WorldWideScience

Sample records for receptor antagonism enhances

  1. Captodiamine, a putative antidepressant, enhances hypothalamic BDNF expression in vivo by synergistic 5-HT2c receptor antagonism and sigma-1 receptor agonism.

    Science.gov (United States)

    Ring, Rebecca M; Regan, Ciaran M

    2013-10-01

    The putative antidepressant captodiamine is a 5-HT2c receptor antagonist and agonist at sigma-1 and D3 dopamine receptors, exerts an anti-immobility action in the forced swim paradigm, and enhances dopamine turnover in the frontal cortex. Captodiamine has also been found to ameliorate stress-induced anhedonia, reduce the associated elevations of hypothalamic corticotrophin-releasing factor (CRF) and restore the reductions in hypothalamic BDNF expression. Here we demonstrate chronic administration of captodiamine to have no significant effect on hypothalamic CRF expression through sigma-1 receptor agonism; however, both sigma-1 receptor agonism or 5-HT2c receptor antagonism were necessary to enhance BDNF expression. Regulation of BDNF expression by captodiamine was associated with increased phosphorylation of transcription factor CREB and mediated through sigma-1 receptor agonism but blocked by 5-HT2c receptor antagonism. The existence of two separate signalling pathways was confirmed by immunolocalisation of each receptor to distinct cell populations in the paraventricular nucleus of the hypothalamus. Increased BDNF induced by captodiamine was also associated with enhanced expression of synapsin, but not PSD-95, suggesting induction of long-term structural plasticity between hypothalamic synapses. These unique features of captodiamine may contribute to its ability to ameliorate stress-induced anhedonia as the hypothalamus plays a prominent role in regulating HPA axis activity.

  2. Stat1-Vitamin D Receptor Interactions Antagonize 1,25-Dihydroxyvitamin D Transcriptional Activity and Enhance Stat1-Mediated Transcription

    Science.gov (United States)

    Vidal, Marcos; Ramana, Chilakamarti V.; Dusso, Adriana S.

    2002-01-01

    The cytokine gamma interferon (IFN-γ) and the calcitropic steroid hormone 1,25-dihydroxyvitamin D (1,25D) are activators of macrophage immune function. In sarcoidosis, tuberculosis, and several granulomatoses, IFN-γ induces 1,25D synthesis by macrophages and inhibits 1,25D induction of 24-hydroxylase, a key enzyme in 1,25D inactivation, causing high levels of 1,25D in serum and hypercalcemia. This study delineates IFN-γ-1,25D cross talk in human monocytes-macrophages. Nuclear accumulation of Stat1 and vitamin D receptor (VDR) by IFN-γ and 1,25D promotes protein-protein interactions between Stat1 and the DNA binding domain of the VDR. This prevents VDR-retinoid X receptor (RXR) binding to the vitamin D-responsive element, thus diverting the VDR from its normal genomic target on the 24-hydroxylase promoter and antagonizing 1,25D-VDR transactivation of this gene. In contrast, 1,25D enhances IFN-γ action. Stat1-VDR interactions, by preventing Stat1 deactivation by tyrosine dephosphorylation, cooperate with IFN-γ/Stat1-induced transcription. This novel 1,25D-IFN-γ cross talk explains the pathogenesis of abnormal 1,25D homeostasis in granulomatous processes and provides new insights into 1,25D immunomodulatory properties. PMID:11909970

  3. Identification and mechanism of ABA receptor antagonism

    KAUST Repository

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M.; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-01-01

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands. © 2010 Nature America, Inc. All rights reserved.

  4. Identification and mechanism of ABA receptor antagonism

    KAUST Repository

    Melcher, Karsten

    2010-08-22

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands. © 2010 Nature America, Inc. All rights reserved.

  5. Uncompetitive antagonism of AMPA receptors

    DEFF Research Database (Denmark)

    Andersen, Trine F; Tikhonov, Denis B; Bølcho, Ulrik

    2006-01-01

    Philanthotoxins are uncompetitive antagonists of Ca2+-permeable AMPA receptors presumed to bind to the pore-forming region, but a detailed molecular mechanism for this interaction is missing. Here a small library of novel philanthotoxins was designed and synthesized using a solid-phase strategy. ...

  6. Agonism and antagonism at the insulin receptor

    DEFF Research Database (Denmark)

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new...... insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been...... shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B'29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR...

  7. Analogues of neuroactive polyamine wasp toxins that lack inner basic sites exhibit enhanced antagonism toward a muscle-type mammalian nicotinic acetylcholine receptor

    DEFF Research Database (Denmark)

    Stromgaard, K; Brierley, M J; Andersen, K

    1999-01-01

    noncompetitively antagonized the nicotinic acetylcholine receptor (nAChR) in a concentration-, time-, and voltage-dependent manner. The amplitudes of acetylcholine-induced currents were compared at their peaks and at the end of a 1 s application in the presence or absence of the analogues. Most of the analogues...

  8. Photo-antagonism of the GABAA receptor.

    Science.gov (United States)

    Mortensen, Martin; Iqbal, Favaad; Pandurangan, Arun P; Hannan, Saad; Huckvale, Rosemary; Topf, Maya; Baker, James R; Smart, Trevor G

    2014-07-29

    Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation.

  9. Prostaglandins and prostaglandin receptor antagonism in migraine

    DEFF Research Database (Denmark)

    Antonova, Maria

    2013-01-01

    Human models of headache may contribute to understanding of prostaglandins' role in migraine pathogenesis. The current thesis investigated the migraine triggering effect of prostaglandin E2 (PGE2) in migraine patients without aura, the efficacy of a novel EP4 receptor antagonist, BGC20....... The infusion of PGE2 caused the immediate migraine-like attacks and vasodilatation of the middle cerebral artery in migraine patients without aura. The highly specific and potent EP4 receptor antagonist, BGC20-1531, was not able to attenuate PGE2-induced headache and vasodilatation of both intra- and extra......-cerebral arteries. The intravenous infusion of PGF2α did not induce headache or statistically significant vasoconstriction of cerebral arteries in healthy volunteers. Novel data on PGE2-provoked immediate migraine-like attacks suggest that PGE2 may be one of the important final products in the pathogenesis...

  10. Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition

    Science.gov (United States)

    Hubers, Scott A.; Brown, Nancy J.

    2016-01-01

    Heart failure affects approximately 5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, beta-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the FDA approved the first of a new class of drugs for the treatment of heart failure; valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses two of the pathophysiologic mechanisms of heart failure - activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared to enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacologic properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension. PMID:26976916

  11. Enhanced motivation for food reward induced by stress and attenuation by corticotrophin-releasing factor receptor antagonism in rats: implications for overeating and obesity.

    Science.gov (United States)

    Liu, Xiu

    2015-06-01

    Overeating beyond individuals' homeostatic needs critically contributes to obesity. The neurobehavioral mechanisms underlying the motivation to consume excessive foods with high calories are not fully understood. The present study examined whether a pharmacological stressor, yohimbine, enhances the motivation to procure food reward with an emphasis on comparisons between standard lab chow and high-fat foods. The effects of corticotropin-releasing factor (CRF) receptor blockade by a CRF1-selective antagonist NBI on the stress-enhanced motivation for food reward were also assessed. Male Sprague-Dawley rats with chow available ad libitum in their home cages were trained to press a lever under a progressive ratio schedule for deliveries of either standard or high-fat food pellets. For testing yohimbine stress effects, rats received an intraperitoneal administration of yohimbine 10 min before start of the test sessions. For testing effects of CRF1 receptor blockade on stress responses, NBI was administered 20 min prior to yohimbine challenge. The rats emitted higher levels of lever responses to procure the high-fat food pellets compared with their counterparts on standard food pellets. Yohimbine challenge facilitated lever responses for the reward in all of the rats, whereas the effect was more robust in the rats on high-fat food pellets compared with their counterparts on standard food pellets. An inhibitory effect of pretreatment with NBI was observed on the enhancing effect of yohimbine challenge but not on the responses under baseline condition without yohimbine administration. Stress challenge significantly enhanced the motivation of satiated rats to procure extra food reward, especially the high-fat food pellets. Activation of CRF1 receptors is required for the stress-enhanced motivation for food reward. These results may have implications for our better understanding of the biobehavioral mechanisms of overeating and obesity.

  12. Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone.

    Directory of Open Access Journals (Sweden)

    Stephen R Morairty

    Full Text Available The hypocretin (orexin system is involved in sleep/wake regulation, and antagonists of both hypocretin receptor type 1 (HCRTR1 and/or HCRTR2 are considered to be potential hypnotic medications. It is currently unclear whether blockade of either or both receptors is more effective for promoting sleep with minimal side effects. Accordingly, we compared the properties of selective HCRTR1 (SB-408124 and SB-334867 and HCRTR2 (EMPA antagonists with that of the dual HCRTR1/R2 antagonist almorexant in the rat. All 4 antagonists bound to their respective receptors with high affinity and selectivity in vitro. Since in vivo pharmacokinetic experiments revealed poor brain penetration for SB-408124, SB-334867 was selected for subsequent in vivo studies. When injected in the mid-active phase, SB-334867 produced small increases in rapid-eye-movement (REM and non-REM (NR sleep. EMPA produced a significant increase in NR only at the highest dose studied. In contrast, almorexant decreased NR latency and increased both NR and REM proportionally throughout the subsequent 6 h without rebound wakefulness. The increased NR was due to a greater number of NR bouts; NR bout duration was unchanged. At the highest dose tested (100 mg/kg, almorexant fragmented sleep architecture by increasing the number of waking and REM bouts. No evidence of cataplexy was observed. HCRTR1 occupancy by almorexant declined 4-6 h post-administration while HCRTR2 occupancy was still elevated after 12 h, revealing a complex relationship between occupancy of HCRT receptors and sleep promotion. We conclude that dual HCRTR1/R2 blockade is more effective in promoting sleep than blockade of either HCRTR alone. In contrast to GABA receptor agonists which induce sleep by generalized inhibition, HCRTR antagonists seem to facilitate sleep by reducing waking "drive".

  13. CB1 receptor antagonism increases hippocampal acetylcholine release: site and mechanism of action.

    Science.gov (United States)

    Degroot, Aldemar; Köfalvi, Attila; Wade, Mark R; Davis, Richard J; Rodrigues, Ricardo J; Rebola, Nelson; Cunha, Rodrigo A; Nomikos, George G

    2006-10-01

    Evidence indicates that blockade of cannabinoid receptors increases acetylcholine (ACh) release in brain cortical regions. Although it is assumed that this type of effect is mediated through CB1 receptor (CB1R) antagonism, several in vitro functional studies recently have suggested non-CB1R involvement. In addition, neither the precise neuroanatomical site nor the exact mechanisms underlying this effect are known. We thoroughly examined these issues using a combination of systemic and local administration of CB1R antagonists, different methods of in vivo microdialysis, CB1R knockout (KO) mice, tissue measurements of ACh, and immunochemistry. First, we showed that systemic injections of the CB1R antagonists N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR-141716A) and N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) dose-dependently increased hippocampal ACh efflux. Likewise, local hippocampal, but not septal, infusions of SR141716A or AM251 increased hippocampal ACh release. It is noteworthy that the stimulatory effects of systemically administered CB1R antagonists on hippocampal ACh release were completely abolished in CB1R KO mice. CB1R KO mice had similar basal but higher stress-enhanced hippocampal ACh levels compared with wild-type controls. It is interesting that dopamine D1 receptor antagonism counteracted the stimulatory effect of CB1R blockade on hippocampal ACh levels. Finally, immunohistochemical methods revealed that a high proportion of CB1R-positive nerve terminals were found in hippocampus and confirmed the colocalization of CB1 receptors with cholinergic and dopaminergic nerve terminals. In conclusion, hippocampal ACh release may specifically be controlled through CB1Rs located on both cholinergic and dopaminergic neuronal projections, and CB1R antagonism increases hippocampal ACh release, probably through both a direct

  14. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer

    NARCIS (Netherlands)

    Kroon, Jan; Kroon, Jan; Puhr, M.; Buijs, J.T.; van der Horst, G.; Hemmer, D.M.; Marijt, K.A.; Hwang, M.S.; Masood, M.; Grimm, S.; Storm, Gerrit; Metselaar, Josbert Maarten; Meijer, O.C.; Culig, Z.; van der Pluijm, M.

    2016-01-01

    Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCa). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance.

  15. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer

    NARCIS (Netherlands)

    Kroon, Jan; Puhr, Martin; Buijs, Jeroen T.; Van Der Horst, Geertje; Lemhemmer, Daniël; Marijt, Koen A.; Hwang, Ming S.; Masood, Motasim; Grimm, Stefan; Storm, Gert; Metselaar, Josbert M.|info:eu-repo/dai/nl/244207690; Meijer, Onno C.; Culig, Zoran; Van Der Pluijm, Gabri

    2016-01-01

    Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCA). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance.

  16. Complement C5a receptor antagonism by protamine and poly-L-Arg on human leukocytes.

    Science.gov (United States)

    Olsen, U B; Selmer, J; Kahl, J U

    1988-01-01

    It is shown that protamine selectively and dose-dependently inhibits complement C5a-induced leukocyte responses such as histamine release from basophils, chemiluminescence and beta-glucuronidase release from neutrophils. Protamine produces parallel rightward displacements of the C5a dose-response curves. The inhibitory capacity of the polypeptide is reversible and disappears following repeated washing of exposed cells. In neutrophils poly-L-Arg similarly and specifically antagonizes C5a-induced chemiluminescence and enzyme release. This polymer alone, however, degranulates basophils and neutrophils, leading to histamine and enzyme release, respectively. It is concluded that on human neutrophils the arginine-rich polycations protamine and poly-L-Arg exhibit a competitive C5a receptor antagonism. In addition, protamine inhibits the C5a receptors on basophils. It is hypothesized that molecular conformations of the arginine-rich polycations might bind reversibly to, and block negatively charged groups at the C5a-receptor sites.

  17. What Do Structures Tell Us About Chemokine Receptor Function and Antagonism?

    Energy Technology Data Exchange (ETDEWEB)

    Kufareva, Irina; Gustavsson, Martin; Zheng, Yi; Stephens, Bryan S.; Handel, Tracy M. (UCSD)

    2017-05-22

    Chemokines and their cell surface G protein–coupled receptors are critical for cell migration, not only in many fundamental biological processes but also in inflammatory diseases and cancer. Recent X-ray structures of two chemokines complexed with full-length receptors provided unprecedented insight into the atomic details of chemokine recognition and receptor activation, and computational modeling informed by new experiments leverages these insights to gain understanding of many more receptor:chemokine pairs. In parallel, chemokine receptor structures with small molecules reveal the complicated and diverse structural foundations of small molecule antagonism and allostery, highlight the inherent physicochemical challenges of receptor:chemokine interfaces, and suggest novel epitopes that can be exploited to overcome these challenges. The structures and models promote unique understanding of chemokine receptor biology, including the interpretation of two decades of experimental studies, and will undoubtedly assist future drug discovery endeavors.

  18. Antagonism of presynaptic dopamine receptors by phenothiazine drug metabolites

    International Nuclear Information System (INIS)

    Nowak, J.Z.; Arbilla, S.; Langer, S.Z.; Dahl, S.G.

    1990-01-01

    Electrically evoked release of dopamine from the caudate nucleus is reduced by the dopamine receptor agonists, apomorphine and bromocriptine, and facilitated by neuroleptic drugs, which act as dopamine autoreceptor antagonists. The potencies of chlorpromazine, fluphenazine, levomepromazine and their hydroxy-metabolites in modulating electrically evoked release of dopamine were examined by superfusion of rabbit caudate nucleus slices pre-incubated with 3 H-dopamine. O-Desmethyl levomepromazine, 3-hydroxy- and 7-hydroxy metabolites of chlorpromazine and levomepromazine facilitated electrically evoked release of 3 H-dopamine, having potencies similar to that of the parent compounds. 7-Hydroxy fluphenazine was less active than fluphenazine in this system. These results indicate that phenolic metabolites of chlorpromazine and levomepromazine, but not of fluphenazine, may contribute to effects of the drugs mediated by presynaptic dopamine receptors

  19. ANTAGONISM OF PROGESTERONE RECEPTOR SUPPRESSES CAROTID BODY RESPONSES TO HYPOXIA AND NICOTINE IN RAT PUPS

    OpenAIRE

    JOSEPH, V.; NIANE, L. M.; BAIRAM, A.

    2012-01-01

    We tested the hypothesis that antagonism of progesterone receptor (PR) in newborn rats alters carotid body and respiratory responses to hypoxia and nicotinic receptor agonists. Rats were treated with the PR antagonist mifepristone (daily oral gavage 40 μg/g/d) or vehicle between post-natal days 3 and 15. In 11–14-day-old rats, we used in vitro carotid body/carotid sinus nerve preparation and whole body plethysmography to assess the carotid body and ventilatory responses to hypoxia (65 mmHg in...

  20. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor

    Science.gov (United States)

    Dagdas, Yasin F; Belhaj, Khaoula; Maqbool, Abbas; Chaparro-Garcia, Angela; Pandey, Pooja; Petre, Benjamin; Tabassum, Nadra; Cruz-Mireles, Neftaly; Hughes, Richard K; Sklenar, Jan; Win, Joe; Menke, Frank; Findlay, Kim; Banfield, Mark J; Kamoun, Sophien; Bozkurt, Tolga O

    2016-01-01

    Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI: http://dx.doi.org/10.7554/eLife.10856.001 PMID:26765567

  1. Neuropeptide Y Y5 receptor antagonism attenuates cocaine-induced effects in mice

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Jensen, Morten; Weikop, Pia

    2012-01-01

    Rationale Several studies suggest a role for neuropeptide Y (NPY) in addiction to drugs of abuse, including cocaine. However, the NPY receptors mediating addiction-related effects remain to be determined. Objectives To explore the potential role of Y5 NPY receptors in cocaine-induced behavioural...... effects. Methods The Y5 antagonist L-152,804 and Y5-knockout (Y5-KO) mice were tested in two models of cocaine addiction-related behaviour: acute self-administration and cocaine-induced hyperactivity. We also studied effects of Y5 receptor antagonism on cocaine-induced c-fos expression and extracellular...... effects, suggesting that Y5 receptors could be a potential therapeutic target in cocaine addiction....

  2. Arctigenin antagonizes mineralocorticoid receptor to inhibit the transcription of Na/K-ATPase.

    Science.gov (United States)

    Cheng, Ye; Zhou, Meili; Wang, Yan

    2016-01-01

    Hypertension is one of the most important risk factors in cardiovascular disease and is the most common chronic disease. Mineralocorticoid receptor (MR) antagonists have been successfully used in clinic for the treatment of hypertension. Our study aims to investigate whether Arctigenin can antagonize MR and inhibit the transcription of Na/K-ATPase. The yeast two-hybrid assay was used to screen natural products and Arctigenin was identified as an MR antagonist. The direct binding of Arctigenin to MR was determined using assays based on surface plasmon resonance, differential scanning calorimetry and fluorescence quenching. Furthermore, results from mammalian one-hybrid and transcriptional activation experiments also confirmed that Arctigenin can potently antagonize MR in cells. We demonstrated that Arctigenin can decrease the level of Na/K-ATPase mRNA by antagonizing MR in HK-2 cells. Our findings show that Arctigenin can effectively decrease Na/K-ATPase transcription; thus highlight its potential as an anti-hypertensive drug lead compound. Our current findings demonstrate that Arctigenin is an antagonist of MR and effectively decreases the Na/K-ATPase 1 gene expression. Our work provides a hint for the drug discovery against cardiovascular disease.

  3. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line.

    Science.gov (United States)

    Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S

    2016-06-01

    Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target. © 2014 John Wiley & Sons Ltd.

  4. Impairments of exploration and memory after systemic or prelimbic D1-receptor antagonism in rats

    DEFF Research Database (Denmark)

    Clausen, Bettina; Schachtman, Todd R.; Mark, Louise T.

    2011-01-01

    to examine the effects on memory: cross-maze and object recognition task. Systemic administration reduced spatial exploration in cross-maze as well as in an open field test, and also reduced object exploration. Spatial (hippocampus-dependent) short-term memory was inhibited in the cross-maze and non......-spatial short-term object retention was also impaired. In contrast to these systemic effects, bilateral injections of SCH23390 into the prelimbic cortices altered neither spatial nor object exploration, but did inhibit short-term memory in both cross-maze and object recognition task. Therefore, the inhibiting......D1-receptor antagonism is known to impair rodent memory but also inhibits spontaneous exploration of stimuli to be remembered. Hypo-exploration could contribute to impaired memory by influencing event processing. In order to explore this effect, the D1 receptor antagonist, SCH23390...

  5. Ghrelin receptor antagonism of hyperlocomotion in cocaine-sensitized mice requires βarrestin-2.

    Science.gov (United States)

    Toth, Krisztian; Slosky, Lauren M; Pack, Thomas F; Urs, Nikhil M; Boone, Peter; Mao, Lan; Abraham, Dennis; Caron, Marc G; Barak, Lawrence S

    2018-01-01

    The "brain-gut" peptide ghrelin, which mediates food-seeking behaviors, is recognized as a very strong endogenous modulator of dopamine (DA) signaling. Ghrelin binds the G protein-coupled receptor GHSR1a, and administration of ghrelin increases the rewarding properties of psychostimulants while ghrelin receptor antagonists decrease them. In addition, the GHSR1a signals through βarrestin-2 to regulate actin/stress fiber rearrangement, suggesting βarrestin-2 participation in the regulation of actin-mediated synaptic plasticity for addictive substances like cocaine. The effects of ghrelin receptor ligands on reward strongly suggest that modulation of ghrelin signaling could provide an effective strategy to ameliorate undesirable behaviors arising from addiction. To investigate this possibility, we tested the effects of ghrelin receptor antagonism in a cocaine behavioral sensitization paradigm using DA neuron-specific βarrestin-2 KO mice. Our results show that these mice sensitize to cocaine as well as wild-type littermates. The βarrestin-2 KO mice, however, no longer respond to the locomotor attenuating effects of the GHSR1a antagonist YIL781. The data presented here suggest that the separate stages of addictive behavior differ in their requirements for βarrestin-2 and show that pharmacological inhibition of βarrestin-2 function through GHSR1a antagonism is not equivalent to the loss of βarrestin-2 function achieved by genetic ablation. These data support targeting GHSR1a signaling in addiction therapy but indicate that using signaling biased compounds that modulate βarrestin-2 activity differentially from G protein activity may be required. © 2017 Wiley Periodicals, Inc.

  6. Design of the Magnetic Resonance Imaging Evaluation of Mineralocorticoid Receptor Antagonism in Diabetic Atherosclerosis (MAGMA) Trial.

    Science.gov (United States)

    Rajagopalan, Sanjay; Alaiti, M Amer; Broadwater, Kylene; Goud, Aditya; Gaztanaga, Juan; Connelly, Kim; Fares, Anas; Shirazian, Shayan; Kreatsoulas, Catherine; Farkouh, Michael; Dobre, Mirela; Fink, Jeffrey C; Weir, Matthew R

    2017-09-01

    Mineralocorticoid receptor (MR) activation plays an essential role in promoting inflammation, fibrosis, and target organ damage. Currently, no studies are investigating MR antagonism in patients with type 2 diabetes mellitus (T2DM) with chronic kidney disease, at high risk for cardiovascular complications, who are otherwise not candidates for MR antagonism by virtue of heart failure. Further, there is limited information on candidate therapies that may demonstrate differential benefit from this therapy. We hypothesized that MR antagonism may provide additional protection from atherosclerosis progression in higher-risk patients who otherwise may not be candidates for such a therapeutic approach. In this double-blind, randomized, placebo-controlled trial, subjects with T2DM with chronic kidney disease (≥ stage 3) will be randomized in a 1:1 manner to placebo or spironolactone (12.5 mg with eventual escalation to 25 mg daily over a 4-week period). The co-primary efficacy endpoint will be percentage change in total atheroma volume in thoracic aorta and left ventricular mass at 52 weeks in patients treated with spironolactone vs placebo. Secondary outcomes include 24-hour mean systolic blood pressure, central aortic blood pressure, and insulin resistance (HOMA-IR) at 6 weeks. A novel measure in the study will be changes in candidate miRNAs that regulate expression of NR3C2 (MR gene) as well as measuring monocyte/macrophage polarization in response to therapy with spironolactone. We envision that our strategy of simultaneously probing the effects of a drug combined with analysis of mechanisms of action and predictive response will likely provide key information with which to design event-based trials. © 2017 Wiley Periodicals, Inc.

  7. ANTAGONISM OF PROGESTERONE RECEPTOR SUPPRESSES CAROTID BODY RESPONSES TO HYPOXIA AND NICOTINE IN RAT PUPS

    Science.gov (United States)

    JOSEPH, V.; NIANE, L. M.; BAIRAM, A.

    2013-01-01

    We tested the hypothesis that antagonism of progesterone receptor (PR) in newborn rats alters carotid body and respiratory responses to hypoxia and nicotinic receptor agonists. Rats were treated with the PR antagonist mifepristone (daily oral gavage 40 μg/g/d) or vehicle between post-natal days 3 and 15. In 11–14-day-old rats, we used in vitro carotid body/carotid sinus nerve preparation and whole body plethysmography to assess the carotid body and ventilatory responses to hypoxia (65 mmHg in vitro, 10% O2 in vivo) and to nicotinic receptor agonists (as an excitatory modulator of carotid body activity—nicotine 100 μM for in vitro studies, and epibatidine 5 μg/kg, i.p., which mainly acts on peripheral nicotinic receptors, for in vivo studies). The carotid body responses to hypoxia and nicotine were drastically reduced by mifepristone. Compared with vehicle, mifepristone-treated rats had a reduced body weight. The ventilatory response to epibatidine was attenuated; however, the hypoxic ventilatory response was similar between vehicle and mifepristone-treated pups. Immunohistochemical staining revealed that mifepristone treatment did not change carotid body morphology. We conclude that PR activity is a critical factor ensuring proper carotid body function in newborn rats. PMID:22326965

  8. Substance P Receptor Antagonism: A Potential Novel Treatment Option for Viral-Myocarditis

    Directory of Open Access Journals (Sweden)

    Prema Robinson

    2015-01-01

    Full Text Available Viral-myocarditis is an important cause of heart failure for which no specific treatment is available. We previously showed the neuropeptide substance P (SP is associated with the pathogenesis of murine myocarditis caused by encephalomyocarditis virus (EMCV. The current studies determined if pharmacological inhibition of SP-signaling via its high affinity receptor, NK1R and downstream G-protein, Ras homolog gene family, member-A (RhoA, will be beneficial in viral-myocarditis. Aprepitant (1.2 mg/kg, a SP-receptor antagonist, or fasudil (10 mg/kg, a RhoA inhibitor, or saline control was administered daily to mice orally for 3 days, prior to, or 5 days following, intraperitoneal infection with and without 50 PFU of EMCV, following which disease assessment studies, including echocardiogram and cardiac Doppler were performed in day 14 after infection. Pretreatment and posttreatment with aprepitant significantly reduced mortality, heart and cardiomyocyte size, and cardiac viral RNA levels (P<0.05 all, ANOVA. Only aprepitant pretreatment improved heart functions; it significantly decreased end systolic diameter, improved fractional shortening, and increased peak aortic flow velocity (P<0.05 all, ANOVA. Pre- or posttreatment with fasudil did not significantly impact disease manifestations. These findings indicate that SP contributes to cardiac-remodeling and dysfunction following ECMV infection via its high affinity receptor, but not through the Rho-A pathway. These studies suggest that SP-receptor antagonism may be a novel therapeutic-option for patients with viral-myocarditis.

  9. Histamine H3 receptors and its antagonism as a novel mechanism for antipsychotic effect: a current preclinical & clinical perspective.

    Science.gov (United States)

    Mahmood, Danish

    2016-10-01

    Histamine H 3 receptors are present as autoreceptors on histaminergic neurons and as heteroreceptors on nonhistaminergic neurones. They control the release and synthesis of histamine and several other key neurotransmitters in the brain. H 3 antagonism may be a novel approach to develop a new class of antipsychotic medications given the gathering evidence reporting therapeutic efficacy in several central nervous system disorders. Several medications such as cariprazine, lurasidone, LY214002, bexarotene, rasagiline, raloxifene, BL-1020 and ITI-070 are being developed to treat the negative symptoms and cognitive impairments of schizophrenia. These medications works through diverse mechanisms which include agonism at metabotropic glutamate receptor (mGluR2/3), partial agonism at dopamine D 2 , D 3 and serotonin 5-HT 1A receptors, antagonism at D 2 , 5-HT 2A, 5-HT 2B and 5-HT 7 receptors, combined dopamine antagonism with GABA agonist activity, inhibition of monoamine oxidase-B, modulation of oestrogen receptor, and activation of nuclear retinoid X receptor. However, still specific safe therapy for psychosis remains at large. Schizophrenia is a severe neuropsychiatric disorder result both from hyper- and hypo-dopaminergic transmission causing positive and negative symptoms, respectively. Pharmacological stimulation of dopamine release in the prefrontal cortex has been a viable approach in treating negative symptoms and cognitive deficits of schizophrenia symptoms that are currently not well treated and continue to represent significant unmet medical challenges. Administration of H 3 antagonists/inverse agonists increase extracellular dopamine concentrations in rat prefrontal cortex, but not in the striatum suggesting that antagonism via H 3 receptor may be a potential target for treating negative symptoms and cognitive deficits associated with schizophrenia. Further, insights are emerging into the potential role of histamine H 3 receptors as a target of antiobesity

  10. Androgen Receptor Antagonism By Divalent Ethisterone Conjugates In Castrate-Resistant Prostate Cancer Cells

    Science.gov (United States)

    Levine, Paul M.; Lee, Eugine; Greenfield, Alex; Bonneau, Richard; Logan, Susan K.; Garabedian, Michael J.; Kirshenbaum, Kent

    2013-01-01

    Sustained treatment of prostate cancer with Androgen Receptor (AR) antagonists can evoke drug resistance, leading to castrate-resistant disease. Elevated activity of the AR is often associated with this highly aggressive disease state. Therefore, new therapeutic regimens that target and modulate AR activity could prove beneficial. We previously introduced a versatile chemical platform to generate competitive and non-competitive multivalent peptoid oligomer conjugates that modulate AR activity. In particular, we identified a linear and a cyclic divalent ethisterone conjugate that exhibit potent anti-proliferative properties in LNCaP-abl cells, a model of castrate-resistant prostate cancer. Here, we characterize the mechanism of action of these compounds utilizing confocal microscopy, time-resolved fluorescence resonance energy transfer, chromatin immunoprecipitation, flow cytometry, and microarray analysis. The linear conjugate competitively blocks AR action by inhibiting DNA binding. In addition, the linear conjugate does not promote AR nuclear localization or co-activator binding. In contrast, the cyclic conjugate promotes AR nuclear localization and induces cell-cycle arrest, despite its inability to compete against endogenous ligand for binding to AR in vitro. Genome-wide expression analysis reveals that gene transcripts are differentially affected by treatment with the linear or cyclic conjugate. Although the divalent ethisterone conjugates share extensive chemical similarities, we illustrate that they can antagonize the AR via distinct mechanisms of action, establishing new therapeutic strategies for potential applications in AR pharmacology. PMID:22871957

  11. Diversifying selection and functional analysis of interleukin-4 suggests antagonism-driven evolution at receptor-binding interfaces

    Directory of Open Access Journals (Sweden)

    Brown Scott

    2010-07-01

    Full Text Available Abstract Background Interleukin-4 (IL4 is a secreted immunoregulatory cytokine critically involved in host protection from parasitic helminths 1. Reasoning that helminths may have evolved mechanisms to antagonize IL4 to maximize their dispersal, we explored mammalian IL4 evolution. Results This analysis revealed evidence of diversifying selection at 15 residues, clustered in epitopes responsible for IL4 binding to its Type I and Type II receptors. Such a striking signature of selective pressure suggested either recurrent episodes of pathogen antagonism or ligand/receptor co-evolution. To test the latter possibility, we performed detailed functional analysis of IL4 allotypes expressed by Mus musculus musculus and Mus musculus castaneus, which happen to differ at 5 residues (including three at positively selected sites in and adjacent to the site 1 epitope that binds the IL4Rα subunit shared by the Type I and Type II IL4 receptors. We show that this intra-species variation affects the ability of IL4 neither to bind IL4 receptor alpha (IL4Rα nor to signal biological responses through its Type I receptor. Conclusions Our results -- reminiscent of clustered positively selected sites revealing functionally important residues at host-virus interaction interfaces -- are consistent with IL4 having evolved to avoid recurrent pathogen antagonism, while maintaining the capacity to bind and signal through its cognate receptor. This work exposes what may be a general feature of evolutionary conflicts fought by pathogen antagonists at host protein-protein interaction interfaces involved in immune signaling: the emergence of receptor-binding ligand epitopes capable of buffering amino acid variation.

  12. Prenatal NMDA Receptor Antagonism Impaired Proliferation of Neuronal Progenitor, Leading to Fewer Glutamatergic Neurons in the Prefrontal Cortex

    Science.gov (United States)

    Toriumi, Kazuya; Mouri, Akihiro; Narusawa, Shiho; Aoyama, Yuki; Ikawa, Natsumi; Lu, Lingling; Nagai, Taku; Mamiya, Takayoshi; Kim, Hyoung-Chun; Nabeshima, Toshitaka

    2012-01-01

    N-methyl--aspartate (NMDA) receptor is a glutamate receptor which has an important role on mammalian brain development. We have reported that prenatal treatment with phencyclidine (PCP), a NMDA receptor antagonist, induces long-lasting behavioral deficits and neurochemical changes. However, the mechanism by which the prenatal antagonism of NMDA receptor affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that prenatal NMDA receptor antagonism impaired the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and the subventricular zone. Furthermore, using a PCR array focused on neurogenesis and neuronal stem cells, we evaluated changes in gene expression causing the impairment of neuronal progenitor proliferation and found aberrant gene expression, such as Notch2 and Ntn1, in prenatal PCP-treated mice. Consequently, the density of glutamatergic neurons in the prefrontal cortex was decreased, probably resulting in glutamatergic hypofunction. Prenatal PCP-treated mice displayed behavioral deficits in cognitive memory and sensorimotor gating until adulthood. These findings suggest that NMDA receptors regulate the proliferation and maturation of progenitor cells for glutamatergic neuron during neurodevelopment, probably via the regulation of gene expression. PMID:22257896

  13. Differential effects of early-life NMDA receptor antagonism on aspartame-impaired insulin tolerance and behavior.

    Science.gov (United States)

    Collison, Kate S; Inglis, Angela; Shibin, Sherin; Andres, Bernard; Ubungen, Rosario; Thiam, Jennifer; Mata, Princess; Al-Mohanna, Futwan A

    2016-12-01

    We have previously showed that lifetime exposure to aspartame, commencing in utero via the mother's diet, may impair insulin tolerance and cause behavioral deficits in adulthood via mechanisms which are incompletely understood. The role of the CNS in regulating glucose homeostasis has been highlighted by recent delineation of the gut-brain axis, in which N-methyl-d-aspartic acid receptors (NMDARs) are important in maintaining glucose homeostasis, in addition to regulating certain aspects of behavior. Since the gut-brain axis can be modulated by fetal programming, we hypothesized that early-life NMDAR antagonism may affect aspartame-induced glucose deregulation in adulthood, and may alter the aspartame behavioral phenotype. Accordingly, C57Bl/6J mice were chronically exposed to aspartame commencing in utero, in the presence and absence of maternal administration of the competitive NMDAR antagonist CGP 39551, from conception until weaning. Drug/diet interactions in adulthood glucocentric and behavioral parameters were assessed. Aspartame exposure elevated blood glucose and impaired insulin-induced glucose disposal during an insulin tolerance test, which could be normalized by NMDAR antagonism. The same effects were not observed in control diet mice, suggesting an early-life drug/diet interaction. Behavioral analysis of adult offspring indicated that NMDAR antagonism of control diet mice caused hyperlocomotion and impaired spatial navigation. Conversely hypolocomotion, reduced exploratory activity and increased anxiety-related behavior were apparent in aspartame diet mice with early-life NMDAR antagonism. significant drug/diet interactions in glucocentric and behavioral parameters were identified in aspartame-exposed mice with early-life NMDAR antagonism. This suggests a possible involvement of early NMDAR interactions in aspartame-impaired glucose homeostasis and behavioral deficits. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation

    Directory of Open Access Journals (Sweden)

    Högberg Thomas

    2007-02-01

    Full Text Available Abstract Background Mast cell-derived prostaglandin D2 (PGD2, may contribute to eosinophilic inflammation and mucus production in allergic asthma. Chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2, a high affinity receptor for prostaglandin D2, mediates trafficking of TH2-cells, mast cells, and eosinophils to inflammatory sites, and has recently attracted interest as target for treatment of allergic airway diseases. The present study involving mice explores the specificity of CRTH2 antagonism of TM30089, which is structurally closely related to the dual TP/CRTH2 antagonist ramatroban, and compares the ability of ramatroban and TM30089 to inhibit asthma-like pathology. Methods Affinity for and antagonistic potency of TM30089 on many mouse receptors including thromboxane A2 receptor mTP, CRTH2 receptor, and selected anaphylatoxin and chemokines receptors were determined in recombinant expression systems in vitro. In vivo effects of TM30089 and ramatroban on tissue eosinophilia and mucus cell histopathology were examined in a mouse asthma model. Results TM30089, displayed high selectivity for and antagonistic potency on mouse CRTH2 but lacked affinity to TP and many other receptors including the related anaphylatoxin C3a and C5a receptors, selected chemokine receptors and the cyclooxygenase isoforms 1 and 2 which are all recognized players in allergic diseases. Furthermore, TM30089 and ramatroban, the latter used as a reference herein, similarly inhibited asthma pathology in vivo by reducing peribronchial eosinophilia and mucus cell hyperplasia. Conclusion This is the first report to demonstrate anti-allergic efficacy in vivo of a highly selective small molecule CRTH2 antagonist. Our data suggest that CRTH2 antagonism alone is effective in mouse allergic airway inflammation even to the extent that this mechanism can explain the efficacy of ramatroban.

  15. The therapeutic promise of ATP antagonism at P2X3 receptors in respiratory & urological disorders

    Directory of Open Access Journals (Sweden)

    Anthony eFord

    2013-12-01

    Full Text Available A sensory role for ATP was proposed long before general acceptance of its extracellular role. ATP activates & sensitizes signal transmission at multiple sites along the sensory axis, across multiple synapses. P2X & P2Y receptors mediate ATP modulation of sensory pathways & participate in dysregulation, where ATP action directly on primary afferent neurons (PANs, linking receptive field to CNS, has received much attention. Many PANs, especially C-fibers, are activated by ATP, via P2X3-containing trimers. P2X3 knock-out mice & knock-down in rats led to reduced nocifensive activity & visceral reflexes, suggesting that antagonism may offer benefit in sensory disorders. Recently, drug-like P2X3 antagonists, active in a many inflammatory & visceral pain models, have emerged. Significantly, these compounds have no overt CNS action & are inactive versus acute nociception. Selectively targeting ATP sensitization of PANs may lead to therapies that block inappropriate chronic signals at their source, decreasing drivers of peripheral & central wind-up, yet leaving defensive nociceptive and brain functions unperturbed. This article reviews this evidence, focusing on how ATP sensitization of PANs in visceral hollow organs primes them to chronic discomfort, irritation & pain (symptoms as well as exacerbated autonomic reflexes (signs, & how the use of isolated organ-nerve preparations has revealed this mechanism. Urinary & airways systems share many features: dependence on continuous afferent traffic to brainstem centers to coordinate efferent autonomic outflow; loss of descending inhibitory influence in functional & sensory disorders; dependence on ATP in mediating sensory responses to diverse mechanical and chemical stimuli; a mechanistically overlapping array of existing medicines for pathological conditions. These similarities may also play out in terms of future treatment of signs & symptoms, in the potential for benefit of P2X3 antagonists.

  16. Selective augmentation of striatal functional connectivity following NMDA receptor antagonism: implications for psychosis.

    Science.gov (United States)

    Dandash, Orwa; Harrison, Ben J; Adapa, Ram; Gaillard, Raphael; Giorlando, Francesco; Wood, Stephen J; Fletcher, Paul C; Fornito, Alex

    2015-02-01

    The psychotomimetic effect of the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine is thought to arise from a functional modulation of the brain's fronto-striato-thalamic (FST) circuits. Animal models suggest a pronounced effect on ventral 'limbic' FST systems, although recent work in patients with psychosis and high-risk individuals suggests specific alterations of dorsal 'associative' FST circuits. Here, we used functional magnetic resonance imaging to investigate the effects of a subanesthetic dose of ketamine on measures of functional connectivity as indexed by the temporal coherence of spontaneous neural activity in both dorsal and ventral FST circuits, as well as their symptom correlates. We adopted a placebo-controlled, double-blind, randomized, repeated-measures design in which 19 healthy participants received either an intravenous saline infusion or a racemic mixture of ketamine (100 ng/ml) separated by at least 1 week. Compared with placebo, ketamine increased functional connectivity between the dorsal caudate and both the thalamus and midbrain bilaterally. Ketamine additionally increased functional connectivity of the ventral striatum/nucleus accumbens and ventromedial prefrontal cortex. Both connectivity increases significantly correlated with the psychosis-like and dissociative symptoms under ketamine. Importantly, dorsal caudate connectivity with the ventrolateral thalamus and subthalamic nucleus showed inverse correlation with ketamine-induced symptomatology, pointing to a possible resilience role to disturbances in FST circuits. Although consistent with the role of FST in mediating psychosis, these findings contrast with previous research in clinical samples by suggesting that acute NMDAR antagonism may lead to psychosis-like experiences via a mechanism that is distinct from that implicated in frank psychotic illness.

  17. Neuropeptide Y Y5 receptor antagonism causes faster extinction and attenuates reinstatement in cocaine-induced place preference

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Wörtwein, Gitta; Fink-Jensen, Anders

    2013-01-01

    Several studies have suggested a role for neuropeptide Y (NPY) in addiction to drugs of abuse, including cocaine. Recently, our group showed a role for the NPY Y5 receptor in the modulation of acute reinforcing effects of cocaine using self-administration and hyperlocomotion paradigms. In the pre......Several studies have suggested a role for neuropeptide Y (NPY) in addiction to drugs of abuse, including cocaine. Recently, our group showed a role for the NPY Y5 receptor in the modulation of acute reinforcing effects of cocaine using self-administration and hyperlocomotion paradigms....... In the present study, we further explored potential anti-addiction-related effects of Y5 antagonism in another murine model of cocaine addiction-related behavior: conditioned place-preference (CPP). Using this model, it was tested whether blockade or deficiency of the NPY Y5 receptor could influence......, and reinstatement of cocaine-induced CPP was absent. The development of CPP for cocaine was similar between Y5-KO and WT mice. Taken together, the present data show that Y5 antagonism attenuates relapse to cocaine addiction-related behavior. Prevention of relapse is considered to be of pivotal importance...

  18. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation

    DEFF Research Database (Denmark)

    Uller, Lena; Mathiesen, Jesper Mosolff; Alenmyr, Lisa

    2007-01-01

    BACKGROUND: Mast cell-derived prostaglandin D2 (PGD2), may contribute to eosinophilic inflammation and mucus production in allergic asthma. Chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a high affinity receptor for prostaglandin D2, mediates trafficking of TH2-cells......, mast cells, and eosinophils to inflammatory sites, and has recently attracted interest as target for treatment of allergic airway diseases. The present study involving mice explores the specificity of CRTH2 antagonism of TM30089, which is structurally closely related to the dual TP/CRTH2 antagonist...... in recombinant expression systems in vitro. In vivo effects of TM30089 and ramatroban on tissue eosinophilia and mucus cell histopathology were examined in a mouse asthma model. RESULTS: TM30089, displayed high selectivity for and antagonistic potency on mouse CRTH2 but lacked affinity to TP and many other...

  19. Unsurmountable antagonism of brain 5-hydroxytryptamine2 receptors by (+)-lysergic acid diethylamide and bromo-lysergic acid diethylamide.

    Science.gov (United States)

    Burris, K D; Sanders-Bush, E

    1992-11-01

    Lysergic acid diethylamide (LSD) and its structural analogue 2-bromo-lysergic acid diethylamide (BOL) act as unsurmountable antagonists of serotonin-elicited contractions in smooth muscle preparations. Two different models, allosteric and kinetic, have been invoked to explain these findings. The present studies investigate the mechanism of antagonism of brain 5-hydroxytryptamine (5HT)2 receptors, utilizing cells transfected with 5HT2 receptor cDNA cloned from rat brain. A proximal cellular response, phosphoinositide hydrolysis, was examined in order to minimize possible postreceptor effects. Even though LSD behaved as a partial agonist and BOL as a pure antagonist, both drugs blocked the effect of serotonin in an unsurmountable manner, i.e., increasing concentrations of serotonin could not overcome the blocking effect of LSD or BOL. Radioligand binding studies showed that preincubation of membranes with either LSD or BOL reduced the density of [3H]ketanserin binding sites, suggesting that the drugs bind tightly to the 5HT2 receptor and are not displaced during the binding assay. Two additional experiments supported this hypothesis. First, the off-rate of [3H] LSD was slow (20 min), relative to that of [3H]ketanserin (approximately 4 min). Second, when the length of incubation with [3H]ketanserin was increased to 60 min, the LSD-induced decrease in Bmax was essentially eliminated. The possibility that LSD and BOL decrease [3H]ketanserin binding by interacting with an allosteric site was rejected, because neither drug altered the rate of dissociation of [3H]ketanserin. The most parsimonious interpretation of these results is that unsurmountable antagonism reflects prolonged occupancy of the receptor by slowly reversible antagonists.

  20. Ihh enhances differentiation of CFK-2 chondrocytic cells and antagonizes PTHrP-mediated activation of PKA.

    Science.gov (United States)

    Deckelbaum, Ron A; Chan, George; Miao, Dengshun; Goltzman, David; Karaplis, Andrew C

    2002-07-15

    Indian Hedgehog (Ihh), a member of the hedgehog (HH) family of secreted morphogens, and parathyroid hormone-related peptide (PTHrP) are key regulators of cartilage cell (chondrocyte) differentiation. We have investigated, in vitro, the actions of HH signalling and its possible interplay with PTHrP using rat CFK-2 chondrocytic cells. Markers of chondrocyte differentiation [alkaline phosphatase (ALP) activity, and type II (Col2a1) and type X collagen (Col10a1) expression] were enhanced by overexpression of Ihh or its N-terminal domain (N-Ihh), effects mimicked by exogenous administration of recombinant N-terminal HH peptide. Moreover, a missense mutation mapping to the N-terminal domain of Ihh (W160G) reduces the capacity of N-Ihh to induce differentiation. Prolonged exposure of CFK-2 cells to exogenous N-Shh (5x10(-9) M) in the presence of PTHrP (10(-8) M) or forskolin (10(-7) M) resulted in perturbation of HH-mediated differentiation. In addition, overexpression of a constitutively active form of the PTHrP receptor (PTHR1 H223R) inhibited Ihh-mediated differentiation, implicating activation of protein kinase A (PKA) by PTHR1 as a probable mediator of the antagonistic effects of PTHrP. Conversely, overexpression of Ihh/N-Ihh or exogenous treatment with N-Shh led to dampening of PTHrP-mediated activation of PKA. Taken together, our data suggest that Ihh harbors the capacity to induce rather than inhibit chondrogenic differentiation, that PTHrP antagonizes HH-mediated differentiation through a PKA-dependent mechanism and that HH signalling, in turn, modulates PTHrP action through functional inhibition of signalling by PTHR1 to PKA.

  1. Antagonism of Lateral Amygdala Alpha1-Adrenergic Receptors Facilitates Fear Conditioning and Long-Term Potentiation

    Science.gov (United States)

    Lazzaro, Stephanie C.; Hou, Mian; Cunha, Catarina; LeDoux, Joseph E.; Cain, Christopher K.

    2010-01-01

    Norepinephrine receptors have been studied in emotion, memory, and attention. However, the role of alpha1-adrenergic receptors in fear conditioning, a major model of emotional learning, is poorly understood. We examined the effect of terazosin, an alpha1-adrenergic receptor antagonist, on cued fear conditioning. Systemic or intra-lateral amygdala…

  2. Baseline characteristics in PRIORITY study: Proteomics and mineralocorticoid receptor antagonism for prevention of diabetic nephropathy in type 2 diabetes

    DEFF Research Database (Denmark)

    Tofte, Nete

    diabetic nephRopathy In TYpe 2 diabetic patients with normoalbuminuria) trial, the aim is to confirm that CKD273 can predict microalbuminuria prospectively, and to test whether mineralocorticoid receptor antagonism (MRA) delays progression to microalbuminuria. Here we report the association between CKD273...... and traditional risk factors for diabetic nephropathy at baseline. Materials and methods PRIORITY is an investigator-initiated, prospective, randomized, double blind, placebo-controlled multicentre clinical trial and observational study in normoalbuminuric type 2 diabetic patients. Patients are stratified...... is development of microalbuminuria. Results In total 2277 type 2 diabetic patients have been screened over a time period of 2.5 years and 1811 are included from 15 sites. Table 1 shows the baseline characteristics. 224 (12.4%) have the high-risk CKD273 pattern. The high- and low-risk populations differ...

  3. Facilitation of Contextual Fear Extinction by Orexin-1 Receptor Antagonism Is Associated with the Activation of Specific Amygdala Cell Subpopulations.

    Science.gov (United States)

    Flores, África; Herry, Cyril; Maldonado, Rafael; Berrendero, Fernando

    2017-08-01

    Orexins are hypothalamic neuropeptides recently involved in the regulation of emotional memory. The basolateral amygdala, an area orchestrating fear memory processes, appears to be modulated by orexin transmission during fear extinction. However, the neuronal types within the basolateral amygdala involved in this modulation remain to be elucidated. We used retrograde tracing combined with immunofluorescence techniques in mice to identify basolateral amygdala projection neurons and cell subpopulations in this brain region influenced by orexin transmission during contextual fear extinction consolidation. Treatment with the orexin-1 receptor antagonist SB334867 increased the activity of basolateral amygdala neurons projecting to infralimbic medial prefrontal cortex during fear extinction. GABAergic interneurons expressing calbindin, but not parvalbumin, were also activated by orexin-1 receptor antagonism in the basolateral amygdala. These data identify neuronal circuits and cell populations of the amygdala associated with the facilitation of fear extinction consolidation induced by the orexin-1 receptor antagonist SB334867. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  4. Kappa opioid receptor antagonism and chronic antidepressant treatment have beneficial activities on social interactions and grooming deficits during heroin abstinence.

    Science.gov (United States)

    Lalanne, L; Ayranci, G; Filliol, D; Gavériaux-Ruff, C; Befort, K; Kieffer, B L; Lutz, P-E

    2017-07-01

    Addiction is a chronic brain disorder that progressively invades all aspects of personal life. Accordingly, addiction to opiates severely impairs interpersonal relationships, and the resulting social isolation strongly contributes to the severity and chronicity of the disease. Uncovering new therapeutic strategies that address this aspect of addiction is therefore of great clinical relevance. We recently established a mouse model of heroin addiction in which, following chronic heroin exposure, 'abstinent' mice progressively develop a strong and long-lasting social avoidance phenotype. Here, we explored and compared the efficacy of two pharmacological interventions in this mouse model. Because clinical studies indicate some efficacy of antidepressants on emotional dysfunction associated with addiction, we first used a chronic 4-week treatment with the serotonergic antidepressant fluoxetine, as a reference. In addition, considering prodepressant effects recently associated with kappa opioid receptor signaling, we also investigated the kappa opioid receptor antagonist norbinaltorphimine (norBNI). Finally, we assessed whether fluoxetine and norBNI could reverse abstinence-induced social avoidance after it has established. Altogether, our results show that two interspaced norBNI administrations are sufficient both to prevent and to reverse social impairment in heroin abstinent animals. Therefore, kappa opioid receptor antagonism may represent a useful approach to alleviate social dysfunction in addicted individuals. © 2016 Society for the Study of Addiction.

  5. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABAA receptors

    International Nuclear Information System (INIS)

    Shakarjian, Michael P.; Velíšková, Jana; Stanton, Patric K.; Velíšek, Libor

    2012-01-01

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic–clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic–clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic–clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABA A receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists is more likely to be effective in treating TMDT poisoning. -- Highlights: ► TMDT produces convulsions and lethality at low doses in mice. ► Diazepam pre- or post-treatments inhibit TMDT-induced convulsions and death.

  6. Inhibition of cisplatin-induced vomiting by selective 5-hydroxytryptamine M-receptor antagonism.

    OpenAIRE

    Miner, W. D.; Sanger, G. J.

    1986-01-01

    MDL 72222, the selective 5-hydroxytryptamine (5-HT) M-receptor antagonist, prevented or reduced cisplatin-induced emesis in ferrets. It is suggested that cisplatin-induced, and possibly other cytotoxic drug-induced vomiting may involve a 5-HT M-receptor mechanism.

  7. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer

    OpenAIRE

    Singhal, Hari; Greene, Marianne E.; Tarulli, Gerard; Zarnke, Allison L.; Bourgo, Ryan J.; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G.; Raj, Ganesh V.; Hickey, Theresa E.; Tilley, Wayne D.; Greene, Geoffrey L.

    2016-01-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER+ (estrogen receptor?positive)/PR+ human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak ...

  8. Effects of dopamine D2/D3 receptor antagonism on human planning and spatial working memory.

    Science.gov (United States)

    Naef, M; Müller, U; Linssen, A; Clark, L; Robbins, T W; Eisenegger, C

    2017-04-25

    Psychopharmacological studies in humans suggest important roles for dopamine (DA) D2 receptors in human executive functions, such as cognitive planning and spatial working memory (SWM). However, studies that investigate an impairment of such functions using the selective DA D2/3 receptor antagonist sulpiride have yielded inconsistent results, perhaps because relatively low doses were used. We believe we report for the first time, the effects of a higher (800 mg p.o.) single dose of sulpiride as well as of genetic variation in the DA receptor D2 gene (DA receptor D2 Taq1A polymorphism), on planning and working memory. With 78 healthy male volunteers, we apply a between-groups, placebo-controlled design. We measure outcomes in the difficult versions of the Cambridge Neuropsychological Test Automated Battery One-Touch Stockings of Cambridge and the self-ordered SWM task. Volunteers in the sulpiride group showed significant impairments in planning accuracy and, for the more difficult problems, in SWM. Sulpiride administration speeded response latencies in the planning task on the most difficult problems. Volunteers with at least one copy of the minor allele (A1+) of the DA receptor D2 Taq1A polymorphism showed better SWM capacity, regardless of whether they received sulpiride or placebo. There were no effects on blood pressure, heart rate or subjective sedation. In sum, a higher single dose of sulpiride impairs SWM and executive planning functions, in a manner independent of the DA receptor D2 Taq1A polymorphism.

  9. 5-HT(1A) receptor antagonism reverses and prevents fluoxetine-induced sexual dysfunction in rats.

    Science.gov (United States)

    Sukoff Rizzo, Stacey J; Pulicicchio, Claudine; Malberg, Jessica E; Andree, Terrance H; Stack, Gary P; Hughes, Zoë A; Schechter, Lee E; Rosenzweig-Lipson, Sharon

    2009-09-01

    Sexual dysfunction associated with antidepressant treatment continues to be a major compliance issue for antidepressant therapies. 5-HT(1A) antagonists have been suggested as beneficial adjunctive treatment in respect of antidepressant efficacy; however, the effects of 5-HT(1A) antagonism on antidepressant-induced side-effects has not been fully examined. The present study was conducted to evaluate the ability of acute or chronic treatment with 5-HT(1A) antagonists to alter chronic fluoxetine-induced impairments in sexual function. Chronic 14-d treatment with fluoxetine resulted in a marked reduction in the number of non-contact penile erections in sexually experienced male rats, relative to vehicle-treated controls. Acute administration of the 5-HT(1A) antagonist WAY-101405 resulted in a complete reversal of chronic fluoxetine-induced deficits on non-contact penile erections at doses that did not significantly alter baselines. Chronic co-administration of the 5-HT(1A) antagonists WAY-100635 or WAY-101405 with fluoxetine prevented fluoxetine-induced deficits in non-contact penile erections in sexually experienced male rats. Moreover, withdrawal of WAY-100635 from co-treatment with chonic fluoxetine, resulted in a time-dependent reinstatement of chronic fluoxetine-induced deficits in non-contact penile erections. Additionally, chronic administration of SSA-426, a molecule with dual activity as both a SSRI and 5-HT(1A) antagonist, did not produce deficits in non-contact penile erections at doses demonstrated to have antidepressant-like activity in the olfactory bulbectomy model. Taken together, these data suggest that 5-HT(1A) antagonist treatment may have utility for the management of SSRI-induced sexual dysfunction.

  10. Neurokinin-1 receptor antagonism in a rat model of subarachnoid hemorrhage

    DEFF Research Database (Denmark)

    Ansar, Saema; Svendgaard, Niels-Aage; Edvinsson, Lars

    2007-01-01

    OBJECT: Cerebral vasospasm following subarachnoid hemorrhage (SAH) leads to reduced cerebral blood flow (CBF) and to cerebral ischemia, in some cases even producing infarction and long-term disability. The goal of the present study was to investigate the hypothesis that inhibition of neurokinin-1...... receptors (NK1Rs) by administration of L-822429 blunts the decrease in CBF as well as cerebrovascular receptor upregulation in an animal model of SAH. METHODS: Subarachnoid hemorrhage was induced in rats by injection of 250 microl of blood into the prechiasmatic cistern. The NK1R inhibitor L-822429...

  11. A2A Receptor Antagonism and Dyskinesia in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Micaela Morelli

    2012-01-01

    Full Text Available Dyskinesia, a major complication of treatment of Parkinson’s disease (PD, involves two phases: induction, which is responsible for dyskinesia onset, and expression, which underlies its clinical manifestation. The unique cellular and regional distribution of adenosine A2A receptors in basal ganglia areas that are richly innervated by dopamine, and their antagonistic role towards dopamine receptor stimulation, have positioned A2A receptor antagonists as an attractive nondopaminergic target to improve the motor deficits that characterize PD. In this paper, we describe the biochemical characteristics of A2A receptors and the effects of adenosine A2A antagonists in rodent and primate models of PD on L-DOPA-induced dyskinesia, together with relevant biomarker studies. We also review clinical trials of A2A antagonists as adjuncts to L-DOPA in PD patients with motor fluctuations. These studies have generally demonstrated that the addition of an A2A antagonist to a stable L-DOPA regimen reduces OFF time and mildly increases dyskinesia. However, limited clinical data suggest that the addition of an A2A antagonist along with a reduction of L-DOPA might maintain anti-Parkinsonian benefit and reduce dyskinesia. Whether A2A antagonists might reduce the development of dyskinesia has not yet been tested clinically.

  12. Delta receptor antagonism, ethanol taste reactivity, and ethanol consumption in outbred male rats.

    Science.gov (United States)

    Higley, Amanda E; Kiefer, Stephen W

    2006-11-01

    Naltrexone, a nonspecific opioid antagonist, produces significant changes in ethanol responsivity in rats by rendering the taste of ethanol aversive as well as producing a decrease in voluntary ethanol consumption. The present study investigated the effect of naltrindole, a specific antagonist of delta opioid receptors, on ethanol taste reactivity and ethanol consumption in outbred rats. In the first experiment, rats received acute treatment of naltrexone, naltrindole, or saline followed by the measurement of ethanol consumption in a short-term access period. The second experiment involved the same treatments and investigated ethanol palatability (using the taste-reactivity test) as well as ethanol consumption. Results indicated that treatment with 3 mg/kg naltrexone significantly affected palatability (rendered ethanol more aversive, Experiment 2) and decreased voluntary ethanol consumption (Experiments 1 and 2). The effects of naltrindole were inconsistent. In Experiment 1, 8 mg/kg naltrindole significantly decreased voluntary ethanol consumption but this was not replicated in Experiment 2. The 8 mg/kg dose produced a significant increase in aversive responding (Experiment 2) but did not affect ingestive responding. Lower doses of naltrindole (2 and 4 mg/kg) were ineffective in altering rats' taste-reactivity response to and consumption of ethanol. While these data suggest that delta receptors are involved in rats' taste-reactivity response to ethanol and rats' ethanol consumption, it is likely that multiple opioid receptors mediate both behavioral responses.

  13. Lipoxin A4 stable analogs reduce allergic airway responses via mechanisms distinct from CysLT1 receptor antagonism.

    Science.gov (United States)

    Levy, Bruce D; Lukacs, Nicholas W; Berlin, Aaron A; Schmidt, Birgitta; Guilford, William J; Serhan, Charles N; Parkinson, John F

    2007-12-01

    Cellular recruitment during inflammatory/immune responses is tightly regulated. The ability to dampen inflammation is imperative for prevention of chronic immune responses, as in asthma. Here we investigated the ability of lipoxin A4 (LXA4) stable analogs to regulate airway responses in two allergen-driven models of inflammation. A 15-epi-LXA4 analog (ATLa) and a 3-oxa-15-epi-LXA4 analog (ZK-994) prevented excessive eosinophil and T lymphocyte accumulation and activation after mice were sensitized and aerosol-challenged with ovalbumin. At 50% and to a greater extent than equivalent doses of the CysLT1 receptor antagonist montelukast. Distinct from montelukast, ATLa treatment led to marked reductions in cysteinyl leukotrienes, interleukin-4 (IL-4), and IL-10, and both ATLa and ZK-994 inhibited levels of IL-13. In cockroach allergen-induced airway responses, both intraperitoneal and oral administration of ZK-994 significantly reduced parameters of airway inflammation and hyper-responsiveness in a dose-dependent manner. ZK-994 also significantly changed the balance of Th1/Th2-specific cytokine levels. Thus, the ATLa/LXA4 analog actions are distinct from CysLT1 antagonism and potently block both allergic airway inflammation and hyper-reactivity. Moreover, these results demonstrate these analogs' therapeutic potential as new agonists for the resolution of inflammation.

  14. Neurokinin B receptor antagonism decreases luteinising hormone pulse frequency and amplitude and delays puberty onset in the female rat.

    Science.gov (United States)

    Li, S Y; Li, X F; Hu, M H; Shao, B; Poston, L; Lightman, S L; O'Byrne, K T

    2014-08-01

    The neural mechanisms controlling puberty onset remain enigmatic. Humans with loss of function mutations in TAC3 or TACR3, the genes encoding neurokinin B (NKB) or its receptor, neurokinin-3 receptor (NK3R), respectively, present with severe congenital gonadotrophin deficiency and pubertal failure. Animal studies have shown ambiguous actions of NKB-NK3R signalling with respect to controlling puberty onset. The present study aimed to determine the role of endogenous NKB-NK3R signalling in the control of pulsatile luteinising hormone (LH) secretion and the timing of puberty onset, and also whether precocious pubertal onset as a result of an obesogenic diet is similarly regulated by this neuropeptide system. Prepubertal female rats, chronically implanted with i.c.v. cannulae, were administered SB222200, a NK3R antagonist, or artificial cerebrospinal fluid via an osmotic mini-pump for 14 days. SB222200 significantly delayed the onset of vaginal opening and first oestrus (as markers of puberty) compared to controls in both normal and high-fat diet fed animals. Additionally, serial blood sampling, via chronic indwelling cardiac catheters, revealed that the increase in LH pulse frequency was delayed and that the LH pulse amplitude was reduced in response to NK3R antagonism, regardless of dietary status. These data suggest that endogenous NKB-NK3R signalling plays a role in controlling the timing of puberty and the associated acceleration of gonadotrophin-releasing hormone pulse generator frequency in the female rat. © 2014 British Society for Neuroendocrinology.

  15. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice.

    Science.gov (United States)

    Roundtree, Harrison M; Simeone, Timothy A; Johnson, Chaz; Matthews, Stephanie A; Samson, Kaeli K; Simeone, Kristina A

    2016-02-01

    Comorbid sleep disorders occur in approximately one-third of people with epilepsy. Seizures and sleep disorders have an interdependent relationship where the occurrence of one can exacerbate the other. Orexin, a wake-promoting neuropeptide, is associated with sleep disorder symptoms. Here, we tested the hypothesis that orexin dysregulation plays a role in the comorbid sleep disorder symptoms in the Kcna1-null mouse model of temporal lobe epilepsy. Rest-activity was assessed using infrared beam actigraphy. Sleep architecture and seizures were assessed using continuous video-electroencephalography-electromyography recordings in Kcna1-null mice treated with vehicle or the dual orexin receptor antagonist, almorexant (100 mg/kg, intraperitoneally). Orexin levels in the lateral hypothalamus/perifornical region (LH/P) and hypothalamic pathology were assessed with immunohistochemistry and oxygen polarography. Kcna1-null mice have increased latency to rapid eye movement (REM) sleep onset, sleep fragmentation, and number of wake epochs. The numbers of REM and non-REM (NREM) sleep epochs are significantly reduced in Kcna1-null mice. Severe seizures propagate to the wake-promoting LH/P where injury is apparent (indicated by astrogliosis, blood-brain barrier permeability, and impaired mitochondrial function). The number of orexin-positive neurons is increased in the LH/P compared to wild-type LH/P. Treatment with a dual orexin receptor antagonist significantly increases the number and duration of NREM sleep epochs and reduces the latency to REM sleep onset. Further, almorexant treatment reduces the incidence of severe seizures and overall seizure burden. Interestingly, we report a significant positive correlation between latency to REM onset and seizure burden in Kcna1-null mice. Dual orexin receptor antagonists may be an effective sleeping aid in epilepsy, and warrants further study on their somnogenic and ant-seizure effects in other epilepsy models. © 2016 Associated

  16. The Tetherin Antagonism of the Ebola Virus Glycoprotein Requires an Intact Receptor-Binding Domain and Can Be Blocked by GP1-Specific Antibodies.

    Science.gov (United States)

    Brinkmann, Constantin; Nehlmeier, Inga; Walendy-Gnirß, Kerstin; Nehls, Julia; González Hernández, Mariana; Hoffmann, Markus; Qiu, Xiangguo; Takada, Ayato; Schindler, Michael; Pöhlmann, Stefan

    2016-12-15

    The glycoprotein of Ebola virus (EBOV GP), a member of the family Filoviridae, facilitates viral entry into target cells. In addition, EBOV GP antagonizes the antiviral activity of the host cell protein tetherin, which may otherwise restrict EBOV release from infected cells. However, it is unclear how EBOV GP antagonizes tetherin, and it is unknown whether the GP of Lloviu virus (LLOV), a filovirus found in dead bats in Northern Spain, also counteracts tetherin. Here, we show that LLOV GP antagonizes tetherin, indicating that tetherin may not impede LLOV spread in human cells. Moreover, we demonstrate that appropriate processing of N-glycans in tetherin/GP-coexpressing cells is required for tetherin counteraction by EBOV GP. Furthermore, we show that an intact receptor-binding domain (RBD) in the GP1 subunit of EBOV GP is a prerequisite for tetherin counteraction. In contrast, blockade of Niemann-Pick disease type C1 (NPC1), a cellular binding partner of the RBD, did not interfere with tetherin antagonism. Finally, we provide evidence that an antibody directed against GP1, which protects mice from a lethal EBOV challenge, may block GP-dependent tetherin antagonism. Our data, in conjunction with previous reports, indicate that tetherin antagonism is conserved among the GPs of all known filoviruses and demonstrate that the GP1 subunit of EBOV GP plays a central role in tetherin antagonism. Filoviruses are reemerging pathogens that constitute a public health threat. Understanding how Ebola virus (EBOV), a highly pathogenic filovirus responsible for the 2013-2016 Ebola virus disease epidemic in western Africa, counteracts antiviral effectors of the innate immune system might help to define novel targets for antiviral intervention. Similarly, determining whether Lloviu virus (LLOV), a filovirus detected in bats in northern Spain, is inhibited by innate antiviral effectors in human cells might help to determine whether the virus constitutes a threat to humans. The

  17. Effector stage CC chemokine receptor-1 selective antagonism reduces multiple sclerosis-like rat disease.

    Science.gov (United States)

    Eltayeb, Sana; Sunnemark, Dan; Berg, Anna-Lena; Nordvall, Gunnar; Malmberg, Asa; Lassmann, Hans; Wallström, Erik; Olsson, Tomas; Ericsson-Dahlstrand, Anders

    2003-09-01

    We have studied the role of the chemokine receptor CCR1 during the effector stage of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in DA rats. In situ hybridization histochemistry revealed local production of the CCR1 ligands CCL3 (MIP-1 alpha) and CCL5 (RANTES), as well as large numbers of CCR1 and CCR5 expressing cells within inflammatory brain lesions. A low-molecular weight CCR1 selective antagonist potently abrogated both clinical and histopathological disease signs during a 5-day treatment period, without signs of peripheral immune compromise. Thus, we demonstrate therapeutic targeting of CCR1-dependent leukocyte recruitment to the central nervous system in a multiple sclerosis (MS)-like rat model.

  18. Effect of the adenosine A2A receptor antagonist MSX-3 on motivational disruptions of maternal behavior induced by dopamine antagonism in the early postpartum rat.

    Science.gov (United States)

    Pereira, Mariana; Farrar, Andrew M; Hockemeyer, Jörg; Müller, Christa E; Salamone, John D; Morrell, Joan I

    2011-01-01

    Mesolimbic dopamine (DA), particularly in the nucleus accumbens, importantly regulates activational aspects of maternal responsiveness. DA antagonism and accumbens DA depletions interfere with early postpartum maternal motivation by selectively affecting most forms of active maternal behaviors, while leaving nursing behavior relatively intact. Considerable evidence indicates that there is a functional interaction between DA D2 and adenosine A(2A) receptors in striatal areas, including the nucleus accumbens. This study was conducted to determine if adenosine A(2A) receptor antagonism could reverse the effects of DA receptor antagonism on early postpartum maternal behavior. The adenosine A(2A) receptor antagonist MSX-3 (0.25-2.0 mg/kg, IP) was investigated for its ability to reverse the effects of the DA D2 receptor antagonist haloperidol (0.1 mg/kg, IP) on the maternal behavior of early postpartum female rats. Haloperidol severely impaired the expression of active maternal components, including retrieval and grouping the pups at the nest site, pup licking, and nest building. Co-administration of MSX-3 (0.25-2.0 mg/kg, IP) with haloperidol produced a dose-related attenuation of the haloperidol-induced behavioral deficits in early postpartum females. Doses of MSX-3 that effectively reversed the effects of haloperidol (0.5, 1.0 mg/kg), when administered in the absence of haloperidol, did not affect maternal responding or locomotor activity. Adenosine and DA systems interact to regulate early postpartum maternal responsiveness. This research may potentially contribute to the development of strategies for treatments of psychiatric disorders during the postpartum period, with particular emphasis in maintaining or restoring the mother-infant relationship.

  19. Pharmacologic antagonism of dopamine receptor D3 attenuates neurodegeneration and motor impairment in a mouse model of Parkinson's disease.

    Science.gov (United States)

    Elgueta, Daniela; Aymerich, María S; Contreras, Francisco; Montoya, Andro; Celorrio, Marta; Rojo-Bustamante, Estefanía; Riquelme, Eduardo; González, Hugo; Vásquez, Mónica; Franco, Rafael; Pacheco, Rodrigo

    2017-02-01

    Neuroinflammation involves the activation of glial cells, which is associated to the progression of neurodegeneration in Parkinson's disease. Recently, we and other researchers demonstrated that dopamine receptor D3 (D3R)-deficient mice are completely refractory to neuroinflammation and consequent neurodegeneration associated to the acute intoxication with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study we examined the therapeutic potential and underlying mechanism of a D3R-selective antagonist, PG01037, in mice intoxicated with a chronic regime of administration of MPTP and probenecid (MPTPp). Biodistribution analysis indicated that intraperitoneally administered PG01037 crosses the blood-brain barrier and reaches the highest concentration in the brain 40 min after the injection. Furthermore, the drug was preferentially distributed to the brain in comparison to the plasma. Treatment of MPTPp-intoxicated mice with PG01037 (30 mg/kg, administrated twice a week for five weeks) attenuated the loss of dopaminergic neurons in the substantia nigra pars compacta, as evaluated by stereological analysis, and the loss of striatal dopaminergic terminals, as determined by densitometric analyses of tyrosine hydroxylase and dopamine transporter immunoreactivities. Accordingly, the treatment resulted in significant improvement of motor performance of injured animals. Interestingly, the therapeutic dose of PG01037 exacerbated astrogliosis and resulted in increased ramification density of microglial cells in the striatum of MPTPp-intoxicated mice. Further analyses suggested that D3R expressed in astrocytes favours a beneficial astrogliosis with anti-inflammatory consequences on microglia. Our findings indicate that D3R-antagonism exerts a therapeutic effect in parkinsonian animals by reducing the loss of dopaminergic neurons in the nigrostriatal pathway, alleviating motor impairments and modifying the pro-inflammatory phenotype of glial cells. Copyright

  20. Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain.

