WorldWideScience

Sample records for receptor content induced

  1. Protection against methamphetamine-induced neurotoxicity to neostriatal dopaminergic neurons by adenosine receptor activation.

    Science.gov (United States)

    Delle Donne, K T; Sonsalla, P K

    1994-12-01

    Methamphetamine (METH)-induced neurotoxicity to nigrostriatal dopaminergic neurons in experimental animals appears to have a glutamatergic component because blockade of N-methyl-D-aspartate receptors prevents the neuropathologic consequences. Because adenosine affords neuroprotection against various forms of glutamate-mediated neuronal damage, the present studies were performed to investigate whether adenosine plays a protective role in METH-induced toxicity. METH-induced decrements in neostriatal dopamine content and tyrosine hydroxylase activity in mice were potentiated by concurrent treatment with caffeine, a nonselective adenosine antagonist that blocks both A1 and A2 adenosine receptors. In contrast, chronic treatment of mice with caffeine through their drinking water for 4 weeks, which increased the number of adenosine A1 receptors in the neostriatum and frontal cortex, followed by drug washout, prevented the neurochemical changes produced by the treatment of mice with METH treatment. In contrast, this treatment did not prevent 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced dopaminergic neurotoxicity. Furthermore, concurrent administration of cyclopentyladenosine, an adenosine A1 receptor agonist, attenuated the METH-induced neurochemical changes. This protection by cyclopentyladenosine was blocked by cyclopentyltheophylline, an A1 receptor antagonist. These results indicate that activation of A1 receptors can protect against METH-induced neurotoxicity in mice.

  2. GLUT2 and the incretin receptors are involved in glucose-induced incretin secretion

    DEFF Research Database (Denmark)

    Cani, Patrice D; Holst, Jens Juul; Drucker, Daniel J

    2007-01-01

    to those described for beta-cells, brain and hepatoportal sensors. We determined the role of GLUT2, GLP-1 or GIP receptors in glucose-induced incretins secretion, in the corresponding knockout mice. GLP-1 secretion was reduced in all mutant mice, while GIP secretion did not require GLUT2. Intestinal GLP-1...... content was reduced only in GIP and GLUT2 receptors knockout mice suggesting that this impairment could contribute to the phenotype. Intestinal GIP content was similar in all mice studied. Furthermore, the impaired incretins secretion was associated with a reduced glucose-stimulated insulin secretion...

  3. Ursodeoxycholic Acid Induces Death Receptor-mediated Apoptosis in Prostate Cancer Cells

    Science.gov (United States)

    Lee, Won Sup; Jung, Ji Hyun; Panchanathan, Radha; Yun, Jeong Won; Kim, Dong Hoon; Kim, Hye Jung; Kim, Gon Sup; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun; Jung, Jin-Myung

    2017-01-01

    Background Bile acids have anti-cancer properties in a certain types of cancers. We determined anticancer activity and its underlying molecular mechanism of ursodeoxycholic acid (UDCA) in human DU145 prostate cancer cells. Methods Cell viability was measured with an MTT assay. UDCA-induced apoptosis was determined with flow cytometric analysis. The expression levels of apoptosis-related signaling proteins were examined with Western blotting. Results UDCA treatment significantly inhibited cell growth of DU145 in a dose-dependent manner. It induced cellular shrinkage and cytoplasmic blebs and accumulated the cells with sub-G1 DNA contents. Moreover, UDCA activated caspase 8, suggesting that UDCA-induced apoptosis is associated with extrinsic pathway. Consistent to this finding, UDCA increased the expressions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, death receptor 4 (DR4) and death receptor 5 (DR5), and TRAIL augmented the UDCA-induced cell death in DU145 cells. In addition, UDCA also increased the expressions of Bax and cytochrome c and decreased the expression of Bcl-xL in DU145 cells. This finding suggests that UDCA-induced apoptosis may be involved in intrinsic pathway. Conclusions UDCA induces apoptosis via extrinsic pathway as well as intrinsic pathway in DU145 prostate cancer cells. UDCA may be a promising anti-cancer agent against prostate cancer. PMID:28382282

  4. Possible Relevance of Receptor-Receptor Interactions between Viral- and Host-Coded Receptors for Viral-Induced Disease

    Directory of Open Access Journals (Sweden)

    Luigi F. Agnati

    2007-01-01

    Full Text Available It has been demonstrated that some viruses, such as the cytomegalovirus, code for G-protein coupled receptors not only to elude the immune system, but also to redirect cellular signaling in the receptor networks of the host cells. In view of the existence of receptor-receptor interactions, the hypothesis is introduced that these viral-coded receptors not only operate as constitutively active monomers, but also can affect other receptor function by interacting with receptors of the host cell. Furthermore, it is suggested that viruses could also insert not single receptors (monomers, but clusters of receptors (receptor mosaics, altering the cell metabolism in a profound way. The prevention of viral receptor-induced changes in host receptor networks may give rise to novel antiviral drugs that counteract viral-induced disease.

  5. ATP induced vasodilatation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins and adenosine

    DEFF Research Database (Denmark)

    Mortensen, Stefan P; Gonzalez-Alonso, Jose; Bune, Laurids

    2009-01-01

    .05) and was associated with a parallel lowering in leg vascular conductance and cardiac output and a compensatory increase in leg O2 extraction. Infusion of theophylline did not alter the ATP induced leg hyperemia or systemic variables. Real time PCR analysis of the mRNA content from the vastus lateralus muscle of 8...... subjects showed the highest expression of P2Y2 receptors of the 10 investigated P2 receptor subtypes. Immunohistochemistry showed that P2Y2 receptors were located in the endothelium of microvessels and smooth muscle cells, whereas P2X1 receptors were located in the endothelium and the sacrolemma....... Collectively, these results indicate that NO and prostaglandins, but not adenosine, play a role in ATP induced vasodilation in human skeletal muscle. The localization of the P2Y2 and P2X1 receptors suggest that these receptors may mediate ATP induced vasodilation in skeletal muscle. Key words: Skeletal Muscle...

  6. Dopamine D(3) receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: role of hyperthermia.

    Science.gov (United States)

    Baladi, Michelle G; Newman, Amy H; Nielsen, Shannon M; Hanson, Glen R; Fleckenstein, Annette E

    2014-06-05

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Dopamine D3 receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: Role of hyperthermia

    Science.gov (United States)

    Baladi, Michelle G.; Newman, Amy H.; Nielsen, Shannon M.; Hanson, Glen R.; Fleckenstein, Annette E.

    2014-01-01

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. PMID:24685638

  8. Soman- or kainic acid-induced convulsions decrease muscarinic receptors but not benzodiazepine receptors

    International Nuclear Information System (INIS)

    Churchill, L.; Pazdernik, T.L.; Cross, R.S.; Nelson, S.R.; Samson, F.E.

    1990-01-01

    [3H]Quinuclidinyl benzilate (QNB) binding to muscarinic receptors decreased in the rat forebrain after convulsions induced by a single dose of either soman, a potent inhibitor of acetylcholinesterase, or kainic acid, an excitotoxin. A Rosenthal plot revealed that the receptors decreased in number rather than affinity. When the soman-induced convulsions were blocked, the decrease in muscarinic receptors at 3 days was less extensive than when convulsions occurred and at 10 days they approached control levels in most of the brain areas. The most prominent decrements in QNB binding were in the piriform cortex where the decline in QNB binding is probably related to the extensive convulsion-associated neuropathology. The decrements in QNB binding after convulsions suggest that the convulsive state leads to a down-regulation of muscarinic receptors in some brain areas. In contrast to the decrease in QNB binding after convulsions, [3H]flunitrazepam binding to benzodiazepine receptors did not change even in the piriform cortex where the loss in muscarinic receptors was most prominent. Thus, it appears that those neuronal processes that bear muscarinic receptors are more vulnerable to convulsion-induced change than those with benzodiazepine receptors

  9. Variations in steroid hormone receptor content throughout age and menopausal periods, and menstrual cycle in breast cancer patients

    International Nuclear Information System (INIS)

    Nikolic-Vukosavljevic, D.; Vasiljevic, N.; Brankovic-Magic, M.; Polic, D.

    1996-01-01

    Variations in steroid hormone receptor contents throughout age and menopausal periods define three breast carcinoma groups: younger pre-menopausal carcinomas (aged up to 45), middle-aged carcinomas (aged up to 45), middle-aged carcinomas (pre-, peri-, and postmenopausal aged 45-59) and older postmenopausal carcinomas (aged over 59). Age-related steroid hormone receptor contents within pre-menopausal and postmenopausal carcinoma groups are characterized by the important increase of both receptor contents, while menopausal-related steroid hormone receptor contents within middle-aged carcinoma group (aged 45-59) are characterized by the important decrease of progesterone receptor content and estrogen receptor functionality. No variations in steroid hormone receptor contents throughout menstrual cycle within the follicular and the luteal phases were obtained. The important cycle within the follicular and the luteal phases were obtained. The important decrease of estrogen receptor content in the mid-cycle phase versus the peri-menstrual phase was found. Variations in steroid hormone receptor contents throughout age and menopausal periods, as well as throughout menstrual cycle could nod be associated with variations in the blood steroid hormone concentrations. However, important association between steroid hormone receptor contents and the blood steroid hormone concentrations was found within the luteal phase carcinoma group and within older postmenopausal carcinoma group. It is interesting that within carcinoma group with the highest concentration of progesterone, progesterone receptor content increases with an increase of the ration of estradiol and progesterone blood concentrations, while within carcinoma group with the lowest steroid hormone concentration and the highest content of estrogen receptor content, estrogen receptor content decreases with an increase of either the blood estradiol concentration or the ratio of the blood estradiol and progesterone blood

  10. m-Trifluoromethyl-diphenyl diselenide promotes resilience to social avoidance induced by social defeat stress in mice: Contribution of opioid receptors and MAPKs.

    Science.gov (United States)

    Rosa, Suzan Gonçalves; Pesarico, Ana Paula; Nogueira, Cristina Wayne

    2018-03-02

    Depressive symptoms precipitated by stress are prevalent in population. In experimental models of social stress, endogenous opioids mediate different aspects of defensive and submissive behaviors. The present study investigated the opioid receptors, mitogen-activated protein kinase (MAPKs) and protein kinase B (Akt) contribution to m-trifluoromethyl-diphenyl diselenide [(m-CF 3 -PhSe) 2 ] effects on social avoidance induced by social defeat stress (SDS). Adult Swiss mice were subjected to SDS and treated with (m-CF 3 -PhSe) 2 (5 to 25mg/kg) for 7days. After that, the mice performed locomotor and social avoidance tests. The opioid receptors, MAPKs and Akt protein contents were determined in the prefrontal cortical samples of mice. Firstly, the mice were segregated in susceptible or resilient subpopulation based on their social avoidance induced by stress. (m-CF 3 -PhSe) 2 (25mg/kg) was effective against the stress-induced social avoidance and improved social interaction behavior in mice. SDS increased the μ and κ protein contents but reduced those of δ opioid receptors in susceptible mice. Resilient and (m-CF 3 -PhSe) 2 -treated mice had no alteration in the levels of opioid receptors. Moreover, (m-CF 3 -PhSe) 2 was effective against the increase of c-Jun N-terminal kinase (JNK) and the decrease of Akt phosphorylation protein contents induced by SDS in susceptible mice. The protein content of extracellular signal-regulated kinase (ERK) phosphorylation was reduced in both susceptible and resilient mice, whereas p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation was increased only in resilient mice. (m-CF 3 -PhSe) 2 was partially effective against the pERK decrease and ineffective against the increase in p38 MAPK phosphorylation in mice subjected to SDS. These results suggest that the modulation of protein contents of opioid receptors, JNK and Akt phosphorylation is associated with resilience to SDS promoted by (m-CF 3 -PhSe) 2 in mice. Copyright

  11. β-Adrenergic Receptor Mediation of Stress-Induced Reinstatement of Extinguished Cocaine-Induced Conditioned Place Preference in Mice: Roles for β1 and β2 Adrenergic Receptors

    Science.gov (United States)

    Vranjkovic, Oliver; Hang, Shona; Baker, David A.

    2012-01-01

    Stress can trigger the relapse of drug use in recovering cocaine addicts and reinstatement in rodent models through mechanisms that may involve norepinephrine release and β-adrenergic receptor activation. The present study examined the role of β-adrenergic receptor subtypes in the stressor-induced reinstatement of extinguished cocaine-induced (15 mg/kg i.p.) conditioned place preference in mice. Forced swim (6 min at 22°C) stress or activation of central noradrenergic neurotransmission by administration of the selective α2 adrenergic receptor antagonist 2-[(4,5-dihydro-1H-imidazol-2-yl)methyl]-2,3-dihydro-1-methyl-1H-isoindole (BRL-44,408) (10 mg/kg i.p.) induced reinstatement in wild-type, but not β- adrenergic receptor-deficient Adrb1/Adrb2 double-knockout, mice. In contrast, cocaine administration (15 mg/kg i.p.) resulted in reinstatement in both wild-type and β-adrenergic receptor knockout mice. Stress-induced reinstatement probably involved β2 adrenergic receptors. The β2 adrenergic receptor antagonist -(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol (ICI-118,551) (1 or 2 mg/kg i.p.) blocked reinstatement by forced swim or BRL-44,408, whereas administration of the nonselective β-adrenergic receptor agonist isoproterenol (2 or 4 mg/kg i.p.) or the β2 adrenergic receptor-selective agonist clenbuterol (2 or 4 mg/kg i.p.) induced reinstatement. Forced swim-induced, but not BRL-44,408-induced, reinstatement was also blocked by a high (20 mg/kg) but not low (10 mg/kg) dose of the β1 adrenergic receptor antagonist betaxolol, and isoproterenol-induced reinstatement was blocked by pretreatment with either ICI-118,551 or betaxolol, suggesting a potential cooperative role for β1 and β2 adrenergic receptors in stress-induced reinstatement. Overall, these findings suggest that targeting β-adrenergic receptors may represent a promising pharmacotherapeutic strategy for preventing drug relapse, particularly in cocaine addicts whose drug use is stress

  12. Acute isoproterenol induces anxiety-like behavior in rats and increases plasma content of extracellular vesicles.

    Science.gov (United States)

    Leo, Giuseppina; Guescini, Michele; Genedani, Susanna; Stocchi, Vilberto; Carone, Chiara; Filaferro, Monica; Sisti, Davide; Marcoli, Manuela; Maura, Guido; Cortelli, Pietro; Guidolin, Diego; Fuxe, Kjell; Agnati, Luigi Francesco

    2015-04-01

    Several clinical observations have demonstrated a link between heart rate and anxiety or panic disorders. In these patients, β-adrenergic receptor function was altered. This prompted us to investigate whether the β-adrenergic receptor agonist isoproterenol, at a dose that stimulates peripheral β-adrenergic system but has no effects at the central nervous system, can induce anxiety-like behavior in rats. Moreover, some possible messengers involved in the peripheral to brain communication were investigated. Our results showed that isoproterenol (5 mg kg(-1) i.p.) increased heart rate, evoked anxiety-like behavior, did not result in motor impairments and increased extracellular vesicle content in the blood. Plasma corticosterone level was unmodified as well as vesicular Hsp70 content. Vesicular miR-208 was also unmodified indicating a source of increased extracellular vesicles different from cardiomyocytes. We can hypothesize that peripheral extracellular vesicles might contribute to the β-adrenergic receptor-evoked anxiety-like behavior, acting as peripheral signals in modulating the mental state. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The role of adrenergic receptors in nicotine-induced hyperglycemia ...

    African Journals Online (AJOL)

    The role of adrenergic receptors in nicotine-induced hyperglycaemia has not been well studied in amphibians. Thus, this study investigates the effects of alpha and beta adrenergic receptor blockers in nicotine-induced hyperglycaemia in the common African toad Bufo regularis. Toads fasted for 24 h were anaesthetized with ...

  14. A role for D1 dopamine receptors in striatal methamphetamine-induced neurotoxicity.

    Science.gov (United States)

    Friend, Danielle M; Keefe, Kristen A

    2013-10-25

    Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Importantly, METH-induced hyperthermia is tightly associated with the neurotoxicity, such that simply cooling animals during METH exposure protects against the neurotoxicity. Therefore, it is difficult to determine whether D1 DA receptors per se play an important role in METH-induced neurotoxicity or whether the protection observed simply resulted from a mitigation of METH-induced hyperthermia. To answer this important question, the current study infused a D1 DA receptor antagonist into striatum during METH exposure while controlling for METH-induced hyperthermia. Here we found that even when METH-induced hyperthermia is maintained, the coadministration of a D1 DA receptor antagonist protects against METH-induced neurotoxicity, strongly suggesting that D1 DA receptors play an important role in METH-induced neurotoxicity apart from the mitigation of METH-induced hyperthermia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. NMDA receptor antagonists inhibit catalepsy induced by either dopamine D1 or D2 receptor antagonists.

    Science.gov (United States)

    Moore, N A; Blackman, A; Awere, S; Leander, J D

    1993-06-11

    In the present study, we investigated the ability of NMDA receptor antagonists to inhibit catalepsy induced by haloperidol, or SCH23390 and clebopride, selective dopamine D1 and D2 receptor antagonists respectively. Catalepsy was measured by recording the time the animal remained with its forepaws placed over a rod 6 cm above the bench. Pretreatment with either the non-competitive NMDA receptor antagonist, MK-801 (0.25-0.5 mg/kg i.p.) or the competitive antagonist, LY274614 (10-20 mg/kg i.p.) reduced the cataleptic response produced by haloperidol (10 mg/kg), SCH23390 (2.5-10 mg/kp i.p.) or clebopride (5-20 mg/kg i.p.). This demonstrates that NMDA receptor antagonists will reduce both dopamine D1 and D2 receptor antagonist-induced catalepsy. Muscle relaxant doses of chlordiazepoxide (10 mg/kg i.p.) failed to reduce the catalepsy induced by haloperidol, suggesting that the anticataleptic effect of the NMDA receptor antagonists was not due to a non-specific action. These results support the hypothesis that NMDA receptor antagonists may have beneficial effects in disorders involving reduced dopaminergic function, such as Parkinson's disease.

  16. Nigella sativa Relieves the Altered Insulin Receptor Signaling in Streptozotocin-Induced Diabetic Rats Fed with a High-Fat Diet.

    Science.gov (United States)

    Balbaa, Mahmoud; El-Zeftawy, Marwa; Ghareeb, Doaa; Taha, Nabil; Mandour, Abdel Wahab

    2016-01-01

    The black cumin (Nigella sativa) "NS" or the black seeds have many pharmacological activities such as antioxidant, anticarcinogenic, antihypertensive, and antidiabetic properties. In this work, streptozotocin-induced diabetic rats fed with a high-fat diet were treated daily with NS oil (NSO) in order to study the effect on the blood glucose, lipid profile, oxidative stress parameters, and the gene expression of some insulin receptor-induced signaling molecules. This treatment was combined also with some drugs (metformin and glimepiride) and the insulin receptor inhibitor I-OMe-AG538. The administration of NSO significantly induced the gene expression of insulin receptor compared to rats that did not receive NSO. Also, it upregulated the expression of insulin-like growth factor-1 and phosphoinositide-3 kinase, whereas the expression of ADAM-17 was downregulated. The expression of ADAM-17 is corroborated by the analysis of TIMP-3 content. In addition, the NSO significantly reduced blood glucose level, components of the lipid profile, oxidative stress parameters, serum insulin/insulin receptor ratio, and the tumor necrosis factor-α, confirming that NSO has an antidiabetic activity. Thus, the daily NSO treatment in our rat model indicates that NSO has a potential in the management of diabetes as well as improvement of insulin-induced signaling.

  17. Nigella sativa Relieves the Altered Insulin Receptor Signaling in Streptozotocin-Induced Diabetic Rats Fed with a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Mahmoud Balbaa

    2016-01-01

    Full Text Available The black cumin (Nigella sativa “NS” or the black seeds have many pharmacological activities such as antioxidant, anticarcinogenic, antihypertensive, and antidiabetic properties. In this work, streptozotocin-induced diabetic rats fed with a high-fat diet were treated daily with NS oil (NSO in order to study the effect on the blood glucose, lipid profile, oxidative stress parameters, and the gene expression of some insulin receptor-induced signaling molecules. This treatment was combined also with some drugs (metformin and glimepiride and the insulin receptor inhibitor I-OMe-AG538. The administration of NSO significantly induced the gene expression of insulin receptor compared to rats that did not receive NSO. Also, it upregulated the expression of insulin-like growth factor-1 and phosphoinositide-3 kinase, whereas the expression of ADAM-17 was downregulated. The expression of ADAM-17 is corroborated by the analysis of TIMP-3 content. In addition, the NSO significantly reduced blood glucose level, components of the lipid profile, oxidative stress parameters, serum insulin/insulin receptor ratio, and the tumor necrosis factor-α, confirming that NSO has an antidiabetic activity. Thus, the daily NSO treatment in our rat model indicates that NSO has a potential in the management of diabetes as well as improvement of insulin-induced signaling.

  18. Glucagon receptor knockout mice are protected against acute olanzapine-induced hyperglycemia.

    Science.gov (United States)

    Castellani, Laura N; Peppler, Willem T; Sutton, Charles D; Whitfield, Jamie; Charron, Maureen J; Wright, David C

    2017-08-01

    To determine if glucagon is involved in mediating the increase in blood glucose levels caused by the second-generation antipsychotic drug olanzapine. Whole body glucagon receptor deficient mice (Gcgr -/- ) or WT littermate controls were injected with olanzapine (5mg/kg BW IP) and changes in blood glucose measured over the following 120min. Separate cohorts of mice were treated with olanzapine and changes in pyruvate tolerance, insulin tolerance and whole body substrate oxidation were determined. Olanzapine treatment increased serum glucagon and lead to rapid increases in blood glucose concentrations in WT mice. Gcgr -/- mice were protected against olanzapine-induced increases in blood glucose but this was not explained by differences in terminal serum insulin concentrations, enhanced AKT phosphorylation in skeletal muscle, adipose tissue or liver or differences in RER. In both genotypes olanzapine induced an equivalent degree of insulin resistance as measured using an insulin tolerance test. Olanzapine treatment led to an exaggerated glucose response to a pyruvate challenge in WT but not Gcgr -/- mice and this was paralleled by reductions in the protein content of PEPCK and G6Pase in livers from Gcgr -/- mice. Gcgr -/- mice are protected against olanzapine-induced increases in blood glucose. This is likely a result of reductions in liver glucose output, perhaps secondary to decreases in PEPCK and G6Pase protein content. Our findings highlight the central role of the liver in mediating olanzapine-induced disturbances in glucose homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Inhibition of cisplatin-induced vomiting by selective 5-hydroxytryptamine M-receptor antagonism.

    OpenAIRE

    Miner, W. D.; Sanger, G. J.

    1986-01-01

    MDL 72222, the selective 5-hydroxytryptamine (5-HT) M-receptor antagonist, prevented or reduced cisplatin-induced emesis in ferrets. It is suggested that cisplatin-induced, and possibly other cytotoxic drug-induced vomiting may involve a 5-HT M-receptor mechanism.

  20. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    Science.gov (United States)

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  1. Stress induces pain transition by potentiation of AMPA receptor phosphorylation.

    Science.gov (United States)

    Li, Changsheng; Yang, Ya; Liu, Sufang; Fang, Huaqiang; Zhang, Yong; Furmanski, Orion; Skinner, John; Xing, Ying; Johns, Roger A; Huganir, Richard L; Tao, Feng

    2014-10-08

    Chronic postsurgical pain is a serious issue in clinical practice. After surgery, patients experience ongoing pain or become sensitive to incident, normally nonpainful stimulation. The intensity and duration of postsurgical pain vary. However, it is unclear how the transition from acute to chronic pain occurs. Here we showed that social defeat stress enhanced plantar incision-induced AMPA receptor GluA1 phosphorylation at the Ser831 site in the spinal cord and greatly prolonged plantar incision-induced pain. Interestingly, targeted mutation of the GluA1 phosphorylation site Ser831 significantly inhibited stress-induced prolongation of incisional pain. In addition, stress hormones enhanced GluA1 phosphorylation and AMPA receptor-mediated electrical activity in the spinal cord. Subthreshold stimulation induced spinal long-term potentiation in GluA1 phosphomimetic mutant mice, but not in wild-type mice. Therefore, spinal AMPA receptor phosphorylation contributes to the mechanisms underlying stress-induced pain transition. Copyright © 2014 the authors 0270-6474/14/3413737-10$15.00/0.

  2. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area.

    Science.gov (United States)

    Racca, C; Stephenson, F A; Streit, P; Roberts, J D; Somogyi, P

    2000-04-01

    Glutamate receptors activated by NMDA (NMDARs) or AMPA (AMPARs) are clustered on dendritic spines of pyramidal cells. Both the AMPAR-mediated postsynaptic responses and the synaptic AMPAR immunoreactivity show a large intersynapse variability. Postsynaptic responses mediated by NMDARs show less variability. To assess the variability in NMDAR content and the extent of their coexistence with AMPARs in Schaffer collateral-commissural synapses of adult rat CA1 pyramidal cells, electron microscopic immunogold localization of receptors has been used. Immunoreactivity of NMDARs was detected in virtually all synapses on spines, but AMPARs were undetectable, on average, in 12% of synapses. A proportion of synapses had a very high AMPAR content relative to the mean content, resulting in a distribution more skewed toward larger values than that of NMDARs. The variability of synaptic NMDAR content [coefficient of variation (CV), 0.64-0.70] was much lower than that of the AMPAR content (CV, 1.17-1.45). Unlike the AMPAR content, the NMDAR content showed only a weak correlation with synapse size. As reported previously for AMPARs, the immunoreactivity of NMDARs was also associated with the spine apparatus within spines. The results demonstrate that the majority of the synapses made by CA3 pyramidal cells onto spines of CA1 pyramids express both NMDARs and AMPARs, but with variable ratios. A less-variable NMDAR content is accompanied by a wide variability of AMPAR content, indicating that the regulation of expression of the two receptors is not closely linked. These findings support reports that fast excitatory transmission at some of these synapses is mediated by activation mainly of NMDARs.

  3. TRPV1 and PLC Participate in Histamine H4 Receptor-Induced Itch.

    Science.gov (United States)

    Jian, Tunyu; Yang, Niuniu; Yang, Yan; Zhu, Chan; Yuan, Xiaolin; Yu, Guang; Wang, Changming; Wang, Zhongli; Shi, Hao; Tang, Min; He, Qian; Lan, Lei; Wu, Guanyi; Tang, Zongxiang

    2016-01-01

    Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG) neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip)-a histamine H4 receptor special agonist under cutaneous injection-obviously induced itch behavior of mice. Immepip-induced scratching behavior could be blocked by TRPV1 antagonist AMG9810 and PLC pathway inhibitor U73122. Application of immepip (8.3-50 μM) could also induce a dose-dependent increase in intracellular Ca(2+) ([Ca(2+)]i) of DRG neurons. We found that 77.8% of the immepip-sensitized DRG neurons respond to the TRPV1 selective agonist capsaicin. U73122 could inhibit immepip-induced Ca(2+) responses. In addition, immepip-induced [Ca(2+)]i increase could be blocked by ruthenium red, capsazepine, and AMG9810; however it could not be blocked by TRPA1 antagonist HC-030031. These results indicate that TRPV1 but not TRPA1 is the important ion channel to induce the DRG neurons' responses in the downstream signaling pathway of histamine H4 receptor and suggest that TRPV1 may be involved in the mechanism of histamine-induced itch response by H4 receptor activation.

  4. TRPV1 and PLC Participate in Histamine H4 Receptor-Induced Itch

    Directory of Open Access Journals (Sweden)

    Tunyu Jian

    2016-01-01

    Full Text Available Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip—a histamine H4 receptor special agonist under cutaneous injection—obviously induced itch behavior of mice. Immepip-induced scratching behavior could be blocked by TRPV1 antagonist AMG9810 and PLC pathway inhibitor U73122. Application of immepip (8.3–50 μM could also induce a dose-dependent increase in intracellular Ca2+ (Ca2+i of DRG neurons. We found that 77.8% of the immepip-sensitized DRG neurons respond to the TRPV1 selective agonist capsaicin. U73122 could inhibit immepip-induced Ca2+ responses. In addition, immepip-induced Ca2+i increase could be blocked by ruthenium red, capsazepine, and AMG9810; however it could not be blocked by TRPA1 antagonist HC-030031. These results indicate that TRPV1 but not TRPA1 is the important ion channel to induce the DRG neurons’ responses in the downstream signaling pathway of histamine H4 receptor and suggest that TRPV1 may be involved in the mechanism of histamine-induced itch response by H4 receptor activation.

  5. Enhanced muscarinic M1 receptor gene expression in the corpus striatum of streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Mathew Jobin

    2009-04-01

    Full Text Available Abstract Acetylcholine (ACh, the first neurotransmitter to be identified, regulate the activities of central and peripheral functions through interactions with muscarinic receptors. Changes in muscarinic acetylcholine receptor (mAChR have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS. Previous reports from our laboratory on streptozotocin (STZ induced diabetic rats showed down regulation of muscarinic M1 receptors in the brainstem, hypothalamus, cerebral cortex and pancreatic islets. In this study, we have investigated the changes of acetylcholine esterase (AChE enzyme activity, total muscarinic and muscarinic M1 receptor binding and gene expression in the corpus striatum of STZ – diabetic rats and the insulin treated diabetic rats. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. We observed that insulin treatment brought back the decreased maximal velocity (Vmax of acetylcholine esterase in the corpus striatum during diabetes to near control state. In diabetic rats there was a decrease in maximal number (Bmax and affinity (Kd of total muscarinic receptors whereas muscarinic M1 receptors were increased with decrease in affinity in diabetic rats. We observed that, in all cases, the binding parameters were reversed to near control by the treatment of diabetic rats with insulin. Real-time PCR experiment confirmed the increase in muscarinic M1 receptor gene expression and a similar reversal with insulin treatment. These results suggest the diabetes-induced changes of the cholinergic activity in the corpus striatum and the regulatory role of insulin on binding parameters and gene expression of total and muscarinic M1 receptors.

  6. Neuropeptide Y Y5 receptor antagonism attenuates cocaine-induced effects in mice

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Jensen, Morten; Weikop, Pia

    2012-01-01

    Rationale Several studies suggest a role for neuropeptide Y (NPY) in addiction to drugs of abuse, including cocaine. However, the NPY receptors mediating addiction-related effects remain to be determined. Objectives To explore the potential role of Y5 NPY receptors in cocaine-induced behavioural...... effects. Methods The Y5 antagonist L-152,804 and Y5-knockout (Y5-KO) mice were tested in two models of cocaine addiction-related behaviour: acute self-administration and cocaine-induced hyperactivity. We also studied effects of Y5 receptor antagonism on cocaine-induced c-fos expression and extracellular...... effects, suggesting that Y5 receptors could be a potential therapeutic target in cocaine addiction....

  7. Endogenous cannabinoid receptor ligand induces the migration of human natural killer cells.

    Science.gov (United States)

    Kishimoto, Seishi; Muramatsu, Mayumi; Gokoh, Maiko; Oka, Saori; Waku, Keizo; Sugiura, Takayuki

    2005-02-01

    2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors (CB1 and CB2). Evidence is gradually accumulating which shows that 2-arachidonoylglycerol plays important physiological roles in several mammalian tissues and cells, yet the details remain ambiguous. In this study, we first examined the effects of 2-arachidonoylglycerol on the motility of human natural killer cells. We found that 2-arachidonoylglycerol induces the migration of KHYG-1 cells (a natural killer leukemia cell line) and human peripheral blood natural killer cells. The migration of natural killer cells induced by 2-arachidonoylglycerol was abolished by treating the cells with SR144528, a CB2 receptor antagonist, suggesting that the CB2 receptor is involved in the 2-arachidonoylglycerol-induced migration. In contrast to 2-arachidonoylglycerol, anandamide, another endogenous cannabinoid receptor ligand, did not induce the migration. Delta9-tetrahydrocannabinol, a major psychoactive constituent of marijuana, also failed to induce the migration; instead, the addition of delta9-tetrahydrocannabinol together with 2-arachidonoylglycerol abolished the migration induced by 2-arachidonoylglycerol. It is conceivable that the endogenous ligand for the cannabinoid receptor, that is, 2-arachidonoylglycerol, affects natural killer cell functions such as migration, thereby contributing to the host-defense mechanism against infectious viruses and tumor cells.

  8. Loss of Progesterone Receptor-Mediated Actions Induce Preterm Cellular and Structural Remodeling of the Cervix and Premature Birth

    Science.gov (United States)

    Yellon, Steven M.; Dobyns, Abigail E.; Beck, Hailey L.; Kurtzman, James T.; Garfield, Robert E.; Kirby, Michael A.

    2013-01-01

    A decline in serum progesterone or antagonism of progesterone receptor function results in preterm labor and birth. Whether characteristics of premature remodeling of the cervix after antiprogestins or ovariectomy are similar to that at term was the focus of the present study. Groups of pregnant rats were treated with vehicle, a progesterone receptor antagonist (onapristone or mifepristone), or ovariectomized on day 17 postbreeding. As expected, controls given vehicle delivered at term while rats delivered preterm after progesterone receptor antagonist treatment or ovariectomy. Similar to the cervix before term, the preterm cervix of progesterone receptor antagonist-treated rats was characterized by reduced cell nuclei density, decreased collagen content and structure, as well as a greater presence of macrophages per unit area. Thus, loss of nuclear progesterone receptor-mediated actions promoted structural remodeling of the cervix, increased census of resident macrophages, and preterm birth much like that found in the cervix at term. In contrast to the progesterone receptor antagonist-induced advance in characteristics associated with remodeling, ovariectomy-induced loss of systemic progesterone did not affect hypertrophy, extracellular collagen, or macrophage numbers in the cervix. Thus, the structure and macrophage census in the cervix appear sufficient for premature ripening and birth to occur well before term. With progesterone receptors predominantly localized on cells other than macrophages, the findings suggest that interactions between cells may facilitate the loss of progesterone receptor-mediated actions as part of a final common mechanism that remodels the cervix in certain etiologies of preterm and with parturition at term. PMID:24339918

  9. beta-Adrenergic and cholinergic receptors in hypertension-induced hypertrophy

    International Nuclear Information System (INIS)

    Vatner, D.E.; Kirby, D.A.; Homcy, C.J.; Vatner, S.F.

    1985-01-01

    Perinephritic hypertension was produced in dogs by wrapping one kidney with silk and removing the contralateral kidney 1 week later. Mean arterial pressure rose from 104 +/- 3 to 156 +/- 11 mm Hg, while left ventricular free wall weight, normalized for body weight, was increased by 49%. Muscarinic, cholinergic receptor density measured with [ 3 H]-quinuclidinyl benzilate, fell in hypertensive left ventricles (181 +/- 19 fmol/mg, n = 6; p less than 0.01) as compared with that found in normal left ventricles (272 +/- 16 fmol/mg, n = 8), while receptor affinity was not changed. The beta-adrenergic receptor density, measured by binding studies with [ 3 H]-dihydroalprenolol, rose in the hypertensive left ventricles (108 +/- 10 fmol/mg, n = 7; p less than 0.01) as compared with that found in normal left ventricles (68.6 +/- 5.2 fmol/mg, n = 15), while beta-adrenergic receptor affinity decreased in the hypertensive left ventricles (10.4 +/- 1.2 nM) compared with that found in the normal left ventricles (5.0 +/- 0.7 nM). Plasma norepinephrine levels were similar in the two groups, but myocardial norepinephrine levels were depressed (p less than 0.05) in dogs with hypertension. Moderate left ventricular hypertrophy induced by long-term aortic banding in dogs resulted in elevations in beta-adrenergic receptor density (115 +/- 14 fmol/mg) and decreases in affinity (10.4 +/- 2.2 nM) similar to those observed in the dogs with left ventricular hypertrophy induced by hypertension. Thus, these results suggest that perinephritic hypertension in the dog induces divergent effects on cholinergic and beta-adrenergic receptor density. The increased beta-adrenergic receptor density and decreased affinity may be a characteristic of left ventricular hypertrophy rather than hypertension

  10. Antibody-induced dimerization activates the epidermal growth factor receptor tyrosine kinase

    NARCIS (Netherlands)

    Spaargaren, M.; Defize, L. H.; Boonstra, J.; de Laat, S. W.

    1991-01-01

    The relationship between epidermal growth factor receptor (EGF-R) protein tyrosine kinase activation and ligand-induced receptor dimerization was investigated using several bivalent anti-EGF-R antibodies directed against various receptor epitopes. In A431 membrane preparations and permeabilized

  11. Cannabinoid 2 Receptor Agonist Improves Systemic Sensitivity to Insulin in High-Fat Diet/Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Xiuyuan Zhang

    2016-12-01

    Full Text Available Background/Aims: The endocannabinoid signalling (ECS system has been known to regulate glucose homeostasis. Previous studies have suggested that the cannabinoid 2 (CB2 receptor may play a regulatory role on insulin secretion, immune modulation and insulin resistance. Given that diabetes and insulin resistance are attributable to elevated inflammatory tone, we investigated the role of CB2 receptor on glucose tolerance and insulin sensitivity in high-fat diet (HFD/streptozotocin (STZ-induced mice. Methods: Diabetes was induced in male ICR mice by HFD/STZ and exposed to a CB2 receptor agonist, SER601, for 2- or 4-weeks via subcutaneous implantation of osmotic minipumps. Glucose and insulin tolerance tests were performed at the end of treatment. Islets were isolated for assessment of β-cell function. Pancreases and skeletal muscles were also obtained for histological analyses. Results: Despite a lack of impact on glucose tolerance, substantial improvement on insulin sensitivity was observed in SER601-treated mice, which could partly be attributed to improved islet β-cell function, shown as increased glucose-induced insulin secretion and insulin content. No changes on islet macrophage infiltration or skeletal muscle fat deposition were detectable from SER601-treated mice. However, a major decrease in body weight was recorded at the end of 4-week SER601 exposure, accompanied by a lack of epididymal adipose mass in SER601-treated mice. Conclusion: Our data suggest a lipolytic role of SER601 in HFD/STZ-induced diabetic mice, which results in significant improvement of systemic insulin sensitivity. Thus, the CB2 receptor may be considered a promising target for therapeutic development against insulin resistance and obesity-related diabetes.

  12. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    Science.gov (United States)

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. Georg Thieme Verlag KG Stuttgart · New York.

  13. GABAB receptor phosphorylation regulates KCTD12-induced K+ current desensitization

    DEFF Research Database (Denmark)

    Adelfinger, L; Turecek, R; Ivankova, K

    2014-01-01

    released from the G-protein. Receptor-activated K+ currents desensitize in the sustained presence of agonist to avoid excessive effects on neuronal activity. Desensitization of K+ currents integrates distinct mechanistic underpinnings. GABAB receptor activity reduces protein kinase-A activity, which...... reduces phosphorylation of serine-892 in GABAB2 and promotes receptor degradation. This form of desensitization operates on the time scale of several minutes to hours. A faster form of desensitization is induced by the auxiliary subunit KCTD12, which interferes with channel activation by binding to the G......-protein βγ subunits. Here we show that the two mechanisms of desensitization influence each other. Serine-892 phosphorylation in heterologous cells rearranges KCTD12 at the receptor and slows KCTD12-induced desensitization. Likewise, protein kinase-A activation in hippocampal neurons slows fast...

  14. Ontogenic and sexual differences in pituitary GnRH receptors and intracellular Ca2+ mobilization induced by GnRH.

    Science.gov (United States)

    Lacau-Mengido, I M; González Iglesias, A; Lux-Lantos, V; Libertun, C; Becú-Villalobos, D

    1998-04-01

    The present experiments were designed in order to elucidate the participation of the developing hypophysis in determining the changing sensitivity of gonadotrophins to gonadotropin-releasing hormone (GnRH) during ontogeny in the rat. To that end, we chose two well defined developmental ages that differ markedly in sexual and ontogenic characteristics of hypophyseal sensitivity to GnRH, 15 and 30 d. In order to study sex differences and the role of early sexual organization of the hypothalamus, experiments were carried out in males, females, and neonatally androgenized females (TP females). We evaluated (1) the characteristics of pituitary GnRH receptors, and (2) associated changes in GnRH-induced mobilization of intracellular Ca2+ (a second messenger involved in gonadotropins exocytosis). We measured binding characteristics of the GnRH analog D-Ser(TBu)6-des-Gly10-GnRH ethylamide in pituitary homogenates. We found that Kds did not vary among the different sex groups. Total number and concentration of receptors decreased in the female rat from 15-30 d of age, whereas in the male and TP female, receptors/pituitary increased, and the concentration/mg tissue did not change. Also, at 30 days of age, males presented higher content and concentration of receptors than females, and higher content than TP females. In order to evaluate if developmental and sexual differences in pituitary sensitivity to GnRH might be expressed through variations in the intracellular Ca2+ signal, we studied the mobilization of intracellular Ca2+ induced by GnRH (1 x 10(-8) to 1 x 10(-11) M) in a suspension of dispersed pituitary cells in the six groups. In cells from 15-d-old females, Ca2+ response was greater than in 30-d-old females at the doses of 10(-8) to 10(-10) M, indicating that in the infantile female rat activation of highly concentrated GnRH receptors is reflected in an increase in signal transduction mediated by Ca2+. In males and in female rats androgenized at birth, there was also

  15. A Role for D1 Dopamine Receptors in Striatal Methamphetamine-Induced Neurotoxicity

    OpenAIRE

    Friend, Danielle M.; Keefe, Kristen A.

    2013-01-01

    Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 Dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Import...

  16. Effects of High Fat Feeding and Diabetes on Regression of Atherosclerosis Induced by Low-Density Lipoprotein Receptor Gene Therapy in LDL Receptor-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Florian Willecke

    Full Text Available We tested whether a high fat diet (HFD containing the inflammatory dietary fatty acid palmitate or insulin deficient diabetes altered the remodeling of atherosclerotic plaques in LDL receptor knockout (Ldlr-/- mice. Cholesterol reduction was achieved by using a helper-dependent adenovirus (HDAd carrying the gene for the low-density lipoprotein receptor (Ldlr; HDAd-LDLR. After injection of the HDAd-LDLR, mice consuming either HFD, which led to insulin resistance but not hyperglycemia, or low fat diet (LFD, showed regression compared to baseline. However there was no difference between the two groups in terms of atherosclerotic lesion size, or CD68+ cell and lipid content. Because of the lack of effects of these two diets, we then tested whether viral-mediated cholesterol reduction would lead to defective regression in mice with greater hyperglycemia. In both normoglycemic and streptozotocin (STZ-treated hyperglycemic mice, HDAd-LDLR significantly reduced plasma cholesterol levels, decreased atherosclerotic lesion size, reduced macrophage area and lipid content, and increased collagen content of plaque in the aortic sinus. However, reductions in anti-inflammatory and ER stress-related genes were less pronounced in STZ-diabetic mice compared to non-diabetic mice. In conclusion, HDAd-mediated Ldlr gene therapy is an effective and simple method to induce atherosclerosis regression in Ldlr-/- mice in different metabolic states.

  17. Changes in acetylcholine content, release and muscarinic receptors in rat hippocampus under cold stress

    International Nuclear Information System (INIS)

    Fatranska, M.; Budai, D.; Gulya, K; Kvetnansky, R.

    1989-01-01

    The aim was to study the mechanism of the previously established decrease in acetylcholine (ACh) concentration in the rat hippocampus under cold stress. Male rats were exposed for 14 days to cold (5 degree C) or kept (controls) at room temperature (24 degree C). Acetylcholine content, release and muscarinic receptor binding were investigated in the hippocampus. Cold exposure resulted in a decrease of ACh concentration in the dorsal hippocampus. Moreover, the potassium-evoked release of ACh from hippocampal slices was increased and an increase of maximal binding capacity of [ 3 H](-) quinuclidinyl benzilate in the dorsal hippocampus of cold exposed animals was also observed. Thus the decrease of hippocampal ACh concentration under cold exposure is probably due to its increased release. On balance then, our results demonstrate that cold stress in the rat induces significant activation of the hippocampal cholinergic system

  18. A chimeric antigen receptor for TRAIL-receptor 1 induces apoptosis in various types of tumor cells.

    Science.gov (United States)

    Kobayashi, Eiji; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Hamana, Hiroshi; Nakagawa, Hidetoshi; Jin, Aishun; Lin, Zhezhu; Muraguchi, Atsushi

    2014-10-31

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its associated receptors (TRAIL-R/TR) are attractive targets for cancer therapy because TRAIL induces apoptosis in tumor cells through TR while having little cytotoxicity on normal cells. Therefore, many agonistic monoclonal antibodies (mAbs) specific for TR have been produced, and these induce apoptosis in multiple tumor cell types. However, some TR-expressing tumor cells are resistant to TR-specific mAb-induced apoptosis. In this study, we constructed a chimeric antigen receptor (CAR) of a TRAIL-receptor 1 (TR1)-specific single chain variable fragment (scFv) antibody (TR1-scFv-CAR) and expressed it on a Jurkat T cell line, the KHYG-1 NK cell line, and human peripheral blood lymphocytes (PBLs). We found that the TR1-scFv-CAR-expressing Jurkat cells killed target cells via TR1-mediated apoptosis, whereas TR1-scFv-CAR-expressing KHYG-1 cells and PBLs killed target cells not only via TR1-mediated apoptosis but also via CAR signal-induced cytolysis, resulting in cytotoxicity on a broader range if target cells than with TR1-scFv-CAR-expressing Jurkat cells. The results suggest that TR1-scFv-CAR could be a new candidate for cancer gene therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Involvement of NMDA receptor in low-frequency magnetic field-induced anxiety in mice.

    Science.gov (United States)

    Salunke, Balwant P; Umathe, Sudhir N; Chavan, Jagatpalsingh G

    2014-12-01

    It had been reported that exposure to extremely low-frequency magnetic field (ELFMF) induces anxiety in human and rodents. Anxiety mediates via the activation of N-methyl-d-aspartate (NMDA) receptor, whereas activation of γ-aminobutyric acid (GABA) receptor attenuates the same. Hence, the present study was carried out to understand the contribution of NMDA and/or GABA receptors modulation in ELFMF-induced anxiety for which Swiss albino mice were exposed to ELFMF (50 Hz, 10 G) by subjecting them to Helmholtz coils. The exposure was for 8 h/day for 7, 30, 60, 90 and 120 days. Anxiety level was assessed in elevated plus maze, open field test and social interaction test, on 7th, 30th, 60th, 90th and 120th exposure day, respectively. Moreover, the role of GABA and glutamate in ELFMF-induced anxiety was assessed by treating mice with muscimol [0.25 mg/kg intraperitoneally (i.p.)], bicuculline (1.0 mg/kg i.p.), NMDA (15 mg/kg i.p.) and MK-801 (0.03 mg/kg i.p.), as a GABAA and NMDA receptor agonist and antagonist, respectively. Glutamate receptor agonist exacerbated while inhibitor attenuated the ELFMF-induced anxiety. In addition, levels of GABA and glutamate were determined in regions of the brain viz, cortex, striatum, hippocampus and hypothalamus. Experiments demonstrated significant elevation of GABA and glutamate levels in the hippocampus and hypothalamus. However, GABA receptor modulators did not produce significant effect on ELFMF-induced anxiety and elevated levels of GABA at tested dose. Together, these findings suggest that ELFMF significantly induced anxiety behavior, and indicated the involvement of NMDA receptor in its effect.

  20. The Role of Purinergic Receptors in Cancer-Induced Bone Pain

    Directory of Open Access Journals (Sweden)

    Sarah Falk

    2012-01-01

    Full Text Available Cancer-induced bone pain severely compromises the quality of life of many patients suffering from bone metastasis, as current therapies leave some patients with inadequate pain relief. The recent development of specific animal models has increased the understanding of the molecular and cellular mechanisms underlying cancer-induced bone pain including the involvement of ATP and the purinergic receptors in the progression of the pain state. In nociception, ATP acts as an extracellular messenger to transmit sensory information both at the peripheral site of tissue damage and in the spinal cord. Several of the purinergic receptors have been shown to be important for the development and maintenance of neuropathic and inflammatory pain, and studies have demonstrated the importance of both peripheral and central mechanisms. We here provide an overview of the current literature on the role of purinergic receptors in cancer-induced bone pain with emphasis on some of the difficulties related to studying this complex pain state.

  1. Competitive and noncompetitive antagonists at N-methyl-D-aspartate receptors protect against methamphetamine-induced dopaminergic damage in mice.

    Science.gov (United States)

    Sonsalla, P K; Riordan, D E; Heikkila, R E

    1991-02-01

    The administration of methamphetamine (METH) to experimental animals results in damage to nigrostriatal dopaminergic neurons. We have demonstrated previously that the excitatory amino acids may be involved in this neurotoxicity. For example, several compounds which bind to the phenyclidine site within the ion channel linked to the N-methyl-D-aspartate (NMDA) receptor protected mice from the METH-induced loss of neostriatal tyrosine hydroxylase activity and dopamine content. The present study was conducted to characterize further the role of the excitatory amino acids in mediating the neurotoxic effects of METH. The administration of three or four injections of METH (10 mg/kg) every 2 hr to mice produced large decrements in neostriatal dopamine content (80-84%) and in tyrosine hydroxylase activity (65-74%). A dose-dependent protection against these METH-induced decreases was seen with two noncompetitive NMDA antagonists, ifenprodil and SL 82.0715 (25-50 mg/kg/injection), both of which are thought to bind to a polyamine or sigma site associated with the NMDA receptor complex, and with two competitive NMDA antagonists, CGS 19755 (25-50 mg/kg/injection) and NPC 12626 (150-300 mg/kg/injection). Moreover, an intrastriatal infusion of NMDA (0.1 mumol) produced a slight but significant loss of neostriatal dopamine which was potentiated in mice that also received a systemic injection of METH. The results of these studies strengthen the hypothesis that the excitatory amino acids play a critical role in the nigrostriatal dopaminergic damage induced by METH.

  2. Protein-induced satiation and the calcium-sensing receptor

    Directory of Open Access Journals (Sweden)

    Ojha U

    2018-03-01

    Full Text Available Utkarsh Ojha Faculty of Medicine, Imperial College School of Medicine, Imperial College London, London, UK Abstract: Obesity is a major global health issue. High-protein diets have been shown to be associated with weight loss and satiety. The precise mechanism by which protein-rich diets promote weight loss remains unclear. Evidence suggests amino acids, formed as a consequence of protein digestion, are sensed by specific receptors on L-cells in the gastrointestinal (GI tract. These L-cells respond by secreting gut hormones that subsequently induce satiety. In recent years, the calcium-sensing receptor has been identified in several cells of the GI tract, including L-cells, and suggested to sense specific amino acids. This review evaluates the evidence for protein-rich diets in inducing weight loss and how the calcium-sensing receptor may be implicated in this phenomenon. Commandeering the mechanisms by which elements of a protein-rich diet suppress appetite may provide another successful avenue for developing anti-obesity drugs. Keywords: amino acids, energy regulation, obesity therapy, glucagon-like-peptide-1, peptide YY

  3. Lack of neuroprotection in the absence of P2X7 receptors in toxin-induced animal models of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Kittel Ágnes

    2011-05-01

    Full Text Available Abstract Background Previous studies indicate a role of P2X7 receptors in processes that lead to neuronal death. The main objective of our study was to examine whether genetic deletion or pharmacological blockade of P2X7 receptors influenced dopaminergic cell death in various models of Parkinson's disease (PD. Results mRNA encoding P2X7 and P2X4 receptors was up-regulated after treatment of PC12 cells with 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP. P2X7 antagonists protected against MPTP and rotenone induced toxicity in the LDH assay, but failed to protect after rotenone treatment in the MTT assay in PC12 cells and in primary midbrain culture. In vivo MPTP and in vitro rotenone pretreatments increased the mRNA expression of P2X7 receptors in the striatum and substantia nigra of wild-type mice. Basal mRNA expression of P2X4 receptors was higher in P2X7 knockout mice and was further up-regulated by MPTP treatment. Genetic deletion or pharmacological inhibition of P2X7 receptors did not change survival rate or depletion of striatal endogenous dopamine (DA content after in vivo MPTP or in vitro rotenone treatment. However, depletion of norepinephrine was significant after MPTP treatment only in P2X7 knockout mice. The basal ATP content was higher in the substantia nigra of wild-type mice, but the ADP level was lower. Rotenone treatment elicited a similar reduction in ATP content in the substantia nigra of both genotypes, whereas reduction of ATP was more pronounced after rotenone treatment in striatal slices of P2X7 deficient mice. Although the endogenous amino acid content remained unchanged, the level of the endocannabinoid, 2-AG, was elevated by rotenone in the striatum of wild-type mice, an effect that was absent in mice deficient in P2X7 receptors. Conclusions We conclude that P2X7 receptor deficiency or inhibition does not support the survival of dopaminergic neurons in an in vivo or in vitro models of PD.

  4. Adenosine Receptor Stimulation Improves Glucocorticoid-Induced Osteoporosis in a Rat Model

    Directory of Open Access Journals (Sweden)

    Gabriele Pizzino

    2017-09-01

    Full Text Available Glucocorticoid-induced osteoporosis (GIO is a secondary cause of bone loss. Bisphosphonates approved for GIO, might induce jaw osteonecrosis; thus additional therapeutics are required. Adenosine receptor agonists are positive regulators of bone remodeling, thus the efficacy of adenosine receptor stimulation for treating GIO was tested. In a preventive study GIO was induced in Sprague-Dawley rats by methylprednisolone (MP for 60 days. Animals were randomly assigned to receive polydeoxyribonucleotide (PDRN, an adenosine A2 receptor agonist, or PDRN and DMPX (3,7-dimethyl-1-propargylxanthine, an A2 antagonist, or vehicle (0.9% NaCl. Another set of animals was used for a treatment study, following the 60 days of MP-induction rats were randomized to receive (for additional 60 days PDRN, or PDRN and DMPX (an adenosine A2 receptor antagonist, or zoledronate (as control for gold standard treatment, or vehicle. Control animals were administered with vehicle for either 60 or 120 days. Femurs were analyzed after treatments for histology, imaging, and breaking strength analysis. MP treatment induced severe bone loss, the concomitant use of PDRN prevented the developing of osteoporosis. In rats treated for 120 days, PDRN restored bone architecture and bone strength; increased b-ALP, osteocalcin, osteoprotegerin and stimulated the Wnt canonical and non-canonical pathway. Zoledronate reduced bone resorption and ameliorated the histological features, without significant effects on bone formation. Our results suggest that adenosine receptor stimulation might be useful for preventing and treating GIO.

  5. Adrenergic receptors are a fallible index of adrenergic denervation hypersensitivity

    DEFF Research Database (Denmark)

    Dejgaard, Anders; Liggett, S B; Christensen, N J

    1991-01-01

    In view of evidence that neither interindividual nor induced intra-individual variations of adrenergic receptor status are related to metabolic or haemodynamic sensitivity to adrenaline in vivo, we took an alternative approach to assessment of the relevance of adrenergic receptor measurement...... densities (and binding affinities), measured with 3H-labelled yohimbine, and adrenaline-induced suppression of cyclic AMP contents did not differ among the three groups. Thus, in contrast to idiopathic autonomic failure, there is no generalized increase in adrenergic receptors in autonomic failure due...

  6. MicroRNAs regulate B-cell receptor signaling-induced apoptosis

    NARCIS (Netherlands)

    Kluiver, J. L.; Chen, C-Z

    Apoptosis induced by B-cell receptor (BCR) signaling is critical for antigen-driven selection, a process critical to tolerance and immunity. Here, we examined the roles of microRNAs (miRNAs) in BCR signaling-induced apoptosis using the widely applied WEHI-231 model. Comparison of miRNA levels in

  7. G protein-coupled receptor internalization assays in the high-content screening format.

    Science.gov (United States)

    Haasen, Dorothea; Schnapp, Andreas; Valler, Martin J; Heilker, Ralf

    2006-01-01

    High-content screening (HCS), a combination of fluorescence microscopic imaging and automated image analysis, has become a frequently applied tool to study test compound effects in cellular disease-modeling systems. This chapter describes the measurement of G protein-coupled receptor (GPCR) internalization in the HCS format using a high-throughput, confocal cellular imaging device. GPCRs are the most successful group of therapeutic targets on the pharmaceutical market. Accordingly, the search for compounds that interfere with GPCR function in a specific and selective way is a major focus of the pharmaceutical industry today. This chapter describes methods for the ligand-induced internalization of GPCRs labeled previously with either a fluorophore-conjugated ligand or an antibody directed against an N-terminal tag of the GPCR. Both labeling techniques produce robust assay formats. Complementary to other functional GPCR drug discovery assays, internalization assays enable a pharmacological analysis of test compounds. We conclude that GPCR internalization assays represent a valuable medium/high-throughput screening format to determine the cellular activity of GPCR ligands.

  8. Airborne fine particulate matter induces an upregulation of endothelin receptors on rat bronchi

    International Nuclear Information System (INIS)

    Wang, Rong; Xiao, Xue; Cao, Lei; Shen, Zhen-xing; Lei, Ying; Cao, Yong-xiao

    2016-01-01

    Airborne fine particulate matter (PM2.5) is a risk factor for respiratory diseases. However, little is known about the effects of PM2.5 on bronchi. The present study investigated the effect of airborne PM2.5 on rat bronchi and the underlying mechanisms. Isolated rat bronchial segments were cultured for 24 h. Endothelin (ET) receptor-mediated contractile responses were recorded using a wire myograph. The mRNA and protein expression levels of ET receptors were studied using quantitative real-time PCR, Western blotting, and immunohistochemistry. The results demonstrated that ET A and ET B receptor agonists induced remarkable contractile responses on fresh and cultured bronchial segments. PM2.5 (1.0 or 3.0 μg/ml) significantly enhanced ET A and ET B receptor-mediated contractile responses in bronchi with a markedly increased maximal contraction compared to the DMSO or fresh groups. PM2.5 increased the mRNA and protein expression levels of ET A and ET B receptors. U0126 (a MEK1/2 inhibitor) and SB203580 (a p38 inhibitor) significantly suppressed PM2.5-induced increases in ET B receptor-mediated contractile responses, mRNA and protein levels. SP600125 (a JNK inhibitor) and SB203580 significantly abrogated the PM2.5-induced enhancement of ET A receptor-mediated contraction and receptor expression. In conclusion, PM2.5 upregulates ET receptors in bronchi. ET B receptor upregulation is associated with MEK1/2 and p38 pathways, and the upregulation of ET A receptor is involved in JNK and p38 pathways. - Highlights: • Airborne PM2.5 induces bronchial hyperreactivity mediated with endothelin ET B and ET A receptors in rats. • PM2.5 increases mRNA and protein expressions of endothelin ET B and ET A receptors in bronchi. • The upregulation of ET B receptor is associated with MEK1/2 and p38 pathways. • The upregulation of ET A receptor is involved in JNK and p38 pathways. • The research provides novel understanding for PM2.5-associated respiratory diseases.

  9. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    International Nuclear Information System (INIS)

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J.; Bridges, Lance C.

    2014-01-01

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH) 2 D 3 , a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion

  10. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming; Metts, Meagan E.; Nasser, Taj A.; McGoldrick, Liam J. [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); Bridges, Lance C., E-mail: bridgesl@ecu.edu [Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States); East Carolina Diabetes and Obesity Institute, The Brody School of Medicine at East Carolina University, Greenville, NC 27834 (United States)

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid X receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.

  11. Activation of dopamine D3 receptors inhibits reward-related learning induced by cocaine.

    Science.gov (United States)

    Kong, H; Kuang, W; Li, S; Xu, M

    2011-03-10

    Memories of learned associations between the rewarding properties of drugs and environmental cues contribute to craving and relapse in humans. The mesocorticolimbic dopamine (DA) system is involved in reward-related learning induced by drugs of abuse. DA D3 receptors are preferentially expressed in mesocorticolimbic DA projection areas. Genetic and pharmacological studies have shown that DA D3 receptors suppress locomotor-stimulant effects of cocaine and reinstatement of cocaine-seeking behaviors. Activation of the extracellular signal-regulated kinase (ERK) induced by acute cocaine administration is also inhibited by D3 receptors. How D3 receptors modulate cocaine-induced reward-related learning and associated changes in cell signaling in reward circuits in the brain, however, have not been fully investigated. In the present study, we show that D3 receptor mutant mice exhibit potentiated acquisition of conditioned place preference (CPP) at low doses of cocaine compared to wild-type mice. Activation of ERK and CaMKIIα, but not the c-Jun N-terminal kinase and p38, in the nucleus accumbens, amygdala and prefrontal cortex is also potentiated in D3 receptor mutant mice compared to that in wild-type mice following CPP expression. These results support a model in which D3 receptors modulate reward-related learning induced by low doses of cocaine by inhibiting activation of ERK and CaMKIIα in reward circuits in the brain. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Persistent aryl hydrocarbon receptor inducers increase with altitude, and estrogen-like disrupters are low in soils of the Alps.

    Science.gov (United States)

    Levy, Walkiria; Henkelmann, Bernhard; Bernhöft, Silke; Bovee, Toine; Buegger, Franz; Jakobi, Gert; Kirchner, Manfred; Bassan, Rodolfo; Kräuchi, Norbert; Moche, Wolfgang; Offenthaler, Ivo; Simončič, Primoz; Weiss, Peter; Schramm, Karl-Werner

    2011-01-01

    Soil samples from remote Alpine areas were analyzed for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans and polychlorinated biphenyls by high-resolution gas chromatography/high-resolution gas spectrometry. Additionally, the EROD micro-assay and a genetically modified yeast estrogen bioassay were carried out to determine persistent aryl hydrocarbon receptors (AhR) and estrogen receptors (ER) agonists, respectively. Regarding the AhR agonists, the toxicity equivalents of analytical and EROD determined values were compared, targeting both altitude of samples and their soil organic content. The ratio between bioassay derived equivalents and analytical determinations suggested no significant contribution of unknown AhR inducers in these sampling sites and some antagonism in soils with relatively high PCB loading. More CYP1A1 expression was induced at the highest sites or about 1400-1500 m a.s.l. along the altitude profiles. Surprisingly, no clear tendencies with the soil organic content were found for dioxin-like compounds. Mean values obtained in the present study were for ER agonists, 2: 0.37±0.12ng 17ß-estradiol EQ g-1 dry soil [corrected] and 6.1 ± 4.2 pg TCDD-EQ g⁻¹ dry soil for AhR agonists. Low bioassay responses with a higher relative amount of ER disrupters than AhR inducers were detected,indicating the higher abundance of estrogen-like than persistent dioxin-like compounds in these forested areas [corrected].

  13. Dual melanocortin-4 receptor and GLP-1 receptor agonism amplifies metabolic benefits in diet-induced obese mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Finan, Brian; Fischer, Katrin

    2015-01-01

    We assessed the efficacy of simultaneous agonism at the glucagon-like peptide-1 receptor (GLP-1R) and the melanocortin-4 receptor (MC4R) for the treatment of obesity and diabetes in rodents. Diet-induced obese (DIO) mice were chronically treated with either the long-acting GLP-1R agonist liraglut...

  14. Changes in nuclear receptor corepressor RIP140 do not influence mitochondrial content in the cortex.

    Science.gov (United States)

    Herbst, Eric A F; Bonen, Arend; Holloway, Graham P

    2015-10-01

    Changes in nuclear receptor interacting protein 140 (RIP140) influences mitochondrial content in skeletal muscle; however, the translation of these findings to the brain has not been investigated. The present study examined the impact of overexpressing and ablating RIP140 on mitochondrial content in muscle and the cortex through examining mRNA, mtDNA, and mitochondrial protein content. Our results show that changes in RIP140 expression significantly alters markers of mitochondrial content in skeletal muscle but not the brain.

  15. Effects of a histamine H4 receptor antagonist on cisplatin-induced anorexia in mice.

    Science.gov (United States)

    Yamamoto, Kouichi; Okui, Rikuya; Yamatodani, Atsushi

    2018-04-12

    Cancer chemotherapy often induces gastrointestinal symptoms such as anorexia, nausea, and vomiting. Antiemetic agents are effective in inhibiting nausea and vomiting, but patients still experience anorexia. We previously reported that chemotherapeutic agent-induced anorexia is associated with an increase of inflammatory cytokines. Other studies also reported that antagonism of the histamine H 4 receptor is anti-inflammatory. In this study, we investigated the involvement of the H 4 receptor in the development of chemotherapy-induced anorexia in mice. Cisplatin-induced anorexia occurred within 24 h of its administration and continued for 3 days. The early phase (day 1), but not the delayed phase (days 2 and 3), of anorexia was inhibited by the daily injection of a 5-HT 3 receptor antagonist (granisetron). However, a corticosteroid (dexamethasone) or selective H 4 receptor antagonist (JNJ7777120) abolished the delayed phases of anorexia. Cisplatin significantly increased TNF-α mRNA expression in the hypothalamus and spleen, and the period of expression increase paralleled the onset period of anorexia. In addition, pretreatment with JNJ7777120 completely inhibited the increased expression. These results suggest that TNF-α mRNA expression via H 4 receptors may contribute to the development of cisplatin-induced anorexia, and that H 4 receptor antagonists are potentially useful treatments. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Y2 receptor signalling in NPY neurons controls bone formation and fasting induced feeding but not spontaneous feeding.

    Science.gov (United States)

    Qi, Yue; Fu, Melissa; Herzog, Herbert

    2016-02-01

    Y2 receptors have been implicated in the development of obesity and are a potential target for obesity treatment due to their known role of inhibiting neuropeptide Y (NPY) induced feeding responses. However, the precise neuronal population on which Y2 receptors act to fulfil this role is less clear. Here we utilise a novel inducible, postnatal onset NPY neurons specific deletion model to investigate the functional consequences of loss of Y2 signalling in this population of neurons on feeding and energy homeostasis regulation. While the consequences of lack of Y2 signalling in NPY neurons are confirmed in terms of the uncoupling of suppression/increasing of NPY and pro-opiomelanocortin (POMC) mRNA expression in the arcuate nuclei (Arc), respectively, this lack of Y2 signalling surprisingly does not have any significant effect on spontaneous food intake. Fasting induced food intake, however, is strongly increased but only in the first 1h after re-feeding. Consequently no significant changes in body weight are being observed although body weight gain is increased in male mice after postnatal onset Y2 deletion. Importantly, another known function of central Y2 receptor signalling, the suppression of bone formation is conserved in this conditional model with whole body bone mineral content being decreased. Taken together this model confirms the critical role of Y2 signalling to control NPY and associated POMC expression in the Arc, but also highlights the possibility that others, non-NPY neuronal Y2 receptors, are also involved in controlling feeding and energy homeostasis regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Chromium-induced accumulation of peroxide content, stimulation of ...

    African Journals Online (AJOL)

    Chromium (Cr)-induced oxidative damage and changes in contents of chlorophyll, protein, peroxide and malondialdehyde (MDA) and activities of enzymatic antioxidants were investigated in 4-day-old green gram (Vigna radiata L. cv. Wilczek) seedlings. Cr increased the contents of peroxide and MDA but decreased the ...

  18. Estrogen-related receptor α is essential for maintaining mitochondrial integrity in cisplatin-induced acute kidney injury.

    Science.gov (United States)

    Tsushida, Keigo; Tanabe, Katsuyuki; Masuda, Kana; Tanimura, Satoshi; Miyake, Hiromasa; Arata, Yuka; Sugiyama, Hitoshi; Wada, Jun

    2018-04-15

    Acute kidney injury (AKI) has been associated with not only higher in-hospital mortality but also the subsequent development of chronic kidney disease (CKD). Recent evidence has suggested the involvement of mitochondrial dysfunction and impaired dynamics in the pathogenesis of AKI. Estrogen-related receptor α (ERRα) is an orphan nuclear receptor that acts as a transcription factor to regulate the transcription of genes required for mitochondrial biogenesis and oxidative phosphorylation. In the present study, we examined the effects of ERRα deficiency on the progression of AKI induced by cisplatin. Male C57BL/6 J wild-type and ERRα -/- mice received a single intraperitoneal injection of 20 mg/kg cisplatin. Seventy-two hours after the injection, kidney function and morphology were evaluated. ERRα expression was observed in renal tubules, and cisplatin inhibited its translocation into nuclei. ERRα deficiency exacerbated cisplatin-induced renal dysfunction and tubular injury, as well as oxidative stress and apoptosis. ERRα -/- mice kidneys revealed lower mitochondrial DNA content and swollen mitochondria with reduced cristae. In addition, these mice had lower expression of the mitochondrial fusion protein mitofusin-2. The cisplatin-induced decrease in mitochondrial DNA and altered mitochondrial structure were more severe in ERRα -/- mice. In cultured mouse proximal tubular epithelial cells, the ERRα inverse agonist XCT-790 significantly inhibited mitofusin-2 expression and induced mitochondrial fragmentation. Taken together, our findings suggest the involvement of ERRα in the progression of cisplatin-induced AKI probably through impaired mitochondrial dynamics. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Purine receptor P2Y_6 mediates cellular response to γ-ray-induced DNA damage

    International Nuclear Information System (INIS)

    Ide, Shunta; Nishimaki, Naoko; Tsukimoto, Mitsutoshi; Kojima, Shuji

    2014-01-01

    We previously showed that nucleotide P2 receptor agonists such as ATP and UTP amplify γ-ray-induced focus formation of phosphorylated histone H2A variant H2AX (γH2AX), which is considered to be an indicator of DNA damage so far, by activating purine P2Y_6 and P2Y_1_2 receptors. Therefore, we hypothesized that these P2 receptors play a role in inducing the repair response to γ-ray-induced DNA damage. In the present study, we tested this idea by using human lung cancer A549 cells. First, reverse-transcription polymerase chain reaction (RT-PCR) showed that P2Y_6 receptor is highly expressed in A549 cells, but P2Y_1_2 receptor is only weakly expressed. Next, colony formation assay revealed that P2Y_6 receptor antagonist MRS2578 markedly reduced the survival rate of γ-ray-exposed A549 cells. The survival rate was also significantly reduced in P2Y_6-knock-down cells, compared with scramble siRNA-transfected cells. Since it has reported that phosphorylation of ERK1/2 after activation of EGFR via P2Y_6 and P2Y_1_2 receptors is involved in the repair response to γ-ray-induced DNA damage, we next examined whether γ-ray-induced phosphorylation of ERK1/2 was also inhibited by MRS2578 in A549 cells. We found that it was. Taken together, these findings indicate that purinergic signaling through P2Y_6 receptor, followed by ERK1/2 activation, promotes the cellular repair response to γ-ray-induced DNA damage. (author)

  20. Methamphetamine-induced changes in the striatal dopamine pathway in μ-opioid receptor knockout mice

    Directory of Open Access Journals (Sweden)

    Park Sang Won

    2011-11-01

    Full Text Available Abstract Background Repeated exposure to methamphetamine (METH can cause not only neurotoxicity but also addiction. Behavioral sensitization is widely used as an animal model for the study of drug addiction. We previously reported that the μ-opioid receptor knockout mice were resistant to METH-induced behavioral sensitization but the mechanism is unknown. Methods The present study determined whether resistance of the μ-opioid receptor (μ-OR knockout mice to behavioral sensitization is due to differential expression of the stimulatory G protein α subunit (Gαs or regulators of G-protein signaling (RGS coupled to the dopamine D1 receptor. Mice received daily intraperitoneal injections of saline or METH (10 mg/kg for 7 consecutive days to induce sensitization. On day 11(following 4 abstinent days, mice were either given a test dose of METH (10 mg/kg for behavioral testing or sacrificed for neurochemical assays without additional METH treatment. Results METH challenge-induced stereotyped behaviors were significantly reduced in the μ-opioid receptor knockout mice when compared with those in wild-type mice. Neurochemical assays indicated that there is a decrease in dopamine D1 receptor ligand binding and an increase in the expression of RGS4 mRNA in the striatum of METH-treated μ-opioid receptor knockout mice but not of METH-treated wild-type mice. METH treatment had no effect on the expression of Gαs and RGS2 mRNA in the striatum of either strain of mice. Conclusions These results indicate that down-regulation of the expression of the dopamine D1 receptor and up-regulation of RGS4 mRNA expression in the striatum may contribute to the reduced response to METH-induced stereotypy behavior in μ-opioid receptor knockout mice. Our results highlight the interactions of the μ-opioid receptor system to METH-induced behavioral responses by influencing the expression of RGS of dopamine D1 receptors.

  1. Anandamide induces matrix metalloproteinase-2 production through cannabinoid-1 receptor and transient receptor potential vanilloid-1 in human dental pulp cells in culture.

    Science.gov (United States)

    Miyashita, Keiko; Oyama, Tohru; Sakuta, Tetsuya; Tokuda, Masayuki; Torii, Mitsuo

    2012-06-01

    Anandamide (N-arachidonoylethanolamine [AEA]) is one of the main endocannabinoids. Endocannabinoids are implicated in various physiological and pathologic functions, inducing not only nociception but also regeneration and inflammation. The role of the endocannabinoid system in peripheral organs was recently described. The aim of this study was to investigate the effect of AEA on matrix metalloproteinase (MMP)-2 induction in human dental pulp cells (HPC). We examined AEA-induced MMP-2 production and the expression of AEA receptors (cannabinoid [CB] receptor-1, CB2, and transient receptor potential vanilloid-1 [TRPV1]) in HPC by Western blot. MMP-2 concentrations in supernatants were determined by enzyme-linked immunosorbent assay. We then investigated the role of the AEA receptors and mitogen-activated protein kinase in AEA-induced MMP-2 production in HPC. AEA significantly induced MMP-2 production in HPC. HPC expressed all 3 types of AEA receptor (CB1, CB2, and TRPV1). AEA-induced MMP-2 production was blocked by CB1 or TRPV1 antagonists and by small interfering RNA for CB1 or TRPV1. Furthermore, c-Jun N-terminal kinase inhibitor also reduced MMP-2 production. We demonstrated for the first time that AEA induced MMP-2 production via CB1 and TRPV1 in HPC. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES SRC-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)

    Science.gov (United States)

    ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES Src-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)Weidong Wu1, Lee M. Graves2, Gordon N. Gill3 and James M. Samet4 1Center for Environmental Medicine and Lung Biology; 2Department of Pharmacology, University o...

  3. Tracking Drug-induced Changes in Receptor Post-internalization Trafficking by Colocalizational Analysis.

    Science.gov (United States)

    Ong, Edmund; Cahill, Catherine

    2015-07-03

    The intracellular trafficking of receptors is a collection of complex and highly controlled processes. Receptor trafficking modulates signaling and overall cell responsiveness to ligands and is, itself, influenced by intra- and extracellular conditions, including ligand-induced signaling. Optimized for use with monolayer-plated cultured cells, but extendable to free-floating tissue slices, this protocol uses immunolabelling and colocalizational analysis to track changes in intracellular receptor trafficking following both chronic/prolonged and acute interventions, including exogenous drug treatment. After drug treatment, cells are double-immunolabelled for the receptor and for markers for the intracellular compartments of interest. Sequential confocal microscopy is then used to capture two-channel photomicrographs of individual cells, which are subjected to computerized colocalizational analysis to yield quantitative colocalization scores. These scores are normalized to permit pooling of independent replicates prior to statistical analysis. Representative photomicrographs may also be processed to generate illustrative figures. Here, we describe a powerful and flexible technique for quantitatively assessing induced receptor trafficking.

  4. Radiation-induced electron paramagnetic resonance signal and soybean isoflavones content

    International Nuclear Information System (INIS)

    Oliveira, Marcos R.R. de; Mandarino, José M.G.; Mastro, Nelida L. del

    2012-01-01

    Electron Paramagnetic Resonance (EPR) is a well-known spectroscopic technique that detects paramagnetic centers and can detect free radicals with high sensitivity. In food, free radicals can be generated by several commonly used industrial processes, such as radiosterilization or heat treatment. EPR spectroscopy is used to detect radioinduced free radicals in food. In this work the relation between EPR signal induced by gamma irradiation treatment and soybean isoflavones content was investigated. Present results did not show correlation between total isoflavones content and the EPR signal. Nevertheless, some isoflavone contents had a negative correlation with the radiation-induced EPR signal. - Highlights: ► Electron Paramagnetic Resonance (EPR) detects free radicals. ► Ionizing radiation as free radicals inducer. ► Total soybean isoflvones do not correlate with radiation-induced EPR intensity but a soybean glucosyl glucoside isoflavone does.

  5. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity

    Directory of Open Access Journals (Sweden)

    Darya V. Bazovkina

    2015-01-01

    Full Text Available In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors.

  6. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors.

    Science.gov (United States)

    Tunaru, Sorin; Althoff, Till F; Nüsing, Rolf M; Diener, Martin; Offermanns, Stefan

    2012-06-05

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP(3) prostanoid receptor is specifically activated by ricinoleic acid and that it mediates the pharmacological effects of castor oil. In mice lacking EP(3) receptors, the laxative effect and the uterus contraction induced via ricinoleic acid are absent. Although a conditional deletion of the EP(3) receptor gene in intestinal epithelial cells did not affect castor oil-induced diarrhea, mice lacking EP(3) receptors only in smooth-muscle cells were unresponsive to this drug. Thus, the castor oil metabolite ricinoleic acid activates intestinal and uterine smooth-muscle cells via EP(3) prostanoid receptors. These findings identify the cellular and molecular mechanism underlying the pharmacological effects of castor oil and indicate a role of the EP(3) receptor as a target to induce laxative effects.

  7. Blockade of cannabinoid CB receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity

    DEFF Research Database (Denmark)

    Hansen, H.H.; Ramos, J.A.; Fernández-Ruiz, J.

    2002-01-01

    -induced excitotoxic damage in the ipsilateral forebrain was not influenced by agonist-stimulated CB receptor function. In contrast, blockade of CB, but not CB, receptor activity evoked a robust neuroprotective response by reducing the infarct area and the number of cortical degenerating neurons. These results suggest...... receptor function on NMDA-induced excitotoxicity. Neonatal (6-day-old) rat pups received a systemic injection of a mixed CB/CB receptor agonist (WIN55,212-2) or their respective antagonists (SR141716A for CB and SR144528 for CB) prior to an unilateral intrastriatal microinjection of NMDA. The NMDA...... a critical involvement of CB receptor tonus on neuronal survival following NMDA receptor-induced excitotoxicity in vivo....

  8. Low density lipoprotein induces upregulation of vasoconstrictive endothelin type B receptor expression

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Zheng, Jian-Pu; Zhang, Wei

    2014-01-01

    Vasoconstrictive endothelin type B (ET(B)) receptors promote vasospasm and ischemic cerebro- and cardiovascular diseases. The present study was designed to examine if low density lipoprotein (LDL) induces upregulation of vasoconstrictive ET(B) receptor expression and if extracellular signal...

  9. Naltrexone pretreatment blocks microwave-induced changes in central cholinergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Lai, H.; Carino, M.A.; Wen, Y.F.; Horita, A.; Guy, A.W. (Univ. of Washington School of Medicine, Seattle (USA))

    1991-01-01

    Repeated exposure of rats to pulsed, circularly polarized microwaves (2,450-MHz, 2-microseconds pulses at 500 pps, power density 1 mW/cm2, at an averaged, whole-body SAR of 0.6 W/kg) induced biphasic changes in the concentration of muscarinic cholinergic receptors in the central nervous system. An increase in receptor concentration occurred in the hippocampus of rats subjected to ten 45-min sessions of microwave exposure, whereas a decrease in concentration was observed in the frontal cortex and hippocampus of rats exposed to ten 20-min sessions. These findings, which confirm earlier work in the authors' laboratory, were extended to include pretreatment of rats with the narcotic antagonist naltrexone (1 mg/kg, IP) before each session of exposure. The drug treatment blocked the microwave-induced changes in cholinergic receptors in the brain. These data further support the authors' hypothesis that endogenous opioids play a role in the effects of microwaves on central cholinergic systems.

  10. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Roskams, Tania [Department of Morphology and Molecular Pathology, University of Leuven (Belgium); Oben, Jude A., E-mail: j.oben@ucl.ac.uk [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Department of Gastroenterology and Hepatology, Guy' s and St Thomas' Hospital, London SE1 7EH (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  11. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    International Nuclear Information System (INIS)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI; Roskams, Tania; Oben, Jude A.

    2012-01-01

    Highlights: ► Cigarette smoke may induce liver fibrosis via nicotine receptors. ► Nicotine induces proliferation of hepatic stellate cells (HSCs). ► Nicotine activates hepatic fibrogenic pathways. ► Nicotine receptor antagonists attenuate HSC proliferation. ► Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine – which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed – RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-α2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-β1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type (α1, β1, delta and epsilon) and neuronal type (α3, α6, α7, β2 and β4) nAChR subunits at the mRNA level. Among these subunits, α3, α7, β1 and ε were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-α2 and TGF-β1 mRNA expression were significantly upregulated by nicotine and inhibited by mecamylamine. α1 and α3-nAChR mRNA expression was significantly upregulated in NASH fibrosis compared to normal livers. Conclusion: Nicotine at levels in smokers’ blood is pro-fibrogenic, through

  12. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Hosomi, Naohisa [Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, Kagawa (Japan); Lei, Bai; Nakano, Daisuke [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Deguchi, Kazushi; Mori, Hirohito; Masaki, Tsutomu [Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa (Japan); Ma, Hong [Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang (China); Griendling, Kathy K. [Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA (United States); Nishiyama, Akira [Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa (Japan)

    2011-10-15

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.

  13. Cochlear NMDA Receptors as a Therapeutic Target of Noise-Induced Tinnitus

    Directory of Open Access Journals (Sweden)

    Dan Bing

    2015-03-01

    Full Text Available Background: Accumulating evidence suggests that tinnitus may occur despite normal auditory sensitivity, probably linked to partial degeneration of the cochlear nerve and damage of the inner hair cell (IHC synapse. Damage to the IHC synapses and deafferentation may occur even after moderate noise exposure. For both salicylate- and noise-induced tinnitus, aberrant N-methyl-d-aspartate (NMDA receptor activation and related auditory nerve excitation have been suggested as origin of cochlear tinnitus. Accordingly, NMDA receptor inhibition has been proposed as a pharmacologic approach for treatment of synaptopathic tinnitus. Methods: Round-window application of the NMDA receptor antagonist AM-101 (Esketamine hydrochloride gel; Auris Medical AG, Basel, Switzerland was tested in an animal model of tinnitus induced by acute traumatic noise. The study included the quantification of IHC ribbon synapses as a correlate for deafferentation as well as the measurement of the auditory brainstem response (ABR to close-threshold sensation level stimuli as an indication of sound-induced auditory nerve activity. Results: We have shown that AM-101 reduced the trauma-induced loss of IHC ribbons and counteracted the decline of ABR wave I amplitude generated in the cochlea/auditory nerve. Conclusion: Local round-window application of AM-101 may be a promising therapeutic intervention for the treatment of synaptopathic tinnitus.

