WorldWideScience

Sample records for receiver function images

  1. Receiver Function Imaging of Mantle Transition Zone Discontinuities Beneath Alaska

    Science.gov (United States)

    Dahm, Haider Hassan Faraj

    Subduction of tectonic plates is one of the most important tectonic processes, yet many aspects of subduction zone geodynamics remain unsolved and poorly understood, such as the depth extent of the subducted slab and its geometry. The Alaska subduction zone, which is associated with the subduction of the Pacific Plate beneath the North America plate, has a complex tectonic setting and carries a series of subduction episodes, and represents an excellent target to study such plate tectonic processes. Previous seismological studies in Alaska have proposed different depth estimations and geometry for the subducted slab. The Mantle transition zone discontinuities of the 410km and the 660 km provide independent constraints on the depth extent of the subducted slabs. We conducted a receiver function study to map the topography of the 410 km and the 660 km discontinuities beneath Alaska and its adjacent areas by taking advantage of the teleseismic data from the new USArray deployment in Alaska and northwestern Canada. Stacking over 75,000 high-quality radial receiver functions recorded in Alaska with more than 40 years of recording period, the topographies of the 410 km and 660 km are mapped. The depths of both d410 and d660 show systematic spatial variations, the mean depth of d410 and d660 are within 6 km and 6 km from the global average, respectively. The mean MTZ thickness of the entire study area is within -2 km from the global average of 250 km, suggesting normal MTZ conditions on average. Central and south-central Alaska are characterized by a larger than normal MTZ thickness, suggesting that the subducting Pacific slab is thermally interacted with the MTZ. This study shows that lateral upper mantle velocity variations contribute the bulk of the observed apparent undulations of the MTZ discontinuities.

  2. Resolving plate structure across the seismogenic zone in Cascadia from onshore-offshore receiver function imaging

    Science.gov (United States)

    Audet, P.; Schaeffer, A. J.

    2017-12-01

    Studies of the forearc structure in the Cascadia subduction zone using teleseismic P-wave receiver function have resolved structures associated with deep fluid cycling, such as the basalt-to-eclogite reaction and fluid overpressure within the subducting oceanic crust, as well as the serpentinization of the forearc mantle wedge. Unfortunately, the updip extent of the over-pressured zone, and therefore the possible control on the transition from episodic slow slip to seismic slip, occurs offshore and is not resolved in those studies. The Cascadia Initiative (CI) has provided an opportunity to extend this work to the locked zone using teleseismic receiver functions from the deployment of a dense line of ocean-bottom seismograph stations offshore of Washington State, from the trench to the coastline. Here we calculate P-wave receiver functions using data from offshore (CI) and onshore (CAFE) broadband seismic stations. These data clearly show the various scattered phases associated with a dipping low-velocity layer that was identified in previous studies as the downgoing oceanic crust. These signals are difficult to untangle offshore because they arrive at similar times. We process receiver functions using a modified common-conversion point (CCP) stacking technique that uses a coherency filter to optimally stack images obtained from the three main scattered phases. The resulting image shows along-dip variations in the character of the seismic discontinuities associated with the top and bottom of the low-velocity layer. Combined with focal depth information of regular and low-frequency earthquakes, these variations may reflect changes in the material properties of the megathrust across the seismogenic zone in Cascadia.

  3. Receiver Function Imaging of Crustal and Lithospheric Structure Beneath the Jalisco Block and Western Michoacan, Mexico.

    Science.gov (United States)

    Reyes Alfaro, G.; Cruz-Atienza, V. M.; Perez-Campos, X.; Reyes Dávila, G. A.

    2014-12-01

    We used a receiver function technique for imaging western Mexico, a unique area with several active seismic and volcanic zones like the triple junction of Rivera, Cocos and North American plates and the Colima volcano complex (CVC), the most active in Mexico. Clear images of the distribution of the crust and the lithosphere-asthenosphere boundary are obtained using P-to-S receiver functions (RF) from around ~80 broadband stations recorded by the Mapping the Rivera Subduction Zone (MARS), the Colima Volcano Deep Seismic Experiment (CODEX) and a local network (RESCO) that allowed us to considerably increase the teleseismic database used in the project. For imaging, we constructed several 2-D profiles of depth transformed RFs to delineate the seismic discontinuities of the region. Low seismic velocities associated with the Michoacan-Guanajuato and the Mascota-Ayutla-Tapalpa volcanic fields are also observed. Most impressive, a large and well delineated magma body 100 km underneath CVC is recognized along a surely related depression of the moho discontinuity just above it. We bring more tools for a better understanding of the deep processes that ultimately control eruptive behavior in the region.

  4. Moho Depth Variations in the Northeastern North China Craton Revealed by Receiver Function Imaging

    Science.gov (United States)

    Zhang, P.; Chen, L.; Yao, H.; Fang, L.

    2016-12-01

    The North China Craton (NCC), one of the oldest cratons in the world, has attracted wide attention in Earth Science for decades because of the unusual Mesozoic destruction of its cratonic lithosphere. Understanding the deep processes and mechanism of this craton destruction demands detailed knowledge about the deep structure of the region. In this study, we used two-year teleseismic receiver function data from the North China Seismic Array consisting of 200 broadband stations deployed in the northeastern NCC to image the Moho undulation of the region. A 2-D wave equation-based poststack depth migration method was employed to construct the structural images along 19 profiles, and a pseudo 3D crustal velocity model of the region based on previous ambient noise tomography and receiver function study was adopted in the migration. We considered both the Ps and PpPs phases, but in some cases we also conducted PpSs+PsPs migration using different back azimuth ranges of the data, and calculated the travel times of all the considered phases to constrain the Moho depths. By combining the structure images along the 19 profiles, we got a high-resolution Moho depth map beneath the northeastern NCC. Our results broadly consist with the results of previous active source studies [http://www.craton.cn/data], and show a good correlation of the Moho depths with geological and tectonic features. Generally, the Moho depths are distinctly different on the opposite sides of the North-South Gravity Lineament. The Moho in the west are deeper than 40 km and shows a rapid uplift from 40 km to 30 km beneath the Taihang Mountain Range in the middle. To the east in the Bohai Bay Basin, the Moho further shallows to 30-26 km depth and undulates by 3 km, coinciding well with the depressions and uplifts inside the basin. The Moho depth beneath the Yin-Yan Mountains in the north gradually decreases from 42 km in the west to 25 km in the east, varying much smoother than that to the south.

  5. Detailed Configuration of the Underthrusting Indian Lithosphere Beneath Western Tibet Revealed by Receiver Function Images

    Science.gov (United States)

    Xu, Qiang; Zhao, Junmeng; Yuan, Xiaohui; Liu, Hongbing; Pei, Shunping

    2017-10-01

    We analyze the teleseismic waveform data recorded by 42 temporary stations from the Y2 and ANTILOPE-1 arrays using the P and S receiver function techniques to investigate the lithospheric structure beneath western Tibet. The Moho is reliably identified as a prominent feature at depths of 55-82 km in the stacked traces and in depth migrated images. It has a concave shape and reaches the deepest location at about 80 km north of the Indus-Yarlung suture (IYS). An intracrustal discontinuity is observed at 55 km depth below the southern Lhasa terrane, which could represent the upper border of the eclogitized underthrusting Indian lower crust. Underthrusting of the Indian crust has been widely observed beneath the Lhasa terrane and correlates well with the Bouguer gravity low, suggesting that the gravity anomalies in the Lhasa terrane are induced by topography of the Moho. At 20 km depth, a midcrustal low-velocity zone (LVZ) is observed beneath the Tethyan Himalaya and southern Lhasa terrane, suggesting a layer of partial melts that decouples the thrust/fold deformation of the upper crust from the shortening and underthrusting in the lower crust. The Sp conversions at the lithosphere-asthenosphere boundary (LAB) can be recognized at depths of 130-200 km, showing that the Indian lithospheric mantle is underthrusting with a ramp-flat shape beneath southern Tibet and probably is detached from the lower crust immediately under the IYS. Our observations reconstruct the configuration of the underthrusting Indian lithosphere and indicate significant along strike variations.

  6. Structure and extent of the southern African cratons: Integrated images from receiver functions and teleseimic tomography

    DEFF Research Database (Denmark)

    Soliman, Mohammad Youssof Ahmad; Levander, Alan; Bezada, Max

    2011-01-01

    and the Bushveld complex. Both P- and S-wave (PdS and SdP) receiver functions are calculated by iterative deconvolution processing, which lead to estimates of Moho depth and the Vp/Vs ratio via the HK-stacking method, as well as param- eters describing anisotropy in the crust (strength dt and trend phi...

  7. Receiver function images of the central Chugoku region in the Japanese islands using Hi-net data

    Science.gov (United States)

    Ramesh, D. S.; Wakatsu, H. K.; Watada, S.; Yuan, X.

    2005-04-01

    Crustal configuration of the central Chugoku region with disposition of the Philippine Sea Plate (PHS) in this area are investigated through the receiver function approach using short-period Hi-net data. Images of the upper mantle discontinuities are also obtained. Restituted short-period receiver functions bring out discernible variations in average composition of the crust and its thickness in the study region. The Vp/ Vs values in the study area are generally high, reaching values in excess of 1.85 at a few places. The central part of the study region showing the highest Vp/ Vs values is coincidentally a subregion of least seismicity, possibly bestowed with special subsurface structure. Migrated receiver function images, both Ps and Pps images, unambiguously trace the NW subducting PHS taking a steeper plunge in the northwest part of the Chugoku region reaching depths of 70 km from its low dip disposition in the southeast. An excellent correlation of the subducting PHS with the hypocenters is also seen. We demonstrate that short-period data after restitution and application of appropriate low pass filters can indeed detect presence of the global 410-km and 660-km discontinuities and map their disposition reasonably well. Our migrated receiver functions image the deflections in the 410-km and 660-km discontinuities in an anti-correlated fashion on expected lines of Clapeyron slope predictions induced by subduction of the Pacific plate (PAC) beneath Japanese islands, though PAC itself is feebly traced but shows good correlation with slab seismicity.

  8. S-N profile of Receive function image across Qiangtang, Northern Tibet

    Science.gov (United States)

    He, R.; Gao, R.; Deng, G.; Li, W.; Hou, H.; Lu, Z.; Xiong, X.

    2010-12-01

    Huge thicken Triassic and Jurassic sediments widely outcorp within Qiangtang, tens of oilstones outcorped within Qiangtang showed that Qiangtang have a good advantage in exploring oil and gas. So, the basement beneath Qiangtang and its structures have become the key for us to look for oil and gas accumulations. Within tectonic settings of Qiangtang, the center uplift of Qiangtang (abbr. CUQT) and its developments have become the great barrier to understand the basement and its structures within the basin. Because of complicated structure relief and blueschist and ophiolite outcorps within the CUQT, there was the paradox for lots of geologist to understand how the CUQT developed. One was that it formed under the extension environment. On the contrary, CUQT was ever paleo-Tethys suture zone, because CUQT had the belt of blueschists and ophiolite. So, different opinions to CUQT resulted in the different viewpoints in the basin beneath Qiangtang terrane. Surveying deep structure beneath the CUQT was the key to understand the basement under Qiangtang. In past two years, we have deployed 40 portable broadband seismic stations along E88°to across the whole Qiangtang from Bangong-Nujiang Suture, southern side of Qiangtang terrane, to northern margin of Qiangtang terrane. The temporary network collected a lot of farm waveform data, which is helpful to know about the more finest deep structure beneath the CUQT and its two sides basin. We used P-to-S receiver functions methods to get deep structure image beneath the profile. The preliminary results showed: (1) Within the crust, the velocity structure beneath southern Qiangtang basin is higher than beneath northern Qiangtang basin. (2) Sedimental layer within southern Qiangtang basin is thichen than within northern Qiangtang basin. Combined with other geophysical information, CUQT is an important lithosphere-level boundary fault belts, and southern Qiangtang basin have great difference with northern Qiangtang basin, in

  9. Seismic Imaging of the Lesser Antilles Subduction Zone Using S-to-P Receiver Functions: Insights From VoiLA

    Science.gov (United States)

    Chichester, B.; Rychert, C.; Harmon, N.; Rietbrock, A.; Collier, J.; Henstock, T.; Goes, S. D. B.; Kendall, J. M.; Krueger, F.

    2017-12-01

    In the Lesser Antilles subduction zone Atlantic oceanic lithosphere, expected to be highly hydrated, is being subducted beneath the Caribbean plate. Water and other volatiles from the down-going plate are released and cause the overlying mantle to melt, feeding volcanoes with magma and hence forming the volcanic island arc. However, the depths and pathways of volatiles and melt within the mantle wedge are not well known. Here, we use S-to-P receiver functions to image seismic velocity contrasts with depth within the subduction zone in order to constrain the release of volatiles and the presence of melt in the mantle wedge, as well as slab structure and arc-lithosphere structure. We use data from 55-80° epicentral distances recorded by 32 recovered broadband ocean-bottom seismometers that were deployed during the 2016-2017 Volatiles in the Lesser Antilles (VoiLA) project for 15 months on the back- and fore-arc. The S-to-P receiver functions are calculated using two methods: extended time multi-taper deconvolution followed by migration to depth to constrain 3-D discontinuity structure of the subduction zone; and simultaneous deconvolution to determine structure beneath single stations. In the south of the island arc, we image a velocity increase with depth associated with the Moho at depths of 32-40 ± 4 km on the fore- and back-arc, consistent with various previous studies. At depths of 65-80 ± 4 km beneath the fore-arc we image a strong velocity decrease with depth that is west-dipping. At 96-120 ± 5 km beneath the fore-arc, we image a velocity increase with depth that is also west-dipping. The dipping negative-positive phase could represent velocity contrasts related to the top of the down-going plate, a feature commonly imaged in subduction zone receiver function studies. The negative phase is strong, so there may also be contributions to the negative velocity discontinuity from slab dehydration and/or mantle wedge serpentinization in the fore-arc.

  10. Imaging rifting at the lithospheric scale in the northern East African Rift using S-to-P receiver functions

    Science.gov (United States)

    Lavayssiere, A.; Rychert, C.; Harmon, N.; Keir, D.; Hammond, J. O. S.; Kendall, J. M.; Leroy, S. D.; Doubre, C.

    2017-12-01

    The lithosphere is modified during rifting by a combination of mechanical stretching, heating and potentially partial melt. We image the crust and upper mantle discontinuity structure beneath the northern East African Rift System (EARS), a unique tectonically active continental rift exposing along strike the transition from continental rifting in the Main Ethiopian rift (MER) to incipient seafloor spreading in Afar and the Red Sea. S-to-P receiver functions from 182 stations across the northern EARS were generated from 3688 high quality waveforms using a multitaper technique and then migrated to depth using a regional velocity model. Waveform modelling of data stacked in large conversion point bins confirms the depth and strength of imaged discontinuities. We image the Moho at 29.6±4.7 km depth beneath the Ethiopian plateaux with a variability in depth that is possibly due to lower crustal intrusions. The crust is 27.3±3.9 km thick in the MER and thinner in northern Afar, 17.5±0.7 km. The model requires a 3±1.2% reduction in shear velocity with increasing depth at 68.5±1.5 km beneath the Ethiopian plateaux, consistent with the lithosphere-asthenosphere boundary (LAB). We do not resolve a LAB beneath Afar and the MER. This is likely associated with partial melt near the base of the lithosphere, reducing the velocity contrast between the melt-intruded lithosphere and the partially molten asthenosphere. We identify a 4.5±0.7% increase in velocity with depth at 91±3 km beneath the MER. This change in velocity is consistent with the onset of melting found by previous receiver functions and petrology studies. Our results provide independent constraints on the depth of melt production in the asthenosphere and suggest melt percolation through the base of the lithosphere beneath the northernmost East African rift.

  11. Imaging Crustal Structure of East Central United States using receiver function and implications for the accretion of juvenile crust

    Science.gov (United States)

    Deng, S.; Levander, A.

    2017-12-01

    Almost half of the North American continental plate is formed by the juvenile terrane accretion between 1.8-1.0 Ga, therefore, the suturing process of juvenile crust in East Central United States, not receiving as much attention probably due to low station coverage before the deployment of US transportable array, is of great importance to better understand the evolution of North American Plate. The Yavapai province is formed by the accretion of juvenile crust during 1.8-1.7 Ga. The northeastern part of Yavapai province is accreted to the Superior province along the Spirit Lake Tectonic Zone (SLTZ). During the period of 1.7-1.6 Ga, the Mazatzal Province, bounded the south of Yavapai Province, was added to Laurentia. The previous research mainly focuses on the southwestern Yavapai-Mazatzal boundary (Karlstrom et.al 2002, Magnani et.al 2004) but less in the northeastern area that we are interested in. The Granite-Rhyolite province is the product of the suturing event of juvenile arc crust reoccurring along the southeast margin of Laurentia between 1.55-1.35 Ga, which has been proved by the Nd model age (Whitmeyer et.al 2007). Here we will select the Mw>=5.5 teleseismic events with epicenter distance between 35 and 90 recorded by 300 available seismic stations in our study region. The receiver functions will be calculated by the water-level deconvolution in frequency domain (Langston 1979) and iterative deconvolution in time domain (Ligorria et.al 1999). The common conversion point (CCP) stacking method will then be applied to the receiver functions to create the 3-D image volume by imaging the conversion points in space from the time domain signals (Levander and Miller 2012). The preliminary results show that the accretion process of the tectonic provinces may have different models. The profiles of CCP image volume will inform us the seismic evidence to model the suturing process of juvenile Yavapai, Mozatzal and Granite-Rhyolite crust, hence providing great

  12. PdS and SdP Receiver Functions Image of the Lithosphere underneath the Southern African Regions

    DEFF Research Database (Denmark)

    Soliman, Mohammad Youssof Ahmad; Thybo, Hans; Levander, A

    2009-01-01

    to 350 km depth by Jordan (1975), has to be revealed in more detail, and a better understanding should yield new insight into the origin of Earth’s early continents. We have reassessed the data from the Kaapvaal seismic experiment for lithosphere structure by application of PdS receiver functions...... these preliminary results, we are continuing the experiments by calculation of theoretical receiver functions for a range of models, and are assessing the combined integrated PdS and SdP receiver function response in combination with teleseismic tomography to provide an integrated high resolution model....

  13. Receiver gain function: the actual NMR receiver gain

    OpenAIRE

    Mo, Huaping; Harwood, John S.; Raftery, Daniel

    2010-01-01

    The observed NMR signal size depends on the receiver gain parameter. We propose a receiver gain function to characterize how much the raw FID is amplified by the receiver as a function of the receiver gain setting. Although the receiver is linear for a fixed gain setting, the actual gain of the receiver may differ from what the gain setting suggests. Nevertheless, for a given receiver, we demonstrate that the receiver gain function can be calibrated. Such a calibration enables accurate compar...

  14. Imaging the deep structures of the convergent plates along the Ecuadorian subduction zone through receiver function analysis

    Science.gov (United States)

    Galve, A.; Charvis, P.; Regnier, M. M.; Font, Y.; Nocquet, J. M.; Segovia, M.

    2017-12-01

    The Ecuadorian subduction zone was affected by several large M>7.5 earthquakes. While we have low resolution on the 1942, 1958 earthquakes rupture zones extension, the 2016 Pedernales earthquake, that occurs at the same location than the 1942 earthquake, give strong constraints on the deep limit of the seismogenic zone. This downdip limit is caused by the onset of plasticity at a critical temperature (> 350-450 °C for crustal materials, or serpentinized mantle wedge, and eventually > 700 °C for dry mantle). However we still don't know exactly where is the upper plate Moho and therefore what controls the downdip limit of Ecuadorian large earthquakes seismogenic zone. For several years Géoazur and IG-EPN have maintained permanent and temporary networks (ADN and JUAN projects) along the margin to register the subduction zone seismological activity. Although Ecuador is not a good place to perform receiver function due to its position with respect to the worldwide teleseismic sources, the very long time deployment compensate this issue. We performed a frequency dependent receiver function analysis to derive (1) the thickness of the downgoing plate, (2) the interplate depth and (3) the upper plate Moho. These constraints give the frame to interpretation on the seismogenic zone of the 2016 Pedernales earthquake.

  15. Receiver function estimated by maximum entropy deconvolution

    Institute of Scientific and Technical Information of China (English)

    吴庆举; 田小波; 张乃铃; 李卫平; 曾融生

    2003-01-01

    Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.

  16. Imaging the lithosphere-asthenosphere boundary across the transition from Phanerozoic Europe to the East-European Craton with S-receiver functions

    Science.gov (United States)

    Knapmeyer-Endrun, Brigitte; Krüger, Frank

    2013-04-01

    Cratons are characterized by their thick lithospheric roots. In the case of the Eastern European Craton, high seismic velocities have been imaged tomographically to more than 200 km depth. However, the exact depth extent of the cratonic lithosphere and especially the properties of the transition to a much thinner lithosphere beneath Phanerozoic central Europe still remain under discussion. Whereas a number of recent seismic campaigns has significantly increased the knowledge about crustal structure and Moho topography in central Europe, comparably detailed, 3-D information on upper mantle structure, e.g. the lithosphere-asthenosphere boundary (LAB), is yet missing. The international PASSEQ experiment, which was conducted from 2006 to 2008, strived to fill this gap with the deployment of 196 seismological stations, roughly a quarter of which were equipped with broad-band sensors, between eastern Germany and Lithuania. With a mean inter-station distance of 60 km, reduced to about 20 km along the central profile, PASSEQ offers the densest coverage for a passive experiment in this region yet. Here, we present first S-receiver function results for this data set, complemented by additional data from national and regional networks and other temporary deployments. This increases the number of available broad-band stations to almost 300, though mostly located to the west of the Trans-European Suture Zone (TESZ). Besides, we also process data from short-period (1 s and 5 s) sensors. The visibility of mantle-transition zone phases, even in single-station data, provides confidence in the quality of the obtained S-receiver functions. Moho conversions can be confidently identified for all stations. In case of a low-velocity sedimentary cover, as found for example in the Polish Basin, the S-receiver functions even provide clearer information on Moho depth than the P-receiver functions, which are heavily disturbed by shallow reverberations. For stations west of the TESZ, a clear

  17. Imaging of Upper-Mantle Upwelling Beneath the Salton Trough, Southern California, by Joint Inversion of Ambient Noise Dispersion Curves and Receiver Functions

    Science.gov (United States)

    Klemperer, S. L.; Barak, S.

    2016-12-01

    We present a new 2D shear-wave velocity model of the crust and upper-mantle across the Salton Trough, southern California, obtained by jointly inverting our new dataset of receiver functions and our previously published Rayleigh-wave group-velocity model (Barak et al., G-cubed, 2015), obtained from ambient-noise tomography. Our results show an upper-mantle low-velocity zone (LVZ) with Vs ≤4.2 km/s extending from the Elsinore Fault to the Sand Hills Fault, that together bracket the full width of major San Andreas dextral motion since its inception 6 Ma b.p., and underlying the full width of low topography of the Imperial Valley and Salton Trough. The lateral extent of the LVZ is coincident with the lateral extent of an upper-mantle anisotropic region interpreted as a zone of SAF-parallel melt pockets (Barak & Klemperer, Geology, 2016). The shallowest part of the LVZ is 40 km depth, coincident with S-receiver function images. The western part of the LVZ, between the Elsinore and San Jacinto faults (the region of greatest modern dextral slip), appears to continue to significantly greater depth; but a puzzling feature of our preliminary models is that the eastern part of the LVZ, from the San Jacinto Fault to the Sand Hills Fault, appears to be underlain by more-normalvelocity upper mantle (Vs ≥ 4.5 km/s) below 75 km depth. We compare our model to the current SCEC community models CVM-H and CVM-S, and to P-wave velocity models obtained by the active-source Salton Sea Imaging Project (SSIP). The hypothesized lower-crustal low-velocity zone beneath the Salton Trough in our previous model (Barak et al., G-cubed, 2015), there interpreted as a region of partial melt, is not supported by our new modeling. Melt may be largely absent from the lower crust of the Salton trough; but appears required in the upper mantle at depths as shallow as 40 km.

  18. Imaging the Moho beneath Sedimentary Basins: A Comparative Study of Virtual Deep Seismic Sounding (VDSS) and P Wave Receiver Functions (PRF)

    Science.gov (United States)

    Liu, T.; Klemperer, S. L.; Yu, C.; Ning, J.

    2017-12-01

    In the past decades, P wave receiver functions (PRF) have been routinely used to image the Moho, although it is well known that PRFs are susceptible to contamination from sedimentary multiples. Recently, Virtual Deep Seismic Sounding (VDSS) emerged as a novel method to image the Moho. However, despite successful applications of VDSS on multiple datasets from different areas, how sedimentary basins affect the waveforms of post-critical SsPmp, the Moho reflection phase used in VDSS, is not widely understood. Here, motivated by a dataset collected in the Ordos plateau, which shows distinct effects of sedimentary basins on SsPmp and Pms waveforms, we use synthetic seismograms to study the effects of sedimentary basins on SsPmp and Pms, the phases used in VDSS and PRF respectively. The results show that when the sedimentary thickness is on the same order of magnitude as the dominant wavelength of the incident S wave, SsPmp amplitude decreases significantly with S velocity of the sedimentary layer, whereas increasing sedimentary thickness has little effect in SsPmp amplitude. Our explanation is that the low S velocity layer at the virtual source reduces the incident angle of S wave at the free surface, thus decreases the S-to-P reflection coefficient at the virtual source. In addition, transmission loss associated with the bottom of sedimentary basins also contributes to reducing SsPmp amplitude. This explains not only our observations from the Ordos plateau, but also observations from other areas where post-critical SsPmp is expected to be observable, but instead is too weak to be identified. As for Pms, we observe that increasing sedimentary thickness and decreasing sedimentary velocities both can cause interference between sedimentary multiples and Pms, rendering the Moho depths inferred from Pms arrival times unreliable. The reason is that although Pms amplitude does not vary with sedimentary thickness or velocities, as sedimentary velocities decrease and thickness

  19. Crustal Structure beneath Alaska from Receiver Functions

    Science.gov (United States)

    Zhang, Y.; Li, A.

    2017-12-01

    The crustal structure in Alaska has not been well resolved due to the remote nature of much of the state. The USArray Transportable Array (TA), which is operating in Alaska and northwestern Canada, significantly increases the coverage of broadband seismic stations in the region and allows for a more comprehensive study of the crust. We have analyzed P-receiver functions from earthquake data recorded by 76 stations of the TA and AK networks. Both common conversion point (CCP) and H-K methods are used to estimate the mean crustal thickness. The results from the CCP stacking method show that the Denali fault marks a sharp transition from thick crust in the south to thin crust in the north. The thickest crust up to 52 km is located in the St. Elias Range, which has been formed by oblique collision between the Yakutat microplate and North America. A thick crust of 48 km is also observed beneath the eastern Alaska Range. These observations suggest that high topography in Alaska is largely compensated by the thick crust root. The Moho depth ranges from 28 km to 35 km beneath the northern lowlands and increases to 40-45 km under the Books Range. The preliminary crustal thickness from the H-K method generally agrees with that from the CCP stacking with thicker crust beneath high mountain ranges and thinner crust beneath lowlands and basins. However, the offshore part is not well constrained due to the limited coverage of stations. The mean Vp/Vs ratio is around 1.7 in the Yukon-Tanana terrane and central-northern Alaska. The ratio is about 1.9 in central and southern Alaska with higher values at the Alaska Range, Wrangell Mountains, and St. Elias Range. Further data analyses are needed for obtaining more details of the crustal structure in Alaska to decipher the origin and development of different tectonic terranes.

  20. The lithosphere-asthenosphere boundary observed with USArray receiver functions

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2012-05-01

    Full Text Available The dense deployment of seismic stations so far in the western half of the United States within the USArray project provides the opportunity to study in greater detail the structure of the lithosphere-asthenosphere system. We use the S receiver function technique for this purpose, which has higher resolution than surface wave tomography, is sensitive to seismic discontinuities, and is free from multiples, unlike P receiver functions. Only two major discontinuities are observed in the entire area down to about 300 km depth. These are the crust-mantle boundary (Moho and a negative boundary, which we correlate with the lithosphere-asthenosphere boundary (LAB, since a low velocity zone is the classical definition of the seismic observation of the asthenosphere by Gutenberg (1926. Our S receiver function LAB is at a depth of 70–80 km in large parts of westernmost North America. East of the Rocky Mountains, its depth is generally between 90 and 110 km. Regions with LAB depths down to about 140 km occur in a stretch from northern Texas, over the Colorado Plateau to the Columbia basalts. These observations agree well with tomography results in the westernmost USA and on the east coast. However, in the central cratonic part of the USA, the tomography LAB is near 200 km depth. At this depth no discontinuity is seen in the S receiver functions. The negative signal near 100 km depth in the central part of the USA is interpreted by Yuan and Romanowicz (2010 and Lekic and Romanowicz (2011 as a recently discovered mid-lithospheric discontinuity (MLD. A solution for the discrepancy between receiver function imaging and surface wave tomography is not yet obvious and requires more high resolution studies at other cratons before a general solution may be found. Our results agree well with petrophysical models of increased water content in the asthenosphere, which predict a sharp and shallow LAB also in continents (Mierdel et al., 2007.

  1. Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  2. Sexual function in hypertensive patients receiving treatment

    Directory of Open Access Journals (Sweden)

    Thorsten Reffelmann

    2006-12-01

    Full Text Available Thorsten Reffelmann, Robert A KlonerUniversity of Southern California, The Heart Institute, Good Samaritan Hospital, Division of Cardiovascular Medicine, Keck School of Medicine, Los Angeles, CA, USAAbstract: In many forms of erectile dysfunction (ED, cardiovascular risk factors, in particular arterial hypertension, seem to be extremely common. While causes for ED are related to a broad spectrum of diseases, a generalized vascular process seems to be the underlying mechanism in many patients, which in a large portion of clinical cases involves endothelial dysfunction, ie, inadequate vasodilation in response to endothelium-dependent stimuli, both in the systemic vasculature and the penile arteries. Due to this close association of cardiovascular disease and ED, patients with ED should be evaluated as to whether they may suffer from cardiovascular risk factors including hypertension, cardiovascular disease or silent myocardial ischemia. On the other hand, cardiovascular patients, seeking treatment of ED, must be evaluated in order to decide whether treatment of ED or sexual activity can be recommended without significantly increased cardiac risk. The guideline from the first and second Princeton Consensus Conference may be applied in this context. While consequent treatment of cardiovascular risk factors should be accomplished in these patients, many antihypertensive drugs may worsen sexual function as a drug specific side-effect. Importantly, effective treatment for arterial hypertension should not be discontinued as hypertension itself may contribute to altered sexual functioning; to the contrary, alternative antihypertensive regimes should be administered with individually tailored drug regimes with minimal side-effects on sexual function. When phosphodiesterase-5 inhibitors, such as sildenafil, tadalafil and vardenafil, are prescribed to hypertensive patients on antihypertensive drugs, these combinations of antihypertensive drugs and

  3. New type of nonglossy image-receiving sheet

    Science.gov (United States)

    Aono, Toshiaki; Shibata, Takeshi; Nakamura, Yoshisada

    1990-07-01

    We have developed a new type of non-glossy surface of an image receiving sheet for a photothermographic color hardcopy system. There is a basic conflict in realizing uniform dye transfer with use of a receiving sheet having a matted surface, because when the degree of roughness exceeds a certain extent, uneven dye transfer readily takes place. It: has been solved by use of "microscopic" phase separation of a certain water-soluble polymer blend which constitutes the surface layer of the image receiving sheet. One of the preferable polymer blends for our purpose proved to be a ternary system, consisting of sodium salt of polymethacrylic acid (PMAA-Na), ammonium salt of polyacrylic acid (PAA-NH4) and water. Phase separation, which proceeded during the evaporation of water from the coated mixture, turned out to be of a spinodal decomposition type and thus capable of stably providing a desirable non-glossy surface.

  4. Active polarization imaging system based on optical heterodyne balanced receiver

    Science.gov (United States)

    Xu, Qian; Sun, Jianfeng; Lu, Zhiyong; Zhou, Yu; Luan, Zhu; Hou, Peipei; Liu, liren

    2017-08-01

    Active polarization imaging technology has recently become the hot research field all over the world, which has great potential application value in the military and civil area. By introducing active light source, the Mueller matrix of the target can be calculated according to the incident light and the emitted or reflected light. Compared with conventional direct detection technology, optical heterodyne detection technology have higher receiving sensitivities, which can obtain the whole amplitude, frequency and phase information of the signal light. In this paper, an active polarization imaging system will be designed. Based on optical heterodyne balanced receiver, the system can acquire the horizontal and vertical polarization of reflected optical field simultaneously, which contain the polarization characteristic of the target. Besides, signal to noise ratio and imaging distance can be greatly improved.

  5. Functional design criteria 241-AP-102 Flexible Receiver System

    International Nuclear Information System (INIS)

    Roblyer, S.P.

    1995-01-01

    A mixer pump was installed in the 1.07 m (42-in.) riser of the central pump pit of tank 241-AP-102 to mitigate potential fluid separation particle sedimentation by mixing the tank's contents. The mixer pump performed this function until failure. Its removal is now necessary to meet possible tank content removal commitments or other corrective actions. The proposed removal procedure requires a flexible receiver that will provide a barrier to contamination during removal and transfer of the pump to the mixer pump storage container. This document describes the functional design criteria of the flexible receiver. These criteria include the functional and performance requirements of the flexible receiver as a barrier to contamination during normal conditions and contingencies and the instrumentation requirements

  6. Administering truncated receive functions in a parallel messaging interface

    Science.gov (United States)

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2014-12-09

    Administering truncated receive functions in a parallel messaging interface (`PMI`) of a parallel computer comprising a plurality of compute nodes coupled for data communications through the PMI and through a data communications network, including: sending, through the PMI on a source compute node, a quantity of data from the source compute node to a destination compute node; specifying, by an application on the destination compute node, a portion of the quantity of data to be received by the application on the destination compute node and a portion of the quantity of data to be discarded; receiving, by the PMI on the destination compute node, all of the quantity of data; providing, by the PMI on the destination compute node to the application on the destination compute node, only the portion of the quantity of data to be received by the application; and discarding, by the PMI on the destination compute node, the portion of the quantity of data to be discarded.

  7. A Magnetic Resonance Imaging Receiver Design Based on NI PXIe-7966R

    Directory of Open Access Journals (Sweden)

    HU Jin-jie

    2017-12-01

    Full Text Available A magnetic resonance imaging receiver design based on NI PXIe-7966R is proposed, with which the magnetic resonance signals are sampled directly and down-converted digitally, the raw data are uploaded and the magnetic resonance image are restored. The system-level digital signal processing (DSP development tools offered by NI LabVIEW field programmable gate array (FPGA was used for FPGA function modeling, simulation and automatic code generation of hardware description language (HDL. It was very flexible during the digital down conversion (DDC designing. The sampling rate of this module was 50 Mbps, and the receiver bandwidth could be varied between 100 Hz and 1 MHz. The experimental results showed that the receiver design is a high performance magnetic resonance receiver solution.

  8. Neurophysiology of functional imaging.

    Science.gov (United States)

    van Eijsden, Pieter; Hyder, Fahmeed; Rothman, Douglas L; Shulman, Robert G

    2009-05-01

    The successes of PET and fMRI in non-invasively localizing sensory functions had encouraged efforts to transform the subjective concepts of cognitive psychology into objective physical measures. The assumption was that mental functions could be decomposed into non-overlapping, context-independent modules that are operated on by separable areas of a computer-like brain. The failures of cognitive modularity and of a very localized phrenology are generally, but not universally, accepted; but in their place, and usually not distinguished from the original revolutionary hopes of clarification, experimental results are being interpreted in terms of rather flexible definitions of both cognitive concepts and the degree of localization. In an alternative approach, we have connected fMRI, (13)C MRS, and electrophysiology measurements of brain energy to connect with observable properties of mental life (i.e., awareness). We illustrate this approach with a sensory stimulation experiment; the degree of localization found in BOLD signals was related to the global energy of the brain which, when manipulated by anesthetics, affected the degree of awareness. The influence of brain energy upon functional imaging maps is changing the interpretations of neuroimaging experiments, from psychological concepts generating computer-like responses to empirical responses dominated by the high brain energy and signaling at rest. In our view "baseline" is an operational term, an adjective that defines a property of a state of the system before it is perturbed by a stimulus. Given the dependence of observable psychological properties upon the "baseline" energy, we believe that it is unnecessarily limiting to define a particular state as the baseline.

  9. Aspheric lens based imaging receiver for MIMO visible light communication

    Science.gov (United States)

    Ju, Qiuqi; Liang, Zhongcheng; Liu, Xueming; Yang, Tingting; Wang, Jin

    2014-10-01

    Visible light communication (VLC) has been regarded as a promising solution in short-range intelligent communication system. Nowadays, the research is focused on integrating the multi-input multi-output (MIMO) technique in the VLC system, to achieve a larger transmission capacity and stronger transmission reliability. However, one important issue should be addressed due to the use of MIMO technology: the multipath inter-symbol interference. The multipath intersymbol interference comes from the reflection of the signal in the room and channel crosstalk between different channels. In this paper, we propose a novel optical system used in the MIMO VLC system to reduce multipath interference dramatically. Signals from different LEDs can be separated by using parabolic lens plated with reflecting film. This structure can reduce the reflection effect effectively as well. We present the simulation results to observe the distribution of optical power on the imaging plane for various receiving positions and low correlation between all channels. We can find that the optical power density becomes stronger than non-imaging system and the interference is sharply decreased, thus the SNR and BER are also optimized. Analysis about the optical system is given in this paper.

  10. Metabolic Profiling of Impaired Cognitive Function in Patients Receiving Dialysis

    OpenAIRE

    Kurella Tamura, Manjula; Chertow, Glenn M.; Depner, Thomas A.; Nissenson, Allen R.; Schiller, Brigitte; Mehta, Ravindra L.; Liu, Sai; Sirich, Tammy L.

    2016-01-01

    Retention of uremic metabolites is a proposed cause of cognitive impairment in patients with ESRD. We used metabolic profiling to identify and validate uremic metabolites associated with impairment in executive function in two cohorts of patients receiving maintenance dialysis. We performed metabolic profiling using liquid chromatography/mass spectrometry applied to predialysis plasma samples from a discovery cohort of 141 patients and an independent replication cohort of 180 patients partici...

  11. The Lithospheric Structure Beneath Canary Islands from Receiver Function Analysis

    Science.gov (United States)

    Martinez-Arevalo, C.; Mancilla, F.; Helffrich, G. R.; Garcia, A.

    2009-12-01

    The Canary Archipelago is located a few hundred kilometers off the western Moroccan coast, extending 450 km west-to-east. It is composed of seven main islands. All but one have been active in the last million years. The origin of the Canary Islands is not well established and local and regional geology features cannot be completely explained by the current models. The main aim of this study is to provide new data that help us to understand and constrain the archipelago's origin and tectonic evolution. The crustal structure under each station is obtained applying P-receiver function technique to the teleseismic P arrivals recorded by the broadband seismic network installed at the Canary Island by the Instituto Geográfico Nacional (IGN) and two temporary stations (MIDSEA and IRIS). We computed receiver functions using the Extended-Time Multitaper Frequency Domain Cross-Correlation Receiver Function (ET-MTRF) method. The results show that the crust is thicker, around 22 km, in the eastern islands (Fuerteventura and Lanzarote) than in the western ones (El Hierro, La Palma, Tenerife), around 17 km, with the exception of La Gomera island. This island, located in the west, exhibits similar crustal structure to Fuerteventura and Lanzarote. A discontinuity at 70-80 km, possibly the LAB (Lithosphere Asthenosphere Boundary) is clearly observed in all the stations. It appears that Moho depths do not track the LAB discontinuity.

  12. Functional imaging of the pancreas

    International Nuclear Information System (INIS)

    Nakanishi, Fumiko

    1984-01-01

    An image processing technique for functional imaging of the pancreas was developed and is here reported. In this paper, clinical efficacy of the technique for detecting pancreatic abnormality is evaluated in comparison with conventional pancreatic scintigraphy and CT. For quantitative evaluation, functional rate, i.e. the rate of normal functioning pancreatic area, was calculated from the functional image and subtraction image. Two hundred and ninety-five cases were studied using this technique. Conventional image had a sensitivity of 65 % and a specificity of 78 %, while the use of functional imaging improved sensitivity to 88 % and specificity to 88 %. The mean functional rate in patients with pancreatic disease was significantly lower (33.3+-24.5 in patients with chronic pancreatitis, 28.1+-26.9 in patients with acute pancreatitis, 43.4+-22.3 in patients with diabetes mellitus, 20.4+-23.4 in patients with pancreatic cancer) than the mean functional rate in cases without pancreatic disease (86.4+-14.2). It is suggested that functional image of the pancreas reflecting pancreatic exocrine function and functional rate is a useful indicator of pancreatic exocrine function. (author)

  13. Brain imaging and brain function

    International Nuclear Information System (INIS)

    Sokoloff, L.

    1985-01-01

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage

  14. Metabolic Profiling of Impaired Cognitive Function in Patients Receiving Dialysis.

    Science.gov (United States)

    Kurella Tamura, Manjula; Chertow, Glenn M; Depner, Thomas A; Nissenson, Allen R; Schiller, Brigitte; Mehta, Ravindra L; Liu, Sai; Sirich, Tammy L

    2016-12-01

    Retention of uremic metabolites is a proposed cause of cognitive impairment in patients with ESRD. We used metabolic profiling to identify and validate uremic metabolites associated with impairment in executive function in two cohorts of patients receiving maintenance dialysis. We performed metabolic profiling using liquid chromatography/mass spectrometry applied to predialysis plasma samples from a discovery cohort of 141 patients and an independent replication cohort of 180 patients participating in a trial of frequent hemodialysis. We assessed executive function with the Trail Making Test Part B and the Digit Symbol Substitution test. Impaired executive function was defined as a score ≥2 SDs below normative values. Four metabolites-4-hydroxyphenylacetate, phenylacetylglutamine, hippurate, and prolyl-hydroxyproline-were associated with impaired executive function at the false-detection rate significance threshold. After adjustment for demographic and clinical characteristics, the associations remained statistically significant: relative risk 1.16 (95% confidence interval [95% CI], 1.03 to 1.32), 1.39 (95% CI, 1.13 to 1.71), 1.24 (95% CI, 1.03 to 1.50), and 1.20 (95% CI, 1.05 to 1.38) for each SD increase in 4-hydroxyphenylacetate, phenylacetylglutamine, hippurate, and prolyl-hydroxyproline, respectively. The association between 4-hydroxyphenylacetate and impaired executive function was replicated in the second cohort (relative risk 1.12; 95% CI, 1.02 to 1.23), whereas the associations for phenylacetylglutamine, hippurate, and prolyl-hydroxyproline did not reach statistical significance in this cohort. In summary, four metabolites related to phenylalanine, benzoate, and glutamate metabolism may be markers of cognitive impairment in patients receiving maintenance dialysis. Copyright © 2016 by the American Society of Nephrology.

  15. PET imaging for brain function

    International Nuclear Information System (INIS)

    Fukuda, Hiroshi

    2003-01-01

    Described are the principle of PET and its characteristics, imaging of human brain function, mapping of detailed human cerebral functions and PET imaging of nerve transmission. Following compounds labeled by positron emitters are used for PET imaging of brain functions: for blood flow and oxygen metabolism, 15 O-O 2 gas, water and carbon dioxide; for energy metabolism, 18 F-fluorodeoxyglucose; and for nerve transmission functions in receptor binding, transporter, transmitter synthesis and enzyme, 11 C- or 18 F-dopamine, serotonin and their analogues, and acetylcholine analogues. For brain mapping, examples of cognition tasks, results and their statistics are presented with images for blood flow. Nerve transmissions in schizophrenia and Alzheimer disease are imaged with labeled analogues of dopamine and acetylcholine, respectively. PET is becoming more and more important in the field of psychiatric science particularly in the coming society of increasing aged people. (N.I.)

  16. Radionuclide body function imager

    International Nuclear Information System (INIS)

    Stoddart, H.F.

    1983-01-01

    A transverse radionuclide scan field imaging apparatus is claimed. It comprises: a plurality of highly focused closely laterally adjacent collimators arranged inwardly focused in an array which surrounds a scan field, each collimator being moveable relative to its adjacent collimator; means for rotating the array about the scan field and means for imparting travel to the collimators

  17. Neurophysiology of functional imaging

    NARCIS (Netherlands)

    van Eijsden, Pieter; Hyder, Fahmeed; Rothman, Douglas L.; Shulman, Robert G.

    2009-01-01

    The successes of PET and fMRI in non-invasively localizing sensory functions had encouraged efforts to transform the subjective concepts of cognitive psychology into objective physical measures. The assumption was that mental functions could be decomposed into non-overlapping, context-independent

  18. Estimating receiver functions on dense arrays: application to the IRIS Community Wavefield Experiment in Oklahoma

    Science.gov (United States)

    Zhong, M.; Zhan, Z.

    2017-12-01

    Receiver functions (RF) estimated on dense arrays have been widely used for studies of Earth structures at different scales. However, there are still challenges in estimating and interpreting RF images due to non-uniqueness of deconvolution, noise in data, and lack of uncertainty. Here, we develop a dense-array-based RF method towards robust and high-resolution RF images. We cast RF images as the models in a sparsity-promoted inverse problem, in which waveforms from multiple events recorded by neighboring stations are jointly inverted. We use the Neighborhood Algorithm to find the optimal model (i.e., RF image) as well as an ensemble of models for further uncertainty quantification. Synthetic tests and application to the IRIS Community Wavefield Experiment in Oklahoma demonstrate that the new method is able to deal with challenging dataset, retrieve reliable high-resolution RF images, and provide realistic uncertainty estimates.