    Science.gov (United States)

    Vazquez-DeRose, Jacqueline; Schwartz, Michael D; Nguyen, Alexander T; Warrier, Deepti R; Gulati, Srishti; Mathew, Thomas K; Neylan, Thomas C; Kilduff, Thomas S

    2016-03-01

    Hypocretin/orexin (HCRT) neurons provide excitatory input to wake-promoting brain regions including the basal forebrain (BF). The dual HCRT receptor antagonist almorexant (ALM) decreases waking and increases sleep. We hypothesized that HCRT antagonists induce sleep, in part, through disfacilitation of BF neurons; consequently, ALM should have reduced efficacy in BF-lesioned (BFx) animals. To test this hypothesis, rats were given bilateral IgG-192-saporin injections, which predominantly targets cholinergic BF neurons. BFx and intact rats were then given oral ALM, the benzodiazepine agonist zolpidem (ZOL) or vehicle (VEH) at lights-out. ALM was less effective than ZOL at inducing sleep in BFx rats compared to controls. BF adenosine (ADO), γ-amino-butyric acid (GABA), and glutamate levels were then determined via microdialysis from intact, freely behaving rats following oral ALM, ZOL or VEH. ALM increased BF ADO and GABA levels during waking and mixed vigilance states, and preserved sleep-associated increases in GABA under low and high sleep pressure conditions. ALM infusion into the BF also enhanced cortical ADO release, demonstrating that HCRT input is critical for ADO signaling in the BF. In contrast, oral ZOL and BF-infused ZOL had no effect on ADO levels in either BF or cortex. ALM increased BF ADO (an endogenous sleep-promoting substance) and GABA (which is increased during normal sleep), and required an intact BF for maximal efficacy, whereas ZOL blocked sleep-associated BF GABA release, and required no functional contribution from the BF to induce sleep. ALM thus induces sleep by facilitating the neural mechanisms underlying the normal transition to sleep.

  1. Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Gerlach, Lars-Ole; Jakobsen, Janus S

    2004-01-01

    , respectively. Metal ion binding in the cyclam rings of AMD3100 increased its dependence on Asp(262) and provided a tighter molecular map of the binding site, where borderline mutational hits became clear hits for the Zn(II)-loaded analog. The proposed binding site for AMD3100 was confirmed by a gradual build......-up in the rather distinct CXCR3 receptor, for which the compound normally had no effect. Introduction of only a Glu at position VII:06 and the removal of a neutralizing Lys residue at position VII:02 resulted in a 1000-fold increase in affinity of AMD3100 to within 10-fold of its affinity in CXCR4. We conclude...

  2. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism

    Science.gov (United States)

    Hasbi, Ahmed; Perreault, Melissa L.; Shen, Maurice Y. F.; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F.; George, Susan R.

    2014-01-01

    Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues 404Glu and 405Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment.—Hasbi, A., Perreault, M. L., Shen, M. Y. F., Zhang, L., To, R., Fan, T., Nguyen, T., Ji, X., O'Dowd, B. F., George, S. R. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. PMID:25063849

  3. Metabotropic Glutamate Receptor I (mGluR1) Antagonism Impairs Cocaine-Induced Conditioned Place Preference via Inhibition of Protein Synthesis

    OpenAIRE

    Yu, Fei; Zhong, Peng; Liu, Xiaojie; Sun, Dalong; Gao, Hai-qing; Liu, Qing-song

    2013-01-01

    Antagonism of group I metabotropic glutamate receptors (mGluR1 and mGluR5) reduces behavioral effects of drugs of abuse, including cocaine. However, the underlying mechanisms remain poorly understood. Activation of mGluR5 increases protein synthesis at synapses. Although mGluR5-induced excessive protein synthesis has been implicated in the pathology of fragile X syndrome, it remains unknown whether group I mGluR-mediated protein synthesis is involved in any behavioral effects of drugs of abus...

  4. Inhibition of Dengue Virus Replication by a Class of Small-Molecule Compounds That Antagonize Dopamine Receptor D4 and Downstream Mitogen-Activated Protein Kinase Signaling

    Science.gov (United States)

    Smith, Jessica L.; Stein, David A.; Shum, David; Fischer, Matthew A.; Radu, Constantin; Bhinder, Bhavneet; Djaballah, Hakim; Nelson, Jay A.; Früh, Klaus

    2014-01-01

    ABSTRACT Dengue viruses (DENV) are endemic pathogens of tropical and subtropical regions that cause significant morbidity and mortality worldwide. To date, no vaccines or antiviral therapeutics have been approved for combating DENV-associated disease. In this paper, we describe a class of tricyclic small-molecule compounds—dihydrodibenzothiepines (DHBTs), identified through high-throughput screening—with potent inhibitory activity against DENV serotype 2. SKI-417616, a highly active representative of this class, displayed activity against all four serotypes of DENV, as well as against a related flavivirus, West Nile virus (WNV), and an alphavirus, Sindbis virus (SINV). This compound was characterized to determine its mechanism of antiviral activity. Investigation of the stage of the viral life cycle affected revealed that an early event in the life cycle is inhibited. Due to the structural similarity of the DHBTs to known antagonists of the dopamine and serotonin receptors, we explored the roles of two of these receptors, serotonin receptor 2A (5HTR2A) and the D4 dopamine receptor (DRD4), in DENV infection. Antagonism of DRD4 and subsequent downstream phosphorylation of epidermal growth factor receptor (EGFR)-related kinase (ERK) were found to impact DENV infection negatively, and blockade of signaling through this network was confirmed as the mechanism of anti-DENV activity for this class of compounds. IMPORTANCE The dengue viruses are mosquito-borne, reemerging human pathogens that are the etiological agents of a spectrum of febrile diseases. Currently, there are no approved therapeutic treatments for dengue-associated disease, nor is there a vaccine. This study identifies a small molecule, SKI-417616, with potent anti-dengue virus activity. Further analysis revealed that SKI-417616 acts through antagonism of the host cell dopamine D4 receptor and subsequent repression of the ERK phosphorylation pathway. These results suggest that SKI-417616, or other

  5. Behavioral effects of gamma-hydroxybutyrate, its precursor gamma-butyrolactone, and GABA(B) receptor agonists: time course and differential antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348).

    Science.gov (United States)

    Koek, Wouter; Mercer, Susan L; Coop, Andrew; France, Charles P

    2009-09-01

    Gamma-hydroxybutyrate (GHB) is used therapeutically and recreationally. The mechanism by which GHB produces its therapeutic and recreational effects is not entirely clear, although GABA(B) receptors seem to play an important role. This role could be complex, because there are indications that different GABA(B) receptor mechanisms mediate the effects of GHB and the prototypical GABA(B) receptor agonist baclofen. To further explore possible differences in underlying GABA(B) receptor mechanisms, the present study examined the effects of GHB and baclofen on operant responding and their antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348). Pigeons were trained to peck a key for access to food during response periods that started at different times after the beginning of the session. In these pigeons, GHB, its precursor gamma-butyrolactone (GBL), and the GABA(B) receptor agonists baclofen and 3-aminopropyl(methyl)phosphinic acid hydrochloride (SKF97541) decreased the rate of responding in a dose- and time-dependent manner. CGP35348 shifted the dose-response curve of each agonist to the right, but the magnitude of the shift differed among the agonists. Schild analysis yielded a pA(2) value of CGP35348 to antagonize GHB and GBL [i.e., 3.9 (3.7-4.2)] that was different (P = 0.0011) from the pA(2) value to antagonize baclofen and SKF97541 [i.e., 4.5 (4.4-4.7)]. This finding is further evidence that the GABA(B) receptor mechanisms mediating the effects of GHB and prototypical GABA(B) receptor agonists are not identical. A better understanding of the similarities and differences between these mechanisms, and their involvement in the therapeutic effects of GHB and baclofen, could lead to more effective medications with fewer adverse effects.

  6. β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat.

    Science.gov (United States)

    Wohleb, Eric S; Hanke, Mark L; Corona, Angela W; Powell, Nicole D; Stiner, La'Tonia M; Bailey, Michael T; Nelson, Randy J; Godbout, Jonathan P; Sheridan, John F

    2011-04-27

    Psychosocial stress is associated with altered immune function and development of psychological disorders including anxiety and depression. Here we show that repeated social defeat in mice increased c-Fos staining in brain regions associated with fear and threat appraisal and promoted anxiety-like behavior in a β-adrenergic receptor-dependent manner. Repeated social defeat also significantly increased the number of CD11b(+)/CD45(high)/Ly6C(high) macrophages that trafficked to the brain. In addition, several inflammatory markers were increased on the surface of microglia (CD14, CD86, and TLR4) and macrophages (CD14 and CD86) after social defeat. Repeated social defeat also increased the presence of deramified microglia in the medial amygdala, prefrontal cortex, and hippocampus. Moreover, mRNA analysis of microglia indicated that repeated social defeat increased levels of interleukin (IL)-1β and reduced levels of glucocorticoid responsive genes [glucocorticoid-induced leucine zipper (GILZ) and FK506 binding protein-51 (FKBP51)]. The stress-dependent changes in microglia and macrophages were prevented by propranolol, a β-adrenergic receptor antagonist. Microglia isolated from socially defeated mice and cultured ex vivo produced markedly higher levels of IL-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 after stimulation with lipopolysaccharide compared with microglia from control mice. Last, repeated social defeat increased c-Fos activation in IL-1 receptor type-1-deficient mice, but did not promote anxiety-like behavior or microglia activation in the absence of functional IL-1 receptor type-1. These findings indicate that repeated social defeat-induced anxiety-like behavior and enhanced reactivity of microglia was dependent on activation of β-adrenergic and IL-1 receptors.

  7. GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet

    DEFF Research Database (Denmark)

    McClean, Paula L; Irwin, Nigel; Cassidy, Roslyn S

    2007-01-01

    The gut hormone gastric inhibitory polypeptide (GIP) plays a key role in glucose homeostasis and lipid metabolism. This study investigated the effects of administration of a stable and specific GIP receptor antagonist, (Pro(3))GIP, in mice previously fed a high-fat diet for 160 days to induce...... obesity and related diabetes. Daily intraperitoneal injection of (Pro(3))GIP over 50 days significantly decreased body weight compared with saline-treated controls, with a modest increase in locomotor activity but no change of high-fat diet intake. Plasma glucose, glycated hemoglobin, and pancreatic......))GIP concentrations peaked rapidly and remained elevated 24 h after injection. These data indicate that GIP receptor antagonism using (Pro(3))GIP provides an effective means of countering obesity and related diabetes induced by consumption of a high-fat, energy-rich diet....

  8. SFRP2 enhances the osteogenic differentiation of apical papilla stem cells by antagonizing the canonical WNT pathway.

    Science.gov (United States)

    Jin, Luyuan; Cao, Yu; Yu, Guoxia; Wang, Jinsong; Lin, Xiao; Ge, Lihua; Du, Juan; Wang, Liping; Diao, Shu; Lian, Xiaomeng; Wang, Songlin; Dong, Rui; Shan, Zhaochen

    2017-01-01

    Exploring the molecular mechanisms underlying directed differentiation is helpful in the development of clinical applications of mesenchymal stem cells (MSCs). Our previous study on dental tissue-derived MSCs demonstrated that secreted frizzled-related protein 2 (SFRP2), a Wnt inhibitor, could enhance osteogenic differentiation in stem cells from the apical papilla (SCAPs). However, how SFRP2 promotes osteogenic differentiation of dental tissue-derived MSCs remains unclear. In this study, we used SCAPs to investigate the underlying mechanisms. SCAPs were isolated from the apical papilla of immature third molars. Western blot and real-time RT-PCR were applied to detect the expression of β-catenin and Wnt target genes. Alizarin Red staining, quantitative calcium analysis, transwell cultures and in vivo transplantation experiments were used to study the osteogenic differentiation potential of SCAPs. SFRP2 inhibited canonical Wnt signaling by enhancing phosphorylation and decreasing the expression of nuclear β-catenin in vitro and in vivo . In addition, the target genes of the Wnt signaling pathway, AXIN2 (axin-related protein 2) and MMP7 (matrix metalloproteinase-7), were downregulated by SFRP2 . WNT1 inhibited the osteogenic differentiation potential of SCAPs. SFRP2 could rescue this WNT1 -impaired osteogenic differentiation potential. The results suggest that SFRP2 could bind to locally present Wnt ligands and alter the balance of intracellular Wnt signaling to antagonize the canonical Wnt pathway in SCAPs. This elucidates the molecular mechanism underlying the SFRP2-mediated directed differentiation of SCAPs and indicates potential target genes for improving dental tissue regeneration.

  9. Metabotropic glutamate receptor I (mGluR1) antagonism impairs cocaine-induced conditioned place preference via inhibition of protein synthesis.

    Science.gov (United States)

    Yu, Fei; Zhong, Peng; Liu, Xiaojie; Sun, Dalong; Gao, Hai-Qing; Liu, Qing-Song

    2013-06-01

    Antagonism of group I metabotropic glutamate receptors (mGluR1 and mGluR5) reduces behavioral effects of drugs of abuse, including cocaine. However, the underlying mechanisms remain poorly understood. Activation of mGluR5 increases protein synthesis at synapses. Although mGluR5-induced excessive protein synthesis has been implicated in the pathology of fragile X syndrome, it remains unknown whether group I mGluR-mediated protein synthesis is involved in any behavioral effects of drugs of abuse. We report that group I mGluR agonist DHPG induced more pronounced initial depression of inhibitory postsynaptic currents (IPSCs) followed by modest long-term depression (I-LTD) in dopamine neurons of rat ventral tegmental area (VTA) through the activation of mGluR1. The early component of DHPG-induced depression of IPSCs was mediated by the cannabinoid CB1 receptors, while DHPG-induced I-LTD was dependent on protein synthesis. Western blotting analysis indicates that mGluR1 was coupled to extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) signaling pathways to increase translation. We also show that cocaine conditioning activated translation machinery in the VTA via an mGluR1-dependent mechanism. Furthermore, intra-VTA microinjections of mGluR1 antagonist JNJ16259685 and protein synthesis inhibitor cycloheximide significantly attenuated or blocked the acquisition of cocaine-induced conditioned place preference (CPP) and activation of translation elongation factors. Taken together, these results suggest that mGluR1 antagonism inhibits de novo protein synthesis; this effect may block the formation of cocaine-cue associations and thus provide a mechanism for the reduction in CPP to cocaine.

  10. Lack of association between dopaminergic antagonism and negative symptoms in schizophrenia: a positron emission tomography dopamine D2/3 receptor occupancy study

    Science.gov (United States)

    Fervaha, Gagan; Caravaggio, Fernando; Mamo, David C.; Mulsant, Benoit H.; Pollock, Bruce G.; Nakajima, Shinichiro; Gerretsen, Philip; Rajji, Tarek K.; Mar, Wanna; Iwata, Yusuke; Plitman, Eric; Chung, Jun Ku; Remington, Gary; Graff-Guerrero, Ariel

    2016-01-01

    Rationale Several pre-clinical studies suggest that antipsychotic medications cause secondary negative symptoms. However, direct evidence for a relationship among antipsychotic medications, their direct effects on neurotransmitter systems, and negative symptoms in schizophrenia remains controversial. Objective The objective of this study was to examine the relationship between antipsychotic-related dopamine D2/3 receptor occupancy and negative symptoms in patients with schizophrenia. Methods Forty-one clinically stable outpatients with schizophrenia participated in this prospective dose reduction positron emission tomography (PET) study. Clinical assessments and [11C]-raclopride PET scans were performed before and after participants underwent gradual dose reduction of their antipsychotic medication by up to 40% from the baseline dose. Results No significant relationship was found between antipsychotic-related dopamine D2/3 receptor occupancy and negative symptom severity at baseline or follow-up. Similar null findings were found for subdomains of negative symptoms (amotivation and diminished expression). Occupancy was significantly lower following dose reduction; however, negative symptom severity did not change significantly, though a trend toward reduction was noted. Examination of change scores between these two variables revealed no systematic relationship. Conclusions Our cross-sectional and longitudinal results failed to find a significant dose-dependent relationship between severity of negative symptoms and antipsychotic-related dopaminergic antagonism in schizophrenia. These findings argue against the notion that antipsychotics necessarily cause secondary negative symptoms. Our results are also in contrast with the behavioural effects of dopaminergic antagonism routinely reported in pre-clinical investigations, suggesting that the role of this variable in the context of chronic treatment and schizophrenia needs to be re-examined. PMID:27557949

  11. Brain catalase activity inhibition as well as opioid receptor antagonism increases ethanol-induced HPA axis activation.

    Science.gov (United States)

    Pastor, Raúl; Sanchis-Segura, Carles; Aragon, Carlos M G

    2004-12-01

    Growing evidence indicates that brain catalase activity is involved in the psychopharmacological actions of ethanol. Recent data suggest that participation of this enzymatic system in some ethanol effects could be mediated by the endogenous opioid system. The present study assessed whether brain catalase has a role in ethanol-induced activation of the HPA axis, a neuroendocrine system modulated by the endogenous opioid neurotransmission. Swiss male mice received an intraperitoneal injection of the catalase inhibitor 3-amino-1,2,4-triazole (AT; 0-1 g/kg), and 0 to 20 hr after this administration, animals received an ethanol (0-4 g/kg; intraperitoneally) challenge. Thirty, 60, or 120 min after ethanol administration, plasma corticosterone levels were determined immunoenzymatically. In addition, we tested the effects of 45 mg/kg of cyanamide (another catalase inhibitor) and 0 to 2 mg/kg of naltrexone (nonselective opioid receptor antagonist) on ethanol-induced enhancement in plasma corticosterone values. The present study revealed that AT boosts ethanol-induced increase in plasma corticosterone levels in a dose- and time-dependent manner. However, it did not affect corticosterone values when measured after administration of saline, cocaine (4 mg/kg, intraperitoneally), or morphine (30 mg/kg, intraperitoneally). The catalase inhibitor cyanamide (45 mg/kg, intraperitoneally) also increased ethanol-related plasma corticosterone levels. These effects of AT and cyanamide on ethanol-induced corticosterone values were observed under treatment conditions that decreased significantly brain catalase activity. Indeed, a significant correlation between effects of catalase manipulations on both variables was found. Finally, we found that the administration of naltrexone enhanced the levels of plasma corticosterone after the administration of saline or ethanol. This study shows that the inhibition of brain catalase increases ethanol-induced plasma corticosterone levels. Results are

  12. Antagonism of Secreted PCSK9 Increases Low Density Lipoprotein Receptor Expression in HepG2 Cells

    Energy Technology Data Exchange (ETDEWEB)

    McNutt, Markey C.; Kwon, Hyock Joo; Chen, Chiyuan; Chen, Justin R.; Horton, Jay D.; Lagace, Thomas A.; (USMC); (UTSMC)

    2009-07-10

    PCSK9 is a secreted protein that degrades low density lipoprotein receptors (LDLRs) in liver by binding to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. It is not known whether PCSK9 causes degradation of LDLRs within the secretory pathway or following secretion and reuptake via endocytosis. Here we show that a mutation in the LDLR EGF-A domain associated with familial hypercholesterolemia, H306Y, results in increased sensitivity to exogenous PCSK9-mediated cellular degradation because of enhanced PCSK9 binding affinity. The crystal structure of the PCSK9-EGF-A(H306Y) complex shows that Tyr-306 forms a hydrogen bond with Asp-374 in PCSK9 at neutral pH, which strengthens the interaction with PCSK9. To block secreted PCSK9 activity, LDLR (H306Y) subfragments were added to the medium of HepG2 cells stably overexpressing wild-type PCSK9 or gain-of-function PCSK9 mutants associated with hypercholesterolemia (D374Y or S127R). These subfragments blocked secreted PCSK9 binding to cell surface LDLRs and resulted in the recovery of LDLR levels to those of control cells. We conclude that PCSK9 acts primarily as a secreted factor to cause LDLR degradation. These studies support the concept that pharmacological inhibition of the PCSK9-LDLR interaction extracellularly will increase hepatic LDLR expression and lower plasma low density lipoprotein levels.

  13. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABA{sub A} receptors

    Energy Technology Data Exchange (ETDEWEB)

    Shakarjian, Michael P., E-mail: michael_shakarjian@nymc.edu [Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, NY, 10595 (United States); Department of Medicine, Division of Pulmonary and Critical Care Medicine, UMDNJ–Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Velíšková, Jana [Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 (United States); Department of Obstetrics and Gynecology, New York Medical College, Valhalla, NY 10595 (United States); Department of Neurology, New York Medical College, Valhalla, NY 10595 (United States); Stanton, Patric K., E-mail: patric_stanton@nymc.edu [Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 (United States); Department of Neurology, New York Medical College, Valhalla, NY 10595 (United States); Velíšek, Libor [Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 (United States); Department of Neurology, New York Medical College, Valhalla, NY 10595 (United States); Department of Pediatrics, New York Medical College, Valhalla, NY 10595 (United States)

    2012-11-15

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic–clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic–clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic–clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABA{sub A} receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists is more likely to be effective in treating TMDT poisoning. -- Highlights: ► TMDT produces convulsions and lethality at low doses in mice. ► Diazepam pre- or post-treatments inhibit TMDT-induced convulsions and death

  14. Rainbow trout estrogen receptor (ER) competitive bindng and vitellogenin induction agonism/antagonism data for 94 chemicals

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset is from screening 94 diverse chemicals for estrogen receptor (ER) activation in a competitive rainbow trout ER binding assay and a trout liver slice...

  15. The murine cytomegalovirus M35 protein antagonizes type I IFN induction downstream of pattern recognition receptors by targeting NF-κB mediated transcription.

    Directory of Open Access Journals (Sweden)

    Baca Chan

    2017-05-01

    Full Text Available The type I interferon (IFN response is imperative for the establishment of the early antiviral immune response. Here we report the identification of the first type I IFN antagonist encoded by murine cytomegalovirus (MCMV that shuts down signaling following pattern recognition receptor (PRR sensing. Screening of an MCMV open reading frame (ORF library identified M35 as a novel and strong negative modulator of IFNβ promoter induction following activation of both RNA and DNA cytoplasmic PRR. Additionally, M35 inhibits the proinflammatory cytokine response downstream of Toll-like receptors (TLR. Using a series of luciferase-based reporters with specific transcription factor binding sites, we determined that M35 targets NF-κB-, but not IRF-mediated, transcription. Expression of M35 upon retroviral transduction of immortalized bone marrow-derived macrophages (iBMDM led to reduced IFNβ transcription and secretion upon activation of stimulator of IFN genes (STING-dependent signaling. On the other hand, M35 does not antagonize interferon-stimulated gene (ISG 56 promoter induction or ISG transcription upon exogenous stimulation of the type I IFN receptor (IFNAR. M35 is present in the viral particle and, upon MCMV infection of fibroblasts, is immediately shuttled to the nucleus where it exerts its immunomodulatory effects. Deletion of M35 from the MCMV genome and hence from the viral particle resulted in elevated type I IFN transcription and secretion in vitro and in vivo. In the absence of M35, lower viral titers are observed during acute infection of the host, and productive infection in the salivary glands was not detected. In conclusion, the M35 protein is released by MCMV immediately upon infection in order to deftly inhibit the antiviral type I IFN response by targeting NF-κB-mediated transcription. The identification of this novel viral protein reinforces the importance of timely countermeasures in the complex relationship between virus and host.

  16. Antagonism at the NR2B subunit of NMDA receptors induces increased connectivity of the prefrontal and subcortical regions regulating reward behavior.

    Science.gov (United States)

    Gass, Natalia; Becker, Robert; Sack, Markus; Schwarz, Adam J; Reinwald, Jonathan; Cosa-Linan, Alejandro; Zheng, Lei; von Hohenberg, Christian Clemm; Inta, Dragos; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang; Gass, Peter; Sartorius, Alexander

    2018-04-01

    Evidence indicates that ketamine's rapid antidepressant efficacy likely results from its antagonism of NR2B-subunit-containing NMDA receptors (NMDAR). Since ketamine equally blocks NR2A- and NR2B-containing NMDAR, and has affinity to other receptors, NR2B-selective drugs might have improved therapeutic efficiency and side effect profile. We aimed to compare the effects of (S)-ketamine and two different types of NR2B-selective antagonists on functional brain networks in rats, in order to find common circuits, where their effects intersect, and that might explain their antidepressant action. The experimental design comprised four parallel groups of rats (N = 37), each receiving (S)-Ketamine, CP-101,606, Ro 25-6981 or saline. After compound injection, we acquired resting-state functional magnetic resonance imaging time series. We used graph theoretical approach to calculate brain network properties. Ketamine and CP-101,606 diminished the global clustering coefficient and small-worldness index. At the nodal level, all compounds induced increased connectivity of the regions mediating reward and cognitive aspects of emotional processing, such as ventromedial prefrontal cortex, septal nuclei, and nucleus accumbens. The dorsal hippocampus and regions involved in sensory processing and aversion, such as superior and inferior colliculi, exhibited an opposite effect. The effects common to ketamine and NR2B-selective compounds were localized to the same brain regions as those reported in depression, but in the opposite direction. The upregulation of the reward circuitry might partially underlie the antidepressant and anti-anhedonic effects of the antagonists and could potentially serve as a translational imaging phenotype for testing putative antidepressants, especially those targeting the NR2B receptor subtype.

  17. Metabolite Profiling and a Transcriptional Activation Assay Provide Direct Evidence of Androgen Receptor Antagonism by Bisphenol A in Fish.

    Science.gov (United States)

    Widespread environmental contamination by bisphenol A (BPA) has created the need to fully define its potential toxic mechanisms of action (MOA) to properly assess human health and ecological risks from exposure. Although long recognized as an estrogen receptor (ER) agonist, some ...

  18. Endothelin receptor antagonism in single ventricle physiology with fontan palliation: A systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Gwendolyn Derk

    2015-04-01

    Conclusions: Bosentan was found to be a safe and well tolerated endothelin receptor antagonist in Fontan patients over 3–6 months of therapy. Bosentan use was associated with improved functional capacity. Future studies with larger sample size and longer duration are warranted to examine the long-term safety and efficacy of endothelin blockade in Fontan physiology.

  19. Polyuria due to vasopressin V2 receptor antagonism is not associated with increased ureter diameter in ADPKD patients

    NARCIS (Netherlands)

    Casteleijn, Niek F.; Messchendorp, A. Lianne; Bae, Kyong T.; Higashihara, Eiji; Kappert, Peter; Torres, Vicente; Meijer, Esther; Leliveld, Anna M.

    Tolvaptan, a vasopressin V2 receptor antagonist, has been shown to reduce the rates of growth in total kidney volume (TKV) and renal function loss in ADPKD patients, but also leads to polyuria because of its aquaretic effect. Prolonged polyuria can result in ureter dilatation with consequently renal

  20. Noncompetitive antagonism and inverse agonism as mechanism of action of nonpeptidergic antagonists at primate and rodent CXCR3 chemokine receptors

    NARCIS (Netherlands)

    Verzijl, D.; Storelli, S.; Scholten, D.J.; Bosch, L.; Reinhart, T.A.; Streblow, D.N.; Tensen, C.P.; Fitzsimons, C.P.; Zaman, G.J.; Pease, J.E.; de Esch, I.J.P.; Smit, M.J.; Leurs, R.

    2008-01-01

    The chemokine receptor CXCR3 is involved in various inflammatory diseases, such as rheumatoid arthritis, multiple sclerosis, psoriasis, and allograft rejection in transplantation patients. The CXCR3 ligands CXCL9, CXCL10, and CXCL11 are expressed at sites of inflammation, and they attract

  1. Age-dependent effects on social interaction of NMDA GluN2A receptor subtype-selective antagonism.

    Science.gov (United States)

    Green, Torrian L; Burket, Jessica A; Deutsch, Stephen I

    2016-07-01

    NMDA receptor-mediated neurotransmission is implicated in the regulation of normal sociability in mice. The heterotetrameric NMDA receptor is composed of two obligatory GluN1 and either two "modulatory" GluN2A or GluN2B receptor subunits. GluN2A and GluN2B-containing receptors differ in terms of their developmental expression, distribution between synaptic and extrasynaptic locations, and channel kinetic properties, among other differences. Because age-dependent differences in disruptive effects of GluN2A and GluN2B subtype-selective antagonists on sociability and locomotor activity have been reported in rats, the current investigation explored age-dependent effects of PEAQX, a GluN2A subtype-selective antagonist, on sociability, stereotypic behaviors emerging during social interaction, and spatial working memory in 4- and 8-week old male Swiss Webster mice. The data implicate an age-dependent contribution of GluN2A-containing NMDA receptors to the regulation of normal social interaction in mice. Specifically, at a dose of PEAQX devoid of any effect on locomotor activity and mouse rotarod performance, the social interaction of 8-week old mice was disrupted without any effect on the social salience of a stimulus mouse. Moreover, PEAQX attenuated stereotypic behavior emerging during social interaction in 4- and 8-week old mice. However, PEAQX had no effect on spontaneous alternations, a measure of spatial working memory, suggesting that neural circuits mediating sociability and spatial working memory may be discrete and dissociable from each other. Also, the data suggest that the regulation of stereotypic behaviors and sociability may occur independently of each other. Because expression of GluN2A-containing NMDA receptors occurs at a later developmental stage, they may be more involved in mediating the pathogenesis of ASDs in patients with histories of "regression" after a period of normal development than GluN2B receptors. Copyright © 2016 Elsevier Inc. All rights

  2. Antagonism of EG-VEGF Receptors as Targeted Therapy for Choriocarcinoma Progression In Vitro and In Vivo.

    Science.gov (United States)

    Traboulsi, Wael; Sergent, Frédéric; Boufettal, Houssine; Brouillet, Sophie; Slim, Rima; Hoffmann, Pascale; Benlahfid, Mohammed; Zhou, Qun Y; Balboni, Gianfranco; Onnis, Valentina; Bolze, Pierre A; Salomon, Aude; Sauthier, Philippe; Mallet, François; Aboussaouira, Touria; Feige, Jean J; Benharouga, Mohamed; Alfaidy, Nadia

    2017-11-15

    Purpose: Choriocarcinoma (CC) is the most malignant gestational trophoblastic disease that often develops from complete hydatidiform moles (CHM). Neither the mechanism of CC development nor its progression is yet characterized. We recently identified endocrine gland-derived vascular endothelial growth factor (EG-VEGF) as a novel key placental growth factor that controls trophoblast proliferation and invasion. EG-VEGF acts via two receptors, PROKR1 and PROKR2. Here, we demonstrate that EG-VEGF receptors can be targeted for CC therapy. Experimental Design: Three approaches were used: (i) a clinical investigation comparing circulating EG-VEGF in control ( n = 20) and in distinctive CHM ( n = 38) and CC ( n = 9) cohorts, (ii) an in vitro study investigating EG-VEGF effects on the CC cell line JEG3, and (iii) an in vivo study including the development of a novel CC mouse model, through a direct injection of JEG3-luciferase into the placenta of gravid SCID-mice. Results: Both placental and circulating EG-VEGF levels were increased in CHM and CC (×5) patients. EG-VEGF increased JEG3 proliferation, migration, and invasion in two-dimensional (2D) and three-dimensional (3D) culture systems. JEG3 injection in the placenta caused CC development with large metastases compared with their injection into the uterine horn. Treatment of the animal model with EG-VEGF receptor's antagonists significantly reduced tumor development and progression and preserved pregnancy. Antibody-array and immunohistological analyses further deciphered the mechanism of the antagonist's actions. Conclusions: Our work describes a novel preclinical animal model of CC and presents evidence that EG-VEGF receptors can be targeted for CC therapy. This may provide safe and less toxic therapeutic options compared with the currently used multi-agent chemotherapies. Clin Cancer Res; 23(22); 7130-40. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. GABA(A) receptor antagonism in the ventrocaudal periaqueductal gray increases anxiety in the anxiety-resistant postpartum rat.

    Science.gov (United States)

    Miller, Stephanie M; Piasecki, Christopher C; Peabody, Mitchell F; Lonstein, Joseph S

    2010-06-01

    Postpartum mammals show suppressed anxiety, which is necessary for their ability to appropriately care for offspring. It is parsimonious to suggest that the neurobiological basis of this reduced anxiety is similar to that of non-parturient animals, involving GABA(A) receptor activity in sites including the midbrain periaqueductal gray (PAG). In Experiment 1, postpartum and diestrous virgin female rats received an intraperitoneal injection of the GABA(A) receptor antagonist (+)-bicuculline (0, 2 and 4 mg/kg) and anxiety-related behavior was assessed with an elevated plus maze. The 4 mg/kg dose of (+)-bicuculline significantly increased anxiety-related behavior, particularly in the postpartum females. Experiment 2 revealed that bicuculline's action was within the central nervous system, because anxiety in neither dams nor virgins was significantly affected by intraperitoneal injection of bicuculline methiodide (0, 2 and 6 mg/kg), which does not readily cross the blood-brain-barrier. In Experiment 3, bicuculline methiodide (2.5 ng/side) was directly infused into the ventrocaudal PAG (cPAGv) and significantly increased dams' anxiety compared to saline-infused controls. These studies expand our knowledge of how GABA(A) receptor modulators affect anxiety behaviors in postpartum rats to the widely-used elevated plus maze, and indicate that the postpartum suppression of anxiety is in part a consequence of elevated GABAergic neurotransmission in the cPAGv. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Antagonism of ionotropic glutamate receptors attenuates chemical ischemia-induced injury in rat primary cultured myenteric ganglia.

    Directory of Open Access Journals (Sweden)

    Elisa Carpanese

    Full Text Available Alterations of the enteric glutamatergic transmission may underlay changes in the function of myenteric neurons following intestinal ischemia and reperfusion (I/R contributing to impairment of gastrointestinal motility occurring in these pathological conditions. The aim of the present study was to evaluate whether glutamate receptors of the NMDA and AMPA/kainate type are involved in myenteric neuron cell damage induced by I/R. Primary cultured rat myenteric ganglia were exposed to sodium azide and glucose deprivation (in vitro chemical ischemia. After 6 days of culture, immunoreactivity for NMDA, AMPA and kainate receptors subunits, GluN(1 and GluA(1-3, GluK(1-3 respectively, was found in myenteric neurons. In myenteric cultured ganglia, in normal metabolic conditions, -AP5, an NMDA antagonist, decreased myenteric neuron number and viability, determined by calcein AM/ethidium homodimer-1 assay, and increased reactive oxygen species (ROS levels, measured with hydroxyphenyl fluorescein. CNQX, an AMPA/kainate antagonist exerted an opposite action on the same parameters. The total number and viability of myenteric neurons significantly decreased after I/R. In these conditions, the number of neurons staining for GluN1 and GluA(1-3 subunits remained unchanged, while, the number of GluK(1-3-immunopositive neurons increased. After I/R, -AP5 and CNQX, concentration-dependently increased myenteric neuron number and significantly increased the number of living neurons. Both -AP5 and CNQX (100-500 µM decreased I/R-induced increase of ROS levels in myenteric ganglia. On the whole, the present data provide evidence that, under normal metabolic conditions, the enteric glutamatergic system exerts a dualistic effect on cultured myenteric ganglia, either by improving or reducing neuron survival via NMDA or AMPA/kainate receptor activation, respectively. However, blockade of both receptor pathways may exert a protective role on myenteric neurons following and I

  5. The peptidomimetic Lau-(Lys-βNSpe)6-NH2 antagonizes formyl peptide receptor 2 expressed in mouse neutrophils

    DEFF Research Database (Denmark)

    Skovbakke, Sarah Line; Winther, Malene; Gabl, Michael

    2016-01-01

    /differences between the human and murine FPR family members is required. Compared to FPR1 and FPR2 expressed by human neutrophils, very little is known about agonist/antagonist recognition patterns for their murine orthologues, but now we have identified two potent and selective formylated peptide agonists (f...... to be devoid of effect on their murine orthologues as determined by their inability to inhibit superoxide release from murine neutrophils upon stimulation with receptor-specific agonists. The Boc-FLFLF peptide was found to be a selective antagonist for Fpr1, whereas the lipidated peptidomimetic Lau...

  6. Disruptions in effort-based decision-making and consummatory behavior following antagonism of the dopamine D2 receptor.

    Science.gov (United States)

    Robles, Cindee F; Johnson, Alexander W

    2017-03-01

    Dopamine is known to influence motivational processes, however the precise role of this neurotransmitter remains a contentious issue. In the current study we sought to further characterize dopamine signaling in reward-based decision-making and consummatory behavior in mice, via lateral ventricle infusion of the dopamine D2 receptor antagonist eticlopride. In Experiment 1, we examined effort-based decision-making, in which mice had a choice between one lever, where a single response led to the delivery of a low value reward (2% sucrose); and a second lever, which led to a higher value reward (20% sucrose) that gradually required more effort to obtain. As the response schedule for the high value reward became more strict, low dose (4μg in 0.5μl) central infusions of eticlopride biased preference away from the high value reward, and toward the lever that led to the low value reward. Similarly, a higher dose of eticlopride (8μg in 0.5μl) also disrupted choice responding for the high value reward, however it did so by increasing omissions. In Experiment 2, we assessed the effects of eticlopride on consumption of 20% sucrose. The antagonist led to a dose-dependent reduction in intake, and through an analysis of licking microstructure, it was revealed that this in part reflected a reduction in the motivation to engage in consummatory behavior, rather than alterations in the evaluation of the reward. These results suggest that disruptions in D2 receptor signaling reduce the willingness to engage in effortful operant responding and consumption of a desirable outcome. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effects of Chronic Social Defeat Stress on Sleep and Circadian Rhythms Are Mitigated by Kappa-Opioid Receptor Antagonism.

    Science.gov (United States)

    Wells, Audrey M; Ridener, Elysia; Bourbonais, Clinton A; Kim, Woori; Pantazopoulos, Harry; Carroll, F Ivy; Kim, Kwang-Soo; Cohen, Bruce M; Carlezon, William A

    2017-08-09

    Stress plays a critical role in the neurobiology of mood and anxiety disorders. Sleep and circadian rhythms are affected in many of these conditions. Here we examined the effects of chronic social defeat stress (CSDS), an ethological form of stress, on sleep and circadian rhythms. We exposed male mice implanted with wireless telemetry transmitters to a 10 day CSDS regimen known to produce anhedonia (a depressive-like effect) and social avoidance (an anxiety-like effect). EEG, EMG, body temperature, and locomotor activity data were collected continuously during the CSDS regimen and a 5 day recovery period. CSDS affected numerous endpoints, including paradoxical sleep (PS) and slow-wave sleep (SWS), as well as the circadian rhythmicity of body temperature and locomotor activity. The magnitude of the effects increased with repeated stress, and some changes (PS bouts, SWS time, body temperature, locomotor activity) persisted after the CSDS regimen had ended. CSDS also altered mRNA levels of the circadian rhythm-related gene mPer2 within brain areas that regulate motivation and emotion. Administration of the κ-opioid receptor (KOR) antagonist JDTic (30 mg/kg, i.p.) before CSDS reduced stress effects on both sleep and circadian rhythms, or hastened their recovery, and attenuated changes in mPer2 Our findings show that CSDS produces persistent disruptions in sleep and circadian rhythmicity, mimicking attributes of stress-related conditions as they appear in humans. The ability of KOR antagonists to mitigate these disruptions is consistent with previously reported antistress effects. Studying homologous endpoints across species may facilitate the development of improved treatments for psychiatric illness. SIGNIFICANCE STATEMENT Stress plays a critical role in the neurobiology of mood and anxiety disorders. We show that chronic social defeat stress in mice produces progressive alterations in sleep and circadian rhythms that resemble features of depression as it appears in

  8. Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference.

    Science.gov (United States)

    Jerlhag, Elisabet; Egecioglu, Emil; Dickson, Suzanne L; Engel, Jörgen A

    2010-09-01

    Recently we demonstrated that genetic or pharmacological suppression of the central ghrelin signaling system, involving the growth hormone secretagogue receptor 1A (GHS-R1A), lead to a reduced reward profile from alcohol. As the target circuits for ghrelin in the brain include a mesolimbic reward pathway that is intimately associated with reward-seeking behaviour, we sought to determine whether the central ghrelin signaling system is required for reward from drugs of abuse other than alcohol, namely cocaine or amphetamine. We found that amphetamine-as well as cocaine-induced locomotor stimulation and accumbal dopamine release were reduced in mice treated with a GHS-R1A antagonist. Moreover, the ability of these drugs to condition a place preference was also attenuated by the GHS-R1A antagonist. Thus GHS-R1A appears to be required not only for alcohol-induced reward, but also for reward induced by psychostimulant drugs. Our data suggest that the central ghrelin signaling system constitutes a novel potential target for treatment of addictive behaviours such as drug dependence.

  9. Anti-analgesic effect of the mu/delta opioid receptor heteromer revealed by ligand-biased antagonism.

    Directory of Open Access Journals (Sweden)

    Laura Milan-Lobo

    Full Text Available Delta (DOR and mu opioid receptors (MOR can complex as heteromers, conferring functional properties in agonist binding, signaling and trafficking that can differ markedly from their homomeric counterparts. Because of these differences, DOR/MOR heteromers may be a novel therapeutic target in the treatment of pain. However, there are currently no ligands selective for DOR/MOR heteromers, and, consequently, their role in nociception remains unknown. In this study, we used a pharmacological opioid cocktail that selectively activates and stabilizes the DOR/MOR heteromer at the cell surface by blocking its endocytosis to assess its role in antinociception. We found that mice treated chronically with this drug cocktail showed a significant right shift in the ED50 for opioid-mediated analgesia, while mice treated with a drug that promotes degradation of the heteromer did not. Furthermore, promoting degradation of the DOR/MOR heteromer after the right shift in the ED50 had occurred, or blocking signal transduction from the stabilized DOR/MOR heteromer, shifted the ED50 for analgesia back to the left. Taken together, these data suggest an anti-analgesic role for the DOR/MOR heteromer in pain. In conclusion, antagonists selective for DOR/MOR heteromer could provide an avenue for alleviating reduced analgesic response during chronic pain treatment.

  10. Management of idiopathic recurrent pericarditis in adults and in children: a role for IL-1 receptor antagonism.

    Science.gov (United States)

    Brucato, Antonio; Emmi, Giacomo; Cantarini, Luca; Di Lenarda, Andrea; Gattorno, Marco; Lopalco, Giuseppe; Marcolongo, Renzo; Imazio, Massimo; Martini, Alberto; Prisco, Domenico

    2018-06-01

    Recurrent pericarditis is one of the most frequent pericardial diseases, affecting up to 30% of the patients who have experienced acute pericarditis. While the diagnosis of acute pericarditis is sometime straight forward, its etiology and therapeutic management are still a challenge for physicians. In developed countries, the idiopathic form is the most frequent, and the search for an infectious etiology is almost invariably negative. Nevertheless, since standard treatment with nonsteroidal anti-inflammatory drugs and colchicine is not always able to neutralize pericardial inflammation in recurrent pericarditis, anakinra, an IL-1 receptor antagonist, has been proposed as a possible therapeutic alternative for refractory forms. IL-1 is a cytokine that exerts a pivotal role in innate immunity and in the pathogenesis of some autoimmune diseases, such as rheumatoid arthritis, and in autoinflammatory disorders, as familial Mediterranean fever and cryopyrin-associated periodic syndromes. The successful management of patients with acute idiopathic recurrent pericarditis (IRP) needs a teamwork approach, where cardiologists, rheumatologists, clinical immunologists and internists are involved. In this review, we will discuss the clinical and therapeutical challenges of IRP both in adults and children from a clinical practice standpoint. We will also briefly illustrate the main pathogenic mechanisms of IRP to provide internists and cardiologists with the rationale for approaching the use of anakinra in selected clinical cases.

  11. P2X7 Receptor Antagonism Attenuates the Intermittent Hypoxia-induced Spatial Deficits in a Murine Model of Sleep Apnea Via Inhibiting Neuroinflammation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yan Deng

    2015-01-01

    Conclusions: The P2X7R antagonism attenuates the CIH-induced neuroinflammation, oxidative stress, and spatial deficits, demonstrating that the P2X7R is an important therapeutic target in the cognition deficits accompanied OSAS.

  12. Ghrelin receptor antagonism of morphine-induced conditioned place preference and behavioral and accumbens dopaminergic sensitization in rats.

    Science.gov (United States)

    Jerabek, Pavel; Havlickova, Tereza; Puskina, Nina; Charalambous, Chrysostomos; Lapka, Marek; Kacer, Petr; Sustkova-Fiserova, Magdalena

    2017-11-01

    An increasing number of studies over the past few years have demonstrated ghrelin's role in alcohol, cocaine and nicotine abuse. However, the role of ghrelin in opioid effects has rarely been examined. Recently we substantiated in rats that ghrelin growth hormone secretagogue receptors (GHS-R1A) appear to be involved in acute opioid-induced changes in the mesolimbic dopaminergic system associated with the reward processing. The aim of the present study was to ascertain whether a ghrelin antagonist (JMV2959) was able to inhibit morphine-induced biased conditioned place preference and challenge-morphine-induced accumbens dopaminergic sensitization and behavioral sensitization in adult male rats. In the place preference model, the rats were conditioned for 8 days with morphine (10 mg/kg s.c.). On the experimental day, JMV2959 (3 and 6 mg/kg i.p.) or saline were administered before testing. We used in vivo microdialysis to determine changes of dopamine and its metabolites in the nucleus accumbens in rats following challenge-morphine dose (5 mg/kg s.c.) with or without JMV2959 (3 and 6 mg/kg i.p.) pretreatment, administered on the 12th day of spontaneous abstinence from morphine repeated treatment (5 days, 10-40 mg/kg). Induced behavioral changes were simultaneously monitored. Pretreatment with JMV2959 significantly and dose dependently reduced the morphine-induced conditioned place preference and significantly and dose dependently reduced the challenge-morphine-induced dopaminergic sensitization and affected concentration of by-products associated with dopamine metabolism in the nucleus accumbens. JMV2959 pretreatment also significantly reduced challenge-morphine-induced behavioral sensitization. Our present data suggest that GHS-R1A antagonists deserve to be further investigated as a novel treatment strategy for opioid addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Polyuria due to vasopressin V2 receptor antagonism is not associated with increased ureter diameter in ADPKD patients.

    Science.gov (United States)

    Casteleijn, Niek F; Messchendorp, A Lianne; Bae, Kyong T; Higashihara, Eiji; Kappert, Peter; Torres, Vicente; Meijer, Esther; Leliveld, Anna M

    2017-06-01

    Tolvaptan, a vasopressin V2 receptor antagonist, has been shown to reduce the rates of growth in total kidney volume (TKV) and renal function loss in ADPKD patients, but also leads to polyuria because of its aquaretic effect. Prolonged polyuria can result in ureter dilatation with consequently renal function loss. Therefore, we aimed to investigate the effect of tolvaptan-induced polyuria on ureter diameter in ADPKD patients. 70 ADPKD patients were included (51 were randomized to tolvaptan and 19 to placebo). At baseline and after 3 years of treatment renal function was measured (mGFR) and MRI was performed to measure TKV and ureter diameter at the levels of renal pelvis and fifth lumbar vertebral body (L5). In these patients [65.7 % male, age 41 ± 9 years, mGFR 74 ± 27 mL/min/1.73 m 2 and TKV 1.92 (1.27-2.67) L], no differences were found between tolvaptan and placebo-treated patients in 24-h urine volume at baseline (2.5 vs. 2.5 L, p = 0.8), nor in ureter diameter at renal pelvis and L5 (4.0 vs. 4.2 mm, p = 0.4 and 3.0 vs. 3.1 mm, p = 0.3). After 3 years of treatment 24-h urine volume was higher in tolvaptan-treated patients when compared to placebo (4.7 vs. 2.3 L, p polyuria did not lead to an increase in ureter diameter, suggesting that tolvaptan is a safe therapy from a urological point of view.

  14. Long-term antagonism of κ opioid receptors prevents escalation of and increased motivation for heroin intake.

    Science.gov (United States)

    Schlosburg, Joel E; Whitfield, Timothy W; Park, Paula E; Crawford, Elena F; George, Olivier; Vendruscolo, Leandro F; Koob, George F

    2013-12-04

    The abuse of opioid drugs, both illicit and prescription, is a persistent problem in the United States, accounting for >1.2 million users who require treatment each year. Current treatments rely on suppressing immediate withdrawal symptoms and replacing illicit drug use with long-acting opiate drugs. However, the mechanisms that lead to preventing opiate dependence are still poorly understood. We hypothesized that κ opioid receptor (KOR) activation during chronic opioid intake contributes to negative affective states associated with withdrawal and the motivation to take increasing amounts of heroin. Using a 12 h long-access model of heroin self-administration, rats showed escalation of heroin intake over several weeks. This was prevented by a single high dose (30 mg/kg) of the long-acting KOR antagonist norbinaltorphimine (nor-BNI), paralleled by reduced motivation to respond for heroin on a progressive-ratio schedule of reinforcement, a measure of compulsive-like responding. Systemic nor-BNI also significantly decreased heroin withdrawal-associated anxiety-like behavior. Immunohistochemical analysis showed prodynorphin content increased in the nucleus accumbens core in all heroin-exposed rats, but selectively increased in the nucleus accumbens shell in long-access rats. Local infusion of nor-BNI (4 μg/side) into accumbens core altered the initial intake of heroin but not the rate of escalation, while local injection into accumbens shell selectively suppressed increases in heroin intake over time without altering initial intake. These data suggest that dynorphin activity in the nucleus accumbens mediates the increasing motivation for heroin taking and compulsive-like responding for heroin, suggesting that KOR antagonists may be promising targets for the treatment of opioid addiction.

  15. Orexin 1 and orexin 2 receptor antagonism in the basolateral amygdala modulate long-term potentiation of the population spike in the perforant path-dentate gyrus-evoked field potential in rats.

    Science.gov (United States)

    Ardeshiri, Motahareh Rouhi; Hosseinmardi, Narges; Akbari, Esmaeil

    2018-03-01

    Involvement of amygdalo-hippocampal substructures in patients with narcolepsy due to deficiencies in the orexinergic system, and the presence of hippocampus-dependent memory impairments in this disorder, have led us to investigate the effects of orexin 1 and 2 receptor antagonism in the basolateral amygdala (BLA) on long-term potentiation (LTP) of dentate gyrus (DG) granular cells. We used a 200-Hz high-frequency stimulation protocol in anesthetized rats. We studied the long-term synaptic plasticity of perforant path-dentate gyrus granule cells following the inactivation of orexin receptors before and after tetanic stimulation. LTP of the DG population spike was attenuated in the presence of orexin 1 and 2 receptor antagonism (treatment with SB-334867-A and TCS-OX2-29, respectively) in the BLA when compared to that observed following treatment with dimethyl sulfoxide (DMSO). However, the population excitatory post-synaptic potentials were not affected. Moreover, when orexin 1 and 2 receptors in the BLA were blocked after LTP induction, there were no differences between the DMSO and treatment groups. Our findings suggest that the orexinergic system of the BLA plays a modulatory role in the regulation of hippocampal plasticity in rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. The retinoid X receptor response element in the human aldehyde dehydrogenase 2 promoter is antagonized by the chicken ovalbumin upstream promoter family of orphan receptors

    NARCIS (Netherlands)

    Pinaire, J; Hasanadka, R; Fang, M; Chou, WY; Stewart, MJ; Kruijer, W; Crabb, D

    2000-01-01

    Two tandem sites in the aldehyde dehydrogenase 2 promoter (designated FP330-5' and FP330-3') that bind members of the nuclear receptor superfamily mere recently identified. Antibodies against apolipoprotein regulatory protein (ARP-1) altered DNA-protein interactions in electrophoretic mobility shift

  17. Antagonism of bradykinin B2 receptor prevents inflammatory responses in human endothelial cells by quenching the NF-kB pathway activation.

    Directory of Open Access Journals (Sweden)

    Erika Terzuoli

    Full Text Available Bradykinin (BK induces angiogenesis by promoting vessel permeability, growth and remodeling. This study aimed to demonstrate that the B2R antagonist, fasitibant, inhibits the BK pro-angiogenic effects.We assesed the ability of fasibitant to antagonize the BK stimulation of cultured human cells (HUVEC and circulating pro-angiogenic cells (PACs, in producing cell permeability (paracellular flux, migration and pseocapillary formation. The latter parameter was studied in vitro (matrigel assay and in vivo in mice (matrigel plug and in rat model of experimental osteoarthritis (OA. We also evaluated NF-κB activation in cultured cells by measuring its nuclear translocation and its downstream effectors such as the proangiogenic ciclooxygenase-2 (COX-2, prostaglandin E-2 and vascular endothelial growth factor (VEGF.HUVEC, exposed to BK (1-10 µM, showed increased permeability, disassembly of adherens and tight-junction, increased cell migration, and pseudocapillaries formation. We observed a significant increase of vessel density in the matrigel assay in mice and in rats OA model. Importantly, B2R stimulation elicited, both in HUVEC and PACs, NF-κB activation, leading to COX-2 overexpression, enhanced prostaglandin E-2 production. and VEGF output. The BK/NF-κB axis, and the ensuing amplification of inflammatory/angiogenic responses were fully prevented by fasitibant as well as by IKK VII, an NF-κB. Inhibitor.This work illustrates the role of the endothelium in the inflammation provoked by the BK/NF-κB axis. It also demonstates that B2R blockade by the antaogonist fasibitant, abolishes both the initial stimulus and its amplification, strongly attenuating the propagation of inflammation.

  18. Dissociable effects of 5-HT2C receptor antagonism and genetic inactivation on perseverance and learned non-reward in an egocentric spatial reversal task.

    Directory of Open Access Journals (Sweden)

    Simon R O Nilsson

    Full Text Available Cognitive flexibility can be assessed in reversal learning tests, which are sensitive to modulation of 5-HT2C receptor (5-HT2CR function. Successful performance in these tests depends on at least two dissociable cognitive mechanisms which may separately dissipate associations of previous positive and negative valence. The first is opposed by perseverance and the second by learned non-reward. The current experiments explored the effect of reducing function of the 5-HT2CR on the cognitive mechanisms underlying egocentric reversal learning in the mouse. Experiment 1 used the 5-HT2CR antagonist SB242084 (0.5 mg/kg in a between-groups serial design and Experiment 2 used 5-HT2CR KO mice in a repeated measures design. Animals initially learned to discriminate between two egocentric turning directions, only one of which was food rewarded (denoted CS+, CS-, in a T- or Y-maze configuration. This was followed by three conditions; (1 Full reversal, where contingencies reversed; (2 Perseverance, where the previous CS+ became CS- and the previous CS- was replaced by a novel CS+; (3 Learned non-reward, where the previous CS- became CS+ and the previous CS+ was replaced by a novel CS-. SB242084 reduced perseverance, observed as a decrease in trials and incorrect responses to criterion, but increased learned non-reward, observed as an increase in trials to criterion. In contrast, 5-HT2CR KO mice showed increased perseverance. 5-HT2CR KO mice also showed retarded egocentric discrimination learning. Neither manipulation of 5-HT2CR function affected performance in the full reversal test. These results are unlikely to be accounted for by increased novelty attraction, as SB242084 failed to affect performance in an unrewarded novelty task. In conclusion, acute 5-HT2CR antagonism and constitutive loss of the 5-HT2CR have opposing effects on perseverance in egocentric reversal learning in mice. It is likely that this difference reflects the broader impact of 5HT2CR loss

  19. P2X7 Receptor Antagonism Attenuates the Intermittent Hypoxia-induced Spatial Deficits in a Murine Model of Sleep Apnea Via Inhibiting Neuroinflammation and Oxidative Stress.

    Science.gov (United States)

    Deng, Yan; Guo, Xue-Ling; Yuan, Xiao; Shang, Jin; Zhu, Die; Liu, Hui-Guo

    2015-08-20

    The mechanism of the neural injury caused by chronic intermittent hypoxia (CIH) that characterizes obstructive sleep apnea syndrome (OSAS) is not clearly known. The purpose of this study was to investigate whether P2X7 receptor (P2X7R) is responsible for the CIH-induced neural injury and the possible pathway it involves. Eight-week-old male C57BL/6 mice were used. For each exposure time point, eight mice divided in room air (RA) and IH group were assigned to the study of P2X7R expression. Whereas in the 21 days-Brilliant Blue G (BBG, a selective P2X7R antagonist) study, 48 mice were randomly divided into CIH group, BBG-treated CIH group, RA group and BBG-treated RA group. The hippocampus P2X7R expression was determined by Western blotting and real-time polymerase chain reaction (PCR). The spatial learning was analyzed by Morris water maze. The nuclear factor kappa B (NFκB) and NADPH oxidase 2 (NOX2) expressions were analyzed by Western blotting. The expressions of tumor necrosis factor α, interleukin 1β (IL-β), IL-18, and IL-6 were measured by real-time PCR. The malondialdehyde and superoxide dismutase levels were detected by colorimetric method. Cell damage was evaluated by Hematoxylin and Eosin staining and Terminal Transferase dUTP Nick-end Labeling method. The P2X7R mRNA was elevated and sustained after 3-day IH exposure and the P2X7R protein was elevated and sustained after 7-day IH exposure. In the BBG study, the CIH mice showed severer neuronal cell damage and poorer performance in the behavior test. The increased NFκB and NOX2 expressions along with the inflammation injury and oxidative stress were also observed in the CIH group. BBG alleviated CIH-induced neural injury and consequent functional deficits. The P2X7R antagonism attenuates the CIH-induced neuroinflammation, oxidative stress, and spatial deficits, demonstrating that the P2X7R is an important therapeutic target in the cognition deficits accompanied OSAS.

  20. Extract of Kuding tea prevents high-fat diet-induced metabolic disorders in C57BL/6 mice via liver X receptor (LXR β antagonism.

    Directory of Open Access Journals (Sweden)

    Shengjie Fan

    Full Text Available To investigate the effects of ilex kudingcha C. J. Tseng (kuding tea, a traditional beverage in China, on the metabolic disorders in C57BL/6 mice induced by high-fat diets.For the preventive experiment, the female C57BL/6 mice were fed with a standard diet (Chow, high-fat diet (HF, and high-fat diet mixed with 0.05% ethanol extract of kuding tea (EK for 5 weeks. For the therapeutic experiment, the C57BL/6 mice were fed high-fat diet for 3 months, and then mice were split and EK was given with oral gavages for 2 weeks at 50 mg/day/kg. Body weight and daily food intake amounts were measured. At the end of treatment, the adipocyte images were assayed with a scanning electron microscope, and the fasting blood glucose, glucose tolerance test, serum lipid profile and lipids in the livers were analyzed. A reporter gene assay system was used to test the whether EK could act on nuclear receptor transcription factors, and the gene expression analysis was performed with a quantitative PCR assay.In the preventive treatment, EK blocked the body weight gain, reduced the size of the adipocytes, lowered serum triglyceride, cholesterol, LDL-cholesterol, fasting blood glucose levels and glucose tolerance in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, EK reduced the size of the white adipocytes, serum TG and fasting blood glucose levels in obese mice. With the reporter assay, EK inhibited LXRβ transactivity and mRNA expression of LXRβ target genes.We observed that EK has both preventive and therapeutic roles in metabolic disorders in mice induced with high-fat diets. The effects appear to be mediated through the antagonism of LXRβ transactivity. Our data indicate that kuding tea is a useful dietary therapy and a potential source for the development of novel anti-obesity and lipid lowering drugs.

  1. Differential down-regulation of aquaporin-2 in rat kidney zones by peripheral nociceptin/orphanin FQ receptor agonism and vasopressin type-2 receptor antagonism

    DEFF Research Database (Denmark)

    Hadrup, Niels; Petersen, Jørgen S; Windfeld, Søren

    2007-01-01

    ) of the vasopressin type-2 receptor antagonist 5-dimethylamine-1-[4-(2-methylbenzoylamino)benzoyl]-2,3,4,5-tetrahydro-1H-benzapine (OPC31260) (32 nmol/kg/min). ZP120 decreased the aquaporin-2 protein level in the rat cortex/outer stripe of outer medulla and decreased apical plasma membrane localization of aquaporin-2......We previously showed that aquaresis induced by the peripherally acting nociceptin/orphanin FQ receptor agonist ZP120 is associated with a decreased protein level of aquaporin-2 (AQP2) in whole-kidney homogenates. We now examined the effects of Ac-RYYRWKKKKKKK-NH(2) (ZP120) (1 nmol/kg/min i.v. for 4...... h) on renal regional expression (cortex/outer stripe of outer medulla, inner stripe of outer medulla, and inner medulla) and subcellular localization of aquaporin-2. Responses to ZP120 were compared to the effects of an equi-aquaretic dose ( approximately 40% inhibition of distal water reabsorption...

  2. A behavioral economic analysis of the value-enhancing effects of nicotine and varenicline and the role of nicotinic acetylcholine receptors in male and female rats.

    Science.gov (United States)

    Barrett, Scott T; Geary, Trevor N; Steiner, Amy N; Bevins, Rick A

    2018-04-09

    Reinforcement value enhancement by nicotine of non-nicotine rewards is believed to partially motivate smoking behavior. Recently, we showed that the value-enhancing effects of nicotine are well characterized by reinforcer demand models and that the value-enhancing effects of the smoking-cessation aid bupropion (Zyban) are distinct from those of nicotine and differ between the sexes. The present study evaluated potential sex differences in the enhancement effects of nicotine and varenicline (Chantix) using a reinforcer demand methodology. The role of α4β2* and α7 nicotinic acetylcholine receptors (nAChRs) in the enhancing effects of nicotine and varenicline is also evaluated. Male and female rats (n=12/sex) were trained to lever press maintained by sensory reinforcement by visual stimulus (VS) presentations. Changes in the VS value following nicotine and varenicline administration were assessed using an established reinforcer demand approach. Subsequently, the effects of antagonism of α4β2* and α7 nAChRs on varenicline and nicotine-induced enhancement active lever-pressing were assessed using a progressive ratio schedule. Nicotine and varenicline enhanced VS demand equivalently between the sexes as evaluated by reinforcer demand. However, α4β2* receptor antagonism attenuated value enhancement by nicotine and varenicline in females, but only of nicotine in males.

  3. Clebopride enhances contractility of the guinea pig stomach by blocking peripheral D2 dopamine receptor and alpha-2 adrenoceptor.

    Science.gov (United States)

    Takeda, K; Taniyama, K; Kuno, T; Sano, I; Ishikawa, T; Ohmura, I; Tanaka, C

    1991-05-01

    The mechanism of action of clebopride on the motility of guinea pig stomach was examined by the receptor binding assay for bovine brain membrane and by measuring gastric contractility and the release of acetylcholine from the stomach. The receptor binding assay revealed that clebopride bound to the D2 dopamine receptor with a high affinity and to the alpha-2 adrenoceptor and 5-HT2 serotonin receptor with relatively lower affinity, and not to D1 dopamine, alpha-1 adrenergic, muscarinic acetylcholine, H1 histamine, or opioid receptor. In strips of the stomach, clebopride at 10(-8) M to 10(-5) M enhanced the electrical transmural stimulation-evoked contraction and the release of acetylcholine. This enhancement was attributed to the blockade of the D2 dopamine receptor and alpha-2 adrenoceptor because: 1) Maximum responses obtained with specific D2 dopamine receptor antagonist, domperidone, and with specific alpha-2 adrenoceptor antagonist, yohimbine, were smaller than that with clebopride, and the sum of the effects of these two specific receptor antagonists is approximately equal to the effect of clebopride. 2) The facilitatory effect of clebopride was partially eliminated by pretreatment of the sample with domperidone or yohimbine, and the facilitatory effect of clebopride was not observed in preparations treated with the combination of domperidone and yohimbine. Clebopride also antagonized the inhibitory effects of dopamine and clonidine on the electrical transmural stimulation-evoked responses. These results indicate that clebopride acts on post ganglionic cholinergic neurons at D2 and alpha-2 receptors in this preparation to enhance enteric nervous system stimulated motility.

  4. Clebopride enhances contractility of the guinea pig stomach by blocking peripheral D2 dopamine receptor and alpha-2 adrenoceptor

    International Nuclear Information System (INIS)

    Takeda, K.; Taniyama, K.; Kuno, T.; Sano, I.; Ishikawa, T.; Ohmura, I.; Tanaka, C.

    1991-01-01

    The mechanism of action of clebopride on the motility of guinea pig stomach was examined by the receptor binding assay for bovine brain membrane and by measuring gastric contractility and the release of acetylcholine from the stomach. The receptor binding assay revealed that clebopride bound to the D2 dopamine receptor with a high affinity and to the alpha-2 adrenoceptor and 5-HT2 serotonin receptor with relatively lower affinity, and not to D1 dopamine, alpha-1 adrenergic, muscarinic acetylcholine, H1 histamine, or opioid receptor. In strips of the stomach, clebopride at 10 - 8 M to 10 - 5 M enhanced the electrical transmural stimulation-evoked contraction and the release of acetylcholine. This enhancement was attributed to the blockade of the D2 dopamine receptor and alpha-2 adrenoceptor because: (1) Maximum responses obtained with specific D2 dopamine receptor antagonist, domperidone, and with specific alpha-2 adrenoceptor antagonist, yohimbine, were smaller than that with clebopride, and the sum of the effects of these two specific receptor antagonists is approximately equal to the effect of clebopride. (2) The facilitatory effect of clebopride was partially eliminated by pretreatment of the sample with domperidone or yohimbine, and the facilitatory effect of clebopride was not observed in preparations treated with the combination of domperidone and yohimbine. Clebopride also antagonized the inhibitory effects of dopamine and clonidine on the electrical transmural stimulation-evoked responses. These results indicate that clebopride acts on post ganglionic cholinergic neurons at D2 and alpha-2 receptors in this preparation to enhance enteric nervous system stimulated motility

  5. Antagonism of brain insulin-like growth factor-1 receptors blocks estradiol effects on memory and levels of hippocampal synaptic proteins in ovariectomized rats

    Science.gov (United States)

    Nelson, Britta S.; Springer, Rachel C.; Daniel, Jill M.

    2013-01-01

    Rationale Treatment with estradiol, the primary estrogen produced by the ovaries, enhances hippocampus-dependent spatial memory and increases levels of hippocampal synaptic proteins in ovariectomized rats. Increasing evidence indicates that the ability of estradiol to impact the brain and behavior is dependent upon its interaction with insulin-like growth factor-1 (IGF-1). Objectives The goal of the current experiment was to test the hypothesis that the ability of estradiol to impact hippocampus-dependent memory and levels of hippocampal synaptic proteins is dependent on its interaction with IGF-1. Methods Adult rats were ovariectomized and implanted with estradiol or control capsules and trained on a radial-maze spatial memory task. After training, rats were implanted with intracerebroventricular cannulae attached to osmotic minipumps (flow rate 0.15 μl/hr). Half of each hormone treatment group received continuous delivery of JB1 (300 μg/ml), an IGF-1 receptor antagonist, and half received delivery of aCSF vehicle. Rats were tested on trials in the radial-arm maze during which delays were imposed between the 4th and 5th arm choices. Hippocampal levels of synaptic proteins were measured by western blotting. Results Estradiol treatment resulted in significantly enhanced memory. JB1 blocked that enhancement. Estradiol treatment resulted in significantly increased hippocampal levels of postsynaptic density protein 95 (PSD-95), spinophilin, and synaptophysin. JB1 blocked the estradiol-induced increase of PSD-95 and spinophilin and attenuated the increase of synaptophysin. Conclusions Results support a role for IGF-1 receptor activity in estradiol-induced enhancement of spatial memory that may be dependent on changes in synapse structure in the hippocampus brought upon by estradiol/IGF-1 interactions. PMID:24146138

  6. [Effects of total glucosides of paeony on enhancing insulin sensitivity and antagonizing nonalcoholic fatty liver in rats].

    Science.gov (United States)

    Zheng, Lin-Ying; Pan, Jing-Qiang; Lv, Jun-Hua

    2008-10-01

    To study the pathological changes of blood glucose, serum lipid, insulin resistance, liver function, liver cell denaturalization of total glucosides of paeony on nonalcoholic fatty liver rats caused by insulin resistance and discuss the acting mechanism. Adult SD rats were maintained on high-fat-sugar-salt diet for 56 days. In the 57th day, their fasting blood glucose (FBG) and 2-hours blood glucose after oral glucose tolerance test (OGTT-2 hBG) were mensurated, according to which and the weight the rats were divided randomly into nonalcoholic fatty liver model group, metformin group (0.2 g x kg(-1)) and total glucosides of paeony group (high dosage 0.15 g x kg(-1), low dosage 0.05 g x kg(-1)). All the rats were still administered the same diet and given different drugs by intragastric administration for 28 days. In the 29th day, all of them were killed and the blood was sampled to measure the levels of blood glucose [FBG, OGTT-2 hBG, fasting insulin (Fins)] and serum lipid [free fatty acids (FFA), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C)], then the HOMA insulin resistance index (HOMA-IRI, fasting glucosexinsulin) and insulin sensitivity index (ISI) were counted. The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), cholinesterase (ChE), superoxide dismutase (SOD) and the contents of malondialdehyde (MDA) were measured also. Livers were weighed and collected to be observed the pathological changes. Compared with normal group, in nonalcoholic fatty liver model group the levels of Fins and IRI were increased obviously (P insulin resistence were resisted (P insulin resistance, and its action mechanism may be concerned with enhancing insulin sensitivity and antioxidative ability, decreasing serum lipid.

  7. NMDA receptor antagonism by repetitive MK801 administration induces schizophrenia-like structural changes in the rat brain as revealed by voxel-based morphometry and diffusion tensor imaging.

    Science.gov (United States)

    Wu, H; Wang, X; Gao, Y; Lin, F; Song, T; Zou, Y; Xu, L; Lei, H

    2016-05-13

    Animal models of N-methyl-d-aspartate receptor (NMDAR) antagonism have been widely used for schizophrenia research. Less is known whether these models are associated with macroscopic brain structural changes that resemble those in clinical schizophrenia. Magnetic resonance imaging (MRI) was used to measure brain structural changes in rats subjected to repeated administration of MK801 in a regimen (daily dose of 0.2mg/kg for 14 consecutive days) known to be able to induce schizophrenia-like cognitive impairments. Voxel-based morphometry (VBM) revealed significant gray matter (GM) atrophy in the hippocampus, ventral striatum (vStr) and cortex. Diffusion tensor imaging (DTI) demonstrated microstructural impairments in the corpus callosum (cc). Histopathological results corroborated the MRI findings. Treatment-induced behavioral abnormalities were not measured such that correlation between the brain structural changes observed and schizophrenia-like behaviors could not be established. Chronic MK801 administration induces MRI-observable brain structural changes that are comparable to those observed in schizophrenia patients, supporting the notion that NMDAR hypofunction contributes to the pathology of schizophrenia. Imaging-derived brain structural changes in animal models of NMDAR antagonism may be useful measurements for studying the effects of treatments and interventions targeting schizophrenia. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. The effect of caffeine to increase reaction time in the rat during a test of attention is mediated through antagonism of adenosine A2A receptors.

    Science.gov (United States)

    Higgins, Guy A; Grzelak, Michael E; Pond, Annamarie J; Cohen-Williams, Mary E; Hodgson, Robert A; Varty, Geoffrey B

    2007-12-11

    Caffeine produces effects on cognitive function particularly relating to aspects of attention such as reaction time. Considering the plasma exposure levels following regular caffeine intake, and the affinity of caffeine for known protein targets, these effects are likely mediated by either the adenosine A(1) or A(2A) receptor. In the present studies, two rat strains [Long-Evans (LE) and CD] were trained to asymptote performance in a test of selective attention, the 5-choice serial reaction time task (5-CSRTT). Next, the effects of caffeine were compared to the selective A(2A) antagonists, SCH 412348 and KW-6002 (Istradefylline), and the A(1) antagonist, DPCPX. Further studies compared the psychostimulant effects of each drug. Finally, we tested the A(2A) agonist, CGS-21680, on 5-CSRTT performance and given the antipsychotic potential of this drug class, studied the interaction between CGS-21680 and amphetamine in this task. Caffeine (3-10mg/kg IP) increased reaction time in both LE and CD rats, with no effect on accuracy, an effect replicated by SCH 412348 (0.1-1mg/kg PO) and KW-6002 (1-3mg/kg PO), but not DPCPX (3-30 mg/kg PO). At least with SCH 412348, these effects were at doses that were not overtly psychostimulant. In contrast, CGS-21680 (0.03-0. 3mg/kg IP) slowed reaction speed and increased omissions. Interestingly, at a comparatively low dose of 0.03 mg/kg, CGS-21680 attenuated the increased premature responding produced by amphetamine (1mg/kg IP). The present results suggest that the attention-enhancing effects of caffeine are mediated through A(2A) receptor blockade, and selective A(2A) receptor antagonists may have potential as therapies for attention-related disorders. Furthermore, the improvement in response control in amphetamine-treated rats following CGS-21680 pretreatment supports the view that A(2A) agonists have potential as novel antipsychotics.

  9. Nogo-receptor 1 antagonization in combination with neurotrophin-4/5 is not superior to single factor treatment in promoting survival and morphological complexity of cultured dopaminergic neurons.