  14. Hepatocyte growth factor enhances death receptor-induced apoptosis by up-regulating DR5

    International Nuclear Information System (INIS)

    Li, Yang; Fan, Xing; Goodwin, C Rory; Laterra, John; Xia, Shuli

    2008-01-01

    Hepatocyte growth factor (HGF) and its receptor c-MET are commonly expressed in malignant gliomas and embryonic neuroectodermal tumors including medulloblastoma and appear to play an important role in the growth and dissemination of these malignancies. Dependent on cell context and the involvement of specific downstream effectors, both pro- and anti-apoptotic effects of HGF have been reported. Human medulloblastoma cells were treated with HGF for 24–72 hours followed by death receptor ligand TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) for 24 hours. Cell death was measured by MTT and Annexin-V/PI flow cytometric analysis. Changes in expression levels of targets of interest were measured by Northern blot analysis, quantitative reverse transcription-PCR, Western blot analysis as well as immunoprecipitation. In this study, we show that HGF promotes medulloblastoma cell death induced by TRAIL. TRAIL alone triggered apoptosis in DAOY cells and death was enhanced by pre-treating the cells with HGF for 24–72 h prior to the addition of TRAIL. HGF (100 ng/ml) enhanced TRAIL (10 ng/ml) induced cell death by 36% (P < 0.001). No cell death was associated with HGF alone. Treating cells with PHA-665752, a specific c-Met receptor tyrosine kinase inhibitor, significantly abrogated the enhancement of TRAIL-induced cell death by HGF, indicating that its death promoting effect requires activation of its canonical receptor tyrosine kinase. Cell death induced by TRAIL+HGF was predominately apoptotic involving both extrinsic and intrinsic pathways as evidenced by the increased activation of caspase-3, 8, 9. Promotion of apoptosis by HGF occurred via the increased expression of the death receptor DR5 and enhanced formation of death-inducing signal complexes (DISC). Taken together, these and previous findings indicate that HGF:c-Met pathway either promotes or inhibits medulloblastoma cell death via pathway and context specific mechanisms

  15. Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins.

    Science.gov (United States)

    Tollefson, A E; Toth, K; Doronin, K; Kuppuswamy, M; Doronina, O A; Lichtenstein, D L; Hermiston, T W; Smith, C A; Wold, W S

    2001-10-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus

  16. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    Science.gov (United States)

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  17. Evidence of changes in alpha-1/AT1 receptor function generated by diet-induced obesity.

    Science.gov (United States)

    Juarez, Esther; Tufiño, Cecilia; Querejeta, Enrique; Bracho-Valdes, Ismael; Bobadilla-Lugo, Rosa A

    2017-11-01

    To study whether hypercaloric diet-induced obesity deteriorates vascular contractility of rat aorta through functional changes in α 1 adrenergic and/or AT1 Angiotensin II receptors. Angiotensin II- or phenylephrine-induced contraction was tested on isolated aorta rings with and without endothelium from female Wistar rats fed for 7 weeks with hypercaloric diet or standard diet. Vascular expression of Angiotensin II Receptor type 1 (AT1R), Angiotensin II Receptor type 2 (AT2R), Cyclooxygenase-1 (COX-1), Cyclooxygenase-2 (COX-2), inducible Nitric Oxide Synthase (iNOS) and endothelial Nitric Oxide Synthase (eNOS), as well as blood pressure, glucose, insulin and angiotensin II blood levels were measured. Diet-induced obesity did not significantly change agonist-induced contractions (Emax and pD 2 hypercaloric diet vs standard diet n.s.d.) of both intact (e+) or endothelium free (e-) vessels but significantly decrease both phenylephrine and angiotensin II contraction (Emax p obesity did not change angiotensin II AT1, AT2 receptor proteins expression but reduced COX-1 and NOS2 ( p obesity produces alterations in vascular adrenergic and angiotensin II receptor dynamics that suggest an endothelium-dependent adrenergic/angiotensin II crosstalk. These changes reflect early-stage vascular responses to obesity.

  18. Effects of sigma(1) receptor ligand MS-377 on D(2) antagonists-induced behaviors.

    Science.gov (United States)

    Karasawa, Jun-ichi; Takahashi, Shinji; Takagi, Kaori; Horikomi, Kazutoshi

    2002-10-01

    (R)-(+)-1-(4-Chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377) is a novel antipsychotic agent with selective and high affinity for sigma(1) receptor. The present study was carried out to clarify the interaction of MS-377 with dopamine D(2) receptor antagonists (D(2) antagonists) in concurrent administration, and then the involvement of sigma receptors in the interaction. The effects of MS-377 on haloperidol- or sultopride-induced inhibition of apomorphine-induced climbing behavior and catalepsy were investigated in mice and rats, respectively. In addition, the effects of (+)-SKF-10,047 and SA4503, both of which are sigma receptor agonists, and WAY-100,635, which is a 5-HT(1A) receptor antagonist, on the interaction due to the concurrent use were also investigated. MS-377 potentiated the inhibitory effects of haloperidol or sultopride on apomorphine-induced climbing behavior in a dose-dependent manner. In contrast, MS-377 did not affect the catalepsy induction by these drugs. The potentiation of the inhibitory effects of haloperidol or sultopride on apomorphine-induced climbing behavior by MS-377 was not inhibited by WAY-100,635, but was inhibited by (+)-SKF-10,047 and SA4503. These findings showed that MS-377 potentiates the efficacy of D(2) antagonists, but it does not deteriorate the adverse effect. Moreover, sigma(1) receptors are involved in this potentiation of the efficacy of D(2) antagonists by MS-377.

  19. Rimonabant, a selective cannabinoid1 receptor antagonist, protects against light-induced retinal degeneration in vitro and in vivo.

    Science.gov (United States)

    Imamura, Tomoyo; Tsuruma, Kazuhiro; Inoue, Yuki; Otsuka, Tomohiro; Ohno, Yuta; Ogami, Shiho; Yamane, Shinsaku; Shimazawa, Masamitsu; Hara, Hideaki

    2017-05-15

    The endocannabinoid system is involved in some neurodegenerative diseases such as Alzheimer's disease. An endogenous constellation of proteins related to cannabinoid 1 receptor signaling, including free fatty acids, diacylglycerol lipase, and N-acylethanolamine-hydrolyzing acid amidase, are localized in the murine retina. Moreover, the expression levels of endogenous agonists of cannabinoid receptors are changed in the vitreous fluid. However, the role of the endocannabinoid system in the retina, particularly in the light-induced photoreceptor degeneration, remains unknown. Therefore, we investigated involvement of the cannabinoid 1 receptor in light-induced retinal degeneration using in vitro and in vivo models. To evaluate the effect of cannabinoid 1 receptors in light irradiation-induced cell death, the mouse retinal cone-cell line (661W) was treated with a cannabinoid 1 receptor antagonist, rimonabant. Time-dependent changes of expression and localization of retinal cannabinoid 1 receptors were measured using Western blot and immunostaining. Retinal damage was induced in mice by exposure to light, followed by intravitreal injection of rimonabant. Electroretinograms and histologic analyses were performed. Rimonabant suppressed light-induced photoreceptor cell death. Cannabinoid 1 receptor expression was upregulated by light exposure. Treatment with rimonabant improved both a- and b-wave amplitudes and the thickness of the outer nuclear layer. These results suggest that the cannabinoid 1 receptor is involved in light-induced retinal degeneration and it may represent a therapeutic target in the light-induced photoreceptor degeneration related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Herpes simplex virus infection is sensed by both Toll-like receptors and retinoic acid-inducible gene- like receptors, which synergize to induce type I interferon production

    DEFF Research Database (Denmark)

    Rasmussen, Simon B; Jensen, Søren B; Nielsen, Christoffer

    2009-01-01

    The innate antiviral response is initiated by pattern recognition receptors, which recognize viral pathogen-associated molecular patterns. Here we show that retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) in cooperation with Toll-like receptor (TLR) 9 is required for expression of type I...... interferons (IFNs) after infection with herpes simplex virus (HSV). Our work also identified RNase L as a critical component in IFN induction. Moreover, we found that TLR9 and RLRs activate distinct, as well as overlapping, intracellular signalling pathways. Thus, RLRs are important for recognition of HSV...

  1. Effects of electroacupuncture on the levels of retinal gamma-aminobutyric acid and its receptors in a guinea pig model of lens-induced myopia.

    Science.gov (United States)

    Sha, F; Ye, X; Zhao, W; Xu, C-L; Wang, L; Ding, M-H; Bi, A-L; Wu, J-F; Jiang, W-J; Guo, D-D; Guo, J-G; Bi, H-S

    2015-02-26

    Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter of the retina and affects myopic development. Electroacupuncture (EA) is widely utilized to treat myopia in clinical settings. However, there are few reports on whether EA affects the level of retinal GABA during myopic development. To study this issue, in the present study, we explored the changes of retinal GABA content and the expression of its receptor subtypes, and the effects of EA stimulation on them in a guinea pig model with lens-induced myopia (LIM). Our results showed that the content of GABA and the expression of GABAA and GABAC receptors of retina were up-regulated during the development of myopia, and this up-regulation was inhibited by applying EA to Hegu (LI4) and Taiyang (EX-HN5) acupoints. Moreover, these effects of EA show a positional specificity. While applying EA at a sham acupoint, no apparent change of myopic retinal GABA and its receptor subtypes was observed. Taken together, our findings suggest that LIM is effective to up-regulate the level of retinal GABA, GABAA and GABAC receptors in guinea pigs and the effect may be inhibited by EA stimulation at LI4 and EX-HN5 acupoints. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia

    Science.gov (United States)

    Taylor, Norman E.; Chemali, Jessica J.; Brown, Emery N.; Solt, Ken

    2012-01-01

    BACKGROUND A recent study showed that methylphenidate induces emergence from isoflurane anesthesia. Methylphenidate inhibits dopamine and norepinephrine reuptake transporters. The objective of this study was to test the hypothesis that selective dopamine receptor activation induces emergence from isoflurane anesthesia. METHODS In adult rats, we tested the effects of chloro-APB (D1 agonist) and quinpirole (D2 agonist) on time to emergence from isoflurane general anesthesia. We then performed a dose–response study to test for chloro-APB-induced restoration of righting during continuous isoflurane anesthesia. SCH-23390 (D1 antagonist) was used to confirm that the effects induced by chloro-APB are specifically mediated by D1 receptors. In a separate group of animals, spectral analysis was performed on surface electroencephalogram recordings to assess neurophysiological changes induced by chloro-APB and quinpirole during isoflurane general anesthesia. RESULTS Chloro-APB decreased median time to emergence from 330s to 50s. The median difference in time to emergence between the saline control group (n=6) and the chloro-APB group (n = 6) was 222s (95% CI: 77–534s, Mann-Whitney test). This difference was statistically significant (p = 0.0082). During continuous isoflurane anesthesia, chloro-APB dose-dependently restored righting (n = 6) and decreased electroencephalogram delta power (n = 4). These effects were inhibited by pretreatment with SCH-23390. Quinpirole did not restore righting (n = 6) and had no significant effect on the electroencephalogram (n = 4) during continuous isoflurane anesthesia. CONCLUSIONS Activation of D1 receptors by chloro-APB decreases time to emergence from isoflurane anesthesia, and produces behavioral and neurophysiological evidence of arousal during continuous isoflurane anesthesia. These findings suggest that selective activation of a D1 receptor-mediated arousal mechanism is sufficient to induce emergence from isoflurane general

  3. Glufosinate ammonium induces convulsion through N-methyl-D-aspartate receptors in mice.

    Science.gov (United States)

    Matsumura, N; Takeuchi, C; Hishikawa, K; Fujii, T; Nakaki, T

    2001-05-18

    Glufosinate ammonium, a broad-spectrum herbicide, causes convulsion in rodents and humans. Because of the structural similarities between glufosinate and glutamate, the convulsion induced by glufosinate ammonium may be ascribed to glutamate receptor activation. Three N-methyl-D-asparate (NMDA) receptor antagonists, dizocilpine, LY235959, and Compound 40, and an alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptor antagonist, NBQX, were coadministrated with glufosinate ammonium (80 mg/kg, intraperitoneally) in mice. Statistical analyses showed that the NMDA receptor antagonists markedly inhibited the convulsions, while the AMPA/kainate receptor antagonist had no effect on the convulsion. These results suggest that the convulsion caused by glufosinate ammonium is mediated through NMDA receptors.

  4. Stimulation of cell proliferation by histamine H2 receptors in dimethylhdrazine-induced adenocarcinomata.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1978-03-01

    Cell proliferation in dimethylhydrazine-induced colonic carcinomata was stimulated by histamine and by the histamine H2 receptor agonist dimaprit and inhibited by the histamine H2 receptor antagonists Metiamide and Cimetidine but not by the histamine H1 receptor antagonist Mepyramine. In contrast histamine had no effect on colonic crypt cell proliferation in normal or dimethylhydrazine-treated rats.

  5. Comparison of the neuropsychological mechanisms of 2,6-diisopropylphenol and N-methyl-D-aspartate receptor antagonist against electroconvulsive therapy-induced learning and memory impairment in depressed rats.

    Science.gov (United States)

    Liu, Gang; Liu, Chao; Zhang, Xue-Ning

    2015-09-01

    The present study aimed to examine the neurophysiological mechanisms of the 2,6-diisopropylphenol and N-methyl-D-aspartate (NMDA) receptor antagonist against learning and memory impairment, induced by electroconvulsive therapy (ECT). A total of 48 adult depressed rats without olfactory bulbs were randomly divided into six experimental groups: i) saline; ii) 10 mg/kg MK‑801; iii) 10 mg/kg MK‑801 and a course of ECT; iv) 200 mg/kg 2,6‑diisopropylphenol; v) 200 mg/kg 2,6‑diisopropylphenol and a course of ECT; and vi) saline and a course of ECT. The learning and memory abilities of the rats were assessed using a Morris water maze 1 day after a course of ECT. The hippocampus was removed 1 day after assessment using the Morris water maze assessment. The content of glutamate in the hippocampus was detected using high‑performance liquid chromatography. The expression levels of p‑AT8Ser202 and GSK‑3β1H8 in the hippocampus were determined using immunohistochemical staining and western blot analysis. The results demonstrated that the 2,6‑diisopropylphenol NMDA receptor antagonist, MK‑801 and ECT induced learning and memory impairment in the depressed rats. The glutamate content was significantly upregulated by ECT, reduced by 2,6‑diisopropylphenol, and was unaffected by the NMDA receptor antagonist in the hippocampus of the depressed rats. Tau protein hyperphosphorylation in the hippocampus was upregulated by ECT, but was reduced by 2,6‑diisopropylphenol and the MK‑801 NMDA receptor antagonist. It was also demonstrated that 2,6‑diisopropylphenol prevented learning and memory impairment and reduced the hyperphosphorylation of the Tau protein, which was induced by eECT. GSK‑3β was found to be the key protein involved in this signaling pathway. The ECT reduced the learning and memory impairment, caused by hyperphosphorylation of the Tau protein, in the depressed rats by upregulating the glutamate content.

  6. Estradiol-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the hypothalamus is independent of estrogen receptor-beta.

    Science.gov (United States)

    Rossi, Dania V; Dai, Ying; Thomas, Peter; Carrasco, Gonzalo A; DonCarlos, Lydia L; Muma, Nancy A; Li, Qian

    2010-08-01

    Estradiol regulates serotonin 1A (5-HT(1A)) receptor signaling. Since desensitization of 5-HT(1A) receptors may be an underlying mechanism by which selective serotonin reuptake inhibitors (SSRIs) mediate their therapeutic effects and combining estradiol with SSRIs enhances the efficacy of the SSRIs, it is important to determine which estrogen receptors are capable of desensitizating 5-HT(1A) receptor function. We previously demonstrated that selective activation of the estrogen receptor, GPR30, desensitizes 5-HT(1A) receptor signaling in rat hypothalamic paraventricular nucleus (PVN). However, since estrogen receptor-beta (ERbeta), is highly expressed in the PVN, we investigated the role of ERbeta in estradiol-induced desensitization of 5-HT(1A) receptor signaling. We first showed that a selective ERbeta agonist, diarylpropionitrile (DPN) has a 100-fold lower binding affinity than estradiol for GPR30. Administration of DPN did not desensitize 5-HT(1A) receptor signaling in rat PVN as demonstrated by agonist-stimulated hormone release. Second, we used a recombinant adenovirus containing ERbeta siRNAs to decrease ERbeta expression in the PVN. Reductions in ERbeta did not alter the estradiol-induced desensitization of 5-HT(1A) receptor signaling in oxytocin cells. In contrast, in animals with reduced ERbeta, estradiol administration, instead of producing desensitization, augmented the ACTH response to a 5-HT(1A) agonist. Combined with the results from the DPN treatment experiments, desensitization of 5-HT(1A) receptor signaling does not appear to be mediated by ERbeta in oxytocin cells, but that ERbeta, together with GPR30, may play a complex role in central regulation of 5-HT(1A)-mediated ACTH release. Determining the mechanisms by which estrogens induce desensitization may aid in the development of better treatments for mood disorders. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Glufosinate aerogenic exposure induces glutamate and IL-1 receptor dependent lung inflammation.

    Science.gov (United States)

    Maillet, Isabelle; Perche, Olivier; Pâris, Arnaud; Richard, Olivier; Gombault, Aurélie; Herzine, Ameziane; Pichon, Jacques; Huaux, Francois; Mortaud, Stéphane; Ryffel, Bernhard; Quesniaux, Valérie F J; Montécot-Dubourg, Céline

    2016-11-01

    Glufosinate-ammonium (GLA), the active component of an herbicide, is known to cause neurotoxicity. GLA shares structural analogy with glutamate. It is a powerful inhibitor of glutamine synthetase (GS) and may bind to glutamate receptors. Since these potentials targets of GLA are present in lung and immune cells, we asked whether airway exposure to GLA may cause lung inflammation in mice. A single GLA exposure (1 mg/kg) induced seizures and inflammatory cell recruitment in the broncho-alveolar space, and increased myeloperoxidase (MPO), inducible NO synthase (iNOS), interstitial inflammation and disruption of alveolar septae within 6-24 h. Interleukin 1β (IL-1β) was increased and lung inflammation depended on IL-1 receptor 1 (IL-1R1). We demonstrate that glutamate receptor pathway is central, since the N-methyl-D-aspartate (NMDA) receptor inhibitor MK-801 prevented GLA-induced lung inflammation. Chronic exposure (0.2 mg/kg 3× per week for 4 weeks) caused moderate lung inflammation and enhanced airway hyperreactivity with significant increased airway resistance. In conclusion, GLA aerosol exposure causes glutamate signalling and IL-1R-dependent pulmonary inflammation with airway hyperreactivity in mice. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  8. A hormone pulse induces transient changes in the subcellular distribution and leads to a lysosomal accumulation of the estradiol receptor alpha in target tissues.

    Science.gov (United States)

    Qualmann, B; Kessels, M M; Thole, H H; Sierralta, W D

    2000-06-01

    An intrauterine pulse-stimulation with estradiol induced changes in the subcellular localization of estrogen receptor alpha in porcine endometrium, as detected with F(ab') fragments of various anti-receptor antibodies covalently linked to nanogold. The low-sterically hindered immunoreagents--recognizing different epitopes within the hormone binding domain--allowed for an efficient immunolabeling of estradiol receptor alpha, detecting it both in the cytoplasm and the nucleus of nonstimulated epithelium cells. In the cytoplasm, the receptor often seemed to be associated with actin filaments and the endoplasmatic reticulum. After the stimulation with estradiol, a predominantly nuclear localization and a labeling of nucleoli was observed. Our immunoelectron microscopy study demonstrates a localization of the receptor in cytoplasmic organelles that increased after the hormone pulse. These organelles exhibited the morphological properties of lysosomes and relocated to the perinuclear area. In analogous cytoplasmic organelles, the presence of cathepsin D was detected via indirect immunogold labeling, justifying their classification as lysosomes. Quantitative examinations revealed that not only the number of lysosomes in the proximity of the nucleus but also their immunostaining for estradiol receptor alpha increased significantly after the hormone pulse. Thus, estradiol induces both the rapid shift of receptor into the nucleus, a slower perinuclear accumulation of lysosomes and an increase of lysosomal ERalpha-immunoreactivity. These results suggest a role for lysosomes in the degradation of receptor shuttling out of the nucleus. This could serve as termination of the estradiol receptor alpha-dependent activation of target cells. This hypothesis is strengthened by the fact that the receptor content in uterine tissue declined drastically few hours after the hormone pulse.

  9. A dopamine receptor contributes to paraquat-induced neurotoxicity in Drosophila

    Science.gov (United States)

    Cassar, Marlène; Issa, Abdul-Raouf; Riemensperger, Thomas; Petitgas, Céline; Rival, Thomas; Coulom, Hélène; Iché-Torres, Magali; Han, Kyung-An; Birman, Serge

    2015-01-01

    Long-term exposure to environmental oxidative stressors, like the herbicide paraquat (PQ), has been linked to the development of Parkinson's disease (PD), the most frequent neurodegenerative movement disorder. Paraquat is thus frequently used in the fruit fly Drosophila melanogaster and other animal models to study PD and the degeneration of dopaminergic neurons (DNs) that characterizes this disease. Here, we show that a D1-like dopamine (DA) receptor, DAMB, actively contributes to the fast central nervous system (CNS) failure induced by PQ in the fly. First, we found that a long-term increase in neuronal DA synthesis reduced DAMB expression and protected against PQ neurotoxicity. Secondly, a striking age-related decrease in PQ resistance in young adult flies correlated with an augmentation of DAMB expression. This aging-associated increase in oxidative stress vulnerability was not observed in a DAMB-deficient mutant. Thirdly, targeted inactivation of this receptor in glutamatergic neurons (GNs) markedly enhanced the survival of Drosophila exposed to either PQ or neurotoxic levels of DA, whereas, conversely, DAMB overexpression in these cells made the flies more vulnerable to both compounds. Fourthly, a mutation in the Drosophila ryanodine receptor (RyR), which inhibits activity-induced increase in cytosolic Ca2+, also strongly enhanced PQ resistance. Finally, we found that DAMB overexpression in specific neuronal populations arrested development of the fly and that in vivo stimulation of either DNs or GNs increased PQ susceptibility. This suggests a model for DA receptor-mediated potentiation of PQ-induced neurotoxicity. Further studies of DAMB signaling in Drosophila could have implications for better understanding DA-related neurodegenerative disorders in humans. PMID:25158689

  10. alpha-Adrenoceptor and opioid receptor modulation of clonidine-induced antinociception.

    Science.gov (United States)

    Sierralta, F; Naquira, D; Pinardi, G; Miranda, H F

    1996-10-01

    1. The antinociceptive action of clonidine (Clon) and the interactions with alpha 1, alpha 2 adrenoceptor and opioid receptor antagonists was evaluated in mice by use of chemical algesiometric test (acetic acid writhing test). 2. Clon produced a dose-dependent antinociceptive action and the ED50 for intracerebroventricular (i.c.v.) was lower than for intraperitoneal (i.p.) administration (1 ng kg-1 vs 300 ng kg-1). The parallelism of the dose-response curves indicates activation of a common receptor subtype. 3. Systemic administration of prazosin and terazosin displayed antinociceptive activity. Pretreatment with prazosin produced a dual action: i.c.v. Clon effect did not change, and i.p. Clon effect was enhanced. Yohimbine i.c.v. or i.p. did not induce antinonciception, but antagonized Clon-induced activity. These results suggest that alpha 1- and alpha 2-adrenoceptors, either located at the pre- and/or post-synaptic level, are involved in the control of spinal antinociception. 4. Naloxone (NX) and naltrexone (NTX) induced antinociceptive effects at low doses (microgram kg-1 range) and a lower antinociceptive effect at higher doses (mg kg-1 range). Low doses of NX or NTX antagonized Clon antinociception, possibly in relation to a preferential mu opioid receptor antagonism. In contrast, high doses of NX or NTX increased the antinociceptive activity of Clon, which could be due to an enhanced inhibition of the release of substance P. 5. The results obtained in the present work suggest the involvement of alpha 1-, alpha 2-adrenoceptor and opioid receptors in the modulation of the antinociceptive activity of clonidine, which seems to be exerted either at spinal and/or supraspinal level.

  11. Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR

    Science.gov (United States)

    Li, Zhiyuan; Ji, Xinmiao; Wang, Wenchao; Liu, Juanjuan; Liang, Xiaofei; Wu, Hong; Liu, Jing; Eggert, Ulrike S.; Liu, Qingsong

    2016-01-01

    Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear. Here we show that culture medium alone containing Glutamine can generate milimolar of ammonia at 37 degrees in the absence of cells. In addition, we reveal that ammonia acts through the G protein-coupled receptor DRD3 (Dopamine receptor D3) to induce autophagy. At the same time, ammonia induces DRD3 degradation, which involves PIK3C3/VPS34-dependent pathways. Ammonia inhibits MTOR (mechanistic target of Rapamycin) activity and localization in cells, which is mediated by DRD3. Therefore, ammonia has dual roles in autophagy: one to induce autophagy through DRD3 and MTOR, the other to increase autophagosomal pH to inhibit autophagic flux. Our study not only adds a new sensing and output pathway for DRD3 that bridges ammonia sensing and autophagy induction, but also provides potential mechanisms for the clinical consequences of hyperammonemia in brain damage, neurodegenerative diseases and tumors. PMID:27077655

  12. GABA(A) receptors mediate orexin-A induced stimulation of food intake.

    Science.gov (United States)

    Kokare, Dadasaheb M; Patole, Angad M; Carta, Anna; Chopde, Chandrabhan T; Subhedar, Nishikant K

    2006-01-01

    Although the role of orexins in sleep/wake cycle and feeding behavior is well established, underlying mechanisms have not been fully understood. An attempt has been made to investigate the role of GABA(A) receptors and their benzodiazepine site on the orexin-A induced response to feeding. Different groups of rats were food deprived overnight and next day injected intracerebroventricularly (icv) with vehicle (artificial CSF; 5 microl/rat) or orexin-A (20-50 nM/rat) and the animals were given free access to food. Cumulative food intake was measured during light phase of light/dark cycle at 1-, 2-, 4- and 6-h post-injection time points. Orexin-A (30-50 nM/rat, icv) stimulated food intake at all the time points (P GABA(A) receptor agonists muscimol (25 ng/rat, icv) and diazepam (0.5 mg/kg, ip) at subeffective doses significantly potentiated the hyperphagic effect of orexin-A (30 nM/rat, icv). However, the effect was negated by the GABA(A) receptor antagonist bicuculline (1 mg/kg, ip). Interestingly, benzodiazepine receptor antagonist flumazenil (5 ng/rat, icv), augmented the orexin-A (30 nM/rat, icv) induced hyperphagia; the effect may be attributed to the intrinsic activity of the agent. The results suggest that the hyperphagic effect of orexin-A, at least in part, is mediated by enhanced GABA(A) receptor activity.

  13. Steroid metabolism and steroid receptors in dimethylbenz(a)anthracene-induced rat mammary tumors

    International Nuclear Information System (INIS)

    Eechaute, W.; de Thibault de Boesinghe, L.; Lacroix, E.

    1983-01-01

    Mammary tumors were induced in rats by treatment with dimethylbenz(a)anthracene. Cytosol receptors for 17 beta-estradiol and progesterone were estimated by means of sucrose density gradient centrifugation, and the metabolism of [ 14 C]progesterone, [ 14 C]testosterone, and 17 beta-[ 14 C]estradiol by minced tumor tissue was studied. The estradiol receptor (ER) and progesterone receptor (PR) levels of the tumors varied considerably from less than 5 to 48 fmol/mg protein for ER and to 243 fmol/mg protein for PR. Considering a receptor level lower than 5 fmol/mg protein to be negative, four groups of tumors were found: ER-negative and PR-negative; ER-positive and PR-negative; ER-negative and PR-positive; ER-positive and PR-positive. In dimethylbenz(a)anthracene-induced tumor tissue, high 5 alpha-reductase and 20 alpha-hydroxysteroid dehydrogenase activities and somewhat lower 3 alpha-hydroxysteroid dehydrogenase and 6 alpha-hydroxylase activities were found. No aromatization was detectable. Steroids, especially estradiol, were also metabolized in a high degree to unextractable metabolites. It was concluded that steroid metabolism of dimethylbenz(a)anthracene-induced rat mammary tumors was not related to the ER and/or PR concentration of tumor tissue

  14. Dark chocolate receptors: epicatechin-induced cardiac protection is dependent on delta-opioid receptor stimulation.

    Science.gov (United States)

    Panneerselvam, Mathivadhani; Tsutsumi, Yasuo M; Bonds, Jacqueline A; Horikawa, Yousuke T; Saldana, Michelle; Dalton, Nancy D; Head, Brian P; Patel, Piyush M; Roth, David M; Patel, Hemal H

    2010-11-01

    Epicatechin, a flavonoid, is a well-known antioxidant linked to a variety of protective effects in both humans and animals. In particular, its role in protection against cardiovascular disease has been demonstrated by epidemiologic studies. Low-dose epicatechin, which does not have significant antioxidant activity, is also protective; however, the mechanism by which low-dose epicatechin induces this effect is unknown. Our laboratory tested the hypothesis that low-dose epicatechin mediates cardiac protection via opioid receptor activation. C57BL/6 mice were randomly assigned to 1 of 10 groups: control, epicatechin, naloxone (nonselective opioid receptor antagonist), epicatechin + naloxone, naltrindole (δ-specific opioid receptor antagonist), epicatechin + naltrindole, norbinaltorphimine (nor-BNI, κ-specific opioid receptor antagonist), epicatechin + nor-BNI, 5-hydroxydecanoic acid [5-HD, ATP-sensitive potassium channel antagonist], and epicatechin + 5-HD. Epicatechin (1 mg/kg) or other inhibitors (5 mg/kg) were administered by oral gavage or intraperitoneal injection, respectively, daily for 10 days. Mice were subjected to 30 min coronary artery occlusion followed by 2 h of reperfusion, and infarct size was determined via planimetry. Whole heart homogenates were assayed for downstream opioid receptor signaling targets. Infarct size was significantly reduced in epicatechin- and epicatechin + nor-BNI-treated mice compared with control mice. This protection was blocked by naloxone, naltrindole, and 5-HD. Epicatechin and epicatechin + nor-BNI increased the phosphorylation of Src, Akt, and IκBα, while simultaneously decreasing the expression of c-Jun NH(2)-terminal kinase and caspase-activated DNase. All signaling effects are consistent with opioid receptor stimulation and subsequent cardiac protection. Naloxone, naltrindole, and 5-HD attenuated these effects. In conclusion, epicatechin acts via opioid receptors and more specifically through the δ-opioid receptor to

  15. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    International Nuclear Information System (INIS)

    Sato, Chieri; Iwasaki, Tsuyoshi; Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime

    2012-01-01

    Highlights: ► We investigated the role of S1P signaling for osteoblast differentiation. ► Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. ► S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. ► MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P receptor-mediated signaling plays a crucial role for osteoblast differentiation.

  16. Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB₁ receptors: implications for schizophrenia.

    Science.gov (United States)

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-08-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB₁-dependent manner, whereas pharmacological blockade of CB₁ receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB₁ receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB₁-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB₁ receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission.

  17. Theophylline-induced respiratory recovery following cervical spinal cord hemisection is augmented by serotonin 2 receptor stimulation.

    Science.gov (United States)

    Basura, Gregory J; Nantwi, Kwaku D; Goshgarian, Harry G

    2002-11-22

    Cervical spinal cord hemisection leads to a disruption of bulbospinal innervation of phrenic motoneurons resulting in paralysis of the ipsilateral hemidiaphragm. We have previously demonstrated separate therapeutic roles for theophylline, and more recently serotonin (5-HT) as modulators to phrenic nerve motor recovery; mechanisms that likely occur via adenosine A1 and 5-HT2 receptors, respectively. The present study was designed to specifically determine if concurrent stimulation of 5-HT2 receptors may enhance motor recovery induced by theophylline alone. Adult female rats (250-350 g; n=7 per group) received a left cervical (C2) hemisection that resulted in paralysis of the ipsilateral hemidiaphragm. Twenty-four hours later rats were given systemic theophylline (15 mg/kg, i.v.), resulting in burst recovery in the ipsilateral phrenic nerve. Theophylline-induced recovery was enhanced with the 5-HT2A/2C receptor agonist, (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI; 1.0 mg/kg). DOI-evoked augmentation of theophylline-induced recovery was attenuated following subsequent injection of the 5-HT2 receptor antagonist, ketanserin (2.0 mg/kg). In a separate group, rats were pretreated with ketanserin, which did not prevent subsequent theophylline-induced respiratory recovery. However, pretreatment with ketanserin did prevent DOI-induced augmentation of the theophylline-evoked phrenic nerve burst recovery. Lastly, using immunocytochemistry and in situ hybridization, we showed for the first time a positive co-localization of adenosine A1 receptor mRNA and immunoreactivity with phrenic motoneurons of the cervical ventral horns. Taken together, the results of the present study suggest that theophylline may induce motor recovery likely at adenosine A1 receptors located at the level of the spinal cord, and the concurrent stimulation of converging 5-HT2 receptors may augment the response.

  18. Muscarinic receptors mediate cold stress-induced detrusor overactivity in type 2 diabetes mellitus rats.

    Science.gov (United States)

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Gautam, Sudha Silwal; Nishizawa, Osamu

    2014-10-01

    This study determined if muscarinic receptors could mediate the cold stress-induced detrusor overactivity induced in type 2 diabetes mellitus rats. Ten-week-old female Goto-Kakizaki diabetic rats (n = 12) and Wister Kyoto non-diabetic rats (n = 12) were maintained on a high-fat diet for 4 weeks. Cystometric investigations of the unanesthetized rats were carried out at room temperature (27 ± 2°C) for 20 min. They were intravenously administered imidafenacin (0.3 mg/kg, n = 6) or vehicle (n = 6). After 5 min, the rats were transferred to a low temperature (4 ± 2°C) for 40 min where the cystometry was continued. The rats were then returned to room temperature for the final cystometric measurements. Afterwards, expressions of bladder muscarinic receptor M3 and M2 messenger ribonucleic acids and proteins were assessed by reverse transcription polymerase chain reaction and immunohistochemistry. In non-diabetic Wister Kyoto rats, imidafenacin did not reduce cold stress-induced detrusor overactivity. In diabetic Goto-Kakizaki rats, just after transfer to a low temperature, the cold stress-induced detrusor overactivity in imidafenacin-treated rats was reduced compared with vehicle-treated rats. Within the urinary bladders, the ratio of M3 to M2 receptor messenger ribonucleic acid in the diabetic Goto-Kakizaki rats was significantly higher than that of the non-diabetic Wister Kyoto rats. The proportion of muscarinic M3 receptor-positive area within the detrusor in diabetic Goto-Kakizaki rats was also significantly higher than that in non-diabetic Wister Kyoto rats. Imidafenacin partially inhibits cold stress-induced detrusor overactivity in diabetic Goto-Kakizaki rats. In this animal model, muscarinic M3 receptors partially mediate cold stress-induced detrusor overactivity. © 2014 The Japanese Urological Association.

  19. Spinal 5-HT7 Receptors and Protein Kinase A Constrain Intermittent Hypoxia-Induced Phrenic Long-term Facilitation

    Science.gov (United States)

    Hoffman, M.S.; Mitchell, G.S.

    2013-01-01

    Phrenic long-term facilitation (pLTF) is a form of serotonin-dependent respiratory plasticity induced by acute intermittent hypoxia (AIH). pLTF requires spinal Gq protein-coupled serotonin-2 receptor (5-HT2) activation, new synthesis of brain-derived neurotrophic factor (BDNF) and activation of its high-affinity receptor, TrkB. Intrathecal injections of selective agonists for Gs protein-coupled receptors (adenosine 2A and serotonin-7; 5-HT7) also induce long-lasting phrenic motor facilitation via TrkB “trans-activation.” Since serotonin release near phrenic motor neurons may activate multiple serotonin receptor subtypes, we tested the hypothesis that 5-HT7 receptor activation contributes to AIH-induced pLTF. A selective 5-HT7 receptor antagonist (SB-269970, 5mM, 12μl) was administered intrathecally at C4 to anesthetized, vagotomized and ventilated rats prior to AIH (3, 5-min episodes, 11% O2). Contrary to predictions, pLTF was greater in SB-269970 treated versus control rats (80±11% vs 45±6% 60 min post-AIH; p<0.05). Hypoglossal LTF was unaffected by spinal 5-HT7 receptor inhibition, suggesting that drug effects were localized to the spinal cord. Since 5-HT7 receptors are coupled to protein kinase A (PKA), we tested the hypothesis that PKA inhibits AIH-induced pLTF. Similar to 5-HT7 receptor inhibition, spinal PKA inhibition (KT-5720, 100μM, 15μl) enhanced pLTF (99±15% 60 min post-AIH; p<0.05). Conversely, PKA activation (8-br-cAMP, 100μM, 15μl) blunted pLTF versus control rats (16±5% vs 45±6% 60 min post-AIH; p<0.05). These findings suggest a novel mechanism whereby spinal Gs protein-coupled 5-HT7 receptors constrain AIH-induced pLTF via PKA activity. PMID:23850591

  20. Lysosomal function is involved in 17β-estradiol-induced estrogen receptor α degradation and cell proliferation.

    Science.gov (United States)

    Totta, Pierangela; Pesiri, Valeria; Marino, Maria; Acconcia, Filippo

    2014-01-01

    The homeostatic control of the cellular proteome steady-state is dependent either on the 26S proteasome activity or on the lysosome function. The sex hormone 17β-estradiol (E2) controls a plethora of biological functions by binding to the estrogen receptor α (ERα), which is both a nuclear ligand-activated transcription factor and also an extrinsic plasma membrane receptor. Regulation of E2-induced physiological functions (e.g., cell proliferation) requires the synergistic activation of both transcription of estrogen responsive element (ERE)-containing genes and rapid extra-nuclear phosphorylation of many different signalling kinases (e.g., ERK/MAPK; PI3K/AKT). Although E2 controls ERα intracellular content and activity via the 26S proteasome-mediated degradation, biochemical and microscopy-based evidence suggests a possible cross-talk among lysosomes and ERα activities. Here, we studied the putative localization of endogenous ERα to lysosomes and the role played by lysosomal function in ERα signalling. By using confocal microscopy and biochemical assays, we report that ERα localizes to lysosomes and to endosomes in an E2-dependent manner. Moreover, the inhibition of lysosomal function obtained by chloroquine demonstrates that, in addition to 26S proteasome-mediated receptor elimination, lysosome-based degradation also contributes to the E2-dependent ERα breakdown. Remarkably, the lysosome function is further involved in those ERα activities required for E2-dependent cell proliferation while it is dispensable for ERα-mediated ERE-containing gene transcription. Our discoveries reveal a novel lysosome-dependent degradation pathway for ERα and show a novel biological mechanism by which E2 regulates ERα cellular content and, as a consequence, cellular functions.

  1. Dopamine D4 Receptor Counteracts Morphine-Induced Changes in µ Opioid Receptor Signaling in the Striosomes of the Rat Caudate Putamen

    Directory of Open Access Journals (Sweden)

    Diana Suárez-Boomgaard

    2014-01-01

    Full Text Available The mu opioid receptor (MOR is critical in mediating morphine analgesia. However, prolonged exposure to morphine induces adaptive changes in this receptor leading to the development of tolerance and addiction. In the present work we have studied whether the continuous administration of morphine induces changes in MOR protein levels, its pharmacological profile, and MOR-mediated G-protein activation in the striosomal compartment of the rat CPu, by using immunohistochemistry and receptor and DAMGO-stimulated [35S]GTPγS autoradiography. MOR immunoreactivity, agonist binding density and its coupling to G proteins are up-regulated in the striosomes by continuous morphine treatment in the absence of changes in enkephalin and dynorphin mRNA levels. In addition, co-treatment of morphine with the dopamine D4 receptor (D4R agonist PD168,077 fully counteracts these adaptive changes in MOR, in spite of the fact that continuous PD168,077 treatment increases the [3H]DAMGO Bmax values to the same degree as seen after continuous morphine treatment. Thus, in spite of the fact that both receptors can be coupled to Gi/0 protein, the present results give support for the existence of antagonistic functional D4R-MOR receptor-receptor interactions in the adaptive changes occurring in MOR of striosomes on continuous administration of morphine.

  2. Dissection of pathways leading to antigen receptor-induced and Fas/CD95-induced apoptosis in human B cells

    NARCIS (Netherlands)

    Lens, S. M.; den Drijver, B. F.; Pötgens, A. J.; Tesselaar, K.; van Oers, M. H.; van Lier, R. A.

    1998-01-01

    To dissect intracellular pathways involved in B cell Ag receptor (BCR)-mediated and Fas-induced human B cell death, we isolated clones of the Burkitt lymphoma cell line Ramos with different apoptosis sensitivities. Selection for sensitivity to Fas-induced apoptosis also selected for clones with

  3. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Isales, Gregory M.; Hipszer, Rachel A.; Raftery, Tara D. [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States); Chen, Albert; Stapleton, Heather M. [Division of Environmental Sciences and Policy, Nicholas School of the Environment, Duke University, Durham, NC (United States); Volz, David C., E-mail: volz@mailbox.sc.edu [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States)

    2015-04-15

    Highlights: • Triphenyl phosphate-induced toxicity in zebrafish embryos is enhanced in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate uptake or metabolism within zebrafish embryos is not altered in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate decreases expression of cytochrome P450 26a1 in zebrafish embryos. • Triphenyl phosphate inhibits retinoic acid-induced activation of human retinoic acid receptors. - Abstract: Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5–72 h post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite – were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may

  4. G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy.

    Science.gov (United States)

    White, James P; Wrann, Christiane D; Rao, Rajesh R; Nair, Sreekumaran K; Jedrychowski, Mark P; You, Jae-Sung; Martínez-Redondo, Vicente; Gygi, Steven P; Ruas, Jorge L; Hornberger, Troy A; Wu, Zhidan; Glass, David J; Piao, Xianhua; Spiegelman, Bruce M

    2014-11-04

    Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4-induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise.

  5. A Biomarker to Differentiate between Primary and Cocaine-Induced Major Depression in Cocaine Use Disorder: The Role of Platelet IRAS/Nischarin (I1-Imidazoline Receptor

    Directory of Open Access Journals (Sweden)

    Benjamin Keller

    2017-12-01

    Full Text Available The association of cocaine use disorder (CUD and comorbid major depressive disorder (MDD; CUD/MDD is characterized by high prevalence and poor treatment outcomes. CUD/MDD may be primary (primary MDD or cocaine-induced (CUD-induced MDD. Specific biomarkers are needed to improve diagnoses and therapeutic approaches in this dual pathology. Platelet biomarkers [5-HT2A receptor and imidazoline receptor antisera selected (IRAS/nischarin] were assessed by Western blot in subjects with CUD and primary MDD (n = 16 or CUD-induced MDD (n = 9; antidepressant free, AD−; antidepressant treated, AD+ and controls (n = 10 at basal level and/or after acute tryptophan depletion (ATD. Basal platelet 5-HT2A receptor (monomer was reduced in comorbid CUD/MDD subjects (all patients: 43% compared to healthy controls, and this down-regulation was independent of AD medication (decreases in AD−: 47%, and in AD+: 40%. No basal differences were found for IRAS/nischarin contents in AD+ and AD− comorbid CUD/MDD subjects. The comparison of IRAS/nischarin in the different subject groups during/after ATD showed opposite modulations (i.e., increases and decreases in response to low plasma tryptophan levels with significant differences discriminating between the subgroups of CUD with primary MDD and CUD-induced MDD. These specific alterations suggested that platelet IRAS/nischarin might be useful as a biomarker to discriminate between primary and CUD-induced MDD in this dual pathology.

  6. Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells

    International Nuclear Information System (INIS)

    Niessen, Markus; Jaschinski, Frank; Item, Flurin; McNamara, Morgan P.; Spinas, Giatgen A.; Trueb, Thomas

    2007-01-01

    Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the β-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH and PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission

  7. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism.

    Science.gov (United States)

    Pathak, Preeti; Liu, Hailiang; Boehme, Shannon; Xie, Cen; Krausz, Kristopher W; Gonzalez, Frank; Chiang, John Y L

    2017-06-30

    The bile acid-activated receptors, nuclear farnesoid X receptor (FXR) and the membrane Takeda G-protein receptor 5 (TGR5), are known to improve glucose and insulin sensitivity in obese and diabetic mice. However, the metabolic roles of these two receptors and the underlying mechanisms are incompletely understood. Here, we studied the effects of the dual FXR and TGR5 agonist INT-767 on hepatic bile acid synthesis and intestinal secretion of glucagon-like peptide-1 (GLP-1) in wild-type, Fxr -/- , and Tgr5 -/- mice. INT-767 efficaciously stimulated intracellular Ca 2+ levels, cAMP activity, and GLP-1 secretion and improved glucose and lipid metabolism more than did the FXR-selective obeticholic acid and TGR5-selective INT-777 agonists. Interestingly, INT-767 reduced expression of the genes in the classic bile acid synthesis pathway but induced those in the alternative pathway, which is consistent with decreased taurocholic acid and increased tauromuricholic acids in bile. Furthermore, FXR activation induced expression of FXR target genes, including fibroblast growth factor 15, and unexpectedly Tgr5 and prohormone convertase 1/3 gene expression in the ileum. We identified an FXR-responsive element on the Tgr5 gene promoter. Fxr -/- and Tgr5 -/- mice exhibited reduced GLP-1 secretion, which was stimulated by INT-767 in the Tgr5 -/- mice but not in the Fxr -/- mice. Our findings uncovered a novel mechanism in which INT-767 activation of FXR induces Tgr5 gene expression and increases Ca 2+ levels and cAMP activity to stimulate GLP-1 secretion and improve hepatic glucose and lipid metabolism in high-fat diet-induced obese mice. Activation of both FXR and TGR5 may therefore represent an effective therapy for managing hepatic steatosis, obesity, and diabetes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Lateralized kappa opioid receptor signaling from the amygdala central nucleus promotes stress-induced functional pain.

    Science.gov (United States)

    Nation, Kelsey M; De Felice, Milena; Hernandez, Pablo I; Dodick, David W; Neugebauer, Volker; Navratilova, Edita; Porreca, Frank

    2018-05-01

    The response of diffuse noxious inhibitory controls (DNIC) is often decreased, or lost, in stress-related functional pain syndromes. Because the dynorphin/kappa opioid receptor (KOR) pathway is activated by stress, we determined its role in DNIC using a model of stress-induced functional pain. Male, Sprague-Dawley rats were primed for 7 days with systemic morphine resulting in opioid-induced hyperalgesia. Fourteen days after priming, when hyperalgesia was resolved, rats were exposed to environmental stress and DNIC was evaluated by measuring hind paw response threshold to noxious pressure (test stimulus) after capsaicin injection in the forepaw (conditioning stimulus). Morphine priming without stress did not alter DNIC. However, stress produced a loss of DNIC in morphine-primed rats in both hind paws that was abolished by systemic administration of the KOR antagonist, nor-binaltorphimine (nor-BNI). Microinjection of nor-BNI into the right, but not left, central nucleus of the amygdala (CeA) prevented the loss of DNIC in morphine-primed rats. Diffuse noxious inhibitory controls were not modulated by bilateral nor-BNI in the rostral ventromedial medulla. Stress increased dynorphin content in both the left and right CeA of primed rats, reaching significance only in the right CeA; no change was observed in the rostral ventromedial medulla or hypothalamus. Although morphine priming alone is not sufficient to influence DNIC, it establishes a state of latent sensitization that amplifies the consequences of stress. After priming, stress-induced dynorphin/KOR signaling from the right CeA inhibits DNIC in both hind paws, likely reflecting enhanced descending facilitation that masks descending inhibition. Kappa opioid receptor antagonists may provide a new therapeutic strategy for stress-related functional pain disorders.

  9. Consequence of dopamine D2 receptor blockade on the hyperphagic effect induced by cannabinoid CB1 and CB2 receptors in layers.

    Science.gov (United States)

    Khodadadi, M; Zendehdel, M; Baghbanzadeh, A; Babapour, V

    2017-10-01

    1. Endocannabinoids (ECBs) and their receptors play a regulatory function on several physiological processes such as feed-intake behaviour, mainly in the brain. This study was carried out in order to investigate the effects of the dopaminergic D1 and D2 receptors on CB1/CB2 ECB receptor-induced hyperphagia in 3-h feed-deprived neonatal layer chickens. 2. A total of 8 experiments were designed to explore the interplay of these two modulatory systems on feed intake in neonatal chickens. In Experiment 1, chickens were intracerebroventricular (ICV) injected with control solution, l-DOPA (levo-dihydroxyphenylalanine as precursor of dopamine; 125 nmol), 2-AG (2-arachidonoylglycerol as CB 1 receptor agonist; 2 µg) and co-administration of l-DOPA (125 nmol) plus 2-AG (2 µg). Experiments 2-4 were similar to Experiment 1 except birds were injected with either 6-OHDA (6-hydroxydopamine as dopamine synthesis inhibitor; 150 nmol), SCH23390 (D1 receptor antagonist; 5 nmol) and AMI-193 (D2 receptor antagonist; 5 nmol) instead of l-DOPA, respectively. Additionally, Experiments 5-8 followed the previous ones using the same dose of l-DOPA, 6-OHDA and dopamine antagonists except that birds were injected with CB65 (CB2 receptor agonist; 5 µg) instead of 2-AG. Coadministrations were at the same dose for each experiment. Cumulative feed intakes were measured until 120 min after each injection. 3. ICV administration of 6-OHDA and AMI-193 significantly attenuated 2-AG-induced hyperphagia. Interestingly, the hyperphagic effect of CB65 was significantly attenuated by administration of l-DOPA, whereas the administration of 6-OHDA and AMI-193 together amplified the hyperphagic effect of CB65. 4. It was concluded that cannabinoid-induced feeding behaviour is probably modulated by dopamine receptors in neonatal layer-type chickens. It seems that their interaction may be mediated by the D2-dopamine receptor.

  10. Estradiol-induced estrogen receptor-alpha trafficking.

    Science.gov (United States)

    Bondar, Galyna; Kuo, John; Hamid, Naheed; Micevych, Paul

    2009-12-02

    Estradiol has rapid actions in the CNS that are mediated by membrane estrogen receptors (ERs) and activate cell signaling pathways through interaction with metabotropic glutamate receptors (mGluRs). Membrane-initiated estradiol signaling increases the free cytoplasmic calcium concentration ([Ca(2+)](i)) that stimulates the synthesis of neuroprogesterone in astrocytes. We used surface biotinylation to demonstrate that ERalpha has an extracellular portion. In addition to the full-length ERalpha [apparent molecular weight (MW), 66 kDa], surface biotinylation labeled an ERalpha-immunoreactive protein (MW, approximately 52 kDa) identified by both COOH- and NH(2)-directed antibodies. Estradiol treatment regulated membrane levels of both proteins in parallel: within 5 min, estradiol significantly increased membrane levels of the 66 and 52 kDa ERalpha. Internalization, a measure of membrane receptor activation, was also increased by estradiol with a similar time course. Continuous treatment with estradiol for 24-48 h reduced ERalpha levels, suggesting receptor downregulation. Estradiol also increased mGluR1a trafficking and internalization, consistent with the proposed ERalpha-mGluR1a interaction. Blocking ER with ICI 182,780 or mGluR1a with LY 367385 prevented ERalpha trafficking to and from the membrane. Estradiol-induced [Ca(2+)](i) flux was also significantly increased at the time of peak ERalpha activation/internalization. These results demonstrate that ERalpha is present in the membrane and has an extracellular portion. Furthermore, membrane levels and internalization of ERalpha are regulated by estradiol and mGluR1a ligands. The pattern of trafficking into and out of the membrane suggests that the changing concentration of estradiol during the estrous cycle regulates ERalpha to augment and then terminate membrane-initiated signaling.

  11. Estradiol-induced estrogen receptor-α trafficking

    Science.gov (United States)

    Bondar, Galyna; Kuo, John; Hamid, Naheed; Micevych, Paul

    2010-01-01

    Estradiol has rapid actions in the central nervous system, which are mediated by membrane estrogen receptors (ERs) and activate cell signaling pathways through interaction with metabotropic glutamate receptors (mGluRs). Membrane-initiated estradiol signaling increases the free cytoplasmic calcium concentration ([Ca2+]i) that stimulates the synthesis of neuroprogesterone in astrocytes. We used surface biotinylation to demonstrate that ERα has an extracellular portion. In addition to the full length ERα (apparent M.W. 66 kDa), surface biotinylation labeled an ERα-immunoreactive protein (M.W. ~ 52 kDa) identified by both COOH- and NH2-directed antibodies. Estradiol treatment regulated membrane levels of both proteins in parallel: within 5 min, estradiol significantly increased membrane levels of the 66 kDa and 52 kDa ERα. Internalization, a measure of membrane receptor activation, was also increased by estradiol with a similar time course. Continuous treatment with estradiol for 24–48 hr reduced ERα levels, suggesting receptor down-regulation. Estradiol also increased mGluR1a trafficking and internalization, consistent with the proposed ERα-mGluR1a interaction. Blocking ER with ICI 182,780 or mGluR1a with LY 367385 prevented ERα trafficking to and from the membrane. Estradiol-induced [Ca2+]i flux was also significantly increased at the time of peak ERα activation/internalization. These results demonstrate that ERα is present in the membrane and has an extracellular portion. Furthermore, membrane levels and internalization of ERα are regulated by estradiol and mGluR1a ligands. The pattern of trafficking into and out of the membrane suggests that the changing concentration of estradiol during the estrous cycle regulates ERα to augment and then terminate membrane-initiated signaling. PMID:19955385

  12. Inhibition of radiation-induced polyuria by histamine receptor antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Donlon, M.A.; Melia, J.A.; Helgeson, E.A.; Wolfe, W.W.

    1986-03-01

    In previous studies the authors have demonstrated that gamma radiation results in polyuria, which is preceded by polydypsia. This suggests that the increased thirst elicited by radiation causes increased urinary volume (UV). Histamine, which is released following radiation exposure, also elicits drinking by nonirradiated rats when administered exogenously. In this study the authors have investigated both the role of water deprivation and the effect of histamine receptor antagonists (HRA) on radiation-induced polyuria. Sprague-Dawley rats were housed individually in metabolic cages. Water was allowed ad libitum except in deprivation experiments where water was removed for 24 hr immediately following radiation. Cimetidine (CIM), an H2 HRA, and dexbromopheniramine (DXB), an H1 HRA, were administered i.p. (16 and 1 mg/kg, respectively) 30 min prior to irradiation (950 rads from a cobalt source). UV was determined at 24-hr intervals for 3 days preceding irradiation and 24 hr postirradiation. UV in DXB treated rats was significantly reduced 24 hr postirradiation (CON = 427 +/- 54%; DXB = 247 +/- 39% of preirradiated CON) compared to postirradiation control values. CIM did not affect postirradiation UV. These data suggest that radiation-induced polyuria is caused by polydypsia which is, in part, mediated by histamine induced by an H1 receptor.

  13. Inhibition of radiation-induced polyuria by histamine receptor antagonists

    International Nuclear Information System (INIS)

    Donlon, M.A.; Melia, J.A.; Helgeson, E.A.; Wolfe, W.W.

    1986-01-01

    In previous studies the authors have demonstrated that gamma radiation results in polyuria, which is preceded by polydypsia. This suggests that the increased thirst elicited by radiation causes increased urinary volume (UV). Histamine, which is released following radiation exposure, also elicits drinking by nonirradiated rats when administered exogenously. In this study the authors have investigated both the role of water deprivation and the effect of histamine receptor antagonists (HRA) on radiation-induced polyuria. Sprague-Dawley rats were housed individually in metabolic cages. Water was allowed ad libitum except in deprivation experiments where water was removed for 24 hr immediately following radiation. Cimetidine (CIM), an H2 HRA, and dexbromopheniramine (DXB), an H1 HRA, were administered i.p. (16 and 1 mg/kg, respectively) 30 min prior to irradiation (950 rads from a cobalt source). UV was determined at 24-hr intervals for 3 days preceding irradiation and 24 hr postirradiation. UV in DXB treated rats was significantly reduced 24 hr postirradiation (CON = 427 +/- 54%; DXB = 247 +/- 39% of preirradiated CON) compared to postirradiation control values. CIM did not affect postirradiation UV. These data suggest that radiation-induced polyuria is caused by polydypsia which is, in part, mediated by histamine induced by an H1 receptor

  14. Modulation of BCR Signaling by the Induced Dimerization of Receptor-Associated SYK

    Directory of Open Access Journals (Sweden)

    Mark L. Westbroek

    2017-12-01

    Full Text Available Clustering of the B cell antigen receptor (BCR by polyvalent antigens is transmitted through the SYK tyrosine kinase to the activation of multiple intracellular pathways that determine the physiological consequences of receptor engagement. To explore factors that modulate the quantity and quality of signals sent by the crosslinked BCR, we developed a novel chemical mediator of dimerization to induce clustering of receptor-associated SYK. To accomplish this, we fused SYK with E. coli dihydrofolate reductase (eDHFR, which binds the small molecule trimethoprim (TMP with high affinity and selectivity and synthesized a dimer of TMP with a flexible linker. The TMP dimer is able to induce the aggregation of eDHFR-linked SYK in live cells. The induced dimerization of SYK bound to the BCR differentially regulates the activation of downstream transcription factors, promoting the activation of Nuclear Factor of Activated T cells (NFAT without affecting the activation of NFκB. The dimerization of SYK enhances the duration but not the amplitude of calcium mobilization by enhancing the extent and duration of its interaction with the crosslinked BCR at the plasma membrane.

  15. C-terminal of human histamine H1 receptors regulates their agonist-induced clathrin-mediated internalization and G-protein signaling.

    Science.gov (United States)

    Hishinuma, Shigeru; Nozawa, Hiroki; Akatsu, Chizuru; Shoji, Masaru

    2016-11-01

    It has been suggested that the agonist-induced internalization of G-protein-coupled receptors from the cell surface into intracellular compartments regulates cellular responsiveness. We previously reported that G q/11 -protein-coupled human histamine H 1 receptors internalized via clathrin-dependent mechanisms upon stimulation with histamine. However, the molecular determinants of H 1 receptors responsible for agonist-induced internalization remain unclear. In this study, we evaluated the roles of the intracellular C-terminal of human histamine H 1 receptors tagged with hemagglutinin (HA) at the N-terminal in histamine-induced internalization in Chinese hamster ovary cells. The histamine-induced internalization was evaluated by the receptor binding assay with [ 3 H]mepyramine and confocal immunofluorescence microscopy with an anti-HA antibody. We found that histamine-induced internalization was inhibited under hypertonic conditions or by pitstop, a clathrin terminal domain inhibitor, but not by filipin or nystatin, disruptors of the caveolar structure and function. The histamine-induced internalization was also inhibited by truncation of a single amino acid, Ser487, located at the end of the intracellular C-terminal of H 1 receptors, but not by its mutation to alanine. In contrast, the receptor-G-protein coupling, which was evaluated by histamine-induced accumulation of [ 3 H]inositol phosphates, was potentiated by truncation of Ser487, but was lost by its mutation to alanine. These results suggest that the intracellular C-terminal of human H 1 receptors, which only comprises 17 amino acids (Cys471-Ser487), plays crucial roles in both clathrin-dependent internalization of H 1 receptors and G-protein signaling, in which truncation of Ser487 and its mutation to alanine are revealed to result in biased signaling toward activation of G-proteins and clathrin-mediated internalization, respectively. © 2016 International Society for Neurochemistry.

  16. β2-Adrenergic Receptor Activation Suppresses the Rat Phenethylamine Hallucinogen-Induced Head Twitch Response: Hallucinogen-Induced Excitatory Post-synaptic Potentials as a Potential Substrate

    Science.gov (United States)

    Marek, Gerard J.; Ramos, Brian P.

    2018-01-01

    5-Hydroxytryptamine2A (5-HT2A) receptors are enriched in layers I and Va of the rat prefrontal cortex and neocortex and their activation increases the frequency of glutamatergic excitatory post-synaptic potentials/currents (EPSP/Cs) onto layer V pyramidal cells. A number of other G-protein coupled receptors (GPCRs) are also enriched in cortical layers I and Va and either induce (α1-adrenergic and orexin2) or suppress (metabotropic glutamate2 [mGlu2], adenosine A1, μ-opioid) both 5-HT-induced EPSCs and head twitches or head shakes induced by the phenethylamine hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI). Another neurotransmitter receptor also localized to apparent thalamocortical afferents to layers I and Va of the rat prefrontal cortex and neocortex is the β2-adrenergic receptor. Therefore, we conducted preliminary electrophysiological experiments with rat brain slices examining the effects of epinephrine on electrically-evoked EPSPs following bath application of DOI (3 μM). Epinephrine (0.3–10 μM) suppressed the late EPSPs produced by electrical stimulation and DOI. The selective β2-adrenergic receptor antagonist ICI-118,551 (300 nM) resulted in a rightward shift of the epinephrine concentration-response relationship. We also tested the selective β2-adrenergic receptor agonist clenbuterol and the antagonist ICI-118,551 on DOI-induced head twitches. Clenbuterol (0.3–3 mg/kg, i.p.) suppressed DOI (1.25 mg/kg, i.p.)-induced head twitches. This clenbuterol effect appeared to be at least partially reversed by the selective β2-adrenergic receptor antagonist ICI-118,553 (0.01–1 mg/kg, i.p.), with significant reversal at doses of 0.1 and 1 mg/kg. Thus, β2-adrenergic receptor activation reverses the effects of phenethylamine hallucinogens in the rat prefrontal cortex. While Gi/Go-coupled GPCRs have previously been shown to suppress both the electrophysiological and behavioral effects of 5-HT2A receptor activation in the mPFC, the present work appears

  17. Improvement of ketamine-induced social withdrawal in rats: the role of 5-HT7 receptors.

    Science.gov (United States)

    Hołuj, Małgorzata; Popik, Piotr; Nikiforuk, Agnieszka

    2015-12-01

    Social withdrawal, one of the core negative symptoms of schizophrenia, can be modelled in the social interaction (SI) test in rats using N-methyl-D-aspartate receptor glutamate receptor antagonists. We have recently shown that amisulpride, an antipsychotic with a high affinity for serotonin 5-HT7 receptors, reversed ketamine-induced SI deficits in rats. The aim of the present study was to further elucidate the potential involvement of 5-HT7 receptors in the prosocial action of amisulpride. Acute administration of amisulpride (3 mg/kg) and SB-269970 (1 mg/kg), a 5-HT7 receptor antagonist, reversed ketamine-induced social withdrawal, whereas sulpiride (20 or 30 mg/kg) and haloperidol (0.2 mg/kg) were ineffective. The 5-HT7 receptor agonist AS19 (10 mg/kg) abolished the prosocial efficacy of amisulpride (3 mg/kg). The coadministration of an inactive dose of SB-269970 (0.2 mg/kg) showed the prosocial effects of inactive doses of amisulpride (1 mg/kg) and sulpiride (20 mg/kg). The anxiolytic chlordiazepoxide (2.5 mg/kg) and the antidepressant fluoxetine (2.5 mg/kg) were ineffective in reversing ketamine-induced SI deficits. The present study suggests that the antagonism of 5-HT7 receptors may contribute towards the mechanisms underlying the prosocial action of amisulpride. These results may have therapeutic implications for the treatment of negative symptoms in schizophrenia and other disorders characterized by social withdrawal.

  18. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Chieri [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Iwasaki, Tsuyoshi, E-mail: tsuyo-i@huhs.ac.jp [Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530 (Japan); Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We investigated the role of S1P signaling for osteoblast differentiation. Black-Right-Pointing-Pointer Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. Black-Right-Pointing-Pointer S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. Black-Right-Pointing-Pointer MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P

  19. Comparative study of D2 receptors and content of DA in striatum before and after electro-acupuncture treatment

    International Nuclear Information System (INIS)

    Lin Yansong; Lin Xiangtong

    1999-01-01

    Objective: To evaluate the change of D 2 receptors and its relationship with DA content in experimental hemi-parkinsonism rats before and after electron-acupuncture treatment. Methods: 125 I-IBZM D 2 receptor cerebral autoradiographic analysis, HPLC-ECD DA and its metabolites, homovanillic acid (HVA), 3,4-di-hydroxyphenylacetic acid (DOPAC) content detection were used to study in striatum in before treatment, electro-acupuncture treatment and treatment control group. Results: 1) The DA, HVA and DOPAC level in striatum of lesioned side in electro-acupuncture group was increased comparing with the before treatment and treatment control group (P 125 I-IBZM uptake ratio was 8.04 +- 0.71, (29.34 +- 4.83)% more than that of the contralateral side, but no significant difference was observed as compared with that of the pretreatment group [(8.09 +- 0.52), P>0.05]; however it was much lower than that of the treatment control group (8.61 +- 0.63), P 2 receptors' up regulation in rats with experimental hemi-parkinsonism

  20. Implication of mGlu5 receptor in the enhancement of morphine-induced hyperlocomotion under chronic treatment with zolpidem.

    Science.gov (United States)

    Shibasaki, Masahiro; Ishii, Kazunori; Masukawa, Daiki; Ando, Koji; Ikekubo, Yuiko; Ishikawa, Yutori; Shibasaki, Yumiko; Mori, Tomohisa; Suzuki, Tsutomu

    2014-09-05

    Long-term exposure to zolpidem induces drug dependence, and it is well known that the balance between the GABAergic and glutamatergic systems plays a critical role in maintaining the neuronal network. In the present study, we investigated the interaction between GABAA receptor α1 subunit and mGlu5 receptor in the limbic forebrain including the N.Acc. after treatment with zolpidem for 7 days. mGlu5 receptor protein levels were significantly increased after treatment with zolpidem for 7 days, and this change was accompanied by the up-regulation of phospholipase Cβ1 and calcium/calmodulin-dependent protein kinase IIα, which are downstream of mGlu5 receptor in the limbic forebrain. To confirm that mGlu5 receptor is directly involved in dopamine-related behavior in mice following chronic treatment with zolpidem, we measured morphine-induced hyperlocomotion after chronic treatment with zolpidem in the presence or absence of an mGlu5 receptor antagonist. Although chronic treatment with zolpidem significantly enhanced morphine-induced hyperlocomotion, this enhancement of morphine-induced hyperlocomotion was suppressed by treating it with the mGlu5 receptor antagonist MPEP. These results suggest that chronic treatment with zolpidem caused neural plasticity in response to activation of the mesolimbic dopaminergic system accompanied by an increase in mGlu5 receptor. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Designing peptide inhibitor of insulin receptor to induce diabetes mellitus type 2 in animal model Mus musculus.

    Science.gov (United States)

    Permatasari, Galuh W; Utomo, Didik H; Widodo

    2016-10-01

    A designing peptide as agent for inducing diabetes mellitus type 2 (T2DM) in an animal model is challenging. The computational approach provides a sophisticated tool to design a functional peptide that may block the insulin receptor activity. The peptide that able to inhibit the binding between insulin and insulin receptor is a warrant for inducing T2DM. Therefore, we designed a potential peptide inhibitor of insulin receptor as an agent to generate T2DM animal model by bioinformatics approach. The peptide has been developed based on the structure of insulin receptor binding site of insulin and then modified it to obtain the best properties of half life, hydrophobicity, antigenicity, and stability binding into insulin receptor. The results showed that the modified peptide has characteristics 100h half-life, high-affinity -95.1±20, and high stability 28.17 in complex with the insulin receptor. Moreover, the modified peptide has molecular weight 4420.8g/Mol and has no antigenic regions. Based on the molecular dynamic simulation, the complex of modified peptide-insulin receptor is more stable than the commercial insulin receptor blocker. This study suggested that the modified peptide has the promising performance to block the insulin receptor activity that potentially induce diabetes mellitus type 2 in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Aspects of dopamine and acetylcholine release induced by glutamate receptors

    International Nuclear Information System (INIS)

    Paes, Paulo Cesar de Arruda

    2002-01-01

    The basal ganglia play an important role in the motor control of rats and humans. This control involves different neurotransmitters and the mutual control of these key elements has been subject to several studies. In this work we determined the role of glutamate on the release of radioactively labelled dopamine and acetylcholine from chopped striatal tissue in vitro. The values of Effective Concentration 50% for glutamate, NMDA, kainic, quisqualic acids and AMPA on the release of dopamine and acetylcholine were obtained. The inhibitory effects of magnesium, tetrodotoxin, MK-801, AP5 and MCPG, as well as the effects of glycin were evaluated. The results suggested that dopamine is influenced by the NMDA type glutamate receptor while acetylcholine seems to be influenced by NMDA, kainate and AMPA receptors. Tetrodotoxin experiments suggested that kainate receptors are both present in cholinergic terminals and cell bodies while AMPA and NMDA receptors are preferentially distributed in cell bodies. Magnesium effectively blocked the NMDA stimulation and unexpectedly also AMPA- and quisqualate-induced acetylcholine release. The latter could not be blocked by MCPG ruling out the participation of methabotropic receptors. MK-801 also blocked NMDA-receptors. Results point out the importance of the glutamic acid control of dopamine and acetylcholine release in striatal tissue. (author)

  3. Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.

    Science.gov (United States)

    Banerjee, S; Poddar, M K

    2016-04-05

    Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24 months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0 μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Protection against MDMA-induced dopaminergic neurotoxicity in mice by methyllycaconitine: involvement of nicotinic receptors.

    Science.gov (United States)

    Chipana, C; Camarasa, J; Pubill, D; Escubedo, E

    2006-09-01

    Methylenedioxymethamphetamine (MDMA) is a relatively selective dopaminergic neurotoxin in mice. Previous studies demonstrated the participation of alpha-7 nicotinic receptors (nAChR) in the neurotoxic effect of methamphetamine. The aim of this paper was to study the role of this receptor type in the acute effects and neurotoxicity of MDMA in mice. In vivo, methyllycaconitine (MLA), a specific alpha-7 nAChR antagonist, significantly prevented MDMA-induced neurotoxicity at dopaminergic but not at serotonergic level, without affecting MDMA-induced hyperthermia. Glial activation was also fully prevented by MLA. In vitro, MDMA induced intrasynaptosomal reactive oxygen species (ROS) generation, which was calcium-, nitric-oxide synthase-, and protein kinase C-dependent. Also, the increase in ROS was prevented by MLA and alpha-bungarotoxin. Experiments with reserpine point to endogenous dopamine (DA) as the main source of MDMA-induced ROS. MLA also brought the MDMA-induced inhibition of [3H]DA uptake down, from 73% to 11%. We demonstrate that a coordinated activation of alpha-7 nAChR, blockade of DA transporter function and displacement of DA from intracellular stores induced by MDMA produces a neurotoxic effect that can be prevented by MLA, suggesting that alpha-7 nAChR have a key role in the MDMA neurotoxicity in mice; however, the involvement of nicotinic receptors containing the beta2 subunit cannot be conclusively ruled out.

  5. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Mota, Alba, E-mail: amota@iib.uam.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Jiménez-Garcia, Lidia, E-mail: ljimenez@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Herránz, Sandra, E-mail: sherranz@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Heras, Beatriz de las, E-mail: lasheras@ucm.es [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid (Spain); Hortelano, Sonsoles, E-mail: shortelano@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain)

    2015-08-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  6. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    International Nuclear Information System (INIS)

    Mota, Alba; Jiménez-Garcia, Lidia; Herránz, Sandra; Heras, Beatriz de las; Hortelano, Sonsoles

    2015-01-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  7. Involvement of histamine H1 and H2 receptors in hypothermia induced by ionizing radiation in guinea pigs

    International Nuclear Information System (INIS)

    Kandasamy, S.B.; Hunt, W.A.

    1988-01-01

    Radiation-induced hypothermia was examined in guinea pigs. Exposure to the head alone or whole-body irradiation induced hypothermia, whereas exposure of the body alone produced a small insignificant response. Systemic injection of disodium cromoglycate (a mast cell stabilizer) and cimetidine (H2-receptor antagonist) had no effect on radiation-induced hypothermia, whereas systemic and central administration of mepyramine (H1-receptor antagonist) or central administration of disodium cromoglycate or cimetidine attenuated it, indicating the involvement of central histamine through both H1 and H2 receptors in this response. Serotonin is not involved, since the serotonin antagonist methysergide had no effect on radiation-induced hypothermia. These results indicate that central histaminergic systems may be involved in radiation-induced hypothermia. 34 references, 5 figures, 2 tables

  8. The Role of Hippocampal 5HT3 Receptors in Harmaline-Induced Memory Deficit

    Directory of Open Access Journals (Sweden)

    Mohammad Nasehi

    2015-07-01

    Full Text Available Introduction: The plethora of studies indicated that there is a cross talk relationship between harmaline and serotonergic (5-HT system on cognitive and non-cognitive behaviors. Thus, the purpose of this study is to assess the effects of hippocampal 5-HT4 receptor on memory acquisition deficit induced by harmaline.  Methods: Harmaline was injected peritoneally, while 5-HT4 receptor agonist (RS67333 and antagonist (RS23597-190 were injected intra-hippocampal. A single-trial step-down passive avoidance, open field and tail flick tasks were used for measurement of memory, locomotor activity and pain responses, respectively.  Results: The data revealed that pre-training injection of higher dose of harmaline (1 mg/kg, RS67333 (0.5 ng/mouse and RS23597-190 (0.5 ng/mouse decreased memory acquisition process in the adult mice. Moreover, concurrent pre-training administration of subthreshold dose of RS67333 (0.005 ng/mouse or RS23597-190 (0.005 ng/mouse with subthreshold dose of harmaline (0.5 mg/kg, i.p. intensify impairment of memory acquisition. All above interventions did not change locomotion and tail flick behaviors.  Discussion: The results demonstrated that the synergistic effect between both hippocampal 5-HT4 receptor agonist and antagonist with impairment of memory acquisition induced by harmaline, indicating a modulatory effect for hippocampal 5HT4 receptor on Harmaline induced amnesia.

  9. m-Trifluoromethyl-diphenyl Diselenide Regulates Prefrontal Cortical MOR and KOR Protein Levels and Abolishes the Phenotype Induced by Repeated Forced Swim Stress in Mice.

    Science.gov (United States)

    Rosa, Suzan Gonçalves; Pesarico, Ana Paula; Martini, Franciele; Nogueira, Cristina Wayne

    2018-04-05

    The present study aimed to investigate the m-trifluoromethyl-diphenyl diselenide [(m-CF 3 -PhSe) 2 ] effects on prefrontal cortical MOR and KOR protein levels and phenotype induced by repeated forced swim stress (FSS) in mice. Adult Swiss mice were subjected to repeated FSS sessions, and after that, they performed the spontaneous locomotor/exploratory activity, tail suspension, and splash tests. (m-CF 3 -PhSe) 2 (0.1 to 5 mg/kg) was administered to mice 30 min before the first FSS session and 30 min before the subsequent repeated FSS. (m-CF 3 -PhSe) 2 abolished the phenotype induced by repeated FSS in mice. In addition, a single FSS session increased μ but reduced δ-opioid receptor contents, without changing the κ content. Mice subjected to repeated FSS had an increase in the μ content when compared to those of naïve group or subjected to single FSS. Repeated FSS induced an increase of δ-opioid receptor content compared to those mice subjected to single FSS. However, the δ-opioid receptor contents were lower than those found in the naïve group. The mice subjected to repeated FSS showed an increase in the κ-opioid receptor content when compared to that of the naïve mice. (m-CF 3 -PhSe) 2 regulated the protein contents of μ and κ receptors in mice subjected to repeated FSS. These findings demonstrate that (m-CF 3 -PhSe) 2 was effective to abolish the phenotype induced by FSS, which was accompanied by changes in the contents of cortical μ- and κ-opioid receptors.

  10. Effect of Mas-related gene (Mrg) receptors on hyperalgesia in rats with CFA-induced inflammation via direct and indirect mechanisms.

    Science.gov (United States)

    Jiang, Jianping; Wang, Dongmei; Zhou, Xiaolong; Huo, Yuping; Chen, Tingjun; Hu, Fenjuan; Quirion, Rémi; Hong, Yanguo

    2013-11-01

    Mas oncogene-related gene (Mrg) receptors are exclusively distributed in small-sized neurons in trigeminal and dorsal root ganglia (DRG). We investigated the effects of MrgC receptor activation on inflammatory hyperalgesia and its mechanisms. A selective MrgC receptor agonist, bovine adrenal medulla peptide 8-22 (BAM8-22) or melanocyte-stimulating hormone (MSH) or the μ-opioid receptor (MOR) antagonist CTAP was administered intrathecally (i.t.) in rats injected with complete Freund's adjuvant (CFA) in one hindpaw. Thermal and mechanical nociceptive responses were assessed. Neurochemicals were measured by immunocytochemistry, Western blot, ELISA and RT-PCR. CFA injection increased mRNA for MrgC receptors in lumbar DRG. BAM8-22 or MSH, given i.t., generated instant short and delayed long-lasting attenuations of CFA-induced thermal hyperalgesia, but not mechanical allodynia. These effects were associated with decreased up-regulation of neuronal NOS (nNOS), CGRP and c-Fos expression in the spinal dorsal horn and/or DRG. However, i.t. administration of CTAP blocked the induction by BAM8-22 of delayed anti-hyperalgesia and inhibition of nNOS and CGRP expression in DRG. BAM8-22 also increased mRNA for MORs and pro-opiomelanocortin, along with β-endorphin content in the lumbar spinal cord and/or DRG. MrgC receptors and nNOS were co-localized in DRG neurons. Activation of MrgC receptors suppressed up-regulation of pronociceptive mediators and consequently inhibited inflammatory pain, because of the activation of up-regulated MrgC receptors and subsequent endogenous activity at MORs. The uniquely distributed MrgC receptors could be a novel target for relieving inflammatory pain. © 2013 The British Pharmacological Society.

  11. Phencyclidine-Induced Social Withdrawal Results from Deficient Stimulation of Cannabinoid CB1 Receptors: Implications for Schizophrenia

    Science.gov (United States)

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-01-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB1-dependent manner, whereas pharmacological blockade of CB1 receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB1 receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB1-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB1 receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission. PMID:23563893

  12. Basolateral amygdala GABA-A receptors mediate stress-induced memory retrieval impairment in rats.

    Science.gov (United States)

    Sardari, Maryam; Rezayof, Ameneh; Khodagholi, Fariba; Zarrindast, Mohammad-Reza

    2014-04-01

    The present study was designed to investigate the involvement of GABA-A receptors of the basolateral amygdala (BLA) in the impairing effect of acute stress on memory retrieval. The BLAs of adult male Wistar rats were bilaterally cannulated and memory retrieval was measured in a step-through type passive avoidance apparatus. Acute stress was evoked by placing the animals on an elevated platform for 10, 20 and 30 min. The results indicated that exposure to 20 and 30 min stress, but not 10 min, before memory retrieval testing (pre-test exposure to stress) decreased the step-through latency, indicating stress-induced memory retrieval impairment. Intra-BLA microinjection of a GABA-A receptor agonist, muscimol (0.005-0.02 μg/rat), 5 min before exposure to an ineffective stress (10 min exposure to stress) induced memory retrieval impairment. It is important to note that pre-test intra-BLA microinjection of the same doses of muscimol had no effect on memory retrieval in the rats unexposed to 10 min stress. The blockade of GABA-A receptors of the BLA by injecting an antagonist, bicuculline (0.4-0.5 μg/rat), 5 min before 20 min exposure to stress, prevented stress-induced memory retrieval. Pre-test intra-BLA microinjection of the same doses of bicuculline (0.4-0.5 μg/rat) in rats unexposed to 20 min stress had no effect on memory retrieval. In addition, pre-treatment with bicuculline (0.1-0.4 μg/rat, intra-BLA) reversed muscimol (0.02 μg/rat, intra-BLA)-induced potentiation on the effect of stress in passive avoidance learning. It can be concluded that pre-test exposure to stress can induce memory retrieval impairment and the BLA GABA-A receptors may be involved in stress-induced memory retrieval impairment.

  13. Involvement of the Retinoid X Receptor Ligand in the Anti-Inflammatory Effect Induced by Peroxisome Proliferator-Activated Receptor Agonist In Vivo

    Directory of Open Access Journals (Sweden)

    Atsuki Yamamoto

    2011-01-01

    Full Text Available Peroxisome proliferator-activated receptor γ (PPARγ forms a heterodimeric DNA-binding complex with retinoid X receptors (RXRs. It has been reported that the effect of the PPAR agonist is reduced in hepatocyte RXR-deficient mice. Therefore, it is suggested that the endogenous RXR ligand is involved in the PPARγ agonist-induced anti-inflammatory effect. However, the participation of the RXR ligand in the PPARγ-induced anti-inflammatory effect is unknown. Here, we investigated the influence of RXR antagonist on the anti-inflammatory effect of PPARγ agonist pioglitazone in carrageenan test. In addition, we also examined the influence of PPAR antagonist on the anti-inflammatory effect induced by RXR agonist NEt-3IP. The RXR antagonist suppressed the antiedema effect of PPARγ agonist. In addition, the anti-inflammatory effect of RXR agonist was suppressed by PPARγ antagonist. PPARγ agonist-induced anti-inflammatory effects were reversed by the RXR antagonist. Thus, we showed that the endogenous RXR ligand might contribute to the PPARγ agonist-induced anti-inflammatory effect.

  14. Cannabinoid receptors activation and glucocorticoid receptors deactivation in the amygdala prevent the stress-induced enhancement of a negative learning experience.

    Science.gov (United States)

    Ramot, Assaf; Akirav, Irit

    2012-05-01

    The enhancement of emotional memory is clearly important as emotional stimuli are generally more significant than neutral stimuli for surviving and reproduction purposes. Yet, the enhancement of a negative emotional memory following exposure to stress may result in dysfunctional or intrusive memory that underlies several psychiatric disorders. Here we examined the effects of stress exposure on a negative emotional learning experience as measured by a decrease in the magnitude of the expected quantity of reinforcements in an alley maze. In contrast to other fear-related negative experiences, reward reduction is more associated with frustration and is assessed by measuring the latency to run the length of the alley to consume the reduced quantity of reward. We also examined whether the cannabinoid receptors agonist WIN55,212-2 (5 μg/side) and the glucocorticoid receptors (GRs) antagonist RU-486 (10 ng/side) administered into the rat basolateral amygdala (BLA) could prevent the stress-induced enhancement. We found that intra-BLA RU-486 or WIN55,212 before stress exposure prevented the stress-induced enhancement of memory consolidation for reduction in reward magnitude. These findings suggest that cannabinoid receptors and GRs in the BLA are important modulators of stress-induced enhancement of emotional memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Autophagy activation, not peroxisome proliferator-activated receptor γ coactivator 1α, may mediate exercise-induced improvements in glucose handling during diet-induced obesity.

