab, temozolomide, or both. Expression and phosphorylation status of molecules were determined by Western blot analysis. Methylation status of promoter region of O(6) -methylguanine-DNA methyltransferase (MGMT) was detected by methylation-specific PCR. Antitumor activity was tested using nude mice bearing either subcutaneous or intracerebral xenografts along with analyses of EGFR phosphorylation status, proliferation, apoptosis, and vessel density. Nimotuzumab treatment resulted in reduction of EGFRvIII tyrosine phosphorylation with a decrease in Akt phosphorylation that was greater than that of wtEGFR. Correspondingly, antitumor effects, growth suppression and survival elongation, were more significant in mice bearing either subcutaneous or intracerebral tumor expressing EGFRvIII than in those expressing wtEGFR. These effects were markedly increased when temozolomide was combined with nimotuzumab. The post-treatment recurrent brain tumors exhibited a decrease in expression of the mismatch repair (MMR) proteins, MSH6 and MLH1, but their methylated MGMT status did not changed. Nimotuzumab has in vivo antitumor activity against GBM, especially those expressing EGFRvIII, when combined with temozolomide. This could provide a basis for preselection of patients with GBM by EGFR status who might benefit from the nimotuzumab and temozolomide combination therapy.

  5. In vivo and in vitro antitumor activity of oxaliplatin in combination with cetuximab in human colorectal tumor cell lines expressing different level of EGFR.

    Science.gov (United States)

    Balin-Gauthier, Diane; Delord, Jean-Pierre; Rochaix, Philippe; Mallard, Valérie; Thomas, Fabienne; Hennebelle, Isabelle; Bugat, Roland; Canal, Pierre; Allal, Cuider

    2006-06-01

    This study aimed to assess the effect of cetuximab (C225, Erbitux, a chimeric anti-epidermal growth factor receptor (EGFR) monoclonal antibody) in combination with oxaliplatin in vitro and in vivo on four colon cancer cell lines (HCT-8; HT-29, SW620, HCT-116) expressing different levels of EGFR. In vitro, cetuximab combined with oxaliplatin significantly decreased the IC50 values of oxaliplatin in HCT-8 (EGF-R moderate) and HT-29 (EGF-R weak) cell lines, while SW620 (EGF-R negative) and HCT-116 (EGFR strong) cell lines remained unresponsive. This combination was synergistic in HCT-8 and HT-29 cell lines while cetuximab induced no major modification of the IC50 of oxaliplatin in HCT-116 or SW620 cell lines. We then determined the effect of cetuximab on the EGF-induced EGFR phosphorylation and we highlight a correlation between the basal level of phospho-EGFR and the response to the combination. In vivo, the combination of cetuximab plus oxaliplatin significantly inhibited tumor growth of HCT-8 and HT-29 (tumor delay or Td = 21.6+/-2.9 and 18.0+/-2.9 days respectively, synergistic effect) compared to either oxaliplatin (Td=12.6+/-2.3 and 14.4+/-3.2 days respectively) or cetuximab (Td=13.4+/-2.9 and 14.5+/-2.4 days, respectively) alone in xenograft models. The combination had no effect on HCT-116 and SW-620 cell lines. The observed responses are strictly dependent on the cell type, and are not correlated with the level of EGFR expression but related to the basal level of phospho-EGFR. This study provides promising preclinical results for a possible clinical investigation of the combination of oxaliplatin plus cetuximab in chemorefractory colorectal tumors.

  6. Role of antibodies in developing drugs that target G-protein-coupled receptor dimers.

    Science.gov (United States)

    Hipser, Chris; Bushlin, Ittai; Gupta, Achla; Gomes, Ivone; Devi, Lakshmi A

    2010-01-01

    G-protein-coupled receptors are important molecular targets in drug discovery. These receptors play a pivotal role in physiological signaling pathways and are targeted by nearly 50% of currently available drugs. Mounting evidence suggests that G-protein-coupled receptors form dimers, and various studies have shown that dimerization is necessary for receptor maturation, signaling, and trafficking. However, the physiological implications of dimerization in vivo have not been well explored because detection of GPCR dimers in endogenous systems has been a challenging task. One exciting new approach to this challenge is the generation of antibodies against specific G-protein-coupled receptor dimers. Such antibodies could be used as tools for characterization of heteromer-specific function; as reagents for their purification, tissue localization, and regulation in vivo; and as probes for mapping their functional domains. In addition, such antibodies could serve as alternative ligands for G-protein-coupled receptor heteromers. Thus, heteromer-specific antibodies represent novel tools for the exploration and manipulation of G-protein-coupled receptor-dimer pharmacology.

  7. DNA methylation down-regulates EGFR expression in chicken

    Science.gov (United States)

    The epidermal growth factor receptor (EGFR), a growth-factor-receptor tyrosine kinase, was found up-regulated in numerous tumors, which provides a good target for cancer therapy. Although it was documented that oncoviruses are responsible for the activation of EGFR in tumors, the impact of Marek’s d...

  8. Bispecific T cell engager (BiTE®) antibody constructs can mediate bystander tumor cell killing

    Science.gov (United States)

    Ross, Sandra L.; Sherman, Marika; McElroy, Patricia L.; Lofgren, Julie A.; Moody, Gordon; Baeuerle, Patrick A.; Coxon, Angela

    2017-01-01

    For targets that are homogenously expressed, such as CD19 on cells of the B lymphocyte lineage, immunotherapies can be highly effective. Targeting CD19 with blinatumomab, a CD19/CD3 bispecific antibody construct (BiTE®), or with chimeric antigen receptor T cells (CAR-T) has shown great promise for treating certain CD19-positive hematological malignancies. In contrast, solid tumors with heterogeneous expression of the tumor-associated antigen (TAA) may present a challenge for targeted therapies. To prevent escape of TAA-negative cancer cells, immunotherapies with a local bystander effect would be beneficial. As a model to investigate BiTE®-mediated bystander killing in the solid tumor setting, we used epidermal growth factor receptor (EGFR) as a target. We measured lysis of EGFR-negative populations in vitro and in vivo when co-cultured with EGFR-positive cells, human T cells and an EGFR/CD3 BiTE® antibody construct. Bystander EGFR-negative cells were efficiently lysed by BiTE®-activated T cells only when proximal to EGFR-positive cells. Our mechanistic analysis suggests that cytokines released by BiTE®-activated T-cells induced upregulation of ICAM-1 and FAS on EGFR-negative bystander cells, contributing to T cell-induced bystander cell lysis. PMID:28837681

  9. EGFR-targeted delivery of DOX-loaded Fe3O4@ polydopamine multifunctional nanocomposites for MRI and antitumor chemo-photothermal therapy.

    Science.gov (United States)

    Mu, Xupeng; Zhang, Fuqiang; Kong, Chenfei; Zhang, Hongmei; Zhang, Wenjing; Ge, Rui; Liu, Yi; Jiang, Jinlan

    2017-01-01

    Multifunctional nanocomposites that have multiple therapeutic functions together with real-time imaging capabilities have attracted intensive concerns in the diagnosis and treatment of cancer. This study developed epidermal growth factor receptor (EGFR) antibody-directed polydopamine-coated Fe3O4 nanoparticles (Fe3O4@PDA NPs) for magnetic resonance imaging and antitumor chemo-photothermal therapy. The synthesized Fe3O4@PDA-PEG-EGFR-DOX NPs revealed high storage capacity for doxorubicin (DOX) and high photothermal conversion efficiency. The cell viability assay of Fe3O4@PDA-PEG-EGFR NPs indicated that Fe3O4@ PDA-PEG-EGFR NPs had no cell cytotoxicity. However, Fe3O4@PDA-PEG-EGFR-DOX NPs could significantly decrease cell viability (~5% of remaining cell viability) because of both photothermal ablation and near-infrared light-triggered DOX release. Meanwhile, the EGFR-targeted Fe3O4@PDA-PEG-EGFR-DOX NPs significantly inhibited the growth of tumors, showing a prominent in vivo synergistic antitumor effect. This study demonstrated the potential of using Fe3O4@PDA NPs for combined cancer chemo-photothermal therapy with increased efficacy.

  10. The Fc and not CD4 Receptor Mediates Antibody Enhancement of HIV Infection in Human Cells

    Science.gov (United States)

    Homsy, Jacques; Meyer, Mia; Tateno, Masatoshi; Clarkson, Sarah; Levy, Jay A.

    1989-06-01

    Antibodies that enhance human immunodeficiency virus (HIV) infectivity have been found in the blood of infected individuals and in infected or immunized animals. These findings raise serious concern for the development of a safe vaccine against acquired immunodeficiency syndrome. To address the in vivo relevance and mechanism of this phenomenon, antibody-dependent enhancement of HIV infectivity in peripheral blood macrophages, lymphocytes, and human fibroblastoid cells was studied. Neither Leu3a, a monoclonal antibody directed against the CD4 receptor, nor soluble recombinant CD4 even at high concentrations prevented this enhancement. The addition of monoclonal antibody to the Fc receptor III (anti-FcRIII), but not of antibodies that react with FcRI or FcRII, inhibited HIV type 1 and HIV type 2 enhancement in peripheral blood macrophages. Although enhancement of HIV infection in CD4+ lymphocytes could not be blocked by anti-FcRIII, it was inhibited by the addition of human immunoglobulin G aggregates. The results indicate that the FcRIII receptor on human macrophages and possibly another Fc receptor on human CD4+ lymphocytes mediate antibody-dependent enhancement of HIV infectivity and that this phenomenon proceeds through a mechanism independent of the CD4 protein.

  11. Epidermal growth factor receptor (EGFR mutation status and Rad51 determine the response of glioblastoma (GBM to multimodality therapy with cetuximab, temozolomide and radiation

    Directory of Open Access Journals (Sweden)

    Phyllis Rachelle Wachsberger

    2013-02-01

    Full Text Available Purpose: EGFR amplification and mutation (i.e., EGFRvIII are found in 40% of primary GBM tumors and are believed to contribute to tumor development and therapeutic resistance. This study was designed to investigate how EGFR mutational status modulates response to multimodality treatment with cetuximab, an anti-EGFR inhibitor, the chemotherapeutic agent, temozolamide (TMZ and radiation therapy (RT Methods and Materials: In vitro and in vivo experiments were performed on two isogenic U87 GBM cell lines: one overexpressing wildtype EGFR (U87wtEGFR and the other overexpressing EGFRvIII (U87EGFRvIII. Results: Xenografts harboring EGFRvIII were more sensitive to TMZ alone and TMZ in combination with RT and/or cetuximab than xenografts expressing wtEGFR. In vitro experiments demonstrated that U87EGFRvIII-expressing tumors appear to harbor defective DNA homologous recombination repair in the form of Rad51 processing, Conclusions: The difference in sensitivity between EGFR-expressing and EGFRvIII-expressing tumors to combined modality treatment may help in the future tailoring of GBM therapy to subsets of patients expressing more or less of the EGFR mutant.

  12. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures.

    Science.gov (United States)

    Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R

    2016-06-01

    Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( BSC cultures with 10 n TBA in the presence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( BSC cultures treated with 10 n TBA exhibit increased ( BSC cultures.

  13. Dysregulation and detection methods of EGFR in oral cancer. A narrative review.

    Directory of Open Access Journals (Sweden)

    Carolina Somarriva

    2016-11-01

    Full Text Available Epidermal growth factor receptor (EGFR is a transmembrane glycoprotein, with an intracellular domain and tyrosine kinase function (TK involved in cell proliferation. Dysfunctions in EGFR signaling pathways have been associated with oral malignant tumors such as oral squamous cell carcinoma (OSCC. Dysfunctions of EGFR may result from: increased EGF ligand; EGFR overexpression and copy number gain of the EGFR gene (EGFR CNG; EGFR mutations; failure in the downregulation of EGFR; and EGFR crosstalk. Of these alterations, overexpression of EGFR is by far the most studied dysfunction in OSCC. Clinicians should identify possible alterations of EGFR in the oral mucosa of patients, as EGFR can act as a biomarker for the diagnosis and prognosis of OSCC. Currently, there are several methods and techniques for detecting EGFR. Immunohistochemistry (IHC, fluorescence in situ hybridization (FISH and polymerase chain reaction (PCR, are used to identify overexpression of EGFR, EGFR CNG and EGFR mutations, respectively. Detection of EGFR as a biomarker is key to identify any oral malignant transformation. Consequently, it becomes imperative to implement a non-invasive and inexpensive method of early diagnosis for OSCC in clinical practice.

  14. Denatured G-protein coupled receptors as immunogens to generate highly specific antibodies.

    Science.gov (United States)

    Talmont, Franck; Moulédous, Lionel; Boué, Jérôme; Mollereau, Catherine; Dietrich, Gilles

    2012-01-01

    G-protein coupled receptors (GPCRs) play a major role in a number of physiological and pathological processes. Thus, GPCRs have become the most frequent targets for development of new therapeutic drugs. In this context, the availability of highly specific antibodies may be decisive to obtain reliable findings on localization, function and medical relevance of GPCRs. However, the rapid and easy generation of highly selective anti-GPCR antibodies is still a challenge. Herein, we report that highly specific antibodies suitable for detection of GPCRs in native and unfolded forms can be elicited by immunizing animals against purified full length denatured recombinant GPCRs. Contrasting with the currently admitted postulate, our study shows that an active and well-folded GPCR is not required for the production of specific anti-GPCR antibodies. This new immunizing strategy validated with three different human GPCR (μ-opioid, κ-opioid, neuropeptide FF2 receptors) might be generalized to other members of the GPCR family.

  15. 表皮生长因子受体抑制剂耐药机制的研究进展%Research Progress of Mechanism of Resistance to EGFR Inhibitors

    Institute of Scientific and Technical Information of China (English)

    冯昌怡

    2012-01-01

    The epidermal growth factor receptor( EGFR )is an important molecular target in cancer treatment, and two classes of anti-EGFR agents, the monoclonal antibodies and the small molecular tyro-sine kinase inhibitors,have developed in clinical successfully. Howeverthe primary and secondary resistance to anti-EGFR agents have been paid increasing attention. The mechanisms of resistance to EGFR inhibitors in solid tumors may include:EGFR,K-ras,Braf mutations;autocrine/paracrine production of lig-and;MET amplification; constitutive activation of a downstream pathway; activation of alternative pathways; activation of EGFR-independent, tumour-induced angiogenesis and etc. .%表皮生长因子受体(EGFR)是抗肿瘤治疗中重要的分子靶点,两类抗表皮生长因子受体(anti-EGFR)药物:单克隆抗体及小分子酪氨酸激酶抑制剂已成功应用于临床,但其原发和继发耐药问题也日益受到关注.肿瘤对anti-EGFR药物耐药的可能机制包括:EGFR、K-ras、Braf突变;配体的自分泌或旁分泌;原癌基因MET扩增;下游通路持续活化;激活替代通路;肿瘤诱导不依赖于EGFR活化的血管生成等.

  16. A phosphorylation defective retinoic acid receptor mutant mimics the effects of retinoic acid on EGFR mediated AP-1 expression and cancer cell proliferation

    Directory of Open Access Journals (Sweden)

    Kim Randie

    2002-10-01

    Full Text Available Abstract Background The effects of the vitamin A metabolite retinoic acid (RA are mediated at the transcriptional level by retinoic acid receptors (RAR. These proteins are part of a superfamily of transcription factors which activate target gene expression when bound to their respective ligands. In addition to ligand binding, heterodimerization with transcriptional cofactors and posttranslational modification such as phosphorylation are also critical for transactivation function. Previous studies have shown that phosphorylation of a serine residue at amino acid 77 in the RARα amino terminus was required for basal activation function of the transcription factor. Results We have determined that RA inhibits cyclin H and cdk7 expression thereby decreasing levels of phosphorylated RARα in human cancer cell lines. To determine the effects of decreased RARα phosphorylation in human cancer cells, we stably transfected a phosphorylation defective mutant RARα expression construct into SCC25 cultures. Cells expressing the mutant RARα proliferated more slowly than control clones. This decreased proliferation was associated with increased cyclin dependent kinase inhibitor expression and decreased S phase entry. In the absence of ligand, the RARα mutant inhibited AP-1 activity to an extent similar to that of RA treated control clones. Levels of some AP-1 proteins were inhibited due to decreased EGFR expression upstream in the signaling pathway. Conclusions These results indicate that hypophosphorylated RARα can mimic the anti-AP-1 effects of RA in the absence of ligand.

  17. Transfusion-induced, Fc gamma-receptor-blocking antibodies: spectrum of cellular reactivity.

    Science.gov (United States)

    Forwell, M A; Peel, M G; Froebel, K S; Belch, J J; MacSween, R N; Sandilands, G P

    1986-06-01

    In this study we have shown that transfusion-induced Fc gamma R-blocking antibodies have the capacity to react with various cell types which are known to possess this receptor i.e., lymphocytes (T and B cells), polymorphs and platelets. In contrast we were unable to demonstrate any reactivity with K (or NK) lymphocytes or with monocytes. The spectrum of cellular reactivity exhibited by these antibodies suggests that their effect on the immune system may be complex.

  18. Commercially available antibodies against human and murine histamine H₄-receptor lack specificity.

    Science.gov (United States)

    Beermann, Silke; Seifert, Roland; Neumann, Detlef

    2012-02-01

    Antibodies are important tools to detect expression and localization of proteins within the living cell. However, for a series of commercially available antibodies which are supposed to recognize G-protein-coupled receptors (GPCR), lack of specificity has been described. In recent publications, antisera against the histamine H₄-receptor (H₄R), which is a member of the GPCR family, have been used to demonstrate receptor expression. However, a comprehensive characterization of these antisera has not been performed yet. Therefore, the purpose of our study was to evaluate the specificity of three commercially available H₄R antibodies. Sf9 insect cells and HEK293 cells expressing recombinant murine and human H₄R, spleen cells obtained from H₄⁻/⁻ and from wild-type mice, and human CD20⁺ and CD20⁻ peripheral blood cells were analyzed by flow cytometry and Western blot using three commercially available H₄R antibodies. Our results show that all tested H₄R antibodies bind to virtually all cells, independently of the expression of H₄R, thus in an unspecific fashion. Also in Western blot, the H₄R antibodies do not bind to the specified protein. Our data underscore the importance of stringent evaluation of antibodies using valid controls, such as cells of H₄R⁻/⁻ mice, to show true receptor expression and antigen specificity. Improved validation of commercially available antibodies prior to release to the market would avoid time-consuming and expensive validation assays by the user.

  19. Evidence for antimuscarinic acetylcholine receptor antibody-mediated secretory dysfunction in nod mice.

    Science.gov (United States)

    Nguyen, K H; Brayer, J; Cha, S; Diggs, S; Yasunari, U; Hilal, G; Peck, A B; Humphreys-Beher, M G

    2000-10-01

    Antibodies directed against general and specific target-organ autoantigens are present in the sera of human patients and animal models with autoimmune disease. The relevance of these autoantibodies to the disease process remains ambiguous in most cases. In autoimmune exocrinopathy (Sjögren's syndrome), autoantibodies to the intracellular nuclear proteins SSA/Ro and SSB/La, as well as the cell surface muscarinic cholinergic receptor (M3) are observed. To evaluate the potential role of these factors in the loss of secretory function of exocrine tissues, a panel of monoclonal and polyclonal antibodies was developed for passive transfer into the NOD animal model. Monoclonal antibodies to mouse SSB/La, rat M3 receptor, and a rabbit polyclonal antiparotid secretory protein antibody were obtained for this study. These antibody reagents were subsequently infused into NOD-scid mice. Saliva flow rates were subsequently monitored over a 72-hour period. Submandibular gland lysates were examined by Western blotting for alteration of the distribution of the water channel protein aquaporin (AQP). Evaluation of the secretory response indicated that only antibodies directed toward the extracellular domains of the M3 receptor were capable of mediating the exocrine dysfunction aspect of the clinical pathology of the autoimmune disease. In vitro stimulation with a muscarinic agonist of submandibular gland cells isolated from mice treated with anti-M3 antibody, but not saline or the isotype control, failed to translocate AQP to the plasma membrane. These findings define a clear role for the humoral immune response and the targeting of the cell surface M3 signal transduction receptor as primary events in the development of clinical symptoms of autoimmune exocrinopathy. Furthermore, the anti-M3 receptor activity may negatively affect the secretory response through perturbation of normal signal transduction events, leading to translocation of the epithelial cell water channel.

  20. GH receptor plays a major role in liver regeneration through the control of EGFR and ERK1/2 activation.

    Science.gov (United States)

    Zerrad-Saadi, Amal; Lambert-Blot, Martine; Mitchell, Claudia; Bretes, Hugo; Collin de l'Hortet, Alexandra; Baud, Véronique; Chereau, Fanny; Sotiropoulos, Athanassia; Kopchick, John J; Liao, Lan; Xu, Jianming; Gilgenkrantz, Hélène; Guidotti, Jacques-Emmanuel

    2011-07-01

    GH is a pleiotropic hormone that plays a major role in proliferation, differentiation, and metabolism via its specific receptor. It has been previously suggested that GH signaling pathways are required for normal liver regeneration but the molecular mechanisms involved have yet to be determined. The aim of this study was to identify the mechanisms by which GH controls liver regeneration. We performed two thirds partial hepatectomies in GH receptor (GHR)-deficient mice and wild-type littermates and showed a blunted progression in the G(1)/S transition phase of the mutant hepatocytes. This impaired liver regeneration was not corrected by reestablishing IGF-1 expression. Although the initial response to partial hepatectomy at the priming phase appeared to be similar between mutant and wild-type mice, cell cycle progression was significantly blunted in mutant mice. The main defect in GHR-deficient mice was the deficiency of the epidermal growth factor receptor activation during the process of liver regeneration. Finally, among the pathways activated downstream of GHR during G(1) phase progression, namely Erk1/2, Akt, and signal transducer and activator of transcription 3, we only found a reduced Erk1/2 phosphorylation in mutant mice. In conclusion, our results demonstrate that GH signaling plays a major role in liver regeneration and strongly suggest that it acts through the activation of both epidermal growth factor receptor and Erk1/2 pathways.

  1. Measurement of anti- acetylcholine receptor auto-antibodies in ...

    African Journals Online (AJOL)

    sensitivity is reported to vary between 70%' and 90%2. A modified anti-AChR antibody ... criteria (electro-decremental response on repeated nerve stimulation and/or increased jitter as measured with single fibre electromyography) for the ...

  2. 表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKI)继发性耐药的机制及对策%The Mechanism and Countermeasures on the Secondary Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor (EGFR-TKI)

    Institute of Scientific and Technical Information of China (English)

    吴鹏飞; 朱益平; 杨春晖; 王远飞; 王根和

    2015-01-01

    Lung cancer, in which about 80% are non-small cell lung cancers (NSCLC), is one of the most common malignant tumors, and also the leading cause of cancer death currently. The epidermal growth factor receptor (EGFR) driver gene plays an important role in the occurrence and development of lung cancer. In recent years, the epidermal growth factor receptor tyrosine ki-nase inhibitors (EGFR-TKI), especially gefitinib and erlotinib, have played a significant role in the molecular and targeted therapy of NSCLC, and brought in good news for NSCLC patients. However, no matter how effective it is in the short term, the patients will inevitably develop into drug resistance and progressive disease in the long run. In this paper, we made a review on the mechanism of EGFR-TKI secondary drug resistance and the countermeasures on drug resistance after treatment, so as to guide the treatment of NSCLC better.%肺癌是最常见的恶性肿瘤之一,也是目前癌症死亡的首要原因,其中约80%为非小细胞肺癌(Non-small Cell Lung Cancers,NSCLC)。表皮生长因子受体(Epidermal Growth Factor Receptor,EGFR)驱动基因在肺癌的发生发展过程中起重要作用,近年来,以吉非替尼和厄洛替尼为代表的表皮生长因子受体酪氨酸激酶抑制剂(Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors,EGFR-TKI)在 NSCLC 的分子靶向治疗中发挥了巨大的作用,给NSCLC 患者带来了福音。然而,无论近期效果如何,最终患者都不可避免地产生耐药及病情进展。本文主要对近年来EGFR-TKI 继发性耐药的发生机制及耐药后的对策作一综述,以期更好地指导 NSCLC 的治疗。

  3. Heterogeneity of clinical features and corresponding antibodies in seven patients with anti-NMDA receptor encephalitis.

    Science.gov (United States)

    Sühs, Kurt-Wolfram; Wegner, Florian; Skripuletz, Thomas; Trebst, Corinna; Tayeb, Said Ben; Raab, Peter; Stangel, Martin

    2015-10-01

    Anti-N-methyl D-aspartate (NMDA) receptor encephalitis is the most common type of encephalitis in the spectrum of autoimmune encephalitis defined by antibodies targeting neuronal surface antigens. In the present study, the clinical spectrum of this disease is presented using instructive cases in correlation with the anti-NMDA receptor antibody titers in the cerebrospinal fluid (CSF) and serum. A total of 7 female patients admitted to the hospital of Hannover Medical School (Hannover, Germany) between 2008 and 2014 were diagnosed with anti-NMDA receptor encephalitis. Among these patients, 3 cases were selected to illustrate the range of similar and distinct clinical features across the spectrum of the disease and to compare anti-NMDA antibody levels throughout the disease course. All patients received immunosuppressive treatment with methylprednisolone, intravenous immunoglobulin and/or plasmapheresis, followed in the majority of patients by second-line therapy with rituximab and cyclophosphamide. The disease course correlated with NMDA receptor antibody titers, and to a greater extent with the ratio between antibody titer and protein concentration. A favorable clinical outcome with a modified Rankin Scale (mRS) score of ≤1 was achieved in 4 patients, 1 patient had an mRS score of 2 after 3 months of observation only, whereas 2 patients remained severely impaired (mRS score 4). Early and aggressive immunosuppressive treatment appears to support a good clinical outcome; however, the clinical signs and symptoms differ distinctively and treatment decisions have to be made on an individual basis.

  4. Improved response by co-targeting EGFR/EGFRvIII and Src family kinases in human cancer cells

    DEFF Research Database (Denmark)

    Andersen, Peter; Villingshøj, Mette; Poulsen, Hans Skovgaard

    2009-01-01

    We hypothesized that co-targeting the epidermal growth factor receptor (EGFR) and Src with the EGFR inhibitor gefitinib and the Src inhibitor AZD0530 would increase growth inhibition and impede migration. Cells overexpressing EGFR were more sensitive to gefitinib than cells expressing mutated EGFR...... or normal levels of wild-type EGFR. Furthermore, cells with mutated EGFR responded to low doses of gefitinib with increased proliferation. AZD0530 was an effective inhibitor of proliferation and migration, irrespective of EGFR status. These results suggest that co-targeting EGFR and Src might be a valuable...

  5. Improved response by co-targeting EGFR/EGFRvIII and Src family kinases in human cancer cells

    DEFF Research Database (Denmark)

    Andersen, Peter; Villingshøj, Mette; Poulsen, Hans Skovgaard

    2009-01-01

    or normal levels of wild-type EGFR. Furthermore, cells with mutated EGFR responded to low doses of gefitinib with increased proliferation. AZD0530 was an effective inhibitor of proliferation and migration, irrespective of EGFR status. These results suggest that co-targeting EGFR and Src might be a valuable......We hypothesized that co-targeting the epidermal growth factor receptor (EGFR) and Src with the EGFR inhibitor gefitinib and the Src inhibitor AZD0530 would increase growth inhibition and impede migration. Cells overexpressing EGFR were more sensitive to gefitinib than cells expressing mutated EGFR...

  6. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors.

    Directory of Open Access Journals (Sweden)

    Miguel Aste-Amézaga

    Full Text Available Notch receptors normally play a key role in guiding a variety of cell fate decisions during development and differentiation of metazoan organisms. On the other hand, dysregulation of Notch1 signaling is associated with many different types of cancer as well as tumor angiogenesis, making Notch1 a potential therapeutic target.Here we report the in vitro activities of inhibitory Notch1 monoclonal antibodies derived from cell-based and solid-phase screening of a phage display library. Two classes of antibodies were found, one directed against the EGF-repeat region that encompasses the ligand-binding domain (LBD, and the second directed against the activation switch of the receptor, the Notch negative regulatory region (NRR. The antibodies are selective for Notch1, inhibiting Jag2-dependent signaling by Notch1 but not by Notch 2 and 3 in reporter gene assays, with EC(50 values as low as 5+/-3 nM and 0.13+/-0.09 nM for the LBD and NRR antibodies, respectively, and fail to recognize Notch4. While more potent, NRR antibodies are incomplete antagonists of Notch1 signaling. The antagonistic activity of LBD, but not NRR, antibodies is strongly dependent on the activating ligand. Both LBD and NRR antibodies bind to Notch1 on human tumor cell lines and inhibit the expression of sentinel Notch target genes, including HES1, HES5, and DTX1. NRR antibodies also strongly inhibit ligand-independent signaling in heterologous cells transiently expressing Notch1 receptors with diverse NRR "class I" point mutations, the most common type of mutation found in human T-cell acute lymphoblastic leukemia (T-ALL. In contrast, NRR antibodies failed to antagonize Notch1 receptors bearing rare "class II" or "class III" mutations, in which amino acid insertions generate a duplicated or constitutively sensitive metalloprotease cleavage site. Signaling in T-ALL cell lines bearing class I mutations is partially refractory to inhibitory antibodies as compared to cell

  7. Sonic Hedgehog modulates EGFR dependent proliferation of neural stem cells during late mouse embryogenesis through EGFR transactivation

    Science.gov (United States)

    Reinchisi, Gisela; Parada, Margarita; Lois, Pablo; Oyanadel, Claudia; Shaughnessy, Ronan; Gonzalez, Alfonso; Palma, Verónica

    2013-01-01

    Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors. PMID:24133411

  8. Anti-erythropoietin receptor antibodies in systemic lupus erythematosus patients with anemia.

    Science.gov (United States)

    Luo, X-Y; Yang, M-H; Peng, Ping; Wu, L-J; Liu, Q-S; Chen, L; Tang, Z; Liu, N-T; Zeng, X-F; Liu, Y; Yuan, G-H

    2013-02-01

    Anemia is a common hematologic abnormality in systemic lupus erythematosus (SLE). An inadequate erythropoietin (EPO) response in SLE patients with anemia has been described that may be due to the presence of antibodies to EPO in SLE patients. However, whether anemia in patients with SLE is related to antibodies to EPO receptor (EPOR) has not yet been investigated. We enlisted 169 consecutive patients with SLE and 45 normal individuals to investigate the existence and importance of circulating autoantibodies to EPOR in sera from patients with SLE. In all patients with SLE, the disease activity was evaluated by using the SLE disease activity index SLEDAI. Anti-EPOR antibodies were detected by using an enzyme-linked immunosorbent assay (ELISA). A higher frequency of anti-EPOR antibodies was observed in SLE patients than in healthy controls (18.3% vs 2.2%, p = 0.007). Moreover, anti-EPOR antibodies were detected in 22 of 69 (31.9%) SLE patients with anemia and in only nine of 100 (9.0%, p antibodies exhibited more severe anemia and often presented as microcytic anemia (p = 0.001). Finally, anti-EPOR antibodies seemed more likely to occur in patients with rash (p = 0.008), lower levels of C(3) component (p = 0.01), higher titer of anti-dsDNA antibodies (p antibodies might play a vital role in SLE patients developing anemia because of the higher incidence of antibodies to EPOR found in SLE patients with anemia. Thus, there might be clinical value in detecting anti-EPOR antibodies in SLE patients with anemia. Therefore, the pathologic role of the antibodies in inducing anemia needs to be established in future studies.