    Science.gov (United States)

    Seiler, Stefanie; Di Santo, Stefano; Sahli, Sebastian; Andereggen, Lukas; Widmer, Hans Rudolf

    2017-08-01

    Cell transplantation using ventral mesencephalic tissue is an experimental approach to treat Parkinson's disease. This approach is limited by poor survival of the transplants and the high number of dopaminergic neurons needed for grafting. Increasing the yield of dopaminergic neurons in donor tissue is of great importance. We have previously shown that antagonization of the Nogo-receptor 1 by NEP1-40 promoted survival of cultured dopaminergic neurons and exposure to neurotrophin-4/5 increased dopaminergic cell densities in organotypic midbrain cultures. We investigated whether a combination of both treatments offers a novel tool to further improve dopaminergic neuron survival. Rat embryonic ventral mesencephalic neurons grown as organotypic free-floating roller tube or primary dissociated cultures were exposed to neurotrophin-4/5 and NEP1-40. The combined and single factor treatment resulted in significantly higher numbers of tyrosine hydroxylase positive neurons compared to controls. Significantly stronger tyrosine hydroxylase signal intensity was detected by Western blotting in the combination-treated cultures compared to controls but not compared to single factor treatments. Neurotrophin-4/5 and the combined treatment showed significantly higher signals for the neuronal marker microtubule-associated protein 2 in Western blots compared to control while no effects were observed for the astroglial marker glial fibrillary acidic protein between groups, suggesting that neurotrophin-4/5 targets mainly neuronal cells. Finally, NEP1-40 and the combined treatment significantly augmented tyrosine hydroxylase positive neurite length. Summarizing, our findings substantiate that antagonization of the Nogo-receptor 1 promotes dopaminergic neurons but does not further increase the yield of dopaminergic neurons and their morphological complexity when combined with neurotrophin-4/5 hinting to the idea that these treatments might exert their effects by activating common

  10. The selective antagonism of P2X7 and P2Y1 receptors prevents synaptic failure and affects cell proliferation induced by oxygen and glucose deprivation in rat dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Giovanna Maraula

    Full Text Available Purinergic P2X and P2Y receptors are broadly expressed on both neurons and glial cells in the central nervous system (CNS, including dentate gyrus (DG. The aim of this research was to determine the synaptic and proliferative response of the DG to severe oxygen and glucose deprivation (OGD in acute rat hippocampal slices and to investigate the contribution of P2X7 and P2Y1 receptor antagonism to recovery of synaptic activity after OGD. Extracellular field excitatory post-synaptic potentials (fEPSPs in granule cells of the DG were recorded from rat hippocampal slices. Nine-min OGD elicited an irreversible loss of fEPSP and was invariably followed by the appearance of anoxic depolarization (AD. Application of MRS2179 (selective antagonist of P2Y1 receptor and BBG (selective antagonist of P2X7 receptor, before and during OGD, prevented AD appearance and allowed a significant recovery of neurotransmission after 9-min OGD. The effects of 9-min OGD on proliferation and maturation of cells localized in the subgranular zone (SGZ of slices prepared from rats treated with 5-Bromo-2'-deoxyuridine (BrdU were investigated. Slices were further incubated with an immature neuron marker, doublecortin (DCX. The number of BrdU+ cells in the SGZ was significantly decreased 6 hours after OGD. This effect was antagonized by BBG, but not by MRS2179. Twenty-four hours after 9-min OGD, the number of BrdU+ cells returned to control values and a significant increase of DCX immunofluorescence was observed. This phenomenon was still evident when BBG, but not MRS2179, was applied during OGD. Furthermore, the P2Y1 antagonist reduced the number of BrdU+ cells at this time. The data demonstrate that P2X7 and P2Y1 activation contributes to early damage induced by OGD in the DG. At later stages after the insult, P2Y1 receptors might play an additional and different role in promoting cell proliferation and maturation in the DG.

  11. 5-HT4 receptors mediating enhancement of contractility in canine stomach; an in vitro and in vivo study

    NARCIS (Netherlands)

    Prins, NH; van der Grijn, A; Lefebvre, RA; Akkermans, LMA; Schuurkes, JAJ

    1 We aimed to study 5-HT4 receptors in canine stomach contractility both in vivo and in vitro. 2 In anaesthetized Beagle dogs, the selective 5-HT4 receptor agonist prucalopride (i.v.) induced dose-dependent tonic stomach contractions under isobaric conditions, an effect that was antagonized by the

  12. 1-(Benzofuran-2-yl)-2-(3,3,3-trifluoropropyl)aminopentane HCl, 3-F-BPAP, antagonizes the enhancer effect of (-)-BPAP in the shuttle box and leaves the effect of (-)-deprenyl unchanged.

    Science.gov (United States)

    Knoll, Joseph; Miklya, Ildikó; Knoll, Berta; Yasusa, Takuya; Shimazu, Seiichiro; Yoneda, Fumio

    2002-09-13

    The subcutaneous administration of 1 mg/kg tetrabenazine, once daily for 5 days, which depletes the catecholamine stores in the brain, significantly inhibits in rats the acquisition of a two-way conditioned avoidance reflex in the shuttle box. Enhancer substances, the tryptamine-derived selective and highly potent enhancer, R-(-)-1-(benzofuran-2-yl)-2-propylaminopentane HCl [(-)-BPAP] (0.05-10 mg/kg), the beta-phenylethylamine (PEA)-derived enhancer, (-)-deprenyl (1-5 mg/kg) and the (-)-deprenyl analogue, free of MAO-B inhibitory potency, (-)-1-phenyl-2-propylaminopentane HCl [(-)-PPAP], (1-5 mg/kg), antagonize in a dose-dependent manner the inhibition of learning caused by tetrabenazine. 1-(Benzofuran 2 yl)-2-(3,3,3-trifluoropropyl)aminopentane HCl [3 F BPAP], a newly synthetized analogue of (-)-BPAP with low specific activity, significantly antagonized the enhancer effect of (-)-BPAP but left the effect of (-)-deprenyl and (-)-PPAP unchanged. This is the first proof for a difference in the mechanism of action between a PEA-derived enhancer substance and its tryptamine-derived peer.

  13. Enhancement of bradykinin and resensitization of its B2 receptor.

    Science.gov (United States)

    Marcic, B; Deddish, P A; Jackman, H L; Erdös, E G

    1999-03-01

    We studied the enhancement of the effects of bradykinin B2 receptor agonists by agents that react with active centers of angiotensin-converting enzyme (ACE) independent of enzymatic inactivation. The potentiation and the desensitization and resensitization of B2 receptor were assessed by measuring [3H]arachidonic acid release and [Ca2+]i mobilization in Chinese hamster ovary cells transfected to express human ACE and B2 receptor, or in endothelial cells with constitutively expressed ACE and receptor. Administration of bradykinin or its ACE-resistant analogue desensitized the receptor, but it was resensitized (arachidonic acid release or [Ca2+]i mobilization) by agents such as enalaprilat (1 micromol/L). Enalaprilat was inactive in the absence of ACE expression. La3+ (100 micromol/L) inhibited the apparent resensitization, probably by blocking the entry of extracellular calcium. Enalaprilat resensitized the receptor via ACE to release arachidonic acid by bradykinin at a lower concentration (5 nmol/L) than required to mobilize [Ca2+]i (1 micromol/L). Monoclonal antibodies inhibiting the ACE N-domain active center and polyclonal antiserum potentiated bradykinin. The snake venom peptide BPP5a and metabolites of angiotensin and bradykinin (angiotensin-[1-9], angiotensin-[1-7], bradykinin-[1-8]; 1 micromol/L) enhanced arachidonic acid release by bradykinin. Angiotensin-(1-9) and -(1-7) also resensitized the receptor. Enalaprilat potentiated the bradykinin effect in cells expressing a mutant ACE with a single N-domain active site. Agents that reacted with a single active site, on the N-domain or on the C-domain, potentiated bradykinin not by blocking its inactivation but by inducing crosstalk between ACE and the receptor. Enalaprilat enhanced signaling via ACE by Galphai in lower concentration than by Galphaq-coupled receptor.

  14. Dynamic changes in the expression of DEP-1 and other PDGF receptor-antagonizing PTPs during onset and termination of neointima formation.

    Science.gov (United States)

    Kappert, Kai; Paulsson, Janna; Sparwel, Jan; Leppänen, Olli; Hellberg, Carina; Ostman, Arne; Micke, Patrick

    2007-02-01

    Growth factor-dependent tissue remodeling, such as restenosis, is believed to be predominantly regulated by changes in expression of receptor-tyrosine-kinases (RTKs) and their ligands. As endogenous antagonists of RTKs, protein-tyrosine-phosphatases (PTPs) are additional candidate regulators of these processes. Using laser-capture-microdissection and quantitative RT-polymerase chain reaction (qRT-PCR), we investigated the layer-specific expression of the four platelet-derived growth factor (PDGF) isoforms, the PDGF-alpha and beta receptors, and five PTPs implied in control of PDGF-receptor signaling 8 and 14 days after balloon injury of the rat carotid. Results were correlated with analyses of PDGF-beta receptor phosphorylation and vascular smooth muscle cell (VSMC) proliferation in vivo. The expression levels of all components, as well as receptor activation and VSMC proliferation, showed specific changes, which varied between media and neointima. Interestingly, PTP expression--particularly, DEP-1 levels--appeared to be the dominating factor determining receptor-phosphorylation and VSMC proliferation. In support of these findings, cultured DEP-1(-/-) cells displayed increased PDGF-dependent cell signaling. Hyperactivation of PDGF-induced signaling was also observed after siRNA-down-regulation of DEP-1 in VSMCs. The results indicate a previously unrecognized role of PDGF-receptor-targeting PTPs in controlling neointima formation. In more general terms, the observations indicate transcriptional regulation of PTPs as an important mechanism for controlling onset and termination of RTK-dependent tissue remodeling.

  15. Stat1-Vitamin D Receptor Interactions Antagonize 1,25-Dihydroxyvitamin D Transcriptional Activity and Enhance Stat1-Mediated Transcription

    OpenAIRE

    Vidal, Marcos; Ramana, Chilakamarti V.; Dusso, Adriana S.

    2002-01-01

    The cytokine gamma interferon (IFN-γ) and the calcitropic steroid hormone 1,25-dihydroxyvitamin D (1,25D) are activators of macrophage immune function. In sarcoidosis, tuberculosis, and several granulomatoses, IFN-γ induces 1,25D synthesis by macrophages and inhibits 1,25D induction of 24-hydroxylase, a key enzyme in 1,25D inactivation, causing high levels of 1,25D in serum and hypercalcemia. This study delineates IFN-γ-1,25D cross talk in human monocytes-macrophages. Nuclear accumulation of ...

  16. Endothelin-A-receptor antagonism with atrasentan exhibits limited activity on the KU-19-19 bladder cancer cell line in a mouse model.

    Science.gov (United States)

    Herrmann, Edwin; Tiemann, Arne; Eltze, Elke; Bolenz, Christian; Bremer, Christoph; Persigehl, Thorsten; Hertle, Lothar; Wülfing, Christian

    2009-10-01

    The endothelin axis consists of endothelin-1 (ET-1) and its two receptors, ET(A)- and ET(B)-receptor (ET(A)-R and ET(B)-R). In several tumor entities, the ET(A)-R plays a significant role as a drug target. In our study, we investigated whether inhibition of ET(A)-R with atrasentan leads to an antitumor effect in urinary bladder carcinoma as well. Twenty nude mice with thymic aplasia were subcutaneously administered 2 x 10(6) KU-19-19 bladder cancer cells in the right flank. Starting on the 22nd day after the injection, ten animals were treated with atrasentan (2.5 mg/kg BW intraperitoneally), and another ten animals were treated with placebo. During treatment, absolute tumor growth and relative growth rate over time were determined. After the end of treatment, the mitosis and necrosis rates, microvessel density, and receptor density in the tumor tissue were analyzed by immunohistochemistry. In addition, the expression intensities of ET-1, ET(A)-R, and ET(B)-R were evaluated semiquantitatively and compared between the groups. No significant differences between the active-treatment and placebo groups were detected, either with respect to absolute tumor growth (P = 0.333) or mitosis rate (P = 0.217). In the analysis of the necrosis rate and receptor density for ET(A)-R, a trend toward higher values in the active-treatment group (mean necrosis rate = 63.67%, receptor density: 1.417) than in the placebo group (mean necrosis rate = 46.25%, receptor density: 1.270) was found; however, neither difference was statistically significant (P = 0.08 and 0.219, respectively). ET(A)-R blockade with atrasentan in a bladder cancer xenograft model shows no significant antitumor effect.

  17. The CytR repressor antagonizes cyclic AMP-cyclic AMP receptor protein activation of the deoCp2 promoter of Escherichia coli K-12

    DEFF Research Database (Denmark)

    Søgaard-Andersen, L; Martinussen, J; Møllegaard, N E

    1990-01-01

    We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor and the cyclic AMP (cAMP) receptor protein (CRP) complexed to cAMP. Promoter regions controlled by these two proteins characteristically contain tandem cAMP-CRP binding sites. Here we show that (i) Cyt...

  18. Angiotensin II, hypertension and angiotensin II receptor antagonism: Roles in the behavioural and brain pathology of a mouse model of Alzheimer's disease

    NARCIS (Netherlands)

    Wiesmann, M.; Roelofs, M.; Lugt, R. Van Der; Heerschap, A.; Kiliaan, A.J.; Claassen, J.A.H.R.

    2017-01-01

    Elevated angiotensin II causes hypertension and contributes to Alzheimer's disease by affecting cerebral blood flow. Angiotensin II receptor blockers may provide candidates to reduce (vascular) risk factors for Alzheimer's disease. We studied effects of two months of angiotensin II-induced

  19. Antagonism of lateral saphenous vein serotonin receptors from steers grazing endophyte-free, wild-type, or novel endophyte-infected tall fescue

    Science.gov (United States)

    Pharmacologic profiling of 5-hydroxytryptamine (5HT) receptors of bovine lateral saphenous vein has shown that cattle grazing endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have altered responses to ergovaline (ERV), 5HT, 5HT2A and 5HT7 agonists. To determine if 5HT...

  20. Selective and interactive effects of D2 receptor antagonism and positive allosteric mGluR4 modulation on waiting impulsivity.

    Science.gov (United States)

    Isherwood, Sarah N; Robbins, Trevor W; Nicholson, Janet R; Dalley, Jeffrey W; Pekcec, Anton

    2017-09-01

    Metabotropic glutamate receptor 4 (mGluR4) and dopamine D 2 receptors are specifically expressed within the indirect pathway neurons of the striato-pallidal-subthalamic pathway. This unique expression profile suggests that mGluR4 and D 2 receptors may play a cooperative role in the regulation and inhibitory control of behaviour. We investigated this possibility by testing the effects of a functionally-characterised positive allosteric mGluR4 modulator, 4-((E)-styryl)-pyrimidin-2-ylamine (Cpd11), both alone and in combination with the D 2 receptor antagonist eticlopride, on two distinct forms of impulsivity. Rats were trained on the five-choice serial reaction time task (5-CSRTT) of sustained visual attention and segregated according to low, mid, and high levels of motor impulsivity (LI, MI and HI, respectively), with unscreened rats used as an additional control group. A separate group of rats was trained on a delay discounting task (DDT) to assess choice impulsivity. Systemic administration of Cpd11 dose-dependently increased motor impulsivity and impaired attentional accuracy on the 5-CSRTT in all groups tested. Eticlopride selectively attenuated the increase in impulsivity induced by Cpd11, but not the accompanying attentional impairment, at doses that had no significant effect on behavioural performance when administered alone. Cpd11 also decreased choice impulsivity on the DDT (i.e. increased preference for the large, delayed reward) and decreased locomotor activity. These findings demonstrate that mGluR4s, in conjunction with D 2 receptors, affect motor- and choice-based measures of impulsivity, and therefore may be novel targets to modulate impulsive behaviour associated with a number of neuropsychiatric syndromes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Manipulation of Very Few Receptor Discriminator Residues Greatly Enhances Receptor Specificity of Non-visual Arrestins*

    Science.gov (United States)

    Gimenez, Luis E.; Vishnivetskiy, Sergey A.; Baameur, Faiza; Gurevich, Vsevolod V.

    2012-01-01

    Based on the identification of residues that determine receptor selectivity of arrestins and the analysis of the evolution in the arrestin family, we introduced 10 mutations of “receptor discriminator” residues in arrestin-3. The recruitment of these mutants to M2 muscarinic (M2R), D1 (D1R) and D2 (D2R) dopamine, and β2-adrenergic receptors (β2AR) was assessed using bioluminescence resonance energy transfer-based assays in cells. Seven of 10 mutations differentially affected arrestin-3 binding to individual receptors. D260K and Q262P reduced the binding to β2AR, much more than to other receptors. The combination D260K/Q262P virtually eliminated β2AR binding while preserving the interactions with M2R, D1R, and D2R. Conversely, Y239T enhanced arrestin-3 binding to β2AR and reduced the binding to M2R, D1R, and D2R, whereas Q256Y selectively reduced recruitment to D2R. The Y239T/Q256Y combination virtually eliminated the binding to D2R and reduced the binding to β2AR and M2R, yielding a mutant with high selectivity for D1R. Eleven of 12 mutations significantly changed the binding to light-activated phosphorhodopsin. Thus, manipulation of key residues on the receptor-binding surface modifies receptor preference, enabling the construction of non-visual arrestins specific for particular receptor subtypes. These findings pave the way to the construction of signaling-biased arrestins targeting the receptor of choice for research or therapeutic purposes. PMID:22787152

  2. Manipulation of very few receptor discriminator residues greatly enhances receptor specificity of non-visual arrestins.

    Science.gov (United States)

    Gimenez, Luis E; Vishnivetskiy, Sergey A; Baameur, Faiza; Gurevich, Vsevolod V

    2012-08-24

    Based on the identification of residues that determine receptor selectivity of arrestins and the analysis of the evolution in the arrestin family, we introduced 10 mutations of "receptor discriminator" residues in arrestin-3. The recruitment of these mutants to M2 muscarinic (M2R), D1 (D1R) and D2 (D2R) dopamine, and β(2)-adrenergic receptors (β(2)AR) was assessed using bioluminescence resonance energy transfer-based assays in cells. Seven of 10 mutations differentially affected arrestin-3 binding to individual receptors. D260K and Q262P reduced the binding to β(2)AR, much more than to other receptors. The combination D260K/Q262P virtually eliminated β(2)AR binding while preserving the interactions with M2R, D1R, and D2R. Conversely, Y239T enhanced arrestin-3 binding to β(2)AR and reduced the binding to M2R, D1R, and D2R, whereas Q256Y selectively reduced recruitment to D2R. The Y239T/Q256Y combination virtually eliminated the binding to D2R and reduced the binding to β(2)AR and M2R, yielding a mutant with high selectivity for D1R. Eleven of 12 mutations significantly changed the binding to light-activated phosphorhodopsin. Thus, manipulation of key residues on the receptor-binding surface modifies receptor preference, enabling the construction of non-visual arrestins specific for particular receptor subtypes. These findings pave the way to the construction of signaling-biased arrestins targeting the receptor of choice for research or therapeutic purposes.

  3. Light-enhanced inhibition of ouabain binding to digitalis receptor in rat brain and guinea pig heart by the food dye erythrosine

    International Nuclear Information System (INIS)

    Hnatowich, M.; LaBella, F.S.

    1982-01-01

    Erythrosine (ERY) (FD and C red no. 3) inhibited specific binding of [ 3 H]ouabain to rat brain homogenates with an IC50 of 23 microM in the dark and 1 microM in ordinary fluorescent light. Competition studies demonstrated the presence of two components, only one of which was affected by light. Lineweaver-Burk analysis indicated that ERY preferentially antagonizes [ 3 H]ouabain binding at a high-affinity site in the light, whereas in the dark the dye inhibits binding in a manner qualitatively similar to inhibition by ouabain. Light enhancement of ERY potency occurred only when dye and tissue were present together in the incubation medium, pointing to participation of transient molecular species. However, neither superoxide dismutase nor catalase altered the effects of ERY in the light or dark, suggesting the absence of oxygen free radicals. When oxygen levels were raised, there was enhancement of inhibition by ERY at a high-affinity receptor accompanied by disappearance of [ 3 H]ouabain binding at one of lower affinity. In contrast to brain, membranes from guinea pig heart showed only one binding site for [ 3 H]ouabain, and antagonism by ERY at this site was markedly enhanced by light. Structural differences between classes of ouabain binding regions probably accounts for the discrimination exhibited by ERY in the presence of light and oxygen. Our findings also caution that metabolic transformation of this common food dye, light decomposition, or photoreaction with foodstuff may yield more toxic derivatives

  4. Persistent gating deficit and increased sensitivity to NMDA receptor antagonism after puberty in a new mouse model of the human 22q11.2 microdeletion syndrome

    DEFF Research Database (Denmark)

    Didriksen, Michael; Fejgin, Kim; Nilsson, Simon R O

    2016-01-01

    BACKGROUND: The hemizygous 22q11.2 microdeletion is a common copy number variant in humans. The deletion confers high risk for neurodevelopmental disorders, including autism and schizophrenia. Up to 41% of deletion carriers experience psychotic symptoms. METHODS: We present a new mouse model (Df...... displayed increased amplitude of loudness-dependent auditory evoked potentials. Prefrontal cortex and dorsal striatal elevations of the dopamine metabolite DOPAC and increased dorsal striatal expression of the AMPA receptor subunit GluR1 was found. The Df(h22q11)/+ mice did not deviate from wild-type mice...

  5. Persistent gating deficit and increased sensitivity to NMDA receptor antagonism after puberty in a new mouse model of the human 22q11.2 microdeletion syndrome

    DEFF Research Database (Denmark)

    Didriksen, Michael; Fejgin, Kim; Nilsson, Simon R O

    2017-01-01

    Background: The hemizygous 22q11.2 microdeletion is a common copy number variant in humans. The deletion confers high risk for neurodevelopmental disorders, including autism and schizophrenia. Up to 41% of deletion carriers experience psychotic symptoms. Methods: We present a new mouse model (Df...... displayed increased amplitude of loudness-dependent auditory evoked potentials. Prefrontal cortex and dorsal striatal elevations of the dopamine metabolite DOPAC and increased dorsal striatal expression of the AMPA receptor subunit GluR1 was found. The Df(h22q11)/+ mice did not deviate from wild-type mice...

  6. Effects of cannabinoid CB(1) receptor agonism and antagonism on SKF81297-induced dyskinesia and haloperidol-induced dystonia in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Madsen, Morten V; Peacock, Linda P; Werge, Thomas

    2011-01-01

    81297 (SKF) and acute dystonia induced by the dopamine D(2) receptor antagonist haloperidol in Cebus apella monkeys. The monkeys were sensitised to EPS by prior exposure to D(2) receptor antagonists. SKF (0.3 mg/kg) was administered alone and in combination with the CB(1) agonist CP55,940 (0.......0025-0.01 mg/kg) or the CB(1) antagonist SR141716A (0.25-0.75 mg/kg). Haloperidol (individual doses at 0.01-0.02 mg/kg) was administered alone and in combination with CP55,940 (0.005 or 0.01 mg/kg) or SR141716A (0.5 or 0.75 mg/kg). Subsequently, the monkeys were videotaped, and the recordings were rated...... for oral dyskinesia or dystonia. SKF-induced oral dyskinesia was dose-dependently reduced by CP55,940, with no effect of SR141716A. Haloperidol-induced dystonia was not affected by either CP55,940 or SR141716A....

  7. Enhancing NMDA Receptor Function: Recent Progress on Allosteric Modulators

    Directory of Open Access Journals (Sweden)

    Lulu Yao

    2017-01-01

    Full Text Available The N-methyl-D-aspartate receptors (NMDARs are subtype glutamate receptors that play important roles in excitatory neurotransmission and synaptic plasticity. Their hypo- or hyperactivation are proposed to contribute to the genesis or progression of various brain diseases, including stroke, schizophrenia, depression, and Alzheimer’s disease. Past efforts in targeting NMDARs for therapeutic intervention have largely been on inhibitors of NMDARs. In light of the discovery of NMDAR hypofunction in psychiatric disorders and perhaps Alzheimer’s disease, efforts in boosting NMDAR activity/functions have surged in recent years. In this review, we will focus on enhancing NMDAR functions, especially on the recent progress in the generation of subunit-selective, allosteric positive modulators (PAMs of NMDARs. We shall also discuss the usefulness of these newly developed NMDAR-PAMs.

  8. Systemic modulation of serotonergic synapses via reuptake blockade or 5HT1A receptor antagonism does not alter perithreshold taste sensitivity in rats.

    Science.gov (United States)

    Mathes, Clare M; Spector, Alan C

    2014-09-01

    Systemic blockade of serotonin (5HT) reuptake with paroxetine has been shown to increase sensitivity to sucrose and quinine in humans. Here, using a 2-response operant taste detection task, we measured the effect of paroxetine and the 5HT1A receptor antagonist WAY100635 on the ability of rats to discriminate sucrose, NaCl, and citric acid from water. After establishing individual psychometric functions, 5 concentrations of each taste stimulus were chosen to represent the dynamic portion of the concentration-response curve, and the performance of the rats to these stimuli was assessed after vehicle, paroxetine (7mg/kg intraperitoneally), and WAY100635 (0.3mg/kg subcutaneously; 1mg/kg intravenously) administration. Although, at times, overall performance across concentrations dropped, at most, 5% from vehicle to drug conditions, no differences relative to vehicle were seen on the parameters of the psychometric function (asymptote, slope, or EC50) after drug administration. In contrast to findings in humans, our results suggest that modulation of 5HT activity has little impact on sucrose detectability at perithreshold concentrations in rats, at least at the doses used in this task. In the rat model, the purported paracrine/neurocrine action of serotonin in the taste bud may work in a manner that does not impact overt taste detection behavior. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Quantification of the uncertainties in extrapolating from in vitro androgen receptor (AR) antagonism to key events in in vivo screening assays and adverse reproductive outcomes in F1 male rats

    Science.gov (United States)

    There are multiple molecular initiating events (MIEs) that can disrupt male sexual differentiation including AR antagonism and inhibition of synthesis, and metabolism of fetal testosterone. Disruption of this event by pesticides like vinclozolin that act as AR antagonists and ph...

  10. Adenosine A1 Receptor Antagonism Abolished the Anti-seizure Effects of Exogenous Ketone Supplementation in Wistar Albino Glaxo Rijswijk Rats

    Directory of Open Access Journals (Sweden)

    Zsolt Kovács

    2017-07-01

    Full Text Available The state of therapeutic ketosis can be achieved by using the ketogenic diet (KD or exogenous ketone supplementation. It was suggested previously that the adenosinergic system may be involved in the mediating effect of KD on suppressing seizure activity in different types of epilepsies, likely by means of adenosine A1 receptors (A1Rs. Thus, we tested in the present study whether exogenous ketone supplements (ketone ester: KE, 2.5 g/kg/day; ketone salt/KS + medium chain triglyceride/MCT: KSMCT, 2.5 g/kg/day applied sub-chronically (for 7 days by intragastric gavage can modulate absence epileptic activity in genetically absence epileptic Wistar Albino Glaxo/Rijswijk (WAG/Rij rats. The number of spike-wave discharges (SWDs significantly and similarly decreased after both KE and KSMCT treatment between 3rd and 7th days of gavage. Moreover, blood beta-hydroxybutyrate (βHB levels were significantly increased alike after KE and KSMCT gavage, compared to control levels. The SWD number and βHB levels returned to the baseline levels on the first day without ketone supplementation. To determine whether A1Rs can modify ketone supplement-evoked changes in absence epileptic activity, we applied a non-pro-epileptic dose of a specific A1R antagonist DPCPX (1,3-dipropyl-8-cyclopentylxanthine (intraperitoneal/i.p. 0.2 mg/kg in combination with KSMCT (2.5 g/kg/day, gavage. As expected, DPCPX abolished the KSMCT-evoked decrease in SWD number. Thus, we concluded that application of exogenous ketone supplements may decrease absence epileptic activity in WAG/Rij rats. Moreover, our results suggest that among others the adenosinergic system, likely via A1Rs, may modulate the exogenous ketone supplements-evoked anti-seizure effects.

  11. Bacterial Associations: Antagonism to Symbiosis

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.

    mutualism through commensalisms and competition, to antagonism, determined ultimately by balancing the cost of the association against the benefits received (Pianka, 1994). A continuum can be envisioned that spans a dynamic bridge from antagonism... when two organisms form a relationship, which provides an advantage for both the partners at least temporarily. In commensalisms only one partner derives benefit and the other does not. Symbiosis The word, ?symbiosis? is derived from the Greek word...

  12. Analysis of thyroid hormone receptor βA mRNA expression in Xenopus laevis tadpoles as a means to detect agonism and antagonism of thyroid hormone action

    International Nuclear Information System (INIS)

    Opitz, Robert; Lutz, Ilka; Nguyen, Ngoc-Ha; Scanlan, Thomas S.; Kloas, Werner

    2006-01-01

    Amphibian metamorphosis represents a unique biological model to study thyroid hormone (TH) action in vivo. In this study, we examined the utility of thyroid hormone receptors α (TRα) and βA (TRβA) mRNA expression patterns in Xenopus laevis tadpoles as molecular markers indicating modulation of TH action. During spontaneous metamorphosis, only moderate changes were evident for TRα gene expression whereas a marked up-regulation of TRβA mRNA occurred in hind limbs (prometamorphosis), head (late prometamorphosis), and tail tissue (metamorphic climax). Treatment of premetamorphic tadpoles with 1 nM 3,5,3'-triiodothyronine (T3) caused a rapid induction of TRβA mRNA in head and tail tissue within 6 to 12 h which was maintained for at least 72 h after initiation of T3 treatment. Developmental stage had a strong influence on the responsiveness of tadpole tissues to induce TRβA mRNA during 24 h treatment with thyroxine (0, 1, 5, 10 nM T4) or T3 (0, 1, 5, 10 nM). Premetamorphic tadpoles were highly sensitive in their response to T4 and T3 treatments, whereas sensitivity to TH was decreased in early prometamorphic tadpoles and strongly diminished in late prometamorphic tadpoles. To examine the utility of TRβA gene expression analysis for detection of agonistic and antagonistic effects on T3 action, mRNA expression was assessed in premetamorphic tadpoles after 48 h of treatment with the synthetic agonist GC-1 (0, 10, 50, 250 nM), the synthetic antagonist NH-3 (0, 40, 200, 1000 nM), and binary combinations of NH-3 (0, 40, 200, 1000 nM) and T3 (1 nM). All tested concentrations of GC-1 as well as the highest concentration of NH-3 caused an up-regulation of TRβA expression. Co-treatment with NH-3 and T3 revealed strong antagonistic effects by NH-3 on T3-induced TRβA mRNA up-regulation. Results of this study suggest that TRβA mRNA expression analysis could serve as a sensitive molecular testing approach to study effects of environmental compounds on the thyroid system in

  13. Simvastatin enhances bone morphogenetic protein receptor type II expression

    International Nuclear Information System (INIS)

    Hu Hong; Sung, Arthur; Zhao, Guohua; Shi, Lingfang; Qiu Daoming; Nishimura, Toshihiko; Kao, Peter N.

    2006-01-01

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function

  14. Enhancement of polymeric immunoglobulin receptor transcytosis by biparatopic VHH.

    Directory of Open Access Journals (Sweden)

    Chris D Emmerson

    Full Text Available The polymeric immunoglobulin receptor (pIgR ensures the transport of dimeric immunoglobulin A (dIgA and pentameric immunoglobulin M (pIgM across epithelia to the mucosal layer of for example the intestines and the lungs via transcytosis. Per day the human pIgR mediates the excretion of 2 to 5 grams of dIgA into the mucosa of luminal organs. This system could prove useful for therapies aiming at excretion of compounds into the mucosa. Here we investigated the use of the variable domain of camelid derived heavy chain only antibodies, also known as VHHs or Nanobodies®, targeting the human pIgR, as a transport system across epithelial cells. We show that VHHs directed against the human pIgR are able to bind the receptor with high affinity (∼1 nM and that they compete with the natural ligand, dIgA. In a transcytosis assay both native and phage-bound VHH were only able to get across polarized MDCK cells that express the human pIgR gene in a basolateral to apical fashion. Indicating that the VHHs are able to translocate across epithelia and to take along large particles of cargo. Furthermore, by making multivalent VHHs we were able to enhance the transport of the compounds both in a MDCK-hpIgR and Caco-2 cell system, probably by inducing receptor clustering. These results show that VHHs can be used as a carrier system to exploit the human pIgR transcytotic system and that multivalent compounds are able to significantly enhance the transport across epithelial monolayers.

  15. Selective dopamine D3 receptor antagonism by SB-277011A attenuates cocaine reinforcement as assessed by progressive-ratio and variable-cost–variable-payoff fixed-ratio cocaine self-administration in rats

    OpenAIRE

    Xi, Zheng-Xiong; Gilbert, Jeremy G.; Pak, Arlene C.; Ashby, Charles R.; Heidbreder, Christian A.; Gardner, Eliot L.

    2005-01-01

    In rats, acute administration of SB-277011A, a highly selective dopamine (DA) D3 receptor antagonist, blocks cocaine-enhanced brain stimulation reward, cocaine-seeking behaviour and reinstatement of cocaine-seeking behaviour. Here, we investigated whether SB-277011A attenuates cocaine reinforcement as assessed by cocaine self-administration under variable-cost–variable-payoff fixed-ratio (FR) and progressive-ratio (PR) reinforcement schedules. Acute i.p. administration of SB-277011A (3–24 mg/...

  16. Reconceptualizing synergism and antagonism among multiple stressors.

    Science.gov (United States)

    Piggott, Jeremy J; Townsend, Colin R; Matthaei, Christoph D

    2015-04-01

    The potential for complex synergistic or antagonistic interactions between multiple stressors presents one of the largest uncertainties when predicting ecological change but, despite common use of the terms in the scientific literature, a consensus on their operational definition is still lacking. The identification of synergism or antagonism is generally straightforward when stressors operate in the same direction, but if individual stressor effects oppose each other, the definition of synergism is paradoxical because what is synergistic to one stressor's effect direction is antagonistic to the others. In their highly cited meta-analysis, Crain et al. (Ecology Letters, 11, 2008: 1304) assumed in situations with opposing individual effects that synergy only occurs when the cumulative effect is more negative than the additive sum of the opposing individual effects. We argue against this and propose a new systematic classification based on an additive effects model that combines the magnitude and response direction of the cumulative effect and the interaction effect. A new class of "mitigating synergism" is identified, where cumulative effects are reversed and enhanced. We applied our directional classification to the dataset compiled by Crain et al. (Ecology Letters, 11, 2008: 1304) to determine the prevalence of synergistic, antagonistic, and additive interactions. Compared to their original analysis, we report differences in the representation of interaction classes by interaction type and we document examples of mitigating synergism, highlighting the importance of incorporating individual stressor effect directions in the determination of synergisms and antagonisms. This is particularly pertinent given a general bias in ecology toward investigating and reporting adverse multiple stressor effects (double negative). We emphasize the need for reconsideration by the ecological community of the interpretation of synergism and antagonism in situations where

  17. CGRP-receptor antagonism in migraine treatment

    DEFF Research Database (Denmark)

    Edvinsson, Lars; Petersen, Kenneth Ahrend

    2007-01-01

    Primary headaches are among the most prevalent neurological disorders, afflicting up to 16% of the adult population. Associated pain originates from intracranial blood vessels that are innervated by sensory nerves storing several neurotransmitters. In primary headaches, there is a clear association...... between the headache and the release of calcitonin gene-related peptide (CGRP) but not with other neuronal messengers. The specific purpose of this review is to describe CGRP in the human cranial circulation and to elucidate a possible role for a specific antagonist in the treatment of primary headaches...... nerves. The central role of CGRP in migraine and cluster headache pathophysiology has led to the search for small molecule CGRP antagonists, which would predictably have less cardiovascular side effects as compared to the triptans. The initial pharmacological profile of such a group of compounds has...

  18. Memantine, a Low-Affinity NMDA Receptor Antagonist, Protects against Methylmercury-Induced Cytotoxicity of Rat Primary Cultured Cortical Neurons, Involvement of Ca2+ Dyshomeostasis Antagonism, and Indirect Antioxidation Effects.

    Science.gov (United States)

    Liu, Wei; Xu, Zhaofa; Yang, Tianyao; Xu, Bin; Deng, Yu; Feng, Shu

    2017-09-01

    Methylmercury (MeHg) is an extremely dangerous environmental pollutant that induces severe toxic effects in the central nervous system. Neuronal damage plays critical roles mediating MeHg-induced loss of brain function and neurotoxicity. The molecular mechanisms of MeHg neurotoxicity are incompletely understood. The objective of the study is to explore mechanisms that contribute to MeHg-induced neurocyte injuries focusing on neuronal Ca 2+ dyshomeostasis and alteration of N-methyl-D-aspartate receptors (NMDARs) expression, as well as oxidative stress in primary cultured cortical neurons. In addition, the neuroprotective effects of memantine against MeHg cytotoxicity were also investigated. The cortical neurons were exposed to 0, 0.01, 0.1, 1, or 2 μM methylmercury chloride (MeHgCl) for 0.5-12 h, or pre-treated with 2.5, 5, 10, or 20 μM memantine for 0.5-6 h, respectively; cell viability and LDH release were then quantified. For further experiments, 2.5, 5, and 10 μM of memantine pre-treatment for 3 h followed by 1 μM MeHgCl for 6 h were performed for evaluation of neuronal injuries, specifically addressing apoptosis; intracellular free Ca 2+ concentrations; ATPase activities; calpain activities; expressions of NMDAR subunits (NR1, NR2A, NR2B); NPSH levels; and ROS formation. Exposure of MeHgCl resulted in toxicity of cortical neurons, which were shown as a loss of cell viability, high levels of LDH release, morphological changes, and cell apoptosis. Moreover, intracellular Ca 2+ dyshomeostasis, ATPase activities inhibition, calpain activities, and NMDARs expression alteration were observed with 1 μM MeHgCl administration. Last but not least, NPSH depletion and reactive oxygen species (ROS) overproduction showed an obvious oxidative stress in neurons. However, memantine pre-treatment dose-dependently antagonized MeHg-induced neuronal toxic effects, apoptosis, Ca 2+ dyshomeostasis, NMDARs expression alteration, and oxidative stress. In conclusion, the

  19. Cognitive enhancers (nootropics). Part 1: drugs interacting with receptors.

    Science.gov (United States)

    Froestl, Wolfgang; Muhs, Andreas; Pfeifer, Andrea

    2012-01-01

    Cognitive enhancers (nootropics) are drugs to treat cognition deficits in patients suffering from Alzheimer's disease, schizophrenia, stroke, attention deficit hyperactivity disorder, or aging. Cognition refers to a capacity for information processing, applying knowledge, and changing preferences. It involves memory, attention, executive functions, perception, language, and psychomotor functions. The term nootropics was coined in 1972 when memory enhancing properties of piracetam were observed in clinical trials. In the meantime, hundreds of drugs have been evaluated in clinical trials or in preclinical experiments. To classify the compounds, a concept is proposed assigning drugs to 18 categories according to their mechanism(s) of action, in particular drugs interacting with receptors, enzymes, ion channels, nerve growth factors, re-uptake transporters, antioxidants, metal chelators, and disease-modifying drugs meaning small molecules, vaccines, and monoclonal antibodies interacting with amyloid-β and tau. For drugs, whose mechanism of action is not known, they are either classified according to structure, e.g., peptides, or their origin, e.g., natural products. The review covers the evolution of research in this field over the last 25 years.

  20. Direct stimulation of angiotensin II type 2 receptor enhances spatial memory

    DEFF Research Database (Denmark)

    Jing, Fei; Mogi, Masaki; Sakata, Akiko

    2012-01-01

    We examined the possibility that direct stimulation of the angiotensin II type 2 (AT(2)) receptor by a newly generated direct AT(2) receptor agonist, Compound 21 (C21), enhances cognitive function. Treatment with C21 intraperitoneal injection for 2 weeks significantly enhanced cognitive function...

  1. Methylphenidate enhances NMDA-receptor response in medial prefrontal cortex via sigma-1 receptor: a novel mechanism for methylphenidate action.

    Directory of Open Access Journals (Sweden)

    Chun-Lei Zhang

    Full Text Available Methylphenidate (MPH, commercially called Ritalin or Concerta, has been widely used as a drug for Attention Deficit Hyperactivity Disorder (ADHD. Noteworthily, growing numbers of young people using prescribed MPH improperly for pleasurable enhancement, take high risk of addiction. Thus, understanding the mechanism underlying high level of MPH action in the brain becomes an important goal nowadays. As a blocker of catecholamine transporters, its therapeutic effect is explained as being due to proper modulation of D1 and α2A receptor. Here we showed that higher dose of MPH facilitates NMDA-receptor mediated synaptic transmission via a catecholamine-independent mechanism, in layer V∼VI pyramidal cells of the rat medial prefrontal cortex (PFC. To indicate its postsynaptic action, we next found that MPH facilitates NMDA-induced current and such facilitation could be blocked by σ1 but not D1/5 and α2 receptor antagonists. And this MPH eliciting enhancement of NMDA-receptor activity involves PLC, PKC and IP3 receptor mediated intracellular Ca(2+ increase, but does not require PKA and extracellular Ca(2+ influx. Our additional pharmacological studies confirmed that higher dose of MPH increases locomotor activity via interacting with σ1 receptor. Together, the present study demonstrates for the first time that MPH facilitates NMDA-receptor mediated synaptic transmission via σ1 receptor, and such facilitation requires PLC/IP3/PKC signaling pathway. This novel mechanism possibly explains the underlying mechanism for MPH induced addictive potential and other psychiatric side effects.

  2. Behavioral effects of diazepam in the murine plus-maze: flumazenil antagonism of enhanced head dipping but not the disinhibition of open-arm avoidance.

    Science.gov (United States)

    Dalvi, A; Rodgers, R J

    1999-04-01

    Although it is widely believed that benzodiazepines reduce anxiety through positive allosteric modulation of the GABA(A)-chloride channel complex, this is not the only mechanism through which agents of this class can modify CNS function. Furthermore, a significant number of reports of apparent flumazenil blockade of diazepam anxiolysis in animal models have paid limited attention to possible intrinsic behavioral actions of the antagonist per se. In the present study, ethological methods were employed to assess in detail the effects of diazepam, flumazenil, and their combination on the behavior of male DBA/2 mice in the elevated plus-maze paradigm. In two experiments, diazepam (1.5 mg/kg) alone reduced open-arm avoidance and increased head dipping, whereas flumazenil (10-40 mg/kg) alone was without significant behavioral effect. However, with the sole exception of head dipping, prior administration of flumazenil (10 and 40 mg/kg) failed to block the behavioral effects of diazepam under present test conditions. These findings imply that the anxiolytic effects of diazepam in the mouse plus-maze are not mediated through flumazenil-sensitive benzodiazepine receptors and that alternate mechanisms must be considered.

  3. Mechanical stimulation enhanced estrogen receptor expression and callus formation in diaphyseal long bone fracture healing in ovariectomy-induced osteoporotic rats.

    Science.gov (United States)

    Chow, S K H; Leung, K S; Qin, J; Guo, A; Sun, M; Qin, L; Cheung, W H

    2016-10-01

    Estrogen receptor (ER) in ovariectomy-induced osteoporotic fracture was reported to exhibit delayed expression. Mechanical stimulation enhanced ER-α expression in osteoporotic fracture callus at the tissue level. ER was also found to be required for the effectiveness of vibrational mechanical stimulation treatment in osteoporotic fracture healing. Estrogen receptor(ER) is involved in mechanical signal transduction in bone metabolism. Its expression was reported to be delayed in osteoporotic fracture healing. The purpose of this study was to investigate the roles played by ER during osteoporotic fracture healing enhanced with mechanical stimulation. Ovariectomy-induced osteoporotic SD rats that received closed femoral fractures were divided into five groups, (i) SHAM, (ii) SHAM-VT, (iii) OVX, (iv) OVX-VT, and (v) OVX-VT-ICI, where VT stands for whole-body vibration treatment and ICI for ER antagonization by ICI 182,780. Callus formation and gene expression were assessed at 2, 4, and 8 weeks postfracture. In vitro osteoblastic differentiation, mineralization, and ER-α expression were assessed. The delayed ER expression was found to be enhanced by vibration treatment. Callus formation enhancement was shown by callus morphometry and micro-CT analysis. Enhancement effects by vibration were partially abolished when ER was modulated by ICI 182,780, in terms of callus formation capacity at 2-4 weeks and ER gene and protein expression at all time points. In vitro, ER expression in osteoblasts was not enhanced by VT treatment, but osteoblastic differentiation and mineralization were enhanced under estrogen-deprived condition. When osteoblastic cells were modulated by ICI 182,780, enhancement effects of VT were eliminated. Vibration was able to enhance ER expression in ovariectomy-induced osteoporotic fracture healing. ER was essential in mechanical signal transduction and enhancement in callus formation effects during osteoporotic fracture healing enhanced by vibration

  4. Enhancement of insulin-like growth factor 2 receptors in glioblastoma

    International Nuclear Information System (INIS)

    Sara, V.; Prisell, Per; Sjoegren, Barbro; Enberg, Goesta

    1986-01-01

    The somatomedins (IGF-1/IGF-2) are a family of growth-promoting hormones which have been identified in the human central nervous system where their specific receptors are distributed. The present study identified somatomedin receptors in glioblastoma and compared them with those found in normal brain. A significant enhancement in the binding of 125 1-IGF-2 but not 125 1-IGF-1 to glioblastoma membranes was found. A fourfold increase in IGF-2 receptor concentration was observed. These findings indicate enhanced expression of the IGF-2 receptor in glioblastoma. (author)

  5. Enhancement of insulin-like growth factor 2 receptors in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Sara, V; Prisell, P; Sjoegren, B; Persson, L; Boethius, J; Enberg, G

    1986-09-01

    The somatomedins (IGF-1/IGF-2) are a family of growth-promoting hormones which have been identified in the human central nervous system where their specific receptors are distributed. The present study identified somatomedin receptors in glioblastoma and compared them with those found in normal brain. A significant enhancement in the binding of /sup 125/1-IGF-2 but not /sup 125/1-IGF-1 to glioblastoma membranes was found. A fourfold increase in IGF-2 receptor concentration was observed. These findings indicate enhanced expression of the IGF-2 receptor in glioblastoma. 14 refs.

  6. Novel agents acting on GABA2 receptors: potential cognitive enhancers

    International Nuclear Information System (INIS)

    Chebib, M.

    2001-01-01

    γ- Aminobutyric acid (GABA) is a low molecular weight ammo acid found throughout the central and peripheral nervous systems. It is a very flexible molecule and thus can attain a number of low-energy conformations which are recognised by a series of enzymes, receptors and transporter systems. This article will concentrate on the effects of GABA C as the major inhibitory neurotransmitter in the brain. GABA C receptors belong to the superfamily of ligand-gated ion channels that include nicotinic acetylcholine, GABA A , strychnine-sensitive glycine, and serotonin type 3 receptors. The compound outlined in this article provide us with novel leads for the design and development of compounds that may be selective for GABA receptors. Such compounds will help in the study of GABA C receptors both in vitro and in vivo, providing an insight into the role these receptors play in the brain

  7. Adiponectin and adiponectin receptor 1 overexpression enhance inflammatory bowel disease.

    Science.gov (United States)

    Peng, Yu-Ju; Shen, Tang-Long; Chen, Yu-Shan; Mersmann, Harry John; Liu, Bing-Hsien; Ding, Shih-Torng

    2018-03-14

    Adiponectin (ADN) is an adipokine derived from adipocytes. It binds to adiponectin receptor 1 and 2 (AdipoR1 and R2) to exert its function in regulating whole-body energy homeostasis and inflammatory responses. However, the role of ADN-AdipoR1 signaling in intestinal inflammation is controversial, and its role in the regulation of neutrophils is still unclear. Our goal was to clarify the role of AdipoR1 signaling in colitis and the effects on neutrophils. We generated porcine AdipoR1 transgenic mice (pAdipoR1 mice) and induced murine colitis using dextran sulfate sodium (DSS) to study the potential role of AdipoR1 in inflammatory bowel disease. We also treated a THP-1 macrophage and a HT-29 colon epithelial cell line with ADN recombinant protein to study the effects of ADN on inflammation. After inducing murine colitis, pAdipoR1 mice developed more severe symptoms than wild-type (WT) mice. Treatment with ADN increased the expression of pro-inflammatory factors in THP-1 and HT-29 cells. Moreover, we also observed that the expression of cyclooxygenase2 (cox2), neutrophil chemokines (CXCL1, CXCL2 and CXCL5), and the infiltration of neutrophils were increased in the colon of pAdipoR1 mice. Our study showed that ADN-AdipoR1 signaling exacerbated colonic inflammation through two possible mechanisms. First, ADN-AdipoR1 signaling increased pro-inflammatory factors. Second, AdipoR1 enhanced neutrophil chemokine expression and recruited neutrophils into the colonic tissue to increase inflammation.

  8. Design and Rationale for the Endothelin-1 Receptor Antagonism in the Prevention of Microvascular Injury in Patients with non-ST Elevation Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention (ENDORA-PCI) Trial.

    Science.gov (United States)

    Liou, Kevin; Jepson, Nigel; Buckley, Nicolas; Chen, Vivien; Thomas, Shane; Russell, Elizabeth Anne; Ooi, Sze-Yuan

    2016-04-01

    Peri-procedural myocardial infarction (PMI) occurs in a small but significant portion of patients undergoing percutaneous intervention (PCI). The underlying mechanisms are complex and may include neurohormonal activation and release of vasoactive substances resulting in disruption of the coronary microcirculation. Endothelin in particular has been found in abundance in atherosclerotic plaques and in systemic circulation following PCI, and may be a potential culprit for PMI through its action on microvascular vasoconstriction, and platelet and neutrophil activation. In this study we aim to characterize the behavior of the coronary microcirculation during a PCI with the index of microvascular resistance (IMR) and the effect of peri-procedural endothelin antagonism. The ENDORA-PCI trial is a randomized, double-blind, placebo-controlled, single-center clinical trial designed to evaluate the efficacy of endothelin antagonism in attenuating the peri-procedural rise in IMR as a surrogate marker for PMI. The patients of interest are those with non-ST elevation acute coronary syndrome (NSTEACS) undergoing PCI, and we aim to recruit 52 patients overall to give the study a power of 80 % at an α level of 5 %. Patients will be randomized in a 1:1 fashion to either Ambrisentan, an endothelin antagonist, or placebo, prior to their PCI. IMR will be measured before and after PCI. The primary endpoint is the difference in peri-procedural changes in patients' IMR between the two groups. The ENDORA-PCI study will investigate whether endothelin antagonism with Ambrisentan attenuates the peri-procedural rise in IMR in patients with NSTEACS undergoing PCI, and thus potentially the risk of PMI.

  9. Receptor downregulation and desensitization enhance the information processing ability of signalling receptors

    Directory of Open Access Journals (Sweden)

    Resat Haluk

    2007-11-01

    Full Text Available Abstract Background In addition to initiating signaling events, the activation of cell surface receptors also triggers regulatory processes that restrict the duration of signaling. Acute attenuation of signaling can be accomplished either via ligand-induced internalization of receptors (endocytic downregulation or via ligand-induced receptor desensitization. These phenomena have traditionally been viewed in the context of adaptation wherein the receptor system enters a refractory state in the presence of sustained ligand stimuli and thereby prevents the cell from over-responding to the ligand. Here we use the epidermal growth factor receptor (EGFR and G-protein coupled receptors (GPCR as model systems to respectively examine the effects of downregulation and desensitization on the ability of signaling receptors to decode time-varying ligand stimuli. Results Using a mathematical model, we show that downregulation and desensitization mechanisms can lead to tight and efficient input-output coupling thereby ensuring synchronous processing of ligand inputs. Frequency response analysis indicates that upstream elements of the EGFR and GPCR networks behave like low-pass filters with the system being able to faithfully transduce inputs below a critical frequency. Receptor downregulation and desensitization increase the filter bandwidth thereby enabling the receptor systems to decode inputs in a wider frequency range. Further, system-theoretic analysis reveals that the receptor systems are analogous to classical mechanical over-damped systems. This analogy enables us to metaphorically describe downregulation and desensitization as phenomena that make the systems more resilient in responding to ligand perturbations thereby improving the stability of the system resting state. Conclusion Our findings suggest that in addition to serving as mechanisms for adaptation, receptor downregulation and desensitization can play a critical role in temporal information

  10. Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement

    DEFF Research Database (Denmark)

    Knafo, Shira; Venero, César; Sánchez-Puelles, Cristina

    2012-01-01

    ) that enhances spatial learning and memory in rats. We have now investigated the cellular and molecular basis of this cognitive enhancement, using biochemical, morphological, electrophysiological, and behavioral analyses. We have found that FGL triggers a long-lasting enhancement of synaptic transmission......MKII activation. These results provide a mechanistic link between facilitation of AMPA receptor synaptic delivery and improved hippocampal-dependent learning, induced by a pharmacological cognitive enhancer....

  11. Cognitive enhancers (Nootropics). Part 1: drugs interacting with receptors. Update 2014.

    Science.gov (United States)

    Froestl, Wolfgang; Muhs, Andreas; Pfeifer, Andrea

    2014-01-01

    Scientists working in the fields of Alzheimer's disease and, in particular, cognitive enhancers are very productive. The review "Cognitive enhancers (nootropics): drugs interacting with receptors" was accepted for publication in July 2012. Since then, new targets for the potential treatment of Alzheimer's disease were identified. This update describes drugs interacting with 42 receptors versus 32 receptors in the first paper. Some compounds progressed in their development, while many others were discontinued. The present review covers the evolution of research in this field through March 2014.

  12. Selective dopamine D3 receptor antagonism by SB-277011A attenuates cocaine reinforcement as assessed by progressive-ratio and variable-cost–variable-payoff fixed-ratio cocaine self-administration in rats

    Science.gov (United States)

    Xi, Zheng-Xiong; Gilbert, Jeremy G.; Pak, Arlene C.; Ashby, Charles R.; Heidbreder, Christian A.; Gardner, Eliot L.

    2013-01-01

    In rats, acute administration of SB-277011A, a highly selective dopamine (DA) D3 receptor antagonist, blocks cocaine-enhanced brain stimulation reward, cocaine-seeking behaviour and reinstatement of cocaine-seeking behaviour. Here, we investigated whether SB-277011A attenuates cocaine reinforcement as assessed by cocaine self-administration under variable-cost–variable-payoff fixed-ratio (FR) and progressive-ratio (PR) reinforcement schedules. Acute i.p. administration of SB-277011A (3–24 mg/kg) did not significantly alter cocaine (0.75 mg/kg/infusion) self-administration reinforced under FR1 (one lever press for one cocaine infusion) conditions. However, acute administration of SB-277011A (24 mg/kg, i.p.) progressively attenuated cocaine self-administration when: (a) the unit dose of self-administered cocaine was lowered from 0.75 to 0.125–0.5 mg/kg, and (b) the work demand for cocaine reinforcement was increased from FR1 to FR10. Under PR (increasing number of lever presses for each successive cocaine infusion) cocaine reinforcement, acute administration of SB-277011A (6–24 mg/kg i.p.) lowered the PR break point for cocaine self-administration in a dose-dependent manner. The reduction in the cocaine (0.25–1.0 mg/kg) dose–response break-point curve produced by 24 mg/kg SB-277011A is consistent with a reduction in cocaine’s reinforcing efficacy. When substituted for cocaine, SB-277011A alone did not sustain self-administration behaviour. In contrast with the mixed DA D2/D3 receptor antagonist haloperidol (1 mg/kg), SB-277011A (3, 12 or 24 mg/kg) failed to impede locomotor activity, failed to impair rearing behaviour, failed to produce catalepsy and failed to impair rotarod performance. These results show that SB-277011A significantly inhibits acute cocaine-induced reinforcement except at high cocaine doses and low work requirement for cocaine. If these results extrapolate to humans, SB-277011A or similar selective DA D3 receptor antagonists may be

  13. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    International Nuclear Information System (INIS)

    Magno, Aaron L.; Ingley, Evan; Brown, Suzanne J.; Conigrave, Arthur D.; Ratajczak, Thomas; Ward, Bryan K.

    2011-01-01

    Highlights: → A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. → The second zinc finger of LIM domain 1 of testin is critical for interaction. → Testin bound to a region of the receptor tail important for cell signalling. → Testin and receptor interaction was confirmed in mammalian (HEK293) cells. → Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  14. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    Science.gov (United States)

    Kojima, Hiroyuki; Takeda, Yukimasa; Muromoto, Ryuta; Takahashi, Miki; Hirao, Toru; Takeuchi, Shinji; Jetten, Anton M.; Matsuda, Tadashi

    2018-01-01

    The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10−6 M to 1 × 10−5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also provides the first evidence that dietary chemicals can enhance IL-17 gene expression in immune cells. PMID:25583575

  15. Increased NMDA receptor inhibition at an increased Sevoflurane MAC

    Directory of Open Access Journals (Sweden)

    Brosnan Robert J

    2012-06-01

    Full Text Available Abstract Background Sevoflurane potently enhances glycine receptor currents and more modestly decreases NMDA receptor currents, each of which may contribute to immobility. This modest NMDA receptor antagonism by sevoflurane at a minimum alveolar concentration (MAC could be reciprocally related to large potentiation of other inhibitory ion channels. If so, then reduced glycine receptor potency should increase NMDA receptor antagonism by sevoflurane at MAC. Methods Indwelling lumbar subarachnoid catheters were surgically placed in 14 anesthetized rats. Rats were anesthetized with sevoflurane the next day, and a pre-infusion sevoflurane MAC was measured in duplicate using a tail clamp method. Artificial CSF (aCSF containing either 0 or 4 mg/mL strychnine was then infused intrathecally at 4 μL/min, and the post-infusion baseline sevoflurane MAC was measured. Finally, aCSF containing strychnine (either 0 or 4 mg/mL plus 0.4 mg/mL dizocilpine (MK-801 was administered intrathecally at 4 μL/min, and the post-dizocilpine sevoflurane MAC was measured. Results Pre-infusion sevoflurane MAC was 2.26%. Intrathecal aCSF alone did not affect MAC, but intrathecal strychnine significantly increased sevoflurane requirement. Addition of dizocilpine significantly decreased MAC in all rats, but this decrease was two times larger in rats without intrathecal strychnine compared to rats with intrathecal strychnine, a statistically significant (P  Conclusions Glycine receptor antagonism increases NMDA receptor antagonism by sevoflurane at MAC. The magnitude of anesthetic effects on a given ion channel may therefore depend on the magnitude of its effects on other receptors that modulate neuronal excitability.

  16. Isoflavones enhance interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ

    International Nuclear Information System (INIS)

    Kojima, Hiroyuki; Takeda, Yukimasa; Muromoto, Ryuta; Takahashi, Miki; Hirao, Toru; Takeuchi, Shinji; Jetten, Anton M.; Matsuda, Tadashi

    2015-01-01

    Highlights: • Nuclear receptors, RORα and RORγ, are key regulators of Th17 cell differentiation. • Isoflavones have RORα/γ agonistic activities. • Isoflavones enhance the interaction of RORα/γ with co-activator. • These compounds enhance the expression of Il17a mRNA in mouse EL4 cells. • Dietary isoflavones can act as modulators of Il17a expression via RORα/γ. - Abstract: The retinoic acid receptor-related orphan receptors α and γ (RORα and RORγ), are key regulators of helper T (Th)17 cell differentiation, which is involved in the innate immune system and autoimmune disorders. In this study, we investigated the effects of isoflavones on RORα/γ activity and the gene expression of interleukin (IL)-17, which mediates the function of Th17 cells. In doxycycline-inducible CHO stable cell lines, we found that four isoflavones, biochanin A (BA), genistein, formononetin, and daidzein, enhanced RORα- or RORγ-mediated transcriptional activity in a dose-dependent manner. In an activation assay of the Il17a promoter using Jurkat cells, these compounds enhanced the RORα- or RORγ-mediated activation of the Il17a promoter at concentrations of 1 × 10 −6 M to 1 × 10 −5 M. In mammalian two-hybrid assays, the four isoflavones enhanced the interaction between the RORα- or RORγ-ligand binding domain and the co-activator LXXLL peptide in a dose-dependent manner. In addition, these isoflavones potently enhanced Il17a mRNA expression in mouse T lymphoma EL4 cells treated with phorbol myristate acetate and ionomycin, but showed slight enhancement of Il17a gene expression in RORα/γ-knockdown EL4 cells. Immunoprecipitation and immunoblotting assays also revealed that BA enhanced the interaction between RORγt and SRC-1, which is a co-activator for nuclear receptors. Taken together, these results suggest that the isoflavones have the ability to enhance IL-17 gene expression by stabilizing the interactions between RORα/γ and co-activators. This also

  17. Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists

    Science.gov (United States)

    2016-08-01

    approximately halfway into the solution. All animals were tested at 60, 15 and 0 min before drug injection. For each animal , the first reading was discarded...approval (December 31, 2015), hiring new personnel, conducting baseline testing for procedures not involving animals , testing equipment, developing...treatment; Analgesia; Nociception; Antinociception; Inflammation; Chemokines; Chemokine receptor antagonists; Opioid analgesics; Animal models of pain

  18. Interferon Induction by RNA Viruses and Antagonism by Viral Pathogens

    Directory of Open Access Journals (Sweden)

    Yuchen Nan

    2014-12-01

    Full Text Available Interferons are a group of small proteins that play key roles in host antiviral innate immunity. Their induction mainly relies on host pattern recognition receptors (PRR. Host PRR for RNA viruses include Toll-like receptors (TLR and retinoic acid-inducible gene I (RIG-I like receptors (RLR. Activation of both TLR and RLR pathways can eventually lead to the secretion of type I IFNs, which can modulate both innate and adaptive immune responses against viral pathogens. Because of the important roles of interferons, viruses have evolved multiple strategies to evade host TLR and RLR mediated signaling. This review focuses on the mechanisms of interferon induction and antagonism of the antiviral strategy by RNA viruses.

  19. Mdm2 is a novel activator of ApoCIII promoter which is antagonized by p53 and SHP inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhihong; Zhang, Yuxia [Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132 (United States); Wang, Li, E-mail: l.wang@hsc.utah.edu [Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132 (United States)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Mdm2 enhances HNF4{alpha} activation of the ApoCIII promoter via interaction with HNF4{alpha}. Black-Right-Pointing-Pointer p53 antagonizes the effect of Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer SHP strengthens p53 inhibition but abolishes Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer Mdm2 alters the enrichment of HNF4{alpha}, p53 and SHP to the ApoCIII promoter. -- Abstract: We examined the effect of Mdm2 on regulation of the ApoCIII promoter and its cross-talk with p53 and nuclear receptor SHP. Overexpression of Mdm2 markedly enhanced ApoCIII promoter activity by HNF4{alpha}. A direct association of Mdm2 protein with the HNF4{alpha} protein was observed by co-immunoprecipitation. Ectopic expression of p53 decreased HNF4{alpha} activation of the ApoCIII promoter and antagonized the effect of Mdm2. Co-expression of SHP further strengthened p53 inhibition and abolished Mdm2 activation of the ApoCIII promoter. Mdm2 inhibited p53-mediated enrichment of HNF4{alpha} to the ApoCIII promoter while simultaneously reducing p53 binding and increasing recruitment of SHP to the ApoCIII promoter. The results from this study implicate a potentially important function of Mdm2 in regulation of lipoprotein metabolism.

  20. Mdm2 is a novel activator of ApoCIII promoter which is antagonized by p53 and SHP inhibition

    International Nuclear Information System (INIS)

    Yang, Zhihong; Zhang, Yuxia; Wang, Li

    2012-01-01

    Highlights: ► Mdm2 enhances HNF4α activation of the ApoCIII promoter via interaction with HNF4α. ► p53 antagonizes the effect of Mdm2 activation of the ApoCIII promoter. ► SHP strengthens p53 inhibition but abolishes Mdm2 activation of the ApoCIII promoter. ► Mdm2 alters the enrichment of HNF4α, p53 and SHP to the ApoCIII promoter. -- Abstract: We examined the effect of Mdm2 on regulation of the ApoCIII promoter and its cross-talk with p53 and nuclear receptor SHP. Overexpression of Mdm2 markedly enhanced ApoCIII promoter activity by HNF4α. A direct association of Mdm2 protein with the HNF4α protein was observed by co-immunoprecipitation. Ectopic expression of p53 decreased HNF4α activation of the ApoCIII promoter and antagonized the effect of Mdm2. Co-expression of SHP further strengthened p53 inhibition and abolished Mdm2 activation of the ApoCIII promoter. Mdm2 inhibited p53-mediated enrichment of HNF4α to the ApoCIII promoter while simultaneously reducing p53 binding and increasing recruitment of SHP to the ApoCIII promoter. The results from this study implicate a potentially important function of Mdm2 in regulation of lipoprotein metabolism.

  1. EVIR: chimeric receptors that enhance dendritic cell cross-dressing with tumor antigens.

    Science.gov (United States)

    Squadrito, Mario Leonardo; Cianciaruso, Chiara; Hansen, Sarah K; De Palma, Michele

    2018-03-01

    We describe a lentivirus-encoded chimeric receptor, termed extracellular vesicle (EV)-internalizing receptor (EVIR), which enables the selective uptake of cancer-cell-derived EVs by dendritic cells (DCs). The EVIR enhances DC presentation of EV-associated tumor antigens to CD8 + T cells primarily through MHCI recycling and cross-dressing. EVIRs should facilitate exploring the mechanisms and implications of horizontal transfer of tumor antigens to antigen-presenting cells.

  2. Identification of Androgen Receptor-Specific Enhancer RNAs

    Science.gov (United States)

    2017-08-01

    SUPPLEMENTARY NOTES 14. ABSTRACT The major goal of this application is to determine whether prostate cancer cells express enhancer RNAs in response to...androgen treatment such that these enhancer RNAs may serve as novel biomarkers for prostate cancer diagnosis and prognosis. There are two Tasks in...biomarkers or therapeutic targets for prostate cancer , especially for castration resistant prostate cancer . 15. SUBJECT TERMS lncRNA, eRNA, biomarker

  3. Platformed antagonism: Racist discourses on fake Muslim Facebook pages

    DEFF Research Database (Denmark)

    Farkas, Johan; Schou, Jannick; Neumayer, Christina

    2018-01-01

    This research examines how fake identities on social media create and sustain antagonistic and racist discourses. It does so by analysing 11 Danish Facebook pages, disguised as Muslim extremists living in Denmark, conspiring to kill and rape Danish citizens. It explores how anonymous content...... producers utilize Facebook's socio-technical characteristics to construct, what we propose to term as, platformed antagonism. This term refers to socio-technical and discursive practices that produce new modes of antagonistic relations on social media platforms. Through a discourse-theoretical analysis...... of posts, images, 'about' sections and user comments on the studied Facebook pages, the article highlights how antagonism between ethno-cultural identities is produced on social media through fictitious social media accounts, prompting thousands of user reactions. These findings enhance our current...

  4. Ablation of NMDA receptors enhances the excitability of hippocampal CA3 neurons.

    Directory of Open Access Journals (Sweden)

    Fumiaki Fukushima

    Full Text Available Synchronized discharges in the hippocampal CA3 recurrent network are supposed to underlie network oscillations, memory formation and seizure generation. In the hippocampal CA3 network, NMDA receptors are abundant at the recurrent synapses but scarce at the mossy fiber synapses. We generated mutant mice in which NMDA receptors were abolished in hippocampal CA3 pyramidal neurons by postnatal day 14. The histological and cytological organizations of the hippocampal CA3 region were indistinguishable between control and mutant mice. We found that mutant mice lacking NMDA receptors selectively in CA3 pyramidal neurons became more susceptible to kainate-induced seizures. Consistently, mutant mice showed characteristic large EEG spikes associated with multiple unit activities (MUA, suggesting enhanced synchronous firing of CA3 neurons. The electrophysiological balance between fast excitatory and inhibitory synaptic transmission was comparable between control and mutant pyramidal neurons in the hippocampal CA3 region, while the NMDA receptor-slow AHP coupling was diminished in the mutant neurons. In the adult brain, inducible ablation of NMDA receptors in the hippocampal CA3 region by the viral expression vector for Cre recombinase also induced similar large EEG spikes. Furthermore, pharmacological blockade of CA3 NMDA receptors enhanced the susceptibility to kainate-induced seizures. These results raise an intriguing possibility that hippocampal CA3 NMDA receptors may suppress the excitability of the recurrent network as a whole in vivo by restricting synchronous firing of CA3 neurons.

  5. Reduced Insulin Receptor Expression Enhances Proximal Tubule Gluconeogenesis.

    Science.gov (United States)

    Pandey, Gaurav; Shankar, Kripa; Makhija, Ekta; Gaikwad, Anil; Ecelbarger, Carolyn; Mandhani, Anil; Srivastava, Aneesh; Tiwari, Swasti

    2017-02-01

    Reduced insulin receptor protein levels have been reported in the kidney cortex from diabetic humans and animals. We recently reported that, targeted deletion of insulin receptor (IR) from proximal tubules (PT) resulted in hyperglycemia in non-obese mice. To elucidate the mechanism, we examined human proximal tubule cells (hPTC) and C57BL/6 mice fed with high-fat diet (HFD, 60% fat for 20 weeks). Immunoblotting revealed a significantly lower protein level of IR in HFD compare to normal chow diet (NCD). Furthermore, a blunted rise in p-AKT 308 levels in the kidney cortex of HFD mice was observed in response to acute insulin (0.75 IU/kg body weight, i.p) relative to NCD n = 8/group, P gluconeogenesis. Transcript levels of the gluconeogenic enzyme PEPCK were significantly increased in cAMP/DEXA-stimulated hPTC cells (n = 3, P gluconeogenesis and PEPCK induction was significantly attenuated in IR (siRNA) silenced hPTC (n = 3, P gluconeogenesis. Thus reduced insulin signaling of the proximal tubule may contribute to hyperglycemia in the metabolic syndrome via elevated gluconeogenesis. J. Cell. Biochem. 118: 276-285, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. The second extracellular loop of the adenosine A1 receptor mediates activity of allosteric enhancers.

    Science.gov (United States)

    Kennedy, Dylan P; McRobb, Fiona M; Leonhardt, Susan A; Purdy, Michael; Figler, Heidi; Marshall, Melissa A; Chordia, Mahendra; Figler, Robert; Linden, Joel; Abagyan, Ruben; Yeager, Mark

    2014-02-01

    Allosteric enhancers of the adenosine A1 receptor amplify signaling by orthosteric agonists. Allosteric enhancers are appealing drug candidates because their activity requires that the orthosteric site be occupied by an agonist, thereby conferring specificity to stressed or injured tissues that produce adenosine. To explore the mechanism of allosteric enhancer activity, we examined their action on several A1 receptor constructs, including (1) species variants, (2) species chimeras, (3) alanine scanning mutants, and (4) site-specific mutants. These findings were combined with homology modeling of the A1 receptor and in silico screening of an allosteric enhancer library. The binding modes of known docked allosteric enhancers correlated with the known structure-activity relationship, suggesting that these allosteric enhancers bind to a pocket formed by the second extracellular loop, flanked by residues S150 and M162. We propose a model in which this vestibule controls the entry and efflux of agonists from the orthosteric site and agonist binding elicits a conformational change that enables allosteric enhancer binding. This model provides a mechanism for the observations that allosteric enhancers slow the dissociation of orthosteric agonists but not antagonists.

  7. Nonsteroidal selective androgen receptor modulators enhance female sexual motivation.

    Science.gov (United States)

    Jones, Amanda; Hwang, Dong Jin; Duke, Charles B; He, Yali; Siddam, Anjaiah; Miller, Duane D; Dalton, James T

    2010-08-01

    Women experience a decline in estrogen and androgen levels after natural or surgically induced menopause, effects that are associated with a loss of sexual desire and bone mineral density. Studies in our laboratories have shown the beneficial effects of selective androgen receptor modulators (SARMs) in the treatment of osteoporosis and muscle wasting in animal models. A series of S-3-(phenoxy)-2-hydroxy-2-methyl-N-(4-cyano-3-trifluoromethyl-phenyl)-propionamide analogs was synthesized to evaluate the effects of B-ring substitutions on in vitro and in vivo pharmacologic activity, especially female sexual motivation. The androgen receptor (AR) relative binding affinities ranged from 0.1 to 26.5% (relative to dihydrotestosterone) and demonstrated a range of agonist activity at 100 nM. In vivo pharmacologic activity was first assessed by using male rats. Structural modifications to the B-ring significantly affected the selectivity of the SARMs, demonstrating that single-atom substitutions can dramatically and unexpectedly influence activity in androgenic (i.e., prostate) and anabolic (i.e., muscle) tissues. (S)-N-(4-cyano-3-trifluoromethyl-phenyl)-3-(3-fluoro,4-chlorophenoxy)-2-hydroxy-2-methyl-propanamide (S-23) displayed full agonist activity in androgenic and anabolic tissues; however, the remaining SARMs were more prostate-sparing, selectively maintaining the size of the levator ani muscle in castrated rats. The partner-preference paradigm was used to evaluate the effects of SARMs on female sexual motivation. With the exception of two four-halo substituted analogs, the SARMs increased sexual motivation in ovariectomized rats, with potency and efficacy comparable with testosterone propionate. These results indicate that the AR is important in regulating female libido given the nonaromatizable nature of SARMs and it could be a superior alternative to steroidal testosterone preparations in the treatment of hypoactive sexual desire disorder.

  8. Comparison of effects of angiotensin-converting enzyme inhibition with those of angiotensin II receptor antagonism on functional and metabolic recovery in postischemic working rat heart as studied by [31P] nuclear magnetic resonance.

    Science.gov (United States)

    Werrmann, J G; Cohen, S M

    1994-10-01

    To assess the role of angiotensin II (AII) in development of myocardial injury during ischemia and reperfusion, the effects of short-term treatment with the angiotensin-converting enzyme (ACE) inhibitor lisinopril were compared with the effects of short-term treatment with L-158,338, an AII antagonist, in isolated working rat heart. Myocardial function was assessed and correlated with simultaneous measurement of high-energy phosphate metabolism and intracellular pH by [31P] nuclear magnetic resonance (NMR) before, during, and after global ischemia. Hearts from rats treated with 1 mg/kg lisinopril in vivo recovered substantially more function than those of controls (p effect on functional recovery. A dose-dependent increase in functional recovery was observed in rat heart treated with 0.3, 1, or 3 mg/kg L-158,338 in vivo (p energy phosphate metabolism was essentially unchanged by any treatment regimen. AII antagonism alone resulted in a degree of improvement in functional recovery comparable to that observed with oral ACE inhibitor treatment.

  9. Antagonism of acetylcholine by adrenaline antagonists

    Science.gov (United States)

    Benfey, B. G.; Grillo, S. A.