  19. Crustal anisotropy across northern Japan from receiver functions.

    Science.gov (United States)

    Bianchi, I; Bokelmann, G; Shiomi, K

    2015-07-01

    Northern Japan is a tectonically active area, with the presence of several volcanoes, and with frequent earthquakes among which the destructive M w  = 8.9-9.0 Tohoku-oki occurred on 11 March 2011. Tectonic activity leaves an imprint on the crustal structures, on both the upper and the lower layers. To investigate the crust in northern Japan, we construct a receiver function data set using teleseismic events recorded at 58 seismic stations belonging to the Japanese National (Hi-net) network. We isolate the signals, in the receiver function wavelet, that witness the presence of anisotropic structures at depth, with the aim of mapping the variation of anisotropy across the northern part of the island. This study focuses on the relation among anisotropy detected in the crust, stresses induced by plate convergence across the subduction zone, and the intrinsic characteristics of the rocks. Our results show how a simple velocity model with two anisotropic layers reproduces the observed data at the stations. We observe a negligible or small amount of signal related to anisotropy in the eastern part of the study area (i.e., the outer arc) for both upper and lower crust. Distinct anisotropic features are observed at the stations on the western part of the study area (i.e., the inner arc) for both upper and lower crust. The symmetry axes are mostly E-W oriented. Deviation from the E-W orientation is observed close to the volcanic areas, where the higher geothermal gradient might influence the deformation processes.

  20. MR-based conductivity imaging using multiple receiver coils.

    Science.gov (United States)

    Lee, Joonsung; Shin, Jaewook; Kim, Dong-Hyun

    2016-08-01

    To propose a signal combination method for MR-based tissue conductivity mapping using a standard clinical scanner with multiple receiver coils. The theory of the proposed method is presented with two practical approaches, a coil-specific approach and a subject-specific approach. Conductivity maps were reconstructed using the transceive phase of the combined signal. The sensitivities of the coefficients used for signal combination were analyzed and the method was compared with other signal combination methods. For validation, multiple receiver brain coils and multiple receiver breast coils were used in phantom, in vivo brain, and in vivo breast studies. The variation among the conductivity estimates was conductivity estimates. MR-based tissue conductivity mapping is feasible when using a standard clinical MR scanner with multiple receiver coils. The proposed method reduces systematic errors in phase-based conductivity mapping that can occur due to the inhomogeneous magnitude of the combined receive profile. Magn Reson Med 76:530-539, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  1. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 4: Functional specification for the prototype Automated Integrated Receive System (AIRS)

    Science.gov (United States)

    Chie, C. M.

    1984-01-01

    The functional requirements for the performance, design, and testing for the prototype Automated Integrated Receive System (AIRS) to be demonstrated for the TDRSS S-Band Single Access Return Link are presented.

  2. Receiver Functions of the Mangystau Region, Western Kazakhstan

    Science.gov (United States)

    Martinetti, L. B.; Mackey, K. G.

    2017-12-01

    The Mangystau Region, in southwestern Kazakhstan contains many geographic features such as basins, plateaus, and mountain ranges. However, little has been published in English or Russian, and the region has never been instrumented with broadband seismometers before. From August through September 2016, a seismic noise survey took place where 10 broadband seismic stations were deployed throughout the region for 20 days each by MSU. The sensors recorded various teleseismic events and the data were used to infer crustal thickness. The goal of this study is to determine if reliable receiver functions can be created with 20 days of data recorded, and test what is the best way to use the data to find the thickness of the crust. Since a limited amount of data is available, teleseismic events of magnitude > 5 and that occurred from 30 to 90 degrees from the station were used. To have a better solution, a local calibration event was used to solve the seismic velocity and match the results of a previously done study (5.6 - 6.5 km/s) by a Kazak group, which was then used for H-k stacking. While the work is still in progress, it will add to the knowledge of the area, thus give an insight to the crustal thickness of the overall region. This study can also be used to provide information of the crustal thickness of the northern Caspian basin, near the Caucasus, where another major effort is being conducted.

  3. Formation of the image on the receiver of thermal radiation

    Science.gov (United States)

    Akimenko, Tatiana A.

    2018-04-01

    The formation of the thermal picture of the observed scene with the verification of the quality of the thermal images obtained is one of the important stages of the technological process that determine the quality of the thermal imaging observation system. In this article propose to consider a model for the formation of a thermal picture of a scene, which must take into account: the features of the object of observation as the source of the signal; signal transmission through the physical elements of the thermal imaging system that produce signal processing at the optical, photoelectronic and electronic stages, which determines the final parameters of the signal and its compliance with the requirements for thermal information and measurement systems.

  4. A study of upper mantle discontinuities beneath the Korean Peninsula using teleseismic receiver functions

    Science.gov (United States)

    Lee, S.; Park, Y.; Kim, K.; Rhie, J.

    2010-12-01

    The study on the topography of the upper mantle discontinuities helps us to understand the complex interactions between the subducting slabs and upper mantle discontinuities. To investigate the depth variation of the upper mantle discontinuities beneath the Korean Peninsula and surrounding regions, we applied the common conversion point stacking of the P-to-s receiver functions. The broadband seismic networks in South Korea and Japan were used to produce the high-resolution receiver function images of the region. The 410- and 660-km discontinuities (hereafter referred to as the 410 and the 660) are clearly imaged and their depth variations show interesting features, especially for the 660. In this region, the subducting Pacific slab bends to flatten over the 660 and several tomographic images indicate that the stagnant slab is extending to the west under China. If the depth of the 660 is affected by the temperature, the broad depression of the 660 is expected and several SS precursor studies support this idea. However, our observation shows that the 660 is locally depressed and its pattern is spatially changing. While the depressed 660 due to the Pacific slab is clearly imaged at lower latitudes (depressed 660 to the north. It indicates that the effect of the Pacific slab on the depth variation of the 660 is changing significantly in our study area.

  5. Presurgical functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Stippich, C.

    2010-01-01

    Functional magnetic resonance imaging (fMRI) is an important and novel neuroimaging modality for patients with brain tumors. By non-invasive measurement, localization and lateralization of brain activiation, most importantly of motor and speech function, fMRI facilitates the selection of the most appropriate and sparing treatment and function-preserving surgery. Prerequisites for the diagnostic use of fMRI are the application of dedicated clinical imaging protocols and standardization of the respective imaging procedures. The combination with diffusion tensor imaging (DTI) also enables tracking and visualization of important fiber bundles such as the pyramidal tract and the arcuate fascicle. These multimodal MR data can be implemented in computer systems for functional neuronavigation or radiation treatment. The practicability, accuracy and reliability of presurgical fMRI have been validated by large numbers of published data. However, fMRI cannot be considered as a fully established modality of diagnostic neuroimaging due to the lack of guidelines of the responsible medical associations as well as the lack of medical certification of important hardware and software components. This article reviews the current research in the field and provides practical information relevant for presurgical fMRI. (orig.) [de

  6. Sugammadex Improves Neuromuscular Function in Patients Receiving Perioperative Steroids.

    Science.gov (United States)

    Ozer, A B; Bolat, E; Erhan, O L; Kilinc, M; Demirel, I; Toprak, G Caglar

    2018-02-01

    Sugammadex has steroid-encapsulating effect. This study was undertaken to assess whether the clinical efficacy of sugammadex was altered by the administration of steroids. Sixty patients between 18 and 60 years of age with the American Society of Anesthesiologists I-IV and undergoing elective direct laryngoscopy/biopsy were included in this study. Patients were assigned to two groups based on the intraoperative steroid use: those who received steroid (Group S) and who did not (Group C). After standard general anesthesia, patients were monitored with the train of four (TOF) monitoring. The preferred steroid and its dose, timing of steroid administration, and TOF value before and after sugammadex as well as the time to recovery (TOF of 0.9) were recorded. SPSS software version 17.0 was used for statistical analysis. There is no statistically significant difference between groups in terms of age, gender, preoperative medication use, and TOF ratio just before administering sugammadex. The reached time to TOF 0.9 after sugammadex administration was significantly shorter in Group S than Group C (P sugammadex as well as the dose of sugammadex in those who received prednisolone; time to TOF 0.9 was higher in prednisolone receivers as compared to dexamethasone receivers (P sugammadex was found, in contrast with what one expect. Further studies are required to determine the cause of this effect which is probably due to a potential interaction between sugammadex and steroids.

  7. Post-operative neuromuscular function of patients receiving non ...

    African Journals Online (AJOL)

    Objectives: To determine the number of patients whose non-depolarising muscle relaxation is adequately reversed. To define factors that contribute to reversal. Design: A cross sectional study. Setting: Universitas Hospital recovery room over a 2 month period. Subjects: Patients that received non-depolarising muscle ...

  8. Relocating San Miguel Volcanic Seismic Events for Receiver Functions and Tomographic Models

    Science.gov (United States)

    Patlan, E.; Velasco, A. A.; Konter, J.

    2009-12-01

    The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and -88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. Furthermore, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We will calculate receiver functions to determine the thickness of San Miguel volcano internal structure, within the Caribbean plate. Crustal thicknesses will be modeled using calculated receiver functions from both theoretical and hand-picked P-wave arrivals. We will use this information derived from receiver functions, along with P-wave delay times, to map the location of the magma chamber.

  9. Functional Imaging: CT and MRI

    OpenAIRE

    van Beek, Edwin JR; Hoffman, Eric A

    2008-01-01

    Numerous imaging techniques permit evaluation of regional pulmonary function. Contrast-enhanced CT methods now allow assessment of vasculature and lung perfusion. Techniques using spirometric controlled MDCT allow for quantification of presence and distribution of parenchymal and airway pathology, Xenon gas can be employed to assess regional ventilation of the lungs and rapid bolus injections of iodinated contrast agent can provide quantitative measure of regional parenchymal perfusion. Advan...

  10. Updates to FuncLab, a Matlab based GUI for handling receiver functions

    Science.gov (United States)

    Porritt, Robert W.; Miller, Meghan S.

    2018-02-01

    Receiver functions are a versatile tool commonly used in seismic imaging. Depending on how they are processed, they can be used to image discontinuity structure within the crust or mantle or they can be inverted for seismic velocity either directly or jointly with complementary datasets. However, modern studies generally require large datasets which can be challenging to handle; therefore, FuncLab was originally written as an interactive Matlab GUI to assist in handling these large datasets. This software uses a project database to allow interactive trace editing, data visualization, H-κ stacking for crustal thickness and Vp/Vs ratio, and common conversion point stacking while minimizing computational costs. Since its initial release, significant advances have been made in the implementation of web services and changes in the underlying Matlab platform have necessitated a significant revision to the software. Here, we present revisions to the software, including new features such as data downloading via irisFetch.m, receiver function calculations via processRFmatlab, on-the-fly cross-section tools, interface picking, and more. In the descriptions of the tools, we present its application to a test dataset in Michigan, Wisconsin, and neighboring areas following the passage of USArray Transportable Array. The software is made available online at https://robporritt.wordpress.com/software.

  11. A functional magnetic resonance imaging study

    Indian Academy of Sciences (India)

    MADU

    systems and ultra fast imaging techniques, such as echo planar imaging (EPI ) ... is used to understand brain organization, assessing of neurological status, and ..... J C 1998 Functional MRI studies of motor recovery after stroke;. NeuroImage 7 ...

  12. Functional brain imaging across development.

    Science.gov (United States)

    Rubia, Katya

    2013-12-01

    The developmental cognitive neuroscience literature has grown exponentially over the last decade. This paper reviews the functional magnetic resonance imaging (fMRI) literature on brain function development of typically late developing functions of cognitive and motivation control, timing and attention as well as of resting state neural networks. Evidence shows that between childhood and adulthood, concomitant with cognitive maturation, there is progressively increased functional activation in task-relevant lateral and medial frontal, striatal and parieto-temporal brain regions that mediate these higher level control functions. This is accompanied by progressively stronger functional inter-regional connectivity within task-relevant fronto-striatal and fronto-parieto-temporal networks. Negative age associations are observed in earlier developing posterior and limbic regions, suggesting a shift with age from the recruitment of "bottom-up" processing regions towards "top-down" fronto-cortical and fronto-subcortical connections, leading to a more mature, supervised cognition. The resting state fMRI literature further complements this evidence by showing progressively stronger deactivation with age in anti-correlated task-negative resting state networks, which is associated with better task performance. Furthermore, connectivity analyses during the resting state show that with development increasingly stronger long-range connections are being formed, for example, between fronto-parietal and fronto-cerebellar connections, in both task-positive networks and in task-negative default mode networks, together with progressively lesser short-range connections, suggesting progressive functional integration and segregation with age. Overall, evidence suggests that throughout development between childhood and adulthood, there is progressive refinement and integration of both task-positive fronto-cortical and fronto-subcortical activation and task-negative deactivation, leading to

  13. The family receiving home care: functional health pattern assessment.

    Science.gov (United States)

    Hooper, J I

    1996-01-01

    The winds of change in health care make assessment of the family more important than ever as a tool for health care providers seeking to assist the family move themselves toward high-level wellness. Limited medical care and imposed self-responsibility for health promotion and illness prevention, which are natural consequences of these changes, move the locus of control for health management back to the family. The family's teachings, modeling, and interactions are greater influences than ever on the health of the patient. Gordon's functional health patterns provide a holistic model for assessment of the family because assessment data are classified under 11 headings: health perception and health management, nutritional-metabolic, elimination, activity and exercise, sleep and rest, cognition and perception, self-perception and self-concept, roles and relationships, sexuality and reproduction, coping and stress tolerance, and values and beliefs. Questions posed under each of the health patterns can be varied to reflect the uniqueness of the individual family as well as to inquire about family strengths and weaknesses in all patterns. Data using this model provide a comprehensive base for including the family in designing a plan of care.

  14. Receiver functions analysis in Northern Tanzania to understand the earliest stage of rifting

    Science.gov (United States)

    Tiberi, C.; Albaric, J.; Deschamps, A.; Deverchere, J.; Ebinger, C. J.; Ferdinand, R. W.; Gautier, S.; Lambert, C.; Msabi, M.; Mtelela, K.; Muzuka, A.; Perrot, J.; Rasendra, N.; Roecker, S. W.; Rodzianko, A.; Witkin, E.

    2013-12-01

    The East African Rift (EAR) is the site of stretching and breakup of the lithosphere in response to a combination of regional pulling forces and mantle upwellings. Deformation results from complex interactions between magmatic intrusions, faulting, asthenospheric dynamism and far field stresses. It thus involves both deep processes and local inherited fabrics. In the frame of two international projects CRAFTI (NSF) and CoLiBrEA (ANR), we gather our skills to lead a multidisciplinary project in order to characterize the factors involved in continental rifting. We target the first 5 My of a magmatic rift initiating in thick (>150 km) continental lithosphere, where we can directly image and detect fault and magma interactions, the role of inherited and rheological heterogeneities of the lithosphere on rift localisation. We deployed 35 broadband seismic stations in Natron and Ngorongoro areas in January 2013 to characterize crustal and mantle structures of the rift. The stations were equipped by 3 component sensors and Reftek Recorders to continuously record teleseisms as well as local seismicity. We present here a receiver function analyse on the teleseismic events recorded during the first 6 months of the experiment. Both P- and S-waves receiver functions were proceeded to document the modification of the crust and the mantle due to plate stretching and magmatic processes. The Vp/Vs ratio informs on the state of the crust, which is affected by magmatic and fluids intrusions at different depths. The S-wave receiver function gives insight into the lithosphere state and the nature of the mantle beneath the rift (archean or plume affected).

  15. Functional imaging of decision conflict.

    Science.gov (United States)

    Pochon, Jean-Baptiste; Riis, Jason; Sanfey, Alan G; Nystrom, Leigh E; Cohen, Jonathan D

    2008-03-26

    Decision conflict occurs when people feel uncertain as to which option to choose from a set of similarly attractive (or unattractive) options, with many studies demonstrating that this conflict can lead to suboptimal decision making. In this article, we investigate the neurobiological underpinnings of decision conflict, in particular, the involvement of the anterior cingulate cortex (ACC). Previous studies have implicated the ACC in conflict monitoring during perceptual tasks, but there is considerable controversy as to whether the ACC actually indexes conflict related to choice, or merely conflict related to selection of competing motor responses. In a functional magnetic resonance imaging study, we dissociate the decision and response phases of a decision task, and show that the ACC does indeed index conflict at the decision stage. Furthermore, we show that it does so for a complex decision task, one that requires the integration of beliefs and preferences and not just perceptual judgments.

  16. Shallow Sedimentary Structure of the Brahmaputra Valley Constraint from Receiver Functions Analysis

    Science.gov (United States)

    Saikia, Sowrav; Chopra, Sumer; Baruah, Santanu; Singh, Upendra K.

    2017-01-01

    In this study, receiver functions from ten Broadband seismograph stations on Cenozoic sediment formations of Brahmaputra valley and its neighboring region in northeastern part of India are determined. Receiver function traces from this region show delay in peak by 1-2.5 s and associated minor peaks with the direct P-phase peak. Based on such observation, we try to image sedimentary structure of the Brahmaputra valley plain, adjacent Shillong plateau and Himalayan foredeep region. An adapted hybrid global waveform inversion technique has been applied to extract sedimentary basin structure beneath each site. The sedimentary cover of the basin is about 0.5-6.5 km thick across the valley, 0.5-1.0 km on Shillong plateau and 2.0-5.0 km in nearby foredeep region. We have found that sedimentary thickness increases from SW to NE along the Brahmaputra valley and towards the Eastern Himalayan syntaxes. The estimated sediment thickness and S wave velocity structure agree well with the results of previous active source, gravity, and deep borehole studies carried out in this region. The thick crustal low velocity sediment cover in Brahmaputra valley is expected to amplify ground motions during earthquakes and therefore important for seismic hazard assessment of the region.

  17. Study of image reconstruction for terahertz indirect holography with quasi-optics receiver.

    Science.gov (United States)

    Gao, Xiang; Li, Chao; Fang, Guangyou

    2013-06-01

    In this paper, an indirect holographic image reconstruction algorithm was studied for terahertz imaging with a quasi-optics receiver. Based on the combination of the reciprocity principle and modified quasi-optics theory, analytical expressions of the received spatial power distribution and its spectrum are obtained for the interference pattern of target wave and reference wave. These results clearly give the quantitative relationship between imaging quality and the parameters of a Gaussian beam, which provides a good criterion for terahertz quasi-optics transceivers design in terahertz off-axis holographic imagers. To validate the effectiveness of the proposed analysis method, some imaging results with a 0.3 THz prototype system are shown based on electromagnetic simulation.

  18. An anti-image interference quadrature IF architecture for satellite receivers

    Directory of Open Access Journals (Sweden)

    He Weidong

    2014-08-01

    Full Text Available Since Global Navigation Satellite System (GNSS signals span a wide range of frequency, wireless signals coming from other communication systems may be aliased and appear as image interference. In quadrature intermediate frequency (IF receivers, image aliasing due to in-phase and quadrature (I/Q channel mismatches is always a big problem. I/Q mismatches occur because of gain and phase imbalances between quadrature mixers and capacitor mismatches in analog-to-digital converters (ADC. As a result, the dynamic range and performance of a receiver are severely degraded. In this paper, several popular receiver architectures are summarized and the image aliasing problem is investigated in detail. Based on this analysis, a low-IF architecture is proposed for a single-chip solution and a novel and feasible anti-image algorithm is investigated. With this anti-image digital processing, the image reject ratio (IRR can reach approximately above 50 dB, which relaxes image rejection specific in front-end circuit designs and allows cheap and highly flexible analog front-end solutions. Simulation and experimental data show that the anti-image algorithm can work effectively, robustly, and steadily.

  19. Crustal and upper mantle structure of Siberia from teleseismic receiver functions

    DEFF Research Database (Denmark)

    Soliman, Mohammad Youssof Ahmad; Thybo, Hans; Artemieva, Irina

    2015-01-01

    ). With this method, we determine seismic P- and S-velocities that are comparable to the results of teleseismic body wave and surface wave tomography techniques. The RF model shows variations in the crustal thickness between 35 and 55 km. Intracrustal structures are identified, in particular using the high......This study presents seismic images of the crustal and lithospheric structure in Siberia based on the available broadband seismic data using teleseismic receiver functions (RFs). We invert P- and S-RFs jointly. The inversion technique is carried out by approach described by Vinnik et al. (2004....... The current results of RF analysis of the crustal and mantle structure will help to build a model for tectonic and geodynamic evolution of different provinces of Siberia. We compare our results to the recent detailed models of crustal structure in the area and with seismic models for similar geodynamic...

  20. Functional brain imaging; Funktionelle Hirnbildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, E.R. [Medizinische Universitaet Innsbruck, Universitaetsklinik fuer Neuroradiologie, Innsbruck (Austria)

    2016-02-15

    Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications. Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing. As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning. (orig.) [German] Mittlerweile ist die funktionelle MRT (fMRT) eine Methode, die nicht mehr nur in der neurowissenschaftlichen Routine verwendet wird. Die fMRT ermoeglicht die nichtinvasive Darstellung der Hirnaktivitaet in guter raeumlicher und zeitlicher Aufloesung unter Ausnutzung der Durchblutungsaenderung aufgrund der erhoehten Nervenzellaktivitaet. Unter

  1. Functional magnetic resonance imaging by visual stimulation

    International Nuclear Information System (INIS)

    Nishimura, Yukiko; Negoro, Kiyoshi; Morimatsu, Mitsunori; Hashida, Masahiro

    1996-01-01

    We evaluated functional magnetic resonance images obtained in 8 healthy subjects in response to visual stimulation using a conventional clinical magnetic resonance imaging system with multi-slice spin-echo echo planar imaging. Activation in the visual cortex was clearly demonstrated by the multi-slice experiment with a task-related change in signal intensity. In addition to the primary visual cortex, other areas were also activated by a complicated visual task. Multi-slice spin-echo echo planar imaging offers high temporal resolution and allows the three-dimensional analysis of brain function. Functional magnetic resonance imaging provides a useful noninvasive method of mapping brain function. (author)

  2. Lithospheric Structure of Northeastern Tibet Plateau from P and S Receiver Functions

    Science.gov (United States)

    Zhang, C.; Guo, Z.; Chen, Y. J.

    2017-12-01

    We obtain the lithospheric structure of the Northeast Tibet (NE Tibet) along an N-S trending profile using P- and S-wave receiver function recorded by ChinArray-Himalaya II project. Both P- and S-receiver function migration images show highly consistent lithospheric features. The Moho depth is estimated to be 50 km beneath the Songpan-ganzi (SPGZ) and Qaidam-Kunlun-West Qinling (QD) blocks with little or no fluctuation. However, at the northern boundary of QD, the crust abruptly uplifts to 40 km depth within a distance of 50 km. Meanwhile, at the southernmost of QD, the Moho is found at the depth of 60 km, which forms a double Moho conversion beneath the western Qinling fault (WQF). At the Qilian block, the first order feature of the PRF image is the northward crustal thinning from 60 km to 45 km. The strong Moho fluctuations beneath the Qilian block reflects the on-going mountain building processes. Further to the north, the Moho depth begins to deepen to 55 km and then gradually thins to 40 km at the Alxa block. We observe significant Moho variations at the Central Asian Orogenic belt (CAOB). Furthermore, Moho jumps and offsets are shown beneath major thrust and strike-slip faults zones, such as the a >5 km Moho uplift across the North Qilian Fault (NQF), implying that these faults cut through the crust and partly accommodate the continuous deformation/crustal shorting that is propagated from the India-Eurasia collision. Strong negative signals found in both P and S receiver functions at around 100-150 km depth can be interpreted as the lithosphere-asthenosphere boundary (LAB). The LAB deepens from 100 km at the northern to a maximum of 150 km at the southern end of the CAOB. A relatively flat LAB with the depth of 150 km is shown beneath the Alax block, and then it gradually thins to 100 km from the QD to SPGZ. Beneath the SPGZ, our results indicate a thin and flat lithosphere ( 100 km).

  3. Beyond seismic interferometry: imaging the earth's interior with virtual sources and receivers inside the earth

    Science.gov (United States)

    Wapenaar, C. P. A.; Van der Neut, J.; Thorbecke, J.; Broggini, F.; Slob, E. C.; Snieder, R.

    2015-12-01

    Imagine one could place seismic sources and receivers at any desired position inside the earth. Since the receivers would record the full wave field (direct waves, up- and downward reflections, multiples, etc.), this would give a wealth of information about the local structures, material properties and processes in the earth's interior. Although in reality one cannot place sources and receivers anywhere inside the earth, it appears to be possible to create virtual sources and receivers at any desired position, which accurately mimics the desired situation. The underlying method involves some major steps beyond standard seismic interferometry. With seismic interferometry, virtual sources can be created at the positions of physical receivers, assuming these receivers are illuminated isotropically. Our proposed method does not need physical receivers at the positions of the virtual sources; moreover, it does not require isotropic illumination. To create virtual sources and receivers anywhere inside the earth, it suffices to record the reflection response with physical sources and receivers at the earth's surface. We do not need detailed information about the medium parameters; it suffices to have an estimate of the direct waves between the virtual-source positions and the acquisition surface. With these prerequisites, our method can create virtual sources and receivers, anywhere inside the earth, which record the full wave field. The up- and downward reflections, multiples, etc. in the virtual responses are extracted directly from the reflection response at the surface. The retrieved virtual responses form an ideal starting point for accurate seismic imaging, characterization and monitoring.

  4. Functional mesoporous silica nanoparticles for bio-imaging applications.

    Science.gov (United States)

    Cha, Bong Geun; Kim, Jaeyun

    2018-03-22

    Biomedical investigations using mesoporous silica nanoparticles (MSNs) have received significant attention because of their unique properties including controllable mesoporous structure, high specific surface area, large pore volume, and tunable particle size. These unique features make MSNs suitable for simultaneous diagnosis and therapy with unique advantages to encapsulate and load a variety of therapeutic agents, deliver these agents to the desired location, and release the drugs in a controlled manner. Among various clinical areas, nanomaterials-based bio-imaging techniques have advanced rapidly with the development of diverse functional nanoparticles. Due to the unique features of MSNs, an imaging agent supported by MSNs can be a promising system for developing targeted bio-imaging contrast agents with high structural stability and enhanced functionality that enable imaging of various modalities. Here, we review the recent achievements on the development of functional MSNs for bio-imaging applications, including optical imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound imaging, and multimodal imaging for early diagnosis. With further improvement in noninvasive bio-imaging techniques, the MSN-supported imaging agent systems are expected to contribute to clinical applications in the future. This article is categorized under: Diagnostic Tools > In vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.

  5. Evaluation of usefulness of portal image using Electronic Portal Imaging Device (EPID) in the patients who received pelvic radiation therapy

    International Nuclear Information System (INIS)

    Kim, Woo Chul; Kim, Heon Jong; Park, Seong Young; Cho, Young Kap; Loh, John J. K.; Park, Won; Suh, Chang Ok; Kim, Gwi Eon

    1998-01-01

    To evaluate the usefulness of electronic portal imaging device through objective compare of the images acquired using an EPID and a conventional port film. From Apr. to Oct. 1997, a total of 150 sets of images from 20 patients who received radiation therapy in the pelvis area were evaluated in the Inha University Hospital and Severance Hospital. A dual image recording technique was devised to obtain both electronic portal images and port film images simultaneously with one treatment course. We did not perform double exposure. Five to ten images were acquired from each patient. All images were acquired from posteroanterior (PA) view except images from two patients. A dose rate of 100-300 MU/min and a 10-MV X-ray beam were used and 2-10 MUs were required to produce a verification image during treatment. Kodak diagnostic film with metal/film imaging cassette which was located on the top of the EPID detector was used for the port film. The source to detector distance was 140 cm. Eight anatomical landmarks (pelvic brim, sacrum, acetabulum, iliopectineal line, symphysis, ischium, obturator foramen, sacroiliac joint) were assessed. Four radiation oncologist joined to evaluate each image. The individual landmarks in the port film or in the EPID were rated-very clear (1), clear (2), visible (3), notclear (4), not visible (5). Using an video camera based EPID system, there was no difference of image quality between no enhanced EPID images and port film images. However, when we provided some change with window level for the portal image, the visibility of the sacrum and obturator foramen was improved in the portal images than in the port film images. All anatomical landmarks were more visible in the portal images than in the port film when we applied the CLAHE mode enhancement. The images acquired using an matrix ion chamber type EPID were also improved image quality after window level adjustment. The quality of image acquired using an electronic portal imaging device was

  6. A digital receiver module with direct data acquisition for magnetic resonance imaging systems.

    Science.gov (United States)

    Tang, Weinan; Sun, Hongyu; Wang, Weimin

    2012-10-01

    A digital receiver module for magnetic resonance imaging (MRI) with detailed hardware implementations is presented. The module is based on a direct sampling scheme using the latest mixed-signal circuit design techniques. A single field-programmable gate array chip is employed to perform software-based digital down conversion for radio frequency signals. The modular architecture of the receiver allows multiple acquisition channels to be implemented on a highly integrated printed circuit board. To maintain the phase coherence of the receiver and the exciter in the context of direct sampling, an effective phase synchronization method was proposed to achieve a phase deviation as small as 0.09°. The performance of the described receiver module was verified in the experiments for both low- and high-field (0.5 T and 1.5 T) MRI scanners and was compared to a modern commercial MRI receiver system.

  7. Physiology for the pulmonary functional imager

    Energy Technology Data Exchange (ETDEWEB)

    Levin, David L., E-mail: levin.david@mayo.edu [Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 (United States); Schiebler, Mark L. [Department of Radiology, UW-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252 (United States); Hopkins, Susan R., E-mail: shopkins@ucsd.edu [Division of Physiology 0623A, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States)

    2017-01-15

    Highlights: • An understanding of the relevant pulmonary physiology is crucial to functional lung imaging. • Spatial resolution for pulmonary functional imaging can be substantially less than that used for anatomic/clinical imaging. • Regional deformation of the lung under the influence of gravity significantly affects the measurement of pulmonary perfusion. • Large vessels identified on perfusion imaging do not represent local blood flow. • Pulmonary diseases are typically characterized by a change in the matching of ventilation and perfusion. - Abstract: As pulmonary functional imaging moves beyond the realm of the radiologist and physicist, it is important that imagers have a common language and understanding of the relevant physiology of the lung. This review will focus on key physiological concepts and pitfalls relevant to functional lung imaging.

  8. Physiology for the pulmonary functional imager

    International Nuclear Information System (INIS)

    Levin, David L.; Schiebler, Mark L.; Hopkins, Susan R.

    2017-01-01

    Highlights: • An understanding of the relevant pulmonary physiology is crucial to functional lung imaging. • Spatial resolution for pulmonary functional imaging can be substantially less than that used for anatomic/clinical imaging. • Regional deformation of the lung under the influence of gravity significantly affects the measurement of pulmonary perfusion. • Large vessels identified on perfusion imaging do not represent local blood flow. • Pulmonary diseases are typically characterized by a change in the matching of ventilation and perfusion. - Abstract: As pulmonary functional imaging moves beyond the realm of the radiologist and physicist, it is important that imagers have a common language and understanding of the relevant physiology of the lung. This review will focus on key physiological concepts and pitfalls relevant to functional lung imaging.

  9. Sexting among singles in the USA: prevalence of sending, receiving, and sharing sexual messages and images.

    Science.gov (United States)

    Garcia, Justin R; Gesselman, Amanda N; Siliman, Shadia A; Perry, Brea L; Coe, Kathryn; Fisher, Helen E

    2016-07-29

    Background: The transmission of sexual images and messages via mobile phone or other electronic media (sexting) has been associated with a variety of mostly negative social and behavioural consequences. Research on sexting has focussed on youth, with limited data across demographics and with little known about the sharing of private sexual images and messages with third parties. Methods: The present study examines sexting attitudes and behaviours, including sending, receiving, and sharing of sexual messages and images, across gender, age, and sexual orientation. A total of 5805 single adults were included in the study (2830 women; 2975 men), ranging in age from 21 to 75+ years. Results: Overall, 21% of participants reported sending and 28% reported receiving sexually explicit text messages; both sending and receiving 'sexts' was most common among younger respondents. Although 73.2% of participants reported discomfort with unauthorised sharing of sexts beyond the intended recipient, of those who had received sext images, 22.9% reported sharing them with others (on average with 3.17 friends). Participants also reported concern about the potential consequences of sexting on their social lives, careers, and psychosocial wellbeing. Conclusion: Views on the impact of sexting on reputation suggest a contemporary struggle to reconcile digital eroticism with real-world consequences. These findings suggest a need for future research into negotiations of sexting motivations, risks, and rewards.

  10. Anisotropic structure of the mantle wedge beneath the Ryukyu arc from teleseismic receiver function analysis

    Science.gov (United States)

    McCormack, K. A.; Wirth, E. A.; Long, M. D.

    2011-12-01

    The recycling of oceanic plates back into the mantle through subduction is an important process taking place within our planet. However, many fundamental aspects of subduction systems, such as the dynamics of mantle flow, have yet to be completely understood. Subducting slabs transport water down into the mantle, but how and where that water is released, as well as how it affects mantle flow, is still an open question. In this study, we focus on the Ryukyu subduction zone in southwestern Japan and use anisotropic receiver function analysis to characterize the structure of the mantle wedge. We compute radial and transverse P-to-S receiver functions for eight stations of the broadband F-net array using a multitaper receiver function estimator. We observe coherent P-to-SV converted energy in the radial receiver functions at ~6 sec for most of the stations analyzed consistent with conversions originating at the top of the slab. We also observe conversions on the transverse receiver functions that are consistent with the presence of multiple anisotropic and/or dipping layers. The character of the transverse receiver functions varies significantly along strike, with the northernmost three stations exhibiting markedly different behavior than stations located in the center of the Ryukyu arc. We compute synthetic receiver functions using a forward modeling scheme that can handle dipping interfaces and anisotropic layers to create models for the depths, thicknesses, and strengths of anisotropic layers in the mantle wedge beneath Ryukyu.

  11. Transfer function analysis of radiographic imaging systems

    International Nuclear Information System (INIS)

    Metz, C.E.; Doi, K.

    1979-01-01

    The theoretical and experimental aspects of the techniques of transfer function analysis used in radiographic imaging systems are reviewed. The mathematical principles of transfer function analysis are developed for linear, shift-invariant imaging systems, for the relation between object and image and for the image due to a sinusoidal plane wave object. The other basic mathematical principle discussed is 'Fourier analysis' and its application to an input function. Other aspects of transfer function analysis included are alternative expressions for the 'optical transfer function' of imaging systems and expressions are derived for both serial and parallel transfer image sub-systems. The applications of transfer function analysis to radiographic imaging systems are discussed in relation to the linearisation of the radiographic imaging system, the object, the geometrical unsharpness, the screen-film system unsharpness, other unsharpness effects and finally noise analysis. It is concluded that extensive theoretical, computer simulation and experimental studies have demonstrated that the techniques of transfer function analysis provide an accurate and reliable means for predicting and understanding the effects of various radiographic imaging system components in most practical diagnostic medical imaging situations. (U.K.)

  12. Stereotactic imaging in functional neurosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Hirabayashi, Hidehiro

    2012-07-01

    Background: The birth of stereotactic functional neurosurgery in 1947 was to a great extent dependent on the development of ventriculography. The last decades have witnessed a renaissance of functional stereotactic neurosurgery in the treatment of patients with movement disorders. Initially, these procedures were largely based on the same imaging technique that had been used since the birth of this technique, and that is still used in some centers. The introduction of new imaging modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) provided new potentials, but also new challenges for accurate identification and visualisation of the targets in the basal ganglia and the thalamus with an urge to thoroughly evaluate and optimize the stereotactic targeting technique, as well as evaluate accurately in stereotactic space the location and extent of stereotactic Radiofrequency (RF) lesions and the position of deep brain stimulation (DBS) electrodes. Aims: To study the differences between CT and MRI regarding indirect atlas coordinates in thalamic and pallidal procedures and to evaluate and validate visualisation of the pallidum and the subthalamic nucleus in view of direct targeting irrespective of atlas-derived coordinates. Furthermore, to evaluate the contribution of RF parameters on the size of stereotactic lesions, as well as the impact of size and location on clinical outcome. Method: The coordinates in relation to the landmarks of the 3{sup rd} ventricle of the targets in the pallidum and ventrolateral thalamus were compared between CT and MRI in 34 patients. In another 48 patients direct visualization of the pallidum was evaluated and compared to indirect atlas based targeting. The possibility and versatility of visualizing the Subthalamic Nucleus (STN) on short acquisition MRI were evaluated in a multicentre study, and the use of alternative landmarks in identification of the STN was demonstrated in another study. In 46 patients CT and

  13. Stereotactic imaging in functional neurosurgery

    International Nuclear Information System (INIS)

    Hirabayashi, Hidehiro

    2012-01-01

    Background: The birth of stereotactic functional neurosurgery in 1947 was to a great extent dependent on the development of ventriculography. The last decades have witnessed a renaissance of functional stereotactic neurosurgery in the treatment of patients with movement disorders. Initially, these procedures were largely based on the same imaging technique that had been used since the birth of this technique, and that is still used in some centers. The introduction of new imaging modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) provided new potentials, but also new challenges for accurate identification and visualisation of the targets in the basal ganglia and the thalamus with an urge to thoroughly evaluate and optimize the stereotactic targeting technique, as well as evaluate accurately in stereotactic space the location and extent of stereotactic Radiofrequency (RF) lesions and the position of deep brain stimulation (DBS) electrodes. Aims: To study the differences between CT and MRI regarding indirect atlas coordinates in thalamic and pallidal procedures and to evaluate and validate visualisation of the pallidum and the subthalamic nucleus in view of direct targeting irrespective of atlas-derived coordinates. Furthermore, to evaluate the contribution of RF parameters on the size of stereotactic lesions, as well as the impact of size and location on clinical outcome. Method: The coordinates in relation to the landmarks of the 3 rd ventricle of the targets in the pallidum and ventrolateral thalamus were compared between CT and MRI in 34 patients. In another 48 patients direct visualization of the pallidum was evaluated and compared to indirect atlas based targeting. The possibility and versatility of visualizing the Subthalamic Nucleus (STN) on short acquisition MRI were evaluated in a multicentre study, and the use of alternative landmarks in identification of the STN was demonstrated in another study. In 46 patients CT and MRI

  14. Lithospheric Structure across the Alaskan Cordillera from Surface Waves and Receiver Functions

    Science.gov (United States)

    Ward, K. M.; Lin, F. C.

    2017-12-01

    The long awaited Transportable Array (TA) deployment in Alaska and western Canada is nearing its final deployment stage. With only one more deployment season, most of the TA station locations have been occupied and begun providing data. These TA stations combined with upgraded existing locations have provided enough high-quality data to begin investigating the crustal and upper mantle structure across the entire Alaskan Cordillera. From a tectonic standpoint, many interesting questions remain unanswered. For example, how does the transition from oceanic-oceanic subduction to continental-oceanic normal subduction to continental-oceanic "flat-slab" subduction to strike-slip conservative plate motion affect the deformation/uplift of the overriding plate and mantle geodynamic characteristics? How does the long and completed terrene accretion process partition stress/strain in the crust? On more local scales, are there any significant mid-crustal magmatic systems as observed in other sections of the American Cordillera, and if so, what is there role in uplift and crustal deformation? Our approach to investigating these questions is though surface wave imaging from ambient noise and earthquake generated sources along with Rayleigh wave ellipticity paired with Ps receiver functions. Our preliminary tomography results agree with previous studies but expand the spatial coverage showing additional detail. Our ellipticity results show a heterogeneous but spatially consistent anisotropic shallow crust. Although the complete TA data set has not yet been collected, we have jointly inverted surface waves with receiver functions for a 3-D shear-wave velocity model across the entire Alaskan Cordillera. Key features of our velocity model include a high-velocity feature in the upper mantle associated with the subducting Pacific plate that extends north of the seismicity used to contour the geometry of the slab and mid-crustal low-velocity zones associated with the active volcanics in

  15. Mapping the mantle transition zone beneath the central Mid-Atlantic Ridge using Ps receiver functions.

    Science.gov (United States)

    Agius, M. R.; Rychert, C.; Harmon, N.; Kendall, J. M.

    2017-12-01

    Determining the mechanisms taking place beneath ridges is important in order to understand how tectonic plates form and interact. Of particular interest is establishing the depth at which these processes originate. Anomalies such as higher temperature within the mantle transition zone may be inferred seismically if present. However, most ridges are found in remote locations beneath the oceans restricting seismologists to use far away land-based seismometers, which in turn limits the imaging resolution. In 2016, 39 broadband ocean-bottom seismometers were deployed across the Mid-Atlantic Ridge, along the Romanche and Chain fracture zones as part of the PI-LAB research project (Passive Imaging of the Lithosphere and Asthenosphere Boundary). The one-year long seismic data is now retrieved and analysed to image the mantle transition zone beneath the ridge. We determine P-to-s (Ps) receiver functions to illuminate the 410- and 660-km depth mantle discontinuities using the extended multitaper deconvolution. The data from ocean-bottom seismometers have tilt and compliance noise corrections and is filtered between 0.05-0.2 Hz to enhance the signal. 51 teleseismic earthquakes generated hundreds of good quality waveforms, which are then migrated to depth in 3-D. The topography at the d410 deepens towards the west of the Romanche and Chain fracture zone by 15 km, whereas the topography of d660 shallows beneath the ridge between the two zones. Transition zone thickness thins from 5 to 20 km. Thermal anomalies determined from temperature relationships with transition zone thickness and depth variations of the d410 and d660 suggests hotter temperatures of about 200 K. Overall, the result suggests mid-ocean ridges may have associated thermal signatures as deep as the transition zone.

  16. Crustal structure of northern Egypt from joint inversion of receiver functions and surface wave dispersion velocities

    Science.gov (United States)

    Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim

    2018-01-01

    In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at

  17. Crustal structure of northern Egypt from joint inversion of receiver functions and surface wave dispersion velocities

    Science.gov (United States)

    Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim

    2018-05-01

    In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at

  18. MR imaging of the heart: functional imaging

    International Nuclear Information System (INIS)

    Croisille, P.; Revel, D.

    2000-01-01

    To date, most applications of cardiovascular MRI relate to the evaluation of major vessels rather than the heart itself. However, MRI plays a major role in the evaluation of specific types of cardiovascular pathology, namely intracardiac and paracardiac masses, pericardial disease, and congenital heart disease. In addition, because the visualization of cardiovascular anatomy with MR is non-invasive and permits three-dimensional analysis but also allows functional assessment of the cardiac pump, it is clear that MRI will have a growing and significant impact over the next years. We review some of the technical aspect of cardiac MRI and describe the current and potential clinical and investigative applications of this new methodology. (orig.)

  19. Receiver function analysis of the crust and upper mantle in Fennoscandia - isostatic implications

    DEFF Research Database (Denmark)

    Frassetto, Andrew; Thybo, Hans

    2013-01-01

    The mountains across southern Norway and other margins of the North Atlantic Ocean appear conspicuously high in the absence of recent convergent tectonics. We investigate this phenomenon with receiver functions calculated for seismometers deployed across southern Fennoscandia. These are used...

  20. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, B., E-mail: bjtobias@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y. [University of California at Davis, Davis, California 95616 (United States)

    2016-11-15

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50–150 GHz) to an intermediate frequency (IF) band (e.g. 0.1–18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  1. Megahertz rate, volumetric imaging of bubble clouds in sonothrombolysis using a sparse hemispherical receiver array

    Science.gov (United States)

    Acconcia, Christopher N.; Jones, Ryan M.; Goertz, David E.; O'Reilly, Meaghan A.; Hynynen, Kullervo

    2017-09-01

    It is well established that high intensity focused ultrasound can be used to disintegrate clots. This approach has the potential to rapidly and noninvasively resolve clot causing occlusions in cardiovascular diseases such as deep vein thrombosis (DVT). However, lack of an appropriate treatment monitoring tool is currently a limiting factor in its widespread adoption. Here we conduct cavitation imaging with a large aperture, sparse hemispherical receiver array during sonothrombolysis with multi-cycle burst exposures (0.1 or 1 ms burst lengths) at 1.51 MHz. It was found that bubble cloud generation on imaging correlated with the locations of clot degradation, as identified with high frequency (30 MHz) ultrasound following exposures. 3D images could be formed at integration times as short as 1 µs, revealing the initiation and rapid development of cavitation clouds. Equating to megahertz frame rates, this is an order of magnitude faster than any other imaging technique available for in vivo application. Collectively, these results suggest that the development of a device to perform DVT therapy procedures would benefit greatly from the integration of receivers tailored to bubble activity imaging.

  2. Multidisciplinary Functional MR Imaging for Prostate Cancer

    International Nuclear Information System (INIS)

    Kim, Jeong Kon; Jang, Yun Jin; Cho, Gyung Goo

    2009-01-01

    Various functional magnetic resonance (MR) imaging techniques are used for evaluating prostate cancer including diffusion-weighted imaging, dynamic contrast- enhanced MR imaging, and MR spectroscopy. These techniques provide unique information that is helpful to differentiate prostate cancer from non-cancerous tissue and have been proven to improve the diagnostic performance of MRI not only for cancer detection, but also for staging, post-treatment monitoring, and guiding prostate biopsies. However, each functional MR imaging technique also has inherent challenges. Therefore, in order to make accurate diagnoses, it is important to comprehensively understand their advantages and limitations, histologic background related with image findings, and their clinical relevance for evaluating prostate cancer. This article will review the basic principles and clinical significance of functional MR imaging for evaluating prostate cancer

  3. Evidence for magmatic underplating and partial melt beneath the Canary Islands derived using teleseismic receiver functions

    Science.gov (United States)

    Lodge, A.; Nippress, S. E. J.; Rietbrock, A.; García-Yeguas, A.; Ibáñez, J. M.