  9. Cutaneous toxicity from epidermal growth factor receptor inhibitors: would a subcutaneous desensitization be helpful? Case report.

    Science.gov (United States)

    D'Alessio, Andrea; Cecchini, Sara; Di Mauro, Daniela; Geroli, Luca; Villa, Simonetta; Quadri, Antonello; Resta, Davide; Fortugno, Carmelo

    2016-11-11

    Cetuximab and panitumumab are monoclonal antibody inhibitors that bind the epidermal growth factor receptor (EGFR) currently used in the treatment of metastatic colorectal cancer. The main adverse event related to EGFR inhibitors (EGFR-Is) is cutaneous toxicity, which can cause dosage reduction and interruption of treatment. State-of-the-art management of skin toxicity associated with EGFR-Is therapy involves the topical administration of corticosteroids and oral antibiotics, but is not completely effective in the management of toxicity. Subcutaneous desensitization with increasing concentrations of monoclonal antibodies can induce a tolerance to drug administration and reduce cutaneous adverse effects. To our knowledge, this is the first case in which a reduction or a disappearance of skin toxicity caused by EGFR-Is through subcutaneous desensitization has been achieved. We present cases of 2 Caucasian patients with adenocarcinoma of the colon treated with EGFR-Is who developed severe cutaneous toxicity. A 73-year-old man presented grade 4 skin toxicity of the face and grade 3 skin toxicity of the trunk during treatment with cetuximab. A 68-year-old woman developed G2 rash on the face after the first administration of cetuximab. These patients underwent subcutaneous desensitization with increasing concentrations of EGFR-Is. After this procedure, patients restarted therapy at the optimal dosage with reduction or disappearance of skin toxicity. These cases suggest that by giving rising doses of antibody it is possible to obtain desensitization able to prevent severe cutaneous adverse events in patients treated with EGFR-Is.

  10. Mechanisms of resistance to HER family targeting antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Kruser, Tim J. [Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI (United States); Wheeler, Deric L., E-mail: dlwheeler@wisc.edu [Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI (United States)

    2010-04-15

    The epidermal growth factor (EGF) family of receptor tyrosine kinases consists of four members: EGFR (HER1/ErbB1), HER2/neu (ErbB2), HER3 (ErbB3) and HER4 (ErbB4). Receptor activation via ligand binding leads to downstream signaling that influence cell proliferation, angiogenesis, invasion and metastasis. Aberrant expression or activity of EGFR and HER2 have been strongly linked to the etiology of several human epithelial cancers including but not limited to head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC), colorectal cancer (CRC), and breast cancer. With this, intense efforts have been made to inhibit the activity of the EGFR and HER2 by designing antibodies against the ligand binding domains (cetuximab, panitumumab and trastuzumab) or small molecules against the tyrosine kinase domains (erlotinib, gefitinib, and lapatinib). Both approaches have shown considerable clinical promise. However, increasing evidence suggests that the majority of patients do not respond to these therapies, and those who show initial response ultimately become refractory to treatment. While mechanisms of resistance to tyrosine kinase inhibitors have been extensively studied, resistance to monoclonal antibodies is less well understood, both in the laboratory and in the clinical setting. In this review, we discuss resistance to antibody-based therapies against the EGFR and HER2, similarities between these resistance profiles, and strategies to overcome resistance to HER family targeting monoclonal antibody therapy.

  11. Radiolabeled Cetuximab Conjugates for EGFR Targeted Cancer Diagnostics and Therapy

    Directory of Open Access Journals (Sweden)

    Wiebke Sihver

    2014-03-01

    Full Text Available The epidermal growth factor receptor (EGFR has evolved over years into a main molecular target for the treatment of different cancer entities. In this regard, the anti-EGFR antibody cetuximab has been approved alone or in combination with: (a chemotherapy for treatment of colorectal and head and neck squamous cell carcinoma and (b with external radiotherapy for treatment of head and neck squamous cell carcinoma. The conjugation of radionuclides to cetuximab in combination with the specific targeting properties of this antibody might increase its therapeutic efficiency. This review article gives an overview of the preclinical studies that have been performed with radiolabeled cetuximab for imaging and/or treatment of different tumor models. A particularly promising approach seems to be the treatment with therapeutic radionuclide-labeled cetuximab in combination with external radiotherapy. Present data support an important impact of the tumor micromilieu on treatment response that needs to be further validated in patients. Another important challenge is the reduction of nonspecific uptake of the radioactive substance in metabolic organs like liver and radiosensitive organs like bone marrow and kidneys. Overall, the integration of diagnosis, treatment and monitoring as a theranostic approach appears to be a promising strategy for improvement of individualized cancer treatment.

  12. EGFR Mutation Status in Uighur Lung Adenocarcinoma Patients

    Directory of Open Access Journals (Sweden)

    Li SHAN

    2013-02-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR, a transmembrane protein, is a member of the tyrosine kinase family. Gefitinib, an EGFR tyrosine-kinase inhibitors, has shown a high response rate in the treatment of lung cancer in patients with EGFR mutation. However, significant differences in EGFR mutations exist among different ethnic groups. The aim of this study is to investigate the prevalence of EGFR mutations in Uighur lung adenocarcinoma patients by using a rapid and sensitive detection method and to analyze EGFR mutation differences compared with Han lung adenocarcinoma patients. Methods We examined lung adenocarcinoma tissues from 138 patients, including 68 Uighur lung adenocarcinoma patients and 70 Han lung adenocarcinoma patients, for EGFR mutations in exons 18, 19, 20, and 21 by using the amplification refractory mutation system (ARMS PCR method. The mutation differences between Uighur and Han lung adenocarcinoma were compared by using the chi-square test method. Results EGFR mutations were detected in 43 (31.2% of the 138 lung adenocarcinoma patients. EGFR mutations were detected in 11 (16.2% of the 68 Uighur lung adenocarcinoma patients and in 32 (45.7% of the 70 Han lung adenocarcinoma patients. Significant differences were observed in the EGFR mutations between Uighur lung adenocarcinoma patients and Han lung adenocarcinoma patients (P<0.001. Conclusion Our results indicate that the EGFR mutation in Uighur lung adenocarcinoma patients (16.2% is significantly lower than that in Han lung adenocarcinoma patients (45.7%.

  13. Low prevalence of K-RAS, EGF-R and BRAF mutations in sinonasal adenocarcinomas. Implications for anti-EGFR treatments.

    Science.gov (United States)

    Franchi, Alessandro; Innocenti, Duccio Rossi Degli; Palomba, Annarita; Miligi, Lucia; Paiar, Fabiola; Franzese, Ciro; Santucci, Marco

    2014-07-01

    We have previously shown that a subset of sinonasal intestinal-type adenocarcinomas (ITAC) shows activation of the epidermal growth factor-receptor (EGFR) pathway. In this study we examine the status of the EGFR, KRAS and BRAF genes in a series of sinonasal intestinal (ITAC) and non-intestinal type adenocarcinomas (non-ITAC). Eighteen ITACs and 12 non-ITACs were studied immunohistochemically for EGFR expression. Point mutations were analyzed for EGFR exons 19 and 21, KRAS exon 2 and BRAF exon 15 by direct sequencing. Non-ITACs showed significantly higher expression of EGFR (p = 0.015). Mutation analysis revealed one ITAC with EGFR and one ITAC with KRAS mutation, while two non-ITACs presented mutation of BRAF. We conclude that a subset of sinonasal adenocarcinomas shows overexpression of EGFR, while activating mutations of the signaling cascade downstream of EGFR are rare, suggesting that these tumors could be good candidates for anti-EGFR therapies.

  14. Next-Generation EGFR Tyrosine Kinase Inhibitors for Treating EGFR-Mutant Lung Cancer beyond First Line.

    Science.gov (United States)

    Sullivan, Ivana; Planchard, David

    2016-01-01

    Tyrosine kinase inhibitors (TKIs) against the human epidermal growth factor receptor (EGFR) are now standard treatment in the clinic for patients with advanced EGFR mutant non-small-cell lung cancer (NSCLC). First-generation EGFR TKIs, binding competitively and reversibly to the ATP-binding site of the EGFR tyrosine kinase domain, have resulted in a significant improvement in outcome for NSCLC patients with activating EGFR mutations (L858R and Del19). However, after a median duration of response of ~12 months, all patients develop tumor resistance, and in over half of these patients this is due to the emergence of the EGFR T790M resistance mutation. The second-generation EGFR/HER TKIs were developed to treat resistant disease, targeting not only T790M but EGFR-activating mutations and wild-type EGFR. Although they exhibited promising anti-T790M activity in the laboratory, their clinical activity among T790M+ NSCLC was poor mainly because of dose-limiting toxicity due to simultaneous inhibition of wild-type EGFR. The third-generation EGFR TKIs selectively and irreversibly target EGFR T790M and activating EGFR mutations, showing promising efficacy in NSCLC resistant to the first- and second-generation EGFR TKIs. They also appear to have lower incidences of toxicity due to the limited inhibitory effect on wild-type EGFR. Currently, the first-generation gefitinib and erlotinib and second-generation afatinib have been approved for first-line treatment of metastatic NSCLC with activating EGFR mutations. Among the third-generation EGFR TKIs, osimertinib is today the only drug approved by the Food and Drug Administration and the European Medicines Agency to treat metastatic EGFR T790M NSCLC patients who have progressed on or after EGFR TKI therapy. In this review, we summarize the available post-progression therapies including third-generation EGFR inhibitors and combination treatment strategies for treating patients with NSCLC harboring EGFR mutations and address the

  15. C-C chemokine receptor-7 mediated endocytosis of antibody cargoes into intact cells

    Directory of Open Access Journals (Sweden)

    Xavier eCharest-Morin

    2013-09-01

    Full Text Available The C-C chemokine receptor-7 (CCR7 is a G protein coupled receptor that has a role in leukocyte homing, but that is also expressed in aggressive tumor cells. Preclinical research supports that CCR7 is a valid target in oncology. In view of the increasing availability of therapeutic monoclonal antibodies that carry cytotoxic cargoes, we studied the feasibility of forcing intact cells to internalize known monoclonal antibodies by exploiting the cycle of endocytosis and recycling triggered by the CCR7 agonist CCL19. Firstly, an anti-CCR7 antibody (CD197; clone 150503 labeled surface recombinant CCR7 expressed in intact HEK 293a cells and the fluorescent antibody was internalized following CCL19 treatment. Secondly, a recombinant myc-tagged CCL19 construction was exploited along the anti-myc monoclonal antibody 4A6. The myc-tagged ligand was produced as a conditioned medium of transfected HEK 293a cells that contained the equivalent of 430 ng/ml of immunoreactive CCL19 (average value, ELISA determination. CCL19-myc, but not authentic CCL19, carried the fluorophore-labeled antibody 4A6 into other recipient cells that expressed recombinant CCR7 (microscopy, cytofluorometry. The immune complexes were apparent in endosomal structures, colocalized well with the small GTPase Rab5 and progressed toward Rab7-positive endosomes. A dominant negative form of Rab5 (GDP-locked inhibited this endocytosis. Further, endosomes in CCL19-myc- or CCL19-stimulated cells were positive for β-arrestin2, but rarely for β-arrestin1. Following treatment with CCL19-myc and the 4A6 antibody, the melanoma cell line A375 that expresses endogenous CCR7 was specifically stained using a secondary peroxidase-conjugated antibody. Agonist-stimulated CCR7 can transport antibody-based cargoes, with possible therapeutic applications in oncology.

  16. Human pharmacokinetics, biodistribution and dosimetry of the kit of monoclonal antibody IOR EGF/R3 labelled with {sup 99m} Tc

    Energy Technology Data Exchange (ETDEWEB)

    Torres, L.A.; Ramos, M.; Perera, A.; Hernandez, A.; Iznaga, M.E. N. [Solano, Ivette Alvarez, Jose L. Rodriguez. Centro de InvestigacionesClinicas. 34 no.4501 e/45 y 47 Kohly, Playa, C. Habana (Cuba)

    1998-12-31

    The aim of this work was to assess the human pharmacokinetics, biodistribution and dosimetry of the {sup 99m} Tc-labeled MAb ior egf/r3. Five patients were included in the biodistribution and dosimetric studies and three in the pharmacokinetic analysis. Multiple blood and urine samples we recollected and sequential anterior and posterior whole-body scintigraphies u pto 24 hr post-injection were performed to all patients . The internal radiation dosimetry was estimated from gamma camera imaging data using the methods developed by the Medical Internal radiation dosimetry (MIRD)committee. Raw data were computed from operations between gamma graphic images and regions of interest (ROI) using the Bio-Dose software and time-activity curves were calculated in order to determine the residence times of the source organs. The Pharmacokinetics and Biodistribution results showed that this compound have a bio exponential plasmatic and blood clearance with a rapid biodistribution phase of 9.1 {+-} 8.4 min and 12.2{+-}4.4 min, respectively, and a slower elimination phase of 6.6 {+-} 1.6 hr and 10.8 {+-} 6.8 hr. respectively. The urinary and hepatobiliary excretion showed 4.7 {+-} 0.4 % and 9.9 {+-} 1.8 % of the total administered dose,eliminated by these ways. Liver was the target organ of this product and had an uptake peak at 1 hr post-injection (61.2%) and a great retention of the MAb(T 1/2 eff = 5.3 hr, T 1/2 Biol. = 45.0 hr). The dosimetric results showed that liver, gallbladder and spleen received the higher absorbed. The effective dose and the effective equivalent dose were 1,2E-01 mSv/MBq and 9,2E-02 mSv/MBq respectively. These results allow to see the i or egf/r3 kit in a safe and controlled way. (Author)

  17. A monoclonal antibody for G protein-coupled receptor crystallography

    DEFF Research Database (Denmark)

    Day, Peter W; Rasmussen, Søren Gøgsig Faarup; Parnot, Charles

    2007-01-01

    G protein-coupled receptors (GPCRs) constitute the largest family of signaling proteins in mammals, mediating responses to hormones, neurotransmitters, and senses of sight, smell and taste. Mechanistic insight into GPCR signal transduction is limited by a paucity of high-resolution structural...

  18. Nanobiopolymer for direct targeting and inhibition of EGFR expression in triple negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Satoshi Inoue

    Full Text Available Treatment options for triple negative breast cancer (TNBC are generally limited to cytotoxic chemotherapy. Recently, anti-epidermal growth factor receptor (EGFR therapy has been introduced for TNBC patients. We engineered a novel nanobioconjugate based on a poly(β-L-malic acid (PMLA nanoplatform for TNBC treatment. The nanobioconjugate carries anti-tumor nucleosome-specific monoclonal antibody (mAb 2C5 to target breast cancer cells, anti-mouse transferrin receptor (TfR antibody for drug delivery through the host endothelial system, and Morpholino antisense oligonucleotide (AON to inhibit EGFR synthesis. The nanobioconjugates variants were: (1 P (BioPolymer with AON, 2C5 and anti-TfR for tumor endothelial and cancer cell targeting, and EGFR suppression (P/AON/2C5/TfR, and (2 P with AON and 2C5 (P/AON/2C5. Controls included (3 P with 2C5 but without AON (P/2C5, (4 PBS, and (5 P with PEG and leucine ester (LOEt for endosomal escape (P/mPEG/LOEt. Drugs were injected intravenously to MDA-MB-468 TNBC bearing mice. Tissue accumulation of injected nanobioconjugates labeled with Alexa Fluor 680 was examined by Xenogen IVIS 200 (live imaging and confocal microscopy of tissue sections. Levels of EGFR, phosphorylated and total Akt in tumor samples were detected by western blotting. In vitro western blot showed that the leading nanobioconjugate P/AON/2C5/TfR inhibited EGFR synthesis significantly better than naked AON. In vivo imaging revealed that 2C5 increased drug-tumor accumulation. Significant tumor growth inhibition was observed in mice treated with the lead nanobioconjugate (1 [P = 0.03 vs. controls; P<0.05 vs. nanobioconjugate variant (2]. Lead nanobioconjugate (1 also showed stronger inhibition of EGFR expression and Akt phosphorylation than other treatments. Treatment of TNBC with the new nanobioconjugate results in tumor growth arrest by inhibiting EGFR and its downstream signaling intermediate, phosphorylated Akt. The nanobioconjugate

  19. Encephalitis and AMPA receptor antibodies Novel findings in a case series of 22 patients

    NARCIS (Netherlands)

    R. Höftberger (Romana); A. van Sonderen (Agnes); F. Leypoldt (Frank); D. Houghton (David); M. Geschwind (Michael); J. Gelfand (Jeffrey); M. Paredes (Mercedes); L. Sabater (Lidia); A. Saiz (Albert Abe); M.J. Titulaer (Maarten); F. Graus (Francesc); J. Dalmau (Josep)

    2015-01-01

    textabstractObjective: We report the clinical features, comorbidities, and outcome of 22 newly identified patients with antibodies to the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). Methods: This was a retrospective review of patients diagnosed between May 2009 and March 2

  20. N-Methyl-D-Aspartate Receptor Antibodies in Herpes Simplex Encephalitis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-02-01

    Full Text Available Researchers at Charite University Medicine Berlin, and other centers in Germany, Spain and the US performed a retrospective analysis of 44 patients with polymerase chain reaction-proven herpes simplex encephalitis (HSE for the presence of onconeuronal and synaptic receptor antibodies.

  1. Encephalitis and GABAB receptor antibodies: Novel findings in a new case series of 20 patients

    NARCIS (Netherlands)

    R. Höftberger (Romana); M.J. Titulaer (Maarten); L. Sabater (Lidia); J.S. Dome (Jeffrey); A. Rózsás (Anita); B. Hegedus (Balazs); M.A. Hoda (Mir Alireza); V. Laszlo (Viktoria); H.J. Ankersmit (Hendrik Jan); L. Harms (Lutz); S. Boyero (Sabas); A. de Felipe (Alicia); A. Saiz (Albert Abe); J. Dalmau (Josep); F. Graus (Francesc)

    2013-01-01

    textabstractObjective: To report the clinical features of 20 newly diagnosed patients with GABAB receptor (GABABR) antibodies and determine the frequency of associated tumors and concurrent neuronal autoantibodies. Methods: Clinical data were retrospectively obtained and evaluated. Serum and CSF sam

  2. THE EFFECT OF ANTISENSE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) RNA ON THE PROLIFERATION OF HUMAN GLIOMA CELLS AND INDUCTION OF CELL APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    PU Pei-yu; LIU Xu-wen; LIU Ai-xue; WANG Chun-yan; WANG Guang-xiu

    1999-01-01

    Objective: To study the effect of antisense EGFR RNA on the growth of human glioma cells in vitro and evaluate the feasibility of targeting EGFR gene for gene therapy of gliomas. Methods: Southern and Northern blot analysis,in situ hybridization and immunohistochemical staining were used to detect the integration and expression of antisense EGFR constructs. MTT assay and the average number of AgNOR for evaluation of cell proliferation, and the TUNEL method and ultrastructural change for observation of cell apoptosis. Results: Exogenous antisense EGFR cDNA was integrated into the genome of glioma cells and highly expressed, which resulted in a dramatic decrease of endogenous EGFR mRNA and GEPR protein levels.Clones with high expression of the antisense construct showed a lower proliferation activity and the induction of apoptosis in vitro. Conclusion: This study suggests that EGFR plays an important role in the genesis of gliomas; it may be used as a target for antisense gene therapy of gliomas.

  3. Antibody

    Science.gov (United States)

    An antibody is a protein produced by the body's immune system when it detects harmful substances, called antigens. Examples ... microorganisms (bacteria, fungi, parasites, and viruses) and chemicals. Antibodies may be produced when the immune system mistakenly ...

  4. Epidermal growth factor receptor inhibitors in non-small cell lung cancer: current status and future perspectives

    Directory of Open Access Journals (Sweden)

    Mauro Zükin

    2012-04-01

    Full Text Available Two classes of epidermal growth factor receptor (EGFR inhibitors are currently available for clinical use: tyrosine-kinase inhibitors (TKIs and monoclonal antibodies. The introduction of pharmacological agents that are able to inhibit EGFR represents an important step in the management of patients with advanced non-small cell lung cancer (NSCLC, the leading cause of cancer death worldwide. The use of EGFR inhibitors has not only led to meaningful therapeutic gains for patients, but has also expanded our knowledge about the disease itself, as it is now recognized that activating mutations of EGFR play a pathogenetic role in NSCLC, especially in adenocarcinoma, patients who never smoked or former light smokers, females, and Asian individuals. Patients with NSCLC and one or more of these features are more likely to harbor tumors with EGFR mutations, and hence to respond to TKIs, than individuals without these features. Currently, TKIs are considered by many as the treatment of first choice in both the first- and second-line treatment of patients with clinical or molecular predictors of therapeutic benefit, and chemotherapy is a second option in these cases, especially when activating mutations of EGFR are present. Moreover, TKIs and anti-EGFR antibodies may be used in other settings, and their therapeutic role in NSCLC is clearly expanding. However, despite an initially successful treatment course, patients with advanced NSCLC eventually develop resistance to TKIs; and novel agents that hold promise for the future include irreversible EGFR inhibitors with activity against resistance-conferring EGFR mutations.

  5. Antibodies against G-protein coupled receptors: novel uses in screening and drug development.

    Science.gov (United States)

    Gupta, Achla; Heimann, Andrea S; Gomes, Ivone; Devi, Lakshmi A

    2008-07-01

    Antibodies are components of the body's humoral immune system that are generated in response to foreign pathogens. Modern biomedical research has employed these very specific and efficient molecules designed by nature in the diagnosis of diseases, localization of gene products as well as in the rapid screening of targets for drug discovery and testing. In addition, the introduction of antibodies with fluorescent or enzymatic tags has significantly contributed to advances in imaging and microarray technology, which are revolutionizing disease research and the search for effective therapeutics. More recently antibodies have been used in the isolation of dimeric G protein-coupled receptor (GPCR) complexes. In this review, we discuss antibodies as powerful research tools for studying GPCRs, and their potential to be developed as drugs themselves.

  6. Role of immunoglobulin G fragment C receptor polymorphism-mediated antibody-dependant cellular cytotoxicity in colorectal cancer treated with cetuximab therapy.

    Science.gov (United States)

    Negri, F V; Musolino, A; Naldi, N; Bortesi, B; Missale, G; Laccabue, D; Zerbini, A; Camisa, R; Chernyschova, N; Bisagni, G; Loupakis, F; Ruzzo, A; Neri, T M; Ardizzoni, A

    2014-02-01

    Antibody-dependent cellular cytotoxicity (ADCC), which is activated by effector cells via immunoglobulin G (IgG) fragment C receptors (FcRs), was proposed as a mechanism of cetuximab efficacy. Peripheral blood mononuclear cells (PBMCs) from 23 healthy donors and 13 patients with metastatic colorectal cancer (mCRC) treated with cetuximab were tested for FcγR polymorphisms and cetuximab-mediated ADCC. ADCC was measured by chromium-51 release on a epidermal growth factor receptor (EGFR)-positive human colon cancer cell line. Overall, 86 mCRC patients were genotyped for study purposes. PBMCs harbouring the FcγRIIIa 158 V/V genotype had a significantly higher cetuximab-mediated ADCC. No correlation was found between FcγR polymorphisms and response rate or time to progression after cetuximab-based therapy. Despite the in vitro analysis showing that the FcγRIIIa 158 V/V genotype is associated with higher ADCC, clinical data do not support a predictive role of FcγRIIIa polymorphisms in mCRC treated with cetuximab.

  7. Impaired degradation followed by enhanced recycling of epidermal growth factor receptor caused by hypo-phosphorylation of tyrosine 1045 in RBE cells

    Directory of Open Access Journals (Sweden)

    Gui Anping

    2012-05-01

    Full Text Available Abstract Background Since cholangiocarcinoma has a poor prognosis, several epidermal growth factor receptor (EGFR-targeted therapies with antibody or small molecule inhibitor treatment have been proposed. However, their effect remains limited. The present study sought to understand the molecular genetic characteristics of cholangiocarcinoma related to EGFR, with emphasis on its degradation and recycling. Methods We evaluated EGFR expression and colocalization by immunoblotting and immunofluorescence, cell surface EGFR expression by fluorescence-activated cell sorting (FACS, and EGFR ubiquitination and protein binding by immunoprecipitation in the human cholangiocarcinoma RBE and immortalized cholangiocyte MMNK-1 cell lines. Monensin treatment and Rab11a depletion by siRNA were adopted for inhibition of EGFR recycling. Results Upon stimulation with EGF, ligand-induced EGFR degradation was impaired and the expression of phospho-tyrosine 1068 and phospho-p44/42 MAPK was sustained in RBE cells as compared with MMNK-1 cells. In RBE cells, the process of EGFR sorting for lysosomal degradation was blocked at the early endosome stage, and non-degradated EGFR was recycled to the cell surface. A disrupted association between EGFR and the E3 ubiquitin ligase c-Cbl, as well as hypo-phosphorylation of EGFR at tyrosine 1045 (Tyr1045, were also observed in RBE cells. Conclusion In RBE cells, up-regulation of EGFR Tyr1045 phosphorylation is a potentially useful molecular alteration in EGFR-targeted therapy. The combination of molecular-targeted therapy determined by the characteristics of individual EGFR phosphorylation events and EGFR recycling inhibition show promise in future treatments of cholangiocarcinoma.

  8. Cetuximab Inhibits T790M-Mediated Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor in a Lung Adenocarcinoma Patient-Derived Xenograft Mouse Model.

    Science.gov (United States)

    Martin, Petra; Stewart, Erin; Pham, Nhu-An; Mascaux, Celine; Panchal, Devang; Li, Ming; Kim, Lucia; Sakashita, Shingo; Wang, Dennis; Sykes, Jenna; Friess, Thomas; Shepherd, Frances A; Liu, Geoffrey; Tsao, Ming-Sound

    2016-09-01

    The epidermal growth factor receptor (EGFR) kinase domain T790M (amino acid substitution at position 790 in EGFR from threonine [T] to methionine [M]) mutation in non-small-cell lung cancer (NSCLC) results in resistance to EGFR tyrosine kinase inhibitors (TKIs). We used a patient-derived tumor xenograft (PDX) model containing an EGFR exon 19 deletion/T790M mutation to assess response to the EGFR-directed antibody cetuximab. Changes in the EGFR signaling pathway and ligand expression after treatment were investigated. PDX were randomized into control and treatment arms. Pharmacodynamic studies were performed at 2 and 24 hours and at 4 days after a single administration of cetuximab, erlotinib, or dacomitinib. Changes in the EGFR signaling pathway were assessed using Western blot analysis, and baseline mRNA expression of EGFR ligands using microarray analysis. Relative changes after treatment were assessed using quantitative polymerase chain reaction. The xenograft showed a dramatic response to cetuximab. A complete reduction of total EGFR and phosphorylated EGFR occurred after cetuximab treatment. The PDX had increased baseline levels of heparin-binding epidermal growth factor-like growth factor (HB-EGF) compared with other PDX models with or without EGFR mutations. Amphiregulin was significantly reduced 2 hours after treatment with cetuximab. Compared with control mice, cetuximab- and EGFR-TKI-treated mice had significantly reduced HB-EGF gene expression at 2 hours, however, by day 4 the level of HB-EGF expression was higher. The effect of cetuximab compared with EGFR TKI on HB-EGF gene expression levels differed significantly at 2 and 24 hours but not at 4 days. We showed a dramatic tumor response with cetuximab in an exon 19 deletion/T790M EGFR mutant lung adenocarcinoma PDX model, which suggests a role for the autocrine feedback loop in the mutant EGFR signaling pathway. Further investigation using cetuximab in NSCLC with T790M mutation is warranted. Copyright

  9. Loss of activating EGFR mutant gene contributes to acquired resistance to EGFR tyrosine kinase inhibitors in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Keisuke Tabara

    Full Text Available Non-small-cell lung cancer harboring epidermal growth factor receptor (EGFR mutations attains a meaningful response to EGFR-tyrosine kinase inhibitors (TKIs. However, acquired resistance to EGFR-TKIs could affect long-term outcome in almost all patients. To identify the potential mechanisms of resistance, we established cell lines resistant to EGFR-TKIs from the human lung cancer cell lines PC9 and11-18, which harbored activating EGFR mutations. One erlotinib-resistant cell line from PC9 and two erlotinib-resistant cell lines and two gefitinib-resistant cell lines from 11-18 were independently established. Almost complete loss of mutant delE746-A750 EGFR gene was observed in the erlotinib-resistant cells isolated from PC9, and partial loss of the mutant L858R EGFR gene copy was specifically observed in the erlotinib- and gefitinib-resistant cells from 11-18. However, constitutive activation of EGFR downstream signaling, PI3K/Akt, was observed even after loss of the mutated EGFR gene in all resistant cell lines even in the presence of the drug. In the erlotinib-resistant cells from PC9, constitutive PI3K/Akt activation was effectively inhibited by lapatinib (a dual TKI of EGFR and HER2 or BIBW2992 (pan-TKI of EGFR family proteins. Furthermore, erlotinib with either HER2 or HER3 knockdown by their cognate siRNAs also inhibited PI3K/Akt activation. Transfection of activating mutant EGFR complementary DNA restored drug sensitivity in the erlotinib-resistant cell line. Our study indicates that loss of addiction to mutant EGFR resulted in gain of addiction to both HER2/HER3 and PI3K/Akt signaling to acquire EGFR-TKI resistance.