    Science.gov (United States)

    Rosa-Caldwell, Megan E; Brown, Jacob L; Lee, David E; Blackwell, Thomas A; Turner, Kyle W; Brown, Lemuel A; Perry, Richard A; Haynie, Wesley S; Washington, Tyrone A; Greene, Nicholas P

    2017-09-01

    What is the central question of this study? What are the individual and combined effects of muscle-specific peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) overexpression and physical activity during high-fat feeding on glucose and exercise tolerance? What is the main finding and its importance? Our main finding is that muscle-specific PGC-1α overexpression provides no protection against lipid-overload pathologies nor does it enhance exercise adaptations. Instead, physical activity, regardless of PGC-1α content, protects against high-fat diet-induced detriments. Activation of muscle autophagy was correlated with exercise protection, suggesting that autophagy might be a mediating factor for exercise-induced protection from lipid overload. The prevalence of glucose intolerance is alarmingly high. Efforts to promote mitochondrial biogenesis through peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) to mitigate glucose intolerance have been controversial. However, physical activity remains a primary means to alleviate the condition. The aim of this study was to determine the combined effects of muscle-specific overexpression of PGC-1α and physical activity on glucose handling during diet-induced obesity. Wild-type (WT, ∼20) and PGC-1α muscle transgenic (MCK-PGC-1α, ∼20) mice were given a Western diet (WD) at 8 weeks age and allowed to consume food ab libitum throughout the study. At 12 weeks of age, all animals were divided into sedentary (SED) or voluntary wheel running (VWR) interventions. At 7, 11 and 15 weeks of age, animals underwent glucose tolerance tests (GTT) and graded exercise tests (GXT). At 16 weeks of age, tissues were collected. At 11 weeks, the MCK-PGC-1α animals had 50% greater glucose tolerance integrated area under the curve compared with WT. However, at 15 weeks, SED animals also had greater GTT integrated area under the curve compared with VWR, regardless of genotype; furthermore, SED

  16. Novel receptor-like protein kinases induced by Erwinia carotovora and short oligogalacturonides in potato.

    Science.gov (United States)

    Montesano, M; Kõiv, V; Mäe, A; Palva, E T

    2001-11-01

    summary Identification of potato genes responsive to cell wall-degrading enzymes of Erwinia carotovora resulted in the isolation of cDNA clones for four related receptor-like protein kinases. One of the putative serine-threonine protein kinases might have arisen through alternative splicing. These potato receptor-like kinases (PRK1-4) were highly equivalent (91-99%), most likely constituting a family of related receptors. All PRKs and four other plant RLKs share in their extracellular domain a conserved bi-modular pattern of cysteine repeats distinct from that in previously characterized plant RLKs, suggesting that they represent a new class of receptors. The corresponding genes were rapidly induced by E. carotovora culture filtrate (CF), both in the leaves and tubers of potato. Furthermore, the genes were transiently induced by short oligogalacturonides. The structural identity of PRKs and their induction pattern suggested that they constitute part of the early response of potato to E. carotovora infection.

  17. Peripheral and central CB1 cannabinoid receptors control stress-induced impairment of memory consolidation.

    Science.gov (United States)

    Busquets-Garcia, Arnau; Gomis-González, Maria; Srivastava, Raj Kamal; Cutando, Laura; Ortega-Alvaro, Antonio; Ruehle, Sabine; Remmers, Floortje; Bindila, Laura; Bellocchio, Luigi; Marsicano, Giovanni; Lutz, Beat; Maldonado, Rafael; Ozaita, Andrés

    2016-08-30

    Stressful events can generate emotional memories linked to the traumatic incident, but they also can impair the formation of nonemotional memories. Although the impact of stress on emotional memories is well studied, much less is known about the influence of the emotional state on the formation of nonemotional memories. We used the novel object-recognition task as a model of nonemotional memory in mice to investigate the underlying mechanism of the deleterious effect of stress on memory consolidation. Systemic, hippocampal, and peripheral blockade of cannabinoid type-1 (CB1) receptors abolished the stress-induced memory impairment. Genetic deletion and rescue of CB1 receptors in specific cell types revealed that the CB1 receptor population specifically in dopamine β-hydroxylase (DBH)-expressing cells is both necessary and sufficient for stress-induced impairment of memory consolidation, but CB1 receptors present in other neuronal populations are not involved. Strikingly, pharmacological manipulations in mice expressing CB1 receptors exclusively in DBH(+) cells revealed that both hippocampal and peripheral receptors mediate the impact of stress on memory consolidation. Thus, CB1 receptors on adrenergic and noradrenergic cells provide previously unrecognized cross-talk between central and peripheral mechanisms in the stress-dependent regulation of nonemotional memory consolidation, suggesting new potential avenues for the treatment of cognitive aspects on stress-related disorders.

  18. Activation of aryl hydrocarbon receptor reduces carbendazim-induced cell death

    International Nuclear Information System (INIS)

    Wei, Kuo-Liang; Chen, Fei-Yun; Lin, Chih-Yi; Gao, Guan-Lun; Kao, Wen-Ya; Yeh, Chi-Hui; Chen, Chang-Rong; Huang, Hao-Chun; Tsai, Wei-Ren; Jong, Koa-Jen; Li, Wan-Jung; Su, Jyan-Gwo Joseph

    2016-01-01

    Carbendazim inhibits microtubule assembly, thus blocking mitosis and inhibiting cancer cell proliferation. Accordingly, carbendazim is being explored as an anticancer drug. Data show that carbendazim increased mRNA and protein expressions and promoter activity of CYP1A1. In addition, carbendazim activated transcriptional activity of the aryl hydrocarbon response element, and induced nuclear translocation of the aryl hydrocarbon receptor (AhR), a sign the AhR is activated. Carbendazim-induced CYP1A1 expression was blocked by AhR antagonists, and was abolished in AhR signal-deficient cells. Results demonstrated that carbendazim activated the AhR, thereby stimulating CYP1A1 expression. In order to understand whether AhR-induced metabolic enzymes turn carbendazim into less-toxic metabolites, Hoechst 33342 staining to reveal carbendazim-induced nuclear changes and flow cytometry to reveal the subG 0 /G 1 population were applied to monitor carbendazim-induced cell apoptosis. Carbendazim induced less apoptosis in Hepa-1c1c7 cells than in AhR signal-deficient Hepa-1c1c7 mutant cells. Pretreatment with β-NF, an AhR agonist that highly induces CYP1A1 expression, decreased carbendazim-induced cell death. In addition, the lower the level of AhR was, the lower the vitality present in carbendazim-treated cells, including hepatoma cells and their derivatives with AhR RNA interference, also embryonic kidney cells, bladder carcinoma cells, and AhR signal-deficient Hepa-1c1c7 cells. In summary, carbendazim is an AhR agonist. The toxicity of carbendazim was lower in cells with the AhR signal. This report provides clues indicating that carbendazim is more potent at inducing cell death in tissues without than in those with the AhR signal, an important reference for applying carbendazim in cancer chemotherapy. - Highlights: • Carbendazim induced transcriptional activity of the aryl hydrocarbon response element. • Carbendazim induced nuclear translocation of the aryl hydrocarbon

  19. Activation of aryl hydrocarbon receptor reduces carbendazim-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Kuo-Liang [Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, ROC (China); College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC (China); Chen, Fei-Yun; Lin, Chih-Yi [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Gao, Guan-Lun [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Department of Biological Resources, National Chiayi University, Chiayi, 60004, Taiwan, ROC (China); Kao, Wen-Ya [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Yeh, Chi-Hui [Department of Environmental Engineering, College of Engineering, Da-Yeh University, Dacun, Changhua 51591, Taiwan, ROC (China); Chen, Chang-Rong [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Huang, Hao-Chun [Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, ROC (China); Tsai, Wei-Ren [Division of Applied Toxicology, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Executive Yuan, Taichung 41358, Taiwan, ROC (China); Jong, Koa-Jen [Department of Biological Resources, National Chiayi University, Chiayi, 60004, Taiwan, ROC (China); Li, Wan-Jung [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China); Su, Jyan-Gwo Joseph, E-mail: jgjsu@mail.ncyu.edu.tw [Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, ROC (China)

    2016-09-01

    Carbendazim inhibits microtubule assembly, thus blocking mitosis and inhibiting cancer cell proliferation. Accordingly, carbendazim is being explored as an anticancer drug. Data show that carbendazim increased mRNA and protein expressions and promoter activity of CYP1A1. In addition, carbendazim activated transcriptional activity of the aryl hydrocarbon response element, and induced nuclear translocation of the aryl hydrocarbon receptor (AhR), a sign the AhR is activated. Carbendazim-induced CYP1A1 expression was blocked by AhR antagonists, and was abolished in AhR signal-deficient cells. Results demonstrated that carbendazim activated the AhR, thereby stimulating CYP1A1 expression. In order to understand whether AhR-induced metabolic enzymes turn carbendazim into less-toxic metabolites, Hoechst 33342 staining to reveal carbendazim-induced nuclear changes and flow cytometry to reveal the subG{sub 0}/G{sub 1} population were applied to monitor carbendazim-induced cell apoptosis. Carbendazim induced less apoptosis in Hepa-1c1c7 cells than in AhR signal-deficient Hepa-1c1c7 mutant cells. Pretreatment with β-NF, an AhR agonist that highly induces CYP1A1 expression, decreased carbendazim-induced cell death. In addition, the lower the level of AhR was, the lower the vitality present in carbendazim-treated cells, including hepatoma cells and their derivatives with AhR RNA interference, also embryonic kidney cells, bladder carcinoma cells, and AhR signal-deficient Hepa-1c1c7 cells. In summary, carbendazim is an AhR agonist. The toxicity of carbendazim was lower in cells with the AhR signal. This report provides clues indicating that carbendazim is more potent at inducing cell death in tissues without than in those with the AhR signal, an important reference for applying carbendazim in cancer chemotherapy. - Highlights: • Carbendazim induced transcriptional activity of the aryl hydrocarbon response element. • Carbendazim induced nuclear translocation of the aryl

  20. Brain nicotinic acetylcholine receptors are involved in stress-induced potentiation of nicotine reward in rats.

    Science.gov (United States)

    Javadi, Parastoo; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2017-07-01

    The aim of the present study was to examine the possible role of nicotinic acetylcholine receptors of the dorsal hippocampus (CA1 regions), the medial prefrontal cortex or the basolateral amygdala in the effect of acute or sub-chronic stress on nicotine-induced conditioned place preference. Our results indicated that subcutaneous administration of nicotine (0.2 mg/kg) induced significant conditioned place preference. Exposure to acute or sub-chronic elevated platform stress potentiated the response of an ineffective dose of nicotine. Pre-conditioning intra-CA1 (0.5-4 µg/rat) or intra-medial prefrontal cortex (0.2-0.3 µg/rat) microinjection of mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist) reversed acute stress-induced potentiation of nicotine reward as measured in the conditioned place preference paradigm. By contrast, pre-conditioning intra-basolateral amygdala microinjection of mecamylamine (4 µg/rat) potentiated the effects of acute stress on nicotine reward. Our findings also showed that intra-CA1 or intra-medial prefrontal cortex, but not intra-basolateral amygdala, microinjection of mecamylamine (4 µg/rat) prevented the effect of sub-chronic stress on nicotine reward. These findings suggest that exposure to elevated platform stress potentiates the rewarding effect of nicotine which may be associated with the involvement of nicotinic acetylcholine receptors. It seems that there is a different contribution of the basolateral amygdala, the medial prefrontal cortex or the CA1 nicotinic acetylcholine receptors in stress-induced potentiation of nicotine-induced conditioned place preference.

  1. Peroxisome proliferator-activated receptor α agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    International Nuclear Information System (INIS)

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-01-01

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11β-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPARα), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPARα activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPARα inhibitor MK886, suggesting that fenofibrate activated through PPARα. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPARα

  2. Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by ifenprodil: the role of sigma-1 and IP3 receptors.

    Directory of Open Access Journals (Sweden)

    Tamaki Ishima

    Full Text Available In addition to both the α1 adrenergic receptor and N-methyl-D-aspartate (NMDA receptor antagonists, ifenprodil binds to the sigma receptor subtypes 1 and 2. In this study, we examined the effects of ifenprodil on nerve growth factor (NGF-induced neurite outgrowth in PC12 cells. Ifenprodil significantly potentiated NGF-induced neurite outgrowth, in a concentration-dependent manner. In contrast, the α1 adrenergic receptor antagonist, prazosin and the NMDA receptor NR2B antagonist, Ro 25-6981 did not alter NGF-induced neurite outgrowth. Potentiation of NGF-induced neurite outgrowth mediated by ifenprodil was significantly antagonized by co-administration of the selective sigma-1 receptor antagonist, NE-100, but not the sigma-2 receptor antagonist, SM-21. Similarly, ifenprodil enhanced NGF-induced neurite outgrowth was again significantly reduced by the inositol 1,4,5-triphosphate (IP(3 receptor antagonists, xestospongin C and 2-aminoethoxydiphenyl borate (2-APB treatment. Furthermore, BAPTA-AM, a chelator of intracellular Ca(2+, blocked the effects of ifenprodil on NGF-induced neurite outgrowth, indicating the role of intracellular Ca(2+ in the neurite outgrowth. These findings suggest that activation at sigma-1 receptors and subsequent interaction with IP(3 receptors may mediate the pharmacological effects of ifenprodil on neurite outgrowth.

  3. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation.

    Science.gov (United States)

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMN) are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA) are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil.

  4. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation

    Directory of Open Access Journals (Sweden)

    Omar Rafael Alemán

    2016-01-01

    Full Text Available Neutrophils (PMN are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil.

  5. Antipsychotic-induced catalepsy is attenuated in mice lacking the M4 muscarinic acetylcholine receptor

    DEFF Research Database (Denmark)

    Fink-Jensen, Anders; Schmidt, Lene S; Dencker, Ditte

    2011-01-01

    of the striatum, suggesting a role for muscarinic M4 receptors in the motor side effects of antipsychotics, and in the alleviation of these side effects by anticholinergics. Here we investigated the potential role of the muscarinic M4 receptor in catalepsy induced by antipsychotics (haloperidol and risperidone...

  6. MDMA-Induced Dissociative State not Mediated by the 5-HT2A Receptor

    Directory of Open Access Journals (Sweden)

    Drew J. Puxty

    2017-07-01

    Full Text Available Previous research has shown that a single dose of MDMA induce a dissociative state, by elevating feelings of depersonalization and derealization. Typically, it is assumed that action on the 5-HT2A receptor is the mechanism underlying these psychedelic experiences. In addition, other studies have shown associations between dissociative states and biological parameters (heart rate, cortisol, which are elevated by MDMA. In order to investigate the role of the 5-HT2 receptor in the MDMA-induced dissociative state and the association with biological parameters, a placebo-controlled within-subject study was conducted including a single oral dose of MDMA (75 mg, combined with placebo or a single oral dose of the 5-HT2 receptor blocker ketanserin (40 mg. Twenty healthy recreational MDMA users filled out a dissociative states scale (CADSS 90 min after treatments, which was preceded and followed by assessment of a number of biological parameters (cortisol levels, heart rate, MDMA blood concentrations. Findings showed that MDMA induced a dissociative state but this effect was not counteracted by pre-treatment with ketanserin. Heart rate was the only biological parameter that correlated with the MDMA-induced dissociative state, but an absence of correlation between these measures when participants were pretreated with ketanserin suggests an absence of directional effects of heart rate on dissociative state. It is suggested that the 5-HT2 receptor does not mediate the dissociative effects caused by a single dose of MDMA. Further research is needed to determine the exact neurobiology underlying this effect and whether these effects contribute to the therapeutic potential of MDMA.

  7. CysLT2 receptor activation is involved in LTC4-induced lung air-trapping in guinea pigs.

    Science.gov (United States)

    Sekioka, Tomohiko; Kadode, Michiaki; Yonetomi, Yasuo; Kamiya, Akihiro; Fujita, Manabu; Nabe, Takeshi; Kawabata, Kazuhito

    2017-01-05

    CysLT 1 receptors are known to be involved in the pathogenesis of asthma. However, the functional roles of CysLT 2 receptors in this condition have not been determined. The purpose of this study is to develop an experimental model of CysLT 2 receptor-mediated LTC 4 -induced lung air-trapping in guinea pigs and use this model to clarify the mechanism underlying response to such trapping. Because LTC 4 is rapidly converted to LTD 4 by γ-glutamyltranspeptidase (γ-GTP) under physiological conditions, S-hexyl GSH was used as a γ-GTP inhibitor. In anesthetized artificially ventilated guinea pigs with no S-hexyl GSH treatment, i.v. LTC 4 -induced bronchoconstriction was almost completely inhibited by montelukast, a CysLT 1 receptor antagonist, but not by BayCysLT 2 RA, a CysLT 2 receptor antagonist. The inhibitory effect of montelukast was diminished by treatment with S-hexyl GSH, whereas the effect of BayCysLT 2 RA was enhanced with increasing dose of S-hexyl GSH. Macroscopic and histological examination of lung tissue isolated from LTC 4 -/S-hexyl-GSH-treated guinea pigs revealed air-trapping expansion, particularly at the alveolar site. Inhaled LTC 4 in conscious guinea pigs treated with S-hexyl GSH increased both airway resistance and airway hyperinflation. On the other hand, LTC 4 -induced air-trapping was only partially suppressed by treatment with the bronchodilator salmeterol. Although montelukast inhibition of LTC 4 -induced air-trapping was weak, treatment with BayCysLT 2 RA resulted in complete suppression of this air-trapping. Furthermore, BayCysLT 2 RA completely suppressed LTC 4 -induced airway vascular hyperpermeability. In conclusion, we found in this study that CysLT 2 receptors mediate LTC 4 -induced bronchoconstriction and air-trapping in S-hexyl GSH-treated guinea pigs. It is therefore believed that CysLT 2 receptors contribute to asthmatic response involving air-trapping. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression

    International Nuclear Information System (INIS)

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X.; Walterscheid, Jeffrey P.; Ullrich, Stephen E.

    2004-01-01

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependant manner. The release of biological response modifiers, particularly prostaglandin E 2 (PGE 2 ), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE 2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE 2 secretion. Jet fuel-induced PGE 2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin

  9. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vikram, Ajit [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160 062 (India); Jena, Gopabandhu, E-mail: gbjena@gmail.com [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160 062 (India)

    2010-07-23

    Research highlights: {yields}Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. {yields}Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. {yields}Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. {yields}Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia ({approx}18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPAR{gamma}) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 {+-} 16.32 vs. 126.37 {+-} 27.07 mg/dl) and glucose intolerance ({approx}78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  10. Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents.

    Science.gov (United States)

    Dickson, S L; Hrabovszky, E; Hansson, C; Jerlhag, E; Alvarez-Crespo, M; Skibicka, K P; Molnar, C S; Liposits, Z; Engel, J A; Egecioglu, E

    2010-12-29

    Here we sought to determine whether ghrelin's central effects on food intake can be interrupted by nicotine acetylcholine receptor (nAChR) blockade. Ghrelin regulates mesolimbic dopamine neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens, partly via cholinergic VTA afferents originating in the laterodorsal tegmental area (LDTg). Given that these cholinergic projections to the VTA have been implicated in natural as well as drug-induced reinforcement, we sought to investigate the role of cholinergic signaling in ghrelin-induced food intake as well as fasting-induced food intake, for which endogenous ghrelin has been implicated. We found that i.p. treatment with the non-selective centrally active nAChR antagonist, mecamylamine decreased fasting-induced food intake in both mice and rats. Moreover, central administration of mecamylamine decreased fasting-induced food intake in rats. I.c.v. ghrelin-induced food intake was suppressed by mecamylamine i.p. but not by hexamethonium i.p., a peripheral nAChR antagonist. Furthermore, mecamylamine i.p. blocked food intake following ghrelin injection into the VTA. Expression of the ghrelin receptor, the growth hormone secretagogue receptor 1A, was found to co-localize with choline acetyltransferase, a marker of cholinergic neurons, in the LDTg. Finally, mecamylamine treatment i.p. decreased the ability of palatable food to condition a place preference. These data suggest that ghrelin-induced food intake is partly mediated via nAChRs and that nicotinic blockade decreases the rewarding properties of food. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Improved amylose content of rice (IR72) induced through gamma radiation

    International Nuclear Information System (INIS)

    Barrida, Adelaida C.; Rivera, Faye G.; Manrique, Mary Jayne C.; Dimaano, Arvin O.; Costimiano, Eduardo C.

    2015-01-01

    In general grain quality and quality preferences vary across rice growing countries and regions. Filipinos preferres translucent, well milled, long grain rice with aroma and minimal broken grains which is soft after cooling. The amylose content of rice starch is a major eating quality factor. The aim of this study is to develop rice mutants with good eating quality and low to intermediate amylose content through induced mutation using gamma radiation. Low to intermediate amylose content in rice were identified and selected among the advance generation lines irradiated with 200 and 300Gy dose of gamma radiation. Screening was done using qualitative method (Iodine staining method). Selected lines were analyzed quantitatively, to determine the percent amylose content. Percent amylose were group to several categories where; 0-6% is waxy, 6-12% is very low, 12-18% is low, 18-24% is intermediate and >25% is high. Results were further confirmed using molecular marker technique by looking at the waxy gene which code for granule bound starch synthase I (GBSSI) and controls amylose content in rice. Among the 30 lines selcted and anaylzes, 2 lines were confirmed to have a gene base mutation with a low to intermediate amylose content. Thus, induced mutation using gamma radiation has successfully improved amylose content in rice (IR72). (author)

  12. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    Science.gov (United States)

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Implication of prostaglandins and histamine H1 and H2 receptors in radiation-induced temperature responses of rats

    International Nuclear Information System (INIS)

    Kandasamy, S.B.; Hunt, W.A.; Mickley, G.A.

    1988-01-01

    Exposure of rats to 1-15 Gy gamma radiation ( 60 Co) induced hyperthermia, whereas 20-200 Gy induced hypothermia. Exposure either to the head or to the whole body to 10 Gy induced hyperthermia, while body-only exposure produced hypothermia. This observation indicates that radiation-induced fever is a result of a direct effect on the brain. The hyperthermia due to 10 Gy was significantly attenuated by the pre- or post-treatment with a cyclooxygenase inhibitor, indomethacin. Hyperthermia was also altered by the central administration of a mu-receptor antagonist naloxone but only at low doses of radiation. These findings suggest that radiation-induced hyperthermia may be mediated through the synthesis and release of prostaglandins in the brain and to a lesser extent to the release of endogenous opioid peptides. The release of histamine acting on H1 and H2 receptors may be involved in radiation-induced hypothermia, since both the H1 receptor antagonist, mepyramine, and H2 receptor antagonist, cimetidine, antagonized the hypothermia. The results of these studies suggest that the release of neurohumoral substances induced by exposure to ionizing radiation is dose dependent and has different consequences on physiological processes such as the regulation of body temperature. Furthermore, the antagonism of radiation-induced hyperthermia by indomethacin may have potential therapeutic implications in the treatment of fever resulting from accidental irradiations

  14. The Fas/Fas ligand death receptor pathway contributes to phenylalanine-induced apoptosis in cortical neurons.

    Directory of Open Access Journals (Sweden)

    Xiaodong Huang

    Full Text Available Phenylketonuria (PKU, an autosomal recessive disorder of amino acid metabolism caused by mutations in the phenylalanine hydroxylase (PAH gene, leads to childhood mental retardation by exposing neurons to cytotoxic levels of phenylalanine (Phe. A recent study showed that the mitochondria-mediated (intrinsic apoptotic pathway is involved in Phe-induced apoptosis in cultured cortical neurons, but it is not known if the death receptor (extrinsic apoptotic pathway and endoplasmic reticulum (ER stress-associated apoptosis also contribute to neurodegeneration in PKU. To answer this question, we used specific inhibitors to block each apoptotic pathway in cortical neurons under neurotoxic levels of Phe. The caspase-8 inhibitor Z-IETD-FMK strongly attenuated apoptosis in Phe-treated neurons (0.9 mM, 18 h, suggesting involvement of the Fas receptor (FasR-mediated cell death receptor pathway in Phe toxicity. In addition, Phe significantly increased cell surface Fas expression and formation of the Fas/FasL complex. Blocking Fas/FasL signaling using an anti-Fas antibody markedly inhibited apoptosis caused by Phe. In contrast, blocking the ER stress-induced cell death pathway with salubrinal had no effect on apoptosis in Phe-treated cortical neurons. These experiments demonstrate that the Fas death receptor pathway contributes to Phe-induced apoptosis and suggest that inhibition of the death receptor pathway may be a novel target for neuroprotection in PKU patients.

  15. Comparative studies of D2 receptors and brain perfusion in hemi-parkinsonism rats

    International Nuclear Information System (INIS)

    Lin Yansong; Lin Xiangtong

    2000-01-01

    The relationship between dopamine D 2 receptors and brain perfusion in hemi-parkinsonism rats was studied. Hemi-parkinsonism rats were made by stereotaxic 6-hydroxy dopamine (6-OH-DA) lesions in substantia nigra (SN) and ventral tegmental area (VTA), apomorphine (Apo) which could induced the successful model rat rotates toward the intact side was used to select the rats, 125 I-IBZM ex-vivo autoradiography analysis and 99m Tc-HM-PAO regional cerebral biodistribution were used to evaluate D 2 receptors and cerebral blood flow. The HPLC-ECD were used to measure striatum DA and its metabolites content. The lesioned side striatum DA and its metabolites HVA DOPAC reduced significantly than that of the intact side and pseudo-operated group, striatum/cerebellum 125 I-IBZM uptake ratio was 8.04 +- 0.71 in lesioned side of hemi-parkinsonism rats, significantly increased compared with the intact side and the pseudo-operated group (p 0.05). These results indicated that in the 6-OH-DA lesioned side DA content decreased significantly and an up-regulation of striatum D 2 receptor binding sites was induced in hemi-parkinsonism rats, which showed good correlation with rotation behavior induced by Apo. Comparing with cerebral blood flow, D 2 receptor reflected by IBZM seems to be more specific and earlier to detect the cerebral functional impairment in experimental hemi-parkinsonism

  16. Pharmacokinetic-pharmacodynamic analysis of antipsychotics-induced extrapyramidal symptoms based on receptor occupancy theory incorporating endogenous dopamine release.

    Science.gov (United States)

    Matsui-Sakata, Akiko; Ohtani, Hisakazu; Sawada, Yasufumi

    2005-06-01

    We aimed to analyze the risks of extrapyramidal symptoms (EPS) induced by typical and atypical antipsychotic drugs using a common pharmacokinetic-pharmacodynamic (PK-PD) model based on the receptor occupancy. We collected the data for EPS induced by atypical antipsychotics, risperidone, olanzapine and quetiapine, and a typical antipsychotic, haloperidol from literature and analyzed the following five indices of EPS, the ratio of patients obliged to take anticholinergic medication, the occurrence rates of plural extrapyramidal symptoms (more than one of tremor, dystonia, hypokinesia, akathisia, extrapyramidal syndrome, etc.), parkinsonism, akathisia, and extrapyramidal syndrome. We tested two models, i.e., a model incorporating endogenous dopamine release owing to 5-HT2A receptor inhibition and a model not considering the endogenous dopamine release, and used them to examine the relationship between the D2 receptor occupancy of endogenous dopamine and the extent of drug-induced EPS. The model incorporating endogenous dopamine release better described the relationship between the mean D2 receptor occupancy of endogenous dopamine and the extent of EPS than the other model, as assessed by the final sum of squares of residuals (final SS) and Akaike's Information Criteria (AIC). Furthermore, the former model could appropriately predict the risks of EPS induced by two other atypical antipsychotics, clozapine and ziprasidone, which were not incorporated into the model development. The developed model incorporating endogenous dopamine release owing to 5-HT2A receptor inhibition may be useful for the prediction of antipsychotics-induced EPS.

  17. Relationship between changes of N-methyl-D-aspartate receptor activity and brain edema after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the relationship between the changes of N-methyl-D-aspartate (NMDA) receptor activity and brain edema after injury in rats.   Methods: The brain injury models were made by using a free-falling body. The treatment model was induced by means of injecting AP5 into lateral ventricle before brain injury; water contents in brain cortex were measured with dry-wet method; and NMDA receptor activity was detected with a radio ligand binding assay.   Results: The water contents began to increase at 30 minutes and reached the peak at 6 hours after brain injury. The maximal binding (Bmax) of NMDA receptor increased significantly at 15 minutes and reached the peak at 30 minutes, then decreased gradually and had the lowest value 6 hours after brain injury. Followed the treatment with AP5, NMDA receptor activity in the injured brain showed a normal value; and the water contents were lower than that of AP5-free injury group 24 hours after brain injury.   Conclusions: It suggests that excessive activation of NMDA receptor may be one of the most important factors to induce the secondary cerebral impairments, and AP5 may protect the brain from edema after brain injury.

  18. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists.

    Science.gov (United States)

    Fakhfouri, Gohar; Mousavizadeh, Kazem; Mehr, Sharam Ejtemaei; Dehpour, Ahmad Reza; Zirak, Mohammad Reza; Ghia, Jean-Eric; Rahimian, Reza

    2015-12-01

    5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to Aβ-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca(2), glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-α level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-κB, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications.

  19. Role of adrenergic receptors in the caffeine-induced increase in ...

    African Journals Online (AJOL)

    The present study was designed to investigate the effects of alpha and beta adrenergic receptor blockers on caffeine-induced increase in canine hindlimb glucose uptake. The study was carried out on fasted male anaesthetized dogs divided into five groups (5dogs per group). Each dog was given a bolus injection of normal ...

  20. Estradiol-induced increase in the magnitude of long-term potentiation is prevented by blocking NR2B-containing receptors.

    Science.gov (United States)

    Smith, Caroline C; McMahon, Lori L

    2006-08-16

    Estradiol, through activation of genomic estrogen receptors, induces changes in synaptic morphology and function in hippocampus, a brain region important for memory acquisition. Specifically, this hormone increases CA1 pyramidal cell dendritic spine density, NMDA receptor (NMDAR)-mediated transmission, and the magnitude of long-term potentiation (LTP) at CA3-CA1 synapses. We recently reported that the estradiol-induced increase in LTP magnitude occurs only when there is a simultaneous increase in the fractional contribution of NMDAR-mediated transmission relative to AMPA receptor transmission, suggesting a direct role for the increase in NMDAR transmission to the heightened LTP magnitude. Estradiol has been shown to increase expression of the NMDAR subunit NR2B, but whether this translates into an increase in function of NR2B-containing receptors remains to be determined. Here we show that not only is the estradiol-induced increase in NMDAR transmission mediated by NR2B-containing receptors, but blocking these receptors using RO25-6981 [R-(R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperidine propranol] (0.5 microM), an NR2B selective antagonist, prevents the estradiol-induced increase in LTP magnitude. Thus, our data show a causal link between the estradiol-induced increase in transmission mediated by NR2B-containing NMDARs and the increase in LTP magnitude.

  1. RECEPTOR POTENTIAL AND LIGHT-INDUCED MITOCHONDRIAL ACTIVATION IN BLOWFLY PHOTORECEPTOR MUTANTS

    NARCIS (Netherlands)

    MOJET, MH; TINBERGEN, J; STAVENGA, DG

    1991-01-01

    1. Simultaneous measurements of the receptor potential and the light-induced mitochondrial activation were performed in white-eyed blowflies Calliphora vicina, mutant chalky, and Lucilia cuprina, mutants w(F) and w'nss. The intensity dependence and the temporal dynamics were investigated. 2. The

  2. Oleoylethanolamide dose-dependently attenuates cocaine-induced behaviours through a PPARα receptor-independent mechanism.

    Science.gov (United States)

    Bilbao, Ainhoa; Blanco, Eduardo; Luque-Rojas, María Jesús; Suárez, Juan; Palomino, Ana; Vida, Margarita; Araos, Pedro; Bermúdez-Silva, Francisco J; Fernández-Espejo, Emilio; Spanagel, Rainer; Rodríguez de Fonseca, Fernando

    2013-01-01

    Oleoylethanolamide (OEA) is an acylethanolamide that acts as an agonist of nuclear peroxisome proliferator-activated receptor alpha (PPARα) to exert their biological functions, which include the regulation of appetite and metabolism. Increasing evidence also suggests that OEA may participate in the control of reward-related behaviours. However, direct experimental evidence for the role of the OEA-PPARα receptor interaction in drug-mediated behaviours, such as cocaine-induced behavioural phenotypes, is lacking. The present study explored the role of OEA and its receptor PPARα on the psychomotor and rewarding responsiveness to cocaine using behavioural tests indicative of core components of addiction. We found that acute administration of OEA (1, 5 or 20 mg/kg, i.p.) reduced spontaneous locomotor activity and attenuated psychomotor activation induced by cocaine (20 mg/kg) in C57Bl/6 mice. However, PPARα receptor knockout mice showed normal sensitization, although OEA was capable of reducing behavioural sensitization with fewer efficacies. Furthermore, conditioned place preference and reinstatement to cocaine were intact in these mice. Our results indicate that PPARα receptor does not play a critical, if any, role in mediating short- and long-term psychomotor and rewarding responsiveness to cocaine. However, further research is needed for the identification of the targets of OEA for its inhibitory action on cocaine-mediated responses. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  3. Characterization of 125ITSH binding to its receptor in thyroid hyperplasies

    International Nuclear Information System (INIS)

    Bianco, A.C.; Nunes, M.T.

    1985-01-01

    An unpredictable and unbalanced response to a stimulus like TSH is indeed a striking characteristic of the follicles of the simple goiter. Since it is known that the first step for TSH action on its target cell is binding to specific TSH plasma membrane receptors, the binding of 125 ITSH to these receptors was studied in normal and ''cold'' hyperplastic thyroid fragments obtained at surgery. Through the Scatchard analysis it was verified that there are no differences with regard to the binding capacity of TSH receptors between normal and hyperplastic tissues. On the other hand, a significant decrease of the dissociation constant (Kd) was observed in hyperplastic tissue indicating higher affinity for TSH binding. It is known that intracellular iodine content can interfere with the TSH induced modifications on the thyroid folicular cells. It is supposed that this is mediated by interference on TSH binding to its receptor and/or activation of adenylate cyclase. Due to impaired organification capacity of ''cold'' tissue it is assumed that these cells present decreased intracellular iodine content. Therefore it is proposed that alterations of TSH binding to its receptors detected in the present investigation are consequent of the low iodine content of the hyperplastic folicular cell. (author) [pt

  4. Toll-like receptor 9 is required for opioid-induced microglia apoptosis.

    Directory of Open Access Journals (Sweden)

    Lei He

    2011-04-01

    Full Text Available Opioids have been widely applied in clinics as one of the most potent pain relievers for centuries, but their abuse has deleterious physiological effects beyond addiction. However, the underlying mechanism by which microglia in response to opioids remains largely unknown. Here we show that morphine induces the expression of Toll-like receptor 9 (TLR9, a key mediator of innate immunity and inflammation. Interestingly, TLR9 deficiency significantly inhibited morphine-induced apoptosis in microglia. Similar results were obtained when endogenous TLR9 expression was suppressed by the TLR9 inhibitor CpGODN. Inhibition of p38 MAPK by its specific inhibitor SB203580 attenuated morphine-induced microglia apoptosis in wild type microglia. Morphine caused a dramatic decrease in Bcl-2 level but increase in Bax level in wild type microglia, but not in TLR9 deficient microglia. In addition, morphine treatment failed to induce an increased levels of phosphorylated p38 MAPK and MAP kinase kinase 3/6 (MKK3/6, the upstream MAPK kinase of p38 MAPK, in either TLR9 deficient or µ-opioid receptor (µOR deficient primary microglia, suggesting an involvement of MAPK and µOR in morphine-mediated TLR9 signaling. Moreover, morphine-induced TLR9 expression and microglia apoptosis appears to require μOR. Collectively, these results reveal that opioids prime microglia to undergo apoptosis through TLR9 and µOR as well. Taken together, our data suggest that inhibition of TLR9 and/or blockage of µOR is capable of preventing opioid-induced brain damage.

  5. Antipruritic Effect of Cold-induced and Transient Receptor Potential-agonist-induced Counter-irritation on Histaminergic Itch in Humans

    DEFF Research Database (Denmark)

    Andersen, Hjalte H.; Melholt, Camilla; Hilborg, Sigurd D.

    2017-01-01

    A frequent empirical observation is that cold-induced counter-irritation may attenuate itch. The aim of this randomized, single-blinded, exploratory study was to evaluate the counter-irritation effects of cold-stimulation and topical application of transient receptor potential TRPA1/M8-agonists...... and trans-cinnamaldehyde had antipruritic efficacy similar to doxepin (p Cold-induced counter-irritation had an inhibitory effect on histaminergic itch, suggesting that agonists of cold transduction receptors could be of potential antipruritic value....... (measured by laser-speckle perfusion-imaging). Homotopic thermal counter-irritation was performed with 6 temperatures, ranging from 4°C to 37°C, using a 3 × 3-cm thermal stimulator. Chemical “cold-like” counter-irritation was conducted with 40% L-menthol and 10% trans-cinnamaldehyde, while 5% doxepin...

  6. Pharmacological evaluation of SN79, a sigma (σ) receptor ligand, against methamphetamine-induced neurotoxicity in vivo.

    Science.gov (United States)

    Kaushal, Nidhi; Seminerio, Michael J; Robson, Matthew J; McCurdy, Christopher R; Matsumoto, Rae R

    2013-08-01

    Methamphetamine is a highly addictive psychostimulant drug of abuse, causing hyperthermia and neurotoxicity at high doses. Currently, there is no clinically proven pharmacotherapy to treat these effects of methamphetamine, necessitating identification of potential novel therapeutic targets. Earlier studies showed that methamphetamine binds to sigma (σ) receptors in the brain at physiologically relevant concentrations, where it "acts in part as an agonist." SN79 (6-acetyl-3-(4-(4-(4-florophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one) was synthesized as a putative σ receptor antagonist with nanomolar affinity and selectivity for σ receptors over 57 other binding sites. SN79 pretreatment afforded protection against methamphetamine-induced hyperthermia and striatal dopaminergic and serotonergic neurotoxicity in male, Swiss Webster mice (measured as depletions in striatal dopamine and serotonin levels, and reductions in striatal dopamine and serotonin transporter expression levels). In contrast, di-o-tolylguanidine (DTG), a well established σ receptor agonist, increased the lethal effects of methamphetamine, although it did not further exacerbate methamphetamine-induced hyperthermia. Together, the data implicate σ receptors in the direct modulation of some effects of methamphetamine such as lethality, while having a modulatory role which can mitigate other methamphetamine-induced effects such as hyperthermia and neurotoxicity. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  7. Anti-Inflammatory and Osteoprotective Effects of Cannabinoid-2 Receptor Agonist HU-308 in a Rat Model of Lipopolysaccharide-Induced Periodontitis.

    Science.gov (United States)

    Ossola, Cesar A; Surkin, Pablo N; Mohn, Claudia E; Elverdin, Juan C; Fernández-Solari, Javier

    2016-06-01

    Anti-inflammatory and immunologic properties of cannabinoids have been reported in several tissues. Expression of cannabinoid receptor Type 2 was reported in osteoblasts and osteoclasts, suggesting a key role in bone metabolism. The aim of this study is to assess the effect of treatment with cannabinoid-2 receptor agonist HU-308 in the oral health of rats subjected to lipopolysaccharide (LPS)-induced periodontitis. Twenty-four rats were distributed in four groups (six rats per group): 1) control rats; 2) sham rats; 3) rats submitted to experimental periodontitis (LPS); and 4) rats submitted to experimental periodontitis and treated with HU-308 (LPS+HU). In groups LPS and LPS+HU, periodontitis was induced by LPS (1 mg/mL) injected into the gingival tissue (GT) of maxillary and mandibular first molars and into the interdental space between the first and second molars, 3 days per week for 6 weeks. In group LPS+HU, HU-308 (500 ng/mL) was applied topically to the GT daily. Alveolar bone loss resulting from LPS-induced periodontitis was significantly attenuated with HU-308 treatment (LPS+HU), measured by macroscopic and histologic examination. Treatment also reduced gingival production of inflammatory mediators augmented in LPS-injected rats, such as: 1) inducible nitric oxide (iNOS) activity (LPS: 90.18 ± 36.51 pmol/minute/mg protein versus LPS+HU: 16.37 ± 4.73 pmol/minute/mg protein; P periodontitis on the salivary secretory response to pilocarpine. Moreover, iNOS activity and PGE2 content, which were increased by LPS-induced periodontitis in the submandibular gland, returned to control values after HU-308 treatment. This study demonstrates anti-inflammatory, osteoprotective, and prohomeostatic effects of HU-308 in oral tissues of rats with LPS-induced periodontitis.

  8. Stress-induced decrease of uterine blood flow in sheep is mediated by alpha 1-adrenergic receptors.

    Science.gov (United States)

    Dreiling, Michelle; Bischoff, Sabine; Schiffner, Rene; Rupprecht, Sven; Kiehntopf, Michael; Schubert, Harald; Witte, Otto W; Nathanielsz, Peter W; Schwab, Matthias; Rakers, Florian

    2016-09-01

    Prenatal maternal stress can be transferred to the fetus via a catecholamine-dependent decrease of uterine blood flow (UBF). However, it is unclear which group of adrenergic receptors mediates this mechanism of maternal-fetal stress transfer. We hypothesized that in sheep, alpha 1-adrenergic receptors may play a key role in catecholamine mediated UBF decrease, as these receptors are mainly involved in peripheral vasoconstriction and are present in significant number in the uterine vasculature. After chronic instrumentation at 125 ± 1 days of gestation (dGA; term 150 dGA), nine pregnant sheep were exposed at 130 ± 1 dGA to acute isolation stress for one hour without visual, tactile, or auditory contact with their flockmates. UBF, blood pressure (BP), heart rate (HR), stress hormones, and blood gases were determined before and during this isolation challenge. Twenty-four hours later, experiments were repeated during alpha 1-adrenergic receptor blockage induced by a continuous intravenous infusion of urapidil. In both experiments, ewes reacted to isolation with an increase in serum norepinephrine, cortisol, BP, and HR as typical signs of activation of sympatho-adrenal and the hypothalamic-pituitary-adrenal axis. Stress-induced UBF decrease was prevented by alpha 1-adrenergic receptor blockage. We conclude that UBF decrease induced by maternal stress in sheep is mediated by alpha 1-adrenergic receptors. Future studies investigating prevention strategies of impact of prenatal maternal stress on fetal health should consider selective blockage of alpha 1-receptors to interrupt maternal-fetal stress transfer mediated by utero-placental malperfusion.

  9. The oxidative potential and biological effects induced by PM10 obtained in Mexico City and at a receptor site during the MILAGRO Campaign

    International Nuclear Information System (INIS)

    Quintana, Raul; Serrano, Jesus; Gomez, Virginia; Foy, Benjamin de; Miranda, Javier; Garcia-Cuellar, Claudia; Vega, Elizabeth; Vazquez-Lopez, Ines; Molina, Luisa T.; Manzano-Leon, Natalia; Rosas, Irma; Osornio-Vargas, Alvaro R.

    2011-01-01

    As part of a field campaign that studied the impact of Mexico City pollution plume at the local, sub-regional and regional levels, we studied transport-related changes in PM 10 composition, oxidative potential and in vitro toxicological patterns (hemolysis, DNA degradation). We collected PM 10 in Mexico City (T 0 ) and at a suburban-receptor site (T 1 ), pooled according to two observed ventilation patterns (T 0 → T 1 influence and non-influence). T 0 samples contained more Cu, Zn, and carbon whereas; T 1 samples contained more of Al, Si, P, S, and K (p 4 -2 increased in T 1 during the influence periods. Oxidative potential correlated with Cu/Zn content (r = 0.74; p 1 PM 10 induced greater hemolysis and T 0 PM 10 induced greater DNA degradation. Influence/non-influence did not affect oxidative potential nor biological effects. Results indicate that ventilation patterns had little effect on intrinsic PM 10 composition and toxicological potential, which suggests a significant involvement of local sources. - Highlights: → Transport-related changes in PM 10 composition, oxidative potential and in vitro toxicity were studied. → Cu, Zn, and carbon levels were predominant in urban PM 10 ; receptor site PM 10 was rich in soil elements. → SO 4 -2 was the only component increased in PM 10 from the receptor during the influence periods. → PM 10 oxidative potential correlates with Cu/Zn content but not with studied biological effects. → Ventilation patterns had little effect on PM 10 composition and toxicity. - Mexico City ventilation patterns had little effect on the intrinsic PM 10 composition and toxicological potential, which suggests a significant involvement of local sources as opposed to downwind transport.

  10. Effects of mosapride citrate, a 5-HT4-receptor agonist, on gastric distension-induced visceromotor response in conscious rats.

    Science.gov (United States)

    Seto, Yasuhiro; Yoshida, Naoyuki; Kaneko, Hiroshi

    2011-01-01

    Mosapride citrate (mosapride), a prokinetic agent with 5-HT(4)-receptor agonistic activity, is known to enhance gastric emptying and alleviate symptoms in patients with functional dyspepsia (FD). As hyperalgesia and delayed gastric emptying play an important role in the pathogenesis of FD, we used in this study balloon gastric distension to enable abdominal muscle contractions and characterized the visceromotor response (VMR) to such distension in conscious rats. We also investigated the effects of mosapride on gastric distension-induced VMR in the same model. Mosapride (3-10 mg/kg, p.o.) dose-dependently inhibited gastric distension-induced VMR in rats. However, itopride even at 100 mg/kg failed to inhibit gastric distension-induced VMR in rats. Additionally, a major metabolite M1 of mosapride, which possesses 5-HT(3)-receptor antagonistic activity, inhibited gastric distension-induced VMR. The inhibitory effect of mosapride on gastric distension-induced visceral pain was partially, but significantly inhibited by SB-207266, a selective 5-HT(4)-receptor antagonist. This study shows that mosapride inhibits gastric distension-induced VMR in conscious rats. The inhibitory effect of mosapride is mediated via activation of 5-HT(4) receptors and blockage of 5-HT(3) receptors by a mosapride metabolite. This finding indicates that mosapride may be useful in alleviating FD-associated gastrointestinal symptoms via increase in pain threshold.

  11. Inhibition of dehydration-induced water intake by glucocorticoids is associated with activation of hypothalamic natriuretic peptide receptor-A in rat.

    Directory of Open Access Journals (Sweden)

    Chao Liu

    Full Text Available Atrial natriuretic peptide (ANP provides a potent defense mechanism against volume overload in mammals. Its primary receptor, natriuretic peptide receptor-A (NPR-A, is localized mostly in the kidney, but also is found in hypothalamic areas involved in body fluid volume regulation. Acute glucocorticoid administration produces potent diuresis and natriuresis, possibly by acting in the renal natriuretic peptide system. However, chronic glucocorticoid administration attenuates renal water and sodium excretion. The precise mechanism underlying this paradoxical phenomenon is unclear. We assume that chronic glucocorticoid administration may activate natriuretic peptide system in hypothalamus, and cause volume depletion by inhibiting dehydration-induced water intake. Volume depletion, in turn, compromises renal water excretion. To test this postulation, we determined the effect of dexamethasone on dehydration-induced water intake and assessed the expression of NPR-A in the hypothalamus. The rats were deprived of water for 24 hours to have dehydrated status. Prior to free access to water, the water-deprived rats were pretreated with dexamethasone or vehicle. Urinary volume and water intake were monitored. We found that dexamethasone pretreatment not only produced potent diuresis, but dramatically inhibited the dehydration-induced water intake. Western blotting analysis showed the expression of NPR-A in the hypothalamus was dramatically upregulated by dexamethasone. Consequently, cyclic guanosine monophosphate (the second messenger for the ANP content in the hypothalamus was remarkably increased. The inhibitory effect of dexamethasone on water intake presented in a time- and dose-dependent manner, which emerged at least after 18-hour dexamethasone pretreatment. This effect was glucocorticoid receptor (GR mediated and was abolished by GR antagonist RU486. These results indicated a possible physiologic role for glucocorticoids in the hypothalamic control of

  12. Activated human mast cells induce LOX-1-specific scavenger receptor expression in human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Mervi Alanne-Kinnunen

    Full Text Available Activated mast cells in atherosclerotic lesions degranulate and release bioactive compounds capable of regulating atherogenesis. Here we examined the ability of activated human primary mast cells to regulate the expression of the major scavenger receptors in cultured human primary monocyte-derived macrophages (HMDMs.Components released by immunologically activated human primary mast cells induced a transient expression of lectin-like oxidized LDL receptor (LOX-1 mRNA in HMDMs, while the expression of two other scavenger receptors, MSR1 and CD36, remained unaffected. The LOX-1-inducing secretory components were identified as histamine, tumor necrosis factor alpha (TNF-α, and transforming growth factor beta (TGF-β1, which exhibited a synergistic effect on LOX-1 mRNA expression. Histamine induced a transient expression of LOX-1 protein. Mast cell -induced increase in LOX-1 expression was not associated with increased uptake of oxidized LDL by the macrophages.Mast cell-derived histamine, TNF-α, and TGF-β1 act in concert to induce a transient increase in LOX-1 expression in human primary monocyte-derived macrophages. The LOX-1-inducing activity potentially endows mast cells a hitherto unrecognized role in the regulation of innate immune reactions in atherogenesis.

  13. NMDA and AMPA/kainate glutamatergic receptors in the prelimbic medial prefrontal cortex modulate the elaborated defensive behavior and innate fear-induced antinociception elicited by GABAA receptor blockade in the medial hypothalamus.

    Science.gov (United States)

    de Freitas, Renato Leonardo; Salgado-Rohner, Carlos José; Biagioni, Audrey Francisco; Medeiros, Priscila; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre S; Coimbra, Norberto Cysne

    2014-06-01

    The aim of the present study was to investigate the involvement of N-methyl-d-aspartate (NMDA) and amino-3-hydroxy-5-methyl-isoxazole-4-proprionate (AMPA)/kainate receptors of the prelimbic (PL) division of the medial prefrontal cortex (MPFC) on the panic attack-like reactions evoked by γ-aminobutyric acid-A receptor blockade in the medial hypothalamus (MH). Rats were pretreated with NaCl 0.9%, LY235959 (NMDA receptor antagonist), and NBQX (AMPA/kainate receptor antagonist) in the PL at 3 different concentrations. Ten minutes later, the MH was treated with bicuculline, and the defensive responses were recorded for 10 min. The antagonism of NMDA receptors in the PL decreased the frequency and duration of all defensive behaviors evoked by the stimulation of the MH and reduced the innate fear-induced antinociception. However, the pretreatment of the PL cortex with NBQX was able to decrease only part of defensive responses and innate fear-induced antinociception. The present findings suggest that the NMDA-glutamatergic system of the PL is critically involved in panic-like responses and innate fear-induced antinociception and those AMPA/kainate receptors are also recruited during the elaboration of fear-induced antinociception and in panic attack-related response. The activation of the glutamatergic neurotransmission of PL division of the MPFC during the elaboration of oriented behavioral reactions elicited by the chemical stimulation of the MH recruits mainly NMDA receptors in comparison with AMPA/kainate receptors.

  14. Picosecond dynamics of the glutamate receptor in response to agonist-induced vibrational excitation.

    Science.gov (United States)

    Kubo, Minoru; Shiomitsu, Eiji; Odai, Kei; Sugimoto, Tohru; Suzuki, Hideo; Ito, Etsuro

    2004-02-01

    Conformational changes of proteins are dominated by the excitation and relaxation processes of their vibrational states. To elucidate the mechanism of receptor activation, the conformation dynamics of receptors must be analyzed in response to agonist-induced vibrational excitation. In this study, we chose the bending vibrational mode of the guanidinium group of Arg485 of the glutamate receptor subunit GluR2 based on our previous studies, and we investigated picosecond dynamics of the glutamate receptor caused by the vibrational excitation of Arg485 via molecular dynamics simulations. The vibrational excitation energy in Arg485 in the ligand-binding site initially flowed into Lys730, and then into the J-helix at the subunit interface of the ligand-binding domain. Consequently, the atomic displacement in the subunit interface around an intersubunit hydrogen bond was evoked in about 3 ps. This atomic displacement may perturb the subunit packing of the receptor, triggering receptor activation. Copyright 2003 Wiley-Liss, Inc.

  15. Omeprazole and lansoprazole enantiomers induce CYP3A4 in human hepatocytes and cell lines via glucocorticoid receptor and pregnane X receptor axis.

    Science.gov (United States)

    Novotna, Aneta; Dvorak, Zdenek

    2014-01-01

    Benzimidazole drugs lansoprazole and omeprazole are used for treatment of various gastrointestinal pathologies. Both compounds cause drug-drug interactions because they activate aryl hydrocarbon receptor and induce CYP1A genes. In the current paper, we examined the effects of lansoprazole and omeprazole enantiomers on the expression of key drug-metabolizing enzyme CYP3A4 in human hepatocytes and human cancer cell lines. Lansoprazole enantiomers, but not omeprazole, were equipotent inducers of CYP3A4 mRNA in HepG2 cells. All forms (S-, R-, rac-) of lansoprazole and omeprazole induced CYP3A4 mRNA and protein in human hepatocytes. The quantitative profiles of CYP3A4 induction by individual forms of lansoprazole and omeprazole exerted enantiospecific patterns. Lansoprazole dose-dependently activated pregnane X receptor PXR in gene reporter assays, and slightly modulated rifampicin-inducible PXR activity, with similar potency for each enantiomer. Omeprazole dose-dependently activated PXR and inhibited rifampicin-inducible PXR activity. The effects of S-omeprazole were much stronger as compared to those of R-omeprazole. All forms of lansoprazole, but not omeprazole, slightly activated glucocorticoid receptor and augmented dexamethasone-induced GR transcriptional activity. Omeprazole and lansoprazole influenced basal and ligand inducible expression of tyrosine aminotransferase, a GR-target gene, in HepG2 cells and human hepatocytes. Overall, we demonstrate here that omeprazole and lansoprazole enantiomers induce CYP3A4 in HepG2 cells and human hepatocytes. The induction comprises differential interactions of omeprazole and lansoprazole with transcriptional regulators PXR and GR, and some of the effects were enantiospecific. The data presented here might be of toxicological and clinical importance, since the effects occurred in therapeutically relevant concentrations.

  16. Dopamine D1 receptors are responsible for stress-induced emotional memory deficit in mice.

    Science.gov (United States)

    Wang, Yongfu; Wu, Jing; Zhu, Bi; Li, Chaocui; Cai, Jing-Xia

    2012-03-01

    It is established that stress impairs spatial learning and memory via the hypothalamus-pituitary-adrenal axis response. Dopamine D1 receptors were also shown to be responsible for a stress-induced deficit of working memory. However, whether stress affects the subsequent emotional learning and memory is not elucidated yet. Here, we employed the well-established one-trial step-through task to study the effect of an acute psychological stress (induced by tail hanging for 5, 10, or 20 min) on emotional learning and memory, and the possible mechanisms as well. We demonstrated that tail hanging induced an obvious stress response. Either an acute tail-hanging stress or a single dose of intraperitoneally injected dopamine D1 receptor antagonist (SCH23390) significantly decreased the step-through latency in the one-trial step-through task. However, SCH23390 prevented the acute tail-hanging stress-induced decrease in the step-through latency. In addition, the effects of tail-hanging stress and/or SCH23390 on the changes in step-through latency were not through non-memory factors such as nociceptive perception and motor function. Our data indicate that the hyperactivation of dopamine D1 receptors mediated the stress-induced deficit of emotional learning and memory. This study may have clinical significance given that psychological stress is considered to play a role in susceptibility to some mental diseases such as depression and post-traumatic stress disorder.

  17. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    International Nuclear Information System (INIS)

    Vikram, Ajit; Jena, Gopabandhu

    2010-01-01

    Research highlights: →Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. →Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. →Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. →Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia (∼18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPARγ) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 ± 16.32 vs. 126.37 ± 27.07 mg/dl) and glucose intolerance (∼78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  18. Tamoxifen counteracts estradiol induced effects on striatal and hypophyseal dopamine receptors

    International Nuclear Information System (INIS)

    Ferretti, C.; Blengio, M.; Ghi, P.; Racca, S.; Genazzani, E.; Portaleone, P.

    1988-01-01

    We investigated the ability of Tamoxifen (TAM), an antiestrogen drug, to counteract the modification induced by estrogens on dopamine (DA) receptors on striatum and on adenohypophysis of ovex female rats. Subacute treatment with 17β-estradiol (E 2 ) at both low (0.1 μg/kg) and high (20 μg/kg) doses confirmed its ability to increase the number of striatal 3 H-Spiperone ( 3 H-SPI) binding sites in a dose dependent manner. By contrast in the pituitary, only high doses of estrogen were effective in reducing the number of DA receptors. We treated ovex female rats for 15 days with TAM alone or associated with E 2 , to see if these estrogenic effects could be suppressed by an antiestrogenic drug. TAM did not affect the number of striatal DA receptors, but significantly increased the adenohypophy-seal DA binding sites, without varying their affinity. No changes were observed in pituitary and striatal DA receptor density, even when TAM was injected in association with estradiol. In conclusions: TAM is able to counteract the effects estrogens have on DA receptors. However there is some evidence that it could influence the pituitary DA systems independently of it antiestrogenic activity

  19. Mechanisms underlying odorant-induced and spontaneous calcium signals in olfactory receptor neurons of spiny lobsters, Panulirus argus.

    Science.gov (United States)

    Tadesse, Tizeta; Derby, Charles D; Schmidt, Manfred

    2014-01-01

    We determined if a newly developed antennule slice preparation allows studying chemosensory properties of spiny lobster olfactory receptor neurons under in situ conditions with Ca(2+) imaging. We show that chemical stimuli reach the dendrites of olfactory receptor neurons but not their somata, and that odorant-induced Ca(2+) signals in the somata are sufficiently stable over time to allow stimulation with a substantial number of odorants. Pharmacological manipulations served to elucidate the source of odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons. Both Ca(2+) signals are primarily mediated by an influx of extracellular Ca(2+) through voltage-activated Ca(2+) channels that can be blocked by CoCl2 and the L-type Ca(2+) channel blocker verapamil. Intracellular Ca(2+) stores contribute little to odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations. The odorant-induced Ca(2+) transients as well as the spontaneous Ca(2+) oscillations depend on action potentials mediated by Na(+) channels that are largely TTX-insensitive but blocked by the local anesthetics tetracaine and lidocaine. Collectively, these results corroborate the conclusion that odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons closely reflect action potential activity associated with odorant-induced phasic-tonic responses and spontaneous bursting, respectively. Therefore, both types of Ca(2+) signals represent experimentally accessible proxies of spiking.

  20. Serotonergic-postsynaptic receptors modulate gripping-induced immobility episodes in male taiep rats.

    Science.gov (United States)

    Eguibar, José R; Cortés, M C; Ita, M L

    2009-09-01

    The Taiep rat is a myelin mutant with a motor syndrome characterized by tremor, ataxia, immobility, epilepsy, and paralysis. The rat shows a hypomyelination followed by a progressive demyelination. During immobilities taiep rats show a REM-like sleep pattern and a disorganized sleep-wake pattern suggesting taiep rats as a model of narcolepsy-cataplexy. Our study analyzed the role of postsynaptic serotonin receptors in the expression of gripping-induced immobility episodes (IEs) in 8-month-old male taiep rats. The specific postsynaptic serotonin agonist +/-1-(2,5-dimethoxy-4-iodoamphetamine hydrochloride (+/-DOI) decreased the frequency of gripping-induced IEs, but that was not the case with alpha-methyl-serotonin maleate (alpha-methyl-5HT), a nonspecific postsynaptic agonist. Although the serotonin antagonists, ketanserine and metergoline, produced a biphasic effect, first a decrease followed by an increase with higher doses, similar effects were obtained with a mean duration of gripping-induced IEs. These findings correlate with the pharmacological observations in narcoleptic dogs and humans in which serotonin-reuptake inhibitors improve cataplexy, particularly in long-term treatment that could change the serotonin receptor levels. Polysomnographic recordings showed an increase in the awakening time and a decrease in the slow wave and rapid eye movement sleep concomitant with a decrease in immobilities after use of +/-DOI, this being stronger with the highest dose. Taken together, our results show that postsynaptic serotonin receptors are involved in the modulation in gripping-induced IEs caused by the changes in the organization of the sleep-wake cycle in taiep rats. It is possible that specific agonists, without side effects, could be a useful treatment in human narcoleptic patients. 2009 Wiley-Liss, Inc.

  1. Electroacupuncture Reduces Weight Gain Induced by Rosiglitazone through PPARγ and Leptin Receptor in CNS

    Directory of Open Access Journals (Sweden)

    Xinyue Jing

    2016-01-01

    Full Text Available We investigate the effect of electroacupuncture (EA on protecting the weight gain side effect of rosiglitazone (RSG in type 2 diabetes mellitus (T2DM rats and its possible mechanism in central nervous system (CNS. Our study showed that RSG (5 mg/kg significantly increased the body weight and food intake of the T2DM rats. After six-week treatment with RSG combined with EA, body weight, food intake, and the ratio of IWAT to body weight decreased significantly, whereas the ratio of BAT to body weight increased markedly. HE staining indicated that the T2DM-RSG rats had increased size of adipocytes in their IWAT, but EA treatment reduced the size of adipocytes. EA effectively reduced the lipid contents without affecting the antidiabetic effect of RSG. Furthermore, we noticed that the expression of PPARγ gene in hypothalamus was reduced by EA, while the expressions of leptin receptor and signal transducer and activator of transcription 3 (STAT3 were increased. Our results suggest that EA is an effective approach for inhibiting weight gain in T2DM rats treated by RSG. The possible mechanism might be through increased levels of leptin receptor and STAT3 and decreased PPARγ expression, by which food intake of the rats was reduced and RSG-induced weight gain was inhibited.

  2. The role of multiple dopamine receptors in apomorphine and N-n-propylnorapomorphine-induced climbing and hypothermia.

    Science.gov (United States)

    Moore, N A; Axton, M S

    1990-03-20

    Apomorphine and N-n-propylnorapomorphine (NPA) were compared for their ability to induce stereotyped cage climbing and hypothermia in mice. Climbing behavior was produced by similar doses of apomorphine and NPA (0.625-2.5 mg/kg s.c.), whereas NPA was 43 times more potent than apomorphine in inducing a hypothermic response. SKF38393 caused a shift to the left in the dose-response curve for NPA-induced climbing, the ED50 changing from 0.98 to 0.014 mg/kg. SKF38393 had no effect on apomorphine-induced climbing behaviour. The climbing response produced by apomorphine was antagonised by both D-1 and D-2 antagonists. Climbing behaviour induced by NPA (2.5 mg/kg) could be antagonised by SCH23390 but not by clebopride, however climbing behaviour induced by a low dose of NPA (0.06 mg/kg) plus SKF38393 could be blocked by both D-1 and D-2 receptor antagonists. The hypothermic responses produced by either apomorphine or NPA could only be reversed by the selective D-2 antagonist, clebopride. These results demonstrate that dopamine agonist-induced stereotyped cage climbing requires both D-1 and D-2 receptor stimulation, whereas the hypothermic response is D-2-mediated. The results also show that it is possible to assess the relative activity of a dopamine agonist at D-1 or D-2 receptors in vivo by comparing the ability of the compound to induce hypothermia and climbing behaviour.

  3. Profound and Rapid Reduction in Body Temperature Induced by the Melanocortin Receptor Agonists

    Science.gov (United States)

    Xu, Yuanzhong; Kim, Eun Ran; Fan, Shengjie; Xia, Yan; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2014-01-01

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5′AMP. Moreover, β-adrenergic receptors (β-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII’s effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature. PMID:25065745

  4. Profound and rapid reduction in body temperature induced by the melanocortin receptor agonists.

    Science.gov (United States)

    Xu, Yuanzhong; Kim, Eun Ran; Fan, Shengjie; Xia, Yan; Xu, Yong; Huang, Cheng; Tong, Qingchun

    2014-08-22

    The melanocortin receptor 4 (MC4R) plays a major role in body weight regulation and its agonist MTII has been widely used to study the role of MC4Rs in energy expenditure promotion and feeding reduction. Unexpectedly, we observed that intraperitoneal (i.p.) administration of MTII induced a rapid reduction in both body temperature and energy expenditure, which was independent of its effect on feeding and followed by a prolonged increase in energy expenditure. The rapid reduction was at least partly mediated by brain neurons since intracerebroventricular (icv) administration of alpha melanocyte-stimulating hormone, an endogenous melanocortin receptor agonist, produced a similar response. In addition, the body temperature-lowering effect of MTII was independent of the presence of MC4Rs, but in a similar fashion to the previously shown effect on body temperature by 5'AMP. Moreover, β-adrenergic receptors (β-ARs) were required for the recovery from low body temperature induced by MTII and further pharmacological studies showed that the MTII's effect on body temperature may be partially mediated by the vasopressin V1a receptors. Collectively, our results reveal a previously unappreciated role for the melanocortin pathway in rapidly lowering body temperature. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Kokumi Substances, Enhancers of Basic Tastes, Induce Responses in Calcium-Sensing Receptor Expressing Taste Cells

    Science.gov (United States)

    Maruyama, Yutaka; Yasuda, Reiko; Kuroda, Motonaka; Eto, Yuzuru

    2012-01-01

    Recently, we reported that calcium-sensing receptor (CaSR) is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca2+ concentration ([Ca2+]i) in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca2+. CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami. PMID:22511946

  6. Reduction of GABA/sub B/ receptor binding induced by climbing fiber degeneration in the rat cerebellum

    International Nuclear Information System (INIS)

    Kato, K.; Fukuda, H.

    1985-01-01

    When the rat cerebellar climbing fibers degenerated, as induced by lesioning the inferior olive with 3-acetylpyridine (3-AP), GABA/sub B/ receptor binding determined with 3 H-(+/-)baclofen was reduced in the cerebellum but not in the cerebral cortex of rats. Computer analysis of saturation data revealed two components of the binding sites, and indicated that decrease of the binding in the cerebellum was due to reduction in receptor density, mainly of the high-affinity sites, the B/sub max/ of which was reduced to one-third that in the control animals. In vitro treatment with 3-AP, of the membranes prepared from either the cerebellum or the cerebral cortex, induced no alteration in the binding sites, thereby indicating that the alteration of GABA/sub B/ sites induced by in vivo treatment with 3-AP is not due to a direct action of 3-AP on the receptor. GABA/sub A/ and benzodiazepine receptor binding labelled with 3 H-muscimol and 3 H-diazepam, respectively, in both of brain regions was not affected by destruction of the inferior olive. These results provide evidence that some of the GABA/sub B/ sites but neither GABA/sub A/ nor benzodiazepine receptors in the cerebellum are located at the climbing fiber terminals. 28 references, 4 figures, 2 tables

  7. High content screening for G protein-coupled receptors using cell-based protein translocation assays

    DEFF Research Database (Denmark)

    Grånäs, Charlotta; Lundholt, Betina Kerstin; Heydorn, Arne

    2005-01-01

    G protein-coupled receptors (GPCRs) have been one of the most productive classes of drug targets for several decades, and new technologies for GPCR-based discovery promise to keep this field active for years to come. While molecular screens for GPCR receptor agonist- and antagonist-based drugs...... will continue to be valuable discovery tools, the most exciting developments in the field involve cell-based assays for GPCR function. Some cell-based discovery strategies, such as the use of beta-arrestin as a surrogate marker for GPCR function, have already been reduced to practice, and have been used...... as valuable discovery tools for several years. The application of high content cell-based screening to GPCR discovery has opened up additional possibilities, such as direct tracking of GPCRs, G proteins and other signaling pathway components using intracellular translocation assays. These assays provide...

  8. IgG receptor FcγRIIB plays a key role in obesity-induced hypertension.

    Science.gov (United States)

    Sundgren, Nathan C; Vongpatanasin, Wanpen; Boggan, Brigid-Meghan D; Tanigaki, Keiji; Yuhanna, Ivan S; Chambliss, Ken L; Mineo, Chieko; Shaul, Philip W

    2015-02-01

    There is a well-recognized association between obesity, inflammation, and hypertension. Why obesity causes hypertension is poorly understood. We previously demonstrated using a C-reactive protein (CRP) transgenic mouse that CRP induces hypertension that is related to NO deficiency. Our prior work in cultured endothelial cells identified the Fcγ receptor IIB (FcγRIIB) as the receptor for CRP whereby it antagonizes endothelial NO synthase. Recognizing known associations between CRP and obesity and hypertension in humans, in the present study we tested the hypothesis that FcγRIIB plays a role in obesity-induced hypertension in mice. Using radiotelemetry, we first demonstrated that the hypertension observed in transgenic mouse-CRP is mediated by the receptor, indicating that FcγRIIB is capable of modifying blood pressure. We then discovered in a model of diet-induced obesity yielding equal adiposity in all study groups that whereas FcγRIIB(+/+) mice developed obesity-induced hypertension, FcγRIIB(-/-) mice were fully protected. Levels of CRP, the related pentraxin serum amyloid P component which is the CRP-equivalent in mice, and total IgG were unaltered by diet-induced obesity; FcγRIIB expression in endothelium was also unchanged. However, whereas IgG isolated from chow-fed mice had no effect, IgG from high-fat diet-fed mice inhibited endothelial NO synthase in cultured endothelial cells, and this was an FcγRIIB-dependent process. Thus, we have identified a novel role for FcγRIIB in the pathogenesis of obesity-induced hypertension, independent of processes regulating adiposity, and it may entail an IgG-induced attenuation of endothelial NO synthase function. Approaches targeting FcγRIIB may potentially offer new means to treat hypertension in obese individuals. © 2014 American Heart Association, Inc.

  9. IgG Receptor FcγRIIB Plays a Key Role in Obesity-Induced Hypertension

    Science.gov (United States)

    Sundgren, Nathan C.; Vongpatanasin, Wanpen; Boggan, Brigid-Meghan D.; Tanigaki, Keiji; Yuhanna, Ivan S.; Chambliss, Ken L.; Mineo, Chieko; Shaul, Philip W.

    2015-01-01

    There is a well-recognized association between obesity, inflammation, and hypertension. Why obesity causes hypertension is poorly understood. We previously demonstrated using a C-reactive protein (CRP) transgenic mouse that CRP induces hypertension that is related to NO deficiency. Our prior work in cultured endothelial cells identified the Fcγ receptor IIB (FcγRIIB) as the receptor for CRP whereby it antagonizes endothelial NO synthase. Recognizing known associations between CRP and obesity and hypertension in humans, in the present study we tested the hypothesis that FcγRIIB plays a role in obesity-induced hypertension in mice. Using radiotelemetry, we first demonstrated that the hypertension observed in transgenic mouse-CRP is mediated by the receptor, indicating that FcγRIIB is capable of modifying blood pressure. We then discovered in a model of diet-induced obesity yielding equal adiposity in all study groups that whereas FcγRIIB+/+ mice developed obesity-induced hypertension, FcγRIIB−/− mice were fully protected. Levels of CRP, the related pentraxin serum amyloid P component which is the CRP-equivalent in mice, and total IgG were unaltered by diet-induced obesity; FcγRIIB expression in endothelium was also unchanged. However, whereas IgG isolated from chow-fed mice had no effect, IgG from high-fat diet–fed mice inhibited endothelial NO synthase in cultured endothelial cells, and this was an FcγRIIB-dependent process. Thus, we have identified a novel role for FcγRIIB in the pathogenesis of obesity-induced hypertension, independent of processes regulating adiposity, and it may entail an IgG-induced attenuation of endothelial NO synthase function. Approaches targeting FcγRIIB may potentially offer new means to treat hypertension in obese individuals. PMID:25368023

  10. Involvement of growth factors and their receptors in radon-induced rat lung tumors

    International Nuclear Information System (INIS)

    Leung, F.C.; Dagle, G.E.; Cross, F.T.

    1992-01-01

    In this paper we examine the role of growth factors (GF) and their receptors (GFR) in radon-induced rat lung tumors. Inhalation exposure of radon and its daughters induced lung tumors in rats, but the molecule/cellular mechanisms are not known. Recent evidence suggests that GF/GFR play a critical role in the growth and development of lung cancer in humans and animals. We have developed immunocytochemical methods for identifying sites of production and action of GF/GFR at the cellular level; for example, the avidin-biotin horseradish peroxidase technique. In radon-induced rat epidermoid carcinomas, epidermal growth factor (EGF), EGF-receptors (EGF-R), transforming growth factor alpha (TGF-α), and bombesin were found to be abnormally expressed. These abnormal expressions, mainly associated with epidermoid carcinomas of the lung, were not found in any other lung tumor types. Our data suggest that EGF, EGF-R, TGF-α, and bombesin are involved in radon oncogenesis in rat lungs, especially in epidermoid carcinomas, possibly through the autocrine/paracrine pathway

  11. Ligand-Induced Dynamics of Neurotrophin Receptors Investigated by Single-Molecule Imaging Approaches

    Science.gov (United States)

    Marchetti, Laura; Luin, Stefano; Bonsignore, Fulvio; de Nadai, Teresa; Beltram, Fabio; Cattaneo, Antonino

    2015-01-01

    Neurotrophins are secreted proteins that regulate neuronal development and survival, as well as maintenance and plasticity of the adult nervous system. The biological activity of neurotrophins stems from their binding to two membrane receptor types, the tropomyosin receptor kinase and the p75 neurotrophin receptors (NRs). The intracellular signalling cascades thereby activated have been extensively investigated. Nevertheless, a comprehensive description of the ligand-induced nanoscale details of NRs dynamics and interactions spanning from the initial lateral movements triggered at the plasma membrane to the internalization and transport processes is still missing. Recent advances in high spatio-temporal resolution imaging techniques have yielded new insight on the dynamics of NRs upon ligand binding. Here we discuss requirements, potential and practical implementation of these novel approaches for the study of neurotrophin trafficking and signalling, in the framework of current knowledge available also for other ligand-receptor systems. We shall especially highlight the correlation between the receptor dynamics activated by different neurotrophins and the respective signalling outcome, as recently revealed by single-molecule tracking of NRs in living neuronal cells. PMID:25603178

  12. GPR30 is necessary for estradiol-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the rat hypothalamus.

    Science.gov (United States)

    McAllister, C E; Creech, R D; Kimball, P A; Muma, N A; Li, Q

    2012-08-01

    Estrogen therapy used in combination with selective serotonin reuptake inhibitor (SSRI) treatment improves SSRI efficacy for the treatment of mood disorders. Desensitization of serotonin 1A (5-HT(1A)) receptors, which takes one to two weeks to develop in animals, is necessary for SSRI therapeutic efficacy. Estradiol modifies 5-HT(1A) receptor signaling and induces a partial desensitization in the paraventricular nucleus (PVN) of the rat within two days, but the mechanisms underlying this effect are currently unknown. The purpose of this study was to identify the estrogen receptor necessary for estradiol-induced 5-HT(1A) receptor desensitization. We previously showed that estrogen receptor β is not necessary for 5-HT(1A) receptor desensitization and that selective activation of estrogen receptor GPR30 mimics the effects of estradiol in rat PVN. Here, we used a recombinant adenovirus containing GPR30 siRNAs to decrease GPR30 expression in the PVN. Reduction of GPR30 prevented estradiol-induced desensitization of 5-HT(1A) receptor as measured by hormonal responses to the selective 5-HT(1A) receptor agonist, (+)8-OH-DPAT. To determine the possible mechanisms underlying these effects, we investigated protein and mRNA levels of 5-HT(1A) receptor signaling components including 5-HT(1A) receptor, Gαz, and RGSz1. We found that two days of estradiol increased protein and mRNA expression of RGSz1, and decreased 5-HT(1A) receptor protein but increased 5-HT(1A) mRNA; GPR30 knockdown prevented the estradiol-induced changes in 5-HT(1A) receptor protein in the PVN. Taken together, these data demonstrate that GPR30 is necessary for estradiol-induced changes in the 5-HT(1A) receptor signaling pathway and desensitization of 5-HT(1A) receptor signaling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. 17β-Estradiol-induced cell proliferation requires estrogen receptor (ER) α monoubiquitination.

    Science.gov (United States)

    La Rosa, Piergiorgio; Pesiri, Valeria; Marino, Maria; Acconcia, Filippo

    2011-07-01

    Protein monoubiquitination (monoUbq) (i.e., the attachment of one single ubiquitin to the substrate) is a non-proteolytic reversible modification that controls protein functions. Among other proteins, the estrogen receptor α (ERα), which mediates the pleiotropic effects of the cognate hormone 17β-estradiol (E2), is a monoubiquitinated protein. Although it has been demonstrated that E2 rapidly reduces ERα monoUbq in breast cancer cells, the impact of monoUbq in the regulation of the ERα activities is poorly appreciated. Here, we show that mutation of the ERα monoUbq sites prevents the E2-induced ERα phosphorylation in the serine residue 118 (S118), reduces ERα transcriptional activity, and precludes the ERα-mediated extranuclear activation of signaling pathways (i.e., AKT activation) thus impeding the E2-induced cyclin D1 promoter activation and consequently cell proliferation. In addition, the interference with ERα monoUbq deregulates E2-induced association of ERα to the insulin like growth factor receptor (IGF-1-R). Altogether these data demonstrate an inherent role for monoUbq in ERα signaling and point to the physiological function of ERα monoUbq in the regulation of E2-induced cell proliferation. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Clinical Value of Thyrotropin Receptor Antibodies for the Differential Diagnosis of Interferon Induced Thyroiditis.

    Science.gov (United States)

    Benaiges, D; Garcia-Retortillo, M; Mas, A; Cañete, N; Broquetas, T; Puigvehi, M; Chillarón, J J; Flores-Le Roux, J A; Sagarra, E; Cabrero, B; Zaffalon, D; Solà, R; Pedro-Botet, J; Carrión, J A

    2016-01-01

    The clinical value of thyrotropin receptor antibodies for the differential diagnosis of thyrotoxicosis induced by pegylated interferon-alpha remains unknown. We analyzed the diagnostic accuracy of thyrotropin receptor antibodies in the differential diagnosis of thyrotoxicosis in patients with chronic hepatitis C (CHC) receiving pegylated interferon-alpha plus ribavirin. Retrospective analysis of 274 patients with CHC receiving pegylated interferon-alpha plus ribavirin. Interferon-induced thyrotoxicosis was classified according to clinical guidelines as Graves disease, autoimmune and non- autoimmune destructive thyroiditis. 48 (17.5%) patients developed hypothyroidism, 17 (6.2%) thyrotoxicosis (6 non- autoimmune destructive thyroiditis, 8 autoimmune destructive thyroiditis and 3 Graves disease) and 22 "de novo" thyrotropin receptor antibodies (all Graves disease, 2 of the 8 autoimmune destructive thyroiditis and 17 with normal thyroid function). The sensitivity and specificity of thyrotropin receptor antibodies for Graves disease diagnosis in patients with thyrotoxicosis were 100 and 85%, respectively. Patients with destructive thyroiditis developed hypothyroidism in 87.5% of autoimmune cases and in none of those with a non- autoimmune etiology (pthyroid scintigraphy for the differential diagnosis of thyrotoxicosis in CHC patients treated with pegylated interferon. © Georg Thieme Verlag KG Stuttgart · New York.

  15. The effects of MEK1/2 inhibition on cigarette smoke exposure-induced ET receptor upregulation in rat cerebral arteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei [Division of Experimental Vascular Research, Institute of Clinical Sciences in Lund, Lund University (Sweden); Department of Pharmacology, School of Basic Medical Sciences, Xi' an Jiaotong University Health Science Center, Xi' an, Shaanxi (China); Ping, Na-Na; Cao, Yong-Xiao [Department of Pharmacology, School of Basic Medical Sciences, Xi' an Jiaotong University Health Science Center, Xi' an, Shaanxi (China); Li, Wei, E-mail: 13572512207@163.com [Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an, Shaanxi (China); Cai, Yan [Department of Pharmacology, School of Basic Medical Sciences, Xi' an Jiaotong University Health Science Center, Xi' an, Shaanxi (China); Warfvinge, Karin; Edvinsson, Lars [Division of Experimental Vascular Research, Institute of Clinical Sciences in Lund, Lund University (Sweden)

    2016-08-01

    Cigarette smoking, a major stroke risk factor, upregulates endothelin receptors in cerebral arteries. The present study examined the effects of MEK1/2 pathway inhibition on cigarette smoke exposure-induced ET receptor upregulation. Rats were exposed to the secondhand smoke (SHS) for 8 weeks followed by intraperitoneal injection of MEK1/2 inhibitor, U0126 for another 4 weeks. The urine cotinine levels were assessed with high-performance liquid chromatography. Contractile responses of isolated cerebral arteries were recorded by a sensitive wire myograph. The mRNA and protein expression levels of receptor and MEK/ERK1/2 pathway molecules were examined by real-time PCR and Western blotting, respectively. Cerebral artery receptor localization was determined with immunohistochemistry. The results showed the urine cotinine levels from SHS exposure group were significantly higher than those from the fresh group. In addition, the MEK1/2 inhibitor, U0126 significantly reduced SHS exposure-increased ET{sub A} receptor mRNA and protein levels as well as contractile responses mediated by ET{sub A} receptors. The immunoreactivity of increased ET{sub A} receptor expression was primarily cytoplasmic in smooth muscle cells. In contrast, ET{sub B} receptor was noted in endothelial cells. However, the SHS-induced decrease in endothelium-dependent relaxation was unchanged after U0126 treatment. Furthermore, SHS increased the phosphorylation of MEK1/2 and ERK1/2 protein in cerebral arteries. By using U0126 could inhibit the phosphorylated ERK1/2 protein but not MEK1/2. Taken together, our data show that treatment with MEK1/2 pathway inhibitor offsets SHS exposure-induced ET{sub A} receptor upregulation in rat cerebral arteries. - Highlights: • Cigarette smoke exposure induces ET{sub A} receptor upregulation in rat cerebral arteries. • U0126 can alleviate the receptor upregulation. • The mechanism relies on MEK/ERK1/2 pathway activation. • We may provide a new target for the

  16. The effects of MEK1/2 inhibition on cigarette smoke exposure-induced ET receptor upregulation in rat cerebral arteries

    International Nuclear Information System (INIS)

    Cao, Lei; Ping, Na-Na; Cao, Yong-Xiao; Li, Wei; Cai, Yan; Warfvinge, Karin; Edvinsson, Lars

    2016-01-01

    Cigarette smoking, a major stroke risk factor, upregulates endothelin receptors in cerebral arteries. The present study examined the effects of MEK1/2 pathway inhibition on cigarette smoke exposure-induced ET receptor upregulation. Rats were exposed to the secondhand smoke (SHS) for 8 weeks followed by intraperitoneal injection of MEK1/2 inhibitor, U0126 for another 4 weeks. The urine cotinine levels were assessed with high-performance liquid chromatography. Contractile responses of isolated cerebral arteries were recorded by a sensitive wire myograph. The mRNA and protein expression levels of receptor and MEK/ERK1/2 pathway molecules were examined by real-time PCR and Western blotting, respectively. Cerebral artery receptor localization was determined with immunohistochemistry. The results showed the urine cotinine levels from SHS exposure group were significantly higher than those from the fresh group. In addition, the MEK1/2 inhibitor, U0126 significantly reduced SHS exposure-increased ET A receptor mRNA and protein levels as well as contractile responses mediated by ET A receptors. The immunoreactivity of increased ET A receptor expression was primarily cytoplasmic in smooth muscle cells. In contrast, ET B receptor was noted in endothelial cells. However, the SHS-induced decrease in endothelium-dependent relaxation was unchanged after U0126 treatment. Furthermore, SHS increased the phosphorylation of MEK1/2 and ERK1/2 protein in cerebral arteries. By using U0126 could inhibit the phosphorylated ERK1/2 protein but not MEK1/2. Taken together, our data show that treatment with MEK1/2 pathway inhibitor offsets SHS exposure-induced ET A receptor upregulation in rat cerebral arteries. - Highlights: • Cigarette smoke exposure induces ET A receptor upregulation in rat cerebral arteries. • U0126 can alleviate the receptor upregulation. • The mechanism relies on MEK/ERK1/2 pathway activation. • We may provide a new target for the treatment of SHS

  17. Noradrenaline, oxymetazoline and phorbol myristate acetate induce distinct functional actions and phosphorylation patterns of α1A-adrenergic receptors.