    1963-01-01

    Phenoxybenzamine antagonized the inhibitory action of acetylcholine on the guinea-pig isolated atrium. The antagonism was slow in onset, very slowly reversible, and could be overcome by increased concentrations of acetylcholine. In contrast, atropine inhibited the action of acetylcholine quickly, and the effect disappeared soon after withdrawal. The pA10 of phenoxybenzamine (2 hr of contact) was 6.8, and that of atropine (30 min of contact) was 8.4. In the presence of atropine phenoxybenzamine did not exert a slowly reversible antagonism, and the dose-ratio of acetylcholine returned to normal soon after withdrawal of both drugs. Phenoxybenzamine also antagonized acetylcholine in the guinea-pig isolated ileum, but with higher concentrations acetylcholine did not overcome the antagonism. The pA10 (60 min of contact) was 6.6. The pA10 of chlorpromazine in the atrium (2 hr of contact) and ileum (60 min of contact) was 5.9. Phentolamine, 2-diethylaminomethylbenzo-1,4-dioxan hydrochloride (883 F), and yohimbine antagonized acetylcholine in the atrium and ileum but required higher concentrations than chlorpromazine. PMID:13967429

  10. Grin1 receptor deletion within CRF neurons enhances fear memory.

    Directory of Open Access Journals (Sweden)

    Georgette Gafford

    Full Text Available Corticotropin releasing factor (CRF dysregulation is implicated in mood and anxiety disorders such as posttraumatic stress disorder (PTSD. CRF is expressed in areas engaged in fear and anxiety processing including the central amygdala (CeA. Complicating our ability to study the contribution of CRF-containing neurons to fear and anxiety behavior is the wide variety of cell types in which CRF is expressed. To manipulate specific subpopulations of CRF containing neurons, our lab has developed a mouse with a Cre recombinase gene driven by a CRF promoter (CRFp3.0Cre (Martin et al., 2010. In these studies, mice that have the gene that encodes NR1 (Grin1 flanked by loxP sites (floxed were crossed with our previously developed CRFp3.0Cre mouse to selectively disrupt Grin1 within CRF containing neurons (Cre+/fGrin1+. We find that disruption of Grin1 in CRF neurons did not affect baseline levels of anxiety, locomotion, pain sensitivity or exploration of a novel object. However, baseline expression of Grin1 was decreased in Cre+/fGrin1+ mice as measured by RTPCR. Cre+/fGrin1+ mice showed enhanced auditory fear acquisition and retention without showing any significant effect on fear extinction. We measured Gria1, the gene that encodes AMPAR1 and the CREB activator Creb1 in the amygdala of Cre+/fGrin1+ mice after fear conditioning. Both Gria1 and Creb1 were enhanced in the amygdala after training. To determine if the Grin1-expressing CRF neurons within the CeA are responsible for the enhancement of fear memory in adults, we infused a lentivirus with Cre driven by a CRF promoter (LV pCRF-Cre/fGrin1+ into the CeA of floxed Grin1 mice. Cre driven deletion of Grin1 specifically within CRF expressing cells in the CeA also resulted in enhanced fear memory acquisition and retention. Altogether, these findings suggest that selective disruption of Grin1 within CeA CRF neurons strongly enhances fear memory.

  11. Blocking mineralocorticoid receptors impairs, blocking glucocorticoid receptors enhances memory retrieval in humans.

    Science.gov (United States)

    Rimmele, Ulrike; Besedovsky, Luciana; Lange, Tanja; Born, Jan

    2013-04-01

    Memory retrieval is impaired at very low as well as very high cortisol levels, but not at intermediate levels. This inverted-U-shaped relationship between cortisol levels and memory retrieval may originate from different roles of the mineralocorticoid (MR) and glucocorticoid receptor (GR) that bind cortisol with distinctly different affinity. Here, we examined the role of MRs and GRs in human memory retrieval using specific receptor antagonists. In two double-blind within-subject, cross-over designed studies, young healthy men were asked to retrieve emotional and neutral texts and pictures (learnt 3 days earlier) between 0745 and 0915 hours in the morning, either after administration of 400 mg of the MR blocker spironolactone vs placebo (200 mg at 2300 hours and 200 mg at 0400 hours, Study I) or after administration of the GR blocker mifepristone vs placebo (200 mg at 2300 hours, Study II). Blockade of MRs impaired free recall of both texts and pictures particularly for emotional material. In contrast, blockade of GRs resulted in better memory retrieval for pictures, with the effect being more pronounced for neutral than emotional materials. These findings indicate indeed opposing roles of MRs and GRs in memory retrieval, with optimal retrieval at intermediate cortisol levels likely mediated by high MR but concurrently low GR activation.

  12. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors.

    Science.gov (United States)

    Guo, Xiaoli; Chronis, Demosthenis; De La Torre, Carola M; Smeda, John; Wang, Xiaohong; Mitchum, Melissa G

    2015-08-01

    CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE-receptor kinase-WOX signalling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular cambium are controlled by CLE signalling pathways. Interestingly, plant-parasitic cyst nematodes secrete CLE-like effector proteins, which act as ligand mimics of plant CLE peptides and are required for successful parasitism. Recently, we demonstrated that Arabidopsis CLE receptors CLAVATA1 (CLV1), the CLAVATA2 (CLV2)/CORYNE (CRN) heterodimer receptor complex and RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2), which transmit the CLV3 signal in the SAM, are required for perception of beet cyst nematode Heterodera schachtii CLEs. Reduction in nematode infection was observed in clv1, clv2, crn, rpk2 and combined double and triple mutants. In an effort to develop nematode resistance in an agriculturally important crop, orthologues of Arabidopsis receptors including CLV1, CLV2, CRN and RPK2 were identified from soybean, a host for the soybean cyst nematode Heterodera glycines. For each of the receptors, there are at least two paralogues in the soybean genome. Localization studies showed that most receptors are expressed in the root, but vary in their level of expression and spatial expression patterns. Expression in nematode-induced feeding cells was also confirmed. In vitro direct binding of the soybean receptors with the HgCLE peptide was analysed. Knock-down of the receptors in soybean hairy roots showed enhanced resistance to SCN. Our findings suggest that targeted disruption of nematode CLE signalling may be a potential means to engineer nematode resistance in crop plants. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    Science.gov (United States)

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-04

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  14. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung

    Science.gov (United States)

    Jandl, Katharina; Stacher, Elvira; Bálint, Zoltán; Sturm, Eva Maria; Maric, Jovana; Peinhaupt, Miriam; Luschnig, Petra; Aringer, Ida; Fauland, Alexander; Konya, Viktoria; Dahlen, Sven-Erik; Wheelock, Craig E.; Kratky, Dagmar; Olschewski, Andrea; Marsche, Gunther; Schuligoi, Rufina; Heinemann, Akos

    2016-01-01

    Background Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date. Objective We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. Methods In vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Results Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. Conclusion For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation. PMID:26792210

  15. Enhanced NMDA receptor-mediated intracellular calcium signaling in magnocellular neurosecretory neurons in heart failure rats.

    Science.gov (United States)

    Stern, Javier E; Potapenko, Evgeniy S

    2013-08-15

    An enhanced glutamate excitatory function within the hypothalamic supraoptic and paraventricluar nuclei is known to contribute to increased neurosecretory and presympathetic neuronal activity, and hence, neurohumoral activation, during heart failure (HF). Still, the precise mechanisms underlying enhanced glutamate-driven neuronal activity in HF remain to be elucidated. Here, we performed simultaneous electrophysiology and fast confocal Ca²⁺ imaging to determine whether altered N-methyl-d-aspartate (NMDA) receptor-mediated changes in intracellular Ca²⁺ levels (NMDA-ΔCa²⁺) occurred in hypothalamic magnocellular neurosecretory cells (MNCs) in HF rats. We found that activation of NMDA receptors resulted in a larger ΔCa²⁺ in MNCs from HF when compared with sham rats. The enhanced NMDA-ΔCa²⁺ was neither dependent on the magnitude of the NMDA-mediated current (voltage clamp) nor on the degree of membrane depolarization or firing activity evoked by NMDA (current clamp). Differently from NMDA receptor activation, firing activity evoked by direct membrane depolarization resulted in similar changes in intracellular Ca²⁺ in sham and HF rats. Taken together, our results support a relatively selective alteration of intracellular Ca²⁺ homeostasis and signaling following activation of NMDA receptors in MNCs during HF. The downstream functional consequences of such altered ΔCa²⁺ signaling during HF are discussed.

  16. Metal ion-mediated agonism and agonist enhancement in melanocortin MC1 and MC4 receptors

    DEFF Research Database (Denmark)

    Holst, Birgitte; Elling, Christian E; Schwartz, Thue W

    2002-01-01

    -melanocortin stimulating hormone (alpha-MSH) in the MC1 and MC4 receptors, respectively. In the presence of peptide agonist, Zn(II) acted as an enhancer on both receptors, because it shifted the dose-response curves to the left: most pronounced was a 6-fold increase in alpha-MSH potency on the MC1 receptor. The effect......An endogenous metal-ion site in the melanocortin MC1 and MC4 receptors was characterized mainly in transiently transfected COS-7 cells. ZnCl(2) alone stimulated signaling through the Gs pathway with a potency of 11 and 13 microm and an efficacy of 50 and 20% of that of alpha...... affinities and profiles were similar for a number of the 2,2'-bipyridine and 1,10-phenanthroline analogs in complex with Zn(II) in the MC1 and MC4 receptors. However, the potencies and efficacies of the metal-ion complexes were very different in the two receptors, and close to full agonism was obtained...

  17. Hepatocyte growth factor enhances death receptor-induced apoptosis by up-regulating DR5

    International Nuclear Information System (INIS)

    Li, Yang; Fan, Xing; Goodwin, C Rory; Laterra, John; Xia, Shuli

    2008-01-01

    Hepatocyte growth factor (HGF) and its receptor c-MET are commonly expressed in malignant gliomas and embryonic neuroectodermal tumors including medulloblastoma and appear to play an important role in the growth and dissemination of these malignancies. Dependent on cell context and the involvement of specific downstream effectors, both pro- and anti-apoptotic effects of HGF have been reported. Human medulloblastoma cells were treated with HGF for 24–72 hours followed by death receptor ligand TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) for 24 hours. Cell death was measured by MTT and Annexin-V/PI flow cytometric analysis. Changes in expression levels of targets of interest were measured by Northern blot analysis, quantitative reverse transcription-PCR, Western blot analysis as well as immunoprecipitation. In this study, we show that HGF promotes medulloblastoma cell death induced by TRAIL. TRAIL alone triggered apoptosis in DAOY cells and death was enhanced by pre-treating the cells with HGF for 24–72 h prior to the addition of TRAIL. HGF (100 ng/ml) enhanced TRAIL (10 ng/ml) induced cell death by 36% (P < 0.001). No cell death was associated with HGF alone. Treating cells with PHA-665752, a specific c-Met receptor tyrosine kinase inhibitor, significantly abrogated the enhancement of TRAIL-induced cell death by HGF, indicating that its death promoting effect requires activation of its canonical receptor tyrosine kinase. Cell death induced by TRAIL+HGF was predominately apoptotic involving both extrinsic and intrinsic pathways as evidenced by the increased activation of caspase-3, 8, 9. Promotion of apoptosis by HGF occurred via the increased expression of the death receptor DR5 and enhanced formation of death-inducing signal complexes (DISC). Taken together, these and previous findings indicate that HGF:c-Met pathway either promotes or inhibits medulloblastoma cell death via pathway and context specific mechanisms

  18. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    Science.gov (United States)

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  19. Interleukin-1 Antagonism Decreases Cortisol Levels in Obese Individuals.

    Science.gov (United States)

    Urwyler, Sandrine Andrea; Schuetz, Philipp; Ebrahimi, Fahim; Donath, Marc Y; Christ-Crain, Mirjam

    2017-05-01

    Increased cortisol levels in obesity may contribute to the associated metabolic syndrome. In obesity, the activated innate immune system leads to increased interleukin (IL)-1β, which is known to stimulate the release of adrenocorticotropin hormone (ACTH). We hypothesized that in obesity IL-1 antagonism would result in downregulation of the hypothalamo-pituitary-adrenal axis, leading to decreased cortisol levels. In this prospective intervention study, we included 73 patients with obesity (body mass index [BMI] ≥30 kg/m2) and at least one additional feature of the metabolic syndrome. The primary end point was change in morning cortisol from baseline to after the administration of the IL-1 receptor antagonist (anakinra/Kineret®, total dose 3 × 100 mg). Secondary end points were effects on salivary cortisol and ACTH. Median age was 56 years, 50.7% of patients were female, and median BMI was 36.3 kg/m2. Median morning serum cortisol levels (nmol/L) decreased significantly after IL-1 antagonism [from baseline, 452 to 423; absolute difference, -38.7; 95% confidence interval (CI), -64 to -13.4; P = 0.0019]. Similar effects were found for salivary cortisol levels (-2.8; 95% CI, -4.4 to -1.3; P = 0.0007), ACTH levels (-2.2; 95% CI; -4.2 to -0.1; P = 0.038), systolic blood pressure (-5.2, 95% CI, -8.5 to -1.8; P = 0.0006), and heart rate (-2.9; 95% CI, -4.7 to -1.0; P = 0.0029). IL-1 antagonism in obese individuals with features of the metabolic syndrome leads to a decrease in serum cortisol, salivary cortisol, and ACTH levels along with a reduction in systolic blood pressure and heart rate. Copyright © 2017 Endocrine Society

  20. Antagonism of GABA-B but not GABA-A receptors in the VTA prevents stress- and intra-VTA CRF-induced reinstatement of extinguished cocaine seeking in rats.

    Science.gov (United States)

    Blacktop, Jordan M; Vranjkovic, Oliver; Mayer, Matthieu; Van Hoof, Matthew; Baker, David A; Mantsch, John R

    2016-03-01

    Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF. Rats underwent repeated daily cocaine self-administration (1.0 mg/kg/ing; 14 × 6 h/day) and extinction and were tested for reinstatement in response to footshock (0.5 mA, 0.5" duration, average every 40 s; range 10-70 s) or intra-VTA CRF delivery (500 ng/side) following intra-VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 μg/side) prevented reinstatement by both footshock and intra-VTA CRF at a concentration that failed to attenuate food-reinforced lever pressing (45 mg sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These data suggest that GABA-B receptor-dependent CRF actions in the VTA mediate stress-induced cocaine seeking and that GABA-B receptor antagonists may have utility for the management of stress-induced relapse in cocaine addicts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Flumazenil antagonizes the central effects of zolpidem, an imidazopyridine hypnotic.

    Science.gov (United States)

    Patat, A; Naef, M M; van Gessel, E; Forster, A; Dubruc, C; Rosenzweig, P

    1994-10-01

    Zolpidem is a new imidazopyridine-hypnotic that selectively binds to the central omega 1-receptor subtype. A double-blind, randomized, three-way, crossover placebo-controlled study was carried out in nine healthy male volunteers to assess the possible antagonism of central nervous system--depressant effects of zolpidem by flumazenil. Subjects received zolpidem (0.21 mg/kg) or placebo, intravenously, followed 17 minutes later by flumazenil (0.04 mg/kg) or placebo. Vigilance and performance were assessed by a trained anesthetist with use of ciliary reflex, response to a verbal instruction, subjective sedation, a tracking task, and a free recall task. Zolpidem produced a clinically relevant hypnotic effect in five subjects and significantly impaired performance in all nine subjects up to 90 minutes after dosing. Flumazenil rapidly antagonized clinical sedation in the five subjects who were asleep and significantly reversed the performance decrement within 3 minutes, without any escape phenomenon. Flumazenil did not change zolpidem plasma concentrations, confirming the pharmacodynamic nature of the interaction. Flumazenil may thus be a safe and effective antidote in patients with zolpidem overdosage.

  2. Insulin receptor substrate-3, interacting with Bcl-3, enhances p50 NF-{kappa}B activity

    Energy Technology Data Exchange (ETDEWEB)

    Kabuta, Tomohiro [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502 (Japan); Hakuno, Fumihiko; Cho, Yoshitake; Yamanaka, Daisuke; Chida, Kazuhiro [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Asano, Tomoichiro [Graduate School of Biomedical Science, Hiroshima University, Hiroshima 734-8551 (Japan); Wada, Keiji [Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502 (Japan); Takahashi, Shin-Ichiro, E-mail: atkshin@mail.ecc.u-tokyo.ac.jp [Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan)

    2010-04-09

    The insulin receptor substrate (IRS) proteins are major substrates of both insulin receptor and insulin-like growth factor (IGF)-I receptor tyrosine kinases. Previously, we reported that IRS-3 is localized to both cytosol and nucleus, and possesses transcriptional activity. In the present study, we identified Bcl-3 as a novel binding protein to IRS-3. Bcl-3 is a nuclear protein, which forms a complex with the homodimer of p50 NF-{kappa}B, leading to enhancement of transcription through p50 NF-{kappa}B. We found that Bcl-3 interacts with the pleckstrin homology domain and the phosphotyrosine binding domain of IRS-3, and that IRS-3 interacts with the ankyrin repeat domain of Bcl-3. In addition, IRS-3 augmented the binding activity of p50 to the NF-{kappa}B DNA binding site, as well as the tumor necrosis factor (TNF)-{alpha}-induced transcriptional activity of NF-{kappa}B. Lastly, IRS-3 enhanced NF-{kappa}B-dependent anti-apoptotic gene induction and consequently inhibited TNF-{alpha}-induced cell death. This series of results proposes a novel function for IRS-3 as a transcriptional regulator in TNF-{alpha} signaling, distinct from its function as a substrate of insulin/IGF receptor kinases.

  3. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Chieri [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Iwasaki, Tsuyoshi, E-mail: tsuyo-i@huhs.ac.jp [Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530 (Japan); Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We investigated the role of S1P signaling for osteoblast differentiation. Black-Right-Pointing-Pointer Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. Black-Right-Pointing-Pointer S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. Black-Right-Pointing-Pointer MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P

  4. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    International Nuclear Information System (INIS)

    Sato, Chieri; Iwasaki, Tsuyoshi; Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime

    2012-01-01

    Highlights: ► We investigated the role of S1P signaling for osteoblast differentiation. ► Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. ► S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. ► MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P receptor-mediated signaling plays a crucial role for osteoblast differentiation.

  5. Kokumi Substances, Enhancers of Basic Tastes, Induce Responses in Calcium-Sensing Receptor Expressing Taste Cells

    Science.gov (United States)

    Maruyama, Yutaka; Yasuda, Reiko; Kuroda, Motonaka; Eto, Yuzuru

    2012-01-01

    Recently, we reported that calcium-sensing receptor (CaSR) is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca2+ concentration ([Ca2+]i) in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca2+. CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami. PMID:22511946

  6. Adrenergic Agonists Bind to Adrenergic-Receptor-Like Regions of the Mu Opioid Receptor, Enhancing Morphine and Methionine-Enkephalin Binding: A New Approach to "Biased Opioids"?

    Science.gov (United States)

    Root-Bernstein, Robert; Turke, Miah; Subhramanyam, Udaya K Tiruttani; Churchill, Beth; Labahn, Joerg

    2018-01-17

    Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR) were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists.

  7. The Antagonism Mechanism Of Trichoderma spp. Towards Fusarium solani Mold

    OpenAIRE

    Utami Sri Hastuti; Indriana Rahmawati

    2016-01-01

    The antagonism ability of seven Trichoderma isolates towards F.solani have been observed and tested by dual culture technique. The antagonism mechanism observed by microscopic observation with light microscope and Scanning Electron Microscopy (SEM). The research result showed seven species of Trichoderma molds have different antagonism ability towards F.solani each other. The antagonism mechanism observed by light microscope and Scanning Electron Microscopy were mycoparasitism, antibiosis, an...

  8. The Antagonism Mechanism Of Trichoderma spp. Towards Fusarium solani Mold

    Directory of Open Access Journals (Sweden)

    Utami Sri Hastuti

    2016-09-01

    Full Text Available The antagonism ability of seven Trichoderma isolates towards F.solani have been observed and tested by dual culture technique. The antagonism mechanism observed by microscopic observation with light microscope and Scanning Electron Microscopy (SEM. The research result showed seven species of Trichoderma molds have different antagonism ability towards F.solani each other. The antagonism mechanism observed by light microscope and Scanning Electron Microscopy were mycoparasitism, antibiosis, and competition.

  9. Endocytosis of a functionally enhanced GFP-tagged transferrin receptor in CHO cells.

    Directory of Open Access Journals (Sweden)

    Qi He

    Full Text Available The endocytosis of transferrin receptor (TfR has served as a model to study the receptor-targeted cargo delivery system for cancer therapy for many years. To accurately evaluate and optically measure this TfR targeting delivery in vitro, a CHO cell line with enhanced green fluorescent protein (EGFP-tagged human TfR was established. A chimera of the hTfR and EGFP was engineered by fusing EGFP to the amino terminus of hTfR. Data were provided to demonstrate that hTfR-EGFP chimera was predominantly localized on the plasma membrane with some intracellular fluorescent structures on CHO cells and the EGFP moiety did not affect the endocytosis property of hTfR. Receptor internalization occurred similarly to that of HepG2 cells expressing wild-type hTfR. The internalization percentage of this chimeric receptor was about 81 ± 3% of wild type. Time-dependent co-localization of hTfR-EGFP and PE-conjugated anti-hTfR mAb in living cells demonstrated the trafficking of mAb-receptor complexes through the endosomes followed by segregation of part of the mAb and receptor at the late stages of endocytosis. The CHO-hTfR cells preferentially took up anti-hTfR mAb conjugated nanoparticles. This CHO-hTfR cell line makes it feasible for accurate evaluation and visualization of intracellular trafficking of therapeutic agents conjugated with transferrin or Abs targeting the hTfRs.

  10. Single Channel Analysis of Isoflurane and Ethanol Enhancement of Taurine-Activated Glycine Receptors.

    Science.gov (United States)

    Kirson, Dean; Todorovic, Jelena; Mihic, S John

    2018-01-01

    The amino acid taurine is an endogenous ligand acting on glycine receptors (GlyRs), which is released by astrocytes in many brain regions, such as the nucleus accumbens and prefrontal cortex. Taurine is a partial agonist with an efficacy significantly lower than that of glycine. Allosteric modulators such as ethanol and isoflurane produce leftward shifts of glycine concentration-response curves but have no effects at saturating glycine concentrations. In contrast, in whole-cell electrophysiology studies these modulators increase the effects of saturating taurine concentrations. A number of possible mechanisms may explain these enhancing effects, including modulator effects on conductance, channel open times, or channel closed times. We used outside-out patch-clamp single channel electrophysiology to investigate the mechanism of action of 200 mM ethanol and 0.55 mM isoflurane in enhancing the effects of a saturating concentration of taurine. Neither modulator enhanced taurine-mediated conductance. Isoflurane increased the probability of channel opening. Isoflurane also increased the lifetimes of the two shortest open dwell times while both agents decreased the likelihood of occurrence of the longest-lived intracluster channel-closing events. The mechanism of enhancement of GlyR functioning by these modulators is dependent on the efficacy of the agonist activating the receptor and the concentration of agonist tested. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Benzodiazepine antagonism by harmane and other beta-carbolines in vitro and in vivo.

    Science.gov (United States)

    Rommelspacher, H; Nanz, C; Borbe, H O; Fehske, K J; Müller, W E; Wollert, U

    1981-03-26

    Harmane and other related beta-carbolines are putative endogenous ligands of the benzodiazepine receptor. Since the compounds are potent convulsants they may have agonist activities at the benzodiazepine receptor while the benzodiazepines may be antagonists. This hypothesis was proved by comparing the in vivo and in vitro antagonism of benzodiazepines by harmane and other beta-carbolines. Harmane is clearly a competitive inhibitor of benzodiazepine receptor binding in vitro. Moreover, harmane-induced convulsions can be inhibited reversibly by diazepam in a manner which is consistent with the assumption of competitive antagonism in vivo. For some beta-carboline derivatives a correlation was found between the affinity for the benzodiazepine receptor in vitro and the convulsive potency in vivo. Thus, the data reported suggest that harmane or other related beta-carbolines are putative endogenous agonists of the benzodiazepine receptor. This suggestion is further supported by the observation that diazepam is equally potent in inhibiting harmane- or picrotoxin-induced convulsions, indicating a convulsive mechanism within the GABA receptor-benzodiazepine receptor system.

  12. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Katharina; Gruner, Janina; Madeja, Michael; Musshoff, Ulrich [Universitaetsklinikum Muenster, Institut fuer Physiologie I, Muenster (Germany); Hartmann, Louise M.; Hirner, Alfred V. [Universitaet Duisburg-Essen, Institut fuer Umweltanalytik, Essen (Germany); Binding, Norbert [Universitaetsklinikum Muenster, Institut fuer Arbeitsmedizin, Muenster (Germany)

    2006-08-15

    Pentavalent and trivalent organoarsenic compounds belong to the major metabolites of inorganic arsenicals detected in humans. Recently, the question was raised whether the organic arsenicals represent metabolites of a detoxification process or methylated species with deleterious biological effects. In this study, the effects of trivalent arsenite (AsO{sub 3} {sup 3-}; iA{sup III}), the pentavalent organoarsenic compounds monomethylarsonic acid (CH{sub 3}AsO(OH){sub 2}; MMA{sup V}) and dimethylarsinic acid ((CH{sub 3}){sub 2}AsO(OH); DMA{sup V}) and the trivalent compounds monomethylarsonous acid (CH{sub 3}As(OH){sub 2}, MMA{sup III}) and dimethylarsinous acid ((CH{sub 3}){sub 2}As(OH); DMA{sup III}) were tested on glutamate receptors and on voltage-operated potassium and sodium channels heterologously expressed in Xenopus oocytes. Membrane currents of ion channels were measured by conventional two-electrode voltage-clamp techniques. The effects of arsenite were tested in concentrations of 1-1,000 {mu}mol/l and the organic arsenical compounds were tested in concentrations of 0.1-100 {mu}mol/l. We found no significant effects on voltage-operated ion channels; however, the arsenicals exert different effects on glutamate receptors. While MMA{sup V} and MMA{sup III} significantly enhanced ion currents through N-methyl-d-aspartate (NMDA) receptor ion channels with threshold concentrations <10 {mu}mol/l, DMA{sup V} and DMA{sup III} significantly reduced NMDA-receptor mediated responses with threshold concentrations <0.1 {mu}mol/l; iA{sup III} had no effects on glutamate receptors of the NMDA type. MMA{sup III} and DMA{sup V} significantly reduced ion currents through {alpha}-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-receptor ion channels with threshold concentrations <10 {mu}mol/l (MMA{sup III}) and <1 {mu}mol/l (DMA{sup V}). MMA{sup V} and iA{sup III} had no significant effects on glutamate receptors of the AMPA type. The effects of MMA{sup V}, MMA

  13. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A

    International Nuclear Information System (INIS)

    Tang, Yuting; Zhou, Lubing; Gunnet, Joseph W.; Wines, Pamela G.; Cryan, Ellen V.; Demarest, Keith T.

    2006-01-01

    HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A 2 (PLA 2 )/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca 2+ -mobilization and enhanced bradykinin-promoted Ca 2+ -mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPARγ agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs

  14. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yuting [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Zhou, Lubing [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Gunnet, Joseph W [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Wines, Pamela G [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Cryan, Ellen V [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Demarest, Keith T [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States)

    2006-06-23

    HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A{sub 2} (PLA{sub 2})/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca{sup 2+}-mobilization and enhanced bradykinin-promoted Ca{sup 2+}-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPAR{gamma} agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs.

  15. Interleukin-1 antagonism moderates the inflammatory state associated with Type 1 diabetes during clinical trials conducted at disease onset

    DEFF Research Database (Denmark)

    Cabrera, Susanne M; Wang, Xujing; Chen, Yi-Guang

    2016-01-01

    It was hypothesized that IL-1 antagonism would preserve β-cell function in new onset Type 1 diabetes (T1D). However, the Anti-Interleukin-1 in Diabetes Action (AIDA) and TrialNet Canakinumab (TN-14) trials failed to show efficacy of IL-1 receptor antagonist (IL-1Ra) or canakinumab, as measured...

  16. Small molecule antagonism of oxysterol-induced Epstein-Barr virus induced gene 2 (EBI2) activation

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Madsen, Christian M; Arfelt, Kristine N

    2013-01-01

    The Epstein-Barr virus induced gene 2 (EBI2) was recently identified as the first oxysterol-activated 7TM receptor. EBI2 is essential for B cell trafficking within lymphoid tissues and thus the humoral immune response in general. Here we characterize the antagonism of the non-peptide molecule GSK...

  17. Allosteric and orthosteric sites in CC chemokine receptor (CCR5), a chimeric receptor approach

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Steen, Anne; Jensen, Pia C

    2011-01-01

    -allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5...... preserved, the allosteric enhancement of chemokine binding was disrupted. In summary, the Trojan horse chimera revealed that orthosteric and allosteric sites could be structurally separated and still act together with transmission of agonism and antagonism across the different receptor units....

  18. Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway

    Directory of Open Access Journals (Sweden)

    Edvinsson Lars

    2008-09-01

    Full Text Available Abstract Background MEK1/2 is a serine/threonine protein that phosphorylates extracellular signal-regulated kinase (ERK1/2. Cerebral ischemia results in enhanced expression of cerebrovascular contractile receptors in the middle cerebral artery (MCA leading to the ischemic region. Here we explored the role of the MEK/ERK pathway in receptor expression following ischemic brain injury using the specific MEK1 inhibitor U0126. Methods and result Rats were subjected to a 2-h middle cerebral artery occlusion (MCAO followed by reperfusion for 48-h and the ischemic area was calculated. The expression of phosphorylated ERK1/2 and Elk-1, and of endothelin ETA and ETB, angiotensin AT1, and 5-hydroxytryptamine 5-HT1B receptors were analyzed with immunohistochemistry using confocal microscopy in cerebral arteries, microvessels and in brain tissue. The expression of endothelin ETB receptor was analyzed by quantitative Western blot. We demonstrate that there is an increase in the number of contractile smooth muscle receptors in the MCA and in micro- vessels within the ischemic region. The enhanced expression occurs in the smooth muscle cells as verified by co-localization studies. This receptor upregulation is furthermore associated with enhanced expression of pERK1/2 and of transcription factor pElk-1 in the vascular smooth muscle cells. Blockade of transcription with the MEK1 inhibitor U0126, given at the onset of reperfusion or as late as 6 hours after the insult, reduced transcription (pERK1/2 and pElk-1, the enhanced vascular receptor expression, and attenuated the cerebral infarct and improved neurology score. Conclusion Our results show that MCAO results in upregulation of cerebrovascular ETB, AT1 and 5-HT1B receptors. Blockade of this event with a MEK1 inhibitor as late as 6 h after the insult reduced the enhanced vascular receptor expression and the associated cerebral infarction.

  19. Enhanced voluntary wheel running in GPRC6A receptor knockout mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Pehmøller, Christian; Klein, Anders B

    2013-01-01

    to voluntary wheel running and forced treadmill exercise. Moreover, we assessed energy expenditure in the basal state, and evaluated the effects of wheel running on food intake, body composition, and a range of exercise-induced central and peripheral biomarkers. We found that adaptation to voluntary wheel...... running is affected by GPRC6A, as ablation of the receptor significantly enhances wheel running in KO relative to WT mice. Both genotypes responded to voluntary exercise by increasing food intake and improving body composition to a similar degree. In conclusion, these data demonstrate that the GPRC6A...

  20. Presynaptic CRF1 Receptors Mediate the Ethanol Enhancement of GABAergic Transmission in the Mouse Central Amygdala

    Directory of Open Access Journals (Sweden)

    Zhiguo Nie

    2009-01-01

    Full Text Available Corticotropin-releasing factor (CRF is a 41-amino-acid neuropeptide involved in stress responses initiated from several brain areas, including the amygdala formation. Research shows a strong relationship between stress, brain CRF, and excessive alcohol consumption. Behavioral studies suggest that the central amygdala (CeA is significantly involved in alcohol reward and dependence. We recently reported that the ethanol augmentation of GABAergic synaptic transmission in rat CeA involves CRF1 receptors, because both CRF and ethanol significantly enhanced the amplitude of evoked GABAergic inhibitory postsynaptic currents (IPSCs in CeA neurons from wild-type (WT and CRF2 knockout (KO mice, but not in neurons of CRF1 KO mice. The present study extends these findings using selective CRF receptor ligands, gene KO models, and miniature IPSC (mIPSC analysis to assess further a presynaptic role for the CRF receptors in mediating ethanol effects in the CeA. In whole-cell patch recordings of pharmacologically isolated GABAAergic IPSCs from slices of mouse CeA, both CRF and ethanol augmented evoked IPSCs in a concentration-dependent manner, with low EC50s. A CRF1 (but not CRF2 KO construct and the CRF1-selective nonpeptide antagonist NIH-3 (LWH-63 blocked the augmenting effect of both CRF and ethanol on evoked IPSCs. Furthermore, the new selective CRF1 agonist stressin1, but not the CRF2 agonist urocortin 3, also increased evoked IPSC amplitudes. Both CRF and ethanol decreased paired-pulse facilitation (PPF of evoked IPSCs and significantly enhanced the frequency, but not the amplitude, of spontaneous miniature GABAergic mIPSCs in CeA neurons of WT mice, suggesting a presynaptic site of action. The PPF effect of ethanol was abolished in CeA neurons of CRF1 KO mice. The CRF1 antagonist NIH-3 blocked the CRF- and ethanol-induced enhancement of mIPSC frequency in CeA neurons. These data indicate that presynaptic CRF1 receptors play a critical role in permitting

  1. Reconceptualizing synergism and antagonism among multiple stressors

    OpenAIRE

    Piggott, Jeremy J; Townsend, Colin R; Matthaei, Christoph D

    2015-01-01

    The potential for complex synergistic or antagonistic interactions between multiple stressors presents one of the largest uncertainties when predicting ecological change but, despite common use of the terms in the scientific literature, a consensus on their operational definition is still lacking. The identification of synergism or antagonism is generally straightforward when stressors operate in the same direction, but if individual stressor effects oppose each other, the definition of syner...

  2. Triclosan antagonizes fluconazole activity against Candida albicans.

    LENUS (Irish Health Repository)

    Higgins, J

    2012-01-01

    Triclosan is a broad-spectrum antimicrobial compound commonly used in oral hygiene products. Investigation of its activity against Candida albicans showed that triclosan was fungicidal at concentrations of 16 mg\\/L. However, at subinhibitory concentrations (0.5-2 mg\\/L), triclosan antagonized the activity of fluconazole. Although triclosan induced CDR1 expression in C. albicans, antagonism was still observed in cdr1Δ and cdr2Δ strains. Triclosan did not affect fluconazole uptake or alter total membrane sterol content, but did induce the expression of FAS1 and FAS2, indicating that its mode of action may involve inhibition of fatty acid synthesis, as it does in prokaryotes. However, FAS2 mutants did not exhibit increased susceptibility to triclosan, and overexpression of both FAS1 and FAS2 alleles did not alter triclosan susceptibility. Unexpectedly, the antagonistic effect was specific for C. albicans under hypha-inducing conditions and was absent in the non-filamentous efg1Δ strain. This antagonism may be due to the membranotropic activity of triclosan and the unique composition of hyphal membranes.

  3. Sigma-1 receptor enhances neurite elongation of cerebellar granule neurons via TrkB signaling.

    Science.gov (United States)

    Kimura, Yuriko; Fujita, Yuki; Shibata, Kumi; Mori, Megumi; Yamashita, Toshihide

    2013-01-01

    Sigma-1 receptor (Sig-1R) is an integral membrane protein predominantly expressed in the endoplasmic reticulum. Sig-1R demonstrates a high affinity to various synthetic compounds including well-known psychotherapeutic drugs in the central nervous system (CNS). For that, it is considered as an alternative target for psychotherapeutic drugs. On the cellular level, when Sig-1R is activated, it is known to play a role in neuroprotection and neurite elongation. These effects are suggested to be mediated by its ligand-operated molecular chaperone activity, and/or upregulation of various Ca(2+) signaling. In addition, recent studies show that Sig-1R activation induces neurite outgrowth via neurotrophin signaling. Here, we tested the hypothesis that Sig-1R activation promotes neurite elongation through activation of tropomyosin receptor kinase (Trk), a family of neurotrophin receptors. We found that 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE-084), a selective Sig-1R agonist, significantly promoted neurite outgrowth, and K252a, a Trk inhibitor, attenuated Sig-1R-mediated neurite elongation in cerebellar granule neurons (CGNs). Moreover, we revealed that Sig-1R interacts with TrkB, and PRE-084 treatment enhances phosphorylation of Y515, but not Y706. Thus, our results indicate that Sig-1R activation promotes neurite outgrowth in CGNs through Y515 phosphorylation of TrkB.

  4. Implication of mGlu5 receptor in the enhancement of morphine-induced hyperlocomotion under chronic treatment with zolpidem.

    Science.gov (United States)

    Shibasaki, Masahiro; Ishii, Kazunori; Masukawa, Daiki; Ando, Koji; Ikekubo, Yuiko; Ishikawa, Yutori; Shibasaki, Yumiko; Mori, Tomohisa; Suzuki, Tsutomu

    2014-09-05

    Long-term exposure to zolpidem induces drug dependence, and it is well known that the balance between the GABAergic and glutamatergic systems plays a critical role in maintaining the neuronal network. In the present study, we investigated the interaction between GABAA receptor α1 subunit and mGlu5 receptor in the limbic forebrain including the N.Acc. after treatment with zolpidem for 7 days. mGlu5 receptor protein levels were significantly increased after treatment with zolpidem for 7 days, and this change was accompanied by the up-regulation of phospholipase Cβ1 and calcium/calmodulin-dependent protein kinase IIα, which are downstream of mGlu5 receptor in the limbic forebrain. To confirm that mGlu5 receptor is directly involved in dopamine-related behavior in mice following chronic treatment with zolpidem, we measured morphine-induced hyperlocomotion after chronic treatment with zolpidem in the presence or absence of an mGlu5 receptor antagonist. Although chronic treatment with zolpidem significantly enhanced morphine-induced hyperlocomotion, this enhancement of morphine-induced hyperlocomotion was suppressed by treating it with the mGlu5 receptor antagonist MPEP. These results suggest that chronic treatment with zolpidem caused neural plasticity in response to activation of the mesolimbic dopaminergic system accompanied by an increase in mGlu5 receptor. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases.

    Science.gov (United States)

    Yeh, Yu-Hung; Chang, Yu-Hsien; Huang, Pin-Yao; Huang, Jing-Bo; Zimmerli, Laurent

    2015-01-01

    Upon recognition of microbe-associated molecular patterns (MAMPs) such as the bacterial flagellin (or the derived peptide flg22) by pattern-recognition receptors (PRRs) such as the FLAGELLIN SENSING2 (FLS2), plants activate the pattern-triggered immunity (PTI) response. The L-type lectin receptor kinase-VI.2 (LecRK-VI.2) is a positive regulator of Arabidopsis thaliana PTI. Cysteine-rich receptor-like kinases (CRKs) possess two copies of the C-X8-C-X2-C (DUF26) motif in their extracellular domains and are thought to be involved in plant stress resistance, but data about CRK functions are scarce. Here, we show that Arabidopsis overexpressing the LecRK-VI.2-responsive CRK4, CRK6, and CRK36 demonstrated an enhanced PTI response and were resistant to virulent bacteria Pseudomonas syringae pv. tomato DC3000. Notably, the flg22-triggered oxidative burst was primed in CRK4, CRK6, and CRK36 transgenics and up-regulation of the PTI-responsive gene FLG22-INDUCED RECEPTOR-LIKE 1 (FRK1) was potentiated upon flg22 treatment in CRK4 and CRK6 overexpression lines or constitutively increased by CRK36 overexpression. PTI-mediated callose deposition was not affected by overexpression of CRK4 and CRK6, while CRK36 overexpression lines demonstrated constitutive accumulation of callose. In addition, Pst DC3000-mediated stomatal reopening was blocked in CRK4 and CRK36 overexpression lines, while overexpression of CRK6 induced constitutive stomatal closure suggesting a strengthening of stomatal immunity. Finally, bimolecular fluorescence complementation and co-immunoprecipitation analyses in Arabidopsis protoplasts suggested that the plasma membrane localized CRK4, CRK6, and CRK36 associate with the PRR FLS2. Association with FLS2 and the observation that overexpression of CRK4, CRK6, and CRK36 boosts specific PTI outputs and resistance to bacteria suggest a role for these CRKs in Arabidopsis innate immunity.

  6. Enhancing and impairing extinction of habit memory through modulation of NMDA receptors in the dorsolateral striatum.

    Science.gov (United States)

    Goodman, Jarid; Ressler, Reed L; Packard, Mark G

    2017-06-03

    The present experiments investigated the involvement of N-methyl-d-aspartate (NMDA) receptors of the dorsolateral striatum (DLS) in consolidation of extinction in a habit memory task. Adult male Long-Evans rats were initially trained in a food-reinforced response learning version of a plus-maze task and were subsequently given extinction training in which the food was removed from the maze. In experiment 1, immediately after the first day of extinction training, rats received bilateral intra-DLS injections of the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5; 2µg/side) or physiological saline. In experiment 2, immediately following the first day of extinction training, animals were given intra-DLS injections of NMDA receptor partial agonist d-cycloserine (DCS; 10 or 20µg/side) or saline. In both experiments, the number of perseverative trials (a trial in which a rat made the same previously reinforced body-turn response) and latency to reach the previously correct food well were used as measures of extinction behavior. Results indicated that post-training intra-DLS injections of AP5 impaired extinction. In contrast, post-training intra-DLS infusions of DCS (20µg) enhanced extinction. Intra-DLS administration of AP5 or DCS given two hours after extinction training did not influence extinction of response learning, indicating that immediate post-training administration of AP5 and DCS specifically influenced consolidation of the extinction memory. The present results indicate a critical role for DLS NMDA receptors in modulating extinction of habit memory and may be relevant to developing therapeutic approaches to combat the maladaptive habits observed in human psychopathologies in which DLS-dependent memory has been implicated (e.g. drug addiction and relapse and obsessive compulsive disorder). Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Estrogen enhances mismatch repair by induction of MLH1 expression via estrogen receptor-β.

    Science.gov (United States)

    Lu, Jun-Yu; Jin, Peng; Gao, Wei; Wang, De-Zhi; Sheng, Jian-Qiu

    2017-06-13

    Epidemiological data demonstrated that hormone replace treatment has protective effect against colorectal cancer (CRC). Our previous studies showed that this effect may be associated with DNA mismatch repair. This study aims to investigate the mechanism of estrogen induction of MLH1, and whether colorectal tumor proliferation can be inhibited through induction of MLH1 by estrogen signal pathway. Human CRC cell lines were used to examine the regulation of MLH1 expression by over-expression and depletion of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ), under the treatment with 17β-estradiol or β-Estradiol 6-(O-carboxy-methyl)oxime:BSA, followed by a real-time Q-PCR and Western blotting analysis. Luciferase reporter and chromatin immunoprecipitation assays were used to identify the estrogen response elements in the proximal promoter of MLH1 gene. Then, the influence of estrogen-induced MLH1 on CRC tumor growth were determined in vitro and in vivo. We found that mismatch repair ability and microsatellite stability of cells were enhanced by estrogen via induction of MLH1 expression, which was mediated by ERβ, through a transcriptional activation process. Furthermore, we identified that ERβ exerted an inhibitory effect on CRC tumor proliferation in vitro and in vivo, combined with 5-FU, through up-regulation of MLH1 expression. Finally, we concluded that estrogen enhances mismatch repair ability and tumor inhibition effect in vitro and in vivo, via induction of MLH1 expression mediated by ERβ.

  8. Lenalidomide induces lipid raft assembly to enhance erythropoietin receptor signaling in myelodysplastic syndrome progenitors.

    Science.gov (United States)

    McGraw, Kathy L; Basiorka, Ashley A; Johnson, Joseph O; Clark, Justine; Caceres, Gisela; Padron, Eric; Heaton, Ruth; Ozawa, Yukiyasu; Wei, Sheng; Sokol, Lubomir; List, Alan F

    2014-01-01

    Anemia remains the principal management challenge for patients with lower risk Myelodysplastic Syndromes (MDS). Despite appropriate cytokine production and cellular receptor display, erythropoietin receptor (EpoR) signaling is impaired. We reported that EpoR signaling is dependent upon receptor localization within lipid raft microdomains, and that disruption of raft integrity abolishes signaling capacity. Here, we show that MDS erythroid progenitors display markedly diminished raft assembly and smaller raft aggregates compared to normal controls (p = 0.005, raft number; p = 0.023, raft size). Because lenalidomide triggers raft coalescence in T-lymphocytes promoting immune synapse formation, we assessed effects of lenalidomide on raft assembly in MDS erythroid precursors and UT7 cells. Lenalidomide treatment rapidly induced lipid raft formation accompanied by EpoR recruitment into raft fractions together with STAT5, JAK2, and Lyn kinase. The JAK2 phosphatase, CD45, a key negative regulator of EpoR signaling, was displaced from raft fractions. Lenalidomide treatment prior to Epo stimulation enhanced both JAK2 and STAT5 phosphorylation in UT7 and primary MDS erythroid progenitors, accompanied by increased STAT5 DNA binding in UT7 cells, and increased erythroid colony forming capacity in both UT7 and primary cells. Raft induction was associated with F-actin polymerization, which was blocked by Rho kinase inhibition. These data indicate that deficient raft integrity impairs EpoR signaling, and provides a novel strategy to enhance EpoR signal fidelity in non-del(5q) MDS.

  9. Toll-like receptor 7-mediated enhancement of contextual fear memory in mice.

    Science.gov (United States)

    Kubo, Yasunori; Yanagawa, Yoshiki; Matsumoto, Machiko; Hiraide, Sachiko; Kobayashi, Masanobu; Togashi, Hiroko

    2012-10-01

    Toll-like receptor (TLR) 7 recognizes viral single-stranded RNA and triggers production of the type I interferons (IFNs) IFN-α and IFN-β. Imiquimod, a synthetic TLR7 ligand, induces production of type I IFNs and is used clinically as an antiviral and antitumor drug. In the present study, we examined the effect of imiquimod on conditioned and innate fear behaviors in mice. Imiquimod was administered 2, 4, or 15 h before contextual fear conditioning. Imiquimod treatment 4 or 15 h before fear conditioning significantly enhanced context-dependent freezing behavior. This imiquimod-induced enhancement of fear-related behaviors was observed 120 h after fear conditioning. In contrast, imiquimod failed to enhance context-dependent freezing behavior in TLR7 knockout mice. Imiquimod had no significant effect on pain threshold or on innate fear-related behavior, as measured by the elevated plus-maze. The levels of type I IFN mRNA in the brain were significantly increased at 2 h after imiquimod treatment. Imiquimod also increased interleukin (IL)-1β mRNA expression in the brain at 4 h following administration, while mRNA expression of F4/80, a macrophage marker, was unaffected by imiquimod treatment. Our findings suggest that TLR7-mediated signaling enhances contextual fear memory in mice, possibly by inducing the expression of type I IFNs and IL-1β in the brain. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Cannabinoid receptors activation and glucocorticoid receptors deactivation in the amygdala prevent the stress-induced enhancement of a negative learning experience.

    Science.gov (United States)

    Ramot, Assaf; Akirav, Irit

    2012-05-01

    The enhancement of emotional memory is clearly important as emotional stimuli are generally more significant than neutral stimuli for surviving and reproduction purposes. Yet, the enhancement of a negative emotional memory following exposure to stress may result in dysfunctional or intrusive memory that underlies several psychiatric disorders. Here we examined the effects of stress exposure on a negative emotional learning experience as measured by a decrease in the magnitude of the expected quantity of reinforcements in an alley maze. In contrast to other fear-related negative experiences, reward reduction is more associated with frustration and is assessed by measuring the latency to run the length of the alley to consume the reduced quantity of reward. We also examined whether the cannabinoid receptors agonist WIN55,212-2 (5 μg/side) and the glucocorticoid receptors (GRs) antagonist RU-486 (10 ng/side) administered into the rat basolateral amygdala (BLA) could prevent the stress-induced enhancement. We found that intra-BLA RU-486 or WIN55,212 before stress exposure prevented the stress-induced enhancement of memory consolidation for reduction in reward magnitude. These findings suggest that cannabinoid receptors and GRs in the BLA are important modulators of stress-induced enhancement of emotional memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Antagonism of a (+)N-allylnormetazocine stimulus by (-)PPAP and several structurally related analogs.

    Science.gov (United States)

    Glennon, R A; Young, R; Herndon, J L

    1993-08-01

    Employing rats trained to discriminate 5 mg/kg of the benzomorphan opioid (+)N-allylnormetazocine [(+)NANM] from vehicle, tests of stimulus generalization and antagonism were conducted to determine the influence of several potential sigma-receptor ligands. It has been previously suggested that the (+)NANM stimulus may involve concurrent action at sigma- and phencyclidine (PCP) receptors. Although the low-affinity sigma-antagonist rimcazole was without stimulus-attenuating effect, three novel sigma-ligands--(-)PPAP, CNS 3018, and CNS 3093 (ID50 doses = 3.2, 6.7, and 4.5 mg/kg, respectively)--antagonized the (+)NANM stimulus in a dose-related fashion. The nonselective serotonergic agent 1-(3-trifluoromethyl)phenylpiperazine (TFMPP) produced partial generalization in (+)NANM-trained animals whereas buspirone, a 5-hydroxytryptamine1A (5-HT1A) agonist, attenuated (to 27% drug-appropriate responding) the (+)NANM stimulus. Because the prototypic 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) failed to attenuate the (+)NANM stimulus at pharmacologically relevant doses, it seems unlikely that the (+)NANM stimulus involves a 5-HT1A mechanism. TFMPP and buspirone display modest affinity for sigma-receptors and this may account for the present findings with these agents. The present results neither establish a role for sigma involvement in the stimulus properties of (+)NANM nor eliminate a role for PCP receptors. They do, however, demonstrate that sigma-ligands with little to no affinity for PCP receptors are capable of antagonizing the (+)NANM stimulus.

  12. Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway

    DEFF Research Database (Denmark)

    Maddahi, A.; Edvinsson, L.

    2008-01-01

    ), the enhanced vascular receptor expression, and attenuated the cerebral infarct and improved neurology score. CONCLUSION: Our results show that MCAO results in upregulation of cerebrovascular ETB, AT1 and 5-HT1B receptors. Blockade of this event with a MEK1 inhibitor as late as 6 h after the insult reduced...... the role of the MEK/ERK pathway in receptor expression following ischemic brain injury using the specific MEK1 inhibitor U0126. METHODS AND RESULT: Rats were subjected to a 2-h middle cerebral artery occlusion (MCAO) followed by reperfusion for 48-h and the ischemic area was calculated. The expression...... of phosphorylated ERK1/2 and Elk-1, and of endothelin ETA and ETB, angiotensin AT1, and 5-hydroxytryptamine 5-HT1B receptors were analyzed with immunohistochemistry using confocal microscopy in cerebral arteries, microvessels and in brain tissue. The expression of endothelin ETB receptor was analyzed...

  13. Progranulin shows cytoprotective effects on trophoblast cells in vitro but does not antagonize TNF-α-induced apoptosis.

    Science.gov (United States)

    Stubert, Johannes; Waldmann, Kathrin; Dieterich, Max; Richter, Dagmar-Ulrike; Briese, Volker

    2014-11-01

    The glycoprotein progranulin directly binds to TNF-receptors and thereby can antagonize the inflammatory effects of TNF-α. Here we analyzed the impact of both cytokines on cytotoxicity and viability of trophoblast cells. Isolated villous first trimester human trophoblast cells and the human choriocarcinoma cell line BeWo were treated with recombinant human progranulin and TNF-α. Analyses were performed by LDH- and MTT-assay and measurement of caspase-8-activity. Progranulin treatment showed some cytoprotective effects on isolated trophoblast cells. However, TNF-α-induced apoptosis was not antagonized by addition of progranulin. Effects were similar, but more pronounced in BeWo cells. The cytoprotective activity of progranulin on trophoblast cells in vitro was only weak and of doubtful biologic relevance. It was not able to antagonize TNF-α. Future studies should focus on possible paracrine activities of progranulin.

  14. PTP1B Inhibition Causes Rac1 Activation by Enhancing Receptor Tyrosine Kinase Signaling

    Directory of Open Access Journals (Sweden)

    Ayako Tsuchiya

    2014-04-01

    Full Text Available Background/Aims: The present study investigated the signaling pathway underlying Rac1 activation induced by the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl-cyclopropyl]-octanoic acid (DCP-LA. Methods: Activity of protein tyrosine phosphatase 1B (PTP1B was assayed under cell-free conditions. Western blot was carried out to quantify phosphorylation of insulin receptor substrate-1 (IRS-1 and Akt in PC-12 cells. Rac1 activity was monitored in the föerster resonance energy transfer (FRET analysis using living and fixed PC-12 cells. Results: DCP-LA markedly suppressed PTP1B activity in a concentration (100 pM-100 µM-dependent manner. In the DCP-LA binding assay, fluorescein-conjugated DCP-LA produced a single fluorescent signal band at 60 kDa, corresponding to the molecule of PTP1B, and the signal was attenuated or abolished by co-treatment or pretreatment with non-conjugated DCP-LA. DCP-LA significantly enhanced nerve growth factor (NGF-stimulated phosphorylation of IRS-1 at Tyr1222 and Akt1/2 at Thr308/309 and Ser473/474 in PC-12 cells. In the FRET analysis, DCP-LA significantly enhanced NGF-stimulated Rac1 activation, which is abrogated by the phosphatidylinositol 3 kinase (PI3K inhibitor wortmannin, the 3-phosphoinositide-dependent protein kinase-1 (PDK1 inhibitor BX912, or the Akt inhibitor MK2206. Conclusion: The results of the present study show that DCP-LA-induced PTP1B inhibition, possibly through its direct binding, causes Rac1 activation by enhancing a pathway along a receptor tyrosine kinase (RTK/IRS-1/PI3K/Akt/Rac1 axis.

  15. Enhanced A3 adenosine receptor selectivity of multivalent nucleoside-dendrimer conjugates

    Directory of Open Access Journals (Sweden)

    Shainberg Asher

    2008-10-01

    Full Text Available Abstract Background An approach to use multivalent dendrimer carriers for delivery of nucleoside signaling molecules to their cell surface G protein-coupled receptors (GPCRs was recently introduced. Results A known adenosine receptor (AR agonist was conjugated to polyamidoamine (PAMAM dendrimer carriers for delivery of the intact covalent conjugate to on the cell surface. Depending on the linking moiety, multivalent conjugates of the N6-chain elongated functionalized congener ADAC (N6-[4-[[[4-[[[(2-aminoethylamino]carbonyl]methyl]anilino]carbonyl]methyl]phenyl]-adenosine achieved unanticipated high selectivity in binding to the cytoprotective human A3 AR, a class A GPCR. The key to this selectivity of > 100-fold in both radioreceptor binding (Ki app = 2.4 nM and functional assays (EC50 = 1.6 nM in inhibition of adenylate cyclase was maintaining a free amino group (secondary in an amide-linked chain. Attachment of neutral amide-linked chains or thiourea-containing chains preserved the moderate affinity and efficacy at the A1 AR subtype, but there was no selectivity for the A3 AR. Since residual amino groups on dendrimers are associated with cytotoxicity, the unreacted terminal positions of this A3 AR-selective G2.5 dendrimer were present as carboxylate groups, which had the further benefit of increasing water-solubility. The A3 AR selective G2.5 dendrimer was also visualized binding the membrane of cells expressing the A3 receptor but did not bind cells that did not express the receptor. Conclusion This is the first example showing that it is feasible to modulate and even enhance the pharmacological profile of a ligand of a GPCR based on conjugation to a nanocarrier and the precise structure of the linking group, which was designed to interact with distal extracellular regions of the 7 transmembrane-spanning receptor. This ligand tool can now be used in pharmacological models of tissue rescue from ischemia and to probe the existence of A3 AR

  16. Thymus cells in myasthenia gravis selectively enhance production of anti-acetylcholine-receptor antibody by autologous blood lymphocytes

    International Nuclear Information System (INIS)

    Newsom-Davis, J.; Willcox, N.; Calder, L.

    1981-01-01

    We investigated the role of the thymus in 16 patients with myasthenia gravis without thymoma by studying the production of anti-acetylcholine-receptor antibody by thymic and blood lymphocytes cultured alone or together. In 10 responders (with the highest receptor-antibody titers in their plasma), cultured thymic cells spontaneously produced measurable receptor antibody. Receptor-antibody production by autologous blood lymphocytes was enhanced by the addition of responder's thymic cells, irradiated to abrogate antibody production and suppression (P<0.01). This enhancement was greater and more consistent than that by pokeweed mitogen; it depended on viable thymic cells, appeared to be selective for receptor antibody, and correlated with the ratio of thymic helper (OKT4-positive or OKT4+) to suppressor (OKT8+) T cells (P<0.01). These results suggest that myasthenic thymus contains cell-bound acetylcholine-receptor-like material or specific T cells (or both) that can aid receptor-antibody production. This may be relevant to the benefits of thymectomy in myasthenia and to the breakdown in self-tolerance in this and other autoimmune diseases

  17. Thymus cells in myasthenia gravis selectively enhance production of anti-acetylcholine-receptor antibody by autologous blood lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Newsom-Davis, J.; Willcox, N.; Calder, L.

    1981-11-26

    We investigated the role of the thymus in 16 patients with myasthenia gravis without thymoma by studying the production of anti-acetylcholine-receptor antibody by thymic and blood lymphocytes cultured alone or together. In 10 responders (with the highest receptor-antibody titers in their plasma), cultured thymic cells spontaneously produced measurable receptor antibody. Receptor-antibody production by autologous blood lymphocytes was enhanced by the addition of responder's thymic cells, irradiated to abrogate antibody production and suppression (P<0.01). This enhancement was greater and more consistent than that by pokeweed mitogen; it depended on viable thymic cells, appeared to be selective for receptor antibody, and correlated with the ratio of thymic helper (OKT4-positive or OKT4+) to suppressor (OKT8+) T cells (P<0.01). These results suggest that myasthenic thymus contains cell-bound acetylcholine-receptor-like material or specific T cells (or both) that can aid receptor-antibody production. This may be relevant to the benefits of thymectomy in myasthenia and to the breakdown in self-tolerance in this and other autoimmune diseases.

  18. Natural Protection of Wood with Antagonism Fungi

    Directory of Open Access Journals (Sweden)

    Alba ZAREMSKI

    2011-03-01

    Full Text Available Biological environments contain a certain number of microbial populations which, within a givenecological niche, display various relations ranging from symbiosis to parasitism. Researchers have beeninterested in these types of relations for around fifty years, especially in one very particular type ofrelationship: the antagonism exerted between individuals of the same microbial population.Today, the role played by biological agents, bringing into play inhibitive or destructive antibioticsubstances, reveals a certain potential for their use in controlling microorganisms associated with suchdegradation processes.The work undertaken by HydroQuébec and CIRAD involved two types of experiment: 1 in Petri dishes toassess and characterize the antagonistic capacity of Trichoderma against white rot and brown rot fungi; 2on pieces taken from untreated poles in order to study confrontation between the basidiomycete and theantagonistic strain in wood.This study investigated the antagonism of three ascomycetes of the genus Trichoderma against two whiterot basidiomycetes, Pycnoporus sanguineus and Coriolus versicolor, and two brown rot basidiomycetes,Antrodia sp. and Coniophora puteana, through direct confrontation in Petri dishes and in the wood ofHydroQuébec poles.The results obtained seemed to complete each other coherently. They revealed that the Trichodermagroup of fungi was not aggressive to wood and the results obtained after direct confrontation in Petri disheswere confirmed in wood.By directly exposing the different basidiomycetes and antagonists to each other in Petri dishes, two bytwo, we effectively revealed an antagonism effect for a large majority of the pairs. However, there wassubstantial variability in reactions from one pair to the next.

  19. THREE-DIMENSIONAL MAPPING OF DIFFERENTIAL AMINO ACIDS OF HUMAN, MURINE, CANINE AND EQUINE TLR4/MD-2 RECEPTOR COMPLEXES CONFERRING ENDOTOXIC ACTIVATION BY LIPID A, ANTAGONISM BY ERITORAN AND SPECIES-DEPENDENT ACTIVITIES OF LIPID IVA IN THE MAMMALIAN LPS SENSOR SYSTEM

    Directory of Open Access Journals (Sweden)

    Thomas Scior

    2013-05-01

    Full Text Available A literature review concerning the unexpected species differences of the vertebrate innate immune response to lipid IVA was published in CSBJ prior to the present computational study to address the unpaired activity-sequence correlation of prototypic E. coli -type lipid A and its precursor lipid IVA regarding human, murine, equine and canine species. To this end, their sequences and structures of hitherto known Toll-like receptor 4 (TLR4 and myeloid differentiation factor 2 (MD-2 complexes were aligned and their differential side chain patterns studied. If required due to the lack of the corresponding X-ray crystallographic data, three-dimensional models of TLR4/MD-2/ligand complexes were generated using mono and dimeric crystal structures as templates and in silico docking of the prototypic ligands lipid A, lipid IVA and Eritoran. All differential amino acids were mapped to pinpoint species dependency on an atomic scale, i.e. the possible concert of mechanistically relevant side chains. In its most abstract and general form the three-dimensional (3D- models devise a triangular interface or “wedge” where molecular interactions between TLR4, MD-2 and ligand itself take place. This study identifies two areas in the wedge related to either agonism or antagonism reflecting why ligands like lipid IVA can possess a species dependent dual activity. Lipid IVA represents an imperfect (underacylated and backbone-flipped, low affinity ligand of mammalian TLR4/MD-2 complexes. Its specific but weak antagonistic activity in the human system is in particular due to the loss of phosphate attraction in the wedge-shaped region conferred by nonhomologous residue changes when compared to crystal and modeled structures of the corresponding murine and equine TLR4/MD-2 complexes. The counter-TLR4/MD-2 unit was also taken into account since agonist-mediated dimerization in a defined m-shaped complex composed of two TLR4/MD-2/agonist subunits triggers intracellular

  20. Enhancement of GABAergic transmission by zolpidem, an imidazopyridine with preferential affinity for type I benzodiazepine receptors.

    Science.gov (United States)

    Biggio, G; Concas, A; Corda, M G; Serra, M

    1989-02-28

    The effect of zolpidem, an imidazopyridine derivative with high affinity at the type I benzodiazepine recognition site, on the function of the GABAA/ionophore receptor complex was studied in vitro. Zolpidem, mimicking the action of diazepam, increased [3H]GABA binding, enhanced muscimol-stimulated 36Cl- uptake and reduced [35S]TBPS binding in rat cortical membrane preparations. Zolpidem was less effective than diazepam on the above parameters. Zolpidem induced a lower increase of [3H]GABA binding (23 vs. 35%) and muscimol-stimulated 36Cl- uptake (22 vs. 40%) and a smaller decrease of [35S]TBPS binding (47 vs. 77%) than diazepam. The finding that zolpidem enhanced the function of GABAergic synapses with an efficacy qualitatively and quantitatively different from that of diazepam suggests that this compound is a partial agonist at the benzodiazepine recognition site. Thus, our results are consistent with the view that the biochemical and pharmacological profile of a benzodiazepine recognition site ligand reflects its efficacy to enhance GABAergic transmission. Whether the preferential affinity of zolpidem at the type I site is involved in its atypical biochemical and pharmacological profile remains to be clarified.

  1. Evaluation of the antagonism of nicotine by mecamylamine and pempidine in the brain

    International Nuclear Information System (INIS)

    Martin, T.J.

    1989-01-01

    Antagonists have been crucial in the characterization of nicotine's pharmacology. Initial evidence for the existence of central nicotinic receptors was based on the fact that nicotine produced a number of behavioral effects that were antagonized by ganglionic blockers that crossed the blood-brain barrier, such as mecamylamine and pempidine. These compounds are thought to be noncompetitive antagonists due to the fact that they do not compete for agonist binding to brain homogenate in vitro. However, pharmacological evidence in support of noncompetitive antagonism is lacking. Dose-response curves for nicotine were determined in the presence of various doses of pempidine for depression of spontaneous activity and antinociception in mice. Pempidine was found to shift the dose response curves for these effects of nicotine in a manner consistent with noncompetitive antagonism. A number of mecamylamine analogs were investigated for antagonism of these central effects of nicotine as well. These studies revealed that the N-, 2-, and 3-methyls were crucial for optimal efficacy and potency and suggests that these compounds possess a specific mechanism of action, possibly involving a receptor. Furthermore, the structure-activity relationships for the mecamylamine analogs were found to be different than that previously reported for the agonists, suggesting that they do not act at the same site. The binding of [ 3 H]-L-nicotine and [ 3 H]-pempidine was studied in vitro to mouse brain homogentate and in situ to rat brain slices. The in situ binding of [ 3 H]-L-nicotine to rat brain slices was quantitated autoradiographically to discrete brain areas in the presence and absence of 1, 10 and 100 μM nicotine and pempidine. Pempidine did not effectively displace [ 3 H]-L-nicotine binding

  2. Aberrant Receptor Internalization and Enhanced FRS2-dependent Signaling Contribute to the Transforming Activity of the Fibroblast Growth Factor Receptor 2 IIIb C3 Isoform*

    Science.gov (United States)

    Cha, Jiyoung Y.; Maddileti, Savitri; Mitin, Natalia; Harden, T. Kendall; Der, Channing J.

    2009-01-01

    Alternative splice variants of fibroblast growth factor receptor 2 (FGFR2) IIIb, designated C1, C2, and C3, possess progressive reduction in their cytoplasmic carboxyl termini (822, 788, and 769 residues, respectively), with preferential expression of the C2 and C3 isoforms in human cancers. We determined that the progressive deletion of carboxyl-terminal sequences correlated with increasing transforming potency. The highly transforming C3 variant lacks five tyrosine residues present in C1, and we determined that the loss of Tyr-770 alone enhanced FGFR2 IIIb C1 transforming activity. Because Tyr-770 may compose a putative YXXL sorting motif, we hypothesized that loss of Tyr-770 in the 770YXXL motif may cause disruption of FGFR2 IIIb C1 internalization and enhance transforming activity. Surprisingly, we found that mutation of Leu-773 but not Tyr-770 impaired receptor internalization and increased receptor stability and activation. Interestingly, concurrent mutations of Tyr-770 and Leu-773 caused 2-fold higher transforming activity than caused by the Y770F or L773A single mutations, suggesting loss of Tyr and Leu residues of the 770YXXL773 motif enhances FGFR2 IIIb transforming activity by distinct mechanisms. We also determined that loss of Tyr-770 caused persistent activation of FRS2 by enhancing FRS2 binding to FGFR2 IIIb. Furthermore, we found that FRS2 binding to FGFR2 IIIb is required for increased FRS2 tyrosine phosphorylation and enhanced transforming activity by Y770F mutation. Our data support a dual mechanism where deletion of the 770YXXL773 motif promotes FGFR2 IIIb C3 transforming activity by causing aberrant receptor recycling and stability and persistent FRS2-dependent signaling. PMID:19103595

  3. Dopamine enhances duodenal epithelial permeability via the dopamine D5 receptor in rodent.

    Science.gov (United States)

    Feng, X-Y; Zhang, D-N; Wang, Y-A; Fan, R-F; Hong, F; Zhang, Y; Li, Y; Zhu, J-X

    2017-05-01

    The intestinal barrier is made up of epithelial cells and intercellular junctional complexes to regulate epithelial ion transport and permeability. Dopamine (DA) is able to promote duodenal epithelial ion transport through D1-like receptors, which includes subtypes of D 1 (D 1 R) and D 5 (D 5 R), but whether D1-like receptors influence the duodenal permeability is unclear. FITC-dextran permeability, short-circuit current (I SC ), Western blot, immunohistochemistry and ELISA were used in human D 5 R transgenic mice and hyperendogenous enteric DA (HEnD) rats in this study. Dopamine induced a downward deflection in I SC and an increase in FITC-dextran permeability of control rat duodenum, which were inhibited by the D1-like receptor antagonist, SCH-23390. However, DA decreased duodenal transepithelial resistance (TER), an effect also reversed by SCH-23390. A strong immunofluorescence signal for D 5 R, but not D 1 R, was observed in the duodenum of control rat. In human D 5 R knock-in transgenic mice, duodenal mucosa displayed an increased basal I SC with high FITC-dextran permeability and decreased TER with a lowered expression of tight junction proteins, suggesting attenuated duodenal barrier function in these transgenic mice. D 5 R knock-down transgenic mice manifested a decreased basal I SC with lowered FITC-dextran permeability. Moreover, an increased FITC-dextran permeability combined with decreased TER and tight junction protein expression in duodenal mucosa were also observed in HEnD rats. This study demonstrates, for the first time, that DA enhances duodenal permeability of control rat via D 5 R, which provides new experimental and theoretical evidence for the influence of DA on duodenal epithelial barrier function. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  4. Enhanced polyubiquitination of Shank3 and NMDA receptor in a mouse model of autism.

    Science.gov (United States)

    Bangash, M Ali; Park, Joo Min; Melnikova, Tatiana; Wang, Dehua; Jeon, Soo Kyeong; Lee, Deidre; Syeda, Sbaa; Kim, Juno; Kouser, Mehreen; Schwartz, Joshua; Cui, Yiyuan; Zhao, Xia; Speed, Haley E; Kee, Sara E; Tu, Jian Cheng; Hu, Jia-Hua; Petralia, Ronald S; Linden, David J; Powell, Craig M; Savonenko, Alena; Xiao, Bo; Worley, Paul F

    2011-05-27

    We have created a mouse genetic model that mimics a human mutation of Shank3 that deletes the C terminus and is associated with autism. Expressed as a single copy [Shank3(+/ΔC) mice], Shank3ΔC protein interacts with the wild-type (WT) gene product and results in >90% reduction of Shank3 at synapses. This "gain-of-function" phenotype is linked to increased polyubiquitination of WT Shank3 and its redistribution into proteasomes. Similarly, the NR1 subunit of the NMDA receptor is reduced at synapses with increased polyubiquitination. Assays of postsynaptic density proteins, spine morphology, and synapse number are unchanged in Shank3(+/ΔC) mice, but the amplitude of NMDAR responses is reduced together with reduced NMDAR-dependent LTP and LTD. Reciprocally, mGluR-dependent LTD is markedly enhanced. Shank3(+/ΔC) mice show behavioral deficits suggestive of autism and reduced NMDA receptor function. These studies reveal a mechanism distinct from haploinsufficiency by which mutations of Shank3 can evoke an autism-like disorder. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. alpha7 Nicotinic acetylcholine receptor knockout selectively enhances ethanol-, but not beta-amyloid-induced neurotoxicity.

    Science.gov (United States)

    de Fiebre, Nancyellen C; de Fiebre, Christopher M

    2005-01-03

    The alpha7 subtype of nicotinic acetylcholine receptor (nAChR) has been implicated as a potential site of action for two neurotoxins, ethanol and the Alzheimer's disease related peptide, beta-amyloid. Here, we utilized primary neuronal cultures of cerebral cortex from alpha7 nAChR null mutant mice to examine the role of this receptor in modulating the neurotoxic properties of subchronic, "binge" ethanol and beta-amyloid. Knockout of the alpha7 nAChR gene selectively enhanced ethanol-induced neurotoxicity in a gene dosage-related fashion. Susceptibility of cultures to beta-amyloid induced toxicity, however, was unaffected by alpha7 nAChR gene null mutation. Further, beta-amyloid did not inhibit the binding of the highly alpha7-selective radioligand, [(125)I]alpha-bungarotoxin. On the other hand, in studies in Xenopus oocytes ethanol efficaciously inhibited alpha7 nAChR function. These data suggest that alpha7 nAChRs modulate the neurotoxic effects of binge ethanol, but not the neurotoxicity produced by beta-amyloid. It is hypothesized that inhibition of alpha7 nAChRs by ethanol provides partial protection against the neurotoxic properties of subchronic ethanol.

  6. Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat.

    Science.gov (United States)

    Schoonbeek, Henk-Jan; Wang, Hsi-Hua; Stefanato, Francesca L; Craze, Melanie; Bowden, Sarah; Wallington, Emma; Zipfel, Cyril; Ridout, Christopher J

    2015-04-01

    Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Subarachnoid hemorrhage enhances endothelin receptor expression and function in rat cerebral arteries

    DEFF Research Database (Denmark)

    Hansen-Schwartz, Jacob; Hoel, Natalie Løvland; Zhou, Mingfang

    2003-01-01

    OBJECTIVE: Inspired by organ culture-induced changes in the vascular endothelin (ET) receptor population, we investigated whether such changes occur in cerebral arteries in a rat subarachnoid hemorrhage (SAH) model. METHODS: SAH was induced with injection of 250 microl of blood into the prechiasm......OBJECTIVE: Inspired by organ culture-induced changes in the vascular endothelin (ET) receptor population, we investigated whether such changes occur in cerebral arteries in a rat subarachnoid hemorrhage (SAH) model. METHODS: SAH was induced with injection of 250 microl of blood...... into the prechiasmatic cistern. After 2 days, the middle cerebral artery, basilar artery, and posterior communicating artery were harvested. Pharmacological studies were performed in vitro, and levels of messenger ribonucleic acid (mRNA) were quantified in real-time reverse transcriptase-polymerase chain reaction assays....... RESULTS: In the middle cerebral artery and basilar artery from rats with induced SAH, enhanced biphasic responses to ET-1 were observed. The -log(50% effective concentration) value for the high-affinity phase was approximately 12, compared with approximately 8.5 for sham-operated animals...

  8. Enhanced Chemokine Receptor Expression on Leukocytes of Patients with Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    David Goldeck

    Full Text Available Although primarily a neurological complaint, systemic inflammation is present in Alzheimer's Disease, with higher than normal levels of proinflammatory cytokines and chemokines in the periphery as well as the brain. A gradient of these factors may enhance recruitment of activated immune cells into the brain via chemotaxis. Here, we investigated the phenotypes of circulating immune cells in AD patients with multi-colour flow cytometry to determine whether their expression of chemokine receptors is consistent with this hypothesis. In this study, we confirmed our previously reported data on the shift of early- to late-differentiated CD4+ T-cells in AD patients. The percentage of cells expressing CD25, a marker of acute T-cell activation, was higher in patients than in age-matched controls, and percentages of CCR6+ cells were elevated. This chemokine receptor is primarily expressed on pro-inflammatory memory cells and Th17 cells. The proportion of cells expressing CCR4 (expressed on Th2 cells and CCR5 (Th1 cells and dendritic cells was also greater in patients, and was more pronounced on CD4+ than CD8+ T-cells. These findings allow a more detailed insight into the systemic immune status of patients with Alzheimer's disease and suggest possible novel targets for immune therapy.