  10. Overcoming Instability of Antibody-Nanomaterial Conjugates: Next Generation Targeted Nanomedicines Using Bispecific Antibodies.

    Science.gov (United States)

    Howard, Christopher B; Fletcher, Nicholas; Houston, Zachary H; Fuchs, Adrian V; Boase, Nathan R B; Simpson, Joshua D; Raftery, Lyndon J; Ruder, Tim; Jones, Martina L; de Bakker, Christopher J; Mahler, Stephen M; Thurecht, Kristofer J

    2016-08-01

    Targeted nanomaterials promise improved therapeutic efficacy, however their application in nanomedicine is limited due to complexities associated with protein conjugations to synthetic nanocarriers. A facile method to generate actively targeted nanomaterials is developed and exemplified using polyethylene glycol (PEG)-functional nanostructures coupled to a bispecific antibody (BsAb) with dual specificity for methoxy PEG (mPEG) epitopes and cancer targets such as epidermal growth factor receptor (EGFR). The EGFR-mPEG BsAb binds with high affinity to recombinant EGFR (KD : 1 × 10(-9) m) and hyperbranched polymer (HBP) consisting of mPEG (KD : 10 × 10(-9) m) and demonstrates higher avidity for HBP compared to linear mPEG. The binding of BsAb-HBP bioconjugate to EGFR on MDA-MB-468 cancer cells is investigated in vitro using a fluorescently labeled polymer, and in in vivo xenograft models by small animal optical imaging. The antibody-targeted nanostructures show improved accumulation in tumor cells compared to non-targeted nanomaterials. This demonstrates a facile approach for tuning targeting ligand density on nanomaterials, by modulating surface functionality. Antibody fragments are tethered to the nanomaterial through simple mixing prior to administration to animals, overcoming the extensive procedures encountered for developing targeted nanomedicines.

  11. Development of Cu-64 labeled EGF for In Vivo PET Imaging of EGFR Expression

    Energy Technology Data Exchange (ETDEWEB)

    Backer, Joseph M.

    2009-07-12

    In this project we proposed to establish feasibility of the development of targeted tracers for radionuclide imaging of epidermal growth factor receptors (EGFR) in cancer patients. The significance and impact of the proposed radiotracers are determined by the crucial role that EGFR plays in many cancers and by the rapid entrance of EGFR-inhibiting drugs into clinic. Clinical experience, however, revealed that only 10-25% of patients that are defined as EGFR-positive by immunohistochemical analysis respond to EGFR-directed therapeutics and there is poor correlation between EGFR immunohistochemistry and treatment. Therefore, for more efficacious use of EGFR-targeting therapeutics, there is a need for information about EGFR activity in patients. We hypothesized that radionuclide imaging of functionally active EGFR will provide such information and would allow for 1) rational patient stratification, 2) rapid monitoring of responses to therapy, and 3) development of personalized treatment regimens. We hypothesized that tracers based epidermal growth factor (EGF), a natural EGFR ligand, as a targeting vector would be particularly advantageous. First, only functionally active and therefore critical for disease progression EGFRs will bind and internalize an EGF-based tracer. Second, continuous internalization of EGF-based tracers by recyclable EGFR would lead to intracellular accumulation of radionuclide and improved signal-to-background ratio. Third, small size of EGF relative to antibodies would facilitate tumor penetration with vastly better non-specific soft tissue and blood clearance rates. Fourth, as a human protein, EGF is not expected to be immunogenic. Finally, at the beginning of this project, we have already engineered and expressed functionally active EGF with an N-terminal Cys-tag for site-specific conjugation of various payloads, including radionuclide chelators. In the Phase I of this project, in collaboration with Dr. Blankenberg’s group at Stanford

  12. A human blood-brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-dependent receptor binding.

    Directory of Open Access Journals (Sweden)

    Hadassah Sade

    Full Text Available We have adapted an in vitro model of the human blood-brain barrier, the immortalized human cerebral microvascular endothelial cells (hCMEC/D3, to quantitatively measure protein transcytosis. After validating the receptor-mediated transport using transferrin, the system was used to measure transcytosis rates of antibodies directed against potential brain shuttle receptors. While an antibody to the insulin-like growth factor 1 receptor (IGF1R was exclusively recycled to the apical compartment, the fate of antibodies to the transferrin receptor (TfR was determined by their relative affinities at extracellular and endosomal pH. An antibody with reduced affinity at pH5.5 showed significant transcytosis, while pH-independent antibodies of comparable affinities at pH 7.4 remained associated with intracellular vesicular compartments and were finally targeted for degradation.

  13. Synthetic. cap alpha. subunit peptide 125-147 of human nicotinic acetylcholine receptor induces antibodies to native receptor

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, D.J.; Griesmann, G.E.; Huang, Z.; Lennon, V.A.

    1986-03-05

    A synthetic peptide corresponding to residues 125-147 of the Torpedo acetylcholine receptor (AChR) ..cap alpha.. subunit proved to be a major antigenic region of the AChR. Rats inoculated with 50 ..mu..g of peptide (T ..cap alpha.. 125-147) developed T cell immunity and antibodies to native AChR and signs of experimental autoimmune myasthenia gravis. They report the synthesis and preliminary testing of a disulfide-looped peptide comprising residues 125-147 of the human AChR ..cap alpha.. subunit. Peptide H ..cap alpha.. 125-147 differs from T ..cap alpha.. 125-147 at residues 139 (Glu for Gln) and 143 (Ser for Thr). In immunoprecipitation assays, antibodies to Torpedo AChR bound /sup 125/I-labelled H..cap alpha.. 125-147 antibody bound H..cap alpha.. 125-147, but monoclonal antibodies to an immunodominant region of native AChR bound neither H..cap alpha.. 125-147 nor T ..cap alpha.. 125-147. Rats immunized with H ..cap alpha.. 125-147 produced anti-mammalian muscle AChR antibodies that induced modulation of AChRs from cultured human myotubes. Thus, region 125-147 of the human AChR ..cap alpha.. subunit is extracellular in muscle, and is both antigenic and immunogenic. It remains to be determined whether or not autoantibodies to this region may in part cause the weakness or myasthenia gravis in man.

  14. Review of EGFR TKIs in metastatic NSCLC, including ongoing trials

    Directory of Open Access Journals (Sweden)

    Barbara eMelosky

    2014-09-01

    Full Text Available Recent clinical trials have demonstrated the efficacy of epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKI in the treatment of patients with advanced metastatic non-small cell lung cancer. Most of these recent trials were conducted in patients with EGFR mutation-positive tumours. As our knowledge of the EGFR mutation and its resistant pathways develops, the complexity of the situation expands. This article briefly reviews the pivotal trials leading to approval of EGFR TKIs in the first-line setting for patients with EGFR mutation-positive non-small cell lung carcinomas. It discusses the historical use of EGFR TKIs after the first line setting in unselected patients and briefly describes ongoing trials.

  15. Nuclear EGFR as a molecular target in cancer.

    Science.gov (United States)

    Brand, Toni M; Iida, Mari; Luthar, Neha; Starr, Megan M; Huppert, Evan J; Wheeler, Deric L

    2013-09-01

    The epidermal growth factor receptor (EGFR) has been one of the most targeted receptors in the field of oncology. While anti-EGFR inhibitors have demonstrated clinical success in specific cancers, most patients demonstrate either intrinsic or acquired resistance within one year of treatment. Many mechanisms of resistance to EGFR inhibitors have been identified, one of these being attributed to alternatively localized EGFR from the cell membrane into the cell's nucleus. Inside the nucleus, EGFR functions as a co-transcription factor for several genes involved in cell proliferation and angiogenesis, and as a tyrosine kinase to activate and stabilize proliferating cell nuclear antigen and DNA dependent protein kinase. Nuclear localized EGFR is highly associated with disease progression, worse overall survival in numerous cancers, and enhanced resistance to radiation, chemotherapy, and the anti-EGFR therapies gefitinib and cetuximab. In this review the current knowledge of how nuclear EGFR enhances resistance to cancer therapeutics is discussed, in addition to highlighting ways to target nuclear EGFR as an anti-cancer strategy in the future.

  16. Epithelial growth factor receptor (EGFR) mutation status and the treatment of non-small cell lung cancer (NSCLC): A population based quality assurance analysis

    DEFF Research Database (Denmark)

    Hansen, Niels-Chr. G.; Laursen, Christian B.; Hansen, Karin H.

    2015-01-01

    We wanted to analyse the prevalence of EGFR-mutation, and how EGFR-mutation analysis has influenced the treatment during the first four years of use. In the Danish Lung Cancer Registry we have identified all 929 patients (56% female) from Funen (484,700 inhabitants) with first occurrence...... of adenocarcinoma or NSCLC not otherwise specified - diagnosed from July 2010 to June 2014. Chart review was updated in February 2015. The median age was 68 years (range 31 – 96 years), 6.4% were never-smokers and 37.5% ex-smokers. EGFR-mutation status has been determined for 683 patients (73.6%), but has not been...... possible from the available samples in 89 cases. For 156 patients the analysis has not been requested. The prevalence of EGFR-mutation has been 10.4% in women, 5.4% in men, and 39.2% in never-smokers (no gender difference). The EGFR mutations were proven in cytology samples in 75% of the 56 positive cases...

  17. Thymus cells in myasthenia gravis selectively enhance production of anti-acetylcholine-receptor antibody by autologous blood lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Newsom-Davis, J.; Willcox, N.; Calder, L.

    1981-11-26

    We investigated the role of the thymus in 16 patients with myasthenia gravis without thymoma by studying the production of anti-acetylcholine-receptor antibody by thymic and blood lymphocytes cultured alone or together. In 10 responders (with the highest receptor-antibody titers in their plasma), cultured thymic cells spontaneously produced measurable receptor antibody. Receptor-antibody production by autologous blood lymphocytes was enhanced by the addition of responder's thymic cells, irradiated to abrogate antibody production and suppression (P<0.01). This enhancement was greater and more consistent than that by pokeweed mitogen; it depended on viable thymic cells, appeared to be selective for receptor antibody, and correlated with the ratio of thymic helper (OKT4-positive or OKT4+) to suppressor (OKT8+) T cells (P<0.01). These results suggest that myasthenic thymus contains cell-bound acetylcholine-receptor-like material or specific T cells (or both) that can aid receptor-antibody production. This may be relevant to the benefits of thymectomy in myasthenia and to the breakdown in self-tolerance in this and other autoimmune diseases.

  18. Characterization of a panel of six β2-adrenergic receptor antibodies by indirect immunofluorescence microscopy

    Science.gov (United States)

    Koryakina, Yulia A; Fowler, Tristan W; Jones, Stacie M; Schnackenberg, Bradley J; Cornett, Lawrence E; Kurten, Richard C

    2008-01-01

    Background The β2-adrenergic receptor (β2AR) is a primary target for medications used to treat asthma. Due to the low abundance of β2AR, very few studies have reported its localization in tissues. However, the intracellular location of β2AR in lung tissue, especially in airway smooth muscle cells, is very likely to have a significant impact on how the airways respond to β-agonist medications. Thus, a method for visualizing β2AR in tissues would be of utility. The purpose of this study was to develop an immunofluorescent labeling technique for localizing native and recombinant β2AR in primary cell cultures. Methods A panel of six different antibodies were evaluated in indirect immunofluorescence assays for their ability to recognize human and rat β2AR expressed in HEK 293 cells. Antibodies capable of recognizing rat β2AR were identified and used to localize native β2AR in primary cultures of rat airway smooth muscle and epithelial cells. β2AR expression was confirmed by performing ligand binding assays using the β-adrenergic antagonist [3H] dihydroalprenolol ([3H]DHA). Results Among the six antibodies tested, we identified three of interest. An antibody developed against the C-terminal 15 amino acids of the human β2AR (Ab-Bethyl) specifically recognized human but not rat β2AR. An antibody developed against the C-terminal domain of the mouse β2AR (Ab-sc570) specifically recognized rat but not human β2AR. An antibody developed against 78 amino acids of the C-terminus of the human β2AR (Ab-13989) was capable of recognizing both rat and human β2ARs. In HEK 293 cells, the receptors were predominantly localized to the cell surface. By contrast, about half of the native rat β2AR that we visualized in primary cultures of rat airway epithelial and smooth muscle cells using Ab-sc570 and Ab-13989 was found inside cells rather than on their surface. Conclusion Antibodies have been identified that recognize human β2AR, rat β2AR or both rat and human β2AR

  19. Characterization of a panel of six β2-adrenergic receptor antibodies by indirect immunofluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Jones Stacie M

    2008-04-01

    Full Text Available Abstract Background The β2-adrenergic receptor (β2AR is a primary target for medications used to treat asthma. Due to the low abundance of β2AR, very few studies have reported its localization in tissues. However, the intracellular location of β2AR in lung tissue, especially in airway smooth muscle cells, is very likely to have a significant impact on how the airways respond to β-agonist medications. Thus, a method for visualizing β2AR in tissues would be of utility. The purpose of this study was to develop an immunofluorescent labeling technique for localizing native and recombinant β2AR in primary cell cultures. Methods A panel of six different antibodies were evaluated in indirect immunofluorescence assays for their ability to recognize human and rat β2AR expressed in HEK 293 cells. Antibodies capable of recognizing rat β2AR were identified and used to localize native β2AR in primary cultures of rat airway smooth muscle and epithelial cells. β2AR expression was confirmed by performing ligand binding assays using the β-adrenergic antagonist [3H] dihydroalprenolol ([3H]DHA. Results Among the six antibodies tested, we identified three of interest. An antibody developed against the C-terminal 15 amino acids of the human β2AR (Ab-Bethyl specifically recognized human but not rat β2AR. An antibody developed against the C-terminal domain of the mouse β2AR (Ab-sc570 specifically recognized rat but not human β2AR. An antibody developed against 78 amino acids of the C-terminus of the human β2AR (Ab-13989 was capable of recognizing both rat and human β2ARs. In HEK 293 cells, the receptors were predominantly localized to the cell surface. By contrast, about half of the native rat β2AR that we visualized in primary cultures of rat airway epithelial and smooth muscle cells using Ab-sc570 and Ab-13989 was found inside cells rather than on their surface. Conclusion Antibodies have been identified that recognize human β2AR, rat β2AR or

  20. EGFR Signaling in the Brain Is Necessary for Olfactory Learning in "Drosophila" Larvae

    Science.gov (United States)

    Rahn, Tasja; Leippe, Matthias; Roeder, Thomas; Fedders, Henning

    2013-01-01

    Signaling via the epidermal growth factor receptor (EGFR) pathway has emerged as one of the key mechanisms in the development of the central nervous system in "Drosophila melanogaster." By contrast, little is known about the functions of EGFR signaling in the differentiated larval brain. Here, promoter-reporter lines of EGFR and its most prominent…

  1. [Two pediatric cases of anti-NMDA receptor antibody encephalitis].

    Science.gov (United States)

    Ben Azoun, M; Tatencloux, S; Deiva, K; Blanc, P

    2014-11-01

    Although less frequent than viral encephalitis, anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a frequent form of acute pediatric encephalitis. After a prodromal phase of flu-like symptoms, psychiatric symptoms predominate - agitation, anxiety, hallucinations - and can make correct diagnosis more difficult. Also noted are abnormal dyskinesia and dystonia-like movements, partial seizures, difficulties talking or memorizing, and autonomic manifestations. The presentation of two cases of anti-NMDAR encephalitis illustrates the symptoms of this disease. Although the CSF abnormalities are not highly specific of this disease, and MRI most often normal, EEG shows more specific signs. These observations enable us to discuss different treatment options and understand the progression of this disease.

  2. Affinity Maturation of an Epidermal Growth Factor Receptor Targeting Human Monoclonal Antibody ER414 by CDR Mutation.

    Science.gov (United States)

    Chang, Ki-Hwan; Kim, Min-Soo; Hong, Gwang-Won; Seo, Mi-Sun; Shin, Yong-Nam; Kim, Se-Ho

    2012-08-01

    It is well established that blocking the interaction of EGFR with growth factors leads to the arrest of tumor growth, resulting in tumor cell death. ER414 is a human monoclonal antibody (mAb) derived by guided selection of the mouse mAb A13. The ER414 exhibited a ~17-fold lower affinity and, as a result, lower efficacy of inhibition of the EGF-mediated tyrosine phosphorylation of EGFR when compared with mAb A13 and cetuximab. We performed a stepwise in vitro affinity maturation to improve the affinity of ER414. We obtained a 3D model of ER414 to identify the amino acids in the CDRs that needed to be mutated. Clones were selected from the phage library with randomized amino acids in the CDRs and substitution of amino acids in the HCDR3 and LCDR1 of ER414 led to improved affinity. A clone, H3-14, with a ~20-fold increased affinity, was selected from the HCDR3 randomized library. Then three clones, ER2, ER78 and ER79, were selected from the LCDR1 randomized library based on the H3-14 but did not show further increased affinities compared to that of H3-14. Of the three, ER2 was chosen for further characterization due to its better expression than others. We successfully performed affinity maturation of ER414 and obtained antibodies with a similar affinity as cetuximab. And antibody from an affinity maturation inhibits the EGF-mediated tyrosine phosphorylation of EGFR in a manner similar to cetuximab.

  3. Induced sensitivity to EGFR inhibitors is mediated by palmitoylated cysteine 1025 of EGFR and requires oncogenic Kras.

    Science.gov (United States)

    Kharbanda, Akriti; Runkle, Kristin; Wang, Wei; Witze, Eric S

    2017-11-04

    Currently, there are no effective therapeutic strategies targeting Kras driven cancers, and therefore, identifying new targeted therapies and overcoming drug resistance have become paramount for effective long-term cancer therapy. We have found that reducing expression of the palmitoyl transferase DHHC20 increases cell death induced by the EGFR inhibitor gefitinib in Kras and EGFR mutant cell lines, but not MCF7 cells harboring wildtype Kras. We show that the increased gefitinib sensitivity in cancer cells induced by DHHC20 inhibition is mediated directly through loss of palmitoylation on a previously identified cysteine residue in the C-terminal tail of EGFR. We utilized an EGFR point mutant in which the palmitoylated cysteine 1025 is mutated to alanine (EGFR(C1025A)), that results in receptor activation. Expression of the EGFR mutant alone in NIH3T3 cells does not increase sensitivity to gefitinib-induced cell death. However, when EGFR(C1025A) is expressed in cells expressing activated Kras(G12V), EGFR inhibitor induced cell death is increased. Surprisingly, lung cancer cells harboring the EGFR inhibitor resistant mutation, T790M, become sensitive to EGFR inhibitor treatment when DHHC20 is inhibited. Finally, the small molecule, 2-bromopalmitate, which has been shown to inhibit palmitoyl transferases, acts synergistically with gefitinib to induce cell death in the gefitinib resistant cell line NCI-H1975. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Human C-C chemokine receptor 3 monoclonal antibody inhibits pulmonary inflammation in allergic mice

    Institute of Scientific and Technical Information of China (English)

    Kai WANG; Hua-hao SHEN; Wen LI; Hua-qiong HUANG

    2007-01-01

    Aim:To evaluate the effect of C-C chemokine receptor 3 (CCR3) blockade on pulmonary inflammation and mucus production in allergic mice. Methods:We used the synthetic peptide of the CCR3 NH2-terminal as the immunizing antigen and generated murine monoclonal antibody against the human CCR3. In addition,the generated antibody was administered to mice sensitized and challenged with ovalbumin. The inflammatory cells in bronchoalveolar lavage,cytokine levels,pulmonary histopathology,and mucus secretion were examined. Results:The Western blotting analysis indicated that the generated antibody bound to CCR3 specifically. The allergic mice treated with the antihuman CCR3 antibody exhibited a significant reduction of pulmonary inflammation accompanied with the alteration of cytokine. Conclusion:The antibody we generated was specific to CCR3. The inhibition of airway inflammation and mucus overproduction by the antibody suggested that the blockade of CCR3 is an appealing therapeutical target for asthma. The present research may provide an experimental basis for the further study of this agent.

  5. Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family

    Science.gov (United States)

    Shepard, H. Michael; Brdlik, Cathleen M.; Schreiber, Hans

    2008-01-01

    The human EGFR (HER) family is essential for communication between many epithelial cancer cell types and the tumor microenvironment. Therapeutics targeting the HER family have demonstrated clinical success in the treatment of diverse epithelial cancers. Here we propose that the success of HER family–targeted monoclonal antibodies in cancer results from their ability to interfere with HER family consolidation of signals initiated by a multitude of other receptor systems. Ligand/receptor systems that initiate these signals include cytokine receptors, chemokine receptors, TLRs, GPCRs, and integrins. We further extrapolate that improvements in cancer therapeutics targeting the HER family are likely to incorporate mechanisms that block or reverse stromal support of malignant progression by isolating the HER family from autocrine and stromal influences. PMID:18982164

  6. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop

    DEFF Research Database (Denmark)

    Pirker, Robert; Herth, Felix J F; Kerr, Keith M;

    2010-01-01

    Activating somatic mutations of the tyrosine kinase domain of epidermal growth factor receptor (EGFR) have recently been characterized in a subset of patients with advanced non-small cell lung cancer (NSCLC). Patients harboring these mutations in their tumors show excellent response to EGFR...... tyrosine kinase inhibitors (EGFR-TKIs). The EGFR-TKI gefitinib has been approved in Europe for the treatment of adult patients with locally advanced or metastatic NSCLC with activating mutations of the EGFR TK. Because EGFR mutation testing is not yet well established across Europe, biomarker......-directed therapy only slowly emerges for the subset of NSCLC patients most likely to benefit: those with EGFR mutations....

  7. The ErbB4 CYT2 variant protects EGFR from ligand-induced degradation to enhance cancer cell motility

    NARCIS (Netherlands)

    Kiuchi, Tai; Ortiz-Zapater, Elena; Monypenny, James; Matthews, Daniel R; Nguyen, Lan K; Barbeau, Jody; Coban, Oana; Lawler, Katherine; Burford, Brian; Rolfe, Daniel J; de Rinaldis, Emanuele; Dafou, Dimitra; Simpson, Michael A; Woodman, Natalie; Pinder, Sarah; Gillett, Cheryl E; Devauges, Viviane; Poland, Simon P; Fruhwirth, Gilbert; Marra, Pierfrancesco; Boersma, Ykelien L; Plückthun, Andreas; Gullick, William J; Yarden, Yosef; Santis, George; Winn, Martyn; Kholodenko, Boris N; Martin-Fernandez, Marisa L; Parker, Peter; Tutt, Andrew; Ameer-Beg, Simon M; Ng, Tony

    2014-01-01

    The epidermal growth factor receptor (EGFR) is a member of the ErbB family that can promote the migration and proliferation of breast cancer cells. Therapies that target EGFR can promote the dimerization of EGFR with other ErbB receptors, which is associated with the development of drug resistance.

  8. Targeting the EGFR pathway for cancer therapy

    DEFF Research Database (Denmark)

    Johnston, JB; Navaratnam, S; Pitz, MW

    2006-01-01

    provided the rationale for the targeting of the components of the EGFR signaling pathways for cancer therapy. Below we discuss various aspects of EGFR-targeted therapies mainly in hematologic malignancies, lung cancer and breast cancer. Beside novel therapeutic approaches, we also discuss specific side......Clinical studies have shown that HER-2/Neu is over-expressed in up to one-third of patients with a variety of cancers, including B-cell acute lymphoblastic leukemia (B-ALL), breast cancer and lung cancer, and that these patients are frequently resistant to conventional chemo-therapies. Additionally...... effects associated with the therapeutic inhibition of components of the EGFR-pathways. Alongside small inhibitors, such as Lapatinib (Tykerb, GW572016), Gefitinib (Iressa, ZD1839), and Erlotinib (Tarceva, OSI-774), a significant part of the review is also dedicated to therapeutic antibodies (e...

  9. [Chronic hypocalcemia due to anti-calcium sensing receptor antibodies].

    Science.gov (United States)

    Marques, Pedro; Santos, Rita; Cavaco, Branca; Leite, Valeriano

    2014-01-01

    Introdução: O hipoparatiroidismo cursa com hipocalcemia e é mais frequentemente registado após cirurgia cervical. A etiologia autoimune é mais rara e difícil de diagnosticar. Caso clínico: Mulher, 52 anos, sem antecedentes pessoais, medicamentosos ou familiares relevantes, referenciada por hipocalcemia e calcificação dos núcleos da base, detetados no decurso de investigação de quadro de mialgias. Além de hipocalcemia (4,6 mg/dL), foi verificada hiperfosfatemia (8,7 mg/dL), hormona paratiroideia indetetável, calciúria, fosfatúria e magnesúria baixas. A análise molecular do gene CaSR excluiu mutações germinais. A pesquisa de anticorpos anti-receptor sensível do cálcio (anti-CaSR) foi positiva. Atualmente está assintomática e normocalcémica sob terapêutica com cálcio e vitamina D. Discussão: Embora rara, a hipocalcemia por hipoparatiroidismo autoimune deve ponderar-se em adultos sem antecedentes de cirurgia cervical, medicação hipocalcemiante, história familiar ou fenótipo sugestivo de doença genética. Hormona paratiroideia diminuída ou indetetável exclui pseudohipoparatiroidismo e a positividade para anti-CaSR confirma o diagnóstico.

  10. Targeting Nuclear EGFR: Strategies for Improving Cetuximab Therapy in Lung Cancer

    Science.gov (United States)

    2015-12-01

    Src family kinases (SFKs)4,5 and AKT6, which are necessary, early, events for trafficking EGFR from the membrane to the nucleus. In the nucleus EGFR...of EGFR is linked to the Axl Tyrosine Kinase Receptor: One of the major goals of our laboratory is to modulate EGFR trafficking to the nucleus to...comprehensive clinical information including outcomes (RR, OS, PFS) as well as characteristics such as age, sex , race, stage at initial diagnosis, and

  11. Identification of Anti-EGFR and Anti-ErbB3 Dual Variable Domains Immunoglobulin (DVD-Ig) Proteins with Unique Activities.

    Science.gov (United States)

    Gu, Jinming; Yang, Jinsong; Chang, Qing; Liu, Zhihong; Ghayur, Tariq; Gu, Jijie

    2015-01-01

    Epidermal growth factor receptor (EGFR) and receptor tyrosine-protein kinase 3 (ErbB3) are two well-established targets in cancer therapy. There is significant crosstalk among these two receptors and others. To block signaling from both EGFR and ErbB3, we generated anti-EGFR and anti-ErbB3 DVD-Ig proteins. Two DVD-Ig proteins maintained the functions of the combination of the two parental antibodies. The DVD-Ig proteins inhibit cell signaling and proliferation in A431 and FaDu cells while half DVD-Ig proteins lost proliferation inhibition function. Interestingly, in the presence of β-Heregulin (HRG), the DVD-Ig proteins show synergies with respect to inhibiting cell proliferation. The DVD-Ig proteins downregulate EGFR protein expression in the presence of HRG, which may be due to receptor internalization. Furthermore, the DVD-Ig proteins remarkably disrupt β-Heregulin binding to FaDu cells.

  12. Local radiotherapy increases the level of autoantibodies to ribosomal P0 protein but not to heat shock proteins, extracellular matrix molecules and EGFR/ErbB2 receptors in prostate cancer patients.

    Science.gov (United States)

    Ingrosso, Gianluca; Fantini, Massimo; Nardi, Alessandra; Benvenuto, Monica; Sacchetti, Pamela; Masuelli, Laura; Ponti, Elisabetta; Frajese, Giovanni Vanni; Lista, Florigio; Schillaci, Orazio; Santoni, Riccardo; Modesti, Andrea; Bei, Roberto

    2013-03-01

    Prostate cancer is a common cancer among men in developed countries. Although hormonotherapy and radiotherapy (RT) represent valid therapies for prostate cancer treatment, novel immunological approaches have been explored. The development of clinical trials employing cancer vaccines has indicated that immune response to tumor antigens can be boosted and that vaccine administration can improve patient survival. Immune response to tumor antigens could also be enhanced after standard therapies. In the present study, we determined the occurrence of antibodies to extracellular matrix (ECM) molecules, heat shock protein (HSP), ribosomal P0 protein, EGFR, ErbB2 and prostate-specific antigen (PSA) in 35 prostate cancer patients prior to and following local RT and hormonotherapy. We demonstrated that immunity to P0, ECM molecules [collagens (C) CI, CIII, CV, fibronectin (FN) and laminin (LM)] and to HSP90 was associated with malignancy in untreated patients. None of the patient sera showed antibodies to EGFR, while 2 and 1 patients showed reactivity to ErbB2 and PSA, respectively. We also demonstrated that 8 months after therapy the IgG serum levels to CI, CIII, FN and HSP90 significantly decreased. Conversely, the level of P0 autoantibodies increased after therapy in 10 patients. Five of the 10 patients with increased levels of P0 autoantibodies were treated with RT plus hormonotherapy. Treatment of patients did not change the levels of antibodies against EGFR, ErbB2 and PSA. Our results indicated that the modification of antibody level to self molecules after standard treatment of prostate cancer patients is influenced by the type of antigen. Ribosomal P0 protein appears to be a high immunogenic antigen and its immunogenicity increases following RT. In addition, 10 patients with increased levels of autoantibodies to P0 showed PSA mean levels lower than the remaining 25 patients at 18 months. This study may contribute to a better understanding of the

  13. Anti-Phospholipase A2 Receptor Antibody Titer Predicts Post-Rituximab Outcome of Membranous Nephropathy.

    Science.gov (United States)

    Ruggenenti, Piero; Debiec, Hanna; Ruggiero, Barbara; Chianca, Antonietta; Pellé, Timothee; Gaspari, Flavio; Suardi, Flavio; Gagliardini, Elena; Orisio, Silvia; Benigni, Ariela; Ronco, Pierre; Remuzzi, Giuseppe

    2015-10-01

    Rituximab induces nephrotic syndrome (NS) remission in two-thirds of patients with primary membranous nephropathy (MN), even after other treatments have failed. To assess the relationships among treatment effect, circulating nephritogenic anti-phospholipase A2 receptor (anti-PLA2R) autoantibodies and genetic polymorphisms predisposing to antibody production we serially monitored 24-hour proteinuria and antibody titer in patients with primary MN and long-lasting NS consenting to rituximab (375 mg/m(2)) therapy and genetic analyses. Over a median (range) follow-up of 30.8 (6.0-145.4) months, 84 of 132 rituximab-treated patients achieved complete or partial NS remission (primary end point), and 25 relapsed after remission. Outcomes of patients with or without detectable anti-PLA2R antibodies at baseline were similar. Among the 81 patients with antibodies, lower anti-PLA2R antibody titer at baseline (P=0.001) and full antibody depletion 6 months post-rituximab (hazard ratio [HR], 7.90; 95% confidence interval [95% CI], 2.54 to 24.60; PPLA2R antibody depletion. On average, 50% anti-PLA2R titer reduction preceded equivalent proteinuria reduction by 10 months. Re-emergence of circulating antibodies predicted disease relapse (HR, 6.54; 95% CI, 1.57 to 27.40; P=0.01), whereas initial complete remission protected from the event (HR, 6.63; 95% CI, 2.37 to 18.53; PPLA2R1 and HLA-DQA1 polymorphisms and of previous immunosuppressive treatment. Therefore, assessing circulating anti-PLA2R autoantibodies and proteinuria may help in monitoring disease activity and guiding personalized rituximab therapy in nephrotic patients with primary MN.