    2012-12-01

    In recent years, an increasing number of studies have focussed on resolving the internal structure of ocean island volcanoes. Traditionally, active source seismic experiments have been used to image the volcano edifice. Here we present results using the analysis of compressional to shear (P to S) converted seismic phases from teleseismic events, recorded by stations involved in an active source experiment "TOM-TEIDEVS" (Ibáñez et al., 2008), on the island of Tenerife, Canary Islands. We supplement this data with receiver function (RF) analysis of seismograms from the Canary Islands of Lanzarote and La Palma, applying the extended-time multitaper frequency domain cross-correlation estimation method (Helffrich, 2006). We use the neighbourhood inversion approach of Sambridge (1999a,b) to model the RFs and our results indicate magmatic underplating exists beneath all three islands, ranging from 2 to 8 km, but showing no clear correlation with the age of the island. Beneath both La Palma and Tenerife, we find localized low velocity zones (LVZs), which we interpret as due to partial melt, supported by their correlation with the location of historical earthquakes (La Palma) and recent earthquakes (Tenerife). For Lanzarote, we do not sample the most recently volcanically active region and find no evidence for a LVZ. Instead, we find a simple gradational velocity structure, with discontinuities at ˜4, 10 and 18 km depth, in line with previous studies.

  4. A high temperature superconductor tape RF receiver coil for a low field magnetic resonance imaging system

    International Nuclear Information System (INIS)

    Cheng, M C; Yan, B P; Lee, K H; Ma, Q Y; Yang, E S

    2005-01-01

    High temperature superconductor (HTS) thin films have been applied in making a low loss RF receiver coil for improving magnetic resonance imaging image quality. However, the application of these coils is severely limited by their limited field of view (FOV). Stringent fabrication environment requirements and high cost are further limitations. In this paper, we propose a simpler method for designing and fabricating HTS coils. Using industrial silver alloy sheathed Bi (2-x) Pb x Sr 2 Ca 2 Cu 3 O 10 (Bi-2223) HTS tapes, a five-inch single-turn HTS solenoid coil has been developed, and human wrist images have been acquired with this coil. The HTS tape coil has demonstrated an enhanced FOV over a six-inch YBCO thin film surface coil at 77 K with comparable signal-to-noise ratio

  5. Fine-scale crustal structure of the Azores Islands from teleseismic receiver functions

    Science.gov (United States)

    Spieker, K.; Rondenay, S.; Ramalho, R. S.; Thomas, C.; Helffrich, G. R.

    2016-12-01

    The Azores plateau is located near the Mid-Atlantic Ridge (MAR) and consists of nine islands, most of which lie east of the MAR. Various methods including seismic reflection, gravity, and passive seismic imaging have been used to investigate the crustal thickness beneath the islands. They have yielded thickness estimates that range between roughly 10 km and 30 km, but until now models of the fine-scale crustal structure have been lacking. A comparison of the crustal structure beneath the islands that lie west and east of the MAR might give further constraints on the evolution of the islands. For example, geochemical studies carried out across the region predict the existence of volcanic interfaces that should be detected seismically within the shallow crust of some of the islands. In this study, we use data from ten seismic stations located on the Azores Islands to investigate the crustal structure with teleseismic P-wave receiver functions. We query our resulting receiver functions for signals associated with the volcanic edifice, the crust-mantle boundary, and potential underplated layers beneath the various islands. The islands west of the MAR have a crustal structure comprising two discontinuities - an upper one at 1-2 km depth marking the base of the volcanic edifice, and a lower one at 10 km depth that we interpret as crust-mantle boundary. The islands east of the MAR can be subdivided into two groups. The central islands that are closer to the MAR exhibit a crustal structure similar to that of the western islands, with a volcanic edifice reaching a depth of 2 km and an average crust-mantle boundary at around 12 km depth. The easternmost islands, located on the oldest lithosphere, exhibit a more complex crustal structure with evidence for a mid-crustal interface and an underplated layer, yielding an effective crust-mantle boundary at >15 km depth. The difference in structure between proximal and distal islands might be related to the age of the plate at the

  6. Mantle transition zone beneath northeast China from P-receiver function

    Science.gov (United States)

    Zhang, R.; Wu, Q.

    2015-12-01

    We used receiver functions to examine lateral topographical variations on the 410- and 660-km beneath northeast China and particularly the Kuril-Japan arc junctions. Compared to other receiver functions studies, our analysis was based on greater station coverage of higher density by combining all recent seismic arrays so far deployed in northeast China. Our image shows that the 410-km is featured by a ~10-20 km uplift extending in the NNE direction beneath some areas of the Quaternary basaltic rocks distributed at Abaga and at Wudalianchi. The Clapeyron slope of the olivine phase transiton at 410-km suggests that the uplift is compatible with a negative thermal anomaly. We also confirm a significant depression of the 660 from the Changbai volcanism in the north to Korea in the south along the NW-SE direction. The depression is also accompanied by an uplift of the 660 to the west. The shallow 660-km discontinuity is also particularly detected beneath the Kuril-Japan arc junctions, while it was not detected before. The thermal anomaly at 410 km depth is most likely a remnant of a detached mantle lithosphere that recently sank to depth, thus providing robust evidence for the source and evolution of these basalts. The depression of the 660-km discontinuity may support that the subducting Pacific slab bends sharply and becomes stagnant when it meets strong resistance at a depth of about 670 km. After accumulation to a great extent the stagnant slab finally penetrates into the lower mantle. Combined with the previous triplicated studies, the shallow 660-km may suggest that descending Pacific slab at its leading and junction edges might be accommodated by a tearing near a depth of 660 km. Acknowledgements. Two liner seismic arrays were deployed by the Institute of Geophysics, China Earthquake Administration. The data of the permanent stations were provided by the Data Management Centre of China, National Seismic Network at the Institute of Geophysics, China Earthquake

  7. Image based rendering of iterated function systems

    NARCIS (Netherlands)

    Wijk, van J.J.; Saupe, D.

    2004-01-01

    A fast method to generate fractal imagery is presented. Iterated function systems (IFS) are based on repeatedly copying transformed images. We show that this can be directly translated into standard graphics operations: Each image is generated by texture mapping and blending copies of the previous

  8. Merits and limitations of functional imaging techniques

    International Nuclear Information System (INIS)

    Holman, B.L.

    1982-01-01

    The functional image is a powerful tool to look at physiologic information. It is ideally suited to the radiotracer method which measures regional physiology. It is ideal for regional analysis, providing a format which nicely complements the more traditional and anatomically oriented data displays. The functional image must be used intelligently, however, with the user aware of its limitations and of the meaning of indices which it is measuring. (orig.)

  9. Modeling and Circumventing the Effect of Sediments and Water Column on Receiver Functions

    Science.gov (United States)

    Audet, P.

    2017-12-01

    Teleseismic P-wave receiver functions are routinely used to resolve crust and mantle structure in various geologic settings. Receiver functions are approximations to the Earth's Green's functions and are composed of various scattered phase arrivals, depending on the complexity of the underlying Earth structure. For simple structure, the dominant arrivals (converted and back-scattered P-to-S phases) are well separated in time and can be reliably used in estimating crustal velocity structure. In the presence of sedimentary layers, strong reverberations typically produce high-amplitude oscillations that contaminate the early part of the wave train and receiver functions can be difficult to interpret in terms of underlying structure. The effect of a water column also limits the interpretability of under-water receiver functions due to the additional acoustic wave propagating within the water column that can contaminate structural arrivals. We perform numerical modeling of teleseismic Green's functions and receiver functions using a reflectivity technique for a range of Earth models that include thin sedimentary layers and overlying water column. These modeling results indicate that, as expected, receiver functions are difficult to interpret in the presence of sediments, but the contaminating effect of the water column is dependent on the thickness of the water layer. To circumvent these effects and recover source-side structure, we propose using an approach based on transfer function modeling that bypasses receiver functions altogether and estimates crustal properties directly from the waveforms (Frederiksen and Delayney, 2015). Using this approach, reasonable assumptions about the properties of the sedimentary layer can be included in forward calculations of the Green's functions that are convolved with radial waveforms to predict vertical waveforms. Exploration of model space using Monte Carlo-style search and least-square waveform misfits can be performed to

  10. Pulmonary functional MR imaging for COPD

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu

    2008-01-01

    Chronic obstructive pulmonary disease (COPD) is a slowly progressive disease characterized by airflow limitation, cough, sputum production, and, at later stages, dyspnea. COPD is currently the fourth-leading cause of mortality and the twelfth-leading cause of disability, and by the year 2020 it is expected to be the third-leading cause of death and the fifth-leading cause of disability worldwide. The diagnosis of COPD largely relies on a history of exposure to noxious stimuli and abnormal lung function test results. Since the pathology of COPD varies and the molecular mechanisms are only slightly understood, the diagnosis and stage assessment of COPD have relied on the results of pulmonary function test. In addition, CT and nuclear medicine study are utilized for assessment of regional morphological and functional abnormalities. Recently, pulmonary functional MR imaging is suggested as a new technique for assessment of regional physiopathologic information in various pulmonary diseases including COPD, pulmonary thromboembolism, lung cancer and interstitial lung diseases. This review article covers the brief description of theory and clinical application of contrast-enhanced perfusion MR imaging; hyperpolarized noble gas MR imaging and oxygen-enhanced MR imaging in COPD subjects. We believe that further basic studies as well as clinical applications of this new technique will define the real significance of pulmonary functional MR imaging for the future of pulmonary functional imaging and its usefulness for diagnosis and patients' management in COPD. (author)

  11. The effect of receiver coil orientations on the imaging performance of magnetic induction tomography

    Science.gov (United States)

    Gürsoy, D.; Scharfetter, H.

    2009-10-01

    Magnetic induction tomography is an imaging modality which aims to reconstruct the conductivity distribution of the human body. It uses magnetic induction to excite the body and an array of sensor coils to detect the perturbations in the magnetic field. Up to now, much effort has been expended with the aim of finding an efficient coil configuration to extend the dynamic range of the measured signal. However, the merits of different sensor orientations on the imaging performance have not been studied in great detail so far. Therefore, the aim of the study is to fill the void of a systematic investigation of coil orientations on the reconstruction quality of the designs. To this end, a number of alternative receiver array designs with different coil orientations were suggested and the evaluations of the designs were performed based on the singular value decomposition. A generalized class of quality measures, the subclasses of which are linked to both the spatial resolution and uncertainty measures, was used to assess the performance on the radial and axial axes of a cylindrical phantom. The detectability of local conductivity perturbations in the phantom was explored using the reconstructed images. It is possible to draw the conclusion that the proper choice of the coil orientations significantly influences the number of usable singular vectors and accordingly the stability of image reconstruction, although the effect of increased stability on the quality of the reconstructed images was not of paramount importance due to the reduced independent information content of the associated singular vectors.

  12. The effect of receiver coil orientations on the imaging performance of magnetic induction tomography

    International Nuclear Information System (INIS)

    Gürsoy, D; Scharfetter, H

    2009-01-01

    Magnetic induction tomography is an imaging modality which aims to reconstruct the conductivity distribution of the human body. It uses magnetic induction to excite the body and an array of sensor coils to detect the perturbations in the magnetic field. Up to now, much effort has been expended with the aim of finding an efficient coil configuration to extend the dynamic range of the measured signal. However, the merits of different sensor orientations on the imaging performance have not been studied in great detail so far. Therefore, the aim of the study is to fill the void of a systematic investigation of coil orientations on the reconstruction quality of the designs. To this end, a number of alternative receiver array designs with different coil orientations were suggested and the evaluations of the designs were performed based on the singular value decomposition. A generalized class of quality measures, the subclasses of which are linked to both the spatial resolution and uncertainty measures, was used to assess the performance on the radial and axial axes of a cylindrical phantom. The detectability of local conductivity perturbations in the phantom was explored using the reconstructed images. It is possible to draw the conclusion that the proper choice of the coil orientations significantly influences the number of usable singular vectors and accordingly the stability of image reconstruction, although the effect of increased stability on the quality of the reconstructed images was not of paramount importance due to the reduced independent information content of the associated singular vectors

  13. Olfactometer for functional resonance imaging

    International Nuclear Information System (INIS)

    Andrieu, Patrice

    2013-01-01

    The Magnetic Resonance Imaging (fMRI) has been developing for twenty years. Indeed, the marketing of high-resolution MRI (5 Tesla and 7 Tesla recently) allowed the study of brain mechanisms. The research work of this PHD was to develop instrumentation for objective studies of brain behavior during a sensory stimulation. We are interested in the study of olfaction. We have designed and built a six-channel olfactometer, synchronized with breathing and controlled by computer. The originality of our work lies in the modularity of our device, which makes it adaptable to a wide range of studies. We also propose a new method to change the intensity of stimulation delivered: the Pulse Width Modulation (PWM). This device has been used in several studies in fMRI. The effectiveness of the PWM is highlighted in a psychophysical study described in this manuscript. (author)

  14. High-resolution magnetic resonance imaging of the anal sphincter using a dedicated endoanal receiver coil

    International Nuclear Information System (INIS)

    DeSouza, N.M.; Williams, A.D.; Gilderdale, D.J.

    1999-01-01

    The use of a surface coil in MR imaging improves signal-to-noise ratio of adjacent tissues of interest. We therefore devised an endoanal receiver coil for imaging the anal sphincter. The probe is solid and re-usable: it comprises a saddle geometry receiver with integral tuning, matching and decoupling. It is placed in the anal canal and immobilised externally. Both in vitro and in vivo normal anatomy is identified. The mucosa is high signal intensity, the submucosa low signal intensity, the internal sphincter uniformly high signal intensity and the external sphincter low signal intensity on T1- and T2-weighted images. In females, the transverse perineal muscle bridges the inferior part of the external sphincter anteriorly. In perianal sepsis, collections and the site of the endoanal opening are identified. In early-onset fecal incontinence following obstetric trauma/surgery, focal sphincter defects are demonstrated; in late-onset fecal incontinence external sphincter atrophy is seen. In fecally incontinent patients with scleroderma, forward deviation of the anterior sphincter musculature with descent of rectal air and feces into the anal canal is noted. The extent of sphincter invasion is assessed in low rectal tumours. In children with congenital anorectal anomalies, abnormalities of the muscle components are defined using smaller-diameter coils. Such information is invaluable in the assessment and surgical planning of patients with a variety of anorectal pathologies. (orig.)

  15. High-resolution magnetic resonance imaging of the anal sphincter using a dedicated endoanal receiver coil

    Energy Technology Data Exchange (ETDEWEB)

    DeSouza, N.M.; Williams, A.D.; Gilderdale, D.J. [Dept. of Radiology, Imperial College School of Medicine, London (United Kingdom)

    1999-04-01

    The use of a surface coil in MR imaging improves signal-to-noise ratio of adjacent tissues of interest. We therefore devised an endoanal receiver coil for imaging the anal sphincter. The probe is solid and re-usable: it comprises a saddle geometry receiver with integral tuning, matching and decoupling. It is placed in the anal canal and immobilised externally. Both in vitro and in vivo normal anatomy is identified. The mucosa is high signal intensity, the submucosa low signal intensity, the internal sphincter uniformly high signal intensity and the external sphincter low signal intensity on T1- and T2-weighted images. In females, the transverse perineal muscle bridges the inferior part of the external sphincter anteriorly. In perianal sepsis, collections and the site of the endoanal opening are identified. In early-onset fecal incontinence following obstetric trauma/surgery, focal sphincter defects are demonstrated; in late-onset fecal incontinence external sphincter atrophy is seen. In fecally incontinent patients with scleroderma, forward deviation of the anterior sphincter musculature with descent of rectal air and feces into the anal canal is noted. The extent of sphincter invasion is assessed in low rectal tumours. In children with congenital anorectal anomalies, abnormalities of the muscle components are defined using smaller-diameter coils. Such information is invaluable in the assessment and surgical planning of patients with a variety of anorectal pathologies. (orig.) With 15 figs., 26 refs.

  16. Functional Imaging and Migraine: New Connections?

    Science.gov (United States)

    Schwedt, Todd J.; Chong, Catherine D.

    2015-01-01

    Purpose of Review Over the last several years, a growing number of brain functional imaging studies have provided insights into mechanisms underlying migraine. This manuscript reviews the recent migraine functional neuroimaging literature and provides recommendations for future studies that will help fill knowledge gaps. Recent Findings Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies have identified brain regions that might be responsible for mediating the onset of a migraine attack and those associated with migraine symptoms. Enhanced activation of brain regions that facilitate processing of sensory stimuli suggests a mechanism by which migraineurs are hypersensitive to visual, olfactory, and cutaneous stimuli. Resting state functional connectivity MRI studies have identified numerous brain regions and functional networks with atypical functional connectivity in migraineurs, suggesting that migraine is associated with aberrant brain functional organization. Summary fMRI and PET studies that have identified brain regions and brain networks that are atypical in migraine have helped to describe the neurofunctional basis for migraine symptoms. Future studies should compare functional imaging findings in migraine to other headache and pain disorders and should explore the utility of functional imaging data as biomarkers for diagnostic and treatment purposes. PMID:25887764

  17. Receiver operating characteristic analysis for the detection of simulated microcalcifications on mammograms using hardcopy images

    International Nuclear Information System (INIS)

    Lai, C J; Shaw, Chris C; Whitman, Gary J; Yang, Wei T; Dempsey, Peter J; Nguyen, Victoria; Ice, Mary F

    2006-01-01

    The aim of this study was to compare mammography systems based on three different detectors-a conventional screen-film (SF) combination, an a-Si/CsI flat-panel (FP)-based detector, and a charge-coupled device (CCD)-based x-ray phosphor-based detector-for their performance in detecting simulated microcalcifications (MCs). 112-150 μm calcium carbonate grains were used to simulate MCs and were overlapped with a slab phantom of simulated 50% adipose/50% glandular breast tissue-equivalent material referred to as the uniform background. For the tissue structure background, 200-250 μm calcium carbonate grains were used and overlapped with an anthropomorphic breast phantom. All MC phantom images were acquired with and without magnification (1.8X). The hardcopy images were reviewed by five mammographers. A five-point confidence level rating was used to score each detection task. Receiver operating characteristic (ROC) analysis was performed, and the areas under the ROC curves (A z s) were used to compare the performances of the three mammography systems under various conditions. The results showed that, with a uniform background and contact images, the FP-based system performed significantly better than the SF and the CCD-based systems. For magnified images with a uniform background, the SF and the FP-based systems performed equally well and significantly better than the CCD-based system. With tissue structure background and contact images, the SF system performed significantly better than the FP and the CCD-based systems. With magnified images and a tissue structure background, the SF and the CCD-based systems performed equally well and significantly better than the FP-based system. In the detection of MCs in the fibroglandular and the heterogeneously dense regions, no significant differences were found except that the SF system performed significantly better than the CCD-based system in the fibroglandular regions for the contact images

  18. A Low-Power High-Dynamic-Range Receiver System for In-Probe 3-D Ultrasonic Imaging.

    Science.gov (United States)

    Attarzadeh, Hourieh; Xu, Ye; Ytterdal, Trond

    2017-10-01

    In this paper, a dual-mode low-power, high dynamic-range receiver circuit is designed for the interface with a capacitive micromachined ultrasonic transducer. The proposed ultrasound receiver chip enables the development of an in-probe digital beamforming imaging system. The flexibility of having two operation modes offers a high dynamic range with minimum power sacrifice. A prototype of the chip containing one receive channel, with one variable transimpedance amplifier (TIA) and one analog to digital converter (ADC) circuit is implemented. Combining variable gain TIA functionality with ADC gain settings achieves an enhanced overall high dynamic range, while low power dissipation is maintained. The chip is designed and fabricated in a 65 nm standard CMOS process technology. The test chip occupies an area of 76[Formula: see text] 170 [Formula: see text]. A total average power range of 60-240 [Formula: see text] for a sampling frequency of 30 MHz, and a center frequency of 5 MHz is measured. An instantaneous dynamic range of 50.5 dB with an overall dynamic range of 72 dB is obtained from the receiver circuit.

  19. Imaging of brain function based on the analysis of functional ...

    African Journals Online (AJOL)

    Objective: This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. Methods: A total of 45 ...

  20. Functional cardiac imaging: positron emission tomography

    International Nuclear Information System (INIS)

    Mullani, N.A.; Gould, K.L.

    1984-01-01

    Dynamic cardiovascular imaging plays a vital role in the diagnosis and treatment of cardiac disease by providing information about the function of the heart. During the past 30 years, cardiovascular imaging has evolved from the simple chest x-ray and fluoroscopy to such sophisticated techniques as invasive cardiac angiography and cinearteriography and, more recently, to noninvasive cardiac CT scanning, nuclear magnetic resonance, and positron emission tomography, which reflect more complex physiologic functions. As research tools, CT, NMR, and PET provide quantitative information on global as well as regional ventricular function, coronary artery stenosis, myocardial perfusion, glucose and fatty acid metabolism, or oxygen utilization, with little discomfort or risk to the patient. As imaging modalities become more sophisticated and more oriented toward clinical application, the prospect of routinely obtaining such functional information about the heart is becoming realistic. However, these advances are double-edged in that the interpretation of functional data is more complex than that of the anatomic imaging familiar to most physicians. They will require an enhanced understanding of the physiologic and biochemical processes, as well as of the instrumentation and techniques for analyzing the data. Of the new imaging modalities that provide functional information about the heart, PET is the most useful because it quantitates the regional distribution of radionuclides in vivo. Clinical applications, interpretation of data, and the impact of PET on our understanding of cardiac pathophysiology are discussed. 5 figures

  1. Crustal Structure and Subsidence of the Williston Basin: Evidence from Receiver Function Stacking and Gravity Modeling

    Science.gov (United States)

    Song, J.; Liu, K. H.; Yu, Y.; Mickus, K. L.; Gao, S. S.

    2017-12-01

    The Williston Basin of the northcentral United States and southern Canada is a typical intracratonic sag basin, with nearly continuous subsidence from the Cambrian to the Jurassic. A number of contrasting models on the subsidence mechanism of this approximately circular basin have been proposed. While in principle 3D variations of crustal thickness, layering, and Poisson's ratio can provide essential constraints on the models, thick layers of Phanerozoic sediment with up to 4.5 km thickness prevented reliable determinations of those crustal properties using active or passive source seismic techniques. Specifically, the strong reverberations of teleseismic P-to-S converted waves (a.k.a. receiver functions or RFs) from the Moho and intracrustal interfaces in the loose sedimentary layer can severely contaminate the RFs. Here we use RFs recorded by about 200 USArray and other stations in the Williston Basin and adjacent areas to obtain spatial distributions of the crustal properties. We have found that virtually all of the RFs recorded by stations in the Basin contain strong reverberations, which are effectively removed using a recently developed deconvolution-based filter (Yu et al., 2015, DOI: 10.1002/2014JB011610). A "double Moho" structure is clearly imaged beneath the Basin. The top interface has a depth of about 40 km beneath the Basin, and shallows gradually toward the east from the depocenter. It joins with the Moho beneath the western margin of the Superior Craton, where the crust is about 30 km thick. The bottom interface has a depth of 55 km beneath the Wyoming Craton, and deepens to about 70 km beneath the depocenter. Based on preliminary results of H-k stacking and gravity modeling, we interpret the layer between the two interfaces as a high density, probably eclogized layer. Continuous eclogitization from the Cambrian to the Jurassic resulted in the previously observed rates of subsidence being nearly linear rather than exponential.

  2. A Parasitic Array Receiver for ISAR Imaging of Ship Targets Using a Coastal Radar

    Directory of Open Access Journals (Sweden)

    Fabrizio Santi

    2016-01-01

    Full Text Available The detection and identification of ship targets navigating in coastal areas are essential in order to prevent maritime accidents and to take countermeasures against illegal activities. Usually, coastal radar systems are employed for the detection of vessels, whereas noncooperative ship targets as well as ships not equipped with AIS transponders can be identified by means of dedicated active radar imaging system by means of ISAR processing. In this work, we define a parasitic array receiver for ISAR imaging purposes based on the signal transmitted by an opportunistic coastal radar over its successive scans. In order to obtain the proper cross-range resolution, the physical aperture provided by the array is combined with the synthetic aperture provided by the target motion. By properly designing the array of passive devices, the system is able to correctly observe the signal reflected from the ships over successive scans of the coastal radar. Specifically, the upper bounded interelement spacing provides a correct angular sampling accordingly to the Nyquist theorem and the lower bounded number of elements of the array ensures the continuity of the observation during multiple scans. An ad hoc focusing technique has been then proposed to provide the ISAR images of the ships. Simulated analysis proved the effectiveness of the proposed system to provide top-view images of ship targets suitable for ATR procedures.

  3. Tell me the gossip: the self-evaluative function of receiving gossip about others.

    Science.gov (United States)

    Martinescu, Elena; Janssen, Onne; Nijstad, Bernard A

    2014-12-01

    We investigate the self-evaluative function of competence-related gossip for individuals who receive it. Using the Self-Concept Enhancing Tactician (SCENT) model, we propose that individuals use evaluative information about others (i.e., gossip) to improve, promote, and protect themselves. Results of a critical incident study and an experimental study showed that positive gossip had higher self-improvement value than negative gossip, whereas negative gossip had higher self-promotion value and raised higher self-protection concerns than positive gossip. Self-promotion mediated the relationship between gossip valence and pride, while self-protection mediated the relationship between gossip valence and fear, although the latter mediated relationship emerged for receivers with mastery goals rather than performance goals. These results suggest that gossip serves self-evaluative functions for gossip receivers and triggers self-conscious emotions. © 2014 by the Society for Personality and Social Psychology, Inc.

  4. Advantages in functional imaging of the brain.

    Science.gov (United States)

    Mier, Walter; Mier, Daniela

    2015-01-01

    As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this-visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. We conclude that the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  5. Tell Me the Gossip : The Self-Evaluative Function of Receiving Gossip About Others

    NARCIS (Netherlands)

    Martinescu, Elena; Janssen, Onne; Nijstad, Bernard A.

    2014-01-01

    We investigate the self-evaluative function of competence-related gossip for individuals who receive it. Using the Self-Concept Enhancing Tactician (SCENT) model, we propose that individuals use evaluative information about others (i.e., gossip) to improve, promote, and protect themselves. Results

  6. Moho map of South America from receiver functions and surface waves

    Science.gov (United States)

    Lloyd, Simon; van der Lee, Suzan; FrançA, George Sand; AssumpçãO, Marcelo; Feng, Mei

    2010-11-01

    We estimate crustal structure and thickness of South America north of roughly 40°S. To this end, we analyzed receiver functions from 20 relatively new temporary broadband seismic stations deployed across eastern Brazil. In the analysis we include teleseismic and some regional events, particularly for stations that recorded few suitable earthquakes. We first estimate crustal thickness and average Poisson's ratio using two different stacking methods. We then combine the new crustal constraints with results from previous receiver function studies. To interpolate the crustal thickness between the station locations, we jointly invert these Moho point constraints, Rayleigh wave group velocities, and regional S and Rayleigh waveforms for a continuous map of Moho depth. The new tomographic Moho map suggests that Moho depth and Moho relief vary slightly with age within the Precambrian crust. Whether or not a positive correlation between crustal thickness and geologic age is derived from the pre-interpolation point constraints depends strongly on the selected subset of receiver functions. This implies that using only pre-interpolation point constraints (receiver functions) inadequately samples the spatial variation in geologic age. The new Moho map also reveals an anomalously deep Moho beneath the oldest core of the Amazonian Craton.

  7. Crustal Structure Within the Southeastern Carpathian Arc, Transylvanian Basin, Romania from Teleseismic Receiver Functions

    Science.gov (United States)

    Stanciu, A. C.; Russo, R. M.; Mocanu, V. I.; Munteanu, L.

    2013-05-01

    We present new measurements of receiver functions at 4 broadband stations temporarily deployed in the Transylvanian Basin within the Carpathian Arc, Romania. Receiver functions can reveal depths to sharp crustal seismic velocity boundaries, which in complex tectonic environments such as the study area provide a good diagnostic for the regional tectonics. As a result of Africa (Adria) collision with Europe and subduction of a part of Tethys Ocean, Tisza-Dacia and Alcapa blocks escaped the collision and were emplaced in an embayment of this ocean, and form today the basement of the Transylvanian Basin. The collision of these terranes with the European continent culminated in the formation, in the Romanian part, of the Eastern Carpathians at the contact between the Transylvanian Basin and the East European Platform along the Tornquist-Teisseyre Suture zone, and of Southern Carpathians at the contact with Moesian Platform. In the foreland of the Carpathian Bend Zone, connecting the two mountain chains, in a very constrained area, a high velocity seismic body was contoured by hypocenters between 70 and 200 km depth. We constructed receiver functions using teleseismic P waves generated by events located between 30 and 95 degrees epicentral angle using the method of Ligorria and Ammon (1999) for individual measurements. We used the H-K method of Zhu and Kanamori (2000) to derive boundary interfaces depths and receiver function complexity from binned stacks. Preliminary results show a relatively shallow Moho depth beneath the Transylvanian Basin.

  8. Frontend Receiver Electronics for High Frequency Monolithic CMUT-on-CMOS Imaging Arrays

    Science.gov (United States)

    Gurun, Gokce; Hasler, Paul; Degertekin, F. Levent

    2012-01-01

    This paper describes the design of CMOS receiver electronics for monolithic integration with capacitive micromachined ultrasonic transducer (CMUT) arrays for high-frequency intravascular ultrasound imaging. A custom 8-inch wafer is fabricated in a 0.35 μm two-poly, four-metal CMOS process and then CMUT arrays are built on top of the application specific integrated circuits (ASICs) on the wafer. We discuss advantages of the single-chip CMUT-on-CMOS approach in terms of receive sensitivity and SNR. Low-noise and high-gain design of a transimpedance amplifier (TIA) optimized for a forward-looking volumetric-imaging CMUT array element is discussed as a challenging design example. Amplifier gain, bandwidth, dynamic range and power consumption trade-offs are discussed in detail. With minimized parasitics provided by the CMUT-on-CMOS approach, the optimized TIA design achieves a 90 fA/√Hz input referred current noise, which is less than the thermal-mechanical noise of the CMUT element. We show successful system operation with a pulse-echo measurement. Transducer noise-dominated detection in immersion is also demonstrated through output noise spectrum measurement of the integrated system at different CMUT bias voltages. A noise figure of 1.8 dB is obtained in the designed CMUT bandwidth of 10 MHz to 20 MHz. PMID:21859585

  9. Front-end receiver electronics for high-frequency monolithic CMUT-on-CMOS imaging arrays.

    Science.gov (United States)

    Gurun, Gokce; Hasler, Paul; Degertekin, F

    2011-08-01

    This paper describes the design of CMOS receiver electronics for monolithic integration with capacitive micromachined ultrasonic transducer (CMUT) arrays for highfrequency intravascular ultrasound imaging. A custom 8-inch (20-cm) wafer is fabricated in a 0.35-μm two-poly, four-metal CMOS process and then CMUT arrays are built on top of the application specific integrated circuits (ASICs) on the wafer. We discuss advantages of the single-chip CMUT-on-CMOS approach in terms of receive sensitivity and SNR. Low-noise and high-gain design of a transimpedance amplifier (TIA) optimized for a forward-looking volumetric-imaging CMUT array element is discussed as a challenging design example. Amplifier gain, bandwidth, dynamic range, and power consumption trade-offs are discussed in detail. With minimized parasitics provided by the CMUT-on-CMOS approach, the optimized TIA design achieves a 90 fA/√Hz input-referred current noise, which is less than the thermal-mechanical noise of the CMUT element. We show successful system operation with a pulseecho measurement. Transducer-noise-dominated detection in immersion is also demonstrated through output noise spectrum measurement of the integrated system at different CMUT bias voltages. A noise figure of 1.8 dB is obtained in the designed CMUT bandwidth of 10 to 20 MHz.

  10. IMAGING OF BRAIN FUNCTION BASED ON THE ANALYSIS OF FUNCTIONAL CONNECTIVITY - IMAGING ANALYSIS OF BRAIN FUNCTION BY FMRI AFTER ACUPUNCTURE AT LR3 IN HEALTHY INDIVIDUALS

    OpenAIRE

    Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong

    2016-01-01

    Objective: This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. Methods: A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, a...

  11. Design of a receiver operating characteristic (ROC) study of 10:1 lossy image compression

    Science.gov (United States)

    Collins, Cary A.; Lane, David; Frank, Mark S.; Hardy, Michael E.; Haynor, David R.; Smith, Donald V.; Parker, James E.; Bender, Gregory N.; Kim, Yongmin

    1994-04-01

    The digital archiving system at Madigan Army Medical Center (MAMC) uses a 10:1 lossy data compression algorithm for most forms of computed radiography. A systematic study on the potential effect of lossy image compression on patient care has been initiated with a series of studies focused on specific diagnostic tasks. The studies are based upon the receiver operating characteristic (ROC) method of analysis for diagnostic systems. The null hypothesis is that observer performance with approximately 10:1 compressed and decompressed images is not different from using original, uncompressed images for detecting subtle pathologic findings seen on computed radiographs of bone, chest, or abdomen, when viewed on a high-resolution monitor. Our design involves collecting cases from eight pathologic categories. Truth is determined by committee using confirmatory studies performed during routine clinical practice whenever possible. Software has been developed to aid in case collection and to allow reading of the cases for the study using stand-alone Siemens Litebox workstations. Data analysis uses two methods, ROC analysis and free-response ROC (FROC) methods. This study will be one of the largest ROC/FROC studies of its kind and could benefit clinical radiology practice using PACS technology. The study design and results from a pilot FROC study are presented.

  12. Functional brain imaging - baric and clinical questions

    International Nuclear Information System (INIS)

    Mager, T.; Moeller, H.J.

    1997-01-01

    The advancing biological knowledge of disease processes plays a central part in the progress of modern psychiatry. An essential contribution comes from the functional and structural brain imaging techniques (CT, MRI, SPECT, PET). Their application is important for biological oriented research in psychiatry and there is also a growing relevance in clinical aspects. This development is taken into account by recent diagnostic classification systems in psychiatry. The capabilities and limitations of functional brain imaging in the context of research and clinic will be presented and discussed by examples and own investigations. (orig.) [de

  13. Preliminary results from receiver function analysis in a seismological network across the Pamir

    Science.gov (United States)

    Schneider, Felix M.; Yuan, Xiaohui; Sippl, Christan; Schurr, Bernd; Mechie, James; Minaev, Vlad; Oimahmadov, Ilhomjon; Gadoev, Mustafo; Abdybachaev, Ulan A.

    2010-05-01

    The multi-disciplinary TIen Shan-PAmir GEodynamic (TIPAGE) program aims to investigate the dynamics of the orogeny of the Tien Shan and Pamir mountains, which are situated in south Kyrgyzstan and east Tajikistan in Central Asia. Deformation and uplift accompanied by crustal thickening is mainly induced by the collision between the Indian and Eurasian continental plates. As a local feature this collision provides the world's largest active intra-continental subduction zone. Within the framework of the TIPAGE program we operate a temporary seismic array consisting of 32 broadband and 8 short period seismic stations for a period of two years (from 2008 to 2010) covering an area of 300 x 300 km over the main part of the central Pamir plateau and the Alai-range of the southern Tien Shan. In the first year 24 broadband stations were set up in a 350-km long north-south profile geometry from Osh in southern Kyrgyzstan to Zorkul in south-eastern Tajikistan with approximately 15 km station spacing. We perform a receiver function (RF) analysis of converted P and S waves from teleseismic earthquakes at epicentral distances of 35-95 degrees with a minimum magnitude of 5.5. Therefore we decompose their wavefields by rotating the coordinate systems of the recorded seismograms from a N,E,Z into a SH,SV,P system. RFs are isolated by deconvolution of the P-component from the SH- and SV-component. They provide a robust tool to locate discontinuities in wave velocity like the Moho and thus represent the method of choice to determine crustal thickness. First results show a crustal thickness of 70-80km. Xenolith findings from depths of 100km reported by Hacker et al. (2005) give indication for even higher values. The N-S profile geometry will produce a high resolution RF image to map the gross crustal and lithospheric structure. In addition a 2D network with additional 16 stations will enable an investigation of lateral structure variation. We give an introduction to the project and

  14. Patterns of ventricular dysfunction in patients receiving cardiotoxic chemotherapy as assessed with gated blood pool imaging

    International Nuclear Information System (INIS)

    Spies, S.M.; Parikh, S.R.; Spies, W.G.; Zimmer, A.M.; Silverstein, E.A.

    1989-01-01

    Clinical concern over significant cardiotoxicity of commonly employed chemotherapeutic regimens is a common indication for gated blood pool imaging. The authors have undertaken a review of 102 patients referred for such evaluation during a 14-month period. Ventricular ejection fractions, cine displays, and phase analysis were performed on each patient study. Approximately one-third of the cases showed significant abnormalities in wall motion or global ejection fraction. Many abnormal cases had isolated left ventricular findings, while fewer had isolated right ventricular findings. Left ventricular wall motion abnormalities were often focal. The patterns of ventricular dysfunction in patients receiving cardiotoxic chemotherapy are diverse, and awareness of the various possibilities is important for accurate clinical assessment of these patients

  15. Structural and functional imaging: Particularities in children

    International Nuclear Information System (INIS)

    Chiron, C.; Hertz-Pannier, L.; Chiron, C.; Hertz-Pannier, L.; Chiron, C.; Hertz-Pannier, L.

    2008-01-01

    Surgery of partial epilepsies in childhood has largely benefited from the recent advances of imaging techniques, which carry a triple goal: (1) to contribute to the localization of the epilepsy onset zone, (2) to detect and delineate an underlying lesion, and (3) to study the spatial relationship between the epileptogenic zone and the neighboring functional cortex, in order to select patients and plan the resection. This noninvasive pre-surgical imaging workup must be compared to clinical and electrical data to estimate the postoperative prognosis, while invasive techniques such as SEEG, cortical stimulations, and IAT often remain indispensable in difficult cases, i.e., in cryptogenic epilepsies. As in adults, advances in MRI allow us to detect more and more subtle underlying lesions, but this requires repeating MR studies during early childhood and using adapted sequence parameters to account for ongoing myelination. Ictal SPECT and PET imaging prove especially useful in planning depth electrode placement when video-EEG is not contributive, when MRI looks normal or shows multiple abnormalities, or in cases of discrepant findings. Multimodal imaging greatly enhances the sensitivity of all of these techniques. Finally, functional MRI of motor and language functions provide noninvasive cortical mapping of essential functions, using age-adapted paradigms, in cooperating children from age five to six and from IQs around 60. (authors)

  16. Structural and functional imaging: Particularities in children

    Energy Technology Data Exchange (ETDEWEB)

    Chiron, C.; Hertz-Pannier, L. [Hop Necker Enfants Malad, INSERM, Serv Neuropediat, U663, F-75015 Paris (France); Chiron, C.; Hertz-Pannier, L. [UnivParis 05, F-75005 Paris (France); Chiron, C.; Hertz-Pannier, L. [CEA, I2BM, Neurospin, SHFJ, F-91191 Orsay (France)

    2008-07-01

    Surgery of partial epilepsies in childhood has largely benefited from the recent advances of imaging techniques, which carry a triple goal: (1) to contribute to the localization of the epilepsy onset zone, (2) to detect and delineate an underlying lesion, and (3) to study the spatial relationship between the epileptogenic zone and the neighboring functional cortex, in order to select patients and plan the resection. This noninvasive pre-surgical imaging workup must be compared to clinical and electrical data to estimate the postoperative prognosis, while invasive techniques such as SEEG, cortical stimulations, and IAT often remain indispensable in difficult cases, i.e., in cryptogenic epilepsies. As in adults, advances in MRI allow us to detect more and more subtle underlying lesions, but this requires repeating MR studies during early childhood and using adapted sequence parameters to account for ongoing myelination. Ictal SPECT and PET imaging prove especially useful in planning depth electrode placement when video-EEG is not contributive, when MRI looks normal or shows multiple abnormalities, or in cases of discrepant findings. Multimodal imaging greatly enhances the sensitivity of all of these techniques. Finally, functional MRI of motor and language functions provide noninvasive cortical mapping of essential functions, using age-adapted paradigms, in cooperating children from age five to six and from IQs around 60. (authors)

  17. Effect of radiotherapy on immunity function of cancer patients receiving radiotherapy

    International Nuclear Information System (INIS)

    Li Xinli; Zhu Shentao; Xu Jiuhong

    2003-01-01

    Objective: In order to observe the effect of radiotherapy on immunity function of cancer patients receiving radiotherapy. Methods: Cellular immunity is determined by APAAP; Humoral immunity is determined by transmission method. Results: The items of cellular immunity is lower than the control after radiotherapy. These items decrease continually. The difference between before and after radiotherapy has statistic significance. Of all Humoral immunity items, IgA, IgM decreased after radiotherapy and the difference has statistic significance. Conclusions: Radiotherapy can damage patients' immunity function

  18. Resting functional imaging tools (MRS, SPECT, PET and PCT)

    NARCIS (Netherlands)

    van der Naalt, Joukje; Grafman, Jordan; Salazar, Andres M

    2015-01-01

    Functional imaging includes imaging techniques that provide information about the metabolic and hemodynamic status of the brain. Most commonly applied functional imaging techniques in patients with traumatic brain injury (TBI) include magnetic resonance spectroscopy (MRS), single photon emission

  19. Visceral Afferent Pathways and Functional Brain Imaging

    Directory of Open Access Journals (Sweden)

    Stuart W.G. Derbyshire

    2003-01-01

    Full Text Available The application of functional imaging to study painful sensations has generated considerable interest regarding insight into brain dysfunction that may be responsible for functional pain such as that suffered in patients with irritable bowel syndrome (IBS. This review provides a brief introduction to the development of brain science as it relates to pain processing and a snapshot of recent functional imaging results with somatic and visceral pain. Particular emphasis is placed on current hypotheses regarding dysfunction of the brain-gut axis in IBS patients. There are clear and interpretable differences in brain activation following somatic as compared with visceral noxious sensation. Noxious visceral distension, particularly of the lower gastrointestinal tract, activates regions associated with unpleasant affect and autonomic responses. Noxious somatic sensation, in contrast, activates regions associated with cognition and skeletomotor responses. Differences between IBS patients and control subjects, however, were far less clear and interpretable. While this is in part due to the newness of this field, it also reflects weaknesses inherent within the current understanding of IBS. Future use of functional imaging to examine IBS and other functional disorders will be more likely to succeed by describing clear theoretical and clinical endpoints.

  20. Functional Near Infrared Spectroscopy: Enabling Routine Functional Brain Imaging.

    Science.gov (United States)

    Yücel, Meryem A; Selb, Juliette J; Huppert, Theodore J; Franceschini, Maria Angela; Boas, David A

    2017-12-01

    Functional Near-Infrared Spectroscopy (fNIRS) maps human brain function by measuring and imaging local changes in hemoglobin concentrations in the brain that arise from the modulation of cerebral blood flow and oxygen metabolism by neural activity. Since its advent over 20 years ago, researchers have exploited and continuously advanced the ability of near infrared light to penetrate through the scalp and skull in order to non-invasively monitor changes in cerebral hemoglobin concentrations that reflect brain activity. We review recent advances in signal processing and hardware that significantly improve the capabilities of fNIRS by reducing the impact of confounding signals to improve statistical robustness of the brain signals and by enhancing the density, spatial coverage, and wearability of measuring devices respectively. We then summarize the application areas that are experiencing rapid growth as fNIRS begins to enable routine functional brain imaging.

  1. Receiver function structure beneath a broad-band seismic station in south Sumatra

    Science.gov (United States)

    MacPherson, K. A.; Hidayat, D.; Goh, S.

    2010-12-01

    We estimated the one-dimensional velocity structure beneath a broad-band station in south Sumatra by the forward modeling and inversion of receiver functions. Station PMBI belongs to the GEOFON seismic network maintained by GFZ-Potsdam, and at a longitude of 104.77° and latitude of -2.93°, sits atop the south Sumatran basin. This station is of interest to researchers at the Earth Observatory of Singapore, as data from it and other stations in Sumatra and Singapore will be incorporated into a regional velocity model for use in seismic hazard analyses. Three-component records from 193 events at teleseismic distances and Mw ≥ 5.0 were examined for this study and 67 records were deemed to have sufficient signal to noise characteristics to be retained for analysis. Observations are primarily from source zones in the Bougainville trench with back-azimuths to the east-south-east, the Japan and Kurile trenches with back-azimuths to the northeast, and a scattering of observations from other azimuths. Due to the level of noise present in even the higher-quality records, the usual frequency-domain deconvolution method of computing receiver functions was ineffective, and a time-domain iterative deconvolution was employed to obtain usable wave forms. Receiver functions with similar back-azimuths were stacked in order to improve their signal to noise ratios. The resulting wave forms are relatively complex, with significant energy being present in the tangential components, indicating heterogeneity in the underlying structure. A dip analysis was undertaken but no clear pattern was observed. However, it is apparent that polarities of the tangential components were generally reversed for records that sample the Sunda trench. Forward modeling of the receiver functions indicates the presence of a near-surface low-velocity layer (Vp≈1.9 km/s) and a Moho depth of ~31 km. Details of the crustal structure were investigated by employing time-domain inversions of the receiver

  2. Functional imaging of the pelvic floor

    Energy Technology Data Exchange (ETDEWEB)

    Lienemann, Andreas E-mail: andreaslienemann@web.de; Fischer, Tanja

    2003-08-01

    Introduction/Objective: Pelvic floor dysfunction and associated pelvic organ prolapse represent a major problem in our present-day society, mostly afflicting parous women. Magnetic resonance imaging (MRI) is assuming an increasingly important role in the more accurate delineation of the extent of the problem. This article briefly reviews one of the main radiological methods for the dynamic evaluation of the pelvic floor: functional cine MRI. Methods and Material: Out of the literature the smallest common denominator for functional cine MRI can be defined as follows: high field system; patient either in supine or sitting position; fast gradient echo sequence; midsagittal slice orientation; either a stack of slices or repeated measurements at the same slice position with the patient at rest or straining; image analysis using the pubococcygeal reference line. Results: All except two publications stress the usefulness of functional cine MRI in the evaluation of patients with organ descent and prolapse. This well accepted method allows for the visualization of all relevant structures in the anterior, middle and posterior compartment. It is especially useful in the detection of enteroceles, and provides a reliable postoperative follow-up tool. Isolated urinary or stool incontinence are not an indication for functional cine MRI, as is the case in patients with equivocal clinical findings. To date it does not allow for real 3D imaging of the pelvic floor or sufficient determination of fascial defects. Discussion: Functional cine MRI of the pelvic floor is a promising new imaging method for the detection of organ descent and prolapse in patients with equivocal clinical findings. The combination of function and morphology allows for an innovative view of the pelvic floor, and thus adds to our understanding of the various interactions of the structures.