  9. Nuclear receptor TLX stimulates hippocampal neurogenesis and enhances learning and memory in a transgenic mouse model.

    Science.gov (United States)

    Murai, Kiyohito; Qu, Qiuhao; Sun, GuoQiang; Ye, Peng; Li, Wendong; Asuelime, Grace; Sun, Emily; Tsai, Guochuan E; Shi, Yanhong

    2014-06-24

    The role of the nuclear receptor TLX in hippocampal neurogenesis and cognition has just begun to be explored. In this study, we generated a transgenic mouse model that expresses TLX under the control of the promoter of nestin, a neural precursor marker. Transgenic TLX expression led to mice with enlarged brains with an elongated hippocampal dentate gyrus and increased numbers of newborn neurons. Specific expression of TLX in adult hippocampal dentate gyrus via lentiviral transduction increased the numbers of BrdU(+) cells and BrdU(+)NeuN(+) neurons. Furthermore, the neural precursor-specific expression of the TLX transgene substantially rescued the neurogenic defects of TLX-null mice. Consistent with increased neurogenesis in the hippocampus, the TLX transgenic mice exhibited enhanced cognition with increased learning and memory. These results suggest a strong association between hippocampal neurogenesis and cognition, as well as significant contributions of TLX to hippocampal neurogenesis, learning, and memory.

  10. A novel Arabidopsis CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) mutant with enhanced pathogen-induced cell death and altered receptor processing.

    Science.gov (United States)

    Petutschnig, Elena K; Stolze, Marnie; Lipka, Ulrike; Kopischke, Michaela; Horlacher, Juliane; Valerius, Oliver; Rozhon, Wilfried; Gust, Andrea A; Kemmerling, Birgit; Poppenberger, Brigitte; Braus, Gerhard H; Nürnberger, Thorsten; Lipka, Volker

    2014-12-01

    Plants detect pathogens by sensing microbe-associated molecular patterns (MAMPs) through pattern recognition receptors. Pattern recognition receptor complexes also have roles in cell death control, but the underlying mechanisms are poorly understood. Here, we report isolation of cerk1-4, a novel mutant allele of the Arabidopsis chitin receptor CERK1 with enhanced defense responses. We identified cerk1-4 in a forward genetic screen with barley powdery mildew and consequently characterized it by pathogen assays, mutant crosses and analysis of defense pathways. CERK1 and CERK1-4 proteins were analyzed biochemically. The cerk1-4 mutation causes an amino acid exchange in the CERK1 ectodomain. Mutant plants maintain chitin signaling capacity but exhibit hyper-inducible salicylic acid concentrations and deregulated cell death upon pathogen challenge. In contrast to chitin signaling, the cerk1-4 phenotype does not require kinase activity and is conferred by the N-terminal part of the receptor. CERK1 undergoes ectodomain shedding, a well-known process in animal cell surface proteins. Wild-type plants contain the full-length CERK1 receptor protein as well as a soluble form of the CERK1 ectodomain, whereas cerk1-4 plants lack the N-terminal shedding product. Our work suggests that CERK1 may have a chitin-independent role in cell death control and is the first report of ectodomain shedding in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  11. γ-Tocotrienol upregulates aryl hydrocarbon receptor expression and enhances the anticancer effect of baicalein

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Shuya; Baba, Kiwako; Makio, Akiko; Kumazoe, Motofumi; Huang, Yuhui; Lin, I-Chian; Bae, Jaehoon; Murata, Motoki; Yamada, Shuhei; Tachibana, Hirofumi, E-mail: tatibana@agr.kyushu-u.ac.jp

    2016-05-13

    Previous studies have identified biomolecules that mediate the physiological actions of food factors, such as amino acids, vitamins, fatty acids, minerals, plant polyphenols, and lactobacilli, suggesting that our bodies are equipped with an innate system that senses which food factors are required to maintain our health. However, the effects of environmental factors on food factor sensing (FFS) remains largely unknown. Tocotorienols (T3s), which belongs to the vitamin E family, possess several physiological functions, including cholesterol lowering and neuroprotective effects. Here, we investigated the effects of naturally abundant γ-T3 on FFS-related gene expressions in melanoma using a DNA chip. Our results showed that γ-T3 increased the expression level of aryl hydrocarbon receptor (AhR), a sensing molecule to plant polyphenol baicalein. The co-treatment with γ-T3 and baicalein enhanced the anti-proliferative activity of baicalein, accompanied by the downstream events of AhR-activation induced by baicalein. These data suggest that γ-T3 upregulates AhR expression and enhances its sensitivity to baicalein. - Highlights: • γ-T3 upregulated the expression of AhR in mouse melanoma. • Promotion of the binding activity of Sp1 is associated with the increasing effect of γ-T3 on AhR expression. • γ-T3 enhanced the anti-proliferative activity of baicalein that has an AhR ligand activity. • γ-T3 enhanced the inducing activity of baicalein on the expression of AhR target genes.

  12. YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli.

    Science.gov (United States)

    Masuda, Hisako; Tan, Qian; Awano, Naoki; Wu, Kuen-Phon; Inouye, Masayori

    2012-06-01

    All free-living bacteria carry the toxin-antitoxin (TA) systems controlling cell growth and death under stress conditions. YeeU-YeeV (CbtA) is one of the Escherichia coli TA systems, and the toxin, CbtA, has been reported to inhibit the polymerization of bacterial cytoskeletal proteins, MreB and FtsZ. Here, we demonstrate that the antitoxin, YeeU, is a novel type of antitoxin (type IV TA system), which does not form a complex with CbtA but functions as an antagonist for CbtA toxicity. Specifically, YeeU was found to directly interact with MreB and FtsZ, and enhance the bundling of their filamentous polymers in vitro. Surprisingly, YeeU neutralized not only the toxicity of CbtA but also the toxicity caused by other inhibitors of MreB and FtsZ, such as A22, SulA and MinC, indicating that YeeU-induced bundling of MreB and FtsZ has an intrinsic global stabilizing effect on their homeostasis. Here we propose to rename YeeU as CbeA for cytoskeleton bundling-enhancing factor A. © 2012 Blackwell Publishing Ltd.

  13. Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening

    OpenAIRE

    Xue, Jingqi; Li, Yunhui; Tan, Hui; Yang, Feng; Ma, Nan; Gao, Junping

    2008-01-01

    Ethylene production, as well as the expression of ethylene biosynthetic (Rh-ACS1?4 and Rh-ACO1) and receptor (Rh-ETR1?5) genes, was determined in five different floral tissues (sepals, petals, stamens, gynoecia, and receptacles) of cut rose (Rosa hybrida cv. Samantha upon treatment with ethylene or the ethylene inhibitor 1-methylcyclopropene (1-MCP). Ethylene-enhanced ethylene production occurred only in gynoecia, petals, and receptacles, with gynoecia showing the greatest enhancement in the ...

  14. Cognitive enhancers (Nootropics). Part 3: drugs interacting with targets other than receptors or enzymes. Disease-modifying drugs. Update 2014.

    Science.gov (United States)

    Froestl, Wolfgang; Pfeifer, Andrea; Muhs, Andreas

    2014-01-01

    Scientists working in the field of Alzheimer's disease and, in particular, cognitive enhancers, are very productive. The review "Drugs interacting with Targets other than Receptors or Enzymes. Disease-modifying Drugs" was accepted in October 2012. In the last 20 months, new targets for the potential treatment of Alzheimer's disease were identified. Enormous progress was realized in the pharmacological characterization of natural products with cognitive enhancing properties. This review covers the evolution of research in this field through May 2014.

  15. Peripherally Administered Y2-Receptor Antagonist BIIE0246 Prevents Diet-Induced Obesity in Mice With Excess Neuropeptide Y, but Enhances Obesity in Control Mice.

    Science.gov (United States)

    Ailanen, Liisa; Vähätalo, Laura H; Salomäki-Myftari, Henriikka; Mäkelä, Satu; Orpana, Wendy; Ruohonen, Suvi T; Savontaus, Eriika

    2018-01-01

    Neuropeptide Y (NPY) plays an important role in the regulation of energy homeostasis in the level of central and sympathetic nervous systems (SNSs). Genetic silencing of peripheral Y 2 -receptors have anti-obesity effects, but it is not known whether pharmacological blocking of peripheral Y 2 -receptors would similarly benefit energy homeostasis. The effects of a peripherally administered Y 2 -receptor antagonist were studied in healthy and energy-rich conditions with or without excess NPY. Genetically obese mice overexpressing NPY in brain noradrenergic nerves and SNS (OE-NPY DβH ) represented the situation of elevated NPY levels, while wildtype (WT) mice represented the normal NPY levels. Specific Y 2 -receptor antagonist, BIIE0246, was administered (1.3 mg/kg/day, i.p.) for 2 or 4.5 weeks to OE-NPY DβH and WT mice feeding on chow or Western diet. Treatment with Y 2 -receptor antagonist increased body weight gain in both genotypes on chow diet and caused metabolic disturbances (e.g., hyperinsulinemia and hypercholesterolemia), especially in WT mice. During energy surplus (i.e., on Western diet), blocking of Y 2 -receptors induced obesity in WT mice, whereas OE-NPY DβH mice showed reduced fat mass gain, hepatic glycogen and serum cholesterol levels relative to body adiposity. Thus, it can be concluded that with normal NPY levels, peripheral Y 2 -receptor antagonist has no potential for treating obesity, but oppositely may even induce metabolic disorders. However, when energy-rich diet is combined with elevated NPY levels, e.g., stress combined with an unhealthy diet, Y 2 -receptor antagonism has beneficial effects on metabolic status.

  16. NOD1 cooperates with TLR2 to enhance T cell receptor-mediated activation in CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Blandine C Mercier

    Full Text Available Pattern recognition receptors (PRR, like Toll-like receptors (TLR and NOD-like receptors (NLR, are involved in the detection of microbial infections and tissue damage by cells of the innate immune system. Recently, we and others have demonstrated that TLR2 can additionally function as a costimulatory receptor on CD8 T cells. Here, we establish that the intracytosolic receptor NOD1 is expressed and functional in CD8 T cells. We show that C12-iEDAP, a synthetic ligand for NOD1, has a direct impact on both murine and human CD8 T cells, increasing proliferation and effector functions of cells activated via their T cell receptor (TCR. This effect is dependent on the adaptor molecule RIP2 and is associated with an increased activation of the NF-κB, JNK and p38 signaling pathways. Furthermore, we demonstrate that NOD1 stimulation can cooperate with TLR2 engagement on CD8 T cells to enhance TCR-mediated activation. Altogether our results indicate that NOD1 might function as an alternative costimulatory receptor in CD8 T cells. Our study provides new insights into the function of NLR in T cells and extends to NOD1 the recent concept that PRR stimulation can directly control T cell functions.

  17. Adult-onset hypothyroidism enhances fear memory and upregulates mineralocorticoid and glucocorticoid receptors in the amygdala.

    Science.gov (United States)

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.

  18. Trichostatin A enhances estrogen receptor-alpha repression in MCF-7 breast cancer cells under hypoxia

    International Nuclear Information System (INIS)

    Noh, Hyunggyun; Park, Joonwoo; Shim, Myeongguk; Lee, YoungJoo

    2016-01-01

    Estrogen receptor (ER) is a crucial determinant of resistance to endocrine therapy, which may change during the progression of breast cancer. We previously showed that hypoxia induces ESR1 gene repression and ERα protein degradation via proteasome-mediated pathway in breast cancer cells. HDAC plays important roles in the regulation of histone and non-histone protein post-translational modification. HDAC inhibitors can induce epigenetic changes and have therapeutic potential for targeting various cancers. Trichostatin A exerts potent antitumor activities against breast cancer cells in vitro and in vivo. In this report, we show that TSA augments ESR1 gene repression at the transcriptional level and downregulates ERα protein expression under hypoxic conditions through a proteasome-mediated pathway. TSA-induced estrogen response element-driven reporter activity in the absence of estrogen was synergistically enhanced under hypoxia; however, TSA inhibited cell proliferation under both normoxia and hypoxia. Our data show that the hypoxia-induced repression of ESR1 and degradation of ERα are enhanced by concomitant treatment with TSA. These findings expand our understanding of hormone responsiveness in the tumor microenvironment; however, additional in-depth studies are required to elucidate the detailed mechanisms of TSA-induced ERα regulation under hypoxia. - Highlights: • TSA augments ESR1 gene repression at the transcriptional level under hypoxia. • TSA downregulates ERα protein expression under hypoxia. • TSA-induced ERα regulation under hypoxia is essential for understanding the behavior and progression of breast cancer.

  19. Adult-onset hypothyroidism enhances fear memory and upregulates mineralocorticoid and glucocorticoid receptors in the amygdala.

    Directory of Open Access Journals (Sweden)

    Ana Montero-Pedrazuela

    Full Text Available Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.

  20. Adult-Onset Hypothyroidism Enhances Fear Memory and Upregulates Mineralocorticoid and Glucocorticoid Receptors in the Amygdala

    Science.gov (United States)

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment. PMID:22039511

  1. Trichostatin A enhances estrogen receptor-alpha repression in MCF-7 breast cancer cells under hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyunggyun; Park, Joonwoo; Shim, Myeongguk; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2016-02-12

    Estrogen receptor (ER) is a crucial determinant of resistance to endocrine therapy, which may change during the progression of breast cancer. We previously showed that hypoxia induces ESR1 gene repression and ERα protein degradation via proteasome-mediated pathway in breast cancer cells. HDAC plays important roles in the regulation of histone and non-histone protein post-translational modification. HDAC inhibitors can induce epigenetic changes and have therapeutic potential for targeting various cancers. Trichostatin A exerts potent antitumor activities against breast cancer cells in vitro and in vivo. In this report, we show that TSA augments ESR1 gene repression at the transcriptional level and downregulates ERα protein expression under hypoxic conditions through a proteasome-mediated pathway. TSA-induced estrogen response element-driven reporter activity in the absence of estrogen was synergistically enhanced under hypoxia; however, TSA inhibited cell proliferation under both normoxia and hypoxia. Our data show that the hypoxia-induced repression of ESR1 and degradation of ERα are enhanced by concomitant treatment with TSA. These findings expand our understanding of hormone responsiveness in the tumor microenvironment; however, additional in-depth studies are required to elucidate the detailed mechanisms of TSA-induced ERα regulation under hypoxia. - Highlights: • TSA augments ESR1 gene repression at the transcriptional level under hypoxia. • TSA downregulates ERα protein expression under hypoxia. • TSA-induced ERα regulation under hypoxia is essential for understanding the behavior and progression of breast cancer.

  2. Enhanced odor discrimination and impaired olfactory memory by spatially controlled switch of AMPA receptors.

    Directory of Open Access Journals (Sweden)

    Derya R Shimshek

    2005-11-01

    Full Text Available Genetic perturbations of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs are widely used to dissect molecular mechanisms of sensory coding, learning, and memory. In this study, we investigated the role of Ca2+-permeable AMPARs in olfactory behavior. AMPAR modification was obtained by depletion of the GluR-B subunit or expression of unedited GluR-B(Q, both leading to increased Ca2+ permeability of AMPARs. Mice with this functional AMPAR switch, specifically in forebrain, showed enhanced olfactory discrimination and more rapid learning in a go/no-go operant conditioning task. Olfactory memory, however, was dramatically impaired. GluR-B depletion in forebrain was ectopically variable ("mosaic" among individuals and strongly correlated with decreased olfactory memory in hippocampus and cortex. Accordingly, memory was rescued by transgenic GluR-B expression restricted to piriform cortex and hippocampus, while enhanced odor discrimination was independent of both GluR-B variability and transgenic GluR-B expression. Thus, correlated differences in behavior and levels of GluR-B expression allowed a mechanistic and spatial dissection of olfactory learning, discrimination, and memory capabilities.

  3. Enhanced odor discrimination and impaired olfactory memory by spatially controlled switch of AMPA receptors.

    Science.gov (United States)

    Shimshek, Derya R; Bus, Thorsten; Kim, Jinhyun; Mihaljevic, Andre; Mack, Volker; Seeburg, Peter H; Sprengel, Rolf; Schaefer, Andreas T

    2005-11-01

    Genetic perturbations of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) are widely used to dissect molecular mechanisms of sensory coding, learning, and memory. In this study, we investigated the role of Ca2+-permeable AMPARs in olfactory behavior. AMPAR modification was obtained by depletion of the GluR-B subunit or expression of unedited GluR-B(Q), both leading to increased Ca2+ permeability of AMPARs. Mice with this functional AMPAR switch, specifically in forebrain, showed enhanced olfactory discrimination and more rapid learning in a go/no-go operant conditioning task. Olfactory memory, however, was dramatically impaired. GluR-B depletion in forebrain was ectopically variable ("mosaic") among individuals and strongly correlated with decreased olfactory memory in hippocampus and cortex. Accordingly, memory was rescued by transgenic GluR-B expression restricted to piriform cortex and hippocampus, while enhanced odor discrimination was independent of both GluR-B variability and transgenic GluR-B expression. Thus, correlated differences in behavior and levels of GluR-B expression allowed a mechanistic and spatial dissection of olfactory learning, discrimination, and memory capabilities.

  4. Morphine withdrawal enhances constitutive μ-opioid receptor activity in the ventral tegmental area.

    Science.gov (United States)

    Meye, Frank J; van Zessen, Ruud; Smidt, Marten P; Adan, Roger A H; Ramakers, Geert M J

    2012-11-14

    μ-Opioid receptors (MORs) in the ventral tegmental area (VTA) are pivotally involved in addictive behavior. While MORs are typically activated by opioids, they can also become constitutively active in the absence of any agonist. In the current study, we present evidence that MOR constitutive activity is highly relevant in the mouse VTA, as it regulates GABAergic input to dopamine neurons. Specifically, suppression of MOR constitutive activity with the inverse agonist KC-2-009 enhanced GABAergic neurotransmission onto VTA dopamine neurons. This inverse agonistic effect was fully blocked by the specific MOR neutral antagonist CTOP, which had no effect on GABAergic transmission itself. We next show that withdrawal from chronic morphine further increases the magnitude of inverse agonistic effects at the MOR, suggesting enhanced MOR constitutive activity. We demonstrate that this increase can be an adaptive response to the detrimental elevation in cAMP levels known to occur during morphine withdrawal. These findings offer important insights in the physiological occurrence and function of MOR constitutive activity, and have important implications for therapeutic strategies aimed at normalizing MOR signaling during addiction and opioid overdose.

  5. Histone Deacetylase Inhibition Induces Odor Preference Memory Extension and Maintains Enhanced AMPA Receptor Expression in the Rat Pup Model

    Science.gov (United States)

    Bhattacharya, Sriya; Mukherjee, Bandhan; Doré, Jules J. E.; Yuan, Qi; Harley, Carolyn W.; McLean, John H.

    2017-01-01

    Histone deacetylase (HDAC) plays a role in synaptic plasticity and long-term memory formation. We hypothesized that trichostatin-A (TSA), an HDAC inhibitor, would promote long-term odor preference memory and maintain enhanced GluA1 receptor levels that have been hypothesized to support memory. We used an early odor preference learning model in…

  6. Methylphenidate and Atomoxetine Enhance Prefrontal Function through alpha[subscript 2]-Adrenergic and Dopamine D[subscript 1] Receptors

    Science.gov (United States)

    Gamo, Nao J.; Wang, Min; Arnsten, Amy F. T.

    2010-01-01

    Objective: This study examined the effects of the attention-deficit/hyperactivity disorder treatments, methylphenidate (MPH) and atomoxetine (ATM), on prefrontal cortex (PFC) function in monkeys and explored the receptor mechanisms underlying enhancement of PFC function at the behavioral and cellular levels. Method: Monkeys performed a working…

  7. Forced Normalization: Antagonism Between Epilepsy and Psychosis.

    Science.gov (United States)

    Kawakami, Yasuhiko; Itoh, Yasuhiko

    2017-05-01

    The antagonism between epilepsy and psychosis has been discussed for a long time. Landolt coined the term "forced normalization" in the 1950s to describe psychotic episodes associated with the remission of seizures and disappearance of epileptiform activity on electroencephalograms in individuals with epilepsy. Since then, neurologists and psychiatrists have been intrigued by this phenomenon. However, although collaborative clinical studies and basic experimental researches have been performed, the mechanism of forced normalization remains unknown. In this review article, we present a historical overview of the concept of forced normalization, and discuss potential pathogenic mechanisms and clinical diagnosis. We also discuss the role of dopamine, which appears to be a key factor in the mechanism of forced normalization. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Enhanced expression of contractile endothelin ET(B) receptors in rat coronary artery after organ culture

    DEFF Research Database (Denmark)

    Johnsson, E.; Maddahi, A.; Wackenfors, A.

    2008-01-01

    . In cardiovascular disease and in organ culture in vitro, endothelin ET(B) receptors are up-regulated on smooth muscle cells. The objectives of the present study were to characterise the endothelin receptor-induced vasoconstriction and quantify the endothelin receptor mRNA levels and immunoreactivity in fresh...... and cultured rat coronary arteries. We demonstrate that endothelin-1 induces strong and equal concentration-dependent contractions in fresh and cultured segments from the left anterior descending coronary artery. Sarafotoxin 6c, an endothelin ET(B) receptor agonist, had negligible effect in fresh arteries...... but produced significant vasoconstriction after organ culture. The endothelin ET(B) receptor mRNA level and the receptor protein immunoreactivity were increased, whereas the level of endothelin ET(A) receptor mRNA was down-regulated but not its receptor protein immunoreactivity after organ culture...

  9. Mutual enhancement of IL-2 and IL-7 on DNA vaccine immunogenicity mainly involves regulations on their receptor expression and receptor-expressing lymphocyte generation.

    Science.gov (United States)

    Zhang, Yonghong; Liang, Shuang; Li, Xiujin; Wang, Liyue; Zhang, Jianlou; Xu, Jian; Huo, Shanshan; Cao, Xuebin; Zhong, Zhenyu; Zhong, Fei

    2015-07-09

    Our previous study showed that IL-2 and IL-7 could mutually enhance the immunogenicity of canine parvovirus VP2 DNA vaccine, although the underlying mechanism remained unknown. Here, we used the OVA gene as a DNA vaccine in a mouse model to test their enhancement on DNA vaccine immunogenicity and to explore the molecular mechanism. Results showed that both IL-2 and IL-7 genes significantly increased the immunogenicity of OVA DNA vaccine in mice. Co-administration of IL-2 and IL-7 genes with OVA DNA significantly increased OVA-specific antibody titers, T cell proliferation and IFN-γ production compared with IL-2 or IL-7 alone, confirming that IL-2 and IL-7 mutually enhanced DNA vaccine immunogenicity. Mechanistically, we have shown that IL-2 significantly stimulated generation of IL-7 receptor-expressing lymphocytes, and that IL-7 significantly induced IL-2 receptor expression. These results contribute to an explanation of the mechanism of the mutual effects of IL-2 and IL-7 on enhancing DNA vaccine immunogenicity and provided a basis for further investigation on their mutual effects on adjuvant activity and immune regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Adenine Nucleotide Analogues Locked in a Northern Methanocarba Conformation: Enhanced Stability and Potency as P2Y1 Receptor Agonists

    Science.gov (United States)

    Ravi, R. Gnana; Kim, Hak Sung; Servos, Jörg; Zimmermann, Herbert; Lee, Kyeong; Maddileti, Savitri; Boyer, José L.; Harden, T. Kendall; Jacobson, Kenneth A.

    2016-01-01

    Preference for the Northern (N) ring conformation of the ribose moiety of nucleotide 5′-triphosphate agonists at P2Y1, P2Y2, P2Y4, and P2Y11 receptors, but not P2Y6 receptors, was established using a ring-constrained methanocarba (a 3.1.0-bicyclohexane) ring as a ribose substitute (Kim et al. J. Med. Chem. 2002, 45, 208–218.). We have now combined the ring-constrained (N)-methanocarba modification of adenine nucleotides with other functionalities known to enhance potency at P2 receptors. The potency of the newly synthesized analogues was determined in the stimulation of phospholipase C through activation of turkey erythrocyte P2Y1 or human P2Y1 and P2Y2 receptors stably expressed in astrocytoma cells. An (N)-methanocarba-2-methylthio-ADP analogue displayed an EC50 at the hP2Y1 receptor of 0.40 nM and was 55-fold more potent than the corresponding triphosphate and 16-fold more potent than the riboside 5′-diphosphate. 2-Cl–(N)-methanocarba-ATP and its N6-Me analogue were also highly selective, full agonists at P2Y1 receptors. The (N)-methanocarba-2-methylthio and 2-chloromonophosphate analogues were full agonists exhibiting micromolar potency at P2Y1 receptors, while the corresponding ribosides were inactive. Although β,γ-methylene-ATP was inactive at P2Y receptors, β,γ-methylene-(N)-methanocarba-ATP was a potent hP2Y1 receptor agonist with an EC50 of 160 nM and was selective versus hP2Y2 and hP2Y4 receptors. The rates of hydrolysis of Northern (N) and Southern (S) methanocarba analogues of AMP by rat 5′-ectonucleotidase were negligible. The rates of hydrolysis of the corresponding triphosphates by recombinant rat NTPDase1 and 2 were studied. Both isomers were hydrolyzed by NTPDase 1 at about half the rate of ATP hydrolysis. The (N) isomer was hardly hydrolyzed by NTPDase 2, while the (S) isomer was hydrolyzed at one-third of the rate of ATP hydrolysis. This suggests that new, more stable and selective nucleotide agonists may be designed on the basis of

  11. Functional enhancement of AT1R potency in the presence of the TPαR is revealed by a comprehensive 7TM receptor co-expression screen.

    Directory of Open Access Journals (Sweden)

    Jonas Tind Hansen

    Full Text Available BACKGROUND: Functional cross-talk between seven transmembrane (7TM receptors can dramatically alter their pharmacological properties, both in vitro and in vivo. This represents an opportunity for the development of novel therapeutics that potentially target more specific biological effects while causing fewer adverse events. Although several studies convincingly have established the existence of 7TM receptor cross-talk, little is known about the frequencey and biological significance of this phenomenon. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the extent of synergism in 7TM receptor signaling, we took a comprehensive approach and co-expressed 123 different 7TM receptors together with the angiotensin II type 1 receptor (AT1R and analyzed how each receptor affected the angiotensin II (AngII response. To monitor the effect we used integrative receptor activation/signaling assay called Receptor Selection and Amplification Technology (R-SAT. In this screen the thromboxane A2α receptor (TPαR was the only receptor which significantly enhanced the AngII-mediated response. The TPαR-mediated enhancement of AngII signaling was significantly reduced when a signaling deficient receptor mutant (TPαR R130V was co-expressed instead of the wild-type TPαR, and was completely blocked both by TPαR antagonists and COX inhibitors inhibiting formation of thromboxane A2 (TXA2. CONCLUSIONS/SIGNIFICANCE: We found a functional enhancement of AT1R only when co-expressed with TPαR, but not with 122 other 7TM receptors. In addition, the TPαR must be functionally active, indicating the AT1R enhancement is mediated by a paracrine mechanism. Since we only found one receptor enhancing AT1R potency, our results suggest that functional augmentation through 7TM receptor cross-talk is a rare event that may require specific conditions to occur.

  12. Evaluation of the role of NMDA receptor function in antidepressant-like activity. A new study with citalopram and fluoxetine in the forced swim test in mice.

    Science.gov (United States)

    Wolak, Małgorzata; Siwek, Agata; Szewczyk, Bernadeta; Poleszak, Ewa; Bystrowska, Beata; Moniczewski, Andrzej; Rutkowska, Anita; Młyniec, Katarzyna; Nowak, Gabriel

    2015-06-01

    The NMDA/glutamate receptors are involved in the mechanism of antidepressant activity. The present study was designed to investigate the effect of NMDA receptor ligands (agonists and antagonists of glutamate sites) on the antidepressant-like activity of selective serotonin reuptake inhibitors (SSRIs), citalopram and fluoxetine, in the forced swim test in mice. The antidepressant activity (reduction in immobility time) of citalopram but not of fluoxetine was antagonized by N-methyl-D-aspartate acid and enhanced by CGP37849 (antagonist of the NMDA receptor). The present literature data indicate that the antidepressant-like activity of conventional antidepressants is generally affected by the NMDA receptor, although by modulation from different sites of the complex. Thus, it supports the issue of the ability of NMDA receptor antagonists to enhance the antidepressant action in human depression. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. The Antidepressant 5-HT2A Receptor Antagonists Pizotifen and Cyproheptadine Inhibit Serotonin-Enhanced Platelet Function

    Science.gov (United States)

    Lin, Olivia A.; Karim, Zubair A.; Vemana, Hari Priya; Espinosa, Enma V. P.; Khasawneh, Fadi T.

    2014-01-01

    There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR) expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS) exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and EMD 281014, their

  14. The cognition-enhancing activity of E1R, a novel positive allosteric modulator of sigma-1 receptors

    Science.gov (United States)

    Zvejniece, L; Vavers, E; Svalbe, B; Vilskersts, R; Domracheva, I; Vorona, M; Veinberg, G; Misane, I; Stonans, I; Kalvinsh, I; Dambrova, M

    2014-01-01

    Background and Purpose Here, we describe the in vitro and in vivo effects of (4R,5S)-2-(5-methyl-2-oxo-4-phenyl-pyrrolidin-1-yl)-acetamide (E1R), a novel positive allosteric modulator of sigma-1 receptors. Experimental Approach E1R was tested for sigma receptor binding activity in a [3H](+)-pentazocine assay, in bradykinin (BK)-induced intracellular Ca2+ concentration ([Ca2+]i) assays and in an electrically stimulated rat vas deferens model. E1R's effects on cognitive function were tested using passive avoidance (PA) and Y-maze tests in mice. A selective sigma-1 receptor antagonist (NE-100), was used to study the involvement of the sigma-1 receptor in the effects of E1R. The open-field test was used to detect the effects of E1R on locomotion. Key Results Pretreatment with E1R enhanced the selective sigma-1 receptor agonist PRE-084's stimulating effect during a model study employing electrically stimulated rat vasa deferentia and an assay measuring the BK-induced [Ca2+]i increase. Pretreatment with E1R facilitated PA retention in a dose-related manner. Furthermore, E1R alleviated the scopolamine-induced cognitive impairment during the PA and Y-maze tests in mice. The in vivo and in vitro effects of E1R were blocked by treatment with the selective sigma-1 receptor antagonist NE-100. E1R did not affect locomotor activity. Conclusion and Implications E1R is a novel 4,5-disubstituted derivative of piracetam that enhances cognition and demonstrates efficacy against scopolamine-induced cholinergic dysfunction in mice. These effects are attributed to its positive modulatory action on the sigma-1 receptor and this activity may be relevant when developing new drugs for treating cognitive symptoms related to neurodegenerative diseases. PMID:24490863

  15. The elongin complex antagonizes the chromatin factor Corto for vein versus intervein cell identity in Drosophila wings.

    Science.gov (United States)

    Rougeot, Julien; Renard, Myrtille; Randsholt, Neel B; Peronnet, Frédérique; Mouchel-Vielh, Emmanuèle

    2013-01-01

    Drosophila wings mainly consist of two cell types, vein and intervein cells. Acquisition of either fate depends on specific expression of genes that are controlled by several signaling pathways. The nuclear mechanisms that translate signaling into regulation of gene expression are not completely understood, but they involve chromatin factors from the Trithorax (TrxG) and Enhancers of Trithorax and Polycomb (ETP) families. One of these is the ETP Corto that participates in intervein fate through interaction with the Drosophila EGF Receptor--MAP kinase ERK pathway. Precise mechanisms and molecular targets of Corto in this process are not known. We show here that Corto interacts with the Elongin transcription elongation complex. This complex, that consists of three subunits (Elongin A, B, C), increases RNA polymerase II elongation rate in vitro by suppressing transient pausing. Analysis of phenotypes induced by EloA, B, or C deregulation as well as genetic interactions suggest that the Elongin complex might participate in vein vs intervein specification, and antagonizes corto as well as several TrxG genes in this process. Chromatin immunoprecipitation experiments indicate that Elongin C and Corto bind the vein-promoting gene rhomboid in wing imaginal discs. We propose that Corto and the Elongin complex participate together in vein vs intervein fate, possibly through tissue-specific transcriptional regulation of rhomboid.

  16. The elongin complex antagonizes the chromatin factor Corto for vein versus intervein cell identity in Drosophila wings.

    Directory of Open Access Journals (Sweden)

    Julien Rougeot

    Full Text Available Drosophila wings mainly consist of two cell types, vein and intervein cells. Acquisition of either fate depends on specific expression of genes that are controlled by several signaling pathways. The nuclear mechanisms that translate signaling into regulation of gene expression are not completely understood, but they involve chromatin factors from the Trithorax (TrxG and Enhancers of Trithorax and Polycomb (ETP families. One of these is the ETP Corto that participates in intervein fate through interaction with the Drosophila EGF Receptor--MAP kinase ERK pathway. Precise mechanisms and molecular targets of Corto in this process are not known. We show here that Corto interacts with the Elongin transcription elongation complex. This complex, that consists of three subunits (Elongin A, B, C, increases RNA polymerase II elongation rate in vitro by suppressing transient pausing. Analysis of phenotypes induced by EloA, B, or C deregulation as well as genetic interactions suggest that the Elongin complex might participate in vein vs intervein specification, and antagonizes corto as well as several TrxG genes in this process. Chromatin immunoprecipitation experiments indicate that Elongin C and Corto bind the vein-promoting gene rhomboid in wing imaginal discs. We propose that Corto and the Elongin complex participate together in vein vs intervein fate, possibly through tissue-specific transcriptional regulation of rhomboid.

  17. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    International Nuclear Information System (INIS)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline; Sun, Jianmin; Jögi, Annika; Neumann, Drorit; Rönnstrand, Lars; Påhlman, Sven

    2014-01-01

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα + ) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells

  18. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Sun, Jianmin [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Jögi, Annika [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Neumann, Drorit [Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Rönnstrand, Lars [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Påhlman, Sven, E-mail: sven.pahlman@med.lu.se [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel)

    2014-02-28

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα{sup +}) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.

  19. Class A scavenger receptor promotes osteoclast differentiation via the enhanced expression of receptor activator of NF-{kappa}B (RANK)

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi; Fujiwara, Yukio; Komohara, Yoshihiro; Lei, XiaoFeng; Ohnishi, Koji [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Suzuki, Hiroshi [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido (Japan); Kodama, Tatsuhiko [Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo (Japan); Mizuta, Hiroshi [Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan)

    2010-01-22

    Osteoclasts originate from bone marrow monocyte/macrophage lineage cells, and their differentiation depends on macrophage colony-stimulating factor (M-CSF) and receptor activator nuclear factor kappa B (RANK) ligand. Class A scavenger receptor (SR-A) is one of the principal functional molecules of macrophages, and its level of expression declines during osteoclast differentiation. To investigate the role of SR-A in osteoclastogenesis, we examined pathological changes in femoral bone and the expression levels of osteoclastogenesis-related molecules in SR-A{sup -/-} mice. The femoral osseous density of SR-A{sup -/-} mice was higher than that of SR-A{sup +/+} mice, and the number of multinucleated osteoclasts was significantly decreased. An in vitro differentiation assay revealed that the differentiation of multinucleated osteoclasts from bone marrow-derived progenitor cells is impaired in SR-A{sup -/-} mice. Elimination of SR-A did not alter the expression level of the M-CSF receptor, c-fms; however, the expression levels of RANK and RANK-related osteoclast-differentiation molecules such as nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) and microphthalmia-associated transcription factor (MITF) significantly decreased. Furthermore, acetylated low-density lipoprotein (AcLDL), an SR-A ligand, significantly increased the expression level of RANK and MITF during osteoclast differentiation. These data indicate that SR-A promotes osteoclastogenesis via augmentation of the expression level of RANK and its related molecules.

  20. Antagonism of Sorafenib and Regorafenib actions by platelet factors in hepatocellular carcinoma cell lines

    International Nuclear Information System (INIS)

    D’Alessandro, Rosalba; Refolo, Maria G; Lippolis, Catia; Giannuzzi, Grazia; Carella, Nicola; Messa, Caterina; Cavallini, Aldo; Carr, Brian I

    2014-01-01

    Platelets are frequently altered in hepatocellular carcinoma (HCC) patients. Platelet lysates (hPL) can enhance HCC cell growth and decrease apoptosis. The aims were to evaluate whether hPL can modulate the actions of Sorafenib or Regorafenib, two clinical HCC multikinase antagonists. Several human HCC cell lines were grown in the presence and absence of Sorafenib or Regorafenib, with or without hPL. Growth was measured by MTT assay, apoptosis was assessed by Annexin V and by western blot, and autophagy and MAPK growth signaling were also measured by western blot, and migration and invasion were measured by standard in vitro assays. Both Sorafenib and Regorafenib-mediated inhibition of cell growth, migration and invasion were all antagonized by hPL. Drug-mediated apoptosis and decrease in phospho-ERK levels were both blocked by hPL, which also increased anti-apoptotic phospho-STAT, Bax and Bcl-xL levels. Preliminary data, obtained with epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I), included in hPL, revealed that these factors were able to antagonized Sorafenib in a proliferation assay, in particular when used in combination. Platelet factors can antagonize Sorafenib or Regorafenib-mediated growth inhibition and apoptosis in HCC cells. The modulation of platelet activity or numbers has the potential to enhance multikinase drug actions

  1. Neurotensin enhances glutamatergic EPSCs in VTA neurons by acting on different neurotensin receptors.

    Science.gov (United States)

    Bose, Poulomee; Rompré, Pierre-Paul; Warren, Richard A

    2015-11-01

    Neurotensin (NT) is an endogenous neuropeptide that modulates dopamine and glutamate neurotransmission in several limbic regions innervated by neurons located in the ventral tegmental area (VTA). While several studies showed that NT exerted a direct modulation on VTA dopamine neurons less is known about its role in the modulation of glutamatergic neurotransmission in this region. The present study was aimed at characterising the effects of NT on glutamate-mediated responses in different populations of VTA neurons. Using whole cell patch clamp recording technique in horizontal rat brain slices, we measured the amplitude of glutamatergic excitatory post-synaptic currents (EPSCs) evoked by electrical stimulation of VTA afferents before and after application of different concentrations of NT1-13 or its C-terminal fragment, NT8-13. Neurons were classified as either Ih(+) or Ih(-) based on the presence or absence of a hyperpolarisation activated cationic current (Ih). We found that NT1-13 and NT8-13 produced comparable concentration dependent increase in the amplitude of EPSCs in both Ih(+) and Ih(-) neurons. In Ih(+) neurons, the enhancement effect of NT8-13 was blocked by both antagonists, while in Ih(-) neurons it was blocked by the NTS1/NTS2 antagonist, SR142948A, but not the preferred NTS1 antagonist, SR48692. In as much as Ih(-) neurons are non-dopaminergic neurons and Ih(+) neurons represent both dopamine and non-dopamine neurons, we can conclude that NT enhances glutamatergic mediated responses in dopamine, and in a subset of non-dopamine, neurons by acting respectively on NTS1 and an NT receptor other than NTS1. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Light-enhanced inhibition of ouabain binding to digitalis receptor in rat brain and guinea pig heart by the food dye erythrosine

    International Nuclear Information System (INIS)

    Hnatowich, M.; LaBella, F.S.

    1982-01-01

    Erythrosine (ERY) (FD and C red no. 3) inhibited specific binding of [ 3 H]ouabain to rat brain homogenates with an IC50 of 23 mM in the dark and 1 mM in ordinary fluorescent light. Competition studies demonstrated the presence of two components, only one of which was affected by light. Lineweaver-Burk analysis indicated that ERY preferentially antagonizes [ 3 H]ouabain binding at a high-affinity site in the light, whereas in the dark the dye inhibits binding in a manner qualitatively similar to inhibition by ouabain. Light enhancement of ERY potency occurred only when dye and tissue were present together in the incubation medium, pointing to participation of transient molecular species. However, neither superoxide dismutase nor catalase altered the effects of ERY in the light or dark, suggesting the absence of oxygen free radicals. In contrast to brain, membranes from guinea pig heart showed only one binding site for [ 3 H]ouabain, and antagonism by ERY at this site was markedly enhanced by light. Structural differences between classes of ouabain binding regions probably accounts for the discrimination exhibited by ERY in the presence of light and oxygen. Our findings also caution that metabolic transformation of this common food dye, light decomposition, or photoreaction with foodstuff may yield more toxic derivatives

  3. Further neuroendocrine evidence of enhanced vasopressin V3 receptor responses in melancholic depression.

    LENUS (Irish Health Repository)

    Dinan, T G

    2012-02-03

    BACKGROUND: In situations of chronic stress vasopressin plays an important role in regulating the hypothalamic-pituitary adrenal axis. The aim of the current study was to investigate the role of anterior pituitary vasopressin V3 receptors in maintaining the hypercortisolism seen in melancholic depression. METHOD: Fourteen patients with major depression and 14 age- and sex-matched healthy comparison subjects were recruited. Desmopressin (ddAVP) 10 microg was given intravenously and ACTH and cortisol release was monitored for 120 min. RESULTS: The mean +\\/- S.E.M. ACTH response in the depressives was 28.4 +\\/- 4.3 ng\\/l and in the healthy subjects was 18.8 +\\/- 4.9 ng\\/l (P = 0.04). The mean +\\/- S.E.M. cortisol response in the depressives was 261.8 +\\/- 46.5 nmol\\/l and in the healthy subjects was 107.3 +\\/- 26.1 nmol\\/l (P < 0.01). CONCLUSIONS: Patients with major depression have augmented ACTH and cortisol responses to desmopressin indicating enhanced V3 responsivity.

  4. Hyperglycemia-induced Renal P2X7 Receptor Activation Enhances Diabetes-related Injury

    Directory of Open Access Journals (Sweden)

    Robert I. Menzies

    2017-05-01

    Full Text Available Diabetes is a leading cause of renal disease. Glomerular mesangial expansion and fibrosis are hallmarks of diabetic nephropathy and this is thought to be promoted by infiltration of circulating macrophages. Monocyte chemoattractant protein-1 (MCP-1 has been shown to attract macrophages in kidney diseases. P2X7 receptors (P2X7R are highly expressed on macrophages and are essential components of pro-inflammatory signaling in multiple tissues. Here we show that in diabetic patients, renal P2X7R expression is associated with severe mesangial expansion, impaired glomerular filtration (≤40 ml/min/1.73 sq. m., and increased interstitial fibrosis. P2X7R activation enhanced the release of MCP-1 in human mesangial cells cultured under high glucose conditions. In mice, P2X7R-deficiency prevented glomerular macrophage attraction and collagen IV deposition; however, the more severe interstitial inflammation and fibrosis often seen in human diabetic kidney diseases was not modelled. Finally, we demonstrate that a P2X7R inhibitor (AZ11657312 can reduce renal macrophage accrual following the establishment of hyperglycemia in a model of diabetic nephropathy. Collectively these data suggest that P2X7R activation may contribute to the high prevalence of kidney disease found in diabetics.

  5. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression.

    Science.gov (United States)

    Hinds, Terry D; Peck, Bailey; Shek, Evan; Stroup, Steven; Hinson, Jennifer; Arthur, Susan; Marino, Joseph S

    2016-02-11

    Unlike the glucocorticoid receptor α (GRα), GR β (GRβ) has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex) responsiveness. We measured GR isoform expression in C₂C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C₂C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a) mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx) and muscle ring finger 1 (MuRF1) response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  6. Overexpression of Glucocorticoid Receptor β Enhances Myogenesis and Reduces Catabolic Gene Expression

    Directory of Open Access Journals (Sweden)

    Terry D. Hinds

    2016-02-01

    Full Text Available Unlike the glucocorticoid receptor α (GRα, GR β (GRβ has a truncated ligand-binding domain that prevents glucocorticoid binding, implicating GRα as the mediator of glucocorticoid-induced skeletal muscle loss. Because GRβ causes glucocorticoid resistance, targeting GRβ may be beneficial in impairing muscle loss as a result of GRα activity. The purpose of this study was to determine how the overexpression of GRβ affects myotube formation and dexamethasone (Dex responsiveness. We measured GR isoform expression in C2C12 muscle cells in response to Dex and insulin, and through four days of myotube formation. Next, lentiviral-mediated overexpression of GRβ in C2C12 was performed, and these cells were characterized for cell fusion and myotube formation, as well as sensitivity to Dex via the expression of ubiquitin ligases. GRβ overexpression increased mRNA levels of muscle regulatory factors and enhanced proliferation in myoblasts. GRβ overexpressing myotubes had an increased fusion index. Myotubes overexpressing GRβ had lower forkhead box O3 (Foxo3a mRNA levels and a blunted muscle atrophy F-box/Atrogen-1 (MAFbx and muscle ring finger 1 (MuRF1 response to Dex. We showed that GRβ may serve as a pharmacological target for skeletal muscle growth and protection from glucocorticoid-induced catabolic signaling. Increasing GRβ levels in skeletal muscle may cause a state of glucocorticoid resistance, stabilizing muscle mass during exposure to high doses of glucocorticoids.

  7. Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells.

    Science.gov (United States)

    Levine, B L

    2015-03-01

    Performance enhancement of the immune system can now be generated through ex vivo gene modification of T cells in order to redirect native specificity to target tumor antigens. This approach combines the specificity of antibody therapy, the expanded response of cellular therapy and the memory activity of vaccine therapy. Recent clinical trials of chimeric antigen receptor (CAR) T cells directed toward CD19 as a stand-alone therapy have shown sustained complete responses in patients with acute lymphoblastic leukemia and chronic lymphocytic leukemia. As these drug products are individually derived from a patient's own cells, a different manufacturing approach is required for this kind of personalized therapy compared with conventional drugs. Key steps in the CAR T-cell manufacturing process include the selection and activation of isolated T cells, transduction of T cells to express CARs, ex vivo expansion of modified T cells and cryopreservation in infusible media. In this review, the steps involved in isolating, genetically modifying and scaling-out the CAR T cells for use in a clinical setting are described in the context of in-process and release testing and regulatory standards.

  8. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  9. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus.

    Science.gov (United States)

    Naylor, David E; Liu, Hantao; Niquet, Jerome; Wasterlain, Claude G

    2013-06-01

    After 1h of lithium-pilocarpine status epilepticus (SE), immunocytochemical labeling of NMDA receptor NR1 subunits reveals relocation of subunits from the interior to the cell surface of dentate gyrus granule cells and CA3 pyramidal cells. Simultaneously, an increase in NMDA-miniature excitatory postsynaptic currents (mEPSC) as well as an increase in NMDA receptor-mediated tonic currents is observed in hippocampal slices after SE. Mean-variance analysis of NMDA-mEPSCs estimates that the number of functional postsynaptic NMDA receptors per synapse increases 38% during SE, and antagonism by ifenprodil suggests that an increase in the surface representation of NR2B-containing NMDA receptors is responsible for the augmentation of both the phasic and tonic excitatory currents with SE. These results provide a potential mechanism for an enhancement of glutamatergic excitation that maintains SE and may contribute to excitotoxic injury during SE. Therapies that directly antagonize NMDA receptors may be a useful therapeutic strategy during refractory SE. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Short-term exposure to oleandrin enhances responses to IL-8 by increasing cell surface IL-8 receptors

    Science.gov (United States)

    Raviprakash, Nune; Manna, Sunil Kumar

    2014-01-01

    BACKGROUND AND PURPOSE One of the first steps in host defence is the migration of leukocytes. IL-8 and its receptors are a chemokine system essential to such migration. Up-regulation of these receptors would be a viable strategy to treat dysfunctional host defence. Here, we studied the effects of the plant glycoside oleandrin on responses to IL-8 in a human monocytic cell line. EXPERIMENTAL APPROACH U937 cells were incubated with oleandrin (1-200 ng mL−1) for either 1 h (pulse) or for 24 h (non-pulse). Apoptosis; activation of NF-κB, AP-1 and NFAT; calcineurin activity and IL-8 receptors (CXCR1 and CXCR2) were measured using Western blotting, RT-PCR and reporter gene assays. KEY RESULTS Pulse exposure to oleandrin did not induce apoptosis or cytoxicity as observed after non-pulse exposure. Pulse exposure enhanced activation of NF-κB induced by IL-8 but not that induced by TNF-α, IL-1, EGF or LPS. Exposure to other apoptosis-inducing compounds (azadirachtin, resveratrol, thiadiazolidine, or benzofuran) did not enhance activation of NF-κB. Pulse exposure to oleandrin increased expression of IL-8 receptors and chemotaxis, release of enzymes and activation of NF-κB, NFAT and AP-1 along with increased IL-8-mediated calcineurin activation, and wound healing. Pulse exposure increased numbers of cell surface IL-8 receptors. CONCLUSIONS AND IMPLICATIONS Short-term (1 h; pulse) exposure to a toxic glycoside oleandrin, enhanced biological responses to IL-8 in monocytic cells, without cytoxicity. Pulse exposure to oleandrin could provide a viable therapy for those conditions where leukocyte migration is defective. PMID:24172227

  11. Enhanced Y1-receptor-mediated vasoconstrictive action of neuropeptide Y (NPY) in superior mesenteric arteries in portal hypertension.

    Science.gov (United States)

    Wiest, Reiner; Jurzik, Lars; Moleda, Lukas; Froh, Matthias; Schnabl, Bernd; von Hörsten, Stephan; Schölmerich, Juergen; Straub, Rainer H

    2006-03-01

    Vascular hyporeactivity to catecholamines contributes to arterial vasodilation and hemodynamic dysregulation in portal hypertension. Neuropeptide Y (NPY) is a sympathetic neurotransmitter facilitating adrenergic vasoconstriction via Y1-receptors on the vascular smooth muscle. Therefore, we investigated its role for vascular reactivity in the superior mesenteric artery (SMA) of portal vein ligated (PVL) and sham operated rats. In vitro perfused SMA vascular beds of rats were tested for the cumulative dose-response to NPY dependent on the presence and level of alpha1-adrenergic vascular tone (methoxamine MT: 0.3-10 microM). Moreover, the effect of NPY (50 nM) on vascular responsiveness to alpha1-adrenergic stimulation (MT: 0.3-300 microM) was evaluated. Y1-receptor function was tested by Y1-selective inhibition using BIBP-3226 (1 microM). NPY dose-dependently and endothelium-independently enhanced MT-pre-constriction in SMA. This potentiation was increasingly effective with increasing adrenergic pre-stimulation and being more pronounced in PVL rats as compared to sham rats at high MT concentrations. NPY enhanced vascular contractility only in PVL rats correcting the adrenergic vascular hyporeactivity. Y1-receptor inhibition completely abolished NPY-evoked vasoconstrictive effects. NPY endothelium-independently potentiates adrenergic vasoconstriction via Y1-receptors being more pronounced in portal hypertension improving mesenteric vascular contractility and thereby correcting the splanchnic vascular hyporeactivity. This makes NPY a superior vasoconstrictor counterbalancing arterial vasodilation in portal hypertension.

  12. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Krustrup, Peter; Iaia, F Marcello

    2009-01-01

    This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one-legged k......This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one...... conductance during exercise, events that are not associated with either acetylcholine or an increased oxygen demand. The results do not support an essential role for acetylcholine, released form the neuromuscular junction, in exercise hyperaemia or for the enhanced blood flow during neuromuscular blockade....... The enhanced exercise hyperemia during partial neuromuscular blockade may be related to a greater recruitment of fast-twitch muscle fibres. Key words: blood flow, neuromuscular blockade, exercise, skeletal muscle....

  13. Regulation of the glucocorticoid receptor via a BET-dependent enhancer drives antiandrogen resistance in prostate cancer.

    Science.gov (United States)

    Shah, Neel; Wang, Ping; Wongvipat, John; Karthaus, Wouter R; Abida, Wassim; Armenia, Joshua; Rockowitz, Shira; Drier, Yotam; Bernstein, Bradley E; Long, Henry W; Freedman, Matthew L; Arora, Vivek K; Zheng, Deyou; Sawyers, Charles L

    2017-09-11

    In prostate cancer, resistance to the antiandrogen enzalutamide (Enz) can occur through bypass of androgen receptor (AR) blockade by the glucocorticoid receptor (GR). In contrast to fixed genomic alterations, here we show that GR-mediated antiandrogen resistance is adaptive and reversible due to regulation of GR expression by a tissue-specific enhancer. GR expression is silenced in prostate cancer by a combination of AR binding and EZH2-mediated repression at the GR locus, but is restored in advanced prostate cancers upon reversion of both repressive signals. Remarkably, BET bromodomain inhibition resensitizes drug-resistant tumors to Enz by selectively impairing the GR signaling axis via this enhancer. In addition to revealing an underlying molecular mechanism of GR-driven drug resistance, these data suggest that inhibitors of broadly active chromatin-readers could have utility in nuanced clinical contexts of acquired drug resistance with a more favorable therapeutic index.

  14. Enhanced induction of apoptosis by combined treatment of human carcinoma cells with X rays and death receptor agonists

    International Nuclear Information System (INIS)

    Hamasu, Taku; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori

    2005-01-01

    The death receptors Fas and DR5 are known to be expressed not only in immune cells but also in various tumor cells. The aim of the present study was to determine whether X irradiation enhanced induction of apoptosis in Tp53 wild type and Tp53-mutated tumor cell lines treated with agonists against these death receptors. We showed that 5 Gy of X irradiation significantly up-regulated the expression of death receptors Fas and DR5 on the plasma membrane in gastric cancer cell lines MKN45 and MKN28, lung cancer cell line A549, and prostate cancer cell line DU145, and that subsequent treatments with agonistic molecules for these death receptors, Fas antibody CHl1 and TRAIL, increased the formation of active fragment p20 of caspase 3 followed by the induction of apoptosis. This death-receptor-mediated apoptosis was independent of Tp53 status since MKN28 and DU145 were Tp53-mutated. The post-irradiation treatment of the cells with N-acetyl-L-cysteine (NAC) abolished the up-regulation of the expression of Fas and DR5 on the plasma membrane. NAC also attenuated the increase in the formation of p20 and the induction of apoptosis by agonistic molecules. These results suggested that the increase in the induction of apoptosis by combined treatment with X irradiation and CHl1 or TRAIL occurred through a change of the intracellular redox state independent of Tp53 status in human carcinoma cell lines. (author)

  15. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER).

    Science.gov (United States)

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-05-30

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.

  16. Epobis is a Nonerythropoietic and Neuroprotective Agonist of the Erythropoietin Receptor with Anti-Inflammatory and Memory Enhancing Effects

    DEFF Research Database (Denmark)

    Dmytriyeva, Oksana; Pankratova, Stanislava; Korshunova, Irina

    2016-01-01

    , but systemic administration of Epobis in rats delays the clinical signs of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, and the peptide has long-term, but not short-term, effects on working memory, detected as an improved social memory 3 days after administration....... These data reveal Epobis to be a nonerythropoietic and neuroprotective EPO receptor agonist with anti-inflammatory and memory enhancing properties....

  17. Increase in tumour permeability following TGF-? type I receptor-inhibitor treatment observed by dynamic contrast-enhanced MRI

    OpenAIRE

    Minowa, T; Kawano, K; Kuribayashi, H; Shiraishi, K; Sugino, T; Hattori, Y; Yokoyama, M; Maitani, Y

    2009-01-01

    Background: To enhance the success rate of nanocarrier-mediated chemotherapy combined with an anti-angiogenic agent, it is crucial to identify parameters for tumour vasculature that can predict a response to the treatment of the anti-angiogenic agent. Methods: To apply transforming growth factor (TGF)-? type I receptor (T?R-I) inhibitor, A-83-01, to combined therapy, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was carried out in mice bearing colon 26 cells using gadolinium ...

  18. A Somatically Acquired Enhancer of the Androgen Receptor Is a Noncoding Driver in Advanced Prostate Cancer. | Office of Cancer Genomics

    Science.gov (United States)

    Increased androgen receptor (AR) activity drives therapeutic resistance in advanced prostate cancer. The most common resistance mechanism is amplification of this locus presumably targeting the AR gene. Here, we identify and characterize a somatically acquired AR enhancer located 650 kb centromeric to the AR. Systematic perturbation of this enhancer using genome editing decreased proliferation by suppressing AR levels. Insertion of an additional copy of this region sufficed to increase proliferation under low androgen conditions and to decrease sensitivity to enzalutamide.

  19. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia.

    Science.gov (United States)

    Fraietta, Joseph A; Beckwith, Kyle A; Patel, Prachi R; Ruella, Marco; Zheng, Zhaohui; Barrett, David M; Lacey, Simon F; Melenhorst, Jan Joseph; McGettigan, Shannon E; Cook, Danielle R; Zhang, Changfeng; Xu, Jun; Do, Priscilla; Hulitt, Jessica; Kudchodkar, Sagar B; Cogdill, Alexandria P; Gill, Saar; Porter, David L; Woyach, Jennifer A; Long, Meixiao; Johnson, Amy J; Maddocks, Kami; Muthusamy, Natarajan; Levine, Bruce L; June, Carl H; Byrd, John C; Maus, Marcela V

    2016-03-03

    Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy is highly promising but requires robust T-cell expansion and engraftment. A T-cell defect in chronic lymphocytic leukemia (CLL) due to disease and/or therapy impairs ex vivo expansion and response to CAR T cells. To evaluate the effect of ibrutinib treatment on the T-cell compartment in CLL as it relates to CAR T-cell generation, we examined the phenotype and function of T cells in a cohort of CLL patients during their course of treatment with ibrutinib. We found that ≥5 cycles of ibrutinib therapy improved the expansion of CD19-directed CAR T cells (CTL019), in association with decreased expression of the immunosuppressive molecule programmed cell death 1 on T cells and of CD200 on B-CLL cells. In support of these findings, we observed that 3 CLL patients who had been treated with ibrutinib for ≥1 year at the time of T-cell collection had improved ex vivo and in vivo CTL019 expansion, which correlated positively together and with clinical response. Lastly, we show that ibrutinib exposure does not impair CAR T-cell function in vitro but does improve CAR T-cell engraftment, tumor clearance, and survival in human xenograft models of resistant acute lymphocytic leukemia and CLL when administered concurrently. Our collective findings indicate that ibrutinib enhances CAR T-cell function and suggest that clinical trials with combination therapy are warranted. Our studies demonstrate that improved T-cell function may also contribute to the efficacy of ibrutinib in CLL. These trials were registered at www.clinicaltrials.gov as #NCT01747486, #NCT01105247, and #NCT01217749. © 2016 by The American Society of Hematology.

  20. Apixaban Enhances Vasodilatation Mediated by Protease-Activated Receptor 2 in Isolated Rat Arteries

    Directory of Open Access Journals (Sweden)

    Ambra Villari

    2017-07-01

    Full Text Available Apixaban (APX is a direct inhibitor of factor X (FXa approved for prophylaxis and treatment of deep venous thrombosis and atrial fibrillation. Because FXa activates protease-activated receptor 2 (PAR-2 in endothelium and vascular smooth muscle, inhibition of FXa by APX may affect vasomotor function. The effect of APX was assessed in vitro, by wire myography, in rat mesenteric resistance arteries (MRAs and basilar arteries challenged with vasoconstrictors [phenylephrine (PE; 5-hydroxytryptamine (5-HT], vasodilators [acetylcholine (ACh; sodium nitroprusside (SNP] or with the PAR-2 peptide agonist SLIGRL. APX (10 μM reduced the vasoconstriction to PE and 5-HT while did not change the vasodilatation to ACh or SNP. SLIGRL induced concentration-dependent vasodilation in pre-constricted arteries, that was reduced by incubation with the NO inhibitor NG-nitro-L-arginine (L-NNA and abolished by endothelium removal. APX enhanced vasodilation to SLIGRL either in the presence or in the absence of L-NNA, but was ineffective in endothelium-denuded vessels. In preparations from heparin-treated rats (to inhibit FXa APX did not change the vasodilation to SLIGRL. FXa enzymatic activity, detected in mesentery homogenates from controls, was inhibited by APX, whereas APX-sensitive enzymatic activity was undetectable in homogenates from heparin-treated rats. Immunoblot analysis showed that incubation of MRA or aorta with APX increased the abundance of PAR-2, an effect not seen in MRA from heparin-treated rats or in endothelium-denuded aortas. In conclusion, inhibition of FXa by APX increases vasodilatation mediated by PAR-2. APX may act by inhibiting PAR-2 desensitization induced by endogenous FXa. This effect could be useful in the context of endothelial dysfunction associated to cardiovascular diseases.

  1. Enhanced inhibitory control by neuropeptide Y Y5 receptor blockade in rats.

    Science.gov (United States)

    Bari, A; Dec, A; Lee, A W; Lee, J; Song, D; Dale, E; Peterson, J; Zorn, S; Huang, X; Campbell, B; Robbins, T W; West, A R

    2015-03-01

    The neuropeptide Y (NPY) system acts in synergy with the classic neurotransmitters to regulate a large variety of functions including autonomic, affective, and cognitive processes. Research on the effects of NPY in the central nervous system has focused on food intake control and affective processes, but growing evidence of NPY involvement in attention-deficit/hyperactivity disorder (ADHD) and other psychiatric conditions motivated the present study. We tested the effects of the novel and highly selective NPY Y5 receptor antagonist Lu AE00654 on impulsivity and the underlying cortico-striatal circuitry in rats to further explore the possible involvement of the NPY system in pathologies characterized by inattention and impulsive behavior. A low dose of Lu AE00654 (0.03 mg/kg) selectively facilitated response inhibition as measured by the stop-signal task, whereas no effects were found at higher doses (0.3 and 3 mg/kg). Systemic administration of Lu AE00654 also enhanced the inhibitory influence of the dorsal frontal cortex on neurons in the caudate-putamen, this fronto-striatal circuitry being implicated in the executive control of behavior. Finally, by locally injecting a Y5 agonist, we observed reciprocal activation between dorsal frontal cortex and caudate-putamen neurons. Importantly, the effects of the Y5 agonist were attenuated by pretreatment with Lu AE00654, confirming the presence of Y5 binding sites modulating functional interactions within frontal-subcortical circuits. These results suggest that the NPY system modulates inhibitory neurotransmission in brain areas important for impulse control, and may be relevant for the treatment of pathologies such as ADHD and drug abuse.

  2. Forebrain mineralocorticoid receptor overexpression enhances memory, reduces anxiety and attenuates neuronal loss in cerebral ischaemia

    NARCIS (Netherlands)

    Lai, Maggie; Horsburgh, Karen; Bae, Sung-Eun; Carter, Roderick N.; Stenvers, Dirk J.; Fowler, Jill H.; Yau, Joyce L.; Gomez-Sanchez, Celso E.; Holmes, Megan C.; Kenyon, Christopher J.; Seckl, Jonathan R.; Macleod, Malcolm R.

    2007-01-01

    The nuclear mineralocorticoid receptor (MR), a high-affinity receptor for glucocorticoids, is highly expressed in the hippocampus where it underpins cognitive, behavioural and neuroendocrine regulation. Increased neuronal MR expression occurs early in the response to cellular injury in vivo and in

  3. Enhanced prefrontal serotonin 2A receptor signaling in the subchronic phencyclidine mouse model of schizophrenia

    DEFF Research Database (Denmark)

    Santini, Martin A; Ratner, Cecilia Friis; Aznar, Susana

    2013-01-01

    Prefrontal serotonin 2A receptors (5-HT2A Rs) have been linked to the pathogenesis and treatment of schizophrenia. Many antipsychotics fully occupy 5-HT2A R at clinical relevant doses, and activation of 5-HT2A receptors by lysergic acid diethylamide (LSD) and LSD-like drugs induces a schizophrenia...

  4. Paired immunoglobulin-like receptor B knockout does not enhance axonal regeneration or locomotor recovery after spinal cord injury.

    Science.gov (United States)

    Nakamura, Yuka; Fujita, Yuki; Ueno, Masaki; Takai, Toshiyuki; Yamashita, Toshihide

    2011-01-21

    Myelin components that inhibit axonal regeneration are believed to contribute significantly to the lack of axonal regeneration noted in the adult central nervous system. Three proteins found in myelin, Nogo, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein, inhibit neurite outgrowth in vitro. All of these proteins interact with the same receptors, namely, the Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PIR-B). As per previous reports, corticospinal tract (CST) regeneration is not enhanced in NgR-knock-out mice after spinal cord injury. Therefore, we assessed CST regeneration in PIR-B-knock-out mice. We found that hindlimb motor function, as assessed using the Basso mouse scale, footprint test, inclined plane test, and beam walking test, did not differ between the PIR-B-knock-out and wild-type mice after dorsal hemisection of the spinal cord. Further, tracing of the CST fibers after injury did not reveal enhanced axonal regeneration or sprouting in the CST of the PIR-B-knock-out mice. Systemic administration of NEP1-40, a NgR antagonist, to PIR-B knock-out mice did not enhance the regenerative response. These results indicate that PIR-B knock-out is not sufficient to induce extensive axonal regeneration after spinal cord injury.

  5. alpha-Adrenoceptor and opioid receptor modulation of clonidine-induced antinociception.

    Science.gov (United States)

    Sierralta, F; Naquira, D; Pinardi, G; Miranda, H F

    1996-10-01

    1. The antinociceptive action of clonidine (Clon) and the interactions with alpha 1, alpha 2 adrenoceptor and opioid receptor antagonists was evaluated in mice by use of chemical algesiometric test (acetic acid writhing test). 2. Clon produced a dose-dependent antinociceptive action and the ED50 for intracerebroventricular (i.c.v.) was lower than for intraperitoneal (i.p.) administration (1 ng kg-1 vs 300 ng kg-1). The parallelism of the dose-response curves indicates activation of a common receptor subtype. 3. Systemic administration of prazosin and terazosin displayed antinociceptive activity. Pretreatment with prazosin produced a dual action: i.c.v. Clon effect did not change, and i.p. Clon effect was enhanced. Yohimbine i.c.v. or i.p. did not induce antinonciception, but antagonized Clon-induced activity. These results suggest that alpha 1- and alpha 2-adrenoceptors, either located at the pre- and/or post-synaptic level, are involved in the control of spinal antinociception. 4. Naloxone (NX) and naltrexone (NTX) induced antinociceptive effects at low doses (microgram kg-1 range) and a lower antinociceptive effect at higher doses (mg kg-1 range). Low doses of NX or NTX antagonized Clon antinociception, possibly in relation to a preferential mu opioid receptor antagonism. In contrast, high doses of NX or NTX increased the antinociceptive activity of Clon, which could be due to an enhanced inhibition of the release of substance P. 5. The results obtained in the present work suggest the involvement of alpha 1-, alpha 2-adrenoceptor and opioid receptors in the modulation of the antinociceptive activity of clonidine, which seems to be exerted either at spinal and/or supraspinal level.

  6. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene.

    Directory of Open Access Journals (Sweden)

    Yun Ge

    Full Text Available Accumulating evidence shows that hydrogen sulfide (H2S acts as a multifunctional signaling molecule in plants, whereas the interaction between H2S and ethylene is still unclear. In the present study we investigated the role of H2S in ethylene-promoted banana ripening and senescence by the application of ethylene released from 1.0 g·L-1 ethephon solution or H2S with 1 mM sodium hydrosulfide (NaHS as the donor or in combination. Fumigation with ethylene was found to accelerate banana ripening and H2S treatment effectively alleviated ethylene-induced banana peel yellowing and fruit softening in parallel with decreased activity of polygalacturonase (PG. Ethylene+H2S treatment also delayed the decreases in chlorophyll and total phenolics, and increased the accumulation of flavonoid, whereas decreased the contents of carotenoid, soluble protein in banana peel and reducing sugar in pulp compared with ethylene treatment alone. Besides, ethylene+H2S treatment suppressed the accumulation of superoxide radicals (·O2-, hydrogen peroxide (H2O2 and malondialdehyde (MDA which accumulated highly in ethylene-treated banana peels. Furthermore H2S enhanced total antioxidant capacity in ethylene-treated banana peels with the 2,2'-azobis(3-ethylbenz-thiazoline-6-sulfonic acid (ABTS assay. The result of quantitative real-time PCR showed that the combined treatment of ethylene with H2S down-regulated the expression of ethylene synthesis genes MaACS1, MaACS2 and MaACO1 and pectate lyase MaPL compared with ethylene treatment, while the expression of ethylene receptor genes MaETR, MaERS1 and MaERS2 was enhanced in combination treatment compared with ethylene alone. In all, it can be concluded that H2S alleviates banana fruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene signaling pathway.

  7. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene.

    Science.gov (United States)

    Ge, Yun; Hu, Kang-Di; Wang, Sha-Sha; Hu, Lan-Ying; Chen, Xiao-Yan; Li, Yan-Hong; Yang, Ying; Yang, Feng; Zhang, Hua

    2017-01-01

    Accumulating evidence shows that hydrogen sulfide (H2S) acts as a multifunctional signaling molecule in plants, whereas the interaction between H2S and ethylene is still unclear. In the present study we investigated the role of H2S in ethylene-promoted banana ripening and senescence by the application of ethylene released from 1.0 g·L-1 ethephon solution or H2S with 1 mM sodium hydrosulfide (NaHS) as the donor or in combination. Fumigation with ethylene was found to accelerate banana ripening and H2S treatment effectively alleviated ethylene-induced banana peel yellowing and fruit softening in parallel with decreased activity of polygalacturonase (PG). Ethylene+H2S treatment also delayed the decreases in chlorophyll and total phenolics, and increased the accumulation of flavonoid, whereas decreased the contents of carotenoid, soluble protein in banana peel and reducing sugar in pulp compared with ethylene treatment alone. Besides, ethylene+H2S treatment suppressed the accumulation of superoxide radicals (·O2-), hydrogen peroxide (H2O2) and malondialdehyde (MDA) which accumulated highly in ethylene-treated banana peels. Furthermore H2S enhanced total antioxidant capacity in ethylene-treated banana peels with the 2,2'-azobis(3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) assay. The result of quantitative real-time PCR showed that the combined treatment of ethylene with H2S down-regulated the expression of ethylene synthesis genes MaACS1, MaACS2 and MaACO1 and pectate lyase MaPL compared with ethylene treatment, while the expression of ethylene receptor genes MaETR, MaERS1 and MaERS2 was enhanced in combination treatment compared with ethylene alone. In all, it can be concluded that H2S alleviates banana fruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene signaling pathway.

  8. Effects of the histamine H₃ receptor antagonist ABT-239 on cognition and nicotine-induced memory enhancement in mice.

    Science.gov (United States)

    Kruk, Marta; Miszkiel, Joanna; McCreary, Andrew C; Przegaliński, Edmund; Filip, Małgorzata; Biała, Grażyna

    2012-01-01

    The strong correlation between central histaminergic and cholinergic pathways on cognitive processes has been reported extensively. However, the role of histamine H(3) receptor mechanisms interacting with nicotinic mechanisms has not previously been extensively investigated. The current study was conducted to determine the interactions of nicotinic and histamine H(3) receptor systems with regard to learning and memory function using a modified elevated plus-maze test in mice. In this test, the latency for mice to move from the open arm to the enclosed arm (i.e., transfer latency) was used as an index of memory. We tested whether ABT-239 (4-(2-{2-[(2R)-2-methylpyrrolidinyl]ethyl}-benzofuran-5-yl), an H(3) receptor antagonist/inverse agonist, had influence on two different stages of memory, i.e., memory acquisition and consolidation (administered prior to or immediately after the first trial, respectively) and whether ABT-239 influenced nicotine-induced memory enhancement. Our results revealed that the acute administration of nicotine (0.035 and 0.175 mg/kg), but not of ABT-239 (0.1-3 mg/kg) reduced transfer latency in the acquisition and consolidation phases. In combination studies, concomitant administration of either ABT-239 (1 and 3 mg/kg) and nicotine (0.035 mg/kg), or ABT-239 (0.1 mg/kg) and nicotine (0.0175 mg/kg) further increased nicotine-induced improvement in both memory acquisition and consolidation. The present data confirm an important role for H(3) receptors in regulating nicotine-induced mnemonic effects since inhibition of H(3) receptors augmented nicotine-induced memory enhancement in mice.