    Science.gov (United States)

    Alcántara-Hernández, Rocío; Hernández-Méndez, Aurelio; Romero-Ávila, M Teresa; Alfonzo-Méndez, Marco A; Pupo, André S; García-Sáinz, J Adolfo

    2017-12-01

    In LNCaP cells that stably express α 1A -adrenergic receptors, oxymetazoline increased intracellular calcium and receptor phosphorylation, however, this agonist was a weak partial agonist, as compared to noradrenaline, for calcium signaling. Interestingly, oxymetazoline-induced receptor internalization and desensitization displayed greater effects than those induced by noradrenaline. Phorbol myristate acetate induced modest receptor internalization and minimal desensitization. α 1A -Adrenergic receptor interaction with β-arrestins (colocalization/coimmunoprecipitation) was induced by noradrenaline and oxymetazoline and, to a lesser extent, by phorbol myristate acetate. Oxymetazoline was more potent and effective than noradrenaline in inducing ERK 1/2 phosphorylation. Mass spectrometric analysis of immunopurified α 1A -adrenergic receptors from cells treated with adrenergic agonists and the phorbol ester clearly showed that phosphorylated residues were present both at the third intracellular loop and at the carboxyl tail. Distinct phosphorylation patterns were observed under the different conditions. The phosphorylated residues were: a) Baseline and all treatments: T233; b) noradrenaline: S220, S227, S229, S246, S250, S389; c) oxymetazoline: S227, S246, S381, T384, S389; and d) phorbol myristate acetate: S246, S250, S258, S351, S352, S401, S402, S407, T411, S413, T451. Our novel data, describing the α 1A -AR phosphorylation sites, suggest that the observed different phosphorylation patterns may participate in defining adrenoceptor localization and action, under the different conditions examined. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Activation of vascular cholinergic and adrenergic receptors induced by gamma rays

    International Nuclear Information System (INIS)

    Alya, G.

    1999-10-01

    Activation of vascular cholinergic receptors and adrenoceptors plays an important role in vasomotoricity and peripheric vascular resistance. These factors are essential in maintaining a stable blood pressure. The aim of this study is to investigate the radiosensitivity differences between vascular cholinergic receptors and adrenoceptors, and consequently to determinate the effects of ionizing radiation (whole body irradiation) on contractile response regulation of vascular smooth muscle fibers VSMF isolated from rat portal vein. Our results show that Clonidine, (non-specific adrenergic agonist), and phenylephrine which is more specific α1-adrenoceptor agonist, increase the VSMF contractions. The maximum effect is obtained at 10 -5 - 3.10 -5 M. On irradiated rats (1-3-5 Gy), there is an important shift thus, the maximal response (E m ax) can be obtained in lower concentrations of clonidine and phenylephrine. Irradiation deceases the contractile responses of VSMF mediated by cholinergic stimulation, in a dose dependant manner. With E m ax 1 Gy>E m ax 3 Gy>E m ax 5 Gy. Irradiated muscular fibers became less sensitive to acetylcholine, thus 3.10 -8 M. A. ch induced more than 50% of contraction force increase in normal conditions. This concentration induce generally a negligible effect after irradiation. The results reveal the existence of radiosensitivity differences between vascular cholinergic and adrenergic receptors. (author)

  19. Effects of mecamylamine (a nicotinic receptor antagonist on harman induced-amnesia in an inhibitory avoidance test

    Directory of Open Access Journals (Sweden)

    Mohammad Nasehi

    2011-10-01

    Full Text Available Introduction: β-carbolines alkaloids suchv as harmane have been found in common plant-derived foodstuffs (wheat, rice, corn, barley, grape and mushrooms. These alkaloids have many cognitive effects including alteration short and long term memory. In the present study, the effect of intra-CA1 injection of the nicotinic receptor antagonist mecamylamine on amnesia induced by harmane was examined in mice. Materials and Methods: Mice were bilaterally implanted with chronic cannulae in the CA1 regions of the dorsal hippocampus. One week after cannulae implantation, mice were trained in a step-down type inhibitory avoidance task, and were tested 24 h after training to measure step-down latency as a scale of memory. Results: Pre-training or post-training systemic injection of harmane induced amnesia. Pre-testing intra-dorsal hippocampus administration of the high dose of nicotinic receptor antagonist, mecamylamine (4 µg/mice also induced amnesia. On the other hand, pre-test intra-CA1 injection of ineffective doses of mecamylamine (0.5, 1 and 2 µg/mice fully restored harmane induced amnesia. Conclusion: The present finding in this study indicated that a complex interaction exists between nicotinic receptor of dorsal hippocampus and amnesia induced by Harmane.

  20. Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor

    Science.gov (United States)

    Stamateris, Rachel E.; Sharma, Rohit B.; Kong, Yahui; Ebrahimpour, Pantea; Panday, Deepika; Ranganath, Pavana; Zou, Baobo; Levitt, Helena; Parambil, Nisha Abraham; O’Donnell, Christopher P.; García-Ocaña, Adolfo

    2016-01-01

    An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces β-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced β-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal–related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced β-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation. PMID:26740601

  1. MLN64 induces mitochondrial dysfunction associated with increased mitochondrial cholesterol content

    Directory of Open Access Journals (Sweden)

    Elisa Balboa

    2017-08-01

    Full Text Available MLN64 is a late endosomal cholesterol-binding membrane protein that has been implicated in cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria, in toxin-induced resistance, and in mitochondrial dysfunction. Down-regulation of MLN64 in Niemann-Pick C1 deficient cells decreased mitochondrial cholesterol content, suggesting that MLN64 functions independently of NPC1. However, the role of MLN64 in the maintenance of endosomal cholesterol flow and intracellular cholesterol homeostasis remains unclear. We have previously described that hepatic MLN64 overexpression increases liver cholesterol content and induces liver damage. Here, we studied the function of MLN64 in normal and NPC1-deficient cells and we evaluated whether MLN64 overexpressing cells exhibit alterations in mitochondrial function. We used recombinant-adenovirus-mediated MLN64 gene transfer to overexpress MLN64 in mouse liver and hepatic cells; and RNA interference to down-regulate MLN64 in NPC1-deficient cells. In MLN64-overexpressing cells, we found increased mitochondrial cholesterol content and decreased glutathione (GSH levels and ATPase activity. Furthermore, we found decreased mitochondrial membrane potential and mitochondrial fragmentation and increased mitochondrial superoxide levels in MLN64-overexpressing cells and in NPC1-deficient cells. Consequently, MLN64 expression was increased in NPC1-deficient cells and reduction of its expression restore mitochondrial membrane potential and mitochondrial superoxide levels. Our findings suggest that MLN64 overexpression induces an increase in mitochondrial cholesterol content and consequently a decrease in mitochondrial GSH content leading to mitochondrial dysfunction. In addition, we demonstrate that MLN64 expression is increased in NPC cells and plays a key role in cholesterol transport into the mitochondria.

  2. Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury

    OpenAIRE

    Fang, Huang; Wang, Peng-Fei; Zhou, Yu; Wang, Yan-Chun; Yang, Qing-Wu

    2013-01-01

    Intracerebral hemorrhage (ICH) is a common type of fatal stroke, accounting for about 15% to 20% of all strokes. Hemorrhagic strokes are associated with high mortality and morbidity, and increasing evidence shows that innate immune responses and inflammatory injury play a critical role in ICH-induced neurological deficits. However, the signaling pathways involved in ICH-induced inflammatory responses remain elusive. Toll-like receptor 4 (TLR4) belongs to a large family of pattern recognition ...

  3. Different serotonin receptor types participate in 5-hydroxytryptophan-induced gonadotropins and prolactin release in the female infantile rat.

    Science.gov (United States)

    Lacau-Mengido, I M; Libertun, C; Becú-Villalobos, D

    1996-05-01

    Serotonin (5-HT) receptors can be classified into at least three, possibly up to seven, classes of receptors. They comprise the 5-HT1, 5-HT2, and 5-HT3 classes, the "uncloned' 5-HT4 receptor and the recombinant receptors 5-ht5, 5-ht6 and 5-ht7. We investigated the role of different serotonin receptor types in a neuroendocrine response to the activation of the serotonergic system. Female immature rats were chosen as an experimental model as it has been shown that during the 3rd week of life, and not at later developmental stages, 5-hydroxytryptophan (5-HTP, a serotonin precursor) induces gonadotropin release in females and not in males. Besides, at this age, serotonin releases prolactin in both sexes. 5-HTP (50 mg/kg) released prolactin, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) as expected. Ketanserin (5-HT2A antagonist) and methysergide (5-HT2C antagonist) blocked 5-HTP-induced prolactin release, but did not block the LH or FSH responses. Ondansetron (5-HT3 receptor antagonist) did not modify prolactin response to 5-HTP, whereas it blocked 5-HTP-induced LH and FSH release. Propranolol (5-HT1 and beta-adrenergic antagonist) blocked prolactin, LH and FSH release induced by 5-HTP. The 5-HT2C agonist 1-(3-chlorophenyl)piperazine dihydrochloride released prolactin, without modifying LH or FSH release. Methyl-quipazine and phenylbiguanide (5-HT3 agonists) increased both LH and FSH levels, without altering prolactin secretion. The present experiments indicate that serotonin acting at the 5-HT3 receptor mediates LH and FSH release in infantile female rats, whereas 5-HT2C or 2A receptor types participate in the release of prolactin at this age. 5-HT1 receptor type may be involved in the release of the three hormones, though a beta-adrenergic component of the response cannot be discarded.

  4. Peripheral-specific y2 receptor knockdown protects mice from high-fat diet-induced obesity.

    Science.gov (United States)

    Shi, Yan-Chuan; Lin, Shu; Castillo, Lesley; Aljanova, Aygul; Enriquez, Ronaldo F; Nguyen, Amy D; Baldock, Paul A; Zhang, Lei; Bijker, Martijn S; Macia, Laurence; Yulyaningsih, Ernie; Zhang, Hui; Lau, Jackie; Sainsbury, Amanda; Herzog, Herbert

    2011-11-01

    Y2 receptors, particularly those in the brain, have been implicated in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone mass. Recent evidence also indicates a role for Y2 receptors in peripheral tissues in this process by promoting adipose tissue accretion; however their effects on energy balance remain unclear. Here, we show that adult-onset conditional knockdown of Y2 receptors predominantly in peripheral tissues results in protection against diet-induced obesity accompanied by significantly reduced weight gain, marked reduction in adiposity and improvements in glucose tolerance without any adverse effect on lean mass or bone. These changes occur in association with significant increases in energy expenditure, respiratory exchange ratio, and physical activity and despite concurrent hyperphagia. On a chow diet, knockdown of peripheral Y2 receptors results in increased respiratory exchange ratio and physical activity with no effect on lean or bone mass, but decreases energy expenditure without effecting body weight or food intake. These results suggest that peripheral Y2 receptor signaling is critical in the regulation of oxidative fuel selection and physical activity and protects against the diet-induced obesity. The lack of effects on bone mass seen in this model further indicates that bone mass is primarily controlled by non-peripheral Y2 receptors. This study provides evidence that novel drugs that target peripheral rather than central Y2 receptors could provide benefits for the treatment of obesity and glucose intolerance without adverse effects on lean and bone mass, with the additional benefit of avoiding side effects often associated with pharmaceuticals that act on the central nervous system.

  5. Ionotropic glutamate receptors mediate inducible defense in the water flea Daphnia pulex.

    Directory of Open Access Journals (Sweden)

    Hitoshi Miyakawa

    Full Text Available Phenotypic plasticity is the ability held in many organisms to produce different phenotypes with a given genome in response to environmental stimuli, such as temperature, nutrition and various biological interactions. It seems likely that environmental signals induce a variety of mechanistic responses that influence ontogenetic processes. Inducible defenses, in which prey animals alter their morphology, behavior and/or other traits to help protect against direct or latent predation threats, are among the most striking examples of phenotypic plasticity. The freshwater microcrustacean Daphnia pulex forms tooth-like defensive structures, "neckteeth," in response to chemical cues or signals, referred to as "kairomones," in this case released from phantom midge larvae, a predator of D. pulex. To identify factors involved in the reception and/or transmission of a kairomone, we used microarray analysis to identify genes up-regulated following a short period of exposure to the midge kairomone. In addition to identifying differentially expressed genes of unknown function, we also found significant up-regulation of genes encoding ionotropic glutamate receptors, which are known to be involved in neurotransmission in many animal species. Specific antagonists of these receptors strongly inhibit the formation of neckteeth in D. pulex, although agonists did not induce neckteeth by themselves, indicating that ionotropic glutamate receptors are necessary but not sufficient for early steps of neckteeth formation in D. pulex. Moreover, using co-exposure of D. pulex to antagonists and juvenile hormone (JH, which physiologically mediates neckteeth formation, we found evidence suggesting that the inhibitory effect of antagonists is not due to direct inhibition of JH synthesis/secretion. Our findings not only provide a candidate molecule required for the inducible defense response in D. pulex, but also will contribute to the understanding of complex mechanisms

  6. Tamoxifen counteracts estradiol induced effects on striatal and hypophyseal dopamine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, C.; Blengio, M.; Ghi, P.; Racca, S.; Genazzani, E.; Portaleone, P.

    1988-01-01

    We investigated the ability of Tamoxifen (TAM), an antiestrogen drug, to counteract the modification induced by estrogens on dopamine (DA) receptors on striatum and on adenohypophysis of ovex female rats. Subacute treatment with 17..beta..-estradiol (E/sub 2/) at both low (0.1 ..mu..g/kg) and high (20 ..mu..g/kg) doses confirmed its ability to increase the number of striatal /sup 3/H-Spiperone (/sup 3/H-SPI) binding sites in a dose dependent manner. By contrast in the pituitary, only high doses of estrogen were effective in reducing the number of DA receptors. We treated ovex female rats for 15 days with TAM alone or associated with E/sub 2/, to see if these estrogenic effects could be suppressed by an antiestrogenic drug. TAM did not affect the number of striatal DA receptors, but significantly increased the adenohypophy-seal DA binding sites, without varying their affinity. No changes were observed in pituitary and striatal DA receptor density, even when TAM was injected in association with estradiol. In conclusions: TAM is able to counteract the effects estrogens have on DA receptors. However there is some evidence that it could influence the pituitary DA systems independently of it antiestrogenic activity.

  7. Guanine nucleotide regulation of dopamine receptor agonist affinity states in rat estradiol-induced pituitary tumors

    International Nuclear Information System (INIS)

    Di Paolo, T.; Falardeau, P.

    1987-01-01

    The authors have investigated dopamine (DA) receptor agonist high- and low-affinity states in female rate estradiol-induced prolactin (PRL)-secreting pituitary tumors and intact pituitary tissue. Estradiol treatment increased the anterior pituitary weight 9-fold and plasma prolactin levels 74-fold and these measures are correlated (R = 0.745, n = 73, p 3 H]-spiperone binding to the DA receptor by apomorphine was compared in normal and adenomatous pituitary tissue. The inhibition constants (Ki) and the proportions of the two apomorphine sites are unchanged in tumors compared to intact pituitary tissue. Guanosine 5'-[β-γ-imino]triphosphate (Gpp(NH)p) causes complete conversion of the high into low affinity dopaminergic agonist site in normal pituitary and in tumors. These results suggest that rats with primary estradiol-induced pituitary tumors have normal and functional DA receptors. 9 references, 2 tables

  8. Agonist-induced affinity alterations of a central nervous system. cap alpha. -bungarotoxin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, R.J.; Bennett, E.L.

    1979-01-01

    The ability of cholinergic agonists to block the specific interaction of ..cap alpha..-bungarotoxin (..cap alpha..-Bgt) with membrane-bound sites derived from rat brain is enhanced when membranes are preincubated with agonist. Thus, pretreatment of ..cap alpha..-Bgt receptors with agonist (but not antagonist) causes transformation of sites to a high-affinity form toward agonist. This change in receptor state occurs with a half-time on the order of minutes, and is fully reversible on dilution of agonist. The results are consistent with the identity of ..cap alpha..-Bgt binding sites as true central nicotinic acetylcholine receptors. Furthermore, this agonist-induced alteration in receptor state may represent an in vitro correlate of physiological desensitization. As determined from the effects of agonist on toxin binding isotherms, and on the rate of toxin binding to specific sites, agonist inhibition of toxin binding to the high-affinity state is non-competitive. This result suggests that there may exist discrete toxin-binding and agonist-binding sites on central toxin receptors.

  9. Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor

    Science.gov (United States)

    Walterscheid, Jeffrey P.; Nghiem, Dat X.; Kazimi, Nasser; Nutt, Leta K.; McConkey, David J.; Norval, Mary; Ullrich, Stephen E.

    2006-01-01

    Exposure to UV radiation induces skin cancer and suppresses the immune response. To induce immune suppression, the electromagnetic energy of UV radiation must be absorbed by an epidermal photoreceptor and converted into a biologically recognizable signal. Two photoreceptors have been recognized: DNA and trans-urocanic acid (UCA). Trans-UCA is normally found in the outermost layer of skin and isomerizes to the cis isomer upon exposure to UV radiation. Although UCA was identified as a UV photoreceptor years ago, and many have documented its ability to induce immune suppression, its exact mode of action remains elusive. Particularly vexing has been the identity of the molecular pathway by which cis-UCA mediates immune suppression. Here we provide evidence that cis-UCA binds to the serotonin [5-hydroxytryptamine (5-HT)] receptor with relatively high affinity (Kd = 4.6 nM). Anti-cis-UCA antibody precipitates radiolabeled 5-HT, and the binding is inhibited by excess 5-HT and/or excess cis-UCA. Similarly, anti-5-HT antibody precipitates radiolabeled cis-UCA, and the binding is inhibited by excess 5-HT or excess cis-UCA. Calcium mobilization was activated when a mouse fibroblast line, stably transfected with the human 5-HT2A receptor, was treated with cis-UCA. Cis-UCA-induced calcium mobilization was blocked with a selective 5-HT2A receptor antagonist. UV- and cis-UCA-induced immune suppression was blocked by antiserotonin antibodies or by treating the mice with 5-HT2A receptor antagonists. Our findings identify cis-UCA as a serotonin receptor ligand and indicate that the immunosuppressive effects of cis-UCA and UV radiation are mediated by activation of the 5-HT2A receptor. PMID:17085585

  10. CGRP receptor antagonist olcegepant (BIBN4096BS) does not prevent glyceryl trinitrate-induced migraine

    DEFF Research Database (Denmark)

    Tvedskov, J F; Tfelt-Hansen, P; Petersen, K A

    2010-01-01

    and in nine of 13 with placebo (p=0.68). The headache scores were similar after the two treatments (p=0.58). Thus CGRP receptor blockade did not prevent GTN-induced migraine. CONCLUSIONS: The present study indicates that NO does not induce migraine by liberating CGRP. The most likely explanation for our...

  11. Estrogen receptor α L429 and A430 regulate 17β-estradiol-induced cell proliferation via CREB1.

    Science.gov (United States)

    Pesiri, Valeria; Totta, Pierangela; Segatto, Marco; Bianchi, Fabrizio; Pallottini, Valentina; Marino, Maria; Acconcia, Filippo

    2015-12-01

    17β-Estradiol (E2)-dependent cell proliferation requires both estrogen receptor α (ERα)-based integrated control of gene transcription and kinase pathways activation. Such coordination of intracellular E2:ERα-dependent signaling mechanisms is finely tuned by receptor association with specific partner proteins. Recently, we identified the leucine (L) 429 and alanine (A) 430 within the ERα ligand binding domain as important residues for receptor non-covalent interaction to ubiquitinated species [i.e., ERα ubiquitin-binding surface (ERα UBS)] and for E2-induced ERα activation. To date, if these two ERα amino acids are involved in the control of E2-dependent pathways required for cell proliferation is unknown. Here, by using stably expressing ERα mutated in L429 and A430 (i.e., L429A,A430G-LAAG) cell lines, we show that L429 and A430 are critical for E2-induced cell proliferation, PI3K/AKT pathway activation, and ERα-mediated transcriptional changes. Moreover, we demonstrate that these two receptor structural determinants direct the E2-induced PI3K/AKT/CREB1 pathway activation and CREB1-mediated transcriptional activity that in turn control the hormone-induced cell proliferation. As a whole, our data demonstrate for the first time that the ERα UBS contributes to the modulation of E2-induced ERα-mediated cell proliferation and provide a novel connection between the receptor structure and the functional molecular mechanisms by which E2:ERα complex can regulate cell processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The effect of BLA GABAB receptors in anxiolytic-like effect and aversive memory deficit induced by ACPA

    Directory of Open Access Journals (Sweden)

    Katayoon Kangarlu Haghighi

    2016-07-01

    Full Text Available Background: As a psychoactive plant, Cannabis sativa (Marijuana is widely used throughout the world. Several investigations have indicated that administration of Marijuana affects various cognitive and non-cognitive behaviors. These include anxiety-like behaviors and learning and memory deficit. It has been shown that three main cannabinoid receptors [i.e. CB1, CB2 and CB3 are involved in cannabinoids’ functions. CB1 receptors are abundantly expressed in the central nervous system regions such as hippocampus, amygdala, cerebellum and the cortex. Therefore, the neuropsychological functions of endocannabinoids are thought to be more linked to CB1 receptors. Among other brain regions, CB1 is highly expressed in the amygdala which is an integral component of the limbic circuitry. The amygdala plays a major role in the control of emotional behavior, including conditioned fear and anxiety. In present study we examined the possible roles of basolateral amygdala (BLA GABAB receptors in arachydonilcyclopropylamide (ACPA-induced anxiolytic-like effect and aversive memory deficit in adult male mice. Methods: This experimental study was conducted from September 2013 to December 2014 in Institute for Studies in Theoretical Physics and Mathematics, School of Cognitive Sciences, Tehran and Male albino NMRI mice (Pasture Institute, Iran, weighting 27-30 g, were used. Bilateral guide-cannulae were implanted to allow intra BLA microinjection of the drugs. We used Elevated Plus Maze (EPM to examine memory and anxiety behavior (test-retest protocol. ACPA administrate intra-peritoneal and GABAB agonist and antagonist administrated intra-amygdala. Results: Data showed that pre-test treatment with ACPA induced anxiolytic-like and aversive memory deficit The results revealed that pre-test intra-BLA infusion of baclofen (GABAB receptor agonist impaired the aversive memory while phaclofen (GABAB receptor antagonist improved it. Interestingly, pretreatment with a sub

  13. RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA: a new antiviral pathway

    Directory of Open Access Journals (Sweden)

    Saurabh Chattopadhyay

    2016-11-01

    Full Text Available Abstract The innate immune response is the first line of host defense to eliminate viral infection. Pattern recognition receptors in the cytosol, such as RIG-I-like receptors (RLR and Nod-like receptors (NLR, and membrane bound Toll like receptors (TLR detect viral infection and initiate transcription of a cohort of antiviral genes, including interferon (IFN and interferon stimulated genes (ISGs, which ultimately block viral replication. Another mechanism to reduce viral spread is through RIPA, the RLR-induced IRF3-mediated pathway of apoptosis, which causes infected cells to undergo premature death. The transcription factor IRF3 can mediate cellular antiviral responses by both inducing antiviral genes and triggering apoptosis through the activation of RIPA. The mechanism of IRF3 activation in RIPA is distinct from that of transcriptional activation; it requires linear polyubiquitination of specific lysine residues of IRF3. Using RIPA-active, but transcriptionally inactive, IRF3 mutants, it was shown that RIPA can prevent viral replication and pathogenesis in mice.

  14. Prefrontal gamma-aminobutyric acid type A receptor insertion controls cue-induced relapse to nicotine seeking.

    Science.gov (United States)

    Lubbers, Bart R; van Mourik, Yvar; Schetters, Dustin; Smit, August B; De Vries, Taco J; Spijker, Sabine

    2014-11-01

    Current smoking cessation therapies offer limited success, as relapse rates remain high. Nicotine, which is the major component of tobacco smoke, is thought to be primarily responsible for the addictive properties of tobacco. However, little is known about the molecular mechanisms underlying nicotine relapse, hampering development of more effective therapies. The objective of this study was to elucidate the role of medial prefrontal cortex (mPFC) glutamatergic and gamma-aminobutyric acid (GABA)ergic receptors in controlling relapse to nicotine seeking. Using an intravenous self-administration model, we studied glutamate and gamma-aminobutyric acid receptor regulation in the synaptic membrane fraction of the rat mPFC following extinction and cue-induced relapse to nicotine seeking. Subsequently, we locally intervened at the level of GABAergic signaling by using a mimetic peptide of the GABA receptor associated protein-interacting domain of GABA type A (GABAA) receptor subunit γ2 (TAT-GABAγ2) and muscimol, a GABAA receptor agonist. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptors were not regulated after the 30-min relapse test. However, GABAA receptor subunits α1 and γ2 were upregulated, and interference with GABAA receptor insertion in the cell membrane using the TAT-GABAγ2 peptide in the dorsal mPFC, but not the ventral mPFC, significantly increased responding during relapse. Increasing GABAA transmission with muscimol in the dorsal and ventral mPFC attenuated relapse. These data indicate that cue-induced relapse entails a GABAergic plasticity mechanism that limits nicotine seeking by restoring inhibitory control in the dorsal mPFC. GABAA receptor-mediated neurotransmission in the dorsal mPFC constitutes a possible future therapeutic target for maintaining smoking abstinence. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Alpha7 nicotinic receptor mediated protection against ethanol-induced cytotoxicity in PC12 cells.

    Science.gov (United States)

    Li, Y; King, M A; Grimes, J; Smith, N; de Fiebre, C M; Meyer, E M

    1999-01-16

    Ethanol caused a concentration-dependent loss of PC12 cells over a 24 h interval, accompanied by an increase in intracellular calcium. The specific alpha7 nicotinic receptor partial agonist DMXB attenuated both of these ethanol-induced actions at a concentration (3 microM) found previously to protect against apoptotic and necrotic cell loss. The alpha7 nicotinic receptor antagonist methylylaconitine blocked the neuroprotective action of DMXB when applied with but not 30 min after the agonist. These results indicate that activation of alpha7 nicotinic receptors may be therapeutically useful in preventing ethanol-neurotoxicity. Copyright 1999 Elsevier Science B.V.

  16. Comparative studies of D2 receptors and cerebral blood flow in hemi-Parkinsonism rats

    International Nuclear Information System (INIS)

    Lin Yansong; Lin Xiangtong

    2000-01-01

    Objective: To study the relationship between dopamine D 2 receptors and cerebral blood flow in hemi-Parkinsonism rats. Methods: Hemi-Parkinsonism rats were made by stereotaxic 6-hydroxy dopamine (6-OH-DA) lesions in substantia nigra and ventral tegmental area, apomorphine (Apo) which could induce the successful model rat to rotate toward the intact side was used to select the rat models, 125 I-IBZM in vivo autoradiography and 99 Tc m -HMPAO regional cerebral biodistribution analysis were used to study D 2 receptors and cerebral blood flow. The HPLC-ECD was used to measure striatum DA and its metabolite content . Results: the lesioned side striatum DA and its metabolites homovanillic acid (HVA) 3,4-dihyroxy-phenylacetic acid (DOPAC) reduced significantly than that of the intact side and pseudo-operated group, striatum/cerebellum 125 I-IBZM uptake ratio was 8.04 +- 0.71 in lesioned side of hemi-Parkinsonism rats, significantly increased compared with the intact side and the pseudo-operated group (P 0.05). Conclusions: the 6-OH-DA lesioned side DA content decreased significantly and thus induced a compensative up-regulation of striatum D 2 receptor binding sites in hemi-Parkinsonism rats, which show good correlation with rotation behavior induced by Apo. Comparing with cerebral blood flow, D 2 receptor reflected by IBZM seems to be more specific and earlier to detect the cerebral functional impairment in experimental hemi-Parkinsonism

  17. Casopitant: a novel NK(1)-receptor antagonist in the prevention of chemotherapy-induced nausea and vomiting

    DEFF Research Database (Denmark)

    Ruhlmann, Christina; Herrstedt, Jørn

    2009-01-01

    Chemotherapy-induced nausea and vomiting (CINV) are among the most feared and distressing symptoms experienced by patients with cancer. The knowledge of the pathogenesis and neuropharmacology of CINV has expanded enormously over the last decades, the most significant discoveries being the role of 5......-hydroxytryptamine (5-HT)(3)- and neurokinin (NK)(1) receptors in the emetic reflex arch. This has led to the development of two new classes of antiemetics acting as highly selective antagonists at one of these receptors. These drugs have had a huge impact in the protection from chemotherapy-induced vomiting...

  18. Dopamine receptors genes polymorphisms in Parkinson patients with levodopa-induced dyskinesia

    NARCIS (Netherlands)

    Pozhidaev, Ivan V; Alifirova, V. M.; Freidin, Maxim B.; Zhukova, I.A.; Fedorenko, Olga Yu; Osmanova, Diana Z; Mironova, Y.S.; Wilffert, Berend; Ivanova, Svetlana A.; Loonen, Antonius

    2017-01-01

    Dopamine receptors genes polymorphisms in Parkinson patients with levodopa-induced dyskinesia I. Pozhidaev(1), V.M. Alifirova(2), M.B. Freidin(3), I.A. Zhukova(2), O.Y. Fedorenko(1), D.Z. Osmanova(1), Y.S. Mironova(2), B. Wilffert(4), S.A. Ivanova(1), A.J.M. Loonen(5) (1)Mental Health Research

  19. Involvement of spinal NR2B-containing NMDA receptors in oxaliplatin-induced mechanical allodynia in rats

    Directory of Open Access Journals (Sweden)

    Yano Takahisa

    2011-01-01

    Full Text Available Abstract Background Oxaliplatin is a platinum-based chemotherapy drug characterized by the development of acute and chronic peripheral neuropathies. The chronic neuropathy is a dose-limiting toxicity. We previously reported that repeated administration of oxaliplatin induced cold hyperalgesia in the early phase and mechanical allodynia in the late phase in rats. In the present study, we investigated the involvement of NR2B-containing N-methyl-D-aspartate (NMDA receptors in oxaliplatin-induced mechanical allodynia in rats. Results Repeated administration of oxaliplatin (4 mg/kg, i.p., twice a week caused mechanical allodynia in the fourth week, which was reversed by intrathecal injection of MK-801 (10 nmol and memantine (1 μmol, NMDA receptor antagonists. Similarly, selective NR2B antagonists Ro25-6981 (300 nmol, i.t. and ifenprodil (50 mg/kg, p.o. significantly attenuated the oxaliplatin-induced pain behavior. In addition, the expression of NR2B protein and mRNA in the rat spinal cord was increased by oxaliplatin on Day 25 (late phase but not on Day 5 (early phase. Moreover, we examined the involvement of nitric oxide synthase (NOS as a downstream target of NMDA receptor. L-NAME, a non-selective NOS inhibitor, and 7-nitroindazole, a neuronal NOS (nNOS inhibitor, significantly suppressed the oxaliplatin-induced pain behavior. The intensity of NADPH diaphorase staining, a histochemical marker for NOS, in the superficial layer of spinal dorsal horn was obviously increased by oxaliplatin, and this increased intensity was reversed by intrathecal injection of Ro25-6981. Conclusion These results indicated that spinal NR2B-containing NMDA receptors are involved in the oxaliplatin-induced mechanical allodynia.

  20. Involvement of Cholinergic and Adrenergic Receptors in Pathogenesis and Inflammatory Response Induced by Alpha-Neurotoxin Bot III of Scorpion Venom.

    Science.gov (United States)

    Nakib, Imene; Martin-Eauclaire, Marie-France; Laraba-Djebari, Fatima

    2016-10-01

    Bot III neurotoxin is the most lethal α neurotoxin purified from Buthus occitanus tunetanus scorpion venom. This toxin binds to the voltage-gated sodium channel of excitable cells and blocks its inactivation, inducing an increased release of neurotransmitters (acetylcholine and catecholamines). This study aims to elucidate the involvement of cholinergic and adrenergic receptors in pathogenesis and inflammatory response triggered by this toxin. Injection of Bot III to animals induces an increase of peroxidase activities, an imbalance of oxidative status, tissue damages in lung parenchyma, and myocardium correlated with metabolic disorders. The pretreatment with nicotine (nicotinic receptor agonist) or atropine (muscarinic receptor antagonist) protected the animals from almost all disorders caused by Bot III toxin, especially the immunological alterations. Bisoprolol administration (selective β1 adrenergic receptor antagonist) was also efficient in the protection of animals, mainly on tissue damage. Propranolol (non-selective adrenergic receptor antagonist) showed less effect. These results suggest that both cholinergic and adrenergic receptors are activated in the cardiopulmonary manifestations induced by Bot III. Indeed, the muscarinic receptor appears to be more involved than the nicotinic one, and the β1 adrenergic receptor seems to dominate the β2 receptor. These results showed also that the activation of nicotinic receptor leads to a significant protection of animals against Bot III toxin effect. These findings supply a supplementary data leading to better understanding of the mechanism triggered by scorpionic neurotoxins and suggest the use of drugs targeting these receptors, especially the nicotinic one in order to counteract the inflammatory response observed in scorpion envenomation.

  1. Guanine nucleotide regulation of dopamine receptor agonist affinity states in rat estradiol-induced pituitary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Di Paolo, T.; Falardeau, P.

    1987-08-31

    The authors have investigated dopamine (DA) receptor agonist high- and low-affinity states in female rate estradiol-induced prolactin (PRL)-secreting pituitary tumors and intact pituitary tissue. Estradiol treatment increased the anterior pituitary weight 9-fold and plasma prolactin levels 74-fold and these measures are correlated (R = 0.745, n = 73, p < 0.001). Competition for (/sup 3/H)-spiperone binding to the DA receptor by apomorphine was compared in normal and adenomatous pituitary tissue. The inhibition constants (Ki) and the proportions of the two apomorphine sites are unchanged in tumors compared to intact pituitary tissue. Guanosine 5'-(..beta..-..gamma..-imino)triphosphate (Gpp(NH)p) causes complete conversion of the high into low affinity dopaminergic agonist site in normal pituitary and in tumors. These results suggest that rats with primary estradiol-induced pituitary tumors have normal and functional DA receptors. 9 references, 2 tables.

  2. Positive allosteric modulation of GABA-A receptors reduces capsaicin-induced primary and secondary hypersensitivity in rats

    DEFF Research Database (Denmark)

    Hansen, Rikke Rie; Erichsen, Helle K; Brown, David T

    2012-01-01

    GABA-A receptor positive allosteric modulators (PAMs) mediate robust analgesia in animal models of pathological pain, in part via enhancing injury-induced loss of GABA-A-α2 and -α3 receptor function within the spinal cord. As yet, a lack of clinically suitable tool compounds has prevented this co...

  3. Activation of Protease-Activated Receptor 2 Induces VEGF Independently of HIF-1

    DEFF Research Database (Denmark)

    Rasmussen, J.G.; Riis, Simone Elkjær; Frøbert, O.

    2012-01-01

    Human adipose stem cells (hASCs) can promote angiogenesis through secretion of proangiogenic factors such as vascular endothelial growth factor (VEGF). In other cell types, it has been shown that induction of VEGF is mediated by both protease activated receptor 2 (PAR2) and hypoxia inducible fact...

  4. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    Directory of Open Access Journals (Sweden)

    George Kourouniotis

    2016-07-01

    Full Text Available The binding of epidermal growth factor (EGF to EGF receptor (EGFR stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ and tagged a green fluorescent protein (GFP at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc, extracellular signal-regulated kinase (ERK and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis.

  5. Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M5 muscarinic receptor knockout mice

    DEFF Research Database (Denmark)

    Schmidt, Lene S; Miller, Anthony D; Lester, Deranda B

    2010-01-01

    showed that M(5) receptor knockout (M (5) (-/-) ) mice are less sensitive to the reinforcing properties of addictive drugs. MATERIALS AND METHODS: Here, we investigate the role of M(5) receptors in the effects of amphetamine and cocaine on locomotor activity, locomotor sensitization, and dopamine release......-induced hyperactivity and dopamine release as well as amphetamine sensitization are enhanced in mice lacking the M(5) receptor. These results support the concept that the M(5) receptor modulates effects of addictive drugs....

  6. Evidence that shock-induced immune suppression is mediated by adrenal hormones and peripheral beta-adrenergic receptors.

    Science.gov (United States)

    Cunnick, J E; Lysle, D T; Kucinski, B J; Rabin, B S

    1990-07-01

    Our previous work has demonstrated that presentations of mild foot-shock to Lewis rats induces a suppression of splenic and peripheral blood lymphocyte responses to nonspecific T-cell mitogens. The present study demonstrated that adrenalectomy prevented the shock-induced suppression of the mitogenic response of peripheral blood T-cells but did not attenuate the suppression of splenic T-cells. Conversely, the beta-adrenergic receptor antagonists, propranolol and nadolol, attenuated the shock-induced suppression of splenic T-cells in a dose-dependent manner but did not attenuate suppression of the blood mitogen response. These data indicate that distinct mechanisms mediate the shock-induced suppression of T-cell responsiveness to mitogens in the spleen and the peripheral blood. The results indicate that the peripheral release of catecholamines is responsible for splenic immune suppression and that adrenal hormones, which do not interact with beta-adrenergic receptors, are responsible for shock-induced suppression of blood mitogenic responses.

  7. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    Science.gov (United States)

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  8. Social dominance in rats: effects on cocaine self-administration, novelty reactivity and dopamine receptor binding and content in the striatum.

    Science.gov (United States)

    Jupp, Bianca; Murray, Jennifer E; Jordan, Emily R; Xia, Jing; Fluharty, Meg; Shrestha, Saurav; Robbins, Trevor W; Dalley, Jeffrey W

    2016-02-01

    Studies in human and non-human primates demonstrate that social status is an important determinant of cocaine reinforcement. However, it is unclear whether social rank is associated with other traits that also predispose to addiction and whether social status similarly predicts cocaine self-administration in rats. The objective of this study is to investigate whether social ranking assessed using a resource competition task affects (i) the acquisition, maintenance and reinstatement of cocaine self-administration; (ii) the dopaminergic markers in the striatum; and (iii) the expression of ancillary traits for addiction. Social ranking was determined in group-housed rats based upon drinking times during competition for a highly palatable liquid. Rats were then evaluated for cocaine self-administration and cue-induced drug reinstatement or individual levels of impulsivity, anxiety and novelty-induced locomotor activity. Finally, dopamine content, dopamine transporter (DAT) and dopamine D2/D3 (D2/3) receptor binding were measured postmortem in the dorsal and ventral striatum. Rats deemed socially dominant showed enhanced novelty reactivity but were neither more impulsive nor anxious compared with subordinate rats. Dominant rats additionally maintained higher rates of cocaine self-administration but showed no differences in the acquisition, extinction and reinstatement of this behaviour. D2/3 binding was elevated in the nucleus accumbens shell and dorsal striatum of dominant rats when compared to subordinate rats, and was accompanied by elevated DAT and reduced dopamine content in the nucleus accumbens shell. These findings show that social hierarchy influences the rate of self-administered cocaine but not anxiety or impulsivity in rats. Similar to non-human primates, these effects may be mediated by striatal dopaminergic systems.

  9. Evidence for CB2 receptor involvement in LPS-induced reduction of cAMP intracellular levels in uterine explants from pregnant mice: pathophysiological implications.

    Science.gov (United States)

    Salazar, Ana Inés; Carozzo, Alejandro; Correa, Fernando; Davio, Carlos; Franchi, Ana María

    2017-07-01

    What is the role of the endocannabinoid system (eCS) on the lipopolysaccharide (LPS) effects on uterine explants from 7-day pregnant mice in a murine model of endotoxin-induced miscarriage? We found evidence for cannabinoid receptor type2 (CB2) involvement in LPS-induced increased prostaglandin-F2α (PGF2α) synthesis and diminished cyclic adenosine monophosphate (cAMP) intracellular content in uterine explants from early pregnant mice. Genital tract infections by Gram-negative bacteria are a common complication of human pregnancy that results in an increased risk of pregnancy loss. LPS, the main component of the Gram-negative bacterial wall, elicits a strong maternal inflammatory response that results in embryotoxicity and embryo resorption in a murine model endotoxin-induced early pregnancy loss. We have previously shown that the eCS mediates the embryotoxic effects of LPS, mainly via CB1 receptor activation. An in vitro study of mice uterine explants was performed to investigate the eCS in mediating the effects of LPS on PGF2α production and cAMP intracellular content. Eight to 12-week-old virgin female BALB/c or CD1 (wild-type [WT] or CB1-knockout [CB1-KO]) mice were paired with 8- to 12-week-old BALB/c or CD1 (WT or CB1-KO) males, respectively. On day 7 of pregnancy, BALB/c, CD1 WT or CD1 CB1-KO mice were euthanized, the uteri were excised, implantation sites were removed and the uterine tissues were separated from decidual and embryo tissues. Uterine explants were cultured and exposed for an appropriate amount of time to different pharmacological treatments. The tissues were then collected for cAMP assay and PGF2α content determination by radioimmunoassay. In vitro treatment of uteri explants from 7-day pregnant BALB/c or CD1 (WT or CB1-KO) mice with LPS induced an increased production of PGF2α (P Investigaciones Científicas y Técnicas (PIP 2012/0061). Dr Carlos Davio was funded by Agencia Nacional para la Promoción Científica y Tecnológica (PICT 2013

  10. Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine.

    Science.gov (United States)

    Ares-Santos, S; Granado, N; Oliva, I; O'Shea, E; Martin, E D; Colado, M I; Moratalla, R

    2012-02-01

    Methamphetamine (METH) is a potent, highly addictive psychostimulant consumed worldwide. In humans and experimental animals, repeated exposure to this drug induces persistent neurodegenerative changes. Damage occurs primarily to dopaminergic neurons, accompanied by gliosis. The toxic effects of METH involve excessive dopamine (DA) release, thus DA receptors are highly likely to play a role in this process. To define the role of D(1) receptors in the neurotoxic effects of METH we used D(1) receptor knock-out mice (D(1)R(-/-)) and their WT littermates. Inactivation of D(1)R prevented METH-induced dopamine fibre loss and hyperthermia, and increases in gliosis and pro-inflammatory molecules such as iNOS in the striatum. In addition, D(1)R inactivation prevented METH-induced loss of dopaminergic neurons in the substantia nigra. To explore the relationship between hyperthermia and neurotoxicity, METH was given at high ambient temperature (29 °C). In this condition, D(1)R(-/-) mice developed hyperthermia following drug delivery and the neuroprotection provided by D(1)R inactivation at 23 °C was no longer observed. However, reserpine, which empties vesicular dopamine stores, blocked hyperthermia and strongly potentiated dopamine toxicity in D(1)R(-/-) mice, suggesting that the protection afforded by D(1)R inactivation is due to both hypothermia and higher stored vesicular dopamine. Moreover, electrical stimulation evoked higher DA overflow in D(1)R(-/-) mice as demonstrated by fast scan cyclic voltammetry despite their lower basal DA content, suggesting higher vesicular DA content in D(1)R(-/-) than in WT mice. Altogether, these results indicate that the D(1)R plays a significant role in METH-induced neurotoxicity by mediating drug-induced hyperthermia and increasing the releasable cytosolic DA pool. Copyright © 2011. Published by Elsevier Inc.

  11. Endocrine disruptors induce cytochrome P450 by affecting transcriptional regulation via pregnane X receptor

    International Nuclear Information System (INIS)

    Mikamo, Eriko; Harada, Shingo; Nishikawa, Jun-ichi; Nishihara, Tsutomu

    2003-01-01

    Pregnane X receptor (PXR) is a nuclear receptor that regulates the expression of genes for cytochrome P450 3A (CYP3A), multidrug resistance 1 (MDR1), and organic anion-transporting peptide 2 (OATP2). These genes control the metabolism (CYP3A subfamily) and aspects of the pharmacokinetics (MDR1 and OATP2) of both endogenous and xenobiotic compounds. Since PXR is important in understanding the actions of endocrine disruptors (EDs), we determined the ability of suspected EDs to interact with PXR. In our study, 7 of 54 xenobiotics compounds interacted with PXR, including methoxychlor and benzophenone. All of the chemicals activated PXR in vitro and induced CYP3A mRNA in the male rat liver. In addition, CYP2C11 was also induced by some PXR agonists and converted methoxychlor into xenoestrogen. These findings suggest that some EDs affect sex hormone receptor indirectly by induction of metabolic enzyme via PXR, to produce rapidly higher concentrations of effective metabolites, leading to disturbance of the endocrine system

  12. Toll-like receptor 4 mutant and null mice retain morphine-induced tolerance, hyperalgesia, and physical dependence.

    Directory of Open Access Journals (Sweden)

    Theresa Alexandra Mattioli

    Full Text Available The innate immune system modulates opioid-induced effects within the central nervous system and one target that has received considerable attention is the toll-like receptor 4 (TLR4. Here, we examined the contribution of TLR4 in the development of morphine tolerance, hyperalgesia, and physical dependence in two inbred mouse strains: C3H/HeJ mice which have a dominant negative point mutation in the Tlr4 gene rendering the receptor non-functional, and B10ScNJ mice which are TLR4 null mutants. We found that neither acute antinociceptive response to a single dose of morphine, nor the development of analgesic tolerance to repeated morphine treatment, was affected by TLR4 genotype. Likewise, opioid induced hyperalgesia and opioid physical dependence (assessed by naloxone precipitated withdrawal were not altered in TLR4 mutant or null mice. We also examined the behavioural consequence of two stereoisomers of naloxone: (- naloxone, an opioid receptor antagonist, and (+ naloxone, a purported antagonist of TLR4. Both stereoisomers of naloxone suppressed opioid induced hyperalgesia in wild-type control, TLR4 mutant, and TLR4 null mice. Collectively, our data suggest that TLR4 is not required for opioid-induced analgesic tolerance, hyperalgesia, or physical dependence.

  13. Contrasting effects of fish oil and safflower oil on hepatic peroxisomal and tissue lipid content.

    Science.gov (United States)

    Neschen, Susanne; Moore, Irene; Regittnig, Werner; Yu, Chun Li; Wang, Yanlin; Pypaert, Marc; Petersen, Kitt Falk; Shulman, Gerald I

    2002-02-01

    To examine the mechanism by which fish oil protects against fat-induced insulin resistance, we studied the effects of control, fish oil, and safflower oil diets on peroxisomal content, fatty acyl-CoA, diacylglycerol, and ceramide content in rat liver and muscle. We found that, in contrast to control and safflower oil-fed rats, fish oil feeding induced a 150% increase in the abundance of peroxisomal acyl-CoA oxidase and 3-ketoacyl-CoA thiolase in liver but lacked similar effects in muscle. This was paralleled by an almost twofold increase in hepatic peroxisome content (both P < 0.002 vs. control and safflower). These changes in the fish oil-fed rats were associated with a more than twofold lower hepatic triglyceride/diacylglycerol, as well as intramuscular triglyceride/fatty acyl-CoA, content. In conclusion, these data strongly support the hypothesis that n-3 fatty acids protect against fat-induced insulin resistance by serving as peroxisome proliferator-activated receptor-alpha ligands and thereby induce hepatic, but not intramuscular, peroxisome proliferation. In turn, an increased hepatic beta-oxidative capacity results in lower hepatic triglyceride/diacylglycerol and intramyocellular triglyceride/fatty acyl-CoA content.

  14. Phorbol ester induced phosphorylation of the estrogen receptor in intact MCF-7 human breast cancer cells

    International Nuclear Information System (INIS)

    Knabbe, C.; Lippman, M.E.; Greene, G.L.; Dickson, R.B.

    1986-01-01

    Recent studies with a variety of cellular receptors have shown that phorbol ester induced phosphorylation modulates ligand binding and function. In this study the authors present direct evidence that the estrogen receptor in MCF-7 human breast cancer cells is a phosphoprotein whose phosphorylation state can be enhanced specifically by phorbol-12-myristate-13-acetate (PMA). Cells were cultured to 6h in the presence of [ 32 P]-orthophosphate. Whole cell extracts were immunoprecipitated with a monoclonal antibody (D58) against the estrogen receptor and subjected to SDS-polyacrylamide electrophoresis. Autoradiography showed a specific band in the region of 60-62 kDa which was significantly increased in preparations from PMA treated cells. Phospho-amino acid analysis demonstrated specific phosphorylation of serine and threonine residues. Cholera toxin or forskolin did not change the phosphorylation state of this protein. In a parallel binding analysis PMA led to a rapid decrease of estrogen binding sites. The estrogen induction of both progesterone receptors and growth in semisolid medium was blocked by PMA, whereas the estrogen induction of the 8kDa protein corresponding to the ps2 gene product and of the 52 kDa protein was not affected. In conclusion, phorbol esters can induce phosphorylation of the estrogen receptor. This process may be associated with the inactivation of certain receptor functions

  15. NMDA Receptors on Dopaminoceptive Neurons Are Essential for Drug-Induced Conditioned Place Preference.

    Science.gov (United States)

    Sikora, Magdalena; Tokarski, Krzysztof; Bobula, Bartosz; Zajdel, Joanna; Jastrzębska, Kamila; Cieślak, Przemysław Eligiusz; Zygmunt, Magdalena; Sowa, Joanna; Smutek, Magdalena; Kamińska, Katarzyna; Gołembiowska, Krystyna; Engblom, David; Hess, Grzegorz; Przewlocki, Ryszard; Rodriguez Parkitna, Jan

    2016-01-01

    Plasticity of the brain's dopamine system plays a crucial role in adaptive behavior by regulating appetitive motivation and the control of reinforcement learning. In this study, we investigated drug- and natural-reward conditioned behaviors in a mouse model in which the NMDA receptor-dependent plasticity of dopaminoceptive neurons was disrupted. We generated a transgenic mouse line with inducible selective inactivation of the NR1 subunit in neurons expressing dopamine D1 receptors (the NR1(D1CreERT2) mice). Whole-cell recordings of spontaneous EPSCs on neurons in the nucleus accumbens confirmed that a population of neurons lacked the NMDA receptor-dependent component of the current. This effect was accompanied by impaired long-term potentiation in the nucleus accumbens and in the CA1 area of the ventral, but not the dorsal, hippocampus. Mutant mice did not differ from control animals when tested for pavlovian or instrumental conditioning. However, NR1(D1CreERT2) mice acquired no preference for a context associated with administration of drugs of abuse. In the conditioned place preference paradigm, mutant mice did not spend more time in the context paired with cocaine, morphine, or ethanol, although these mice acquired a preference for sucrose jelly and an aversion to naloxone injections, as normal. Thus, we observed that the selective inducible ablation of the NMDA receptors specifically blocks drug-associated context memory with no effect on positive reinforcement in general.

  16. Bovine ovarian cells have (pro)renin receptors and prorenin induces resumption of meiosis in vitro.

    Science.gov (United States)

    Dau, Andressa Minussi Pereira; da Silva, Eduardo Pradebon; da Rosa, Paulo Roberto Antunes; Bastiani, Felipe Tusi; Gutierrez, Karina; Ilha, Gustavo Freitas; Comim, Fabio Vasconcellos; Gonçalves, Paulo Bayard Dias

    2016-07-01

    The discovery of a receptor that binds prorenin and renin in human endothelial and mesangial cells highlights the possible effect of renin-independent prorenin in the resumption of meiosis in oocytes that was postulated in the 1980s.This study aimed to identify the (pro)renin receptor in the ovary and to assess the effect of prorenin on meiotic resumption. The (pro)renin receptor protein was detected in bovine cumulus-oocyte complexes, theca cells, granulosa cells, and in the corpus luteum. Abundant (pro)renin receptor messenger ribonucleic acid (mRNA) was detected in the oocytes and cumulus cells, while prorenin mRNA was identified in the cumulus cells only. Prorenin at concentrations of 10(-10), 10(-9), and 10(-8)M incubated with oocytes co-cultured with follicular hemisections for 15h caused the resumption of oocyte meiosis. Aliskiren, which inhibits free renin and receptor-bound renin/prorenin, at concentrations of 10(-7), 10(-5), and 10(-3)M blocked this effect (Pmeiosis resumption, cumulus-oocyte complexes and follicular hemisections were treated with prorenin and with angiotensin II or saralasin (angiotensin II antagonist). Prorenin induced the resumption of meiosis independently of angiotensin II. Furthermore, cumulus-oocyte complexes cultured with forskolin (200μM) and treated with prorenin and aliskiren did not exhibit a prorenin-induced resumption of meiosis (Pmeiosis in cattle. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effects of Chronic Alcohol Exposure on the Modulation of Ischemia-Induced Glutamate Release via Cannabinoid Receptors in the Dorsal Hippocampus.

    Science.gov (United States)

    Zheng, Lei; Wu, Xiaoda; Dong, Xiao; Ding, Xinli; Song, Cunfeng

    2015-10-01

    Chronic alcohol consumption is a critical contributing factor to ischemic stroke, as it enhances ischemia-induced glutamate release, leading to more severe excitotoxicity and brain damage. But the neural mechanisms underlying this phenomenon are poorly understood. We evaluated the effects of chronic alcohol exposure on the modulation of ischemia-induced glutamate release via CB1 and CB2 cannabinoid receptors during middle cerebral artery occlusion, using in vivo microdialysis coupled with high-performance liquid chromatography, in alcohol-naïve rats or rats after 1 or 30 days of withdrawal from chronic ethanol intake (6% v/v for 14 days). Intra-dorsal hippocampus (DH) infusions of ACEA or JWH133, selective CB1 or CB2 receptor agonists, respectively, decreased glutamate release in the DH in alcohol-naïve rats in a dose-dependent manner. Such an effect was reversed by co-infusions of SR141716A or AM630, selective CB1 or CB2 receptor antagonists, respectively. After 30 days, but not 1 day of withdrawal, ischemia induced an enhancement in glutamate release in the DH, as compared with non-alcohol-treated control group. Intra-DH infusions of JWH133, but not ACEA, inhibited ischemia-induced glutamate release in the DH after 30 days of withdrawal. Finally, 1 day of withdrawal did not alter the protein level of CB1 or CB2 receptors in the DH, as compared to non-alcohol-treated control rats. Whereas 30 days of withdrawal robustly decreased the protein level of CB1 receptors, but failed to alter the protein level of CB2 receptors, in the DH, as compared to non-alcohol-treated control rats. Together, these findings suggest that loss of expression/function of CB1 receptors, but not CB2 receptors in the DH, is correlated with the enhancement of ischemia-induced glutamate release after prolonged alcohol withdrawal. Copyright © 2015 by the Research Society on Alcoholism.

  18. Casopitant: a novel NK1-receptor antagonist in the prevention of chemotherapy-induced nausea and vomiting

    Directory of Open Access Journals (Sweden)

    Christina Ruhlmann

    2009-05-01

    Full Text Available Christina Ruhlmann, Jørn HerrstedtOdense University Hospital, Department of Oncology, Odense, DenmarkAbstract: Chemotherapy-induced nausea and vomiting (CINV are among the most feared and distressing symptoms experienced by patients with cancer. The knowledge of the pathogenesis and neuropharmacology of CINV has expanded enormously over the last decades, the most significant discoveries being the role of 5-hydroxytryptamine (5-HT3- and neurokinin (NK1 receptors in the emetic reflex arch. This has led to the development of two new classes of antiemetics acting as highly selective antagonists at one of these receptors. These drugs have had a huge impact in the protection from chemotherapy-induced vomiting, whereas the effect on nausea seems to be limited. The first NK1 receptor antagonist, aprepitant, became clinically available in 2003, and casopitant, the second in this class of antiemetics, has now completed phase III trials. This review delineates the properties and clinical use of casopitant in the prevention of CINV.Keywords: casopitant, GW679769, NK1 receptor antagonist, chemotherapy, emesis

  19. A putative role for hypothalamic glucocorticoid receptors in hypertension induced by prenatal undernutrition in the rat.

    Science.gov (United States)

    Pérez, Hernán; Soto-Moyano, Rubén; Ruiz, Samuel; Hernández, Alejandro; Sierralta, Walter; Olivares, Ricardo; Núñez, Héctor; Flores, Osvaldo; Morgan, Carlos; Valladares, Luis; Gatica, Arnaldo; Flores, Francisco J

    2010-10-08

    Prenatal undernutrition induces hypertension later in life, possibly by disturbing the hypothalamo-pituitary-adrenal axis through programming decreased expression of hypothalamic glucocorticoid receptors. We examined the systolic blood pressure, heart rate and plasma corticosterone response to intra-paraventricular dexamethasone, mifepristone and corticosterone in eutrophic and prenatally undernourished young rats. Undernutrition was induced during fetal life by restricting the diet of pregnant mothers to 10 g daily (40% of diet consumed by well-nourished controls). At day 40 of postnatal life (i) intra-paraventricular administration of dexamethasone significantly reduced at least for 24h both the systolic pressure (-11.6%), the heart rate (-20.8%) and the plasma corticosterone (-40.0%) in normal animals, while producing lower effects (-5.5, -8.7, and -22.3%, respectively) on undernourished rats; (ii) intra-paraventricular administration of the antiglucocorticoid receptor ligand mifepristone to normal rats produced opposite effects (8.2, 20.3, and 48.0% increase, respectively) to those induced by dexamethasone, being these not significant in undernourished animals; (iii) intra-paraventricular corticosterone did not exert any significant effect. Results suggest that the low sensitivity of paraventricular neurons to glucocorticoid receptor ligands observed in prenatally undernourished rats could be due to the already reported glucocorticoid receptor expression, found in the hypothalamus of undernourished animals. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Role of somatostatin receptor-2 in gentamicin-induced auditory hair cell loss in the Mammalian inner ear.

    Directory of Open Access Journals (Sweden)

    Yves Brand

    Full Text Available Hair cells and spiral ganglion neurons of the mammalian auditory system do not regenerate, and their loss leads to irreversible hearing loss. Aminoglycosides induce auditory hair cell death in vitro, and evidence suggests that phosphatidylinositol-3-kinase/Akt signaling opposes gentamicin toxicity via its downstream target, the protein kinase Akt. We previously demonstrated that somatostatin-a peptide with hormone/neurotransmitter properties-can protect hair cells from gentamicin-induced hair cell death in vitro, and that somatostatin receptors are expressed in the mammalian inner ear. However, it remains unknown how this protective effect is mediated. In the present study, we show a highly significant protective effect of octreotide (a drug that mimics and is more potent than somatostatin on gentamicin-induced hair cell death, and increased Akt phosphorylation in octreotide-treated organ of Corti explants in vitro. Moreover, we demonstrate that somatostatin receptor-1 knockout mice overexpress somatostatin receptor-2 in the organ of Corti, and are less susceptible to gentamicin-induced hair cell loss than wild-type or somatostatin-1/somatostatin-2 double-knockout mice. Finally, we show that octreotide affects auditory hair cells, enhances spiral ganglion neurite number, and decreases spiral ganglion neurite length.

  1. Norepinephrine signaling through β-adrenergic receptors is critical for expression of cocaine-induced anxiety

    Science.gov (United States)

    Schank, Jesse R.; Liles, L. Cameron; Weinshenker, David

    2008-01-01

    Background Cocaine is a widely abused psychostimulant that has both rewarding and aversive properties. While the mechanisms underlying cocaine’s rewarding effects have been studied extensively, less attention has been paid to the unpleasant behavioral states induced by cocaine, such as anxiety. Methods In this study we evaluated the performance of dopamine β-hydroxylase knockout (Dbh −/−) mice, which lack norepinephrine (NE), in the elevated plus maze (EPM) to examine the contribution of noradrenergic signaling to cocaine-induced anxiety. Results We found that cocaine dose-dependently increased anxiety-like behavior in control (Dbh +/−) mice, as measured by a decrease in open arm exploration. Dbh −/− mice had normal baseline performance in the EPM, but were completely resistant to the anxiogenic effects of cocaine. Cocaine-induced anxiety was also attenuated in Dbh +/− mice following administration of disulfiram, a DBH inhibitor. In experiments using specific adrenergic antagonists, we found that pretreatment with the β-adrenergic receptor antagonist propranolol blocked cocaine-induced anxiety-like behavior in Dbh +/− and wild-type C57BL6/J mice, while the α1 antagonist prazosin and the α2 antagonist yohimbine had no effect. Conclusions These results indicate that noradrenergic signaling via β-adrenergic receptors is required for cocaine-induced anxiety in mice. PMID:18083142

  2. Norepinephrine signaling through beta-adrenergic receptors is critical for expression of cocaine-induced anxiety.

    Science.gov (United States)

    Schank, Jesse R; Liles, L Cameron; Weinshenker, David

    2008-06-01

    Cocaine is a widely abused psychostimulant that has both rewarding and aversive properties. While the mechanisms underlying cocaine's rewarding effects have been studied extensively, less attention has been paid to the unpleasant behavioral states induced by cocaine, such as anxiety. In this study, we evaluated the performance of dopamine beta-hydroxylase knockout (Dbh -/-) mice, which lack norepinephrine (NE), in the elevated plus maze (EPM) to examine the contribution of noradrenergic signaling to cocaine-induced anxiety. We found that cocaine dose-dependently increased anxiety-like behavior in control (Dbh +/-) mice, as measured by a decrease in open arm exploration. The Dbh -/- mice had normal baseline performance in the EPM but were completely resistant to the anxiogenic effects of cocaine. Cocaine-induced anxiety was also attenuated in Dbh +/- mice following administration of disulfiram, a dopamine beta-hydroxylase (DBH) inhibitor. In experiments using specific adrenergic antagonists, we found that pretreatment with the beta-adrenergic receptor antagonist propranolol blocked cocaine-induced anxiety-like behavior in Dbh +/- and wild-type C57BL6/J mice, while the alpha(1) antagonist prazosin and the alpha(2) antagonist yohimbine had no effect. These results indicate that noradrenergic signaling via beta-adrenergic receptors is required for cocaine-induced anxiety in mice.

  3. Molecular mechanism of 17-allylamino-17-demethoxygeldanamycin (17-AAG)-induced AXL receptor tyrosine kinase degradation.

    Science.gov (United States)

    Krishnamoorthy, Gnana Prakasam; Guida, Teresa; Alfano, Luigi; Avilla, Elvira; Santoro, Massimo; Carlomagno, Francesca; Melillo, Rosa Marina

    2013-06-14

    The receptor tyrosine kinase AXL is overexpressed in many cancer types including thyroid carcinomas and has well established roles in tumor formation and progression. Proper folding, maturation, and activity of several oncogenic receptor tyrosine kinases require HSP90 chaperoning. HSP90 inhibition by the antibiotic geldanamycin or its derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) causes destabilization of its client proteins. Here we show that AXL is a novel client protein of HSP90. 17-AAG induced a time- and dose-dependent down-regulation of endogenous or ectopically expressed AXL protein, thereby inhibiting AXL-mediated signaling and biological activity. 17-AAG-induced AXL down-regulation specifically affected fully glycosylated mature receptor present on cell membrane. By using biotin and [(35)S]methionine labeling, we showed that 17-AAG caused depletion of membrane-localized AXL by mediating its degradation in the intracellular compartment, thus restricting its exposure on the cell surface. 17-AAG induced AXL polyubiquitination and subsequent proteasomal degradation; under basal conditions, AXL co-immunoprecipitated with HSP90. Upon 17-AAG treatment, AXL associated with the co-chaperone HSP70 and the ubiquitin E3 ligase carboxyl terminus of HSC70-interacting protein (CHIP). Overexpression of CHIP, but not of the inactive mutant CHIP K30A, induced accumulation of AXL polyubiquitinated species upon 17-AAG treatment. The sensitivity of AXL to 17-AAG required its intracellular domain because an AXL intracellular domain-deleted mutant was insensitive to the compound. Active AXL and kinase-dead AXL were similarly sensitive to 17-AAG, implying that 17-AAG sensitivity does not require receptor phosphorylation. Overall our data elucidate the molecular basis of AXL down-regulation by HSP90 inhibitors and suggest that HSP90 inhibition in anticancer therapy can exert its effect through inhibition of multiple kinases including AXL.

  4. Molecular Mechanism of 17-Allylamino-17-demethoxygeldanamycin (17-AAG)-induced AXL Receptor Tyrosine Kinase Degradation*

    Science.gov (United States)

    Krishnamoorthy, Gnana Prakasam; Guida, Teresa; Alfano, Luigi; Avilla, Elvira; Santoro, Massimo; Carlomagno, Francesca; Melillo, Rosa Marina

    2013-01-01

    The receptor tyrosine kinase AXL is overexpressed in many cancer types including thyroid carcinomas and has well established roles in tumor formation and progression. Proper folding, maturation, and activity of several oncogenic receptor tyrosine kinases require HSP90 chaperoning. HSP90 inhibition by the antibiotic geldanamycin or its derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) causes destabilization of its client proteins. Here we show that AXL is a novel client protein of HSP90. 17-AAG induced a time- and dose-dependent down-regulation of endogenous or ectopically expressed AXL protein, thereby inhibiting AXL-mediated signaling and biological activity. 17-AAG-induced AXL down-regulation specifically affected fully glycosylated mature receptor present on cell membrane. By using biotin and [35S]methionine labeling, we showed that 17-AAG caused depletion of membrane-localized AXL by mediating its degradation in the intracellular compartment, thus restricting its exposure on the cell surface. 17-AAG induced AXL polyubiquitination and subsequent proteasomal degradation; under basal conditions, AXL co-immunoprecipitated with HSP90. Upon 17-AAG treatment, AXL associated with the co-chaperone HSP70 and the ubiquitin E3 ligase carboxyl terminus of HSC70-interacting protein (CHIP). Overexpression of CHIP, but not of the inactive mutant CHIP K30A, induced accumulation of AXL polyubiquitinated species upon 17-AAG treatment. The sensitivity of AXL to 17-AAG required its intracellular domain because an AXL intracellular domain-deleted mutant was insensitive to the compound. Active AXL and kinase-dead AXL were similarly sensitive to 17-AAG, implying that 17-AAG sensitivity does not require receptor phosphorylation. Overall our data elucidate the molecular basis of AXL down-regulation by HSP90 inhibitors and suggest that HSP90 inhibition in anticancer therapy can exert its effect through inhibition of multiple kinases including AXL. PMID:23629654

  5. Antipruritic Effect of Cold-induced and Transient Receptor Potential-agonist-induced Counter-irritation on Histaminergic Itch in Humans.

    Science.gov (United States)

    Andersen, Hjalte H; Melholt, Camilla; Hilborg, Sigurd D; Jerwiarz, Anne; Randers, Amalie; Simoni, Amalie; Elberling, Jesper; Arendt-Nielsen, Lars

    2017-01-04

    A frequent empirical observation is that cold-induced counter-irritation may attenuate itch. The aim of this randomized, single-blinded, exploratory study was to evaluate the counter-irritation effects of cold-stimulation and topical application of transient receptor potential TRPA1/M8-agonists (trans-cinnamaldehyde/L-menthol, respectively), on histamine-induced itch, wheals and neurogenic inflammation in 13 healthy volunteers. Histamine 1% was applied to the volar forearms using skin prick-test lancets. Recorded outcome-parameters were itch intensity, wheal reactions, and neurogenic inflammation (measured by laser-speckle perfusion-imaging). Homotopic thermal counter-irritation was performed with 6 temperatures, ranging from 4°C to 37°C, using a 3 × 3-cm thermal stimulator. Chemical "cold-like" counter-irritation was conducted with 40% L-menthol and 10% trans-cinnamaldehyde, while 5% doxepin was used as a positive antipruritic control/comparator. Cold counter-irritation stimuli from 4°C to 22°C inhibited itch in a stimulus-intensity-dependent manner (p cold-like" counter-irritation with both L-menthol and trans-cinnamaldehyde had antipruritic efficacy similar to doxepin (p Cold-induced counter-irritation had an inhibitory effect on histaminergic itch, suggesting that agonists of cold transduction receptors could be of potential antipruritic value.

  6. Ligand Modulation of the Epstein-Barr Virus-induced Seven-transmembrane Receptor EBI2

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Smethurst, Christopher; Holst, Peter Johannes

    2011-01-01

    The Epstein-Barr virus-induced receptor 2 (EBI2) is a constitutively active seven-transmembrane receptor, which was recently shown to orchestrate the positioning of B cells in the follicle. To date, no ligands, endogenously or synthetic, have been identified that modulate EBI2 activity. Here we...... with similar potency. Overexpression of EBI2 profoundly potentiated antibody-stimulated ex vivo proliferation of murine B cells compared with WT cells, whereas this was equivalently reduced for EBI2-deficient B cells. Inhibition of EBI2 constitutive activity suppressed the proliferation in all cases...

  7. Hypoglycemia induced changes in cholinergic receptor expression in the cerebellum of diabetic rats

    Directory of Open Access Journals (Sweden)

    Anju TR

    2010-02-01

    Full Text Available Abstract Glucose homeostasis in humans is an important factor for the functioning of nervous system. Hypoglycemia and hyperglycemia is found to be associated with central and peripheral nerve system dysfunction. Changes in acetylcholine receptors have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS. In the present study we showed the effects of insulin induced hypoglycemia and streptozotocin induced diabetes on the cerebellar cholinergic receptors, GLUT3 and muscle cholinergic activity. Results showed enhanced binding parameters and gene expression of Muscarinic M1, M3 receptor subtypes in cerebellum of diabetic (D and hypoglycemic group (D + IIH and C + IIH. α7nAchR gene expression showed a significant upregulation in diabetic group and showed further upregulated expression in both D + IIH and C + IIH group. AchE expression significantly upregulated in hypoglycemic and diabetic group. ChAT showed downregulation and GLUT3 expression showed a significant upregulation in D + IIH and C + IIH and diabetic group. AchE activity enhanced in the muscle of hypoglycemic and diabetic rats. Our studies demonstrated a functional disturbance in the neuronal glucose transporter GLUT3 in the cerebellum during insulin induced hypoglycemia in diabetic rats. Altered expression of muscarinic M1, M3 and α7nAchR and increased muscle AchE activity in hypoglycemic rats in cerebellum is suggested to cause cognitive and motor dysfunction. Hypoglycemia induced changes in ChAT and AchE gene expression is suggested to cause impaired acetycholine metabolism in the cerebellum. Cerebellar dysfunction is associated with seizure generation, motor deficits and memory impairment. The results shows that cerebellar cholinergic neurotransmission is impaired during hyperglycemia and hypoglycemia and the hypoglycemia is causing more prominent imbalance in cholinergic neurotransmission which is suggested to be a cause of cerebellar

  8. Orphan Nuclear Receptor ERRα Controls Macrophage Metabolic Signaling and A20 Expression to Negatively Regulate TLR-Induced Inflammation.

    Science.gov (United States)

    Yuk, Jae-Min; Kim, Tae Sung; Kim, Soo Yeon; Lee, Hye-Mi; Han, Jeongsu; Dufour, Catherine Rosa; Kim, Jin Kyung; Jin, Hyo Sun; Yang, Chul-Su; Park, Ki-Sun; Lee, Chul-Ho; Kim, Jin-Man; Kweon, Gi Ryang; Choi, Hueng-Sik; Vanacker, Jean-Marc; Moore, David D; Giguère, Vincent; Jo, Eun-Kyeong

    2015-07-21

    The orphan nuclear receptor estrogen-related receptor α (ERRα; NR3B1) is a key metabolic regulator, but its function in regulating inflammation remains largely unknown. Here, we demonstrate that ERRα negatively regulates Toll-like receptor (TLR)-induced inflammation by promoting Tnfaip3 transcription and fine-tuning of metabolic reprogramming in macrophages. ERRα-deficient (Esrra(-/-)) mice showed increased susceptibility to endotoxin-induced septic shock, leading to more severe pro-inflammatory responses than control mice. ERRα regulated macrophage inflammatory responses by directly binding the promoter region of Tnfaip3, a deubiquitinating enzyme in TLR signaling. In addition, Esrra(-/-) macrophages showed an increased glycolysis, but impaired mitochondrial respiratory function and biogenesis. Further, ERRα was required for the regulation of NF-κB signaling by controlling p65 acetylation via maintenance of NAD(+) levels and sirtuin 1 activation. These findings unravel a previously unappreciated role for ERRα as a negative regulator of TLR-induced inflammatory responses through inducing Tnfaip3 transcription and controlling the metabolic reprogramming. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Memory Deficits Induced by Inflammation Are Regulated by α5-Subunit-Containing GABAA Receptors

    Directory of Open Access Journals (Sweden)

    Dian-Shi Wang

    2012-09-01

    Full Text Available Systemic inflammation causes learning and memory deficits through mechanisms that remain poorly understood. Here, we studied the pathogenesis of memory loss associated with inflammation and found that we could reverse memory deficits by pharmacologically inhibiting α5-subunit-containing γ-aminobutyric acid type A (α5GABAA receptors and deleting the gene associated with the α5 subunit. Acute inflammation reduces long-term potentiation, a synaptic correlate of memory, in hippocampal slices from wild-type mice, and this reduction was reversed by inhibition of α5GABAA receptor function. A tonic inhibitory current generated by α5GABAA receptors in hippocampal neurons was increased by the key proinflammatory cytokine interleukin-1β through a p38 mitogen-activated protein kinase signaling pathway. Interleukin-1β also increased the surface expression of α5GABAA receptors in the hippocampus. Collectively, these results show that α5GABAA receptor activity increases during inflammation and that this increase is critical for inflammation-induced memory deficits.

  10. Effects of the histamine H₃ receptor antagonist ABT-239 on cognition and nicotine-induced memory enhancement in mice.

    Science.gov (United States)

    Kruk, Marta; Miszkiel, Joanna; McCreary, Andrew C; Przegaliński, Edmund; Filip, Małgorzata; Biała, Grażyna

    2012-01-01

    The strong correlation between central histaminergic and cholinergic pathways on cognitive processes has been reported extensively. However, the role of histamine H(3) receptor mechanisms interacting with nicotinic mechanisms has not previously been extensively investigated. The current study was conducted to determine the interactions of nicotinic and histamine H(3) receptor systems with regard to learning and memory function using a modified elevated plus-maze test in mice. In this test, the latency for mice to move from the open arm to the enclosed arm (i.e., transfer latency) was used as an index of memory. We tested whether ABT-239 (4-(2-{2-[(2R)-2-methylpyrrolidinyl]ethyl}-benzofuran-5-yl), an H(3) receptor antagonist/inverse agonist, had influence on two different stages of memory, i.e., memory acquisition and consolidation (administered prior to or immediately after the first trial, respectively) and whether ABT-239 influenced nicotine-induced memory enhancement. Our results revealed that the acute administration of nicotine (0.035 and 0.175 mg/kg), but not of ABT-239 (0.1-3 mg/kg) reduced transfer latency in the acquisition and consolidation phases. In combination studies, concomitant administration of either ABT-239 (1 and 3 mg/kg) and nicotine (0.035 mg/kg), or ABT-239 (0.1 mg/kg) and nicotine (0.0175 mg/kg) further increased nicotine-induced improvement in both memory acquisition and consolidation. The present data confirm an important role for H(3) receptors in regulating nicotine-induced mnemonic effects since inhibition of H(3) receptors augmented nicotine-induced memory enhancement in mice.

  11. Human agonistic TRAIL receptor antibodies Mapatumumab and Lexatumumab induce apoptosis in malignant mesothelioma and act synergistically with cisplatin

    Directory of Open Access Journals (Sweden)

    Felley-Bosco Emanuela

    2007-10-01

    Full Text Available Abstract Background The incidence of malignant pleural mesothelioma (MPM is associated with exposure to asbestos, and projections suggest that the yearly number of deaths in Western Europe due to MPM will increase until 2020. Despite progress in chemo- and in multimodality therapy, MPM remains a disease with a poor prognosis. Inducing apoptosis by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or agonistic monoclonal antibodies which target TRAIL-receptor 1 (TRAIL-R1 or TRAIL-R2 has been thought to be a promising cancer therapy. Results We have compared the sensitivity of 13 MPM cell lines or primary cultures to TRAIL and two fully human agonistic monoclonal antibodies directed to TRAIL-R1 (Mapatumumab and TRAIL-R2 (Lexatumumab and examined sensitization of the MPM cell lines to cisplatin-induced by the TRAIL-receptor antibodies. We found that sensitivity of MPM cells to TRAIL, Mapatumumab and Lexatumumab varies largely and is independent of TRAIL-receptor expression. TRAIL-R2 contributes more than TRAIL-R1 to death-receptor mediated apoptosis in MPM cells that express both receptors. The combination of cisplatin with Mapatumumab or Lexatumumab synergistically inhibited the cell growth and enhanced apoptotic death. Furthermore, pre-treatment with cisplatin followed by Mapatumumab or Lexatumumab resulted in significant higher cytotoxic effects as compared to the reverse sequence. Combination-induced cell growth inhibition was significantly abrogated by pre-treatment of the cells with the antioxidant N-acetylcysteine. Conclusion Our results suggest that the sequential administration of cisplatin followed by Mapatumumab or Lexatumumab deserves investigation in the treatment of patients with MPM.

  12. Correlation between laser-induced breakdown spectroscopy signal and moisture content

    International Nuclear Information System (INIS)

    Liu, Yuan; Gigant, Lionel; Baudelet, Matthieu; Richardson, Martin

    2012-01-01

    The possibility of using Laser-Induced Breakdown Spectroscopy (LIBS) for measuring the moisture content of fresh food samples is studied. The normalized line emission of oxygen is highly correlated with the moisture content of the sample, cheese in our case, and can be used as a moisture marker in situations where oxygen interference from the matrix is not a critical issue. The linear correlation between the oxygen signal and the moisture content in the sample shows great potential for using LIBS as an alternative spectroscopic method for moisture monitoring. - Highlights: ► Quantitative moisture measurement by LIBS. ► Use of matrix effects and normalization for physical information on the sample. ► Use of signal from oxygen and CN radical in air background for moisture measurement.

  13. The modulatory role of M2 muscarinic receptor on apomorphine-induced yawning and genital grooming.

    Science.gov (United States)

    Gamberini, Maria Thereza; Bolognesi, Maria Laura; Nasello, Antonia Gladys

    2012-12-07

    The interaction between dopaminergic and cholinergic pathways in the induction of behavioral responses has been previously established. In the brain, M2 receptors are found predominantly in presynaptic cholinergic neurons as autoreceptors, and in dopaminergic neurons as heteroceptors, suggesting a control role of acetylcholine and dopamine release, respectively. Our aim was to investigate the role of M2 receptors on the yawning and genital grooming of rats induced by apomorphine, a dopaminergic receptor agonist, focusing on the interaction between cholinergic and dopaminergic pathways. Initially, the effect of atropine, a non-selective muscarinic antagonist, on yawning and genital grooming induced by apomorphine (100 μg/kg s.c.) was analyzed. Atropine doses of 0.5, 1 and 2 mg/kg i.p. were administered to Wistar rats 30 min before induction of the behavioral responses by apomorphine. Number of yawns and time spent genital grooming were quantified over a 60 min period. Apomorphine-induced yawning was increased by low dose (0.5 mg/kg i.p.) but not by high doses (1 and 2 mg/kg, i.p.) of atropine. Genital grooming was antagonized by 2 mg/kg i.p. of atropine and showed no changes at the other doses tested. Tripitramine, a selective M2 cholinergic antagonist, was used as a tool for distinguishing between M2 and all other muscarinic receptor subtypes in yawning and genital grooming. Tripitramine doses of 0.01, 0.02 and 0.04 μmol/kg i.p. were administered to Wistar rats 30 min before apomorphine (100 μg/kg s.c.). Number of yawns and time spent genital grooming were also quantified over a 60 min period. Tripitramine 0.01 μmol/kg increased all parameters. Higher doses, which possibly block all subtypes of muscarinic receptor, did not modify the response of apomorphine, suggesting a non-selective effect of tripitramine at these doses. Given that low doses of tripitramine increased the behavioral responses induced by apomorphine and that the main distribution of the M2

  14. Interaction of epidermal growth factor receptors with the cytoskeleton is related to receptor clustering

    NARCIS (Netherlands)

    van Belzen, N.; Spaargaren, M.; Verkleij, A. J.; Boonstra, J.

    1990-01-01

    Recently it has been established that cytoskeleton-associated epidermal growth factor (EGF) receptors are predominantly of the high-affinity class and that EGF induces a recruitment of low-affinity receptors to the cytoskeleton. The nature of this EGF-induced receptor-cytoskeleton interaction,

  15. Dopamine-induced apoptosis of lactotropes is mediated by the short isoform of D2 receptor.

    Science.gov (United States)

    Radl, Daniela Betiana; Ferraris, Jimena; Boti, Valeria; Seilicovich, Adriana; Sarkar, Dipak Kumar; Pisera, Daniel

    2011-03-25

    Dopamine, through D2 receptor (D2R), is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L) and short (D2S), are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850). SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process.

  16. Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc

    Directory of Open Access Journals (Sweden)

    MP Grant

    2016-07-01

    Full Text Available The cartilaginous endplates (CEPs are thin layers of hyaline cartilage found adjacent to intervertebral discs (IVDs. In addition to providing structural support, CEPs regulate nutrient and metabolic exchange in the disc. In IVD pathogenesis, CEP undergoes degeneration and calcification, compromising nutrient availability and disc cell metabolism. The mechanism(s underlying the biochemical changes of CEP in disc degeneration are currently unknown. Since calcification is often observed in later stages of IVD degeneration, we hypothesised that elevations in free calcium (Ca2+ impair CEP homeostasis. Indeed, our results demonstrated that the Ca2+ content was consistently higher in human CEP tissue with grade of disc degeneration. Increasing the levels of Ca2+ resulted in decreases in the secretion and accumulation of collagens type I, II and proteoglycan in cultured human CEP cells. Ca2+ exerted its effects on CEP matrix protein synthesis through activation of the extracellular calcium-sensing receptor (CaSR; however, aggrecan content was also affected independent of CaSR activation as increases in Ca2+ directly enhanced the activity of aggrecanases. Finally, supplementing Ca2+ in our IVD organ cultures was sufficient to induce degeneration and increase the mineralisation of CEP, and decrease the diffusion of glucose into the disc. Thus, any attempt to induce anabolic repair of the disc without addressing Ca2+ may be impaired, as the increased metabolic demand of IVD cells would be compromised by decreases in the permeability of the CEP.

  17. Fluoxetine reverses the behavioral despair induced by neurogenic stress in mice: role of N-methyl-d-aspartate and opioid receptors.

    Science.gov (United States)

    Haj-Mirzaian, Arya; Kordjazy, Nastaran; Ostadhadi, Sattar; Amiri, Shayan; Haj-Mirzaian, Arvin; Dehpour, AhmadReza

    2016-06-01

    Opioid and N-methyl-d-aspartate (NMDA) receptors mediate different effects of fluoxetine. We investigated whether opioid and NMDA receptors are involved in the protective effect of fluoxetine against the behavioral despair induced by acute physical stress in male mice. We used the forced swimming test (FST), tail suspension test (TST), and open-field test (OFT) for behavioral evaluation. We used fluoxetine, naltrexone (opioid receptor antagonist), MK-801 (NMDA receptor antagonist), morphine (opioid receptor agonist), and NMDA (NMDA receptor agonist). Acute foot-shock stress (FSS) significantly induced behavioral despair (depressive-like) and anxiety-like behaviors in tests. Fluoxetine (5 mg/kg) reversed the depressant-like effect of FSS, but it did not alter the locomotion and anxiety-like behavior in animals. Acute administration of subeffective doses of naltrexone (0.3 mg/kg) or MK-801 (0.01 mg/kg) potentiated the antidepressant-like effect of fluoxetine, while subeffective doses of morphine (1 mg/kg) and NMDA (75 mg/kg) abolished this effect of fluoxetine. Also, co-administration of subeffective doses of naltrexone (0.05 mg/kg) and MK-801 (0.003 mg/kg) with fluoxetine (1 mg/kg) induced a significant decrease in the immobility time in FST and TST. Our results showed that opioid and NMDA receptors (alone or in combination) are involved in the antidepressant-like effect of fluoxetine against physical stress.