  3. [Perioperative changes of coagulation functions in the local advanced liver cancer patients receiving liver transplantation].

    Science.gov (United States)

    Wang, Hao-Yuan; Zhao, Qing-Yu; Yuan, Yun-Fei

    2008-07-01

    Liver transplantation is widely accepted as an effective therapy of hepatoma. Perioperative dynamic observation of coagulation function is important for graft-receivers. This study was to explore perioperative changes of coagulation functions in the local advanced liver cancer patients who received liver transplantation. Clinical data of 31 local advanced liver cancer patients, underwent liver transplantation from Sep. 2003 to Jan. 2007, were analyzed. Platelet (PLT) counting, prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), fibrinogen (Fib) and international normalized ratio (INR) before operation, at anhepatic phase and the first week after operation were analyzed to evaluate congulation function. The coagulation functions of most patients were normal before operation. The six parameters varied significantly at anhepatic phase and on most days of the first week after operation when compared with the preoperative levels (Pfunctions of local advanced liver cancer patients shift from hypocoagulatory to hypercoagulatory or normal in perioperative period, therefore, prevention of bleeding should be focused on at anhepatic phase and on 1-2 days after operation while prevention of thrombosis should be focused on after the first week after operation. The degree of liver cirrhosis and Child-Pugh level could help to evaluate postoperative coagulation disorder.

  4. Exploring brain function with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Di Salle, F.; Formisano, E.; Linden, D.E.J.; Goebel, R.; Bonavita, S.; Pepino, A.; Smaltino, F.; Tedeschi, G.

    1999-01-01

    Since its invention in the early 1990s, functional magnetic resonance imaging (fMRI) has rapidly assumed a leading role among the techniques used to localize brain activity. The spatial and temporal resolution provided by state-of-the-art MR technology and its non-invasive character, which allows multiple studies of the same subject, are some of the main advantages of fMRI over the other functional neuroimaging modalities that are based on changes in blood flow and cortical metabolism. This paper describes the basic principles and methodology of fMRI and some aspects of its application to functional activation studies. Attention is focused on the physiology of the blood oxygenation level-dependent (BOLD) contrast mechanism and on the acquisition of functional time-series with echo planar imaging (EPI). We also provide an introduction to the current strategies for the correction of signal artefacts and other image processing techniques. In order to convey an idea of the numerous applications of fMRI, we will review some of the recent results in the fields of cognitive and sensorimotor psychology and physiology

  5. Exploring brain function with magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Di Salle, F.; Formisano, E.; Linden, D.E.J.; Goebel, R.; Bonavita, S.; Pepino, A.; Smaltino, F.; Tedeschi, G

    1999-05-01

    Since its invention in the early 1990s, functional magnetic resonance imaging (fMRI) has rapidly assumed a leading role among the techniques used to localize brain activity. The spatial and temporal resolution provided by state-of-the-art MR technology and its non-invasive character, which allows multiple studies of the same subject, are some of the main advantages of fMRI over the other functional neuroimaging modalities that are based on changes in blood flow and cortical metabolism. This paper describes the basic principles and methodology of fMRI and some aspects of its application to functional activation studies. Attention is focused on the physiology of the blood oxygenation level-dependent (BOLD) contrast mechanism and on the acquisition of functional time-series with echo planar imaging (EPI). We also provide an introduction to the current strategies for the correction of signal artefacts and other image processing techniques. In order to convey an idea of the numerous applications of fMRI, we will review some of the recent results in the fields of cognitive and sensorimotor psychology and physiology.

  6. Impaired cognitive functioning in patients with tyrosinemia type I receiving nitisinone.

    Science.gov (United States)

    Bendadi, Fatiha; de Koning, Tom J; Visser, Gepke; Prinsen, Hubertus C M T; de Sain, Monique G M; Verhoeven-Duif, Nanda; Sinnema, Gerben; van Spronsen, Francjan J; van Hasselt, Peter M

    2014-02-01

    To examine cognitive functioning in patients with tyrosinemia type I treated with nitisinone and a protein-restricted diet. We performed a cross-sectional study to establish cognitive functioning in children with tyrosinemia type I compared with their unaffected siblings. Intelligence was measured using age-appropriate Wechsler Scales. To assess cognitive development over time, we retrieved sequential IQ scores in a single-center subset of patients. We also evaluated whether plasma phenylalanine and tyrosine levels during treatment was correlated with cognitive development. Average total IQ score in 10 patients with tyrosinemia type I receiving nitisinone was significantly lower compared with their unaffected siblings (71 ± 13 vs 91 ± 13; P = .008). Both verbal and performance IQ subscores differed (77 ± 14 vs 95 ± 11; P cognitive function despite a protein-restricted diet. Copyright © 2014 Mosby, Inc. All rights reserved.

  7. Functional imaging of sleep vertex sharp transients.

    Science.gov (United States)

    Stern, John M; Caporro, Matteo; Haneef, Zulfi; Yeh, Hsiang J; Buttinelli, Carla; Lenartowicz, Agatha; Mumford, Jeanette A; Parvizi, Josef; Poldrack, Russell A

    2011-07-01

    The vertex sharp transient (VST) is an electroencephalographic (EEG) discharge that is an early marker of non-REM sleep. It has been recognized since the beginning of sleep physiology research, but its source and function remain mostly unexplained. We investigated VST generation using functional MRI (fMRI). Simultaneous EEG and fMRI were recorded from seven individuals in drowsiness and light sleep. VST occurrences on EEG were modeled with fMRI using an impulse function convolved with a hemodynamic response function to identify cerebral regions correlating to the VSTs. A resulting statistical image was thresholded at Z>2.3. Two hundred VSTs were identified. Significantly increased signal was present bilaterally in medial central, lateral precentral, posterior superior temporal, and medial occipital cortex. No regions of decreased signal were present. The regions are consistent with electrophysiologic evidence from animal models and functional imaging of human sleep, but the results are specific to VSTs. The regions principally encompass the primary sensorimotor cortical regions for vision, hearing, and touch. The results depict a network comprising the presumed VST generator and its associated regions. The associated regions functional similarity for primary sensation suggests a role for VSTs in sensory experience during sleep. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Longitudinal assessment of parotid function in patients receiving tomotherapy for head-and-neck cancer

    International Nuclear Information System (INIS)

    Voordeckers, M.; Tournel, K.; Verellen, D.; Esch, G. van; Storme, G.; Everaert, H.; Vanhove, C.; Baron, I.

    2008-01-01

    Background and purpose: conventional radiotherapy is associated with high doses to the salivary glands which causes xerostomia and adverse effects on quality of life. The study aims to investigate the potential of helical tomotherapy (Hi-Art Tomotherapy registered ) to preserve parotid function in head-and-neck cancer patients. Patients and methods: seven consecutive patients treated with helical tomotherapy at the UZ Brussel, Belgium, were included. During planning, priority was attributed to planning target volume (PTV) coverage: ≥ 95% of the dose must be delivered to ≥ 95% of the PTV. Elective nodal regions received 54 Gy (1.8 Gy/fraction). A dose of 70.5 Gy (2.35 Gy/fraction) was prescribed to the primary tumor and pathologic lymph nodes = simultaneous integrated boost scheme. If possible, the mean parotid dose was kept below 26 Gy. Salivary gland function was assessed by technetium scintigraphy. Results: there was a significant dose-response relationship between mean parotid dose and functional recuperation. If the mean dose was kept 26 %). In order to preserve 75% of SE, 46% of the parotid volume should receive a dose 26 Gy can be reduced. (orig.)

  9. Mantle upwelling beneath Madagascar: evidence from receiver function analysis and shear wave splitting

    Science.gov (United States)

    Paul, Jonathan D.; Eakin, Caroline M.

    2017-07-01

    Crustal receiver functions have been calculated from 128 events for two three-component broadband seismomenters located on the south coast (FOMA) and in the central High Plateaux (ABPO) of Madagascar. For each station, crustal thickness and V p / V s ratio were estimated from H- κ plots. Self-consistent receiver functions from a smaller back-azimuthal range were then selected, stacked and inverted to determine shear wave velocity structure as a function of depth. These results were corroborated by guided forward modeling and by Monte Carlo error analysis. The crust is found to be thinner (39 ± 0.7 km) beneath the highland center of Madagascar compared to the coast (44 ± 1.6 km), which is the opposite of what would be expected for crustal isostasy, suggesting that present-day long wavelength topography is maintained, at least in part, dynamically. This inference of dynamic support is corroborated by shear wave splitting analyses at the same stations, which produce an overwhelming majority of null results (>96 %), as expected for vertical mantle flow or asthenospheric upwelling beneath the island. These findings suggest a sub-plate origin for dynamic support.

  10. Advantages in functional imaging of the brain

    OpenAIRE

    Mier, Walter; Mier, Daniela

    2015-01-01

    As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this?visualize structure-function and brain-behavior relationships. The review describes the development and current applicatio...

  11. Variation in Crustal Structure of the Lesser Caucasus Region from Teleseismic Receiver Functions

    Science.gov (United States)

    Lin, C. M.; Tseng, T. L.; Huang, B. S.; Legendre, C. P.; Karakhanian, A.

    2016-12-01

    The Caucasus, including the mountains of Greater and Lesser Caucasus, is formed by the continental collision between Arabia and Eurasia. The crustal thickness for this region was mostly constrained by joint analysis of receiver functions and surface waves. Although the thickest value of 52 km was reported under the Lesser Caucasus, the resolution of earlier studies were often limited by sparse array. Large gradient across Moho also makes the definition of Moho difficult. Moreover, higher value of the Vp/Vs ratio is commonly reported in the northeastern Turkey but no estimates had been made for the Caucasus. To further investigate the detail structure around the Lesser Caucasus, we constructed a new seismic network in Georgia and Armenia. We also include other broadband stations to enhance the coverage. The average interval in the Lesser Caucasus is roughly 30 km, much denser than any previous experiments. We selected P-waveforms from teleseismic earthquakes during the operation (January 2012 - June 2016) to calculate receiver functions and then estimate the crustal thickness (H) and Vp/Vs ratio (k) with the H-k stacking technique. Our preliminary results show that Moho depth increases from 40 km under the northeastern Turkey to 50 km beneath northern Georgia, no station with Moho deeper than 50 km under the Lesser Caucasus. The Vp/Vs ratios in the northeastern Anatolian plateau are around 1.8, which is slightly higher than the average of global continents but consistent with the previous estimates. Further to the east, some stations show anomalously higher Vp/Vs ratio in central & southern Armenia that may be associated with Holocene volcanism. In the future, we plan to join locally measured dispersion curves to invert the velocity model without velocity-depth trade-off. We expect to resolve the velocity variations of the crust beneath this region in small scale that may be tied to the continental collision and surface volcanism. Keywords: Caucasus, receiver

  12. Antarctic ice sheet thickness estimation based on P-receiver function and waveform inversion

    Science.gov (United States)

    Yan, P.; Li, F.; LI, Z.; Li, J.; Yang, Y.; Hao, W.

    2016-12-01

    Antarctic ice sheet thickness is key parameter and boundary condition for ice sheet model construction, which has great significance for glacial isostatic adjustment, ice sheet mass balance and global change study. Ice thickness acquired utilizing seismological receiver function method can complement and verify with results obtained by radar echo sounding method. In this paper, P-receiver functions(PRFs) are extracted for stations deployed on Antarctic ice sheet, then Vp/Vs ratio and ice thickness are obtained using H-Kappa stacking. Comparisons are made between Bedmap2 dataset and the ice thickness from PRFs, most of the absolute value of the differences are less than 200 meters, only a few reach 600 meters. Taking into account of the intensity of Bedmap2 dataset survey lines and the uncertainty of radio echo sounding, as well as the inherit complexity of the internal ice structure beneath some stations, the ice thickness obtained from receiver function method is reliable. However limitation exists when using H-Kappa stacking method for stations where sediment squeezed between the ice and the bed rock layer. For better verifying the PRF result, a global optimizing method-Neighbourhood algotithm(NA) and spline interpolation are used to modeling PRFs assuming an isotropic layered ice sheet with depth varied densities and velocities beneath the stations. Then the velocity structure and ice sheet thickness are obtained through nonlinear searching by optimally fitting the real and the theoretical PRFs. The obtained ice sheet thickness beneath the stations agree well with the former H-Kappa method, but further detailed study are needed to constrain the inner ice velocity structure.

  13. Imaging visual function of the human brain

    International Nuclear Information System (INIS)

    Marg, E.

    1988-01-01

    Imaging of human brain structure and activity with particular reference to visual function is reviewed along with methods of obtaining the data including computed tomographic (CT) scan, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET). The literature is reviewed and the potential for a new understanding of brain visual function is discussed. PET is reviewed from basic physical principles to the most recent visual brain findings with oxygen-15. It is shown that there is a potential for submillimeter localization of visual functions with sequentially different visual stimuli designed for the temporal separation of the responses. Single photon emission computed tomography (SPECT), a less expensive substitute for PET, is also discussed. MRS is covered from basic physical principles to the current state of the art of in vivo biochemical analysis. Future possible clinical applications are discussed. Improved understanding of the functional neural organization of vision and brain will open a window to maps and circuits of human brain function.119 references

  14. Ongoing lithospheric removal in the western Mediterranean: Evidence from Ps receiver functions and thermobarometry of Neogene basalts (PICASSO project)

    Science.gov (United States)

    Thurner, Sally; Palomeras, Imma; Levander, Alan; Carbonell, Ramon; Lee, Cin-Ty

    2014-04-01

    The western Mediterranean tectonic system consists of the Betic Mountains in southern Spain and the Rif Mountains in northern Morocco curved around the back-arc extensional Alboran basin. Multiple tectonic models have been developed to explain the coeval compressional and extensional tectonic processes that have affected the western Mediterranean since the Oligocene. In order to provide constraints on these evolutionary models, we use Ps teleseismic receiver functions (RF), thermobarometric analyses of post-Oligocene basalts, and previous teleseismic tomography images to investigate the lithospheric structure of the region. Ps RFs were calculated using seismic data from 239 broadband seismic stations in southern Iberia and northern Morocco and thermobarometric analysis was performed on 19 volcanic samples distributed throughout the region. The RF images reveal a highly variable Moho depth (˜25 to ˜55 km), as well as a strong positive, sub-Moho horizon between ˜45 and ˜80 km depth beneath the central Betic and Rif Mountains, which we interpret to be the top of the previously imaged Alboran Sea slab. Thermobarometric constraints from magmas in the eastern Betics and Rif indicate mantle melting depths between 40 and 60 km, typical of melting depths beneath mid-oceanic ridges where little to no lithosphere exists. Together, the RF and thermobarometric data suggest ongoing and recent slab detachment resulting from delamination of the continental lithosphere.

  15. S-velocity structure in Cimandiri fault zone derived from neighbourhood inversion of teleseismic receiver functions

    Science.gov (United States)

    Syuhada; Anggono, T.; Febriani, F.; Ramdhan, M.

    2018-03-01

    The availability information about realistic velocity earth model in the fault zone is crucial in order to quantify seismic hazard analysis, such as ground motion modelling, determination of earthquake locations and focal mechanism. In this report, we use teleseismic receiver function to invert the S-velocity model beneath a seismic station located in the Cimandiri fault zone using neighbourhood algorithm inversion method. The result suggests the crustal thickness beneath the station is about 32-38 km. Furthermore, low velocity layers with high Vp/Vs exists in the lower crust, which may indicate the presence of hot material ascending from the subducted slab.

  16. A single institution study of radiation dose received from CT imaging: A comparison to Malaysian NDRL

    Science.gov (United States)

    Osman, N. D.; Shamsuri, S. B. M.; Tan, Y. W.; Razali, M. A. S. M.; Isa, S. M.

    2017-05-01

    Advancement of CT technology has led to an increase in CT scanning as it improves the diagnosis. However, it is important to assess health risk of patients associated with ionising radiation received from CT. This study evaluated current dose distributions at Advanced Medical and Dental Institute (AMDI), Malaysia and was used to establish Local Diagnostic Reference Level (LDRL). Dose indicators such as CT Dose Index (CTDIvol and CTDIw) and Dose-Length Product (DLP) were gathered for all routine CT examinations performed at the Imaging Unit, AMDI from January 2015 to June 2016. The first and third quartile values for each dose indicator were determined. A total of 364 CT studies were performed during that period with the highest number of cases being Thorax-Abdomen-Pelvis (TAP) study (57% of total study). The CTDIw ranged between 2.0 mGy to 23.4 mGy per procedure. DLP values were ranged between 94 mGy.cm to 1687 mGy.cm. The local dose data was compared with the national DRL to monitor the current CT practice at AMDI and LDRL will be established from the calculated third quartile values of dose distribution. From the results, some of the local dose values exceeded the Malaysian and further evaluation is important to ensure the dose optimisation for patients.

  17. A single institution study of radiation dose received from CT imaging: A comparison to Malaysian NDRL

    International Nuclear Information System (INIS)

    Osman, N D; Shamsuri, S B M; Razali, M A S M; Isa, S M; Tan, Y W

    2017-01-01

    Advancement of CT technology has led to an increase in CT scanning as it improves the diagnosis. However, it is important to assess health risk of patients associated with ionising radiation received from CT. This study evaluated current dose distributions at Advanced Medical and Dental Institute (AMDI), Malaysia and was used to establish Local Diagnostic Reference Level (LDRL). Dose indicators such as CT Dose Index (CTDI vol and CTDI w ) and Dose-Length Product (DLP) were gathered for all routine CT examinations performed at the Imaging Unit, AMDI from January 2015 to June 2016. The first and third quartile values for each dose indicator were determined. A total of 364 CT studies were performed during that period with the highest number of cases being Thorax-Abdomen-Pelvis (TAP) study (57% of total study). The CTDI w ranged between 2.0 mGy to 23.4 mGy per procedure. DLP values were ranged between 94 mGy.cm to 1687 mGy.cm. The local dose data was compared with the national DRL to monitor the current CT practice at AMDI and LDRL will be established from the calculated third quartile values of dose distribution. From the results, some of the local dose values exceeded the Malaysian and further evaluation is important to ensure the dose optimisation for patients. (paper)

  18. The development of the miniaturized waveform receiver with the function measuring Antenna Impedance in space plasmas

    Science.gov (United States)

    Ishii, H.; Kojima, H.; Fukuhara, H.; Okada, S.; Yamakawa, H.

    2012-04-01

    Plasma wave is one of the most essential physical quantities in the solar terrestrial physics. The role of plasma wave receiver onboard satellites is to detect plasma waves in space with a good signal to noise ratio. There are two types of plasma wave receivers, the sweep frequency analyzer and the waveform capture. While the sweep frequency analyzer provides plasma wave spectra, the waveform capture obtains waveforms with phase information that is significant in studying nonlinear phenomena. Antenna sensors to observe electric fields of the plasma waves show different features in plasmas from in vacuum. The antenna impedances have specific characteristics in the frequency domain because of the dispersion of plasmas. These antenna impedances are expressed with complex number. We need to know not only the antenna impedances but also the transfer functions of plasma wave receiver's circuits in order to calibrate observed waveforms precisely. The impedances of the electric field antennas are affected by a state of surrounding plasmas. Since satellites run through various regions with different plasma parameters, we precisely should measure the antenna impedances onboard spacecraft. On the contrary, we can obtain the plasma density and by measuring the antenna impedances. Several formulas of the antenna impedance measurement system were proposed. A synchronous detection method is used on the BepiColombo Mercury Magnetospheric Orbiter (MMO), which will be launched in 2014. The digital data are stored in the onboard memory. They are read out and converted to the analog waveforms by D/A converter. They are fed into the input of the preamplifiers of antenna sensors through a resistor. We can calculate a transfer function of the circuit by applying the synchronous detection method to the output waveform from waveform receivers and digital data as a signal source. The size of this system is same as an A5 board. In recent years, Application Specific Integrated Circuit (ASIC

  19. Preliminary study of lateral variation in crustal structure of Northeast China from teleseismic receiver functions

    Science.gov (United States)

    Chen, Youlin; Liu, Ruifeng; Huang, Zhibin; Sun, Li

    2011-02-01

    We conducted comprehensive receiver function analyses for a large amount of high-quality broadband teleseismic waveforms data recorded at 19 China National Digital Seismic Network (CNDSN) stations deployed in Northeast China. An advanced H- κ domain search method was adopted to accurately estimate the crustal thickness and ν P/ ν S ratio. The crust has an average thickness of about 34.4 km. The thinnest crust occurs in the central region of Northeast China, while the thickest crust is beneath the Yanshan belt. The ν P/ ν S ratio is relatively uniform with an average of about 1.733. The highest ν P/ ν S ratio is found beneath the Changbaishan, likely associated with its volcanic activities. We found significant lateral heterogeneity beneath three stations CN2, MDJ, and MIH located along the Suolon suture from the back-zimuthal dependence of Moho depth. The velocity modeling from receiver functions indicated complicated Earth structure beneath these stations with large crust-mantle transition zone, noticeable velocity jump in upper mantle, and low velocity zone in middle crust. Dipping velocity interface in the crust with strike approximately parallel to the Suolon suture and down-dip to the south or southeast might explain the observed lateral heterogeneity.

  20. Joint Inversion of Surface Waves Dispersion and Receiver Function at Cuba Seismic Stations

    International Nuclear Information System (INIS)

    Gonzalez, O'Leary; Moreno, Bladimir; Romanelli, Fabio; Panza, Giuliano F.

    2010-06-01

    Joint inversion of Rayleigh wave group velocity dispersion and receiver functions have been used to estimate the crust and upper mantle structure at eight seismic stations in Cuba. Receiver functions have been computed from teleseismic recordings of earthquakes at epicentral (angular) distances between 30 o and 90 o and Rayleigh wave group velocity dispersion have been taken from a surface-wave tomography study of the Caribbean area. The thickest crust (around 27 km) is found at Cascorro (CCC), Soroa (SOR), Moa (MOA) and Maisi (MAS) stations while the thinnest crust (around 18 km) is found at stations Rio Carpintero (RCC) and Guantanamo Bay (GTBY), in the southeastern of Cuba; this result is in agreement with the southward gradual thinning of the crust revealed by previous studies. The inversion shows a crystalline crust with S-wave velocity between 2.9 km/s and 3.9 km/s and at the crust-mantle transition zone the shear wave velocity varies from 3.9 km/s and 4.3 km/s. The lithospheric thickness varies from 74 km, in the youngest lithosphere, to 200 km in the middle of the Cuban island. Evidences of a subducted slab possibly belonging to the Caribbean plate are present below the stations Las Mercedes (LMG), RCC and GTBY and a thicker slab is present below the SOR station. (author)

  1. Connotation and category of functional-molecular imaging

    International Nuclear Information System (INIS)

    Li Tianran; Tian Jiahe

    2007-01-01

    Function and molecular lmaging represent medical imaging' s direction. The review article introduce function and molecular's concept and category and its characteristic. Comparing with traditionary classics radiology, function and molecular imaging have many features, such as micro-mount and specificity and quantitative. There are many technology about function and molecular imaging. Function and molecular imaging is important ingredient of modern medical and play a considerable role. (authors)

  2. Effects of source and receiver locations in predicting room transfer functions by a phased beam tracing method

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Ih, Jeong-Guon

    2012-01-01

    The accuracy of a phased beam tracing method in predicting transfer functions is investigated with a special focus on the positions of the source and receiver. Simulated transfer functions for various source-receiver pairs using the phased beam tracing method were compared with analytical Green’s...

  3. 2.5D real waveform and real noise simulation of receiver functions in 3D models

    Science.gov (United States)

    Schiffer, Christian; Jacobsen, Bo; Balling, Niels

    2014-05-01

    There are several reasons why a real-data receiver function differs from the theoretical receiver function in a 1D model representing the stratification under the seismometer. Main reasons are ambient noise, spectral deficiencies in the impinging P-waveform, and wavefield propagation in laterally varying velocity variations. We present a rapid "2.5D" modelling approach which takes these aspects into account, so that a given 3D velocity model of the crust and uppermost mantle can be tested more realistically against observed recordings from seismometer arrays. Each recorded event at each seismometer is simulated individually through the following steps: A 2D section is extracted from the 3D model along the direction towards the hypocentre. A properly slanted plane or curved impulsive wavefront is propagated through this 2D section, resulting in noise free and spectrally complete synthetic seismometer data. The real vertical component signal is taken as a proxy of the real impingent wavefield, so by convolution and subsequent addition of real ambient noise recorded just before the P-arrival we get synthetic vertical and horizontal component data which very closely match the spectral signal content and signal to noise ratio of this specific recording. When these realistic synthetic data undergo exactly the same receiver function estimation and subsequent graphical display we get a much more realistic image to compare to the real-data receiver functions. We applied this approach to the Central Fjord area in East Greenland (Schiffer et al., 2013), where a 3D velocity model of crust and uppermost mantle was adjusted to receiver functions from 2 years of seismometer recordings and wide angle crustal profiles (Schlindwein and Jokat, 1999; Voss and Jokat, 2007). Computationally this substitutes tens or hundreds of heavy 3D computations with hundreds or thousands of single-core 2D computations which parallelize very efficiently on common multicore systems. In perspective

  4. Multiple image x-radiography for functional lung imaging

    Science.gov (United States)

    Aulakh, G. K.; Mann, A.; Belev, G.; Wiebe, S.; Kuebler, W. M.; Singh, B.; Chapman, D.

    2018-01-01

    Detection and visualization of lung tissue structures is impaired by predominance of air. However, by using synchrotron x-rays, refraction of x-rays at the interface of tissue and air can be utilized to generate contrast which may in turn enable quantification of lung optical properties. We utilized multiple image radiography, a variant of diffraction enhanced imaging, at the Canadian light source to quantify changes in unique x-ray optical properties of lungs, namely attenuation, refraction and ultra small-angle scatter (USAXS or width) contrast ratios as a function of lung orientation in free-breathing or respiratory-gated mice before and after intra-nasal bacterial endotoxin (lipopolysaccharide) instillation. The lung ultra small-angle scatter and attenuation contrast ratios were significantly higher 9 h post lipopolysaccharide instillation compared to saline treatment whereas the refraction contrast decreased in magnitude. In ventilated mice, end-expiratory pressures result in an increase in ultra small-angle scatter contrast ratio when compared to end-inspiratory pressures. There were no detectable changes in lung attenuation or refraction contrast ratio with change in lung pressure alone. In effect, multiple image radiography can be applied towards following optical properties of lung air-tissue barrier over time during pathologies such as acute lung injury.

  5. Crustal Structure and Deformation of the Sichuan-Yunnan Region Revealed by receiver Function Data

    Science.gov (United States)

    Zeng, S.; Zheng, Y.

    2017-12-01

    Sichuan-Yunnan and its surrounding areas locates in the southeast side to the Tibetan Plateau, due to the intrusion of the Indian Plate under the Tibetan Plateau, materials escape from the Tibetan Plateau and flow southward to southeastward. Because of such tectonic environment, the Sichuan-Yunnan region is experiencing high tectonic movement, and is capable of highly diffused seismicity. Based on dynamic simulation and field survey investigations, tectonic and geological studies proposed a decoupling model in this region and lower crustal flow may inflate in the crust. However, this idea needs more evidences, especially anisotropic structures to support it, since the anisotropic structures are usually directly related to the movement of materials, or to the tectonic distributions. In the past several years, a number of works have been done on the anisotropic structures in the Tibetan Plateau and its surroundings. In usually, previous studies were mainly carried out by two kinds of methods. First, the shear wave splitting of SKS, which mainly reflects the accumulation effect of the anisotropy of the crust to the mantle; the other way is use surface wave to investigate the anisotropic features at different azimuths and depths. In the recent years, receiver function is used to determine the inclination and anisotropy of the subsurface structure, comparing with the other two methods, receiver functions can provide higher resolution and reliable anisotropic features in the crust. Following the method of Liu and Niu(2012), we collected teleseismic data from the Himalayan first term network, and picked out high quality data based on the waveform SNR ratio, as well as the azimuthal distributions. Comparing with previous work (e.g., Sun et al.,2012), our work can provide more receiver functions results with higher reliability. We find that the crust beneath the Sichuan-Yunnan region has a thickness of 30-60 km and Vp/Vs ratio of 1.70-1.80. The Moho depth from northwest to

  6. Sheared Layers in the Continental Crust: Nonlinear and Linearized inversion for Ps receiver functions

    Science.gov (United States)

    Park, J. J.

    2017-12-01

    Sheared Layers in the Continental Crust: Nonlinear and Linearized inversion for Ps receiver functions Jeffrey Park, Yale University The interpretation of seismic receiver functions (RFs) in terms of isotropic and anisotropic layered structure can be complex. The relationship between structure and body-wave scattering is nonlinear. The anisotropy can involve more parameters than the observations can readily constrain. Finally, reflectivity-predicted layer reverberations are often not prominent in data, so that nonlinear waveform inversion can search in vain to match ghost signals. Multiple-taper correlation (MTC) receiver functions have uncertainties in the frequency domain that follow Gaussian statistics [Park and Levin, 2016a], so grid-searches for the best-fitting collections of interfaces can be performed rapidly to minimize weighted misfit variance. Tests for layer-reverberations can be performed in the frequency domain without reflectivity calculations, allowing flexible modelling of weak, but nonzero, reverberations. Park and Levin [2016b] linearized the hybridization of P and S body waves in an anisotropic layer to predict first-order Ps conversion amplitudes at crust and mantle interfaces. In an anisotropic layer, the P wave acquires small SV and SH components. To ensure continuity of displacement and traction at the top and bottom boundaries of the layer, shear waves are generated. Assuming hexagonal symmetry with an arbitrary symmetry axis, theory confirms the empirical stacking trick of phase-shifting transverse RFs by 90 degrees in back-azimuth [Shiomi and Park, 2008; Schulte-Pelkum and Mahan, 2014] to enhance 2-lobed and 4-lobed harmonic variation. Ps scattering is generated by sharp interfaces, so that RFs resemble the first derivative of the model. MTC RFs in the frequency domain can be manipulated to obtain a first-order reconstruction of the layered anisotropy, under the above modeling constraints and neglecting reverberations. Examples from long

  7. Crustal structure of north Peru from analysis of teleseismic receiver functions

    Science.gov (United States)

    Condori, Cristobal; França, George S.; Tavera, Hernando J.; Albuquerque, Diogo F.; Bishop, Brandon T.; Beck, Susan L.

    2017-07-01

    In this study, we present results from teleseismic receiver functions, in order to investigate the crustal thickness and Vp/Vs ratio beneath northern Peru. A total number of 981 receiver functions were analyzed, from data recorded by 28 broadband seismic stations from the Peruvian permanent seismic network, the regional temporary SisNort network and one CTBTO station. The Moho depth and average crustal Vp/Vs ratio were determined at each station using the H-k stacking technique to identify the arrival times of primary P to S conversion and crustal reverberations (PpPms, PpSs + PsPms). The results show that the Moho depth correlates well with the surface topography and varies significantly from west to east, showing a shallow depth of around 25 km near the coast, a maximum depth of 55-60 km beneath the Andean Cordillera, and a depth of 35-40 km further to the east in the Amazonian Basin. The bulk crustal Vp/Vs ratio ranges between 1.60 and 1.88 with the mean of 1.75. Higher values between 1.75 and 1.88 are found beneath the Eastern and Western Cordilleras, consistent with a mafic composition in the lower crust. In contrast values vary from 1.60 to 1.75 in the extreme flanks of the Eastern and Western Cordillera indicating a felsic composition. We find a positive relationship between crustal thickness, Vp/Vs ratio, the Bouguer anomaly, and topography. These results are consistent with previous studies in other parts of Peru (central and southern regions) and provide the first crustal thickness estimates for the high cordillera in northern Peru.

  8. Lithosphere structure in Madagascar as revealed from receiver functions and surface waves analysis.

    Science.gov (United States)

    Rindraharisaona, E. J.; Tilmann, F. J.; Yuan, X.; Dreiling, J.; Priestley, K. F.; Barruol, G.; Wysession, M. E.

    2017-12-01

    The geological history of Madagascar makes it an ideal place to study the lithospheric structure and its evolution. It comprises Archean to Proterozoic units on the central eastern part, which is surrounded by a Triassic to Jurassic basin formation in the west and Cretaceous volcanics along the coasts. Quaternary volcanic rocks have been embedded in crystalline and sedimentary rocks. The aim of the present work is to characterize the crustal structure and determine the imprint of the dominant geodynamic events that have affected Madagascar: the Pan-African orogeny, the breakup of Gondwanaland and Neogene tectonic activity. From 2011 to 2014 different temporary seismic arrays were deployed in Madagascar. We based the current study mostly on SELASOMA project, which is composed of 50 seismic stations that were installed traversing southern Madagascar from the west to the east, sampling the different geological units. To measured seismic dispersion curves, one a wide period ranges using ambient noise, Rayleigh and Love surface waves. To compute the average crustal Vp/Vs ratio internal crustal structure and discontinuities in the mantle, we use both P- and S-waves receiver functions. To better resolve of the crustal structure, we jointly inverted P-wave receiver functions and Rayleigh wave group velocity.The crustal extension during the Carboniferous to Cenozoic has thinned the igneous crust down to 15 km in the western Morondava basin by removing much of the lower crust, while the thickness of the upper crust is nearly identical in the sedimentary basin and under Proterozoic and Archaean rocks of the eastern two thirds of Southern Madagascar. In general, the Archean crust is thicker than the Proterozoic, because mafic component is missing in the Proterozoic domain while it forms the bottom of the Archean crust. The lithosphere thickness in the southern part of Madagascar is estimated to be between 90 and 125 km.

  9. Requirements for effective functional breast imaging

    International Nuclear Information System (INIS)

    Weinberg, I.N.; Zawarzin, V.; Adler, L.P.; Pani, R.; DeVincentis, G.; Khalkhali, I.; Vargas, H.; Venegas, R.; Kim, S.C.; Bakale, G.; Levine, E.; Perrier, N.; Freimanis, R.I.; Lesko, N.M.; Newman, D.P.; Geisinger, K.R.; Berg, W.A.; Masood, S.

    2003-01-01

    Most nuclear medicine physicists were trained on devices aimed at functional neuroimaging. The clinical goals of brain-centered devices differ dramatically from the parameters needed to be useful in the breast clinic. We will discuss similarities and differences that impact on design considerations, and describe our latest generation of positron emission mammography and intraoperative products. - Source of physiologic contrast: Clinical neuroimaging depends on flow agents to detect the presence of breaks in the blood-brain barrier. Breast flow agents are nonspecific, and may miss preinvasive lesions. - Resolution: Brain cancers are generally diagnosed at late stages, so resolution is not so critical. Detecting early breast cancers, and specifying margins for surgery requires 3 mm spatial resolution or better. - Prevalence: Primary brain cancer is uncommon, and lesions mimicking brain cancer are rare. Primary breast cancer is common, and benign lesions are even more common, so specificity and biopsy capability are very important. - Anatomic references: Brain structure is standard, while breast structure is highly variable, requiring immobilization/compression for physiologic imaging and biopsy. - Surgery: Complete cancer resections for brain are very rare, but are possible for breast with appropriate imaging guidance, implying the need for rapid and reliable imaging. To summarize, the breast clinic needs a rapid and highly sensitive method of assessing breast physiology, compatible with biopsy and surgery. Positron emission mammography devices, in handheld and X-ray platform based configurations, are ideal for this mission

  10. Psychometric properties of the PROMIS Physical Function item bank in patients receiving physical therapy.

    Directory of Open Access Journals (Sweden)

    Martine H P Crins

    Full Text Available The Patient-Reported Outcomes Measurement Information System (PROMIS is a universally applicable set of instruments, including item banks, short forms and computer adaptive tests (CATs, measuring patient-reported health across different patient populations. PROMIS CATs are highly efficient and the use in practice is considered feasible with little administration time, offering standardized and routine patient monitoring. Before an item bank can be used as CAT, the psychometric properties of the item bank have to be examined. Therefore, the objective was to assess the psychometric properties of the Dutch-Flemish PROMIS Physical Function item bank (DF-PROMIS-PF in Dutch patients receiving physical therapy.Cross-sectional study.805 patients >18 years, who received any kind of physical therapy in primary care in the past year, completed the full DF-PROMIS-PF (121 items.Unidimensionality was examined by Confirmatory Factor Analysis and local dependence and monotonicity were evaluated. A Graded Response Model was fitted. Construct validity was examined with correlations between DF-PROMIS-PF T-scores and scores on two legacy instruments (SF-36 Health Survey Physical Functioning scale [SF36-PF10] and the Health Assessment Questionnaire Disability-Index [HAQ-DI]. Reliability (standard errors of theta was assessed.The results for unidimensionality were mixed (scaled CFI = 0.924, TLI = 0.923, RMSEA = 0.045, 1th factor explained 61.5% of variance. Some local dependence was found (8.2% of item pairs. The item bank showed a broad coverage of the physical function construct (threshold-parameters range: -4.28-2.33 and good construct validity (correlation with SF36-PF10 = 0.84 and HAQ-DI = -0.85. Furthermore, the DF-PROMIS-PF showed greater reliability over a broader score-range than the SF36-PF10 and HAQ-DI.The psychometric properties of the DF-PROMIS-PF item bank are sufficient. The DF-PROMIS-PF can now be used as short forms or CAT to measure the level of

  11. The Impact of Fear of Falling on Functional Independence Among Older Adults Receiving Home Health Services

    Directory of Open Access Journals (Sweden)

    Katherine A. Lawson OTR, LMSSW, PhD

    2014-07-01

    Full Text Available Background: Falls are the fifth leading cause of death for adults aged 65 years and older. Several intrinsic and extrinsic fall risk factors have been identified, butthere is less understanding of the impact of a fear of falling on falls. Seventy percent of recent fallers and 40% percent of non-fallers report a fear of falling. Therefore, the purpose of this study was to examine the correlation between a fear of falling and a history of falls, as well as the impact on the functional independence of community-dwelling older adults receiving home health services. Methods: The participants completed the Falls Efficacy Scale, the Modified Timed Up and Go Test, self- reported fear of falling, and the KATZ ADL-staircase. The participants were primarily Hispanic females. Results: There was not a significant correlation between a fear of falling and a history of falls. Only participants' age, gender, and the number of medical diagnoses were predictive of past falls. There was a moderate correlation between impaired functional mobility and dependence with activities of daily living (ADL. Additionally, a fear of falling was associated with dependence to perform ADLs as measured objectively. Conclusion: Future studies need to examine the effectiveness of interventions that include dual-task challenges during therapeutic interventions and ADL retraining to reduce fall risk among older adults.

  12. An compression algorithm for medical images and a display with the decoding function

    International Nuclear Information System (INIS)

    Gotoh, Toshiyuki; Nakagawa, Yukihiro; Shiohara, Morito; Yoshida, Masumi

    1990-01-01

    This paper describes and efficient image compression method for medical images, a high-speed display with the decoding function. In our method, an input image is divided into blocks, and either of Discrete Cosine Transform coding (DCT) or Block Truncation Coding (BTC) is adaptively applied on each block to improve image quality. The display, we developed, receives the compressed data from the host computer and reconstruct images of good quality at high speed using four decoding microprocessors on which our algorithm is implemented in pipeline. By the experiments, our method and display were verified to be effective. (author)

  13. The brain, a choice subject for radioisotopic functional imaging

    International Nuclear Information System (INIS)

    Maziere, B.

    1996-01-01

    Progresses realized in the use of radioisotopes and in tomographic imaging techniques have permitted to access to the visualization of the human body functions. The application of this radioisotopic functional imaging (or emission tomography functional imaging) has been particularly fruitful in the study of brain functioning. This method is the only exploratory method for the biochemical aspects of the cerebral functioning and is used both by the physiologist and the therapist. (J.S.)

  14. Functional imaging of microdomains in cell membranes.

    Science.gov (United States)

    Duggan, James; Jamal, Ghadir; Tilley, Mark; Davis, Ben; McKenzie, Graeme; Vere, Kelly; Somekh, Michael G; O'Shea, Paul; Harris, Helen

    2008-10-01

    The presence of microdomains or rafts within cell membranes is a topic of intense study and debate. The role of these structures in cell physiology, however, is also not yet fully understood with many outstanding problems. This problem is partly based on the small size of raft structures that presents significant problems to their in vivo study, i.e., within live cell membranes. But the structure and dynamics as well as the factors that control the assembly and disassembly of rafts are also of major interest. In this review we outline some of the problems that the study of rafts in cell membranes present as well as describing some views of what are considered the generalised functions of membrane rafts. We point to the possibility that there may be several different 'types' of membrane raft in cell membranes and consider the factors that affect raft assembly and disassembly, particularly, as some researchers suggest that the lifetimes of rafts in cell membranes may be sub-second. We attempt to review some of the methods that offer the ability to interrogate rafts directly as well as describing factors that appear to affect their functionality. The former include both near-field and far-field optical approaches as well as scanning probe techniques. Some of the advantages and disadvantages of these techniques are outlined. Finally, we describe our own views of raft functionality and properties, particularly, concerning the membrane dipole potential, and describe briefly some of the imaging strategies we have developed for their study.

  15. Creatinine Versus Cystatin C: Differing Estimates of Renal Function in Hospitalized Veterans Receiving Anticoagulants.

    Science.gov (United States)

    Wang, Christina Hao; Rubinsky, Anna D; Minichiello, Tracy; Shlipak, Michael G; Price, Erika Leemann

    2018-05-31

    Current practice in anticoagulation dosing relies on kidney function estimated by serum creatinine using the Cockcroft-Gault equation. However, creatinine can be unreliable in patients with low or high muscle mass. Cystatin C provides an alternative estimation of glomerular filtration rate (eGFR) that is independent of muscle. We compared cystatin C-based eGFR (eGFR cys ) with multiple creatinine-based estimates of kidney function in hospitalized patients receiving anticoagulants, to assess for discordant results that could impact medication dosing. Retrospective chart review of hospitalized patients over 1 year who received non-vitamin K antagonist anticoagulation, and who had same-day measurements of cystatin C and creatinine. Seventy-five inpatient veterans (median age 68) at the San Francisco VA Medical Center (SFVAMC). We compared the median difference between eGFR by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) study equation using cystatin C (eGFR cys ) and eGFRs using three creatinine-based equations: CKD-EPI (eGFR EPI ), Modified Diet in Renal Disease (eGFR MDRD ), and Cockcroft-Gault (eGFR CG ). We categorized patients into standard KDIGO kidney stages and into drug-dosing categories based on each creatinine equation and calculated proportions of patients reclassified across these categories based on cystatin C. Cystatin C predicted overall lower eGFR compared to creatinine-based equations, with a median difference of - 7.1 (IQR - 17.2, 2.6) mL/min/1.73 m 2 versus eGFR EPI , - 21.2 (IQR - 43.7, - 8.1) mL/min/1.73 m 2 versus eGFR MDRD , and - 25.9 (IQR - 46.8, - 8.7) mL/min/1.73 m 2 versus eGFR CG . Thirty-one to 52% of patients were reclassified into lower drug-dosing categories using cystatin C compared to creatinine-based estimates. We found substantial discordance in eGFR comparing cystatin C with creatinine in this group of anticoagulated inpatients. Our sample size was limited and included few women. Further

  16. Functional Magnetic Resonance Imaging in Consumer Research

    DEFF Research Database (Denmark)

    Reimann, Martin; Schilke, Oliver; Weber, Bernd

    2011-01-01

    of prior fMRI research related to consumer behavior and highlights the features that make fMRI an attractive method for consumer and marketing research. The authors discuss advantages and limitations and illustrate the proposed procedures with an applied study, which investigates loss aversion when buying......Although the field of psychology is undergoing an immense shift toward the use of functional magnetic resonance imaging (fMRI), the application of this methodology to consumer research is relatively new. To assist consumer researchers in understanding fMRI, this paper elaborates on the findings...... and selling a common product. Results reveal a significantly stronger activation in the amygdala while consumers estimate selling prices versus buying prices, suggesting that loss aversion is associated with the processing of negative emotion. © 2011 Wiley Periodicals, Inc....

  17. Lithospheric Structure of the Arabian Shield from the Joint Inversion of Receiver Function and Surface-Wave Dispersion Observations

    National Research Council Canada - National Science Library

    Julia, Jordi; Ammon, Charles J; Herrimann, Robert B

    2006-01-01

    .... Receiver functions are primarily sensitive to shear-wave velocity contrasts and vertical travel times and surface-wave dispersion measurements are sensitive to vertical shear-wave velocity averages...

  18. Lithospheric Structure of the Arabian Shield From the Joint Inversion of Receiver Function and Surface-Wave Dispersion Observations

    National Research Council Canada - National Science Library

    Herrmann, Robert B; Julia, Jordi; Ammon, Charles J

    2007-01-01

    .... Receiver functions are primarily sensitive to shear-wave velocity contrast and vertical travel times and surface-wave dispersion measurements are sensitive to vertical shear-wave velocity averages...