  9. Δ9-Tetrahydrocannabinol enhances MCF-7 cell proliferation via cannabinoid receptor-independent signaling

    International Nuclear Information System (INIS)

    Takeda, Shuso; Yamaori, Satoshi; Motoya, Erina; Matsunaga, Tamihide; Kimura, Toshiyuki; Yamamoto, Ikuo; Watanabe, Kazuhito

    2008-01-01

    We recently reported that Δ 9 -tetrahydrocannabinol (Δ 9 -THC) has the ability to stimulate the proliferation of human breast carcinoma MCF-7 cells. However, the mechanism of action remains to be clarified. The present study focused on the relationship between receptor expression and the effects of Δ 9 -THC on cell proliferation. RT-PCR analysis demonstrated that there was no detectable expression of CB receptors in MCF-7 cells. In accordance with this, no effects of cannabinoid 1/2 (CB1/2) receptor antagonists and pertussis toxin on cell proliferation were observed. Although MCF-7 cell proliferation is suggested to be suppressed by Δ 9 -THC in the presence of CB receptors, it was revealed that Δ 9 -THC could exert upregulation of living cells in the absence of the receptors. Interestingly, Δ 9 -THC upregulated human epithelial growth factor receptor type 2 (HER2) expression, which is known to be a predictive factor of human breast cancer and is able to stimulate cancer cells as well as MCF-7 cells. Actinomycin D-treatment interfered with the upregulation of HER2 and cell proliferation by cannabinoid. Taken together, these studies suggest that, in the absence of CB receptors, Δ 9 -THC can stimulate the proliferation of MCF-7 cells by modulating, at least in part, HER2 transcription

  10. Enhanced antitumor efficacy of folate-linked liposomal doxorubicin with TGF-β type I receptor inhibitor

    International Nuclear Information System (INIS)

    Taniguchi, Yukimi; Kawano, Kumi; Minowa, Takuya; Shimojo, Yuki; Maitani, Yoshie; Sugino, Takashi

    2010-01-01

    Tumor cell targeting of drug carriers is a promising strategy and uses the attachment of various ligands to enhance the therapeutic potential of chemotherapy agents. Folic acid is a high-affinity ligand for folate receptor, which is a functional tumor-specific receptor. The transforming growth factor (TGF)-β type I receptor (TβR-I) inhibitor A-83-01 was expected to enhance the accumulation of nanocarriers in tumors by changing the microvascular environment. To enhance the therapeutic effect of folate-linked liposomal doxorubicin (F-SL), we co-administrated F-SL with A-83-01. Intraperitoneally injected A-83-01-induced alterations in the cancer-associated neovasculature were examined by magnetic resonance imaging (MRI) and histological analysis. The targeting efficacy of single intravenous injections of F-SL combined with A-83-01 was evaluated by measurement of the biodistribution and the antitumor effect in mice bearing murine lung carcinoma M109. A-83-01 temporarily changed the tumor vasculature around 3 h post injection. A-83-01 induced 1.7-fold higher drug accumulation of F-SL in the tumor than liposome alone at 24 h post injection. Moreover F-SL co-administrated with A-83-01 showed significantly greater antitumor activity than F-SL alone. This study shows that co-administration of TβR-I inhibitor will open a new strategy for the use of folate receptor (FR)-targeting nanocarriers for cancer treatment. (author)

  11. Receptor protein tyrosine phosphatase alpha enhances rheumatoid synovial fibroblast signaling and promotes arthritis in mice

    NARCIS (Netherlands)

    Stanford, Stephanie M; Svensson, Mattias N D; Sacchetti, Cristiano; Pilo, Caila A; Wu, Dennis J; Kiosses, William B; Hellvard, Annelie; Bergum, Brith; Aleman Muench, German R; Elly, Christian; Liu, Yun-Cai; den Hertog, Jeroen; Elson, Ari; Sap, Jan; Mydel, Piotr; Boyle, David L; Corr, Maripat; Firestein, Gary S; Bottini, Nunzio

    2016-01-01

    OBJECTIVE: During rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) critically promote disease pathogenesis by aggressively invading the joint extracellular matrix. The focal adhesion kinase (FAK) signaling pathway is emerging as a contributor to RA FLS anomalous behavior. The receptor

  12. A T-cell specific transcriptional enhancer element 3' of Cα in the human T-cell receptor α locus

    International Nuclear Information System (INIS)

    Ho, Icheng; Yang, Lihsuan; Morle, G.; Leiden, J.M.

    1989-01-01

    A transcriptional enhancer element has been identified 4.5 kilobases 3' of C α (constant region α chain) in the human T-cell receptor (TCR) α-chain locus. This enhancer is active on both a TCR V α (variable region α chain) promoter and the minimal simian virus 40 promoter in TCR α/β Jurkat and EL4 cells but is inactive on a V α promoter TCR γ/δ PEER and Molt-13 cells, clone 13 B cells, and HeLa fibroblasts. The enhancer has been localized to a 116-base-pair BstXI/Dra I restriction enzyme fragment, which lacks immunoglobulin octamer and κB enhancer motifs but does contain a consensus cAMP-response element (CRE). DNase I footprint analyses demonstrated that the minimal enhancer contains two binding sites for Jurkat nuclear proteins. One of these sites corresponds to the CRE, while the other does not correspond to a known transcriptional enhancer motif. These data support a model in which TCR α gene transcription is regulated by a unique set of cis-acting sequences and trans-acting factors, which are differentially active in cells of the TCR α/β lineage. In addition, the TCR α enhancer may play a role in activating oncogene expression in T-lymphoblastoid tumors that have previously been shown to display chromosomal translocations into the human TCR α locus

  13. The amphiphilic peptide adenoregulin enhances agonist binding to A1-adenosine receptors and [35S]GTP gamma S to brain membranes.

    Science.gov (United States)

    Moni, R W; Romero, F S; Daly, J W

    1995-08-01

    1. Adenoregulin is an amphilic peptide isolated from skin mucus of the tree frog, Phyllomedusa bicolor. Synthetic adenoregulin enhanced the binding of agonists to several G-protein-coupled receptors in rat brain membranes. 2. The maximal enhancement of agonist binding, and in parentheses, the concentration of adenoregulin affording maximal enhancement were as follows: 60% (20 microM) for A1-adenosine receptors, 30% (100 microM) for A2a-adenosine receptors, 20% (2 microM) for alpha 2-adrenergic receptors, and 30% (10 microM) for 5HT1A receptors. High affinity agonist binding for A1-, alpha 2-, and 5HT1A-receptors was virtually abolished by GTP gamma S in the presence of adenoregulin, but was only partially abolished in its absence. Magnesium ions increased the binding of agonists to receptors and reduced the enhancement elicited by adenoregulin. 3. The effect of adenoregulin on binding of N6-cyclohexyladenosine ([3H]CHA) to A1-receptors was relatively slow and was irreversible. Adenoregulin increased the Bmax value for [3H]CHA binding sites, and the proportion of high affinity states, and slowed the rate of [3H]CHA dissociation. Binding of the A1-selective antagonist, [3H]DPCPX, was maximally enhanced by only 13% at 2 microM adenoregulin. Basal and A1-adenosine receptor-stimulated binding of [35S]GTP gamma S were maximally enhanced 45% and 23%, respectively, by 50 microM adenoregulin. In CHAPS-solubilized membranes from rat cortex, the binding of both [3H]CHA and [3H]DPCPX were enhanced by adenoregulin. Binding of [3H]CHA to membranes from DDT1 MF-2 cells was maximally enhanced 17% at 20 microM adenoregulin. In intact DDT1 MF-2 cells, 20 microM adenoregulin did not potentiate the inhibition of cyclic AMP accumulation mediated via the adenosine A1 receptor. 4. It is proposed that adenoregulin enhances agonist binding through a mechanism involving enhancement of guanyl nucleotide exchange at G-proteins, resulting in a conversion of receptors into a high affinity state

  14. Synthesis of Triphenylethylene Bisphenols as Aromatase Inhibitors That Also Modulate Estrogen Receptors.

    Science.gov (United States)

    Lv, Wei; Liu, Jinzhong; Skaar, Todd C; O'Neill, Elizaveta; Yu, Ge; Flockhart, David A; Cushman, Mark

    2016-01-14

    A series of triphenylethylene bisphenol analogues of the selective estrogen receptor modulator (SERM) tamoxifen were synthesized and evaluated for their abilities to inhibit aromatase, bind to estrogen receptor α (ER-α) and estrogen receptor β (ER-β), and antagonize the activity of β-estradiol in MCF-7 human breast cancer cells. The long-range goal has been to create dual aromatase inhibitor (AI)/selective estrogen receptor modulators (SERMs). The hypothesis is that in normal tissue the estrogenic SERM activity of a dual AI/SERM could attenuate the undesired effects stemming from global estrogen depletion caused by the AI activity of a dual AI/SERM, while in breast cancer tissue the antiestrogenic SERM activity of a dual AI/SERM could act synergistically with AI activity to enhance the antiproliferative effect. The potent aromatase inhibitory activities and high ER-α and ER-β binding affinities of several of the resulting analogues, together with the facts that they antagonize β-estradiol in a functional assay in MCF-7 human breast cancer cells and they have no E/Z isomers, support their further development in order to obtain dual AI/SERM agents for breast cancer treatment.

  15. 4-Chloropropofol enhances chloride currents in human hyperekplexic and artificial mutated glycine receptors

    Directory of Open Access Journals (Sweden)

    de la Roche Jeanne

    2012-09-01

    Full Text Available Abstract Background The mammalian neurological disorder hereditary hyperekplexia can be attributed to various mutations of strychnine sensitive glycine receptors. The clinical symptoms of “startle disease” predominantly occur in the newborn leading to convulsive hypertonia and an exaggerated startle response to unexpected mild stimuli. Amongst others, point mutations R271Q and R271L in the α1-subunit of strychnine sensitive glycine receptors show reduced glycine sensitivity and cause the clinical symptoms of hyperekplexia. Halogenation has been shown to be a crucial structural determinant for the potency of a phenolic compound to positively modulate glycine receptor function. The aim of this in vitro study was to characterize the effects of 4-chloropropofol (4-chloro-2,6-dimethylphenol at four glycine receptor mutations. Methods Glycine receptor subunits were expressed in HEK 293 cells and experiments were performed using the whole-cell patch-clamp technique. Results 4-chloropropofol exerted a positive allosteric modulatory effect in a low sub-nanomolar concentration range at the wild type receptor (EC50 value of 0.08 ± 0.02 nM and in a micromolar concentration range at the mutations (1.3 ± 0.6 μM, 0.1 ± 0.2 μM, 6.0 ± 2.3 μM and 55 ± 28 μM for R271Q, L, K and S267I, respectively. Conclusions 4-chloropropofol might be an effective compound for the activation of mutated glycine receptors in experimental models of startle disease.

  16. Glucocorticoid receptor modulators.

    Science.gov (United States)

    Meijer, Onno C; Koorneef, Lisa L; Kroon, Jan

    2018-06-01

    The glucocorticoid hormone cortisol acts throughout the body to support circadian processes and adaptation to stress. The glucocorticoid receptor is the target of cortisol and of synthetic glucocorticoids, which are used widely in the clinic. Both agonism and antagonism of the glucocorticoid receptor may be beneficial in disease, but given the wide expression of the receptor and involvement in various processes, beneficial effects are often accompanied by unwanted side effects. Selective glucocorticoid receptor modulators are ligands that induce a receptor conformation that allows activation of only a subset of downstream signaling pathways. Such molecules thereby combine agonistic and antagonistic properties. Here we discuss the mechanisms underlying selective receptor modulation and their promise in treating diseases in several organ systems where cortisol signaling plays a role. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. GLYX-13, an NMDA receptor glycine site functional partial agonist enhances cognition and produces antidepressant effects without the psychotomimetic side effects of NMDA receptor antagonists.

    Science.gov (United States)

    Moskal, Joseph R; Burch, Ronald; Burgdorf, Jeffrey S; Kroes, Roger A; Stanton, Patric K; Disterhoft, John F; Leander, J David

    2014-02-01

    The N-methyl-d-aspartate receptor-ionophore complex plays a key role in learning and memory and has efficacy in animals and humans with affective disorders. GLYX-13 is an N-methyl-d-aspartate receptor (NMDAR) glycine-site functional partial agonist and cognitive enhancer that also shows rapid antidepressant activity without psychotomimetic side effects. The authors review the mechanism of action of GLYX-13 that was investigated in preclinical studies and evaluated in clinical studies. Specifically, the authors review its pharmacology, pharmacokinetics, and drug safety that were demonstrated in clinical studies. NMDAR full antagonists can produce rapid antidepressant effects in treatment-resistant subjects; however, they are often accompanied by psychotomimetic effects that make chronic use outside of a clinical trial inpatient setting problematic. GLYX-13 appears to exert its antidepressant effects in the frontal cortex via NMDAR-triggered synaptic plasticity. Understanding the mechanistic underpinning of GLYX-13's antidepressant action should provide both novel insights into the role of the glutamatergic system in depression and identify new targets for therapeutic development.

  18. Novel nootropic drug sunifiram enhances hippocampal synaptic efficacy via glycine-binding site of N-methyl-D-aspartate receptor.

    Science.gov (United States)

    Moriguchi, Shigeki; Tanaka, Tomoya; Narahashi, Toshio; Fukunaga, Kohji

    2013-10-01

    Sunifiram is a novel pyrrolidone nootropic drug structurally related to piracetam, which was developed for neurodegenerative disorder like Alzheimer's disease. Sunifiram is known to enhance cognitive function in some behavioral experiments such as Morris water maze task. To address question whether sunifiram affects N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic function in the hippocampal CA1 region, we assessed the effects of sunifiram on NMDAR-dependent long-term potentiation (LTP) by electrophysiology and on phosphorylation of synaptic proteins by immunoblotting analysis. In mouse hippocampal slices, sunifiram at 10-100 nM significantly enhanced LTP in a bell-shaped dose-response relationship which peaked at 10 nM. The enhancement of LTP by sunifiram treatment was inhibited by 7-chloro-kynurenic acid (7-ClKN), an antagonist for glycine-binding site of NMDAR, but not by ifenprodil, an inhibitor for polyamine site of NMDAR. The enhancement of LTP by sunifilam was associated with an increase in phosphorylation of α-amino-3-hydroxy-5-methylisozazole-4-propionate receptor (AMPAR) through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and an increase in phosphorylation of NMDAR through activation of protein kinase Cα (PKCα). Sunifiram treatments at 1-1000 nM increased the slope of field excitatory postsynaptic potentials (fEPSPs) in a dose-dependent manner. The enhancement was associated with an increase in phosphorylation of AMPAR receptor through activation of CaMKII. Interestingly, under the basal condition, sunifiram treatments increased PKCα (Ser-657) and Src family (Tyr-416) activities with the same bell-shaped dose-response curve as that of LTP peaking at 10 nM. The increase in phosphorylation of PKCα (Ser-657) and Src (Tyr-416) induced by sunifiram was inhibited by 7-ClKN treatment. The LTP enhancement by sunifiram was significantly inhibited by PP2, a Src family inhibitor. Finally, when pretreated with a high

  19. Adrenergic Agonists Bind to Adrenergic-Receptor-Like Regions of the Mu Opioid Receptor, Enhancing Morphine and Methionine-Enkephalin Binding: A New Approach to “Biased Opioids”?

    Science.gov (United States)

    Turke, Miah; Subhramanyam, Udaya K. Tiruttani; Churchill, Beth; Labahn, Joerg

    2018-01-01

    Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR) were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists. PMID:29342106

  20. Adrenergic Agonists Bind to Adrenergic-Receptor-Like Regions of the Mu Opioid Receptor, Enhancing Morphine and Methionine-Enkephalin Binding: A New Approach to “Biased Opioids”?

    Directory of Open Access Journals (Sweden)

    Robert Root-Bernstein

    2018-01-01

    Full Text Available Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists.

  1. Enhanced efficacy (intrinsic activity) of cyclic opioid peptide analogs at the μ-receptor

    International Nuclear Information System (INIS)

    Schiller, P.W.; Lemieux, C.; Nguyen, T.M.D.; Maziak, L.A.

    1986-01-01

    Side-chain to end group cyclized enkephalin analogs (e.g. H-Tyr-cyclo[-D-Lys-Gly-Phe-Leu-] and cyclic opioid peptide analogs obtained through covalent linkage of two side-chains (e.g. H-Tyr-D-Cys-Gly-Phe-Cys-NH 2 or H-Tyr-D-Lys-Gly-Phe-Glu-NH 3 ) were tested in the μ-receptor-representative guinea pig ileum (GPI) bioassay and in a binding assay based on displacement of the μ-ligand [ 3 H]DAGO from rat brain membranes. The cyclic analogs were 5 to 70 times more potent in the GPI assay than in the binding assay, whereas linear analogs showed equal potency in the two assays. These results suggest that the efficacy (intrinsic activity) of cyclic opioid peptide analogs at the μ-receptor is increased as a consequence of the conformation constraint imposed through ring closure. This effect was most pronounced in analogs containing a long hydrophobic sidechain as part of the ring structure in the 2-position of the peptide sequence. Further experimental evidence ruled out the possibilities that these potency discrepancies may be due to differences in enzymatic degradation, dissimilar exposure of the receptors in their lipid environment or interaction with different receptor types in the two assay systems. It can be hypothesized that the semi-rigid cyclic analogs may induce a more productive conformational change in the receptor protein than the linear peptides

  2. Activation of presynaptic oxytocin receptors enhances glutamate release in the ventral hippocampus of prenatally restraint stressed rats.

    Science.gov (United States)

    Mairesse, Jérôme; Gatta, Eleonora; Reynaert, Marie-Line; Marrocco, Jordan; Morley-Fletcher, Sara; Soichot, Marion; Deruyter, Lucie; Camp, Gilles Van; Bouwalerh, Hammou; Fagioli, Francesca; Pittaluga, Anna; Allorge, Delphine; Nicoletti, Ferdinando; Maccari, Stefania

    2015-12-01

    Oxytocin receptors are known to modulate synaptic transmission and network activity in the hippocampus, but their precise function has been only partially elucidated. Here, we have found that activation of presynaptic oxytocin receptor with the potent agonist, carbetocin, enhanced depolarization-evoked glutamate release in the ventral hippocampus with no effect on GABA release. This evidence paved the way for examining the effect of carbetocin treatment in "prenatally restraint stressed" (PRS) rats, i.e., the offspring of dams exposed to repeated episodes of restraint stress during pregnancy. Adult PRS rats exhibit an anxious/depressive-like phenotype associated with an abnormal glucocorticoid feedback regulation of the hypothalamus-pituitary-adrenal (HPA) axis, and, remarkably, with a reduced depolarization-evoked glutamate release in the ventral hippocampus. Chronic systemic treatment with carbetocin (1mg/kg, i.p., once a day for 2-3 weeks) in PRS rats corrected the defect in glutamate release, anxiety- and depressive-like behavior, and abnormalities in social behavior, in the HPA response to stress, and in the expression of stress-related genes in the hippocampus and amygdala. Of note, carbetocin treatment had no effect on these behavioral and neuroendocrine parameters in prenatally unstressed (control) rats, with the exception of a reduced expression of the oxytocin receptor gene in the amygdala. These findings disclose a novel function of oxytocin receptors in the hippocampus, and encourage the use of oxytocin receptor agonists in the treatment of stress-related psychiatric disorders in adult life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR

    Institute of Scientific and Technical Information of China (English)

    Fen Lu; Huiqin Wang; Shanzhi Wang; Wendi Jiang; Changlin Shan; Bin Li; Jun Yang; Shiyong Zhang; Wenxian Sun

    2015-01-01

    The elongation factor Tu (EF-Tu) receptor (EFR) in cruciferous plants specifical y recognizes the N-terminal acetylated elf18 region of bacterial EF-Tu and thereby activates plant immunity. It has been demonstrated that Arabidopsis EFR confers broad-spectrum bacterial resistance in the EFR transgenic solanaceous plants. Here, the transgenic rice plants (Oryza sativa L. ssp. japonica cv. Zhonghua 17) and cel cultures with constitutive expression of AtEFR were developed to investigate whether AtEFR senses EF-Tu and thus enhances bacterial resistance in the monocot plants. We demonstrated that the Xanthomonas oryzae-derived elf18 peptide induced oxidative burst and mitogen-activated protein kinase activa-tion in the AtEFR transgenic rice cel s and plants, respectively. Pathogenesis-related genes, such as OsPBZ1, were upregulated dramatical y in transgenic rice plant and cel lines in response to elf18 stimulation. Importantly, pretreatment with elf18 trig-gered strong resistance to X. oryzae pv. oryzae in the transgenic plants, which was largely dependent on the AtEFR expression level. These plants also exhibited enhanced resistance to rice bacterial brown stripe, but not to rice fungal blast. Col ectively, the results indicate that the rice plants with heterologous expression of AtEFR recognize bacterial EF-Tu and exhibit enhanced broad-spectrum bacterial disease resistance and that pattern recognition receptor-mediated immunity may be manipulated across the two plant classes, dicots and monocots.

  4. Selective Activation of M4 Muscarinic Acetylcholine Receptors Reverses MK-801-Induced Behavioral Impairments and Enhances Associative Learning in Rodents

    Science.gov (United States)

    2015-01-01

    Positive allosteric modulators (PAMs) of the M4 muscarinic acetylcholine receptor (mAChR) represent a novel approach for the treatment of psychotic symptoms associated with schizophrenia and other neuropsychiatric disorders. We recently reported that the selective M4 PAM VU0152100 produced an antipsychotic drug-like profile in rodents after amphetamine challenge. Previous studies suggest that enhanced cholinergic activity may also improve cognitive function and reverse deficits observed with reduced signaling through the N-methyl-d-aspartate subtype of the glutamate receptor (NMDAR) in the central nervous system. Prior to this study, the M1 mAChR subtype was viewed as the primary candidate for these actions relative to the other mAChR subtypes. Here we describe the discovery of a novel M4 PAM, VU0467154, with enhanced in vitro potency and improved pharmacokinetic properties relative to other M4 PAMs, enabling a more extensive characterization of M4 actions in rodent models. We used VU0467154 to test the hypothesis that selective potentiation of M4 receptor signaling could ameliorate the behavioral, cognitive, and neurochemical impairments induced by the noncompetitive NMDAR antagonist MK-801. VU0467154 produced a robust dose-dependent reversal of MK-801-induced hyperlocomotion and deficits in preclinical models of associative learning and memory functions, including the touchscreen pairwise visual discrimination task in wild-type mice, but failed to reverse these stimulant-induced deficits in M4 KO mice. VU0467154 also enhanced the acquisition of both contextual and cue-mediated fear conditioning when administered alone in wild-type mice. These novel findings suggest that M4 PAMs may provide a strategy for addressing the more complex affective and cognitive disruptions associated with schizophrenia and other neuropsychiatric disorders. PMID:25137629

  5. Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions

    DEFF Research Database (Denmark)

    Wang, Shengjun; Mao, Yang; Narimatsu, Yoshiki

    2018-01-01

    in the LA linker regions of VLDLR, LRP1, and LRP2 (Megalin) from both cell lines and rat organs. Using a panel of gene-edited isogenic cell line models, we demonstrate that GalNAc-T11-mediated LDLR and VLDLR O-glycosylation is not required for transport and cell surface expression and stability...... of these receptors, but markedly enhances LDL and VLDL binding and uptake. Direct ELISA-based binding assays with truncated LDLR constructs revealed that O-glycosylation increased affinity for LDL by approximately 5-fold. The molecular basis for this observation is currently unknown, but these findings open up new...

  6. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid

    DEFF Research Database (Denmark)

    Rinaldi, Tania; Kulangara, Karina; Antoniello, Katia

    2007-01-01

    as the commonly linked kinase calcium/calmodulin-dependent protein kinase II. Synaptic plasticity experiments between pairs of pyramidal neurons revealed an augmented postsynaptic form of long-term potentiation. These results indicate that VPA significantly enhances NMDA receptor-mediated transmission and causes......Valproic acid (VPA) is a powerful teratogen causing birth defects in humans, including autism spectrum disorder (ASD), if exposure occurs during the first trimester of embryogenesis. Learning and memory alterations are common symptoms of ASD, but underlying molecular and synaptic alterations remain...

  7. Vanilloid receptor expressed in the sarcoplasmic reticulum of rat skeletal muscle

    International Nuclear Information System (INIS)

    Xin Hong; Tanaka, Hideyuki; Yamaguchi, Maki; Takemori, Shigeru; Nakamura, Akio; Kohama, Kazuhiro

    2005-01-01

    Vanilloid receptor subtype 1 (VR1) was cloned as a capsaicin receptor from neuronal cells of dorsal root ganglia. VR1 was subsequently found in a few non-neuronal tissues, including skeletal muscle [Onozawa et al., Tissue distribution of capsaicin receptor in the various organs of rats, Proc. Jpn. Acad. Ser. B 76 (2000) 68-72]. We confirmed the expression of VR1 in muscle cells using the RT-PCR method and Western blot analysis. Immunostaining studies with a confocal microscope and an electron microscope indicated that VR1 was present in the sarcoplasmic reticulum (SR), a store of Ca 2+ . The SR releases Ca 2+ to cause a contraction when a muscle is excited. However, SR still releases a small amount of Ca 2+ under relaxed conditions. We found that this leakage was enhanced by capsaicin and was antagonized by capsazepine, a capsaicin blocker, indicating that leakage of Ca 2+ occurs through a channel composed of VR1

  8. Enhanced sensitivity of postsynaptic serotonin-1A receptors in rats and mice with high trait aggression

    NARCIS (Netherlands)

    van der Vegt, BJ; de Boer, SF; Buwalda, B; de Ruiter, AJH; de Jong, JG; Koolhaas, JM

    2001-01-01

    Individual differences in aggressive behaviour have been linked to variability in central serotonergic activity, both in humans and animals. A previous experiment in mice, selectively bred for high or low levels of aggression, showed an up-regulation of postsynaptic serotonin-1A (5-HT1A) receptors,

  9. Sortilin Associates with Trk Receptors to Enhance Anterograde Transport and Signaling by Neurotrophins

    DEFF Research Database (Denmark)

    Vægter, Christian Bjerggaard

      Neurotrophins (NT) are neuronal growth factors essential for development and maintenance of the nervous system. They are released in two forms with opposing biological functions. The proforms induce apoptosis by engaging a death signaling complex comprising the p75NTR neurotrophin receptor...

  10. Enhanced AMPA receptor function promotes cerebellar long-term depression rather than potentiation

    NARCIS (Netherlands)

    van Beugen, Boeke J; Qiao, Xin; Simmons, Dana H; De Zeeuw, Chris I; Hansel, Christian

    2014-01-01

    Ampakines are allosteric modulators of AMPA receptors that facilitate hippocampal long-term potentiation (LTP) and learning, and have been considered for the treatment of cognition and memory deficits. Here, we show that the ampakine CX546 raises the amplitude and slows the decay time of excitatory

  11. The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects.

    Science.gov (United States)

    Wang, Lei; Einig, Elias; Almeida-Trapp, Marilia; Albert, Markus; Fliegmann, Judith; Mithöfer, Axel; Kalbacher, Hubert; Felix, Georg

    2018-03-01

    The discovery in tomato of systemin, the first plant peptide hormone 1,2 , was a fundamental change for the concept of plant hormones. Numerous other peptides have since been shown to play regulatory roles in many aspects of the plant life, including growth, development, fertilization and interactions with symbiotic organisms 3-6 . Systemin, an 18 amino acid peptide derived from a larger precursor protein 7 , was proposed to act as the spreading signal that triggers systemic defence responses observed in plants after wounding or attack by herbivores 1,7,8 . Further work culminated in the identification of a leucine-rich repeat receptor kinase (LRR-RK) as the systemin receptor 160 (SR160) 9,10 . SR160 is a tomato homologue of Brassinosteroid Insensitive 1 (BRI1), which mediates the regulation of growth and development in response to the steroid hormone brassinolide 11-13 . However, a role of SR160/BRI1 as systemin receptor could not be corroborated by others 14-16 . Here, we demonstrate that perception of systemin depends on a pair of distinct LRR-RKs termed SYR1 and SYR2. SYR1 acts as a genuine systemin receptor that binds systemin with high affinity and specificity. Further, we show that presence of SYR1, although not decisive for local and systemic wound responses, is important for defence against insect herbivory.

  12. Lenalidomide enhances antitumor functions of chimeric antigen receptor modified T cells

    Czech Academy of Sciences Publication Activity Database

    Otáhal, Pavel; Průková, D.; Král, Vlastimil; Fábry, Milan; Vockova, P.; Lateckova, L.; Trněný, M.; Klener, P.

    2016-01-01

    Roč. 5, č. 4 (2016), č. článku e1115940. ISSN 2162-402X R&D Projects: GA MZd(CZ) NT13201 Institutional support: RVO:68378050 Keywords : Chimeric antigenic receptor * lenalidomide * lymphoma * tumor immunotherapy * T cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.719, year: 2016

  13. Subarachnoid hemorrhage induces enhanced expression of thromboxane A2 receptors in rat cerebral arteries

    DEFF Research Database (Denmark)

    Ansar, Saema; Larsen, Carl; Maddahi, Aida

    2010-01-01

    Cerebral ischemia remains the key cause of morbidity and mortality after subarachnoid hemorrhage (SAH) with a pathogenesis that is still poorly understood. The aim of the present study was to examine the involvement of thromboxane A(2) receptors (TP) in the pathophysiology of cerebral ischemia...

  14. Morphine withdrawal enhances constitutive μ-opioid receptor activity in the ventral tegmental area

    NARCIS (Netherlands)

    Meye, F.J.; van Zessen, R.; Smidt, M.P.; Adan, R.A.H.; Ramakers, G.M.J.

    2012-01-01

    μ-opioid receptors (MORs) in the ventral tegmental area (VTA) are pivotally involved in addictive behavior. While MORs are typically activated by opioids, they can also become constitutively active in the absence of any agonist. In the current study, we present evidence that MOR constitutive

  15. Pentadecapeptide BPC 157 Enhances the Growth Hormone Receptor Expression in Tendon Fibroblasts

    Directory of Open Access Journals (Sweden)

    Chung-Hsun Chang

    2014-11-01

    Full Text Available BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  16. Effect of endothelin antagonism on apnea frequency following chronic intermittent hypoxia.

    Science.gov (United States)

    Donovan, Lucas M; Liu, Yuzhen; Weiss, J Woodrow

    2014-04-01

    Chronic hypoxia increases the hypoxic ventilatory response (HVR). Augmented HVR contributes to central apneas seen in heart failure and complex sleep apnea. Endothelin receptor (ETR) antagonism decreases carotid body afferent activity following chronic intermittent hypoxia (CIH). We speculated ETR antagonism would reduce HVR and apneas following CIH. HVR and apneas were measured after exposure to CIH and room air sham (SHAM). ETR blocker Ambrisentan was administered via the chow of CIH-exposed animals from days 1 to 12 of CIH (CIH/AMB). A separate crossover group was exposed to CIH and fed normal chow (placebo) days 1-6, and Ambrisentan days 7-12 (CIH/PLA-AMB). SHAM and CIH/PLA animals were fed placebo days 1-12. The CIH/AMB and CIH/PLA-AMB rats had reduced HVR compared to CIH/PLA, similar HVR compared to sham exposed animals, and reduced apnea frequency compared to CIH/PLA animals. The reduced HVR and post-hypoxic apneas resulting from Ambrisentan administration suggests ETR antagonists may have utility in reducing central apneas following CIH. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Thromboxane A{sub 2} receptor signaling promotes liver tissue repair after toxic injury through the enhancement of macrophage recruitment

    Energy Technology Data Exchange (ETDEWEB)

    Minamino, Tsutomu [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Ito, Yoshiya [Departments of Surgery, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Ohkubo, Hirotoki [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Departments of Surgery, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Hosono, Kanako; Suzuki, Tatsunori [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Sato, Takehito [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Ae, Takako; Shibuya, Akitaka [Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Sakagami, Hiroyuki [Departments of Anatomy, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Narumiya, Shuh [Department of Pharmacology, Kyoto University School of Medicine, Kyoto, 606-8315 (Japan); Koizumi, Wasaburo [Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Majima, Masataka, E-mail: mmajima@med.kitasato-u.ac.jp [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan)

    2012-02-15

    It is thought that thromboxane A{sub 2} (TxA{sub 2}) contributes to the progression of inflammation during acute hepatic injury; however, it is still unknown whether TxA{sub 2} is involved in liver repair. The objective of the present study was to examine the role of TxA{sub 2} receptor (TP) signaling in liver injury and repair in response to toxic injury. Carbon tetrachloride (CCl{sub 4}) was used to induce liver injury in TP knockout (TP{sup −/−}) mice and wild-type (WT) mice. In WT mice, serum levels of alanine aminotransferase (ALT) and the size of the necrotic area peaked at 24 and 48 h, respectively, and then declined. In TP{sup −/−} mice, the changes in ALT levels were similar to WT mice, but liver regeneration was impaired as evidenced by remained elevated levels of hepatic necrosis and by delayed hepatocyte proliferation, which was associated with the reduced expression of growth factors including interleukin-6 (IL-6), tumor necrosis factor alpha (TNFα), and hepatocyte growth factor (HGF). In TP{sup −/−} mice, the accumulation of hepatic CD11b{sup +}/F4/80{sup +} macrophages in injured livers was attenuated, and the hepatic expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and its receptor, the C―C chemokine receptor (CCR2), was reduced compared to WT. Additionally, the application of the TP receptor agonist, U-46619, enhanced the expression of MCP-1/CCL2 and CCR2 in peritoneal macrophages, which was associated with increased levels of IL-6, TNFα and HGF. These results suggested that TP receptor signaling facilitates liver recovery following CCl{sub 4}-induced hepatotoxicity by affecting the expression of hepatotrophic growth factors, and through the recruitment of macrophages mediated by MCP-1/CCL2-CCR2 expression. -- Highlights: ► TP enhances liver regeneration by CCl{sub 4}. ► TP accumulates macrophages. ► TP up-regulates MCP-1.

  18. Theobromine suppresses adipogenesis through enhancement of CCAAT-enhancer-binding protein β degradation by adenosine receptor A1.

    Science.gov (United States)

    Mitani, Takakazu; Watanabe, Shun; Yoshioka, Yasukiyo; Katayama, Shigeru; Nakamura, Soichiro; Ashida, Hitoshi

    2017-12-01

    Theobromine, a methylxanthine derived from cacao beans, reportedly has various health-promoting properties but molecular mechanism by which effects of theobromine on adipocyte differentiation and adipogenesis remains unclear. In this study, we aimed to clarify the molecular mechanisms of the anti-adipogenic effect of theobromine in vitro and in vivo. ICR mice (4week-old) were administered with theobromine (0.1g/kg) for 7days. Theobromine administration attenuated gains in body and epididymal adipose tissue weights in mice and suppressed expression of adipogenic-associated genes in mouse adipose tissue. In 3T3-L1 preadipocytes, theobromine caused degradation of C/EBPβ protein by the ubiquitin-proteasome pathway. Pull down assay showed that theobromine selectively interacts with adenosine receptor A1 (AR1), and AR1 knockdown inhibited theobromine-induced C/EBPβ degradation. Theobromine increased sumoylation of C/EBPβ at Lys133. Expression of the small ubiquitin-like modifier (SUMO)-specific protease 2 (SENP2) gene, coding for a desumoylation enzyme, was suppressed by theobromine. In vivo knockdown studies showed that AR1 knockdown in mice attenuated the anti-adipogenic effects of theobromine in younger mice. Theobromine suppresses adipocyte differentiation and induced C/EBPβ degradation by increasing its sumoylation. Furthermore, the inhibition of AR1 signaling is important for theobromine-induced C/EBPβ degradation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Sub-lethal irradiation of human colorectal tumor cells imparts enhanced and sustained susceptibility to multiple death receptor signaling pathways.

    Directory of Open Access Journals (Sweden)

    Victoria Ifeadi

    Full Text Available BACKGROUND: Death receptors (DR of the TNF family function as anti-tumor immune effector molecules. Tumor cells, however, often exhibit DR-signaling resistance. Previous studies indicate that radiation can modify gene expression within tumor cells and increase tumor cell sensitivity to immune attack. The aim of this study is to investigate the synergistic effect of sub-lethal doses of ionizing radiation in sensitizing colorectal carcinoma cells to death receptor-mediated apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: The ability of radiation to modulate the expression of multiple death receptors (Fas/CD95, TRAILR1/DR4, TRAILR2/DR5, TNF-R1 and LTβR was examined in colorectal tumor cells. The functional significance of sub-lethal doses of radiation in enhancing tumor cell susceptibility to DR-induced apoptosis was determined by in vitro functional sensitivity assays. The longevity of these changes and the underlying molecular mechanism of irradiation in sensitizing diverse colorectal carcinoma cells to death receptor-mediated apoptosis were also examined. We found that radiation increased surface expression of Fas, DR4 and DR5 but not LTβR or TNF-R1 in these cells. Increased expression of DRs was observed 2 days post-irradiation and remained elevated 7-days post irradiation. Sub-lethal tumor cell irradiation alone exhibited minimal cell death, but effectively sensitized three of three colorectal carcinoma cells to both TRAIL and Fas-induced apoptosis, but not LTβR-induced death. Furthermore, radiation-enhanced Fas and TRAIL-induced cell death lasted as long as 5-days post-irradiation. Specific analysis of intracellular sensitizers to apoptosis indicated that while radiation did reduce Bcl-X(L and c-FLIP protein expression, this reduction did not correlate with the radiation-enhanced sensitivity to Fas and/or TRAIL mediated apoptosis among the three cell types. CONCLUSIONS/SIGNIFICANCE: Irradiation of tumor cells can overcome Fas and TRAIL

  20. Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions.

    Science.gov (United States)

    Wang, Shengjun; Mao, Yang; Narimatsu, Yoshiki; Ye, Zilu; Tian, Weihua; Goth, Christoffer K; Lira-Navarrete, Erandi; Pedersen, Nis B; Benito-Vicente, Asier; Martin, Cesar; Uribe, Kepa B; Hurtado-Guerrero, Ramon; Christoffersen, Christina; Seidah, Nabil G; Nielsen, Rikke; Christensen, Erik I; Hansen, Lars; Bennett, Eric P; Vakhrushev, Sergey Y; Schjoldager, Katrine T; Clausen, Henrik

    2018-05-11

    The low-density lipoprotein receptor (LDLR) and related receptors are important for the transport of diverse biomolecules across cell membranes and barriers. Their functions are especially relevant for cholesterol homeostasis and diseases, including neurodegenerative and kidney disorders. Members of the LDLR-related protein family share LDLR class A (LA) repeats providing binding properties for lipoproteins and other biomolecules. We previously demonstrated that short linker regions between these LA repeats contain conserved O -glycan sites. Moreover, we found that O -glycan modifications at these sites are selectively controlled by the GalNAc-transferase isoform, GalNAc-T11. However, the effects of GalNAc-T11-mediated O -glycosylation on LDLR and related receptor localization and function are unknown. Here, we characterized O -glycosylation of LDLR-related proteins and identified conserved O -glycosylation sites in the LA linker regions of VLDLR, LRP1, and LRP2 (Megalin) from both cell lines and rat organs. Using a panel of gene-edited isogenic cell line models, we demonstrate that GalNAc-T11-mediated LDLR and VLDLR O -glycosylation is not required for transport and cell-surface expression and stability of these receptors but markedly enhances LDL and VLDL binding and uptake. Direct ELISA-based binding assays with truncated LDLR constructs revealed that O -glycosylation increased affinity for LDL by ∼5-fold. The molecular basis for this observation is currently unknown, but these findings open up new avenues for exploring the roles of LDLR-related proteins in disease. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Overexpression of Pyrabactin Resistance-Like Abscisic Acid Receptors Enhances Drought, Osmotic, and Cold Tolerance in Transgenic Poplars

    Directory of Open Access Journals (Sweden)

    Jingling Yu

    2017-10-01

    Full Text Available Abscisic acid (ABA has been known participate in a wider range of adaptive responses to diverse environmental abiotic stresses such as drought, osmosis, and low temperatures. ABA signaling is initiated by its receptors PYR/PYL/RCARs, a type of soluble proteins with a conserved START domain which can bind ABA and trigger the downstream pathway. Previously, we discovered that poplar (Populus trichocarpa genome encodes 14 PYR/PYL/RCAR orthologs (PtPYRLs, and two of them, PtPYRL1 and PtPYRL5 have been functionally characterized to positively regulate drought tolerance. However, the physiological function of these ABA receptors in poplar remains uncharacterized. Here, we generated transgenic poplar plants overexpressing PtPYRL1 and PtPYRL5 and found that they exhibited more vigorous growth and produced greater biomass when exposed to drought stress. The improved drought tolerance was positively correlated with the key physiological responses dictated by the ABA signaling pathway, including increase in stomatal closure and decrease in leaf water loss. Further analyses revealed that overexpression lines showed improved capacity in scavenging reactive oxygen species and enhanced the activation of antioxidant enzymes under drought stress. Moreover, overexpression of PtPYRL1 or PtPYRL5 significantly increased the poplar resistance to osmotic and cold stresses. In summary, our results suggest that constitutive expression of PtPYRL1 and PtPYRL5 significantly enhances the resistance to drought, osmotic and cold stresses by positively regulating ABA signaling in poplar.

  2. The Orphan Nuclear Receptor TLX Is an Enhancer of STAT1-Mediated Transcription and Immunity to Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Daniel P Beiting

    2015-07-01

    Full Text Available The protozoan parasite, Toxoplasma, like many intracellular pathogens, suppresses interferon gamma (IFN-γ-induced signal transducer and activator of transcription 1 (STAT1 activity. We exploited this well-defined host-pathogen interaction as the basis for a high-throughput screen, identifying nine transcription factors that enhance STAT1 function in the nucleus, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that upon IFN-γ treatment TLX enhances the output of a subset of IFN-γ target genes, which we found is dependent on TLX binding at those loci. Moreover, infection of TLX deficient mice with the intracellular parasite Toxoplasma results in impaired production of the STAT1-dependent cytokine interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized role for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense and reveal that STAT1 activity can be modulated in a context-specific manner by such "modifiers."

  3. The Orphan Nuclear Receptor TLX Is an Enhancer of STAT1-Mediated Transcription and Immunity to Toxoplasma gondii.

    Science.gov (United States)

    Beiting, Daniel P; Hidano, Shinya; Baggs, Julie E; Geskes, Jeanne M; Fang, Qun; Wherry, E John; Hunter, Christopher A; Roos, David S; Cherry, Sara

    2015-07-01

    The protozoan parasite, Toxoplasma, like many intracellular pathogens, suppresses interferon gamma (IFN-γ)-induced signal transducer and activator of transcription 1 (STAT1) activity. We exploited this well-defined host-pathogen interaction as the basis for a high-throughput screen, identifying nine transcription factors that enhance STAT1 function in the nucleus, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that upon IFN-γ treatment TLX enhances the output of a subset of IFN-γ target genes, which we found is dependent on TLX binding at those loci. Moreover, infection of TLX deficient mice with the intracellular parasite Toxoplasma results in impaired production of the STAT1-dependent cytokine interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized role for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense and reveal that STAT1 activity can be modulated in a context-specific manner by such "modifiers."

  4. Enhancement of long-term spatial memory in adult rats by the noncompetitive NMDA receptor antagonists, memantine and neramexane.

    Science.gov (United States)

    Zoladz, Phillip R; Campbell, Adam M; Park, Collin R; Schaefer, Daniela; Danysz, Wojciech; Diamond, David M

    2006-10-01

    Memantine and neramexane are noncompetitive NMDA receptor antagonists which have been investigated for their promising effects in aiding memory in people with dementia. Memantine is approved for the treatment of Alzheimer's disease, and neramexane is currently under development for this indication. Therefore, the present study provided a comparative assessment of the effects of equimolar doses of memantine and neramexane on spatial (hippocampus-dependent) memory. Adult male rats were given only 3 training trials to learn the location of a hidden platform in a water maze. In control (vehicle-injected) rats, this minimal amount of training produced intact short-term (15 min), but poor long-term (24 h), memory. Pre-training administration of memantine or neramexane produced a dose-dependent enhancement of long-term memory. Pharmacokinetic experiments with equimolar doses of both agents indicated that lower plasma levels of neramexane were more effective than memantine at enhancing memory. The effective doses of both agents in the current study produced plasma levels (and extrapolated brain CSF levels) within a range of activity at NMDA receptors and plasma levels seen in patients with Alzheimer's disease. These findings provide support for the use of neramexane as a pharmacological intervention in the treatment of dementia.

  5. Activation of 5-HT2 receptors enhances the release of acetylcholine in the prefrontal cortex and hippocampus of the rat.

    Science.gov (United States)

    Nair, Sunila G; Gudelsky, Gary A

    2004-09-15

    The role of 5-HT2 receptors in the regulation of acetylcholine (ACh) release was examined in the medial prefrontal cortex and dorsal hippocampus using in vivo microdialysis. The 5-HT(2A/2C) agonist +/-1-(2,5-dimethoxy-4-iodophenyl) -2- aminopropane hydrochloride (DOI) (1 and 2 mg/kg, i.p.) significantly increased the extracellular concentration of ACh in both brain regions, and this response was attenuated in rats treated with the 5-HT(2A/2B/2C) antagonist LY-53,857 (3 mg/kg, i.p.). Treatment with LY-53,857 alone did not significantly alter ACh release in either brain region The 5-HT(2C) agonist 6-chloro-2-(1-piperazinyl)-pyrazine) (MK-212) (5 mg/kg, i.p.) significantly enhanced the release of ACh in both the prefrontal cortex and hippocampus, whereas the 5-HT2 agonist mescaline (10 mg/kg, i.p.) produced a 2-fold increase in ACh release only in the prefrontal cortex. Intracortical, but not intrahippocampal, infusion of DOI (100 microM) significantly enhanced the release of ACh, and intracortical infusion of LY-53,857 (100 microM) significantly attenuated this response. These results suggest that the release of ACh in the prefrontal cortex and hippocampus is influenced by 5-HT2 receptor mechanisms. The increase in release of ACh induced by DOI in the prefrontal cortex, but not in the hippocampus, appears to be due to 5-HT2 receptor mechanisms localized within this brain region. Furthermore, it appears that the prefrontal cortex is more sensitive than the dorsal hippocampus to the stimulatory effect of 5-HT2 agonists on ACh release.

  6. The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke

    DEFF Research Database (Denmark)

    Ruscher, Karsten; Shamloo, Mehrdad; Rickhag, Karl Mattias

    2011-01-01

    Stroke leads to brain damage with subsequent slow and incomplete recovery of lost brain functions. Enriched housing of stroke-injured rats provides multi-modal sensorimotor stimulation, which improves recovery, although the specific mechanisms involved have not been identified. In rats housed in ...... of biomolecules required for brain repair, thereby stimulating brain plasticity. Pharmacological targeting of the sigma-1 receptor provides new opportunities for stroke treatment beyond the therapeutic window of neuroprotection....

  7. N-Aryl-oxazolidin-2-imine Muscle Selective Androgen Receptor Modulators Enhance Potency through Pharmacophore Reorientation

    Energy Technology Data Exchange (ETDEWEB)

    Nirschl, Alexandra A.; Zou, Yan; Krystek, Jr., Stanley R.; Sutton, James C.; Simpkins, Ligaya M.; Lupisella, John A.; Kuhns, Joyce E.; Seethala, Ramakrishna; Golla, Rajasree; Sleph, Paul G.; Beehler, Blake C.; Grover, Gary J.; Egan, Donald; Fura, Aberra; Vyas, Viral P.; Li, Yi-Xin; Sack, John S.; Kish, Kevin F.; An, Yongmi; Bryson, James A.; Gougoutas, Jack Z.; DiMarco, John; Zahler, Robert; Ostrowski, Jacek; Hamann, Lawrence G.; (BMS)

    2010-11-09

    A novel selective androgen receptor modulator (SARM) scaffold was discovered as a byproduct obtained during synthesis of our earlier series of imidazolidin-2-ones. The resulting oxazolidin-2-imines are among the most potent SARMs known, with many analogues exhibiting sub-nM in vitro potency in binding and functional assays. Despite the potential for hydrolytic instability at gut pH, compounds of the present class showed good oral bioavailability and were highly active in a standard rodent pharmacological model.

  8. THIP, a hypnotic and antinociceptive drug, enhances a tonic GABAA receptor mediated conductance in mouse neocortex

    DEFF Research Database (Denmark)

    Drasbek, Kim Ryun; Jensen, Kimmo

    2006-01-01

    its cellular actions in the neocortex are uncertain, we studied the effects of THIP on neurons in slices of frontoparietal neocortex of 13- to 19-day-old (P13-19) mice. Using whole-cell patch-clamp recordings, we found that the clinically relevant THIP concentration of 1 μM induced a robust tonic GABA...... suggest that THIP activates an extrasynaptic GABA(A) receptor-mediated conductance in the neocortex, which may alter the cortical network activity....

  9. The anti-epidermal growth factor receptor (EGFR) monoclonal antibody, C225, enhances radiation-induced apoptosis in primary glioma cell lines through mediation of MAPK/JNK/p38 signaling pathways

    International Nuclear Information System (INIS)

    Chakravarti, A.; Noll, E.; Black, P.M.; Loeffler, J.S.

    2001-01-01

    Purpose: Increasing evidence suggests that signaling mediated by the epidermal growth factor receptor (EGFR) pathway contributes to radiation resistance. The anti-EGFR monoclonal antibody, C225, has been shown to enhance radiation response for several tumor types in preclinical models. Malignant gliomas are known to express, and quite frequently overexpress, EGFR. Our objectives in this study were to 1) Evaluate the efficacy of C225 as a radiation response modifier in EGFR-expressing glioma cell lines and to 2) Investigate the underlying molecular mechanisms mediating C225-induced enhancement of radiation response. Materials and Methods: Twelve EGFR-expressing glioma cells lines, established from patient tumors, were used for this study. Cells were incubated with C225, irradiated, and then evaluated for radiation response. Assays used to evaluate efficacy of C225-mediated radiosensitization included time-course apoptosis assays (Annexin V and TUNEL), viability assays (MTT), and clonogenic survival assays. The changes along MAPK (p44/p42)/JNK/p38-MAPK signal transduction pathways were then investigated using quantitative Western analysis with phospho-specific antibodies to determine the molecular mechanisms by which C225 mediates a given response. Results: C225 clearly enhanced radiation response for 7 of the 12 primary glioma cell lines studied. Enhancement of both immediate and delayed apoptotic responses was evident in these 7 responsive cell lines after C225 administration. The average apoptosis index at 6 hours post-RT+C225 for the 7 responsive lines was 9.5%, compared to 1.2% for the RT-only controls. A pattern of delayed apoptosis was evident in these 7 lines, with secondary apoptotic peaks (∼ 8.0%) occurring at 24 hours post-RT+C225. Time course viability measurements revealed a steady decrease in viable tumor cells in these responsive cell lines from 75% at 6 hours post-RT+C225 to 20% at 7 days. Clonogenic survival was also diminished in these 7 lines

  10. Kaposi's sarcoma-associated herpesvirus-encoded LANA associates with glucocorticoid receptor and enhances its transcriptional activities

    International Nuclear Information System (INIS)

    Togi, Sumihito; Nakasuji, Misa; Muromoto, Ryuta; Ikeda, Osamu; Okabe, Kanako; Kitai, Yuichi; Kon, Shigeyuki; Oritani, Kenji; Matsuda, Tadashi

    2015-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA), which interacts with cellular proteins, plays a central role in modification of viral and/or cellular gene expression. Here, we show that LANA associates with glucocorticoid receptor (GR), and that LANA enhances the transcriptional activity of GR. Co-immunoprecipitation revealed a physical interaction between LANA and GR in transiently transfected 293T and HeLa cells. In human B-lymphoma cells, LANA overexpression enhanced GR activity and cell growth suppression following glucocorticoid stimulation. Furthermore, confocal microscopy showed that activated GR was bound to LANA and accumulated in the nucleus, leading to an increase in binding of activated GR to the glucocorticoid response element of target genes. Taken together, KSHV-derived LANA acts as a transcriptional co-activator of GR. Our results might suggest a careful use of glucocorticoids in the treatment of patients with KSHV-related malignancies such as Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. - Highlights: • KSHV-LANA enhances the transcriptional activity of GR in 293T and HeLa cells. • KSHV-LANA physically associates with GR. • KSHV-LANA enhances GR activation and cell growth suppression in human B-lymphocytes. • KSHV-LANA influences the nuclear retention and DNA binding activity of GR

  11. ARA24/Ran enhances the androgen-dependent NH2- and COOH-terminal interaction of the androgen receptor

    International Nuclear Information System (INIS)

    Harada, Naoki; Ohmori, Yuji; Yamaji, Ryoichi; Higashimura, Yasuki; Okamoto, Kazuki; Isohashi, Fumihide; Nakano, Yoshihisa; Inui, Hiroshi

    2008-01-01

    The androgen receptor (AR) acts as an androgen-dependent transcription factor controlling the development of prostate tissue. Upon binding to androgen, AR undergoes a dynamic structural change leading to interaction between the NH 2 - and COOH-terminal regions of AR (N-C interaction). ARA24/Ran, which is a small GTPase, functions as an AR coactivator. Here, we report that ARA24/Ran enhances the N-C interaction of AR. The constitutively GTP- or GDP-bound form of ARA24/Ran repressed the AR N-C interaction. ARA24/Ran did not enhance the transcriptional activities of AR mutants that disrupt the N-C interaction. ARA24/Ran formed an endogenous protein complex with nuclear AR, but not cytoplasmic AR. Unlike SRC-1 with the positive activity for AR N-C interaction, ARA24/Ran did not enhance the transcriptional activity of the COOH-terminal domain-deleted AR mutant that is constitutively localized in the nucleus. These data demonstrate that ARA24/Ran increases AR transactivation by enhancing the AR N-C interaction in the nucleus

  12. Kaposi's sarcoma-associated herpesvirus-encoded LANA associates with glucocorticoid receptor and enhances its transcriptional activities

    Energy Technology Data Exchange (ETDEWEB)

    Togi, Sumihito; Nakasuji, Misa; Muromoto, Ryuta; Ikeda, Osamu; Okabe, Kanako; Kitai, Yuichi; Kon, Shigeyuki [Department of Immunology, Graduate School of Pharmaceutical Sciences Hokkaido University, Sapporo 060-0812 (Japan); Oritani, Kenji [Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Matsuda, Tadashi, E-mail: tmatsuda@pharm.hokudai.ac.jp [Department of Immunology, Graduate School of Pharmaceutical Sciences Hokkaido University, Sapporo 060-0812 (Japan)

    2015-07-31

    Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA), which interacts with cellular proteins, plays a central role in modification of viral and/or cellular gene expression. Here, we show that LANA associates with glucocorticoid receptor (GR), and that LANA enhances the transcriptional activity of GR. Co-immunoprecipitation revealed a physical interaction between LANA and GR in transiently transfected 293T and HeLa cells. In human B-lymphoma cells, LANA overexpression enhanced GR activity and cell growth suppression following glucocorticoid stimulation. Furthermore, confocal microscopy showed that activated GR was bound to LANA and accumulated in the nucleus, leading to an increase in binding of activated GR to the glucocorticoid response element of target genes. Taken together, KSHV-derived LANA acts as a transcriptional co-activator of GR. Our results might suggest a careful use of glucocorticoids in the treatment of patients with KSHV-related malignancies such as Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. - Highlights: • KSHV-LANA enhances the transcriptional activity of GR in 293T and HeLa cells. • KSHV-LANA physically associates with GR. • KSHV-LANA enhances GR activation and cell growth suppression in human B-lymphocytes. • KSHV-LANA influences the nuclear retention and DNA binding activity of GR.

  13. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability

    Directory of Open Access Journals (Sweden)

    Yun-Liang Cui

    2016-01-01

    Conclusions: The rhubarb mixture of emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl-β-D-glucose, daucosterol linoleate, and rhein, at a low concentration, antagonized the MMP9-induced HUVEC monolayer permeability by promoting HUVEC proliferation and reducing extracellular VE-cadherin concentrations.

  14. Analysis of Determinants in Filovirus Glycoproteins Required for Tetherin Antagonism

    Directory of Open Access Journals (Sweden)

    Kerstin Gnirß

    2014-04-01

    Full Text Available The host cell protein tetherin can restrict the release of enveloped viruses from infected cells. The HIV-1 protein Vpu counteracts tetherin by removing it from the site of viral budding, the plasma membrane, and this process depends on specific interactions between the transmembrane domains of Vpu and tetherin. In contrast, the glycoproteins (GPs of two filoviruses, Ebola and Marburg virus, antagonize tetherin without reducing surface expression, and the domains in GP required for tetherin counteraction are unknown. Here, we show that filovirus GPs depend on the presence of their authentic transmembrane domains for virus-cell fusion and tetherin antagonism. However, conserved residues within the transmembrane domain were dispensable for membrane fusion and tetherin counteraction. Moreover, the insertion of the transmembrane domain into a heterologous viral GP, Lassa virus GPC, was not sufficient to confer tetherin antagonism to the recipient. Finally, mutation of conserved residues within the fusion peptide of Ebola virus GP inhibited virus-cell fusion but did not ablate tetherin counteraction, indicating that the fusion peptide and the ability of GP to drive host cell entry are not required for tetherin counteraction. These results suggest that the transmembrane domains of filoviral GPs contribute to tetherin antagonism but are not the sole determinants.

  15. Antagonism in the carbon footprint between beef and dairy ...

    African Journals Online (AJOL)

    The higher increase in production (milk) of intensive dairy cows, compared to the increase in production (calf weight) of intensive beef cows, explains the antagonism in the carbon footprint between different beef and dairy production systems. Unfortunately, carbon sequestration estimates have been neglected and thus the ...

  16. GIP-(3-42) does not antagonize insulinotropic effects of GIP at physiological concentrations

    DEFF Research Database (Denmark)

    Deacon, Carolyn F; Plamboeck, Astrid; Rosenkilde, Mette M

    2006-01-01

    Glucose-dependent insulinotropic polypeptide [GIP-(1-42)] is degraded by dipeptidyl peptidase IV (DPP IV), forming GIP-(3-42). In mice, high concentrations of synthetic GIP-(3-42) may function as a GIP receptor antagonist, but it is unclear whether this occurs at physiological concentrations...... GIP, GIP-(3-42) behaved as a weak antagonist (IC(50), 92 and 731 nM for inhibition of cAMP accumulation elicited by 10 pM and 1 nM native GIP, respectively). In the isolated perfused rat pancreas, GIP-(3-42) alone had no effect on insulin output and only reduced the response to GIP (1 nM) when......-42) can weakly antagonize cAMP accumulation and insulin output in vitro, it does not behave as a physiological antagonist in vivo....

  17. Exploitative and hierarchical antagonism in a cooperative bacterium.

    Directory of Open Access Journals (Sweden)

    Francesca Fiegna

    2005-11-01

    Full Text Available Social organisms that cooperate with some members of their own species, such as close relatives, may fail to cooperate with other genotypes of the same species. Such noncooperation may take the form of outright antagonism or social exploitation. Myxococcus xanthus is a highly social prokaryote that cooperatively develops into spore-bearing, multicellular fruiting bodies in response to starvation. Here we have characterized the nature of social interactions among nine developmentally proficient strains of M. xanthus isolated from spatially distant locations. Strains were competed against one another in all possible pairwise combinations during starvation-induced development. In most pairings, at least one competitor exhibited strong antagonism toward its partner and a majority of mixes showed bidirectional antagonism that decreased total spore production, even to the point of driving whole populations to extinction. Differential response to mixing was the primary determinant of competitive superiority rather than the sporulation efficiencies of unmixed populations. In some competitive pairings, the dominant partner sporulated more efficiently in mixed populations than in clonal isolation. This finding represents a novel form of exploitation in bacteria carried out by socially competent genotypes and is the first documentation of social exploitation among natural bacterial isolates. Patterns of antagonistic superiority among these strains form a highly linear dominance hierarchy. At least some competition pairs construct chimeric, rather than segregated, fruiting bodies. The cooperative prokaryote M. xanthus has diverged into a large number of distinct social types that cooperate with clone-mates but exhibit intense antagonism toward distinct social types of the same species. Most lengthy migration events in nature may thus result in strong antagonism between migratory and resident populations, and this antagonism may have large effects on local

  18. Haploinsufficiency of the insulin-like growth factor-1 receptor enhances endothelial repair and favorably modifies angiogenic progenitor cell phenotype.

    Science.gov (United States)

    Yuldasheva, Nadira Y; Rashid, Sheikh Tawqeer; Haywood, Natalie J; Cordell, Paul; Mughal, Romana; Viswambharan, Hema; Imrie, Helen; Sukumar, Piruthivi; Cubbon, Richard M; Aziz, Amir; Gage, Matthew; Mbonye, Kamatamu Amanda; Smith, Jessica; Galloway, Stacey; Skromna, Anna; Scott, D Julian A; Kearney, Mark T; Wheatcroft, Stephen B

    2014-09-01

    Defective endothelial regeneration predisposes to adverse arterial remodeling and is thought to contribute to cardiovascular disease in type 2 diabetes mellitus. We recently demonstrated that the type 1 insulin-like growth factor receptor (IGF1R) is a negative regulator of insulin sensitivity and nitric oxide bioavailability. In this report, we examined partial deletion of the IGF1R as a potential strategy to enhance endothelial repair. We assessed endothelial regeneration after wire injury in mice and abundance and function of angiogenic progenitor cells in mice with haploinsufficiency of the IGF1R (IGF1R(+/-)). Endothelial regeneration after arterial injury was accelerated in IGF1R(+/-) mice. Although the yield of angiogenic progenitor cells was lower in IGF1R(+/-) mice, these angiogenic progenitor cells displayed enhanced adhesion, increased secretion of insulin-like growth factor-1, and enhanced angiogenic capacity. To examine the relevance of IGF1R manipulation to cell-based therapy, we transfused IGF1R(+/-) bone marrow-derived CD117(+) cells into wild-type mice. IGF1R(+/-) cells accelerated endothelial regeneration after arterial injury compared with wild-type cells and did not alter atherosclerotic lesion formation. Haploinsufficiency of the IGF1R is associated with accelerated endothelial regeneration in vivo and enhanced tube forming and adhesive potential of angiogenic progenitor cells in vitro. Partial deletion of IGF1R in transfused bone marrow-derived CD117(+) cells enhanced their capacity to promote endothelial regeneration without altering atherosclerosis. Our data suggest that manipulation of the IGF1R could be exploited as novel therapeutic approach to enhance repair of the arterial wall after injury. © 2014 American Heart Association, Inc.

  19. Inflammatory changes in adipose tissue enhance expression of GPR84, a medium-chain fatty acid receptor: TNFα enhances GPR84 expression in adipocytes.

    Science.gov (United States)

    Nagasaki, Hiroshi; Kondo, Takaaki; Fuchigami, Masahiro; Hashimoto, Hiroyuki; Sugimura, Yoshihisa; Ozaki, Nobuaki; Arima, Hiroshi; Ota, Akira; Oiso, Yutaka; Hamada, Yoji

    2012-02-17

    In this study we aimed to identify the physiological roles of G protein-coupled receptor 84 (GPR84) in adipose tissue, together with medium-chain fatty acids (MCFAs), the specific ligands for GPR84. In mice, high-fat diet up-regulated GPR84 expression in fat pads. In 3T3-L1 adipocytes, co-culture with a macrophage cell line, RAW264, or TNFα remarkably enhanced GPR84 expression. In the presence of TNFα, MCFAs down-regulated adiponectin mRNA expression in 3T3-L1 adipocytes. Taken together, our results suggest that GPR84 emerges in adipocytes in response to TNFα from infiltrating macrophages and exacerbates the vicious cycle between adiposity and diabesity. Copyright © 2012 Federation of European Biochemical Societies. All rights reserved.

  20. Antagonism by supidimide of haloperidol-induced augmentation of [3H]-spiperone binding in rat striatum

    International Nuclear Information System (INIS)

    Hennies, H.H.; Hess, V.; Flohe, L.

    1984-01-01

    Rats were treated for two weeks with haloperidol alone or with additional test drugs and the D 2 receptor density in the striatum was investigated after a drug-free period of five days. The D 2 receptor system as analysed by [ 3 H]-spinerone binding was best characterized by a model with two binding sites of different affinity. Chronic haloperidol treatment substantially augmented the total binding capacity 2-(2-Oxo-3-piperidyl)-1,2-benzisothiazoline-3-one-1,1-dioxide (supidimide), a functional synergist of neuroleptics in acute experiments, surprisingly antagonized the haloperidol-induced receptor augmentation, whereas other CNS depressants (diazepam and phenobarbital) were ineffective. (orig./MG) [de

  1. Antagonism by supidimide of haloperidol-induced augmentation of (/sup 3/H)-spiperone binding in rat striatum

    Energy Technology Data Exchange (ETDEWEB)

    Hennies, H H; Hess, V; Flohe, L

    1984-01-01

    Rats were treated for two weeks with haloperidol alone or with additional test drugs and the D/sub 2/ receptor density in the striatum was investigated after a drug-free period of five days. The D/sub 2/ receptor system as analysed by (/sup 3/H)-spinerone binding was best characterized by a model with two binding sites of different affinity. Chronic haloperidol treatment substantially augmented the total binding capacity 2-(2-Oxo-3-piperidyl)-1,2-benzisothiazoline-3-one-1,1-dioxide (supidimide), a functional synergist of neuroleptics in acute experiments, surprisingly antagonized the haloperidol-induced receptor augmentation, whereas other CNS depressants (diazepam and phenobarbital) were ineffective.

  2. Reboxetine Enhances the Olanzapine-Induced Antipsychotic-Like Effect, Cortical Dopamine Outflow and NMDA Receptor-Mediated Transmission

    Science.gov (United States)

    Marcus, Monica M; Jardemark, Kent; Malmerfelt, Anna; Björkholm, Carl; Svensson, Torgny H

    2010-01-01

    Preclinical data have shown that addition of the selective norepinephrine transporter (NET) inhibitor reboxetine increases the antipsychotic-like effect of the D2/3 antagonist raclopride and, in parallel, enhances cortical dopamine output. Subsequent clinical results suggested that adding reboxetine to stable treatments with various antipsychotic drugs (APDs) may improve positive, negative and depressive symptoms in schizophrenia. In this study, we investigated in rats the effects of adding reboxetine to the second-generation APD olanzapine on: (i) antipsychotic efficacy, using the conditioned avoidance response (CAR) test, (ii) extrapyramidal side effect (EPS) liability, using a catalepsy test, (iii) dopamine efflux in the medial prefrontal cortex and the nucleus accumbens, using in vivo microdialysis in freely moving animals and (iv) cortical N-methyl--aspartate (NMDA) receptor-mediated transmission, using intracellular electrophysiological recording in vitro. Reboxetine (6 mg/kg) enhanced the suppression of CAR induced by a suboptimal dose (1.25 mg/kg), but not an optimal (2.5 mg/kg) dose of olanzapine without any concomitant catalepsy. Addition of reboxetine to the low dose of olanzapine also markedly increased cortical dopamine outflow and facilitated prefrontal NMDA receptor-mediated transmission. Our data suggest that adjunctive treatment with a NET inhibitor may enhance the therapeutic effect of low-dose olanzapine in schizophrenia without increasing EPS liability and add an antidepressant action, thus in principle allowing for a dose reduction of olanzapine with a concomitant reduction of dose-related side effects, such as EPS and weight gain. PMID:20463659

  3. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer

    International Nuclear Information System (INIS)

    Jala, Venkatakrishna Rao; Radde, Brandie N; Haribabu, Bodduluri; Klinge, Carolyn M

    2012-01-01

    G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E 2 ), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression

  4. Multiple receptor conformers based molecular docking study of fluorine enhanced ethionamide with mycobacterium enoyl ACP reductase (InhA).

    Science.gov (United States)

    Khan, Akib Mahmud; Shawon, Jakaria; Halim, Mohammad A

    2017-10-01

    A major limitation in current molecular docking method is that of failure to account for receptor flexibility. Herein we report multiple receptor conformers based molecular docking as a practical alternative to account for the receptor flexibility. Multiple (forty) conformers of Mycobacterium Enoyl ACP Reductase (InhA) are generated from Molecular Dynamics simulation and twenty crystallographic structures of InhA bound to different inhibitors are obtained from the Protein Data Bank. Fluorine directed modifications are performed to currently available anti-tuberculosis drug ethionamide. The modified drugs are optimized using B3LYP 6-31G (d,p) level of theory. Dipole moment, frontier orbital gap and thermodynamical properties such as electronic energy, enthalpy and Gibbs free energy of these optimized drugs are investigated. These drugs are subsequently docked against the conformers of InhA. Molecular docking against multiple InhA conformations show variation in ligand binding affinity and suggest that Ser94, Gly96, Lys165 and Ile194 amino acids play critical role on strong drug-InhA interaction. Modified drug N1 showed greater binding affinity compared to EN in most conformations. Structure of PDB ID: 2NSD and snapshot conformer at 5.5ns show most favorable binding with N1 compared to other conformers. Fluorine participates in forming fluorine bonds and contributes significantly in increasing binding affinity. Our study reveal that addition of trifluoromethyl group explicitly shows promise in improving thermodynamic properties and in enhancing hydrogen bonding and non-bonded interactions. Molecular dynamics (MD) simulation show that EN and N1 remained in the binding pocket similar to the docked pose of EN-InhA and E1-InhA complexes and also suggested that InhA binds to its inhibitor in inhibitor-induced folding manner. ADMET calculations predict modified drugs to have improved pharmacokinetic properties. Our study concludes that multiple receptor conformers based

  5. Enhanced Polyubiquitination of Shank3 and NMDA receptor in a mouse model of Autism

    OpenAIRE

    Bangash, M Ali; Park, Joo Min; Melnikova, Tatiana; Wang, Dehua; Jeon, Soo Kyeong; Lee, Deidre; Syeda, Sbaa; Kim, Juno; Kouser, Mehreen; Schwartz, Joshua; Cui, Yiyuan; Zhao, Xia; Speed, Haley E.; Kee, Sara E.; Tu, Jian Cheng

    2011-01-01

    We have created a mouse genetic model that mimics a human mutation of Shank3 that deletes the C-terminus and is associated with autism. Expressed as a single copy [Shank3(+/ΔC) mice], Shank3ΔC protein interacts with the WT gene product and results in >90 % reduction of Shank3 at synapses. This “gain of function” phenotype is linked to increased polyubiquitination of WT Shank3 and its redistribution into proteasomes. Similarly, the NR1 subunit of the NMDA receptor is reduced at synapses with i...

  6. AT2-receptor stimulation enhances axonal plasticity after spinal cord injury by upregulating BDNF expression

    DEFF Research Database (Denmark)

    Namsolleck, Pawel; Boato, Francesco; Schwengel, Katja

    2013-01-01

    -culture of GFP-positive entorhinal cortices with hippocampal target tissue served to evaluate the impact of C21 on reinnervation. Neuronal differentiation, apoptosis and expression of neurotrophins were investigated in primary murine astrocytes and neuronal cells. C21 significantly improved functional recovery...... outgrowth was absent in neurons derived from AT2R-KO mice. In primary neurons, treatment with C21 further induced RNA expression of anti-apoptotic Bcl-2 (+75.7%), brain-derived neurotrophic factor (BDNF) (+53.7%), the neurotrophin receptors TrkA (+57.4%) and TrkB (+67.9%) and a marker for neurite growth...

  7. Toll-like receptor-2 deficiency enhances non-alcoholic steatohepatitis

    Directory of Open Access Journals (Sweden)

    Brady Kristen

    2010-05-01

    Full Text Available Abstract Background Previously we reported that mice deficient in toll-like receptor 4 (TLR-4 signalling were protected from diet-induced non-alcoholic steatohepatitis (NASH. Another member of the toll-like receptor family, TLR-2, has been shown to play a role in lipid trafficking via uptake of diacylated lipoproteins. However, a role for TLR-2 in NASH has not been elucidated. The objectives of the current study were to examine the influence of dietary fat quality and TLR-2 on NASH pathogenesis. Methods Steatohepatitis was induced in male Db, C57BL/6 and TLR-2-/- mice by feeding an L-amino acid-defined diet that was deficient in methionine and choline (MCDD. Mice fed the base diet supplemented with methionine and choline (control diet; CD were used as controls. To determine the role of fat quality, MCDD was enriched with polyunsaturated corn oil (PUFA or coconut oil that is comprised mostly of saturated fat (SAFA; the total amount of each fat was 112.9 g/kg of diet. After 8 weeks of feeding CD or MCDD, hepatic steatosis, inflammation and necrosis were evaluated in histological sections. Total RNA was extracted from frozen liver samples and mRNA expression of TNFα, collagen α1, IL-10, peroxisome proliferator-activated receptor-γ (PPAR-γ, TLR-4, and CD14, was analyzed via real-time PCR. Protein levels of TLR-2 were analyzed by western blot. Results Panlobular macrovessicular steatosis and diffuse leukocyte infiltration were noted in PUFA-fed Db mice. Histological scores demonstrated significantly less steatosis, inflammation and necrosis in SAFA-fed mice of all mouse strains. However, compared to wild type mice, hepatocellular damage was notably more severe in TLR-2-/- mice. Consistent with histological findings, mRNA expression of TNFα was elevated by approximately 3-fold in TLR-2-/- mice; PPAR-γ expression was blunted in this strain compared to wild type. Expression of the matrix protein collagen αI was also significantly higher in TLR-2

  8. Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site.

    Directory of Open Access Journals (Sweden)

    Barna Dey

    2009-05-01

    Full Text Available The human immunodeficiency virus type 1 (HIV-1 exterior envelope glycoprotein, gp120, possesses conserved binding sites for interaction with the primary virus receptor, CD4, and also for the co-receptor, generally CCR5. Although gp120 is a major target for virus-specific neutralizing antibodies, the gp120 variable elements and its malleable nature contribute to evasion of effective host-neutralizing antibodies. To understand the conformational character and immunogenicity of the gp120 receptor binding sites as potential vaccine targets, we introduced structure-based modifications to stabilize gp120 core proteins (deleted of the gp120 major variable regions into the conformation recognized by both receptors. Thermodynamic analysis of the re-engineered core with selected ligands revealed significant stabilization of the receptor-binding regions. Stabilization of the co-receptor-binding region was associated with a marked increase in on-rate of ligand binding to this site as determined by surface plasmon resonance. Rabbit immunization studies showed that the conformational stabilization of core proteins, along with increased ligand affinity, was associated with strikingly enhanced humoral immune responses against the co-receptor-binding site. These results demonstrate that structure-based approaches can be exploited to stabilize a conformational site in a large functional protein to enhance immunogenic responses specific for that region.

  9. Novel 5-HT6 receptor antagonists/D2 receptor partial agonists targeting behavioral and psychological symptoms of dementia.