  18. Proximal Tubular Cannabinoid-1 Receptor Regulates Obesity-Induced CKD.

    Science.gov (United States)

    Udi, Shiran; Hinden, Liad; Earley, Brian; Drori, Adi; Reuveni, Noa; Hadar, Rivka; Cinar, Resat; Nemirovski, Alina; Tam, Joseph

    2017-12-01

    Obesity-related structural and functional changes in the kidney develop early in the course of obesity and occur independently of hypertension, diabetes, and dyslipidemia. Activating the renal cannabinoid-1 receptor (CB 1 R) induces nephropathy, whereas CB 1 R blockade improves kidney function. Whether these effects are mediated via a specific cell type within the kidney remains unknown. Here, we show that specific deletion of CB 1 R in the renal proximal tubule cells did not protect the mice from obesity, but markedly attenuated the obesity-induced lipid accumulation in the kidney and renal dysfunction, injury, inflammation, and fibrosis. These effects associated with increased activation of liver kinase B1 and the energy sensor AMP-activated protein kinase, as well as enhanced fatty acid β -oxidation. Collectively, these findings indicate that renal proximal tubule cell CB 1 R contributes to the pathogenesis of obesity-induced renal lipotoxicity and nephropathy by regulating the liver kinase B1/AMP-activated protein kinase signaling pathway. Copyright © 2017 by the American Society of Nephrology.

  19. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription.

    Science.gov (United States)

    Stavreva, Diana A; Wiench, Malgorzata; John, Sam; Conway-Campbell, Becky L; McKenna, Mervyn A; Pooley, John R; Johnson, Thomas A; Voss, Ty C; Lightman, Stafford L; Hager, Gordon L

    2009-09-01

    Studies on glucocorticoid receptor (GR) action typically assess gene responses by long-term stimulation with synthetic hormones. As corticosteroids are released from adrenal glands in a circadian and high-frequency (ultradian) mode, such treatments may not provide an accurate assessment of physiological hormone action. Here we demonstrate that ultradian hormone stimulation induces cyclic GR-mediated transcriptional regulation, or gene pulsing, both in cultured cells and in animal models. Equilibrium receptor-occupancy of regulatory elements precisely tracks the ligand pulses. Nascent RNA transcripts from GR-regulated genes are released in distinct quanta, demonstrating a profound difference between the transcriptional programs induced by ultradian and constant stimulation. Gene pulsing is driven by rapid GR exchange with response elements and by GR recycling through the chaperone machinery, which promotes GR activation and reactivation in response to the ultradian hormone release, thus coupling promoter activity to the naturally occurring fluctuations in hormone levels. The GR signalling pathway has been optimized for a prompt and timely response to fluctuations in hormone levels, indicating that biologically accurate regulation of gene targets by GR requires an ultradian mode of hormone stimulation.

  20. Membrane cholesterol effect on the 5-HT2A receptor: Insights into the lipid-induced modulation of an antipsychotic drug target.

    Science.gov (United States)

    Ramírez-Anguita, Juan Manuel; Rodríguez-Espigares, Ismael; Guixà-González, Ramon; Bruno, Agostino; Torrens-Fontanals, Mariona; Varela-Rial, Alejandro; Selent, Jana

    2018-01-01

    The serotonin 5-hydroxytryptamine 2A (5-HT 2A ) receptor is a G-protein-coupled receptor (GPCR) relevant for the treatment of CNS disorders. In this regard, neuronal membrane composition in the brain plays a crucial role in the modulation of the receptor functioning. Since cholesterol is an essential component of neuronal membranes, we have studied its effect on the 5-HT 2A receptor dynamics through all-atom MD simulations. We find that the presence of cholesterol in the membrane increases receptor conformational variability in most receptor segments. Importantly, detailed structural analysis indicates that conformational variability goes along with the destabilization of hydrogen bonding networks not only within the receptor but also between receptor and lipids. In addition to increased conformational variability, we also find receptor segments with reduced variability. Our analysis suggests that this increased stabilization is the result of stabilizing effects of tightly bound cholesterol molecules to the receptor surface. Our finding contributes to a better understanding of membrane-induced alterations of receptor dynamics and points to cholesterol-induced stabilizing and destabilizing effects on the conformational variability of GPCRs. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  1. Cutting Edge: The murine high-affinity IgG receptor FcγRIV is sufficient for autoantibody-induced arthritis.

    Science.gov (United States)

    Mancardi, David A; Jönsson, Friederike; Iannascoli, Bruno; Khun, Huot; Van Rooijen, Nico; Huerre, Michel; Daëron, Marc; Bruhns, Pierre

    2011-02-15

    K/BxN serum-induced passive arthritis was reported to depend on the activation of mast cells, triggered by the activating IgG receptor FcγRIIIA, when engaged by IgG1 autoantibodies present in K/BxN serum. This view is challenged by the fact that FcγRIIIA-deficient mice still develop K/BxN arthritis and because FcγRIIIA is the only activating IgG receptor expressed by mast cells. We investigated the contribution of IgG receptors, IgG subclasses, and cells in K/BxN arthritis. We found that the activating IgG2 receptor FcγRIV, expressed only by monocytes/macrophages and neutrophils, was sufficient to induce disease. K/BxN arthritis occurred not only in mast cell-deficient W(sh) mice, but also in mice whose mast cells express no activating IgG receptors. We propose that at least two autoantibody isotypes, IgG1 and IgG2, and two activating IgG receptors, FcγRIIIA and FcγRIV, contribute to K/BxN arthritis, which requires at least two cell types other than mast cells, monocytes/macrophages, and neutrophils.

  2. Inhibition of allergen-induced basophil activation by ASM-024, a nicotinic receptor ligand.

    Science.gov (United States)

    Watson, Brittany M; Oliveria, John Paul; Nusca, Graeme M; Smith, Steven G; Beaudin, Sue; Dua, Benny; Watson, Rick M; Assayag, Evelynne Israël; Cormier, Yvon F; Sehmi, Roma; Gauvreau, Gail M

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) were identified on eosinophils and shown to regulate inflammatory responses, but nAChR expression on basophils has not been explored yet. We investigated surface receptor expression of nAChR α4, α7 and α1/α3/α5 subunits on basophils. Furthermore, we examined the effects of ASM-024, a synthetic nicotinic ligand, on in vitro anti-IgE and in vivo allergen-induced basophil activation. Basophils were enriched from the peripheral blood of allergic donors and the expression of nAChR subunits and muscarinic receptors was determined. Purified basophils were stimulated with anti-IgE in the presence of ASM-024 with or without muscarinic or nicotinic antagonists for the measurement of CD203c expression and histamine release. The effect of 9 days of treatment with 50 and 200 mg ASM-024 on basophil CD203c expression was examined in the blood of mild allergic asthmatics before and after allergen inhalation challenge. nAChR α4, α7 and α1/α3/α5 receptor subunit expression was detected on basophils. Stimulation of basophils with anti-IgE increased CD203c expression and histamine release, which was inhibited by ASM-024 (10(-5) to 10(-)(3) M, p ASM-024 was reversed in the presence of muscarinic and nicotinic antagonists. In subjects with mild asthma, ASM-024 inhalation significantly inhibited basophil CD203c expression measured 24 h after allergen challenge (p = 0.03). This study shows that ASM-024 inhibits IgE- and allergen-induced basophil activation through both nicotinic and muscarinic receptors, and suggests that ASM-024 may be an efficacious agent for modulating allergic asthma responses. © 2015 S. Karger AG, Basel.

  3. Oxygen dependency of epidermal growth factor receptor binding and DNA synthesis of rat hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Tetsuro; Terajima, Hiroaki; Yamauchi, Akira

    1997-01-01

    Background/Aims: Changes in oxygen availability modulate replicative responses in several cell types, but the effects on hepatocyte replication remain unclear. We have studied the effects of transient nonlethal hypoxia on epidermal growth factor receptor binding and epidermal growth factor-induced DNA synthesis of rat hepatocytes. Methods: Lactate dehydrogenase activity in culture supernatant, intracellular adenosine triphosphate content, 125 I-epidermal growth factor specific binding, epidermal growth factor receptor protein expression, and 3 H-thymidine incorporation were compared between hepatocytes cultured in hypoxia and normoxia. Results: Hypoxia up to 3 h caused no significant increase in lactate dehydrogenase activity in the culture supernatant, while intracellular adenosine triphosphate content decreased time-dependently and was restored to normoxic levels by reoxygenation (nonlethal hypoxia). Concomitantly, 125 I-epidermal growth factor specific binding to hepatocytes decreased time-dependently (to 54.1% of normoxia) and was restored to control levels by reoxygenation, although 125 I-insulin specific binding was not affected. The decrease in 125 I-epidermal growth factor specific binding was explained by the decrease in the number or available epidermal growth factor receptors (21.37±3.08 to 12.16±1.42 fmol/10 5 cells), while the dissociation constant of the receptor was not affected. The change in the number of available receptors was not considered to be due to receptor degradation-resynthesis, since immuno-detection of the epidermal growth factor receptor revealed that the receptor protein expression did not change during hypoxia and reoxygenation, and since neither actinomycin D nor cycloheximide affected the recovery of 125 I-epidermal growth factor binding by reoxygenation. Inhibition of epidermal growth factor-induced DNA synthesis after hypoxia (to 75.4% of normoxia by 3 h hypoxia) paralleled the decrease in 125 I-epidermal growth factor binding

  4. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells.

    Science.gov (United States)

    Osman, Islam; Poulose, Ninu; Ganapathy, Vadivel; Segar, Lakshman

    2016-11-15

    Insulin resistance is associated with accelerated atherosclerosis. Although high fructose is known to induce insulin resistance, it remains unclear as to how fructose regulates insulin receptor signaling and proliferative phenotype in vascular smooth muscle cells (VSMCs), which play a major role in atherosclerosis. Using human aortic VSMCs, we investigated the effects of high fructose treatment on insulin receptor substrate-1 (IRS-1) serine phosphorylation, insulin versus platelet-derived growth factor (PDGF)-induced phosphorylation of Akt, S6 ribosomal protein, and extracellular signal-regulated kinase (ERK), and cell cycle proteins. In comparison with PDGF (a potent mitogen), neither fructose nor insulin enhanced VSMC proliferation and cyclin D1 expression. d-[ 14 C(U)]fructose uptake studies revealed a progressive increase in fructose uptake in a time-dependent manner. Concentration-dependent studies with high fructose (5-25mM) showed marked increases in IRS-1 serine phosphorylation, a key adapter protein in insulin receptor signaling. Accordingly, high fructose treatment led to significant diminutions in insulin-induced phosphorylation of downstream signaling components including Akt and S6. In addition, high fructose significantly diminished insulin-induced ERK phosphorylation. Nevertheless, high fructose did not affect PDGF-induced key proliferative signaling events including phosphorylation of Akt, S6, and ERK and expression of cyclin D1 protein. Together, high fructose dysregulates IRS-1 phosphorylation state and proximal insulin receptor signaling in VSMCs, but does not affect PDGF-induced proliferative signaling. These findings suggest that systemic insulin resistance rather than VSMC-specific dysregulation of insulin receptor signaling by high fructose may play a major role in enhancing atherosclerosis and neointimal hyperplasia. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effects of cannabinoid CB(1) receptor agonism and antagonism on SKF81297-induced dyskinesia and haloperidol-induced dystonia in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Madsen, Morten V; Peacock, Linda P; Werge, Thomas

    2011-01-01

    81297 (SKF) and acute dystonia induced by the dopamine D(2) receptor antagonist haloperidol in Cebus apella monkeys. The monkeys were sensitised to EPS by prior exposure to D(2) receptor antagonists. SKF (0.3 mg/kg) was administered alone and in combination with the CB(1) agonist CP55,940 (0.......0025-0.01 mg/kg) or the CB(1) antagonist SR141716A (0.25-0.75 mg/kg). Haloperidol (individual doses at 0.01-0.02 mg/kg) was administered alone and in combination with CP55,940 (0.005 or 0.01 mg/kg) or SR141716A (0.5 or 0.75 mg/kg). Subsequently, the monkeys were videotaped, and the recordings were rated...... for oral dyskinesia or dystonia. SKF-induced oral dyskinesia was dose-dependently reduced by CP55,940, with no effect of SR141716A. Haloperidol-induced dystonia was not affected by either CP55,940 or SR141716A....

  6. Expression and purification of functional human mu opioid receptor from E.coli.

    Directory of Open Access Journals (Sweden)

    Yanbin Ma

    Full Text Available N-terminally his-tagged human mu opioid receptor, a G protein-coupled receptor was produced in E.coli employing synthetic codon-usage optimized constructs. The receptor was expressed in inclusion bodies and membrane-inserted in different E.coli strains. By optimizing the expression conditions the expression level for the membrane-integrated receptor was raised to 0.3-0.5 mg per liter of culture. Milligram quantities of receptor could be enriched by affinity chromatography from IPTG induced cultures grown at 18°C. By size exclusion chromatography the protein fraction with the fraction of alpha-helical secondary structure expected for a 7-TM receptor was isolated, by CD-spectroscopy an alpha-helical content of ca. 45% was found for protein solubilised in the detergent Fos-12. Receptor in Fos-12 micelles was shown to bind endomorphin-1 with a K(D of 61 nM. A final yield of 0.17 mg functional protein per liter of culture was obtained.

  7. An Antibody Blocking Activin Type II Receptors Induces Strong Skeletal Muscle Hypertrophy and Protects from Atrophy

    Science.gov (United States)

    Minetti, Giulia C.; Sheppard, KellyAnn; Ibebunjo, Chikwendu; Feige, Jerome N.; Hartmann, Steffen; Brachat, Sophie; Rivet, Helene; Koelbing, Claudia; Morvan, Frederic; Hatakeyama, Shinji

    2014-01-01

    The myostatin/activin type II receptor (ActRII) pathway has been identified to be critical in regulating skeletal muscle size. Several other ligands, including GDF11 and the activins, signal through this pathway, suggesting that the ActRII receptors are major regulatory nodes in the regulation of muscle mass. We have developed a novel, human anti-ActRII antibody (bimagrumab, or BYM338) to prevent binding of ligands to the receptors and thus inhibit downstream signaling. BYM338 enhances differentiation of primary human skeletal myoblasts and counteracts the inhibition of differentiation induced by myostatin or activin A. BYM338 prevents myostatin- or activin A-induced atrophy through inhibition of Smad2/3 phosphorylation, thus sparing the myosin heavy chain from degradation. BYM338 dramatically increases skeletal muscle mass in mice, beyond sole inhibition of myostatin, detected by comparing the antibody with a myostatin inhibitor. A mouse version of the antibody induces enhanced muscle hypertrophy in myostatin mutant mice, further confirming a beneficial effect on muscle growth beyond myostatin inhibition alone through blockade of ActRII ligands. BYM338 protects muscles from glucocorticoid-induced atrophy and weakness via prevention of muscle and tetanic force losses. These data highlight the compelling therapeutic potential of BYM338 for the treatment of skeletal muscle atrophy and weakness in multiple settings. PMID:24298022

  8. Suppressive Effects of Bee Venom Acupuncture on Paclitaxel-Induced Neuropathic Pain in Rats: Mediation by Spinal α2-Adrenergic Receptor

    Directory of Open Access Journals (Sweden)

    Jiho Choi

    2017-10-01

    Full Text Available Paclitaxel, a chemotherapy drug for solid tumors, induces peripheral painful neuropathy. Bee venom acupuncture (BVA has been reported to have potent analgesic effects, which are known to be mediated by activation of spinal α-adrenergic receptor. Here, we investigated the effect of BVA on mechanical hyperalgesia and spinal neuronal hyperexcitation induced by paclitaxel. The role of spinal α-adrenergic receptor subtypes in the analgesic effect of BVA was also observed. Administration of paclitaxel (total 8 mg/kg, intraperitoneal on four alternate days (days 0, 2, 4, and 6 induced significant mechanical hyperalgesic signs, measured using a von Frey filament. BVA (1 mg/kg, ST36 relieved this mechanical hyperalgesia for at least two hours, and suppressed the hyperexcitation in spinal wide dynamic range neurons evoked by press or pinch stimulation. Both melittin (0.5 mg/kg, ST36 and phospholipase A2 (0.12 mg/kg, ST36 were shown to play an important part in this analgesic effect of the BVA, as they significantly attenuated the pain. Intrathecal pretreatment with the α2-adrenergic receptor antagonist (idazoxan, 50 µg, but not α1-adrenergic receptor antagonist (prazosin, 30 µg, blocked the analgesic effect of BVA. These results suggest that BVA has potent suppressive effects against paclitaxel-induced neuropathic pain, which were mediated by spinal α2-adrenergic receptor.

  9. Suppressive Effects of Bee Venom Acupuncture on Paclitaxel-Induced Neuropathic Pain in Rats: Mediation by Spinal α₂-Adrenergic Receptor.

    Science.gov (United States)

    Choi, Jiho; Jeon, Changhoon; Lee, Ji Hwan; Jang, Jo Ung; Quan, Fu Shi; Lee, Kyungjin; Kim, Woojin; Kim, Sun Kwang

    2017-10-31

    Paclitaxel, a chemotherapy drug for solid tumors, induces peripheral painful neuropathy. Bee venom acupuncture (BVA) has been reported to have potent analgesic effects, which are known to be mediated by activation of spinal α-adrenergic receptor. Here, we investigated the effect of BVA on mechanical hyperalgesia and spinal neuronal hyperexcitation induced by paclitaxel. The role of spinal α-adrenergic receptor subtypes in the analgesic effect of BVA was also observed. Administration of paclitaxel (total 8 mg/kg, intraperitoneal) on four alternate days (days 0, 2, 4, and 6) induced significant mechanical hyperalgesic signs, measured using a von Frey filament. BVA (1 mg/kg, ST36) relieved this mechanical hyperalgesia for at least two hours, and suppressed the hyperexcitation in spinal wide dynamic range neurons evoked by press or pinch stimulation. Both melittin (0.5 mg/kg, ST36) and phospholipase A2 (0.12 mg/kg, ST36) were shown to play an important part in this analgesic effect of the BVA, as they significantly attenuated the pain. Intrathecal pretreatment with the α₂-adrenergic receptor antagonist (idazoxan, 50 µg), but not α₁-adrenergic receptor antagonist (prazosin, 30 µg), blocked the analgesic effect of BVA. These results suggest that BVA has potent suppressive effects against paclitaxel-induced neuropathic pain, which were mediated by spinal α₂-adrenergic receptor.

  10. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations.

    Science.gov (United States)

    Mathé-Allainmat, Monique; Swale, Daniel; Leray, Xavier; Benzidane, Yassine; Lebreton, Jacques; Bloomquist, Jeffrey R; Thany, Steeve H

    2013-12-01

    We have recently demonstrated that a new quinuclidine benzamide compound named LMA10203 acted as an agonist of insect nicotinic acetylcholine receptors. Its specific pharmacological profile on cockroach dorsal unpaired median neurons (DUM) helped to identify alpha-bungarotoxin-insensitive nAChR2 receptors. In the present study, we tested its effect on cockroach Kenyon cells. We found that it induced an inward current demonstrating that it bounds to nicotinic acetylcholine receptors expressed on Kenyon cells. Interestingly, LMA10203-induced currents were completely blocked by the nicotinic antagonist α-bungarotoxin. We suggested that LMA10203 effect occurred through the activation of α-bungarotoxin-sensitive receptors and did not involve α-bungarotoxin-insensitive nAChR2, previously identified in DUM neurons. In addition, we have synthesized two new compounds, LMA10210 and LMA10211, and compared their effects on Kenyon cells. These compounds were members of the 3-quinuclidinyl benzamide or benzoate families. Interestingly, 1 mM LMA10210 was not able to induce an inward current on Kenyon cells compared to LMA10211. Similarly, we did not find any significant effect of LMA10210 on cockroach ganglionic depolarization, whereas these three compounds were able to induce an effect on the central nervous system of the third instar M. domestica larvae. Our data suggested that these three compounds could bind to distinct cockroach nicotinic acetylcholine receptors.

  11. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity

    Science.gov (United States)

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Zhang, Nan; Szweda, Luke I.; Griffin, Timothy M.; Barlic-Dicen, Jana

    2014-01-01

    The chemokine receptor CXCR4 is expressed on adipocytes and macrophages in adipose tissue, but its role in this tissue remains unknown. We evaluated whether deficiency in either adipocyte or myeloid leukocyte CXCR4 affects body weight (BW) and adiposity in a mouse model of high-fat-diet (HFD)-induced obesity. We found that ablation of adipocyte, but not myeloid leukocyte, CXCR4 exacerbated obesity. The HFD-fed adipocyte-specific CXCR4-knockout (AdCXCR4ko) mice, compared to wild-type C57BL/6 control mice, had increased BW (average: 52.0 g vs. 35.5 g), adiposity (average: 49.3 vs. 21.0% of total BW), and inflammatory leukocyte content in white adipose tissue (WAT), despite comparable food intake. As previously reported, HFD feeding increased uncoupling protein 1 (UCP1) expression (fold increase: 3.5) in brown adipose tissue (BAT) of the C57BL/6 control mice. However, no HFD-induced increase in UCP1 expression was observed in the AdCXCR4ko mice, which were cold sensitive. Thus, our study suggests that adipocyte CXCR4 limits development of obesity by preventing excessive inflammatory cell recruitment into WAT and by supporting thermogenic activity of BAT. Since CXCR4 is conserved between mouse and human, the newfound role of CXCR4 in mouse adipose tissue may parallel the role of this chemokine receptor in human adipose tissue.—Yao, L., Heuser-Baker, J., Herlea-Pana, O., Zhang, N., Szweda, L. I., Griffin, T. M., Barlic-Dicen, J. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity. PMID:25016030

  12. The oxidative potential and biological effects induced by PM{sub 10} obtained in Mexico City and at a receptor site during the MILAGRO Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, Raul [Instituto Nacional de Cancerologia, Mexico City (Mexico); Serrano, Jesus [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Gomez, Virginia [Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Foy, Benjamin de [Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO (United States); Miranda, Javier [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Garcia-Cuellar, Claudia [Instituto Nacional de Cancerologia, Mexico City (Mexico); Vega, Elizabeth [Instituto Mexicano del Petroleo, Mexico City (Mexico); Vazquez-Lopez, Ines [Instituto Nacional de Cancerologia, Mexico City (Mexico); Molina, Luisa T. [Molina Center for Energy and the Environment, CA (United States); Massachusetts Institute of Technology, Cambridge, MA (United States); Manzano-Leon, Natalia [Instituto Nacional de Cancerologia, Mexico City (Mexico); Rosas, Irma [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Osornio-Vargas, Alvaro R., E-mail: osornio@ualberta.ca [Instituto Nacional de Cancerologia, Mexico City (Mexico); Department of Paediatrics, University of Alberta, 1048 RTF, 8308 114 St, Edmonton, AB T6G 2V2 (Canada)

    2011-12-15

    As part of a field campaign that studied the impact of Mexico City pollution plume at the local, sub-regional and regional levels, we studied transport-related changes in PM{sub 10} composition, oxidative potential and in vitro toxicological patterns (hemolysis, DNA degradation). We collected PM{sub 10} in Mexico City (T{sub 0}) and at a suburban-receptor site (T{sub 1}), pooled according to two observed ventilation patterns (T{sub 0} {yields} T{sub 1} influence and non-influence). T{sub 0} samples contained more Cu, Zn, and carbon whereas; T{sub 1} samples contained more of Al, Si, P, S, and K (p < 0.05). Only SO{sub 4}{sup -2} increased in T{sub 1} during the influence periods. Oxidative potential correlated with Cu/Zn content (r = 0.74; p < 0.05) but not with biological effects. T{sub 1} PM{sub 10} induced greater hemolysis and T{sub 0} PM{sub 10} induced greater DNA degradation. Influence/non-influence did not affect oxidative potential nor biological effects. Results indicate that ventilation patterns had little effect on intrinsic PM{sub 10} composition and toxicological potential, which suggests a significant involvement of local sources. - Highlights: > Transport-related changes in PM{sub 10} composition, oxidative potential and in vitro toxicity were studied. > Cu, Zn, and carbon levels were predominant in urban PM{sub 10}; receptor site PM{sub 10} was rich in soil elements. > SO{sub 4}{sup -2} was the only component increased in PM{sub 10} from the receptor during the influence periods. > PM{sub 10} oxidative potential correlates with Cu/Zn content but not with studied biological effects. > Ventilation patterns had little effect on PM{sub 10} composition and toxicity. - Mexico City ventilation patterns had little effect on the intrinsic PM{sub 10} composition and toxicological potential, which suggests a significant involvement of local sources as opposed to downwind transport.

  13. Expression of FSH receptor in ovary tissue of rats with letrozole-induced polycystic ovary syndrome

    International Nuclear Information System (INIS)

    Guo Hongsheng; An Changxin; Chen Dong

    2009-01-01

    Objective: To investigate the expressions of FSH receptor mRNA and protein in ovary tissue in rats with letrozole-induced polycystic ovary syndrome (PCOS), and to provide experimental data for the model application. Methods: Forty rats were randomly divided into two groups (n=20), in PCOS model group letrozole was administered once daily during 21 d, and in control group without any treatment. The gonadal hormone concentrations in serum were determined by radioimmunoassay, the histologic changes in ovaries were observed by HE staining, the expression of FSH receptor gene in ovary tissue was detected by realtime -PCR, Western blotting and immunohistochemistry. Results: Compared with control group, estradiol (E 2 ) and progesterone in model group showed a considerable reduction (P 0.05). Compared with control group, the ovaries from model group showed high incidence of subcapsular ovarian cyst and capsular thickening and decreased number of corpora lute a. The expressions of FSH receptor mRNA and protein were significantly higher in model group than those in control group (P<0.05). Conclusion: The expression of FSH receptor gene in letrozole-induced polycystic ovaries is similar with that of PCOS women, the rat model is proved to be an ideal PCOS animal model to study the pathophysiology of PCOS. (authors)

  14. Autocrine Regulation of UVA-Induced IL-6 Production via Release of ATP and Activation of P2Y Receptors

    Science.gov (United States)

    Kawano, Ayumi; Kadomatsu, Remi; Ono, Miyu; Kojima, Shuji; Tsukimoto, Mitsutoshi; Sakamoto, Hikaru

    2015-01-01

    Extracellular nucleotides, such as ATP, are released from cells in response to various stimuli and act as intercellular signaling molecules through activation of P2 receptors. Exposure to the ultraviolet radiation A (UVA) component of sunlight causes molecular and cellular damage, and in this study, we investigated the involvement of extracellular nucleotides and P2 receptors in the UVA-induced cellular response. Human keratinocyte-derived HaCaT cells were irradiated with a single dose of UVA (2.5 J/cm2), and ATP release and interleukin (IL)-6 production were measured. ATP was released from cells in response to UVA irradiation, and the release was blocked by pretreatment with inhibitors of gap junction hemichannels or P2X7 receptor antagonist. IL-6 production was increased after UVA irradiation, and this increase was inhibited by ecto-nucleotidase or by antagonists of P2Y11 or P2Y13 receptor. These results suggest that UVA-induced IL-6 production is mediated by release of ATP through hemichannels and P2X7 receptor, followed by activation of P2Y11 and P2Y13 receptors. Interestingly, P2Y11 and P2Y13 were associated with the same pattern of IL-6 production, though they trigger different intracellular signaling cascades: Ca2+-dependent and PI3K-dependent, respectively. Thus, IL-6 production in response to UVA-induced ATP release involves at least two distinct pathways, mediated by activation of P2Y11 and P2Y13 receptors. PMID:26030257

  15. CHARACTERISTIC OF MECHANISMS OF ANTIULCEROGENIC ACTION OF AGENTS OF VANILLOID RECEPTORS (TRPV1 ON THE MODEL OF GASTROPATHY INDUCED BY ACETYLSALICYLIC ACID

    Directory of Open Access Journals (Sweden)

    F. V. Hladkykh

    2017-01-01

    Full Text Available One of the main problems of the use of acetylsalicylic acid (ASA is its withdrawal or initial “non-prescription” resulted from the prior developed or potential side effects in the gastrointestinal tract. In this case, the reasons for the abolition of ASA are not only serious complications in the form of gastrointestinal bleeding or perforations, butalso dyspeptic phenomena that are accompanied by the ongoing development of aspirin-induced gastroenteropathy. The aim of the study. To characterize the mechanisms of antiulcerogenic action of agonist TRPV1 (transient receptor potential vanilloid 1 vanillin (100 mg/kg on the model of subchronic ASA-induced gastropathy in rats. Materials and methods. The study was performed on 35 mature male rats. Gastropathy induced by ASA was simulated by a fiveday intragastric (i.g. introduction via the orogastric probe of an ASA suspension of 150 mg/kg/ day during 5 days. Omeprazole (50 mg/kg, i.g. and vanillin (100 mg/kg, i.g. were administered in the form of suspensions 60 minutes prior to the use of ASA. The concentration of malonic dialdehyde, and the activity of catalase were determined in the homogenates of gastric mucosa. The prooxidant/antioxidant ratio (ProAntidex was calculated dased on the ratio of catalase activity (mcat/kg and the concentration of malondialdehyde (MDA concentration (umol/kg. The content of NO metabolites in the stomach tissues was determined by the method of Miranda K.M. et al. Results and discussion. Preventive prophylactic use of vanillin (100 mg/kg leads to the decrease in the intensity of processes of lipid peroxidation in the gastric mucosa caused by the action of ASA (150 mg/kg. This was indicated by a statistically significant (p≤0.05 decrease of 26.4% in MDA content and an increase in catalase activity by 29.0% relatively to those animalswith ASA-induced gastropathy without correction. Also, the use of vanillin resulted in a statistically significant (p≤0.05 increase in

  16. Palmitoylation regulates 17β-estradiol-induced estrogen receptor-α degradation and transcriptional activity.

    Science.gov (United States)

    La Rosa, Piergiorgio; Pesiri, Valeria; Leclercq, Guy; Marino, Maria; Acconcia, Filippo

    2012-05-01

    The estrogen receptor-α (ERα) is a transcription factor that regulates gene expression through the binding to its cognate hormone 17β-estradiol (E2). ERα transcriptional activity is regulated by E2-evoked 26S proteasome-mediated ERα degradation and ERα serine (S) residue 118 phosphorylation. Furthermore, ERα mediates fast cell responses to E2 through the activation of signaling cascades such as the MAPK/ERK and phosphoinositide-3-kinase/v-akt murine thymoma viral oncogene homolog 1 pathways. These E2 rapid effects require a population of the ERα located at the cell plasma membrane through palmitoylation, a dynamic enzymatic modification mediated by palmitoyl-acyl-transferases. However, whether membrane-initiated and transcriptional ERα activities integrate in a unique picture or represent parallel pathways still remains to be firmly clarified. Hence, we evaluated here the impact of ERα palmitoylation on E2-induced ERα degradation and S118 phosphorylation. The lack of palmitoylation renders ERα more susceptible to E2-dependent degradation, blocks ERα S118 phosphorylation and prevents E2-induced ERα estrogen-responsive element-containing promoter occupancy. Consequently, ERα transcriptional activity is prevented and the receptor addressed to the nuclear matrix subnuclear compartment. These data uncover a circuitry in which receptor palmitoylation links E2-dependent ERα degradation, S118 phosphorylation, and transcriptional activity in a unique molecular mechanism. We propose that rapid E2-dependent signaling could be considered as a prerequisite for ERα transcriptional activity and suggest an integrated model of ERα intracellular signaling where E2-dependent early extranuclear effects control late receptor-dependent nuclear actions.

  17. Importance of D1 and D2 receptor stimulation for the induction and expression of cocaine-induced behavioral sensitization in preweanling rats.

    Science.gov (United States)

    McDougall, Sanders A; Rudberg, Krista N; Veliz, Ana; Dhargalkar, Janhavi M; Garcia, Aleesha S; Romero, Loveth C; Gonzalez, Ashley E; Mohd-Yusof, Alena; Crawford, Cynthia A

    2017-05-30

    The behavioral manifestations of psychostimulant-induced sensitization vary markedly between young and adult rats, suggesting that the neural mechanisms mediating this phenomenon differ across ontogeny. In this project we examined the importance of D1 and D2 receptors for the induction and expression of cocaine-induced behavioral sensitization during the preweanling period. In the behavioral experiments, rats were injected with reversible D1 and/or D2 antagonists (SCH23390 and/or raclopride) or an irreversible receptor antagonist (EEDQ) either before cocaine administration on the pretreatment day (induction) or before cocaine challenge on the test day (expression). In the EEDQ experiments, receptor specificity was assessed by using selective dopamine antagonists to protect D1 and/or D2 receptors from inactivation. Receptor binding assays showed that EEDQ caused substantial reductions in dorsal striatal D1 and D2 binding sites, while SCH23390 and raclopride fully protected D1 and D2 receptors from EEDQ-induced alkylation. Behavioral results showed that neither D1 nor D2 receptor stimulation was necessary for the induction of cocaine sensitization in preweanling rats. EEDQ disrupted the sensitization process, suggesting that another receptor type sensitive to EEDQ alkylation was necessary for the induction process. Expression of the sensitized response was prevented by an acute injection of a D1 receptor antagonist. The pattern of DA antagonist-induced effects described for preweanling rats is, with few exceptions, similar to what is observed when the same drugs are administered to adult rats. Thus, it appears that maturational changes in D1 and D2 receptor systems are not responsible for ontogenetic differences in the behavioral manifestation of cocaine sensitization. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Activation of liver X receptors prevents statin-induced death of 3T3-L1 preadipocytes

    DEFF Research Database (Denmark)

    Madsen, Lise; Petersen, Rasmus K; Steffensen, Knut R

    2008-01-01

    The biological functions of liver X receptors (LXRs) alpha and beta have primarily been linked to pathways involved in fatty acid and cholesterol homeostasis. Here we report a novel role of LXR activation in protecting cells from statin-induced death. When 3T3-L1 preadipocytes were induced...

  19. DA-6034-induced mucin secretion via Ca2+-dependent pathways through P2Y receptor stimulation.

    Science.gov (United States)

    Lee, Hun; Kim, Eung Kweon; Kim, Ji Yeon; Yang, Yu-Mi; Shin, Dong Min; Kang, Kyung Koo; Kim, Tae-im

    2014-09-11

    We evaluated whether DA-6034 is involved in mucin secretion via P2Y receptor activation and/or intracellular Ca2+ concentration ([Ca2+]i) change. Also, we investigated the effect of P2Y receptor inhibitors or Ca2+ chelators on the DA-6034-induced mucin secretion and [Ca2+]i increases. Effects of DA-6034 on mucin expression in primary, cultured, conjunctival epithelial cells was studied using RT-PCR, Western blot analysis, and periodic acid-schiff (PAS) staining. To evaluate thin film layer thickness generated by mucin and fluid secretion, cells were incubated in DA-6034 with/without P2Y antagonists or extracellular/intracellular Ca2+ chelators, and were imaged with confocal microscope using Texas Red-dextran dye. In addition, DA-6034-induced Ca2+-dependent Cl- channels opening was evaluated using perforated patch clamp. Fluo-4/AM was used to measure changes in [Ca2+]i induced by DA-6034 in Ca2+-free or Ca2+-containing buffered condition, as well as P2Y antagonists. DA-6034 induced the expression of mucin genes, production of mucin protein, and increase of number of mucin-secreting cells. P2Y antagonists inhibited DA-6034-induced mucin and fluid secretion, which was also affected by extracellular/intracellular Ca2+ chelators. DA-6034 stimulated Cl- channel opening and [Ca2+]i elevation. Further, [Ca2+]i increases induced by DA-6034 were lacking in either P2Y antagonists or Ca2+-free buffered condition, and diminished when endoplasmic reticulum Ca2+ was depleted by cyclopiazonic acid in Ca2+-free buffered condition. This study demonstrated that DA-6034 has a potential to induce mucin secretion via Ca2+-dependent pathways through P2Y receptors in multilayer, cultured, human conjunctival epithelial cells. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  20. Correlation between laser-induced breakdown spectroscopy signal and moisture content

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuan [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States); Gigant, Lionel [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States); Universite Bordeaux 1, 351 cours de la Liberation 33405 Talence Cedex (France); Baudelet, Matthieu, E-mail: baudelet@creol.ucf.edu [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States); Richardson, Martin [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States)

    2012-07-15

    The possibility of using Laser-Induced Breakdown Spectroscopy (LIBS) for measuring the moisture content of fresh food samples is studied. The normalized line emission of oxygen is highly correlated with the moisture content of the sample, cheese in our case, and can be used as a moisture marker in situations where oxygen interference from the matrix is not a critical issue. The linear correlation between the oxygen signal and the moisture content in the sample shows great potential for using LIBS as an alternative spectroscopic method for moisture monitoring. - Highlights: Black-Right-Pointing-Pointer Quantitative moisture measurement by LIBS. Black-Right-Pointing-Pointer Use of matrix effects and normalization for physical information on the sample. Black-Right-Pointing-Pointer Use of signal from oxygen and CN radical in air background for moisture measurement.

  1. Impact of Estrogens and Estrogen Receptor Alpha (ESR1) in Brain Lipid Metabolism.

    Science.gov (United States)

    Morselli, Eugenia; de Souza Santos, Roberta; Gao, Su; Ávalos, Yenniffer; Criollo, Alfredo; Palmer, Biff F; Clegg, Deborah J

    2018-03-06

    Estrogens and their receptors play key roles in regulating body weight, energy expenditure, and metabolic homeostasis. It is known that lack of estrogens promotes increased food intake and induces the expansion of adipose tissues, for which much is known. An area of estrogenic research that has received less attention is the role of estrogens and their receptors in influencing intermediary lipid metabolism in organs such as the brain. In this review, we highlight the actions of estrogens and their receptors in regulating their impact on modulating fatty acid content, utilization, and oxidation through their direct impact on intracellular signaling cascades within the central nervous system.

  2. Relationship between equivalent chromium content and irradiation-induced swelling in 316 stainless steel

    International Nuclear Information System (INIS)

    Bates, J.F.; Guthrie, G.L.

    1974-12-01

    A correlation is noted between equivalent chromium content and resistance to irradiation induced swelling in various 316 stainless steel specimens which have slightly different chemical compositions. Several examples are cited where an increased concentration of an α-stabilizing minor constituent results in decreased swelling. It is shown that the relative swelling resistance of alloys having the same carbon and equivalent nickel contents is higher for those alloys with the higher equivalent chromium content

  3. Interplay between estrogen receptor and AKT in estradiol-induced alternative splicing.

    Science.gov (United States)

    Bhat-Nakshatri, Poornima; Song, Eun-Kyung; Collins, Nikail R; Uversky, Vladimir N; Dunker, A Keith; O'Malley, Bert W; Geistlinger, Tim R; Carroll, Jason S; Brown, Myles; Nakshatri, Harikrishna

    2013-06-11

    Alternative splicing is critical for generating complex proteomes in response to extracellular signals. Nuclear receptors including estrogen receptor alpha (ERα) and their ligands promote alternative splicing. The endogenous targets of ERα:estradiol (E2)-mediated alternative splicing and the influence of extracellular kinases that phosphorylate ERα on E2-induced splicing are unknown. MCF-7 and its anti-estrogen derivatives were used for the majority of the assays. CD44 mini gene was used to measure the effect of E2 and AKT on alternative splicing. ExonHit array analysis was performed to identify E2 and AKT-regulated endogenous alternatively spliced apoptosis-related genes. Quantitative reverse transcription polymerase chain reaction was performed to verify alternative splicing. ERα binding to alternatively spliced genes was verified by chromatin immunoprecipitation assay. Bromodeoxyuridine incorporation-ELISA and Annexin V labeling assays were done to measure cell proliferation and apoptosis, respectively. We identified the targets of E2-induced alternative splicing and deconstructed some of the mechanisms surrounding E2-induced splicing by combining splice array with ERα cistrome and gene expression array. E2-induced alternatively spliced genes fall into at least two subgroups: coupled to E2-regulated transcription and ERα binding to the gene without an effect on rate of transcription. Further, AKT, which phosphorylates both ERα and splicing factors, influenced ERα:E2 dependent splicing in a gene-specific manner. Genes that are alternatively spliced include FAS/CD95, FGFR2, and AXIN-1. E2 increased the expression of FGFR2 C1 isoform but reduced C3 isoform at mRNA level. E2-induced alternative splicing of FAS and FGFR2 in MCF-7 cells correlated with resistance to FAS activation-induced apoptosis and response to keratinocyte growth factor (KGF), respectively. Resistance of MCF-7 breast cancer cells to the anti-estrogen tamoxifen was associated with ER

  4. Blockade of NMDA receptors decreased spinal microglia activation in bee venom induced acute inflammatory pain in rats.

    Science.gov (United States)

    Li, Li; Wu, Yongfang; Bai, Zhifeng; Hu, Yuyan; Li, Wenbin

    2017-03-01

    Microglial cells in spinal dorsal horn can be activated by nociceptive stimuli and the activated microglial cells release various cytokines enhancing the nociceptive transmission. However, the mechanisms underlying the activation of spinal microglia during nociceptive stimuli have not been well understood. In order to define the role of NMDA receptors in the activation of spinal microglia during nociceptive stimuli, the present study was undertaken to investigate the effect of blockade of NMDA receptors on the spinal microglial activation induced by acute peripheral inflammatory pain in rats. The acute inflammatory pain was induced by subcutaneous bee venom injection to the plantar surface of hind paw of rats. Spontaneous pain behavior, thermal withdrawal latency and mechanical withdrawal threshold were rated. The expression of specific microglia marker CD11b/c was assayed by immunohistochemistry and western blot. After bee venom treatment, it was found that rats produced a monophasic nociception characterized by constantly lifting and licking the injected hind paws, decreased thermal withdrawal latency and mechanical withdrawal threshold; immunohistochemistry displayed microglia with enlarged cell bodies, thickened, extended cellular processes with few ramifications, small spines, and intensive immunostaining; western blot showed upregulated expression level of CD11b/c within the period of hyperalgesia. Prior intrathecal injection of MK-801, a selective antagonist of NMDA receptors, attenuated the pain behaviors and suppressed up-regulation of CD11b/c induced by bee venom. It can be concluded that NMDA receptors take part in the mediation of spinal microglia activation in bee venom induced peripheral inflammatory pain and hyperalgesia in rats.

  5. Analysis of TNF-related apoptosis-inducing ligand and receptors and implications in thymus biology and myasthenia gravis.

    Science.gov (United States)

    Kanatli, Irem; Akkaya, Bahar; Uysal, Hilmi; Kahraman, Sevim; Sanlioglu, Ahter Dilsad

    2017-02-01

    Myasthenia Gravis is an autoantibody-mediated, neuromuscular junction disease, and is usually associated with thymic abnormalities presented as thymic tumors (~10%) or hyperplastic thymus (~65%). The exact role of thymus in Myasthenia Gravis development is not clear, yet many patients benefit from thymectomy. The apoptotic ligand TNF-Related Apoptosis-Inducing Ligand is thought to be involved in the regulation of thymocyte counts, although conflicting results are reported. We investigated differential expression profiles of TNF-Related Apoptosis-Inducing Ligand and its transmembrane receptors, Nuclear Factor-kB activation status, and apoptotic cell counts in healthy thymic tissue and pathological thymus from Myasthenia Gravis patients. All tissues expressed TNF-Related Apoptosis-Inducing Ligand and its receptors, with hyperplastic tissue having the highest expression levels of death receptors DR4 and DR5. No detectable Nuclear Factor-kB activation, at least via the canonical Protein Kinase A-mediated p65 Ser276 phosphorylation, was evident in any of the tissues studied. Apoptotic cell counts were higher in MG-associated tissue compared to the normal thymus. Possible use of the TNF-Related Apoptosis-Inducing Ligand within the concept of an apoptotic ligand-mediated medical thymectomy in thymoma- or thymic hyperplasia-associated Myasthenia Gravis is also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Brain serotonin content regulates the manifestation of tramadol-induced seizures in rats: disparity between tramadol-induced seizure and serotonin syndrome.

    Science.gov (United States)

    Fujimoto, Yohei; Funao, Tomoharu; Suehiro, Koichi; Takahashi, Ryota; Mori, Takashi; Nishikawa, Kiyonobu

    2015-01-01

    Tramadol-induced seizures might be pathologically associated with serotonin syndrome. Here, the authors investigated the relationship between serotonin and the seizure-inducing potential of tramadol. Two groups of rats received pretreatment to modulate brain levels of serotonin and one group was treated as a sham control (n = 6 per group). Serotonin modulation groups received either para-chlorophenylalanine or benserazide + 5-hydroxytryptophan. Serotonin, dopamine, and histamine levels in the posterior hypothalamus were then measured by microdialysis, while simultaneously infusing tramadol until seizure onset. In another experiment, seizure threshold with tramadol was investigated in rats intracerebroventricularly administered with either a serotonin receptor antagonist (methysergide) or saline (n = 6). Pretreatment significantly affected seizure threshold and serotonin fluctuations. The threshold was lowered in para-chlorophenylalanine group and raised in benserazide + 5-hydroxytryptophan group (The mean ± SEM amount of tramadol needed to induce seizures; sham: 43.1 ± 4.2 mg/kg, para-chlorophenylalanine: 23.2 ± 2.8 mg/kg, benserazide + 5-hydroxytryptophan: 59.4 ± 16.5 mg/kg). Levels of serotonin at baseline, and their augmentation with tramadol infusion, were less in the para-chlorophenylalanine group and greater in the benserazide + 5-hydroxytryptophan group. Furthermore, seizure thresholds were negatively correlated with serotonin levels (correlation coefficient; 0.71, P seizure threshold (P seizures, and that serotonin concentrations were negatively associated with seizure thresholds. Moreover, serotonin receptor antagonism precipitated seizure manifestation, indicating that tramadol-induced seizures are distinct from serotonin syndrome.

  7. MK-801, but not drugs acting at strychnine-insensitive glycine receptors, attenuate methamphetamine nigrostriatal toxicity.

    Science.gov (United States)

    Layer, R T; Bland, L R; Skolnick, P

    1993-10-15

    Repeated administration of methamphetamine (METH) results in damage to nigrostriatal dopaminergic neurons. Both competitive N-methyl-D-aspartate (NMDA) receptor antagonists and use-dependent cation channel blockers attenuate METH-induced damage. The objectives of the present study were to examine whether comparable reductions in METH-induced damage could be obtained by compounds acting at strychnine-insensitive glycine receptors on the NMDA receptor complex. Four injections of METH (5 mg/kg i.p.) resulted in a approximately 70.9% depletion of striatal dopamine (DA) and approximately 62.7% depletion of dihydroxyphenylacetic acid (DOPAC) content, respectively. A significant protection against METH-induced DA and DOPAC depletion was afforded by the use-dependent channel blocker, MK-801. The competitive glycine antagonist 7-chlorokynurenic acid (7-Cl-KA), the low efficacy glycine partial agonist (+)-3-amino-1-hydroxy-2-pyrrolidone ((+)-HA-966), and the high efficacy partial glycine agonist 1-aminocyclopropane-carboxylic acid (ACPC) were ineffective against METH-induced toxicity despite their abilities to attenuate glutamate-induced neurotoxicity under both in vivo and in vitro conditions. These results indicate that glycinergic ligands do not possess the same broad neuroprotective spectrum as other classes of NMDA antagonists.

  8. Ethanol activation of protein kinase A regulates GABA-A receptor subunit expression in the cerebral cortex and contributes to ethanol-induced hypnosis

    Directory of Open Access Journals (Sweden)

    Sandeep eKumar

    2012-04-01

    Full Text Available Protein kinases are implicated in neuronal cell functions such as modulation of ion channel function, trafficking and synaptic excitability. Both protein kinase C (PKC and A (PKA are involved in regulation of γ-aminobutyric acid type A (GABA-A receptors through phosphorylation. However, the role of PKA in regulating GABA-A receptors following acute ethanol exposure is not known. The present study investigated the role of PKA in ethanol effects on GABA-A receptor α1 subunit expression in the P2 synaptosomal fraction of the rat cerebral cortex. Additionally, GABA-related behaviors were also examined. Rats were administered ethanol (2.0 – 3.5 g/kg or saline and PKC, PKA and GABA-A receptor α1 subunit levels were measured by Western blot analysis. Ethanol (3.5 g/kg transiently increased GABA-A receptor α1 subunit expression and PKA RIIβ subunit expression at similar time points whereas PKA RIIα was increased at later time points. In contrast, PKC isoform expression remained unchanged. Notably, the moderate ethanol dose (2.0g/kg had no effect on GABA-A α1 subunit levels although PKA RIIα and RIIβ were increased at 10 and 60 minutes, when PKC isozymes are also known to be elevated. To determine if PKA activation was responsible for the ethanol-induced elevation of GABA-A α1 subunits, the PKA antagonist H89 was administered to rats prior to ethanol exposure. H89 administration prevented ethanol-induced increases in GABA-A receptor α1 subunit expression. Moreover, increasing PKA activity intracerebroventricularly with Sp-cAMP prior to a hypnotic dose of ethanol increased ethanol-induced loss of righting reflex duration. This effect appears to be mediated in part by GABA-A receptors as increasing PKA activity also increased the duration of muscimol-induced loss of righting reflex. Overall these data suggest that PKA mediates ethanol-induced GABA-A receptor expression and contributes to ethanol behavioral effects involving GABA-A receptors.

  9. Aspects of dopamine and acetylcholine release induced by glutamate receptors; Aspectos das liberacoes de dopamina e acetilcolina mediadas por receptores de glutamato

    Energy Technology Data Exchange (ETDEWEB)

    Paes, Paulo Cesar de Arruda

    2002-07-01

    The basal ganglia play an important role in the motor control of rats and humans. This control involves different neurotransmitters and the mutual control of these key elements has been subject to several studies. In this work we determined the role of glutamate on the release of radioactively labelled dopamine and acetylcholine from chopped striatal tissue in vitro. The values of Effective Concentration 50% for glutamate, NMDA, kainic, quisqualic acids and AMPA on the release of dopamine and acetylcholine were obtained. The inhibitory effects of magnesium, tetrodotoxin, MK-801, AP5 and MCPG, as well as the effects of glycin were evaluated. The results suggested that dopamine is influenced by the NMDA type glutamate receptor while acetylcholine seems to be influenced by NMDA, kainate and AMPA receptors. Tetrodotoxin experiments suggested that kainate receptors are both present in cholinergic terminals and cell bodies while AMPA and NMDA receptors are preferentially distributed in cell bodies. Magnesium effectively blocked the NMDA stimulation and unexpectedly also AMPA- and quisqualate-induced acetylcholine release. The latter could not be blocked by MCPG ruling out the participation of methabotropic receptors. MK-801 also blocked NMDA-receptors. Results point out the importance of the glutamic acid control of dopamine and acetylcholine release in striatal tissue. (author)

  10. Transcranial Random Noise Stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive

    Directory of Open Access Journals (Sweden)

    Leila eChaieb

    2015-04-01

    Full Text Available Background: Application of transcranial random noise stimulation (tRNS between 0.1 and 640 Hz of the primary motor cortex (M1 for 10 minutes induces a persistent excitability increase lasting for at least 60 minutes. However, the mechanism of tRNS-induced cortical excitability alterations is not yet fully understood. Objective: The main aim of this study was to get first efficacy data with regard to the possible neuronal effect of tRNS. Methods: Single-pulse transcranial magnetic stimulation (TMS was used to measure levels of cortical excitability before and after combined application of tRNS at an intensity of 1mA for 10mins stimulation duration and a pharmacological agent (or sham on 8 healthy male participants. Results: The sodium channel blocker carbamazepine showed a tendency towards inhibiting MEPs 5-60 mins poststimulation. The GABAA agonist lorazepam suppressed tRNS-induced cortical excitability increases at 0-20 and 60 min time points. The partial NMDA receptor agonist D-cycloserine, the NMDA receptor antagonist dextromethorphan and the D2/D3 receptor agonist ropinirole had no significant effects on the excitability increases seen with tRNS.Conclusions: In contrast to transcranial direct current stimulation (tDCS, aftereffects of tRNS are seem to be not NMDA receptor dependent and can be suppressed by benzodiazepines suggesting that tDCS and tRNS depend upon different mechanisms.

  11. Ketamine-induced inhibition of glycogen synthase kinase-3 contributes to the augmentation of AMPA receptor signaling

    Science.gov (United States)

    Beurel, Eléonore; Grieco, Steven F; Amadei, Celeste; Downey, Kimberlee; Jope, Richard S

    2016-01-01

    Objectives Sub-anesthetic doses of ketamine have been found to provide rapid antidepressant actions, indicating that the cellular signaling systems targeted by ketamine are potential sites for therapeutic intervention. Ketamine acts as an antagonist of N-methyl-D-aspartate (NMDA) receptors, and animal studies indicate that subsequent augmentation of signaling by α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors is critical for the antidepressant outcome. Methods In this study, we tested if the inhibitory effect of ketamine on glycogen synthase kinase-3 (GSK3) affected hippocampal cell-surface AMPA receptors using immunoblotting of membrane and synaptosomal extracts from wild-type and GSK3 knockin mice. Results Treatment with an antidepressant dose of ketamine increased the hippocampal membrane level of the AMPA glutamate receptor (GluA)1 subunit, but did not alter the localization of GluA2, GluA3, or GluA4. This effect of ketamine was abrogated in GSK3 knockin mice expressing mutant GSK3 that cannot be inhibited by ketamine, demonstrating that ketamine-induced inhibition of GSK3 is necessary for up-regulation of cell surface AMPA GluA1 subunits. AMPA receptor trafficking is regulated by post-synaptic density-95 (PSD-95), a substrate for GSK3. Ketamine treatment decreased the hippocampal membrane level of phosphorylated PSD-95 on Thr-19, the target of GSK3 that promotes AMPA receptor internalization. Conclusions These results demonstrate that ketamine-induced inhibition of GSK3 causes reduced phosphorylation of PSD-95, diminishing the internalization of AMPA GluA1 subunits to allow for augmented signaling through AMPA receptors following ketamine treatment. PMID:27687706

  12. Exploration of D2 receptors and content of DA of striatum in hemi-parkinsonism model rats before and after madopar treatment

    International Nuclear Information System (INIS)

    Lin Yansong; Lin Xiangtong

    1998-01-01

    125 I-IBZM autoradiographic analysis, HPLC-ECD were used to study the relationship between D 2 receptors and the content of DA, HVA, DOPAC in striatum of hemi-parkinsonism model rats before and after Madopar treatment. After Madopar treatment, the striatum/cerebellum 125 I-IBZM uptake ratio of lesioned side was 7.23 +- 0.67, showed 17.22 +- 3.94% increasing as compared to the contralateral side, the increasing were significantly declined compared with the pretreatment group and control group (P 2 receptors

  13. Oncogenic tyrosine kinase NPM-ALK induces expression of the growth-promoting receptor ICOS

    DEFF Research Database (Denmark)

    Zhang, Qian; Wang, HongYi; Kantekure, Kanchan

    2011-01-01

    Here we report that T-cell lymphoma cells carrying the NPM-ALK fusion protein (ALK(+) TCL) frequently express the cell-stimulatory receptor ICOS. ICOS expression in ALK(+) TCL is moderate and strictly dependent on the expression and enzymatic activity of NPM-ALK. NPM-ALK induces ICOS expression v...

  14. Tesofensine, a novel triple monoamine reuptake inhibitor, induces appetite suppression by indirect stimulation of alpha1 adrenoceptor and dopamine D1 receptor pathways in the diet-induced obese rat

    DEFF Research Database (Denmark)

    Axel, Anne Marie Dixen; Mikkelsen, Jens D; Hansen, Henrik H

    2010-01-01

    ) and partially antagonized by co-administration of SCH23390 (0.03 mg/kg, DA D(1) receptor antagonist). In contrast, tesofensine-induced hypophagia was not affected by RX821002 (0.3 mg/kg, alpha(2) adrenoceptor antagonist), haloperidol (0.03 mg/kg, D(2) receptor antagonist), NGB2904 (0.1 mg/kg, D(3) receptor...

  15. The CRF1 and the CRF2 receptor mediate recognition memory deficits and vulnerability induced by opiate withdrawal.

    Science.gov (United States)

    Morisot, Nadège; Contarino, Angelo

    2016-06-01

    Opiate use disorders are associated with impaired cognitive function and altered stress-responsive systems. The corticotropin-releasing factor (CRF) system mediates stress responses via CRF1 and CRF2 receptors and may be implicated in substance use disorders. However, the specific role for each of the two known CRF receptor subtypes in cognitive impairment induced by opiate administration and withdrawal remains to be elucidated. In the present study, CRF1-/-, CRF2-/- and their respective wild-type mice are injected with escalating doses of morphine and cognitive function assessed by the novel object recognition (NOR) memory task throughout relatively long periods of opiate withdrawal. Early (2 days) phases of opiate withdrawal impair NOR memory in wild-type, CRF1-/- and CRF2-/- mice. However, the duration of opiate withdrawal-induced NOR memory deficits is prolonged in CRF1-/- but shortened in CRF2-/- mice, as compared to their respective wild-type mice, indicating opposite roles for the two CRF receptor subtypes. Nevertheless, following apparent recovery, exposure to an environmental stressor induces the reemergence of NOR memory deficits in long-term opiate-withdrawn wild-type but not CRF1-/- or CRF2-/- mice, indicating an essential role for both CRF receptor subtypes in stress vulnerability. These findings bring initial evidence of a complex physiopathological role for the CRF system in cognitive deficits and the long-lasting vulnerability induced by opiate drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Dopamine D2/3- and μ-opioid receptor antagonists reduce cue-induced responding and reward impulsivity in humans.

    Science.gov (United States)

    Weber, S C; Beck-Schimmer, B; Kajdi, M-E; Müller, D; Tobler, P N; Quednow, B B

    2016-07-05

    Increased responding to drug-associated stimuli (cue reactivity) and an inability to tolerate delayed gratification (reward impulsivity) have been implicated in the development and maintenance of drug addiction. Whereas data from animal studies suggest that both the dopamine and opioid system are involved in these two reward-related processes, their role in humans is less clear. Moreover, dopaminergic and opioidergic drugs have not been directly compared with regard to these functions, even though a deeper understanding of the underlying mechanisms might inform the development of specific treatments for elevated cue reactivity and reward impulsivity. In a randomized, double-blind, between-subject design we administered the selective dopamine D2/D3 receptor antagonist amisulpride (400 mg, n=41), the unspecific opioid receptor antagonist naltrexone (50 mg, n=40) or placebo (n=40) to healthy humans and measured cue-induced responding with a Pavlovian-instrumental transfer task and reward impulsivity with a delay discounting task. Mood was assessed using a visual analogue scale. Compared with placebo, amisulpride significantly suppressed cue-induced responding and reward impulsivity. The effects of naltrexone were similar, although less pronounced. Both amisulpride and naltrexone decreased average mood ratings compared with placebo. Our results demonstrate that a selective blockade of dopamine D2/D3 receptors reduces cue-induced responding and reward impulsivity in healthy humans. Antagonizing μ-opioid receptors has similar effects for cue-induced responding and to a lesser extent for reward impulsivity.

  17. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    Science.gov (United States)

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  18. Glutamate AMPA/kainate receptors, not GABA(A) receptors, mediate estradiol-induced sex differences in the hypothalamus.

    Science.gov (United States)

    Todd, Brigitte J; Schwarz, Jaclyn M; Mong, Jessica A; McCarthy, Margaret M

    2007-02-15

    Sex differences in brain morphology underlie physiological and behavioral differences between males and females. During the critical perinatal period for sexual differentiation in the rat, gonadal steroids act in a regionally specific manner to alter neuronal morphology. Using Golgi-Cox impregnation, we examined several parameters of neuronal morphology in postnatal day 2 (PN2) rats. We found that in the ventromedial nucleus of the hypothalamus (VMN) and in areas just dorsal and just lateral to the VMN that there was a sex difference in total dendritic spine number (males greater) that was abolished by treating female neonates with exogenous testosterone. Dendritic branching was similarly sexually differentiated and hormonally modulated in the VMN and dorsal to the VMN. We then used spinophilin, a protein that positively correlates with the amount of dendritic spines, to investigate the mechanisms underlying these sex differences. Estradiol, which mediates most aspects of masculinization and is the aromatized product of testosterone, increased spinophilin levels in female PN2 rats to that of males. Muscimol, an agonist at GABA(A) receptors, did not affect spinophilin protein levels in either male or female neonates. Kainic acid, an agonist at glutamatergic AMPA/kainate receptors, mimicked the effect of estradiol in females. Antagonizing AMPA/kainate receptors with NBQX prevented the estradiol-induced increase in spinophilin in females but did not affect spinophilin level in males. (c) 2007 Wiley Periodicals, Inc.

  19. Amelioration of cold injury-induced cortical brain edema formation by selective endothelin ETB receptor antagonists in mice.

    Science.gov (United States)

    Michinaga, Shotaro; Nagase, Marina; Matsuyama, Emi; Yamanaka, Daisuke; Seno, Naoki; Fuka, Mayu; Yamamoto, Yui; Koyama, Yutaka

    2014-01-01

    Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs) are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice). Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV) administration of BQ788 (ETB antagonist), IRL-2500 (ETB antagonist), or FR139317 (ETA antagonist) prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults.

  20. Allantoin ameliorates chemically-induced pancreatic β-cell damage through activation of the imidazoline I3 receptors

    Directory of Open Access Journals (Sweden)

    Marie Amitani

    2015-08-01

    Full Text Available Objective. Allantoin is the primary active compound in yams (Dioscorea spp.. Recently, allantoin has been demonstrated to activate imidazoline 3 (I3 receptors located in pancreatic tissues. Thus, the present study aimed to investigate the role of allantoin in the effect to improve damage induced in pancreatic β-cells by streptozotocin (STZ via the I3 receptors.Research Design and Methods. The effect of allantoin on STZ-induced apoptosis in pancreatic β-cells was examined using the ApoTox-Glo triplex assay, live/dead cell double staining assay, flow cytometric analysis, and Western blottings. The potential mechanism was investigated using KU14R: an I3 receptor antagonist, and U73122: a phospholipase C (PLC inhibitor. The effects of allantoin on serum glucose and insulin secretion were measured in STZ-treated rats.Results. Allantoin attenuated apoptosis and cytotoxicity and increased the viability of STZ-induced β-cells in a dose-dependent manner; this effect was suppressed by KU14R and U73112. Allantoin decreased the level of caspase-3 and increased the level of phosphorylated B-cell lymphoma 2 (Bcl-2 expression detected by Western blotting. The improvement in β-cells viability was confirmed using flow cytometry analysis. Daily injection of allantoin for 8 days in STZ-treated rats significantly lowered plasma glucose and increased plasma insulin levels. This action was inhibited by treatment with KU14R.Conclusion. Allantoin ameliorates the damage of β-cells induced by STZ. The blockade by pharmacological inhibitors indicated that allantoin can activate the I3 receptors through a PLC-related pathway to decrease this damage. Therefore, allantoin and related analogs may be effective in the therapy for β-cell damage.

  1. NMDA Receptors on Dopaminoceptive Neurons Are Essential for Drug-Induced Conditioned Place Preference123

    Science.gov (United States)

    Tokarski, Krzysztof; Bobula, Bartosz; Zygmunt, Magdalena; Smutek, Magdalena; Kamińska, Katarzyna; Gołembiowska, Krystyna; Hess, Grzegorz; Przewlocki, Ryszard

    2016-01-01

    Abstract Plasticity of the brain’s dopamine system plays a crucial role in adaptive behavior by regulating appetitive motivation and the control of reinforcement learning. In this study, we investigated drug- and natural-reward conditioned behaviors in a mouse model in which the NMDA receptor-dependent plasticity of dopaminoceptive neurons was disrupted. We generated a transgenic mouse line with inducible selective inactivation of the NR1 subunit in neurons expressing dopamine D1 receptors (the NR1D1CreERT2 mice). Whole-cell recordings of spontaneous EPSCs on neurons in the nucleus accumbens confirmed that a population of neurons lacked the NMDA receptor-dependent component of the current. This effect was accompanied by impaired long-term potentiation in the nucleus accumbens and in the CA1 area of the ventral, but not the dorsal, hippocampus. Mutant mice did not differ from control animals when tested for pavlovian or instrumental conditioning. However, NR1D1CreERT2 mice acquired no preference for a context associated with administration of drugs of abuse. In the conditioned place preference paradigm, mutant mice did not spend more time in the context paired with cocaine, morphine, or ethanol, although these mice acquired a preference for sucrose jelly and an aversion to naloxone injections, as normal. Thus, we observed that the selective inducible ablation of the NMDA receptors specifically blocks drug-associated context memory with no effect on positive reinforcement in general. PMID:27294197

  2. Role of D1- and D2-like dopaminergic receptors in the nucleus accumbens in modulation of formalin-induced orofacial pain: Involvement of lateral hypothalamus.

    Science.gov (United States)

    Shafiei, Iman; Vatankhah, Mahsaneh; Zarepour, Leila; Ezzatpanah, Somayeh; Haghparast, Abbas

    2018-05-01

    The role of dopaminergic system in modulation of formalin-induced orofacial nociception has been established. The present study aims to investigate the role of dopaminergic receptors in the nucleus accumbens (NAc) in modulation of nociceptive responses induced by formalin injection in the orofacial region. One hundred and six male Wistar rats were unilaterally implanted with two cannulae into the lateral hypothalamus (LH) and NAc. Intra-LH microinjection of carbachol, a cholinergic receptor agonist, was done 5min after intra-accumbal administration of different doses of SCH23390 (D1-like receptor antagonist) or sulpiride (D2-like receptor antagonist). After 5min, 50μl of 1% formalin was subcutaneously injected into the upper lip for inducing the orofacial pain. Carbachol alone dose-dependently reduced both phases of the formalin-induced orofacial pain. Intra-accumbal administration of SCH23390 (0.25, 1 and 4μg/0.5μl saline) or sulpiride (0.25, 1 and 4μg/0.5μl DMSO) before LH stimulation by carbachol (250nM/0.5μl saline) antagonized the antinociceptive responses during both phases of orofacial formalin test. The effects of D1- and D2-like receptor antagonism on the LH stimulation-induced antinociception were almost similar during the early phase. However, compared to D1-like receptor antagonism, D2-like receptor antagonism was a little more effective but not significant, at blocking the LH stimulation-induced antinociception during the late phase of formalin test. The findings revealed that there is a direct or indirect neural pathway from the LH to the NAc which is at least partially contributed to the modulation of formalin-induced orofacial nociception through recruitment of both dopaminergic receptors in this region. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking

    DEFF Research Database (Denmark)

    Francavilla, Chiara; Cattaneo, Paola; Berezin, Vladimir

    2009-01-01

    different from that elicited by FGF-2. In contrast to FGF-induced degradation of endocytic FGFR1, NCAM promotes the stabilization of the receptor, which is recycled to the cell surface in a Rab11- and Src-dependent manner. In turn, FGFR1 recycling is required for NCAM-induced sustained activation of various...

  4. Stress-Induced Depression Is Alleviated by Aerobic Exercise Through Up-Regulation of 5-Hydroxytryptamine 1A Receptors in Rats

    Directory of Open Access Journals (Sweden)

    Tae Woon Kim

    2015-03-01

    Full Text Available Purpose: Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT, acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A receptors in the dorsal raphe. Methods: Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH, immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. Results: A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Conclusions: Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function.

  5. Stress-Induced Depression Is Alleviated by Aerobic Exercise Through Up-Regulation of 5-Hydroxytryptamine 1A Receptors in Rats.

    Science.gov (United States)

    Kim, Tae Woon; Lim, Baek Vin; Baek, Dongjin; Ryu, Dong-Soo; Seo, Jin Hee

    2015-03-01

    Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT), acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A) receptors in the dorsal raphe. Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH), immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function.

  6. INTERACTION BETWEEN DELTA OPIOID RECEPTORS AND BENZODIAZEPINES IN CO2- INDUCED RESPIRATORY RESPONSES IN MICE

    Science.gov (United States)

    Borkowski, Anne H.; Barnes, Dylan C.; Blanchette, Derek R.; Castellanos, F. Xavier; Klein, Donald F.; Wilson, Donald A.

    2011-01-01

    The false-suffocation hypothesis of panic disorder (Klein, 1993) suggested δ-opioid receptors as a possible source of the respiratory dysfunction manifested in panic attacks occurring in panic disorder (Preter and Klein, 2008). This study sought to determine if a lack of δ-opioid receptors in a mouse model affects respiratory response to elevated CO2, and whether the response is modulated by benzodiazepines, which are widely used to treat panic disorder. In a whole-body plethysmograph, respiratory responses to 5% CO2 were compared between δ-opioid receptor knockout mice and wild-type mice after saline, diazepam (1 mg/kg), and alprazolam (0.3 mg/kg) injection. The results show that lack of δ-opioid receptors does not affect normal response to elevated CO2, but does prevent benzodiazepines from modulating that response. Thus, in the presence of benzodiazepine agonists, respiratory responses to elevated CO2 were enhanced in δ-opioid receptor knockout mice compared to wild-type mice. This suggests an interplay between benzodiazepine receptors and δ-opioid receptors in regulating the respiratory effects of elevated CO2, which might be related to CO2 induced panic. PMID:21561601

  7. MDMA Increases Excitability in the Dentate Gyrus: Role of 5HT2A Receptor Induced PGE2 Signaling

    Science.gov (United States)

    Collins, Stuart A.; Huff, Courtney; Chiaia, Nicolas; Gudelsky, Gary A.; Yamamoto, Bryan K.

    2015-01-01

    MDMA is a widely abused psychostimulant which causes release of serotonin in various forebrain regions. Recently, we reported that MDMA increases extracellular glutamate concentrations in the dentate gyrus, via activation of 5HT2A receptors. We examined the role of prostaglandin signaling in mediating the effects of 5HT2A receptor activation on the increases in extracellular glutamate and the subsequent long-term loss of parvalbumin interneurons in the dentate gyrus caused by MDMA. Administration of MDMA into the dentate gyrus of rats increased PGE2 concentrations which was prevented by coadministration of MDL100907, a 5HT2A receptor antagonist. MDMA-induced increases in extracellular glutamate were inhibited by local administration of SC-51089, an inhibitor of the EP1 prostaglandin receptor. Systemic administration of SC-51089 during injections of MDMA prevented the decreases in parvalbumin interneurons observed 10 days later. The loss of parvalbumin immunoreactivity after MDMA exposure coincided with a decrease in paired-pulse inhibition and afterdischarge threshold in the dentate gyrus. These changes were prevented by inhibition of EP1 and 5HT2A receptors during MDMA. Additional experiments revealed an increased susceptibility to kainic acid-induced seizures in MDMA treated rats which could be prevented with SC51089 treatments during MDMA exposure. Overall, these findings suggest that 5HT2A receptors mediate MDMA-induced PGE2 signaling and subsequent increases in glutamate. This signaling mediates parvalbumin cell losses as well as physiologic changes in the dentate gyrus, suggesting that the lack of the inhibition provided by these neurons increases the excitability within the dentate gyrus of MDMA treated rats. PMID:26670377

  8. Fps/Fes and Fer non-receptor protein-tyrosine kinases regulate collagen- and ADP-induced platelet aggregation.

    Science.gov (United States)

    Senis, Y A; Sangrar, W; Zirngibl, R A; Craig, A W B; Lee, D H; Greer, P A

    2003-05-01

    Fps/Fes and Fer proto-oncoproteins are structurally related non-receptor protein-tyrosine kinases implicated in signaling downstream from cytokines, growth factors and immune receptors. We show that Fps/Fes and Fer are expressed in human and mouse platelets, and are activated following stimulation with collagen and collagen-related peptide (CRP), suggesting a role in GPVI receptor signaling. Fer was also activated following stimulation with thrombin and a protease-activated receptor4 (PAR4)-activating peptide, suggesting a role in signaling downstream from the G protein-coupled PAR4. There were no detectable perturbations in CRP-induced activation of Syk, PLCgamma2, cortactin, Erk, Jnk, Akt or p38 in platelets from mice lacking Fps/Fes, Fer, or both kinases. Platelets lacking Fps/Fes, from a targeted fps/fes null strain of mice, showed increased rates and amplitudes of collagen-induced aggregation, relative to wild-type platelets. P-Selectin expression was also elevated on the surface of Fps/Fes-null platelets in response to CRP. Fer-deficient platelets, from mice targeted with a kinase-inactivating mutation, disaggregated more rapidly than wild-type platelets in response to ADP. This report provides the first evidence that Fps/Fes and Fer are expressed in platelets and become activated downstream from the GPVI collagen receptor, and that Fer is activated downstream from a G-protein coupled receptor. Furthermore, using targeted mouse models we show that deficiency in Fps/Fes or Fer resulted in disregulated platelet aggregation and disaggregation, demonstrating a role for these kinases in regulating platelet functions.

  9. P2Y1 receptor antagonists mitigate oxygen and glucose deprivation‑induced astrocyte injury.

    Science.gov (United States)

    Guo, Hui; Liu, Zhong-Qiang; Zhou, Hui; Wang, Zhi-Ling; Tao, Yu-Hong; Tong, Yu

    2018-01-01

    The aim of the present study was to elucidate the effects of blocking the calcium signaling pathway of astrocytes (ASs) on oxygen and glucose deprivation (OGD)‑induced AS injury. The association between the changes in the concentrations of AS‑derived transmitter ATP and glutamic acid, and the changes in calcium signaling under the challenge of OGD were investigated. The cortical ASs of Sprague Dawley rats were cultured to establish the OGD models of ASs. The extracellular concentrations of ATP and glutamic acid in the normal group and the OGD group were detected, and the intracellular concentration of calcium ions (Ca2+) was detected. The effects of 2'‑deoxy‑N6‑methyl adenosine 3', 5'‑diphosphate diammonium salt (MRS2179), a P2Y1 receptor antagonist, on the release of calcium and glutamic acid of ASs under the condition of OGD were observed. The OGD challenge induced the release of glutamic acid and ATP by ASs in a time‑dependent manner, whereas elevation in the concentration of glutamic acid lagged behind that of the ATP and Ca2+. The concentration of Ca2+ inside ASs peaked 16 h after OGD, following which the concentration of Ca2+ was decreased. The effects of elevated release of glutamic acid by ASs when challenged by OGD may be blocked by MRS2179, a P2Y1 receptor antagonist. Furthermore, MRS2179 may significantly mitigate OGD‑induced AS injury and increase cell survival. The ASs of rats cultured in vitro expressed P2Y1 receptors, which may inhibit excessive elevation in the concentration of intracellular Ca2+. Avoidance of intracellular calcium overload and the excessive release of glutamic acid may be an important reason why MRS2179 mitigates OGD‑induced AS injury.

  10. Dopamine-induced apoptosis of lactotropes is mediated by the short isoform of D2 receptor.

    Directory of Open Access Journals (Sweden)

    Daniela Betiana Radl

    Full Text Available Dopamine, through D2 receptor (D2R, is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L and short (D2S, are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850. SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process.

  11. Cyproterone acetate enhances TRAIL-induced androgen-independent prostate cancer cell apoptosis via up-regulation of death receptor 5.

    Science.gov (United States)

    Chen, Linjie; Wolff, Dennis W; Xie, Yan; Lin, Ming-Fong; Tu, Yaping

    2017-03-07

    Virtually all prostate cancer deaths occur due to obtaining the castration-resistant phenotype after prostate cancer cells escaped from apoptosis and/or growth suppression initially induced by androgen receptor blockade. TNF-related apoptosis-inducing ligand (TRAIL) was an attractive cancer therapeutic agent due to its minimal toxicity to normal cells and remarkable apoptotic activity in tumor cells. However, most localized cancers including prostate cancer are resistant to TRAIL-induced apoptosis, thereby creating a therapeutic challenge of inducing TRAIL sensitivity in cancer cells. Herein the effects of cyproterone acetate, an antiandrogen steroid, on the TRAIL-induced apoptosis of androgen receptor-negative prostate cancer cells are reported. Cell apoptosis was assessed by both annexin V/propidium iodide labeling and poly (ADP-ribose) polymerase cleavage assays. Gene and protein expression changes were determined by quantitative real-time PCR and western blot assays. The effect of cyproterone acetate on gene promoter activity was determined by luciferase reporter assay. Cyproterone acetate but not AR antagonist bicalutamide dramatically increased the susceptibility of androgen receptor-negative human prostate cancer PC-3 and DU145 cells to TRAIL-induced apoptosis but no effects on immortalized human prostate stromal PS30 cells and human embryonic kidney HEK293 cells. Further investigation of the TRAIL-induced apoptosis pathway revealed that cyproterone acetate exerted its effect by selectively increasing death receptor 5 (DR5) mRNA and protein expression. Cyproterone acetate treatment also increased DR5 gene promoter activity, which could be abolished by mutation of a consensus binding domain of transcription factor CCAAT-enhancer-binding protein homologous protein (CHOP) in the DR5 gene promoter. Cyproterone acetate increases CHOP expression in a concentration and time-dependent manner and endoplasmic reticulum stress reducer 4-phenylbutyrate could block

  12. Hypothalamic kappa opioid receptor mediates both diet-induced and melanin concentrating hormone-induced liver damage through inflammation and endoplasmic reticulum stress.

    Science.gov (United States)

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Romero-Picó, Amparo; Kalló, Imre; Chee, Melissa J; Porteiro, Begoña; Al-Massadi, Omar; Contreras, Cristina; Fernø, Johan; Senra, Ana; Gallego, Rosalia; Folgueira, Cintia; Seoane, Luisa M; van Gestel, Margriet; Adan, Roger A; Liposits, Zsolt; Dieguez, Carlos; López, Miguel; Nogueiras, Ruben

    2016-10-01

    The opioid system is widely known to modulate the brain reward system and thus affect the behavior of humans and other animals, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors overexpressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. Endoplasmic reticulum (ER) stress was inhibited by pharmacological (tauroursodeoxycholic acid) and genetic (overexpression of the chaperone glucose-regulated protein 78 kDa) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and western blot. We show that in the LHA κOR directly controls hepatic lipid metabolism through the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor 1 (MCH-R1) in the LHA, and genetic disruption of κOR reduced melanin concentrating hormone-induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline-deficient, diet-induced and choline-deficient, high-fat diet-induced ER stress, inflammation, steatohepatitis, and fibrosis, whereas overexpression of κOR in this area promoted liver steatosis. Overexpression of glucose-regulated protein 78 kDa in the liver abolished hypothalamic κOR-induced steatosis by reducing hepatic ER stress. This study reveals a novel hypothalamic-parasympathetic circuit modulating hepatic function through inflammation and ER stress independent of changes in food intake or body weight; these findings might have implications for the clinical use of opioid receptor antagonists. (Hepatology 2016;64:1086-1104). © 2016 The Authors. (Hepatology published by Wiley Periodicals, Inc., on

  13. Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells

    DEFF Research Database (Denmark)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen

    2015-01-01

    The presence of AT2 receptors in mitochondria and their role in NO generation and cell aging were recently demonstrated in various human and mouse non-tumour cells. We investigated the intracellular distribution of AT2 receptors including their presence in mitochondria and the role in the induction...... agonist, Compound 21 (C21) penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT2 receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped from the cell death, displayed activation of the mitochondrial apoptotic pathway, i...

  14. Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity.

    Science.gov (United States)

    Muñoz, Pablo; Humeres, Alexis; Elgueta, Claudio; Kirkwood, Alfredo; Hidalgo, Cecilia; Núñez, Marco T

    2011-04-15

    Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-D-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP.

  15. A1 adenosine receptor-induced phosphorylation and modulation of transglutaminase 2 activity in H9c2 cells: A role in cell survival.

    Science.gov (United States)

    Vyas, Falguni S; Hargreaves, Alan J; Bonner, Philip L R; Boocock, David J; Coveney, Clare; Dickenson, John M

    2016-05-01

    The regulation of tissue transglutaminase (TG2) activity by the GPCR family is poorly understood. In this study, we investigated the modulation of TG2 activity by the A1 adenosine receptor in cardiomyocyte-like H9c2 cells. H9c2 cells were lysed following stimulation with the A1 adenosine receptor agonist N(6)-cyclopentyladenosine (CPA). Transglutaminase activity was determined using an amine incorporating and a protein cross linking assay. TG2 phosphorylation was assessed via immunoprecipitation and Western blotting. The role of TG2 in A1 adenosine receptor-induced cytoprotection was investigated by monitoring hypoxia-induced cell death. CPA induced time and concentration-dependent increases in amine incorporating and protein crosslinking activity of TG2. CPA-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Responses to CPA were blocked by PKC (Ro 31-8220), MEK1/2 (PD 98059), p38 MAPK (SB 203580) and JNK1/2 (SP 600125) inhibitors and by removal of extracellular Ca(2+). CPA triggered robust increases in the levels of TG2-associated phosphoserine and phosphothreonine, which were attenuated by PKC, MEK1/2 and JNK1/2 inhibitors. Fluorescence microscopy revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (Histone H4) and novel (Hexokinase 1) protein substrates for TG2. CPA pre-treatment reversed hypoxia-induced LDH release and decreases in MTT reduction. TG2 inhibitors R283 and Z-DON attenuated A1 adenosine receptor-induced cytoprotection. TG2 activity was stimulated by the A1 adenosine receptor in H9c2 cells via a multi protein kinase dependent pathway. These results suggest a role for TG2 in A1 adenosine receptor-induced cytoprotection. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Plant Water Content is the Best Predictor of Drought-induced Mortality

    Science.gov (United States)

    Sapes, G.; Roskilly, B.; Dobrowski, S.; Sala, A.

    2017-12-01

    Predicting drought-induced forest mortality remains extremely challenging. Recent research has shown that both plant hydraulics and stored non-structural carbohydrates (NSC) interact during drought-induced mortality. The strong interaction between these two variables and the fact that they are both difficult to measure render drought-induced plant mortality extremely difficult to monitor and predict. A variable that is easier to measure and that integrates hydraulic transport and carbohydrate dynamics may, therefore, improve our ability to monitor and predict mortality. Here, we tested whether plant water content is such an integrator variable and, therefore, a better predictor of mortality under drought. We subjected 250 two-year-old ponderosa pine seedlings to drought until they died in a greenhouse experiment. Periodically during the dry down, we measured percent loss of hydraulic conductivity (PLC), NSC concentration (starch and soluble sugars), and tissue volumetric water content (VWC) in roots, stems and leaves. At each measurement time, a separate set of seedlings were re-watered to estimate the probability of mortality at the population level. Linear models were used to explore whether PLC and NSC were linked to VWC and to determine which of the three variables predicted mortality the best. As expected, plants lost hydraulic conductivity in stems and roots during the dry down. Starch concentrations also decreased in all organs as the drought proceeded. In contrast, soluble sugars increased in stems and roots, consistent with the conversion of stored NSCs into osmotically active compounds. Models containing both PLC and NSC concentrations as predictors of VWC were highly significant in all organs and at the whole plant level, indicating that water content is influenced by both PLC and NSCs. PLC, NSC, and VWC explained mortality across organs and at the whole plant level, but VWC was the best predictor (R2 = 0.99). Our results indicate that plant water

  17. Synthetic Receptors Induce Anti Angiogenic and Stress Signaling on Human First Trimester Cytotrophoblast Cells

    Directory of Open Access Journals (Sweden)

    Ahmed F. Pantho

    2017-05-01

    Full Text Available The cytotrophoblast (CTB cells of the human placenta have membrane receptors that bind certain cardiotonic steroids (CTS found in blood plasma. One of these, marinobufagenin, is a key factor in the etiology of preeclampsia. Herein, we used synthetic receptors (SR to study their effectiveness on the angiogenic profile of human first trimester CTB cells. The humanextravillous CTB cells (Sw.71 used in this study were derived from first trimester chorionic villus tissue. Culture media of CTB cells treated with ≥1 nM SR level revealed sFlt-1 (Soluble fms-like tyrosine kinase-1 was significantly increased while VEGF (vascular endothelial growth factor was significantly decreased in the culture media (* p < 0.05 for each The AT2 receptor (Angiotensin II receptor type 2 expression was significantly upregulated in ≥1 nM SR-treated CTB cells as compared to basal; however, the AT1 (Angiotensin II receptor, type 1 and VEGFR-1 (vascular endothelial growth factor receptor 1 receptor expression was significantly downregulated (* p < 0.05 for each. Our results show that the anti-proliferative and anti-angiogenic effects of SR on CTB cells are similar to the effects of CTS. The observed anti angiogenic activity of SR on CTB cells demonstrates that the functionalized-urea/thiourea molecules may be useful as potent inhibitors to prevent CTS-induced impairment of CTB cells.