  19. Eumetcast receiving station integration withinthe satellite image database interface (SAIDIN) system.

    OpenAIRE

    Chic, Òscar

    2010-01-01

    Within the tasks devoted to operational oceanography, Coastal Ocean Observatory at Institut de Ciències del Mar (CSIC) has acquired an European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Broadcast System for Environmental Data (EUMETCast reception system) to replace a satellite direct broadcast system that receives data via High Resolution Picture Transmission (HRPT). EUMETCast system can receive data based on standard Digital Video Broadcastin...

  20. Deep structure of the Alborz Mountains by joint inversion of P receiver functions and dispersion curves

    Science.gov (United States)

    Rastgoo, Mehdi; Rahimi, Habib; Motaghi, Khalil; Shabanian, Esmaeil; Romanelli, Fabio; Panza, Giuliano F.

    2018-04-01

    The Alborz Mountains represent a tectonically and seismically active convergent boundary in the Arabia - Eurasia collision zone, in western Asia. The orogenic belt has undergone a long-lasted tectono-magmatic history since the Cretaceous. The relationship between shallow and deep structures in this complex tectonic domain is not straightforward. We present a 2D velocity model constructed by the assemblage of 1D shear wave velocity (Vs) models from 26 seismic stations, mainly distributed along the southern flank of the Alborz Mountains. The shear wave velocity structure has been estimated beneath each station using joint inversion of P-waves receiver functions and Rayleigh wave dispersion curves. A substantiation of the Vs inversion results sits on the modeling of Bouguer gravity anomaly data. Our velocity and density models show low velocity/density anomalies in uppermost mantle of western and central Alborz at a depth range of ∼50-100 km. In deeper parts of the uppermost mantle (depth range of 100-150 km), a high velocity/density anomaly is located beneath most of the Mountain range. The spatial pattern of these low and high velocity/density structures in the upper mantle is interpreted as the result of post collisional delamination of lower part of the western and central Alborz lithosphere.

  1. Crustal Structure and Mantle Transition Zone Thickness beneath the Central Mongolia from Teleseismic Receiver Functions

    Science.gov (United States)

    He, J.; Wu, Q.; Gao, M.; Munkhuu, U.; Demberel, S. G.

    2013-12-01

    The Mongolian Plateau (northern Asia) is situated between the Gobi-Altai range and the Siberian craton. In order to understand the crustal and mantle structure environmental characteristics, we use the teleseismic data recorded by 69 broadband stations located in the Central Mongolia(103.5°-111.5°E, 42°-50°N). The teleseismic events are selected from the global earthquakes between Aug. 2011 and Dec. 2013 with magnitude >5.5and the epicentral distance range from 30° to 95° to the center of the network. Lateral variations of the crustal thicknesses H and Vp/Vs ratios are obtained by using receiver function method. The crust thins gradually from northwest to southeast in the studying field. We found that the thinnest crust is ~37.5km in the southeast which is Gobi. The distribution of Vp/Vs ratios are between 1.68 and 1.84, which shows the heterogeneity. There are three high-anomaly areas: the Gobi range which is the Later Paleozoic Orogeny; the Khentei Mountains which is in the Jurassic-Cretaceous Reactive Continental Margin; the northwest area which is granite. Our research not only reveals the powerful evident of the crustal formation and evolution mechanism, but also provides some constraints on the mechanism of uplift of the Mongolian Plateau.This study was supported by the international cooperation project of the Ministry of Science and Technology of China (2011DFB20120).

  2. Clinical application of functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Alwatban, Adnan Z.W.

    2002-01-01

    The work described in this thesis was carried out at the Magnetic Resonance Centre of the University of Nottingham during the time from May 1998 to April 2001, and is the work of the author except where indicated by reference. The main source of signal changes in functional magnetic resonance imaging (fMRJ) is the fluctuation of paramagnetic deoxyhaemoglobin in the venous blood during different states of functional performance. For the work of this thesis, fMRI studies were carried out using a 3 T MR system with an echo planar imaging (EPI) pulse sequence. Hearing research utilising fMRI has been previously reported in normal subjects. Hearing fMRI is normally performed by stimulating the auditory cortex via an acoustic task presentation such as music, tone, etc. However, performing the same research on deaf subjects requires special equipment to be designed to allow direct stimulation of the auditory nerve. In this thesis, a new method of direct electrical stimulation of the auditory nerve is described that uses a transtympanic electrode implanted onto the surface of the cochlea. This approach would however, result in electromotive forces (EMFs) being induced by the time varying magnetic field, which would lead to current flow and heating, as well as deflection of the metallic electrode within the static magnetic field, and image distortion due to the magnetic susceptibility difference. A gold-plated tungsten electrode with a zero magnetic susceptibility was developed to avoid image distortion. Used with carbon leads and a carbon reference pad, it enabled safe, distortion-free fMRI studies of deaf subjects. The study revealed activation of the primary auditory cortex. This fMRI procedure can be used to demonstrate whether the auditory pathway is fully intact, and may provide a useful method for pre-operative assessment of candidates for cochlear implantation. Glucose is the energy source on which the function of the human brain is entirely dependent. Failure to

  3. Clinical application of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Alwatban, Adnan Z W

    2002-07-01

    The work described in this thesis was carried out at the Magnetic Resonance Centre of the University of Nottingham during the time from May 1998 to April 2001, and is the work of the author except where indicated by reference. The main source of signal changes in functional magnetic resonance imaging (fMRJ) is the fluctuation of paramagnetic deoxyhaemoglobin in the venous blood during different states of functional performance. For the work of this thesis, fMRI studies were carried out using a 3 T MR system with an echo planar imaging (EPI) pulse sequence. Hearing research utilising fMRI has been previously reported in normal subjects. Hearing fMRI is normally performed by stimulating the auditory cortex via an acoustic task presentation such as music, tone, etc. However, performing the same research on deaf subjects requires special equipment to be designed to allow direct stimulation of the auditory nerve. In this thesis, a new method of direct electrical stimulation of the auditory nerve is described that uses a transtympanic electrode implanted onto the surface of the cochlea. This approach would however, result in electromotive forces (EMFs) being induced by the time varying magnetic field, which would lead to current flow and heating, as well as deflection of the metallic electrode within the static magnetic field, and image distortion due to the magnetic susceptibility difference. A gold-plated tungsten electrode with a zero magnetic susceptibility was developed to avoid image distortion. Used with carbon leads and a carbon reference pad, it enabled safe, distortion-free fMRI studies of deaf subjects. The study revealed activation of the primary auditory cortex. This fMRI procedure can be used to demonstrate whether the auditory pathway is fully intact, and may provide a useful method for pre-operative assessment of candidates for cochlear implantation. Glucose is the energy source on which the function of the human brain is entirely dependent. Failure to

  4. Novel axolotl cardiac function analysis method using magnetic resonance imaging

    NARCIS (Netherlands)

    Sanches, Pedro Gomes; Op 't Veld, Roel C.; de Graaf, Wolter; Strijkers, Gustav J.; Grüll, Holger

    2017-01-01

    The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a non-invasive technique to image heart function

  5. Novel axolotl cardiac function analysis method using magnetic resonance imaging

    NARCIS (Netherlands)

    Sanches, P.G.; Op ‘t Veld, R.C.; de Graaf, W.; Strijkers, G.J.; Grüll, H.

    2017-01-01

    The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a noninvasive technique to image heart function of

  6. Three-dimensional reconstruction of functional brain images

    International Nuclear Information System (INIS)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao

    1999-01-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  7. Three-dimensional reconstruction of functional brain images

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  8. The association between self-image and defence mechanisms in a group of adolescent patients receiving psychiatric treatment.

    Science.gov (United States)

    Treger, Bartosz; Matusiak, Feliks; Pilecki, Maciej; Rogoż, Monika

    2015-01-01

    The aim of the study was to explore the relationship between various areas of self-image and defence mechanisms in adolescents. The study included a division into groups according to whether or not they were receiving psychiatric treatment. Data were obtained from two groups: a clinical group (30 persons), consisting of adolescent patients of the Adolescent Inpatient Ward of the Child and Adolescent Psychiatry Clinic and a control group (40 persons), adolescents attending upper secondary school. The Defence Style Questionnaire DSQ-40 and the Offer Self Image Questionnaire were used in the study. Results showed no differences, in the maturity levels of the defence mechanisms, between the two groups. Subjects from the clinical group had a significantly lower self-image of themselves than subjects from the control group.. In both groups, the use of mature defence mechanisms was accompanied by a positive self-image, while the use of less mature defence mechanisms was associated with a lower self-image. Comparison of the groups revealed different relationships between the aspects of self-image and used defence mechanisms, in particular the mechanism of projection. Number of significant correlations was greater in the clinical group. In the context of lower self-image, the study revealed the importance of such defence mechanisms as projection, acting out, somatization or schizoid fantasies. The obtained results seem to confirm a hypothesis that the assessment of the maturity of defence mechanisms in the period of adolescence is less clear and clinically useful.

  9. Combining inter-source seismic interferometry and source-receiver interferometry for deep local imaging

    NARCIS (Netherlands)

    Liu, Y.; Arntsen, B.; Wapenaar, C.P.A.; Van der Neut, J.R.

    2014-01-01

    The virtual source method has been applied successfully to retrieve the impulse response between pairs of receivers in the subsurface. This method is further improved by an updown separation prior to the crosscorrelation to suppress the reflections from the overburden and the free surface. In a

  10. Determinants of Adult Functional Outcome in Adolescents Receiving Special Educational Assistance

    Science.gov (United States)

    McGeown, H. R.; Johnstone, E. C.; McKirdy, J.; Owens, D. C.; Stanfield, A. C.

    2013-01-01

    Background: This study investigates the role of IQ, autistic traits and challenging behaviours in affecting adult outcomes among adolescents who receive special educational assistance. Methods: A total of 58 participants were recruited from an ongoing longitudinal study. All received assessments of IQ, behavioural patterns (using the Childhood…

  11. The lithosphere-asthenosphere boundary beneath the Korean Peninsula from S receiver functions

    Science.gov (United States)

    Lee, S. H.; Rhie, J.

    2017-12-01

    The shallow lithosphere in the Eastern Asia at the east of the North-South Gravity Lineament is well published. The reactivation of the upper asthenosphere induced by the subducting plates is regarded as a dominant source of the lithosphere thinning. Additionally, assemblage of various tectonic blocks resulted in complex variation of the lithosphere thickness in the Eastern Asia. Because, the Korean Peninsula located at the margin of the Erasian Plate in close vicinity to the trench of subducting oceanic plate, significant reactivation of the upper asthenosphere is expected. For the study of the tectonic history surrounding the Korean Peninsula, we determined the lithosphere-asthenosphere boundary (LAB) beneath the Korean Peninsula using common conversion point stacking method with S receiver functions. The depth of the LAB beneath the Korean Peninsula ranges from 60 km to 100 km and confirmed to be shallower than that expected for Cambrian blocks as previous global studies. The depth of the LAB is getting shallower to the south, 95 km at the north and 60 km at the south. And rapid change of the LAB depth is observed between 36°N and 37°N. The depth change of the LAB getting shallower to the south implies that the source of the lithosphere thinning is a hot mantle upwelling induced by the northward subduction of the oceanic plates since Mesozoic. Unfortunately, existing tectonic models can hardly explain the different LAB depth in the north and in the south as well as the rapid change of the LAB depth.

  12. Crustal thickness and Vp/Vs beneath the southeastern United States: Constraints from receiver function stacking

    Science.gov (United States)

    Yang, Q.; Gao, S. S.; Liu, K. H.

    2017-12-01

    To provide new constraints on crustal structure and evolution models beneath a collage of tectonic provinces in the southeastern United States, a total of 10,753 teleseismic receiver functions recorded by 125 USArray and other seismic stations are used to compute crustal thickness and Vp/Vs values. The resulting crustal thicknesses range from 25 km at the coast to 51 km beneath the peak of the southern Appalachians with an average of 36.2 km ± 5.5 km. The resulting crustal thicknesses correlate well with surface elevation and Bouguer gravity anomalies. Beneath the Atlantic Coastal Plain, the crustal thicknesses show a clear eastward thinning with a magnitude of 10 km, from about 40 km beneath the western margin to 30 km beneath the coast. The Vp/Vs values for the entire study area range from 1.71 to 1.90 with a mean value of 1.80 ± 0.04. The mean Vp/Vs value is 1.82±0.035 in the southern Appalachian Mountain. The slightly larger than normal crustal Vp/Vs for this area might be the result of significant erosion of the felsic upper crust over the past 300 million years. Alternatively, it could also suggest the existence of pervasive magmatic intrusion into the Appalachian crust. The Vp/Vs measurements in the Atlantic Coastal Plain increase toward the east, ranging from 1.75 to 1.82, probably indicating a gradual increase of mafic magmatic intrusion into thinner crust during the development of the passive continental margin.

  13. Seismic Discontinuities within the Crust and Mantle Beneath Indonesia as Inferred from P Receiver Functions

    Science.gov (United States)

    Woelbern, I.; Rumpker, G.

    2015-12-01

    Indonesia is situated at the southern margin of SE Asia, which comprises an assemblage of Gondwana-derived continental terranes, suture zones and volcanic arcs. The formation of SE Asia is believed to have started in Early Devonian. Its complex history involves the opening and closure of three distinct Tethys oceans, each accompanied by the rifting of continental fragments. We apply the receiver function technique to data of the temporary MERAMEX network operated in Central Java from May to October 2004 by the GeoForschungsZentrum Potsdam. The network consisted of 112 mobile stations with a spacing of about 10 km covering the full width of the island between the southern and northern coast lines. The tectonic history is reflected in a complex crustal structure of Central Java exhibiting strong topography of the Moho discontinuity related to different tectonic units. A discontinuity of negative impedance contrast is observed throughout the mid-crust interpreted as the top of a low-velocity layer which shows no depth correlation with the Moho interface. Converted phases generated at greater depth beneath Indonesia indicate the existence of multiple seismic discontinuities within the upper mantle and even below. The strongest signal originates from the base of the mantle transition zone, i.e. the 660 km discontinuity. The phase related to the 410 km discontinuity is less pronounced, but clearly identifiable as well. The derived thickness of the mantle-transition zone is in good agreement with the IASP91 velocity model. Additional phases are observed at roughly 33 s and 90 s relative to the P onset, corresponding to about 300 km and 920 km, respectively. A signal of reversed polarity indicates the top of a low velocity layer at about 370 km depth overlying the mantle transition zone.

  14. Lithospheric Structure of the Yamato Basin Inferred from Trans-dimensional Inversion of Receiver Functions

    Science.gov (United States)

    Akuhara, T.; Nakahigashi, K.; Shinohara, M.; Yamada, T.; Yamashita, Y.; Shiobara, H.; Mochizuki, K.

    2017-12-01

    The Yamato Basin, located at the southeast of the Japan Sea, has been formed by the back-arc opening of the Japan Sea. Wide-angle reflection surveys have revealed that the basin has anomalously thickened crust compared with a normal oceanic crust [e.g., Nakahigashi et al., 2013] while deeper lithospheric structure has not known so far. Revealing the lithospheric structure of the Yamato Basin will lead to better understanding of the formation process of the Japan Sea and thus the Japanese island. In this study, as a first step toward understanding the lithospheric structure, we aim to detect the lithosphere-asthenosphere boundary (LAB) using receiver functions (RFs). We use teleseismic P waveforms recorded by broad-band ocean-bottom seismometers (BBOBS) deployed at the Yamato Basin. We calculated radial-component RFs using the data with the removal of water reverberations from the vertical-component records [Akuhara et al., 2016]. The resultant RFs are more complicated than those calculated at an on-land station, most likely due to sediment-related reverberations. This complexity does not allow either direct detection of a Ps conversion from the LAB or forward modeling by a simple structure composed of a handful number of layers. To overcome this difficulty, we conducted trans-dimensional Markov Chain Monte Carlo inversion of RFs, where we do not need to assume the number of layers in advance [e.g., Bodin et al., 2012; Sambridge et al., 2014]. Our preliminary results show abrupt velocity reduction at 70 km depth, far greater depth than the expected LAB depth from the age of the lithosphere ( 20 Ma, although still debated). If this low-velocity jump truly reflects the LAB, the anomalously thickened lithosphere will provide a new constraint on the complex formation history of the Japan Sea. Further study, however, is required to deny the possibility that the obtained velocity jump is an artificial brought by the overfitting of noisy data.

  15. Machine-Learning-Based Future Received Signal Strength Prediction Using Depth Images for mmWave Communications

    OpenAIRE

    Okamoto, Hironao; Nishio, Takayuki; Nakashima, Kota; Koda, Yusuke; Yamamoto, Koji; Morikura, Masahiro; Asai, Yusuke; Miyatake, Ryo

    2018-01-01

    This paper discusses a machine-learning (ML)-based future received signal strength (RSS) prediction scheme using depth camera images for millimeter-wave (mmWave) networks. The scheme provides the future RSS prediction of any mmWave links within the camera's view, including links where nodes are not transmitting frames. This enables network controllers to conduct network operations before line-of-sight path blockages degrade the RSS. Using the ML techniques, the prediction scheme automatically...

  16. The association between self-image and defence mechanisms in a group of adolescent patients receiving psychiatric treatment

    OpenAIRE

    Bartosz Treger; Feliks Matusiak; Maciej Pilecki; Monika Rogoż

    2015-01-01

    Objectives The aim of the study was to explore the relationship between various areas of self-image and defence mechanisms in adolescents. The study included a division into groups according to whether or not they were receiving psychiatric treatment. Methods Data were obtained from two groups: a clinical group (30 persons), consisting of adolescent patients of the Adolescent Inpatient Ward of the Child and Adolescent Psychiatry Clinic and a control group (40 persons), adolescents a...

  17. Vision research with functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Nakadomari, Satoshi

    1999-01-01

    Present state of functional magnetic resonance imaging (fMRI), which is based on changes of MR signals produced by blood circulation changes due to the nerve activity, in vision research was reviewed. In this field, there are international associations of Human Brain Mapping and for Research in Vision and Ophthalmology (ARVO) and reports presented in ARVO in 1998 and 1999 were firstly described. Next, the comparison between two conditions was defined as the experimental paradigm of fMRI and analyses with the event related fMRI and with classification into visual central regions were explained. Major findings obtained by stimulation of visual central regions were discussed on the lateral corpus geniculatum, areas of V1, V2, V3 (VP), V3A, V4A (V8), V5 and LO (lateral occipital complex), and others. In practice of actual fMRI, the noise is often attributable to the examinee factor and notification for speculating the result is important. The value of fMRI in the clinical ophthalmological diagnosis was discussed and thought to be further investigated. (K.H.)

  18. A 16-channel receive, forced current excitation dual-transmit coil for breast imaging at 7T.

    Directory of Open Access Journals (Sweden)

    Samantha By

    Full Text Available To enable high spatial and temporal breast imaging resolution via combined use of high field MRI, array coils, and forced current excitation (FCE multi channel transmit.A unilateral 16-channel receive array insert was designed for use in a transmit volume coil optimized for quadrature operation with dual-transmit RF shimming at 7 T. Signal-to-noise ratio (SNR maps, g-factor maps, and high spatial and temporal resolution in vivo images were acquired to demonstrate the utility of the coil architecture.The dual-transmit FCE coil provided homogeneous excitation and the array provided an increase in average SNR of 3.3 times (max 10.8, min 1.5 compared to the volume coil in transmit/receive mode. High resolution accelerated in vivo breast imaging demonstrated the ability to achieve isotropic spatial resolution of 0.5 mm within clinically relevant 90 s scan times, as well as the ability to perform 1.0 mm isotropic resolution imaging, 7 s per dynamics, with the use of bidirectional SENSE acceleration of up to R = 9.The FCE design of the transmit coil easily accommodates the addition of a sixteen channel array coil. The improved spatial and temporal resolution provided by the high-field array coil with FCE dual-channel transmit will ultimately be beneficial in lesion detection and characterization.

  19. Nuclear magnetic resonance imaging and brain functional exploration

    International Nuclear Information System (INIS)

    Le Bihan, D.; CEA, 91 - Orsay

    1997-01-01

    The utilization of nuclear magnetic resonance imaging for functional analysis of the brain is presented: the oxygenated and deoxygenated blood flowing in the brain do not have the same effect on NMR images; the oxygenated blood, related to brain activity, may be detected and the corresponding activity zone in the brain, identified; functional NMR imaging could be used to gain a better understanding of functional troubles linked to neurological or psychiatric diseases

  20. Lateral Variations of the Mantle Transition Zone Structure beneath the Southeastern Tibetan Plateau Revealed by P-wave Receiver Functions

    Science.gov (United States)

    Bai, Y.; Ai, Y.; Jiang, M.; He, Y.; Chen, Q.

    2017-12-01

    The deep structure of the southeastern Tibetan plateau is of great scientific importance to a better understanding of the India-Eurasia collision as well as the evolution of the magnificent Tibetan plateau. In this study, we collected 566 permanent and temporary seismic stations deployed in SE Tibet, with a total of 77853 high quality P-wave receiver functions been extracted by maximum entropy deconvolution method. On the basis of the Common Conversion Point (CCP) stacking technique, we mapped the topography of the 410km and 660km discontinuities (hereinafter called the `410' and the `660'), and further investigated the lateral variation of the mantle transition zone (MTZ) thickness beneath this region. The background velocity model deduced from H-κ stacking results and a previous body-wave tomographic research was applied for the correction of the crustal and upper mantle heterogeneities beneath SE Tibet for CCP stacking. Our results reveal two significantly thickened MTZ anomalies aligned nearly in the south-north direction. The magnitude of both anomalies are 30km above the global average of 250km. The southern anomaly located beneath the Dianzhong sub-block and the Indo-China block is characterized by a slightly deeper `410' and a greater-than-normal `660', while the northern anomaly beneath western Sichuan has an uplifted `410' and a depressed `660'. Combining with previous studies in the adjacent region, we suggest that slab break-off may occurred during the eastward subduction of the Burma plate, with the lower part of the cold slab penetrated into the MTZ and stagnated at the bottom of the `660' which may cause the southern anomaly in our receiver function images. The origin of the Tengchong volcano is probably connected to the upwelling of the asthenospheric material caused by the slab break-off or to the ascending of the hot and wet material triggered by the dehydration of stagnant slab in the MTZ. The anomaly in the north, on the other hand, might be

  1. Clinical Application of Magnetic Resonance Imaging in Management of Breast Cancer Patients Receiving Neoadjuvant Chemotherapy

    Directory of Open Access Journals (Sweden)

    Jeon-Hor Chen

    2013-01-01

    Full Text Available Neoadjuvant chemotherapy (NAC, also termed primary, induction, or preoperative chemotherapy, is traditionally used to downstage inoperable breast cancer. In recent years it has been increasingly used for patients who have operable cancers in order to facilitate breast-conserving surgery, achieve better cosmetic outcome, and improve prognosis by reaching pathologic complete response (pCR. Many studies have demonstrated that magnetic resonance imaging (MRI can assess residual tumor size after NAC, and that provides critical information for planning of the optimal surgery. NAC also allows for timely adjustment of administered drugs based on response, so ineffective regimens could be terminated early to spare patients from unnecessary toxicity while allowing other effective regimens to work sooner. This review article summarizes the clinical application of MRI during NAC. The use of different MR imaging methods, including dynamic contrast-enhanced MRI, proton MR spectroscopy, and diffusion-weighted MRI, to monitor and evaluate the NAC response, as well as how changes of parameters measured at an early time after initiation of a drug regimen can predict final treatment outcome, are reviewed. MRI has been proven a valuable tool and will continue to provide important information facilitating individualized image-guided treatment and personalized management for breast cancer patients undergoing NAC.

  2. Synthetic receiver function profiles through the upper mantle and the transition zone for upwelling scenarios

    Science.gov (United States)

    Nagel, Thorsten; Düsterhöft, Erik; Schiffer, Christian

    2017-04-01

    We investigate the signature relevant mantle lithologies leave in the receiver function record for different adiabatic thermal gradients down to 800 kilometers depth. The parameter space is chosen to target the visibility of upwelling mantle (a plume). Seismic velocities for depleted mantle, primitive mantle, and three pyroxenites are extracted from thermodynamically calculated phases diagrams, which also provide the adiabatic decompression paths. Results suggest that compositional variations, i.e. the presence or absence of considerable amounts of pyroxenites in primitive mantle should produce a clear footprint while horizontal differences in thermal gradients for similar compositions might be more subtle. Peridotites best record the classic discontinuities at around 410 and 650 kilometers depth, which are associated with the olivin-wadsleyite and ringwoodite-perovskite transitions, respectively. Pyroxenites, instead, show the garnet-perovskite transition below 700 kilometers depth and SiO2-supersaturated compositions like MORB display the coesite-stishovite transition between 300 and 340 kilometers depth. The latter shows the strongest temperature-depth dependency of all significant transitions potentially allowing to infer information about the thermal state if the mantle contains a sufficient fraction of MORB-like compositions. For primitive and depleted mantle compositions, the olivin-wadsleyite transition shows a certain temperature-depth dependency reflected in slightly larger delay times for higher thermal gradients. The lower-upper-mantle discontinuity, however, is predicted to display larger delay times for higher thermal gradients although the associated assemblage transition occurs at shallower depths thus requiring a very careful depth migration if a thermal anomaly should be recognized. This counterintuitive behavior results from the downward replacement of the assemblage wadsleyite+garnet with the assemblage garnet+periclase at high temperatures

  3. Lithospheric Layering beneath the Contiguous United States Constrained by S-to-P Receiver Functions

    Science.gov (United States)

    Liu, L.; Liu, K. H.; Kong, F.; Gao, S. S.

    2017-12-01

    The greatly-improved spatial coverage of broadband seismic stations as a result of the deployment of the EarthScope Transportable Array (TA) stations and the diversity of tectonic environments in the contiguous United States provide a unique opportunity to investigate the depth variation and nature of intra-lithospheric interfaces in different tectonic regimes. A total of 284,121 high-quality S-to-P receiver functions (SRFs) are obtained from 3,809 broadband seismic stations in the TA and other permanent and temporary deployments in the contiguous United States. The SRFs are computed using frequency domain deconvolution, and are stacked in consecutive circles with a radius of 2°. They are converted to depth series after move-out corrections using the IASP91 Earth model. Similar to previous SRF studies, a robust negative arrival, representing a sharp discontinuity of velocity reduction with depth, is visible in virtually all the stacked traces in the depth range of 30-110 km. Beneath the western US, the depth of this discontinuity is 69±17 km, and beneath the eastern US, it ranges from 75 to 90 km, both of which are comparable to the depth of the tomographically-determined lithosphere-asthenosphere boundary (LAB). In contrast, the depth of the discontinuity beneath the central US is 83±10 km which is significantly smaller than the 250 km LAB depth determined by seismic surface wave tomography. Based on previous seismic tomography, shear-wave splitting and mantle xenolith studies, we interpret this discontinuity as the top of a frozen-in layer of volatile-rich melt beneath the central US. The observations and the discrepancy between the SRF and seismic tomography results for the central US as well as the amplitude of the corresponding arrival on the SRFs may be explained by spatial variations of the thickness of the transitional layer between the "pure" lithosphere and the "pure" asthenosphere. Under this hypothesis, the consistency between the results from the

  4. Crustal structure of the Central Precordillera of San Juan, Argentina (31°S) using teleseismic receiver functions

    Science.gov (United States)

    Ammirati, Jean-Baptiste; Alvarado, Patricia; Perarnau, Marcelo; Saez, Mauro; Monsalvo, Guillermo

    2013-10-01

    The subduction of the Nazca plate under the South American plate around 31°S is characterized by flat slab geometry. The (Chilean) Pampean flat slab of Argentina associated with the subduction of the Juan Fernandez ridge lies in a region of a series of foreland uplifts corresponding to the thin-skinned Precordillera and basement cored Sierras Pampeanas ranges. The SIEMBRA project deployed 40 broadband stations in 2008-2009 in both the Precordillera and the Sierras Pampeanas with the aim to foster the understanding of the entire central Andean flat slab region. One of the SIEMBRA station (DOCA) located on the western flank of Sierra de la Invernada in the Central Precordillera appears particularly appropriate to study the crustal structure and eventually detect discontinuities related to terranes establishment. We thus performed a receiver function analysis using teleseismic data recorded at the DOCA station during the SIEMBRA project and from October 2011 to June 2012 using a broadband UNSJ (National University of San Juan) seismic station with the purpose to obtain crustal images with details of the intracrustal structure consistent with a mechanism that could explains both the observed earthquake depths and the uplift pattern in the Central Precordillera. Our results show that the Moho beneath the Precordillera lies at a depth of about 66 km. The Moho signal appears diminished and behaves irregularly as a function of azimuthal orientations. Although this observation could be the result of an irregular geometry it also correlates with the hypothesis of partial eclogitisation in the lower crust. Two mid-crustal discontinuities have also been revealed. The shallower one could correspond to a décollement level between the Precordilleran strata and the Cuyania basement at 21 km depth. The deeper one which the presence has been matched with a sharp decrease of the crustal seismic activity drove us to the hypothesis of a major change in crustal composition at 36 km

  5. Crustal structure of the Arabian plate: new constraints of receiver functions

    Science.gov (United States)

    Cui, Z.; Mai, P. M.; Pei, S.

    2013-12-01

    We perform P-wave receiver function analysis across Saudi Arabia to constrain crustal thickness and Poisson's ratio to investigate the role of Afar super plume, on-going sea-floor spreading and mechanical crustal thinning during continental breakup. We include analysis of data from 132 stations, many of them new stations to improve upon previous analysis from a sparse array (30 stations). We first select 201 earthquakes with high signal-to-noise seismogram, using IRIS-station RAYN as reference to pick the events, recorded on 101 stations operated by the Saudi Geological Survey (SGS) during 2007-2011. SGS continually deploys stations every year and we added a second data set of 96 earthquakes on 30 newly deployed stations in 2012, again station RAYN is used as reference for picking high quality recordings. Two way, 4th order band-pass Butterworth filter with pass band of 0.01 - 3 Hz is applied to eliminate low-frequency noise, then deconvolution is performed in time-domain. We deploy the slant stack method to determine both the Moho depth and Poisson's ratio at each station; this method combines the later multiples (PpPs and PpSs+PsPs) with the Moho Ps converted phase to mitigate the trade-off between the Moho depth and crustal Poisson's ratio. Average crustal P wave velocities of 6.5km/s for Arabian Shield and 6.1 km/s for Arabian Platform are assigned, respectively. In addition, we add the semblance parameter through semblance analysis into the objective function of the slant stack method to suppress the incoherent noise. Our results show that Moho depth is 38-42 km at the central boundary between the Arabian Shield and the Arabian Platform, where the crust is not extended and there is little sediment deposited. To the east beneath the Arabian Platform the crust thickens to 43-46 km, then decreases to 37-41km against the Persian Gulf. To the west the crust gradually thins to 33-35 km over a distance of approximately 400-500 km. Farther east, toward the Red Sea

  6. Cardiac Function After Multimodal Breast Cancer Therapy Assessed With Functional Magnetic Resonance Imaging and Echocardiography Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Heggemann, Felix, E-mail: felix.heggemann@umm.de [First Medical Department, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); German Center for Cardiovascular Research, Mannheim (Germany); Grotz, Hanna; Welzel, Grit [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Dösch, Christina [First Medical Department, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); German Center for Cardiovascular Research, Mannheim (Germany); Hansmann, Jan [Institute of Diagnostic Radiology and Nuclear Medicine, University Medical Center Mannheim University of Heidelberg, Mannheim (Germany); Kraus-Tiefenbacher, Uta [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Attenberger, Ulrike; Schönberg, Stephan Oswald [German Center for Cardiovascular Research, Mannheim (Germany); Institute of Diagnostic Radiology and Nuclear Medicine, University Medical Center Mannheim University of Heidelberg, Mannheim (Germany); Borggrefe, Martin [First Medical Department, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); German Center for Cardiovascular Research, Mannheim (Germany); Wenz, Frederik [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Papavassiliu, Theano [First Medical Department, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); German Center for Cardiovascular Research, Mannheim (Germany); Lohr, Frank [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany)

    2015-11-15

    Purpose: Breast intensity modulated radiation therapy (IMRT) reduces high-dose heart volumes but increases low-dose volumes. We prospectively assessed heart changes after 3D conformal RT (3DCRT) and IMRT for left-sided breast cancer. Heart dose was analyzed individually, 3DCRT patients were moderately exposed, and IMRT was performed only in patients with unacceptably high heart doses upon 3DCRT planning. Methods and Materials: In 49 patients (38 patients received 3DCRT; 11 patients received IMRT; and 20 patients received neoadjuvant or adjuvant chemotherapy) magnetic resonance imaging (MRI) and echocardiography were performed before and at 6, 12, and 24 months after treatment. Results: Mean heart dose for IMRT was 12.9 ± 3.9 Gy versus 4.5 ± 2.4 Gy for 3DCRT. Heart volumes receiving >40 Gy were 2.6% (3DCRT) versus 1.3% (IMRT); doses were >50 Gy only with 3DCRT. Temporary ejection fraction (EF) decrease was observed on MRI after 6 months (63%-59%, P=.005) resolving at 24 months. Only 3 patients had pronounced largely transient changes of EF and left ventricular enddiastolic diameter (LVEDD). Mitral (M) and tricuspid (T) annular plane systolic excursion (MAPSE and TAPSE) were reduced over the whole cohort (still within normal range). After 24 months left ventricular remodeling index decreased in patients receiving chemotherapy (0.80 vs 0.70, P=.028). Neither wall motion abnormalities nor late enhancements were found. On echocardiography, in addition to EF findings that were similar to those on MRI, global strain was unchanged over the whole cohort at 24 months after a transient decrease at 6 and 12 months. Longitudinal strain decreased in the whole cohort after 24 months in some segments, whereas it increased in others. Conclusions: Until 24 months after risk-adapted modern multimodal adjuvant therapy, only subclinical cardiac changes were observed in both 3DCRT patients with inclusion of small to moderate amounts of heart volume in RT tangents and

  7. Structures of Xishan village landslide in Li County, Sichuan, China, inferred from high-frequency receiver functions of local earthquakes

    Science.gov (United States)

    Wei, Z.; Chu, R.

    2017-12-01

    Teleseismic receiver function methods are widely used to study the deep structural information beneath the seismic station. However, teleseismic waveforms are difficult to extract the high-frequency receiver function, which are insufficient to constrain the shallow structure because of the inelastic attenuation effect of the earth. In this study, using the local earthquake waveforms collected from 3 broadband stations deployed on the Xishan village landslide in Li County in Sichuan Province, we used the high-frequency receiver function method to study the shallow structure beneath the landslide. We developed the Vp-k (Vp/Vs) staking method of receiver functions, and combined with the H-k stacking and waveform inversion methods of receiver functions to invert the landslide's thickness, S-wave velocity and average Vp/Vs ratio beneath these stations, and compared the thickness with the borehole results. Our results show small-scale lateral variety of velocity structure, a 78-143m/s lower S-wave velocity in the bottom layer and 2.4-3.1 Vp/Vs ratio in the landslide. The observed high Vp/Vs ratio and low S-wave velocity in the bottom layer of the landslide are consistent with low electrical resistivity and water-rich in the bottom layer, suggesting a weak shear strength and potential danger zone in landslide h1. Our study suggest that the local earthquake receiver function can obtain the shallow velocity structural information and supply some seismic constrains for the landslide catastrophe mitigation.

  8. An exploration of the relationship between fatigue and physical functioning in patients with end stage renal disease receiving haemodialysis.

    Science.gov (United States)

    O'Sullivan, Dawn; McCarthy, Geraldine

    2007-11-01

    To measure fatigue and physical functioning in patients with end stage renal disease (ESRD) receiving haemodialysis and to investigate the relationships between fatigue and physical functioning. Fatigue and reduced physical functioning are among the most bothersome symptoms experienced by individuals receiving haemodialysis for ESRD. Research has shown that increasing activity levels has resulted in decreased fatigue levels and improved physical functioning in individuals with cancer. Establishing whether or not a relationship exists between both concepts in haemodialysis patients is a preliminary step in identifying potential fatigue reducing strategies necessary for improved wellbeing. A quantitative exploratory correlational design was used with 46 individuals completing the Multi-dimensional Fatigue Inventory, the Medical Outcomes Study Short-Form 36-item questionnaire and a Demographic Questionnaire. Results indicated fatigue was prevalent with highest scores achieved for physical fatigue; reduced activity and general fatigue. Substantial limitations in physical functioning were found. A significant moderate negative relationship between general fatigue and physical functioning indicated that, as physical functioning levels increased, fatigue levels decreased. A significant difference was also found between general fatigue scores for males and females. Significant relationships were found between overall physical functioning, older age and employment status. The research indicates the prevalence of fatigue and limitations in physical functioning in individuals with ESRD. However, as physical functioning increased fatigue decreased; a finding relevant to clinical nursing. Understanding the levels of fatigue and the value of exercise is of relevance to clinical practice thus assessment of fatigue and physical functioning ability in the clinical setting is necessary.

  9. Functional magnetic resonance imaging of the primary motor cortex ...

    Indian Academy of Sciences (India)

    Unknown

    Abbreviations used: BOLD, Blood oxygenation level dependent; CBF, cerebral blood flow; fMRI, functional magnetic resonance imaging; EPI, eco-planar imaging; FOV, field of view; MRI, Magnetic resonance imaging; MRS, magnetic resonance spectroscopy;. PET, position emission tomography; rCBF, regional cerebral ...

  10. FUNCTIONAL ABILITY AND QUALITY OF LIFE IN PATIENTS WITH RHEUMATOID ARTHRITIS RECEIVING TOCILIZUMAB THERAPY

    Directory of Open Access Journals (Sweden)

    Anna Sergeyevna Starkova

    2013-01-01

    Full Text Available Rheumatoid arthritis (RA is a chronic inflammatory joint disease causing joint dysfunction; reduction of quality of life (QoL; loss of work ability, self-care ability, and executing daily routines in most patients 5–10 years after the disease onset.Objective. To study QoL and the functional status (FS of Russian RA patients receiving tocilizumab (TCZ.Material and Methods. The study involved 42 patients with verified RA diagnosis (moderate or high activity who had earlier undergone inefficient therapy with basic anti-inflammatory medications. The limitation of the FS of the RA patients was determined quantitatively using the Russian-language version of the HAQ questionnaire. QoL was evaluated using the EuroQol-5D (EQ-5D Quality of Life questionnaire prior to treatment and after 4, 8, 12, 16, 20, and 24 weeks.Results. TCZ therapy demonstrated a rapid improvement of the FS of RA patients with a 64% decrease in the HAQ index (ΔHAQ=1.12, which corresponded to a 50% improvement of the health status of patients according to the ACR criteria.The median value [25th; 75th percentile] of the EQ-5D index was 0.52 [-0.02; 0.52]; 27.7% patients assessed their QoL as “worse than death”. The index reliably increased by week 8 of therapy; there were no patients with the negative EQ-5D index by week 24. Depending on QoL, all the patients were subdivided into two groups. Group 1 (n=12 comprised the patients with the EQ-5D no higher than 0; in group 2 patients (n=30, it was higher than 0. The groups were comparable in terms of disease duration, age, disease activity indices, and the previous treatment. The low QoL index in all 12 patients in group 1 was attributed to the infeasibility of performing daily activities and the reliably higher pain level (75.0 [61.0; 86.0] and 66.0 [48.0; 71.0] in groups 1 and 2, respectively; p=0.02. Improved QoL and reduced pain level were observed in both groups as early as after the first TCZ infusion. By week 24

  11. Lithospheric architecture of NE China from joint Inversions of receiver functions and surface wave dispersion through Bayesian optimisation

    Science.gov (United States)

    Sebastian, Nita; Kim, Seongryong; Tkalčić, Hrvoje; Sippl, Christian

    2017-04-01

    The purpose of this study is to develop an integrated inference on the lithospheric structure of NE China using three passive seismic networks comprised of 92 stations. The NE China plain consists of complex lithospheric domains characterised by the co-existence of complex geodynamic processes such as crustal thinning, active intraplate cenozoic volcanism and low velocity anomalies. To estimate lithospheric structures with greater detail, we chose to perform the joint inversion of independent data sets such as receiver functions and surface wave dispersion curves (group and phase velocity). We perform a joint inversion based on principles of Bayesian transdimensional optimisation techniques (Kim etal., 2016). Unlike in the previous studies of NE China, the complexity of the model is determined from the data in the first stage of the inversion, and the data uncertainty is computed based on Bayesian statistics in the second stage of the inversion. The computed crustal properties are retrieved from an ensemble of probable models. We obtain major structural inferences with well constrained absolute velocity estimates, which are vital for inferring properties of the lithosphere and bulk crustal Vp/Vs ratio. The Vp/Vs estimate obtained from joint inversions confirms the high Vp/Vs ratio ( 1.98) obtained using the H-Kappa method beneath some stations. Moreover, we could confirm the existence of a lower crustal velocity beneath several stations (eg: station SHS) within the NE China plain. Based on these findings we attempt to identify a plausible origin for structural complexity. We compile a high-resolution 3D image of the lithospheric architecture of the NE China plain.

  12. Magnetic resonance imaging findings as predictors of clinical outcome in patients with sciatica receiving active conservative treatment

    DEFF Research Database (Denmark)

    Jensen, Tue Secher; Albert, Hanne B; Sorensen, Joan S

    2007-01-01

    OBJECTIVE: The aims of this study were to investigate the possible prognostic value of disk-related magnetic resonance imaging (MRI) findings in relation to recovery at 14 months in patients with severe sciatica, and whether improvement of disk herniation and/or nerve root compromise is concurrent...... with recovery. METHODS: All patients included in this prospective observational study of patients with sciatica receiving active conservative treatment were scanned at baseline and at 14 months' follow-up. Definite recovery at follow-up was defined as an absence of sciatic leg pain and a Roland Morris...... in that the prevalence of disk-related MRI findings was different for men and women, and they had different recovery rates. Improvement of disk herniations and nerve root compromise over time did not coincide with definite recovery. CONCLUSIONS: In patients with sciatica receiving active conservative treatment, broad...

  13. The apport of functional cerebral imaging in the psychiatric pathology

    International Nuclear Information System (INIS)

    Maktouf, Ch.; Kotzki, P.O.; Humbert, Th.

    1992-01-01

    Recent advances in medical brain imaging using structural and functional brain imaging techniques have contributed to the investigation of the living human brain. These new techniques hold great promise for the evaluation and understanding mental disorders. We report the position emission tomography (PET) and the more widely available single emission photon (SPECT) studies, as functional brain imaging, to assess regional cerebral metabolism and blood flow in psychiatric illness. (author)

  14. Subband/Transform MATLAB Functions For Processing Images

    Science.gov (United States)

    Glover, D.

    1995-01-01

    SUBTRANS software is package of routines implementing image-data-processing functions for use with MATLAB*(TM) software. Provides capability to transform image data with block transforms and to produce spatial-frequency subbands of transformed data. Functions cascaded to provide further decomposition into more subbands. Also used in image-data-compression systems. For example, transforms used to prepare data for lossy compression. Written for use in MATLAB mathematical-analysis environment.

  15. Study of cyclic thermal aging of tube type receivers as a function of the duration of the cycle

    Science.gov (United States)

    Setien, Eneko; Fernández-Reche, Jesús; Ariza, María Jesús; Álvarez-de-Lara, Mónica

    2017-06-01

    The tube type receivers are exposed to variable duration cyclic operating conditions, which can jeopardize its reliability, and make it hard to estimate its long term performance. The designers have to deal with this problem and estimate the receiver long term performance based on the poor available litterature and the data sheets of the material. In order to help the designer better estimate the performance of the receivers, in this paper the cyclic thermal aging is analyzed as a function of the cycle duration. For this purpose, coated and uncoated Inconel alloy 625 tubular samples, similar to those used in the commercial receivers, are cyclically aged with different thermal cycle duration. The aging of these samples has been analyzed by means of oxidation kinetics, microstructure examination and mechanical and optical properties. The effect of the thermal cycle duration is studied and discussed by comparison of the results.

  16. 2.5D real waveform and real noise simulation of receiver functions in 3D models

    DEFF Research Database (Denmark)

    Schiffer, Christian; Jacobsen, B. H.; Balling, N.

    to the Central Fjord area in East Greenland (Schiffer et al., 2013), where a 3D velocity model of crust and uppermost mantle was adjusted to receiver functions from 2 years of seismometer recordings and wide angle crustal profiles (Schlindwein and Jokat, 1999; Voss and Jokat, 2007). Computationally...

  17. Anisotropic lithosphere under the Fennoscandian shield from P receiver functions and SKS waveforms of the POLENET/LAPNET array

    Czech Academy of Sciences Publication Activity Database

    Vinnik, L.; Oreshin, S.; Makeyeva, L.; Peregoudov, D.; Kozlovskaya, E.; Pedersen, H.; Plomerová, Jaroslava; Achauer, U.; Kissling, E.; Sanina, I.; Jämsen, T.; Silvennoinen, H.; Pequegnat, C.; Hurskainen, R.; Guiguet, R.; Hausmann, H.; Jedlička, Petr; Aleshin, I.; Bourova, E.; Bodvarsson, R.; Brückl, E.; Eken, T.; Heikkinen, P.; Houseman, G.; Johnsen, H.; Kremenetskaya, E.; Komminaho, K.; Munzarová, Helena; Roberts, R.; Růžek, Bohuslav; Shomali, H.; Schweitzer, J.; Shaumyan, A.; Vecsey, Luděk; Volosov, S.