    Science.gov (United States)

    Kołaczkowski, Marcin; Marcinkowska, Monika; Bucki, Adam; Śniecikowska, Joanna; Pawłowski, Maciej; Kazek, Grzegorz; Siwek, Agata; Jastrzębska-Więsek, Magdalena; Partyka, Anna; Wasik, Anna; Wesołowska, Anna; Mierzejewski, Paweł; Bienkowski, Przemyslaw

    2015-03-06

    We describe a novel class of designed multiple ligands (DMLs) combining serotonin 5-HT6 receptor (5-HT6R) antagonism with dopamine D2 receptor (D2R) partial agonism. Prototype hybrid molecules were designed using docking to receptor homology models. Diverse pharmacophore moieties yielded 3 series of hybrids with varying in vitro properties at 5-HT6R and D2R, and at M1 receptor and hERG channel antitargets. 4-(piperazin-1-yl)-1H-indole derivatives showed highest antagonist potency at 5-HT6R, with 7-butoxy-3,4-dihydroquinolin-2(1H)-one and 2-propoxybenzamide derivatives having promising D2R partial agonism. 2-(3-(4-(1-(phenylsulfonyl)-1H-indol-4-yl)piperazin-1-yl)propoxy)benzamide (47) exhibited nanomolar affinity at both 5-HT6R and D2R and was evaluated in rat models. It displayed potent antidepressant-like and anxiolytic-like activity in the Porsolt and Vogel tests, respectively, more pronounced than that of a reference selective 5-HT6R antagonist or D2R partial agonist. In addition, 47 also showed antidepressant-like activity (Porsolt's test) and anxiolytic-like activity (open field test) in aged (>18-month old) rats. In operant conditioning tests, 47 enhanced responding for sweet reward in the saccharin self-administration test, consistent with anti-anhedonic properties. Further, 47 facilitated extinction of non-reinforced responding for sweet reward, suggesting potential procognitive activity. Taken together, these studies suggest that DMLs combining 5-HT6R antagonism and D2R partial agonism may successfully target affective disorders in patients from different age groups without a risk of cognitive deficits. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Overexpression of IGF-I receptor in HeLa cells enhances in vivo radioresponse

    International Nuclear Information System (INIS)

    Kaneko, Haruna; Yu, Dong; Miura, Masahiko

    2007-01-01

    Insulin-like growth factor I receptor (IGF-IR) is a transmembrane receptor tyrosine kinase whose activation strongly promotes cell growth and survival. We previously reported that IGF-IR activity confers intrinsic radioresistance in mouse embryo fibroblasts in vitro. However, it is still unclear whether tumor cells overexpressing IGF-IR exhibit radioresistance in vivo. For this purpose, we established HeLa cells that overexpress IGF-IR (HeLa-R), subcutaneously transplanted these cells into nude mice, and examined radioresponse in the resulting solid tumors. HeLa-R cells exhibited typical in vitro phenotypes generally observed in IGF-IR-overexpressing cells, as well as significant intrinsic radioresistance in vitro compared with parent cells. As expected, the transplanted HeLa-R tumors grew at a remarkably higher rate than parent tumors. Histological analysis revealed that HeLa-R tumors expressed more VEGF and had a higher density of tumor vessels. Unexpectedly, a marked growth delay was observed in HeLa-R tumors following 10 Gy of X-irradiation. Immunostaining of HeLa-R tumors for the hypoxia marker pimonidazole revealed a significantly lower level of hypoxic cells. Moreover, clamp hypoxia significantly increased radioresistance in HeLa-R tumors. Tumor microenvironments in vivo generated by the IGF-IR expression thus could be a major factor in determining the tumor radioresponse in vivo

  11. Histamine 1 Receptor Blockade Enhances Eosinophil-Mediated Clearance of Adult Filarial Worms.

    Directory of Open Access Journals (Sweden)

    Ellen Mueller Fox

    Full Text Available Filariae are tissue-invasive nematodes that cause diseases such as elephantiasis and river blindness. The goal of this study was to characterize the role of histamine during Litomosoides sigmodontis infection of BALB/c mice, a murine model of filariasis. Time course studies demonstrated that while expression of histidine decarboxylase mRNA increases throughout 12 weeks of infection, serum levels of histamine exhibit two peaks-one 30 minutes after primary infection and one 8 weeks later. Interestingly, mice treated with fexofenadine, a histamine receptor 1 inhibitor, demonstrated significantly reduced worm burden in infected mice compared to untreated infected controls. Although fexofenadine-treated mice had decreased antigen-specific IgE levels as well as lower splenocyte IL-5 and IFNγ production, they exhibited a greater than fourfold rise in eosinophil numbers at the tissue site where adult L. sigmodontis worms reside. Fexofenadine-mediated clearance of L. sigmodontis worms was dependent on host eosinophils, as fexofenadine did not decrease worm burdens in eosinophil-deficient dblGATA mice. These findings suggest that histamine release induced by tissue invasive helminths may aid parasite survival by diminishing eosinophilic responses. Further, these results raise the possibility that combining H1 receptor inhibitors with current anthelmintics may improve treatment efficacy for filariae and other tissue-invasive helminths.

  12. Dexamethasone Enhances 1α,25-Dihydroxyvitamin D3 Effects by Increasing Vitamin D Receptor Transcription*

    Science.gov (United States)

    Hidalgo, Alejandro A.; Deeb, Kristin K.; Pike, J. Wesley; Johnson, Candace S.; Trump, Donald L.

    2011-01-01

    Calcitriol, the active form of vitamin D, in combination with the glucocorticoid dexamethasone (Dex) has been shown to increase the antitumor effects of calcitriol in squamous cell carcinoma. In this study we found that pretreatment with Dex potentiates calcitriol effects by inhibiting cell growth and increasing vitamin D receptor (VDR) and VDR-mediated transcription. Treatment with actinomycin D inhibits Vdr mRNA synthesis, indicating that Dex regulates VDR expression at transcriptional level. Real time PCR shows that treatment with Dex increases Vdr transcripts in a time- and a dose-dependent manner, indicating that Dex directly regulates expression of Vdr. RU486, an inhibitor of glucocorticoids, inhibits Dex-induced Vdr expression. In addition, the silencing of glucocorticoid receptor (GR) abolishes the induction of Vdr by Dex, indicating that Dex increases Vdr transcripts in a GR-dependent manner. A fragment located 5.2 kb upstream of Vdr transcription start site containing two putative glucocorticoid response elements (GREs) was evaluated using a luciferase-based reporter assay. Treatment with 100 nm Dex induces transcription of luciferase driven by the fragment. Deletion of the GRE distal to transcription start site was sufficient to abolish Dex induction of luciferase. Also, chromatin immunoprecipitation reveals recruitment of GR to distal GRE with Dex treatment. We conclude that Dex increases VDR and vitamin D effects by increasing Vdr de novo transcription in a GR-dependent manner. PMID:21868377

  13. Pharmacological Activators of the NR4A Nuclear Receptors Enhance LTP in a CREB/CBP-Dependent Manner.

    Science.gov (United States)

    Bridi, Morgan S; Hawk, Joshua D; Chatterjee, Snehajyoti; Safe, Stephen; Abel, Ted

    2017-05-01

    Nr4a nuclear receptors contribute to long-term memory formation and are required for long-term memory enhancement by a class of broad-acting drugs known as histone deacetylase (HDAC) inhibitors. Understanding the molecular mechanisms that regulate these genes and identifying ways to increase their activity may provide novel therapeutic approaches for ameliorating cognitive dysfunction. In the present study, we find that Nr4a gene expression after learning requires the cAMP-response element binding (CREB) interaction domain of the histone acetyltransferase CREB-binding protein (CBP). These gene expression deficits emerge at a time after learning marked by promoter histone acetylation in wild-type mice. Further, mutation of the CREB-CBP interaction domain reduces Nr4a promoter acetylation after learning. As memory enhancement by HDAC inhibitors requires CREB-CBP interaction and Nr4a gene function, these data support the notion that the balance of histone acetylation at the Nr4a promoters is critical for memory formation. NR4A ligands have recently been described, but the effect of these drugs on synaptic plasticity or memory has not been investigated. We find that the 'C-DIM' NR4A ligands, para-phenyl substituted di-indolylmethane compounds, enhance long-term contextual fear memory and increase the duration of long-term potentiation (LTP), a form of hippocampal synaptic plasticity. LTP enhancement by these drugs is eliminated in mice expressing a dominant negative form of NR4A and attenuated in mice with mutation of the CREB-CBP interaction domain. These data define the molecular connection between histone acetylation and Nr4a gene expression after learning. In addition, they suggest that NR4A-activating C-DIM compounds may serve as a potent and selective means to enhance memory and synaptic plasticity.

  14. Cognitive enhancing effect of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on learning and memory

    Science.gov (United States)

    Nade, V. S.; Kawale, L. A.; Valte, K. D.; Shendye, N. V.

    2015-01-01

    Objective: The present study was designed to investigate cognitive enhancing property of angiotensin-converting enzymes inhibitors (ACEI) and angiotensin receptor blockers (ARBs) in rats. Materials and Methods: The elevated plus maze (EPM), passive avoidance test (PAT), and water maze test (WMT) were used to assess cognitive enhancing activity in young and aged rats. Ramipril (10 mg/kg, p.o.), perindopril (10 mg/kg, i.p), losartan (20 mg/kg, i.p), and valsartan (20 mg/kg, p.o) were administered to assess their effect on learning and memory. Scopolamine (1 mg/kg, i.p) was used to impair cognitive function. Piracetam (200 mg/kg, i.p) was used as reference drug. Results: All the treatments significantly attenuated amnesia induced by aging and scopolamine. In EPM, aged and scopolamine-treated rats showed an increase in transfer latency (TL) whereas, ACEI and ARBs showed a significant decrease in TL. Treatment with ACEI and ARBs significantly increased step down latencies and decreased latency to reach the platform in target quadrant in young, aged and scopolamine-treated animals in PAT and WMT, respectively. The treatments inhibited acetylcholinesterase (AChE) enzyme in the brain. Similarly, all the treatments attenuated scopolamine-induced lipid peroxidation and normalize antioxidant enzymes. Conclusion: The results suggest that the cognitive enhancing effect of ACEI and ARBs may be due to inhibition of AChE or by regulation of antioxidant system or increase in formation of angiotensin IV. PMID:26069362

  15. Insulin receptor substrate 1 expression enhances the sensitivity of 32D cells to chemotherapy-induced cell death

    Science.gov (United States)

    Porter, Holly A.; Carey, Gregory B.; Keegan, Achsah D.

    2012-01-01

    The adaptors IRS1 and IRS2 link growth factor receptors to downstream signaling pathways that regulate proliferation and survival. Both suppress factor-withdrawal-induced apoptosis and have been implicated in cancer progression. However, recent studies suggest IRS1 and IRS2 mediate differential functions in cancer pathogenesis. IRS1 promoted breast cancer proliferation, while IRS2 promoted metastasis. The role of IRS1 and IRS2 in controlling cell responses to chemotherapy is unknown. To determine the role of IRS1 and IRS2 in the sensitivity of cells to chemotherapy, we treated 32D cells lacking or expressing IRS proteins with various concentrations of chemotherapeutic agents. We found that expression of IRS1, in contrast to IRS2, enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. When IRS2 was expressed with IRS1, the cells no longer showed enhanced sensitivity. Expression of IRS1 did not alter the expression of pro- and anti-apoptotic proteins; however, 32D-IRS1 cells expressed higher levels of Annexin A2. In 32D-IRS1 cells, IRS1 and Annexin A2 were both located in cytoplasmic and membrane fractions. We also found that IRS1 coprecipitated with Annexin A2, while IRS2 did not. Decreasing Annexin A2 levels reduced 32D-IRS1 cell sensitivity to chemotherapy. These results suggest IRS1 enhances sensitivity to chemotherapy in part through Annexin A2. PMID:22652453

  16. Bisphenol-A rapidly enhanced passive avoidance memory and phosphorylation of NMDA receptor subunits in hippocampus of young rats

    International Nuclear Information System (INIS)

    Xu Xiaohong; Li Tao; Luo Qingqing; Hong Xing; Xie Lingdan; Tian Dong

    2011-01-01

    Bisphenol-A (BPA), an endocrine disruptor, is found to influence development of brain and behaviors in rodents. The previous study indicated that perinatal exposure to BPA impaired learning-memory and inhibited N-methyl-D-aspartate receptor (NMDAR) subunits expressions in hippocampus during the postnatal development in rats; and in cultured hippocampal neurons, BPA rapidly promotes dynamic changes in dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDAR subunit NR2B. In the present study, we examined the rapid effect of BPA on passive avoidance memory and NMDAR in the developing hippocampus of Sprague-Dawley rats at the age of postnatal day 18. The results showed that BPA or estradiol benzoate (EB) rapidly extended the latency to step down from the platform 1 h after footshock and increased the phosphorylation levels of NR1, NR2B, and mitogen-activated extracellular signal-regulated kinase (ERK) in hippocampus within 1 h. While 24 h after BPA or EB treatment, the improved memory and the increased phosphorylation levels of NR1, NR2B, ERK disappeared. Furthermore, pre-treatment with an estrogen receptors (ERs) antagonist, ICI182,780, or an ERK-activating kinase inhibitor, U0126, significantly attenuated EB- or BPA-induced phosphorylations of NR1, NR2B, and ERK within 1 h. These data suggest that BPA rapidly enhanced short-term passive avoidance memory in the developing rats. A non-genomic effect via ERs may mediate the modulation of the phosphorylation of NMDAR subunits NR1 and NR2B through ERK signaling pathway. - Highlights: → BPA rapidly extended the latency to step down from platform 1 h after footshock. → BPA rapidly increased pNR1, pNR2B, and pERK in hippocampus within 1 h. → ERs antagonist or MEK inhibitor attenuated BPA-induced pNR1, pNR2B, and pERK.

  17. Water-avoidance stress enhances gastric contractions in freely moving conscious rats: role of peripheral CRF receptors.

    Science.gov (United States)

    Nozu, Tsukasa; Kumei, Shima; Takakusaki, Kaoru; Okumura, Toshikatsu

    2014-05-01

    Stress alters gastrointestinal motility through central and peripheral corticotropin-releasing factor (CRF) pathways. Accumulating evidence has demonstrated that peripheral CRF is deeply involved in the regulation of gastric motility, and enhances gastric contractions through CRF receptor type 1 (CRF1) and delays gastric emptying (GE) through CRF receptor type 2 (CRF2). Since little is known whether water-avoidance stress (WAS) alters gastric motility, the present study tried to clarify this question and the involvement of peripheral CRF receptor subtypes in the mechanisms. We recorded intraluminal gastric pressure waves using a perfused manometric method. The rats were anesthetized and the manometric catheter was inserted into the stomach 4-6 days before the experiments. We assessed the area under the manometric trace as the motor index (MI), and compared this result with those obtained 1 h before and after initiation of WAS in nonfasted conscious rats. Solid GE for 1 h was also measured. WAS significantly increased gastric contractions. Intraperitoneal (ip) administration of astressin (100 μg/kg, 5 min prior to stress), a nonselective CRF antagonist, blocked the response to WAS. On the other hand, pretreatment (5 min prior to stress) with neither astressin2-B (200 μg/kg, ip), a selective CRF2 antagonist, nor urocortin 2 (30 μg/kg, ip), a selective CRF2 agonist, modified the response to WAS. These drugs did not alter the basal MI. WAS did not change GE. WAS may activate peripheral CRF1 but not CRF2 signaling and stimulates gastric contractions without altering GE.

  18. A point mutation in the hair cell nicotinic cholinergic receptor prolongs cochlear inhibition and enhances noise protection.

    Directory of Open Access Journals (Sweden)

    Julian Taranda

    2009-01-01

    Full Text Available The transduction of sound in the auditory periphery, the cochlea, is inhibited by efferent cholinergic neurons projecting from the brainstem and synapsing directly on mechanosensory hair cells. One fundamental question in auditory neuroscience is what role(s this feedback plays in our ability to hear. In the present study, we have engineered a genetically modified mouse model in which the magnitude and duration of efferent cholinergic effects are increased, and we assess the consequences of this manipulation on cochlear function. We generated the Chrna9L9'T line of knockin mice with a threonine for leucine change (L9'T at position 9' of the second transmembrane domain of the alpha9 nicotinic cholinergic subunit, rendering alpha9-containing receptors that were hypersensitive to acetylcholine and had slower desensitization kinetics. The Chrna9L9'T allele produced a 3-fold prolongation of efferent synaptic currents in vitro. In vivo, Chrna9L9'T mice had baseline elevation of cochlear thresholds and efferent-mediated inhibition of cochlear responses was dramatically enhanced and lengthened: both effects were reversed by strychnine blockade of the alpha9alpha10 hair cell nicotinic receptor. Importantly, relative to their wild-type littermates, Chrna9(L9'T/L9'T mice showed less permanent hearing loss following exposure to intense noise. Thus, a point mutation designed to alter alpha9alpha10 receptor gating has provided an animal model in which not only is efferent inhibition more powerful, but also one in which sound-induced hearing loss can be restrained, indicating the ability of efferent feedback to ameliorate sound trauma.

  19. Toll-Like Receptor 2 Stimulation of Osteoblasts Mediates Staphylococcus Aureus Induced Bone Resorption and Osteoclastogenesis through Enhanced RANKL

    Science.gov (United States)

    Kassem, Ali; Lindholm, Catharina; Lerner, Ulf H

    2016-01-01

    Severe Staphylococcus aureus (S. aureus) infections pose an immense threat to population health and constitute a great burden for the health care worldwide. Inter alia, S. aureus septic arthritis is a disease with high mortality and morbidity caused by destruction of the infected joints and systemic bone loss, osteoporosis. Toll-Like receptors (TLRs) are innate immune cell receptors recognizing a variety of microbial molecules and structures. S. aureus recognition via TLR2 initiates a signaling cascade resulting in production of various cytokines, but the mechanisms by which S. aureus causes rapid and excessive bone loss are still unclear. We, therefore, investigated how S. aureus regulates periosteal/endosteal osteoclast formation and bone resorption. S. aureus stimulation of neonatal mouse parietal bone induced ex vivo bone resorption and osteoclastic gene expression. This effect was associated with increased mRNA and protein expression of receptor activator of NF-kB ligand (RANKL) without significant change in osteoprotegerin (OPG) expression. Bone resorption induced by S. aureus was abolished by OPG. S. aureus increased the expression of osteoclastogenic cytokines and prostaglandins in the parietal bones but the stimulatory effect of S. aureus on bone resorption and Tnfsf11 mRNA expression was independent of these cytokines and prostaglandins. Stimulation of isolated periosteal osteoblasts with S. aureus also resulted in increased expression of Tnfsf11 mRNA, an effect lost in osteoblasts from Tlr2 knockout mice. S. aureus stimulated osteoclastogenesis in isolated periosteal cells without affecting RANKL-stimulated resorption. In contrast, S. aureus inhibited RANKL-induced osteoclast formation in bone marrow macrophages. These data show that S. aureus enhances bone resorption and periosteal osteoclast formation by increasing osteoblast RANKL production through TLR2. Our study indicates the importance of using different in vitro approaches for studies of how S

  20. The role of neonatal NMDA receptor activation in defeminization and masculinization of sex behavior in the rat

    Science.gov (United States)

    Schwarz, Jaclyn M.; McCarthy, Margaret M.

    2008-01-01

    Normal development of the male rat brain involves two distinct processes, masculinization and defeminization, that occur during a critical period of brain sexual differentiation. Masculinization allows for the capacity to express male sex behavior in adulthood, and defeminization eliminates or suppresses the capacity to express female sex behavior in adulthood. Despite being separate processes, both masculinization and defeminization are induced by neonatal estradiol exposure. Though the mechanisms underlying estradiol-mediated masculinization of behavior during development have been identified, the mechanisms underlying defeminization are still unknown. We sought to determine whether neonatal activation of glutamate NMDA receptors is a necessary component of estradiol-induced defeminization of behavior. We report here that antagonizing glutamate receptors during the critical period of sexual differentiation blocks estradiol-induced defeminization but not masculinization of behavior in adulthood. However, enhancing NMDA receptor activation during the same critical period mimics estradiol to permanently induce both defeminization and masculinization of sexual behavior. PMID:18687334

  1. Evidence for spinal N-methyl-d-aspartate receptor involvement in prolonged chemical nociception in the rat.

    Science.gov (United States)

    Haley, Jane E; Dickenson, Anthony H

    2016-08-15

    We used in vivo electrophysiology and a model of more persistent nociceptive inputs to monitor spinal cord neuronal activity in anaesthetised rats to reveal the pharmacology of enhanced pain signalling. The study showed that all responses were blocked by non-selective antagonism of glutamate receptors but a selective and preferential role of the N-methyl-d-aspartate (NMDA) receptor in the prolonged plastic responses was clearly seen. The work lead to many publications, initially preclinical but increasingly from patient studies, showing the importance of the NMDA receptor in central sensitisation within the spinal cord and how this could relate to persistent pain states. This article is part of a Special Issue entitled SI:50th Anniversary Issue. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Lipid accumulation in smooth muscle cells under LDL loading is independent of LDL receptor pathway and enhanced by hypoxic conditions.

    Science.gov (United States)

    Wada, Youichiro; Sugiyama, Akira; Yamamoto, Takashi; Naito, Makoto; Noguchi, Noriko; Yokoyama, Shinji; Tsujita, Maki; Kawabe, Yoshiki; Kobayashi, Mika; Izumi, Akashi; Kohro, Takahide; Tanaka, Toshiya; Taniguchi, Hirokazu; Koyama, Hidenori; Hirano, Ken-ichi; Yamashita, Shizuya; Matsuzawa, Yuji; Niki, Etsuo; Hamakubo, Takao; Kodama, Tatsuhiko

    2002-10-01

    The effect of a variety of hypoxic conditions on lipid accumulation in smooth muscle cells (SMCs) was studied in an arterial wall coculture and monocultivation model. Low density lipoprotein (LDL) was loaded under various levels of oxygen tension. Oil red O staining of rabbit and human SMCs revealed that lipid accumulation was greater under lower oxygen tension. Cholesterol esters were shown to accumulate in an oxygen tension-dependent manner by high-performance liquid chromatographic analysis. Autoradiograms using radiolabeled LDL indicated that LDL uptake was more pronounced under hypoxia. This result holds in the case of LDL receptor-deficient rabbit SMCs. However, cholesterol biosynthesis and cellular cholesterol release were unaffected by oxygen tension. Hypoxia significantly increases LDL uptake and enhances lipid accumulation in arterial SMCs, exclusive of LDL receptor activity. Although the molecular mechanism is not clear, the model is useful for studying lipid accumulation in arterial wall cells and the difficult-to-elucidate events in the initial stage of atherogenesis.

  3. Epobis is a Nonerythropoietic and Neuroprotective Agonist of the Erythropoietin Receptor with Anti-Inflammatory and Memory Enhancing Effects

    Directory of Open Access Journals (Sweden)

    Oksana Dmytriyeva

    2016-01-01

    Full Text Available The cytokine erythropoietin (EPO stimulates proliferation and differentiation of erythroid progenitor cells. Moreover, EPO has neuroprotective, anti-inflammatory, and antioxidative effects, but the use of EPO as a neuroprotective agent is hampered by its erythropoietic activity. We have recently designed the synthetic, dendrimeric peptide, Epobis, derived from the sequence of human EPO. This peptide binds the EPO receptor and promotes neuritogenesis and neuronal cell survival. Here we demonstrate that Epobis in vitro promotes neuritogenesis in primary motoneurons and has anti-inflammatory effects as demonstrated by its ability to decrease TNF release from activated AMJ2-C8 macrophages and rat primary microglia. When administered systemically Epobis is detectable in both plasma and cerebrospinal fluid, demonstrating that the peptide crosses the blood-brain barrier. Importantly, Epobis is not erythropoietic, but systemic administration of Epobis in rats delays the clinical signs of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, and the peptide has long-term, but not short-term, effects on working memory, detected as an improved social memory 3 days after administration. These data reveal Epobis to be a nonerythropoietic and neuroprotective EPO receptor agonist with anti-inflammatory and memory enhancing properties.

  4. Angiotensin II receptor blocker telmisartan enhances running endurance of skeletal muscle through activation of the PPAR-δ/AMPK pathway.

    Science.gov (United States)

    Feng, Xiaoli; Luo, Zhidan; Ma, Liqun; Ma, Shuangtao; Yang, Dachun; Zhao, Zhigang; Yan, Zhencheng; He, Hongbo; Cao, Tingbing; Liu, Daoyan; Zhu, Zhiming

    2011-07-01

    Clinical trials have shown that angiotensin II receptor blockers reduce the new onset of diabetes in hypertensives; however, the underlying mechanisms remain unknown. We investigated the effects of telmisartan on peroxisome proliferator activated receptor γ (PPAR-δ) and the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway in cultured myotubes, as well as on the running endurance of wild-type and PPAR-δ-deficient mice. Administration of telmisartan up-regulated levels of PPAR-δ and phospho-AMPKα in cultured myotubes. However, PPAR-δ gene deficiency completely abolished the telmisartan effect on phospho-AMPKαin vitro. Chronic administration of telmisartan remarkably prevented weight gain, enhanced running endurance and post-exercise oxygen consumption, and increased slow-twitch skeletal muscle fibres in wild-type mice, but these effects were absent in PPAR-δ-deficient mice. The mechanism is involved in PPAR-δ-mediated stimulation of the AMPK pathway. Compared to the control mice, phospho-AMPKα level in skeletal muscle was up-regulated in mice treated with telmisartan. In contrast, phospho-AMPKα expression in skeletal muscle was unchanged in PPAR-δ-deficient mice treated with telmisartan. These findings highlight the ability of telmisartan to improve skeletal muscle function, and they implicate PPAR-δ as a potential therapeutic target for the prevention of type 2 diabetes. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  5. Equipoise in the enhanced supression of the platelet IIb/IIIa receptor with integrilin trial (ESPRIT): a critical appraisal.

    Science.gov (United States)

    Mann, Howard; London, Alex John; Mann, Jeffrey

    2005-01-01

    Enhanced Supression of the Platelet IIb/IIIa Receptor with Integrilin Trial (ESPRIT) was a multicenter randomized controlled clinical trial in which participants were randomized between eptifibatide and placebo. A "clinical hold" was initially placed on the trial by the US Food and Drug Administration (FDA), which was concerned about the placebo-only control arm. The hold was lifted after additional information concerning the use of platelet glycoprotein IIb/IIIa inhibitors in clinical practice, derived from a survey of interventional cardiologists, was provided. The trial's principal investigator and colleagues have described how these issues were resolved, and advance a claim of equipoise for the trial. In this critical appraisal we examine the information and arguments proffered in support of the trial design and conclude that they evidence a misunderstanding of equipoise. We believe that a placebo-only control arm was not justified by the information provided by the trialists.

  6. Hydroxylamine enhances glucose uptake in C2C12 skeletal muscle cells through the activation of insulin receptor substrate 1.

    Science.gov (United States)

    Kimura, Taro; Kato, Eisuke; Machikawa, Tsukasa; Kimura, Shunsuke; Katayama, Shinji; Kawabata, Jun

    2014-02-28

    Diabetes mellitus is a global disease, and the number of patients with it is increasing. Of various agents for treatment, those that directly act on muscle are currently attracting attention because muscle is one of the main tissues in the human body, and its metabolism is decreased in type II diabetes. In this study, we found that hydroxylamine (HA) enhances glucose uptake in C2C12 myotubes. Analysis of HA's mechanism revealed the involvement of IRS1, PI3K and Akt that is related to the insulin signaling pathway. Further investigation about the activation mechanism of insulin receptor or IRS1 by HA may provide a way to develop a novel anti-diabetic agent alternating to insulin. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Co-inhibition of epidermal growth factor receptor and insulin-like growth factor receptor 1 enhances radiosensitivity in human breast cancer cells

    International Nuclear Information System (INIS)

    Li, Ping; Veldwijk, Marlon R; Zhang, Qing; Li, Zhao-bin; Xu, Wen-cai; Fu, Shen

    2013-01-01

    Over-expression of epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor (IGF-1R) have been shown to closely correlate with radioresistance of breast cancer cells. This study aimed to investigate the impact of co-inhibition of EGFR and IGF-1R on the radiosensitivity of two breast cancer cells with different profiles of EGFR and IGF-1R expression. The MCF-7 (EGFR +/−, IGF-1R +++) and MDA-MB-468 (EGFR +++, IGF-1R +++) breast cancer cell lines were used. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle distribution were measured by flow cytometry. Phospho-Akt and phospho-Erk1/2 were quantified by western blot. In vivo studies were conducted using MDA-MB-468 cells xenografted in nu/nu mice. In MDA-MB-468 cells, the inhibition of IGF-1R upregulated the p-EGFR expression. Either EGFR (AG1478) or IGF-1R inhibitor (AG1024) radiosensitized MDA-MB-468 cells. In MCF-7 cells, radiosensitivity was enhanced by AG1024, but not by AG1478. Synergistical radiosensitizing effect was observed by co-inhibition of EGFR and IGF-1R only in MDA-MB-468 cells with a DMF 10% of 1.90. The co-inhibition plus irradiation significantly induced more apoptosis and arrested the cells at G0/G1 phase in MDA-MB-468 cells. Only co-inhibition of EGFR and IGF-1R synergistically diminished the expression of p-Akt and p-Erk1/2 in MDA-MB-468 cells. In vivo studies further verified the radiosensitizing effects by co-inhibition of both pathways in a MDA-MB-468 xenograft model. Our data suggested that co-inhibition of EGFR and IGF-1R synergistically radiosensitized breast cancer cells with both EGFR and IGF-1R high expression. The approach may have an important therapeutic implication in the treatment of breast cancer patients with high expression of EGFR and IGF-1R

  8. Boldine enhances bile production in rats via osmotic and Farnesoid X receptor dependent mechanisms

    International Nuclear Information System (INIS)

    Cermanova, Jolana; Kadova, Zuzana; Zagorova, Marie; Hroch, Milos; Tomsik, Pavel; Nachtigal, Petr; Kudlackova, Zdenka; Pavek, Petr; Dubecka, Michaela; Ceckova, Martina; Staud, Frantisek; Laho, Tomas; Micuda, Stanislav

    2015-01-01

    Boldine, the major alkaloid from the Chilean Boldo tree, is used in traditional medicine to support bile production, but evidence to support this function is controversial. We analyzed the choleretic potential of boldine, including its molecular background. The acute- and long-term effects of boldine were evaluated in rats either during intravenous infusion or after 28-day oral treatment. Infusion of boldine instantly increased the bile flow 1.4-fold in healthy rats as well as in animals with Mrp2 deficiency or ethinylestradiol induced cholestasis. This effect was not associated with a corresponding increase in bile acid or glutathione biliary excretion, indicating that the effect is not related to stimulation of either bile acid dependent or independent mechanisms of bile formation and points to the osmotic activity of boldine itself. We subsequently analyzed bile production under conditions of changing biliary excretion of boldine after bolus intravenous administration and found strong correlations between both parameters. HPLC analysis showed that bile concentrations of boldine above 10 μM were required for induction of choleresis. Importantly, long-term pretreatment, when the bile collection study was performed 24-h after the last administration of boldine, also accelerated bile formation despite undetectable levels of the compound in bile. The effect paralleled upregulation of the Bsep transporter and increased biliary clearance of its substrates, bile acids. We consequently confirmed the ability of boldine to stimulate the Bsep transcriptional regulator, FXR receptor. In conclusion, our study clarified the mechanisms and circumstances surrounding the choleretic activity of boldine. - Highlights: • Boldine may increase bile production by direct as well as indirect mechanisms. • Biliary concentrations of boldine above 10 μM directly stimulate bile production. • Long-term oral boldine administration increases bile acid (BA) biliary secretion. • Boldine

  9. Homology-Directed Recombination for Enhanced Engineering of Chimeric Antigen Receptor T Cells

    Directory of Open Access Journals (Sweden)

    Malika Hale

    2017-03-01

    Full Text Available Gene editing by homology-directed recombination (HDR can be used to couple delivery of a therapeutic gene cassette with targeted genomic modifications to generate engineered human T cells with clinically useful profiles. Here, we explore the functionality of therapeutic cassettes delivered by these means and test the flexibility of this approach to clinically relevant alleles. Because CCR5-negative T cells are resistant to HIV-1 infection, CCR5-negative anti-CD19 chimeric antigen receptor (CAR T cells could be used to treat patients with HIV-associated B cell malignancies. We show that targeted delivery of an anti-CD19 CAR cassette to the CCR5 locus using a recombinant AAV homology template and an engineered megaTAL nuclease results in T cells that are functionally equivalent, in both in vitro and in vivo tumor models, to CAR T cells generated by random integration using lentiviral delivery. With the goal of developing off-the-shelf CAR T cell therapies, we next targeted CARs to the T cell receptor alpha constant (TRAC locus by HDR, producing TCR-negative anti-CD19 CAR and anti-B cell maturation antigen (BCMA CAR T cells. These novel cell products exhibited in vitro cytolytic activity against both tumor cell lines and primary cell targets. Our combined results indicate that high-efficiency HDR delivery of therapeutic genes may provide a flexible and robust method that can extend the clinical utility of cell therapeutics.

  10. Boldine enhances bile production in rats via osmotic and Farnesoid X receptor dependent mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Cermanova, Jolana [Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Kadova, Zuzana [Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Deparment of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove (Czech Republic); Zagorova, Marie [Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Hroch, Milos [Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Department of Medical Biochemistry, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Tomsik, Pavel [Department of Medical Biochemistry, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Nachtigal, Petr; Kudlackova, Zdenka [Department of Biological and Medical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove (Czech Republic); Pavek, Petr; Dubecka, Michaela; Ceckova, Martina; Staud, Frantisek [Deparment of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove (Czech Republic); Laho, Tomas [Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Micuda, Stanislav, E-mail: micuda@lfhk.cuni.cz [Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic)

    2015-05-15

    Boldine, the major alkaloid from the Chilean Boldo tree, is used in traditional medicine to support bile production, but evidence to support this function is controversial. We analyzed the choleretic potential of boldine, including its molecular background. The acute- and long-term effects of boldine were evaluated in rats either during intravenous infusion or after 28-day oral treatment. Infusion of boldine instantly increased the bile flow 1.4-fold in healthy rats as well as in animals with Mrp2 deficiency or ethinylestradiol induced cholestasis. This effect was not associated with a corresponding increase in bile acid or glutathione biliary excretion, indicating that the effect is not related to stimulation of either bile acid dependent or independent mechanisms of bile formation and points to the osmotic activity of boldine itself. We subsequently analyzed bile production under conditions of changing biliary excretion of boldine after bolus intravenous administration and found strong correlations between both parameters. HPLC analysis showed that bile concentrations of boldine above 10 μM were required for induction of choleresis. Importantly, long-term pretreatment, when the bile collection study was performed 24-h after the last administration of boldine, also accelerated bile formation despite undetectable levels of the compound in bile. The effect paralleled upregulation of the Bsep transporter and increased biliary clearance of its substrates, bile acids. We consequently confirmed the ability of boldine to stimulate the Bsep transcriptional regulator, FXR receptor. In conclusion, our study clarified the mechanisms and circumstances surrounding the choleretic activity of boldine. - Highlights: • Boldine may increase bile production by direct as well as indirect mechanisms. • Biliary concentrations of boldine above 10 μM directly stimulate bile production. • Long-term oral boldine administration increases bile acid (BA) biliary secretion. • Boldine

  11. Neuroprotective and memory enhancing properties of a dual agonist of the FGF receptor and NCAM

    DEFF Research Database (Denmark)

    Enevoldsen, Maj N; Kochoyan, Artur; Jurgenson, Monika

    2012-01-01

    subcutaneous administration, enhances long-term memory in normal mice and ameliorates memory deficit in mice with induced brain inflammation. Moreover, Enreptin reduces cognitive impairment and neuronal death induced by Aß25-35 in a rat model of Alzheimer's disease, and reduces the mortality rate and clinical...

  12. Dual interaction of agmatine with the rat α2D-adrenoceptor: competitive antagonism and allosteric activation

    Science.gov (United States)

    Molderings, G J; Menzel, S; Kathmann, M; Schlicker, E; Göthert, M

    2000-01-01

    In segments of rat vena cava preincubated with [3H]-noradrenaline and superfused with physiological salt solution, the influence of agmatine on the electrically evoked [3H]-noradrenaline release, the EP3 prostaglandin receptor-mediated and the α2D-adrenoceptor-mediated inhibition of evoked [3H]-noradrenaline release was investigated. Agmatine (0.1–10 μM) by itself was without effect on evoked [3H]-noradrenaline release. In the presence of 10 μM agmatine, the prostaglandin E2(PGE2)-induced EP3-receptor-mediated inhibition of [3H]-noradrenaline release was not modified, whereas the α2D-adrenoceptor-mediated inhibition of [3H]-noradrenaline release induced by noradrenaline, moxonidine or clonidine was more pronounced than in the absence of agmatine. However, 1 mM agmatine antagonized the moxonidine-induced inhibition of [3H]-noradrenaline release. Agmatine concentration-dependently inhibited the binding of [3H]-clonidine and [3H]-rauwolscine to rat brain cortex membranes (Ki values 6 μM and 12 μM, respectively). In addition, 30 and 100 μM agmatine increased the rate of association and decreased the rate of dissociation of [3H]-clonidine resulting in an increased affinity of the radioligand for the α2D-adrenoceptors. [14C]-agmatine labelled specific binding sites on rat brain cortex membranes. In competition experiments. [14C]-agmatine was inhibited from binding to its specific recognition sites by unlabelled agmatine, but not by rauwolscine and moxonidine. In conclusion, the present data indicate that agmatine both acts as an antagonist at the ligand recognition site of the α2D-adrenoceptor and enhances the effects of α2-adrenoceptor agonists probably by binding to an allosteric binding site of the α2D-adrenoceptor which seems to be labelled by [14C]-agmatine. PMID:10928978

  13. Cerebral, spinal and peripheral inhibition of gastrointestinal transit by PI017: differential antagonism by naloxonazine

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.L.; Heyman, J.S.; Porreca, F.; Burks, T.F.

    1986-03-05

    The authors were interested in characterizing the relative importance of central (cerebral, spinal) and peripheral opioid receptors in inhibition of gastrointestinal transit. The mu-receptor selective agonist, (NMePhe/sup 3/,D-Pro/sup 4/)morphiceptin (PL017), was evaluated for its effectiveness in slowing gastrointestinal transit after subcutaneous, intracerebroventricular (i.c.v.) or intrathecal (i.th.) administration when given alone or after pretreatment with naloxonazine, an irreversible mu/sub 1/ selective opioid receptor antagonist. Male, ICR mice (20-25 g) were pretreated with saline, naloxone or naloxonazine (35 mg/kg, s.c.) 25 hr prior to testing. Gastrointestinal transit was evaluated in previously fasted (18 hr) mice by oral administration of a liquid radiolabelled marker (Na/sub 2//sup 51/CrO/sub 4/). I.th. PL017 (100-1000 ng) was effective in slowing transit, but was essentially insensitive to naloxone or naloxonazine pretreatment. PL017 produced a dose-related inhibition of transit when given by either the i.c.v. (100-1000 ng) or s.c.(1-10 mg/kg) route; this effect was not sensitive to naloxone pretreatment but was antagonized by naloxonazine. These results indicate that the opioid receptors mediating gastrointestinal transit in the brain and periphery may be mu/sub 1/. In contrast, the insensitivity to naloxonazine suggests that the gastrointestinal effects of PL017 in the spinal cord may be the result of activation of mu/sub 2/ or possibly delta opioid receptors.

  14. Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by ifenprodil: the role of sigma-1 and IP3 receptors.

    Directory of Open Access Journals (Sweden)

    Tamaki Ishima

    Full Text Available In addition to both the α1 adrenergic receptor and N-methyl-D-aspartate (NMDA receptor antagonists, ifenprodil binds to the sigma receptor subtypes 1 and 2. In this study, we examined the effects of ifenprodil on nerve growth factor (NGF-induced neurite outgrowth in PC12 cells. Ifenprodil significantly potentiated NGF-induced neurite outgrowth, in a concentration-dependent manner. In contrast, the α1 adrenergic receptor antagonist, prazosin and the NMDA receptor NR2B antagonist, Ro 25-6981 did not alter NGF-induced neurite outgrowth. Potentiation of NGF-induced neurite outgrowth mediated by ifenprodil was significantly antagonized by co-administration of the selective sigma-1 receptor antagonist, NE-100, but not the sigma-2 receptor antagonist, SM-21. Similarly, ifenprodil enhanced NGF-induced neurite outgrowth was again significantly reduced by the inositol 1,4,5-triphosphate (IP(3 receptor antagonists, xestospongin C and 2-aminoethoxydiphenyl borate (2-APB treatment. Furthermore, BAPTA-AM, a chelator of intracellular Ca(2+, blocked the effects of ifenprodil on NGF-induced neurite outgrowth, indicating the role of intracellular Ca(2+ in the neurite outgrowth. These findings suggest that activation at sigma-1 receptors and subsequent interaction with IP(3 receptors may mediate the pharmacological effects of ifenprodil on neurite outgrowth.

  15. Insulin receptor substrate 1 expression enhances the sensitivity of 32D cells to chemotherapy-induced cell death

    International Nuclear Information System (INIS)

    Porter, Holly A.; Carey, Gregory B.; Keegan, Achsah D.

    2012-01-01

    The adapters IRS1 and IRS2 link growth factor receptors to downstream signaling pathways that regulate proliferation and survival. Both suppress factor-withdrawal-induced apoptosis and have been implicated in cancer progression. However, recent studies suggest IRS1 and IRS2 mediate differential functions in cancer pathogenesis. IRS1 promoted breast cancer proliferation, while IRS2 promoted metastasis. The role of IRS1 and IRS2 in controlling cell responses to chemotherapy is unknown. To determine the role of IRS1 and IRS2 in the sensitivity of cells to chemotherapy, we treated 32D cells lacking or expressing IRS proteins with various concentrations of chemotherapeutic agents. We found that expression of IRS1, in contrast to IRS2, enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. When IRS2 was expressed with IRS1, the cells no longer showed enhanced sensitivity. Expression of IRS1 did not alter the expression of pro- and anti-apoptotic proteins; however, 32D-IRS1 cells expressed higher levels of Annexin A2. In 32D-IRS1 cells, IRS1 and Annexin A2 were both located in cytoplasmic and membrane fractions. We also found that IRS1 coprecipitated with Annexin A2, while IRS2 did not. Decreasing Annexin A2 levels reduced 32D-IRS1 cell sensitivity to chemotherapy. These results suggest IRS1 enhances sensitivity to chemotherapy in part through Annexin A2. -- Highlights: ► IRS1 enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. ► This sensitivity is abrogated by the expression of IRS2. ► Expressing IRS1 in 32D cells increased levels of Annexin A2. ► Both IRS1 and Annexin A2 were located in cytoplasmic and membrane fractions. ► Decreasing Annexin A2 in 32D-IRS1 cells abated their sensitivity to chemotherapy.

  16. Lectin-dependent enhancement of Ebola virus infection via soluble and transmembrane C-type lectin receptors.

    Directory of Open Access Journals (Sweden)

    Matthew Brudner

    Full Text Available Mannose-binding lectin (MBL is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion

  17. Lectin-dependent enhancement of Ebola virus infection via soluble and transmembrane C-type lectin receptors.

    Science.gov (United States)

    Brudner, Matthew; Karpel, Marshall; Lear, Calli; Chen, Li; Yantosca, L Michael; Scully, Corinne; Sarraju, Ashish; Sokolovska, Anna; Zariffard, M Reza; Eisen, Damon P; Mungall, Bruce A; Kotton, Darrell N; Omari, Amel; Huang, I-Chueh; Farzan, Michael; Takahashi, Kazue; Stuart, Lynda; Stahl, Gregory L; Ezekowitz, Alan B; Spear, Gregory T; Olinger, Gene G; Schmidt, Emmett V; Michelow, Ian C

    2013-01-01

    Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active

  18. Histone modification enhances the effectiveness of IL-13 receptor targeted immunotoxin in murine models of human pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Puri Raj K

    2011-04-01

    Full Text Available Abstract Background Interleukin-13 Receptor α2 (IL-13Rα2 is a tumor-associated antigen and target for cancer therapy. Since IL-13Rα2 is heterogeneously overexpressed in a variety of human cancers, it would be highly desirable to uniformly upregulate IL-13Rα2 expression in tumors for optimal targeting. Methods We examined epigenetic regulation of IL-13Rα2 in a murine model of human pancreatic cancer by Bisulfite-PCR, sequencing for DNA methylation and chromatin immunoprecipitation for histone modification. Reverse transcription-PCR was performed for examining changes in IL-13Rα2 mRNA expression after treatment with histone deacetylase (HDAC and c-jun inhibitors. In vitro cytotoxicity assays and in vivo testing in animal tumor models were performed to determine whether HDAC inhibitors could enhance anti-tumor effects of IL-13-PE in pancreatic cancer. Mice harboring subcutaneous tumors were treated with HDAC inhibitors systemically and IL-13-PE intratumorally. Results We found that CpG sites in IL-13Rα2 promoter region were not methylated in all pancreatic cancer cell lines studied including IL-13Rα2-positive and IL-13Rα2-negative cell lines and normal cells. On the other hand, histones at IL-13Rα2 promoter region were highly-acetylated in IL-13Rα2-positive but much less in receptor-negative pancreatic cancer cell lines. When cells were treated with HDAC inhibitors, not only histone acetylation but also IL-13Rα2 expression was dramatically enhanced in receptor-negative pancreatic cancer cells. In contrast, HDAC inhibition did not increase IL-13Rα2 in normal cell lines. In addition, c-jun in IL-13Rα2-positive cells was expressed at higher level than in negative cells. Two types of c-jun inhibitors prevented increase of IL-13Rα2 by HDAC inhibitors. HDAC inhibitors dramatically sensitized cancer cells to immunotoxin in the cytotoxicity assay in vitro and increased IL-13Rα2 in the tumors subcutaneously implanted in the immunodeficient

  19. 3’-Deoxyadenosine (Cordycepin) Produces a Rapid and Robust Antidepressant Effect via Enhancing Prefrontal AMPA Receptor Signaling Pathway

    Science.gov (United States)

    Li, Bai; Hou, Yangyang; Zhu, Ming; Bao, Hongkun; Nie, Jun; Zhang, Grace Y.; Shan, Liping; Yao, Yao; Du, Kai; Yang, Hongju; Li, Meizhang; Zheng, Bingrong; Xu, Xiufeng; Xiao, Chunjie; Du, Jing

    2016-01-01

    Background: The development of rapid and safe antidepressants for the treatment of major depression is in urgent demand. Converging evidence suggests that glutamatergic signaling seems to play important roles in the pathophysiology of depression. Methods: We studied the antidepressant effects of 3’-deoxyadenosine (3’-dA, Cordycepin) and the critical role of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor in male CD-1 mice via behavioral and biochemical experiments. After 3’-dA treatment, the phosphorylation and synaptic localization of the AMPA receptors GluR1 and GluR2 were determined in the prefrontal cortex (PFC) and hippocampus (HIP). The traditional antidepressant imipramine was applied as a positive control. Results: We found that an injection of 3’-dA led to a rapid and robust antidepressant effect, which was significantly faster and stronger than imipramine, after 45min in tail suspension and forced swim tests. This antidepressant effect remained after 5 days of treatment with 3’-dA. Unlike the psycho-stimulants, 3’-dA did not show a hyperactive effect in the open field test. After 45min or 5 days of treatment, 3’-dA enhanced GluR1 S845 phosphorylation in both the PFC and HIP. In addition, after 45min of treatment, 3’-dA significantly up-regulated GluR1 S845 phosphorylation and GluR1, but not GluR2 levels, at the synapses in the PFC. After 5 days of treatment, 3’-dA significantly enhanced GluR1 S845 phosphorylation and GluR1, but not GluR2, at the synapses in the PFC and HIP. Moreover, the AMPA-specific antagonist GYKI 52466 was able to block the rapid antidepressant effects of 3’-dA. Conclusion: This study identified 3’-dA as a novel rapid antidepressant with clinical potential and multiple beneficial mechanisms, particularly in regulating the prefrontal AMPA receptor signaling pathway. PMID:26443809

  20. Interleukin-1 Antagonism Decreases Cortisol Levels in Obese Individuals

    OpenAIRE

    Urwyler, Sandrine Andrea; Schuetz, Philipp; Ebrahimi, Fahim; Donath, Marc Y.; Christ-Crain, Mirjam

    2017-01-01

    Increased cortisol levels in obesity may contribute to the associated metabolic syndrome. In obesity, the activated innate immune system leads to increased interleukin (IL)-1β, which is known to stimulate the release of adrenocorticotropin hormone (ACTH).; We hypothesized that in obesity IL-1 antagonism would result in downregulation of the hypothalamo-pituitary-adrenal axis, leading to decreased cortisol levels.; In this prospective intervention study, we included 73 patients with obesity (b...

  1. NMDA Receptor-Dependent Synaptic Activity in Dorsal Motor Nucleus of Vagus Mediates the Enhancement of Gastric Motility by Stimulating ST36

    Directory of Open Access Journals (Sweden)

    Xinyan Gao

    2012-01-01

    Full Text Available Previous studies have demonstrated the efficacy of electroacupuncture at ST36 for patients with gastrointestinal motility disorders. While several lines of evidence suggest that the effect may involve vagal reflex, the precise molecular mechanism underlying this process still remains unclear. Here we report that the intragastric pressure increase induced by low frequency electric stimulation at ST36 was blocked by AP-5, an antagonist of N-methyl-D-aspartate receptors (NMDARs. Indeed, stimulating ST36 enhanced NMDAR-mediated, but not 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-ylpropanoic-acid-(AMPA- receptor-(AMPAR- mediated synaptic transmission in gastric-projecting neurons of the dorsal motor nucleus of the vagus (DMV. We also identified that suppression of presynaptic μ-opioid receptors may contribute to upregulation of NMDAR-mediated synaptic transmission induced by electroacupuncture at ST36. Furthermore, we determined that the glutamate-receptor-2a-(NR2A- containing NMDARs are essential for NMDAR-mediated enhancement of gastric motility caused by stimulating ST36. Taken together, our results reveal an important role of NMDA receptors in mediating enhancement of gastric motility induced by stimulating ST36.

  2. Repeated stressor exposure enhances contextual fear memory in a beta-adrenergic receptor-dependent process and increases impulsivity in a non-beta receptor-dependent fashion.

    Science.gov (United States)

    Camp, Robert M; Johnson, John D

    2015-10-15

    Memory formation is promoted by stress via the release of norepinephrine and stimulation of beta-adrenergic receptors (β-ARs). Previous data demonstrate that repeated stressor exposure increases norepinephrine turnover and β-AR signaling within the amygdala, which led to the hypothesis that some stress-induced behavioral changes are likely due to facilitated associative learning. To test this, Fischer rats were exposed to chronic mild stress for four days. On day 5, subjects (including non-stressed controls) were injected with the beta-blocker propranolol or vehicle prior to conditioning in an operant box (animals receive two mild foot shocks) or passive avoidance apparatus (animals received a foot shock upon entry into the dark chamber). Twenty-four hours later, subjects were returned to the operant box for measurement of freezing or returned to the passive avoidance apparatus for measurement of latency to enter the dark chamber. Subjects were also tested in an open field to assess context-independent anxiety-like behavior. Animals exposed to chronic stress showed significantly more freezing behavior in the operant box than did controls, and this exaggerated freezing was blocked by propranolol during the conditioning trial. There was no effect of stress on behavior in the open field. Unexpectedly, retention latency was significantly reduced in subjects exposed to chronic stress. These results indicate that chronic exposure to stress results in complex behavioral changes. While repeated stress appears to enhance the formation of fearful memories, it also results in behavioral responses that resemble impulsive behaviors that result in poor decision-making. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A temporal gate for viral enhancers to co-opt Toll-like-receptor transcriptional activation pathways upon acute infection.

    Directory of Open Access Journals (Sweden)

    Kai A Kropp

    2015-04-01

    Full Text Available Viral engagement with macrophages activates Toll-Like-Receptors (TLRs and viruses must contend with the ensuing inflammatory responses to successfully complete their replication cycle. To date, known counter-strategies involve the use of viral-encoded proteins that often employ mimicry mechanisms to block or redirect the host response to benefit the virus. Whether viral regulatory DNA sequences provide an opportunistic strategy by which viral enhancer elements functionally mimic innate immune enhancers is unknown. Here we find that host innate immune genes and the prototypical viral enhancer of cytomegalovirus (CMV have comparable expression kinetics, and positively respond to common TLR agonists. In macrophages but not fibroblasts we show that activation of NFκB at immediate-early times of infection is independent of virion-associated protein, M45. We find upon virus infection or transfection of viral genomic DNA the TLR-agonist treatment results in significant enhancement of the virus transcription-replication cycle. In macrophage time-course infection experiments we demonstrate that TLR-agonist stimulation of the viral enhancer and replication cycle is strictly delimited by a temporal gate with a determined half-maximal time for enhancer-activation of 6 h; after which TLR-activation blocks the viral transcription-replication cycle. By performing a systematic siRNA screen of 149 innate immune regulatory factors we identify not only anticipated anti-viral and pro-viral contributions but also new factors involved in the CMV transcription-replication cycle. We identify a central convergent NFκB-SP1-RXR-IRF axis downstream of TLR-signalling. Activation of the RXR component potentiated direct and indirect TLR-induced activation of CMV transcription-replication cycle; whereas chromatin binding experiments using wild-type and enhancer-deletion virus revealed IRF3 and 5 as new pro-viral host transcription factor interactions with the CMV enhancer in

  4. Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital.

    Science.gov (United States)

    Schraplau, Anne; Schewe, Bettina; Neuschäfer-Rube, Frank; Ringel, Sebastian; Neuber, Corinna; Kleuser, Burkhard; Püschel, Gerhard P

    2015-02-03

    Xenobiotics may interfere with the hypothalamic-pituitary-thyroid endocrine axis by inducing enzymes that inactivate thyroid hormones and thereby reduce the metabolic rate. This induction results from an activation of xeno-sensing nuclear receptors. The current study shows that benzo[a]pyrene, a frequent contaminant of processed food and activator of the arylhydrocarbon receptor (AhR) activated the promoter and induced the transcription of the nuclear receptor constitutive androstane receptor (CAR, NR1I3) in rat hepatocytes. Likewise, phenobarbital induced the AhR transcription. This mutual induction of the nuclear receptors enhanced the phenobarbital-dependent induction of the prototypic CAR target gene Cyp2b1 as well as the AhR-dependent induction of UDP-glucuronosyltransferases. In both cases, the induction by the combination of both xenobiotics was more than the sum of the induction by either substance alone. By inducing the AhR, phenobarbital enhanced the benzo[a]pyrene-dependent reduction of thyroid hormone half-life and the benzo[a]pyrene-dependent increase in the rate of thyroid hormone glucuronide formation in hepatocyte cultures. CAR ligands might thus augment the endocrine disrupting potential of AhR activators by an induction of the AhR. Copyright © 2014. Published by Elsevier Ireland Ltd.

  5. Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital

    International Nuclear Information System (INIS)

    Schraplau, Anne; Schewe, Bettina; Neuschäfer-Rube, Frank; Ringel, Sebastian; Neuber, Corinna; Kleuser, Burkhard; Püschel, Gerhard P.

    2015-01-01

    Xenobiotics may interfere with the hypothalamic-pituitary-thyroid endocrine axis by inducing enzymes that inactivate thyroid hormones and thereby reduce the metabolic rate. This induction results from an activation of xeno-sensing nuclear receptors. The current study shows that benzo[a]pyrene, a frequent contaminant of processed food and activator of the arylhydrocarbon receptor (AhR) activated the promoter and induced the transcription of the nuclear receptor constitutive androstane receptor (CAR, NR1I3) in rat hepatocytes. Likewise, phenobarbital induced the AhR transcription. This mutual induction of the nuclear receptors enhanced the phenobarbital-dependent induction of the prototypic CAR target gene Cyp2b1 as well as the AhR-dependent induction of UDP-glucuronosyltransferases. In both cases, the induction by the combination of both xenobiotics was more than the sum of the induction by either substance alone. By inducing the AhR, phenobarbital enhanced the benzo[a]pyrene-dependent reduction of thyroid hormone half-life and the benzo[a]pyrene-dependent increase in the rate of thyroid hormone glucuronide formation in hepatocyte cultures. CAR ligands might thus augment the endocrine disrupting potential of AhR activators by an induction of the AhR

  6. Antagonism of Innate Immunity by Paramyxovirus Accessory Proteins

    Directory of Open Access Journals (Sweden)

    Raychel Chambers

    2009-10-01

    Full Text Available Paramyxovirinae, a subfamily of Paramyxoviridae, are negative strand RNA viruses comprised of many important human and animal pathogens, which share a high degree of genetic and structural homology. The accessory proteins expressed from the P/V/C gene are major factors in the pathogenicity of the viruses, because of their ability to abrogate various facets of type I interferon (IFN induction and signaling. Most of the paramyxoviruses exhibit a commonality in their ability to antagonize innate immunity by blocking IFN induction and the Jak/STAT pathway. However, the manner in which the accessory proteins inhibit the pathway differs among viruses. Similarly, there are variations in the capability of the viruses to counteract intracellular detectors (RNA helicases, mda-5 and RIG-I. Furthermore, a functional specificity in the antagonism of the IFN response has been reported, suggesting that specificity in the circumvention of innate immunity restricts viral host range. Available evidence indicates that paramyxoviruses employ specific strategies to antagonize the IFN response of their specific hosts, which is one of the major factors that determine viral pathogenicity and host range.

  7. Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis.

    Science.gov (United States)

    Chang, Hetan; Liu, Yang; Yang, Ting; Pelosi, Paolo; Dong, Shuanglin; Wang, Guirong

    2015-08-27

    Sexual communication in moths offers a simplified scenario to model and investigate insect sensory perception. Both PBPs (pheromone-binding proteins) and PRs (pheromone receptors) are involved in the detection of sex pheromones, but the interplay between them still remains largely unknown. In this study, we have measured the binding affinities of the four recombinant PBPs of Chilo suppressalis (CsupPBPs) to pheromone components and analogs and characterized the six PRs using the Xenopus oocytes expression system. Interestingly, when the responses of PRs were recorded in the presence of PBPs, we measured in several combinations a dramatic increase in signals as well as in sensitivity of such combined systems. Furthermore, the discrimination ability of appropriate combinations of PRs and PBPs was improved compared with the performance of PBPs or PRs alone. Besides further supporting a role of PBPs in the pheromone detection and discrimination, our data shows for the first time that appropriate combinations of PRs and PBPs improved the discrimination ability of PBPs or PRs alone. The variety of responses measured with different pairing of PBPs and PRs indicates the complexity of the olfaction system, which, even for the relatively simple task of detecting sex pheromones, utilises a highly sophisticated combinatorial approach.

  8. Disruption of estrogen receptor signaling enhances intestinal neoplasia in ApcMin/+ mice

    Science.gov (United States)

    Cleveland, Alicia G.; Oikarinen, Seija I.; Bynoté, Kimberly K.; Marttinen, Maija; Rafter, Joseph J.; Gustafsson, Jan-Åke; Roy, Shyamal K.; Pitot, Henry C.; Korach, Kenneth S.; Lubahn, Dennis B.; Mutanen, Marja; Gould, Karen A.

    2009-01-01

    Estrogen receptors (ERs) [ERα (Esr1) and ERβ (Esr2)] are expressed in the human colon, but during the multistep process of colorectal carcinogenesis, expression of both ERα and ERβ is lost, suggesting that loss of ER function might promote colorectal carcinogenesis. Through crosses between an ERα knockout and ApcMin mouse strains, we demonstrate that ERα deficiency is associated with a significant increase in intestinal tumor multiplicity, size and burden in ApcMin/+ mice. Within the normal intestinal epithelium of ApcMin/+ mice, ERα deficiency is associated with an accumulation of nuclear β-catenin, an indicator of activation of the Wnt–β-catenin-signaling pathway, which is known to play a critical role in intestinal cancers. Consistent with the hypothesis that ERα deficiency is associated with activation of Wnt–β-catenin signaling, ERα deficiency in the intestinal epithelium of ApcMin/+ mice also correlated with increased expression of Wnt–β-catenin target genes. Through crosses between an ERβ knockout and ApcMin mouse strains, we observed some evidence that ERβ deficiency is associated with an increased incidence of colon tumors in ApcMin/+ mice. This effect of ERβ deficiency does not involve modulation of Wnt–β-catenin signaling. Our studies suggest that ERα and ERβ signaling modulate colorectal carcinogenesis, and ERα does so, at least in part, by regulating the activity of the Wnt–β-catenin pathway. PMID:19520794

  9. NMDA receptor antagonist-enhanced high frequency oscillations: are they generated broadly or regionally specific?

    Science.gov (United States)

    Olszewski, Maciej; Dolowa, Wioleta; Matulewicz, Pawel; Kasicki, Stefan; Hunt, Mark J

    2013-12-01

    Systemic administration of NMDA receptor antagonists, used to model schizophrenia, increase the power of high-frequency oscillations (130-180Hz, HFO) in a variety of neuroanatomical and functionally distinct brain regions. However, it is unclear whether HFO are independently and locally generated or instead spread from a distant source. To address this issue, we used local infusion of tetrodotoxin (TTX) to distinct brain areas to determine how accurately HFO recorded after injection of NMDAR antagonists reflect the activity actually generated at the electrode tip. Changes in power were evaluated in local field potentials (LFPs) recorded from the nucleus accumbens (NAc), prefrontal cortex and caudate and in electrocorticograms (ECoGs) from visual and frontal areas. HFO recorded in frontal and visual cortices (ECoGs) or in the prefrontal cortex, caudate (LFPs) co-varied in power and frequency with observed changes in the NAc. TTX infusion to the NAc immediately and profoundly reduced the power of accumbal HFO which correlated with changes in HFO recorded in distant cortical sites. In contrast, TTX infusion to the prefrontal cortex did not change HFO power recorded locally, although gamma power was reduced. A very similar result was found after TTX infusion to the caudate. These findings raise the possibility that the NAc is an important neural generator. Our data also support existing studies challenging the idea that high frequencies recorded in LFPs are necessarily generated at the recording site. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  10. Exponential signaling gain at the receptor level enhances signal-to-noise ratio in bacterial chemotaxis.

    Directory of Open Access Journals (Sweden)

    Silke Neumann

    Full Text Available Cellular signaling systems show astonishing precision in their response to external stimuli despite strong fluctuations in the molecular components that determine pathway activity. To control the effects of noise on signaling most efficiently, living cells employ compensatory mechanisms that reach from simple negative feedback loops to robustly designed signaling architectures. Here, we report on a novel control mechanism that allows living cells to keep precision in their signaling characteristics - stationary pathway output, response amplitude, and relaxation time - in the presence of strong intracellular perturbations. The concept relies on the surprising fact that for systems showing perfect adaptation an exponential signal amplification at the receptor level suffices to eliminate slowly varying multiplicative noise. To show this mechanism at work in living systems, we quantified the response dynamics of the E. coli chemotaxis network after genetically perturbing the information flux between upstream and downstream signaling components. We give strong evidence that this signaling system results in dynamic invariance of the activated response regulator against multiplicative intracellular noise. We further demonstrate that for environmental conditions, for which precision in chemosensing is crucial, the invariant response behavior results in highest chemotactic efficiency. Our results resolve several puzzling features of the chemotaxis pathway that are widely conserved across prokaryotes but so far could not be attributed any functional role.

  11. Cognitive enhancers (nootropics). Part 3: drugs interacting with targets other than receptors or enzymes. disease-modifying drugs.

    Science.gov (United States)

    Froestl, Wolfgang; Pfeifer, Andrea; Muhs, Andreas

    2013-01-01

    Cognitive enhancers (nootropics) are drugs to treat cognition deficits in patients suffering from Alzheimer's disease, schizophrenia, stroke, attention deficit hyperactivity disorder, or aging. Cognition refers to a capacity for information processing, applying knowledge, and changing preferences. It involves memory, attention, executive functions, perception, language, and psychomotor functions. The term nootropics was coined in 1972 when memory enhancing properties of piracetam were observed in clinical trials. In the meantime, hundreds of drugs have been evaluated in clinical trials or in preclinical experiments. To classify the compounds, a concept is proposed assigning drugs to 19 categories according to their mechanism(s) of action, in particular drugs interacting with receptors, enzymes, ion channels, nerve growth factors, re-uptake transporters, antioxidants, metal chelators, and disease modifying drugs, meaning small molecules, vaccines, and monoclonal antibodies interacting with amyloid-β and tau. For drugs, whose mechanism of action is not known, they are either classified according to structure, e.g., peptides, or their origin, e.g., natural products. The review covers the evolution of research in this field over the last 25 years.

  12. No cognitive-enhancing effect of GLP-1 receptor agonism in antipsychotic-treated, obese patients with schizophrenia.

    Science.gov (United States)

    Ishøy, P L; Fagerlund, B; Broberg, B V; Bak, N; Knop, F K; Glenthøj, B Y; Ebdrup, B H

    2017-07-01

    Schizophrenia is associated with profound cognitive and psychosocial impairments. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are used for diabetes and obesity treatment, and animal studies have indicated cognitive-enhancing effects. In this investigator-initiated, double-blind, randomized, placebo-controlled trial, we tested non-metabolic effects of exenatide once-weekly (Bydureon™) in obese, antipsychotic-treated patients with schizohrenia spectrum disorder. Before and after 3 months of exenatide (N = 20) or placebo (N = 20) treatment, patients were assessed with the following: Brief Assessment of Cognition in Schizophrenia (BACS), Rey-Osterreith complex figure test (REY), Short-Form Health Survey (SF-36), Personal and Social Performance Scale (PSP) and the Positive and Negative Syndrome Scale (PANSS). We used BACS composite score as the main outcome measure. Repeated measures analysis of variance on BACS composite score showed significant effect of 'Time' (P schizophrenia could reflect a general problem of translating cognitive-enhancing effects of GLP-1RAs from animals to humans or be explained by factors specifically related to schizophrenia spectrum patients with obesity such as antipsychotic treatment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Triiodothyronine enhances accumulation of intracellular lipids in adipocytes through thyroid hormone receptor α via direct and indirect mechanisms.

    Science.gov (United States)

    Gambo, Yurina; Matsumura, Miki; Fujimori, Ko

    2016-08-15

    Triiodothyronine (T3) enhanced the expression of adipogenic and lipogenic genes with elevation of the intracellular lipids through thyroid hormone receptor (TR) α in mouse 3T3-L1 cells. However, the transcription of the SREBP-1c and HSL genes was decreased by T3. Such T3-mediated alterations were negated by TRα siRNA. Chromatin immunoprecipitation assay showed that the binding of TRα to the TR-responsive element (TRE) of the FAS promoter was elevated by T3. In contrast, the ability of TRα to bind to the TRE of the SREBP-1c promoter was decreased by T3. In addition, the binding of SREBP-1c to the SRE of the HSL promoter was lowered by T3. These results indicate that T3 increased the accumulation of intracellular lipids by enhancing the expression of the FAS gene through direct binding of TRα to the FAS promoter and simultaneously lowered the amount of lipolysis via reduced binding of T3-decreased SREBP-1c to the HSL promoter. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Local Overexpression of V1a-Vasopressin Receptor Enhances Regeneration in Tumor Necrosis Factor-Induced Muscle Atrophy

    Directory of Open Access Journals (Sweden)

    Alessandra Costa

    2014-01-01

    Full Text Available Skeletal muscle atrophy occurs during disuse and aging, or as a consequence of chronic diseases such as cancer and diabetes. It is characterized by progressive loss of muscle tissue due to hypotrophic changes, degeneration, and an inability of the regeneration machinery to replace damaged myofibers. Tumor necrosis factor (TNF is a proinflammatory cytokine known to mediate muscle atrophy in many chronic diseases and to inhibit skeletal muscle regeneration. In this study, we investigated the role of Arg-vasopressin-(AVP-dependent pathways in muscles in which atrophy was induced by local overexpression of TNF. AVP is a potent myogenesis-promoting factor and is able to enhance skeletal muscle regeneration by stimulating Ca2+/calmodulin-dependent kinase and calcineurin signaling. We performed morphological and molecular analyses and demonstrated that local over-expression of the AVP receptor V1a enhances regeneration of atrophic muscle. By upregulating the regeneration/differentiation markers, modulating the inflammatory response, and attenuating fibrogenesis, the stimulation of AVP-dependent pathways creates a favourable environment for efficient and sustained muscle regeneration and repair even in the presence of elevated levels of TNF. This study highlights a novel in vivo role for AVP-dependent pathways, which may represent an interesting strategy to counteract muscle decline in aging or in muscular pathologies.

  15. A cleavable signal peptide enhances cell surface delivery and heterodimerization of Cerulean-tagged angiotensin II AT1 and bradykinin B2 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Quitterer, Ursula, E-mail: ursula.quitterer@pharma.ethz.ch [Molecular Pharmacology Unit, Swiss Federal Institute of Technology and University of Zurich, Zurich (Switzerland); Pohl, Armin; Langer, Andreas; Koller, Samuel; AbdAlla, Said [Molecular Pharmacology Unit, Swiss Federal Institute of Technology and University of Zurich, Zurich (Switzerland)

    2011-06-10

    Highlights: {yields} A new FRET-based method detects AT1/B2 receptor heterodimerization. {yields} First time application of AT1-Cerulean as a FRET donor. {yields} Method relies on signal peptide-enhanced cell surface delivery of AT1-Cerulean. {yields} A high FRET efficiency revealed efficient heterodimerization of AT1/B2R proteins. {yields} AT1/B2R heterodimers were functionally coupled to desensitization mechanisms. -- Abstract: Heterodimerization of the angiotensin II AT1 receptor with the receptor for the vasodepressor bradykinin, B2R, is known to sensitize the AT1-stimulated response of hypertensive individuals in vivo. To analyze features of that prototypic receptor heterodimer in vitro, we established a new method that uses fluorescence resonance energy transfer (FRET) and applies for the first time AT1-Cerulean as a FRET donor. The Cerulean variant of the green fluorescent protein as donor fluorophore was fused to the C-terminus of AT1, and the enhanced yellow fluorescent protein (EYFP) as acceptor fluorophore was fused to B2R. In contrast to AT1-EGFP, the AT1-Cerulean fusion protein was retained intracellularly. To facilitate cell surface delivery of AT1-Cerulean, a cleavable signal sequence was fused to the receptor's amino terminus. The plasma membrane-localized AT1-Cerulean resembled the native AT1 receptor regarding ligand binding and receptor activation. A high FRET efficiency of 24.7% between membrane-localized AT1-Cerulean and B2R-EYFP was observed with intact, non-stimulated cells. Confocal FRET microscopy further revealed that the AT1/B2 receptor heterodimer was functionally coupled to receptor desensitization mechanisms because activation of the AT1-Cerulean/B2R-EYFP heterodimer with a single agonist triggered the co-internalization of AT1/B2R. Receptor co-internalization was sensitive to inhibition of G protein-coupled receptor kinases, GRKs, as evidenced by a GRK-specific peptide inhibitor. In agreement with efficient AT1/B2R

  16. A cleavable signal peptide enhances cell surface delivery and heterodimerization of Cerulean-tagged angiotensin II AT1 and bradykinin B2 receptor

    International Nuclear Information System (INIS)

    Quitterer, Ursula; Pohl, Armin; Langer, Andreas; Koller, Samuel; AbdAlla, Said

    2011-01-01

    Highlights: → A new FRET-based method detects AT1/B2 receptor heterodimerization. → First time application of AT1-Cerulean as a FRET donor. → Method relies on signal peptide-enhanced cell surface delivery of AT1-Cerulean. → A high FRET efficiency revealed efficient heterodimerization of AT1/B2R proteins. → AT1/B2R heterodimers were functionally coupled to desensitization mechanisms. -- Abstract: Heterodimerization of the angiotensin II AT1 receptor with the receptor for the vasodepressor bradykinin, B2R, is known to sensitize the AT1-stimulated response of hypertensive individuals in vivo. To analyze features of that prototypic receptor heterodimer in vitro, we established a new method that uses fluorescence resonance energy transfer (FRET) and applies for the first time AT1-Cerulean as a FRET donor. The Cerulean variant of the green fluorescent protein as donor fluorophore was fused to the C-terminus of AT1, and the enhanced yellow fluorescent protein (EYFP) as acceptor fluorophore was fused to B2R. In contrast to AT1-EGFP, the AT1-Cerulean fusion protein was retained intracellularly. To facilitate cell surface delivery of AT1-Cerulean, a cleavable signal sequence was fused to the receptor's amino terminus. The plasma membrane-localized AT1-Cerulean resembled the native AT1 receptor regarding ligand binding and receptor activation. A high FRET efficiency of 24.7% between membrane-localized AT1-Cerulean and B2R-EYFP was observed with intact, non-stimulated cells. Confocal FRET microscopy further revealed that the AT1/B2 receptor heterodimer was functionally coupled to receptor desensitization mechanisms because activation of the AT1-Cerulean/B2R-EYFP heterodimer with a single agonist triggered the co-internalization of AT1/B2R. Receptor co-internalization was sensitive to inhibition of G protein-coupled receptor kinases, GRKs, as evidenced by a GRK-specific peptide inhibitor. In agreement with efficient AT1/B2R heterodimerization, confocal FRET imaging of

  17. Role of glucocorticoid receptor-mediated mechanisms in cocaine memory enhancement.

    Science.gov (United States)

    Stringfield, S J; Higginbotham, J A; Wang, R; Berger, A L; McLaughlin, R J; Fuchs, R A

    2017-09-01

    The basolateral amygdala (BLA) is a critical site for the reconsolidation of labile contextual cocaine memories following retrieval-induced reactivation/destabilization. Here, we examined whether glucocorticoid receptors (GR), which are abundant in the BLA, mediate this phenomenon. Rats were trained to lever press for cocaine reinforcement in a distinct environmental context, followed by extinction training in a different context. Rats were then briefly exposed to the cocaine-paired context (to elicit memory reactivation and reconsolidation) or their home cages (no reactivation control). Exposure to the cocaine-paired context elicited greater serum corticosterone concentrations than home cage stay. Interestingly, the GR antagonist, mifepristone (3-10 ng/hemisphere), administered into the BLA after memory reactivation produced a further, dose-dependent increase in serum corticosterone concentrations during the putative time of cocaine-memory reconsolidation but produced an inverted U-shaped dose-effect curve on subsequent cocaine-seeking behavior 72 h later. This effect was anatomically selective, dependent on memory reactivation (i.e., not observed after home cage exposure), and did not reflect protracted hyperactivity. However, the effect was also observed when mifepristone was administered after novelty stress that mimics drug context-induced hypothalamic-pituitary-adrenal (HPA) axis activation without explicit memory reactivation. Together, these findings suggest that, similar to explicit memory retrieval, a stressful event is sufficient to destabilize cocaine memories and permit their manipulation. Furthermore, BLA GR stimulation exerts inhibitory feedback upon HPA axis activation and thus suppresses cocaine-memory reconsolidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Boldine enhances bile production in rats via osmotic and farnesoid X receptor dependent mechanisms.