  18. Subarachnoid hemorrhage-induced upregulation of the 5-HT1B receptor in cerebral arteries in rats

    DEFF Research Database (Denmark)

    Hansen-Schwartz, Jacob; Hoel, Natalie Løvland; Xu, Cang-Bao

    2003-01-01

    experimental SAH. METHODS: Experimental SAH was induced in rats by using an autologous prechiasmatic injection of arterial blood. Two days later, the middle cerebral artery (MCA), posterior communicating artery (PCoA), and basilar artery (BA) were harvested and examined functionally with the aid of a sensitive...... RNA coding for the 5-HT1B receptor as determined by quantitative real-time PCR. In the PCoA no upregulation of the 5-HT1B receptor was observed. CONCLUSIONS: Changes in the receptor phenotype in favor of contractile receptors may well represent the end stage in a sequence of events leading from SAH...... to the actual development of cerebral vasospasm. Insight into the mechanism of upregulation may provide new targets for developing specific treatment against cerebral vasospasm....

  19. Inhibition by sigma receptor ligand, MS-377, of N-methyl- D-aspartate-induced currents in dopamine neurons of the rat ventral tegmental area.

    Science.gov (United States)

    Yamazaki, Yuu; Ishioka, Miwa; Matsubayashi, Hiroaki; Amano, Taku; Sasa, Masashi

    2002-04-01

    MS-377 [( R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl) piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate] is a novel anti-psychotic drug candidate with high affinity for sigma receptors but devoid of binding affinity for PCP binding site of NMDA receptor/ion channel complex. The effects of MS-377 on NMDA receptor and/or its ion channel complex were examined to elucidate the antipsychotic properties of MS-377. We examined the effect of MS-377 on NMDA ( N-methyl- D-aspartate)-induced current in acutely dissociated dopamine neurons of rat ventral tegmental area (VTA) using patch clamp whole cell recording. MS-377 applied in a bath inhibited the peak current evoked by NMDA applied via the U-tube method for 2 s in a concentration-dependent manner. Other sigma receptor ligands, BD-1063 (1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine), NE-100 ( N, N-dipropyl-2-[4-methoxy-3-(2-phenylenoxy)-phenyl]-ethylamine monohydrochloride) and haloperidol also inhibited NMDA-induced current in a concentration-dependent manner. Interestingly, concomitant application of MS-377 with BD-1063, NE-100 or haloperidol at concentrations that had no effects on NMDA-induced current, potentiated the MS-377-induced inhibition. The results suggest that MS-377, as well as other sigma receptor ligands, indirectly acts on the sigma receptor to inhibit glutaminergic transmission mediated by NMDA receptor/ion channel complex in VTA dopamine neurons, thereby inhibiting dopamine release in target VTA areas.

  20. The Protective Role of PAC1-Receptor Agonist Maxadilan in BCCAO-Induced Retinal Degeneration.

    Science.gov (United States)

    Vaczy, A; Reglodi, D; Somoskeoy, T; Kovacs, K; Lokos, E; Szabo, E; Tamas, A; Atlasz, T

    2016-10-01

    A number of studies have proven that pituitary adenylate cyclase activating polypeptide (PACAP) is protective in neurodegenerative diseases. Permanent bilateral common carotid artery occlusion (BCCAO) causes severe degeneration in the rat retina. In our previous studies, protective effects were observed with PACAP1-38, PACAP1-27, and VIP but not with their related peptides, glucagon, or secretin in BCCAO. All three PACAP receptors (PAC1, VPAC1, VPAC2) appear in the retina. Molecular and immunohistochemical analysis demonstrated that the retinoprotective effects are most probably mainly mediated by the PAC1 receptor. The aim of the present study was to investigate the retinoprotective effects of a selective PAC1-receptor agonist maxadilan in BCCAO-induced retinopathy. Wistar rats were used in the experiment. After performing BCCAO, the right eye was treated with intravitreal maxadilan (0.1 or 1 μM), while the left eye was injected with vehicle. Sham-operated rats received the same treatment. Two weeks after the operation, retinas were processed for standard morphometric and molecular analysis. Intravitreal injection of 0.1 or 1 μM maxadilan caused significant protection in the thickness of most retinal layers and the number of cells in the GCL compared to the BCCAO-operated eyes. In addition, 1 μM maxadilan application was more effective than 0.1 μM maxadilan treatment in the ONL, INL, IPL, and the entire retina (OLM-ILM). Maxadilan treatment significantly decreased cytokine expression (CINC-1, IL-1α, and L-selectin) in ischemia. In summary, our histological and molecular analysis showed that maxadilan, a selective PAC1 receptor agonist, has a protective role in BCCAO-induced retinal degeneration, further supporting the role of PAC1 receptor conveying the retinoprotective effects of PACAP.

  1. Possible involvements of glutamate and adrenergic receptors on acute toxicity of methylphenidate in isolated hippocampus and cerebral cortex of adult rats.

    Science.gov (United States)

    Motaghinejad, Majid; Motevalian, Manijeh; Shabab, Behnaz

    2017-04-01

    Neurodegeneration induced by methylphenidate (MPH), as a central stimulant with unknown long-term consequences, in adult rats' brain and the possible mechanisms involved were studied. Rats were acutely treated with MPH in the presence and absence of some receptor antagonists such as ketamine, topiramate, yohimbine, and haloperidol. Motor activity and anxiety level in rats were monitored. Antioxidant and inflammatory parameters were also measured in isolated hippocampus and cerebral cortex. MPH-treated groups (10 and 20 mg/kg) demonstrated anxiety-like behavior and increased motor activity. MPH significantly increased lipid peroxidation, GSSG content, IL-1β and TNF-α levels in isolated tissues, and also significantly reduced GSH content, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in hippocampus and cerebral cortex. Pretreatment of animals by receptor antagonists caused inhibition of MPH-induced motor activity disturbances and anxiety-like behavior. Pretreatment of animals by ketamine, topiramate, and yohimbine inhibited the MPH-induced oxidative stress and inflammation; it significantly decreased lipid peroxidation, GSSG level, IL-1β and TNF-α levels and increased GSH content, SOD, GPx, and GR activities in hippocampus and cerebral cortex of acutely MPH-treated rats. Pretreatment with haloperidol did not cause any change in MPH-induced oxidative stress and inflammation. In conclusion, acute administration of high doses of MPH can cause oxidative and inflammatory changes in brain cells and induce neurodegeneration in hippocampus and cerebral cortex of adult rats and these changes might probably be mediated by glutamate (NMDA or AMPA) and/or α 2 -adrenergic receptors. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  2. Agonist-induced internalisation of the glucagon-like peptide-1 receptor is mediated by the Gαq pathway.

    Science.gov (United States)

    Thompson, Aiysha; Kanamarlapudi, Venkateswarlu

    2015-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) is a G-protein-coupled receptor (GPCR) and an important target in the treatment of type 2 diabetes mellitus (T2DM). Upon stimulation with agonist, the GLP-1R signals through both Gαs and Gαq coupled pathways to stimulate insulin secretion. The agonist-induced GLP-1R internalisation has recently been shown to be important for insulin secretion. However, the molecular mechanisms underlying GLP-1R internalisation remain unknown. The aim of this study was to determine the role of GLP-1R downstream signalling pathways in its internalisation. Agonist-induced human GLP-1R (hGLP-1R) internalisation and activity were examined using a number of techniques including immunoblotting, ELISA, immunofluorescence and luciferase assays to determine cAMP production, intracellular Ca(2+) accumulation and ERK phosphorylation. Agonist-induced hGLP-1R internalisation is dependent on caveolin-1 and dynamin. Inhibition of the Gαq pathway but not the Gαs pathway affected hGLP-1R internalisation. Consistent with this, hGLP-1R mutant T149M and small-molecule agonists (compound 2 and compound B), which activate only the Gαs pathway, failed to induce internalisation of the receptor. Chemical inhibitors of the Gαq pathway, PKC and ERK phosphorylation significantly reduced agonist-induced hGLP-1R internalisation. These inhibitors also suppressed agonist-induced ERK1/2 phosphorylation demonstrating that the phosphorylated ERK acts downstream of the Gαq pathway in the hGLP-1R internalisation. In summary, agonist-induced hGLP-1R internalisation is mediated by the Gαq pathway. The internalised hGLP-1R stimulates insulin secretion from pancreatic β-cells, indicating the importance of GLP-1 internalisation for insulin secretion. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Effects of pilocarpine and kainate-induced seizures on N-methyl-d-aspartate receptor gene expression in the rat hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Przewlocka, B.; Labuz, D.; Machelska, H.; Przewlocki, R.; Turchan, J.; Lason, W. [Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow (Poland)

    1997-04-14

    The effects of pilocarpine- and kainate-induced seizures on N-methyl-d-aspartate receptor subunit-1 messenger RNA and [{sup 3}H]dizocilpine maleate binding were studied in the rat hippocampal formation. Pilocarpine- but not kainate-induced seizures decreased N-methyl-d-aspartate receptor subunit-1 messenger RNA level in dentate gyrus at 24 and 72 h after drug injection. Both convulsants decreased the messenger RNA level in CA1 pyramidal cells at 24 and 72 h, the effects of kainate being more profound. Kainate also decreased the N-methyl-d-aspartate receptor subunit-1 messenger RNA level in CA3 region after 24 and 72 h, whereas pilocarpine decreased the messenger RNA level at 72 h only. At 3 h after kainate, but not pilocarpine, an increased binding of [{sup 3}H]dizocilpine maleate in several apical dendritic fields of pyramidal cells was found. Pilocarpine reduced the [{sup 3}H]dizocilpine maleate binding in stratum lucidum only at 3 and 24 h after the drug injection. Pilocarpine but not kainate induced prolonged decrease in N-methyl-d-aspartate receptor subunit-1 gene expression in dentate gyrus. However, at the latest time measured, kainate had the stronger effect in decreasing both messenger RNA N-methyl-d-aspartate receptor subunit-1 and [{sup 3}H]dizocilpine maleate binding in CA1 and CA3 hippocampal pyramidal cells. The latter changes corresponded, however, to neuronal loss and may reflect higher neurotoxic potency of kainate.These data point to some differences in hippocampal N-methyl-d-aspartate receptor regulation in pilocarpine and kainate models of limbic seizures. Moreover, our results suggest that the N-methyl-d-aspartate receptor subunit-1 messenger RNA level is more susceptible to limbic seizures than is [{sup 3}H]dizocilpine maleate binding in the rat hippocampal formation. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Effects of pilocarpine and kainate-induced seizures on N-methyl-d-aspartate receptor gene expression in the rat hippocampus

    International Nuclear Information System (INIS)

    Przewlocka, B.; Labuz, D.; Machelska, H.; Przewlocki, R.; Turchan, J.; Lason, W.

    1997-01-01

    The effects of pilocarpine- and kainate-induced seizures on N-methyl-d-aspartate receptor subunit-1 messenger RNA and [ 3 H]dizocilpine maleate binding were studied in the rat hippocampal formation. Pilocarpine- but not kainate-induced seizures decreased N-methyl-d-aspartate receptor subunit-1 messenger RNA level in dentate gyrus at 24 and 72 h after drug injection. Both convulsants decreased the messenger RNA level in CA1 pyramidal cells at 24 and 72 h, the effects of kainate being more profound. Kainate also decreased the N-methyl-d-aspartate receptor subunit-1 messenger RNA level in CA3 region after 24 and 72 h, whereas pilocarpine decreased the messenger RNA level at 72 h only. At 3 h after kainate, but not pilocarpine, an increased binding of [ 3 H]dizocilpine maleate in several apical dendritic fields of pyramidal cells was found. Pilocarpine reduced the [ 3 H]dizocilpine maleate binding in stratum lucidum only at 3 and 24 h after the drug injection. Pilocarpine but not kainate induced prolonged decrease in N-methyl-d-aspartate receptor subunit-1 gene expression in dentate gyrus. However, at the latest time measured, kainate had the stronger effect in decreasing both messenger RNA N-methyl-d-aspartate receptor subunit-1 and [ 3 H]dizocilpine maleate binding in CA1 and CA3 hippocampal pyramidal cells. The latter changes corresponded, however, to neuronal loss and may reflect higher neurotoxic potency of kainate.These data point to some differences in hippocampal N-methyl-d-aspartate receptor regulation in pilocarpine and kainate models of limbic seizures. Moreover, our results suggest that the N-methyl-d-aspartate receptor subunit-1 messenger RNA level is more susceptible to limbic seizures than is [ 3 H]dizocilpine maleate binding in the rat hippocampal formation. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. A role for HVEM, but not lymphotoxin-beta receptor, in LIGHT-induced tumor cell death and chemokine production

    NARCIS (Netherlands)

    Pasero, Christine; Barbarat, Bernadette; Just-Landi, Sylvaine; Bernard, Alain; Aurran-Schleinitz, Thérèse; Rey, Jérome; Eldering, Eric; Truneh, Alemsedeg; Costello, Régis T.; Olive, Daniel

    2009-01-01

    The TNF member LIGHT also known as TL4 or TNFSF14) can play a major role in cancer control via its two receptors; it induces tumor cell death through lymphotoxin-P receptor (LT-beta R) and ligation to the herpes virus entry mediator (HVEM) amplifies the immune response. By studying the effect of

  6. Hypothalamic neuronal toll-like receptor 2 protects against age-induced obesity

    OpenAIRE

    Shechter, Ravid; London, Anat; Kuperman, Yael; Ronen, Ayal; Rolls, Asya; Chen, Alon; Schwartz, Michal

    2013-01-01

    Toll-like receptors (TLRs) are traditionally associated with immune-mediated host defense. Here, we ascribe a novel extra-immune, hypothalamic-associated function to TLR2, a TLR-family member known to recognize lipid components, in the protection against obesity. We found that TLR2-deficient mice exhibited mature-onset obesity and susceptibility to high-fat diet (HFD)-induced weight gain, via modulation of food intake. Age-related obesity was still evident in chimeric mice, carrying comparabl...

  7. Ischemia- and agonist-induced changes in α- and β-adrenergic receptor traffic in guinea pig hearts

    International Nuclear Information System (INIS)

    Maisel, A.S.; Motulsky, H.J.; Ziegler, M.G.; Insel, P.A.

    1987-01-01

    The authors have used radioligand binding techniques and subcellular fraction to assess whether changes in expression of myocardial α 1 - and β-adrenergic receptors are mediated by a redistribution of receptors between various membrane fractions. Three fractions were prepared from the left ventricles of guinea pigs that underwent either 1 h of ischemia or injection of epinephrine a crude membrane, a purified sarcolemma, and a light vesicle fraction. In control animals α 1 -adrenergic receptors ([ 3 H]prazosin binding) in light vesicles was only 25% of the total α 1 -receptor density found in sarcolemmal and light vesicle fractions as compared with 50% for β-adrenergic receptors ([ 125 I]iodocyanopindolol binding sites). Although ischemia was associated with a 53% decrease in the number of light vesicle β-adrenergic receptors and a 42% increase in the number of sarcolemma β-receptors there was no change in the number of light vesicle α 1 -receptors, even though the number of sarcolemmal α 1 -receptors increased 34%. Epinephrine treatment promoted internalization of β-adrenergic receptors. These results indicate that α 1 and β 1 -adrenergic receptors may undergo a different cellular itinerary in guinea pig myocardium. Agonist and ischemia-induced changes in surface β-receptors, but not α 1 -receptors, appear to result from entry and exit of receptors from an intracellular pool that can be isolated in a light vesicle fraction. Changes in expression of α 1 -adrenergic receptors may represent changes in the properties of receptors found in the sarcolemma or in a membrane fraction other than the light vesicle fraction that they have isolated

  8. An aromatic region to induce a switch between agonism and inverse agonism at the ghrelin receptor

    DEFF Research Database (Denmark)

    Els, Sylvia; Schild, Enrico; Petersen, Pia Steen

    2012-01-01

    The ghrelin receptor displays a high constitutive activity suggested to be involved in the regulation of appetite and food intake. Here, we have created peptides with small changes in the core binding motif -wFw- of the hexapeptide KwFwLL-NH(2) that can swap the peptide behavior from inverse......-tryptophane at position 4 with 1-naphthyl-d-alanine (d-1-Nal) and 2-naphthyl-d-alanine (d-2-Nal) induces agonism in functional assays. Competitive binding studies showed a high affinity of the inverse agonist K-(d-1-Nal)-FwLL-NH(2) at the ghrelin receptor. Moreover, mutagenesis studies of the receptor revealed key...

  9. Parenteral medium-chain triglyceride-induced neutrophil activation is not mediated by a Pertussis Toxin sensitive receptor.

    Science.gov (United States)

    Versleijen, Michelle W J; van Esterik, Joantine C J; Roelofs, Hennie M J; van Emst-de Vries, Sjenet E; Willems, Peter H G M; Wanten, Geert J A

    2009-02-01

    Lipid-induced immune modulation might contribute to the increased infection rate that is observed in patients using parenteral nutrition. We previously showed that emulsions containing medium-chain triglycerides (LCT/MCTs or pure MCTs), but not pure long-chain triglycerides (LCTs), impair neutrophil functions, modulate cell-signaling and induce neutrophil activation in vitro. It has recently been shown that medium-chain fatty acids are ligands for GPR84, a pertussis toxin (PT)-sensitive G-protein-coupled receptor (GPCR). This finding urged us to investigate whether MCT-induced neutrophil activation is mediated by PT-sensitive GPCRs. Neutrophils isolated from blood of healthy volunteers were pre-incubated with PT (0.5-1 microg/mL, 1.5 h) and analyzed for the effect of this pre-incubation on LCT/MCT (2.5 mmol/L)-dependent modulation of serum-treated zymosan (STZ)-induced intracellular Ca(2+) mobilization and on LCT/MCT (5 mmol/L)-induced expression of cell surface adhesion (CD11b) and degranulation (CD66b) markers and oxygen radical (ROS) production. PT did not inhibit the effects of LCT/MCT on the STZ-induced increase in cytosolic free Ca(2+) concentration. LCT/MCT increased ROS production to 146% of unstimulated cells. However, pre-incubation with PT did not inhibit the LCT/MCT-induced ROS production. Furthermore, the LCT/MCT-induced increase in CD11b and CD66b expression (196% and 235% of unstimulated cells, respectively) was not inhibited by pre-incubation with PT. LCT/MCT-induced neutrophil activation does not involve the action of a PT-sensitive G-protein-coupled receptor.

  10. Possible involvement of α- and β-receptors in the natural colour change and the MSH-induced dispersion in Xenopus laevis in vivo

    NARCIS (Netherlands)

    Brouwer, E.; Veerdonk, F.C.G. van de

    Participation of adrenergic receptors in the darkening reaction has been demonstrated in Xenopus laevis in vivo. Blockade of the β-receptors inhibited adaptation to a black background as well as the artificially MSH-induced dispersion. α-Receptors could not be proved to be involved in the dispersion

  11. Fatty acid and sterol contents during methyl jasmonate-induced leaf abscission in Kalanchoe blossfeldiana

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It was found previously that methyl jasmonate (JA-Me induced leaf abscission in Kalanchoe blossfeldiana. In present studies it was showed that JA-Me did not affect or only slightly affected the content of free and bound fatty acids in petioles and blades. ß-Sitosterol, campesterol and ß-amyrin were identified in petioles and blades of K. blossfeldiana; JA-Me decreased the content of campesterol in petioles and increased the content of ß-sitosterol in blades. In blades of plants treated with JA-Me disappearance of olean-12-one was indicated but appearance of 2H-cyclopropa[a]-naphthalen-2-one,l, la, 4, 5, 6, 7, 7a, 7b-octahydro-l, 1, 7, 7a-tetramethyl (aristolone was documented. The significance of these findings in leaf abscission induced by methyl jasmonate in K. blossfeldiana is discussed.

  12. Involvement of dopamine receptors within the dorsal hippocampus in suppression of the formalin-induced orofacial pain.

    Science.gov (United States)

    Shamsizadeh, Ali; Pahlevani, Pouyan; Haghparast, Amir; Moslehi, Maryam; Zarepour, Leila; Haghparast, Abbas

    2013-12-01

    It is widely established that the dopaminergic system has profound effects on pain modulation in different regions of the brain including the hippocampus, the salient area for brain functions. The orofacial region is one of the most densely innervated (by the trigeminal nerves) areas of the body susceptible to acute and chronic pains. In this study, we tried to examine the effects of dopamine receptors located in the dorsal hippocampus (CA1) region upon the modulation of orofacial pain induced by the formalin test. To induce orofacial pain in male Wistar rats, 50μl of 1% formalin was subcutaneously injected into the upper lip. In control and experimental groups, two guide cannulae were stereotaxically implanted in the CA1, and SKF-38393 (0.25, 0.5, 1 and 2μg/0.5μl saline) as a D1-like receptor agonist, SCH-23390 (1μg/0.5μl saline) as a D1-like receptor antagonist, Quinpirole (0.5, 1, 2 and 4μg/0.5μl saline) as a D2-like receptor agonist and Sulpiride(3μg/0.5μl DMSO) as a D2-like receptor antagonist or vehicles were microinjected. For induction of orofacial pain, 50μl of 1% formalin was subcutaneously injected into the left side of the upper lip. Results indicated that SKF-38393 at the dose of 1 and 2μg significantly reduced pain during the first and second phases of observed pain while SCH-23390 reversed such analgesic effect. Moreover, there is a significant difference between groups in which animals received 2 and 4μg quinpirole or vehicle in the first phase (early phase) of pain. The three high doses of this compound (1, 2 and 4μg) appeared to have an analgesic effect during the second (late) phase. Furthermore, Sulpiride could potentially reverse the observed analgesic effects already induced by an agonist. Current findings suggest that the dorsal hippocampal dopamine receptors exert an analgesic effect during the orofacial pain test. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Amelioration of cold injury-induced cortical brain edema formation by selective endothelin ETB receptor antagonists in mice.

    Directory of Open Access Journals (Sweden)

    Shotaro Michinaga

    Full Text Available Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice. Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV administration of BQ788 (ETB antagonist, IRL-2500 (ETB antagonist, or FR139317 (ETA antagonist prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults.

  14. Corticosterone induces rapid spinogenesis via synaptic glucocorticoid receptors and kinase networks in hippocampus.

    Directory of Open Access Journals (Sweden)

    Yoshimasa Komatsuzaki

    Full Text Available BACKGROUND: Modulation of dendritic spines under acute stress is attracting much attention. Exposure to acute stress induces corticosterone (CORT secretion from the adrenal cortex, resulting in rapid increase of CORT levels in plasma and the hippocampus. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrated the mechanisms of rapid effect (∼1 h of CORT on the density and morphology of spines by imaging neurons in adult male rat hippocampal slices. The application of CORT at 100-1000 nM induced a rapid increase in the density of spines of CA1 pyramidal neurons. The density of small-head spines (0.2-0.4 µm was increased even at low CORT levels (100-200 nM. The density of middle-head spines (0.4-0.5 µm was increased at high CORT levels between 400-1000 nM. The density of large-head spines (0.5-1.0 µm was increased only at 1000 nM CORT. Co-administration of RU486, an antagonist of glucocorticoid receptor (GR, abolished the effect of CORT. Blocking a single kinase, such as MAPK, PKA, PKC or PI3K, suppressed CORT-induced enhancement of spinogenesis. Blocking NMDA receptors suppressed the CORT effect. CONCLUSIONS/SIGNIFICANCE: These results imply that stress levels of CORT (100-1000 nM drive the spinogenesis via synaptic GR and multiple kinase pathways.

  15. Levodopa acts centrally to induce an antinociceptive action against colonic distension through activation of D2 dopamine receptors and the orexinergic system in the brain in conscious rats

    Directory of Open Access Journals (Sweden)

    Toshikatsu Okumura

    2016-02-01

    Subcutaneously (80 mg/rat or intracisternally (2.5 μg/rat administered levodopa significantly increased the threshold of colonic distension-induced AWR in conscious rats. The dose difference to induce the antinociceptive action suggests levodopa acts centrally to exert its antinociceptive action against colonic distension. While neither sulpiride, a D2 dopamine receptor antagonist, nor SCH23390, a D1 dopamine receptor antagonist by itself changed the threshold of colonic distension-induced AWR, the intracisternally injected levodopa-induced antinociceptive action was significantly blocked by pretreatment with subcutaneously administered sulpiride but not SCH23390. Treatment with intracisternal SB334867, an orexin 1 receptor antagonist, significantly blocked the subcutaneously administered levodopa-induced antinociceptive action. These results suggest that levodopa acts centrally to induce an antinociceptive action against colonic distension through activation of D2 dopamine receptors and the orexinergic system in the brain.

  16. Clofibric acid induces hepatic CYP 2B1/2 via constitutive androstane receptor not via peroxisome proliferator activated receptor alpha in rat.

    Science.gov (United States)

    Ibrahim, Zein Shaban; Ahmed, Mohamed Mohamed; El-Shazly, Samir Ahmed; Ishizuka, Mayumi; Fujita, Shoichi

    2014-01-01

    Peroxisome proliferator activated receptor α (PPARα) ligands, fibrates used to control hyperlipidemia. We demonstrated CYP2B induction by clofibric acid (CFA) however, the mechanism was not clear. In this study, HepG2 cells transfected with expression plasmid of mouse constitutive androstane receptor (CAR) or PPARα were treated with CFA, phenobarbital (PB) or TCPOBOP. Luciferase assays showed that CFA increased CYP2B1 transcription to the same level as PB, or TCPOBOP in HepG2 transfected with mouse CAR But failed to induce it in PPARα transfected cells. CYP2B expressions were increased with PB or CFA in Wistar female rats (having normal levels of CAR) but not in Wistar Kyoto female rats (having low levels of CAR). The induction of CYP2B by PB or CFA was comparable to nuclear CAR levels. CAR nuclear translocation was induced by CFA in both rat strains. This indicates that fibrates can activate CAR and that fibrates-insulin sensitization effect may occur through CAR, while hypolipidemic effect may operate through PPARα.

  17. Role of ventrolateral orbital cortex muscarinic and nicotinic receptors in modulation of capsaicin-induced orofacial pain-related behaviors in rats.

    Science.gov (United States)

    Tamaddonfard, Esmaeal; Erfanparast, Amir; Abbas Farshid, Amir; Delkhosh-Kasmaie, Fatmeh

    2017-11-15

    Acetylcholine, as a major neurotransmitter, mediates many brain functions such as pain. This study was aimed to investigate the effects of microinjection of muscarinic and nicotinic acetylcholine receptor antagonists and agonists into the ventrolateral orbital cortex (VLOC) on capsaicin-induced orofacial nociception and subsequent hyperalgesia. The right side of VLOC was surgically implanted with a guide cannula in anaesthetized rats. Orofacial pain-related behaviors were induced by subcutaneous injection of a capsaicin solution (1.5µg/20µl) into the left vibrissa pad. The time spent face rubbing with ipsilateral forepaw and general behavior were recorded for 10min, and then mechanical hyperalgesia was determined using von Frey filaments at 15, 30, 45 and 60min post-capsaicin injection. Alone intra-VLOC microinjection of atropine (a muscarinic acetylcholine receptor antagonist) and mecamylamine (a nicotinic acetylcholine receptor antagonist) at a similar dose of 200ng/site did not alter nocifensive behavior and hyperalgesia. Microinjection of oxotremorine (a muscarinic acetylcholine receptor agonist) at doses of 50 and 100ng/site and epibatidine (a nicotinic acetylcholine receptor agonist) at doses of 12.5, 25, 50 and 100ng/site into the VLOC suppressed pain-related behaviors. Prior microinjections of 200ng/site atropine and mecamylamine (200ng/site) prevented oxotremorine (100ng/site)-, and epibatidine (100ng/site)-induced antinociception, respectively. None of the above-mentioned chemicals changed general behavior. These results showed that the VLOC muscarinic and nicotinic acetylcholine receptors might be involved in modulation of orofacial nociception and hypersensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Plasma membrane cholesterol level and agonist-induced internalization of δ-opioid receptors; colocalization study with intracellular membrane markers of Rab family.

    Science.gov (United States)

    Brejchova, Jana; Vosahlikova, Miroslava; Roubalova, Lenka; Parenti, Marco; Mauri, Mario; Chernyavskiy, Oleksandr; Svoboda, Petr

    2016-08-01

    Decrease of cholesterol level in plasma membrane of living HEK293 cells transiently expressing FLAG-δ-OR by β-cyclodextrin (β-CDX) resulted in a slight internalization of δ-OR. Massive internalization of δ-OR induced by specific agonist DADLE was diminished in cholesterol-depleted cells. These results suggest that agonist-induced internalization of δ-OR, which has been traditionally attributed exclusively to clathrin-mediated pathway, proceeds at least partially via membrane domains. Identification of internalized pools of FLAG-δ-OR by colocalization studies with proteins of Rab family indicated the decreased presence of receptors in early endosomes (Rab5), late endosomes and lysosomes (Rab7) and fast recycling vesicles (Rab4). Slow type of recycling (Rab11) was unchanged by cholesterol depletion. As expected, agonist-induced internalization of oxytocin receptors was totally suppressed in β-CDX-treated cells. Determination of average fluorescence lifetime of TMA-DPH, the polar derivative of hydrophobic membrane probe diphenylhexatriene, in live cells by FLIM indicated a significant alteration of the overall PM structure which may be interpreted as an increased "water-accessible space" within PM area. Data obtained by studies of HEK293 cells transiently expressing FLAG-δ-OR by "antibody feeding" method were extended by analysis of the effect of cholesterol depletion on distribution of FLAG-δ-OR in sucrose density gradients prepared from HEK293 cells stably expressing FLAG-δ-OR. Major part of FLAG-δ-OR was co-localized with plasma membrane marker Na,K-ATPase and β-CDX treatment resulted in shift of PM fragments containing both FLAG-δ-OR and Na,K-ATPase to higher density. Thus, the decrease in content of the major lipid constituent of PM resulted in increased density of resulting PM fragments.

  19. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression*

    Science.gov (United States)

    Coke, Christopher J.; Scarlett, Kisha A.; Chetram, Mahandranauth A.; Jones, Kia J.; Sandifer, Brittney J.; Davis, Ahriea S.; Marcus, Adam I.

    2016-01-01

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. PMID:26841863

  20. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Shinichi [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Ishizuka, Tamotsu, E-mail: tamotsui@showa.gunma-u.ac.jp [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Komachi, Mayumi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Dobashi, Kunio [Gunma University Graduate School of Health Sciences, Maebashi 371-8511 (Japan); Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Mori, Masatomo [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan)

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  1. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    International Nuclear Information System (INIS)

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-01-01

    Highlights: → The involvement of extracellular acidification in airway remodeling was investigated. → Extracellular acidification alone induced CTGF production in human ASMCs. → Extracellular acidification enhanced TGF-β-induced CTGF production in human ASMCs. → Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. → OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-β-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G q/11 protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP 3 ) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G q/11 protein and inositol-1,4,5-trisphosphate-induced Ca 2+ mobilization in human ASMCs.

  2. Haemolysis induced by α-toxin from Staphylococcus aureus requires P2X receptor activation

    DEFF Research Database (Denmark)

    Skals, Marianne Gerberg; Leipziger, Jens Georg; Prætorius, Helle

    2011-01-01

    Recently, it was documented that α-haemolysin (HlyA) from Escherichia coli uses erythrocyte P2 receptors cause lysis. This finding was surprising as it appeared firmly established that HlyA-dependent pore formation per se is sufficient for full cell lysis. We discovered that HlyA induced a sequen...

  3. Chronic stress accelerates ligature-induced periodontitis by suppressing glucocorticoid receptor-α signaling.

    Science.gov (United States)

    Lu, Huaixiu; Xu, Minguang; Wang, Feng; Liu, Shisen; Gu, Jing; Lin, Songshan; Zhao, Lisheng

    2016-03-25

    Periodontitis is a common chronic inflammatory disease. Recent studies have shown that chronic stress (CS) might modulate periodontal disease, but there are few models of CS-induced periodontitis, and the underlying mechanisms are unclear. The present study established a rat model of periodontitis associated with CS induced by nylon thread ligatures. The severity of periodontitis was evaluated in this model by radiographic and pathological examination. The inflammatory reaction indicated by the elevated serum levels of interleukin (IL)-1β, IL-6 and IL-8 was assessed by enzyme-linked immunosorbent assay. Toll-like receptor-4 (TLR4) and glucocorticoid receptor-α (GR-α) expressions were detected by reverse transcriptase-PCR and western blotting. Open-field tests and serum corticosterone were used to evaluate CS. The results showed that CS induced behavioral changes and increased corticosterone levels of the animals with periodontitis. CS stimulation markedly increased alveolar bone loss, periodontal pocket depth and the number of plaques. It also enhanced the inflammatory reaction. These results suggest that CS accelerated the ligature-induced pathological changes associated with periodontitis. Further analysis of the mechanisms involved showed that GR-α expression was significantly downregulated in periodontal tissues of the animals undergoing CS. Blocking GR-α signaling in lipopolysaccharide and corticosteroid-treated human periodontal ligament fibroblast cells in vitro significantly upregulated the expression of p-Akt (protein kinase B) and TLR4, promoted nuclear factor-κB activity and increased levels of IL-1β, IL-6 and IL-8. This research suggests that CS might accelerate the pathological progression of periodontitis by a GR-α signaling-mediated inflammatory response and that this may be a potential therapeutic target for the treatment of periodontal disease, particularly in patients with CS.

  4. Macrophage colony stimulating factor (M-CSF) induces Fc receptor expression on macrophages

    International Nuclear Information System (INIS)

    Magee, D.M.; Wing, E.J.; Waheed, A.; Shadduck, R.K.

    1986-01-01

    M-CSF is a glycoprotein that stimulates bone marrow progenitor cells to proliferate and differentiate into macrophages (M theta). In addition, M-CSF can modulate the function of mature M theta. In this study, the authors determined the effect of M-CSF on expression of receptors for IgG (Fc receptors). Murine resident peritoneal M theta monolayers were incubated with either M-CSF, recombinant gamma interferon (IFN), or left untreated for 48 hrs. Expression of Fc receptors was assessed by microscopy using an antibody coated sheet erythrocytes (EA) rosette assay. The results indicated that M-CSF treated M theta had significantly higher numbers of bound EA (7.1 erythrocytes/M theta), than IFN M theta (4.4), or untreated M theta (2.5) (p 51 Cr labelled EA assay, CSF M theta (16,411 cpm), IFN M theta (10,887), untreated M theta (6897) (p < 0.001). Additionally, the maximal response was noted between 10 and 500 units M-CSF. Purified anti-M-CSF IgG, when included in the cultures, ablated the enhancement of EA binding, whereas normal rabbit IgG did not. These findings indicate that M-CSF is a potent inducer of Fc receptor expression on M theta and supports other data concerning the role of M-CSF as a biological response modifier

  5. Involvement of α₂-adrenoceptors, imidazoline, and endothelin-A receptors in the effect of agmatine on morphine and oxycodone-induced hypothermia in mice.

    Science.gov (United States)

    Bhalla, Shaifali; Andurkar, Shridhar V; Gulati, Anil

    2013-10-01

    Potentiation of opioid analgesia by endothelin-A (ET(A)) receptor antagonist, BMS182874, and imidazoline receptor/α₂-adrenoceptor agonists such as clonidine and agmatine are well known. It is also known that agmatine blocks morphine hyperthermia in rats. However, the effect of agmatine on morphine or oxycodone hypothermia in mice is unknown. The present study was carried out to study the role of α₂-adrenoceptors, imidazoline, and ET(A) receptors in morphine and oxycodone hypothermia in mice. Body temperature was determined over 6 h in male Swiss Webster mice treated with morphine, oxycodone, agmatine, and combination of agmatine with morphine or oxycodone. Yohimbine, idazoxan, and BMS182874 were used to determine involvement of α₂-adrenoceptors, imidazoline, and ET(A) receptors, respectively. Morphine and oxycodone produced significant hypothermia that was not affected by α₂-adrenoceptor antagonist yohimbine, imidazoline receptor/α₂ adrenoceptor antagonist idazoxan, or ET(A) receptor antagonist, BMS182874. Agmatine did not produce hypothermia; however, it blocked oxycodone but not morphine-induced hypothermia. Agmatine-induced blockade of oxycodone hypothermia was inhibited by idazoxan and yohimbine. The blockade by idazoxan was more pronounced compared with yohimbine. Combined administration of BMS182874 and agmatine did not produce changes in body temperature in mice. However, when BMS182874 was administered along with agmatine and oxycodone, it blocked agmatine-induced reversal of oxycodone hypothermia. This is the first report demonstrating that agmatine does not affect morphine hypothermia in mice, but reverses oxycodone hypothermia. Imidazoline receptors and α₂-adrenoceptors are involved in agmatine-induced reversal of oxycodone hypothermia. Our findings also suggest that ET(A) receptors may be involved in blockade of oxycodone hypothermia by agmatine. © 2012 The Authors Fundamental and Clinical Pharmacology © 2012 Société Française de

  6. Apelin ameliorates TNF-α-induced reduction of glycogen synthesis in the hepatocytes through G protein-coupled receptor APJ.

    Directory of Open Access Journals (Sweden)

    Jiaojiao Chu

    Full Text Available Apelin, a novel adipokine, is the specific endogenous ligand of G protein-coupled receptor APJ. Consistent with its putative role as an adipokine, apelin has been linked to states of insulin resistance. However, the function of apelin in hepatic insulin resistance, a vital part of insulin resistance, and its underlying mechanisms still remains unclear. Here we define the impacts of apelin on TNF-α-induced reduction of glycogen synthesis in the hepatocytes. Our studies indicate that apelin reversed TNF-α-induced reduction of glycogen synthesis in HepG2 cells, mouse primary hepatocytes and liver tissues of C57BL/6J mice by improving JNK-IRS1-AKT-GSK pathway. Moreover, Western blot revealed that APJ, but not apelin, expressed in the hepatocytes and liver tissues of mice. We found that F13A, a competitive antagonist for G protein-coupled receptor APJ, suppressed the effects of apelin on TNF-α-induced reduction of glycogen synthesis in the hepatocytes, suggesting APJ is involved in the function of apelin. In conclusion, we show novel evidence suggesting that apelin ameliorates TNF-α-induced reduction of glycogen synthesis in the hepatocytes through G protein-coupled receptor APJ. Apelin appears as a beneficial adipokine with anti-insulin resistance properties, and thus as a promising therapeutic target in metabolic disorders.

  7. Aromatic hydrocarbon receptor inhibits lysophosphatidic acid-induced vascular endothelial growth factor-A expression in PC-3 prostate cancer cells

    International Nuclear Information System (INIS)

    Wu, Pei-Yi; Lin, Yueh-Chien; Lan, Shun-Yan; Huang, Yuan-Li; Lee, Hsinyu

    2013-01-01

    Highlights: •LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT. •PI3K mediated LPA-induced VEGF-A expression. •AHR signaling inhibited LPA-induced VEGF-A expression in PC-3 cells. -- Abstract: Lysophosphatidic acid (LPA) is a lipid growth factor with multiple biological functions and has been shown to stimulate cancer cell secretion of vascular endothelial growth factor-A (VEGF-A) and trigger angiogenesis. Hypoxia-inducible factor-1 (HIF-1), a heterodimer consisting of HIF-1α and HIF-1β (also known as aromatic hydrocarbon receptor nuclear translocator (ARNT)) subunits, is an important regulator of angiogenesis in prostate cancer (PC) through the enhancement of VEGF-A expression. In this study, we first confirmed the ability of LPA to induce VEGF-A expression in PC-3 cells and then validated that LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT through phosphatidylinositol 3-kinase activation. Aromatic hydrocarbon receptor (AHR), a receptor for dioxin-like compounds, functions as a transcription factor through dimerization with ARNT and was found to inhibit prostate carcinogenesis and vanadate-induced VEGF-A production. Since ARNT is a common dimerization partner of AHR and HIF-1α, we hypothesized that AHR might suppress LPA-induced VEGF-A expression in PC-3 cells by competing with HIF-1α for ARNT. Here we demonstrated that overexpression and ligand activation of AHR inhibited HIF-1-mediated VEGF-A induction by LPA treatment of PC-3 cells. In conclusion, our results suggested that AHR activation may inhibit LPA-induced VEGF-A expression in PC-3 cells by attenuating HIF-1α signaling, and subsequently, suppressing angiogenesis and metastasis of PC. These results suggested that AHR presents a potential therapeutic target for the prevention of PC metastasis

  8. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    Science.gov (United States)

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.

  9. Effects of the selective 5-HT7 receptor antagonist SB-269970 and amisulpride on ketamine-induced schizophrenia-like deficits in rats.

    Directory of Open Access Journals (Sweden)

    Agnieszka Nikiforuk

    Full Text Available A wide body of evidence suggests that 5-HT7 receptors are implicated in a variety of central nervous system functions, including control of learning and memory processes. According to recent preclinical data, the selective blockade of these receptors may be a potential target for cognitive improvement in schizophrenia. The first aim of the present study was to evaluate the effects of the selective 5-HT7 receptor antagonist, SB-269970, and the antipsychotic drug with a high affinity for 5-HT7 receptors, amisulpride, on ketamine-induced deficits in attentional set-shifting and novel object recognition tasks in rats. Because the role of 5-HT7 receptor blockade in ameliorating positive and negative symptoms of schizophrenia remains equivocal, the second aim of these experiments was to examine the effectiveness of SB-269970 and amisulpride in reversing ketamine-induced deficits in prepulse inhibition of the startle reflex and in social interaction test in rats. The study revealed that acute administration of SB-269970 (1 mg/kg or amisulpride (3 mg/kg ameliorated ketamine-induced cognitive inflexibility and novel object recognition deficit in rats. Both compounds were also effective in attenuating ketamine-evoked disruption of social interactions. In contrast, neither SB-269970 nor amisulpride affected ketamine-disrupted prepulse inhibition or 50 kHz USVs accompanying social behaviour. In conclusion, antagonism of 5-HT7 receptors may represent a useful pharmacological approach in the treatment of cognitive deficits and some negative symptoms of schizophrenia.

  10. Cannabidiol attenuates haloperidol-induced catalepsy and c-Fos protein expression in the dorsolateral striatum via 5-HT1A receptors in mice.

    Science.gov (United States)

    Sonego, Andreza B; Gomes, Felipe V; Del Bel, Elaine A; Guimaraes, Francisco S

    2016-08-01

    Cannabidiol (CBD) is a major non-psychoactive compound from Cannabis sativa plant. Given that CBD reduces psychotic symptoms without inducing extrapyramidal motor side-effects in animal models and schizophrenia patients, it has been proposed to act as an atypical antipsychotic. In addition, CBD reduced catalepsy induced by drugs with distinct pharmacological mechanisms, including the typical antipsychotic haloperidol. To further investigate this latter effect, we tested whether CBD (15-60mg/kg) would attenuate the catalepsy and c-Fos protein expression in the dorsal striatum induced by haloperidol (0.6mg/kg). We also evaluated if these effects occur through the facilitation of 5-HT1A receptor-mediated neurotransmission. For this, male Swiss mice were treated with CBD and haloperidol systemically and then subjected to the catalepsy test. Independent groups of animals were also treated with the 5-HT1A receptor antagonist WAY100635 (0.1mg/kg). As expected, haloperidol induced catalepsy throughout the experiments, an effect that was prevented by systemic CBD treatment 30min before haloperidol administration. Also, CBD, administered 2.5h after haloperidol, reversed haloperidol-induced catalepsy. Haloperidol also increased c-Fos protein expression in the dorsolateral striatum, an effect attenuated by previous CBD administration. CBD effects on catalepsy and c-Fos protein expression induced by haloperidol were blocked by the 5-HT1A receptor antagonist. We also evaluated the effects of CBD (60nmol) injection into the dorsal striatum on haloperidol-induced catalepsy. Similar to systemic administration, this treatment reduced catalepsy induced by haloperidol. Altogether, these results suggest that CBD acts in the dorsal striatum to improve haloperidol-induced catalepsy via postsynaptic 5-HT1A receptors. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A novel Arabidopsis CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) mutant with enhanced pathogen-induced cell death and altered receptor processing.

    Science.gov (United States)

    Petutschnig, Elena K; Stolze, Marnie; Lipka, Ulrike; Kopischke, Michaela; Horlacher, Juliane; Valerius, Oliver; Rozhon, Wilfried; Gust, Andrea A; Kemmerling, Birgit; Poppenberger, Brigitte; Braus, Gerhard H; Nürnberger, Thorsten; Lipka, Volker

    2014-12-01

    Plants detect pathogens by sensing microbe-associated molecular patterns (MAMPs) through pattern recognition receptors. Pattern recognition receptor complexes also have roles in cell death control, but the underlying mechanisms are poorly understood. Here, we report isolation of cerk1-4, a novel mutant allele of the Arabidopsis chitin receptor CERK1 with enhanced defense responses. We identified cerk1-4 in a forward genetic screen with barley powdery mildew and consequently characterized it by pathogen assays, mutant crosses and analysis of defense pathways. CERK1 and CERK1-4 proteins were analyzed biochemically. The cerk1-4 mutation causes an amino acid exchange in the CERK1 ectodomain. Mutant plants maintain chitin signaling capacity but exhibit hyper-inducible salicylic acid concentrations and deregulated cell death upon pathogen challenge. In contrast to chitin signaling, the cerk1-4 phenotype does not require kinase activity and is conferred by the N-terminal part of the receptor. CERK1 undergoes ectodomain shedding, a well-known process in animal cell surface proteins. Wild-type plants contain the full-length CERK1 receptor protein as well as a soluble form of the CERK1 ectodomain, whereas cerk1-4 plants lack the N-terminal shedding product. Our work suggests that CERK1 may have a chitin-independent role in cell death control and is the first report of ectodomain shedding in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  12. Role of sigma 1 receptor in high fat diet-induced peripheral neuropathy.

    Science.gov (United States)

    Song, Tieying; Zhao, Jianhui; Ma, Xiaojing; Zhang, Zaiwang; Jiang, Bo; Yang, Yunliang

    2017-09-26

    The neurobiological mechanisms of obesity-induced peripheral neuropathy are poorly understood. We evaluated the role of Sigma-1 receptor (Sig-1R) and NMDA receptor (NMDARs) in the spinal cord in peripheral neuropathy using an animal model of high fat diet-induced diabetes. We examined the expression of Sig-1R and NMDAR subunits GluN2A and GluN2B along with postsynaptic density protein 95 (PSD-95) in the spinal cord after 24-week HFD treatment in both wild-type and Sig-1R-/- mice. Finally, we examined the effects of repeated intrathecal administrations of selective Sig-1R antagonists BD1047 in HFD-fed wild-type mice on peripheral neuropathy. Wild-type mice developed tactile allodynia and thermal hypoalgesia after 24-week HFD treatment. HFD-induced peripheral neuropathy correlated with increased expression of GluN2A and GluN2B subunits of NMDARs, PDS-95, and Sig-1R, as well as increased Sig-1R-NMDAR interaction in the spinal cord. In contrast, Sig-1R-/- mice did not develop thermal hypoalgesia or tactile allodynia after 24-week HFD treatment, and the levels of GluN2A, GluN2B, and PSD-95 were not altered in the spinal cord of HFD-fed Sig-1R-/- mice. Finally, repeated intrathecal administrations of selective Sig-1R antagonists BD1047 in HFD-fed wild-type mice attenuated peripheral neuropathy. Our results suggest that obesity-associated peripheral neuropathy may involve Sig-1R-mediated enhancement of NMDAR expression in the spinal cord.

  13. A3 Adenosine Receptors Modulate Hypoxia-inducible Factor-1a Expression in Human A375 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Stefania Merighi

    2005-10-01

    Full Text Available Hypoxia-inducible factor-1 (HIF-1 is a key regulator of genes crucial to many aspects of cancer biology. The purine nucleoside, adenosine, accumulates within many tissues under hypoxic conditions, including that of tumors. Because the levels of both HIF-1 and adenosine are elevated within the hypoxic environment of solid tumors, we investigated whether adenosine may regulate HIF-1. Here we show that, under hypoxic conditions (< 2% 02, adenosine upregulates HIF-1α protein expression in a dose-dependent and timedependent manner, exclusively through the A3 receptor subtype. The response to adenosine was generated at the cell surface because the inhibition of A3 receptor expression, by using small interfering RNA, abolished nucleoside effects. A3 receptor stimulation in hypoxia also increases angiopoietin-2 (Ang-2 protein accumulation through the induction of HIF-1α. In particular, we found that A3 receptor stimulation activates p44/p42 and p38 mitogen-activated protein kinases, which are required for A3-induced increase of HIF-1a and Ang-2. Collectively, these results suggest a cooperation between hypoxic and adenosine signals that ultimately may lead to the increase in HIF-1-mediated effects in cancer cells.

  14. Identification of an estrogen receptor α non covalent ubiquitin-binding surface: role in 17β-estradiol-induced transcriptional activity.

    Science.gov (United States)

    Pesiri, Valeria; La Rosa, Piergiorgio; Stano, Pasquale; Acconcia, Filippo

    2013-06-15

    Ubiquitin (Ub)-binding domains (UBDs) located in Ub receptors decode the ubiquitination signal by non-covalently engaging the Ub modification on their binding partners and transduce the Ub signalling through Ub-based molecular interactions. In this way, inducible protein ubiquitination regulates diverse biological processes. The estrogen receptor alpha (ERα) is a ligand-activated transcription factor that mediates the pleiotropic effects of the sex hormone 17β-estradiol (E2). Fine regulation of E2 pleiotropic actions depends on E2-dependent ERα association with a plethora of binding partners and/or on the E2 modulation of receptor ubiquitination. Indeed, E2-induced ERα polyubiquitination triggers receptor degradation and transcriptional activity, and E2-dependent reduction in ERα monoubiquitination is crucial for E2 signalling. Monoubiquitinated proteins often contain UBDs, but whether non-covalent Ub-ERα binding could occur and play a role in E2-ERα signalling is unknown. Here, we report an Ub-binding surface within the ERα ligand binding domain that directs in vitro the receptor interaction with both ubiquitinated proteins and recombinant Ub chains. Mutational analysis reveals that ERα residues leucine 429 and alanine 430 are involved in Ub binding. Moreover, impairment of ERα association to ubiquitinated species strongly affects E2-induced ERα transcriptional activity. Considering the importance of UBDs in the Ub-based signalling network and the central role of different ERα binding partners in the modulation of E2-dependent effects, our discoveries provide novel insights into ERα activity that could also be relevant for ERα-dependent diseases.

  15. Modulation of the TGF-β1-induced epithelial to mesenchymal transition (EMT) mediated by P1 and P2 purine receptors in MDCK cells.

    Science.gov (United States)

    Zuccarini, Mariachiara; Giuliani, Patricia; Buccella, Silvana; Di Liberto, Valentina; Mudò, Giuseppa; Belluardo, Natale; Carluccio, Marzia; Rossini, Margherita; Condorelli, Daniele Filippo; Rathbone, Michel Piers; Caciagli, Francesco; Ciccarelli, Renata; Di Iorio, Patrizia

    2017-12-01

    Epithelial to mesenchymal transition (EMT) occurs during embryogenesis or under pathological conditions such as hypoxia, injury, chronic inflammation, or tissue fibrosis. In renal tubular epithelial cells (MDCK), TGF-β1 induces EMT by reducing or increasing epithelial or mesenchymal marker expression, respectively. In this study, we confirmed that the cAMP analogues, 8-CPT-cAMP or N6-Ph-cAMP, inhibited the TGF-β1-driven overexpression of the mesenchymal markers ZEB-1, Slug, Fibronectin, and α-SMA. Furthermore, we showed that A1, A2A, P2Y1, P2Y11, and P2X7 purine receptor agonists modulated the TGF-β1-induced EMT through the involvement of PKA and/or MAPK/ERK signaling. The stimulation of A2A receptor reduced the overexpression of the EMT-related markers, mainly through the cAMP-dependent PKA pathway, as confirmed by cell pre-treatment with Myr-PKI. Both A1 and P2Y1 receptor stimulation exacerbated the TGF-β1-driven effects, which were reduced by cell pre-treatment with the MAPK inhibitor PD98059, according to the increased ERK1/2 phosphorylation upon receptor activation. The effects induced by P2Y11 receptor activation were oppositely modulated by PKA or MAPK inhibition, in line with the dual nature of the Gs- and Gq-coupled receptor. Differently, P2X7 receptor induced, per se, similar and not additive effects compared to TGF-β1, after prolonged cell exposure to BzATP. These results suggest a putative role of purine receptors as target for anti-fibrotic agents.

  16. Targeting pro-apoptotic trail receptors sensitizes HeLa cervical cancer cells to irradiation-induced apoptosis

    NARCIS (Netherlands)

    Maduro, John H.; de Vries, Elisabeth G. E.; Meersma, Gert-Jan; Hougardy, Brigitte M. T.; van der Zee, Ate G. J.; De Jong, Steven

    2008-01-01

    Purpose: To investigate the potential of irradiation in combination with drugs targeting the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor (DR)4 and DR5 and their mechanism of action in a cervical cancer cell line. Methods and Materials: Recombinant human TRAIL

  17. Hyperalgesic effect induced by barbiturates, midazolam and ethanol: pharmacological evidence for GABA-A receptor involvement

    Directory of Open Access Journals (Sweden)

    M.A.K.F. Tatsuo

    1997-02-01

    Full Text Available The involvement of GABA-A receptors in the control of nociception was studied using the tail-flick test in rats. Non-hypnotic doses of the barbiturates phenobarbital (5-50 mg/kg, pentobarbital (17-33 mg/kg, and thiopental (7.5-30 mg/kg, of the benzodiazepine midazolam (10 mg/kg or of ethanol (0.4-1.6 g/kg administered by the systemic route reduced the latency for the tail-flick response, thus inducing a 'hyperalgesic' state in the animals. In contrast, non-convulsant doses of the GABA-A antagonist picrotoxin (0.12-1.0 mg/kg administered systemically induced an increase in the latency for the tail-flick response, therefore characterizing an 'antinociceptive' state. Previous picrotoxin (0.12 mg/kg treatment abolished the hyperalgesic state induced by effective doses of the barbiturates, midazolam or ethanol. Since phenobarbital, midazolam and ethanol reproduced the described hyperalgesic effect of GABA-A-specific agonists (muscimol, THIP, which is specifically antagonized by the GABA-A antagonist picrotoxin, our results suggest that GABA-A receptors are tonically involved in the modulation of nociception in the rat central nervous system

  18. Stress-induced alterations in 5-HT1A receptor transcriptional modulators NUDR and Freud-1.

    Science.gov (United States)

    Szewczyk, Bernadeta; Kotarska, Katarzyna; Daigle, Mireille; Misztak, Paulina; Sowa-Kucma, Magdalena; Rafalo, Anna; Curzytek, Katarzyna; Kubera, Marta; Basta-Kaim, Agnieszka; Nowak, Gabriel; Albert, Paul R

    2014-11-01

    The effect of stress on the mRNA and protein level of the 5-HT1A receptor and two of its key transcriptional modulators, NUDR and Freud-1, was examined in the prefrontal cortex (PFC) and hippocampus (Hp) using rodent models: olfactory bulbectomy (OB) and prenatal stress (PS) in male and female rats; chronic mild stress in male rats (CMS) and pregnancy stress. In PFC, CMS induced the most widespread changes, with significant reduction in both mRNA and protein levels of NUDR, 5-HT1A receptor and in Freud-1 mRNA; while in Hp 5-HT1A receptor and Freud-1 protein levels were also decreased. In male, but not female OB rats PFC Freud-1 and 5-HT1A receptor protein levels were reduced, while in Hp 5-HT1A receptor, Freud-1 and NUDR mRNA's but not protein were reduced. In PS rats PFC 5-HT1A receptor protein was reduced more in females than males; while in Hp Freud-1 protein was increased in females. In pregnancy stress, PFC NUDR, Freud-1 and 5-HT1A protein receptor levels were reduced, and in HP 5-HT1A receptor protein levels were also reduced; in HP only NUDR and Freud-1 mRNA levels were reduced. Overall, CMS and stress during pregnancy produced the most salient changes in 5-HT1A receptor and transcription factor expression, suggesting a primary role for altered transcription factor expression in chronic regulation of 5-HT1A receptor expression. By contrast, OB (in males) and PS (in females) produced gender-specific reductions in PFC 5-HT1A receptor protein levels, suggesting a role for post-transcriptional regulation. These and previous data suggest that chronic stress might be a key regulator of NUDR/Freud-1 gene expression.

  19. Role of transglutaminase 2 in PAC1 receptor mediated protection against hypoxia-induced cell death and neurite outgrowth in differentiating N2a neuroblastoma cells.

    Science.gov (United States)

    Algarni, Alanood S; Hargreaves, Alan J; Dickenson, John M

    2017-03-15

    The PAC 1 receptor and tissue transglutaminase (TG2) play important roles in neurite outgrowth and modulation of neuronal cell survival. In this study, we investigated the regulation of TG2 activity by the PAC 1 receptor in retinoic acid-induced differentiating N2a neuroblastoma cells. TG2 transamidase activity was determined using an amine incorporation and a peptide cross linking assay. In situ TG2 activity was assessed by visualising the incorporation of biotin-X-cadaverine using confocal microscopy. TG2 phosphorylation was monitored via immunoprecipitation and Western blotting. The role of TG2 in PAC 1 receptor-induced cytoprotection and neurite outgrowth was investigated by monitoring hypoxia-induced cell death and appearance of axonal-like processes, respectively. The amine incorporation and protein crosslinking activity of TG2 increased in a time and concentration-dependent manner following stimulation with pituitary adenylate cyclase-activating polypeptide-27 (PACAP-27). PACAP-27 mediated increases in TG2 activity were abolished by the TG2 inhibitors Z-DON and R283 and by pharmacological inhibition of protein kinase A (KT 5720 and Rp-cAMPs), protein kinase C (Ro 31-8220), MEK1/2 (PD 98059), and removal of extracellular Ca 2+ . Fluorescence microscopy demonstrated PACAP-27 induced in situ TG2 activity. TG2 inhibition blocked PACAP-27 induced attenuation of hypoxia-induced cell death and outgrowth of axon-like processes. TG2 activation and cytoprotection were also observed in human SH-SY5Y cells. Together, these results demonstrate that TG2 activity was stimulated downstream of the PAC 1 receptor via a multi protein kinase dependent pathway. Furthermore, PAC 1 receptor-induced cytoprotection and neurite outgrowth are dependent upon TG2. These results highlight the importance of TG2 in the cellular functions of the PAC 1 receptor. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Mechanism of acetylcholine receptor cluster formation induced by DC electric field.

    Directory of Open Access Journals (Sweden)

    Hailong Luke Zhang

    Full Text Available BACKGROUND: The formation of acetylcholine receptor (AChR cluster is a key event during the development of the neuromuscular junction. It is induced through the activation of muscle-specific kinase (MuSK by the heparan-sulfate proteoglycan agrin released from the motor axon. On the other hand, DC electric field, a non-neuronal stimulus, is also highly effective in causing AChRs to cluster along the cathode-facing edge of muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: To understand its molecular mechanism, quantum dots (QDs were used to follow the movement of AChRs as they became clustered under the influence of electric field. From analyses of trajectories of AChR movement in the membrane, it was concluded that diffuse receptors underwent Brownian motion until they were immobilized at sites of cluster formation. This supports the diffusion-mediated trapping model in explaining AChR clustering under the influence of this stimulus. Disrupting F-actin cytoskeleton assembly and interfering with rapsyn-AChR interaction suppressed this phenomenon, suggesting that these are integral components of the trapping mechanism induced by the electric field. Consistent with the idea that signaling pathways are activated by this stimulus, the localization of tyrosine-phosphorylated forms of AChR β-subunit and Src was observed at cathodal AChR clusters. Furthermore, disrupting MuSK activity through the expression of a kinase-dead form of this enzyme abolished electric field-induced AChR clustering. CONCLUSIONS: These results suggest that DC electric field as a physical stimulus elicits molecular reactions in muscle cells in the form of cathodal MuSK activation in a ligand-free manner to trigger a signaling pathway that leads to cytoskeletal assembly and AChR clustering.

  1. Treadmill exercise alleviates stress-induced impairment of social interaction through 5-hydroxytryptamine 1A receptor activation in rats.

    Science.gov (United States)

    Kim, Tae-Woon; Lim, Baek-Vin; Kim, Kijeong; Seo, Jin-Hee; Kim, Chang-Ju

    2015-08-01

    Brain-derived neurotrophic factor (BDNF) and its receptors tyrosine kinase B (trkB), and cyclic adenosine monophosphate response element binding protein (CREB) have been suggested as the neurobiological risk factors causing depressive disorder. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in the pathogenesis of depression. We in-vestigated the effect of treadmill exercise on social interaction in relation with BDNF and 5-HT expressions following stress in rats. Stress was induced by applying inescapable 0.2 mA electric foot shock to the rats for 7 days. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks. Social interaction test and western blot for BDNF, TrkB, pCREB, and 5-HT1A in the hippocampus were performed. The results indicate that the spend time with unfamiliar partner was decreased by stress, in contrast, treadmill exercise increased the spending time in the stress-induced rats. Expressions of BDNF, TrkB, and pCREB were decreased by stress, in contrast, treadmill exercise enhanced expressions of BDNF, TrkB, and pCREB in the stress-induced rats. In addition, 5-HT1A receptor expression was de-creased by stress, in contrast, treadmill exercise enhanced 5-HT1A expression in the stress-induced rats. In the present study, treadmill exercise alleviated stress-induced social interaction impairment through enhancing hippocampal plasticity and serotonergic function in the hippocampus. These effects of treadmill exercise are achieved through 5-HT1A receptor activation.

  2. Curcumin modulates dopaminergic receptor, CREB and phospholipase c gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats

    Directory of Open Access Journals (Sweden)

    George Naijil

    2010-05-01

    Full Text Available Abstract Curcumin, an active principle component in rhizome of Curcuma longa, has proved its merit for diabetes through its anti-oxidative and anti-inflammatory properties. This study aims at evaluating the effect of curcumin in modulating the altered dopaminergic receptors, CREB and phospholipase C in the cerebral cortex and cerebellum of STZ induced diabetic rats. Radioreceptor binding assays and gene expression was done in the cerebral cortex and cerebellum of male Wistar rats using specific ligands and probes. Total dopaminergic receptor binding parameter, Bmax showed an increase in cerebral cortex and decrease in the cerebellum of diabetic rats. Gene expression studies using real time PCR showed an increased expression of dopamine D1 and D2 receptor in the cerebral cortex of diabetic rats. In cerebellum dopamine D1 receptor was down regulated and D2 receptor showed an up regulation. Transcription factor CREB and phospholipase C showed a significant down regulation in cerebral cortex and cerebellum of diabetic rats. We report that curcumin supplementation reduces diabetes induced alteration of dopamine D1, D2 receptors, transcription factor CREB and phospholipase C to near control. Our results indicate that curcumin has a potential to regulate diabetes induced malfunctions of dopaminergic signalling, CREB and Phospholipase C expression in cerebral cortex and cerebellum and thereby improving the cognitive and emotional functions associated with these regions. Furthermore, in line with these studies an interaction between curcumin and dopaminergic receptors, CREB and phospholipase C is suggested, which attenuates the cortical and cerebellar dysfunction in diabetes. These results suggest that curcumin holds promise as an agent to prevent or treat CNS complications in diabetes.

  3. Curcumin modulates dopaminergic receptor, CREB and phospholipase C gene expression in the cerebral cortex and cerebellum of streptozotocin induced diabetic rats.

    Science.gov (United States)

    Kumar, T Peeyush; Antony, Sherin; Gireesh, G; George, Naijil; Paulose, C S

    2010-05-31

    Curcumin, an active principle component in rhizome of Curcuma longa, has proved its merit for diabetes through its anti-oxidative and anti-inflammatory properties. This study aims at evaluating the effect of curcumin in modulating the altered dopaminergic receptors, CREB and phospholipase C in the cerebral cortex and cerebellum of STZ induced diabetic rats. Radioreceptor binding assays and gene expression was done in the cerebral cortex and cerebellum of male Wistar rats using specific ligands and probes. Total dopaminergic receptor binding parameter, B(max) showed an increase in cerebral cortex and decrease in the cerebellum of diabetic rats. Gene expression studies using real time PCR showed an increased expression of dopamine D1 and D2 receptor in the cerebral cortex of diabetic rats. In cerebellum dopamine D1 receptor was down regulated and D2 receptor showed an up regulation. Transcription factor CREB and phospholipase C showed a significant down regulation in cerebral cortex and cerebellum of diabetic rats. We report that curcumin supplementation reduces diabetes induced alteration of dopamine D1, D2 receptors, transcription factor CREB and phospholipase C to near control. Our results indicate that curcumin has a potential to regulate diabetes induced malfunctions of dopaminergic signalling, CREB and Phospholipase C expression in cerebral cortex and cerebellum and thereby improving the cognitive and emotional functions associated with these regions. Furthermore, in line with these studies an interaction between curcumin and dopaminergic receptors, CREB and phospholipase C is suggested, which attenuates the cortical and cerebellar dysfunction in diabetes. These results suggest that curcumin holds promise as an agent to prevent or treat CNS complications in diabetes.

  4. Activation of neural cholecystokinin-1 receptors induces relaxation of the isolated rat duodenum which is reduced by nitric oxide synthase inhibitors

    Directory of Open Access Journals (Sweden)

    S.R. Martins

    2006-02-01

    Full Text Available Cholecystokinin (CCK influences gastrointestinal motility, by acting on central and peripheral receptors. The aim of the present study was to determine whether CCK has any effect on isolated duodenum longitudinal muscle activity and to characterize the mechanisms involved. Isolated segments of the rat proximal duodenum were mounted for the recording of isometric contractions of longitudinal muscle in the presence of atropine and guanethidine. CCK-8S (EC50: 39; 95% CI: 4.1-152 nM and cerulein (EC50: 58; 95% CI: 18-281 nM induced a concentration-dependent and tetrodotoxin-sensitive relaxation. Nomeganitro-L-arginine (L-NOARG reduced CCK-8S- and cerulein-induced relaxation (IC50: 5.2; 95% CI: 2.5-18 µM in a concentration-dependent manner. The magnitude of 300 nM CCK-8S-induced relaxation was reduced by 100 µM L-NOARG from 73 ± 5.1 to 19 ± 3.5% in an L-arginine but not D-arginine preventable manner. The CCK-1 receptor antagonists proglumide, lorglumide and devazepide, but not the CCK-2 receptor antagonist L-365,260, antagonized CCK-8S-induced relaxation in a concentration-dependent manner. These findings suggest that CCK-8S and cerulein activate intrinsic nitrergic nerves acting on CCK-1 receptors in order to cause relaxation of the rat duodenum longitudinal muscle.

  5. Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation.

    Science.gov (United States)

    Rocha, Sandra M; Saraiva, Tatiana; Cristóvão, Ana C; Ferreira, Raquel; Santos, Tiago; Esteves, Marta; Saraiva, Cláudia; Je, Goun; Cortes, Luísa; Valero, Jorge; Alves, Gilberto; Klibanov, Alexander; Kim, Yoon-Seong; Bernardino, Liliana

    2016-06-04

    Histamine is an amine widely known as a peripheral inflammatory mediator and as a neurotransmitter in the central nervous system. Recently, it has been suggested that histamine acts as an innate modulator of microglial activity. Herein, we aimed to disclose the role of histamine in microglial phagocytic activity and reactive oxygen species (ROS) production and to explore the consequences of histamine-induced neuroinflammation in dopaminergic (DA) neuronal survival. The effect of histamine on phagocytosis was assessed both in vitro by using a murine N9 microglial cell line and primary microglial cell cultures and in vivo. Cells were exposed to IgG-opsonized latex beads or phosphatidylserine (PS) liposomes to evaluate Fcγ or PS receptor-mediated microglial phagocytosis, respectively. ROS production and protein levels of NADPH oxidases and Rac1 were assessed as a measure of oxidative stress. DA neuronal survival was evaluated in vivo by counting the number of tyrosine hydroxylase-positive neurons in the substantia nigra (SN) of mice. We found that histamine triggers microglial phagocytosis via histamine receptor 1 (H1R) activation and ROS production via H1R and H4R activation. By using apocynin, a broad NADPH oxidase (Nox) inhibitor, and Nox1 knockout mice, we found that the Nox1 signaling pathway is involved in both phagocytosis and ROS production induced by histamine in vitro. Interestingly, both apocynin and annexin V (used as inhibitor of PS-induced phagocytosis) fully abolished the DA neurotoxicity induced by the injection of histamine in the SN of adult mice in vivo. Blockade of H1R protected against histamine-induced Nox1 expression and death of DA neurons in vivo. Overall, our results highlight the relevance of histamine in the modulation of microglial activity that ultimately may interfere with neuronal survival in the context of Parkinson's disease (PD) and, eventually, other neurodegenerative diseases which are accompanied by microglia-induced

  6. Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex.

    Directory of Open Access Journals (Sweden)

    Iulia Glovaci

    Full Text Available The lateral entorhinal cortex receives strong inputs from midbrain dopamine neurons that can modulate its sensory and mnemonic function. We have previously demonstrated that 1 µM dopamine facilitates synaptic transmission in layer II entorhinal cortex cells via activation of D1-like receptors, increased cAMP-PKA activity, and a resulting enhancement of AMPA-receptor mediated currents. The present study assessed the contribution of phosphatidylinositol (PI-linked D1 receptors to the dopaminergic facilitation of transmission in layer II of the rat entorhinal cortex, and the involvement of phospholipase C activity and release of calcium from internal stores. Whole-cell patch-clamp recordings of glutamate-mediated evoked excitatory postsynaptic currents were obtained from pyramidal and fan cells. Activation of D1-like receptors using SKF38393, SKF83959, or 1 µM dopamine induced a reversible facilitation of EPSCs which was abolished by loading cells with either the phospholipase C inhibitor U-73122 or the Ca2+ chelator BAPTA. Neither the L-type voltage-gated Ca2+ channel blocker nifedipine, nor the L/N-type channel blocker cilnidipine, blocked the facilitation of synaptic currents. However, the facilitation was blocked by blocking Ca2+ release from internal stores via inositol 1,4,5-trisphosphate (InsP3 receptors or ryanodine receptors. Follow-up studies demonstrated that inhibiting CaMKII activity with KN-93 failed to block the facilitation, but that application of the protein kinase C inhibitor PKC(19-36 completely blocked the dopamine-induced facilitation. Overall, in addition to our previous report indicating a role for the cAMP-PKA pathway in dopamine-induced facilitation of synaptic transmission, we demonstrate here that the dopaminergic facilitation of synaptic responses in layer II entorhinal neurons also relies on a signaling cascade dependent on PI-linked D1 receptors, PLC, release of Ca2+ from internal stores, and PKC activation which is

  7. Ethanol-induced increase in portal blood flow: Role of acetate and A1- and A2-adenosine receptors

    International Nuclear Information System (INIS)

    Carmichael, F.J.; Saldivia, V.; Varghese, G.A.; Israel, Y.; Orrego, H.

    1988-01-01

    The increase in portal blood flow induced by ethanol appears to be adenosine mediated. Acetate, which is released by the liver during ethanol metabolism, is known to increase adenosine levels in tissues and in blood. The effects of acetate on portal blood flow were investigated in rats using the microsphere technique. The intravenous infusion of acetate resulted in vasodilation of the preportal vasculature and in a dose-dependent increase in portal blood flow. This acetate-induced increase in portal blood flow was suppressed by the adenosine receptor blocker, 8-phenyltheophylline. Using the A 1 -adenosine receptor agonist N-6-cyclohexyl adenosine and the A 2 -agonist 5'-N-ethylcarboxamido adenosine, we demonstrate that the effect of adenosine on the preportal vasculature is mediated by the A 2 -subtype of adenosine receptors. In conclusion, these data support the hypothesis that the increase in portal blood flow after ethanol administration results from a preportal vasodilatory effect of adenosine formed from acetate metabolism in extrahepatic tissues

  8. Neurokinin 1 Receptor Mediates Membrane Blebbing and Sheer Stress-Induced Microparticle Formation in HEK293 Cells

    Science.gov (United States)

    Chen, Panpan; Douglas, Steven D.; Meshki, John; Tuluc, Florin

    2012-01-01

    Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R) is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP). We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2–10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing. PMID:23024816

  9. Neurokinin 1 receptor mediates membrane blebbing and sheer stress-induced microparticle formation in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Panpan Chen

    Full Text Available Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP. We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2-10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing.

  10. Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.

    Science.gov (United States)

    Wang, Yan-Juan; Ren, Qing-Guo; Gong, Wei-Gang; Wu, Di; Tang, Xiang; Li, Xiao-Li; Wu, Fang-Fang; Bai, Feng; Xu, Lin; Zhang, Zhi-Jun

    2016-03-22

    Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-β (Aβ)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with Aβ1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased Aβ1-42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3β pathway, and the PI3K inhibitor LY294002 blocked the attenuation of tau hyperphosphorylation induced by escitalopram. Moreover, the 5-HT1A receptor agonist 8-OH-DPAT also activated the Akt/GSK-3β pathway and decreased Aβ1-42-induced tau hyperphosphorylation. Furthermore, the 5-HT1A receptor antagonist WAY-100635 blocked the activation of Akt/GSK-3β pathway and the attenuation of tau hyperphosphorylation induced by escitalopram. Finally, escitalopram improved Aβ1-42 induced impairment of neurite outgrowth and spine density, and reversed Aβ1-42 induced reduction of synaptic proteins. Our results demonstrated that escitalopram attenuated Aβ1-42-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.

  11. Infralimbic dopamine D2 receptors mediate glucocorticoid-induced facilitation of auditory fear memory extinction in rats.

    Science.gov (United States)

    Dadkhah, Masoumeh; Abdullahi, Payman Raise; Rashidy-Pour, Ali; Sameni, Hamid Reza; Vafaei, Abbas Ali

    2018-03-01

    The infralimbic (IL) cortex of the medial prefrontal cortex plays an important role in the extinction of fear memory. Also, it has been showed that both brain glucocorticoid and dopamine receptors are involved in many processes such as fear extinction that drive learning and memory; however, the interaction of these receptors in the IL cortex remains unclear. We examined a putative interaction between the effects of glucocorticoid and dopamine receptors stimulation in the IL cortex on fear memory extinction in an auditory fear conditioning paradigm in male rats. Corticosterone (the endogenous glucocorticoid receptor ligand), or RU38486 (the synthetic glucocorticoid receptor antagonist) microinfusion into the IL cortex 10 min before test 1 attenuated auditory fear expression at tests 1-3, suggesting as an enhancement of fear extinction. The effect of corticosterone, but not RU38486 was counteracted by the dopamine D2 receptor antagonist sulpiride pre-treatment administered into the IL (at a dose that failed to alter freezing behavior on its own). In contrast, intra-IL infusion of the dopamine D1 receptor antagonist SCH23390 pre-treatment failed to alter freezing behavior. These findings provide evidence for the involvement of the IL cortex D2 receptors in CORT-induced facilitation of fear memory extinction. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Involvement of the histamine H4 receptor in clozapine-induced hematopoietic toxicity: Vulnerability under granulocytic differentiation of HL-60 cells

    International Nuclear Information System (INIS)

    Goto, Aya; Mouri, Akihiro; Nagai, Tomoko; Yoshimi, Akira; Ukigai, Mako; Tsubai, Tomomi; Hida, Hirotake; Ozaki, Norio; Noda, Yukihiro

    2016-01-01

    Clozapine is an effective antipsychotic for treatment-resistant schizophrenia, but can cause fatal hematopoietic toxicity as agranulocytosis. To elucidate the mechanism of hematopoietic toxicity induced by clozapine, we developed an in vitro assay system using HL-60 cells, and investigated the effect on hematopoiesis. HL-60 cells were differentiated by all-trans retinoic acid (ATRA) into three states according to the following hematopoietic process: undifferentiated HL-60 cells, those undergoing granulocytic ATRA-differentiation, and ATRA-differentiated granulocytic cells. Hematopoietic toxicity was evaluated by analyzing cell survival, cell proliferation, granulocytic differentiation, apoptosis, and necrosis. In undifferentiated HL-60 cells and ATRA-differentiated granulocytic cells, both clozapine (50 and 100 μM) and doxorubicin (0.2 µM) decreased the cell survival rate, but olanzapine (1–100 µM) did not. Under granulocytic differentiation for 5 days, clozapine, even at a concentration of 25 μM, decreased survival without affecting granulocytic differentiation, increased caspase activity, and caused apoptosis rather than necrosis. Histamine H 4 receptor mRNA was expressed in HL-60 cells, whereas the expression decreased under granulocytic ATRA-differentiation little by little. Both thioperamide, a histamine H 4 receptor antagonist, and DEVD-FMK, a caspase-3 inhibitor, exerted protection against clozapine-induced survival rate reduction, but not of live cell counts. 4-Methylhistamine, a histamine H 4 receptor agonist, decreased the survival rate and live cell counts, as did clozapine. HL-60 cells under granulocytic differentiation are vulnerable under in vitro assay conditions to hematopoietic toxicity induced by clozapine. Histamine H 4 receptor is involved in the development of clozapine-induced hematopoietic toxicity through apoptosis, and may be a potential target for preventing its occurrence through granulocytic differentiation. - Highlights: • HL-60

  13. Lipopolysaccharide-induced expression of cell surface receptors and cell activation of neutrophils and monocytes in whole human blood

    Directory of Open Access Journals (Sweden)

    N.E. Gomes

    2010-09-01

    Full Text Available Lipopolysaccharide (LPS activates neutrophils and monocytes, inducing a wide array of biological activities. LPS rough (R and smooth (S forms signal through Toll-like receptor 4 (TLR4, but differ in their requirement for CD14. Since the R-form LPS can interact with TLR4 independent of CD14 and the differential expression of CD14 on neutrophils and monocytes, we used the S-form LPS from Salmonella abortus equi and the R-form LPS from Salmonella minnesota mutants to evaluate LPS-induced activation of human neutrophils and monocytes in whole blood from healthy volunteers. Expression of cell surface receptors and reactive oxygen species (ROS and nitric oxide (NO generation were measured by flow cytometry in whole blood monocytes and neutrophils. The oxidative burst was quantified by measuring the oxidation of 2',7'-dichlorofluorescein diacetate and the NO production was quantified by measuring the oxidation of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. A small increase of TLR4 expression by monocytes was observed after 6 h of LPS stimulation. Monocyte CD14 modulation by LPS was biphasic, with an initial 30% increase followed by a 40% decrease in expression after 6 h of incubation. Expression of CD11b was rapidly up-regulated, doubling after 5 min on monocytes, while down-regulation of CXCR2 was observed on neutrophils, reaching a 50% reduction after 6 h. LPS induced low production of ROS and NO. This study shows a complex LPS-induced cell surface receptor modulation on human monocytes and neutrophils, with up- and down-regulation depending on the receptor. R- and S-form LPS activate human neutrophils similarly, despite the low CD14 expression, if the stimulation occurs in whole blood.

  14. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    International Nuclear Information System (INIS)

    Kyotani, Yoji; Ota, Hiroyo; Itaya-Hironaka, Asako; Yamauchi, Akiyo; Sakuramoto-Tsuchida, Sumiyo; Zhao, Jing; Ozawa, Kentaro; Nagayama, Kosuke; Ito, Satoyasu; Takasawa, Shin; Kimura, Hiroshi; Uno, Masayuki; Yoshizumi, Masanori

    2013-01-01

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell. ●Epiregulin m

  15. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kyotani, Yoji, E-mail: cd147@naramed-u.ac.jp [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522 (Japan); Ota, Hiroyo [Second Department of Internal Medicine, Nara Medical University School of Medicine, Kashihara 634-8522 (Japan); Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Itaya-Hironaka, Asako; Yamauchi, Akiyo; Sakuramoto-Tsuchida, Sumiyo [Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Zhao, Jing; Ozawa, Kentaro; Nagayama, Kosuke; Ito, Satoyasu [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Takasawa, Shin [Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Kimura, Hiroshi [Second Department of Internal Medicine, Nara Medical University School of Medicine, Kashihara 634-8522 (Japan); Uno, Masayuki [Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522 (Japan); Yoshizumi, Masanori [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan)

    2013-11-15

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell. ●Epiregulin m

  16. D1- and D2-like dopamine receptors within the nucleus accumbens contribute to stress-induced analgesia in formalin-related pain behaviours in rats.

    Science.gov (United States)

    Faramarzi, G; Zendehdel, M; Haghparast, A

    2016-10-01

    Stressful experiences can produce analgesia, termed stress-induced analgesia (SIA). Meanwhile, it has been widely established that the mesolimbic dopamine pathway and nucleus accumbens (NAc) have a profound role in pain modulation. In this study, we examined the role of accumbal dopamine receptors in antinociception caused by forced swim stress (FSS) in order to understand more about the function of these receptors within the NAc in FSS-induced analgesia. Stereotaxic surgery was unilaterally performed on adult male Wistar rats weighing 230-250 g (some on the left and some on the right side of the midline). Two supergroups were microinjected into the NAc with a D1-like dopamine receptor antagonist, SCH-23390, at doses of 0.25, 1 and 4 μg/0.5 μl saline per rat or Sulpiride as a D2-like dopamine receptor antagonist at the same doses [0.25, 1 and 4 μg/0.5 μl dimethyl sulfoxide (DMSO) per rat]; while their controls just received intra-accumbal saline or DMSO at 0.5 μl, respectively. The formalin test was performed after rats were subjected to FSS (6 min, 25 ± 1 °C) to assess pain-related behaviours. The results demonstrated that intra-accumbal infusions of SCH-23390 and Sulpiride dose-dependently reduced FSS-induced antinociception in both phases of the formalin test. However, the percentage decrease in area under the curve (AUC) values calculated for treatment groups compared to formalin-control group was more significant in the late phase than the early phase. Our findings suggest that D1- and D2-like dopamine receptors in the NAc are involved in stress-induced antinociceptive behaviours in the formalin test as an animal model of persistent inflammatory pain. Forced swim stress (FSS) induces the antinociception in both phases of formalin test. Blockade of accumbal dopamine receptors attenuate the antinociception induced by FSS. Stress-induced analgesia is dose-dependently reduced by dopamine receptor antagonists in both phases, although it is more

  17. Angiotensin II induces apoptosis in intestinal epithelial cells through the AT2 receptor, GATA-6 and the Bax pathway

    International Nuclear Information System (INIS)

    Sun, Lihua; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Yang, Yang; Yang, Hua

    2012-01-01

    Highlights: ► Ang II-induced apoptosis in intestinal epithelial cell through AT2 receptor. ► The apoptosis process involves in the Bax/Bcl-2 intrinsic pathway. ► GATA-6 short hairpin RNA reduced Bax expression, but not Bcl-2. ► GATA-6 may play a critical role in apoptosis in response to the Ang II challenge. -- Abstract: Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. In the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.