    2014-01-01

    Roč. 628, July (2014), s. 45-54 ISSN 0040-1951 R&D Projects: GA AV ČR IAA300120709 Institutional support: RVO:67985530 Keywords : lithosphere * asthenosphere * seismic anisotropy * mantle flow * receiver functions * shear-wave splitting Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.872, year: 2014

  18. Estimating crustal thickness and Vp/Vs ratio with joint constraints of receiver function and gravity data

    Science.gov (United States)

    Shi, Lei; Guo, Lianghui; Ma, Yawei; Li, Yonghua; Wang, Weilai

    2018-05-01

    The technique of teleseismic receiver function H-κ stacking is popular for estimating the crustal thickness and Vp/Vs ratio. However, it has large uncertainty or ambiguity when the Moho multiples in receiver function are not easy to be identified. We present an improved technique to estimate the crustal thickness and Vp/Vs ratio by joint constraints of receiver function and gravity data. The complete Bouguer gravity anomalies, composed of the anomalies due to the relief of the Moho interface and the heterogeneous density distribution within the crust, are associated with the crustal thickness, density and Vp/Vs ratio. According to their relationship formulae presented by Lowry and Pérez-Gussinyé, we invert the complete Bouguer gravity anomalies by using a common algorithm of likelihood estimation to obtain the crustal thickness and Vp/Vs ratio, and then utilize them to constrain the receiver function H-κ stacking result. We verified the improved technique on three synthetic crustal models and evaluated the influence of selected parameters, the results of which demonstrated that the novel technique could reduce the ambiguity and enhance the accuracy of estimation. Real data test at two given stations in the NE margin of Tibetan Plateau illustrated that the improved technique provided reliable estimations of crustal thickness and Vp/Vs ratio.

  19. Swallowing Function and Nutritional Status in Japanese Elderly People Receiving Home-care Services: A 1-year Longitudinal Study.

    Science.gov (United States)

    Okabe, Y; Furuta, M; Akifusa, S; Takeuchi, K; Adachi, M; Kinoshita, T; Kikutani, T; Nakamura, S; Yamashita, Y

    2016-01-01

    Malnutrition is a serious health concern for frail elderly people. Poor oral function leading to insufficient food intake can contribute to the development of malnutrition. In the present study, we explored the longitudinal association of malnutrition with oral function, including oral health status and swallowing function, in elderly people receiving home nursing care. Prospective observational cohort study with 1-year follow-up. Two mid-sized cities in Fukuoka, Japan from November 2010 to March 2012. One hundred and ninety-seven individuals, aged ≥ 60 years, living at home and receiving home-care services because of physical disabilities, without malnutrition. Oral health status, swallowing function, taking modified-texture diets such as minced or pureed foods, nutritional status, cognitive function, and activities of daily living were assessed at baseline. The associations between malnutrition at 1-year follow-up and these related factors were analyzed using a logistic regression model. Swallowing disorders [risk ratio (RR): 5.21, 95% confidence interval (95% CI): 1.65-16.43] were associated with malnutrition. On the other hand, oral health status did not have a direct association with malnutrition. Swallowing disorders may be associated with the incidence of malnutrition in elderly people receiving home-care. The findings indicate that maintaining swallowing function may contribute to the prevention of malnutrition in frail elderly people.

  20. Multi-Rate Acquisition for Dead Time Reduction in Magnetic Resonance Receivers: Application to Imaging With Zero Echo Time.

    Science.gov (United States)

    Marjanovic, Josip; Weiger, Markus; Reber, Jonas; Brunner, David O; Dietrich, Benjamin E; Wilm, Bertram J; Froidevaux, Romain; Pruessmann, Klaas P

    2018-02-01

    For magnetic resonance imaging of tissues with very short transverse relaxation times, radio-frequency excitation must be immediately followed by data acquisition with fast spatial encoding. In zero-echo-time (ZTE) imaging, excitation is performed while the readout gradient is already on, causing data loss due to an initial dead time. One major dead time contribution is the settling time of the filters involved in signal down-conversion. In this paper, a multi-rate acquisition scheme is proposed to minimize dead time due to filtering. Short filters and high output bandwidth are used initially to minimize settling time. With increasing time since the signal onset, longer filters with better frequency selectivity enable stronger signal decimation. In this way, significant dead time reduction is accomplished at only a slight increase in the overall amount of output data. Multi-rate acquisition was implemented with a two-stage filter cascade in a digital receiver based on a field-programmable gate array. In ZTE imaging in a phantom and in vivo, dead time reduction by multi-rate acquisition is shown to improve image quality and expand the feasible bandwidth while increasing the amount of data collected by only a few percent.

  1. Impaired Cognitive Functioning in Patients with Tyrosinemia Type I Receiving Nitisinone

    NARCIS (Netherlands)

    Bendadi, Fatiha; de Koning, Tom J.; Visser, Gepke; Prinsen, Hubertus C. M. T.; de Sain, Monique G. M.; Verhoeven-Duif, Nanda; Sinnema, Gerben; van Spronsen, Francjan J.; van Hasselt, Peter M.

    Objective To examine cognitive functioning in patients with tyrosinemia type I treated with nitisinone and a protein-restricted diet. Study design We performed a cross-sectional study to establish cognitive functioning in children with tyrosinemia type I compared with their unaffected siblings.

  2. Estimating variability in functional images using a synthetic resampling approach

    International Nuclear Information System (INIS)

    Maitra, R.; O'Sullivan, F.

    1996-01-01

    Functional imaging of biologic parameters like in vivo tissue metabolism is made possible by Positron Emission Tomography (PET). Many techniques, such as mixture analysis, have been suggested for extracting such images from dynamic sequences of reconstructed PET scans. Methods for assessing the variability in these functional images are of scientific interest. The nonlinearity of the methods used in the mixture analysis approach makes analytic formulae for estimating variability intractable. The usual resampling approach is infeasible because of the prohibitive computational effort in simulating a number of sinogram. datasets, applying image reconstruction, and generating parametric images for each replication. Here we introduce an approach that approximates the distribution of the reconstructed PET images by a Gaussian random field and generates synthetic realizations in the imaging domain. This eliminates the reconstruction steps in generating each simulated functional image and is therefore practical. Results of experiments done to evaluate the approach on a model one-dimensional problem are very encouraging. Post-processing of the estimated variances is seen to improve the accuracy of the estimation method. Mixture analysis is used to estimate functional images; however, the suggested approach is general enough to extend to other parametric imaging methods

  3. Characterization of SIS functions in a heterodyne receiver at 33GHz

    International Nuclear Information System (INIS)

    Zaquine, I.

    1985-01-01

    Superconductor-insulation-superconductor (SIS) tunnel junctions present a Volt-Ampere characteristic strongly nonlinear; its ideal limit is a discontinuity at the level of forbidden band voltage. Niobium-Oxide-Lead (Indium)or Niobium nitride-Oxide-Lead (Indium) junctions have been tested in mixing at 33GHz. The best result obtained in double band receiver temperature is 120K. The result analysis allow in statics to well characterize the performance of our first FET amplifier in the cold state and in dynamics to find the relative importance of the different parameters of the junction. SIS diode mixers have good performance in frequency field interesting the radioastronomy [fr

  4. Metamaterial-based transmit and receive system for whole-body magnetic resonance imaging at ultra-high magnetic fields.

    Science.gov (United States)

    Herrmann, Tim; Liebig, Thorsten; Mallow, Johannes; Bruns, Christian; Stadler, Jörg; Mylius, Judith; Brosch, Michael; Svedja, Jan Taro; Chen, Zhichao; Rennings, Andreas; Scheich, Henning; Plaumann, Markus; Hauser, Marcus J B; Bernarding, Johannes; Erni, Daniel

    2018-01-01

    Magnetic resonance imaging (MRI) at ultra-high fields (UHF), such as 7 T, provides an enhanced signal-to-noise ratio and has led to unprecedented high-resolution anatomic images and brain activation maps. Although a variety of radio frequency (RF) coil architectures have been developed for imaging at UHF conditions, they usually are specialized for small volumes of interests (VoI). So far, whole-body coil resonators are not available for commercial UHF human whole-body MRI systems. The goal of the present study was the development and validation of a transmit and receive system for large VoIs that operates at a 7 T human whole-body MRI system. A Metamaterial Ring Antenna System (MRAS) consisting of several ring antennas was developed, since it allows for the imaging of extended VoIs. Furthermore, the MRAS not only requires lower intensities of the irradiated RF energy, but also provides a more confined and focused injection of excitation energy on selected body parts. The MRAS consisted of several antennas with 50 cm inner diameter, 10 cm width and 0.5 cm depth. The position of the rings was freely adjustable. Conformal resonant right-/left-handed metamaterial was used for each ring antenna with two quadrature feeding ports for RF power. The system was successfully implemented and demonstrated with both a silicone oil and a water-NaCl-isopropanol phantom as well as in vivo by acquiring whole-body images of a crab-eating macaque. The potential for future neuroimaging applications was demonstrated by the acquired high-resolution anatomic images of the macaque's head. Phantom and in vivo measurements of crab-eating macaques provided high-resolution images with large VoIs up to 40 cm in xy-direction and 45 cm in z-direction. The results of this work demonstrate the feasibility of the MRAS system for UHF MRI as proof of principle. The MRAS shows a substantial potential for MR imaging of larger volumes at 7 T UHF. This new technique may provide new diagnostic potential

  5. Nuclear transverse sectional brain function imager

    International Nuclear Information System (INIS)

    Stoddart, H.F.

    1978-01-01

    A transverse radionuclide scanfield imaging apparatus is described comprising a plurality of highly focused closely laterally adjacent collimators arranged inwardly focused in an array which surrounds a scan field, each collimator being moveable relative to its adjacent collimator; and means for imparting travel to the collimators such that the focal point of each collimator uniformly samples at least one half of the scan field

  6. A Novel Mirror-Aided Non-imaging Receiver for Indoor 2x2 MIMO Visible Light Communication Systems

    KAUST Repository

    Park, Kihong

    2017-06-07

    Indoor visible light communication (VLC) systems are now possible because of advances in light emitting diode and laser diode technologies. These lighting technologies provide the foundation for multiple-input multiple-output (MIMO) data transmission through visible light. However, the channel matrix can be strongly correlated in indoor MIMO-VLC systems, preventing parallel data streams from being decoded. Here, in $2\\\\times 2$ MIMO-VLC systems, we describe a mirror diversity receiver (MDR) design that reduces the channel correlation by both blocking the reception of light from one specific direction and improving the channel gain from light from another direction by utilizing a double-sided mirror deployed between the receiver\\'s photodetectors. We report on the channel capacity of the MDR system and the optimal height of its mirrors in terms of maximum channel capacity. We also derived analytic results on the effect of rotation on MDR\\'s performance. Based on numerical and experimental results, we show that the double-sided mirror has both constructive and destructive effects on the channel matrix. Our design can be used with previously described non-imaging systems to improve the performance of indoor VLC systems.

  7. IMAGING OF BRAIN FUNCTION BASED ON THE ANALYSIS OF FUNCTIONAL CONNECTIVITY - IMAGING ANALYSIS OF BRAIN FUNCTION BY FMRI AFTER ACUPUNCTURE AT LR3 IN HEALTHY INDIVIDUALS.

    Science.gov (United States)

    Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong

    2016-01-01

    This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, after true (sham) acupuncture in each group. Analysis of changes in connectivity among the brain areas was performed using the brain functional connectivity method. The right cerebrum temporal lobe was selected as the seed point to analyze the functional connectivity. It had a functional connectivity with right cerebrum superior frontal gyrus, limbic lobe cingulate gyrus and left cerebrum inferior temporal gyrus (BA 37), inferior parietal lobule compared by before vs. after acupuncture at LR3, and right cerebrum sub-lobar insula and left cerebrum middle frontal gyrus, medial frontal gyrus compared by true vs. sham acupuncture at LR3, and right cerebrum occipital lobe cuneus, occipital lobe sub-gyral, parietal lobe precuneus and left cerebellum anterior lobe culmen by acupuncture at LR3 vs. sham acupoint. Acupuncture at LR3 mainly specifically activated the brain functional network that participates in visual function, associative function, and emotion cognition, which are similar to the features on LR3 in tradition Chinese medicine. These brain areas constituted a neural network structure with specific functions that had specific reference values for the interpretation of the acupoint specificity of the Taichong acupoint.

  8. Ten kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone from double-difference tomography, receiver functions, and fault zone head waves

    Science.gov (United States)

    Allam, A. A.; Schulte-Pelkum, V.; Ben-Zion, Y.; Tape, C.; Ruppert, N.; Ross, Z. E.

    2017-11-01

    We examine the structure of the Denali fault system in the crust and upper mantle using double-difference tomography, P-wave receiver functions, and analysis (spatial distribution and moveout) of fault zone head waves. The three methods have complementary sensitivity; tomography is sensitive to 3D seismic velocity structure but smooths sharp boundaries, receiver functions are sensitive to (quasi) horizontal interfaces, and fault zone head waves are sensitive to (quasi) vertical interfaces. The results indicate that the Mohorovičić discontinuity is vertically offset by 10 to 15 km along the central 600 km of the Denali fault in the imaged region, with the northern side having shallower Moho depths around 30 km. An automated phase picker algorithm is used to identify 1400 events that generate fault zone head waves only at near-fault stations. At shorter hypocentral distances head waves are observed at stations on the northern side of the fault, while longer propagation distances and deeper events produce head waves on the southern side. These results suggest a reversal of the velocity contrast polarity with depth, which we confirm by computing average 1D velocity models separately north and south of the fault. Using teleseismic events with M ≥ 5.1, we obtain 31,400 P receiver functions and apply common-conversion-point stacking. The results are migrated to depth using the derived 3D tomography model. The imaged interfaces agree with the tomography model, showing a Moho offset along the central Denali fault and also the sub-parallel Hines Creek fault, a suture zone boundary 30 km to the north. To the east, this offset follows the Totschunda fault, which ruptured during the M7.9 2002 earthquake, rather than the Denali fault itself. The combined results suggest that the Denali fault zone separates two distinct crustal blocks, and that the Totschunda and Hines Creeks segments are important components of the fault and Cretaceous-aged suture zone structure.

  9. Functional imaging of the pancreas. Image processing techniques and clinical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Fumiko

    1984-02-01

    An image processing technique for functional imaging of the pancreas was developed and is here reported. In this paper, clinical efficacy of the technique for detecting pancreatic abnormality is evaluated in comparison with conventional pancreatic scintigraphy and CT. For quantitative evaluation, functional rate, i.e. the rate of normal functioning pancreatic area, was calculated from the functional image and subtraction image. Two hundred and ninety-five cases were studied using this technique. Conventional image had a sensitivity of 65% and a specificity of 78%, while the use of functional imaging improved sensitivity to 88% and specificity to 88%. The mean functional rate in patients with pancreatic disease was significantly lower (33.3 +- 24.5 in patients with chronic pancreatitis, 28.1 +- 26.9 in patients with acute pancreatitis, 43.4 +- 22.3 in patients with diabetes mellitus, 20.4 +- 23.4 in patients with pancreatic cancer) than the mean functional rate in cases without pancreatic disease (86.4 +- 14.2). It is suggested that functional image of the pancreas reflecting pancreatic exocrine function and functional rate is a useful indicator of pancreatic exocrine function.

  10. Functional Group Imaging by Adhesion AFM

    NARCIS (Netherlands)

    Berger, C.E.H.; Berger, C.E.H.; van der Werf, Kees; Kooyman, R.P.H.; de Grooth, B.G.; Greve, Jan

    1995-01-01

    Recently developed adhesion atomic force microscopy was used as a technique to map the spatial arrangement of chemical functional groups at a surface with a lateral resolution of 20 nm. The ratio of the adhesion forces for different functional groups can be compared with values determined from the

  11. Complement in patients receiving maintenance hemodialysis: functional screening and quantitative analysis

    Directory of Open Access Journals (Sweden)

    Horikoshi Satoshi

    2010-12-01

    Full Text Available Abstract Background The complement system is vital for innate immunity and is implicated in the pathogenesis of inflammatory diseases and the mechanism of host defense. Complement deficiencies occasionally cause life-threatening diseases. In hemodialysis (HD patients, profiles on complement functional activity and deficiency are still obscure. The objectives of the present study were to measure the functional complement activities of the classical pathway (CP, lectin pathway (LP and alternative pathway (AP using a novel method and consequently to elucidate the rates of deficiencies among HD patients. Methods In the present study, 244 HD patients at one dialysis center and 204 healthy controls were enrolled. Functional complement activities were measured simultaneously using the Wielisa®-kit. The combination of the results of these three pathway activities allows us to speculate which candidate complement is deficient; subsequently, the deficient complement was determined. Results All three functional complement activities were significantly higher in the HD patients than in the control group (P ®-kit, 16 sera (8.8% with mannose-binding lectin (MBL deficiency, 1 serum (0.4% with C4 deficiency, 1 serum (0.4% with C9 deficiency, and 1 serum (0.4% with B deficiency were observed in the HD group, and 18 sera (8.8% with MBL deficiency and 1 serum (0.5% with B deficiency were observed in the control group. There were no significant differences in the 5-year mortality rate between each complement-deficient group and the complement-sufficient group among the HD patients. Conclusion This is the first report that profiles complement deficiencies by simultaneous measurement of functional activities of the three complement pathways in HD patients. Hemodialysis patients frequently suffer from infections or malignancies, but functional complement deficiencies do not confer additional risk of mortality.

  12. The personal receiving document management and the realization of email function in OAS

    Science.gov (United States)

    Li, Biqing; Li, Zhao

    2017-05-01

    This software is an independent software system, suitable for small and medium enterprises, contains personal office, scientific research project management and system management functions, independently run in relevant environment, and to solve practical needs. This software is an independent software system, using the current popular B/S (browser/server) structure and ASP.NET technology development, using the Windows 7 operating system, Microsoft SQL Server2005 Visual2008 and database as a development platform, suitable for small and medium enterprises, contains personal office, scientific research project management and system management functions, independently run in relevant environment, and to solve practical needs.

  13. Renal function in patients with non-dialysis chronic kidney disease receiving intravenous ferric carboxymaltose

    DEFF Research Database (Denmark)

    Macdougall, Iain C; Bock, Andreas H; Carrera, Fernando

    2017-01-01

    BACKGROUND: Preclinical studies demonstrate renal proximal tubular injury after administration of some intravenous iron preparations but clinical data on renal effects of intravenous iron are sparse. METHODS: FIND-CKD was a 56-week, randomized, open-label, multicenter study in which patients...... with non-dialysis dependent chronic kidney disease (ND-CKD), anemia and iron deficiency without erythropoiesis-stimulating agent therapy received intravenous ferric carboxymaltose (FCM), targeting either higher (400-600 μg/L) or lower (100-200 μg/L) ferritin values, or oral iron. RESULTS: Mean (SD) e...... quartiles of FCM dose, change in ferritin or change in TSAT versus change in eGFR. Dialysis initiation was similar between groups. Renal adverse events were rare, with no indication of between-group differences. CONCLUSION: Intravenous FCM at doses that maintained ferritin levels of 100-200 μg/L or 400...

  14. Nuclear transverse sectional brain function imager

    International Nuclear Information System (INIS)

    Stoddart, H.F.

    1982-01-01

    A transverse radionuclide scan field imaging apparatus comprises a plurality of highly focused closely laterally adjacent collimators arranged inwardly focused in an array that surrounds a scan field of interest. Each collimator is moveable relative to its adjacent collimator. Means are provided for imparting travel to the collimators such that the focal point of each uniformly samples at least one half of the scan field

  15. Observational demonstration of a high image rejection SIS mixer receiver using a new waveguide filter at 230 GHz

    Science.gov (United States)

    Hasegawa, Yutaka; Asayama, Shinichiro; Harada, Ryohei; Tokuda, Kazuki; Kimura, Kimihiro; Ogawa, Hideo; Onishi, Toshikazu

    2017-12-01

    A new sideband separation method was developed for use in millimeter-/submillimeter-band radio receivers using a novel waveguide frequency separation filter (FSF), which consists of two branch line hybrid couplers and two waveguide high-pass filters. The FSF was designed to allow the radio frequency (RF) signal to pass through to an output port when the frequency is higher than a certain value (225 GHz), and to reflect the RF signal back to another output port when the frequency is lower. The FSF is connected to two double sideband superconductor-insulator-superconductor (SIS) mixers, and an image rejection ratio (IRR) is determined by the FSF characteristics. With this new sideband separation method, we can achieve good and stable IRR without the balancing two SIS mixers such as is necessary for conventional sideband-separating SIS mixers. To demonstrate the applicability of this method, we designed and developed an FSF for simultaneous observations of the J = 2-1 rotational transition lines of three CO isotopes (12CO, 13CO, and C18O): the 12CO line is in the upper sideband and the others are in the lower sideband with an intermediate-frequency range of 4-8 GHz at the radio frequency of 220/230 GHz. This FSF was then installed in the receiver system of the 1.85 m radio telescope of Osaka Prefecture University, and was used during the 2014 observation season. The observation results indicate that the IRR of the proposed receiver is 25 dB or higher for the 12CO line, and no significant fluctuation larger than 1 dB in the IRR was observed throughout the season. These results demonstrate the practical utility of the FSF receiver for observations like extensive molecular cloud surveys in specified lines with a fixed frequency setting.

  16. Efficacy of walking exercise in promoting cognitive-psychosocial functions in men with prostate cancer receiving androgen deprivation therapy

    Directory of Open Access Journals (Sweden)

    Lee C

    2012-07-01

    Full Text Available Abstract Background Prostate cancer is the most commonly diagnosed non-melanoma cancer among men. Androgen deprivation therapy (ADT has been the core therapy for men with advanced prostate cancer. It is only in recent years that clinicians began to recognize the cognitive-psychosocial side effects from ADT, which significantly compromise the quality of life of prostate cancer survivors. The objectives of the study are to determine the efficacy of a simple and accessible home-based, walking exercise program in promoting cognitive and psychosocial functions of men with prostate cancer receiving ADT. Methods A 6-month prospective, single-blinded, randomized controlled trial will be conducted to compare the Exercise Group with the Control Group. Twenty men with prostate cancer starting ADT will be recruited and randomly assigned to one of the two groups: the Exercise Group will receive instructions in setting up an individualized 6-month home-based, walking exercise program, while the Control Group will receive standard medical advice from the attending physician. The primary outcomes will be psychosocial and cognitive functions. Cognitive functions including memory, attention, working memory, and executive function will be assessed using a battery of neurocognitive tests at baseline and 6 months. Psychosocial functions including depression, anxiety and self-esteem will be assessed at baseline, 3 and 6 months using the Center for Epidemiological Studies Depression Scale, Spielberger State-Trait Anxiety Inventory, and Rosenberg Self-Esteem Scale. Discussion The significance of the cognitive-psychosocial side effects of ADT in men with prostate cancer has only been recently recognized, and the management remains unclear. This study addresses this issue by designing a simple and accessible home-based, exercise program that may potentially have significant impact on reducing the cognitive and psychosocial side effects of ADT, and ultimately

  17. Radioprotective Effect of Lidocaine on Function and Ultrastructure of Salivary Glands Receiving Fractionated Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hakim, Samer George, E-mail: samer.hakim@mkg-chir.mu-luebeck.de [Department of Oral and Maxillofacial Surgery, University of Luebeck, Luebeck (Germany); Benedek, Geza Attila [Department of Oral and Maxillofacial Surgery, University of Luebeck, Luebeck (Germany); Su Yuxiong [Department of Oral and Maxillofacial Surgery, University of Luebeck, Luebeck (Germany); Department of Oral and Maxillofacial Surgery, Sun Yat-Sen University, Guanghua School of Stomatology, Guanghua (China); Jacobsen, Hans Christian [Department of Oral and Maxillofacial Surgery, University of Luebeck, Luebeck (Germany); Klinger, Matthias [Institute of Anatomy, University of Luebeck, Luebeck (Germany); Dendorfer, Andreas [Institute of Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck (Germany); Hemmelmann, Claudia [Institute of Medical Biometry and Statistics, University of Luebeck, Luebeck (Germany); Meller, Birgit [Department of Radiology and Nuclear Medicine, University of Luebeck, Luebeck (Germany); Nadrowitz, Roger; Rades, Dirk [Department of Radiation Oncology, University of Luebeck, Luebeck (Germany); Sieg, Peter [Department of Oral and Maxillofacial Surgery, University of Luebeck, Luebeck (Germany)

    2012-03-15

    Purpose: Radiation-induced xerostomia still represents a common side effect after radiotherapy for head-and-neck malignancies. The aim of the present study was to examine the radioprotective effect of lidocaine hydrochloride during fractionated radiation in an experimental animal model. Methods and Materials: To evaluate the influence of different radiation doses on salivary gland function and the radioprotective effect of lidocaine, rabbits were irradiated with 15, 25, 30, and 35 Gy (equivalent doses in 2-Gy fractions equivalent to 24, 40, 48, and 56 Gy, respectively). Lidocaine hydrochloride (10 and 12 mg/kg) was administered before every radiation fraction in the treatment groups. Salivary gland function was assessed by flow sialometry and sialoscintigraphy, and the morphologic changes were evaluated using transmission electron microscopy. Results: Functional impairment was first observed after 35 Gy and pretreatment with lidocaine improved radiation tolerance of both parotid and submandibular glands. The use of 12 mg/kg lidocaine was superior and displayed significant radioprotection with regard to flow sialometry and sialoscintigraphy. The ultrastructure was largely preserved after pretreatment with both lidocaine doses. Conclusions: Lidocaine represents an effective radioprotective agent and a promising approach for clinical application to avoid radiation-induced functional impairment of salivary glands.

  18. Assessment of Cognitive Function in Breast Cancer and Lymphoma Patients Receiving Chemotherapy | Division of Cancer Prevention

    Science.gov (United States)

    Cognitive impairments in cancer patients represent an important clinical problem. Studies to date estimating prevalence of difficulties in memory, executive function, and attention deficits have been limited by small sample sizes and many have lacked healthy control groups. More information is needed on promising biomarkers and allelic variants that may help to determine the

  19. Radioprotective Effect of Lidocaine on Function and Ultrastructure of Salivary Glands Receiving Fractionated Radiation

    International Nuclear Information System (INIS)

    Hakim, Samer George; Benedek, Gèza Attila; Su Yuxiong; Jacobsen, Hans Christian; Klinger, Matthias; Dendorfer, Andreas; Hemmelmann, Claudia; Meller, Birgit; Nadrowitz, Roger; Rades, Dirk; Sieg, Peter

    2012-01-01

    Purpose: Radiation-induced xerostomia still represents a common side effect after radiotherapy for head-and-neck malignancies. The aim of the present study was to examine the radioprotective effect of lidocaine hydrochloride during fractionated radiation in an experimental animal model. Methods and Materials: To evaluate the influence of different radiation doses on salivary gland function and the radioprotective effect of lidocaine, rabbits were irradiated with 15, 25, 30, and 35 Gy (equivalent doses in 2-Gy fractions equivalent to 24, 40, 48, and 56 Gy, respectively). Lidocaine hydrochloride (10 and 12 mg/kg) was administered before every radiation fraction in the treatment groups. Salivary gland function was assessed by flow sialometry and sialoscintigraphy, and the morphologic changes were evaluated using transmission electron microscopy. Results: Functional impairment was first observed after 35 Gy and pretreatment with lidocaine improved radiation tolerance of both parotid and submandibular glands. The use of 12 mg/kg lidocaine was superior and displayed significant radioprotection with regard to flow sialometry and sialoscintigraphy. The ultrastructure was largely preserved after pretreatment with both lidocaine doses. Conclusions: Lidocaine represents an effective radioprotective agent and a promising approach for clinical application to avoid radiation-induced functional impairment of salivary glands.

  20. Pediatric applications of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Nolan R. [Miami Children' s Hospital, Department of Radiology, Miami, FL (United States); Bernal, Byron [Miami Children' s Hospital, Pediatric Neuroradiology, Miami, FL (United States)

    2015-09-15

    Pediatric functional MRI has been used for the last 2 decades but is now gaining wide acceptance in the preoperative workup of children with brain tumors and medically refractory epilepsy. This review covers pediatrics-specific difficulties such as sedation and task paradigm selection according to the child's age and cognitive level. We also illustrate the increasing uses of functional MRI in the depiction of cognitive function, neuropsychiatric disorders and response to pharmacological agents. Finally, we review the uses of resting-state fMRI in the evaluation of children and in the detection of epileptogenic regions. (orig.)

  1. Pediatric applications of functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Altman, Nolan R.; Bernal, Byron

    2015-01-01

    Pediatric functional MRI has been used for the last 2 decades but is now gaining wide acceptance in the preoperative workup of children with brain tumors and medically refractory epilepsy. This review covers pediatrics-specific difficulties such as sedation and task paradigm selection according to the child's age and cognitive level. We also illustrate the increasing uses of functional MRI in the depiction of cognitive function, neuropsychiatric disorders and response to pharmacological agents. Finally, we review the uses of resting-state fMRI in the evaluation of children and in the detection of epileptogenic regions. (orig.)

  2. Energy functionals for medical image segmentation: choices and consequences

    OpenAIRE

    McIntosh, Christopher

    2011-01-01

    Medical imaging continues to permeate the practice of medicine, but automated yet accurate segmentation and labeling of anatomical structures continues to be a major obstacle to computerized medical image analysis. Though there exists numerous approaches for medical image segmentation, one in particular has gained increasing popularity: energy minimization-based techniques, and the large set of methods encompassed therein. With these techniques an energy function must be chosen, segmentations...

  3. Depression of T lymphocyte function in chimpanzees receiving thymectomy and irradiation

    International Nuclear Information System (INIS)

    Gilbertsen, R.B.; Metzgar, R.S.

    1978-01-01

    In studies analogous to those in which the thymus dependency of immune functions in murine systems was determined, three chimpanzees were thymectomized, splenectomized, exposed to lethal doses of whole body x-irradiation with limited bone marrow shielding, and subsequently evaluated for lymphocyte markers and functions over a period of years. In the oldest animal studied (Irena, 7.2 years at surgery), the percentage of peripheral blood T cells decreased to about 60% of control values and remained at that level for approximately 1 1 / 2 years before returning to normal. In the two youngest chimpanzees T cell rosette values dropped to 15 to 40% of control values after irradiation. T cell percentages in one of these young chimpanzees returned to about 75% of the controls 2 1 / 2 years after x-irradiation. Phytohemagglutinin and concanavalin A mitogen responses were less affected in the oldest chimpanzee. However, even in the oldest animal, the responses to phytohemagglutinin and concanavalin A began to show a gradual and consistent decline 1 1 / 2 years after irradiation. Mixed leukocyte culture responsiveness was most affected by the experimental procedures, being greatly reduced in all three chimpanzees during varying time intervals. In general, the effects of the experimental procedures used to produce T cell deficiencies varied with the age of the chimpanzee at surgery, the time after irradiation when the animal was tested, and the lymphocyte marker or function studied

  4. Depression of T lymphocyte function in chimpanzees receiving thymectomy and irradiation. [X Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gilbertsen, R.B.; Metzgar, R.S.

    1978-03-01

    In studies analogous to those in which the thymus dependency of immune functions in murine systems was determined, three chimpanzees were thymectomized, splenectomized, exposed to lethal doses of whole body x-irradiation with limited bone marrow shielding, and subsequently evaluated for lymphocyte markers and functions over a period of years. In the oldest animal studied (Irena, 7.2 years at surgery), the percentage of peripheral blood T cells decreased to about 60% of control values and remained at that level for approximately 1/sup 1///sub 2/ years before returning to normal. In the two youngest chimpanzees T cell rosette values dropped to 15 to 40% of control values after irradiation. T cell percentages in one of these young chimpanzees returned to about 75% of the controls 2/sup 1///sub 2/ years after x-irradiation. Phytohemagglutinin and concanavalin A mitogen responses were less affected in the oldest chimpanzee. However, even in the oldest animal, the responses to phytohemagglutinin and concanavalin A began to show a gradual and consistent decline 1/sup 1///sub 2/ years after irradiation. Mixed leukocyte culture responsiveness was most affected by the experimental procedures, being greatly reduced in all three chimpanzees during varying time intervals. In general, the effects of the experimental procedures used to produce T cell deficiencies varied with the age of the chimpanzee at surgery, the time after irradiation when the animal was tested, and the lymphocyte marker or function studied.

  5. Cocaine: from addiction to functional imaging

    International Nuclear Information System (INIS)

    Tamgac, F.; Baillet, G.; Moretti, J.L.; Tikofski, R.

    1997-01-01

    Cocaine is wrongly held as a benign recreative drug whereas it is a highly addictive substance with possible dreadful cardiac a neurologic complications. Cocaine abuse results in patchy cerebral hypoperfusion and hypo-metabolism, clearly demonstrated by PET and SPECT imaging. Improvement after drug withdrawal is still unclear. Cocaine binds with a very high affinity to the dopamine reuptake transporter. Labelled cocaine congeners can be used to assess dopaminergic pathways, especially nigrostriatal neurons that play a key role in movement control. 123 I labelled beta-CIT can reproducibly be used to measure dopamine transporter density in the striatum, in one day. This approach seems very promising. (authors)

  6. Crustal thickness variations in the Zagros continental collision zone (Iran) from joint inversion of receiver functions and surface wave dispersion

    Science.gov (United States)

    Tatar, M.; Nasrabadi, A.

    2013-10-01

    Variations in crustal thickness in the Zagros determined by joint inversion of P wave receiver functions (RFs) and Rayleigh wave group and phase velocity dispersion. The time domain iterative deconvolution procedure was employed to compute RFs from teleseismic recordings at seven broadband stations of INSN network. Rayleigh wave phase velocity dispersion curves were estimated employing two-station method. Fundamental mode Rayleigh wave group velocities for each station is taken from a regional scale surface wave tomographic imaging. The main variations in crustal thickness that we observe are between stations located in the Zagros fold and thrust belt with those located in the Sanandaj-Sirjan zone (SSZ) and Urumieh-Dokhtar magmatic assemblage (UDMA). Our results indicate that the average crustal thickness beneath the Zagros Mountain Range varies from ˜46 km in Western and Central Zagros beneath SHGR and GHIR up to ˜50 km beneath BNDS located in easternmost of the Zagros. Toward NE, we observe an increase in Moho depth where it reaches ˜58 km beneath SNGE located in the SSZ. Average crustal thickness also varies beneath the UDMA from ˜50 km in western parts below ASAO to ˜58 in central parts below NASN. The observed variation along the SSZ and UDMA may be associated to ongoing slab steepening or break off in the NW Zagros, comparing under thrusting of the Arabian plate beneath Central Zagros. The results show that in Central Iran, the crustal thickness decrease again to ˜47 km below KRBR. There is not a significant crustal thickness difference along the Zagros fold and thrust belt. We found the same crystalline crust of ˜34 km thick beneath the different parts of the Zagros fold and thrust belt. The similarity of crustal structure suggests that the crust of the Zagros fold and thrust belt was uniform before subsidence and deposition of the sediments. Our results confirm that the shortening of the western and eastern parts of the Zagros basement is small and

  7. Unraveling the tectonic history of northwest Africa: Insights from shear-wave splitting, receiver functions, and geodynamic modeling

    Science.gov (United States)

    Miller, M. S.; Becker, T. W.; Allam, A. A.; Alpert, L. A.; Di Leo, J. F.; Wookey, J. M.

    2013-12-01

    The complex tectonic history and orogenesis in the westernmost Mediterranean are primarily due to Cenozoic convergence of Africa with Eurasia. The Gibraltar system, which includes the Rif Mountains of Morocco and the Betics in Spain, forms a tight arc around the Alboran Basin. Further to the south the Atlas Mountains of Morocco, an example of an intracontinental fold and thrust belt, display only modest tectonic shortening, yet have unusually high topography. To the south of the Atlas, the anti-Atlas is the oldest mountain range in the region, has the lowest relief, and extends toward the northern extent of the West African Craton. To help unravel the regional tectonics, we use new broadband seismic data from 105 stations across the Gibraltar arc into southern Morocco. We use shear wave splitting analysis for a deep (617 km) local S event and over 230 SKS events to infer azimuthal seismic anisotropy and we image the lithospheric structure with receiver functions. One of the most striking discoveries from these methods is evidence for localized, near vertical-offset deformation of both crust-mantle and lithosphere-asthenosphere interfaces at the flanks of the High Atlas. These offsets coincide with the locations of Jurassic-aged normal faults that were reactivated during the Cenozoic. This suggests that these lithospheric-scale discontinuities were involved in the formation of the Atlas and are still active. Shear wave splitting results show that the inferred stretching axes are aligned with the highest topography in the Atlas, suggesting asthenospheric shearing in mantle flow guided by lithospheric topography. Geodynamic modeling shows that the inferred seismic anisotropy may be produced by the interaction of mantle flow with the subducted slab beneath the Alboran, the West African Craton, and the thinned lithosphere beneath the Atlas. Isostatic modeling based on these lithospheric structure estimates indicates that lithospheric thinning alone does not explain the

  8. Methods of filtering the graph images of the functions

    Directory of Open Access Journals (Sweden)

    Олександр Григорович Бурса

    2017-06-01

    Full Text Available The theoretical aspects of cleaning raster images of scanned graphs of functions from digital, chromatic and luminance distortions by using computer graphics techniques have been considered. The basic types of distortions characteristic of graph images of functions have been stated. To suppress the distortion several methods, providing for high-quality of the resulting images and saving their topological features, were suggested. The paper describes the techniques developed and improved by the authors: the method of cleaning the image of distortions by means of iterative contrasting, based on the step-by-step increase in image contrast in the graph by 1%; the method of small entities distortion restoring, based on the thinning of the known matrix of contrast increase filter (the allowable dimensions of the nucleus dilution radius convolution matrix, which provide for the retention of the graph lines have been established; integration technique of the noise reduction method by means of contrasting and distortion restoring method of small entities with known σ-filter. Each method in the complex has been theoretically substantiated. The developed methods involve treatment of graph images as the entire image (global processing and its fragments (local processing. The metrics assessing the quality of the resulting image with the global and local processing have been chosen, the substantiation of the choice as well as the formulas have been given. The proposed complex methods of cleaning the graphs images of functions from grayscale image distortions is adaptive to the form of an image carrier, the distortion level in the image and its distribution. The presented results of testing the developed complex of methods for a representative sample of images confirm its effectiveness

  9. Establishment of frame image in dynamic function renal studies

    International Nuclear Information System (INIS)

    Guedes, Germano P.; Brunetto, Sergio Q.

    1996-01-01

    Statistical procedures applied to a set of images of renal function study are described to define a region of interest (ROI) on the kidneys's contours. The kidneys geometry is considered to adapt to the emitting area in every frames

  10. Restoration and functional analysis of nuclear medicine images

    International Nuclear Information System (INIS)

    Wendt, R.E. III.

    1982-01-01

    The nuclear medicine physician uses visual interpretation of a movie-like display of the beating human heart to detect wall motion abnormalities which might be related to impaired cardiac function. The present work is directed toward extracting more information from the heart motion study, and presenting it in a useful manner. A spatially adaptive smoothing routine using a quadtree image representation gives an improvement in mean squared error compared to the S9 smoother commonly used for nuclear medicine studies. Functional images show the two-dimensional distribution of parameters of the heart motion. The most popular, the first harmonic phase functional image, formed from the first Fourier harmonic fit to each pixel time-activity curve, is subject to significant artifacts which make a simple interpretation of it difficult. A multi-harmonic approximation is more accurate and offers a wealth of unique parameters with which to construct more directly meaningful functional images

  11. Functional magnetic resonance imaging of the primary motor cortex

    Indian Academy of Sciences (India)

    Functional magnetic resonance imaging (fMRI) studies have been performed on 20 right handed volunteers at 1.5 Tesla using echo planar imaging (EPI) protocol. Index finger tapping invoked localized activation in the primary motor area. Consistent and highly reproducible activation in the primary motor area was observed ...

  12. Crustal structure beneath two seismic stations in the Sunda-Banda arc transition zone derived from receiver function analysis

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, E-mail: hadda9@gmail.com [Graduate Research on Earthquake and Active Tectonics (GREAT), Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40132 (Indonesia); Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Kompleks Puspiptek Serpong, Tangsel 15314, Banten Indonesia (Indonesia); Hananto, Nugroho D.; Handayani, Lina [Research Centre for Geotechnology - Indonesian Institute of Sciences (LIPI), Jl. Sangkuriang (Kompleks LIPI) Bandung 40135 (Indonesia); Puspito, Nanang T; Yudistira, Tedi [Faculty of Mining and Petroleum Engineering ITB, Jalan Ganesha 10, Bandung 40132 (Indonesia); Anggono, Titi [Research Centre for Physics - Indonesian Institute of Sciences (LIPI), Kompleks Puspiptek Serpong, Tangsel 15314, Banten Indonesia (Indonesia)

    2015-04-24

    We analyzed receiver functions to estimate the crustal thickness and velocity structure beneath two stations of Geofon (GE) network in the Sunda-Banda arc transition zone. The stations are located in two different tectonic regimes: Sumbawa Island (station PLAI) and Timor Island (station SOEI) representing the oceanic and continental characters, respectively. We analyzed teleseismic events of 80 earthquakes to calculate the receiver functions using the time-domain iterative deconvolution technique. We employed 2D grid search (H-κ) algorithm based on the Moho interaction phases to estimate crustal thickness and Vp/Vs ratio. We also derived the S-wave velocity variation with depth beneath both stations by inverting the receiver functions. We obtained that beneath station PLAI the crustal thickness is about 27.8 km with Vp/Vs ratio 2.01. As station SOEI is covered by very thick low-velocity sediment causing unstable solution for the inversion, we modified the initial velocity model by adding the sediment thickness estimated using high frequency content of receiver functions in H-κ stacking process. We obtained the crustal thickness is about 37 km with VP/Vs ratio 2.2 beneath station SOEI. We suggest that the high Vp/Vs in station PLAI may indicate the presence of fluid ascending from the subducted plate to the volcanic arc, whereas the high Vp/Vs in station SOEI could be due to the presence of sediment and rich mafic composition in the upper crust and possibly related to the serpentinization process in the lower crust. We also suggest that the difference in velocity models and crustal thicknesses between stations PLAI and SOEI are consistent with their contrasting tectonic environments.

  13. Development of a bowel function assessment tool to measure bowel function in patients receiving radiation and/or chemotherapy

    International Nuclear Information System (INIS)

    Throckmorton, Terry; Janjan, Nora; Bisanz, Annette; Pearce, Ann Nette; Bevins, Melinda; DeFord, Linda; Skibber, John; Abbruzzese, James; Rich, Tyvin

    1997-01-01

    PURPOSE/OBJECTIVE: One of the goals in the treatment of gastrointestinal tract malignancies is to preserve normal bowel function. Evaluation of bowel function to date, however, has been highly subjective and restricted in definition. Presented is a tool that has been validated for use as a more specific assessment of bowel function after therapeutic intervention. MATERIALS AND METHODS: The Bowel Function Self Assessment Tool [BFSAT] was developed from descriptive data obtained from cancer patients who presented with problems related to bowel function. The BFSAT and FACT-C scale were administered to 134 patients with colorectal cancer. Prior treatment had included radiation, administered either alone or in combination with chemotherapy, following surgical resection. RESULTS: Content validity was achieved through the multimodality review panel process. Based on descriptors provided by patients, publications and a multimodality review panel who screened the items for clarity and content, 29 of the initial 40 items were unanimously agreed upon and included in the questionnaire. A correlation of 0.51, which is significant beyond the 0.001 level, was obtained between the BFSAT and the FACT-C, indicating strong concurrent validity. The internal consistency and reliability was confirmed by coefficient alpha levels of 0.85, which matched the 0.85 coefficient alpha level for the FACT-C scale in this population. Factor analysis will be conducted when a larger sample size is available. CONCLUSION: Baseline reliability and validity have been established for the BFSAT. The BFSAT shows strong correlation with the FACT-C scale. Providing information regarding function and clinical outcome, the BFSAT complements the FACT-C in the evaluation of quality of life parameters among patients with colorectal cancer

  14. Brain atlas for functional imaging. Clinical and research applications

    International Nuclear Information System (INIS)

    Nowinski, W.L.; Thirunavuukarasuu, A.; Kennedy, D.N

    2001-01-01

    This CD-ROM: Allows anatomical and functional images to be loaded and registered. Enables interactive placement of the Talairach landmarks in 3D Space. Provides automatic data-to-atlas warping based on the Talairaich proportional gridsystem transformation. Real-time interactive warping for fine tuning is also available. Allows the user to place marks on the activation loci in the warped functional images, display these marks with the atlas, and edit them in three planes. Mark placement is assisted by image thresholding. Provides simultaneous display of the atlas, anatomical image and functional image within one interactively blended image. Atlas-data blending and anatomical-functional image blending are controlled independently. Labels the data by means of the atlas. The atlas can be flipped left/right so that Brodmann's areas and gyri can be labeled on both hemispheres. Provides additional functions such as friendly navigation, cross-referenced display, readout of the Talairach coordinates and intensities, load coordinates, save, on-line help. (orig.)

  15. Brain atlas for functional imaging. Clinical and research applications

    Energy Technology Data Exchange (ETDEWEB)

    Nowinski, W.L.; Thirunavuukarasuu, A.; Kennedy, D.N

    2001-07-01

    This CD-ROM: Allows anatomical and functional images to be loaded and registered. Enables interactive placement of the Talairach landmarks in 3D Space. Provides automatic data-to-atlas warping based on the Talairaich proportional gridsystem transformation. Real-time interactive warping for fine tuning is also available. Allows the user to place marks on the activation loci in the warped functional images, display these marks with the atlas, and edit them in three planes. Mark placement is assisted by image thresholding. Provides simultaneous display of the atlas, anatomical image and functional image within one interactively blended image. Atlas-data blending and anatomical-functional image blending are controlled independently. Labels the data by means of the atlas. The atlas can be flipped left/right so that Brodmann's areas and gyri can be labeled on both hemispheres. Provides additional functions such as friendly navigation, cross-referenced display, readout of the Talairach coordinates and intensities, load coordinates, save, on-line help. (orig.)