  14. EGFR/cell membrane chromatography-online-high performance liquid chromatography/mass spectrometry method for screening EGFR antagonists from Radix Angelicae Pubescentis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The intracellular kinase domains of the epidermal growth factor receptor(EGFR) in some tumor cells are significant targets for drug discovery.We have developed a new EGFR cell membrane chromatography(EGFR/CMC)-online-high performance liquid chromatography/mass spectrometry(HPLC/MS) method for screening anti-EGFR antagonists from medicinal herbs such as Radix Angelicae Pubescentis.In this study,the HEK293 EGFR cells with high expression of EGFR were used to prepare cell membrane stationary phase(CMSP) in the EGFR/CMC model.The retention fractions on the EGFR/CMC model were directly analyzed by combining a 10 port columns switcher with a HPLC/MS system online.As a result,osthole from Radix Angelicae Pubescentis was found to be the active component acting on EGFR like dasatinib as the control drug.There was a good relationship between their inhibiting effects on EGFR secretion and HEK293 EGFR cell growth in vitro.This new EGFR/CMC-online-HPLC/MS method can be applied for screening anti-EGFR antagonists from TCMs,for instance,Radix Angelicae Pubescentis.It will be a useful method for drug discovery with natural medicinal herbs as a leading compound resource.

  15. The Influence of Adnectin Binding on the Extracellular Domain of Epidermal Growth Factor Receptor

    Science.gov (United States)

    Iacob, Roxana E.; Chen, Guodong; Ahn, Joomi; Houel, Stephane; Wei, Hui; Mo, Jingjie; Tao, Li; Cohen, Daniel; Xie, Dianlin; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.

    2014-12-01

    The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography.

  16. [Immunohistochemical and histopathological study of expression of epidermal growth factor receptors in gastric cancer].

    Science.gov (United States)

    Kikkawa, K; Kato, M; Saitoh, Y

    1993-12-01

    To evaluate the importance of epidermal growth factor receptors (EGFR) in the growth and progression of human gastric cancer, we immunohistochemically stained EGFR in specimens of gastric cancer and compared the results with histopathological findings. Fresh frozen sections obtained from 65 cases of gastric cancer were stained by indirect immunostaining technique using Oncogene Scince Inc. Cat. No. GR01 (528 IgG reported by Kawamoto et al.) as anti-EGFR monoclonal antibody. Of the 65 cases of gastric cancer, 17 (26.2%) were EGFR-positive. In differentiated cancer, EGFR was positive in 15 of 28 cases (53.6%) of advanced cancer, and 1 of 14 (7.1%) of early stage cancer. In undifferentiated cancer, 1 of 15 cases (6.7%) of advanced cancer was positive, but all 8 cases of early stage cancer were negative. In differentiated cancer, EGFR was more frequently positive in cases of advanced cancer than in those of early stage cancer (p < 0.05). These results suggest that EGFR are expressed or increase in the transition process from early to advanced stage cancer in differentiated gastric cancer. In addition, the lower EGFR-positive rate in cases of undifferentiated cancer than in those of differentiated cancer suggests that an increase in EGFR is not needed for cancer growth in most cases of undifferentiated cancer.

  17. Dual Mechanism of Interleukin-3 Receptor Blockade by an Anti-Cancer Antibody

    Directory of Open Access Journals (Sweden)

    Sophie E. Broughton

    2014-07-01

    Full Text Available Interleukin-3 (IL-3 is an activated T cell product that bridges innate and adaptive immunity and contributes to several immunopathologies. Here, we report the crystal structure of the IL-3 receptor α chain (IL3Rα in complex with the anti-leukemia antibody CSL362 that reveals the N-terminal domain (NTD, a domain also present in the granulocyte-macrophage colony-stimulating factor (GM-CSF, IL-5, and IL-13 receptors, adopting unique “open” and classical “closed” conformations. Although extensive mutational analyses of the NTD epitope of CSL362 show minor overlap with the IL-3 binding site, CSL362 only inhibits IL-3 binding to the closed conformation, indicating alternative mechanisms for blocking IL-3 signaling. Significantly, whereas “open-like” IL3Rα mutants can simultaneously bind IL-3 and CSL362, CSL362 still prevents the assembly of a higher-order IL-3 receptor-signaling complex. The discovery of open forms of cytokine receptors provides the framework for development of potent antibodies that can achieve a “double hit” cytokine receptor blockade.

  18. Structural evidence for evolution of shark Ig new antigen receptor variable domain antibodies from a cell-surface receptor.

    Science.gov (United States)

    Streltsov, V A; Varghese, J N; Carmichael, J A; Irving, R A; Hudson, P J; Nuttall, S D

    2004-08-24

    The Ig new antigen receptors (IgNARs) are single-domain antibodies found in the serum of sharks. Here, we report 2.2- and 2.8-A structures of the type 2 IgNAR variable domains 12Y-1 and 12Y-2. Structural features include, first, an Ig superfamily topology transitional between cell adhesion molecules, antibodies, and T cell receptors; and, second, a vestigial complementarity-determining region 2 at the "bottom" of the molecule, apparently discontinuous from the antigen-binding paratope and similar to that observed in cell adhesion molecules. Thus, we suggest that IgNARs originated as cell-surface adhesion molecules coopted to the immune repertoire and represent an evolutionary lineage independent of variable heavy chain/variable light chain type antibodies. Additionally, both 12Y-1 and 12Y-2 form unique crystallographic dimers, predominantly mediated by main-chain framework interactions, which represent a possible model for primordial cell-based interactions. Unusually, the 12Y-2 complementarity-determining region 3 also adopts an extended beta-hairpin structure, suggesting a distinct selective advantage in accessing cryptic antigenic epitopes.

  19. The Structural Basis for the Function of Two Anti-VEGF Receptor 2 Antibodies

    Energy Technology Data Exchange (ETDEWEB)

    M Franklin; E Navarro; Y Wang; S Patel; P Singh; Y Zhang; K Persaud; A Bari; H Griffith; et al.

    2011-12-31

    The anti-VEGF receptor 2 antibody IMC-1121B is a promising antiangiogenic drug being tested for treatment of breast and gastric cancer. We have determined the structure of the 1121B Fab fragment in complex with domain 3 of VEGFR2, as well as the structure of a different neutralizing anti-VEGFR2 antibody, 6.64, also in complex with VEGFR2 domain 3. The two Fab fragments bind at opposite ends of VEGFR2 domain 3; 1121B directly blocks VEGF binding, whereas 6.64 may prevent receptor dimerization by perturbing the domain 3:domain 4 interface. Mutagenesis reveals that residues essential for VEGF, 1121B, and 6.64 binding are nonoverlapping among the three contact patches.

  20. The Structural Basis for the Function of Two Anti-VEGF Receptor 2 Antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Franklin, Matthew C.; Navarro, Elizabeth C.; Wang, Yujie; Patel, Sheetal; Singh, Pinki; Zhang, Yi; Persaud, Kris; Bari, Amtul; Griffith, Heather; Shen, Leyi; Balderes, Paul; Kussie, Paul (ImClone)

    2011-10-28

    The anti-VEGF receptor 2 antibody IMC-1121B is a promising antiangiogenic drug being tested for treatment of breast and gastric cancer. We have determined the structure of the 1121B Fab fragment in complex with domain 3 of VEGFR2, as well as the structure of a different neutralizing anti-VEGFR2 antibody, 6.64, also in complex with VEGFR2 domain 3. The two Fab fragments bind at opposite ends of VEGFR2 domain 3; 1121B directly blocks VEGF binding, whereas 6.64 may prevent receptor dimerization by perturbing the domain 3:domain 4 interface. Mutagenesis reveals that residues essential for VEGF, 1121B, and 6.64 binding are nonoverlapping among the three contact patches.

  1. GENERATION OF MONOCLONAL ANTIBODY AGAINST HUMAN ANDROGEN RECEPTOR WITH SYNTHETIC PEPTIDE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: Preparation of anti-human androgen receptor(hAR) monoclonal antibody (McAb). Methods: Four cells lines of hybridoma secreting specific monoclonal antibodies against AR were first established by fusion SP2/0 cell with spleen cell from BALB/c mice immunized with the coupling complex of hAR-KLH. Results: Paraffin-embedded sections of 45 prostate cancers were detected. There was an overall concordance of 91% using Immunohistochemistry between AR polyclonal antibody from Zymed and hAR-N McAb selfmade. Conclusion: The results show that the McAb obtained in this study would be a useful tool to detect the AR status in prostate cancer.

  2. EGFR mutation frequency and effectiveness of erlotinib

    DEFF Research Database (Denmark)

    Weber, Britta; Hager, Henrik; Sorensen, Boe S;

    2014-01-01

    OBJECTIVES: In 2008, we initiated a prospective study to explore the frequency and predictive value of epidermal growth factor receptor (EGFR) mutations in an unselected population of Danish patients with non-small cell lung cancer offered treatment with erlotinib, mainly in second-line. MATERIALS...

  3. Purification of full-length human Pregnane and Xenobiotic Receptor: polyclonal antibody preparation for immunological characterization

    Institute of Scientific and Technical Information of China (English)

    Mallampati SARADHI; Biji KRISHNA; Gauranga MUKHOPADHYAY; Rakesh K TYAGI

    2005-01-01

    Pregnane and Xenobiotic Receptor (PXR; or Steroid and Xenobiotic Receptor, SXR), a new member of the nuclear receptor superfamily, is thought to modulate a network of genes that are involved in xenobiotic metabolism and elimination. To further explore the role of PXR in body's homeostatic mechanisms, we for the first time, report successful prokaryotic expression and purification of full-length PXR and preparation of polyclonal antibody against the whole protein. Thefull-length cDNA encoding a 434 amino acids protein was sub-cloned into prokaryotic expression vector, pET-30b and transformed into E. coli BL21 (DE3) cells for efficient over expression. The inclusion body fraction, containing the expressed recombinant protein, was purified first by solubilizing in sarcosine extraction buffer and then by affinity column chromatography using Ni-NTA His-Bind matrix. The efficacy of anti-PXR antibody was confirmed by immunocytology, Western blot analysis, EMSA and immunohistochemistry. The antibody obtained was capable of detecting human and mouse PXR with high specificity and sensitivity. Immunofluorescence staining of COS-1 cells transfected with human or mouse PXR showed a clear nuclear localization. Results from immunohistochemistry showed that level of PXR in liver sections is immunologically detectable in the nuclei. Similar to exogenously transfected PXR, Western blot analysis of cell extract from HepG2 and COLO320DM cells revealed a major protein band for endogenous PXR having the expected molecular weight of 50 kDa. Relevance of other immunodetectable bands with reference to PXR isoforms and current testimony are evaluated. Advantages of antibody raised against full-length PXR protein for functional characterization of receptor is discussed and its application for clinical purposes is envisaged.

  4. Production of neutralizing monoclonal antibody against human vascular endothelial growth factor receptor

    Institute of Scientific and Technical Information of China (English)

    Rong LI; Dong-sheng XIONG; Xiao-feng SHAO; Jia LIU; Yuan-fu XU; Yuan-sheng XU; Han-zhi LIU; Zhen-ping ZHU; Chun-zheng YANG

    2004-01-01

    AIM: To prepare neutralizing monoclonal antibody (mAb) against extracellular immunoglobulin (Ig)-like domainⅢ of vascular endothelial growth factor receptor KDR and study its biological activity. METHODS: Soluble KDR Ig domain Ⅲ (KDR-Ⅲ) fusion protein was expressed in E Coli and purified from the bacterial periplasmic extracts via an affinity chromatography. Monoclonal antibodies against KDR-Ⅲ were prepared by hybridoma technique. ELISA and FACS analysis were used to identify its specificity. Immunoprecipitation and [3H]-thymidine incorporation assay were also used to detect the activity of anti-KDR mAb blocking the phosphorylation of KDR tyrosine kinase receptor and the influence on vascular endothelial growth factor-induced mitogenesis of human endothelial ceils.RESULTS: A monoclonal antibody, Ycom1D3 (IgG1), was generated from a mouse immunized with the recombinant KDR-Ⅲ protein. Ycom1D3 bound specifically to both the soluble KDR-Ⅲ and the cell-surface expressed KDR. Ycom1D3 effectively blocked VEGF/KDR interaction and inhibited VEGF-stimulated KDR activation in human endothelial cells. Furthermore, the antibody efficiently neutralized VEGF-induced mitogenesis of human endothelial cells. CONCLUSION: Our results suggest that the anti-KDR mAb, Ycom1D3, has potential applications in the treatment of cancer and other diseases where pathological angiogenesis is involved.

  5. 非小细胞肺癌分子靶向治疗中EGFR-TKI的耐药机制研究进展%Research Progress on Resistance Mechanisms of Epidermal Growth Factor Receptor Tvrosine Kinase Inhibitors in Non-small Cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    李媛

    2012-01-01

    With a greater understanding of tumor biology, novel molecular-targeted strategies that block cancer progression pathways have been evaluated as a new therapeutic approach for treating non-small cell lung cancer (NSCLC). Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib and erlotinib, show favorable response to EGFR mutant lung cancer in some populations of NSCLC patients. However, the efficacy of EGFR-TKIs is limited by either primary (de novo) or acquired resistance after therapy. This review will focus on recently identified mechanisms of primary and acquired resistance to EGFR TKIs and strategies currently being employed to overcome resistance.%随着分子靶向治疗药物的发展,以吉非替尼( gefitinib,iressa)和厄洛替尼(erlotinib,tarceva)为代表的表皮生长因子受体酪氨酸激酶抑制剂( epidermal growth factor receptor-tyrosine kinases inhibitors,EGFR-TKIs)在治疗非小细胞肺癌中发挥了重要作用.然而在临床前和临床研究中发现许多患者对此药物存在原发性耐药或获得性耐药,使该类药物的使用受到一定限制.本文就近年来对EGFR-TKIs耐药机制的研究进展进行综述.

  6. Commercially available antibodies directed against α-adrenergic receptor subtypes and other G protein-coupled receptors with acceptable selectivity in flow cytometry experiments.

    Science.gov (United States)

    Tripathi, Abhishek; Gaponenko, Vadim; Majetschak, Matthias

    2016-02-01

    Several previous reports suggested that many commercially available antibodies directed against G protein-coupled receptors (GPCR) lack sufficient selectivity. Accordingly, it has been proposed that receptor antibodies should be validated by at least one of several criteria, such as testing tissues or cells after knockout or silencing of the corresponding gene. Here, we tested whether 12 commercially available antibodies directed against α-adrenergic receptor (AR) subtypes (α1A/B/D, α2A/B/C), atypical chemokine receptor 3 (ACKR3), and vasopressin receptor 1A (AVPR1A) suffice these criteria. We detected in flow cytometry experiments with human vascular smooth muscle cells that the fluorescence signals from each of these antibodies were reduced by 46 ± 10 %-91 ± 2 % in cells treated with commercially available small interfering RNA (siRNA) specific for each receptor, as compared with cells that were incubated with non-targeting siRNA. The tested antibodies included anti-ACKR3 (R&D Systems, mab42273), for which specificity has previously been demonstrated. Staining with this antibody resulted in 72 ± 5 % reduction of the fluorescence signal after ACKR3 siRNA treatment. Furthermore, staining with anti-α1A-AR (Santa Cruz, sc1477) and anti-ACKR3 (Abcam, ab38089), which have previously been reported to be non-specific, resulted in 70 ± 19 % and 80 ± 4 % loss of the fluorescence signal after α1A-AR and ACKR3 siRNA treatment, respectively. Our findings demonstrate that the tested antibodies show reasonable selectivity for their receptor target under our experimental conditions. Furthermore, our observations suggest that the selectivity of GPCR antibodies depends on the method for which the antibody is employed, the species from which cells/tissues are obtained, and on the type of specimens (cell, tissue/cell homogenate, or section) tested.

  7. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, James R.R.; Zhang, Ruijun; Khurana, Surender; King, Lisa R.; Manischewitz, Jody; Golding, Hana; Dormitzer, Philip R.; Haynes, Barton F.; Walter, Emmanuel B.; Moody, M. Anthony; Kepler, Thomas B.; Liao, Hua-Xin; Harrison, Stephen C. (Harvard-Med); (Novartis); (US-FDA); (Duke)

    2011-09-20

    Seasonal antigenic drift of circulating influenza virus leads to a requirement for frequent changes in vaccine composition, because exposure or vaccination elicits human antibodies with limited cross-neutralization of drifted strains. We describe a human monoclonal antibody, CH65, obtained by isolating rearranged heavy- and light-chain genes from sorted single plasma cells, coming from a subject immunized with the 2007 trivalent influenza vaccine. The crystal structure of a complex of the hemagglutinin (HA) from H1N1 strain A/Solomon Islands/3/2006 with the Fab of CH65 shows that the tip of the CH65 heavy-chain complementarity determining region 3 (CDR3) inserts into the receptor binding pocket on HA1, mimicking in many respects the interaction of the physiological receptor, sialic acid. CH65 neutralizes infectivity of 30 out of 36 H1N1 strains tested. The resistant strains have a single-residue insertion near the rim of the sialic-acid pocket. We conclude that broad neutralization of influenza virus can be achieved by antibodies with contacts that mimic those of the receptor.

  8. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy.

    Science.gov (United States)

    Lach-Trifilieff, Estelle; Minetti, Giulia C; Sheppard, KellyAnn; Ibebunjo, Chikwendu; Feige, Jerome N; Hartmann, Steffen; Brachat, Sophie; Rivet, Helene; Koelbing, Claudia; Morvan, Frederic; Hatakeyama, Shinji; Glass, David J

    2014-02-01

    The myostatin/activin type II receptor (ActRII) pathway has been identified to be critical in regulating skeletal muscle size. Several other ligands, including GDF11 and the activins, signal through this pathway, suggesting that the ActRII receptors are major regulatory nodes in the regulation of muscle mass. We have developed a novel, human anti-ActRII antibody (bimagrumab, or BYM338) to prevent binding of ligands to the receptors and thus inhibit downstream signaling. BYM338 enhances differentiation of primary human skeletal myoblasts and counteracts the inhibition of differentiation induced by myostatin or activin A. BYM338 prevents myostatin- or activin A-induced atrophy through inhibition of Smad2/3 phosphorylation, thus sparing the myosin heavy chain from degradation. BYM338 dramatically increases skeletal muscle mass in mice, beyond sole inhibition of myostatin, detected by comparing the antibody with a myostatin inhibitor. A mouse version of the antibody induces enhanced muscle hypertrophy in myostatin mutant mice, further confirming a beneficial effect on muscle growth beyond myostatin inhibition alone through blockade of ActRII ligands. BYM338 protects muscles from glucocorticoid-induced atrophy and weakness via prevention of muscle and tetanic force losses. These data highlight the compelling therapeutic potential of BYM338 for the treatment of skeletal muscle atrophy and weakness in multiple settings.

  9. A Chimeric Cetuximab-Functionalized Corona as a Potent Delivery System for Microtubule-Destabilizing Nanocomplexes to Hepatocellular Carcinoma Cells: A Focus on EGFR and Tubulin Intracellular Dynamics.

    Science.gov (United States)

    Poojari, Radhika; Kini, Sudarshan; Srivastava, Rohit; Panda, Dulal

    2015-11-01

    In this study, we have developed microtubule destabilizing agents combretastatin A4 (CA4) or 2-methoxyestradiol (2ME) encapsulated poly(d,l-lactide-co-glycolide)-b-poly(ethylene glycol) (PLGA-b-PEG) nanocomplexes for targeted delivery to human hepatocellular carcinoma (HCC) cells. An epidermal growth factor receptor (EGFR) is known to be overexpressed in HCC cells. Therefore, the targeting moiety cetuximab (Cet), an anti-EGFR chimeric monoclonal antibody, is functionalized on the surface of these diblock copolymeric coronas. Cetuximab is associated with the extracellular domain of the EGFR; therefore, the uptake of the cetuximab conjugated nanocomplexes occurred efficiently in EGFR overexpressing HCC cells indicating potent internalization of the complex. The cetuximab targeted-PLGA-b-PEG nanocomplexes encapsulating CA4 or 2ME strongly inhibited phospho-EGFR expression, depolymerized microtubules, produced spindle abnormalities, stalled mitosis, and induced apoptosis in Huh7 cells compared to the free drugs, CA4 or 2ME. Further, the combinatorial strategy of targeted nanocomplexes, Cet-PLGA-b-PEG-CA4 NP and Cet-PLGA-b-PEG-2ME NP, significantly reduced the migration of Huh7 cells, and markedly enhanced the anticancer effects of the microtubule-targeted drugs in Huh7 cells compared to the free drugs, CA4 or 2ME. The results indicated that EGFR receptor-mediated internalization via cetuximab facilitated enhanced uptake of the nanocomplexes leading to potent anticancer efficacy in Huh7 cells. Cetuximab-functionalized PLGA-b-PEG nanocomplexes possess a strong potential for the targeted delivery of CA4 or 2ME in EGFR overexpressed HCC cells, and the strategy may be useful for selectively targeting microtubules in these cells.

  10. A camelid single-domain antibody neutralizes botulinum neurotoxin A by blocking host receptor binding

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Guorui; Lam, Kwok-ho; Weisemann, Jasmin; Peng, Lisheng; Krez, Nadja; Perry, Kay; Shoemaker, Charles B.; Dong, Min; Rummel, Andreas; Jin, Rongsheng (BCH); (Cornell); (Tufts CTSI); (UCI); (MHH)

    2017-08-07

    Antibody treatment is currently the only available countermeasure for botulism, a fatal illness caused by flaccid paralysis of muscles due to botulinum neurotoxin (BoNT) intoxication. Among the seven major serotypes of BoNT/A-G, BoNT/A poses the most serious threat to humans because of its high potency and long duration of action. Prior to entering neurons and blocking neurotransmitter release, BoNT/A recognizes motoneurons via a dual-receptor binding process in which it engages both the neuron surface polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Previously, we identified a potent neutralizing antitoxin against BoNT/A1 termed ciA-C2, derived from a camelid heavy-chain-only antibody (VHH). In this study, we demonstrate that ciA-C2 prevents BoNT/A1 intoxication by inhibiting its binding to neuronal receptor SV2. Furthermore, we determined the crystal structure of ciA-C2 in complex with the receptor-binding domain of BoNT/A1 (HCA1) at 1.68 Å resolution. The structure revealed that ciA-C2 partially occupies the SV2-binding site on HCA1, causing direct interference of HCA1 interaction with both the N-glycan and peptide-moiety of SV2. Interestingly, this neutralization mechanism is similar to that of a monoclonal antibody in clinical trials, despite that ciA-C2 is more than 10-times smaller. Taken together, these results enlighten our understanding of BoNT/A1 interactions with its neuronal receptor, and further demonstrate that inhibiting toxin binding to the host receptor is an efficient countermeasure strategy.

  11. Cellular Functions Regulated by Phosphorylation of EGFR on Tyr845

    Directory of Open Access Journals (Sweden)

    Ken-ichi Sato

    2013-05-01

    Full Text Available The Src gene product (Src and the epidermal growth factor receptor (EGFR are prototypes of oncogene products and function primarily as a cytoplasmic non-receptor tyrosine kinase and a transmembrane receptor tyrosine kinase, respectively. The identification of Src and EGFR, and the subsequent extensive investigations of these proteins have long provided cutting edge research in cancer and other molecular and cellular biological studies. In 1995, we reported that the human epidermoid carcinoma cells, A431, contain a small fraction of Src and EGFR in which these two kinase were in physical association with each other, and that Src phosphorylates EGFR on tyrosine 845 (Y845 in the Src-EGFR complex. Y845 of EGFR is located in the activation segment of the kinase domain, where many protein kinases contain kinase-activating autophosphorylation sites (e.g., cAMP-dependent protein kinase, Src family kinases, transmembrane receptor type tyrosine kinases or trans-phosphorylation sites (e.g., cyclin-dependent protein kinase, mitogen-activated protein kinase, Akt protein kinase. A number of studies have demonstrated that Y845 phosphorylation serves an important role in cancer as well as normal cells. Here we compile the experimental facts involving Src phosphorylation of EGFR on Y845, by which cell proliferation, cell cycle control, mitochondrial regulation of cell metabolism, gamete activation and other cellular functions are regulated. We also discuss the physiological relevance, as well as structural insights of the Y845 phosphorylation.

  12. Cloning, Expression and Polyclonal Antibody Preparation of the Asialoglycoprotein Receptor of Marmota Himalayan

    Institute of Scientific and Technical Information of China (English)

    YANG Yan; HUANG Huang; ZHANG Zhenghua; WANG Baoju; TIAN Yongjun; LU Mengji; YANG Dongliang

    2007-01-01

    The objective of this study is to express the carbohydrate recognition domain (CRD) of the asialoglycoprotein receptor (ASGPR) H1 and H2 subunits of Marmota himalayan in vitro, and develop polyclonal antibodies against the recombinant proteins. RT-PCR was used to amplify ASGPR CRDH1 and CRDH2 from the liver tissue of Marmota himalayan. The products of amplification were subcloned into prokaryotic expression vector pRSET-B, and expressed in E. coli BL21(DE3)plysS. The recombinant proteins were purified using Ni-NTA spin column. The purified proteins were inoculated into BALB/c mice to develop polyclonal antibodies. The sensitivity and specificity of antibodies were evaluated by enzyme-linked immunosorbent assay (ELISA), Western blotting and immunohistochemical staining (IHC). The polyclonal antibodies showed high sensitivity and specificity against both denaturated and native ASGPR proteins. We successfully amplified and expressed the ASGPR CRDs of Marmota himalayan. The nucleic sequences of ASGPR CRDH1 and CRDH2 of Marmota himalayan have been submitted to Genbank and the sequence ID are DQ 845465 and DQ845466, respectively. The proteins and antibodies prepared can be used for targeting gene therapy in a new animal model-Marmota himalayan-for the research of infectious diseases of hepatitis viruses and liver cancer treatment.

  13. Clinical significance of detection of antibodies to fetal and adult acetylcholine receptors in myasthenia gravis

    Institute of Scientific and Technical Information of China (English)

    Qi-Guang Shi; Zhi-Hong Wang; Xiao-Wei Ma; Da-Qi Zhang; Chun-Sheng Yang; Fu-Dong Shi; Li Yang

    2012-01-01

    Objective To evaluate the frequency,distribution and clinical significance of the antibodies to the fetal and/or adult acetylcholine receptor (AChR) in patients with myasthenia gravis (MG).Methods AChR antibodies were detected by cell-based assay in the serum of ocular MG (OMG) (n =90) and generalized MG (GMG) patients (n =110).The fetaltype (2α∶ β∶ γ∶ δ) and adult-type (2α∶ β∶ ε∶ δ) AChR were used as antigens,and their relevance to disease presentation was assessed.Results The overall frequencies of anti-adult and anti-fetal AChR antibodies were similar in all 200 patients examined,with 14 having serum specific to the AChR-γ subunit,and 22 to the AChR-ε subunit.The overall sensitivity when using the fetal and adult AChR antibodies was higher than that when using the fetal AChR antibody only (P =0.015).Compared with OMG patients,the mean age at disease onset and the positive ratio of antibodies to both isoforms of the AChR were significantly higher in patients who subsequently progressed to GMG.Older patients and patients with both anti-fetal and anti-adult AChR antibodies had a greater risk for developing generalized disease [odds ratio (OR),1.03;95% confidence interval (CI),1.01-1.06 and OR,5.09;95% CI,2.23-11.62].Conclusion Using both fetal-and adulttype AChRs as the antigens may be more sensitive than using either subtype.Patients with serum specific to both isoforms are at a greater risk of progressing to GMG.Patients with disease onset at an advanced age appear to have a higher frequency of GMG conversion.

  14. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II.

    Science.gov (United States)

    Peng, Kesong; Tian, Xinqiao; Qian, Yuanyuan; Skibba, Melissa; Zou, Chunpeng; Liu, Zhiguo; Wang, Jingying; Xu, Zheng; Li, Xiaokun; Liang, Guang

    2016-03-01

    Cardiac hypertrophy is an important risk factor for heart failure. Epidermal growth factor receptor (EGFR) has been found to play a role in the pathogenesis of various cardiovascular diseases. The aim of this current study was to examine the role of EGFR in angiotensin II (Ang II)-induced cardiac hypertrophy and identify the underlying molecular mechanisms. In this study, we observed that both Ang II and EGF could increase the phospohorylation of EGFR and protein kinase B (AKT)/extracellular signal-regulated kinase (ERK), and then induce cell hypertrophy in H9c2 cells. Both pharmacological inhibitors and genetic silencing significantly reduced Ang II-induced EGFR signalling pathway activation, hypertrophic marker overexpression, and cell hypertrophy. In addition, our results showed that Ang II-induced EGFR activation is mediated by c-Src phosphorylation. In vivo, Ang II treatment significantly led to cardiac remodelling including cardiac hypertrophy, disorganization and fibrosis, accompanied by the activation of EGFR signalling pathway in the heart tissues, while all these molecular and pathological alterations were attenuated by the oral administration with EGFR inhibitors. In conclusion, the c-Src-dependent EGFR activation may play an important role in Ang II-induced cardiac hypertrophy, and inhibition of EGFR by specific molecules may be an effective strategy for the treatment of Ang II-associated cardiac diseases. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Human combinatorial Fab library yielding specific and functional antibodies against the human fibroblast growth factor receptor 3.