    Science.gov (United States)

    Cermanova, Jolana; Kadova, Zuzana; Zagorova, Marie; Hroch, Milos; Tomsik, Pavel; Nachtigal, Petr; Kudlackova, Zdenka; Pavek, Petr; Dubecka, Michaela; Ceckova, Martina; Staud, Frantisek; Laho, Tomas; Micuda, Stanislav

    2015-05-15

    Boldine, the major alkaloid from the Chilean Boldo tree, is used in traditional medicine to support bile production, but evidence to support this function is controversial. We analyzed the choleretic potential of boldine, including its molecular background. The acute- and long-term effects of boldine were evaluated in rats either during intravenous infusion or after 28-day oral treatment. Infusion of boldine instantly increased the bile flow 1.4-fold in healthy rats as well as in animals with Mrp2 deficiency or ethinylestradiol induced cholestasis. This effect was not associated with a corresponding increase in bile acid or glutathione biliary excretion, indicating that the effect is not related to stimulation of either bile acid dependent or independent mechanisms of bile formation and points to the osmotic activity of boldine itself. We subsequently analyzed bile production under conditions of changing biliary excretion of boldine after bolus intravenous administration and found strong correlations between both parameters. HPLC analysis showed that bile concentrations of boldine above 10 μM were required for induction of choleresis. Importantly, long-term pretreatment, when the bile collection study was performed 24-h after the last administration of boldine, also accelerated bile formation despite undetectable levels of the compound in bile. The effect paralleled upregulation of the Bsep transporter and increased biliary clearance of its substrates, bile acids. We consequently confirmed the ability of boldine to stimulate the Bsep transcriptional regulator, FXR receptor. In conclusion, our study clarified the mechanisms and circumstances surrounding the choleretic activity of boldine. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Thromboxane A(2 receptor stimulation promotes closure of the rat ductus arteriosus through enhancing neointima formation.

    Directory of Open Access Journals (Sweden)

    Tomohiro Yokota

    Full Text Available Ductus arteriosus (DA closure follows constriction and remodeling of the entire vessel wall. Patent ductus arteriosus occurs when the DA does not close after birth, and this condition is currently treated using cyclooxygenase inhibitors. However, the efficacy of cyclooxygenase inhibitors is often limited. Our previous study demonstrated that low-dose thromboxane A2 receptor (TP stimulation constricted the DA with minimal adverse effects in rat neonates. However, its effect on DA remodeling remains unknown. In this study, we focused on the impact of the exogenous TP stimulation on the DA remodeling, especially intimal thickening. Using DA explants from rat fetuses at embryonic day 19 as a ex vivo model and primary cultured rat DA smooth muscle cells from embryonic day 21 as a in vitro model, we evaluated the effect of TP stimulation on the DA remodeling. The selective TP agonists U46619 and I-BOP promoted neointima formation in the ex vivo DA explants, and TP stimulation increased DA SMC migration in a dose-dependent manner. Both effects were inhibited by the selective TP antagonist SQ29548 or the siRNA against TP. TP stimulation also increased DA SMC proliferation in the presence of 10% fetal bovine serum. LC/MS/MS analysis revealed that TP stimulation increased secretion of several extracellular matrix proteins that may contribute to an increase in neointima formation. In conclusion, we uncovered that exogenous administration of TP agonist promotes neointima formation through the induction of migration and proliferation of DA SMC, which could contribute to DA closure and also to its vasoconstrictive action.

  20. Activation of peroxisome proliferator-activated receptorenhances fatty acid oxidation in human adipocytes

    International Nuclear Information System (INIS)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-01-01

    Highlights: → PPARα activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. → PPARα activation also increased insulin-dependent glucose uptake in human adipocytes. → PPARα activation did not affect lipid accumulation in human adipocytes. → PPARα activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-α (PPARα) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPARα in adipocytes have been unclarified. We examined the functions of PPARα using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPARα by GW7647, a potent PPARα agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPARγ, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPARα activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPARγ is activated. On the other hand, PPARα activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPARα-dependent manner. Moreover, PPARα activation increased the production of CO 2 and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPARα stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPARα agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected effects of PPARα activation are very valuable for managing diabetic conditions accompanied by obesity, because

  1. Enhanced expression of transferrin receptor confers UV-resistance in human and monkey cells

    International Nuclear Information System (INIS)

    Chen, Zheng; Nomura, Jun; Suzuki, Toshikazu; Suzuki, Nobuo

    2005-01-01

    One of the most intriguing biological subjects is cell-surface molecules that regulate the susceptibility of human cells to cell-killing effects after irradiation with far-ultraviolet light (UV, principally 254 nm wavelength). Human RSa cells have unusual sensitivity to UV-induced cell-killing. We searched for molecules on the cell-surface of RSa cells that were present in different amounts as compared to a variant of these cells, UV r -1 cells, which have increased resistance to UV cell-killing. Among the 21 molecules examined, the amount of transferrin receptor (TfR) protein was found to be 2-fold higher in UV r -1 cells compared with in RSa cells. The amounts of this protein were also higher in the UV-resistant hematopoietic cell lines, CEM6 and Daudi, as compared to the UV-sensitive cell lines, Molt4 and 697. Culturing of UV r -1 cells in a medium containing anti-transferrin antibodies resulted in sensitization of the cells to UV cell-killing as demonstrated by colony formation assay. Similar results were observed by treatment of the cells with TfR siRNA. In contrast, overexpression of TfR protein led to a resistance to UV cell-killing in RSa cells and monkey COS7 cells as demonstrated by both colony formation and apoptosis assay. In TfR-overexpressing cells, reduction of p53 and Bax protein was observed after UV-irradiation. Thus, TfR expression appears to be involved in the regulation of UV-resistance, possibly via modulation of the amount of p53 and Bax protein. (author)

  2. SB-224289 Antagonizes the Antifungal Mechanism of the Marine Depsipeptide Papuamide A.

    Directory of Open Access Journals (Sweden)

    Chelsi D Cassilly

    Full Text Available In order to expand the repertoire of antifungal compounds a novel, high-throughput phenotypic drug screen targeting fungal phosphatidylserine (PS synthase (Cho1p was developed based on antagonism of the toxin papuamide A (Pap-A. Pap-A is a cyclic depsipeptide that binds to PS in the membrane of wild-type Candida albicans, and permeabilizes its plasma membrane, ultimately causing cell death. Organisms with a homozygous deletion of the CHO1 gene (cho1ΔΔ do not produce PS and are able to survive in the presence of Pap-A. Using this phenotype (i.e. resistance to Pap-A as an indicator of Cho1p inhibition, we screened over 5,600 small molecules for Pap-A resistance and identified SB-224289 as a positive hit. SB-224289, previously reported as a selective human 5-HT1B receptor antagonist, also confers resistance to the similar toxin theopapuamide (TPap-A, but not to other cytotoxic depsipeptides tested. Structurally similar molecules and truncated variants of SB-224289 do not confer resistance to Pap-A, suggesting that the toxin-blocking ability of SB-224289 is very specific. Further biochemical characterization revealed that SB-224289 does not inhibit Cho1p, indicating that Pap-A resistance is conferred by another undetermined mechanism. Although the mode of resistance is unclear, interaction between SB-224289 and Pap-A or TPap-A suggests this screening assay could be adapted for discovering other compounds which could antagonize the effects of other environmentally- or medically-relevant depsipeptide toxins.

  3. Estrogen Enhances Matrix Synthesis in Nucleus Pulposus Cell through the Estrogen Receptor β-p38 MAPK Pathway

    Directory of Open Access Journals (Sweden)

    Pei Li

    2016-11-01

    Full Text Available Background/Aims: Matrix homeostasis within the disc nucleus pulposus (NP tissue is important for disc function. Increasing evidence indicates that sex hormone can influence the severity of disc degeneration. This study was aimed to study the role of 17β-estradiol (E2 in NP matrix synthesis and its underlying mechanism. Methods: Rat NP cells were cultured with (10-5, 10-7 and 10-9 M or without (control E2 for48 hours. The estrogen receptor (ER-β antagonist PHTPP and ERβ agonist ERB 041 were used to investigate the role mediated by ERβ. The p38 MAPK inhibitor SB203580 was used to investigate the role of p38 MAPK signaling pathway. Gene and protein expression of SOX9, aggrecan and collagen II, glycosaminoglycan (GAG content, and immunostaining assay for aggrecan and collagen II were analyzed to evaluate matrix production in rat NP cells. Results: E2 enhanced NP matrix synthesis in a concentration-dependent manner regarding gene and proetin expression of SOX9, aggrecan and collagen II, protein deposition of aggrecan and collagen II, and GAG content. Moreover, activation of p38 MAPK signaling pathway was increased with elevating E2 concentration. Further analysis indicated that ERB 041 and PHTPP could respectively enhance and suppress effects of E2 on matrix synthesis in NP cells, as well as activation of p38 MAPK pathway. Additionally, inhibition of p38 MAPK signaling pathway significantly abolished the effects of E2 on matrix synthesis. Conclusion: E2 can enhance matrix synthesis of NP cells and the ERβ/p38 MAPK pathway is involved in this regulatory process.

  4. Short-term increases in transient receptor potential vanilloid-1 mediate stress-induced enhancement of neuronal excitation.

    Science.gov (United States)

    Weitlauf, Carl; Ward, Nicholas J; Lambert, Wendi S; Sidorova, Tatiana N; Ho, Karen W; Sappington, Rebecca M; Calkins, David J

    2014-11-12

    Progression of neurodegeneration in disease and injury is influenced by the response of individual neurons to stressful stimuli and whether this response includes mechanisms to counter declining function. Transient receptor potential (TRP) cation channels transduce a variety of disease-relevant stimuli and can mediate diverse stress-dependent changes in physiology, both presynaptic and postsynaptic. Recently, we demonstrated that knock-out or pharmacological inhibition of the TRP vanilloid-1 (TRPV1) capsaicin-sensitive subunit accelerates degeneration of retinal ganglion cell neurons and their axons with elevated ocular pressure, the critical stressor in the most common optic neuropathy, glaucoma. Here we probed the mechanism of the influence of TRPV1 on ganglion cell survival in mouse models of glaucoma. We found that induced elevations of ocular pressure increased TRPV1 in ganglion cells and its colocalization at excitatory synapses to their dendrites, whereas chronic elevation progressively increased ganglion cell Trpv1 mRNA. Enhanced TRPV1 expression in ganglion cells was transient and supported a reversal of the effect of TRPV1 on ganglion cells from hyperpolarizing to depolarizing, which was also transient. Short-term enhancement of TRPV1-mediated activity led to a delayed increase in axonal spontaneous excitation that was absent in ganglion cells from Trpv1(-/-) retina. In isolated ganglion cells, pharmacologically activated TRPV1 mobilized to discrete nodes along ganglion cell dendrites that corresponded to sites of elevated Ca(2+). These results suggest that TRPV1 may promote retinal ganglion cell survival through transient enhancement of local excitation and axonal activity in response to ocular stress. Copyright © 2014 the authors 0270-6474/14/3415369-13$15.00/0.

  5. The effects of conformational constraints and steric bulk in the amino acid moiety of philanthotoxins on AMPAR antagonism

    DEFF Research Database (Denmark)

    Jørgensen, Malene; Olsen, Christian A; Mellor, Ian R

    2005-01-01

    , establishing general protocols for philanthotoxin solution- and solid-phase synthesis (39-90% and 42-54% overall yields, respectively). The analogues were tested for their ability to antagonize kainate-induced currents of 2-amino-3-(3-hydroxy-5-methyl-4-isoxazoyl)propanoic acid receptors (AMPAR) expressed...... in Xenopus oocytes from rat brain mRNA. This showed that steric bulk in the amino acid moiety is well tolerated and suggests that binding to AMPAR does not involve the alpha-NHCO group as a donor in hydrogen bonding.......Philanthotoxin-343 (PhTX-343), a synthetic analogue of wasp toxin PhTX-433, is a noncompetitive antagonist at ionotropic receptors (e.g., AChR or iGluR). To determine possible effects of variations of the amino acid side chain, a library consisting of seventeen PhTX-343 analogues was prepared. Thus...

  6. Lectin-like oxidized LDL receptor-1 is an enhancer of tumor angiogenesis in human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Iván González-Chavarría

    Full Text Available Altered expression and function of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1 has been associated with several diseases such as endothelial dysfunction, atherosclerosis and obesity. In these pathologies, oxLDL/LOX-1 activates signaling pathways that promote cell proliferation, cell motility and angiogenesis. Recent studies have indicated that olr1 mRNA is over-expressed in stage III and IV of human prostatic adenocarcinomas. However, the function of LOX-1 in prostate cancer angiogenesis remains to be determined. Our aim was to analyze the contribution of oxLDL and LOX-1 to tumor angiogenesis using C4-2 prostate cancer cells. We analyzed the expression of pro-angiogenic molecules and angiogenesis on prostate cancer tumor xenografts, using prostate cancer cell models with overexpression or knockdown of LOX-1 receptor. Our results demonstrate that the activation of LOX-1 using oxLDL increases cell proliferation, and the expression of the pro-angiogenic molecules VEGF, MMP-2, and MMP-9 in a dose-dependent manner. Noticeably, these effects were prevented in the C4-2 prostate cancer model when LOX-1 expression was knocked down. The angiogenic effect of LOX-1 activated with oxLDL was further demonstrated using the aortic ring assay and the xenograft model of tumor growth on chorioallantoic membrane of chicken embryos. Consequently, we propose that LOX-1 activation by oxLDL is an important event that enhances tumor angiogenesis in human prostate cancer cells.

  7. Human endothelin subtype A receptor enhancement during tissue culture via de novo transcription

    DEFF Research Database (Denmark)

    Hansen-Schwartz, Jacob; Nordström, Carl-Henrik; Edvinsson, Lars

    2002-01-01

    OBJECTIVE: Endothelin (ET) has, since its discovery, increasingly been considered a key player in the pathophysiological processes of cerebral vasospasm in the course of subarachnoid hemorrhage, although it remains unclear how ET is involved. We present data that indicate an inherent capacity...... of human cerebral arteries to change their sensitivity to ET. METHODS: Human cerebral arteries were obtained from patients undergoing intracranial tumor surgery. The vessels were divided into segments and subjected to organ culture for 48 hours. The vessels were then examined by using in vitro...... pharmacological methods and molecular biological techniques. RESULTS: After organ culture of the cerebral arteries, both the sensitivity to and potency of ET were enhanced (maximal response, 152 +/- 9%; -log (50% effective concentration), 10.3 +/- 0.3), in comparison with data for fresh cerebral arteries...

  8. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  9. Autoantibodies Enhance Agonist Action and Binding to Cardiac Muscarinic Receptors in Chronic Chagas’ Disease

    Science.gov (United States)

    Hernández, Ciria C.; Nascimento, José H.; Chaves, Elen A.; Costa, Patrícia C.; Masuda, Masako O.; Kurtenbach, Eleonora; Campos de Carvalho, Antônio C.; Giménez, Luis E.

    2009-01-01

    Chronic Chagasic patient immunoglobulins (CChP-IgGs) recognize an acidic amino acid cluster at the second extracellular loop (el2) of cardiac M2-muscarinic acetylcholine receptors (M2AChRs). These residues correspond to a common binding site for various allosteric agents. We characterized the nature of the M2AChR/CChP-IgG interaction in functional and radioligand binding experiments applying the same mainstream strategies previously used for the characterization of other allosteric agents. Dose-response curves of acetylcholine effect on heart rate were constructed with data from isolated heart experiments in the presence of CChP or normal blood donor (NBD) sera. In these experiments, CChP sera but not NBD sera increased the efficacy of agonist action by augmenting the onset of bradyarrhythmias and inducing a Hill slope of 2.5. This effect was blocked by gallamine, an M2AChR allosteric antagonist. Correspondingly, CChP-IgGs increased acetylcholine affinity twofold and showed negative cooperativity for [3H]-N-methyl scopolamine ([3H]-NMS) in allosterism binding assays. A peptide corresponding to the M2AChR-el2 blocked this effect. Furthermore, dissociation assays showed that the effect of gallamine on the [3H]-NMS off-rate was reverted by CChP-IgGs. Finally, concentration-effect curves for the allosteric delay of W84 on [3H]-NMS dissociation right shifted from an IC50 of 33 nmol/L to 78 nmol/L, 992 nmol/L, and 1670 nmol/L in the presence of 6.7 × 10−8, 1.33 × 10−7, and 2.0 × 10−7 mol/L of anti-el2 affinity-purified CChP-IgGs. Taken together, these findings confirmed a competitive interplay of these ligands at the common allosteric site and revealed the novel allosteric nature of the interaction of CChP-IgGs at the M2AChRs as a positive cooperativity effect on acetylcholine action. PMID:18702010

  10. Effect of blockage of the endocannabinoid system by CB(1) antagonism on cardiovascular risk.

    Science.gov (United States)

    Mach, François; Montecucco, Fabrizio; Steffens, Sabine

    2009-01-01

    The endocannabinoid system is a crucial player in the inflammatory processes underlying atherosclerosis. Recently, basic research studies and animal models have strongly supported the role of the endocannabinoid system not only in the regulation of classical cardiovascular risk factors (including lipid profile and glucose homeostasis), but also in the activation of immune cells and inflammatory mediators. Clinical trials investigating treatment with rimonabant (a selective antagonist of the cannabinoid type 1 receptor) have suggested a beneficial effect of this drug in the management of obesity. Further studies are needed to explore a possible use for rimonabant in treating type 2 diabetes and acute and chronic cardiovascular disease. Despite the slight increase in adverse events (mainly psychiatric), which has led to the recent withdrawal of rimonabant from the market, CB(1) receptor antagonism might represent a very promising therapeutic strategy to reduce the cardiovascular risk. In the present review, we focused on the most important experimental investigations into the role of the endocannabinoid system in atherosclerosis and cardiovascular risk.

  11. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro

    NARCIS (Netherlands)

    von Lindern, M.; Zauner, W.; Mellitzer, G.; Steinlein, P.; Fritsch, G.; Huber, K.; Löwenberg, B.; Beug, H.

    1999-01-01

    Although erythropoietin (Epo) is essential for the production of mature red blood cells, the cooperation with other factors is required for a proper balance between progenitor proliferation and differentiation. In avian erythroid progenitors, steroid hormones cooperate with tyrosine kinase receptors

  12. Isolation of Fungi from Heterodera glycines and in vitro Bioassays for Their Antagonism to Eggs.

    Science.gov (United States)

    Meyer, S L; Huettel, R N; Sayre, R M

    1990-10-01

    Twenty fungi were assayed in vitro for antagonism to eggs of Heterodera glycines. Eight of the fungi were isolated from cysts or eggs of H. glycines during the current study, one was isolated from Panagrellus redivivus, and eleven were obtained from other researchers or collections. The bioassays were conducted on eggs from nematodes that had been grown monoxenically on excised root tips. Phoma chrysanthemicola, one strain of Verticillium chlamydosporium, and one strain of V. lecanii caused a decrease (P Trichoderma polysporum infected live eggs but enhanced (P Fusarium sp., Neocosmospora vasinfecta, Scytalidium fulvum, Trichoderma harzianum (two strains), V. chlamydosporium (one strain), V. lecanii (three strains), and an unidentified fungus did not measurably affect egg viability, even though hyphae of five of these fungi were seen in live eggs. The bioassay provides a useful step in the selection of a biological control agent for this major nematode pest.

  13. The T alpha 2 nuclear protein binding site from the human T cell receptor alpha enhancer functions as both a T cell-specific transcriptional activator and repressor

    OpenAIRE

    1990-01-01

    T cell-specific expression of the human T cell receptor alpha (TCR- alpha) gene is regulated by the interaction of variable region promoter elements with a transcriptional enhancer that is located 4.5 kb 3' of the TCR-alpha constant region (C alpha) gene segment. The minimal TCR- alpha enhancer is composed of two nuclear protein binding sites, T alpha 1 and T alpha 2, that are both required for the T cell-specific activity of the enhancer. The T alpha 1 binding site contains a consensus cAMP ...

  14. Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology.

    Science.gov (United States)

    Fuxe, K; Marcellino, D; Rivera, A; Diaz-Cabiale, Z; Filip, M; Gago, B; Roberts, D C S; Langel, U; Genedani, S; Ferraro, L; de la Calle, A; Narvaez, J; Tanganelli, S; Woods, A; Agnati, L F

    2008-08-01

    representing a compensatory up-regulation to counteract the cocaine-induced increases in dopamine D(2) and D(3) signaling. Therefore, A(2A) agonists, through antagonizing D(2) and D(3) signaling within A(2A)/D(2) and A(2A)/D(3) RM heteromers in the nucleus accumbens, may be found useful as a treatment for cocaine dependence. Furthermore, antagonistic cannabinoid CB(1)/D(2) interactions requiring A(2A) receptors have also been discovered and possibly operate in CB(1)/D(2)/A(2A) RM located principally on striatal glutamate terminals but also on some ventral striato-pallidal GABA neurons, thereby opening up a new mechanism for the integration of endocannabinoid, DA and adenosine mediated signals. Thus, A(2A), mGluR5 and/or CB(1) receptors can form integrative units with D(2) receptors within RM displaying different compositions, topography and localization. Also galaninR/5-HT(1A) RM probably participates in the transmission of the ascending 5-hydroxytryptamine neurons, where galanin receptors antagonize 5-HT(1A) recognition and signaling. Subtype specific galanin receptor antagonists may therefore represent novel antidepressant drugs. These results suggest the importance of a complete understanding of the function of these RM with regard to disease. Ultimately receptor-receptor interactions within RM that modify dopaminergic and serotonergic signaling may give new strategies for treatment of a wide range of diseases associated with altered dopaminergic and serotonergic signaling.

  15. Sphingosine-1-Phosphate Receptor-1 Selective Agonist Enhances Collateral Growth and Protects against Subsequent Stroke.

    Directory of Open Access Journals (Sweden)

    Masahiko Ichijo

    Full Text Available Collateral growth after acute occlusion of an intracranial artery is triggered by increasing shear stress in preexisting collateral pathways. Recently, sphingosine-1-phosphate receptor-1 (S1PR1 on endothelial cells was reported to be essential in sensing fluid shear stress. Here, we evaluated the expression of S1PR1 in the hypoperfused mouse brain and investigated the effect of a selective S1PR1 agonist on leptomeningeal collateral growth and subsequent ischemic damage after focal ischemia.In C57Bl/6 mice (n = 133 subjected to unilateral common carotid occlusion (CCAO and sham surgery. The first series examined the time course of collateral growth, cell proliferation, and S1PR1 expression in the leptomeningeal arteries after CCAO. The second series examined the relationship between pharmacological regulation of S1PR1 and collateral growth of leptomeningeal anastomoses. Animals were randomly assigned to one of the following groups: LtCCAO and daily intraperitoneal (i.p. injection for 7 days of an S1PR1 selective agonist (SEW2871, 5 mg/kg/day; sham surgery and daily i.p. injection for 7 days of SEW2871 after surgery; LtCCAO and daily i.p. injection for 7 days of SEW2871 and an S1PR1 inverse agonist (VPC23019, 0.5 mg/kg; LtCCAO and daily i.p. injection of DMSO for 7 days after surgery; and sham surgery and daily i.p. injection of DMSO for 7 days. Leptomeningeal anastomoses were visualized 14 days after LtCCAO by latex perfusion method, and a set of animals underwent subsequent permanent middle cerebral artery occlusion (pMCAO 7 days after the treatment termination. Neurological functions 1 hour, 1, 4, and 7 days and infarction volume 7 days after pMCAO were evaluated.In parallel with the increase in S1PR1 mRNA levels, S1PR1 expression colocalized with endothelial cell markers in the leptomeningeal arteries, increased markedly on the side of the CCAO, and peaked 7 days after CCAO. Mitotic cell numbers in the leptomeningeal arteries increased after

  16. Comparative analyses of reproductive structures in harvestmen (opiliones reveal multiple transitions from courtship to precopulatory antagonism.

    Directory of Open Access Journals (Sweden)

    Mercedes M Burns

    Full Text Available Explaining the rapid, species-specific diversification of reproductive structures and behaviors is a long-standing goal of evolutionary biology, with recent research tending to attribute reproductive phenotypes to the evolutionary mechanisms of female mate choice or intersexual conflict. Progress in understanding these and other possible mechanisms depends, in part, on reconstructing the direction, frequency and relative timing of phenotypic evolution of male and female structures in species-rich clades. Here we examine evolution of reproductive structures in the leiobunine harvestmen or "daddy long-legs" of eastern North America, a monophyletic group that includes species in which males court females using nuptial gifts and other species that are equipped for apparent precopulatory antagonism (i.e., males with long, hardened penes and females with sclerotized pregenital barriers. We used parsimony- and Bayesian likelihood-based analyses to reconstruct character evolution in categorical reproductive traits and found that losses of ancestral gift-bearing penile sacs are strongly associated with gains of female pregenital barriers. In most cases, both events occur on the same internal branch of the phylogeny. These coevolutionary changes occurred at least four times, resulting in clade-specific designs in the penis and pregenital barrier. The discovery of convergent origins and/or enhancements of apparent precopulatory antagonism among closely related species offers an unusual opportunity to investigate how major changes in reproductive morphology have occurred. We propose new hypotheses that attribute these enhancements to changes in ecology or life history that reduce the duration of breeding seasons, an association that is consistent with female choice, sexual conflict, and/or an alternative evolutionary mechanism.

  17. Enhanced Growth Inhibition of Osteosarcoma by Cytotoxic Polymerized Liposomal Nanoparticles Targeting the Alcam Cell Surface Receptor

    Directory of Open Access Journals (Sweden)

    Noah Federman

    2012-01-01

    Full Text Available Osteosarcoma is the most common primary malignancy of bone in children, adolescents, and adults. Despite extensive surgery and adjuvant aggressive high-dose systemic chemotherapy with potentially severe bystander side effects, cure is attainable in about 70% of patients with localized disease and only 20%–30% of those patients with metastatic disease. Targeted therapies clearly are warranted in improving our treatment of this adolescent killer. However, a lack of osteosarcoma-associated/specific markers has hindered development of targeted therapeutics. We describe a novel osteosarcoma-associated cell surface antigen, ALCAM. We, then, create an engineered anti-ALCAM-hybrid polymerized liposomal nanoparticle immunoconjugate (α-AL-HPLN to specifically target osteosarcoma cells and deliver a cytotoxic chemotherapeutic agent, doxorubicin. We have demonstrated that α-AL-HPLNs have significantly enhanced cytotoxicity over untargeted HPLNs and over a conventional liposomal doxorubicin formulation. In this way, α-AL-HPLNs are a promising new strategy to specifically deliver cytotoxic agents in osteosarcoma.

  18. Cerebellar Kainate Receptor-Mediated Facilitation of Glutamate Release Requires Ca2+-Calmodulin and PKA

    Directory of Open Access Journals (Sweden)

    Rafael Falcón-Moya

    2018-06-01

    Full Text Available We elucidated the mechanisms underlying the kainate receptor (KAR-mediated facilitatory modulation of synaptic transmission in the cerebellum. In cerebellar slices, KA (3 μM increased the amplitude of evoked excitatory postsynaptic currents (eEPSCs at synapses between axon terminals of parallel fibers (PF and Purkinje neurons. KA-mediated facilitation was antagonized by NBQX under condition where AMPA receptors were previously antagonized. Inhibition of protein kinase A (PKA suppressed the effect of KA on glutamate release, which was also obviated by the prior stimulation of adenylyl cyclase (AC. KAR-mediated facilitation of synaptic transmission was prevented by blocking Ca2+ permeant KARs using philanthotoxin. Furthermore, depletion of intracellular Ca2+ stores by thapsigargin, or inhibition of Ca2+-induced Ca2+-release by ryanodine, abrogated the synaptic facilitation by KA. Thus, the KA-mediated modulation was conditional on extracellular Ca2+ entry through Ca2+-permeable KARs, as well as and mobilization of Ca2+ from intracellular stores. Finally, KAR-mediated facilitation was sensitive to calmodulin inhibitors, W-7 and calmidazolium, indicating that the increased cytosolic [Ca2+] sustaining KAR-mediated facilitation of synaptic transmission operates through a downstream Ca2+/calmodulin coupling. We conclude that, at cerebellar parallel fiber-Purkinje cell synapses, presynaptic KARs mediate glutamate release facilitation, and thereby enhance synaptic transmission through Ca2+-calmodulin dependent activation of adenylyl cyclase/cAMP/protein kinase A signaling.

  19. Solution and solid-state studies on the halide binding affinity of perfluorophenyl-armed uranyl-salophen receptors enhanced by anion-π interactions

    Energy Technology Data Exchange (ETDEWEB)

    Leoni, Luca; Mele, Andrea; Giannicchi, Ilaria; Mihan, Francesco Yafteh; Dalla Cort, Antonella [Dipartimento di Chimica and IMC-CNR, Universita di Roma La Sapienza (Italy); Puttreddy, Rakesh; Jurcek, Ondrej; Rissanen, Kari [University of Jyvaeskylae, Department of Chemistry, Nanoscience Center (Finland)

    2016-12-23

    The enhancement of the binding between halide anions and a Lewis acidic uranyl-salophen receptor has been achieved by the introduction of pendant electron-deficient arene units into the receptor skeleton. The association and the occurrence of the elusive anion-π interaction with halide anions (as tetrabutylammonium salts) have been demonstrated in solution and in the solid state, providing unambiguous evidence on the interplay of the concerted interactions responsible for the anion binding. (copyright 2016 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Hypocretin-1 receptors regulate the reinforcing and reward-enhancing effects of cocaine: Pharmacological and behavioral genetics evidence

    Directory of Open Access Journals (Sweden)

    Jonathan eHollander

    2012-07-01

    Full Text Available Considerable evidence suggests that transmission at hypocretin-1 (orexin-1 receptors (Hcrt-R1 plays an important role in the reinstatement of extinguished cocaine-seeking behaviors in rodents. However, far less is known about the role for hypocretin transmission in regulating ongoing cocaine-taking behavior. Here, we investigated the effects of the selective Hcrt-R1 antagonist SB-334867 on cocaine intake, as measured by intravenous (IV cocaine self-administration in rats. The stimulatory effects of cocaine on brain reward systems contribute to the establishment and maintenance of cocaine-taking behaviors. Therefore, we also assessed the effects of SB-334867 on the reward-enhancing properties of cocaine, as measured by cocaine-induced lowering of intracranial self-stimulation (ICSS thresholds. Finally, to definitively establish a role for Hcrt-R1 in regulating cocaine intake, we assessed IV cocaine self-administration in Hcrt-R1 knockout mice. We found that SB-334867 (1-4 mg/kg dose-dependently decreased cocaine (0.5 mg/kg/infusion self-administration in rats but did not alter responding for food rewards under the same schedule of reinforcement. This suggests that SB-334867 decreased cocaine reinforcement without negatively impacting operant performance. SB-334867 (1-4 mg/kg also dose-dependently attenuated the stimulatory effects of cocaine (10 mg/kg on brain reward systems, as measured by reversal of cocaine-induced lowering of ICSS thresholds in rats. Finally, we found that Hcrt-R1 knockout mice self-administered far less cocaine than wildtype mice across the entire dose-response function. These data demonstrate that Hcrt-R1 play an important role in regulating the reinforcing and reward-enhancing properties of cocaine, and suggest that hypocretin transmission is likely essential for establishing and maintaining the cocaine habit in human addicts.

  1. Calcium channel blockers, more than diuretics, enhance vascular protective effects of angiotensin receptor blockers in salt-loaded hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Eiichiro Yamamoto

    Full Text Available The combination therapy of an angiotensin receptor blocker (ARB with a calcium channel blocker (CCB or with a diuretic is favorably recommended for the treatment of hypertension. However, the difference between these two combination therapies is unclear. The present work was undertaken to examine the possible difference between the two combination therapies in vascular protection. Salt-loaded stroke-prone spontaneously hypertensive rats (SHRSP were divided into 6 groups, and they were orally administered (1 vehicle, (2 olmesartan, an ARB, (3 azelnidipine, a CCB, (4 hydrochlorothiazide, a diuretic, (5 olmesartan combined with azelnidipine, or (6 olmesartan combined with hydrochlorothiazide. Olmesartan combined with either azelnidipine or hydrochlorothiazide ameliorated vascular endothelial dysfunction and remodeling in SHRSP more than did monotherapy with either agent. However, despite a comparable blood pressure lowering effect between the two treatments, azelnidipine enhanced the amelioration of vascular endothelial dysfunction and remodeling by olmesartan to a greater extent than did hydrochlorothiazide in salt-loaded SHRSP. The increased enhancement by azelnidipine of olmesartan-induced vascular protection than by hydrochlorothiazide was associated with a greater amelioration of vascular nicotinamide adenine dinucleotide phosphate (NADPH oxidase activation, superoxide, mitogen-activated protein kinase activation, and with a greater activation of the Akt/endothelial nitric oxide synthase (eNOS pathway. These results provided the first evidence that a CCB potentiates the vascular protective effects of an ARB in salt-sensitive hypertension, compared with a diuretic, and provided a novel rationale explaining the benefit of the combination therapy with an ARB and a CCB.

  2. Accelerated habit formation following amphetamine exposure is reversed by D1, but enhanced by D2, receptor antagonists

    Directory of Open Access Journals (Sweden)

    Andrew John Dudley Nelson

    2013-05-01

    Full Text Available Repeated exposure to the psychostimulant amphetamine has been shown to disrupt goal-directed instrumental actions and promote the early and abnormal development of goal-insensitive habitual responding (Nelson and Killcross, 2006. To investigate the neuropharmacological specificity of this effect as well as restore goal-directed responding in animals with pre-training amphetamine exposure, animals were treated with the non-selective dopamine antagonist α-flupenthixol, the selective D1 antagonist SCH 23390 or the selective D2 antagonist eticlopride, prior to instrumental training (3 sessions. Subsequently, the reinforcer was paired with LiCL-induced gastric-malaise and animals were given a test of goal-sensitivity both in extinction and reacquisition. The effect of these dopaminergic antagonists on the sensitivity of lever press performance to outcome devaluation was assessed in animals with pre-training exposure to amphetamine (Experiments 1a-1c or in non-sensitized animals (Experiment 2. Both α-flupenthixol and SCH23390 reversed accelerated habit formation following amphetamine sensitization. However, eticlopride appeared to enhance this effect and render instrumental performance compulsive as these animals were unable to inhibit responding both in extinction and reacquisition, even though a consumption test confirmed they had acquired an aversion to the reinforcer. These findings demonstrate that amphetamine induced-disruption of goal-directed behaviour is mediated by activity at distinct dopamine receptor subtypes and may represent a putative model of the neurochemical processes involved in the loss of voluntary control over behaviour.

  3. An Ultra-High Fluorescence Enhancement and High Throughput Assay for Revealing Expression and Internalization of Chemokine Receptor CXCR4.

    Science.gov (United States)

    He, Hua; Wang, Xiaojuan; Cheng, Tiantian; Xia, Yongqing; Lao, Jun; Ge, Baosheng; Ren, Hao; Khan, Naseer Ullah; Huang, Fang

    2016-04-18

    Revealing chemokine receptor CXCR4 expression, distribution, and internalization levels in different cancers helps to evaluate cancer progression or prognosis and to set personalized treatment strategy. We here describe a sensitive and high-throughput immunoassay for determining CXCR4 expression and distribution in cancer cells. The assay is accessible to a wide range of users in an ordinary lab only by dip-coating poly(styrene-co-N-isopropylacrylamide) spheres on the glass substrate. The self- assembled spheres form three-dimensional photonic colloidal crystals which enhance the fluorescence of CF647 and Alexa Fluor 647 by a factor of up to 1000. CXCR4 in cells is detected by using the sandwich immunoassay, where the primary antibody recognizes CXCR4 and the secondary antibody is labeled with CF647. With the newly established assay, we quantified the total expression of CXCR4, its distribution on the cell membrane and cytoplasm, and revealed their internalization level upon SDF-1α activation in various cancer cells, even for those with extremely low expression level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes.

    Science.gov (United States)

    Zhao, Yang; Xing, Lu; Wang, Xingang; Hou, Yueh-Ju; Gao, Jinghui; Wang, Pengcheng; Duan, Cheng-Guo; Zhu, Xiaohong; Zhu, Jian-Kang

    2014-06-03

    The phytohormone abscisic acid (ABA) regulates plant growth, development, and abiotic stress responses. ABA signaling is mediated by a group of receptors known as the PYR1/PYL/RCAR family, which includes the pyrabactin resistance 1-like protein PYL8. Under stress conditions, ABA signaling activates SnRK2 protein kinases to inhibit lateral root growth after emergence from the primary root. However, even in the case of persistent stress, lateral root growth eventually recovers from inhibition. We showed that PYL8 is required for the recovery of lateral root growth, following inhibition by ABA. PYL8 directly interacted with the transcription factors MYB77, MYB44, and MYB73. The interaction of PYL8 and MYB77 increased the binding of MYB77 to its target MBSI motif in the promoters of multiple auxin-responsive genes. Compared to wild-type seedlings, the lateral root growth of pyl8 mutant seedlings and myb77 mutant seedlings was more sensitive to inhibition by ABA. The recovery of lateral root growth was delayed in pyl8 mutant seedlings in the presence of ABA, and the defect was rescued by exposing pyl8 mutant seedlings to the auxin IAA (3-indoleacetic acid). Thus, PYL8 promotes lateral root growth independently of the core ABA-SnRK2 signaling pathway by enhancing the activities of MYB77 and its paralogs, MYB44 and MYB73, to augment auxin signaling. Copyright © 2014, American Association for the Advancement of Science.

  5. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    Science.gov (United States)

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  6. Targeting estrogen/estrogen receptor alpha enhances Bacillus Calmette-Guérin efficacy in bladder cancer.

    Science.gov (United States)

    Shang, Zhiqun; Li, Yanjun; Hsu, Iawen; Zhang, Minghao; Tian, Jing; Wen, Simeng; Han, Ruifa; Messing, Edward M; Chang, Chawnshang; Niu, Yuanjie; Yeh, Shuyuan

    2016-05-10

    Recent studies showed the potential linkage of estrogen/estrogen receptor signaling with bladder tumorigenesis, yet detailed mechanisms remain elusive. Here we found a new potential therapy with the combination of Bacillus Calmette-Guerin (BCG) and the anti-estrogen ICI 182,780 led to better suppression of bladder cancer (BCa) than BCG alone. Mechanism dissection found ICI 182,780 could promote BCG attachment/internalization to the BCa cells through increased integrin-α5β1 expression and IL-6 release, which may enhance BCG-induced suppression of BCa cell growth via recruiting more monocytes/macrophages to BCa cells and increased TNF-α release. Consistently, in vivo studies found ICI 182,780 could potentiate the anti-BCa effects of BCG in the carcinogen-induced mouse BCa models. Together, these in vitro and in vivo results suggest that combining BCG with anti-estrogen may become a new therapeutic approach with better efficacy to suppress BCa progression and recurrence.

  7. Novel Antidepressant-Like Activity of Caffeic Acid Phenethyl Ester Is Mediated by Enhanced Glucocorticoid Receptor Function in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Mi-Sook Lee

    2014-01-01

    Full Text Available Caffeic acid phenethyl ester (CAPE is an active component of propolis that has a variety of potential pharmacological effects. Although we previously demonstrated that propolis has antidepressant-like activity, the effect of CAPE on this activity remains unknown. The present study assessed whether treatment with CAPE (5, 10, and 20 µmol/kg for 21 days has an antidepressant-like effect in mice subjected to chronic unpredictable stress via tail suspension (TST and forced swim (FST tests. CAPE administration induced behaviors consistent with an antidepressant effect, evidenced by decreased immobility in the TST and FST independent of any effect on serum corticosterone secretion. Western blots, conducted subsequent to behavioral assessment, revealed that CAPE significantly decreased glucocorticoid receptor phosphorylation at S234 (pGR(S234, resulting in an increased pGR(S220/S234 ratio. We also observed negative correlations between pGR(S220/(S234 and p38 mitogen-activated protein kinase (p38MAPK phosphorylation, which was decreased by CAPE treatment. These findings suggest that CAPE treatment exerts an antidepressant-like effect via downregulation of p38MAPK phosphorylation, thereby contributing to enhanced GR function.

  8. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zhen [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  9. Review article: clinical implications of enteric and central D2 receptor blockade by antidopaminergic gastrointestinal prokinetics.

    Science.gov (United States)

    Tonini, M; Cipollina, L; Poluzzi, E; Crema, F; Corazza, G R; De Ponti, F

    2004-02-15

    Antidopaminergic gastrointestinal prokinetics (bromopride, clebopride, domperidone, levosulpiride and metoclopramide) have been exploited clinically for the management of motor disorders of the upper gastrointestinal tract, including functional dyspepsia, gastric stasis of various origins and emesis. The prokinetic effect of these drugs is mediated through the blockade of enteric (neuronal and muscular) inhibitory D2 receptors. The pharmacological profiles of the marketed compounds differ in terms of their molecular structure, affinity at D2 receptors, ability to interact with other receptor systems [5-hydroxytryptamine-3 (5-HT3) and 5-HT4 receptors for metoclopramide; 5-HT4 receptors for levosulpiride) and ability to permeate the blood-brain barrier (compared with the other compounds, domperidone does not easily cross the barrier). It has been suggested that the serotonergic (5-HT4) component of some antidopaminergic prokinetics may enhance their therapeutic efficacy in gastrointestinal disorders, such as functional dyspepsia and diabetic gastroparesis. The antagonism of central D2 receptors may lead to both therapeutic (e.g. anti-emetic effect due to D2 receptor blockade in the area postrema) and adverse (including hyperprolactinaemia and extrapyramidal dystonic reactions) effects. As the pituitary (as well as the area postrema) is outside the blood-brain barrier, hyperprolactinaemia is a side-effect occurring with all antidopaminergic prokinetics, although to different extents. Extrapyramidal reactions are most commonly observed with compounds crossing the blood-brain barrier, although with some differences amongst the various agents. Prokinetics with a high dissociation constant compared with that of dopamine at the D2 receptor (i.e. compounds that bind loosely to D2 receptors in the nigrostriatal pathway) elicit fewer extrapyramidal signs and symptoms. A knowledge of central and peripheral D2 receptor pharmacology can help the clinician to choose between the

  10. Targeting of Escherichia coli F4 fimbriae to Fcgamma receptors enhances the maturation of porcine dendritic cells.

    Science.gov (United States)

    Devriendt, Bert; Verdonck, Frank; Summerfield, Artur; Goddeeris, Bruno M; Cox, Eric

    2010-06-15

    F4(+) enterotoxigenic Escherichia coli (ETEC) infections are an important cause of postweaning diarrhoea in piglets and an oral immunization of piglets with purified F4 fimbriae protects them from a subsequent F4(+) ETEC infection. However, oral immunization of suckling piglets is hampered due to the immature status of their immune system. Targeting of antigens to Fcgamma receptors (FcgammaR) on human and murine dendritic cells (DC) has been shown to enhance DC maturation and both humoral and cellular immune responses. To investigate the effect of F4 fimbriae incorporated in immune complexes (F4-IC) on porcine DC, we used porcine monocytic-derived DC (MoDC) as a model system. The results in this study demonstrate that FcgammaRI, II and III mRNA is expressed by porcine MoDC. Furthermore, we show that FcgammaRII and III are expressed on the cell surface and that F4-IC are internalized by MoDC via FcgammaR. This FcgammaR ligation induced a significantly enhanced expression of Major Histocompatibility complex (MHCII) class II and the costimulatory molecules CD80/86 and CD40 by MoDC compared with immature MoDC. Furthermore, the phagocytic capacity of F4-IC stimulated MoDC was reduced as evidenced by a reduced uptake of DQ-ovalbumin and FITC-dextran. In an allogenic and autologous mixed lymphocyte reaction, these F4-IC-activated MoDC showed an improved T cell stimulatory capacity in comparison with immature MoDC. The F4-IC induced DC maturation correlated with significant higher expression levels of several pro-inflammatory cytokines such as interleukine (IL) 1beta, IL-6 and Tumor necrosis factor alpha, the chemokine IL-8 and IL-12p40 in comparison with immature MoDC. Altogether, these results clearly demonstrate that FcgammaR engagement enhances the maturation of porcine MoDC, which may suggest that antigen targeting to FcgammaR on DC could improve vaccine design against infections. Copyright 2009 Elsevier B.V. All rights reserved.

  11. A ghrelin-growth hormone axis drives stress-induced vulnerability to enhanced fear.

    Science.gov (United States)

    Meyer, R M; Burgos-Robles, A; Liu, E; Correia, S S; Goosens, K A

    2014-12-01

    Hormones in the hypothalamus-pituitary-adrenal (HPA) axis mediate many of the bodily responses to stressors, yet there is no clear relationship between the levels of these hormones and stress-associated mental illnesses such as posttraumatic stress disorder (PTSD). Therefore, other hormones are likely to be involved in this effect of stress. Here we used a rodent model of PTSD in which rats repeatedly exposed to a stressor display heightened fear learning following auditory Pavlovian fear conditioning. Our results show that stress-related increases in circulating ghrelin, a peptide hormone, are necessary and sufficient for stress-associated vulnerability to exacerbated fear learning and these actions of ghrelin occur in the amygdala. Importantly, these actions are also independent of the classic HPA stress axis. Repeated systemic administration of a ghrelin receptor agonist enhanced fear memory but did not increase either corticotropin-releasing factor (CRF) or corticosterone. Repeated intraamygdala infusion of a ghrelin receptor agonist produced a similar enhancement of fear memory. Ghrelin receptor antagonism during repeated stress abolished stress-related enhancement of fear memory without blunting stress-induced corticosterone release. We also examined links between ghrelin and growth hormone (GH), a major downstream effector of the ghrelin receptor. GH protein was upregulated in the amygdala following chronic stress, and its release from amygdala neurons was enhanced by ghrelin receptor stimulation. Virus-mediated overexpression of GH in the amygdala was also sufficient to increase fear. Finally, virus-mediated overexpression of a GH receptor antagonist was sufficient to block the fear-enhancing effects of repeated ghrelin receptor stimulation. Thus, ghrelin requires GH in the amygdala to exert fear-enhancing effects. These results suggest that ghrelin mediates a novel branch of the stress response and highlight a previously unrecognized role for ghrelin and

  12. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: role of the ventral tegmental area and central nucleus of the amygdala.

    Science.gov (United States)

    Kenny, Paul J; Chartoff, Elena; Roberto, Marisa; Carlezon, William A; Markou, Athina

    2009-01-01

    Nicotine is considered an important component of tobacco responsible for the smoking habit in humans. Nicotine increases glutamate-mediated transmission throughout brain reward circuitries. This action of nicotine could potentially contribute to its intrinsic rewarding and reward-enhancing properties, which motivate consumption of the drug. Here we show that the competitive N-methyl-D-aspartate (NMDA) receptor antagonist LY235959 (0.5-2.5 mg per kg) abolished nicotine-enhanced brain reward function, reflected in blockade of the lowering of intracranial self-stimulation (ICSS) thresholds usually observed after experimenter-administered (0.25 mg per kg) or intravenously self-administered (0.03 mg per kg per infusion) nicotine injections. The highest LY235959 dose (5 mg per kg) tested reversed the hedonic valence of nicotine from positive to negative, reflected in nicotine-induced elevations of ICSS thresholds. LY235959 doses that reversed nicotine-induced lowering of ICSS thresholds also markedly decreased nicotine self-administration without altering responding for food reinforcement, whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonist NBQX had no effects on nicotine intake. In addition, nicotine self-administration upregulated NMDA receptor subunit expression in the central nucleus of the amygdala (CeA) and ventral tegmental area (VTA), suggesting important interactions between nicotine and the NMDA receptor. Furthermore, nicotine (1 microM) increased NMDA receptor-mediated excitatory postsynaptic currents in rat CeA slices, similar to its previously described effects in the VTA. Finally, infusion of LY235959 (0.1-10 ng per side) into the CeA or VTA decreased nicotine self-administration. Taken together, these data suggest that NMDA receptors, including those in the CeA and VTA, gate the magnitude and valence of the effects of nicotine on brain reward systems, thereby regulating motivation to consume the drug.

  13. The ACE-2/Ang1-7/Mas cascade enhances bone structure and metabolism following angiotensin-II type 1 receptor blockade.

    Science.gov (United States)

    Abuohashish, Hatem M; Ahmed, Mohammed M; Sabry, Dina; Khattab, Mahmoud M; Al-Rejaie, Salim S

    2017-07-15

    The renin angiotensin system (RAS) regulates numerous systemic functions and is expressed locally in skeletal tissues. Angiotensin1-7 (Ang1-7) is a beneficial member of the RAS, and the therapeutic effects of a large number of angiotensin receptors blockers (ARBs) are mediated by an Ang1-7-dependent cascade. This study examines whether the reported osteo-preservative effects of losartan are mediated through the angiotensin converting enzyme2 (ACE-2)/Ang1-7/Mas pathway in ovariectomized (OVX) rats. Sham and OVX animals received losartan (10mg/kg/d p.o.) for 6 weeks. A specific Mas receptor blocker (A-779) was delivered via mini-osmotic pumps during the losartan treatment period. Serum and urine bone metabolism biomarker levels were measured. Bone trabecular and cortical morphometry were quantified in distal femurs, whereas mineral contents were estimated in ashed bones, serum and urine. Finally, the expression of RAS components, the receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) was determined. Losartan significantly improved the elevated bone metabolism marker levels and altered trabecular and cortical structures in OVX animals, and restored normal urinary and skeletal mineral levels. Mas receptor inhibition significantly abolished all osteo-protective effects of losartan and enhanced the deleterious effects of OVX. Losartan enhanced OVX-induced up-regulation of ACE-1, AngII, angiotensin type 1 (AT 1 ) receptor and RANKL expression, and increased ACE-2, Ang1-7, Mas and OPG expression in OVX animals. However, A-779 significantly eradicated the effects of losartan on RAS components and RANKL/OPG expression. Thus, Ang1-7 are involved in the osteo-preservative effects of losartan via Mas receptor, which may add therapeutic value to this well-known antihypertensive agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Paired Immunoglobulin-like Receptor B Knockout Does Not Enhance Axonal Regeneration or Locomotor Recovery after Spinal Cord Injury*

    OpenAIRE

    Nakamura, Yuka; Fujita, Yuki; Ueno, Masaki; Takai, Toshiyuki; Yamashita, Toshihide

    2010-01-01

    Myelin components that inhibit axonal regeneration are believed to contribute significantly to the lack of axonal regeneration noted in the adult central nervous system. Three proteins found in myelin, Nogo, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein, inhibit neurite outgrowth in vitro. All of these proteins interact with the same receptors, namely, the Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PIR-B). As per previous reports, corticospinal tr...

  15. Enhanced Androgen Signaling with Androgen Receptor Overexpression in the Osteoblast Lineage Controls Skeletal Turnover, Matrix Quality and Bone Architecture

    Science.gov (United States)

    2009-12-01

    Fu , M. , and Pestell , R. ( 2006 ). Epigenetic regulation of nuclear steroid receptors . Biochem. Pharmacol. 72 , 1589 – 1596...2006;38:1289–1297. 21. Leader J, Wang C, Fu M, Pestell R. Epigenetic regulation of nuclear steroid receptors. Biochem Pharmacol 2006;72:1589–1596. 22...Nat Genet 2006;38:1289-97. 21. Leader J, Wang C, Fu M, Pestell R. Epigenetic regulation of nuclear steroid receptors. Biochem Pharmacol 2006;72

  16. A prototypical Sigma-1 receptor antagonist protects against brain ischemia

    OpenAIRE

    Schetz, John A.; Perez, Evelyn; Liu, Ran; Chen, Shiuhwei; Lee, Ivan; Simpkins, James W.

    2007-01-01

    Previous studies indicate that the Sigma-1 ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) protects the brain from ischemia. Less clear is whether protection is mediated by agonism or antagonism of the Sigma-1 receptor, and whether drugs already in use for other indications and that interact with the Sigma-1 receptor might also prevent oxidative damage due to conditions such as cerebral ischemic stroke. The antipsychotic drug haloperidol is an antagonist of Sigma-1 receptors and in this s...

  17. Interleukin-1 interaction with neuroregulatory systems: selective enhancement by recombinant human and mouse interleukin-1 of in vitro opioid peptide receptor binding in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Wiedermann, C.J.

    1989-02-01

    Interleukin-1 (IL-1) exerts a wide variety of biological effects on various cell types and may be regarded as a pleiotropic peptide hormone. Biological evidence suggests that IL-1 participates in the modulation of central nervous system physiology and behavior in a fashion characteristic of neuroendocrine hormones. In this investigation, recombinant (r) human (h) IL-1 and r mouse (m) IL-1 were examined for their modulation of opioid peptide receptor binding in vitro. Experiments were performed on frozen sections of rat brain. Receptor binding of radiolabeled substance P and of radiolabeled neurotensin were not significantly affected by the presence of rIL-1s. Recombinant IL-1s, however, significantly enhanced specific binding of 125I-beta-endorphin (125I-beta-END) and of D-ala2-(tyrosyl-3,5-3H)enkephalin-(5-D-leucine) (3H-D-ALA), equipotently and in a concentration-dependent manner with maximal activity occurring at a concentration of 10 LAF units/ml. The increased binding of 125I-beta-END and 3H-D-ALA was blocked steroselectively by (-)-naloxone and by etorphine, suggesting detection of opiate receptors. In addition, brain distribution patterns of receptors labeled in the presence of rIL-1s corresponded to patterns previously published for opiate receptors. Autoradiographic visualization of receptors revealed that rIL-1s in the different areas of the brain exert their effect on opioid binding with comparable potencies. The data suggest that certain central nervous system effects of IL-1s may be mediated by their selective interaction with opiatergic systems at the receptor level.

  18. Expression of the Grb2-related protein of the lymphoid system in B cell subsets enhances B cell antigen receptor signaling through mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Yankee, Thomas M; Solow, Sasha A; Draves, Kevin D; Clark, Edward A

    2003-01-01

    Adapter proteins play a critical role in regulating signals triggered by Ag receptor cross-linking. These small molecules link receptor proximal events with downstream signaling pathways. In this study, we explore the expression and function of the Grb2-related protein of the lymphoid system (GrpL)/Grb2-related adaptor downstream of Shc adapter protein in human B cells. GrpL is expressed in naive B cells and is down-regulated following B cell Ag receptor ligation. By contrast, germinal center and memory B cells express little or no GrpL. Using human B cell lines, we detected constitutive interactions between GrpL and B cell linker protein, Src homology (SH)2 domain-containing leukocyte protein of 76 kDa, hemopoietic progenitor kinase 1, and c-Cbl. The N-terminal SH3 domain of GrpL binds c-Cbl while the C-terminal SH3 domain binds B cell linker protein and SH2 domain-containing leukocyte protein of 76 kDa. Exogenous expression of GrpL in a GrpL-negative B cell line leads to enhanced Ag receptor-induced extracellular signal-related kinase and p38 mitogen-activated protein kinase phosphorylation. Thus, GrpL expression in human B cell subsets appears to regulate Ag receptor-mediated signaling events.

  19. Viral vector-mediated overexpression of estrogen receptor-alpha in striatum enhances the estradiol-induced motor activity in female rats and estradiol-modulated GABA release.

    Science.gov (United States)

    Schultz, Kristin N; von Esenwein, Silke A; Hu, Ming; Bennett, Amy L; Kennedy, Robert T; Musatov, Sergei; Toran-Allerand, C Dominique; Kaplitt, Michael G; Young, Larry J; Becker, Jill B

    2009-02-11

    Classical estrogen receptor-signaling mechanisms involve estradiol binding to intracellular nuclear receptors [estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta)] to promote changes in protein expression. Estradiol can also exert effects within seconds to minutes, however, a timescale incongruent with genomic signaling. In the brain, estradiol rapidly potentiates stimulated dopamine release in the striatum of female rats and enhances spontaneous rotational behavior. Furthermore, estradiol rapidly attenuates the K(+)-evoked increase of GABA in dialysate. We hypothesize that these rapid effects of estradiol in the striatum are mediated by ERalpha located on the membrane of medium spiny GABAergic neurons. This experiment examined whether overexpression of ERalpha in the striatum would enhance the effect of estradiol on rotational behavior and the K(+)-evoked increase in GABA in dialysate. Ovariectomized female rats were tested for rotational behavior or underwent microdialysis experiments after unilateral intrastriatal injections of a recombinant adeno-associated virus (AAV) containing the human ERalpha cDNA (AAV.ERalpha) into the striatum; controls received either the same vector into areas outside the striatum or an AAV containing the human alkaline phosphatase gene into the striatum (AAV.ALP). Animals that received AAV.ERalpha in the striatum exhibited significantly greater estradiol-induced contralateral rotations compared with controls and exhibited behavioral sensitization of contralateral rotations induced by a low-dose of amphetamine. ERalpha overexpression also enhanced the inhibitory effect of estradiol on K(+)-evoked GABA release suggesting that disinhibition of dopamine release from terminals in the striatum resulted in the enhanced rotational behavior.

  20. Interleukin-1 antagonism moderates the inflammatory state associated with Type 1 diabetes during clinical trials conducted at disease onset.

    Science.gov (United States)

    Cabrera, Susanne M; Wang, Xujing; Chen, Yi-Guang; Jia, Shuang; Kaldunski, Mary L; Greenbaum, Carla J; Mandrup-Poulsen, Thomas; Hessner, Martin J

    2016-04-01

    It was hypothesized that IL-1 antagonism would preserve β-cell function in new onset Type 1 diabetes (T1D). However, the Anti-Interleukin-1 in Diabetes Action (AIDA) and TrialNet Canakinumab (TN-14) trials failed to show efficacy of IL-1 receptor antagonist (IL-1Ra) or canakinumab, as measured by stimulated C-peptide response. Additional measures are needed to define immune state changes associated with therapeutic responses. Here, we studied these trial participants with plasma-induced transcriptional analysis. In blinded analyses, 70.2% of AIDA and 68.9% of TN-14 participants were correctly called to their treatment arm. While the transcriptional signatures from the two trials were distinct, both therapies achieved varying immunomodulation consistent with IL-1 inhibition. On average, IL-1 antagonism resulted in modest normalization relative to healthy controls. At endpoint, signatures were quantified using a gene ontology-based inflammatory index, and an inverse relationship was observed between measured inflammation and stimulated C-peptide response in IL-1Ra- and canakinumab-treated patients. Cytokine neutralization studies showed that IL-1α and IL-1β additively contribute to the T1D inflammatory state. Finally, analyses of baseline signatures were indicative of later therapeutic response. Despite the absence of clinical efficacy by IL-1 antagonist therapy, transcriptional analysis detected immunomodulation and may yield new insight when applied to other clinical trials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Genistein enhances the effect of trichostatin A on inhibition of A549 cell growth by increasing expression of TNF receptor-1

    International Nuclear Information System (INIS)

    Wu, Tzu-Chin; Yang, Ying-Chihi; Huang, Pei-Ru; Wen, Yu-Der; Yeh, Shu-Lan

    2012-01-01

    Our previous study has shown that genistein enhances apoptosis in A549 lung cancer cells induced by trichostatin A (TSA). The precise molecular mechanism underlying the effect of genistein, however, remains unclear. In the present study, we investigated whether genistein enhances the anti-cancer effect of TSA through up-regulation of TNF receptor-1 (TNFR-1) death receptor signaling. We incubated A549 cells with TSA (50 ng/mL) alone or in combination with genistein and then determined the mRNA and protein expression of TNFR-1 as well as the activation of downstream caspases. Genistein at 5 and 10 μM significantly enhanced the TSA-induced decrease in cell number and apoptosis in a dose-dependent manner. The combined treatment significantly increased mRNA and protein expression of TNFR-1 at 6 and 12 h, respectively, compared with that of the control group; while TSA alone had no effect. TSA in combination with 10 μM of genistein increased TNFR-1 mRNA and protein expression by about 70% and 40%, respectively. The underlying mechanism for this effect of genistein may be partly associated with the estrogen receptor pathway. The combined treatment also increased the activation of caspase-3 and ‐10 as well as p53 protein expression in A549 cells. The enhancing effects of genistein on the TSA-induced decrease in cell number and on the expression of caspase-3 in A549 cells were suppressed by silencing TNFR-1 expression. These data demonstrated that the upregulation of TNFR-1 death receptor signaling plays an important role, at least in part, in the enhancing effect of genistein on TSA-induced apoptosis in A549 cells. -- Highlights: ► TSA combined with genistein rather than TSA alone increases the expression of TNFR-1. ► Genistein may exert such an effect partly through estrogen receptor pathway. ► The combined treatment increases the activation of caspase-10 and caspase-3. ► The combined treatment also increases the expression of p53 protein. ► TNFR-1 si

  2. Intra-cerebellar microinjection of histamine enhances memory consolidation of inhibitory avoidance learning in mice via H2 receptors.

    Science.gov (United States)

    Gianlorenço, A C L; Canto-de-Souza, A; Mattioli, R

    2013-12-17

    Studies have demonstrated the relationship between the histaminergic system and the cerebellum, and we intend to investigate the role of the cerebellar histaminergic system on memory consolidation. This study investigated the effect of intra-cerebellar microinjection of histamine on memory retention of inhibitory avoidance in mice, and the role of H1 and H2 receptors in it. The cerebellar vermis of male mice were implanted with guide cannulae, and after three days of recovery, the inhibitory avoidance test was performed. Immediately after a training session, animals received a microinjection of histaminergic drugs: in the experiment 1, saline (SAL) or histamine (HA 0.54, 1.36, 2.72 or 4.07 nmol); experiment 2, SAL or 1.36 nmol HA 5 min after a pretreatment with 0.16 nmol chlorpheniramine (CPA) or SAL; and experiment 3, SAL or 1.36 nmol HA 5 min after a pretreatment with 2.85 nmol ranitidine (RA) or SAL. Twenty-four hours later, a retention test was performed. The data were analyzed using one-way analysis of variance (ANOVA) and Duncan's tests. In experiment 1, animals microinjected with 1.36 nmol HA showed a higher latency to cross to the dark compartment compared to controls and to 2.72 and 4.07 nmol HA groups. In experiment 2, the combined infusions revealed difference between control (SAL+SAL) and SAL+HA and CPA+HA; while in the experiment 3 the analysis indicated differences in retention latency between mice injected with SAL+SAL and SAL+HA. The groups that received the H2 antagonist RA did not show difference compared to control. These results indicate that 1.36 nmol HA enhances memory consolidation of inhibitory avoidance learning in mice and that the pretreatment with H2 antagonist RA was able to prevent this effect. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Advantages and Limitations of Androgen Receptor-Based Methods for Detecting Anabolic Androgenic Steroid Abuse as Performance Enhancing Drugs

    Science.gov (United States)

    Bailey, Kathy; Yazdi, Tahmineh; Masharani, Umesh; Tyrrell, Blake; Butch, Anthony; Schaufele, Fred

    2016-01-01

    Testosterone (T) and related androgens are performance enhancing drugs (PEDs) abused by some athletes to gain competitive advantage. To monitor unauthorized androgen abuse, doping control programs use mass spectrometry (MS) to detect androgens, synthetic anabolic-androgenic steroids (AASs) and their metabolites in an athlete’s urine. AASs of unknown composition will not be detected by these procedures. Since AASs achieve their anabolic effects by activating the Androgen Receptor (AR), cell-based bioassays that measure the effect of a urine sample on AR activity are under investigation as complementary, pan-androgen detection methods. We evaluated an AR BioAssay as a monitor for androgen activity in urine pre-treated with glucuronidase, which releases T from the inactive T-glucuronide that predominates in urine. AR BioAssay activity levels were expressed as ‘T-equivalent’ concentrations by comparison to a T dose response curve. The T-equivalent concentrations of androgens in the urine of hypogonadal participants supplemented with T (in whom all androgenic activity should arise from T) were quantitatively identical to the T measurements conducted by MS at the UCLA Olympic Analytical Laboratory (0.96 ± 0.22). All 17 AASs studied were active in the AR BioAssay; other steroids were inactive. 12 metabolites of 10 commonly abused AASs, which are used for MS monitoring of AAS doping because of their prolonged presence in urine, had reduced or no AR BioAssay activity. Thus, the AR BioAssay can accurately and inexpensively monitor T, but its ability to monitor urinary AASs will be limited to a period immediately following doping in which the active AASs remain intact. PMID:26998755

  4. Central oxytocin receptors mediate mating-induced partner preferences and enhance correlated activation across forebrain nuclei in male prairie voles.

    Science.gov (United States)

    Johnson, Zachary V; Walum, Hasse; Jamal, Yaseen A; Xiao, Yao; Keebaugh, Alaine C; Inoue, Kiyoshi; Young, Larry J

    2016-03-01

    Oxytocin (OT) is a deeply conserved nonapeptide that acts both peripherally and centrally to modulate reproductive physiology and sociosexual behavior across divergent taxa, including humans. In vertebrates, the distribution of the oxytocin receptor (OTR) in the brain is variable within and across species, and OTR signaling is critical for a variety of species-typical social and reproductive behaviors, including affiliative and pair bonding behaviors in multiple socially monogamous lineages of fishes, birds, and mammals. Early work in prairie voles suggested that the endogenous OT system modulates mating-induced partner preference formation in females but not males; however, there is significant evidence that central OTRs may modulate pair bonding behavior in both sexes. In addition, it remains unclear how transient windows of central OTR signaling during sociosexual interaction modulate neural activity to produce enduring shifts in sociobehavioral phenotypes, including the formation of selective social bonds. Here we re-examine the role of the central OT system in partner preference formation in male prairie voles using a selective OTR antagonist delivered intracranially. We then use the same antagonist to examine how central OTRs modulate behavior and immediate early gene (Fos) expression, a metric of neuronal activation, in males during brief sociosexual interaction with a female. Our results suggest that, as in females, OTR signaling is critical for partner preference formation in males and enhances correlated activation across sensory and reward processing brain areas during sociosexual interaction. These results are consistent with the hypothesis that central OTR signaling facilitates social bond formation by coordinating activity across a pair bonding neural network. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Distinct roles of the hippocampus and perirhinal cortex in GABAA receptor blockade-induced enhancement of object recognition memory.

    Science.gov (United States)

    Kim, Jong Min; Kim, Dong Hyun; Lee, Younghwan; Park, Se Jin; Ryu, Jong Hoon

    2014-03-13

    It is well known that the hippocampus plays a role in spatial and contextual memory, and that spatial information is tightly regulated by the hippocampus. However, it is still highly controversial whether the hippocampus plays a role in object recognition memory. In a pilot study, the administration of bicuculline, a GABAA receptor antagonist, enhanced memory in the passive avoidance task, but not in the novel object recognition task. In the present study, we hypothesized that these different results are related to the characteristics of each task and the different roles of hippocampus and perirhinal cortex. A region-specific drug-treatment model was employed to clarify the role of the hippocampus and perirhinal cortex in object recognition memory. After a single habituation in the novel object recognition task, intra-perirhinal cortical injection of bicuculline increased and intra-hippocampal injection decreased the exploration time ratio to novel object. In addition, when animals were repeatedly habituated to the context, intra-perirhinal cortical administration of bicuculline still increased exploration time ratio to novel object, but the effect of intra-hippocampal administration disappeared. Concurrent increases of c-Fos expression and ERK phosphorylation were observed in the perirhinal cortex of the object with context-exposed group either after single or repeated habituation to the context, but no changes were noted in the hippocampus. Altogether, these results suggest that object recognition memory formation requires the perirhinal cortex but not the hippocampus, and that hippocampal activation interferes with object recognition memory by the information encoding of unfamiliar environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Central oxytocin receptors mediate mating-induced partner preferences and enhance correlated activation across forebrain nuclei in male prairie voles

    Science.gov (United States)

    Johnson, Zachary V.; Walum, Hasse; Jamal, Yaseen A.; Xiao, Yao; Keebaugh, Alaine C.; Inoue, Kiyoshi; Young, Larry J.

    2016-01-01

    Oxytocin (OT) is a deeply conserved nonapeptide that acts both peripherally and centrally to modulate reproductive physiology and sociosexual behavior across divergent taxa, including humans. In vertebrates, the distribution of the oxytocin receptor (OTR) in the brain is variable within and across species, and OTR signaling is critical for a variety of species-typical social and reproductive behaviors, including affiliative and pair bonding behaviors in multiple socially monogamous lineages of fishes, birds, and mammals. Early work in prairie voles suggested that the endogenous OT system modulates mating-induced partner preference formation in females but not males; however, there is significant evidence that central OTRs may modulate pair bonding behavior in both sexes. In addition, it remains unclear how transient windows of central OTR signaling during sociosexual interaction modulate neural activity to produce enduring shifts in sociobehavioral phenotypes, including the formation of selective social bonds. Here we re-examine the role of the central OT system in partner preference formation in male prairie voles using a selective OTR antagonist delivered intracranially. We then use the same antagonist to examine how central OTRs modulate behavior and immediate early gene (Fos) expression, a metric of neuronal activation, in males during brief sociosexual interaction with a female. Our results suggest that, as in females, OTR signaling is critical for partner preference formation in males and enhances correlated activation across sensory and reward processing brain areas during sociosexual interaction. These results are consistent with the hypothesis that central OTR signaling facilitates social bond formation by coordinating activity across a pair bonding neural network. PMID:26643557

  7. Advantages and Limitations of Androgen Receptor-Based Methods for Detecting Anabolic Androgenic Steroid Abuse as Performance Enhancing Drugs.

    Science.gov (United States)

    Bailey, Kathy; Yazdi, Tahmineh; Masharani, Umesh; Tyrrell, Blake; Butch, Anthony; Schaufele, Fred

    2016-01-01

    Testosterone (T) and related androgens are performance enhancing drugs (PEDs) abused by some athletes to gain competitive advantage. To monitor unauthorized androgen abuse, doping control programs use mass spectrometry (MS) to detect androgens, synthetic anabolic-androgenic steroids (AASs) and their metabolites in an athlete's urine. AASs of unknown composition will not be detected by these procedures. Since AASs achieve their anabolic effects by activating the Androgen Receptor (AR), cell-based bioassays that measure the effect of a urine sample on AR activity are under investigation as complementary, pan-androgen detection methods. We evaluated an AR BioAssay as a monitor for androgen activity in urine pre-treated with glucuronidase, which releases T from the inactive T-glucuronide that predominates in urine. AR BioAssay activity levels were expressed as 'T-equivalent' concentrations by comparison to a T dose response curve. The T-equivalent concentrations of androgens in the urine of hypogonadal participants supplemented with T (in whom all androgenic activity should arise from T) were quantitatively identical to the T measurements conducted by MS at the UCLA Olympic Analytical Laboratory (0.96 ± 0.22). All 17 AASs studied were active in the AR BioAssay; other steroids were inactive. 12 metabolites of 10 commonly abused AASs, which are used for MS monitoring of AAS doping because of their prolonged presence in urine, had reduced or no AR BioAssay activity. Thus, the AR BioAssay can accurately and inexpensively monitor T, but its ability to monitor urinary AASs will be limited to a period immediately following doping in which the active AASs remain intact.

  8. Enhancing E. coli tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein (CRP.

    Directory of Open Access Journals (Sweden)

    Souvik Basak

    Full Text Available Oxidative damage to microbial hosts often occurs under stressful conditions during bioprocessing. Classical strain engineering approaches are usually both time-consuming and labor intensive. Here, we aim to improve E. coli performance under oxidative stress via engineering its global regulator cAMP receptor protein (CRP, which can directly or indirectly regulate redox-sensing regulators SoxR and OxyR, and other ~400 genes in E. coli. Error-prone PCR technique was employed to introduce modifications to CRP, and three mutants (OM1~OM3 were identified with improved tolerance via H(2O(2 enrichment selection. The best mutant OM3 could grow in 12 mM H(2O(2 with the growth rate of 0.6 h(-1, whereas the growth of wild type was completely inhibited at this H(2O(2 concentration. OM3 also elicited enhanced thermotolerance at 48°C as well as resistance against cumene hydroperoxide. The investigation about intracellular reactive oxygen species (ROS, which determines cell viability, indicated that the accumulation of ROS in OM3 was always lower than in WT with or without H(2O(2 treatment. Genome-wide DNA microarray analysis has shown not only CRP-regulated genes have demonstrated great transcriptional level changes (up to 8.9-fold, but also RpoS- and OxyR-regulated genes (up to 7.7-fold. qRT-PCR data and enzyme activity assay suggested that catalase (katE could be a major antioxidant enzyme in OM3 instead of alkyl hydroperoxide reductase or superoxide dismutase. To our knowledge, this is the first work on improving E. coli oxidative stress resistance by reframing its transcription machinery through its native global regulator. The positive outcome of this approach may suggest that engineering CRP can be successfully implemented as an efficient strain engineering alternative for E. coli.

  9. An allosteric enhancer of M4muscarinic acetylcholine receptor function inhibits behavioral and neurochemical effects of cocaine

    DEFF Research Database (Denmark)

    Dencker, Ditte; Weikop, Pia; Sørensen, Gunnar

    2012-01-01