  16. DRAGON score predicts functional outcomes in acute ischemic stroke patients receiving both intravenous tissue plasminogen activator and endovascular therapy.

    Science.gov (United States)

    Wang, Arthur; Pednekar, Noorie; Lehrer, Rachel; Todo, Akira; Sahni, Ramandeep; Marks, Stephen; Stiefel, Michael F

    2017-01-01

    The DRAGON score, which includes clinical and computed tomographic (CT) scan parameters, predicts functional outcomes in ischemic stroke patients treated with intravenous tissue plasminogen activator (IV tPA). We assessed the utility of the DRAGON score in predicting functional outcome in stroke patients receiving both IV tPA and endovascular therapy. A retrospective chart review of patients treated at our institution from February 2009 to October 2015 was conducted. All patients with computed tomography angiography (CTA) proven large vessel occlusions (LVO) who underwent intravenous thrombolysis and endovascular therapy were included. Baseline DRAGON scores and modified Rankin Score (mRS) at the time of hospital discharge was calculated. Good outcome was defined as mRS ≤3. Fifty-eight patients with LVO of the anterior circulation were studied. The mean DRAGON score of patients on admission was 5.3 (range, 3-8). All patients received IV tPA and endovascular therapy. Multivariate analysis demonstrated that DRAGON scores ≥7 was associated with higher mRS ( P DRAGON scores ≤6. Patients with DRAGON scores of 7 and 8 on admission had a mortality rate of 3.8% and 40%, respectively. The DRAGON score can help predict better functional outcomes in ischemic stroke patients receiving both IV tPA and endovascular therapy. This data supports the use of the DRAGON score in selecting patients who could potentially benefit from more invasive therapies such as endovascular treatment. Larger prospective studies are warranted to further validate these results.

  17. Relationship between radiation dose and lung function in patients with lung cancer receiving radiotherapy

    International Nuclear Information System (INIS)

    Harsaker, V.; Dale, E.; Bruland, O.S.; Olsen, D.R.

    2003-01-01

    In patients with inoperable non-small cell lung cancer (NSCLC), radical radiotherapy is the treatment of choice. The dose is limited by consequential pneumonitis and lung fibrosis. Hence, a better understanding of the relationship between the dose-volume distributions and normal tissue side effects is needed. CT is a non-invasive method to monitor the development of fibrosis and pneumonitis, and spirometry is an established tool to measure lung function. NSCLC patients were included in a multicenter trial and treated with megavoltage conformal radiotherapy. In a subgroup comprising 16 patients, a total dose of 59-63 Gy with 1.8-1.9 Gy per fraction was given. Dose-volume histograms were calculated and corrected according to the linear-quadratic formula using alpha/beta=3 Gy. The patients underwent repetitive CT examinations (mean follow-up, 133 days) following radiotherapy, and pre and post treatment spirometry (mean follow-up, 240 days). A significant correlation was demonstrated between local lung dose and changes in CT numbers >30 days after treatment (p 40 Gy Gy there was a sudden increase in CT numbers at 70-90 days. Somewhat unexpectedly, the highest mean lung doses were found in patients with the least reductions in lung function (peak expiratory flow; p<0.001). The correlation between CT numbers, radiation dose and time after treatment show that CT may be used to monitor development of lung fibrosis/pneumonitis after radiotherapy for lung cancer. Paradoxically, the patients with the highest mean lung doses experienced the minimum deterioration of lung function. This may be explained by reduction in the volume of existing tumour masses obstructing the airways, leading to relief of symptoms. This finding stresses the role of radiotherapy for lung cancer, especially where the treatment aim is palliative

  18. Imaging and assessment of placental function.

    LENUS (Irish Health Repository)

    Moran, Mary

    2011-09-01

    The placenta is the vital support organ for the developing fetus. This article reviews current ultrasound (US) methods of assessing placental function. The ability of ultrasound to detect placental pathology is discussed. Doppler technology to investigate the fetal, placental, and maternal circulations in both high-risk and uncomplicated pregnancies is discussed and the current literature on the value of three-dimensional power Doppler studies to assess placental volume and vascularization is also evaluated. The article highlights the need for further research into three-dimensional ultrasound and alternative methods of placental evaluation if progress is to be made in optimizing placental function assessment.

  19. Functional MR imaging of the patellofemoral joint

    International Nuclear Information System (INIS)

    Muhle, C.; Brossmann, J.; Heller, M.

    1995-01-01

    Conventional X-ray examinations of the patellofemoral joint in 30 , 60 and 90 of knee flexion demonstrate the position of the patella. On the other hand, they have been shown to be insufficient for the diagnosis of patellofemoral maltracking in the critical range between 30 of flexion and full extension. Motion-triggered and ultrafast MRI offer new possibilities for functional diagnosis of the patellofemoral joint under active knee motion. Functional MRI of the patellofemoral joint is suggested as an alternative to arthroscopy, particularly in patients with anterior knee pain or suspected patellar maltracking. (orig.) [de

  20. Supplementary value of functional imaging in forensic medicine.

    Science.gov (United States)

    Mirzaei, Siroos; Sonneck-Koenne, Charlotte; Bruecke, Thomas; Aryana, Kamran; Knoll, Peter; Zakavi, Rasoul

    2012-01-01

    The aim of this study is to evaluate the role of functional imaging for forensic purposes. We reviewed a few outpatient cases that were sent to our department for examination after traumatic events and one case with neuropsychic disturbances. Functional imaging showed signs of traumatic lesions in the skeletal system, of brain metabolism and of renal failure. Functional disturbances following traumatic events are in some cases more important than morphological abnormalities. Targeted scintigraphic examinations could be applied for visualisation of traumatic lesions or evaluation of functional disturbances caused by traumatic events. These examinations can be used as evidence in the courtroom.

  1. Hematological alterations and thymic function in newborns of HIV-infected mothers receiving antiretroviral drugs.

    Science.gov (United States)

    Wongnoi, Rotjanee; Penvieng, Nawaporn; Singboottra, Panthong; Kingkeow, Doungnapa; Oberdorfer, Peninnah; Sirivatanapa, Pannee; Pornprasert, Sakorn

    2013-06-08

    To investigate the effects of antiretroviral (ARV) drugs on hematological parameters and thymic function in HIV-uninfected newborns of HIV-infected mothers. Cross sectional study. Chiang-Mai University Hospital, Chiang-Mai, Thailand. 49 HIV-uninfected and 26 HIV-infected pregnancies. Cord blood samples of newborns from HIV-uninfected and HIV-infected mothers were collected. Hematological parameters were measured using automatic blood cell count. T-cell receptor excision circles (TRECs) levels in cord blood mononuclear cells (CBMCs), CD4+ and CD8+ T-cells were quantified using real-time PCR.. Hemotological parameters and thymic function. Newborn of HIV-infected mother tended to have lower mean levels of hemoglobin than those of HIV-uninfected mother (137 ±22 vs 146 ±17 g/L, P = 0.05). Furthermore, mean of red blood cell (RBC) counts and hematocrit and median of TRECs in CD4+ T-cells in the newborns of the former were significantly lower than those of the latter [3.6 ±0.7 vs 4.8 ±0.6 x 1012 cells/L, P cells) in HIV-uninfected newborns of HIV-infected mothers.

  2. The functional improvement and reduction of operators' work at LNG receiving terminal

    International Nuclear Information System (INIS)

    Tomiyama, H.

    1997-01-01

    The Tokyo Gas Negishi Terminal has undergone a series of major changes since starting operation in 1966, including a change in the main feedstock from oil to LNG, and expansion of processing volume and scale. Control of the terminal has been in the form of centralized control and monitoring from a central control room. High technical levels have been maintained, this being one of the first terminals to adopt direct digital control (DDC) as the technology became available. In 1995, a distributed control system (DCS) was introduced as part of a large-scale redevelopment project at the Negishi Terminal, extending the scope of operations and monitoring by operators by full automation of controls, and improvement of functions including integration and upgrading of monitoring. The result has been a significant reduction in the workload on operators. The installation of these functions required further investment of around 1 billion yen, in addition to the cost of renewal of the facility. In spite of the major expansion of the range of facilities under control, the number of operators working 24-hours shifts has been reduced, and over 15 years cost reductions equivalent to around twice the investment cost are expected to be made. (au)

  3. T1 weighted brain images at 7 Tesla unbiased for Proton Density, T2* contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization.

    Science.gov (United States)

    Van de Moortele, Pierre-François; Auerbach, Edwards J; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen

    2009-06-01

    At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as "intensity field bias". Such inhomogeneities mostly originate from heterogeneous RF coil B(1) profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T(1)-weighted (T(1)w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T(1) weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T(1) contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B(1) variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B(1) profiles become more heterogeneous. Another characteristic of T(1)w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T(2)(*) contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T(1)w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T(2)(*) contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 T, provide higher T(1) contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help in identifying small brain structures and that T(2)(*) induced artifacts can be removed from the images. The resulting unbiased T(1)w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T(1)w structural images. In addition

  4. T1 weighted Brain Images at 7 Tesla Unbiased for Proton Density, T2* contrast and RF Coil Receive B1 Sensitivity with Simultaneous Vessel Visualization

    Science.gov (United States)

    Van de Moortele, Pierre-François; Auerbach, Edwards J.; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen

    2009-01-01

    At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as “intensity field bias”. Such inhomogeneities mostly originate from heterogeneous RF coil B1 profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T1-weighted (T1w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T1 weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T1 contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B1 variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B1 profiles become more heterogeneous. Another characteristic of T1w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T2* contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T1w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T2* contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 Tesla, provide higher T1 contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help identifying small brain structures and that T2* induced artifacts can be removed from the images. The resulting unbiased T1w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T1w structural images. In addition, we introduce a simple technique

  5. Rate and Time of Ovarian Function Restoration in Menopausal Breast Cancer Patients Who Received Letrozole Following Chemotherapy

    Directory of Open Access Journals (Sweden)

    Shapour Omidvari

    2015-01-01

    Full Text Available Background: The present study aimed to investigate the rate and time of ovarian function restoration in breast cancer patients between 40 and 60 years of age who were in menopause (biochemically documented and received letrozole after chemotherapy. We intended to further clarify the management strategy for breast cancer patients with different menopausal status. Methods: We prospectively measured the effects of replacing tamoxifen with letrozole on ovarian function recovery in 90 women from two age groups (40-50 and 51-60 years. All had breast cancer and were treated by chemotherapy. Patients had laboratory documentation of menopause (FSH >40 mIU/ml and estradiol <20 pg/mL. Patients did not have menstruation for at least one year. Study patients received letrozole. At three month intervals, we checked their FSH and estradiol levels. Results:At three months after beginning letrozole, 12 patients in the younger age group had laboratory ovarian function restoration, among which three had vaginal bleeding. In the older group, 8 patients had increased estradiol levels; however, there was no evidence of vaginal bleeding in this group. At 6, 9 and 12 months, no ovarian function restoration was seen in the older group. However in younger patients, 4 had laboratory evidence of ovarian function restoration at 6 months, 2 at 9 months and 1 patient showed laboratory ovarian function restoration at 12 months of follow-up. Totally, there was a significant difference in the occurrence of ovarian function restoration between the two groups (P=0.03. Conclusion: A remarkable portion of women with chemotherapy-induced amenorrhea may develop ovarian function restoration. Therefore, endocrine therapy using aromatase inhibitors in patients with chemotherapy-induced amenorrhea should be followed by a regular hormonal study.

  6. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments

    Science.gov (United States)

    González-Plaza, Juan J.; Šimatović, Ana; Milaković, Milena; Bielen, Ana; Wichmann, Fabienne; Udiković-Kolić, Nikolina

    2018-01-01

    Environments polluted by direct discharges of effluents from antibiotic manufacturing are important reservoirs for antibiotic resistance genes (ARGs), which could potentially be transferred to human pathogens. However, our knowledge about the identity and diversity of ARGs in such polluted environments remains limited. We applied functional metagenomics to explore the resistome of two Croatian antibiotic manufacturing effluents and sediments collected upstream of and at the effluent discharge sites. Metagenomic libraries built from an azithromycin-production site were screened for resistance to macrolide antibiotics, whereas the libraries from a site producing veterinary antibiotics were screened for resistance to sulfonamides, tetracyclines, trimethoprim, and beta-lactams. Functional analysis of eight libraries identified a total of 82 unique, often clinically relevant ARGs, which were frequently found in clusters and flanked by mobile genetic elements. The majority of macrolide resistance genes identified from matrices exposed to high levels of macrolides were similar to known genes encoding ribosomal protection proteins, macrolide phosphotransferases, and transporters. Potentially novel macrolide resistance genes included one most similar to a 23S rRNA methyltransferase from Clostridium and another, derived from upstream unpolluted sediment, to a GTPase HflX from Emergencia. In libraries deriving from sediments exposed to lower levels of veterinary antibiotics, we found 8 potentially novel ARGs, including dihydrofolate reductases and beta-lactamases from classes A, B, and D. In addition, we detected 7 potentially novel ARGs in upstream sediment, including thymidylate synthases, dihydrofolate reductases, and class D beta-lactamase. Taken together, in addition to finding known gene types, we report the discovery of novel and diverse ARGs in antibiotic-polluted industrial effluents and sediments, providing a qualitative basis for monitoring the dispersal of ARGs

  7. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments

    Directory of Open Access Journals (Sweden)

    Juan J. González-Plaza

    2018-01-01

    Full Text Available Environments polluted by direct discharges of effluents from antibiotic manufacturing are important reservoirs for antibiotic resistance genes (ARGs, which could potentially be transferred to human pathogens. However, our knowledge about the identity and diversity of ARGs in such polluted environments remains limited. We applied functional metagenomics to explore the resistome of two Croatian antibiotic manufacturing effluents and sediments collected upstream of and at the effluent discharge sites. Metagenomic libraries built from an azithromycin-production site were screened for resistance to macrolide antibiotics, whereas the libraries from a site producing veterinary antibiotics were screened for resistance to sulfonamides, tetracyclines, trimethoprim, and beta-lactams. Functional analysis of eight libraries identified a total of 82 unique, often clinically relevant ARGs, which were frequently found in clusters and flanked by mobile genetic elements. The majority of macrolide resistance genes identified from matrices exposed to high levels of macrolides were similar to known genes encoding ribosomal protection proteins, macrolide phosphotransferases, and transporters. Potentially novel macrolide resistance genes included one most similar to a 23S rRNA methyltransferase from Clostridium and another, derived from upstream unpolluted sediment, to a GTPase HflX from Emergencia. In libraries deriving from sediments exposed to lower levels of veterinary antibiotics, we found 8 potentially novel ARGs, including dihydrofolate reductases and beta-lactamases from classes A, B, and D. In addition, we detected 7 potentially novel ARGs in upstream sediment, including thymidylate synthases, dihydrofolate reductases, and class D beta-lactamase. Taken together, in addition to finding known gene types, we report the discovery of novel and diverse ARGs in antibiotic-polluted industrial effluents and sediments, providing a qualitative basis for monitoring the

  8. Functional magnetic resonance imaging and dementia

    International Nuclear Information System (INIS)

    Giesel, F.L.; Hempel, A.; Schoenknecht, P.; Schroeder, J.; Wuestenberg, T.; Weber, M.A.; Essig, M.

    2003-01-01

    Currently, different cerebral neuroimaging methods are being applied to varying questions in the diagnosis of dementia. In patients with manifest Alzheimer's disease a reduction of cortical perfusion and metabolism in temporal and temporoparietal regions has been demonstrated when compared to healthy controls on a diversity of memory tasks. Since differing levels of performance and varying degrees of cortical atrophy may influence functional results considerably, an understanding of the processes associated with normal ageing is perceived as prerequisite for studies applying functional neuroimaging. The integration of knowledge concerning neuropsychological and neurobiological alterations associated with healthy ageing allows hypotheses for the differentiation of pathological ageing processes to be phrased. In this connection non-invasive methods such as fMRI and ASL are of increasing importance. (orig.) [de

  9. Imaging strategies using focusing functions with applications to a North Sea field

    Science.gov (United States)

    da Costa Filho, C. A.; Meles, G. A.; Curtis, A.; Ravasi, M.; Kritski, A.

    2018-04-01

    Seismic methods are used in a wide variety of contexts to investigate subsurface Earth structures, and to explore and monitor resources and waste-storage reservoirs in the upper ˜100 km of the Earth's subsurface. Reverse-time migration (RTM) is one widely used seismic method which constructs high-frequency images of subsurface structures. Unfortunately, RTM has certain disadvantages shared with other conventional single-scattering-based methods, such as not being able to correctly migrate multiply scattered arrivals. In principle, the recently developed Marchenko methods can be used to migrate all orders of multiples correctly. In practice however, using Marchenko methods are costlier to compute than RTM—for a single imaging location, the cost of performing the Marchenko method is several times that of standard RTM, and performing RTM itself requires dedicated use of some of the largest computers in the world for individual data sets. A different imaging strategy is therefore required. We propose a new set of imaging methods which use so-called focusing functions to obtain images with few artifacts from multiply scattered waves, while greatly reducing the number of points across the image at which the Marchenko method need be applied. Focusing functions are outputs of the Marchenko scheme: they are solutions of wave equations that focus in time and space at particular surface or subsurface locations. However, they are mathematical rather than physical entities, being defined only in reference media that equal to the true Earth above their focusing depths but are homogeneous below. Here, we use these focusing functions as virtual source/receiver surface seismic surveys, the upgoing focusing function being the virtual received wavefield that is created when the downgoing focusing function acts as a spatially distributed source. These source/receiver wavefields are used in three imaging schemes: one allows specific individual reflectors to be selected and imaged

  10. Estimated cumulative radiation dose received by diagnostic imaging during staging and treatment of operable Ewing sarcoma 2005-2012

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Boel [Haukeland University Hospital, Centre for Nuclear Medicine and PET, Department of Radiology, P.O. Box 1400, Bergen (Norway); Fasmer, Kristine Eldevik [Haukeland University Hospital, Department of Oncology, Medical Physics Section, Bergen (Norway); Boye, Kjetil [Norwegian Radium Hospital, Oslo University Hospital, Department of Oncology, Oslo (Norway); Rosendahl, Karen; Aukland, Stein Magnus [Haukeland University Hospital, Department of Radiology, Paediatric Section, Bergen (Norway); University of Bergen, Department of Clinical Medicine, Bergen (Norway); Trovik, Clement [University of Bergen, Department of Clinical Medicine, Bergen (Norway); Haukeland University Hospital, Department of Surgery, Orthopaedic Section, Bergen (Norway); Biermann, Martin [Haukeland University Hospital, Centre for Nuclear Medicine and PET, Department of Radiology, P.O. Box 1400, Bergen (Norway); University of Bergen, Department of Clinical Medicine, Bergen (Norway)

    2017-01-15

    Patients with Ewing sarcoma are subject to various diagnostic procedures that incur exposure to ionising radiation. To estimate the radiation doses received from all radiologic and nuclear imaging episodes during diagnosis and treatment, and to determine whether {sup 18}F-fluorodeoxyglucose positron emission tomography - computed tomography ({sup 18}F-FDG PET-CT) is a major contributor of radiation. Twenty Ewing sarcoma patients diagnosed in Norway in 2005-2012 met the inclusion criteria (age <30 years, operable disease, uncomplicated chemotherapy and surgery, no metastasis or residual disease within a year of diagnosis). Radiation doses from all imaging during the first year were calculated for each patient. The mean estimated cumulative radiation dose for all patients was 34 mSv (range: 6-70), radiography accounting for 3 mSv (range: 0.2-12), CT for 13 mSv (range: 2-28) and nuclear medicine for 18 mSv (range: 2-47). For the patients examined with PET-CT, the mean estimated cumulative effective dose was 38 mSv, of which PET-CT accounted for 14 mSv (37%). There was large variation in number and type of examinations performed and also in estimated cumulative radiation dose. The mean radiation dose for patients examined with PET-CT was 23% higher than for patients not examined with PET-CT. (orig.)

  11. Estimated cumulative radiation dose received by diagnostic imaging during staging and treatment of operable Ewing sarcoma 2005-2012

    International Nuclear Information System (INIS)

    Johnsen, Boel; Fasmer, Kristine Eldevik; Boye, Kjetil; Rosendahl, Karen; Aukland, Stein Magnus; Trovik, Clement; Biermann, Martin

    2017-01-01

    Patients with Ewing sarcoma are subject to various diagnostic procedures that incur exposure to ionising radiation. To estimate the radiation doses received from all radiologic and nuclear imaging episodes during diagnosis and treatment, and to determine whether 18 F-fluorodeoxyglucose positron emission tomography - computed tomography ( 18 F-FDG PET-CT) is a major contributor of radiation. Twenty Ewing sarcoma patients diagnosed in Norway in 2005-2012 met the inclusion criteria (age <30 years, operable disease, uncomplicated chemotherapy and surgery, no metastasis or residual disease within a year of diagnosis). Radiation doses from all imaging during the first year were calculated for each patient. The mean estimated cumulative radiation dose for all patients was 34 mSv (range: 6-70), radiography accounting for 3 mSv (range: 0.2-12), CT for 13 mSv (range: 2-28) and nuclear medicine for 18 mSv (range: 2-47). For the patients examined with PET-CT, the mean estimated cumulative effective dose was 38 mSv, of which PET-CT accounted for 14 mSv (37%). There was large variation in number and type of examinations performed and also in estimated cumulative radiation dose. The mean radiation dose for patients examined with PET-CT was 23% higher than for patients not examined with PET-CT. (orig.)

  12. Endoscopic device for functional imaging of the retina

    Science.gov (United States)

    Barriga, Simon; Lohani, Sweyta; Martell, Bret; Soliz, Peter; Ts'o, Dan

    2011-03-01

    Non-invasive imaging of retinal function based on the recording of spatially distributed reflectance changes evoked by visual stimuli has to-date been performed primarily using modified commercial fundus cameras. We have constructed a prototype retinal functional imager, using a commercial endoscope (Storz) for the frontend optics, and a low-cost back-end that includes the needed dichroic beam splitter to separate the stimulus path from the imaging path. This device has been tested to demonstrate its performance for the delivery of adequate near infrared (NIR) illumination, intensity of the visual stimulus and reflectance return in the imaging path. The current device was found to be capable of imaging reflectance changes of 0.1%, similar to that observable using the modified commercial fundus camera approach. The visual stimulus (a 505nm spot of 0.5secs) was used with an interrogation illumination of 780nm, and a sequence of imaged captured. At each pixel, the imaged signal was subtracted and normalized by the baseline reflectance, so that the measurement was ΔR/R. The typical retinal activity signal observed had a ΔR/R of 0.3-1.0%. The noise levels were measured when no stimulus was applied and found to vary between +/- 0.05%. Functional imaging has been suggested as a means to provide objective information on retina function that may be a preclinical indicator of ocular diseases, such as age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy. The endoscopic approach promises to yield a significantly more economical retinal functional imaging device that would be clinically important.

  13. Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis

    Science.gov (United States)

    Lin, Nan; Jiang, Junhai; Guo, Shicheng; Xiong, Momiao

    2015-01-01

    Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the characterization of disease progression. But in the meantime, the growing data dimensions pose great methodological and computational challenges for the representation and selection of features in image cluster analysis. To address these challenges, we first extend the functional principal component analysis (FPCA) from one dimension to two dimensions to fully capture the space variation of image the signals. The image signals contain a large number of redundant features which provide no additional information for clustering analysis. The widely used methods for removing the irrelevant features are sparse clustering algorithms using a lasso-type penalty to select the features. However, the accuracy of clustering using a lasso-type penalty depends on the selection of the penalty parameters and the threshold value. In practice, they are difficult to determine. Recently, randomized algorithms have received a great deal of attentions in big data analysis. This paper presents a randomized algorithm for accurate feature selection in image clustering analysis. The proposed method is applied to both the liver and kidney cancer histology image data from the TCGA database. The results demonstrate that the randomized feature selection method coupled with functional principal component analysis substantially outperforms the current sparse clustering algorithms in image cluster analysis. PMID:26196383

  14. Baseline albumin is associated with worsening renal function in patients with acute decompensated heart failure receiving continuous infusion loop diuretics.

    Science.gov (United States)

    Clarke, Megan M; Dorsch, Michael P; Kim, Susie; Aaronson, Keith D; Koelling, Todd M; Bleske, Barry E

    2013-06-01

    To identify baseline predictors of worsening renal function (WRF) in an acute decompensated heart failure (ADHF) patient population receiving continuous infusion loop diuretics. Retrospective observational analysis. Academic tertiary medical center. A total of 177 patients with ADHF receiving continuous infusion loop diuretics from January 2006 through June 2009. The mean patient age was 61 years, 63% were male, ~45% were classified as New York Heart Association functional class III, and the median length of loop diuretic infusion was 4 days. Forty-eight patients (27%) developed WRF, and 34 patients (19%) died during hospitalization. Cox regression time-to-event analysis was used to determine the time to WRF based on different demographic and clinical variables. Baseline serum albumin 3 g/dl or less was the only significant predictor of WRF (hazard ratio [HR] 2.87, 95% confidence interval [CI] 1.60-5.16, p=0.0004), which remained significant despite adjustments for other covariates. Serum albumin 3 g/dl or less is a practical baseline characteristic associated with the development of WRF in patients with ADHF receiving continuous infusion loop diuretics. © 2013 Pharmacotherapy Publications, Inc.

  15. Comparison of image quality in magnetic resonance imaging of the knee at 1.5 and 3.0 Tesla using 32-channel receiver coils

    International Nuclear Information System (INIS)

    Schoth, F.; Kraemer, N.; Niendorf, T.; Hohl, C.; Gunther, R.W.; Krombach, G.A.

    2008-01-01

    We examined to what degree the visualization of anatomic structures in the human knee is improved using 3.0-T magnetic resonance imaging (MRI) and many element RF receive coils as compared to 1.5 T. We imaged 20 knees at 1.5 and 3.0 T using T2-weighted STIR, T2-weighted gradient echo, T1-weighted spin-echo, true-FISP and T2-weighted fast spin echo techniques in conjunction with 32-element RF coil arrays. The 3.0-T examination was considerably faster than its 1.5-T counterpart. A superior subjective visibility at 3.0 T vs 1.5 T was found in 27 of 50 evaluated structures (meniscus, ligaments) with the exception of true-FISP techniques. The 3.0-T examination provided a better visibility (evaluated by blinded consensus-reading by two radiologists) of small structures such as the ligamentum transversum genu. Also, cartilage was better delineated at 3.0 T. A 23% increased average signal-to-noise ratio as assessed using a temporal filter was observed at 3.0 T as compared to 1.5 T. At 3.0 T, imaging of the human knee is faster and results in a subjective visibility of anatomic structures that is superior to and competitive with 1.5 T. (orig.)

  16. Application of Improved Wavelet Thresholding Function in Image Denoising Processing

    Directory of Open Access Journals (Sweden)

    Hong Qi Zhang

    2014-07-01

    Full Text Available Wavelet analysis is a time – frequency analysis method, time-frequency localization problems are well solved, this paper analyzes the basic principles of the wavelet transform and the relationship between the signal singularity Lipschitz exponent and the local maxima of the wavelet transform coefficients mold, the principles of wavelet transform in image denoising are analyzed, the disadvantages of traditional wavelet thresholding function are studied, wavelet threshold function, the discontinuity of hard threshold and constant deviation of soft threshold are improved, image is denoised through using the improved threshold function.

  17. Image-potential states and work function of graphene

    International Nuclear Information System (INIS)

    Niesner, Daniel; Fauster, Thomas

    2014-01-01

    Image-potential states of graphene on various substrates have been investigated by two-photon photoemission and scanning tunneling spectroscopy. They are used as a probe for the graphene-substrate interaction and resulting changes in the (local) work function. The latter is driven by the work function difference between graphene and the substrate. This results in a charge transfer which also contributes to core-level shifts in x-ray photoemission. In this review article, we give an overview over the theoretical models and the experimental data for image-potential states and work function of graphene on various substrates. (topical review)

  18. Simultaneous Inversion of Receiver Functions, Multi-Mode Dispersion, and Travel-Time Tomography for Lithospheric Structure Beneath the Middle East and North Africa

    National Research Council Canada - National Science Library

    Ammon, Charles J; Kosarian, Minoo; Hermann, Robert B

    2006-01-01

    .... Towards this goal, we perform receiver function analysis using teleseismic waveforms recorded at permanent and temporary broadband seismic stations located in Middle East, Europe, Asia, and North Africa...

  19. Functional magnetic resonance imaging (FMRI) and expert testimony.

    Science.gov (United States)

    Kulich, Ronald; Maciewicz, Raymond; Scrivani, Steven J

    2009-03-01

    Medical experts frequently use imaging studies to illustrate points in their court testimony. This article reviews how these studies impact the credibility of expert testimony with judges and juries. The apparent "objective" evidence provided by such imaging studies can lend strong credence to a judge's or jury's appraisal of medical expert's testimony. However, as the court usually has no specialized scientific expertise, the use of complex images as part of courtroom testimony also has the potential to mislead or at least inappropriately bias the weight given to expert evidence. Recent advances in brain imaging may profoundly impact forensic expert testimony. Functional magnetic resonance imaging and other physiologic imaging techniques currently allow visualization of the activation pattern of brain regions associated with a wide variety of cognitive and behavioral tasks, and more recently, pain. While functional imaging technology has a valuable role in brain research and clinical investigation, it is important to emphasize that the use of imaging studies in forensic matters requires a careful scientific foundation and a rigorous legal assessment.

  20. Method for estimating modulation transfer function from sample images.

    Science.gov (United States)

    Saiga, Rino; Takeuchi, Akihisa; Uesugi, Kentaro; Terada, Yasuko; Suzuki, Yoshio; Mizutani, Ryuta

    2018-02-01

    The modulation transfer function (MTF) represents the frequency domain response of imaging modalities. Here, we report a method for estimating the MTF from sample images. Test images were generated from a number of images, including those taken with an electron microscope and with an observation satellite. These original images were convolved with point spread functions (PSFs) including those of circular apertures. The resultant test images were subjected to a Fourier transformation. The logarithm of the squared norm of the Fourier transform was plotted against the squared distance from the origin. Linear correlations were observed in the logarithmic plots, indicating that the PSF of the test images can be approximated with a Gaussian. The MTF was then calculated from the Gaussian-approximated PSF. The obtained MTF closely coincided with the MTF predicted from the original PSF. The MTF of an x-ray microtomographic section of a fly brain was also estimated with this method. The obtained MTF showed good agreement with the MTF determined from an edge profile of an aluminum test object. We suggest that this approach is an alternative way of estimating the MTF, independently of the image type. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Frequency of worsening liver function in severe dengue hepatitis patients receiving paracetamol: A retrospective analysis of hospital data

    International Nuclear Information System (INIS)

    Syed, A.A.; Aslam, F.; Hakeem, H.; Siddiqui, F.; Nasir, N.

    2017-01-01

    To determine the frequency of worsening liver function among hospital in-patients with severe dengue hepatitis receiving paracetamol. Methods: This retrospective study was conducted at the Department of Medicine, Aga Khan University Hospital, Karachi, and comprised records of dengue patients with severe hepatitis who received paracetamol for control of fever between June 2007 and December 2014. Alanine aminotransferase at baseline and following paracetamol administration was noted, as well as dosage and duration of paracetamol, along with participants' demographic details. Frequency of patients who developed worsening or improvement of alanine aminotransferase was also noted. SPSS 19 was used for data analysis. Results: Of the 113 subjects, 73(64.6%) were male and 40(35.4%) were female. Overall improvement was observed in subsequent alanine aminotransferase levels (491 units per litre, IQR 356.5 TO 775 vs 151 units per litre, IQR 49.5 to 299.5). Most commonly prescribed dose of paracetamol was 2g (IQR 1 to 5 grams), which was taken for a median duration of 1 day (IQR 1 to 3 days). Moreover, 100(88.5 %) patients showed improvement in alanine aminotransferase. Only 13(11.5 %) patients developed worsening of alanine aminotransferase. Of those with worsening liver function, 8(61.5 %) were discharged home with no clinical deterioration and 5(38.5 %) deaths were observed. However, causes of deaths were unrelated to liver dysfunction. Conclusion: The frequency of worsening liver function following paracetamol administration in patients with severe dengue hepatitis was relatively low. (author)

  2. Imaging tools to study pharmacology: functional MRI on small rodents

    OpenAIRE

    Elisabeth eJonckers; Disha eShah; Julie eHamaide; Marleen eVerhoye; Annemie eVan Der Linden

    2015-01-01

    Functional Magnetic Resonance Imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimu...

  3. 2.5D S-wave velocity model of the TESZ area in northern Poland from receiver function analysis

    Science.gov (United States)

    Wilde-Piorko, Monika; Polkowski, Marcin; Grad, Marek

    2016-04-01

    Receiver function (RF) locally provides the signature of sharp seismic discontinuities and information about the shear wave (S-wave) velocity distribution beneath the seismic station. The data recorded by "13 BB Star" broadband seismic stations (Grad et al., 2015) and by few PASSEQ broadband seismic stations (Wilde-Piórko et al., 2008) are analysed to investigate the crustal and upper mantle structure in the Trans-European Suture Zone (TESZ) in northern Poland. The TESZ is one of the most prominent suture zones in Europe separating the young Palaeozoic platform from the much older Precambrian East European craton. Compilation of over thirty deep seismic refraction and wide angle reflection profiles, vertical seismic profiling in over one hundred thousand boreholes and magnetic, gravity, magnetotelluric and thermal methods allowed for creation a high-resolution 3D P-wave velocity model down to 60 km depth in the area of Poland (Grad et al. 2016). On the other hand the receiver function methods give an opportunity for creation the S-wave velocity model. Modified ray-tracing method (Langston, 1977) are used to calculate the response of the structure with dipping interfaces to the incoming plane wave with fixed slowness and back-azimuth. 3D P-wave velocity model are interpolated to 2.5D P-wave velocity model beneath each seismic station and synthetic back-azimuthal sections of receiver function are calculated for different Vp/Vs ratio. Densities are calculated with combined formulas of Berteussen (1977) and Gardner et al. (1974). Next, the synthetic back-azimuthal sections of RF are compared with observed back-azimuthal sections of RF for "13 BB Star" and PASSEQ seismic stations to find the best 2.5D S-wave models down to 60 km depth. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  4. Functional imaging - a new tool for X-ray functional diagnostics

    International Nuclear Information System (INIS)

    Boehm, M.; Erbe, W.; Sonne, B.; Hoehne, K.H.; Nicolae, G.C.; Pfeiffer, G.

    1978-05-01

    The method of functional imaging is applied to X-ray angiograms. Functional images are generated by inserting at each point of an X-ray image a computed grey value proportional to a dynamic parameter (such as blood velocity) instead of the recorded X-ray absorption value. For this purpose a new system for angiographic image processing has been developed. First results show that the method is a tool to extract more information about the blood dynamics in organs in an easier and faster way than with the conventional angiographic technique. (orig.)

  5. Functional brain imaging of gastrointestinal sensation in health and disease

    Institute of Scientific and Technical Information of China (English)

    Lukas Van Oudenhove; Steven J Coen; Qasim Aziz

    2007-01-01

    It has since long been known, from everyday experience as well as from animal and human studies, that psychological processes-both affective and cognitiveexert an influence on gastrointestinal sensorimotor function. More specifically, a link between psychological factors and visceral hypersensitivity has been suggested,mainly based on research in functional gastrointestinal disorder patients. However, until recently, the exact nature of this putative relationship remained unclear,mainly due to a lack of non-invasive methods to study the (neurobiological) mechanisms underlying this relationship in non-sleeping humans. As functional brain imaging, introduced in visceral sensory neuroscience some 10 years ago, does provide a method for in vivo study of brain-gut interactions, insight into the neurobiological mechanisms underlying visceral sensation in general and the influence of psychological factors more particularly,has rapidly grown. In this article, an overview of brain imaging evidence on gastrointestinal sensation will be given, with special emphasis on the brain mechanisms underlying the interaction between affective & cognitive processes and visceral sensation. First, the reciprocal neural pathways between the brain and the gut (braingut axis) will be briefly outlined, including brain imaging evidence in healthy volunteers. Second, functional brain imaging studies assessing the influence of psychological factors on brain processing of visceral sensation in healthy humans will be discussed in more detail.Finally, brain imaging work investigating differences in brain responses to visceral distension between healthy volunteers and functional gastrointestinal disorder patients will be highlighted.

  6. Crustal structure of Tolfa domes complex (northern Latium - Italy) inferred from receiver functions analysis: an interplay between tectonics and magmatism

    Science.gov (United States)

    Buttinelli, M.; Bianchi, I.; Anselmi, M.; Chiarabba, C.; de Rita, D.; Quattrocchi, F.

    2010-12-01

    The Tolfa-Cerite volcanic district developed along the Tyrrhenian passive margin of central Italy, as part of magmatic processes started during the middle Pliocene. In this area the uncertainties on the deep crustal structures and the definition of the intrusive bodies geometry are focal issues that still need to be addressed. After the onset of the spreading of the Tyrrhenian sea during the Late Miocene, the emplacement of the intrusive bodies of the Tolfa complex (TDC), in a general back-arc geodynamical regime, generally occurred in a low stretching rate, in correspondence of the junctions between major lithospheric discontinuities. Normal faults, located at the edge of Mio-Pliocene basins, were used as preferential pathways for the rising of magmatic masses from the mantle to the surface. We used teleseismic recordings at the TOLF and MAON broad band station of the INGV seismic network (located between the Argentario promontory and Tolfa-Ceriti dome complexes -TDC-) to image the principal seismic velocity discontinuities by receiver function analysis (RF's). Together with RF’s velocity models of the area computed using the teleseismic events recorded by a temporary network of eight stations deployed around the TDC, we achieve a general crustal model of this area. The geometry of the seismic network has been defined to focus on the crustal structure beneath the TDC, trying to define the main velocity changes attributable to the intrusive bodies, the calcareous basal complex, the deep metamorphic basement, the lower crust and the Moho. The analysis of these data show the Moho at a depth of 23 km in the TDC area and 20 km in the Argentario area. Crustal models also show an unexpected velocity decrease between 12 and 18 km, consistent with a slight dropdown of the Vp/Vs ratio, imputable to a regional mid-crustal shear zone inherited from the previous alpine orogenesis, re-activated in extensional tectonic by the early opening phases of the Tyrrhenian sea. Above

  7. Imaging electron wave functions inside open quantum rings.

    Science.gov (United States)

    Martins, F; Hackens, B; Pala, M G; Ouisse, T; Sellier, H; Wallart, X; Bollaert, S; Cappy, A; Chevrier, J; Bayot, V; Huant, S

    2007-09-28

    Combining scanning gate microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of the electron probability density |Psi|(2)(x,y) in embedded mesoscopic quantum rings. The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wave function interferences. Simulations of both |Psi|(2)(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to |Psi|(2)(x,y).

  8. Functional Store Image and Corporate Social Responsibility Image: A Congruity Analysis on Store Loyalty

    OpenAIRE

    Jamaliah Mohd. Yusof; Rosidah Musa; Sofiah Abd. Rahman

    2011-01-01

    With previous studies that examined the importance of functional store image and CSR, this study is aimed at examining their effects in the self-congruity model in influencing store loyalty. In particular, this study developed and tested a structural model in the context of retailing industry on the self-congruity theory. Whilst much of the self-congruity studies have incorporated functional store image, there has been lack of studies that examined social responsibility i...

  9. Epistemic Function and Ontology of Analog and Digital Images

    Directory of Open Access Journals (Sweden)

    Aleksandra Łukaszewicz Alcaraz

    2016-01-01

    Full Text Available The important epistemic function of photographic images is their active role in construction and reconstruction of our beliefs concerning the world and human identity, since we often consider photographs as presenting reality or even the Real itself. Because photography can convince people of how different social and ethnic groups and even they themselves look, documentary projects and the dissemination of photographic practices supported the transition from disciplinary society to the present-day society of control. While both analog and digital images are formed from the same basic materia, the ways in which this matter appears are distinctive. In the case of analog photography, we deal with physical and chemical matter, whereas with digital images we face electronic matter. Because digital photography allows endless modification of the image, we can no longer believe in the truthfulness of digital images.

  10. Functional MRI studies of human vision on a clinical imager

    International Nuclear Information System (INIS)

    George, J.S.; Lewine, J.D.; Aine, C.J.; van Hulsteyn, D.; Wood, C.C.; Sanders, J.; Maclin, E.; Belliveau, J.W.; Caprihan, A.

    1992-01-01

    During the past decade, Magnetic Resonance Imaging (MRI) has become the method of choice for imaging the anatomy of the human brain. Recently, Belliveau and colleagues have reported the use of echo planar magnetic resonance imaging (EPI) to image patterns of neural activity. Here, we report functional MR imaging in response to visual stimulation without the use of contrast agents, and without the extensive hardware modifications required for EPI. Regions of activity were observed near the expected locations of V1, V2 and possibly V3 and another active region was observed near the parietal-occipital sulcus on the superior surface of the cerebrum. These locations are consistent with sources observed in neuromagnetic studies of the human visual response

  11. Structural and functional imaging for vascular targeted photodynamic therapy

    Science.gov (United States)

    Li, Buhong; Gu, Ying; Wilson, Brian C.

    2017-02-01

    Vascular targeted photodynamic therapy (V-PDT) has been widely used for the prevention or treatment of vascular-related diseases, such as localized prostate cancer, wet age-related macular degeneration, port wine stains, esophageal varices and bleeding gastrointestinal mucosal lesions. In this study, the fundamental mechanisms of vascular responses during and after V-PDT will be introduced. Based on the V-PDT treatment of blood vessels in dorsal skinfold window chamber model, the structural and functional imaging, which including white light microscopy, laser speckle imaging, singlet oxygen luminescence imaging, and fluorescence imaging for evaluating vascular damage will be presented, respectively. The results indicate that vessel constriction and blood flow dynamics could be considered as the crucial biomarkers for quantitative evaluation of vascular damage. In addition, future perspectives of non-invasive optical imaging for evaluating vascular damage of V-PDT will be discussed.

  12. External marker-based fusion of functional and morphological images

    International Nuclear Information System (INIS)

    Kremp, S.; Schaefer, A.; Alexander, C.; Kirsch, C.M.

    1999-01-01

    The fusion of image data resulting from methods oriented toward morphology like CT, MRI with functional information coming from nuclear medicine (SPECT, PET) is frequently applied to allow for a better association between functional findings and anatomical structures. A new software was developed to provide image fusion using PET, SPECT, MRI and CT data within a short processing periode for brain as well as whole body examinations in particular thorax and abdomen. The software utilizes external markers (brain) or anatomical landmarks (thorax) for correlation. The fusion requires a periode of approx. 15 min. The examples shown emphasize the high gain in diagnostic information by fusing image data of anatomical and functional methods. (orig.) [de

  13. Functional requirements for a central research imaging data repository.

    Science.gov (United States)

    Franke, Thomas; Gruetz, Romanus; Dickmann, Frank

    2013-01-01

    The current situation at many university medical centers regarding the management of biomedical research imaging data leaves much to be desired. In contrast to the recommendations of the German Research Foundation (DFG) and the German Council of Sciences and Humanities regarding the professional management of research data, there are commonly many individual data pools for research data in each institute and the management remains the responsibility of the researcher. A possible solution for this situation would be to install local central repositories for biomedical research imaging data. In this paper, we developed a scenario based on abstracted use-cases for institutional research undertakings as well as collaborative biomedical research projects and analyzed the functional requirements that a local repository would have to fulfill. We determined eight generic categories of functional requirements, which can be viewed as a basic guideline for the minimum functionality of a central repository for biomedical research imaging data.

  14. Distribution of Citations Received by Scientific Papers Published in the Imaging Literature From 2001 to 2010: Decreasing Inequality and Polarization.

    Science.gov (United States)

    Yoon, Soo Jeong; Yoon, Dae Young; Lee, Hyung Jin; Baek, Sora; Lim, Kyoung Ja; Seo, Young Lan; Yun, Eun Joo

    2017-08-01

    The objective of this study was to assess the distribution of citations received by scientific papers published in the imaging literature between 2001 and 2010. We extracted the number of citations of all articles and reviews for 5 years after publication using the Scopus (Elsevier) citation database of imaging journals between 2001 and 2010. We quantitatively analyzed article and review citations from each journal and each year, including the number, proportion, and annual number of citations of the most- (≥ 20 citations) and least-cited (three or fewer citations) papers; ratio of most-cited to least-cited papers; 75/25 percentile citation ratio; 90/10 percentile citation ratio; Gini coefficient; and Kolkata index. Our analysis of 124,331 articles and 13,575 reviews from 121 journals showed that the proportion of most-cited articles (from 19.6% to 27.1%) and reviews (from 19.1% to 37.2%) increased from 2001 to 2010, whereas the proportion of least-cited articles (from 32.3% to 23.0%) and reviews (from 31.9% to 15.8%) declined over the same period. The annual numbers of citations of most-cited articles and reviews both reached a peak in the fourth year after publication, whereas those of least-cited articles and reviews reached a peak in the second and fist years, respectively, after publication and thereafter decreased. The 75/25 percentile ratio for articles declined from 41.1 to 27.5 between 2001 and 2010. Over the same time, the 75/25 percentile ratio for reviews declined from 47.4 to 22.9. The 90/10 percentile ratio for articles declined from 1730.8 to 188.7; for reviews, the 90/10 percentile ratio declined from 5788.0 to 100.7. The Gini coefficient of articles and reviews also declined from 0.6116 to 0.5721 for articles and from 0.6507 to 0.5649 for reviews; the k index, from 0.7260 to 0.7088 for articles from 0.7409 to 0.7072 for reviews. Inequality and polarization of citations consistently decreased in the imaging literature from 2001 to 2010.