    Science.gov (United States)

    Rauchenberger, Robert; Borges, Eric; Thomassen-Wolf, Elisabeth; Rom, Eran; Adar, Rivka; Yaniv, Yael; Malka, Michael; Chumakov, Irina; Kotzer, Sarit; Resnitzky, Dalia; Knappik, Achim; Reiffert, Silke; Prassler, Josef; Jury, Karin; Waldherr, Dirk; Bauer, Susanne; Kretzschmar, Titus; Yayon, Avner; Rothe, Christine

    2003-10-03

    The human combinatorial antibody library Fab 1 (HuCAL-Fab 1) was generated by transferring the heavy and light chain variable regions from the previously constructed single-chain Fv library (Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., Wölle, J., Plückthun, A., and Virnekäs, B. (2000) J. Mol. Biol. 296, 57-86), diversified in both complementarity-determining regions 3 into a novel Fab display vector, yielding 2.1 x 10(10) different antibody fragments. The modularity has been retained in the Fab display and screening plasmids, ensuring rapid conversion into various antibody formats as well as antibody optimization using prebuilt maturation cassettes. HuCAL-Fab 1 was challenged against the human fibroblast growth factor receptor 3, a potential therapeutic antibody target, against which, to the best of our knowledge, no functional antibodies could be generated so far. A unique screening mode was designed utilizing recombinant functional proteins and cell lines differentially expressing fibroblast growth factor receptor isoforms diversified in expression and receptor dependence. Specific Fab fragments with subnanomolar affinities were isolated by selection without any maturation steps as determined by fluorescence flow cytometry. Some of the selected Fab fragments completely inhibit target-mediated cell proliferation, rendering them the first monoclonal antibodies against fibroblast growth factor receptors having significant function blocking activity. This study validates HuCAL-Fab 1 as a valuable source for the generation of target-specific antibodies for therapeutic applications.

  16. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: A retrospective study

    NARCIS (Netherlands)

    N. Gresa-Arribas (Nuria); M.J. Titulaer (Maarten); A. Torrents (Abiguei); H. Aguilar (Helena); L. McCracken (Lindsey); F. Leypoldt (Frank); A.J. Gleichman (Amy); R. Balice-Gordon (Rita); M.R. Rosenfeld (Myrna); D. Lynch (David); F. Graus (Francesc); J. Dalmau (Josep)

    2014-01-01

    textabstractBackground: Anti-N-methyl-d-aspartate (NMDA) receptor encephalitis is a severe but treatable autoimmune disorder which diagnosis depends on sensitive and specific antibody testing. We aimed to assess the sensitivity and specificity of serum and CSF antibody testing in patients with anti-

  17. Structural insight into antibody-mediated antagonism of the Glucagon-like peptide-1 Receptor.

    Science.gov (United States)

    Hennen, Stephanie; Kodra, János T; Soroka, Vladyslav; Krogh, Berit O; Wu, Xiaoai; Kaastrup, Peter; Ørskov, Cathrine; Rønn, Sif G; Schluckebier, Gerd; Barbateskovic, Silvia; Gandhi, Prafull S; Reedtz-Runge, Steffen

    2016-05-19

    The Glucagon-like peptide-1 receptor (GLP-1R) is a member of the class B G protein-coupled receptor (GPCR) family and a well-established target for the treatment of type 2 diabetes. The N-terminal extracellular domain (ECD) of GLP-1R is important for GLP-1 binding and the crystal structure of the GLP-1/ECD complex was reported previously. The first structure of a class B GPCR transmembrane (TM) domain was solved recently, but the full length receptor structure is still not well understood. Here we describe the molecular details of antibody-mediated antagonism of the GLP-1R using both in vitro pharmacology and x-ray crystallography. We showed that the antibody Fab fragment (Fab 3F52) blocked the GLP-1 binding site of the ECD directly and thereby acts as a competitive antagonist of native GLP-1. Interestingly, Fab 3F52 also blocked a short peptide agonist believed to engage primarily the transmembrane and extracellular loop region of GLP-1R, whereas functionality of an allosteric small-molecule agonist was not inhibited. This study has implications for the structural understanding of the GLP-1R and related class B GPCRs, which is important for the development of new and improved therapeutics targeting these receptors.

  18. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT.

    Directory of Open Access Journals (Sweden)

    Kumari Sonal Choudhary

    2016-06-01

    Full Text Available Epithelial to mesenchymal transition (EMT is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR, are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E and mesenchymal (EGFR_M networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.

  19. CGRP receptor antagonists and antibodies against CGRP and its receptor in migraine treatment

    DEFF Research Database (Denmark)

    Edvinsson, Lars

    2015-01-01

    Recently developed calcitonin gene-related peptide (CGRP) receptor antagonistic molecules have shown promising results in clinical trials for acute treatment of migraine attacks. Drugs from the gepant class of CGRP receptor antagonists are effective and do not cause vasoconstriction, one...... for treatment of chronic migraine (attacks >15 days/month). Initial results from phase I and II clinical trials have revealed promising results with minimal side effects and significant relief from chronic migraine as compared with placebo. The effectiveness of these various molecules raises the question...... to understand the localization of CGRP and the CGRP receptor components in these possible sites of migraine-related regions and their relation to the BBB....

  20. Analyzing the Sensitivity of EGFR-L861Q Mutation to TKIs and A Case Report

    Directory of Open Access Journals (Sweden)

    Xingxing WANG

    2015-09-01

    Full Text Available Background and objective The significant efficacy of tyrosine kinase inhibitors (TKIs has been approved for advanced non-small cell lung cancer (NSCLC patients with activating epidermal growth factor receptor (EGFR mutations. No clear evidence exists that EGFR-L861Q is sensitive to TKIs, and the best treatment for NSCLC patients with EGFR-L861Q mutation is undetermined. This study aims to discuss the best treatment for advanced NSCLC patients with EGFR-L861Q mutation by analyzing the differences among the structures of wild-type EGFR, activating mutant EGFR-L858R, and EGFR-L861Q mutation. Method The protein structures of wild-type EGFR were reconstructed. EGFR-L858R and EGFR-L861Q mutation were activated. The differences among the three kinds of protein conformation were analyzed using homologous modeling technique. Results The structure of EGFR-L858R and wild-type EGFR exhibited notable distinctions. The structure of EGFR-L861Q mutation was different compared with wild-type EGFR and activating mutant EGFR-L858R protein conformations. NSCLC patients with EGFR-L861Q mutation were given chemotherapy as the first-line of therapy, and TKIs were applied to maintain treatment when the tumor is unchanged. Effect evaluation result was improved when the lung computed tomography lesions were reviewed. Conclusion The analysis of the protein conformation of EGFR-L861Q mutation and the curative effect of chemotherapy with TKIs could help predict the sensitivity of EGFR-L861Q to TKIs. Combining the analysis with a clinical case, maintenance treatment with TKIs may achieve satisfactory curative effect in advanced NSCLC patients who have achieved disease control after first-line chemotherapy.

  1. Characterization of ductal and lobular breast carcinomas using novel prolactin receptor isoform specific antibodies

    Directory of Open Access Journals (Sweden)

    Heger Christopher D

    2010-12-01

    Full Text Available Abstract Background Prolactin is a polypeptide hormone responsible for proliferation and differentiation of the mammary gland. More recently, prolactin's role in mammary carcinogenesis has been studied with greater interest. Studies from our laboratory and from others have demonstrated that three specific isoforms of the prolactin receptor (PRLR are expressed in both normal and cancerous breast cells and tissues. Until now, reliable isoform specific antibodies have been lacking. We have prepared and characterized polyclonal antibodies against each of the human PRLR isoforms that can effectively be used to characterize human breast cancers. Methods Rabbits were immunized with synthetic peptides of isoform unique regions and immune sera affinity purified prior to validation by Western blot and immunohistochemical analyses. Sections of ductal and lobular carcinomas were stained with each affinity purified isoform specific antibody to determine expression patterns in breast cancer subclasses. Results We show that the rabbit antibodies have high titer and could specifically recognize each isoform of PRLR. Differences in PRLR isoform expression levels were observed and quantified using histosections from xenografts of established human breast cancer cells lines, and ductal and lobular carcinoma human biopsy specimens. In addition, these results were verified by real-time PCR with isoform specific primers. While nearly all tumors contained LF and SF1b, the majority (76% of ductal carcinoma biopsies expressed SF1a while the majority of lobular carcinomas lacked SF1a staining (72% and 27% had only low levels of expression. Conclusions Differences in the receptor isoform expression profiles may be critical to understanding the role of PRL in mammary tumorigenesis. Since these antibodies are specifically directed against each PRLR isoform, they are valuable tools for the evaluation of breast cancer PRLR content and have potential clinical importance in

  2. Antibodies to the α1-adrenergic receptor cause vascular impairments in rat brain as demonstrated by magnetic resonance angiography.

    Directory of Open Access Journals (Sweden)

    Peter Karczewski

    Full Text Available BACKGROUND: Circulating agonistic autoantibodies acting at G protein-coupled receptors have been associated with numerous sever pathologies in humans. Antibodies directed predominantly against the α(1-adrenergig receptor were detected in patients suffering from widespread diseases such as hypertension and type 2 diabetes. Their deleterious action has been demonstrated for peripheral organs. We postulate that antibodies to the α(1-adrenergig receptor are relevant pathomolecules in diseases of the central nervous system associated with vascular impairments. METHODOLOGY/PRINCIPAL FINDINGS: Using a rat model we studied the long-term action of antibodies against the α(1-adrenergig receptor either induced by immunization with a receptor peptide or applied by intravenous injection. The vasculature in the rat brains was investigated by time-of-flight magnetic resonance angiography using a 9.4 Tesla small animal MR imaging system. Visual examination of maximum-intensity-projections (MIPs of brain angiographs revealed the development of vascular defects in antibody- exposed animals between three and eight months of treatment. Relative vascular areas were derived from representative MIP image sections by grayscale analysis and used to form an index of vascular circulation. Animals exposed to the action of α(1-adrenergig receptor antibodies showed significantly reduced vascular areas (p<0.05. Calculated index values indicated attenuated blood flow in both antibody-treated cohorts compared to their respective controls reaching with (relative units ± standard error, n = 10 0.839 ± 0.026 versus 0.919 ± 0.026 statistical significance (p<0.05 for peptide-immunized rats. CONCLUSION/SIGNIFICANCE: We present evidence that antibodies to the α(1-adrenergig receptor cause cerebrovascular impairments in the rat. Our findings suggest the pathological significance of these antibodies in pathologies of the human central nervous system linked to impairments of

  3. Interaction between EGFR and EphA2

    DEFF Research Database (Denmark)

    Larsen, Alice Bjerregaard

    2010-01-01

    Enhanced or altered epidermal growth factor receptor (EGFR) activity has been reported in many human cancers and several molecular targeting therapies has been developed. However, despite intense research, therapies targeting EGFR have shown conflicting results in clinical studies, indicating...... (RTK) EphA2. EphA2 belongs to the large Eph-receptor family, which has mainly been associated with neuronal development. More recently, expression of several Eph-receptors has been detected in many different cancer types. Elevated EphA2 expression has been reported in a broad range of human cancer...... in tumor metastasis and angiogenesis. The aim of the PhD-project was to study the EGFR-induced EphA2 expression in mammalian cancer cells, and to evaluate the role of EphA2 expression on EGFR regulated cell signaling and functional effects using different in vitro models. The results have shown that ligand...

  4. Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression

    Science.gov (United States)

    Pareja, Fresia; Ferraro, Daniela Aleida; Rubin, Chanan; Cohen-Dvashi, Hadas; Zhang, Fan; Aulmann, Sebastian; Ben-Chetrit, Nir; Pines, Gur; Navon, Roy; Crosetto, Nicola; Köstler, Wolfgang; Carvalho, Silvia; Lavi, Sara; Schmitt, Fernando; Dikic, Ivan; Yakhini, Zohar; Sinn, Peter; Mills, Gordon B.; Yarden, Yosef

    2011-01-01

    Once stimulated, the epidermal growth factor receptor (EGFR) undergoes self-phosphorylation, which, on the one hand, instigates signaling cascades, and on the other hand, recruits CBL ubiquitin ligases, which mark EGFRs for degradation. Using RNA interference screens, we identified a deubiquitinating enzyme, Cezanne-1, that opposes receptor degradation and enhances EGFR signaling. These functions require the catalytic and ubiquitin-binding domains of Cezanne-1, and they involve physical interactions and trans-phosphorylaton of Cezanne-1 by EGFR. In line with the ability of Cezanne-1 to augment EGF-induced growth and migration signals, the enzyme is overexpressed in breast cancer. Congruently, the corresponding gene is amplified in approximately one third of mammary tumors, and high transcript levels predict an aggressive disease course. In conclusion, deubiquitination by Cezanne-1 curtails degradation of growth factor receptors, thereby promotes oncogenic growth signals. PMID:22179831

  5. Labeling internalizing anti-epidermal growth factor receptor variant III monoclonal antibody with {sup 177}Lu: in vitro comparison of acyclic and macrocyclic ligands

    Energy Technology Data Exchange (ETDEWEB)

    Hens, Marc; Vaidyanathan, Ganesan; Welsh, Phil [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R. [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States)], E-mail: zalut001@mc.duke.edu

    2009-02-15

    Introduction: The monoclonal antibody (mAb) L8A4, reactive with the epidermal growth factor receptor variant III (EGFRvIII), internalizes rapidly in glioma cells after receptor binding. Combining this tumor-specific mAb with the low-energy {beta}-emitter {sup 177}Lu would be an attractive approach for brain tumor radioimmunotherapy, provided that trapping of the radionuclide in tumor cells after mAb intracellular processing could be maximized. Materials and Methods: L8A4 mAb was labeled with {sup 177}Lu using the acyclic ligands [(R)-2-amino-3-(4-isothiocyanatophenyl)propyl]-trans-(S,S) -cyclohexane-1,2-diamine-pentaacetic acid (CHX-A''-DTPA), 2-(4-isothiocyanatobenzyl)-diethylenetriaminepenta-acetic acid (pSCN-Bz-DTPA) and 2-(4-isothiocyanatobenzyl)-6-methyldiethylenetriaminepentaacetic acid (1B4M-DTPA), and the macrocyclic ligands S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-tetraacetic acid (C-DOTA) and {alpha}-(5-isothiocyanato-2-methoxyphenyl)-1,4,7,10-tetraazacyclododecane-1,4,7, 10-tetraacetic acid (MeO-DOTA). Paired-label internalization and cellular processing assays were performed on EGFRvIII-expressing U87.{delta}EGFR glioma cells over 24 h to directly compare {sup 177}Lu-labeled L8A4 to L8A4 labeled with {sup 125}I using either iodogen or N-succinimidyl 4-guanidinomethyl-3-[{sup 125}I]iodobenzoate ([{sup 125}I]SGMIB). In order to facilitate comparison of labeling methods, the primary parameter evaluated was the ratio of {sup 177}Lu to {sup 125}I activity retained in U87.{delta}EGFR cells. Results: All chelates demonstrated higher retention of internalized activity compared with mAb labeled using iodogen, with {sup 177}Lu/{sup 125}I ratios of >20 observed for the three DTPA chelates at 24 h. When compared to L8A4 labeled using SGMIB, except for MeO-DOTA, internalized activity for {sup 125}I was higher than {sup 177}Lu from 1-8 h with the opposite behavior observed thereafter. At 24 h, {sup 177}Lu/{sup 125}I ratios were between 1

  6. Pathophysiology of myasthenia gravis with antibodies to the acetylcholine receptor, muscle-specific kinase and low-density lipoprotein receptor-related protein 4.

    Science.gov (United States)

    Verschuuren, Jan J G M; Huijbers, Maartje G; Plomp, Jaap J; Niks, Erik H; Molenaar, Peter C; Martinez-Martinez, Pilar; Gomez, Alejandro M; De Baets, Marc H; Losen, Mario

    2013-07-01

    Myasthenia gravis is caused by antibodies to the acetylcholine receptor, muscle-specific kinase, low-density lipoprotein receptor-related protein 4, or possibly yet unidentified antibodies. The mechanisms by which these antibodies interfere with the function of postsynaptic proteins include complement activation, antigenic modulation by crosslinking of the target proteins, competition with ligand binding sites, or steric hindrance which inhibits conformational changes or binding to associated proteins. Screening for auto-antibodies to different postsynaptic targets, and also for low-affinity antibodies, is contributing to a more accurate diagnosis of MG patients. Further studies into the specific pathophysiological pathways of the several MG subforms might help to develop new, more antigen specific, therapies. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Detection and Evaluation of EGFR Mutation Status in Serum of Patients with Advanced Non-small Cell Lung Cancer Treated with EGFR-TKIs

    Directory of Open Access Journals (Sweden)

    Ling MA

    2013-06-01

    Full Text Available Background and objective Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs has shown a high response rate in the treatment of lung cancer in patients with (EGFR mutation. The aim of this study is to evaluate the relationship between EGFR mutation status in serum and predicting benefit from EGFR-TKIs therapy in patients with advanced non-small cell lung cancer (NSCLC. Methods We examined EGFR mutation status in serum of 80 patients with advanced, EGFR-TKIs given as first-line therapy NSCLC. All patients were received long-term follow-up, and the drug efficacy were observed and evaluated. Results The EGFR mutation in serum was detected in 33.8% (27/80 of NSCLC patients examined, in which exon 19 deletion mutation was present at a frequency of 44.4% (12/27 and exon 21 point mutation was 55.6% (15/27; The response rate to EGFR-TKI in patients with EGFR mutation in serum was (55.6%, 15/27, which was remarkably higher than that in EGFR wild-type patients (17.0%, 9/53, the difference was statistically significant (χ2=0.370, P<0.001; The median progression free survival (PFS of patients with EGFR mutation in serum was remarkably better than that of EGFR wild-type patients (9.8 months vs 5.7 months, P=0.014. Conclusion In patients with advanced, EGFR-positive in serum NSCLC, EGFR-TKIs given as first-line therapy is associated with improved drug efficacy. The results suggest that it is feasible to use serum to detect EGFR mutation, which can predict a benefit from EGFR-TKIs given as first-line therapy.

  8. Therapeutic resistance in cancer:microRNA regulation of EGFR signaling networks

    Institute of Scientific and Technical Information of China (English)

    German G. Gomez; Jill Wykosky; Ciro Zanca; Frank B. Furnari; Webster K. Cavenee

    2013-01-01

    Receptor tyrosine kinases (RTKs) such as the epidermal growth factor receptor (EGFR) regulate cellular homeostatic processes. EGFR activates downstream signaling cascades that promote tumor cell survival, proliferation and migration. Dysregulation of EGFR signaling as a consequence of overexpression, amplification and mutation of the EGFR gene occurs frequently in several types of cancers and many become dependent on EGFR signaling to maintain their malignant phenotypes. Consequently, concerted efforts have been mounted to develop therapeutic agents and strategies to effectively inhibit EGFR. However, limited therapeutic beneifts to cancer patients have been derived from EGFR-targeted therapies. A well-documented obstacle to improved patient survival is the presence of EGFR-inhibitor resistant tumor cell variants within heterogeneous tumor cell masses. Here, we summarize the mechanisms by which tumors resist EGFR-targeted therapies and highlight the emerging role of microRNAs (miRs) as downstream effector molecules utilized by EGFR to promote tumor initiation, progression and that play a role in resistance to EGFR inhibitors. We also examine evidence supporting the utility of miRs as predictors of response to targeted therapies and novel therapeutic agents to circumvent EGFR-inhibitor resistance mechanisms.

  9. Shark Variable New Antigen Receptor (VNAR Single Domain Antibody Fragments: Stability and Diagnostic Applications

    Directory of Open Access Journals (Sweden)

    Stewart Nuttall

    2013-01-01

    Full Text Available The single variable new antigen receptor domain antibody fragments (VNARs derived from shark immunoglobulin new antigen receptor antibodies (IgNARs represent some of the smallest known immunoglobulin-based protein scaffolds. As single domains, they demonstrate favorable size and cryptic epitope recognition properties, making them attractive in diagnosis and therapy of numerous disease states. Here, we examine the stability of VNAR domains with a focus on a family of VNARs specific for apical membrane antigen 1 (AMA-1 from Plasmodium falciparum. The VNARs are compared to traditional monoclonal antibodies (mAbs in liquid, lyophilized and immobilized nitrocellulose formats. When maintained in various formats at 45 °C, VNARs have improved stability compared to mAbs for periods of up to four weeks. Using circular dichroism spectroscopy we demonstrate that VNAR domains are able to refold following heating to 80 °C. We also demonstrate that VNAR domains are stable during incubation under potential in vivo conditions such as stomach acid, but not to the protease rich environment of murine stomach scrapings. Taken together, our results demonstrate the suitability of shark VNAR domains for various diagnostic platforms and related applications.

  10. Characterization of human 1,25-dihydroxyvitamin D3 receptor anti-peptide antibodies.

    Science.gov (United States)

    Tuohimaa, P; Bläuer, M; Jääskeläinen, T; Itkonen, A; Lindfors, M; Mahonen, A; Palvimo, J; Vilja, P; Mäenpää, P H

    1992-12-01

    Rabbit and chicken antibodies were raised against two peptides synthesized according to the structure of human 1,25-dihydroxyvitamin D3 receptor (hVDR): rabbit alpha hVDR-103 against the N-terminal amino acids 5-18 and alpha hVDR-104 against the amino acids 172-186 in the hinge region and chicken alpha hVDR-cab11 against the amino acids 172-186, respectively. The specificity of the antibodies was tested by peptide saturation, SDS-PAGE immunoblotting, gel shift assay and sucrose gradient centrifugation. Immunoblotting of a soluble extract (cytosol) from osteosarcoma cell line MG-63 showed a single band with an M(r) of about 48,000 and human intestine cytosol a broad band (50-63,000) for both antibodies. The antibodies recognized activated (3.2S) hVDR by shifting the centrifugation sedimentation profile to 5-6S. The antibodies showed nuclear immunostaining of unoccupied VDR in human osteosarcoma cells MG-63, U2-Os and SaOs-2. The immunoreaction could be saturated with the corresponding synthetic peptide. In immunoblot alpha hVDR-103 reacted with human and rat VDR, whereas alpha hVDR-104 recognized human VDR only. Similarly in immunohistochemistry, alpha hVDR-103 showed staining with hVDR and rVDR, whereas alpha hVDR-104 reacted only with hVDR. All antibodies recognized the native hVDR as verified with sucrose gradient centrifugation or immunoprecipitation but only alpha hVDR-103 and alpha hVDR-cab11 in gel shift assay of hVDR associated with the vitamin D-responsive element of human osteocalcin gene promoter.

  11. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice.

    Science.gov (United States)

    Planagumà, Jesús; Leypoldt, Frank; Mannara, Francesco; Gutiérrez-Cuesta, Javier; Martín-García, Elena; Aguilar, Esther; Titulaer, Maarten J; Petit-Pedrol, Mar; Jain, Ankit; Balice-Gordon, Rita; Lakadamyali, Melike; Graus, Francesc; Maldonado, Rafael; Dalmau, Josep

    2015-01-01

    Anti-N-methyl D-aspartate receptor (NMDAR) encephalitis is a severe neuropsychiatric disorder that associates with prominent memory and behavioural deficits. Patients' antibodies react with the N-terminal domain of the GluN1 (previously known as NR1) subunit of NMDAR causing in cultured neurons a selective and reversible internalization of cell-surface receptors. These effects and the frequent response to immunotherapy have suggested an antibody-mediated pathogenesis, but to date there is no animal model showing that patients' antibodies cause memory and behavioural deficits. To develop such a model, C57BL6/J mice underwent placement of ventricular catheters connected to osmotic pumps that delivered a continuous infusion of patients' or control cerebrospinal fluid (flow rate 0.25 µl/h, 14 days). During and after the infusion period standardized tests were applied, including tasks to assess memory (novel object recognition in open field and V-maze paradigms), anhedonic behaviours (sucrose preference test), depressive-like behaviours (tail suspension, forced swimming tests), anxiety (black and white, elevated plus maze tests), aggressiveness (resident-intruder test), and locomotor activity (horizontal and vertical). Animals sacrificed at Days 5, 13, 18, 26 and 46 were examined for brain-bound antibodies and the antibody effects on total and synaptic NMDAR clusters and protein concentration using confocal microscopy and immunoblot analysis. These experiments showed that animals infused with patients' cerebrospinal fluid, but not control cerebrospinal fluid, developed progressive memory deficits, and anhedonic and depressive-like behaviours, without affecting other behavioural or locomotor tasks. Memory deficits gradually worsened until Day 18 (4 days after the infusion stopped) and all symptoms resolved over the next week. Accompanying brain tissue studies showed progressive increase of brain-bound human antibodies, predominantly in the hippocampus (maximal on Days

  12. Agonist antibodies activating the Met receptor protect cardiomyoblasts from cobalt chloride-induced apoptosis and autophagy

    Science.gov (United States)

    Gallo, S; Gatti, S; Sala, V; Albano, R; Costelli, P; Casanova, E; Comoglio, P M; Crepaldi, T

    2014-01-01

    Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF), mainly activates prosurvival pathways, including protection from apoptosis. In this work, we investigated the cardioprotective mechanisms of Met activation by agonist monoclonal antibodies (mAbs). Cobalt chloride (CoCl2), a chemical mimetic of hypoxia, was used to induce cardiac damage in H9c2 cardiomyoblasts, which resulted in reduction of cell viability by (i) caspase-dependent apoptosis and (ii) – surprisingly – autophagy. Blocking either apoptosis with the caspase inhibitor benzyloxycarbonyl-VAD-fluoromethylketone or autophagosome formation with 3-methyladenine prevented loss of cell viability, which suggests that both processes contribute to cardiomyoblast injury. Concomitant treatment with Met-activating antibodies or HGF prevented apoptosis and autophagy. Pro-autophagic Redd1, Bnip3 and phospho-AMPK proteins, which are known to promote autophagy through inactivation of the mTOR pathway, were induced by CoCl2. Mechanistically, Met agonist antibodies or HGF prevented the inhibition of mTOR and reduced the flux of autophagosome formation. Accordingly, their anti-autophagic function was completely blunted by Temsirolimus, a specific mTOR inhibitor. Targeted Met activation was successful also in the setting of low oxygen conditions, in which Met agonist antibodies or HGF demonstrated anti-apoptotic and anti-autophagic effects. Activation of the Met pathway is thus a promising novel therapeutic tool for ischaemic injury. PMID:24743740

  13. Polymorphisms in Toll-like receptor genes influence antibody responses to cytomegalovirus glycoprotein B vaccine

    Directory of Open Access Journals (Sweden)

    Arav-Boger Ravit

    2012-03-01

    Full Text Available Abstract Background Congenital Cytomegalovirus (CMV infection is an important medical problem that has yet no current solution. A clinical trial of CMV glycoprotein B (gB vaccine in young women showed promising efficacy. Improved understanding of the basis for prevention of CMV infection is essential for developing improved vaccines. Results We genotyped 142 women previously vaccinated with three doses of CMV gB for single nucleotide polymorphisms (SNPs in TLR 1-4, 6, 7, 9, and 10, and their associated intracellular signaling genes. SNPs in the platelet-derived growth factor receptor (PDGFRA and integrins were also selected based on their role in binding gB. Specific SNPs in TLR7 and IKBKE (inhibitor of nuclear factor kappa-B kinase subunit epsilon were associated with antibody responses to gB vaccine. Homozygous carriers of the minor allele at four SNPs in TLR7 showed higher vaccination-induced antibody responses to gB compared to heterozygotes or homozygotes for the common allele. SNP rs1953090 in IKBKE was associated with changes in antibody level from second to third dose of vaccine; homozygotes for the minor allele exhibited lower antibody responses while homozygotes for the major allele showed increased responses over time. Conclusions These data contribute to our understanding of the immunogenetic mechanisms underlying variations in the immune response to CMV vaccine.

  14. Antibody fragments for stabilization and crystallization of G protein-coupled receptors and their signaling complexes.

    Science.gov (United States)

    Shukla, Arun K; Gupta, Charu; Srivastava, Ashish; Jaiman, Deepika

    2015-01-01

    G protein-coupled receptors (GPCRs) are one of the key players in extracellular signal recognition and their subsequent communications with cellular signaling machinery. Crystallization and high-resolution structure determination of GPCRs has been one of the major advances in the area of GPCR biology over the last 7-8 years. There have primarily been three approaches to GPCR crystallization till date. These are fusion protein strategy, thermostabilization, and antibody fragment-mediated crystallization. Of these, antibody fragment-mediated crystallization has not only provided the first breakthrough in structure determination of a non-rhodopsin GPCR but it has also assisted in obtaining structures of fully active conformations of GPCRs. Antibody fragment approach has also been crucial in obtaining structural information on GPCR signaling complexes. Here, we highlight the specific examples of GPCR crystal structures that have utilized antibody fragments for promoting crystallogenesis and structure solution. We also discuss emerging powerful technologies such as the nanobody technology and the synthetic phage display libraries in the context of GPCR crystallization and underline how these tools are likely to propel key GPCR structural studies in future.