  18. Unilateral Hypothalamus Inactivation Prevents PTZ Kindling Development through Hippocampal Orexin Receptor 1 Modulation

    Directory of Open Access Journals (Sweden)

    Nasibe Akbari

    2014-02-01

    Full Text Available Introduction: Epilepsy is a neural disorder in which abnormal plastic changes during short and long term periods lead to increased excitability of brain tissue. Kindling is an animal model of epileptogenesis which results in changes of synaptic plasticity due to repetitive electrical or chemical sub-convulsive stimulations of the brain. Lateral hypothalamus, as the main niche of orexin neurons with extensive projections, is involved in sleep and wakefulness and so it affects the excitability of the brain. Therefore, we investigated whether lateral hypothalamic area (LHA inactivation or orexin-A receptor blocking could change convulsive behavior of acute and kindled PTZ treated animals and if glutamate has a role in this regard.  Methods: Kindling was induced by 40 mg/kg PTZ, every 48 hours up to 13 injections to each rat. Three consecutive stages 4 or 5 of convulsive behavior were used to ensure kindling. Lidocaine was injected stereotaxically to inactivate LHA, unilaterally. SB334867 used for orexin receptor 1 (OX1R blocking administered in CSF.  Results: We demonstrated that LHA inactivation prevented PTZ kindling and hence, excitability evolution. Hippocampal glutamate content was decreased due to LHA inactivation, OX1R antagonist infusion, lidocaine injection and kindled groups. In accordance, OX1R antagonist (SB334867 and lidocaine injection decreased PTZ single dose induced convulsive behavior. While orexin-A i.c.v. infusion increased hippocampal glutamate content, it did not change PTZ induced convulsive intensity.  Discussion: It is concluded that LHA inactivation prevented kindling development probably through orexin receptor antagonism. CSF orexin probably acts as an inhibitory step on convulsive intensity through another unknown process.

  19. Gonadal cell surface receptor for plasma retinol-binding protein

    International Nuclear Information System (INIS)

    Krishna Bhat, M.; Cama, H.R.

    1979-01-01

    A specific membrane receptor for plasma retinol-binding protein has been demonstrated in testicular cells. Prealbumin-2 did not show any specific binding to the membrane. The affinity of retinol-binding protein for receptor drastically decreases upon delivery of retinol and the retinol-binding protein does not enter the cell. The mechanism of delivery of retinol to the target cell by plasma retinol-binding protein has been investigated. The process involves two steps; direct binding of retinol-binding protein to the receptor and uptake of retinol by the target cell with a concomitant drastic reduction in the affinity of the retinol-binding protein to the receptor. Probably the second step of the process needs a cytosolic factor, possibly the cellular retinol-binding protein or an enzyme. The binding of retinol-binding protein to the receptor is saturable and reversible. The interaction shows a Ksub(d) value of 2.1x10 -10 . The specific binding of a retinol-binding protein with great affinity has been employed in the development of a method for radioassay of the receptor. The receptor level of the gonadal cell has been found to vary with the stage of differentiation. The receptor concentrations in 11-week-old birds and adult birds are comparable. Testosterone treatment of 11-week-old birds produced a substantial increase in the receptor concentration over control, while the protein content increased marginally, indicating that, probably, synthesis of the receptor is specifcally induced by testosterone during spermatogenesis, and the concentration of receptor is relatively higher before the formation of the acrosome. (Auth.)

  20. Effects of GABA(B) receptor agents on cocaine priming, discrete contextual cue and food induced relapses.

    Science.gov (United States)

    Filip, Małgorzata; Frankowska, Małgorzata

    2007-10-01

    In the present study we investigated the effects of the GABA(B) receptor antagonist (2S)-(+)-5,5-dimethyl-2-morpholineacetic acid (SCH 50911), the agonists baclofen and 3-aminopropyl(methyl)phosphinic acid (SKF 97541), and the allosteric positive modulator 3,5-bis(1,1-dimethylethyl)-4-hydroxy-beta,beta-dimethylbenzenepropanol (CGP 7930) on cocaine seeking behavior. The effects of the above drugs on the reinstatement of responding induced by natural reinforcer (food) were also studied. Male Wistar rats were trained to self-administer either cocaine (0.5 mg/kg/infusion) or food (sweet milk) and responding on the reinforcer-paired lever was extinguished. Reinstatement of responding was induced by a noncontingent presentation of the self-administered reinforcer (10 mg/kg cocaine, i.p.), a discrete contextual cue, or a contingent presentation of food. SCH 50911 (3-10 mg/kg) dose-dependently attenuated responding on the previously cocaine-paired lever during both reinstatement conditions, with slightly greater efficacy at reducing conditioned cue reinstatement. At the same time, it failed to alter reinstatement of food-seeking behavior. Baclofen (1.25-5 mg/kg) and SKF 97541 (0.03-0.3 mg/kg) attenuated cocaine- or food-seeking behavior; the effect of the drug appeared more effective for cocaine-seeking than food-seeking. CGP 7930 (10-30 mg/kg) reduced cocaine seeking without affecting food-induced reinstatement on reward seeking. Our results indicate that tonic activation of GABA(B) receptors is required for cocaine seeking behavior in rats. Moreover, the GABA(B) receptor antagonist SCH 50911 was effective in reducing relapse to cocaine at doses that failed to alter reinstatement of food-seeking behavior (present study), basal locomotor activity, cocaine and food self-administration (Filip et al., submitted for publication), suggesting its selective effects on motivated drug-seeking behavior. The potent inhibitory responses on cocaine seeking behavior were also seen

  1. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling

    DEFF Research Database (Denmark)

    Adams, T E; Hansen, J A; Starr, R

    1998-01-01

    Four members (SOCS-1, SOCS-2, SOCS-3, and CIS) of a family of cytokine-inducible, negative regulators of cytokine receptor signaling have recently been identified. To address whether any of these genes are induced in response to growth hormone (GH), serum-starved 3T3-F442A fibroblasts were incuba...

  2. Curcumin induces human cathelicidin antimicrobial peptide gene expression through a vitamin D receptor-independent pathway

    DEFF Research Database (Denmark)

    Guo, Chunxiao; Rosoha, Elena; Lowry, Malcolm B

    2013-01-01

    The vitamin D receptor (VDR) mediates the pleiotropic biologic effects of 1α,25 dihydroxy-vitamin D(3). Recent in vitro studies suggested that curcumin and polyunsaturated fatty acids (PUFAs) also bind to VDR with low affinity. As potential ligands for the VDR, we hypothesized that curcumin...... cancer cell line HT-29 and keratinocyte cell line HaCaT. We demonstrated that PUFAs failed to induce CAMP or CYP24A1 mRNA expression in all three cell lines, but curcumin up-regulated CAMP mRNA and protein levels in U937 cells. Curcumin treatment induced CAMP promoter activity from a luciferase reporter...... construct lacking the VDR binding site and did not increase binding of the VDR to the CAMP promoter as determined by chromatin immunoprecipitation assays. These findings indicate that induction of CAMP by curcumin occurs through a vitamin D receptor-independent manner. We conclude that PUFAs and curcumin do...

  3. Involvement of A1 adenosine receptors and neural pathways in adenosine-induced bronchoconstriction in mice.

    Science.gov (United States)

    Hua, Xiaoyang; Erikson, Christopher J; Chason, Kelly D; Rosebrock, Craig N; Deshpande, Deepak A; Penn, Raymond B; Tilley, Stephen L

    2007-07-01

    High levels of adenosine can be measured from the lungs of asthmatics, and it is well recognized that aerosolized 5'AMP, the precursor of adenosine, elicits robust bronchoconstriction in patients with this disease. Characterization of mice with elevated adenosine levels secondary to the loss of adenosine deaminase (ADA) expression, the primary metabolic enzyme for adenosine, further support a role for this ubiquitous mediator in the pathogenesis of asthma. To begin to identify pathways by which adenosine can alter airway tone, we examined adenosine-induced bronchoconstriction in four mouse lines, each lacking one of the receptors for this nucleoside. We show, using direct measures of airway mechanics, that adenosine can increase airway resistance and that this increase in resistance is mediated by binding the A(1) receptor. Further examination of this response using pharmacologically, surgically, and genetically manipulated mice supports a model in which adenosine-induced bronchoconstriction occurs indirectly through the activation of sensory neurons.

  4. β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat.

    Science.gov (United States)

    Wohleb, Eric S; Hanke, Mark L; Corona, Angela W; Powell, Nicole D; Stiner, La'Tonia M; Bailey, Michael T; Nelson, Randy J; Godbout, Jonathan P; Sheridan, John F

    2011-04-27

    Psychosocial stress is associated with altered immune function and development of psychological disorders including anxiety and depression. Here we show that repeated social defeat in mice increased c-Fos staining in brain regions associated with fear and threat appraisal and promoted anxiety-like behavior in a β-adrenergic receptor-dependent manner. Repeated social defeat also significantly increased the number of CD11b(+)/CD45(high)/Ly6C(high) macrophages that trafficked to the brain. In addition, several inflammatory markers were increased on the surface of microglia (CD14, CD86, and TLR4) and macrophages (CD14 and CD86) after social defeat. Repeated social defeat also increased the presence of deramified microglia in the medial amygdala, prefrontal cortex, and hippocampus. Moreover, mRNA analysis of microglia indicated that repeated social defeat increased levels of interleukin (IL)-1β and reduced levels of glucocorticoid responsive genes [glucocorticoid-induced leucine zipper (GILZ) and FK506 binding protein-51 (FKBP51)]. The stress-dependent changes in microglia and macrophages were prevented by propranolol, a β-adrenergic receptor antagonist. Microglia isolated from socially defeated mice and cultured ex vivo produced markedly higher levels of IL-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 after stimulation with lipopolysaccharide compared with microglia from control mice. Last, repeated social defeat increased c-Fos activation in IL-1 receptor type-1-deficient mice, but did not promote anxiety-like behavior or microglia activation in the absence of functional IL-1 receptor type-1. These findings indicate that repeated social defeat-induced anxiety-like behavior and enhanced reactivity of microglia was dependent on activation of β-adrenergic and IL-1 receptors.

  5. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression.

    Science.gov (United States)

    Coke, Christopher J; Scarlett, Kisha A; Chetram, Mahandranauth A; Jones, Kia J; Sandifer, Brittney J; Davis, Ahriea S; Marcus, Adam I; Hinton, Cimona V

    2016-05-06

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Analysis of Onset Mechanisms of a Sphingosine 1-Phosphate Receptor Modulator Fingolimod-Induced Atrioventricular Conduction Block and QT-Interval Prolongation

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Yukihiro [Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143–8540 (Japan); Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama, Kanagawa 222–8567 (Japan); Nakamura, Yuji [Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143–8540 (Japan); Kitahara, Ken [Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143–8540 (Japan); Division of Cardiovascular Medicine, Department of Internal Medicine, Faculty of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143–8541 (Japan); Harada, Takuma [Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143–8540 (Japan); Kato, Kazuhiko; Ninomiya, Tomohisa [Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama, Kanagawa 222–8567 (Japan); Cao, Xin [Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143–8540 (Japan); Ohara, Hiroshi [Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143–8540 (Japan); Division of Cardiovascular Medicine, Department of Internal Medicine, Faculty of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, Tokyo 143–8541 (Japan); Izumi-Nakaseko, Hiroko [Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143–8540 (Japan); Suzuki, Kokichi [Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama, Kanagawa 222–8567 (Japan); Ando, Kentaro [Department of Pharmacology, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143–8540 (Japan); and others

    2014-11-15

    Fingolimod, a sphingosine 1-phosphate (S1P) receptor subtype 1, 3, 4 and 5 modulator, has been used for the treatment of patients with relapsing forms of multiple sclerosis, but atrioventricular conduction block and/or QT-interval prolongation have been reported in some patients after the first dose. In this study, we directly compared the electropharmacological profiles of fingolimod with those of siponimod, a modulator of sphingosine 1-phosphate receptor subtype 1 and 5, using in vivo guinea-pig model and in vitro human ether-a-go-go-related gene (hERG) assay to better understand the onset mechanisms of the clinically observed adverse events. Fingolimod (0.01 and 0.1 mg/kg) or siponimod (0.001 and 0.01 mg/kg) was intravenously infused over 10 min to the halothane-anaesthetized guinea pigs (n = 4), whereas the effects of fingolimod (1 μmol/L) and siponimod (1 μmol/L) on hERG current were examined (n = 3). The high doses of fingolimod and siponimod induced atrioventricular conduction block, whereas the low dose of siponimod prolonged PR interval, which was not observed by that of fingolimod. The high dose of fingolimod prolonged QT interval, which was not observed by either dose of siponimod. Meanwhile, fingolimod significantly inhibited hERG current, which was not observed by siponimod. These results suggest that S1P receptor subtype 1 in the heart could be one of the candidates for fingolimod- and siponimod-induced atrioventricular conduction block since S1P receptor subtype 5 is localized at the brain, and that direct I{sub Kr} inhibition may play a key role in fingolimod-induced QT-interval prolongation. - Highlights: • Fingolimod and siponimod are S1P{sub 1,3,4,5} and S1P{sub 1,5} receptor modulators, respectively. • Fingolimod and siponimod induced AV block in the halothane-anesthetized guinea pigs. • S1P{sub 1} in the hearts may be the target of fingolimod- and siponimod-induced AV block. • Fingolimod directly inhibited hERG current, which was not

  7. Analysis of Onset Mechanisms of a Sphingosine 1-Phosphate Receptor Modulator Fingolimod-Induced Atrioventricular Conduction Block and QT-Interval Prolongation

    International Nuclear Information System (INIS)

    Yagi, Yukihiro; Nakamura, Yuji; Kitahara, Ken; Harada, Takuma; Kato, Kazuhiko; Ninomiya, Tomohisa; Cao, Xin; Ohara, Hiroshi; Izumi-Nakaseko, Hiroko; Suzuki, Kokichi; Ando, Kentaro

    2014-01-01

    Fingolimod, a sphingosine 1-phosphate (S1P) receptor subtype 1, 3, 4 and 5 modulator, has been used for the treatment of patients with relapsing forms of multiple sclerosis, but atrioventricular conduction block and/or QT-interval prolongation have been reported in some patients after the first dose. In this study, we directly compared the electropharmacological profiles of fingolimod with those of siponimod, a modulator of sphingosine 1-phosphate receptor subtype 1 and 5, using in vivo guinea-pig model and in vitro human ether-a-go-go-related gene (hERG) assay to better understand the onset mechanisms of the clinically observed adverse events. Fingolimod (0.01 and 0.1 mg/kg) or siponimod (0.001 and 0.01 mg/kg) was intravenously infused over 10 min to the halothane-anaesthetized guinea pigs (n = 4), whereas the effects of fingolimod (1 μmol/L) and siponimod (1 μmol/L) on hERG current were examined (n = 3). The high doses of fingolimod and siponimod induced atrioventricular conduction block, whereas the low dose of siponimod prolonged PR interval, which was not observed by that of fingolimod. The high dose of fingolimod prolonged QT interval, which was not observed by either dose of siponimod. Meanwhile, fingolimod significantly inhibited hERG current, which was not observed by siponimod. These results suggest that S1P receptor subtype 1 in the heart could be one of the candidates for fingolimod- and siponimod-induced atrioventricular conduction block since S1P receptor subtype 5 is localized at the brain, and that direct I Kr inhibition may play a key role in fingolimod-induced QT-interval prolongation. - Highlights: • Fingolimod and siponimod are S1P 1,3,4,5 and S1P 1,5 receptor modulators, respectively. • Fingolimod and siponimod induced AV block in the halothane-anesthetized guinea pigs. • S1P 1 in the hearts may be the target of fingolimod- and siponimod-induced AV block. • Fingolimod directly inhibited hERG current, which was not observed by

  8. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  9. The IL-6 receptor super-antagonist Sant7 enhances antiproliferative and apoptotic effects induced by dexamethasone and zoledronic acid on multiple myeloma cells.

    Science.gov (United States)

    Tassone, Pierfrancesco; Galea, Eulalia; Forciniti, Samantha; Tagliaferri, Pierosandro; Venuta, Salvatore

    2002-10-01

    Interleukin-6 (IL-6) is the major growth and survival factor for multiple myeloma (MM), and has been shown to protect MM cells from apoptosis induced by a variety of agents. IL-6 receptor antagonists, which prevent the assembly of functional IL-6 receptor complexes, inhibit cell proliferation and induce apoptosis in MM cells. We have investigated whether the IL-6 receptor super-antagonist Sant7 might enhance the antiproliferative and apoptotic effects induced by the combination of dexamethasone (Dex) and zoledronic acid (Zln) on human MM cell lines and primary cells from MM patients. Here we show that each of these compounds individually induced detectable antiproliferative effects on MM cells. Sant7 significantly enhanced growth inhibition and apoptosis induced by Dex and Zln on both MM cell lines and primary MM cells. These results indicate that overcoming IL-6 mediated cell resistance by Sant7 potentiates the effect of glucocorticoides and bisphosphonates on MM cell growth and survival, providing a rationale for therapies including IL-6 antagonists in MM.

  10. Estrogen receptor protein content is different in abdominal than gluteal subcutaneous adipose tissue of overweight-to-obese premenopausal women.

    Science.gov (United States)

    Gavin, Kathleen M; Cooper, Elizabeth E; Hickner, Robert C

    2013-08-01

    Premenopausal women demonstrate a distinctive gynoid body fat distribution and circulating estrogen status is associated with the maintenance of this adiposity patterning. Estrogen's role in modulation of regional adiposity may occur through estrogen receptors (ERs), which are present in human adipose tissue. The purpose of this study was to determine regional differences in the protein content of ERα, ERβ, and the G protein-coupled estrogen receptor (GPER) between the abdominal (AB) and gluteal (GL) subcutaneous adipose tissue of overweight-to-obese premenopausal women. Biopsies of the subcutaneous AB and GL adipose tissue were performed in 15 premenopausal women (7 Caucasian/8 African American, 25.1 ± 1.8 years, BMI 29.5 ± 0.5kg/m(2)). Adipose tissue protein content was measured by western blot analysis and correlation analyses were conducted to assess the relationship between ER protein content and anthropometric indices/body composition measurements. We found that ERα protein was higher in AB than GL (AB 1.0 ± 0.2 vs GL 0.67 ± 0.1 arbitrary units [AU], P=0.02), ERβ protein was higher in GL than AB (AB 0.78 ± 0.12 vs GL 1.3 ± 0.2 AU, P=0.002), ERα/ERβ ratio was higher in AB than GL (AB 1.9 ± 0.4 vs GL 0.58 ± 0.08 AU, P=0.007), and GPER protein content was similar in AB and GL (P=0.80) subcutaneous adipose tissue. Waist-to-hip ratio was inversely related to gluteal ERβ (r(2)=0.315, P=0.03) and positively related to gluteal ERα/ERβ ratio (r(2)=0.406, P=0.01). These results indicate that depot specific ER content may be an important underlying determinant of regional effects of estrogen in upper and lower body adipose tissue of overweight-to-obese premenopausal women. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Gβ promotes pheromone receptor polarization and yeast chemotropism by inhibiting receptor phosphorylation.

    Science.gov (United States)

    Ismael, Amber; Tian, Wei; Waszczak, Nicholas; Wang, Xin; Cao, Youfang; Suchkov, Dmitry; Bar, Eli; Metodiev, Metodi V; Liang, Jie; Arkowitz, Robert A; Stone, David E

    2016-04-12

    Gradient-directed cell migration (chemotaxis) and growth (chemotropism) are processes that are essential to the development and life cycles of all species. Cells use surface receptors to sense the shallow chemical gradients that elicit chemotaxis and chemotropism. Slight asymmetries in receptor activation are amplified by downstream signaling systems, which ultimately induce dynamic reorganization of the cytoskeleton. During the mating response of budding yeast, a model chemotropic system, the pheromone receptors on the plasma membrane polarize to the side of the cell closest to the stimulus. Although receptor polarization occurs before and independently of actin cable-dependent delivery of vesicles to the plasma membrane (directed secretion), it requires receptor internalization. Phosphorylation of pheromone receptors by yeast casein kinase 1 or 2 (Yck1/2) stimulates their internalization. We showed that the pheromone-responsive Gβγ dimer promotes the polarization of the pheromone receptor by interacting with Yck1/2 and locally inhibiting receptor phosphorylation. We also found that receptor phosphorylation is essential for chemotropism, independently of its role in inducing receptor internalization. A mathematical model supports the idea that the interaction between Gβγ and Yck1/2 results in differential phosphorylation and internalization of the pheromone receptor and accounts for its polarization before the initiation of directed secretion. Copyright © 2016, American Association for the Advancement of Science.

  12. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors.

    Science.gov (United States)

    Choi, Juli; Kim, Ji-eun; Kim, Tae-Kyung; Park, Jin-Young; Lee, Jung-Eun; Kim, Hannah; Lee, Eun-Hwa; Han, Pyung-Lim

    2015-10-01

    Chronic stress is a potent risk factor for depression, but the mechanism by which stress causes depression is not fully understood. To investigate the molecular mechanism underlying stress-induced depression, C57BL/6 inbred mice were treated with repeated restraint to induce lasting depressive behavioral changes. Behavioral states of individual animals were evaluated using the forced swim test, which measures psychomotor withdrawals, and the U-field test, which measures sociability. From these behavioral analyses, individual mice that showed depression-like behaviors in both psychomotor withdrawal and sociability tests, and individuals that showed a resiliency to stress-induced depression in both tests were selected. Among the neuropeptides expressed in the amygdala, thyrotropin-releasing hormone (TRH) was identified as being persistently up-regulated in the basolateral amygdala (BLA) in individuals exhibiting severe depressive behaviors in the two behavior tests, but not in individuals displaying a stress resiliency. Activation of TRH receptors by local injection of TRH in the BLA in normal mice produced depressive behaviors, mimicking chronic stress effects, whereas siRNA-mediated suppression of either TRH or TRHR1 in the BLA completely blocked stress-induced depressive symptoms. The TRHR1 agonist, taltirelin, injection in the BLA increased the level of p-ERK, which mimicked the increased p-ERK level in the BLA that was induced by treatment with repeated stress. Stereotaxic injection of U0126, a potent inhibitor of the ERK pathway, within the BLA blocked stress-induced behavioral depression. These results suggest that repeated stress produces lasting depression-like behaviors via the up-regulation of TRH and TRH receptors in the BLA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. C-X-C Chemokine Receptor Type 4 Plays a Crucial Role in Mediating Oxidative Stress-Induced Podocyte Injury.

    Science.gov (United States)

    Mo, Hongyan; Wu, Qinyu; Miao, Jinhua; Luo, Congwei; Hong, Xue; Wang, Yongping; Tang, Lan; Hou, Fan Fan; Liu, Youhua; Zhou, Lili

    2017-08-20

    Oxidative stress plays a role in mediating podocyte injury and proteinuria. However, the underlying mechanism remains poorly understood. In this study, we investigated the potential role of C-X-C chemokine receptor type 4 (CXCR4), the receptor for stromal cell-derived factor 1α (SDF-1α), in mediating oxidative stress-induced podocyte injury. In mouse model of adriamycin nephropathy (ADR), CXCR4 expression was significantly induced in podocytes as early as 3 days. This was accompanied by an increased upregulation of oxidative stress in podocyte, as demonstrated by malondialdehyde assay, nitrotyrosine staining and secretion of 8-hydroxy-2'-deoxyguanosine in urine, and induction of NOX2 and NOX4, major subunits of NADPH oxidase. CXCR4 was also induced in human kidney biopsies with proteinuric kidney diseases and colocalized with advanced oxidation protein products (AOPPs), an established oxidative stress trigger. Using cultured podocytes and mouse model, we found that AOPPs induced significant loss of podocyte marker Wilms tumor 1 (WT1), nephrin, and podocalyxin, accompanied by upregulation of desmin both in vitro and in vivo. Furthermore, AOPPs worsened proteinuria and aggravated glomerulosclerosis in ADR. These effects were associated with marked activation of SDF-1α/CXCR4 axis in podocytes. Administration of AMD3100, a specific inhibitor of CXCR4, reduced proteinuria and ameliorated podocyte dysfunction and renal fibrosis triggered by AOPPs in mice. In glomerular miniorgan culture, AOPPs also induced CXCR4 expression and downregulated nephrin and WT1. Innovation and Conclusion: These results suggest that chemokine receptor CXCR4 plays a crucial role in mediating oxidative stress-induced podocyte injury, proteinuria, and renal fibrosis. CXCR4 could be a new target for mitigating podocyte injury, proteinuria, and glomerular sclerosis in proteinuric chronic kidney disease. Antioxid. Redox Signal. 27, 345-362.

  14. The mGlu2/3 Receptor Agonists LY354740 and LY379268 Differentially Regulate Restraint-Stress-Induced Expression of c-Fos in Rat Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    M. M. Menezes

    2013-01-01

    Full Text Available Metabotropic glutamate 2/3 (mGlu2/3 receptors have emerged as potential therapeutic targets due to the ability of mGlu2/3 receptor agonists to modulate excitatory transmission at specific synapses. LY354740 and LY379268 are selective and potent mGlu2/3 receptor agonists that show both anxiolytic- and antipsychotic-like effects in animal models. We compared the efficacy of LY354740 and LY379268 in attenuating restraint-stress-induced expression of the immediate early gene c-Fos in the rat prelimbic (PrL and infralimbic (IL cortex. LY354740 (10 and 30 mg/kg, i.p. showed statistically significant and dose-related attenuation of stress-induced increase in c-Fos expression, in the rat cortex. By contrast, LY379268 had no effect on restraint-stress-induced c-Fos upregulation (0.3–10 mg/kg, i.p.. Because both compounds inhibit serotonin 2A receptor (5-HT2AR-induced c-Fos expression, we hypothesize that LY354740 and LY379268 have different in vivo properties and that 5-HT2AR activation and restraint stress induce c-Fos through distinct mechanisms.

  15. Hindbrain GLP-1 receptor mediation of cisplatin-induced anorexia and nausea.

    Science.gov (United States)

    De Jonghe, Bart C; Holland, Ruby A; Olivos, Diana R; Rupprecht, Laura E; Kanoski, Scott E; Hayes, Matthew R

    2016-01-01

    While chemotherapy-induced nausea and vomiting are clinically controlled in the acute (anorexia, nausea, fatigue, and other illness-type behaviors during the delayed phase (>24 h) of chemotherapy are largely uncontrolled. As the hindbrain glucagon-like peptide-1 (GLP-1) system contributes to energy balance and mediates aversive and stressful stimuli, here we examine the hypothesis that hindbrain GLP-1 signaling mediates aspects of chemotherapy-induced nausea and reductions in feeding behavior in rats. Specifically, hindbrain GLP-1 receptor (GLP-1R) blockade, via 4th intracerebroventricular (ICV) exendin-(9-39) injections, attenuates the anorexia, body weight reduction, and pica (nausea-induced ingestion of kaolin clay) elicited by cisplatin chemotherapy during the delayed phase (48 h) of chemotherapy-induced nausea. Additionally, the present data provide evidence that the central GLP-1-producing preproglucagon neurons in the nucleus tractus solitarius (NTS) of the caudal brainstem are activated by cisplatin during the delayed phase of chemotherapy-induced nausea, as cisplatin led to a significant increase in c-Fos immunoreactivity in NTS GLP-1-immunoreactive neurons. These data support a growing body of literature suggesting that the central GLP-1 system may be a potential pharmaceutical target for adjunct anti-emetics used to treat the delayed-phase of nausea and emesis, anorexia, and body weight loss that accompany chemotherapy treatments. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Azadirachtin Interacts with the Tumor Necrosis Factor (TNF) Binding Domain of Its Receptors and Inhibits TNF-induced Biological Responses*

    Science.gov (United States)

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A.; Manna, Sunil K.

    2010-01-01

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor κB (NF-κB) and also expression of NF-κB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-κB (IκBα) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IκBα kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-κB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy. PMID:20018848

  17. Azadirachtin interacts with the tumor necrosis factor (TNF) binding domain of its receptors and inhibits TNF-induced biological responses.

    Science.gov (United States)

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A; Manna, Sunil K

    2010-02-19

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor kappaB (NF-kappaB) and also expression of NF-kappaB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-kappaB (IkappaB alpha) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IkappaB alpha kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-kappaB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy.

  18. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    Science.gov (United States)

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  19. Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism.

    LENUS (Irish Health Repository)

    Sookhai, S

    2012-02-03

    BACKGROUND: For the normal resolution of an acute inflammatory response, neutrophil (PMN) apoptosis is essential to maintain immune homeostasis and to limit inappropriate host tissue damage. A delay in PMN apoptosis has been implicated in the pathogenesis of the systemic inflammatory response syndrome (SIRS). Dopamine, a biogenic amine with known cardiovascular and neurotransmitter properties, is used in patients with SIRS to maintain hemodynamic stability. We sought to determine whether dopamine may also have immunoregulatory properties capable of influencing PMN apoptosis, function, and activation state in patients with SIRS. METHODS: PMNs were isolated from healthy volunteers and patients with SIRS and treated with varying doses of dopamine and a dopamine D-1 receptor agonist, fenoldopam. PMN apoptosis was assessed every 6 hours with use of propidium iodide DNA staining and PMN function was assessed with use of respiratory burst activity, phagocytosis ability, and CD11a, CD11b, and CD18 receptor expression as functional markers. RESULTS: There was a significant delay in PMN apotosis in patients with SIRS compared with controls. Treatment of isolated PMNs from both healthy controls and patients with SIRS with 10 and 100 mumol\\/L dopamine induced apoptosis. PMN ingestive and cytocidal capacity were both decreased in patients with SIRS compared with controls. Treatment with dopamine significantly increased phagocytic function. Fenoldopam did not induce PMN apoptosis. CONCLUSION: Our data demonstrate for the first time that dopamine induces PMN apoptosis and modulates PMN function both in healthy controls and in patients with SIRS. These results indicate that dopamine may be beneficial during SIRS through a nonhemodynamic PMN-dependent proapoptotic mechanism.

  20. Unraveling a three-step spatiotemporal mechanism of triggering of receptor-induced Nipah virus fusion and cell entry.

    Directory of Open Access Journals (Sweden)

    Qian Liu

    Full Text Available Membrane fusion is essential for entry of the biomedically-important paramyxoviruses into their host cells (viral-cell fusion, and for syncytia formation (cell-cell fusion, often induced by paramyxoviral infections [e.g. those of the deadly Nipah virus (NiV]. For most paramyxoviruses, membrane fusion requires two viral glycoproteins. Upon receptor binding, the attachment glycoprotein (HN/H/G triggers the fusion glycoprotein (F to undergo conformational changes that merge viral and/or cell membranes. However, a significant knowledge gap remains on how HN/H/G couples cell receptor binding to F-triggering. Via interdisciplinary approaches we report the first comprehensive mechanism of NiV membrane fusion triggering, involving three spatiotemporally sequential cell receptor-induced conformational steps in NiV-G: two in the head and one in the stalk. Interestingly, a headless NiV-G mutant was able to trigger NiV-F, and the two head conformational steps were required for the exposure of the stalk domain. Moreover, the headless NiV-G prematurely triggered NiV-F on virions, indicating that the NiV-G head prevents premature triggering of NiV-F on virions by concealing a F-triggering stalk domain until the correct time and place: receptor-binding. Based on these and recent paramyxovirus findings, we present a comprehensive and fundamentally conserved mechanistic model of paramyxovirus membrane fusion triggering and cell entry.

  1. Hyperactivity induced by stimulation of separate dopamine D-1 and D-2 receptors in rats with bilateral 6-OHDA lesions.

    Science.gov (United States)

    Arnt, J

    1985-08-26

    The effects of DA agonists and antagonists with different dopamine (DA) D-1 and D-2 receptor selectivity have been studied in rats with bilateral 6-OHDA lesions. The D-1 agonist SK & F 38393, the D-2 agonist pergolide and the mixed agonist apomorphine all induced marked hyperactivity in lesioned rats in doses which were without stimulant effect in sham-operated animals. The hyperactivity induced by SK & F 38393 was blocked by the DA D-1 antagonist SCH 23390, but unaffected by the D-2 antagonists spiroperidol or clebopride. Pergolide-induced hyperactivity showed the reverse selectivity. The mixed D-1/D-2 antagonists, cis(Z)-flupentixol and cis(Z)-clopenthixol, however blocked the effect of both agonists. Apomorphine-induced hyperactivity was neither blocked by selective D-1 nor D-2 antagonists, but was dose-dependently inhibited by cis(Z)-flupentixol and cis(Z)-clopenthixol. Potent blockade was also obtained by combined treatment with SCH 23390 and spiroperidol, indicating the need of blocking both D-1 and D-2 receptors simultaneously. The results indicate that D-1 and D-2 receptor function can be independently manipulated in denervated rats and they confirm similar results obtained in rats with unilateral 6-OHDA lesions using circling behaviour.

  2. Inducing negative affect using film clips with general and eating disorder-related content.

    Science.gov (United States)

    Koushiou, Maria; Nicolaou, Kalia; Karekla, Maria

    2018-02-09

    The aim of the present study was to select appropriate film clips with a general vs. eating disorder (ED)-related content to induce negative affect. More specifically, the study examined the subjective emotional experience (valence, arousal, anxiety, induction of somatic symptoms, and ability to control reactions during film clips) of Greek-Cypriot university students (N = 79) in response to three types of film clips: general unpleasant, ED-specific unpleasant, and emotionally neutral. In addition, the study aimed to compare the emotional reactions to the aforementioned clips between two groups of participants differing on their risk for ED (high vs. low). Preliminary results indicate the clips with general content ("The Champ") and with ED-specific content ("Binge eating") that are most effective in inducing negative affect and differentiating between risk groups. These clips provide an effective method for emotion induction that can be used for assessing the emotional experience of individuals with ED symptoms, since their emotional experience is significantly implicated in the development and maintenance of their symptoms (Merwin, Clin Psychol Sci Pract 18(3):208-214, 2011).Level of evidence No level of evidence, Experimental Study.

  3. Differential involvement of 5-HT(1A) and 5-HT(1B/1D) receptors in human interferon-alpha-induced immobility in the mouse forced swimming test.

    Science.gov (United States)

    Zhang, Hongmei; Wang, Wei; Jiang, Zhenzhou; Shang, Jing; Zhang, Luyong

    2010-01-01

    Although Interferon-alpha (IFN-alpha, CAS 9008-11-1) is a powerful drug in treating several viral infections and certain tumors, a considerable amount of neuropsychiatric side-effects such as depression and anxiety are an unavoidable consequence. Combination with the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine (CAS 56296-78-7) significantly improved the situation. However, the potential 5-HT(1A) receptor- and 5-HT(1B) receptor-signals involved in the antidepressant effects are still unclear. The effects of 5-HT(1A) receptor- and 5-HT(1B) receptor signals were analyzed by using the mouse forced swimming test (FST), a predictive test of antidepressant-like action. The present results indicated that (1) fluoxetine (administrated intragastrically, 30 mg/kg; not subactive dose: 15 mg/kg) significantly reduced IFN-alpha-induced increase of the immobility time in the forced swimming test; (2) 5-HT(1A) receptor- and 5-HT(1B) receptor ligands alone or in combination had no effects on IFN-alpha-induced increase of the immobility time in the FST; (3) surprisingly, WAY 100635 (5-HT(1A) receptor antagonist, 634908-75-1) and 8-OH-DPAT(5-HT(1A) receptor agonist, CAS 78950-78-4) markedly enhanced the antidepressant effect of fluoxetine at the subactive dose (15 mg/kg, i. g.) on the IFN-alpha-treated mice in the FST. Further investigations showed that fluoxetine combined with WAY 100635 and 8-OH-DPAT failed to produce antidepressant effects in the FST. (4) Co-application of CGS 12066A (5-HT(1B) receptor agonist, CAS 109028-09-3) or GR 127935 (5-HT(1B/1D) receptor antagonist, CAS 148642-42-6) with fluoxetine had no synergistic effects on the IFN-alpha-induced increase of immobility time in FST. (5) Interestingly, co-administration of GR 127935, WAY 100635 and fluoxetine significantly reduced the IFN-alpha-induced increase in immobility time of FST, being more effective than co-administration of WAY 100635 and fluoxetine. All results suggest that (1) compared to

  4. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia.

    Science.gov (United States)

    Jentsch, J D; Roth, R H

    1999-03-01

    Administration of noncompetitive NMDA/glutamate receptor antagonists, such as phencyclidine (PCP) and ketamine, to humans induces a broad range of schizophrenic-like symptomatology, findings that have contributed to a hypoglutamatergic hypothesis of schizophrenia. Moreover, a history of experimental investigations of the effects of these drugs in animals suggests that NMDA receptor antagonists may model some behavioral symptoms of schizophrenia in nonhuman subjects. In this review, the usefulness of PCP administration as a potential animal model of schizophrenia is considered. To support the contention that NMDA receptor antagonist administration represents a viable model of schizophrenia, the behavioral and neurobiological effects of these drugs are discussed, especially with regard to differing profiles following single-dose and long-term exposure. The neurochemical effects of NMDA receptor antagonist administration are argued to support a neurobiological hypothesis of schizophrenia, which includes pathophysiology within several neurotransmitter systems, manifested in behavioral pathology. Future directions for the application of NMDA receptor antagonist models of schizophrenia to preclinical and pathophysiological research are offered.

  5. Androgen receptor or estrogen receptor-beta blockade alters DHEA-, DHT-, and E(2)-induced proliferation and PSA production in human prostate cancer cells.

    Science.gov (United States)

    Arnold, Julia T; Liu, Xunxian; Allen, Jeffrey D; Le, Hanh; McFann, Kimberly K; Blackman, Marc R

    2007-08-01

    Dehydroepiandrosterone (DHEA) is an endogenous steroid that is metabolized to androgens and/or estrogens in the human prostate. DHEA levels decline with age, and use of DHEA supplements to retard the aging process is of unproved effectiveness and safety. LNCaP and LAPC-4 prostate cancer cells were used to determine whether DHEA-modulated proliferation and prostate specific antigen (PSA) production were mediated via the androgen receptor (AR) and/or ERbeta. Cells were treated with DHEA, DHT, or E(2) and antagonists to AR (Casodex-bicalutamide) or ER (ICI 182,780) or siRNA to the respective receptors. Proliferation was assessed by MTT assay and PSA mRNA and protein secretion were measured by quantitative real-time PCR and ELISA. Associations of AR and ERbeta were analyzed by co-immunoprecipitation studies and fluorescent confocal microscopy. DHEA-, T-, and E(2)-induced proliferation of LNCaP cells was blunted by Casodex but not by ICI treatment. In LNCaP cells, Casodex and ICI suppressed hormone-induced PSA production. In LAPC-4 cells, DHT-stimulated PSA mRNA was inhibited by Casodex and ICI, and the minimal stimulation by DHEA was inhibited by ICI. Use of siRNAs confirmed involvement of AR and ERbeta in hormone-induced PSA production while AR-ERbeta co-association was suggested by immunoprecipitation and nuclear co-localization. These findings support involvement of both AR and ERbeta in mediating DHEA-, DHT-, and E(2)-induced PSA expression in prostate cancer cells. (c) 2007 Wiley-Liss, Inc.

  6. The Peroxisome Proliferator-Activated Receptor α is dispensable for cold-induced adipose tissue browning in mice

    NARCIS (Netherlands)

    Defour, Merel; Dijk, Wieneke; Ruppert, Philip; Nascimento, Emmani B.M.; Schrauwen, Patrick; Kersten, Sander

    2018-01-01

    Objective: Chronic cold exposure causes white adipose tissue (WAT) to adopt features of brown adipose tissue (BAT), a process known as browning. Previous studies have hinted at a possible role for the transcription factor Peroxisome Proliferator-Activated Receptor alpha (PPARα) in cold-induced

  7. Olanzapine Reverses MK-801-Induced Cognitive Deficits and Region-Specific Alterations of NMDA Receptor Subunits

    Science.gov (United States)

    Liu, Xiao; Li, Jitao; Guo, Chunmei; Wang, Hongli; Sun, Yaxin; Wang, Han; Su, Yun-Ai; Li, Keqing; Si, Tianmei

    2018-01-01

    Cognitive dysfunction constitutes an essential component in schizophrenia for its early presence in the pathophysiology of the disease and close relatedness to life quality of patients. To develop effective treatment of cognitive deficits, it is important to understand their neurobiological causes and to identify potential therapeutic targets. In this study, adopting repeated MK-801 treatment as an animal model of schizophrenia, we investigated whether antipsychotic drugs, olanzapine and haloperidol, can reverse MK-801-induced cognitive deficits and how the reversal processes recruited proteins involved in glutamate neurotransmission in rat medial prefrontal cortex (mPFC) and hippocampus. We found that low-dose chronic MK-801 treatment impaired object-in-context recognition memory and reversal learning in the Morris water maze, leaving reference memory relatively unaffected, and that these cognitive deficits can be partially reversed by olanzapine, not haloperidol, treatment. At the molecular level, chronic MK-801 treatment resulted in the reduction of multiple N-methyl-D-aspartate (NMDA) receptor subunits in rat mPFC and olanzapine, not haloperidol, treatment restored the levels of GluN1 and phosphorylated GluN2B in this region. Taken together, MK-801-induced cognitive deficits may be associated with region-specific changes in NMDA receptor subunits and the reversal of specific NMDA receptor subunits may underlie the cognition-enhancing effects of olanzapine. PMID:29375333

  8. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors.

    Science.gov (United States)

    Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2017-08-01

    We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.

  9. The role of the central histaminergic receptors in the exercise-induced improvements of the spatial learning and memory in rats.

    Science.gov (United States)

    Taati, Majid; Moghaddasi, Mehrnoush; Esmaeili, Masoumeh; Pourkhodadad, Soheila; Nayebzadeh, Hassan

    2014-10-31

    While it is well known that exercise can improve cognitive performance, the underlying mechanisms are not fully understood. There is now evidence that histamine can modulate learning and memory in different types of behavioral tasks. The present study was designed to examine the possible role of central histamine H1 and H2 receptors in forced treadmill running-induced enhancement of learning and memory in rats. For this purpose the animals received intracerebroventricularly chlorpheniramine (H1 receptor blocker) and cimetidine (H2 receptor blocker) before each day of fifteen consecutive days of exercise. Then their learning and memory were tested on the water maze task using a four-trial-per-day for 4 consecutive days. A probe trial was performed after the last training day. Our data showed that cimetidine reversed the exercise-induced improvement in learning and memory in rats; however, this was not the case regarding chlorpheniramine. Our findings indicate that central histamine H2 receptors play an important role in mediating the beneficial effects of forced exercise on learning and memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. HIV-1 tat protein recruits CIS to the cytoplasmic tail of CD127 to induce receptor ubiquitination and proteasomal degradation

    Energy Technology Data Exchange (ETDEWEB)

    Sugden, Scott, E-mail: scott.sugden@ircm.qc.ca [The Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 (Canada); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5 (Canada); Ghazawi, Feras [The Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 (Canada); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5 (Canada); MacPherson, Paul, E-mail: pmacpherson@toh.on.ca [The Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 (Canada); Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5 (Canada); Division of Infectious Diseases, The Ottawa Hospital General Campus, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 (Canada)

    2016-11-15

    HIV-1 Tat protein down regulates expression of the IL-7 receptor alpha-chain (CD127) from the surface of CD8 T cells resulting in impaired T cell proliferation and cytolytic capacity. We have previously shown that soluble Tat protein is taken up by CD8 T cells and interacts with the cytoplasmic tail of CD127 to induce receptor degradation. The N-terminal domain of Tat interacts with CD127 while the basic domain directs CD127 to the proteasome. We have also shown that upon IL-7 binding to its receptor, CD127 is phosphorylated resulting in CIS-mediated proteasomal degradation. Here, we show that Tat mimics this process by recruiting CIS to CD127 in the absence of IL-7 and receptor phosphorylation, leading to CD127 ubiquitination and degradation. Tat therefore acts as an adapter to induce cellular responses under conditions where they may not otherwise occur. Thusly, Tat reduces IL-7 signaling and impairs CD8 T cell survival and function. -- Highlights: •Soluble HIV-1 Tat decreases CD127 expression on CD8 T cells, causing dysfunction. •Tat induces CD127 ubiquitination without activating IL-7 signaling. •Tat binds CD127 and recruits the E3 ubiquitin ligase CIS via its basic domain. •Tat hijacks a normal cellular mechanism to degrade CD127 without IL-7 signaling.

  11. HIV-1 tat protein recruits CIS to the cytoplasmic tail of CD127 to induce receptor ubiquitination and proteasomal degradation

    International Nuclear Information System (INIS)

    Sugden, Scott; Ghazawi, Feras; MacPherson, Paul

    2016-01-01

    HIV-1 Tat protein down regulates expression of the IL-7 receptor alpha-chain (CD127) from the surface of CD8 T cells resulting in impaired T cell proliferation and cytolytic capacity. We have previously shown that soluble Tat protein is taken up by CD8 T cells and interacts with the cytoplasmic tail of CD127 to induce receptor degradation. The N-terminal domain of Tat interacts with CD127 while the basic domain directs CD127 to the proteasome. We have also shown that upon IL-7 binding to its receptor, CD127 is phosphorylated resulting in CIS-mediated proteasomal degradation. Here, we show that Tat mimics this process by recruiting CIS to CD127 in the absence of IL-7 and receptor phosphorylation, leading to CD127 ubiquitination and degradation. Tat therefore acts as an adapter to induce cellular responses under conditions where they may not otherwise occur. Thusly, Tat reduces IL-7 signaling and impairs CD8 T cell survival and function. -- Highlights: •Soluble HIV-1 Tat decreases CD127 expression on CD8 T cells, causing dysfunction. •Tat induces CD127 ubiquitination without activating IL-7 signaling. •Tat binds CD127 and recruits the E3 ubiquitin ligase CIS via its basic domain. •Tat hijacks a normal cellular mechanism to degrade CD127 without IL-7 signaling.

  12. NMDA or 5-HT receptor antagonists impair memory reconsolidation and induce various types of amnesia.

    Science.gov (United States)

    Nikitin, V P; Solntseva, S V; Kozyrev, S A; Nikitin, P V; Shevelkin, A V

    2018-06-01

    Elucidation of amnesia mechanisms is one of the central problems in neuroscience with immense practical application. Previously, we found that conditioned food presentation combined with injection of a neurotransmitter receptor antagonist or protein synthesis inhibitor led to amnesia induction. In the present study, we investigated the time course and features of two amnesias: induced by impairment of memory reconsolidation using an NMDA glutamate receptor antagonist (MK-801) and a serotonin receptor antagonist (methiothepin, MET) on snails trained with food aversion conditioning. During the early period of amnesia (types of amnesia. Retraining an on 1st or 3rd day of amnesia induction facilitated memory formation, i.e. the number of CS + US pairings was lower than at initial training. On the 10th or 30th day after the MET/reminder, the number of CS + US pairings did not change between initial training and retraining. Retraining on the 10th or 30th day following the MK-801/reminder in the same or a new context of learning resulted in short, but not long-term, memory, and the number of CS + US pairings was higher than at the initial training. This type of amnesia was specific to the CS we used at initial training, since long-term memory for another kind of CS could be formed in the same snails. The attained results suggest that disruption of memory reconsolidation using antagonists of serotonin or NMDA glutamate receptors induced amnesias with different abilities to form long-term memory during the late period of development. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Qing-Hua Granule induces GLP-1 secretion via bitter taste receptor in db/db mice.

    Science.gov (United States)

    Li, Junyan; Xu, Jie; Hou, Ruifang; Jin, Xin; Wang, Jingyi; Yang, Na; Yang, Li; Liu, Li; Tao, Feng; Lu, Hao

    2017-05-01

    Qing-Hua Granule (QHG), the modified formulation of a classical Chinese prescription named Gegen Qinlian Decoction, was clinically employed to treat type 2 diabetes mellitus (T2DM) through regulation of glucagon-like peptide-1 (GLP-1). However, the potential mechanism is unknown. We investigate whether QHG induces GLP-1 secretion via activation of bitter taste receptor (TAS2R) pathway in the gastrointestinal tract of db/db mice. The db/db mice were intragastrically (i.g.) administered QHG (low/medium/high dose) once daily for 8 weeks. GLP-1 secretion was evaluated. The bitter receptor signaling pathway, which regulates GLP-1 secretion, including TAS2R5 (a subtype of TAS2R), α-gustducin (Gαgust), 1-phosphatidylinositol-4, 5-bisphosphate phosphodiesterase beta-2 (PLCβ2), transient receptor potential cation channel subfamily M member 5 (TRPM5), was assessed by quantitative real-time polymerase chain reaction (qRT-PCR), Western blot and immunohistochemistry (IHC). The biochemical observations of ileum and pancreas tissue were detected histopathologically. Acquity Ultra Performance LCTM - Micromass ZQ 2000 (UPLC-MS) was used for the phytochemical analysis. QHG exhibited significant and dose-dependent effect on GLP-1 secretion in db/db mice, along with significant up-regulation of TAS2R5 mRNA level and activation of TAS2R pathway (p<0.05). In addition, QHG improved the histopathological structure of ileum and pancreatic tissue. Seventeen compounds were identified in QHG. In conclusion, QHG induces GLP-1 secretion in db/db mice, most likely through the bitter taste receptor pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Dibutyltin disrupts glucocorticoid receptor function and impairs glucocorticoid-induced suppression of cytokine production.

    Directory of Open Access Journals (Sweden)

    Christel Gumy

    Full Text Available BACKGROUND: Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR function. METHODOLOGY: We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. PRINCIPAL FINDINGS: We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK and tyrosine-aminotransferase (TAT and abolished the glucocorticoid-mediated transrepression of TNF-alpha-induced NF-kappaB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6 and TNF-alpha production in lipopolysaccharide (LPS-stimulated native human macrophages and human THP-1 macrophages. CONCLUSIONS: DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin.

  15. Chemerin C9 peptide induces receptor internalization through a clathrin-independent pathway

    Science.gov (United States)

    Zhou, Jun-xian; Liao, Dan; Zhang, Shuo; Cheng, Ni; He, Hui-qiong; Ye, Richard D

    2014-01-01

    Aim: The chemerin receptor CMKLR1 is one type of G protein-coupled receptors abundant in monocyte-derived dendritic cells and macrophages, which plays a key role in the entry of a subset of immunodeficiency viruses including HIV/SIV into lymphocytes and macrophages. The aim of this work was to investigate how CMKLR1 was internalized and whether its internalization affected cell signaling in vitro. Methods: Rat basophilic leukemia RBL-2H3 cells, HEK 293 cells, and HeLa cells were used. CMKLR1 internalization was visualized by confocal microscopy imaging or using a FACScan flow cytometer. Six potential phosphorylation sites (Ser337, Ser343, Thr352, Ser344, Ser347, and Ser350) in CMKLR1 were substituted with alanine using site-directed mutagenesis. Heterologous expression of wild type and mutant CMKLR1 allowed for functional characterization of endocytosis, Ca2+ flux and extracellular signal-regulated kinase (ERK) phosphorylation. Results: Chemerin and the chemerin-derived nonapeptide (C9) induced dose-dependent loss of cell surface CMKLR1-GFP fusion protein and increased its intracellular accumulation in HEK 293 cells and RBL-2H3 cells stably expressing CMKLR1. Up to 90% of CMKLR1 was internalized after treatment with C9 (1 μmol/L). By using different agents, it was demonstrated that clathrin-independent mechanism was involved in CMKLR1 internalization. Mutations in Ser343 for G protein-coupled receptor kinase phosphorylation and in Ser347 for PKC phosphorylation abrogated CMKLR1 internalization. Loss of CMKLR1 internalization partially enhanced the receptor signaling, as shown by increased Ca2+ flux and a shorter latency to peak level of ERK phosphorylation. Conclusion: CMKLR1 internalization occurs in a clathrin-independent manner, which negatively regulated the receptor-mediated Ca2+ flux and ERK phosphorylation. PMID:24658352

  16. Morphine-induced internalization of the L83I mutant of the rat μ-opioid receptor.

    Science.gov (United States)

    Cooke, A E; Oldfield, S; Krasel, C; Mundell, S J; Henderson, G; Kelly, E

    2015-01-01

    Naturally occurring single-nucleotide polymorphisms (SNPs) within GPCRs can result in alterations in various pharmacological parameters. Understanding the regulation and function of endocytic trafficking of the μ-opioid receptor (MOP receptor) is of great importance given its implication in the development of opioid tolerance. This study has compared the agonist-dependent trafficking and signalling of L83I, the rat orthologue of a naturally occurring variant of the MOP receptor. Cell surface elisa, confocal microscopy and immunoprecipitation assays were used to characterize the trafficking properties of the MOP-L83I variant in comparison with the wild-type receptor in HEK 293 cells. Functional assays were used to compare the ability of the L83I variant to signal to several downstream pathways. Morphine-induced internalization of the L83I MOP receptor was markedly increased in comparison with the wild-type receptor. The altered trafficking of this variant was found to be specific to morphine and was both G-protein receptor kinase- and dynamin-dependent. The enhanced internalization of L83I variant in response to morphine was not due to increased phosphorylation of serine 375, arrestin association or an increased ability to signal. These results suggest that morphine promotes a specific conformation of the L83I variant that makes it more liable to internalize in response to morphine, unlike the wild-type receptor that undergoes significantly less morphine-stimulated internalization, providing an example of a ligand-selective biased receptor. The presence of this SNP within an individual may consequently affect the development of tolerance and analgesic responses. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British Pharmacological Society.

  17. Helicobacter pylori-Induced HB-EGF Upregulates Gastrin Expression via the EGF Receptor, C-Raf, Mek1, and Erk2 in the MAPK Pathway

    Directory of Open Access Journals (Sweden)

    Niluka Gunawardhana

    2018-01-01

    Full Text Available Helicobacter pylori is associated with hypergastrinemia, which has been linked to the development of gastric diseases. Although the molecular mechanism is not fully understood, H. pylori is known to modulate the Erk pathway for induction of gastrin expression. Herein we found that an epidermal growth factor (EGF receptor kinase inhibitor significantly blocked H. pylori-induced gastrin promoter activity, suggesting involvement of EGF receptor ligands. Indeed, H. pylori induced mRNA expression of EGF family members such as amphiregulin, EGF, heparin-binding EGF-like growth factor (HB-EGF, and transforming growth factor-α. Of these, specific siRNA targeting of HB-EGF significantly blocked H. pylori-induced gastrin expression. Moreover, H. pylori induced HB-EGF ectodomain shedding, which we found to be a critical process for H. pylori-induced gastrin expression. Thus, we demonstrate a novel role for human mature HB-EGF in stimulating gastrin promoter activity during H. pylori infection. Further investigation using specific siRNAs targeting each isoform of Raf, Mek, and Erk elucidated that the mechanism underlying H. pylori-induced gastrin expression can be delineated as the sequential activation of HB-EGF, the EGF receptor, C-Raf, Mek1, and the Erk2 molecules in the MAPK pathway. Surprisingly, whereas Erk2 acts as a potent activator of gastrin expression, siRNA knockdown of Erk1 induced gastrin promoter activity, suggesting that Erk1 typically acts as a repressor of gastrin expression. Elucidation of the mechanism of gastrin modulation by HB-EGF-mediated EGF receptor transactivation should facilitate the development of therapeutic strategies against H. pylori-related hypergastrinemia and consequently gastric disease development, including gastric cancers.

  18. Helicobacter pylori-Induced HB-EGF Upregulates Gastrin Expression via the EGF Receptor, C-Raf, Mek1, and Erk2 in the MAPK Pathway.

    Science.gov (United States)

    Gunawardhana, Niluka; Jang, Sungil; Choi, Yun Hui; Hong, Youngmin A; Jeon, Yeong-Eui; Kim, Aeryun; Su, Hanfu; Kim, Ji-Hye; Yoo, Yun-Jung; Merrell, D Scott; Kim, Jinmoon; Cha, Jeong-Heon

    2017-01-01

    Helicobacter pylori is associated with hypergastrinemia, which has been linked to the development of gastric diseases. Although the molecular mechanism is not fully understood, H. pylori is known to modulate the Erk pathway for induction of gastrin expression. Herein we found that an epidermal growth factor (EGF) receptor kinase inhibitor significantly blocked H. pylori -induced gastrin promoter activity, suggesting involvement of EGF receptor ligands. Indeed, H. pylori induced mRNA expression of EGF family members such as amphiregulin, EGF, heparin-binding EGF-like growth factor (HB-EGF), and transforming growth factor-α. Of these, specific siRNA targeting of HB-EGF significantly blocked H. pylori -induced gastrin expression. Moreover, H. pylori induced HB-EGF ectodomain shedding, which we found to be a critical process for H. pylori -induced gastrin expression. Thus, we demonstrate a novel role for human mature HB-EGF in stimulating gastrin promoter activity during H. pylori infection. Further investigation using specific siRNAs targeting each isoform of Raf, Mek, and Erk elucidated that the mechanism underlying H. pylori -induced gastrin expression can be delineated as the sequential activation of HB-EGF, the EGF receptor, C-Raf, Mek1, and the Erk2 molecules in the MAPK pathway. Surprisingly, whereas Erk2 acts as a potent activator of gastrin expression, siRNA knockdown of Erk1 induced gastrin promoter activity, suggesting that Erk1 typically acts as a repressor of gastrin expression. Elucidation of the mechanism of gastrin modulation by HB-EGF-mediated EGF receptor transactivation should facilitate the development of therapeutic strategies against H. pylori -related hypergastrinemia and consequently gastric disease development, including gastric cancers.

  19. Activation of the GABAB receptor prevents nicotine-induced locomotor stimulation in mice

    Directory of Open Access Journals (Sweden)

    Carla eLobina

    2011-12-01

    Full Text Available Recent studies demonstrated that activation of the GABAB receptor, either by means of orthosteric agonists or positive allosteric modulators (PAMs, inhibited different nicotine-related behaviors, including intravenous self-administration and conditioned place preference, in rodents. The present study investigated whether the anti-nicotine effects of the GABAB receptor agonist, baclofen, and GABAB PAMs, CGP7930 and GS39783, extend to nicotine stimulant effects. To this end, CD1 mice were initially treated with baclofen (0, 1.25, and 2.5 mg/kg, i.p., CGP7930 (0, 25, and 50 mg/kg, i.g., or GS39783 (0, 25, and 50 mg/kg, i.g., then treated with nicotine (0 and 0.05 mg/kg, s.c., and finally exposed to an automated apparatus for recording of locomotor activity. Pretreatment with doses of baclofen, CGP7930, or GS39783 that did not alter locomotor activity when given with nicotine vehicle fully prevented hyperlocomotion induced by 0.05 mg/kg nicotine. These data extend to nicotine stimulant effects the capacity of baclofen and GABAB PAMs to block the reinforcing, motivational, and rewarding properties of nicotine. These data strengthen the hypothesis that activation of the GABAB receptor may represent a potentially useful, anti-smoking therapeutic strategy.

  20. Pharmacological delayed preconditioning against ischaemia-induced ventricular arrhythmias: effect of an adenosine A1-receptor agonist

    OpenAIRE

    Tissier, Renaud; Souktani, Rachid; Parent de Curzon, Olivier; Lellouche, Nicolas; Henry, Patrick; Giudicelli, Jean-François; Berdeaux, Alain; Ghaleh, Bijan

    2001-01-01

    The goal of this study was to investigate the effects of the delayed pharmacological preconditioning produced by an adenosine A1-receptor agonist (A1-DPC) against ventricular arrhythmias induced by ischaemia and reperfusion, compared to those of ischaemia-induced delayed preconditioning (I-DPC).Eighty-nine instrumented conscious rabbits underwent a 2 consecutive days protocol. On day 1, rabbits were randomly divided into four groups: ‘Control' (saline, i.v.), ‘I-DPC' (six 4-min coronary arter...

  1. Association of occlusal interference-induced masseter muscle hyperalgesia and P2X3 receptors in the trigeminal subnucleus caudalis and midbrain periaqueductal gray.

    Science.gov (United States)

    Sun, Shuzhen; Qi, Dong; Yang, Yingying; Ji, Ping; Kong, Jingjing; Wu, Qingting

    2016-03-02

    P2X3 receptor plays a role in nociception transmission of orofacial pain in temporomandibular disorder patients. A previous study found that P2X3 receptors in masseter muscle afferent neurons and the trigeminal ganglia were involved in masseter muscle pain induced by inflammation caused by chemical agents or eccentric muscle contraction. In this study, we attempted to investigate changes in P2X3 receptors in the trigeminal subnucleus caudalis (Vc) and midbrain periaqueductal gray (PAG) in relation to the hyperalgesia of masseter muscles induced by occlusal interference. Experimental occlusal interference by crown application was established in 30 rats and another 30 rats were treated as sham controls. On days 1, 3, 7, 14, and 28 after crown application, the mechanical pain threshold was examined by von-Frey filaments. The expression of the P2X3 receptor in Vc and PAG was investigated by immunohistochemistry and quantitative PCR. We found that mechanical pain threshold of bilateral masseter muscles decreased significantly after occlusal interference, which remained for the entire experimental period. The mRNA expression of the P2X3 receptor increased significantly and the number of P2X3R-positive neurons increased markedly in Vc and PAG accordingly. These results indicate that the upregulated expression of P2X3 receptors in Vc and PAG may contribute toward the development of orofacial pain induced by occlusal interference and P2X3 receptors in the PAG may play a key role in the supraspinal antiociception effect.

  2. Involvement of the histamine H{sub 4} receptor in clozapine-induced hematopoietic toxicity: Vulnerability under granulocytic differentiation of HL-60 cells

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Aya; Mouri, Akihiro; Nagai, Tomoko; Yoshimi, Akira; Ukigai, Mako; Tsubai, Tomomi; Hida, Hirotake [Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503 (Japan); Ozaki, Norio [Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Noda, Yukihiro, E-mail: ynoda@meijo-u.ac.jp [Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503 (Japan)

    2016-09-01

    Clozapine is an effective antipsychotic for treatment-resistant schizophrenia, but can cause fatal hematopoietic toxicity as agranulocytosis. To elucidate the mechanism of hematopoietic toxicity induced by clozapine, we developed an in vitro assay system using HL-60 cells, and investigated the effect on hematopoiesis. HL-60 cells were differentiated by all-trans retinoic acid (ATRA) into three states according to the following hematopoietic process: undifferentiated HL-60 cells, those undergoing granulocytic ATRA-differentiation, and ATRA-differentiated granulocytic cells. Hematopoietic toxicity was evaluated by analyzing cell survival, cell proliferation, granulocytic differentiation, apoptosis, and necrosis. In undifferentiated HL-60 cells and ATRA-differentiated granulocytic cells, both clozapine (50 and 100 μM) and doxorubicin (0.2 µM) decreased the cell survival rate, but olanzapine (1–100 µM) did not. Under granulocytic differentiation for 5 days, clozapine, even at a concentration of 25 μM, decreased survival without affecting granulocytic differentiation, increased caspase activity, and caused apoptosis rather than necrosis. Histamine H{sub 4} receptor mRNA was expressed in HL-60 cells, whereas the expression decreased under granulocytic ATRA-differentiation little by little. Both thioperamide, a histamine H{sub 4} receptor antagonist, and DEVD-FMK, a caspase-3 inhibitor, exerted protection against clozapine-induced survival rate reduction, but not of live cell counts. 4-Methylhistamine, a histamine H{sub 4} receptor agonist, decreased the survival rate and live cell counts, as did clozapine. HL-60 cells under granulocytic differentiation are vulnerable under in vitro assay conditions to hematopoietic toxicity induced by clozapine. Histamine H{sub 4} receptor is involved in the development of clozapine-induced hematopoietic toxicity through apoptosis, and may be a potential target for preventing its occurrence through granulocytic differentiation

  3. High expression of sphingosine kinase 1 and S1P receptors in chemotherapy-resistant prostate cancer PC3 cells and their camptothecin-induced up-regulation

    International Nuclear Information System (INIS)

    Akao, Yukihiro; Banno, Yoshiko; Nakagawa, Yoshihito; Hasegawa, Nobuko; Kim, Tack-Joong; Murate, Takashi; Igarashi, Yasuyuki; Nozawa, Yoshinori

    2006-01-01

    Although most of pharmacological therapies for cancer utilize the apoptotic machinery of the cells, the available anti-cancer drugs are limited due to the ability of prostate cancer cells to escape from the anti-cancer drug-induced apoptosis. A human prostate cancer cell line PC3 is resistant to camptothecin (CPT). To elucidate the mechanism of this resistance, we have examined the involvement of sphingosine kinase (SPHK) and sphingosine 1-phosphate (S1P) receptor in CPT-resistant PC3 and -sensitive LNCaP cells. PC3 cells exhibited higher activity accompanied with higher expression levels of protein and mRNA of SPHK1, and also elevated expression of S1P receptors, S1P 1 and S1P 3 , as compared with those of LNCaP cells. The knockdown of SPHK1 by small interfering RNA and inhibition of S1P receptor signaling by pertussis toxin in PC3 cells induced significant inhibition of cell growth, suggesting implication of SPHK1 and S1P receptors in cell proliferation in PC3 cells. Furthermore, the treatment of PC3 cells with CPT was found to induce up-regulation of the SPHK1/S1P signaling by induction of both SPHK1 enzyme and S1P 1 /S1P 3 receptors. These findings strongly suggest that high expression and up-regulation of SPHK1 and S1P receptors protect PC3 cells from the apoptosis induced by CPT

  4. Effects of central histamine receptors blockade on GABA(A) agonist-induced food intake in broiler cockerels.

    Science.gov (United States)

    Morteza, Zendehdel; Vahhab, Babapour; Hossein, Jonaidi

    2008-02-01

    In this study, the effect of intracerebroventricular (i.c.v) injection of H1, H2 and H3 antagonists on feed intake induced by GABA(A) agonist was evaluated. In Experiment 1, the animals received chloropheniramine, a H1 antagonist and then muscimol, a GABA(A) agonist. In Experiment 2, chickens received famotidine, a H2 receptor antagonist, prior to injection of muscimol. Finally in Experiment 3, the birds were injected with thioperamide, a H3 receptor antagonist and muscimol. Cumulative food intake was measured 15, 30, 45, 60, 90, 120, 150 and 180 min after injections. The results of this study indicated that effects of muscimol on food intake inhibited by pretreatment with chloropheneramine maleate (p GABA(A) receptor interaction on food intake in broiler cockerels.

  5. Recombinant human acetylcholine receptor alpha-subunit induces chronic experimental autoimmune myasthenia gravis.

    Science.gov (United States)

    Lennon, V A; Lambert, E H; Leiby, K R; Okarma, T B; Talib, S

    1991-04-01

    A synthetic gene encoding the 210 N-terminal residues of the alpha-subunit of the nicotinic acetylcholine receptor (AChR) of human skeletal muscle was cloned into an inducible expression plasmid to produce a fusion protein in high yield in Escherichia coli. Like native human AChR, the recombinant human alpha 1-210 protein induced AChR-binding, AChR-modulating, and AChR-blocking autoantibodies in rats when injected once intradermally as an emulsion in CFA, with Bordetella pertussis vaccine as supplementary adjuvant. The minimum dose of recombinant protein required to induce biochemical signs of experimental autoimmune myasthenia gravis (EAMG) with 100% incidence was 2.2 micrograms. With 6.6 to 22 micrograms, serum levels of autoantibodies were persistent, and clinically apparent EAMG lasted more than a month. Clinical, electrophysiological, and biochemical indices of EAMG induced by doses of 66 micrograms or more were more uniformly severe and persistent, with 33% fatality. Rats receiving a control extract of E. coli containing plasmid without the alpha 1-210 codon insert, with adjuvants, did not develop autoantibodies or signs of EAMG. This highly reproducible new model of EAMG induced by a recombinant human autoantigen should be valuable for testing Ag-specific immunotherapeutic strategies that might be applicable to treating acquired myasthenia gravis in humans.

  6. Drosophila Insulin receptor regulates the persistence of injury-induced nociceptive sensitization

    Science.gov (United States)

    Patel, Atit A.

    2018-01-01

    ABSTRACT Diabetes-associated nociceptive hypersensitivity affects diabetic patients with hard-to-treat chronic pain. Because multiple tissues are affected by systemic alterations in insulin signaling, the functional locus of insulin signaling in diabetes-associated hypersensitivity remains obscure. Here, we used Drosophila nociception/nociceptive sensitization assays to investigate the role of Insulin receptor (Insulin-like receptor, InR) in nociceptive hypersensitivity. InR mutant larvae exhibited mostly normal baseline thermal nociception (absence of injury) and normal acute thermal hypersensitivity following UV-induced injury. However, their acute thermal hypersensitivity persists and fails to return to baseline, unlike in controls. Remarkably, injury-induced persistent hypersensitivity is also observed in larvae that exhibit either type 1 or type 2 diabetes. Cell type-specific genetic analysis indicates that InR function is required in multidendritic sensory neurons including nociceptive class IV neurons. In these same nociceptive sensory neurons, only modest changes in dendritic morphology were observed in the InRRNAi-expressing and diabetic larvae. At the cellular level, InR-deficient nociceptive sensory neurons show elevated calcium responses after injury. Sensory neuron-specific expression of InR rescues the persistent thermal hypersensitivity of InR mutants and constitutive activation of InR in sensory neurons ameliorates the hypersensitivity observed with a type 2-like diabetic state. Our results suggest that a sensory neuron-specific function of InR regulates the persistence of injury-associated hypersensitivity. It is likely that this new system will be an informative genetically tractable model of diabetes-associated hypersensitivity. PMID:29752280

  7. 5-HT1A receptor blockade targeting the basolateral amygdala improved stress-induced impairment of memory consolidation and retrieval in rats.

    Science.gov (United States)

    Sardari, M; Rezayof, A; Zarrindast, M-R

    2015-08-06

    The aim of the present study was to investigate the possible role of basolateral amygdala (BLA) 5-HT1A receptors in memory formation under stress. We also examined whether the blockade of these receptors is involved in stress-induced state-dependent memory. Adult male Wistar rats received cannula implants that bilaterally targeted the BLA. Long-term memory was examined using the step-through type of passive avoidance task. Behavioral stress was evoked by exposure to an elevated platform (EP) for 10, 20 and 30min. Post-training exposure to acute stress (30min) impaired the memory consolidation. In addition, pre-test exposure to acute stress-(20 and 30min) induced the impairment of memory retrieval. Interestingly, the memory impairment induced by post-training exposure to stress was restored in the animals that received 20- or 30-min pre-test stress exposure, suggesting stress-induced state-dependent memory retrieval. Post-training BLA-targeted injection of a selective 5-HT1A receptor antagonist, (S)-WAY-100135 (2μg/rat), prevented the impairing effect of stress on memory consolidation. Pre-test injection of the same doses of (S)-WAY-100135 that was targeted to the BLA also reversed stress-induced memory retrieval impairment. It should be considered that post-training or pre-test BLA-targeted injection of (S)-WAY-100135 (0.5-2μg/rat) by itself had no effect on the memory formation. Moreover, pre-test injection of (S)-WAY-100135 (2μg/rat) that targeted the BLA inhibited the stress-induced state-dependent memory retrieval. Taken together, our findings suggest that post-training or pre-test exposure to acute stress induced the impairment of memory consolidation, retrieval and state-dependent learning. The BLA 5-HT1A receptors have a critical role in learning and memory under stress. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor.

    Science.gov (United States)

    Olmos, G; DeGregorio-Rocasolano, N; Paz Regalado, M; Gasull, T; Assumpció Boronat, M; Trullas, R; Villarroel, A; Lerma, J; García-Sevilla, J A

    1999-07-01

    This study was designed to assess the potential neuroprotective effect of several imidazol(ine) drugs and agmatine on glutamate-induced necrosis and on apoptosis induced by low extracellular K+ in cultured cerebellar granule cells. Exposure (30 min) of energy deprived cells to L-glutamate (1-100 microM) caused a concentration-dependent neurotoxicity, as determined 24 h later by a decrease in the ability of the cells to metabolize 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) into a reduced formazan product. L-glutamate-induced neurotoxicity (EC50=5 microM) was blocked by the specific NMDA receptor antagonist MK-801 (dizocilpine). Imidazol(ine) drugs and agmatine fully prevented neurotoxicity induced by 20 microM (EC100) L-glutamate with the rank order (EC50 in microM): antazoline (13)>cirazoline (44)>LSL 61122 [2-styryl-2-imidazoline] (54)>LSL 60101 [2-(2-benzofuranyl) imidazole] (75)>idazoxan (90)>LSL 60129 [2-(1,4-benzodioxan-6-yl)-4,5-dihydroimidazole](101)>RX82 1002 (2-methoxy idazoxan) (106)>agmatine (196). No neuroprotective effect of these drugs was observed in a model of apoptotic neuronal cell death (reduction of extracellular K+) which does not involve stimulation of NMDA receptors. Imidazol(ine) drugs and agmatine fully inhibited [3H]-(+)-MK-801 binding to the phencyclidine site of NMDA receptors in rat brain. The profile of drug potency protecting against L-glutamate neurotoxicity correlated well (r=0.90) with the potency of the same compounds competing against [3H]-(+)-MK-801 binding. In HEK-293 cells transfected to express the NR1-1a and NR2C subunits of the NMDA receptor, antazoline and agmatine produced a voltage- and concentration-dependent block of glutamate-induced currents. Analysis of the voltage dependence of the block was consistent with the presence of a binding site for antazoline located within the NMDA channel pore with an IC50 of 10-12 microM at 0 mV. It is concluded that imidazol(ine) drugs and agmatine are

  9. Group I mGlu receptor stimulation inhibits activation-induced cell death of human T lymphocytes

    Science.gov (United States)

    Chiocchetti, Annalisa; Miglio, Gianluca; Mesturini, Riccardo; Varsaldi, Federica; Mocellin, Marco; Orilieri, Elisabetta; Dianzani, Chiara; Fantozzi, Roberto; Dianzani, Umberto; Lombardi, Grazia

    2006-01-01

    The effects of L-glutamate on activation-induced cell death (AICD) of human activated (1 μg ml−1 phytohemagglutinin plus 2 U ml−1 interleukin-2; 8 days) T lymphocytes were studied by measuring anti-CD3 monoclonal antibody (10 μg ml−1; 18 h)-induced cell apoptosis (Annexin V and propidium iodide staining). L-Glutamate (1 × 10−8–1 × 10−4 M) significantly (P⩽0.01) inhibited AICD in a concentration-dependent manner (EC50=6.3 × 10−8 M; maximum inhibition 54.8±6.3% at 1 × 10−6 M). The L-glutamate inhibitory effect was pharmacologically characterized as mediated by group I mGlu receptors, since mGlu receptor agonists reproduced this effect. The EC50 values were: 3.2 × 10−7 M for (1S,3R)-ACPD; 4.5 × 10−8 M for quisqualate; 1.0 × 10−6 M for (S)-3,5-DHPG; 2.0 × 10−5 M for CHPG. Group I mGlu receptor antagonists inhibited the effects of quisqualate 1.0 × 10−6 M. The IC50 values calculated were: 8.7 × 10−5, 4.3 × 10−6 and 6.3 × 10−7 M for AIDA, LY 367385 and MPEP, respectively. L-Glutamate (1 × 10−6 M; 18 h) significantly (P⩽0.05) inhibited FasL expression (40.8±11.3%) (cytofluorimetric analysis), whereas it did not affect Fas signalling. Expression of both mGlu1 and mGlu5 receptor mRNA by T lymphocytes and T-cell lines, as demonstrated by reverse transcriptase–PCR analysis, suggests that L-glutamate-mediated inhibition of AICD was exerted on T cells. These data depict a novel role for L-glutamate in the regulation of the immune response through group I mGlu receptor-mediated mechanisms. PMID:16751798

  10. Fc receptors for mouse IgG1 on human monocytes: polymorphism and role in antibody-induced T cell proliferation.

    Science.gov (United States)

    Tax, W J; Hermes, F F; Willems, R W; Capel, P J; Koene, R A

    1984-09-01

    In previous studies, it was shown that there is polymorphism in the mitogenic effect of mouse IgG1 monoclonal antibodies against the T3 antigen of human T cells. This polymorphism implies that IgG1 anti-T3 antibodies are not mitogenic for T cells from 30% of healthy individuals. The present results demonstrate that this polymorphism is caused by polymorphism of an Fc receptor for mouse IgG1, present on human monocytes. The Fc receptor for murine IgG1 could be detected by a newly developed rosetting assay on monocytes from all individuals responsive to the mitogenic effect of IgG1 anti-T3 antibodies. This Fc receptor was not detectable on monocytes from those individuals exhibiting no mitogenic responses to IgG1 anti-T3 monoclonal antibodies. Cross-linking of T3 antigens appears to be essential for antibody-induced mitosis of T cells, because mononuclear cells that did not proliferate in response to WT 31 (an IgG1 antibody against T3 antigen) showed a proliferative response to Sepharose beads coated with WT 31. The Fc receptor--if functionally present--may be involved in the cross-linking of T3 antigens through anti-T3 antibodies. Further evidence for the involvement of this Fc receptor in antibody-induced T cell proliferation was provided by inhibition studies. Immune complexes containing IgG1 antibodies were able to inhibit the proliferative response to IgG1 anti-T3 antibodies. This inhibition by immune complexes appears to be mediated through the monocyte Fc receptor for mouse IgG1. These findings are important for the interpretation of previously described inhibitory effects of anti-T cell monoclonal antibodies on T cell proliferation, and show that such inhibitory effects may be monocyte-mediated (via immune complexes) rather than caused by a direct involvement of the respective T cell antigens in T cell mitosis. The Fc receptor for mouse IgG1 plays a role in antibody-induced T cell proliferation. Its polymorphism may have important implications for the

  11. Involvement of dopamine D1/D2 receptors on harmane-induced amnesia in the step-down passive avoidance test.

    Science.gov (United States)

    Nasehi, Mohammad; Piri, Morteza; Nouri, Maryam; Farzin, Davood; Nayer-Nouri, Touraj; Zarrindast, Mohammad Reza

    2010-05-25

    Ingestion of harmane and other alkaloids derived from plant Peganum harmala has been shown to elicit profound behavioural and toxic effects in humans, including hallucinations, excitation, feelings of elation, and euphoria. These alkaloids in the high doses can cause a toxic syndrome characterized by tremors and convulsions. Harmane has also been shown to act on a variety of receptor systems in the mammalian brain, including those for serotonin, dopamine and benzodiazepines. In animals, it has been reported to affect short and long term memory. In the present study, effects of dopamine D1 and D2 receptor antagonists on the harmane (HA)-induced amnesia and exploratory behaviors were examined in mice. One-trial step-down and hole-board paradigms were used for the assessment of memory retention and exploratory behaviors in adult male NMRI mice respectively. Intraperitoneal (i.p.) administration of HA (5 and 10 mg/kg) immediately after training decreased memory consolidation, while had no effect on anxiety-like behavior. Memory retrieval was not altered by 15- or 30 min pre-testing administration of the D1 (SCH23390, 0.025, 0.05 and 0.1 mg/kg) or D2 (sulpiride 12.5, 25 and 50 mg/kg) receptor antagonists, respectively. In contrast, SCH23390 (0.05 and 0.1 mg/kg) or sulpiride (25 and 50 mg/kg) pre-test administration fully reversed HA-induced impairment of memory consolidation. Finally, neither D1 nor D2 receptor blockade affected exploratory behaviors in the hole-board paradigm. Altogether, these findings strongly suggest an involvement of D1 and D2 receptors modulation in the HA-induced impairment of memory consolidation. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Distinct functional domains contribute to degradation of the low density lipoprotein receptor (LDLR) by the E3 ubiquitin ligase inducible Degrader of the LDLR (IDOL)

    NARCIS (Netherlands)

    Sorrentino, Vincenzo; Scheer, Lilith; Santos, Ana; Reits, Eric; Bleijlevens, Boris; Zelcer, Noam

    2011-01-01

    We recently identified the liver X receptor-regulated E3 ubiquitin ligase inducible degrader of the LDL receptor (IDOL) as a modulator of lipoprotein metabolism. Acting as an E3 ubiquitin ligase, IDOL triggers ubiquitination and subsequent degradation of the low density lipoprotein receptor (LDLR).

  13. Influence of mineralogy and moisture content on plasticity and induced anisotropic damage of a clay-stone: application to nuclear waste disposals

    International Nuclear Information System (INIS)

    Chiarelli, A.S.; Sibai, M.; Karami, M.; Ledesert, B.; Hoteit, N.

    2000-01-01

    The influence of mineralogy and moisture content on mechanical behaviour of a clay-stone rock is studied by the way of uniaxial and triaxial compression tests and microscopic observations. Some parameters characteristic of phenomena like plasticity and induced anisotropic damage are discussed as a function of these two factors. Rock behaviour becomes more brittle when calcite content grows or when clay or moisture content decreases. At the micro-level, plasticity is induced by slip of clay sheets and induced anisotropic damage appears by growth of oriented microcracks at the interface between grains and matrix. (authors)

  14. Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Lili; Yang, Min; Ding, Wei [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Zhang, Minmin [Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240 (China); Niu, Jianying [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Qiao, Zhongdong [School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240 (China); Gu, Yong, E-mail: yonggu@vip.163.com [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240 (China)

    2016-08-01

    Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. - Highlights: • EGFR was involved in aldosterone-induced renal profibrotic responses. • Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation. • EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis.

  15. Peroxisome Proliferator-Activated Receptors (PPARs as Potential Inducers of Antineoplastic Effects in CNS Tumors

    Directory of Open Access Journals (Sweden)

    Lars Tatenhorst

    2008-01-01

    Full Text Available The peroxisome proliferator-activated receptors (PPARs are ligand-inducible transcription factors which belong to the superfamily of nuclear hormone receptors. In recent years it turned out that natural as well as synthetic PPAR agonists exhibit profound antineoplastic as well as redifferentiation effects in tumors of the central nervous system (CNS. The molecular understanding of the underlying mechanisms is still emerging, with partially controverse findings reported by a number of studies dealing with the influence of PPARs on treatment of tumor cells in vitro. Remarkably, studies examining the effects of these drugs in vivo are just beginning to emerge. However, the agonists of PPARs, in particular the thiazolidinediones, seem to be promising candidates for new approaches in human CNS tumor therapy.

  16. The RFamide receptor DMSR-1 regulates stress-induced sleep in C. elegans.

    Science.gov (United States)

    Iannacone, Michael J; Beets, Isabel; Lopes, Lindsey E; Churgin, Matthew A; Fang-Yen, Christopher; Nelson, Matthew D; Schoofs, Liliane; Raizen, David M

    2017-01-17

    In response to environments that cause cellular stress, animals engage in sleep behavior that facilitates recovery from the stress. In Caenorhabditis elegans , stress-induced sleep(SIS) is regulated by cytokine activation of the ALA neuron, which releases FLP-13 neuropeptides characterized by an amidated arginine-phenylalanine (RFamide) C-terminus motif. By performing an unbiased genetic screen for mutants that impair the somnogenic effects of FLP-13 neuropeptides, we identified the gene dmsr-1 , which encodes a G-protein coupled receptor similar to an insect RFamide receptor. DMSR-1 is activated by FLP-13 peptides in cell culture, is required for SIS in vivo , is expressed non-synaptically in several wake-promoting neurons, and likely couples to a Gi/o heterotrimeric G-protein. Our data expand our understanding of how a single neuroendocrine cell coordinates an organism-wide behavioral response, and suggest that similar signaling principles may function in other organisms to regulate sleep during sickness.