  15. EGFR-TKIs获得性耐药及耐药后治疗的进展%Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer and the clinical studies of overcoming the acquired resistance

    Institute of Scientific and Technical Information of China (English)

    王慧娟; 李鹏; 王启鸣

    2011-01-01

    Reversible epidermal growth factor receptor tyrosine kinase inhibitors ( EGFR-TKIs) such as gefitinib and erlotinib are used for the treatment of non-small cell lung cancer following failure of cytotoxic chemotherapy frequently. Somatic activating mutations of the EGFR gene have been associated with dramatic tumor responses and favorable clinical outcomes. All patients, however, ultimately develop resistance to these agents, and there is no standard treatment after acquired resistance yet. This paper mainly discuss the current definition of acquired resistance to EGFR-TKIs and the clinical studies of overcoming the acquired resistance.%表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKIs)吉非替尼和厄洛替尼是用于化疗后失败或复发的晚期非小细胞肺癌的常用药物,随着对它们的深入研究,发现ECFR-TKIs的疗效与EGFR突变相关.然而,几乎所有接受EGFR-TKIs治疗的患者都会出现耐药,而获得性耐药后目前没有标准治疗方案.本文主要探讨EGFR-TKIs获得性耐药的定义,并对目前克服获得性耐药的临床研究作一综述.

  16. Yes and Lyn play a role in nuclear translocation of the epidermal growth factor receptor.

    Science.gov (United States)

    Iida, M; Brand, T M; Campbell, D A; Li, C; Wheeler, D L

    2013-02-07

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in human cancers. Cetuximab is an anti-EGFR antibody that has been approved for use in oncology. Previously we investigated mechanisms of resistance to cetuximab using a model derived from the non-small cell lung cancer line NCI-H226. We demonstrated that cetuximab-resistant clones (Ctx(R)) had increased nuclear localization of the EGFR. This process was mediated by Src family kinases (SFKs), and nuclear EGFR had a role in resistance to cetuximab. To better understand SFK-mediated nuclear translocation of EGFR, we investigated which SFK member(s) controlled this process as well as the EGFR tyrosine residues that are involved. Analyses of mRNA and protein expression indicated upregulation of the SFK members Yes (v-Yes-1 yamaguchi sarcoma viral oncogene) and Lyn (v-yes-1 Yamaguchi sarcoma viral-related oncogene homolog) in all Ctx(R) clones. Further, immunoprecipitation analysis revealed that EGFR interacts with Yes and Lyn in Ctx(R) clones, but not in cetuximab-sensitive (Ctx(S)) parental cells. Using RNAi interference, we found that knockdown of either Yes or Lyn led to loss of EGFR translocation to the nucleus. Conversely, overexpression of Yes or Lyn in low nuclear EGFR-expressing Ctx(S) parental cells led to increased nuclear EGFR. Chromatin immunoprecipitation (ChIP) assays confirmed nuclear EGFR complexes associated with the promoter of the known EGFR target genes B-Myb and iNOS. Further, all Ctx(R) clones exhibited upregulation of B-Myb and iNOS at the mRNA and protein levels. siRNAs directed at Yes or Lyn led to decreased binding of EGFR complexes to the B-Myb and iNOS promoters based on ChIP analyses. SFKs have been shown to phosphorylate EGFR on tyrosines 845 and 1101 (Y845 and Y1101), and mutation of Y1101, but not Y845, impaired nuclear entry of the EGFR. Taken together, our findings demonstrate that Yes and Lyn phosphorylate EGFR at Y1101, which influences EGFR

  17. The relevance of ADCC for EGFR targeting: A review of the literature and a clinically-applicable method of assessment in patients.

    Science.gov (United States)

    Monteverde, Martino; Milano, Gerard; Strola, Giuliana; Maffi, Monica; Lattanzio, Laura; Vivenza, Daniela; Tonissi, Federica; Merlano, Marco; Lo Nigro, Cristiana

    2015-08-01

    Advances in the understanding of tumor biology have led to the development of targeted therapies as monoclonal antibodies (MoAbs) in clinical oncology. Among their suggested mechanisms of action monoclonal antibodies (IgG1) selectively directed against tumor membrane receptors mediate of antibody-dependent cellular cytotoxicity (ADCC) by triggering Fc-γRIII on natural killer (NK) cells. This study reviews the clinical context of ADCC measurement with a particular focus on EGFR targeting and describes an ex vivo ADCC method applied to MoAbs (cetuximab and panitumumab), against epidermal growth factor receptor (EGFR). The test performance was evaluated on different target cells lines (CAL166, A431, HNO91, CAL27), with different effector cells (peripheral blood mononuclear cells or natural killers -NK-) and in various experimental conditions, in order to establish a truly clinically applicable method. Using the experience available in the published literature, we optimized all variables involved in the experimental design: target cells type, numbers and ratio target cells and NK cells (effector cells) per well, time of exposure and repeatability. ADCC measurement may be of clinical relevance in the context of treatment with MoAbs. This study describes a non-radioactive method which has proven satisfactory in terms of sensitivity, reproducibility, feasibility and cost effectiveness for the measurement of ADCC activity mediated by NK with an orientation towards the EGFR target. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. 非小细胞肺癌EGFR-TKI耐药预测生物标志物研究进展%Predictive biomarkers of the resistance of non-small cell lung cancer to epidermal growth factor receptor tyrosine kinase inhibitor

    Institute of Scientific and Technical Information of China (English)

    田艳花

    2012-01-01

    随着对肿瘤发病机制及其生物学行为的深入研究,分子靶向治疗成为目前治疗非小细胞肺癌(non-small cell lung cancer,NSCLC)最具前景的研究领域.其中表皮生长因子受体酪氨酸激酶抑制剂(epidermal growth factor receptor tyrosine kinase inhibitor,EGFR-TKI)可延长患者无进展生存期并明显提高患者生活质量,然而耐药已成为影响该类药物临床应用的最大障碍.因此对EGFR-TKI耐药机制的研究已成为关注的热点.现已发现其耐药可能与受体突变、细胞内信号转导相关蛋白、EGFR以外的TK受体介导的通路活化等有关.文中就NSCLC对EGFR-TKI耐药机制的最新研究进展进行综述.%With deeper insights into the pathogenesis and biological behavior of cancer, molecular targeted therapy has become a most promising area in the studies of non-small cell lung cancer ( NSCLC ). The epidermal growth factor receptor tyrosine kinase inhibitor ( EGFR-TKI ) can significantly improve the quality of life and prolong progression-free survival of the patient, but the resis tance to EGFR-TKI has emerged as the biggest obstacle to its application. Accordingly, the mechanism of EGFR-TKI resistance is becoming the focus of attention in this field. Recent studies show that EGFR-TKI resistance may be associated with the mutation of receptors, intracellular signal transduction related proteins, and other than EGFR-TKI receptor-mediated pathway. This article updates the mechanisms of the resistance of NSCLC to EGFR-TKI.

  19. Antibodies to m-type phospholipase A2 receptor in children with idiopathic membranous nephropathy.

    Science.gov (United States)

    Kumar, Vinod; Ramachandran, Raja; Kumar, Ashwani; Nada, Ritambhra; Suri, Deepti; Gupta, Anju; Kohli, Harbir Singh; Gupta, Krishan Lal; Jha, Vivekanand

    2015-08-01

    Idiopathic membranous nephropathy (IMN), the commonest cause of adult nephrotic syndrome (NS), accounts for only a minority of paediatric NS. Antibodies to m-type phospholipase A2 receptor (PLA2R) are seen in two-thirds of adult IMN cases. PLA2R staining in glomerular deposits is observed in 74% and 45% of adult and paediatric IMN cases, respectively. However, there are no reports of anti-PLA2R in paediatric IMN. We evaluated anti-PLA2R levels and PLA2R in gloemrular deposits in paediatric IMN seen at our center. Five cases were enrolled, all the cases stained for PLA2R in glomeruli and three (60%) had antibodies to PLA2R antigen. There was a parellel reduction in proteinuria and anti-PLA2R titer. The present report suggests that PLA2R has a contributory role in the pathogenesis of paediatric IMN.

  20. Targeting the thyroid-stimulating hormone receptor with small molecule ligands and antibodies

    Science.gov (United States)

    Davies, Terry F; Latif, Rauf

    2015-01-01

    Introduction The thyroid-stimulating hormone receptor (TSHR) is the essential molecule for thyroid growth and thyroid hormone production. Since it is also a key autoantigen in Graves’ disease and is involved in thyroid cancer pathophysiology, the targeting of the TSHR offers a logical model for disease control. Areas covered We review the structure and function of the TSHR and the progress in both small molecule ligands and TSHR antibodies for their therapeutic potential. Expert opinion Stabilization of a preferential conformation for the TSHR by allosteric ligands and TSHR antibodies with selective modulation of the signaling pathways is now possible. These tools may be the next generation of therapeutics for controlling the pathophysiological consequences mediated by the effects of the TSHR in the thyroid and other extrathyroidal tissues. PMID:25768836

  1. Tyrosine kinase domain mutations of EGFR gene in head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Vatte C

    2017-03-01

    Full Text Available Chittibabu Vatte,1 Ali M Al Amri,2 Cyril Cyrus,1 Shahanas Chathoth,1 Sadananda Acharya,3 Tariq Mohammad Hashim,4 Zhara Al Ali,2 Saleh Tawfeeq Alshreadah,2 Ahmed Alsayyah,4 Amein K Al-Ali5 1Department of Genetic Research, Institute for Research and Medical Consultation, University of Dammam, Dammam, 2Department of Internal Medicine, King Fahd Hospital of the University, University of Dammam, Al-Khobar, 3Department of Stemcell Research, Institute for Research and Medical Consultation, 4Department of Pathology, King Fahd Hospital of the University, University of Dammam, Al-Khobar, 5Department of Biochemistry, College of Medicine, University of Dammam, Dammam, Kingdom of Saudi Arabia Background: Epidermal growth factor receptor (EGFR is a commonly altered gene that is identified in various cancers, including head and neck squamous cell carcinoma (HNSCC. Therefore, EGFR is a promising molecular marker targeted by monoclonal antibodies and small molecule inhibitors targeting the tyrosine kinase (TK domain. Objective: The objective of this study was to investigate the spectrum of mutations in exons 18, 19, 20, and 21 of the EGFR gene in HNSCC patients. Materials and methods: This retrospective study included 47 confirmed HNSCC cases. Mutations in the TK domain, exons 18, 19, 20, and 21 of the EGFR gene, were detected by Scorpion® chemistry and ARMS® technologies on Rotor-Gene Q real-time polymerase chain reaction.Results: The tumors exhibited EGFR-TK domain mutations in 57% of cases. Four cases of T790M mutations were reported for the first time among HNSCC patients. Out of the total mutations, L861Q (exon 21, exon 20 insertions and deletions of exon 19 accounted for the majority of mutations (21%, 19%, and 17%, respectively. EGFR mutation status was correlated with the higher grade (P=0.026 and advanced stage (P=0.034 of HNSCC tumors.Conclusion: Higher frequency of EGFR-TK domain mutations together with the presence of the T790M mutation suggests

  2. Specific antibodies and sensitive immunoassays for the human epidermal growth factor receptors (HER2, HER3, and HER4).

    Science.gov (United States)

    Broughton, Marianne Nordlund; Westgaard, Arne; Paus, Elisabeth; Øijordsbakken, Miriam; Henanger, Karoline J; Naume, Bjørn; Bjøro, Trine

    2017-06-01

    The use of trastuzumab in patients with breast cancer that overexpresses human epidermal growth factor receptor 2 has significantly improved treatment outcomes. However, a substantial proportion of this patient group still experiences progression of the disease after receiving the drug. Evaluation of the changes in expression of the human epidermal growth factor receptors could be of interest. Monoclonal antibodies against the extracellular domain of the human growth factor receptors, 2, 3, and 4, have been raised, and specific and sensitive immunoassays have been established. Sera from healthy individuals (Nordic Reference Interval Project and Database) were analyzed in the human epidermal growth factor receptor 2 assay (N = 805) and the human epidermal growth factor receptor 3 and 4 assays (N = 114), and reference limits were calculated. In addition, sera from 208 individual patients with breast cancer were tested in all three assays. Finally, the human epidermal growth factor receptor 2 assay was compared with a chemiluminescent immunoassay for serum human epidermal growth factor receptor 2/neu. Reference values were as follows: human epidermal growth factor receptor 2, human epidermal growth factor receptor 3, human epidermal growth factor receptor 4, human epidermal growth factor receptor 2 and human epidermal growth factor receptor 3 serum levels between the patients with tissue human epidermal growth factor receptor 2-positive and tissue human epidermal growth factor receptor 2-negative ( p = 0.0026, p = 0.000011) tumors, but not in the serum levels of human epidermal growth factor receptor 4 ( p = 0.054). There was good agreement between the in-house human epidermal growth factor receptor 2 assay and the chemiluminescent immunoassay. Our new specific antibodies for all the three human epidermal growth factor receptors may prove valuable in the development of novel anti-human epidermal growth factor receptor targeted therapies with

  3. Rhythmic delta activity represents a form of nonconvulsive status epilepticus in anti-NMDA receptor antibody encephalitis.

    Science.gov (United States)

    Kirkpatrick, McNeill P; Clarke, Charles D; Sonmezturk, Hasan H; Abou-Khalil, Bassel

    2011-02-01

    Anti-NMDA receptor antibody encephalitis is a limbic encephalitis with psychiatric manifestations, abnormal movements, coma, and seizures. The coma and abnormal movements are not typically attributed to seizure activity, and slow activity is the most common EEG finding. We report drug-resistant nonconvulsive status epilepticus as the basis for coma in a 19-year-old woman with anti-NMDA receptor antibodies and a mediastinal teratoma. The EEG showed generalized rhythmic delta activity, with evolution in morphology, frequency, and field typical of nonconvulsive status epilepticus. The status was refractory to antiepileptic drugs, repeated drug-induced coma, resection of the tumor, intravenous steroids, rituximab, and plasmapheresis. She awoke after the addition of felbamate, and the rhythmic delta activity ceased. The rhythmic delta activity described with coma in anti-NMDA receptor antibody encephalitis may represent a pattern of status epilepticus in some patients. Felbamate, which has NMDA receptor antagonist activity, should be studied as a therapeutic agent in this condition.

  4. Prolactin-like activity of anti-prolactin receptor antibodies on casein and DNA synthesis in the mammary gland.

    OpenAIRE

    Djiane, J; Houdebine, L M; Kelly, P A

    1981-01-01

    Prolactin receptors were partially purified from rabbit mammary gland membranes by using an affinity chromatography technique. Antibodies against this prolactin receptor preparation were obtained in guinea pig and sheep. Both antisera were able to inhibit the binding of 125I-labeled ovine prolactin to rabbit mammary gland membranes. When added to culture media of rabbit mammary explants, the anti-prolactin receptor antiserum inhibited the capacity of prolactin to initiate casein synthesis and...

  5. Closely Related Antibody Receptors Exploit Fundamentally Different Strategies for Steroid Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Verdino, P.; Aldag, C.; Hilvert, D.; Wilson, I.A.

    2009-05-26

    Molecular recognition by the adaptive immune system relies on specific high-affinity antibody receptors that are generated from a restricted set of starting sequences through homologous recombination and somatic mutation. The steroid binding antibody DB3 and the catalytic Diels-Alderase antibody 1E9 derive from the same germ line sequences but exhibit very distinct specificities and functions. However, mutation of only two of the 36 sequence differences in the variable domains, Leu{sup H47}Trp and Arg{sup H100}Trp, converts 1E9 into a high-affinity steroid receptor with a ligand recognition profile similar to DB3. To understand how these changes switch binding specificity and function, we determined the crystal structures of the 1E9 Leu{sup H47}Trp/Arg{sup H100}Trp double mutant (1E9dm) as an unliganded Fab at 2.05 {angstrom} resolution and in complex with two configurationally distinct steroids at 2.40 and 2.85 {angstrom}. Surprisingly, despite the functional mimicry of DB3, 1E9dm employs a distinct steroid binding mechanism. Extensive structural rearrangements occur in the combining site, where residue H47 acts as a specificity switch and H100 adapts to different ligands. Unlike DB3, 1E9dm does not use alternative binding pockets or different sets of hydrogen-bonding interactions to bind configurationally distinct steroids. Rather, the different steroids are inserted more deeply into the 1E9dm combining site, creating more hydrophobic contacts that energetically compensate for the lack of hydrogen bonds. These findings demonstrate how subtle mutations within an existing molecular scaffold can dramatically modulate the function of immune receptors by inducing unanticipated, but compensating, mechanisms of ligand interaction.

  6. T-cell receptor-like antibodies: novel reagents for clinical cancer immunology and immunotherapy.

    Science.gov (United States)

    Noy, Roy; Eppel, Malka; Haus-Cohen, Maya; Klechevsky, Einav; Mekler, Orian; Michaeli, Yaeil; Denkberg, Galit; Reiter, Yoram

    2005-06-01

    Major histocompatibility complex class I molecules play a central role in the immune response against a variety of cells that have undergone malignant transformation by shaping the T-cell repertoire and presenting peptide antigens from endogeneous antigens to CD8+ cytotoxic T-cells. Diseased tumor or virus-infected cells are present on class I major histocompatibility complex molecule peptides that are derived from tumor-associated antigens or viral-derived proteins. Due to their unique specificity, such major histocompatibility complex-peptide complexes are a desirable target for novel approaches in immunotherapy. Targeted delivery of toxins or other cytotoxic drugs to cells which express specific major histocompatibility complex-peptide complexes that are involved in the immune response against cancer or viral infections would allow for a specific immunotherapeutic treatment of these diseases. It has recently been demonstrated that antibodies with the antigen-specific, major histocompatibility complex-restricted specificity of T-cells can be generated by taking advantage of the selection power of phage display technology. In addition to their tumor targeting capabilities, antibodies that mimic the fine specificity of T-cell receptors can serve as valuable research reagents that enable study of human class I peptide-major histocompatibility complex ligand presentation, as well as T-cell receptor peptide-major histocompatibility complex interactions. T-cell receptor-like antibody molecules may prove to be useful tools for studying major histocompatibility complex class I antigen presentation in health and disease as well as for therapeutic purposes in cancer, infectious diseases and autoimmune disorders.

  7. 非小细胞肺癌表皮生长因子受体靶向治疗%EGFR-targeted treatment in non-small-cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    王季颖; 蔡勇

    2008-01-01

    表皮生长因子受体(EGFR)对于正常上皮细胞的生长是不可缺少的,但其异常表达会影响细胞的增殖和凋亡.EGFR突变和过表达是许多肿瘤的特征之一.因此针对EGFR的靶向治疗,包括小分子酪氨酸激酶抑制剂和单克隆抗体,已成为治疗非小细胞肺癌(NSCLC)的研究方向.%Epidermal growth factor receptor (EGFR) is necessary in normal epithelial cell growth. Ab-errant EGFR expression is linked with increased cell proliferation and decreased apoptosis. Mutations and over-expression of EGFR are common features of many cancers. Therefore, Therapeutic agents that target the EGFR signal pathway, such as small-molecule tyrosine kinase inhibiiors and monoclonal antibodies are now advanced in clinical development. EGFR-targeted therapies of non-small-cell lung cancer (NSCLC) have been studied as a new way.

  8. Cetuximab insufficiently inhibits glioma cell growth due to persistent EGFR downstream signaling

    DEFF Research Database (Denmark)

    Hasselbalch, Benedikte; Lassen, Ulrik; Poulsen, Hans S;

    2010-01-01

    Overexpression and/or amplification of the epidermal growth factor receptor (EGFR) is present in 35-45% of primary glioblastoma multiforme tumors and has been correlated with a poor prognosis. In this study, we investigated the effect of cetuximab and intracellular signaling pathways downstream...... of EGFR, important for cell survival and proliferation. We show insufficient EGFR downregulation and competition with endogenous EGFR ligands upon cetuximab treatment. Dose-response experiments showed inhibition of EGFR phosphorylation without affecting two of the prominent downstream signaling pathways...

  9. Prospective evaluation of angiogenic, hypoxic and EGFR-related biomarkers in recurrent glioblastoma multiforme treated with cetuximab, bevacizumab and irinotecan

    DEFF Research Database (Denmark)

    Hasselbalch, Benedikte; Eriksen, Jesper Grau; Broholm, Helle

    2010-01-01

    Several recent studies have demonstrated a beneficial effect of anti-angiogenic treatment with the vascular endothelial growth factor-neutralizing antibody bevacizumab in recurrent high-grade glioma. In the current study, immunohistochemical evaluation of biomarkers involved in angiogenesis......, hypoxia and mediators of the epidermal growth factor receptor (EGFR) pathway were investigated. Tumor tissue was obtained from a previous phase II study, treating recurrent primary glioblastoma multiforme (GBM) patients with the EGFR inhibitor cetuximab in combination with bevacizumab and irinotecan....... Of the 37 patients with available tumor tissue, 29 were evaluable for response. We concurrently performed immunohistochemical stainings on tumor tissue from 21 GBM patients treated with bevacizumab and irinotecan. We found a tendency of correlation between the hypoxia-related markers, indicating...

  10. Anti-NMDA receptor antibodies in patients with a first episode of schizophrenia

    Directory of Open Access Journals (Sweden)

    Masopust J

    2015-03-01

    Full Text Available Jirí Masopust,1,2 Ctirad Andrýs,3 Jan Bažant,1 Oldrich Vyšata,4 Kamil Kuca,5 Martin Vališ4 1Department of Psychiatry, Faculty of Medicine in Hradec Kralové, Charles University in Prague, University Hospital Hradec Králové, Hradec Králové, Czech Republic; 2National Institute of Mental Health, Klecany, Czech Republic; 3Institute of Clinical Immunology and Allergology, Charles University in Prague, Faculty of Medicine in Hradec Králové, and University Hospital Hradec Králové, Hradec Králové, Czech Republic; 4Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové, and University Hospital Hradec Králové, Hradec Králové, Czech Republic; 5Biomedical Research Centrum, University Hospital Hradec Králové, Hradec Králové, Czech Republic Background: Encephalitis with antibodies against N-methyl-D-aspartate receptor (NMDA-R is classified as an autoimmune disorder with psychotic symptoms, which are frequently dominant. However, it remains unclear how frequently NMDA-R antibodies lead to a condition that mimics psychosis and first-episode schizophrenia. In our work, we investigated the presence of antibodies against NMDA-R in patients with first-episode psychosis (FEP in comparison with healthy volunteers.Methods: This study included 50 antipsychotic-naïve patients with FEP (including 21 women and 50 healthy volunteers (including 21 women. The mean age of the patients was 27.4 (±7.4 years and that of the healthy controls was 27.0 (±7.3 years. Antibodies against NMDA-R in the serum were detected by immunofluorescence.Results: None of the investigated patients with an FEP and none of the healthy controls showed positive antibodies against NMDA-Rs.Conclusion: According to results of studies, a small proportion of patients with an FEP possess antibodies against NMDA-R. However, the extent to which this finding contributes to the etiopathogenesis of the response to antipsychotic medication and

  11. Pemphigus vulgaris antibodies target the mitochondrial nicotinic acetylcholine receptors that protect keratinocytes from apoptolysis.

    Science.gov (United States)

    Chernyavsky, Alex; Chen, Yumay; Wang, Ping H; Grando, Sergei A

    2015-11-01

    The mechanism of detachment and death of keratinocytes in pemphigus vulgaris (PV) involves pro-apoptotic action of constellations of autoantibodies determining disease severity and response to treatment. The presence of antibodies to nicotinic acetylcholine receptors (nAChRs) and the therapeutic efficacy of cholinomimetics in PV is well-established. Recently, adsorption of anti-mitochondrial antibodies abolished the ability of PVIgGs to cause acantholysis, demonstrating their pathophysiological significance. Since, in addition to cell membrane, nAChRs are also present on the mitochondrial outer membrane, wherein they act to prevent activation of intrinsic (mitochondrial apoptosis), we hypothesized that mitochondrial (mt)-nAChRs might be targeted by PVIgGs. To test this hypothesis, we employed the immunoprecipitation-western blot assay of keratinocyte mitochondrial proteins that visualized the α3, α5, α7, α9, α10, β2 and β4 mt-nAChR subunits precipitated by PV IgGs, suggesting that functions of mt-nAChRs are compromised in PV. To pharmacologically counteract the pro-apoptotic action of anti-mitochondrial antibodies in PV, we exposed naked keratinocyte mitochondria to PVIgGs in the presence of the nicotinic agonist nicotine ± antagonists, and measured cytochrome c (CytC) release. Nicotine abolished PVIgG-dependent CytC release, showing a dose-dependent effect, suggesting that protection of mitochondria can be a novel mechanism of therapeutic action of nicotinic agonists in PV. The obtained results indicated that the mt-nAChRs targeted by anti-mitochondrial antibodies produced by PV patients are coupled to inhibition of CytC release, and that nicotinergic stimulation can abolish PVIgG-dependent activation of intrinsic apoptosis in KCs. Future studies should determine if and how the distinct anti-mt-nAChR antibodies penetrate KCs and correlate with disease severity.

  12. Antiglutamate Receptor Antibodies and Cognitive Impairment in Primary Antiphospholipid Syndrome and Systemic Lupus Erythematosus

    Science.gov (United States)

    Gerosa, Maria; Poletti, Barbara; Pregnolato, Francesca; Castellino, Gabriella; Lafronza, Annalisa; Silani, Vincenzo; Riboldi, Piersandro; Meroni, Pier Luigi; Merrill, Joan T.

    2016-01-01

    Systemic lupus erythematosus (SLE) and antiphospholipid syndrome have an increased risk to develop cognitive impairment. A possible role for antiphospholipid antibodies (aPL) and antiglutamate receptor (anti-NMDA) antibodies in the pathogenesis of neurological manifestations of these two conditions, have been suggested. In particular, the role of anti-NMDA antibodies in the pathogenesis of neuropsychiatric SLE is supported by several experimental studies in animal models and by the finding of a correlation between anti-NMDA positivity in cerebrospinal fluid and neurological manifestations of SLE. However, data from the literature are controversial, as several studies have reported a correlation of these antibodies with mild cognitive impairment in SLE, but more recent studies have not confirmed this finding. The synergism between anti-NMDA and other concomitant autoantibodies, such as aPL, can be hypothesized to play a role in inducing the tissue damage and eventually the functional abnormalities. In line with this hypothesis, we have found a high incidence of at least one impaired cognitive domain in a small cohort of patients with primary APS (PAPS) and SLE. Interestingly, aPL were associated with low scoring for language ability and attention while anti-NMDA titers and mini-mental state examination scoring were inversely correlated. However, when patients were stratified according to the presence/absence of aPL, the correlation was confirmed in aPL positive patients only. Should those findings be confirmed, the etiology of the prevalent defects found in PAPS patients as well as the synergism between aPL and anti-NMDA antibodies would need to be explored. PMID:26870034

  13. Aberrant trafficking of NSCLC-associated EGFR mutants through the endocytic recycling pathway promotes interaction with Src@

    Directory of Open Access Journals (Sweden)

    Band Vimla

    2009-11-01

    Full Text Available Abstract Background Epidermal growth factor receptor (EGFR controls a wide range of cellular processes, and altered EGFR signaling contributes to human cancer. EGFR kinase domain mutants found in non-small cell lung cancer (NSCLC are constitutively active, a trait critical for cell transformation through activation of downstream pathways. Endocytic trafficking of EGFR is a major regulatory mechanism as ligand-induced lysosomal degradation results in termination of signaling. While numerous studies have examined mutant EGFR signaling, the endocytic traffic of mutant EGFR within the NSCLC milieu remains less clear. Results This study shows that mutant EGFRs in NSCLC cell lines are constitutively endocytosed as shown by their colocalization with the early/recycling endosomal marker transferrin and the late endosomal/lysosomal marker LAMP1. Notably, mutant EGFRs, but not the wild-type EGFR, show a perinuclear accumulation and colocalization with recycling endosomal markers such as Rab11 and EHD1 upon treatment of cells with endocytic recycling inhibitor monensin, suggesting that mutant EGFRs preferentially traffic through the endocytic recycling compartments. Importantly, monensin treatment enhanced the mutant EGFR association and colocalization with Src, indicating that aberrant transit through the endocytic recycling compartment promotes mutant EGFR-Src association. Conclusion The findings presented in this study show that mutant EGFRs undergo aberrant traffic into the endocytic recycling compartment which allows mutant EGFRs to engage in a preferential interaction with Src, a critical partner for EGFR-mediated oncogenesis.

  14. EGFR-targeting peptide-coupled platinum(IV) complexes.

    Science.gov (United States)

    Mayr, Josef; Hager, Sonja; Koblmüller, Bettina; Klose, Matthias H M; Holste, Katharina; Fischer, Britta; Pelivan, Karla; Berger, Walter; Heffeter, Petra; Kowol, Christian R; Keppler, Bernhard K

    2017-06-01

    The high mortality rate of lung cancer patients and the frequent occurrence of side effects during cancer therapy demonstrate the need for more selective and targeted drugs. An important and well-established target for lung cancer treatment is the occasionally mutated epidermal growth factor receptor (EGFR). As platinum(II) drugs are still the most important therapeutics against lung cancer, we synthesized in this study the first platinum(IV) complexes coupled to the EGFR-targeting peptide LARLLT (and the shuffled RTALLL as reference). Notably, HPLC-MS measurements revealed two different peaks with the same molecular mass, which turned out to be a transcyclization reaction in the linker between maleimide and the coupled cysteine moiety. With regard to the EGFR specificity, subsequent biological investigations (3-day viability, 14-day clonogenic assays and platinum uptake) on four different cell lines with different verified EGFR expression levels were performed. Unexpectedly, the results showed neither an enhanced activity nor an EGFR expression-dependent uptake of our new compounds. Consequently, fluorophore-coupled peptides were synthesized to re-evaluate the targeting ability of LARLLT itself. However, also with these molecules, flow cytometry measurements showed no correlation of drug uptake with the EGFR expression levels. Taken together, we successfully synthesized the first platinum(IV) complexes coupled to an EGFR-targeting peptide; however, the biological investigations revealed that LARLLT is not an appropriate peptide for enhancing the specific uptake of small-molecule drugs into EGFR-overexpressing cancer cells.

  15. A functional role for EGFR signaling in myelination and remyelination.

    Science.gov (United States)

    Aguirre, Adan; Dupree, Jeff L; Mangin, J M; Gallo, Vittorio

    2007-08-01

    Cellular strategies for oligodendrocyte regeneration and remyelination involve characterizing endogenous neural progenitors that are capable of generating oligodendrocytes during normal development and after demyelination, and identifying the molecular signals that enhance oligodendrogenesis from these progenitors. Using both gain- and loss-of-function approaches, we explored the role of epidermal growth factor receptor (EGFR) signaling in adult myelin repair and in oligodendrogenesis. We show that 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter-driven overexpression of human EGFR (hEGFR) accelerated remyelination and functional recovery following focal demyelination of mouse corpus callosum. Lesion repopulation by Cspg4+ (also known as NG2) Ascl1+ (also known as Mash1) Olig2+ progenitors and functional remyelination were accelerated in CNP-hEGFR mice compared with wild-type mice. EGFR overexpression in subventricular zone (SVZ) and corpus callosum during early postnatal development also expanded this NG2+Mash1+Olig2+ progenitor population and promoted SVZ-to-lesion migration, enhancing oligodendrocyte generation and axonal myelination. Analysis of hypomorphic EGFR-mutant mice confirmed that EGFR signaling regulates oligodendrogenesis and remyelination by NG2+Mash1+Olig2+ progenitors. EGFR targeting holds promise for enhancing oligodendrocyte regeneration and myelin repair.

  16. IGFBP2 potentiates nuclear EGFR-STAT3 signaling.

    Science.gov (United States)

    Chua, C Y; Liu, Y; Granberg, K J; Hu, L; Haapasalo, H; Annala, M J; Cogdell, D E; Verploegen, M; Moore, L M; Fuller, G N; Nykter, M; Cavenee, W K; Zhang, W

    2016-02-11

    Insulin-like growth factor binding protein 2 (IGFBP2) is a pleiotropic oncogenic protein that has both extracellular and intracellular functions. Despite a clear causal role in cancer development, the tumor-promoting mechanisms of IGFBP2 are poorly understood. The contributions of intracellular IGFBP2 to tumor development and progression are also unclear. Here we present evidence that both exogenous IGFBP2 treatment and cellular IGFBP2 overexpression lead to aberrant activation of epidermal growth factor receptor (EGFR), which subsequently activates signal transducer and activator of transcription factor 3 (STAT3) signaling. Furthermore, we demonstrate that IGFBP2 augments the nuclear accumulation of EGFR to potentiate STAT3 transactivation activities, via activation of the nuclear EGFR signaling pathway. Nuclear IGFBP2 directly influences the invasive and migratory capacities of human glioblastoma cells, providing a direct link between intracellular (and particularly nuclear) IGFBP2 and cancer hallmarks. These activities are also consistent with the strong association between IGFBP2 and STAT3-activated genes derived from The Cancer Genome Atlas database for human glioma. A high level of all three proteins (IGFBP2, EGFR and STAT3) was strongly correlated with poorer survival in an independent patient data set. These results identify a novel tumor-promoting function for IGFBP2 of activating EGFR/STAT3 signaling and facilitating EGFR accumulation in the nucleus, thereby deregulating EGFR signaling by two distinct mechanisms. As targeting EGFR in glioma has been relatively unsuccessful, this study suggests that IGFBP2 may be a novel therapeutic target.

  17. A Novel Technique to Detect EGFR Mutations in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yuanbin Liu

    2016-05-01

    Full Text Available Epidermal growth factor receptor (EGFR gene mutations occur in multiple human cancers; therefore, the detection of EGFR mutations could lead to early cancer diagnosis. This study describes a novel EGFR mutation detection technique. Compared to direct DNA sequencing detection methods, this method is based on allele-specific amplification (ASA, recombinase polymerase amplification (RPA, peptide nucleic acid (PNA, and SYBR Green I (SYBR, referred to as the AS-RPA-PNA-SYBR (ARPS system. The principle of this technique is based on three continuous steps: ASA or ASA combined with PNA to prevent non-target sequence amplification (even single nucleotide polymorphisms, SNPs, the rapid amplification advantage of RPA, and appropriate SYBR Green I detection (the samples harboring EGFR mutations show a green signal. Using this method, the EGFR 19Del(2 mutation was detected in 5 min, while the EGFR L858R mutation was detected in 10 min. In this study, the detection of EGFR mutations in clinical samples using the ARPS system was compatible with that determined by polymerase chain reaction (PCR and DNA sequencing methods. Thus, this newly developed methodology that uses the ARPS system with appropriate primer sets is a rapid, reliable, and practical way to assess EGFR mutations in clinical samples.

  18. Ramucirumab (IMC-1121B): Monoclonal antibody inhibition of vascular endothelial growth factor receptor-2.

    Science.gov (United States)

    Spratlin, Jennifer

    2011-04-01

    Angiogenesis, a well-recognized characteristic of malignancy, has been exploited more than any other pathway targeted by biologic anti-neoplastic therapies. Vascular endothelial growth factor receptor-2 (VEGFR-2) is the critical receptor involved in malignant angiogenesis with its activation inducing a number of other cellular modifications resulting in tumor growth and metastases. Ramucirumab (IMC-1121B; ImClone Systems Corporation, Branchburg, NJ) is a fully human monoclonal antibody developed to specifically inhibit VEGFR-2. Ramucirumab is currently being investigated in multiple clinical trials across a variety of tumor types. Herein, angiogenesis inhibition in cancer is reviewed and up-to-date information on the clinical development of ramucirumab is presented.

  19. A phase I dose escalation study of BIBW 2992, an irreversible dual inhibitor of epidermal growth factor receptor I (EGFR) and 2 (HER2) tyrosine kinase in a 2-week on, 2-week off schedule in patients with advanced solid tumours

    NARCIS (Netherlands)

    Eskens, Falm; Mom, C. H.; Planting, A. S. T.; Gietema, J. A.; Amelsberg, A.; Huisman, H.; van Doorn, L.; Burger, H.; Stopfer, P.; Verweij, J.; de Vries, Ege

    2008-01-01

    To assess tolerability, pharmacokinetics ( PK), pharmacodynamics ( PD) and clinical activity of the dual epidermal growth factor receptor ( EGFR) 1 and 2 ( HER2) tyrosine kinase inhibitor BIBW 2992. An escalating schedule of once-daily ( OD) BIBW 2992 for 14 days followed by 14 days off medication w

  20. A phase I dose escalation study of BIBW 2992, an irreversible dual inhibitor of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) tyrosine kinase in a 2-week on, 2-week off schedule in patients with advanced solid tumours

    NARCIS (Netherlands)

    F.A.L.M. Eskens (Ferry); C.H. Mom (Constantijne); A.S.Th. Planting (André); J.A. Gietema (Jourik); A. Amelsberg; H. Huisman (Henkjan); L. van Doorn (Leni); H. Burger (Herman); P. Stopfer; J. Verweij (Jaap); E. de Vries (Esther)

    2008-01-01

    textabstractTo assess tolerability, pharmacokinetics (PK), pharmacodynamics (PD) and clinical activity of the dual epidermal growth factor receptor (EGFR) 1 and 2 (HER2) tyrosine kinase inhibitor BIBW 2992. An escalating schedule of once-daily (OD) BIBW 2992 for 14 days followed by 14 days off medic

  1. Regulation of macrophage inhibitory factor (MIF) by epidermal growth factor receptor (EGFR) in the MCF10AT model of breast cancer progression.

    Science.gov (United States)

    Lim, Simin; Choong, Lee-Yee; Kuan, Chong Poh; Yunhao, Chen; Lim, Yoon-Pin

    2009-08-01

    Genetic aberration of EGFR is one of the major molecular characteristics of breast cancer. However, the molecular changes associated with EGFR signaling during different stages of breast cancer development have not been studied. In this study, complementary two-dimensional-DIGE and iTRAQ technologies were used to profile the expression level of proteins in 4 isogenic cell lines in the MCF10AT model of breast cancer progression following a time course of EGF stimulation. A total of 80 proteins (67 from iTRAQ, 15 from DIGE, 2 common in both) were identified to be up- or down-regulated by EGF treatment. Following EGF stimulation, the expression level of MIF, a cytokine that has been implicated in many human cancers, was decreased in MCF10A1 normal breast mammary epithelial cells, increased in MCF10AT1k preneoplastic and MCF10CA1h low grade breast cancer cells, but showed no obvious difference in the MCF10CA1a high grade cancer cells. The increase in MIF expression level following EGF treatment could also be observed in A431 cervical cancer cells. EGF-induced increases of MIF expression levels in CA1h breast cancer cells were abrogated when MEK, but not PIK3CA, was knocked down. In addition, silencing of MIF diminished the proliferation of EGF-stimulated CA1h cells when compared to control cells. Taken together, our data suggested an EGFR --> MEK --> MIF proliferative pathway that has never been reported previously and that this pathway "evolves" during disease progression as modeled by the MCF10AT system. Revelation of the novel relationship between MIF and EGF may contribute to an integrated understanding of the roles of these oncogenic factors during breast cancer development.

  2. EGFR and KRAS quality assurance schemes in pathology: generating normative data for molecular predictive marker analysis in targeted therapy

    NARCIS (Netherlands)

    E. Thunnissen; J.V.M.G. Bovée; H. Bruinsma; A.J.C. van den Brule; W. Dinjens; D.A.M. Heideman; E. Meulemans; P. Nederlof; C. van Noesel; C.F.M. Prinsen; K. Scheidel; P.M. van de Ven; R. de Weger; E. Schuuring; M. Ligtenberg

    2011-01-01

    Introduction The aim of this study was to compare the reproducibility of epidermal growth factor receptor (EGFR) immunohistochemistry (IHC), EGFR gene amplification analysis, and EGFR and KRAS mutation analysis among different laboratories performing routine diagnostic analyses in pathology in The N

  3. EGFR and KRAS quality assurance schemes in pathology : generating normative data for molecular predictive marker analysis in targeted therapy

    NARCIS (Netherlands)

    Thunnissen, Erik; Bovée, Judith V M G; Bruinsma, Hans; van den Brule, Adriaan J C; Dinjens, Winand; Heideman, Daniëlle A M; Meulemans, Els; Nederlof, Petra; van Noesel, Carel; Prinsen, Clemens F M; Scheidel, Karen; van de Ven, Peter M; de Weger, Roel; Schuuring, Ed; Ligtenberg, Marjolijn

    2011-01-01

    Introduction The aim of this study was to compare the reproducibility of epidermal growth factor receptor (EGFR) immunohistochemistry (IHC), EGFR gene amplification analysis, and EGFR and KRAS mutation analysis among different laboratories performing routine diagnostic analyses in pathology in The N

  4. Interaction of a monoclonal antibody against hEGF with a receptor site for EGF

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Sonia; Souto, Beatriz; Balter, Henia; Welling, Mick M.; Roman, Estela; Robles, Ana; Pauwels, Ernest K.J

    1999-11-01

    Epidermal growth factor (EGF) has been detected by radioimmunoassay (RIA) in different body fluids such as serum, amniotic fluid, and urine. Human tumor tissues with EGF receptors (EGF-Rc) may be saturated with EGF, which may be of prognostic value. An RIA was envisaged to measure human epidermal growth factor (hEGF) levels using EGF-Rc as capture agent and a monoclonal antibody anti-hEGF (MAb anti-hEGF) labeled with {sup 125}Iodine as a marker for this binding. The purpose of this work was to study the feasibility of MAb anti-hEGF to detect the receptor binding sites and to investigate the interaction between MAb anti-hEGF and the EGF-Rc. Various binding experiments were performed to study possible interference and interactions in the complex MAb anti-hEGF and the receptor. Affinity constants were determined by means of Scatchard plot analysis to interpret the complex stability challenged with other compounds for a better understanding of the interaction process. Binding constants were of the same order for all the ligands tested separately involving the EGF-Rc, but were significantly higher (t=15.7, p<0.05) for hEGF in its binding to MAb anti-hEGF. It was possible with equilibrium studies and competition experiments to evaluate the interaction of EGF and MAb anti-hEGF with the EGF receptor. This observation makes the MAb anti-hEGF a potential tracer for the quantitation of receptors in vitro, and possibly for the detection of membrane receptors on tumor cells in vivo.

  5. Interaction of a monoclonal antibody against hEGF with a receptor site for EGF.

    Science.gov (United States)

    Valente, S; Souto, B; Balter, H; Welling, M M; Román, E; Robles, A; Pauwels, E K

    1999-11-01

    Epidermal growth factor (EGF) has been detected by radioimmunoassay (RIA) in different body fluids such as serum, amniotic fluid, and urine. Human tumor tissues with EGF receptors (EGF-Rc) may be saturated with EGF, which may be of prognostic value. An RIA was envisaged to measure human epidermal growth factor (hEGF) levels using EGF-Rc as capture agent and a monoclonal antibody anti-hEGF (MAb anti-hEGF) labeled with 125Iodine as a marker for this binding. The purpose of this work was to study the feasibility of MAb anti-hEGF to detect the receptor binding sites and to investigate the interaction between MAb anti-hEGF and the EGF-Rc. Various binding experiments were performed to study possible interference and interactions in the complex MAb anti-hEGF and the receptor. Affinity constants were determined by means of Scatchard plot analysis to interpret the complex stability challenged with other compounds for a better understanding of the interaction process. Binding constants were of the same order for all the ligands tested separately involving the EGF-Rc, but were significantly higher (t = 15.7, p anti-hEGF. It was possible with equilibrium studies and competition experiments to evaluate the interaction of EGF and MAb anti-hEGF with the EGF receptor. This observation makes the MAb anti-hEGF a potential tracer for the quantitation of receptors in vitro, and possibly for the detection of membrane receptors on tumor cells in vivo.

  6. GENE EXPRESSION PROFILES AS MARKERS OF AGGRESSIVE DISEASE—EGFR AS A FACTOR

    Science.gov (United States)

    CHung, Christine H.; Parker, Joel; Levy, Shawn; Slebos, Robbert J.; Dicker, Adam P.; ROdeck, Ulrich

    2008-01-01

    We previously reported that 43 (58%) of 75 head and neck squamous cell carcinoma (HNSCC) tumors harbor increased epidermal growth factor receptor (EGFR) gene copy numbers as determined by fluorescent in situ hybridization. In this study, an increased EGFR copy number was associated with decreased progression-free survival and overall survival of HNSCC patients. However, activated EGFR protein levels are difficult to quantify by immunohistochemistry and are subject to dynamic regulation, specifically receptor downregulation on ligand binding. Therefore, we generated an activated EGFR gene expression signature in an in vitro HaCaT keratinocyte model system to further study genes involved in the EGFR signaling pathway in HNSCC. The results from this model system have suggested that the activated EGFR signature might reflect the activated state of the EGFR pathway in human HNSCC tumors and that it is associated with the increased EGFR gene copy number by fluorescent in situ hybridization. Furthermore, the activated EGFR signature has provided additional leads, because they are related to co-regulated molecular pathways and associated gene products on activation of EGFR. These could be exploited to refine and optimize combination therapies to be used in conjunction with available EGFR inhibitors in individual HNSCC patients. PMID:17848272

  7. Cetuximab Resistance in Head and Neck Cancer Is Mediated by EGFR-K521 Polymorphism.

    Science.gov (United States)

    Braig, Friederike; Kriegs, Malte; Voigtlaender, Minna; Habel, Beate; Grob, Tobias; Biskup, Karina; Blanchard, Veronique; Sack, Markus; Thalhammer, Anja; Ben Batalla, Isabel; Braren, Ingke; Laban, Simon; Danielczyk, Antje; Goletz, Steffen; Jakubowicz, Elzbieta; Märkl, Bruno; Trepel, Martin; Knecht, Rainald; Riecken, Kristoffer; Fehse, Boris; Loges, Sonja; Bokemeyer, Carsten; Binder, Mascha

    2017-03-01

    Head and neck squamous cell carcinomas (HNSCC) exhibiting resistance to the EGFR-targeting drug cetuximab poses a challenge to their effective clinical management. Here, we report a specific mechanism of resistance in this setting based upon the presence of a single nucleotide polymorphism encoding EGFR-K521 (K-allele), which is expressed in >40% of HNSCC cases. Patients expressing the K-allele showed significantly shorter progression-free survival upon palliative treatment with cetuximab plus chemotherapy or radiation. In several EGFR-mediated cancer models, cetuximab failed to inhibit downstream signaling or to kill cells harboring a high K-allele frequency. Cetuximab affinity for EGFR-K521 was reduced slightly, but ligand-mediated EGFR activation was intact. We found a lack of glycan sialyation on EGFR-K521 that associated with reduced protein stability, suggesting a structural basis for reduced cetuximab efficacy. CetuGEX, an antibody with optimized Fc glycosylation targeting the same epitope as cetuximab, restored HNSCC sensitivity in a manner associated with antibody-dependent cellular cytotoxicity rather than EGFR pathway inhibition. Overall, our results highlight EGFR-K521 expression as a key mechanism of cetuximab resistance to evaluate prospectively as a predictive biomarker in HNSCC patients. Further, they offer a preclinical rationale for the use of ADCC-optimized antibodies to treat tumors harboring this EGFR isoform. Cancer Res; 77(5); 1188-99. ©2016 AACR.

  8. Regulation of EGFR protein stability by the HECT-type ubiquitin ligase SMURF2.

    Science.gov (United States)

    Ray, Dipankar; Ahsan, Aarif; Helman, Abigail; Chen, Guoan; Hegde, Ashok; Gurjar, Susmita Ramanand; Zhao, Lili; Kiyokawa, Hiroaki; Beer, David G; Lawrence, Theodore S; Nyati, Mukesh K

    2011-07-01

    Epidermal growth factor receptor (EGFR) is overexpressed in a variety of epithelial tumors and is considered to be an important therapeutic target. Although gene amplification is responsible for EGFR overexpression in certain human malignancies including lung and head and neck cancers, additional molecular mechanisms are likely. Here, we report a novel interaction of EGFR with an HECT-type ubiquitin ligase SMURF2, which can ubiquitinate, but stabilize EGFR by protecting it from c-Cbl-mediated degradation. Conversely, small interfering RNA (siRNA)-mediated knockdown of SMURF2 destabilized EGFR, induced an autophagic response and reduced the clonogenic survival of EGFR-expressing cancer cell lines, with minimal effects on EGFR-negative cancer cells, normal fibroblasts, and normal epithelial cells. UMSCC74B head and neck squamous cancer cells, which form aggressive tumors in nude mice, significantly lost in vivo tumor-forming ability on siRNA-mediated SMURF2 knockdown. Gene expression microarray data from 443 lung adenocarcinoma patients, and tissue microarray data from 67 such patients, showed a strong correlation of expression between EGFR and SMURF2 at the messenger RNA and protein levels, respectively. Our findings suggest that SMURF2-mediated protective ubiquitination of EGFR may be responsible for EGFR overexpression in certain tumors and support targeting SMURF2-EGFR interaction as a novel therapeutic approach in treating EGFR-addicted tumors.

  9. Regulation of EGFR Protein Stability by the HECT-type Ubiquitin Ligase SMURF2

    Directory of Open Access Journals (Sweden)

    Dipankar Ray

    2011-07-01

    Full Text Available Epidermal growth factor receptor (EGFR is overexpressed in a variety of epithelial tumors and is considered to be an important therapeutic target. Although gene amplification is responsible for EGFR overexpression in certain human malignancies including lung and head and neck cancers, additional molecular mechanisms are likely. Here, we report a novel interaction of EGFR with an HECT-type ubiquitin ligase SMURF2, which can ubiquitinate, but stabilize EGFR by protecting it from c-Cbl-mediated degradation. Conversely, small interfering RNA (siRNA-mediated knockdown of SMURF2 destabilized EGFR, induced an autophagic response and reduced the clonogenic survival of EGFR-expressing cancer cell lines, with minimal effects on EGFR-negative cancer cells, normal fibroblasts, and normal epithelial cells. UMSCC74B head and neck squamous cancer cells, which form aggressive tumors in nudemice, significantly lost in vivo tumor-forming ability on siRNA-mediated SMURF2 knockdown. Gene expressionmicroarray data from 443 lung adenocarcinoma patients, and tissue microarray data from 67 such patients, showed a strong correlation of expression between EGFR and SMURF2 at the messenger RNA and protein levels, respectively. Our findings suggest that SMURF2-mediated protective ubiquitination of EGFR may be responsible for EGFR overexpression in certain tumors and support targeting SMURF2-EGFR interaction as a novel therapeutic approach in treating EGFR-addicted tumors.

  10. The Anti-Acetylcholine Receptor Antibody Test in Suspected Ocular Myasthenia Gravis

    Directory of Open Access Journals (Sweden)

    Jung Jin Lee

    2014-01-01

    Full Text Available Aim. To estimate the clinical significance of anti-acetylcholine receptor antibody (anti-AChR-Ab levels in suspected ocular myasthenia gravis. Methods. In total, 144 patients complaining of fluctuating diplopia and ptosis were evaluated for serum levels of anti-acetylcholine receptor antibody and their medical charts were retrospectively reviewed. Subjects were classified into three groups: variable diplopia only, ptosis only, and both variable diplopia and ptosis. We investigated serum anti-AChR-Ab titer levels and performed thyroid autoantibody tests. Results. Patients’ chief complaints were diplopia (N=103, ptosis (N=12, and their concurrence (N=29. Abnormal anti-AChR-Ab was observed in 21 of 144 patients (14.1%. Between the three groups, mean age, number of seropositive patients, and mean anti-AChR-Ab level were not significantly different (P=0.224, 0.073, and 0.062, resp.. Overall, 27.5% of patients had abnormal thyroid autoantibodies. Conclusion. The sensitivity of anti-AChR-Ab was 14.1% in suspected ocular myasthenia gravis and seropositivity in myasthenia gravis patients showed a high correlation with the presence of thyroid autoantibodies.

  11. Molecular basis for antagonistic activity of anifrolumab, an anti-interferon-α receptor 1 antibody.

    Science.gov (United States)

    Peng, Li; Oganesyan, Vaheh; Wu, Herren; Dall'Acqua, William F; Damschroder, Melissa M

    2015-01-01

    Anifrolumab (anifrolumab) is an antagonist human monoclonal antibody that targets interferon α receptor 1 (IFNAR1). Anifrolumab has been developed to treat autoimmune diseases and is currently in clinical trials. To decipher the molecular basis of its mechanism of action, we engaged in multiple epitope mapping approaches to determine how it interacts with IFNAR1 and antagonizes the receptor. We identified the epitope of anifrolumab using enzymatic fragmentation, phage-peptide library panning and mutagenesis approaches. Our studies revealed that anifrolumab recognizes the SD3 subdomain of IFNAR1 with the critical residue R(279). Further, we solved the crystal structure of anifrolumab Fab to a resolution of 2.3 Å. Guided by our epitope mapping studies, we then used in silico protein docking of the anifrolumab Fab crystal structure to IFNAR1 and characterized the corresponding mode of binding. We find that anifrolumab sterically inhibits the binding of IFN ligands to IFNAR1, thus blocking the formation of the ternary IFN/IFNAR1/IFNAR2 signaling complex. This report provides the molecular basis for the mechanism of action of anifrolumab and may provide insights toward designing antibody therapies against IFNAR1.

  12. The role of cMet in non-small cell lung cancer resistant to EGFR-inhibitors: did we really find the target?

    Science.gov (United States)

    Passiglia, Francesco; Van Der Steen, Nele; Raez, Luis; Pauwels, Patrick; Gil-Bazo, Ignacio; Santos, Edgardo; Santini, Daniele; Tesoriere, Giovanni; Russo, Antonio; Bronte, Giuseppe; Zwaenepoel, Karen; Cappuzzo, Federico; Rolfo, Christian

    2014-01-01

    The advent of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) represented the most important innovation in NSCLC treatment over the last years. However, despite a great initial activity, secondary mutations in the same target, or different alterations in other molecular pathways, inevitably occur, leading to the emergence of acquired resistance, in median within the first year of treatment. In this scenario, the mesenchymal-epidermal transition (cMET) tyrosine kinase receptor and its natural ligand, the hepatocyte growth factor (HGF), seem to play an important role. Indeed either the overexpression or the amplification of cMET, as well as the overexpression of the HGF, have been reported in a substantial subgroup of NSCLC patients resistant to EGFR-TKIs. Several cMET-inhibitors have been developed as potential therapeutic candidates, and are currently under investigation in clinical trials. These compounds include both monoclonal antibodies and TKIs, and most of them have been investigated as dual combinations including an anti-EGFR TKI, to improve the efficacy of the available treatments, and ultimately overcome acquired resistance to EGFR-inhibitors.

  13. Putative bioactive motif of tritrpticin revealed by an antibody with biological receptor-like properties.

    Directory of Open Access Journals (Sweden)

    Raghava Sharma

    Full Text Available Antimicrobial peptides represent one of the most promising future strategies for combating infections and microbial drug resistance. Tritrpticin is a 13mer tryptophan-rich cationic antimicrobial peptide with a broad spectrum of activity whose application in antimicrobial therapy has been hampered by ambiguity about its biological target and consequently the molecular interactions necessary for its antimicrobial activity. The present study provides clues about the mechanism of action of tritripticin by using a unique monoclonal antibody (mAb as a 'physiological' structural scaffold. A pool of mAbs were generated against tritrpticin and based on its high affinity and ability to bind tritrpticin analogs, mAb 6C6D7 was selected and characterized further. In a screening of phage displayed random peptides, this antibody was able to identify a novel antimicrobial peptide with low sequence homology to tritrpticin, suggesting that the mAb possessed the physico-chemical characteristics mimicking the natural receptor. Subsequently, thermodynamics and molecular modeling identified a core group of hydrophobic residues in tritrpticin arranged in a distorted's' shaped conformation as critical for antibody binding. Comparison of the mAb induced conformation with the micelle bound structure of tritrpticin reveals how a common motif may be able to interact with multiple classes of biomolecules thus extending the target range of this innate immune peptide. Based on the concurrence between thermodynamic and structural data our results reveal a template that can be used to design novel antimicrobial pharmacophores while simultaneously demonstrating at a more fundamental level the potential of mAbs to act as receptor surrogates.

  14. T cell receptor-like recognition of tumor in vivo by synthetic antibody fragment.

    Directory of Open Access Journals (Sweden)

    Keith R Miller

    Full Text Available A major difficulty in treating cancer is the inability to differentiate between normal and tumor cells. The immune system differentiates tumor from normal cells by T cell receptor (TCR binding of tumor-associated peptides bound to Major Histocompatibility Complex (pMHC molecules. The peptides, derived from the tumor-specific proteins, are presented by MHC proteins, which then serve as cancer markers. The TCR is a difficult protein to use as a recombinant protein because of production issues and has poor affinity for pMHC; therefore, it is not a good choice for use as a tumor identifier outside of the immune system. We constructed a synthetic antibody-fragment (Fab library in the phage-display format and isolated antibody-fragments that bind pMHC with high affinity and specificity. One Fab, fE75, recognizes our model cancer marker, the Human Epidermal growth factor Receptor 2 (HER2/neu peptide, E75, bound to the MHC called Human Leukocyte Antigen-A2 (HLA-A2, with nanomolar affinity. The fE75 bound selectively to E75/HLA-A2 positive cancer cell lines in vitro. The fE75 Fab conjugated with (64Cu selectively accumulated in E75/HLA-A2 positive tumors and not in E75/HLA-A2 negative tumors in an HLA-A2 transgenic mouse as probed using positron emission tomography/computed tomography (PET/CT imaging. Considering that hundreds to thousands of different peptides bound to HLA-A2 are present on the surface of each cell, the fact that fE75 arrives at the tumor at all shows extraordinary specificity. These antibody fragments have great potential for diagnosis and targeted drug delivery in cancer.

  15. Dimerization drives EGFR endocytosis through two sets of compatible endocytic codes.

    Science.gov (United States)

    Wang, Qian; Chen, Xinmei; Wang, Zhixiang

    2015-03-01

    We have shown previously that epidermal growth factor (EGF) receptor (EGFR) endocytosis is controlled by EGFR dimerization. However, it is not clear how the dimerization drives receptor internalization. We propose that EGFR endocytosis is driven by dimerization, bringing two sets of endocytic codes, one contained in each receptor monomer, in close proximity. Here, we tested this hypothesis by generating specific homo- or hetero-dimers of various receptors and their mutants. We show that ErbB2 and ErbB3 homodimers are endocytosis deficient owing to the lack of endocytic codes. Interestingly, EGFR-ErbB2 or EGFR-ErbB3 heterodimers are also endocytosis deficient. Moreover, the heterodimer of EGFR and the endocytosis-deficient mutant EGFRΔ1005-1017 is also impaired in endocytosis. These results indicate that two sets of endocytic codes are required for receptor endocytosis. We found that an EGFR-PDGFRβ heterodimer is endocytosis deficient, although both EGFR and PDGFRβ homodimers are endocytosis-competent, indicating that two compatible sets of endocytic codes are required. Finally, we found that to mediate the endocytosis of the receptor dimer, the two sets of compatible endocytic codes, one contained in each receptor molecule, have to be spatially coordinated.

  16. A murine monoclonal antibody that binds N-terminal extracellular segment of human protease-activated receptor-4.

    Science.gov (United States)

    Sangawa, Takeshi; Nogi, Terukazu; Takagi, Junichi

    2008-10-01

    Abstract A monoclonal antibody that recognizes native G protein coupled receptors (GPCR) is generally difficult to obtain. Protease-activated receptor-4 (PAR4) is a GPCR that plays an important role in platelet activation as a low-affinity thrombin receptor. By immunizing peptide corresponding to the N-terminal segment of human PAR4, we obtained a monoclonal antibody that recognizes cell surface expressed PAR4. Epitope mapping using a series of artificial fusion proteins that carry PAR4-derived peptide revealed that the recognition motif is fully contained within the 6-residue portion adjacent to the thrombin cleavage site. The antibody blocked PAR4 peptide cleavage by thrombin, suggesting its utility in the functional study of PAR4 signaling.