  17. Stimulation of accumbal GABAA receptors inhibits delta2-, but not delta1-, opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats.

    Science.gov (United States)

    Aono, Yuri; Kiguchi, Yuri; Watanabe, Yuriko; Waddington, John L; Saigusa, Tadashi

    2017-11-15

    The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABA A receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABA A receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABA A receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABA A receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABA A receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABA A receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    International Nuclear Information System (INIS)

    Gan, Lu; Xue, Jian-Xin; Li, Xin; Liu, De-Song; Ge, Yan; Ni, Pei-Yan; Deng, Lin; Lu, You; Jiang, Wei

    2011-01-01

    Highlights: → Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. → Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. → VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. → LPA-LPAR1/3 signaling regulated TGFβ1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. → LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGFβ1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy for lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor β1 (TGFβ1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1/3 signaling system is involved in the

  19. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Lu [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Xue, Jian-Xin [Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu (China); Li, Xin [Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Liu, De-Song [Department of Pediatrics, Sichuan Provincial Hospital of Women and Children, Chengdu (China); Ge, Yan; Ni, Pei-Yan; Deng, Lin [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Lu, You, E-mail: radyoulu@hotmail.com [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Jiang, Wei, E-mail: wcumsjw72@hotmail.com [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu (China)

    2011-05-27

    Highlights: {yields} Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. {yields} Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. {yields} VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. {yields} LPA-LPAR1/3 signaling regulated TGF{beta}1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. {yields} LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGF{beta}1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy for lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor {beta}1 (TGF{beta}1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1

  20. Critical role for BIM in T cell receptor restimulation-induced death

    Directory of Open Access Journals (Sweden)

    Fleisher Thomas A

    2008-08-01

    Full Text Available Abstract Background Upon repeated or chronic antigen stimulation, activated T cells undergo a T cell receptor (TCR-triggered propriocidal cell death important for governing the intensity of immune responses. This is thought to be chiefly mediated by an extrinsic signal through the Fas-FasL pathway. However, we observed that TCR restimulation still potently induced apoptosis when this interaction was blocked, or genetically impaired in T cells derived from autoimmune lymphoproliferative syndrome (ALPS patients, prompting us to examine Fas-independent, intrinsic signals. Results Upon TCR restimulation, we specifically noted a marked increase in the expression of BIM, a pro-apoptotic Bcl-2 family protein known to mediate lymphocyte apoptosis induced by cytokine withdrawal. In fact, T cells from an ALPS type IV patient in which BIM expression is suppressed were more resistant to restimulation-induced death. Strikingly, knockdown of BIM expression rescued normal T cells from TCR-induced death to as great an extent as Fas disruption. Conclusion Our data implicates BIM as a critical mediator of apoptosis induced by restimulation as well as growth cytokine withdrawal. These findings suggest an important role for BIM in eliminating activated T cells even when IL-2 is abundant, working in conjunction with Fas to eliminate chronically stimulated T cells and maintain immune homeostasis. Reviewers This article was reviewed by Dr. Wendy Davidson (nominated by Dr. David Scott, Dr. Mark Williams (nominated by Dr. Neil Greenspan, and Dr. Laurence C. Eisenlohr.

  1. Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI.

    Science.gov (United States)

    Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Mandeville, Joseph B

    2016-04-01

    This study investigated the dynamics of dopamine receptor desensitization and internalization, thereby proposing a new technique for non-invasive, in vivo measurements of receptor adaptations. The D2/D3 agonist quinpirole, which induces receptor internalization in vitro, was administered at graded doses in non-human primates while imaging with simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). A pronounced temporal divergence between receptor occupancy and fMRI signal was observed: occupancy remained elevated while fMRI responded transiently. Analogous experiments with an antagonist (prochlorperazine) and a lower-affinity agonist (ropinirole) exhibited reduced temporal dissociation between occupancy and function, consistent with a mechanism of desensitization and internalization that depends upon drug efficacy and affinity. We postulated a model that incorporates internalization into a neurovascular-coupling relationship. This model yielded in vivo desensitization/internalization rates (0.2/min for quinpirole) consistent with published in vitro measurements. Overall, these results suggest that simultaneous PET/fMRI enables characterization of dynamic neuroreceptor adaptations in vivo, and may offer a first non-invasive method for assessing receptor desensitization and internalization.

  2. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and β-adrenergic receptor signaling pathways

    International Nuclear Information System (INIS)

    Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.; Yu Jun; Leung, W.K.; Cho, C.H.; Sung, J.J.Y.

    2008-01-01

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor (α7 nAChR) and β-adrenergic receptors. Treatment of cells with α-bungarotoxin (α-BTX, α7nAChR antagonist) or propranolol (β-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE 2 and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE 2 induction can only be suppressed by propranolol, but not α-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis

  3. Establishing a cellular FRET-based fluorescence plate reader assay to monitor proNGF-induced cross-linking of sortilin and the neurotrophin receptor p75(NTR)

    DEFF Research Database (Denmark)

    Skeldal, Sune; Kjaergaard, Maj M; Alwasel, Saleh

    2015-01-01

    the vps10p domain receptor sortilin and the neurotrophin receptor p75(NTR). However, proNGF-induced receptor complex formation has been difficult to directly assess other than by western blotting. We here describe a fluorescence resonance energy transfer (FRET) based fluorescence plate reader assay...

  4. Chronic Underactivity of Medial Frontal Cortical β2-Containing Nicotinic Receptors Increases Clozapine-Induced Working Memory Impairment in Female Rats

    Science.gov (United States)

    Levin, Edward D.; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N. Channelle

    2009-01-01

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of β2-containing nicotinic receptors with dihydro-β-erythrodine (DHβE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal α7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical α7 and β2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHβE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHβE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHβE infusion potentiated clozapine-induced memory impairment, whereas previously the memory

  5. Chronic underactivity of medial frontal cortical beta2-containing nicotinic receptors increases clozapine-induced working memory impairment in female rats.

    Science.gov (United States)

    Levin, Edward D; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N Channelle

    2009-03-17

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of beta2-containing nicotinic receptors with dihydro-beta-erythrodine (DHbetaE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal alpha7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical alpha7 and beta2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHbetaE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHbetaE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHbetaE infusion potentiated clozapine-induced memory impairment, whereas previously

  6. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    Science.gov (United States)

    Prolactin-Induced Tyrosine Phosphorylation, Activation and ReceptorAssociation of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells. Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental ProtectionAgency, MD-72, Research Triangle Park, NC 27711, and

  7. Participation of cannabinoid receptors in peripheral nociception induced by some NSAIDs

    International Nuclear Information System (INIS)

    Silva, L.C.R.; Romero, T.R.L.; Guzzo, L.S.; Duarte, I.D.G.

    2012-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used extensively to control inflammatory pain. Several peripheral antinociceptive mechanisms have been described, such as opioid system and NO/cGMP/KATP pathway activation. There is evidence that the cannabinoid system can also contribute to the in vivo pharmacological effects of ibuprofen and indomethacin. However, there is no evidence of the involvement of the endocannabinoid system in the peripheral antinociception induced by NSAIDs. Thus, the aim of this study was to investigate the participation of the endocannabinoid system in the peripheral antinociceptive effect of NSAIDs. All experiments were performed on male Wistar rats (160-200 g; N = 4 per group). Hyperalgesia was induced by a subcutaneous intraplantar (ipl) injection of prostaglandin E 2 (PGE 2 , 2 µg/paw) in the rat's hindpaw and measured by the paw pressure test 3 h after injection. The weight in grams required to elicit a nociceptive response, paw flexion, was determined as the nociceptive threshold. The hyperalgesia was calculated as the difference between the measurements made before and after PGE 2 , which induced hyperalgesia (mean = 83.3 ± 4.505 g). AM-251 (80 µg/paw) and AM-630 (100 µg/paw) were used as CB 1 and CB 2 cannabinoid receptor antagonists, respectively. Ipl injection of 40 µg dipyrone (mean = 5.825 ± 2.842 g), 20 µg diclofenac (mean = 4.825 ± 3.850 g) and 40 µg indomethacin (mean = 6.650 ± 3.611 g) elicited a local peripheral antinociceptive effect. This effect was not antagonized by ipl CB 1 cannabinoid antagonist to dipyrone (mean = 5.00 ± 0.9815 g), diclofenac (mean = 2.50 ± 0.8337 g) and indomethacin (mean = 6.650 ± 4.069 g) or CB 2 cannabinoid antagonist to dipyrone (mean = 1.050 ± 6.436 g), diclofenac (mean = 6.675 ± 1.368 g) and indomethacin (mean = 2.85 ± 5.01 g). Thus, cannabinoid receptors do not seem to be involved in the peripheral antinociceptive mechanism of the NSAIDs dipyrone, diclofenac

  8. Downregulation of sphingosine 1-phosphate (S1P) receptor 1 by dexamethasone inhibits S1P-induced mesangial cell migration.

    Science.gov (United States)

    Koch, Alexander; Jäger, Manuel; Völzke, Anja; Grammatikos, Georgios; Zu Heringdorf, Dagmar Meyer; Huwiler, Andrea; Pfeilschifter, Josef

    2015-06-01

    Sphingosine 1-phosphate (S1P) is generated by sphingosine kinase (SK)-1 and -2 and acts mainly as an extracellular ligand at five specific receptors, denoted S1P1-5. After activation, S1P receptors regulate important processes in the progression of renal diseases, such as mesangial cell migration and survival. Previously, we showed that dexamethasone enhances SK-1 activity and S1P formation, which protected mesangial cells from stress-induced apoptosis. Here we demonstrate that dexamethasone treatment lowered S1P1 mRNA and protein expression levels in rat mesangial cells. This effect was abolished in the presence of the glucocorticoid receptor antagonist RU-486. In addition, in vivo studies showed that dexamethasone downregulated S1P1 expression in glomeruli isolated from mice treated with dexamethasone (10 mg/kg body weight). Functionally, we identified S1P1 as a key player mediating S1P-induced mesangial cell migration. We show that dexamethasone treatment significantly lowered S1P-induced migration of mesangial cells, which was again reversed in the presence of RU-486. In summary, we suggest that dexamethasone inhibits S1P-induced mesangial cell migration via downregulation of S1P1. Overall, these results demonstrate that dexamethasone has functional important effects on sphingolipid metabolism and action in renal mesangial cells.

  9. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Wang

    Full Text Available Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC. The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.

  10. Δ8-Tetrahydrocannabinol induces cytotoxicity in macrophage J774-1 cells: Involvement of cannabinoid receptor 2 and p38 MAPK

    International Nuclear Information System (INIS)

    Yamaori, Satoshi; Ishii, Hirosuke; Chiba, Kenzo; Yamamoto, Ikuo; Watanabe, Kazuhito

    2013-01-01

    Tetrahydrocannabinol (THC), a psychoactive component of marijuana, is known to exert cytotoxicity in immune cells. In the present study, we examined the cytotoxicity of Δ 8 -THC in mouse macrophage J774-1 cells and a possible involvement of cannabinoid receptors and stress-responsive mitogen-activated protein kinases (MAPKs) in the cytotoxic process. J774-1 cells were treated with Δ 8 -THC (0–20 μM) for up to 6 h. As measured by the MTT and LDH assays, Δ 8 -THC induced cell death of J774-1 cells in a concentration- and/or exposure time-dependent manner. Δ 8 -THC-induced cell damage was associated with vacuole formation, cell swelling, chromatin condensation, and nuclear fragmentation. The cytotoxic effect of Δ 8 -THC was significantly prevented by a caspase-1 inhibitor Ac-YVAD-cmk but not a caspase-3 inhibitor z-DEVD-fmk. The pretreatment with SR144528, a CB 2 receptor-selective antagonist, effectively suppressed Δ 8 -THC-induced cytotoxicity in J774-1 cells, which exclusively expressed CB 2 receptors as indicated by real-time polymerase chain reaction analysis. In contrast, AM251, a CB 1 receptor-selective antagonist, did not affect the cytotoxicity. Pertussis toxin and α-tocopherol significantly attenuated Δ 8 -THC-induced cytotoxicity suggesting that G i/o protein coupling signal transduction and oxidative stress are responsible for the cytotoxicity. Δ 8 -THC stimulated the phosphorylation of p38 MAPK and c-Jun N-terminal kinase (JNK) in J774-1 cells, which were effectively antagonized by the pretreatment with SR144528. In addition, SB203580, a p38 MARK inhibitor, significantly attenuated the cytotoxic effect of Δ 8 -THC, whereas SP600125, a JNK inhibitor, significantly enhanced the cytotoxicity. These results suggest that the cytotoxicity of Δ 8 -THC to J774-1 cells is exerted mediated through the CB 2 receptor followed by the activation of p38 MAPK

  11. Identification of specific sites in the third intracellular loop and carboxyl terminus of the Bombyx mori PBAN receptor crucial for ligand-induced internalization

    Science.gov (United States)

    Sex pheromone production in most moths is mediated by the pheromone biosynthesis activating neuropeptide receptor (PBANR). Similar to other rhodopsin-like G protein-coupled receptors, the silkmoth Bombyx mori PBANR (BmPBANR) undergoes agonist-induced internalization. Despite interest in developing...

  12. Fatty acid and sterol contents during tulip leaf senescence induced by methyl jasmonate

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It has been shown previously that methyl jasmonate (JA-Me applied in lanolin paste on the bottom surface of intact tulip leaves causes a rapid and intense its senescence. The aim of this work was to study the effect of JA-Me on free and bound fatty acid and sterol contents during tulip leaf senescence. The main free and bound fatty acids of tulip leaf, in decreasing order of their abundance, were linolenic, linoleic, palmitic, oleic, stearic and myristic acids. Only the content of free linolenic acid decreased after treatment with JA-Me during visible stage of senescence. ß-Sitosterol (highest concentration, campesterol, stigmasterol and cholesterol were identified in tulip leaf. Methyl jasmonate evidently increased the level of ß-sitosterol, campesterol and stigmasterol during induced senescence. It is suggested that the increase in sterol concentrations under the influence of methyl jasmonate induced changes in membrane fluidity and permeability, which may be responsible for senescence.

  13. Propofol effectively inhibits lithium-pilocarpine- induced status epilepticus in rats via downregulation of N-methyl-D-aspartate receptor 2B subunit expression

    Science.gov (United States)

    Wang, Henglin; Wang, Zhuoqiang; Mi, Weidong; Zhao, Cong; Liu, Yanqin; Wang, Yongan; Sun, Haipeng

    2012-01-01

    Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine. The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior, electroencephalography and 24-hour survival rate. Propofol (12.5–100 mg/kg) improved status epilepticus in a dose-dependent manner, and significantly reduced the number of deaths within 24 hours of lithium-pilocarpine injection. Western blot results showed that, 24 hours after induction of status epilepticus, the levels of N-methyl-D-aspartate receptor 2A and 2B subunits were significantly increased in rat cerebral cortex and hippocampus. Propofol at 50 mg/kg significantly suppressed the increase in N-methyl-D-aspartate receptor 2B subunit levels, but not the increase in N-methyl-D-aspartate receptor 2A subunit levels. The results suggest that propofol can effectively inhibit status epilepticus induced by lithium-pilocarpine. This effect may be associated with downregulation of N-methyl-D-aspartate receptor 2B subunit expression after seizures. PMID:25737709

  14. Angiotensin II receptor one (AT1) mediates dextrose induced endoplasmic reticulum stress and superoxide production in human coronary artery endothelial cells.

    Science.gov (United States)

    Haas, Michael J; Onstead-Haas, Luisa; Lee, Tracey; Torfah, Maisoon; Mooradian, Arshag D

    2016-10-01

    Renin-angiotensin-aldosterone system (RAAS) has been implicated in diabetes-related vascular complications partly through oxidative stress. To determine the role of angiotensin II receptor subtype one (AT1) in dextrose induced endoplasmic reticulum (ER) stress, another cellular stress implicated in vascular disease. Human coronary artery endothelial cells with or without AT1 receptor knock down were treated with 27.5mM dextrose for 24h in the presence of various pharmacologic blockers of RAAS and ER stress and superoxide (SO) production were measured. Transfection of cells with AT1 antisense RNA knocked down cellular AT1 by approximately 80%. The ER stress was measured using the placental alkaline phosphatase (ES-TRAP) assay and western blot analysis of glucose regulated protein 78 (GRP78), c-jun-N-terminal kinase 1 (JNK1), phospho-JNK1, eukaryotic translation initiation factor 2α (eIF2α) and phospho-eIF2α measurements. Superoxide (SO) generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride (MCLA) chemiluminescence. In cells with AT1 knock down, dextrose induced ER stress was significantly blunted and treatment with 27.5mM dextrose resulted in significantly smaller increase in SO production compared to 27.5mM dextrose treated and sham transfected cells. Dextrose induced ER stress was reduced with pharmacologic blockers of AT1 (losartan and candesartan) and mineralocorticoid receptor blocker (spironolactone) but not with angiotensin converting enzyme inhibitors (captopril and lisinopril). The dextrose induced SO generation was inhibited by all pharmacologic blockers of RAAS tested. The results indicate that dextrose induced ER stress and SO production in endothelial cells are mediated at least partly through AT1 receptor activation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Intracellular postsynaptic cannabinoid receptors link thyrotropin-releasing hormone receptors to TRPC-like channels in thalamic paraventricular nucleus neurons.

    Science.gov (United States)

    Zhang, L; Kolaj, M; Renaud, L P

    2015-12-17

    In rat thalamic paraventricular nucleus of thalamus (PVT) neurons, activation of thyrotropin-releasing hormone (TRH) receptors enhances excitability via concurrent decrease in G protein-coupled inwardly-rectifying potassium (GIRK)-like and activation of transient receptor potential cation (TRPC)4/5-like cationic conductances. An exploration of intracellular signaling pathways revealed the TRH-induced current to be insensitive to phosphatidylinositol-specific phospholipase C (PI-PLC) inhibitors, but reduced by D609, an inhibitor of phosphatidylcholine-specific PLC (PC-PLC). A corresponding change in the I-V relationship implied suppression of the cationic component of the TRH-induced current. Diacylglycerol (DAG) is a product of the hydrolysis of PC. Studies focused on the isolated cationic component of the TRH-induced response revealed a reduction by RHC80267, an inhibitor of DAG lipase, the enzyme involved in the hydrolysis of DAG to the endocannabinoid 2-arachidonoylglycerol (2-AG). Further investigation revealed enhancement of the cationic component in the presence of either JZL184 or WWL70, inhibitors of enzymes involved in the hydrolysis of 2-AG. A decrease in the TRH-induced response was noted in the presence of rimonabant or SR144528, membrane permeable CB1 and CB2 receptor antagonists, respectively. A decrease in the TRH-induced current by intracellular, but not by bath application of the membrane impermeable peptide hemopressin, selective for CB1 receptors, suggests a postsynaptic intracellular localization of these receptors. The TRH-induced current was increased in the presence of arachidonyl-2'-chloroethylamide (ACEA) or JWH133, CB1 and CB2 receptor agonists, respectively. The PI3-kinase inhibitor LY294002, known to inhibit TRPC translocation, decreased the response to TRH. In addition, a TRH-induced enhancement of the low-threshold spike was prevented by both rimonabant, and SR144528. TRH had no influence on excitatory or inhibitory miniature

  16. Ursodeoxycholic Acid Suppresses Lipogenesis in Mouse Liver: Possible Role of the Decrease in β-Muricholic Acid, a Farnesoid X Receptor Antagonist.

    Science.gov (United States)

    Fujita, Kyosuke; Iguchi, Yusuke; Une, Mizuho; Watanabe, Shiro

    2017-04-01

    The farnesoid X receptor (FXR) is a major nuclear receptor of bile acids; its activation suppresses sterol regulatory element-binding protein 1c (SREBP1c)-mediated lipogenesis and decreases the lipid contents in the liver. There are many reports showing that the administration of ursodeoxycholic acid (UDCA) suppresses lipogenesis and reduces the lipid contents in the liver of experimental animals. Since UDCA is not recognized as an FXR agonist, these effects of UDCA cannot be readily explained by its direct activation of FXR. We observed that the dietary administration of UDCA in mice decreased the expression levels of SREBP1c and its target lipogenic genes. Alpha- and β-muricholic acids (MCA) and cholic acid (CA) were the major bile acids in the mouse liver but their contents decreased upon UDCA administration. The hepatic contents of chenodeoxycholic acid and deoxycholic acid (DCA) were relatively low but were not changed by UDCA. UDCA did not show FXR agonistic or antagonistic potency in in vitro FXR transactivation assay. Taking these together, we deduced that the above-mentioned change in hepatic bile acid composition induced upon UDCA administration might cause the relative increase in the FXR activity in the liver, mainly by the reduction in the content of β-MCA, a farnesoid X receptor antagonist, which suggests a mechanism by which UDCA suppresses lipogenesis and decreases the lipid contents in the mouse liver.

  17. The thyroid hormone receptor β induces DNA damage and premature senescence.

    Science.gov (United States)

    Zambrano, Alberto; García-Carpizo, Verónica; Gallardo, María Esther; Villamuera, Raquel; Gómez-Ferrería, Maria Ana; Pascual, Angel; Buisine, Nicolas; Sachs, Laurent M; Garesse, Rafael; Aranda, Ana

    2014-01-06

    There is increasing evidence that the thyroid hormone (TH) receptors (THRs) can play a role in aging, cancer and degenerative diseases. In this paper, we demonstrate that binding of TH T3 (triiodothyronine) to THRB induces senescence and deoxyribonucleic acid (DNA) damage in cultured cells and in tissues of young hyperthyroid mice. T3 induces a rapid activation of ATM (ataxia telangiectasia mutated)/PRKAA (adenosine monophosphate-activated protein kinase) signal transduction and recruitment of the NRF1 (nuclear respiratory factor 1) and THRB to the promoters of genes with a key role on mitochondrial respiration. Increased respiration leads to production of mitochondrial reactive oxygen species, which in turn causes oxidative stress and DNA double-strand breaks and triggers a DNA damage response that ultimately leads to premature senescence of susceptible cells. Our findings provide a mechanism for integrating metabolic effects of THs with the tumor suppressor activity of THRB, the effect of thyroidal status on longevity, and the occurrence of tissue damage in hyperthyroidism.

  18. CGRP receptors mediating CGRP-, adrenomedullin- and amylin-induced relaxation in porcine coronary arteries. Characterization with 'Compound 1' (WO98/11128), a non-peptide antagonist

    DEFF Research Database (Denmark)

    Hasbak, P; Sams, A; Schifter, S

    2001-01-01

    . The partial porcine mRNA sequences shared 82 - 92% nucleotide identity with human sequences. 3. The human peptides alphaCGRP, betaCGRP, AM and amylin induced relaxation with pEC(50) values of 8.1, 8.1, 6.7 and 6.1 M respectively. 4. The antagonistic properties of a novel non-peptide CGRP antagonist 'Compound...... 1' (WO98/11128), betaCGRP(8 - 37) and the proposed AM receptor antagonist AM(22 - 52) were compared to the well-known CGRP(1) receptor antagonist alphaCGRP(8 - 37). 5. The alphaCGRP(8 - 37) and betaCGRP(8 - 37) induced concentration-dependent (10(-7) - 10(-5) M) rightward shift of both the alpha......(-6) M) had no significant antagonistic effect. 7. In conclusion, the building blocks forming CGRP and AM receptors were present in the porcine LAD, whereas those of the amylin receptor were not. alphaCGRP, betaCGRP, AM and amylin mediated vasorelaxation via the CGRP receptors. No functional response...

  19. Dehydration-induced release of vasopressin involves activation of hypothalamic histaminergic neurons.

    Science.gov (United States)

    Kjaer, A; Knigge, U; Rouleau, A; Garbarg, M; Warberg, J

    1994-08-01

    The hypothalamic neurotransmitter histamine (HA) induces arginine vasopressin (AVP) release when administered centrally. We studied and characterized this effect of HA with respect to receptor involvement. In addition, we studied the possible role of hypothalamic histaminergic neurons in the mediation of a physiological stimulus (dehydration) for AVP secretion. Intracerebroventricular administration of HA, the H1-receptor agonists 2(3-bromophenyl)HA and 2-thiazolylethylamine, or the H2-receptor agonists amthamine or 4-methyl-HA stimulated AVP secretion. The stimulatory action of HA on AVP was inhibited by pretreatment with the H1-receptor antagonist mepyramine or the H2-receptor antagonist cimetidine. Twenty-four hours of dehydration elevated the plasma osmolality from 298 +/- 3 to 310 +/- 3 mmol/liter and increased the plasma AVP concentration 4-fold. The hypothalamic content of HA and its metabolite tele-methyl-HA was elevated in response to dehydration, indicating an increased synthesis and release of hypothalamic HA. Dehydration-induced AVP secretion was lowered when neuronal HA synthesis was inhibited by the administration of (S) alpha-fluoromethylhistidine or when the animals were pretreated with the H3-receptor agonist R(alpha)methylhistamine, which inhibits the release and synthesis of HA, the H1-receptor antagonists mepyramine and cetirizine, or the H2-receptor antagonists cimetidine and ranitidine. We conclude that HA, via activation of both H1- and H2-receptors, stimulates AVP release and that HA is a physiological regulator of AVP secretion.

  20. Epidermal growth factor receptor activation by diesel particles is mediated by tyrosine phosphatase inhibition

    International Nuclear Information System (INIS)

    Tal, Tamara L.; Bromberg, Philip A.; Kim, Yumee; Samet, James M.

    2008-01-01

    Exposure to particulate matter (PM) is associated with increased cardiopulmonary morbidity and mortality. Diesel exhaust particles (DEP) are a major component of ambient PM and may contribute to PM-induced pulmonary inflammation. Proinflammatory signaling is mediated by phosphorylation-dependent signaling pathways whose activation is opposed by the activity of protein tyrosine phosphatases (PTPases) which thereby function to maintain signaling quiescence. PTPases contain an invariant catalytic cysteine that is susceptible to electrophilic attack. DEP contain electrophilic oxy-organic compounds that may contribute to the oxidant effects of PM. Therefore, we hypothesized that exposure to DEP impairs PTPase activity allowing for unopposed basal kinase activity. Here we report that exposure to 30 μg/cm 2 DEP for 4 h induces differential activation of signaling in primary cultures of human airway epithelial cells (HAEC), a primary target cell in PM inhalation. In-gel kinase activity assay of HAEC exposed to DEPs of low (L-DEP), intermediate (I-DEP) or high (H-DEP) organic content showed differential activation of intracellular kinases. Exposure to these DEP also induced varying levels of phosphorylation of the receptor tyrosine kinase EGFR in a manner that requires EGFR kinase activity but does not involve receptor dimerization. We demonstrate that treatment with DEP results in an impairment of total and EGFR-directed PTPase activity in HAEC with a potency that is independent of the organic content of these particles. These data show that DEP-induced EGFR phosphorylation in HAEC is the result of a loss of PTPase activities which normally function to dephosphorylate EGFR in opposition to baseline EGFR kinase activity

  1. Suppression of asparaginyl endopeptidase attenuates breast cancer-induced bone pain through inhibition of neurotrophin receptors.

    Science.gov (United States)

    Yao, Peng; Ding, Yuanyuan; Han, Zhenkai; Mu, Ying; Hong, Tao; Zhu, Yongqiang; Li, Hongxi

    2017-01-01

    Objective Cancer-induced bone pain is a common clinical problem in breast cancer patients with bone metastasis. However, the mechanisms driving cancer-induced bone pain are poorly known. Recent studies show that a novel protease, asparaginyl endopeptidase (AEP) plays crucial roles in breast cancer metastasis and progression. We aim to determine the functions and targeted suppress of AEP in a mouse model of breast cancer-induced bone pain. Methods Breast cancer cells with AEP knocked-down or overexpression were constructed and implanted into the intramedullary space of the femur to induce pain-like behavior in mice. AEP-specific inhibitors or purified AEP proteins were further used in animal model. The histological characters of femur and pain ethological changes were measured. The expressions of AEP and neurotrophin receptors (p75NTR and TrkA) in dorsal root ganglion and spinal cord were examined. Results Femur radiographs and histological analysis revealed that cells with AEP knocked-down reduced bone destruction and pain behaviors. However, cells with AEP overexpression elevated bone damage and pain behaviors. Further, Western blot results found that the expressions of p75NTR and TrkA in dorsal root ganglions and spinal cords were reduced in mice inoculated with AEP knocked-down cells. Targeted suppression of AEP with specific small compounds significantly reduced the bone pain while purified recombinant AEP proteins increased bone pain. Conclusions AEP aggravate the development of breast cancer bone metastasis and bone pain by increasing the expression of neurotrophin receptors. AEP might be an effective target for treatment of breast cancerinduced bone pain.

  2. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    Science.gov (United States)

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  3. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T3 receptors

    International Nuclear Information System (INIS)

    Bianco, A.C.; Silva, J.E.

    1988-01-01

    Cold exposure induces a rapid increase in uncoupling protein (UCP) concentration in the brown adipose tissue (BAT) of euthyroid, but not hypothyroid, rats. To normalize this response with exogenous 3,5,3'-triiodothyronine (T 3 ), it is necessary to cause systemic hyperthyroidism. In contrast, the same result can be obtained with just replacement doses of thyroxine (T 4 ) and, in euthyroid rats, the normal response of UCP to cold occurs without hyperthyroid plasma T 3 levels. Consequently, the authors explored the possibility that the cold-induced activation of the type II 5'-deiodinase resulted in high levels of nuclear T 3 receptor occupancy in euthyroid rats. Studies were performed with pulse injections of tracer T 3 or T 4 in rats exposed to 4 degree C for different lengths of time (1 h-3 wk). Within 4 h of cold exposure, they observed a significant increase in the nuclear [ 125 I]T 3 derived from the tracer [ 125 I]T 4 injections (T 3 [T 4 ]) and a significant reduction in the nuclear [ 125 I]T 3 derived from [ 125 I]T 3 injections (T 3 [T 3 ]). The number of BAT nuclear T 3 receptors did not increase for up to 3 wk of observation at 4 degree C. The mass of nuclear-bound T 3 was calculated from the nuclear tracer [ 125 I]T 3 [T 3 ] and [ 125 I]T 3 [T 4 ] at equilibrium and the specific activity of serum T 3 and T 4 , respectively. By 4 h after the initiation of the cold exposure, the receptors were >95% occupied and remained so for the 3 weeks of observation. They conclude that the simultaneous activation of the deiodinase with adrenergic BAT stimulation serves the purpose of nearly saturating the nuclear T 3 receptors. This makes possible the realization of the full thermogenic potential of the tissue without causing systemic hyperthyroidism

  4. Attenuation of reserpine-induced pain/depression dyad by gentiopicroside through downregulation of GluN2B receptors in the amygdala of mice.

    Science.gov (United States)

    Liu, Shui-bing; Zhao, Rong; Li, Xu-sheng; Guo, Hong-ju; Tian, Zhen; Zhang, Nan; Gao, Guo-dong; Zhao, Ming-gao

    2014-06-01

    Epidemiological studies demonstrate that pain frequently occurs comorbid with depression. Gentiopicroside (Gent) is a secoiridoid compound isolated from Gentiana lutea that exhibits analgesic properties and inhibits the expression of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the anterior cingulate cortex of mice. However, the effects of Gent on the reserpine-induced pain/depression dyad and its underlying mechanisms are unclear. Reserpine administration (1 mg/kg subcutaneous daily for 3 days) caused a significant decrease in the nociceptive threshold as evidenced by the reduced paw withdrawal latency in response to a radiant heat source and mechanical allodynia. Behavioral detection indicated a significant increase in immobility time during a forced swim test, as well as decreased time in the central area and total travel distance in an open field test. Furthermore, reserpinized animals exhibited increased oxidative stress. Systemic Gent administration dose-dependently ameliorated the behavioral deficits associated with reserpine-induced pain/depression dyad. At the same time, the decrease in biogenic amine levels (norepinephrine, dopamine, and serotonin) was integrated with the increase in caspase-3 levels and GluN2B-containing NMDA receptors in the amygdala of the reserpine-injected mice. Gent significantly reversed the changes in the levels of biogenic amines, caspase-3, and GluN2B-containing NMDA receptors in amygdala. However, Gent did not affect the expression of GluN2A-containing NMDA receptors. The inhibitory effects of Gent on oxidative stress were occluded by simultaneous treatment of GluN2B receptors antagonist Ro25-6981. Our study provides strong evidence that Gent inhibits reserpine-induced pain/depression dyad by downregulating GluN2B receptors in the amygdala.

  5. Possible involvement of the Sigma-1 receptor chaperone in chemotherapeutic-induced neuropathic pain.

    Science.gov (United States)

    Tomohisa, Mori; Junpei, Ohya; Aki, Masumoto; Masato, Harumiya; Mika, Fukase; Kazumi, Yoshizawa; Teruo, Hayashi; Tsutomu, Suzuki

    2015-11-01

    Previous studies have shown that ligands of the sigma-1 receptor chaperone (Sig-1R) regulate pain-related behaviors. Clinical use of chemotherapeutics is often compromised due to their adverse side effects, particularly those related to neuropathy. Previous studies have shown that repeated administration of oxaliplatin and paclitaxel produces neuropathy in rodents. Therefore, the aim of the present study was to clarify the involvement of the Sig-1R in chemotherapeutic-induced neuropathy by examining the effects of oxaliplatin and paclitaxel on the Sig-1R levels in the spinal cord, and by examining the effects of Sig-1R agonist and antagonist on oxaliplatin- and paclitaxel-induced neuropathy in rats. Chemotherapeutic-induced neuropathic pain was accompanied by a significant reduction of the Sig-1R level in the spinal cord. Furthermore, the administration of paclitaxel to CHO cells that stably overexpressed Sig-1Rs induced the clustering of Sig-1Rs. We also found that the Sig-1R agonist SA4503 potently inhibited the neuropathy induced by oxaliplatin- and paclitaxel, whereas this action was abolished by the Sig-1R antagonist NE-100. These results suggest that the reduction of Sig-1R activity is involved in chemotherapeutic-induced neuropathy, and the Sig-1R agonist SA4503 could serve as a potential candidate for the treatment of chemotherapeutic-induced neuropathy. © 2015 Wiley Periodicals, Inc.

  6. Function of the cytoplasmic tail of human calcitonin receptor-like receptor in complex with receptor activity-modifying protein 2

    Energy Technology Data Exchange (ETDEWEB)

    Kuwasako, Kenji, E-mail: kuwasako@fc.miyazaki-u.ac.jp [Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692 (Japan); Kitamura, Kazuo; Nagata, Sayaka; Hikosaka, Tomomi [Division of Circulation and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692 (Japan); Kato, Johji [Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692 (Japan)

    2010-02-12

    Receptor activity-modifying protein 2 (RAMP2) enables calcitonin receptor-like receptor (CRLR) to form an adrenomedullin (AM)-specific receptor. Here we investigated the function of the cytoplasmic C-terminal tail (C-tail) of human (h)CRLR by co-transfecting its C-terminal mutants into HEK-293 cells stably expressing hRAMP2. Deleting the C-tail from CRLR disrupted AM-evoked cAMP production or receptor internalization, but did not affect [{sup 125}I]AM binding. We found that CRLR residues 428-439 are required for AM-evoked cAMP production, though deleting this region had little effect on receptor internalization. Moreover, pretreatment with pertussis toxin (100 ng/mL) led to significant increases in AM-induced cAMP production via wild-type CRLR/RAMP2 complexes. This effect was canceled by deleting CRLR residues 454-457, suggesting Gi couples to this region. Flow cytometric analysis revealed that CRLR truncation mutants lacking residues in the Ser/Thr-rich region extending from Ser{sup 449} to Ser{sup 467} were unable to undergo AM-induced receptor internalization and, in contrast to the effect on wild-type CRLR, overexpression of GPCR kinases-2, -3 and -4 failed to promote internalization of CRLR mutants lacking residues 449-467. Thus, the hCRLR C-tail is crucial for AM-evoked cAMP production and internalization of the CRLR/RAMP2, while the receptor internalization is dependent on the aforementioned GPCR kinases, but not Gs coupling.

  7. Characterization of the effect of penehyclidine hydrochloride on muscarinic receptor subtypes mediating the contraction of guinea-pig isolated gastrointestinal smooth muscle.

    Science.gov (United States)

    Xiao, Hong-Tao; Liao, Zhi; Meng, Xian-Min; Yan, Xiao-Yan; Chen, Shu-Jie; Mo, Zheng-Ji

    2009-07-01

    The aim was to characterize the effect of penehyclidine hydrochloride, which mediates the relaxation of guinea-pig isolated gastrointestinal smooth muscle, on muscarinic receptor subtypes. Radioimmune assay was used to determine cAMP levels in isolated guinea-pig gastrointestinal smooth muscle to compare the selective effects of penehyclidine hydrochloride on muscarinic receptor subtypes. The results indicated that the relaxing effect of penehyclidine hydrochloride on isolated gastrointestinal smooth muscle contraction induced by acetylcholine was stronger than that of atropine (based on PA2 values). In the radioimmune assay, penehyclidine hydrochloride increased the cAMP content in isolated guinea-pig stomach smooth muscle and decreased the cAMP content in isolated guinea-pig intestinal smooth muscle, but the difference was not statistically significant at a dose of 10 mumol/l. The results suggest that penehyclidine hydrochloride has little or no effect on M2 receptor subtypes in guinea-pig gastrointestinal smooth muscle.

  8. alpha(7) Nicotinic acetylcholine receptor activation prevents behavioral and molecular changes induced by repeated phencyclidine treatment

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Christensen, Ditte Z; Hansen, Henrik H

    2009-01-01

    in a modified Y-maze test. Polymorphisms in the alpha(7) nicotinic acetylcholine receptor (nAChR) gene have been linked to schizophrenia. Here we demonstrate that acute administration of the selective alpha(7) nAChR partial agonist SSR180711 dose-dependently reversed the behavioral impairment induced by PCP...

  9. Influence of pre-exercise muscle glycogen content on exercise-induced transcriptional regulation of metabolic genes

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Keller, Charlotte; Steensberg, Adam

    2002-01-01

    Transcription of metabolic genes is transiently induced during recovery from exercise in skeletal muscle of humans. To determine whether pre-exercise muscle glycogen content influences the magnitude and/or duration of this adaptive response, six male subjects performed one-legged cycling exercise...... to lower muscle glycogen content in one leg and then, the following day, completed 2.5 h low intensity two-legged cycling exercise. Nuclei and mRNA were isolated from biopsies obtained from the vastus lateralis muscle of the control and reduced glycogen (pre-exercise glycogen = 609 +/- 47 and 337 +/- 33...... mmol kg(-1) dry weight, respectively) legs before and after 0, 2 and 5 h of recovery. Exercise induced a significant (P glycogen leg only. Although PDK4...

  10. Parathyroid hormone induces the Nrna family of nuclear orphan receptors in vivo

    International Nuclear Information System (INIS)

    Pirih, Flavia Q.; Aghaloo, Tara L.; Bezouglaia, Olga; Nervina, Jeanne M.; Tetradis, Sotirios

    2005-01-01

    Parathyroid hormone (PTH) has both anabolic and catabolic effects on bone metabolism, although the molecular mechanisms mediating these effects are largely unknown. Among the transcription factors induced by Pth in osteoblasts are the nerve growth factor-inducible factor B (NR4A; NGFI-B) family of orphan nuclear receptors: Nurr1, Nur77, and NOR-1. PTH induces NR4A members through the cAMP-protein kinase A (PKA) pathway in vitro. We report here that PTH rapidly and transiently induced expression of all three NR4A genes in PTH-target tissues in vivo. In calvaria, long bones, and kidneys, NR4A induction was maximal 0.5-1 h after a single intraperitoneal (i.p.) injection of 80 μg/kg PTH. Nur77 demonstrated the highest expression, followed, in order, by Nurr1 and NOR-1. In calvaria and long bone, PTH-induced expression of each NR4A gene was detectable at 10 μg/kg i.p. with maximum induction at 40-80 μg/kg. PTH (3-34) did not induce NR4A mRNA levels in calvaria, long bone, and kidney in vivo, confirming our in vitro results that NR4A genes are induced primarily through the cAMP-PKA pathway. The magnitude of PTH-induced NR4A expression was comparable in vivo and in vitro. However, NR4A mRNA levels peaked and returned to baseline faster in vivo. Both in vivo and in vitro, PTH induced NR4A pre-mRNA levels suggesting that induction of these genes is, at least in part, through activation of mRNA synthesis. The in vivo induction of the NR4A family members by PTH suggests their involvement in, at least some, PTH-induced changes in bone metabolism

  11. Significance of the Melanocortin 1 and Endothelin B Receptors in Melanocyte Homeostasis and Prevention of Sun-Induced Genotoxicity

    Directory of Open Access Journals (Sweden)

    Zalfa A. Abdel-Malek

    2016-08-01

    Full Text Available The membrane bound melanocortin 1 receptor (MC1R, and the endothelin B receptor (ENDBR are two G-protein coupled receptors that play important roles in constitutive regulation of melanocytes and their response to ultraviolet radiation (UVR, the main etiological factor for melanoma. The human MC1R is a Gs protein-coupled receptor, which is activated by its agonists α-melanocyte stimulating hormone (α-melanocortin; α-MSH and adrenocorticotropic hormone (ACTH. The ENDBR is a Gq coupled-receptor, which is activated by Endothelin (ET-3 during embryonic development, and ET-1 postnatally. Pigmentation and the DNA repair capacity are two major factors that determine the risk for melanoma. Activation of the MC1R by its agonists stimulates the synthesis of eumelanin, the dark brown photoprotective pigment. In vitro studies showed that α-MSH and ET-1 interact synergistically in the presence of basic fibroblast growth factor (bFGF to stimulate human melanocyte proliferation and melanogenesis, and to inhibit UVR-induced apoptosis. An important function of the MC1R is reduction of oxidative stress and activation of DNA repair pathways. The human MC1R is highly polymorphic, and MC1R variants, particularly those that cause loss of function of the expressed receptor, are associated with increased melanoma risk independently of pigmentation. These variants compromise the DNA repair and antioxidant capacities of human melanocytes. Recently, activation of ENDBR by ET-1 was reported to reduce the induction and enhance the repair of UVR-induced DNA photoproducts. We conclude that α-MSH and ET-1 and their cognate receptors MC1R and ENDBR reduce the risk for melanoma by maintaining genomic stability of melanocytes via modulating the DNA damage response to solar UVR. Elucidating the response of melanocytes to UVR should improve our understanding of the process of melanomagenesis, and lead to effective melanoma chemoprevention, as well as therapeutic strategies.

  12. Transient Receptor Potential Vanilloid 1 Expression Mediates Capsaicin-Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Ricardo Ramírez-Barrantes

    2018-06-01

    Full Text Available The transient receptor potential (TRP ion channel family consists of a broad variety of non-selective cation channels that integrate environmental physicochemical signals for dynamic homeostatic control. Involved in a variety of cellular physiological processes, TRP channels are fundamental to the control of the cell life cycle. TRP channels from the vanilloid (TRPV family have been directly implicated in cell death. TRPV1 is activated by pain-inducing stimuli, including inflammatory endovanilloids and pungent exovanilloids, such as capsaicin (CAP. TRPV1 activation by high doses of CAP (>10 μM leads to necrosis, but also exhibits apoptotic characteristics. However, CAP dose–response studies are lacking in order to determine whether CAP-induced cell death occurs preferentially via necrosis or apoptosis. In addition, it is not known whether cytosolic Ca2+ and mitochondrial dysfunction participates in CAP-induced TRPV1-mediated cell death. By using TRPV1-transfected HeLa cells, we investigated the underlying mechanisms involved in CAP-induced TRPV1-mediated cell death, the dependence of CAP dose, and the participation of mitochondrial dysfunction and cytosolic Ca2+ increase. Together, our results contribute to elucidate the pathophysiological steps that follow after TRPV1 stimulation with CAP. Low concentrations of CAP (1 μM induce cell death by a mechanism involving a TRPV1-mediated rapid and transient intracellular Ca2+ increase that stimulates plasma membrane depolarization, thereby compromising plasma membrane integrity and ultimately leading to cell death. Meanwhile, higher doses of CAP induce cell death via a TRPV1-independent mechanism, involving a slow and persistent intracellular Ca2+ increase that induces mitochondrial dysfunction, plasma membrane depolarization, plasma membrane loss of integrity, and ultimately, cell death.

  13. β3-Adrenergic receptors, adipokines and neuroendocrine activation during stress induced by repeated immune challenge in male and female rats.

    Science.gov (United States)

    Csanova, Agnesa; Hlavacova, Natasa; Hasiec, Malgorzata; Pokusa, Michal; Prokopova, Barbora; Jezova, Daniela

    2017-05-01

    The main hypothesis of the study is that stress associated with repeated immune challenge has an impact on β 3 -adrenergic receptor gene expression in the brain. Sprague-Dawley rats were intraperitoneally injected with increasing doses of lipopolysaccharide (LPS) for five consecutive days. LPS treatment was associated with body weight loss and increased anxiety-like behavior. In LPS-treated animals of both sexes, β 3 -receptor gene expression was increased in the prefrontal cortex but not the hippocampus. LPS treatment decreased β 3 -receptor gene expression in white adipose tissue with higher values in males compared to females. In the adipose tissue, LPS reduced peroxisome proliferator-activated receptor-gamma, leptin and adiponectin gene expression, but increased interleukin-6 expression, irrespective of sex. Repeated immune challenge resulted in increased concentrations of plasma aldosterone and corticosterone with higher values of corticosterone in females compared to males. Concentrations of dehydroepiandrosterone (DHEA) in plasma were unaffected by LPS, while DHEA levels in the frontal cortex were lower in the LPS-treated animals compared to the controls. Thus, changes of DHEA levels in the brain take place irrespective of the changes of this neurosteroid in plasma. We have provided the first evidence on stress-induced increase in β 3 -adrenergic receptor gene expression in the brain. Greater reduction of β 3 -adrenergic receptor expression in the adipose tissue and of the body weight gain by repeated immune challenge in male than in female rats suggests sex differences in the role of β 3 -adrenergic receptors in the metabolic functions. LPS-induced changes in adipose tissue regulatory factors and hormone concentrations might be important for coping with chronic infections.

  14. Type I and II positive allosteric modulators differentially modulate agonist-induced up-regulation of α7 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2012-01-01

    Long-term treatment with nicotine or selective α7 nicotinic acetylcholine receptor (nAChR) agonists increases the number of α7 nAChRs and this up-regulation may be involved in the mechanism underlying the sustained procognitive effect of these compounds. Here, we investigate the influence of type I...... expressing human α7 nAChR, whereas the type I PAMs AVL-3288 or NS1738 do not. Contrarily, neither type I nor II PAMs affect 10 μM nicotine-induced receptor up-regulation, suggesting that nicotine and A-582941 induce up-regulation through different mechanisms. We further show in vivo that 3 mg/kg PNU-120596...... is involved in A-582941-induced up-regulation. Our results are the first to show an in vivo difference between type I and II α7 nAChR PAMs, and demonstrate an agonist-dependent effect of type II PAMs occurring on a much longer time scale than previously appreciated. Furthermore, our data suggest that nicotine...

  15. Leukotriene E4 induces airflow obstruction and mast cell activation through the cysteinyl leukotriene type 1 receptor.

    Science.gov (United States)

    Lazarinis, Nikolaos; Bood, Johan; Gomez, Cristina; Kolmert, Johan; Lantz, Ann-Sofie; Gyllfors, Pär; Davis, Andy; Wheelock, Craig E; Dahlén, Sven-Erik; Dahlén, Barbro

    2018-03-05

    Leukotriene (LT) E 4 is the final active metabolite among the cysteinyl leukotrienes (CysLTs). Animal studies have identified a distinct LTE 4 receptor, suggesting that current cysteinyl leukotriene type 1 (CysLT 1 ) receptor antagonists can provide incomplete inhibition of CysLT responses. We tested this hypothesis by assessing the influence of the CysLT 1 antagonist montelukast on responses induced by means of inhalation of LTE 4 in asthmatic patients. Fourteen patients with mild intermittent asthma and 2 patients with aspirin-exacerbated respiratory disease received 20 mg of montelukast twice daily and placebo for 5 to 7 days in a randomized, double-blind, crossover study (NCT01841164). The PD 20 value was determined at the end of each treatment period based on an increasing dose challenge. Measurements included lipid mediators in urine and sputum cells 4 hours after LTE 4 challenge. Montelukast completely blocked LTE 4 -induced bronchoconstriction. Despite tolerating an at least 10 times higher dose of LTE 4 after montelukast, there was no difference in the percentage of eosinophils in sputum. Urinary excretion of all major lipid mediators increased after LTE 4 inhalation. Montelukast blocked release of the mast cell product prostaglandin (PG) D 2 , as well as release of PGF 2α and thromboxane (Tx) A 2 , but not increased excretion of PGE 2 and its metabolites or isoprostanes. LTE 4 induces airflow obstruction and mast cell activation through the CysLT 1 receptor. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Prostaglandin E2 Prevents Hyperosmolar-Induced Human Mast Cell Activation through Prostanoid Receptors EP2 and EP4

    Science.gov (United States)

    Torres-Atencio, Ivonne; Ainsua-Enrich, Erola; de Mora, Fernando; Picado, César; Martín, Margarita

    2014-01-01

    Background Mast cells play a critical role in allergic and inflammatory diseases, including exercise-induced bronchoconstriction (EIB) in asthma. The mechanism underlying EIB is probably related to increased airway fluid osmolarity that activates mast cells to the release inflammatory mediators. These mediators then act on bronchial smooth muscle to cause bronchoconstriction. In parallel, protective substances such as prostaglandin E2 (PGE2) are probably also released and could explain the refractory period observed in patients with EIB. Objective This study aimed to evaluate the protective effect of PGE2 on osmotically activated mast cells, as a model of exercise-induced bronchoconstriction. Methods We used LAD2, HMC-1, CD34-positive, and human lung mast cell lines. Cells underwent a mannitol challenge, and the effects of PGE2 and prostanoid receptor (EP) antagonists for EP1–4 were assayed on the activated mast cells. Beta-hexosaminidase release, protein phosphorylation, and calcium mobilization were assessed. Results Mannitol both induced mast cell degranulation and activated phosphatidyl inositide 3-kinase and mitogen-activated protein kinase (MAPK) pathways, thereby causing de novo eicosanoid and cytokine synthesis. The addition of PGE2 significantly reduced mannitol-induced degranulation through EP2 and EP4 receptors, as measured by beta-hexosaminidase release, and consequently calcium influx. Extracellular-signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 phosphorylation were diminished when compared with mannitol activation alone. Conclusions Our data show a protective role for the PGE2 receptors EP2 and EP4 following osmotic changes, through the reduction of human mast cell activity caused by calcium influx impairment and MAP kinase inhibition. PMID:25329458

  17. Radiation induced damage to the lipid contents of bacteria and cultured mammalian cells

    International Nuclear Information System (INIS)

    Gholipour Khalili, K.

    1993-01-01

    In this study, exponentially growing phase of E. Coli. K12-N167 and cultured mouse leukemic L5178Y were used to study the effect of gamma irradiation on phospholipid contents. Following irradiation, both bacteria and cultured cells were incubated with either 14 C or 32 P labelled precursors for periods of cell division time. Phospholipid composition and their contents were detected in both the bacteria and cultured cells by using liquid scintillation counting and autoradiography methods. In contrast, as radiation dose increased, the Phospholipid contents were decreased in the both bacteria and cultured cells. It was concluded that the changes of phospholipid contents may result to altered activities of phospholipid pathway enzymes damaged by a radiation dose. The results of this investigation would be helpful in control of induced radiation damages in cell killings in radiation workers and radiation treatment of human cancer in the clinics. (author). 35 refs, 3 figs, 4 tabs

  18. Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic beta-cells.

    Science.gov (United States)

    Sharma, Geetanjali; Prossnitz, Eric R

    2011-08-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes.

  19. Mechanisms of Estradiol-Induced Insulin Secretion by the G Protein-Coupled Estrogen Receptor GPR30/GPER in Pancreatic β-Cells

    Science.gov (United States)

    Sharma, Geetanjali

    2011-01-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes. PMID:21673097

  20. The inhibition of cholera toxin-induced 5-HT release by the 5-HT3 receptor antagonist, granisetron, in the rat

    Science.gov (United States)

    Turvill, J L; Connor, P; Farthing, M J G

    2000-01-01

    The secretagogue 5-hydroxytryptamine (5-HT) is implicated in the pathophysiology of cholera. 5-HT released from enterochromaffin cells after cholera toxin exposure is thought to activate non-neuronally (5-HT2 dependent) and neuronally (5-HT3 dependent) mediated water and electrolyte secretion. CT-secretion can be reduced by preventing the release of 5-HT. Enterochromaffin cells possess numerous receptors that, under basal conditions, modulate 5-HT release. These include basolateral 5-HT3 receptors, the activation of which is known to enhance 5-HT release. Until now, 5-HT3 receptor antagonists (e.g. granisetron) have been thought to inhibit cholera toxin-induced fluid secretion by blockading 5-HT3 receptors on secretory enteric neurones. Instead we postulated that they act by inhibiting cholera toxin-induced enterochromaffin cell degranulation. Isolated intestinal segments in anaesthetized male Wistar rats, pre-treated with granisetron 75 μg kg−1, lidoocaine 6 mg kg−1 or saline, were instilled with a supramaximal dose of cholera toxin or saline. Net fluid movement was determined by small intestinal perfusion or gravimetry and small intestinal and luminal fluid 5-HT levels were determined by HPLC with fluorimetric detection. Intraluminal 5-HT release was proportional to the reduction in tissue 5-HT levels and to the onset of water and electrolyte secretion, suggesting that luminal 5-HT levels reflect enterochromaffin cell activity. Both lidocaine and granisetron inhibited fluid secretion. However, granisetron alone, and proportionately, reduced 5-HT release. The simultaneous inhibition of 5-HT release and fluid secretion by granisetron suggests that 5-HT release from enterochromaffin cells is potentiated by endogenous 5-HT3 receptors. The accentuated 5-HT release promotes cholera toxin-induced fluid secretion. PMID:10882387

  1. CDB-4124, a progesterone receptor modulator, inhibits mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Wiehle, Ronald; Lantvit, Daniel; Yamada, Tohru; Christov, Konstantin

    2011-03-01

    CDB-4124 (Proellex or telapristone acetate) is a modulator of progesterone receptor (PR) signaling, which is currently employed in preclinical studies for prevention and treatment of breast cancer and has been used in clinical studies for treatment of uterine fibroids and endometriosis. Here we provide evidence for its action on steroid hormone-signaling, cell cycle-regulated genes and in vivo on mammary carcinogenesis. When CDB-4124 is given to rats at 200 mg/kg for 24 months, it prevents the development of spontaneous mammary hyperplastic and premalignant lesions. Also, CDB-4124 given as subcutaneous pellets at two different doses suppressed, dose dependently, N-methyl-N-nitrosourea (MNU)-induced mammary carcinogenesis. The high dose (30 mg, over 84 days) increased tumor latency from 66 ± 24 days to 87 ± 20 days (P CDB-4124 inhibited cell proliferation and induced apoptosis in MNU-induced mammary tumors, which correlated with a decreased proportion of PR(+) tumor cells and with decreased serum progesterone. CDB-4124 did not affect serum estradiol. In a mechanistic study employing T47D cells we found that CDB-4124 suppressed G(1)/G(0)-S transition by inhibiting CDK2 and CDK4 expressions, which correlated with inhibition of estrogen receptor (ER) expression. Taken together, these data indicate that CDB-4124 can suppress the development of precancerous lesions and carcinogen-induced ER(+) mammary tumors in rats, and may have implications for prevention and treatment of human breast cancer.

  2. Thrombin induces epithelial-mesenchymal transition and collagen production by retinal pigment epithelial cells via autocrine PDGF-receptor signaling.

    Science.gov (United States)

    Bastiaans, Jeroen; van Meurs, Jan C; van Holten-Neelen, Conny; Nagtzaam, Nicole M A; van Hagen, P Martin; Chambers, Rachel C; Hooijkaas, Herbert; Dik, Willem A

    2013-12-19

    De-differentiation of RPE cells into mesenchymal cells (epithelial-mesenchymal transition; EMT) and associated collagen production contributes to development of proliferative vitreoretinopathy (PVR). In patients with PVR, intraocular coagulation cascade activation occurs and may play an important initiating role. Therefore, we examined the effect of the coagulation proteins factor Xa and thrombin on EMT and collagen production by RPE cells. Retinal pigment epithelial cells were stimulated with factor Xa or thrombin and the effect on zonula occludens (ZO)-1, α-smooth muscle actin (α-SMA), collagen, and platelet-derived growth factor (PDGF)-B were determined by real-time quantitative-polymerase chain reaction (RQ-PCR), immunofluorescence microscopy, and HPLC and ELISA for collagen and PDGF-BB in culture supernatants, respectively. PDGF-receptor activation was determined by phosphorylation analysis and inhibition studies using the PDGF-receptor tyrosine kinase inhibitor AG1296. Thrombin reduced ZO-1 gene expression (P production of α-SMA and collagen increased. In contrast to thrombin, factor Xa hardly stimulated EMT by RPE. Thrombin clearly induced PDGF-BB production and PDGF-Rβ chain phosphorylation in RPE. Moreover, AG1296 significantly blocked the effect of thrombin on EMT and collagen production. Our findings demonstrate that thrombin is a potent inducer of EMT by RPE via autocrine activation of PDGF-receptor signaling. Coagulation cascade-induced EMT of RPE may thus contribute to the formation of fibrotic retinal membranes in PVR and should be considered as treatment target in PVR.

  3. Attenuation of antagonist-induced impairment of dopamine receptors by L-prolyl-L-leucyl-glycinamide

    International Nuclear Information System (INIS)

    Saleh, M.I.M.

    1988-01-01

    The present study was undertaken in order to determine whether chronic,long-term postnatal challenge of rat pups per se, with specific dopamine D1 and D2 receptor antagonists, would modify the ontogeny of the respective receptor types. Since the neuropeptide L-prolyl-L-leucyl-glycinamide (PLG) attenuates the effect of haloperidol on dopamine D2 receptors in adult rats it was of interest to determine whether PLG would modulate antagonists-induced alterations in the ontogeny of striatal dopamine D1 and D2 receptors. Half of the rats were treated daily for 32 days from birth with SCH-23390, a selective dopamine D1 antagonist; or spiroperidol, a selective dopamine D2 antagonists; or both SCH-23390 and spiroperidol; or saline. The other half of the litters were treated with PLG, in combination with the other treatments. Animals were decapitated at 5, 8, and 12 weeks from birth for neurochemical analysis of the striatum. Chronic SCH-23390 treatment produced a 70-80% decrease in the binding of [ 3 H] SCH-23390 to striatal homogenates. The alteration at 5 weeks was associated with a 78% decrease in the Bmax for [ 3 H] SCH-23390 binding, and no change in the K D . Similarly, at 5, 8, and 12 weeks, chronic spiroperidol treatment reduced the binding of [ 3 H] spiroperidol to striatal homogenates by 70-80%

  4. Orexin receptor antagonist-induced sleep does not impair the ability to wake in response to emotionally salient acoustic stimuli in dogs

    Directory of Open Access Journals (Sweden)

    Pamela L. Tannenbaum

    2014-05-01

    Full Text Available The ability to awaken from sleep in response to important stimuli is a critical feature of normal sleep, as is maintaining sleep continuity in the presence of irrelevant background noise. Dual orexin receptor antagonists (DORAs effectively promote sleep across species by targeting the evolutionarily conserved wake-promoting orexin signaling pathway. This study in dogs investigated whether DORA-induced sleep preserved the ability to awaken appropriately to salient acoustic stimuli but remain asleep when exposed to irrelevant stimuli. Sleep and wake in response to DORAs, vehicle, GABA-A receptor modulators (diazepam, eszopiclone and zolpidem and antihistamine (diphenhydramine administration were evaluated in telemetry-implanted adult dogs with continuous electrocorticogram, electromyogram, electrooculogram, and activity recordings. DORAs induced sleep, but GABA-A modulators and antihistamine induced paradoxical hyperarousal. Thus, salience gating studies were conducted during DORA-22 (0.3, 1, and 5 mg/kg; day and night and vehicle nighttime sleep. The acoustic stimuli were either classically conditioned using food reward and positive attention (salient stimulus or presented randomly (neutral stimulus. Once conditioned, the tones were presented at sleep times corresponding to maximal DORA-22 exposure. In response to the salient stimuli, dogs woke completely from vehicle and orexin-antagonized sleep across all sleep stages but rarely awoke to neutral stimuli. Notably, acute pharmacological antagonism of orexin receptors paired with emotionally salient anticipation produced wake, not cataplexy, in a species where genetic (chronic loss of orexin receptor signaling leads to narcolepsy/cataplexy. DORA-induced sleep in this species thereby retains the desired capacity to awaken to emotionally salient acoustic stimuli while preserving uninterrupted sleep in response to irrelevant stimuli.

  5. P2X1 receptors and the endothelium

    Directory of Open Access Journals (Sweden)

    LS Harrington

    2005-03-01

    Full Text Available Adenosine triphosphate (ATP is now established as a principle vaso-active mediator in the vasculature. Its actions on arteries are complex, and are mediated by the P2X and P2Y receptor families. It is generally accepted that ATP induces a bi-phasic response in arteries, inducing contraction via the P2X and P2Y receptors on the smooth muscle cells, and vasodilation via the actions of P2Y receptors located on the endothelium. However, a number of recent studies have placed P2X1 receptors on the endothelium of some arteries. The use of a specific P2X1 receptor ligand, a, b methylene ATP has demonstrated that P2X1 receptors also have a bi-functional role. The actions of ATP on P2X1 receptors is therefore dependant on its location, inducing contraction when located on the smooth muscle cells, and dilation when expressed on the endothelium, comparable to that of P2Y receptors.

  6. Peroxisome proliferator-activated receptor α activation induces hepatic steatosis, suggesting an adverse effect.

    Directory of Open Access Journals (Sweden)

    Fang Yan

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is characterized by hepatic triglyceride accumulation, ranging from steatosis to steatohepatitis and cirrhosis. NAFLD is a risk factor for cardiovascular diseases and is associated with metabolic syndrome. Antihyperlipidemic drugs are recommended as part of the treatment for NAFLD patients. Although fibrates activate peroxisome proliferator-activated receptor α (PPARα, leading to the reduction of serum triglyceride levels, the effects of these drugs on NAFLD remain controversial. Clinical studies have reported that PPARα activation does not improve hepatic steatosis. In the present study, we focused on exploring the effect and mechanism of PPARα activation on hepatic triglyceride accumulation and hepatic steatosis. Male C57BL/6J mice, Pparα-null mice and HepG2 cells were treated with fenofibrate, one of the most commonly used fibrate drugs. Both low and high doses of fenofibrate were administered. Hepatic steatosis was detected through oil red O staining and electron microscopy. Notably, in fenofibrate-treated mice, the serum triglyceride levels were reduced and the hepatic triglyceride content was increased in a dose-dependent manner. Oil red O staining of liver sections demonstrated that fenofibrate-fed mice accumulated abundant neutral lipids. Fenofibrate also increased the intracellular triglyceride content in HepG2 cells. The expression of sterol regulatory element-binding protein 1c (SREBP-1c and the key genes associated with lipogenesis were increased in fenofibrate-treated mouse livers and HepG2 cells in a dose-dependent manner. However, the effect was strongly impaired in Pparα-null mice treated with fenofibrate. Fenofibrate treatment induced mature SREBP-1c expression via the direct binding of PPARα to the DR1 motif of the SREBP-1c gene. Taken together, these findings indicate the molecular mechanism by which PPARα activation increases liver triglyceride accumulation and suggest an

  7. Characterization of P2Y receptors mediating ATP induced relaxation in guinea pig airway smooth muscle: involvement of prostaglandins and K+ channels.

    Science.gov (United States)

    Montaño, Luis M; Cruz-Valderrama, José E; Figueroa, Alejandra; Flores-Soto, Edgar; García-Hernández, Luz M; Carbajal, Verónica; Segura, Patricia; Méndez, Carmen; Díaz, Verónica; Barajas-López, Carlos

    2011-10-01

    In airway smooth muscle (ASM), adenosine 5'-triphosphate (ATP) induces a relaxation associated with prostaglandin production. We explored the role of K(+) currents (I (K)) in this relaxation. ATP relaxed the ASM, and this effect was abolished by indomethacin. Removal of airway epithelium slightly diminished the ATP-induced relaxation at lower concentration without modifying the responses to ATP at higher concentrations. ATPγS and UTP induced a concentration-dependent relaxation similar to ATP; α,β-methylene-ATP was inactive from 1 to 100 μM. Suramin or reactive blue 2 (RB2), P2Y receptor antagonists, did not modify the relaxation, but their combination significantly reduced this effect of ATP. The relaxation was also inhibited by N-ethylmaleimide (NEM; which uncouples G proteins). In myocytes, the ATP-induced I (K) increment was not modified by suramin or RB2 but the combination of both drugs abolished it. This increment in the I (K) was also completely nullified by NEM and SQ 22,536. 4-Amynopyridine or iberiotoxin diminished the ATP-induced I (K) increment, and the combination of both substances diminished ATP-induced relaxation. The presence of P2Y(2) and P2Y(4) receptors in smooth muscle was corroborated by Western blot and confocal images. In conclusion, ATP: (1) produces relaxation by inducing the production of bronchodilator prostaglandins in airway smooth muscle, most likely by acting on P2Y(4) and P2Y(2) receptors; (2) induces I (K) increment through activation of the delayed rectifier K(+) channels and the high-conductance Ca(2+)-dependent K(+) channels, therefore both channels are implicated in the ATP-induced relaxation; and (3) this I (K) increment is mediated by prostaglandin production which in turns increase cAMP signaling pathway.

  8. A3 Adenosine Receptor Allosteric Modulator Induces an Anti-Inflammatory Effect: In Vivo Studies and Molecular Mechanism of Action

    Directory of Open Access Journals (Sweden)

    Shira Cohen

    2014-01-01

    Full Text Available The A3 adenosine receptor (A3AR is overexpressed in inflammatory cells and in the peripheral blood mononuclear cells of individuals with inflammatory conditions. Agonists to the A3AR are known to induce specific anti-inflammatory effects upon chronic treatment. LUF6000 is an allosteric compound known to modulate the A3AR and render the endogenous ligand adenosine to bind to the receptor with higher affinity. The advantage of allosteric modulators is their capability to target specifically areas where adenosine levels are increased such as inflammatory and tumor sites, whereas normal body cells and tissues are refractory to the allosteric modulators due to low adenosine levels. LUF6000 administration induced anti-inflammatory effect in 3 experimental animal models of rat adjuvant induced arthritis, monoiodoacetate induced osteoarthritis, and concanavalin A induced liver inflammation in mice. The molecular mechanism of action points to deregulation of signaling proteins including PI3K, IKK, IκB, Jak-2, and STAT-1, resulting in decreased levels of NF-κB, known to mediate inflammatory effects. Moreover, LUF6000 induced a slight stimulatory effect on the number of normal white blood cells and neutrophils. The anti-inflammatory effect of LUF6000, mechanism of action, and the differential effects on inflammatory and normal cells position this allosteric modulator as an attractive and unique drug candidate.

  9. Antagonism of ionotropic glutamate receptors attenuates chemical ischemia-induced injury in rat primary cultured myenteric ganglia.

    Directory of Open Access Journals (Sweden)

    Elisa Carpanese

    Full Text Available Alterations of the enteric glutamatergic transmission may underlay changes in the function of myenteric neurons following intestinal ischemia and reperfusion (I/R contributing to impairment of gastrointestinal motility occurring in these pathological conditions. The aim of the present study was to evaluate whether glutamate receptors of the NMDA and AMPA/kainate type are involved in myenteric neuron cell damage induced by I/R. Primary cultured rat myenteric ganglia were exposed to sodium azide and glucose deprivation (in vitro chemical ischemia. After 6 days of culture, immunoreactivity for NMDA, AMPA and kainate receptors subunits, GluN(1 and GluA(1-3, GluK(1-3 respectively, was found in myenteric neurons. In myenteric cultured ganglia, in normal metabolic conditions, -AP5, an NMDA antagonist, decreased myenteric neuron number and viability, determined by calcein AM/ethidium homodimer-1 assay, and increased reactive oxygen species (ROS levels, measured with hydroxyphenyl fluorescein. CNQX, an AMPA/kainate antagonist exerted an opposite action on the same parameters. The total number and viability of myenteric neurons significantly decreased after I/R. In these conditions, the number of neurons staining for GluN1 and GluA(1-3 subunits remained unchanged, while, the number of GluK(1-3-immunopositive neurons increased. After I/R, -AP5 and CNQX, concentration-dependently increased myenteric neuron number and significantly increased the number of living neurons. Both -AP5 and CNQX (100-500 µM decreased I/R-induced increase of ROS levels in myenteric ganglia. On the whole, the present data provide evidence that, under normal metabolic conditions, the enteric glutamatergic system exerts a dualistic effect on cultured myenteric ganglia, either by improving or reducing neuron survival via NMDA or AMPA/kainate receptor activation, respectively. However, blockade of both receptor pathways may exert a protective role on myenteric neurons following and I

  10. Differential trafficking of AMPA receptors following activation of NMDA receptors and mGluRs

    Directory of Open Access Journals (Sweden)

    Sanderson Thomas M

    2011-07-01

    Full Text Available Abstract The removal of AMPA receptors from synapses is a major component of long-term depression (LTD. How this occurs, however, is still only partially understood. To investigate the trafficking of AMPA receptors in real-time we previously tagged the GluA2 subunit of AMPA receptors with ecliptic pHluorin and studied the effects of NMDA receptor activation. In the present study we have compared the effect of NMDA receptor and group I mGluR activation, using GluA2 tagged with super ecliptic pHluorin (SEP-GluA2 expressed in cultured hippocampal neurons. Surprisingly, agonists of the two receptors, which are both able to induce chemical forms of LTD, had clearly distinct effects on AMPA receptor trafficking. In agreement with our previous work we found that transient NMDA receptor activation results in an initial decrease in surface GluA2 from extrasynaptic sites followed by a delayed reduction in GluA2 from puncta (putative synapses. In contrast, transient activation of group I mGluRs, using DHPG, led to a pronounced but more delayed decrease in GluA2 from the dendritic shafts. Surprisingly, there was no average change in the fluorescence of the puncta. Examination of fluorescence at individual puncta, however, indicated that alterations did take place, with some puncta showing an increase and others a decrease in fluorescence. The effects of DHPG were, like DHPG-induced LTD, prevented by treatment with a protein tyrosine phosphatase (PTP inhibitor. The electrophysiological correlate of the effects of DHPG in the SEP-GluA2 infected cultures was a reduction in mEPSC frequency with no change in amplitude. The implications of these findings for the initial mechanisms of expression of both NMDA receptor- and mGluR-induced LTD are discussed.

  11. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity

    Directory of Open Access Journals (Sweden)

    Jonathan eShelton

    2015-01-01

    Full Text Available Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6 induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg. Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15 or advance (CT22 wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light-induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals.

  12. Desipramine inhibits histamine H1 receptor-induced Ca2+ signaling in rat hypothalamic cells.

    Directory of Open Access Journals (Sweden)

    Ji-Ah Kang

    Full Text Available The hypothalamus in the brain is the main center for appetite control and integrates signals from adipose tissue and the gastrointestinal tract. Antidepressants are known to modulate the activities of hypothalamic neurons and affect food intake, but the cellular and molecular mechanisms by which antidepressants modulate hypothalamic function remain unclear. Here we have investigated how hypothalamic neurons respond to treatment with antidepressants, including desipramine and sibutramine. In primary cultured rat hypothalamic cells, desipramine markedly suppressed the elevation of intracellular Ca(2+ evoked by histamine H1 receptor activation. Desipramine also inhibited the histamine-induced Ca(2+ increase and the expression of corticotrophin-releasing hormone in hypothalamic GT1-1 cells. The effect of desipramine was not affected by pretreatment with prazosin or propranolol, excluding catecholamine reuptake activity of desipramine as an underlying mechanism. Sibutramine which is also an antidepressant but decreases food intake, had little effect on the histamine-induced Ca(2+ increase or AMP-activated protein kinase activity. Our results reveal that desipramine and sibutramine have different effects on histamine H1 receptor signaling in hypothalamic cells and suggest that distinct regulation of hypothalamic histamine signaling might underlie the differential regulation of food intake between antidepressants.

  13. Transient Receptor Potential Vanilloid 4 Activation-Induced Increase in Glycine-Activated Current in Mouse Hippocampal Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Mengwen Qi

    2018-02-01

    Full Text Available Background/Aims: Glycine plays an important role in regulating hippocampal inhibitory/ excitatory neurotransmission through activating glycine receptors (GlyRs and acting as a co-agonist of N-methyl-d-aspartate-type glutamate receptors. Activation of transient receptor potential vanilloid 4 (TRPV4 is reported to inhibit hippocampal A-type γ-aminobutyric acid receptor, a ligand-gated chloride ion channel. GlyRs are also ligand-gated chloride ion channels and this paper aimed to explore whether activation of TRPV4 could modulate GlyRs. Methods: Whole-cell patch clamp recording was employed to record glycine-activated current (IGly and Western blot was conducted to assess GlyRs subunits protein expression. Results: Application of TRPV4 agonist (GSK1016790A or 5,6-EET increased IGly in mouse hippocampal CA1 pyramidal neurons. This action was blocked by specific antagonists of TRPV4 (RN-1734 or HC-067047 and GlyR (strychnine, indicating that activation of TRPV4 increases strychnine-sensitive GlyR function in mouse hippocampal pyramidal neurons. GSK1016790A-induced increase in IGly was significantly attenuated by protein kinase C (PKC (BIM II or D-sphingosine or calcium/calmodulin-dependent protein kinase II (CaMKII (KN-62 or KN-93 antagonists but was unaffected by protein kinase A or protein tyrosine kinase antagonists. Finally, hippocampal protein levels of GlyR α1 α2, α3 and β subunits were not changed by treatment with GSK1016790A for 30 min or 1 h, but GlyR α2, α3 and β subunits protein levels increased in mice that were intracerebroventricularly (icv. injected with GSK1016790A for 5 d. Conclusion: Activation of TRPV4 increases GlyR function and expression, and PKC and CaMKII signaling pathways are involved in TRPV4 activation-induced increase in IGly. This study indicates that GlyRs may be effective targets for TRPV4-induced modulation of hippocampal inhibitory neurotransmission.

  14. Angiotensin II receptor blocker ameliorates stress-induced adipose tissue inflammation and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Motoharu Hayashi

    Full Text Available A strong causal link exists between psychological stress and insulin resistance as well with hypertension. Meanwhile, stress-related responses play critical roles in glucose metabolism in hypertensive patients. As clinical trials suggest that angiotensin-receptor blocker delays the onset of diabetes in hypertensive patients, we investigated the effects of irbesartan on stress-induced adipose tissue inflammation and insulin resistance. C57BL/6J mice were subjected to 2-week intermittent restraint stress and orally treated with vehicle, 3 and 10 mg/kg/day irbesartan. The plasma concentrations of lipid and proinflammatory cytokines [Monocyte Chemoattractant Protein-1 (MCP-1, tumor necrosis factor-α, and interleukin-6] were assessed with enzyme-linked immunosorbent assay. Monocyte/macrophage accumulation in inguinal white adipose tissue (WAT was observed with CD11b-positive cell counts and mRNA expressions of CD68 and F4/80 using immunohistochemistry and RT-PCR methods respectively. The mRNA levels of angiotensinogen, proinflammatory cytokines shown above, and adiponectin in WAT were also assessed with RT-PCR method. Glucose metabolism was assessed by glucose tolerance tests (GTTs and insulin tolerance tests, and mRNA expression of insulin receptor substrate-1 (IRS-1 and glucose transporter 4 (GLUT4 in WAT. Restraint stress increased monocyte accumulation, plasma free fatty acids, expression of angiotensinogen and proinflammatory cytokines including MCP-1, and reduced adiponectin. Irbesartan reduced stress-induced monocyte accumulation in WAT in a dose dependent manner. Irbesartan treatment also suppressed induction of adipose angiotensinogen and proinflammatory cytokines in WAT and blood, and reversed changes in adiponectin expression. Notably, irbesartan suppressed stress-induced reduction in adipose tissue weight and free fatty acid release, and improved insulin tolerance with restoration of IRS-1 and GLUT4 mRNA expressions in WAT. The results

  15. Changes in interleukin-1 signal modulators induced by 3,4-methylenedioxymethamphetamine (MDMA: regulation by CB2 receptors and implications for neurotoxicity

    Directory of Open Access Journals (Sweden)

    O'Shea Esther

    2011-05-01

    Full Text Available Abstract Background 3,4-Methylenedioxymethamphetamine (MDMA produces a neuroinflammatory reaction in rat brain characterized by an increase in interleukin-1 beta (IL-1β and microglial activation. The CB2 receptor agonist JWH-015 reduces both these changes and partially protects against MDMA-induced neurotoxicity. We have examined MDMA-induced changes in IL-1 receptor antagonist (IL-1ra levels and IL-1 receptor type I (IL-1RI expression and the effects of JWH-015. The cellular location of IL-1β and IL-1RI was also examined. MDMA-treated animals were given the soluble form of IL-1RI (sIL-1RI and neurotoxic effects examined. Methods Dark Agouti rats received MDMA (12.5 mg/kg, i.p. and levels of IL-1ra and expression of IL-1RI measured 1 h, 3 h or 6 h later. JWH-015 (2.4 mg/kg, i.p. was injected 48 h, 24 h and 0.5 h before MDMA and IL-1ra and IL-1RI measured. For localization studies, animals were sacrificed 1 h or 3 h following MDMA and stained for IL-1β or IL-1RI in combination with neuronal and microglial markers. sIL-1RI (3 μg/animal; i.c.v. was administered 5 min before MDMA and 3 h later. 5-HT transporter density was determined 7 days after MDMA injection. Results MDMA produced an increase in IL-ra levels and a decrease in IL-1RI expression in hypothalamus which was prevented by CB2 receptor activation. IL-1RI expression was localized on neuronal cell bodies while IL-1β expression was observed in microglial cells following MDMA. sIL-1RI potentiated MDMA-induced neurotoxicity. MDMA also increased IgG immunostaining indicating that blood brain-barrier permeability was compromised. Conclusions In summary, MDMA produces changes in IL-1 signal modulators which are modified by CB2 receptor activation. These results indicate that IL-1β may play a partial role in MDMA-induced neurotoxicity.

  16. P2Y12 receptor upregulation in satellite glial cells is involved in neuropathic pain induced by HIV glycoprotein 120 and 2',3'-dideoxycytidine.

    Science.gov (United States)

    Yi, Zhihua; Xie, Lihui; Zhou, Congfa; Yuan, Huilong; Ouyang, Shuai; Fang, Zhi; Zhao, Shanhong; Jia, Tianyu; Zou, Lifang; Wang, Shouyu; Xue, Yun; Wu, Bing; Gao, Yun; Li, Guilin; Liu, Shuangmei; Xu, Hong; Xu, Changshui; Zhang, Chunping; Liang, Shangdong

    2018-03-01

    The direct neurotoxicity of HIV and neurotoxicity of combination antiretroviral therapy medications both contribute to the development of neuropathic pain. Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in mechanical and thermal hyperalgesia. The P2Y 12 receptor expressed in SGCs of the DRG is involved in pain transmission. In this study, we explored the role of the P2Y 12 receptor in neuropathic pain induced by HIV envelope glycoprotein 120 (gp120) combined with ddC (2',3'-dideoxycytidine). A rat model of gp120+ddC-induced neuropathic pain was used. Peripheral nerve exposure to HIV-gp120+ddC increased mechanical and thermal hyperalgesia in gp120+ddC-treated model rats. The gp120+ddC treatment increased expression of P2Y 12 receptor mRNA and protein in DRG SGCs. In primary cultured DRG SGCs treated with gp120+ddC, the levels of [Ca 2+ ] i activated by the P2Y 12 receptor agonist 2-(Methylthio) adenosine 5'-diphosphate trisodium salt (2-MeSADP) were significantly increased. P2Y 12 receptor shRNA treatment inhibited 2-MeSADP-induced [Ca 2+ ] i in primary cultured DRG SGCs treated with gp120+ddC. Intrathecal treatment with a shRNA against P2Y 12 receptor in DRG SGCs reduced the release of pro-inflammatory cytokines, decreased phosphorylation of p38 MAPK in the DRG of gp120+ddC-treated rats. Thus, downregulating the P2Y 12 receptor relieved mechanical and thermal hyperalgesia in gp120+ddC-treated rats.

  17. Adenosine receptor desensitization and trafficking.

    Science.gov (United States)

    Mundell, Stuart; Kelly, Eamonn

    2011-05-01

    As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. The N-Methyl-d-Aspartate Receptor Antagonist MK-801 Prevents Thallium-Induced Behavioral and Biochemical Alterations in the Rat Brain.

    Science.gov (United States)

    Osorio-Rico, Laura; Villeda-Hernández, Juana; Santamaría, Abel; Königsberg, Mina; Galván-Arzate, Sonia

    2015-01-01

    Thallium (Tl(+)) is a toxic heavy metal capable of increasing oxidative damage and disrupting antioxidant defense systems. Thallium invades the brain cells through potassium channels, increasing neuronal excitability, although until now the possible role of glutamatergic transmission in this event has not been investigated. Here, we explored the possible involvement of a glutamatergic component in the Tl(+)-induced toxicity through the N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801) in rats. The effects of MK-801 (1 mg/kg, intraperitoneally [ip]) on early (24 hours) motor alterations, lipid peroxidation, reduced glutathione (GSH) levels, and GSH peroxidase activity induced by Tl(+) acetate (32 mg/kg, ip) were evaluated in adult rats. MK-801 attenuated the Tl(+)-induced hyperactivity and lipid peroxidation in the rat striatum, hippocampus and midbrain, and produced mild effects on other end points. Our findings suggest that glutamatergic transmission via NMDA receptors might be involved in the Tl(+)-induced altered regional brain redox activity and motor performance in rats. © The Author(s) 2015.

  19. Inhibitory effects of omega-3 fatty acids on injury-induced epidermal growth factor receptor transactivation contribute to delayed wound healing

    OpenAIRE

    Turk, Harmony F.; Monk, Jennifer M.; Fan, Yang-Yi; Callaway, Evelyn S.; Weeks, Brad; Chapkin, Robert S.

    2013-01-01

    Epidermal growth factor receptor (EGFR)-mediated signaling is required for optimal intestinal wound healing. Since n-3 polyunsaturated fatty acids (PUFA), specifically docosahexaenoic acid (DHA), alter EGFR signaling and suppress downstream activation of key signaling pathways, we hypothesized that DHA would be detrimental to the process of intestinal wound healing. Using a mouse immortalized colonocyte model, DHA uniquely reduced EGFR ligand-induced receptor activation, whereas DHA and its m...

  20. Application of proton-induced X-ray emission method to determination of lead content in blood

    International Nuclear Information System (INIS)

    Slominska, D.; Jarczyk, L.; Rokita, E.; Strzalkowski, A.; Losiowski, A.; Macheta, A.; Sych, M.; Moszkowicz, S.

    1979-01-01

    The proton induced X-ray emission method is applied for determination of lead content in the blood of the people exposed to contact with ethyline vapours and people working in lead-zinc works. (author)