  17. Clinical pharmacogenomic testing of KRAS, BRAF and EGFR mutations by high resolution melting analysis and ultra-deep pyrosequencing

    Directory of Open Access Journals (Sweden)

    Agúndez José AG

    2011-09-01

    Full Text Available Abstract Background Epidermal growth factor receptor (EGFR and its downstream factors KRAS and BRAF are mutated in several types of cancer, affecting the clinical response to EGFR inhibitors. Mutations in the EGFR kinase domain predict sensitivity to the tyrosine kinase inhibitors gefitinib and erlotinib in lung adenocarcinoma, while activating point mutations in KRAS and BRAF confer resistance to the anti-EGFR monoclonal antibody cetuximab in colorectal cancer. The development of new generation methods for systematic mutation screening of these genes will allow more appropriate therapeutic choices. Methods We describe a high resolution melting (HRM assay for mutation detection in EGFR exons 19-21, KRAS codon 12/13 and BRAF V600 using formalin-fixed paraffin-embedded samples. Somatic variation of KRAS exon 2 was also analysed by massively parallel pyrosequencing of amplicons with the GS Junior 454 platform. Results We tested 120 routine diagnostic specimens from patients with colorectal or lung cancer. Mutations in KRAS, BRAF and EGFR were observed in 41.9%, 13.0% and 11.1% of the overall samples, respectively, being mutually exclusive. For KRAS, six types of substitutions were detected (17 G12D, 9 G13D, 7 G12C, 2 G12A, 2 G12V, 2 G12S, while V600E accounted for all the BRAF activating mutations. Regarding EGFR, two cases showed exon 19 deletions (delE746-A750 and delE746-T751insA and another two substitutions in exon 21 (one showed L858R with the resistance mutation T590M in exon 20, and the other had P848L mutation. Consistent with earlier reports, our results show that KRAS and BRAF mutation frequencies in colorectal cancer were 44.3% and 13.0%, respectively, while EGFR mutations were detected in 11.1% of the lung cancer specimens. Ultra-deep amplicon pyrosequencing successfully validated the HRM results and allowed detection and quantitation of KRAS somatic mutations. Conclusions HRM is a rapid and sensitive method for moderate

  18. Randomized Phase II Study of Erlotinib in Combination With Placebo or R1507, a Monoclonal Antibody to Insulin-Like Growth Factor-1 Receptor, for Advanced-Stage Non–Small-Cell Lung Cancer

    Science.gov (United States)

    Ramalingam, Suresh S.; Spigel, David R.; Chen, David; Steins, Martin B.; Engelman, Jeffrey A.; Schneider, Claus-Peter; Novello, Silvia; Eberhardt, Wilfried E.E.; Crino, Lucio; Habben, Kai; Liu, Lian; Jänne, Pasi A.; Brownstein, Carrie M.; Reck, Martin

    2011-01-01

    Purpose R1507 is a selective, fully human, recombinant monoclonal antibody (immunoglobulin G1 subclass) against insulin-like growth factor-1 receptor (IGF-1R). The strong preclinical evidence supporting coinhibition of IGF-1R and epidermal growth factor receptor (EGFR) as anticancer therapy prompted this study. Patients and Methods Patients with advanced-stage non–small-cell lung cancer (NSCLC) with progression following one or two prior regimens, Eastern Cooperative Oncology Group (ECOG) performance status 0 to 2, and measurable disease were eligible. Patients were randomly assigned to receive erlotinib (150 mg orally once a day) in combination with either placebo, R1507 9 mg/kg weekly, or R1507 16 mg/kg intravenously once every 3 weeks. Treatment cycles were repeated every 3 weeks. The primary end point was comparison of the 12-week progression-free survival (PFS) rate. Results In all, 172 patients were enrolled: median age, 61 years; female, 33%; never-smokers, 12%; and performance status 0 or 1, 88%. The median number of R1507 doses was six for the weekly arm and 3.5 for the every-3-weeks arm. Grades 3 to 4 adverse events occurred in 37%, 44%, and 48% of patients with placebo, R1507 weekly, and R1507 every 3 weeks, respectively. The 12-week PFS rates were 39%, 37%, and 44%, and the median overall survival was 8.1, 8.1, and 12.1 months for the three groups, respectively, with statistically nonsignificant hazard ratios. The 12-week PFS rate in patients with KRAS mutation was 36% with R1507 compared with 0% with placebo. Conclusion The combination of R1507 with erlotinib did not provide PFS or survival advantage over erlotinib alone in an unselected group of patients with advanced NSCLC. Predictive biomarkers are essential for further development of combined inhibition of IGF-1R and EGFR. PMID:22025157

  19. Lethal iron deprivation induced by non-neutralizing antibodies targeting transferrin receptor 1 in malignant B cells.

    Science.gov (United States)

    Rodríguez, José A; Luria-Pérez, Rosendo; López-Valdés, Héctor E; Casero, David; Daniels, Tracy R; Patel, Shabnum; Avila, David; Leuchter, Richard; So, Sokuntheavy; Ortiz-Sánchez, Elizabeth; Bonavida, Benjamin; Martínez-Maza, Otoniel; Charles, Andrew C; Pellegrini, Matteo; Helguera, Gustavo; Penichet, Manuel L

    2011-11-01

    A number of antibodies have been developed that induce lethal iron deprivation (LID) by targeting the transferrin receptor 1 (TfR1/CD71) and either neutralizing transferrin (Tf) binding, blocking internalization of the receptor and/or inducing its degradation. We have developed recombinant antibodies targeting human TfR1 (ch128.1 and ch128.1Av), which induce receptor degradation and are cytotoxic to certain malignant B-cells. We now show that internalization of TfR1 bound to these antibodies can lead to its sequestration and degradation, as well as reduced Tf uptake, and the induction of a transcriptional response consistent with iron deprivation, which is mediated in part by downstream targets of p53. Cells resistant to these antibodies do not sequester and degrade TfR1 after internalization of the antibody/receptor complex, and accordingly maintain their ability to internalize Tf. These findings are expected to facilitate the rational design and clinical use of therapeutic agents targeting iron import via TfR1 in hematopoietic malignancies.

  20. Non-tumor-Associated Anti-N-Methyl-D-Aspartate (NMDA) Receptor Encephalitis in Chinese Girls With Positive Anti-thyroid Antibodies.

    Science.gov (United States)

    Guan, Wenjuan; Fu, Zhenqiang; Zhang, Hui; Jing, Lijun; Lu, Jingjing; Zhang, Jing; Lu, Hong; Teng, Junfang; Jia, Yanjie

    2015-10-01

    Anti-N-methyl-d-aspartate (NMDA) receptor encephalitis is a new category of autoimmune encephalitis associated with anti-NMDA receptor antibodies. The disease was first described in 2007, and it predominantly affects young women with or without ovarian teratomas. Most patients typically present with seizures, a decreased consciousness level, dyskinesia, autonomic dysfunction, and psychiatric symptoms. The presence of anti-thyroid antibodies in non-tumor-associated anti-NMDA receptor encephalitis was first described in 2010. Additionally, anti-thyroid antibodies were found in teratoma-associated anti-NMDA receptor encephalitis. We report the cases of 3 Chinese girls with non-tumor-associated anti-NMDA receptor encephalitis with positive anti-thyroid antibodies. We followed up the details of their titers and suggest that anti-thyroid antibodies were an indicator of autoimmune predisposition in the development of non-tumor-associated anti-NMDA receptor encephalitis.

  1. Novel irreversible EGFR tyrosine kinase inhibitor 324674 sensitizes human colon carcinoma HT29 and SW480 cells to apoptosis by blocking the EGFR pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhiwei; Cui, Binbin; Jin, Yinghu; Chen, Haipeng [Division of Colorectal Surgery, Third Affiliated Hospital of Harbin Medical University, Harbin (China); Wang, Xishan, E-mail: wxshan_oncologist@yahoo.com.cn [Division of Colorectal Surgery, Third Affiliated Hospital of Harbin Medical University, Harbin (China)

    2011-08-12

    Highlights: {yields} This article described the effects of the EGFR tyrosine kinase inhibitor on the cell proliferation and the apoptosis induction of the colon carcinoma cell lines. {yields} Demonstrated that 326474 is a more potent EGFR inhibitor on colon cancer cells than other three TKIs. {yields} It can be important when considering chemotherapy for colonic cancer patients. -- Abstract: Background: Epidermal growth factor receptor (EGFR) is widely expressed in multiple solid tumors including colorectal cancer by promoting cancer cell growth and proliferation. Therefore, the inhibition of EGFR activity may establish a clinical strategy of cancer therapy. Methods: In this study, using human colon adenocarcinoma HT29 and SW480 cells as research models, we compared the efficacy of four EGFR inhibitors in of EGFR-mediated pathways, including the novel irreversible inhibitor 324674, conventional reversible inhibitor AG1478, dual EGFR/HER2 inhibitor GW583340 and the pan-EGFR/ErbB2/ErbB4 inhibitor. Cell proliferation was assessed by MTT analysis, and apoptosis was evaluated by the Annexin-V binding assay. EGFR and its downstream signaling effectors were examined by western blotting analysis. Results: Among the four inhibitors, the irreversible EGFR inhibitor 324674 was more potent at inhibiting HT29 and SW480 cell proliferation and was able to efficiently induce apoptosis at lower concentrations. Western blotting analysis revealed that AG1478, GW583340 and pan-EGFR/ErbB2/ErbB4 inhibitors failed to suppress EGFR activation as well as the downstream mitogen-activated protein kinase (MAPK) and PI3K/AKT/mTOR (AKT) pathways. In contrast, 324674 inhibited EGFR activation and the downstream AKT signaling pathway in a dose-dependent manner. Conclusion: Our studies indicated that the novel irreversible EGFR inhibitor 324674 may have a therapeutic application in colon cancer therapy.

  2. μ-Opioid receptor antibody reveals tissue-dependent specific staining and increased neuronal μ-receptor immunoreactivity at the injured nerve trunk in mice.

    Directory of Open Access Journals (Sweden)

    Yvonne Schmidt

    Full Text Available Neuropathic pain is a debilitating chronic disease often resulting from damage to peripheral nerves. Activation of opioid receptors on peripheral sensory neurons can attenuate pain without central nervous system side effects. Here we aimed to analyze the distribution of neuronal μ-opioid receptors, the most relevant opioid receptors in the control of clinical pain, along the peripheral neuronal pathways in neuropathy. Hence, following a chronic constriction injury of the sciatic nerve in mice, we used immunohistochemistry to quantify the μ-receptor protein expression in the dorsal root ganglia (DRG, directly at the injured nerve trunk, and at its peripheral endings in the hind paw skin. We also thoroughly examined the μ-receptor antibody staining specificity. We found that the antibody specifically labeled μ-receptors in human embryonic kidney 293 cells as well as in neuronal processes of the sciatic nerve and hind paw skin dermis, but surprisingly not in the DRG, as judged by the use of μ/δ/κ-opioid receptor knockout mice. Therefore, a reliable quantitative analysis of μ-receptor expression in the DRG was not possible. However, we demonstrate that the μ-receptor immunoreactivity was strongly enhanced proximally to the injury at the nerve trunk, but was unaltered in paws, on days 2 and 14 following injury. Thus, μ-opioid receptors at the site of axonal damage might be a promising target for the control of painful neuropathies. Furthermore, our findings suggest a rigorous tissue-dependent characterization of antibodies' specificity, preferably using knockout animals.

  3. Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor Binding Site

    Science.gov (United States)

    2016-06-14

    1 Antibody treatment of Ebola and Sudan virus infection via a uniquely exposed epitope within the glycoprotein receptor-binding site Katie A...interaction with the endosomal receptor NPC-1, cross neutralizes Ebola (EBOV), Sudan (SUDV), and Bundibugyo viruses, and protects mice and guinea pigs...Filoviridae include two marburgviruses: Marburg virus (MARV) and Ravn virus (RAVV), and five ebolaviruses: Ebola virus (EBOV), Sudan virus (SUDV

  4. EGFR Amplification and Glioblastoma Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Katrin Liffers

    2015-01-01

    Full Text Available Glioblastoma (GBM, the most common malignant brain tumor in adults, contains a subpopulation of cells with a stem-like phenotype (GS-cells. GS-cells can be maintained in vitro using serum-free medium supplemented with epidermal growth factor, basic fibroblast growth factor-2, and heparin. However, this method does not conserve amplification of the Epidermal Growth Factor Receptor (EGFR gene, which is present in over 50% of all newly diagnosed GBM cases. GS-cells with retained EGFR amplification could overcome the limitations of current in vitro model systems and contribute significantly to preclinical research on EGFR-targeted therapy. This review recapitulates recent methodological approaches to expand stem-like cells from GBM with different EGFR status in order to maintain EGFR-dependent intratumoral heterogeneity in vitro. Further, it will summarize the current knowledge about the impact of EGFR amplification and overexpression on the stem-like phenotype of GBM-derived GS-cells and different approaches to target the EGFR-dependent GS-cell compartment of GBM.

  5. Progress of EGFR Mutation and EGFR-targeted Therapy%EGFR基因突变与肿瘤靶向治疗

    Institute of Scientific and Technical Information of China (English)

    薛丽; 白玉杰

    2012-01-01

    表皮生长因子受体(epidermal growth factor receptor,EGFR)属于受体酪氨酸激酶超家族,在多种恶性肿瘤中表达.配体与EGFR结合诱导形成二聚体和构象变化,活化酪氨酸激酶及信号转导途径,产生细胞增殖、侵润、转移及抗凋亡等效应.EGFR酪氨酸激酶抑制剂(tyrosine kinase inhibitors,TKIs)类靶向药物,如吉非替尼和厄洛替尼等已应用于临床.临床研究显示仅10%~30%患者对TKIs敏感,部分位于EGFR激酶结构域的活化突变与药物敏感性相关.检测EGFR基因突变有助于预测对药物敏感性和提高疗效.随着治疗绝大多数敏感的患者获得继发耐药性,其中约半数有继发突变T790M,降低药物对靶分子的亲和力,其他许多位于EGFR下游信号途径或旁激活途径的分子也参与耐药形成.因此,未来个体化用药和准确预测敏感性,不仅仅要分析EGFR基因,而且要综合考虑下游和其他信号途径的基因,如PI3K,K-RAS,BRAF,MET和PTEN等.%The epidermal growth factor receptor(EGFR) belongs to the super-family of receptor tyrosine kinase and is expressed in many malignancies. Upon their ligand-induced dimerization and conformational change, it initiates activation of intracellular tyrosine kinase and a vast array of cell signaling pathways. The cascade of intracellular activation results in cell proliferation, invasion, metastasis and decreased apoptosis. EGFR represents a critical player in many types of malignancies and becomes a natural goal of the targeted therapy. Both monoclonal antibodies and tyrosine kinase inhibitors (TKIs), such as erlotinib and gefitinib, have already entered clinical application. Clinical trials have shown that only 10%-30% of patients responded to the TKIs treatment. Further studies have found that some mutations within the kinase domain activated the kinase and conferred sensitivity to the treatments. The detection of mutations will likely predict the sensitive patients and

  6. Immunotoxin Therapies for the Treatment of Epidermal Growth Factor Receptor-Dependent Cancers

    Directory of Open Access Journals (Sweden)

    Nathan Simon

    2016-05-01

    Full Text Available Many epithelial cancers rely on enhanced expression of the epidermal growth factor receptor (EGFR to drive proliferation and survival pathways. Development of therapeutics to target EGFR signaling has been of high importance, and multiple examples have been approved for human use. However, many of the current small molecule or antibody-based therapeutics are of limited effectiveness due to the inevitable development of resistance and toxicity to normal tissues. Recombinant immunotoxins are therapeutic molecules consisting of an antibody or receptor ligand joined to a protein cytotoxin, combining the specific targeting of a cancer-expressed receptor with the potent cell killing of cytotoxic enzymes. Over the decades, many bacterial- or plant-based immunotoxins have been developed with the goal of targeting the broad range of cancers reliant upon EGFR overexpression. Many examples demonstrate excellent anti-cancer properties in preclinical development, and several EGFR-targeted immunotoxins have progressed to human trials. This review summarizes much of the past and current work in the development of immunotoxins for targeting EGFR-driven cancers.

  7. Impact of epidermal growth factor receptor and transforming growth factor-α on hepatitis C virus-induced hepatocarcinogenesis.

    Science.gov (United States)

    Badawy, Afkar Abdel-Ghany; El-Hindawi, Ali; Hammam, Olfat; Moussa, Mona; Gabal, Samia; Said, Noha

    2015-10-01

    Epidermal growth factor receptor system plays a central hepato-protective and pro-regenerative role in liver. Transforming growth factor-α (TGF-α) is an important autocrine growth regulator of hepatocytes that plays a role in development of hepatocellular carcinoma (HCC) among patients with chronic hepatitis C (CHC). This study was done on 40 core liver biopsies from patients with CHC, 20 liver specimens from HCC cases on top of CHC as well as five normal controls. All were immunohistochemically stained with epidermal growth factor receptor (EGFR) and TGF-α antibodies. Some selected HCC cases were submitted for FISH technique to detect EGFR gene alteration. By immunohistochemistry EGFR and TGF-α were overexpressed in HCC and cirrhotic cases compared to CHC cases without cirrhosis. Also, their expression was stronger in CHC cases with higher grades of activity and stages of fibrosis compared to lower ones. FISH positive results for EGFR were detected in 33.3% of the examined HCC cases. EGFR and TGF-α can be used as predictive markers for activity, fibrosis, and carcinogenesis in CHC patients. Overexpression of EGFR in HCC patients can be promising in selecting those who can get benefit from anti-EGFR target therapy.

  8. Type 1 insulin-like growth factor receptor monoclonal antibody (HX-1162 treatment for liver cancer

    Directory of Open Access Journals (Sweden)

    Chen XH

    2013-05-01

    Full Text Available Xue-Hui Chen, Zhi-Qiang Li, Hua Peng, Su-Mei Jin, Hui-Qing Fu, Tie-Chui Zhu, Xiao-Gang WengThe First Affiliated Hospital of Xinxiang Medical University, Weihui, People's Republic of ChinaAbstract: One of the most important molecules mediating the proliferation, growth, and metastasis of cancer cells is insulin-like growth factor (IGF, with its receptor IGF-R1. Here, we describe the potential of an IGF-1R monoclonal antibody, HX-1162, on liver cancer apoptosis in vitro and in vivo. We found that HX-1162 could induce the apoptosis of cultured liver cancer cells. Additionally, HX-1162 treatment inhibited the tumor growth after cancer cell grafting and enhanced the cell apoptosis inside the tumor tissue. We conclude that IGF-R1 targeting therapy provides a new avenue toward treating liver cancer.Keywords: IGF, IGF-R1, apoptosis, hepatocellular carcinoma

  9. Radioimmunodetection of human leukemia with anti-interleukin-2 receptor antibody in severe combined immunodeficiency mice

    Energy Technology Data Exchange (ETDEWEB)

    Hosono, Makoto; Takaori-Kondo, Akifumi; Zheng-Sheng, Yao; Kobayashi, Hisataka; Hosono, Masako N.; Sakahara, Harumi; Imada, Kazunori; Okuma, Minoru; Uchiyama, Takashi; Konishi, Junji

    1995-10-01

    Anti-Tac monoclonal antibody recognizes human interleukin-2 receptor, which is overexpressed in leukemic cells of most adult T-cell leukemia (ATL) patients. To examine the potency of anti-Tac for targeting of ATL, biodistributions of intravenously administered {sup 125}I- and {sup 111}In-labeled anti-Tac were examined in severe combined immunodeficiency (SCID) mice inoculated with ATL cells. Significant amounts of radiolabeled anti-Tac were found in the spleen and thymus. The trafficking of ATL cells in SCID mice was detected using {sup 111}In-oxine-labeled ATL cells. These results were coincident with the histologically confirmed infiltration of ATL cells. The radiolabeled anti-Tac seemed potent for targeting of ATL.

  10. Bridge Technology with TSH Receptor Chimera for Sensitive Direct Detection of TSH Receptor Antibodies Causing Graves' Disease: Analytical and Clinical Evaluation.

    Science.gov (United States)

    Frank, C U; Braeth, S; Dietrich, J W; Wanjura, D; Loos, U

    2015-11-01

    Graves' disease is caused by stimulating autoantibodies against the thyrotropin receptor inducing uncontrolled overproduction of thyroid hormones. A Bridge Assay is presented for direct detection of these thyroid-stimulating immunoglobulins using thyrotropin receptor chimeras. A capture receptor, formed by replacing aa residues 261-370 of the human thyrotropin receptor with residues 261-329 from rat lutropin/choriogonadotropin receptor and fixed to microtiter plates, binds one arm of the autoantibody. The second arm bridges to the signal receptor constructed from thyrotropin receptor (aa 21-261) and secretory alkaline phosphatase (aa 1-519) inducing chemiluminescence. The working range of the assay is from 0.3 IU/l to 50 IU/l with a cutoff of 0.54 IU/l and functional sensitivity of 0.3 IU/l. Sensitivity and specificity are 99.8 and 99.1%, respectively, with a diagnostic accuracy of 0.998. The low grey zone is from 0.3-0.54 IU/l. The stimulatory character of the assayed antibodies is shown through a good correlation (r=0.7079, pGraves' disease, titers are increased in associated eye disease. In 3 hypothyroid patients with sera positive in the thyrotropin receptor competition assay and in the blocking bioassay, antibodies are not detected by the Bridge Assay, while the monoclonal blocking antibody K1-70 was detected. In Hashimoto disease thyrotropin receptor autoantibodies are detected in some patients, but not in goiter. This Bridge Assay delivers good diagnostic accuracy for identification of Graves' disease patients. Its high sensitivity may facilitate early detection of onset, remission, or recurrence of Graves' disease enabling timely adaption of the treatment.Human genes: TSHR, Homo sapiens, acc. no. M31774.1.

  11. Differential regulation of epidermal growth factor receptor by hydrogen peroxide and flagellin in cultured lung alveolar epithelial cells.

    Science.gov (United States)

    Nishi, Hiroyuki; Maeda, Noriko; Izumi, Shunsuke; Higa-Nakamine, Sayomi; Toku, Seikichi; Kakinohana, Manabu; Sugahara, Kazuhiro; Yamamoto, Hideyuki

    2015-02-05

    In previous studies, we found that stimulation of Toll-like receptor 5 (TLR5) by flagellin induced the activation of mitogen-activated protein kinase (MAPK)-activated protein kinase-2 (MAPKAPK-2) through activation of the p38 MAPK pathway in cultured alveolar epithelial A549 cells. Our studies strongly suggested that MAPKAPK-2 phosphorylated epidermal growth factor receptor (EGFR) at Ser1047. It has been reported that phosphorylation of Ser1047 after treatment with tumor necrosis factor α (TNFα) induced the internalization of EGFR. In the present study, we first found that treatment of A549 cells with hydrogen peroxide induced the activation of MAPKAPK-2 and phosphorylation of EGFR at Ser1047 within 30 min. This was different from flagellin treatment because hydrogen peroxide treatment induced the phosphorylation of EGFR at Tyr1173 as well as Ser1047, indicating the activation of EGFR. We also found that KN93, an inhibitor of CaM kinase II, inhibited the hydrogen peroxide-induced phosphorylation of EGFR at Ser1047 through inhibition of the activation of the p38 MAPK pathway. Furthermore, we examined the internalization of EGFR by three different methods. Flow cytometry with an antibody against the extracellular domain of EGFR and biotinylation of cell surface proteins revealed that flagellin, but not hydrogen peroxide, decreased the amount of cell-surface EGFR. In addition, activation of extracellular signal-regulated kinase by EGF treatment was reduced by flagellin pre-treatment. These results strongly suggested that hydrogen peroxide activated the p38 MAPK pathway via activation of CaM kinase II and that flagellin and hydrogen peroxide regulate the functions of EGFR by different mechanisms.

  12. Gefitinib induces epidermal growth factor receptor dimers which alters the interaction characteristics with ¹²⁵I-EGF.

    Directory of Open Access Journals (Sweden)

    Hanna Björkelund

    Full Text Available The tyrosine kinase inhibitor gefitinib inhibits growth in some tumor types by targeting the epidermal growth factor receptor (EGFR. Previous studies show that the affinity of the EGF-EGFR interaction varies between hosting cell line, and that gefitinib increases the affinity for some cell lines. In this paper, we investigate possible mechanisms behind these observations. Real-time interaction analysis in LigandTracer® Grey revealed that the HER2 dimerization preventing antibody pertuzumab clearly modified the binding of ¹²⁵I-EGF to EGFR on HER2 overexpressing SKOV3 cells in the presence of gefitinib. Pertuzumab did not affect the binding on A431 cells, which express low levels of HER2. Cross-linking measurements showed that gefitinib increased the amount of EGFR dimers 3.0-3.8 times in A431 cells in the absence of EGF. In EGF stimulated SKOV3 cells the amount of EGFR dimers increased 1.8-2.2 times by gefitinib, but this effect was cancelled by pertuzumab. Gefitinib treatment did not alter the number of EGFR or HER2 expressed in tumor cell lines A431, U343, SKOV3 and SKBR3. Real-time binding traces were further analyzed in a novel tool, Interaction Map, which deciphered the different components of the measured interaction and supports EGF binding to multiple binding sites. EGFR and HER2 expression affect the levels of EGFR monomers, homodimers and heterodimers and EGF binds to the various monomeric/dimeric forms of EGFR with unique binding properties. Taken together, we conclude that dimerization explains the varying affinity of EGF-EGFR in different cells, and we propose that gefitinib induces EGFR dimmers, which alters the interaction characteristics with ¹²⁵I-EGF.

  13. A clinical and neurobiological case of IgM NMDA receptor antibody associated encephalitis mimicking bipolar disorder.

    Science.gov (United States)

    Choe, Chi-Un; Karamatskos, Evangelos; Schattling, Benjamin; Leypoldt, Frank; Liuzzi, Gianpiero; Gerloff, Christian; Friese, Manuel A; Mulert, Christoph

    2013-07-30

    Autoimmune encephalitis associated with IgG antibodies to the N-methyl-d-aspartic acid receptor subunit NR1 (NMDAR) presents with neurological symptoms, such as seizures, and especially psychiatric symptoms, such as hallucinations, psychosis, agitation and anxiety. To date, however, the pathological relevance of IgM NMDAR antibodies remains elusive. Here, we describe clinical, neuroradiological and neurobiological findings of a 28-year-old male presenting with IgM NMDAR antibodies coincident with autoimmune encephalitis characterized by symptoms of bipolar disorder. After repeated steroid treatment, cognitive and psychiatric abnormalities improved and no NMDAR antibody was detectable. Using primary neuronal cultures, we demonstrate that patient's serum containing IgM NMDAR antibodies reduced the detection of NMDAR on neuronal cells and decreased cell survival. Although NMDAR encephalitis with IgG antibodies is increasingly recognized and diagnosed, atypical presentations with NMDAR antibodies with immunoglobulin subclasses other than IgG pose a diagnostic and therapeutic challenge. Further clinical and neurobiological studies are needed to study the pathophysiological relevance of IgM NMDAR antibodies.

  14. Detection and Analysis of EGFR and KRAS Mutation with Lung Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2015-11-01

    Full Text Available Background and objective Mutations in epidermal growth factor receptor (EGFR and KRAS are important markers in non-small cell lung cancer, which are closely related to the clinical therapeutic effect. To analysis the EGFR and KRAS gene mutation rate and its relationship with clinical features in patients with lung adenocarcinoma. Methods 395 patients with treatment naïve lung adenocarcinoma, tumor tissue samples were available for testing. Tumor sample EGFR and KRAS mutation status were detected using mutant enriched liquidchip. Results 395 cases of lung adenocarcinoma, EGFR mutations were detected in 192 cases (48.9%, KRAS mutations were detected in 29 cases (7.8%, and the presence of EGFR and KRAS mutation were detected in 1 case (0.3%. EGFR mutations were found to occur significantly more often in female than in male patients (62.0% vs 37.1%, P0.05 in each clinical factors, only occurred in the wild type EGFR gene in patients (13.5%, 27/200 was significantly higher than that of patients with EGFR mutation (1.0%, 2/192, the difference was statistically significant (P<0.001. Conclusion In lung adenocarcinomas, EGFR mutation was higher in female and non-smoking patients, KRAS mutation only in patients with wild-type EGFR gene was higher. Before using TKI targeted therapy, EGFR and KRAS mutations should be detected.

  15. Anti-Phospholipase A2 Receptor Antibodies in Recurrent Membranous Nephropathy

    Science.gov (United States)

    Kattah, Andrea; Ayalon, Rivka; Beck, Laurence H.; Sandor, Dana G.; Cosio, Fernando G.; Gandhi, Manish J.; Sethi, Sanjeev; Lorenz, Elizabeth C.; Salant, David J.; Fervenza, Fernando C.

    2015-01-01

    About 70% of patients with primary membranous nephropathy (MN) have circulating anti-phospholipase A2 receptor (PLA2R) antibodies that correlate with disease activity, but their predictive value in post-transplant (Tx) recurrent MN is uncertain. We evaluated 26 patients, 18 with recurrent MN and 8 without recurrence, with serial post-Tx serum samples and renal biopsies to determine if patients with pre-Tx anti-PLA2R are at increased risk of recurrence as compared to seronegative patients and to determine if post-Tx changes in anti-PLA2R correspond to the clinical course. In the recurrent group, 10/17 patients had anti-PLA2R at the time of Tx vs. 2/7 patients in the non-recurrent group. The positive predictive value of pre-Tx anti-PLA2R for recurrence was 83%, while the negative predictive value was 42%. Persistence or reappearance of post-Tx anti-PLA2R was associated with increasing proteinuria and resistant disease in many cases; little or no proteinuria occurred in cases with pre-Tx anti-PLA2R and biopsy evidence of recurrence in which the antibodies resolved with standard immunosuppression. Some cases with positive pre-Tx anti-PLA2R were seronegative at the time of recurrence. In conclusion, patients with positive pre-Tx anti-PLA2R should be monitored closely for recurrent MN. Persistence or reappearance of antibody post-Tx may indicate a more resistant disease. PMID:25766759

  16. Regulation of EGFR nanocluster formation by ionic protein-lipid interaction

    OpenAIRE

    2014-01-01

    The abnormal activation of epidermal growth factor receptor (EGFR) is strongly associated with a variety of human cancers but the underlying molecular mechanism is not fully understood. By using direct stochastic optical reconstruction microscopy (dSTORM), we find that EGFR proteins form nanoclusters in the cell membrane of both normal lung epithelial cells and lung cancer cells, but the number and size of clusters significantly increase in lung cancer cells. The formation of EGFR clusters is...

  17. Circulating angiotensin type II receptor: Possible marker for antibody mediated rejection after renal transplantation?

    Science.gov (United States)

    Kimball,