  15. Functional imaging of small tissue volumes with diffuse optical tomography

    Science.gov (United States)

    Klose, Alexander D.; Hielscher, Andreas H.

    2006-03-01

    Imaging of dynamic changes in blood parameters, functional brain imaging, and tumor imaging are the most advanced application areas of diffuse optical tomography (DOT). When dealing with the image reconstruction problem one is faced with the fact that near-infrared photons, unlike X-rays, are highly scattered when they traverse biological tissue. Image reconstruction schemes are required that model the light propagation inside biological tissue and predict measurements on the tissue surface. By iteratively changing the tissue-parameters until the predictions agree with the real measurements, a spatial distribution of optical properties inside the tissue is found. The optical properties can be related to the tissue oxygenation, inflammation, or to the fluorophore concentration of a biochemical marker. If the model of light propagation is inaccurate, the reconstruction process will lead to an inaccurate result as well. Here, we focus on difficulties that are encountered when DOT is employed for functional imaging of small tissue volumes, for example, in cancer studies involving small animals, or human finger joints for early diagnosis of rheumatoid arthritis. Most of the currently employed image reconstruction methods rely on the diffusion theory that is an approximation to the equation of radiative transfer. But, in the cases of small tissue volumes and tissues that contain low scattering regions diffusion theory has been shown to be of limited applicability Therefore, we employ a light propagation model that is based on the equation of radiative transfer, which promises to overcome the limitations.

  16. ROC [Receiver Operating Characteristics] study of maximum likelihood estimator human brain image reconstructions in PET [Positron Emission Tomography] clinical practice

    International Nuclear Information System (INIS)

    Llacer, J.; Veklerov, E.; Nolan, D.; Grafton, S.T.; Mazziotta, J.C.; Hawkins, R.A.; Hoh, C.K.; Hoffman, E.J.

    1990-10-01

    This paper will report on the progress to date in carrying out Receiver Operating Characteristics (ROC) studies comparing Maximum Likelihood Estimator (MLE) and Filtered Backprojection (FBP) reconstructions of normal and abnormal human brain PET data in a clinical setting. A previous statistical study of reconstructions of the Hoffman brain phantom with real data indicated that the pixel-to-pixel standard deviation in feasible MLE images is approximately proportional to the square root of the number of counts in a region, as opposed to a standard deviation which is high and largely independent of the number of counts in FBP. A preliminary ROC study carried out with 10 non-medical observers performing a relatively simple detectability task indicates that, for the majority of observers, lower standard deviation translates itself into a statistically significant detectability advantage in MLE reconstructions. The initial results of ongoing tests with four experienced neurologists/nuclear medicine physicians are presented. Normal cases of 18 F -- fluorodeoxyglucose (FDG) cerebral metabolism studies and abnormal cases in which a variety of lesions have been introduced into normal data sets have been evaluated. We report on the results of reading the reconstructions of 90 data sets, each corresponding to a single brain slice. It has become apparent that the design of the study based on reading single brain slices is too insensitive and we propose a variation based on reading three consecutive slices at a time, rating only the center slice. 9 refs., 2 figs., 1 tab

  17. Imaging insights into basal ganglia function, Parkinson's disease, and dystonia.

    Science.gov (United States)

    Stoessl, A Jon; Lehericy, Stephane; Strafella, Antonio P

    2014-08-09

    Recent advances in structural and functional imaging have greatly improved our ability to assess normal functions of the basal ganglia, diagnose parkinsonian syndromes, understand the pathophysiology of parkinsonism and other movement disorders, and detect and monitor disease progression. Radionuclide imaging is the best way to detect and monitor dopamine deficiency, and will probably continue to be the best biomarker for assessment of the effects of disease-modifying therapies. However, advances in magnetic resonance enable the separation of patients with Parkinson's disease from healthy controls, and show great promise for differentiation between Parkinson's disease and other akinetic-rigid syndromes. Radionuclide imaging is useful to show the dopaminergic basis for both motor and behavioural complications of Parkinson's disease and its treatment, and alterations in non-dopaminergic systems. Both PET and MRI can be used to study patterns of functional connectivity in the brain, which is disrupted in Parkinson's disease and in association with its complications, and in other basal-ganglia disorders such as dystonia, in which an anatomical substrate is not otherwise apparent. Functional imaging is increasingly used to assess underlying pathological processes such as neuroinflammation and abnormal protein deposition. This imaging is another promising approach to assess the effects of treatments designed to slow disease progression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Relationship between Grooming Performance and Motor and Cognitive Functions in Stroke Patients with Receiver Operating Characteristic Analysis.

    Science.gov (United States)

    Fujita, Takaaki; Sato, Atsushi; Tsuchiya, Kenji; Ohashi, Takuro; Yamane, Kazuhiro; Yamamoto, Yuichi; Iokawa, Kazuaki; Ohira, Yoko; Otsuki, Koji; Tozato, Fusae

    2017-12-01

    This study aimed to elucidate the relationship between grooming performance of stroke patients and various motor and cognitive functions and to examine the cognitive and physical functional standards required for grooming independence. We retrospectively analyzed the data of 96 hospitalized patients with first stroke in a rehabilitation hospital ward. Logistic regression analysis and receiver operating characteristic curves were used to investigate the related cognitive and motor functions with grooming performance and to calculate the cutoff values for independence and supervision levels in grooming. For analysis between the independent and supervision-dependent groups, the only item with an area under the curve (AUC) of .9 or higher was the Berg Balance Scale, and the calculated cutoff value was 41/40 (sensitivity, 83.6%; specificity, 87.8%). For analysis between the independent-supervision and dependent groups, the items with an AUC of .9 or higher were the Simple Test for Evaluating Hand Function (STEF) on the nonaffected side, Vitality Index (VI), and FIM ® cognition. The cutoff values were 68/67 for the STEF (sensitivity, 100%; specificity, 72.2%), 9/8 points for the VI (sensitivity, 92.3%; specificity, 88.9%), and 23/22 points for FIM ® cognition (sensitivity, 91.0%; specificity, 88.9%). Our results suggest that upper-extremity functions on the nonaffected side, motivation, and cognitive functions are particularly important to achieve the supervision level and that balance is important to reach the independence level. The effective improvement of grooming performance is possible by performing therapeutic or compensatory intervention on functions that have not achieved these cutoff values. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  19. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine?

    International Nuclear Information System (INIS)

    Mahajan, A.; Goh, V.; Basu, S.; Vaish, R.; Weeks, A.J.; Thakur, M.H.; Cook, G.J.

    2015-01-01

    Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure–function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [ 18 F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed “theranostics”. Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research. -- Highlights: •Molecular functional imaging (MFI) gives insight into the tumor biology and intratumoral heterogeneity. •It has potential role in identifying radiomic signatures associated with underlying gene-expression. •Radiomics can be used to create a road map

  20. Novel axolotl cardiac function analysis method using magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Pedro Gomes Sanches

    Full Text Available The salamander axolotl is capable of complete regeneration of amputated heart tissue. However, non-invasive imaging tools for assessing its cardiac function were so far not employed. In this study, cardiac magnetic resonance imaging is introduced as a non-invasive technique to image heart function of axolotls. Three axolotls were imaged with magnetic resonance imaging using a retrospectively gated Fast Low Angle Shot cine sequence. Within one scanning session the axolotl heart was imaged three times in all planes, consecutively. Heart rate, ejection fraction, stroke volume and cardiac output were calculated using three techniques: (1 combined long-axis, (2 short-axis series, and (3 ultrasound (control for heart rate only. All values are presented as mean ± standard deviation. Heart rate (beats per minute among different animals was 32.2±6.0 (long axis, 30.4±5.5 (short axis and 32.7±4.9 (ultrasound and statistically similar regardless of the imaging method (p > 0.05. Ejection fraction (% was 59.6±10.8 (long axis and 48.1±11.3 (short axis and it differed significantly (p = 0.019. Stroke volume (μl/beat was 133.7±33.7 (long axis and 93.2±31.2 (short axis, also differed significantly (p = 0.015. Calculations were consistent among the animals and over three repeated measurements. The heart rate varied depending on depth of anaesthesia. We described a new method for defining and imaging the anatomical planes of the axolotl heart and propose one of our techniques (long axis analysis may prove useful in defining cardiac function in regenerating axolotl hearts.

  1. New developments in paediatric cardiac functional ultrasound imaging.

    Science.gov (United States)

    de Korte, Chris L; Nillesen, Maartje M; Saris, Anne E C M; Lopata, Richard G P; Thijssen, Johan M; Kapusta, Livia

    2014-07-01

    Ultrasound imaging can be used to estimate the morphology as well as the motion and deformation of tissues. If the interrogated tissue is actively deforming, this deformation is directly related to its function and quantification of this deformation is normally referred as 'strain imaging'. Tissue can also be deformed by applying an internal or external force and the resulting, induced deformation is a function of the mechanical tissue characteristics. In combination with the load applied, these strain maps can be used to estimate or reconstruct the mechanical properties of tissue. This technique was named 'elastography' by Ophir et al. in 1991. Elastography can be used for atherosclerotic plaque characterisation, while the contractility of the heart or skeletal muscles can be assessed with strain imaging. Rather than using the conventional video format (DICOM) image information, radio frequency (RF)-based ultrasound methods enable estimation of the deformation at higher resolution and with higher precision than commercial methods using Doppler (tissue Doppler imaging) or video image data (2D speckle tracking methods). However, the improvement in accuracy is mainly achieved when measuring strain along the ultrasound beam direction, so it has to be considered a 1D technique. Recently, this method has been extended to multiple directions and precision further improved by using spatial compounding of data acquired at multiple beam steered angles. Using similar techniques, the blood velocity and flow can be determined. RF-based techniques are also beneficial for automated segmentation of the ventricular cavities. In this paper, new developments in different techniques of quantifying cardiac function by strain imaging, automated segmentation, and methods of performing blood flow imaging are reviewed and their application in paediatric cardiology is discussed.

  2. Assessing brain volume changes in older women with breast cancer receiving adjuvant chemotherapy: a brain magnetic resonance imaging pilot study.

    Science.gov (United States)

    Chen, Bihong T; Sethi, Sean K; Jin, Taihao; Patel, Sunita K; Ye, Ningrong; Sun, Can-Lan; Rockne, Russell C; Haacke, E Mark; Root, James C; Saykin, Andrew J; Ahles, Tim A; Holodny, Andrei I; Prakash, Neal; Mortimer, Joanne; Waisman, James; Yuan, Yuan; Somlo, George; Li, Daneng; Yang, Richard; Tan, Heidi; Katheria, Vani; Morrison, Rachel; Hurria, Arti

    2018-05-02

    Cognitive decline is among the most feared treatment-related outcomes of older adults with cancer. The majority of older patients with breast cancer self-report cognitive problems during and after chemotherapy. Prior neuroimaging research has been performed mostly in younger patients with cancer. The purpose of this study was to evaluate longitudinal changes in brain volumes and cognition in older women with breast cancer receiving adjuvant chemotherapy. Women aged ≥ 60 years with stage I-III breast cancer receiving adjuvant chemotherapy and age-matched and sex-matched healthy controls were enrolled. All participants underwent neuropsychological testing with the US National Institutes of Health (NIH) Toolbox for Cognition and brain magnetic resonance imaging (MRI) prior to chemotherapy, and again around one month after the last infusion of chemotherapy. Brain volumes were measured using Neuroreader™ software. Longitudinal changes in brain volumes and neuropsychological scores were analyzed utilizing linear mixed models. A total of 16 patients with breast cancer (mean age 67.0, SD 5.39 years) and 14 age-matched and sex-matched healthy controls (mean age 67.8, SD 5.24 years) were included: 7 patients received docetaxel and cyclophosphamide (TC) and 9 received chemotherapy regimens other than TC (non-TC). There were no significant differences in segmented brain volumes between the healthy control group and the chemotherapy group pre-chemotherapy (p > 0.05). Exploratory hypothesis generating analyses focusing on the effect of the chemotherapy regimen demonstrated that the TC group had greater volume reduction in the temporal lobe (change = - 0.26) compared to the non-TC group (change = 0.04, p for interaction = 0.02) and healthy controls (change = 0.08, p for interaction = 0.004). Similarly, the TC group had a decrease in oral reading recognition scores (change = - 6.94) compared to the non-TC group (change = - 1.21, p for

  3. The effect of reflexology upon spasticity and function among children with cerebral palsy who received physiotherapy: Three group randomised trial.

    Science.gov (United States)

    Özkan, Filiz; Zincir, Handan

    2017-08-01

    To assess the effectiveness of reflexology method upon spasticity and function among children with cerebral palsy who received physiotherapy. A three group, randomised trial with blinded evaluator. Randomization was made sealed and opaque envelopes. 45 children with cerebral palsy who were trained at a Special Education and Rehabilitation Centre. In the reflexology and placebo group; a 20min reflexology was performed twice a week in a total 24 sessions. In the control group; no intervention was done. Before and after the implementation; measurements of the participants were obtained. The data were collected using Gross Motor Function Measure, Modified Ashworth Scale (MAS), Modified Tardieu Scale, Pediatric Functional Independence Scale, Pediatric Quality of Life Scale (PedsQL) and demographic data. A total of 45 children completed the study. The groups were homogeneous at baseline. Between right MAS Gastrocnemius muscle was a difference and right and left Soleus muscles was significant among the groups (p0.05). Reflexology with physiotherapy reduced spasticity in legs, improved gross motor functions, decreased dependency but led to no change in quality of life. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Comparison of Three Non-Imaging Angle-Diversity Receivers as Input Sensors of Nodes for Indoor Infrared Wireless Sensor Networks: Theory and Simulation

    Directory of Open Access Journals (Sweden)

    Beatriz R. Mendoza

    2016-07-01

    Full Text Available In general, the use of angle-diversity receivers makes it possible to reduce the impact of ambient light noise, path loss and multipath distortion, in part by exploiting the fact that they often receive the desired signal from different directions. Angle-diversity detection can be performed using a composite receiver with multiple detector elements looking in different directions. These are called non-imaging angle-diversity receivers. In this paper, a comparison of three non-imaging angle-diversity receivers as input sensors of nodes for an indoor infrared (IR wireless sensor network is presented. The receivers considered are the conventional angle-diversity receiver (CDR, the sectored angle-diversity receiver (SDR, and the self-orienting receiver (SOR, which have been proposed or studied by research groups in Spain. To this end, the effective signal-collection area of the three receivers is modelled and a Monte-Carlo-based ray-tracing algorithm is implemented which allows us to investigate the effect on the signal to noise ratio and main IR channel parameters, such as path loss and rms delay spread, of using the three receivers in conjunction with different combination techniques in IR links operating at low bit rates. Based on the results of the simulations, we show that the use of a conventional angle-diversity receiver in conjunction with the equal-gain combining technique provides the solution with the best signal to noise ratio, the lowest computational capacity and the lowest transmitted power requirements, which comprise the main limitations for sensor nodes in an indoor infrared wireless sensor network.

  5. First Study on the Occurrence Frequency of Equatorial Plasma Bubbles over West Africa Using an All-Sky Airglow Imager and GNSS Receivers

    Science.gov (United States)

    Okoh, Daniel; Rabiu, Babatunde; Shiokawa, Kazuo; Otsuka, Yuichi; Segun, Bolaji; Falayi, Elijah; Onwuneme, Sylvester; Kaka, Rafiat

    2017-12-01

    This is the first paper that reports the occurrence frequency of equatorial plasma bubbles and their dependences of local time, season, and geomagnetic activity based on airglow imaging observations at West Africa. The all-sky imager, situated in Abuja (Geographic: 8.99°N, 7.38°E; Geomagnetic: 1.60°S), has a 180° fisheye view covering almost the entire airspace of Nigeria. Plasma bubbles are observed for 70 nights of the 147 clear-sky nights from 9 June 2015 to 31 January 2017. Differences between nighttime and daytime ROTIs were also computed as a proxy of plasma bubbles using Global Navigation Satellite Systems (GNSS) receivers within the coverage of the all-sky imager. Most plasma bubble occurrences are found during equinoxes and least occurrences during solstices. The occurrence rate of plasma bubbles was highest around local midnight and lower for hours farther away. Most of the postmidnight plasma bubbles were observed around the months of December to March, a period that coincides with the harmattan period in Nigeria. The on/off status of plasma bubble in airglow and GNSS observations were in agreement for 67.2% of the total 768 h, while we suggest several reasons responsible for the remaining 32.8% when the airglow and GNSS bubble status are inconsistent. A majority of the plasma bubbles were observed under relatively quiet geomagnetic conditions (Dst ≥ -40 and Kp ≤ 3), but there was no significant pattern observed in the occurrence rate of plasma bubbles as a function of geomagnetic activity. We suggest that geomagnetic activities could have either suppressed or promoted the occurrence of plasma bubbles.

  6. Imaging of carotid artery disease: from luminology to function?

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, J.H. [University Department of Radiology, Addenbrooke' s Hospital, Cambridge (United Kingdom)

    2003-10-01

    There have been tremendous advances in our ability to image atheromatous disease, particularly in the carotid artery, which is accessible and large enough to image. The repertoire of methodology available is growing, giving anatomical information on luminal narrowing which is approaching the level at which conventional carotid angiography will become very uncommon as CT and contrast-enhanced MR angiographic techniques become the norm. More exciting is the tentative ability to perform functional plaque imaging addressing enhancement patterns and macrophage activity using MR or positron-emission tomography techniques. These techniques, once rigorously evaluated, may, in addition to complex mathematical modelling of plaque, eventually allow us to assess true plaque risk. Time will best judge whether we will be able to move from the use of simple luminology to assessment of plaque function. (orig.)

  7. Imaging of carotid artery disease: from luminology to function?

    International Nuclear Information System (INIS)

    Gillard, J.H.

    2003-01-01

    There have been tremendous advances in our ability to image atheromatous disease, particularly in the carotid artery, which is accessible and large enough to image. The repertoire of methodology available is growing, giving anatomical information on luminal narrowing which is approaching the level at which conventional carotid angiography will become very uncommon as CT and contrast-enhanced MR angiographic techniques become the norm. More exciting is the tentative ability to perform functional plaque imaging addressing enhancement patterns and macrophage activity using MR or positron-emission tomography techniques. These techniques, once rigorously evaluated, may, in addition to complex mathematical modelling of plaque, eventually allow us to assess true plaque risk. Time will best judge whether we will be able to move from the use of simple luminology to assessment of plaque function. (orig.)

  8. Magnetic resonance imaging of respiratory movement and lung function

    International Nuclear Information System (INIS)

    Tetzlaff, R.; Eichinger, M.

    2009-01-01

    Lung function measurements are the domain of spirometry or plethysmography. These methods have proven their value in clinical practice, nevertheless, being global measurements the functional indices only describe the sum of all functional units of the lung. Impairment of only a single component of the respiratory pump or of a small part of lung parenchyma can be compensated by unaffected lung tissue. Dynamic imaging can help to detect such local changes and lead to earlier adapted therapy. Magnetic resonance imaging (MRI) seems to be perfect for this application as it is not hampered by image distortion as is projection radiography and it does not expose the patient to potentially harmful radiation like computed tomography. Unfortunately, lung parenchyma is not easy to image using MRI due to its low signal intensity. For this reason first applications of MRI in lung function measurements concentrated on the movement of the thoracic wall and the diaphragm. Recent technical advances in MRI however might allow measurements of regional dynamics of the lungs. (orig.) [de

  9. EANM/ESC guidelines for radionuclide imaging of cardiac function

    DEFF Research Database (Denmark)

    Hesse, B.; Lindhardt, T.B.; Acampa, W.

    2008-01-01

    radionuclide ventriculography, gated myocardial perfusion scintigraphy, gated PET, and studies with non-imaging devices for the evaluation of cardiac function. The items covered are presented in 11 sections: clinical indications, radiopharmaceuticals and dosimetry, study acquisition, RV EF, LV EF, LV volumes...

  10. Functional brain imaging in the clinical assessment of consciousness.

    Directory of Open Access Journals (Sweden)

    Michael S Rafii

    2010-11-01

    Full Text Available Recent findings suggest that functional brain imaging might be used to identify consciousness in patients diagnosed with persistent vegetative state and minimally conscious state. Michael Rafii and James Brewer discuss the potential for fMRI's wider implementation in clinical practice, and associated caveats.

  11. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    Science.gov (United States)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  12. Radiopharmaceuticals: nanoparticles like multi-functional systems for the obtaining in vivo of molecular images

    International Nuclear Information System (INIS)

    Ferro F, G.; Ramirez de la Cruz, F. M.; Ocampo G, B. E.; Morales A, E.; Santos C, C. L.; Mendoza S, A. N.

    2010-01-01

    The techniques of obtaining direct or indirect molecular images detect and register the space-temporary distribution of molecular or cellular processes for biochemical, biological, diagnostic and therapeutic applications. The advanced techniques of image like the nuclear magnetic resonance, the single photon emission computed tomography, the positron emission tomography and the images of optic fluorescence have been used successfully to detect these processes. On the other hand, the utility of the nanoparticles for any application is dependent of the physicochemical properties that present, being possible to modify their surface when making them react with different biomolecules what allows the formation of conjugates with specific molecular recognition. The joint of various protein molecules, peptides or oligonucleotides to the surface of a nanoparticle produce a multi-functional system able to increase the multivalent joints from the nanoparticles-biomolecules to their receivers for the obtaining of molecular images in vivo. The peptides stimulate, regulate or inhibit numerous functions of the life, acting mainly as information transmitters and activity coordinators of several tissues in the organism. The receivers of regulator peptides are over represented in numerous types of cancer cells and they are protein structures. These receivers have been used as white molecular of marked peptides, to locate primary malignant tumors and their metastasis, using the diagnostic techniques of molecular image mentioned above, which consist basically on the radio peptides use and conjugated peptides to fluoro chromes, to metallic nanoparticles and nano crystals. A summary of the work is presented carried out by the personnel of the Radio-active Materials and Chemistry Departments of the Instituto Nacional de Investigaciones Nucleares in this field. (Author)

  13. A Sigma-Delta ADC with Decimation and Gain Control Function for a Bluetooth Receiver in 130 nm Digital CMOS

    Directory of Open Access Journals (Sweden)

    Koh Jinseok

    2006-01-01

    Full Text Available We present a discrete-time second-order multibit sigma-delta ADC that filters and decimates by two the input data samples. At the same time it provides gain control function in its input sampling stage. A 4-tap FIR switched capacitor (SC architecture was chosen for antialiasing filtering. The decimation-by-two function is realized using divided-by-two clock signals in the antialiasing filter. Antialiasing, gain control, and sampling functions are merged in the sampling network using SC techniques. This compact architecture allows operating the preceding blocks at twice the ADC's clock frequency, thus improving the noise performance of the wireless receiver channel and relaxing settling requirements of the analog building blocks. The presented approach has been validated and incorporated in a commercial single-chip Bluetooth radio realized in a 1.5 V 130 nm digital CMOS process. The measured antialiasing filtering shows better than 75 dB suppression at the folding frequency band edge. A 67 dB dynamic range was measured with a sampling frequency of 37.5MHz.

  14. The crust and mantle beneath the Siberian provinces: a preliminary model based on new receiver function analysis

    DEFF Research Database (Denmark)

    Soliman, Mohammad Youssof Ahmad; Artemieva, Irina; Thybo, Hans

    2012-01-01

    The new receiver function (RF) study complements the existing seismic data on the crustal and upper mantle structure at the margins of the Siberian craton and the West Siberian Basin. So far, RF studies of Siberia have been largely restricted to the Baikal rift zone (Gao et al., 2004; Liu and Gao......, 2006; Anan'in et al., 2009). However, available seismic data allow to apply the RF approach to other tectonic structures of the region. We calculate the RF using the LQT method (Vinnik, 1977; Kind et al. 1995) in the version by Yuan et al. (1997). This method involves rotating the earth...... the deconvolved signals using the appropriate moveout corrections which account for the dependence of Ps arrivals on P wave slowness. The results of RF analysis of the crustal and mantle structure are interpreted in terms of tectonic and geodynamic evolution of different provinces of Siberia that range from...

  15. Crustal structure of the Gulf of Aden southern margin: Evidence from receiver functions on Socotra Island (Yemen)

    Science.gov (United States)

    Ahmed, Abdulhakim; Leroy, Sylvie; Keir, Derek; Korostelev, Félicie; Khanbari, Khaled; Rolandone, Frédérique; Stuart, Graham; Obrebski, Mathias

    2014-12-01

    Breakup of continents in magma-poor setting occurs primarily by faulting and plate thinning. Spatial and temporal variations in these processes can be influenced by the pre-rift basement structure as well as by early syn-rift segmentation of the rift. In order to better understand crustal deformation and influence of pre-rift architecture on breakup we use receiver functions from teleseismic recordings from Socotra which is part of the subaerial Oligo-Miocene age southern margin of the Gulf of Aden. We determine variations in crustal thickness and elastic properties, from which we interpret the degree of extension related thinning and crustal composition. Our computed receiver functions show an average crustal thickness of ~ 28 km for central Socotra, which decreases westward along the margin to an average of ~ 21 km. In addition, the crust thins with proximity to the continent-ocean transition to ~ 16 km in the northwest. Assuming an initial pre-rift crustal thickness of 35 km (undeformed Arabian plate), we estimate a stretching factor in the range of ~ 2.1-2.4 beneath Socotra. Our results show considerable differences between the crustal structure of Socotra's eastern and western sides on either side of the Hadibo transfer zone; the east displays a clear intracrustal conversion phase and thick crust when compared with the western part. The majority of measurements across Socotra show Vp/Vs ratios of between 1.70 and 1.77 and are broadly consistent with the Vp/Vs values expected from the granitic and carbonate rock type exposed at the surface. Our results strongly suggest that intrusion of mafic rock is absent or minimal, providing evidence that mechanical thinning accommodated the majority of crustal extension. From our observations we interpret that the western part of Socotra corresponds to the necking zone of a classic magma-poor continental margin, while the eastern part corresponds to the proximal domain.

  16. The method of images and Green's function for spherical domains

    International Nuclear Information System (INIS)

    Gutkin, Eugene; Newton, Paul K

    2004-01-01

    Motivated by problems in electrostatics and vortex dynamics, we develop two general methods for constructing Green's function for simply connected domains on the surface of the unit sphere. We prove a Riemann mapping theorem showing that such domains can be conformally mapped to the upper hemisphere. We then categorize all domains on the sphere for which Green's function can be constructed by an extension of the classical method of images. We illustrate our methods by several examples, such as the upper hemisphere, geodesic triangles, and latitudinal rectangles. We describe the point vortex motion in these domains, which is governed by a Hamiltonian determined by the Dirichlet Green's function

  17. Lung function imaging methods in Cystic Fibrosis pulmonary disease.

    Science.gov (United States)

    Kołodziej, Magdalena; de Veer, Michael J; Cholewa, Marian; Egan, Gary F; Thompson, Bruce R

    2017-05-17

    Monitoring of pulmonary physiology is fundamental to the clinical management of patients with Cystic Fibrosis. The current standard clinical practise uses spirometry to assess lung function which delivers a clinically relevant functional readout of total lung function, however does not supply any visible or localised information. High Resolution Computed Tomography (HRCT) is a well-established current 'gold standard' method for monitoring lung anatomical changes in Cystic Fibrosis patients. HRCT provides excellent morphological information, however, the X-ray radiation dose can become significant if multiple scans are required to monitor chronic diseases such as cystic fibrosis. X-ray phase-contrast imaging is another emerging X-ray based methodology for Cystic Fibrosis lung assessment which provides dynamic morphological and functional information, albeit with even higher X-ray doses than HRCT. Magnetic Resonance Imaging (MRI) is a non-ionising radiation imaging method that is garnering growing interest among researchers and clinicians working with Cystic Fibrosis patients. Recent advances in MRI have opened up the possibilities to observe lung function in real time to potentially allow sensitive and accurate assessment of disease progression. The use of hyperpolarized gas or non-contrast enhanced MRI can be tailored to clinical needs. While MRI offers significant promise it still suffers from poor spatial resolution and the development of an objective scoring system especially for ventilation assessment.

  18. Functional Neuro-Imaging and Post-Traumatic Olfactory Impairment

    Science.gov (United States)

    Roberts, Richard J.; Sheehan, William; Thurber, Steven; Roberts, Mary Ann

    2010-01-01

    Objective: To evaluate via a research literature survey the anterior neurological significance of decreased olfactory functioning following traumatic brain injuries. Materials and Methods: A computer literature review was performed to locate all functional neuro-imaging studies on patients with post-traumatic anosmia and other olfactory deficits. Results: A convergence of findings from nine functional neuro-imaging studies indicating evidence for reduced metabolic activity at rest or relative hypo-perfusion during olfactory activations. Hypo-activation of the prefrontal regions was apparent in all nine post-traumatic samples, with three samples yielding evidence of reduced activity in the temporal regions as well. Conclusions: The practical ramifications include the reasonable hypothesis that a total anosmic head trauma patient likely has frontal lobe involvement. PMID:21716782

  19. Functional imaging of cerebral cortex activation with a 1.5-T MR imaging system

    International Nuclear Information System (INIS)

    Kim, Jae Hyoung; Chang, Sun Ae; Ha, Choong Kun; Kim, Eun Sang; Kim, Hyung Jin; Chung, Sung Hoon

    1995-01-01

    Most of recent MR imagings of cerebral cortex activation have been performed by using high field magnet above 2-T or echo-planar imaging technique. We report our experience on imaging of cerebral cortex activation with a widely available standard 1.5-T MR. Series of gradient-echo images (TR/TE/flip angle: 80/60/40 .deg. 64 x 128 matrix) were acquired alternatively during the periods of rest and task in five normal volunteers. Finger movement (n = 10;5 right, 5 left) and flashing photic stimulation (n 1) were used as a motor task and a visual task to activate the motor cortex and visual cortex, respectively. Activation images were obtained by subtracting sum of rest images from that of task images. Changes of signal intensity were analyzed over the periods of rest and task. Activation images were obtained in all cases. Changes of signal intensity between rest and task periods were 6.5-14.6%(mean, 10.5%) in the motor cortex and 4.2% in the visual cortex. Functional imaging of cerebral cortex activation could be performed with a widely available 1.5-T MR. Widespread applications of this technique to basic and clinical neuroscience are expected

  20. Functional imaging of cerebral cortex activation with a 1.5-T MR imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hyoung; Chang, Sun Ae; Ha, Choong Kun; Kim, Eun Sang; Kim, Hyung Jin; Chung, Sung Hoon [Gyeongsang National University, College of Medicine, Jeongju (Korea, Republic of)

    1995-07-15

    Most of recent MR imagings of cerebral cortex activation have been performed by using high field magnet above 2-T or echo-planar imaging technique. We report our experience on imaging of cerebral cortex activation with a widely available standard 1.5-T MR. Series of gradient-echo images (TR/TE/flip angle: 80/60/40 .deg. 64 x 128 matrix) were acquired alternatively during the periods of rest and task in five normal volunteers. Finger movement (n = 10;5 right, 5 left) and flashing photic stimulation (n 1) were used as a motor task and a visual task to activate the motor cortex and visual cortex, respectively. Activation images were obtained by subtracting sum of rest images from that of task images. Changes of signal intensity were analyzed over the periods of rest and task. Activation images were obtained in all cases. Changes of signal intensity between rest and task periods were 6.5-14.6%(mean, 10.5%) in the motor cortex and 4.2% in the visual cortex. Functional imaging of cerebral cortex activation could be performed with a widely available 1.5-T MR. Widespread applications of this technique to basic and clinical neuroscience are expected.

  1. Resting functional imaging tools (MRS, SPECT, PET and PCT).

    Science.gov (United States)

    Van Der Naalt, J

    2015-01-01

    Functional imaging includes imaging techniques that provide information about the metabolic and hemodynamic status of the brain. Most commonly applied functional imaging techniques in patients with traumatic brain injury (TBI) include magnetic resonance spectroscopy (MRS), single photon emission computed tomography (SPECT), positron emission tomography (PET) and perfusion CT (PCT). These imaging modalities are used to determine the extent of injury, to provide information for the prediction of outcome, and to assess evidence of cerebral ischemia. In TBI, secondary brain damage mainly comprises ischemia and is present in more than 80% of fatal cases with traumatic brain injury (Graham et al., 1989; Bouma et al., 1991; Coles et al., 2004). In particular, while SPECT measures cerebral perfusion and MRS determines metabolism, PET is able to assess both perfusion and cerebral metabolism. This chapter will describe the application of these techniques in traumatic brain injury separately for the major groups of severity comprising the mild and moderate to severe group. The application in TBI and potential difficulties of each technique is described. The use of imaging techniques in children will be separately outlined. © 2015 Elsevier B.V. All rights reserved.

  2. Accuracy of Presurgical Functional MR Imaging for Language Mapping of Brain Tumors: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Weng, Hsu-Huei; Noll, Kyle R; Johnson, Jason M; Prabhu, Sujit S; Tsai, Yuan-Hsiung; Chang, Sheng-Wei; Huang, Yen-Chu; Lee, Jiann-Der; Yang, Jen-Tsung; Yang, Cheng-Ta; Tsai, Ying-Huang; Yang, Chun-Yuh; Hazle, John D; Schomer, Donald F; Liu, Ho-Ling

    2018-02-01

    Purpose To compare functional magnetic resonance (MR) imaging for language mapping (hereafter, language functional MR imaging) with direct cortical stimulation (DCS) in patients with brain tumors and to assess factors associated with its accuracy. Materials and Methods PubMed/MEDLINE and related databases were searched for research articles published between January 2000 and September 2016. Findings were pooled by using bivariate random-effects and hierarchic summary receiver operating characteristic curve models. Meta-regression and subgroup analyses were performed to evaluate whether publication year, functional MR imaging paradigm, magnetic field strength, statistical threshold, and analysis software affected classification accuracy. Results Ten articles with a total of 214 patients were included in the analysis. On a per-patient basis, the pooled sensitivity and specificity of functional MR imaging was 44% (95% confidence interval [CI]: 14%, 78%) and 80% (95% CI: 54%, 93%), respectively. On a per-tag basis (ie, each DCS stimulation site or "tag" was considered a separate data point across all patients), the pooled sensitivity and specificity were 67% (95% CI: 51%, 80%) and 55% (95% CI: 25%, 82%), respectively. The per-tag analysis showed significantly higher sensitivity for studies with shorter functional MR imaging session times (P = .03) and relaxed statistical threshold (P = .05). Significantly higher specificity was found when expressive language task (P = .02), longer functional MR imaging session times (P functional MR imaging when compared with intraoperative DCS, and the included studies displayed significant methodologic heterogeneity. © RSNA, 2017 Online supplemental material is available for this article.

  3. Unevenness on aerosol inhalation lung images and lung function

    International Nuclear Information System (INIS)

    Teshima, Takeo; Isawa, Toyoharu; Hirano, Tomio; Ebina, Akio; Shiraishi, Koichiro; Konno, Kiyoshi

    1985-01-01

    The unevenness or inhomogeneity of aerosol deposition patterns on radioaerosol inhalation lung images has been interpreted rather qualitatively in the clinical practice. We have reported our approach to quantitatively analyze the radioactive count distribution on radioaerosol inhalation lung images in relation to the actual lung function data. We have defined multiple indexes to express the shape and the unevenness of the count distribution of the lung images. To reduce as much as possible the number of indexes to be used in the regression functions, the method of selection of variables was introduced to the multiple regression analysis. Because some variables showed greater coefficients of simple correlation, while others did not, multicollinearity of variables had to be taken into consideration. For this reason, we chose a principal components regression analysis. The multiple regression function for each item of pulmonary function data thus established from analysis of 67 subjects appeared usable as a predictor of the actual lung function: for example, % VC (vital capacity) could be estimated by using four indexes out of the multiple ones with a coefficient of multiple correlation (R) of 0.753, and FEVsub(1.0) % (forced expiratory volume in one second divided by forced expiratory volume), by 7 indexes with R = 0.921. Pulmonary function data regarding lung volumes and lung mechanics were estimated more accurately with greater R's than those for lung diffusion, but even in the latter the prediction was still statistically significant at p less than 0.01. We believe the multiple regression functions thus obtained are useful for estimating not only the overall but also the regional function of the lungs. (author)

  4. Functional and perfusion magnetic resonance imaging at 3 tesla

    International Nuclear Information System (INIS)

    Klarhoefer, M.

    2001-03-01

    This thesis deals with the development and optimization of fast magnetic resonance imaging (MRI) methods for non-invasive functional studies of the human brain and perfusion imaging on a 3 Tesla (T) whole body NMR system. The functional MRI (fMRI) experiments performed showed that single-shot multi-echo EPI and spiral imaging techniques provide fast tools to obtain information about T2* distributions during functional activation in the human brain. Both sequences were found to be useful in the separation of different sources contributing to the functional MR signal like inflow or susceptibility effects in the various vascular environments. An fMRI study dealing with the involvement of prefrontal brain regions in movement preparation lead to inconsistent results. It could not be clarified if these were caused by problems during a spatial normalization process of the individual brains or if the functional paradigm, using very short inter-stimulus intervals, was not suited for the problem investigated. Blood flow velocity measurements in the human finger showed that the use of a strong, small-bore gradient system permits short echo times that reduce flow artefacts and allows high spatial resolution in order to keep systematic errors due to partial volume effects small. With regard to the perfusion investigations an inversion recovery snapshot-FLASH sequence was implemented, which allowed the acquisition of T1 parameter maps of the human brain within a few seconds. The accuracy of this method was demonstrated in test objects. The perfusion investigations with FAIR showed good qualitative results, whereas the quantitative analysis did not yield reproducible findings. A reason for the poor results could be the low signal-to-noise ratio (SNR) of the FAIR images or an incomplete global inversion of the magnetization due to the transmission characteristics of the radio-frequency coil. The BASE sequence that did not require a global inversion yielded quantitative perfusion

  5. Functional imaging in oncology. Clinical applications. Vol. 2

    International Nuclear Information System (INIS)

    Luna, Antonio; Vilanova, Joan C.

    2014-01-01

    Easy-to-read manual on new functional imaging techniques in oncology. Explains current clinical applications and outlines future avenues. Includes numerous high-quality illustrations to highlight the major teaching points. In the new era of functional and molecular imaging, both currently available imaging biomarkers and biomarkers under development are expected to lead to major changes in the management of oncological patients. This two-volume book is a practical manual on the various imaging techniques capable of delivering functional information on cancer, including diffusion MRI, perfusion CT and MRI, dual-energy CT, spectroscopy, dynamic contrast-enhanced ultrasonography, PET, and hybrid modalities. This second volume considers the applications and benefits of these techniques in a wide range of tumor types, including their role in diagnosis, prediction of treatment outcome, and early evaluation of treatment response. Each chapter addresses a specific malignancy and is written by one or more acclaimed experts. The lucid text is complemented by numerous high-quality illustrations that highlight key features and major teaching points.

  6. Functional imaging in oncology. Clinical applications. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Antonio [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Radiology; MRI Health Time Group, Jaen (Spain); Vilanova, Joan C. [Girona Univ. (Spain). Clinica Girona - Hospital Sta. Caterina; Hygino da Cruz, L. Celso Jr. (ed.) [CDPI and IRM, Rio de Janeiro (Brazil). Dept. of Radiology; Rossi, Santiago E. [Centro de Diagnostico, Buenos Aires (Argentina)

    2014-06-01

    Easy-to-read manual on new functional imaging techniques in oncology. Explains current clinical applications and outlines future avenues. Includes numerous high-quality illustrations to highlight the major teaching points. In the new era of functional and molecular imaging, both currently available imaging biomarkers and biomarkers under development are expected to lead to major changes in the management of oncological patients. This two-volume book is a practical manual on the various imaging techniques capable of delivering functional information on cancer, including diffusion MRI, perfusion CT and MRI, dual-energy CT, spectroscopy, dynamic contrast-enhanced ultrasonography, PET, and hybrid modalities. This second volume considers the applications and benefits of these techniques in a wide range of tumor types, including their role in diagnosis, prediction of treatment outcome, and early evaluation of treatment response. Each chapter addresses a specific malignancy and is written by one or more acclaimed experts. The lucid text is complemented by numerous high-quality illustrations that highlight key features and major teaching points.

  7. [Future perspectives for diagnostic imaging in urology: from anatomic and functional to molecular imaging].

    Science.gov (United States)

    Macis, Giuseppe; Di Giovanni, Silvia; Di Franco, Davide; Bonomo, Lorenzo

    2013-01-01

    The future approach of diagnostic imaging in urology follows the technological progress, which made the visualization of in vivo molecular processes possible. From anatomo-morphological diagnostic imaging and through functional imaging molecular radiology is reached. Based on molecular probes, imaging is aimed at assessing the in vivo molecular processes, their physiology and function at cellular level. The future imaging will investigate the complex tumor functioning as metabolism, aerobic glycolysis in particular, angiogenesis, cell proliferation, metastatic potential, hypoxia, apoptosis and receptors expressed by neoplastic cells. Methods for performing molecular radiology are CT, MRI, PET-CT, PET-MRI, SPECT and optical imaging. Molecular ultrasound combines technological advancement with targeted contrast media based on microbubbles, this allowing the selective registration of microbubble signal while that of stationary tissues is suppressed. An experimental study was carried out where the ultrasound molecular probe BR55 strictly bound to prostate tumor results in strong enhancement in the early phase after contrast, this contrast being maintained in the late phase. This late enhancement is markedly significant for the detection of prostatic cancer foci and to guide the biopsy sampling. The 124I-cG250 molecular antibody which is strictly linked to cellular carbonic anhydrase IX of clear cell renal carcinoma, allows the acquisition of diagnostic PET images of clear cell renal carcinoma without biopsy. This WG-250 (RENCAREX) antibody was used as a therapy in metastatic clear cell renal carcinoma. Future advancements and applications will result in early cancer diagnosis, personalized therapy that will be specific according to the molecular features of cancer and leading to the development of catheter-based multichannel molecular imaging devices for cystoscopy-based molecular imaging diagnosis and intervention.

  8. Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh

    2004-05-01

    Full Text Available Abstract Functional magnetic resonance imaging (fMRI is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities.

  9. Point spread functions and deconvolution of ultrasonic images.

    Science.gov (United States)

    Dalitz, Christoph; Pohle-Fröhlich, Regina; Michalk, Thorsten

    2015-03-01

    This article investigates the restoration of ultrasonic pulse-echo C-scan images by means of deconvolution with a point spread function (PSF). The deconvolution concept from linear system theory (LST) is linked to the wave equation formulation of the imaging process, and an analytic formula for the PSF of planar transducers is derived. For this analytic expression, different numerical and analytic approximation schemes for evaluating the PSF are presented. By comparing simulated images with measured C-scan images, we demonstrate that the assumptions of LST in combination with our formula for the PSF are a good model for the pulse-echo imaging process. To reconstruct the object from a C-scan image, we compare different deconvolution schemes: the Wiener filter, the ForWaRD algorithm, and the Richardson-Lucy algorithm. The best results are obtained with the Richardson-Lucy algorithm with total variation regularization. For distances greater or equal twice the near field distance, our experiments show that the numerically computed PSF can be replaced with a simple closed analytic term based on a far field approximation.

  10. Utilizing Minkowski functionals for image analysis: a marching square algorithm

    International Nuclear Information System (INIS)

    Mantz, Hubert; Jacobs, Karin; Mecke, Klaus

    2008-01-01

    Comparing noisy experimental image data with statistical models requires a quantitative analysis of grey-scale images beyond mean values and two-point correlations. A real-space image analysis technique is introduced for digitized grey-scale images, based on Minkowski functionals of thresholded patterns. A novel feature of this marching square algorithm is the use of weighted side lengths for pixels, so that boundary lengths are captured accurately. As examples to illustrate the technique we study surface topologies emerging during the dewetting process of thin films and analyse spinodal decomposition as well as turbulent patterns in chemical reaction–diffusion systems. The grey-scale value corresponds to the height of the film or to the concentration of chemicals, respectively. Comparison with analytic calculations in stochastic geometry models reveals a remarkable agreement of the examples with a Gaussian random field. Thus, a statistical test for non-Gaussian features in experimental data becomes possible with this image analysis technique—even for small image sizes. Implementations of the software used for the analysis are offered for download

  11. Distribution of estimated glomerular filtration rate (eGFR) values in patients receiving contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Shimoji, Keigo; Aoki, Shigeki; Nakanishi, Atsushi

    2012-01-01

    The aim of this study was to elucidate the distribution of estimated glomerular filtration rate (eGFR) values in patients who underwent gadolinium-based contrast agent (GBCA)-enhanced magnetic resonance imaging (MRI) at different types of hospitals. We retrospectively studied 2,550 patients who underwent MRI at five institutions. We recorded the date and value of each patient's eGFR test. The distribution of eGFR values was compared with that in the general Japanese population. A total of 84.3% of patients had their eGFRs evaluated before GBCA-enhanced MRI. Of these, 84.7% were evaluated within 3 months before the GBCA-enhanced MRI, and 1.3% were evaluated on the day of the GBCA-enhanced MRI. A total of 87.2% of patients tested had an eGFR of ≥60 ml/min/1.73 m 2 ; 12.8% had an eGFR of 2 , and no patients had an eGFR of 2 . The rate of renal function evaluation differed among hospitals. The prevalence of low eGFR values was greater in Juntendo Tokyo Koto Geriatric Medical Center than in the other hospitals, and the prevalence of low eGFR values was greater in patients who underwent GBCA-enhanced MRI than in the general Japanese population. (author)

  12. NMR imaging of the head-neck region. Topography of function - clinical findings - imaging and spectroscopy

    International Nuclear Information System (INIS)

    Vogl, T.J.

    1991-01-01

    The book on nmr imaging in the head-neck region offers, on a total of 221 pages, 344 detailed representations with 141 figures and 44 tables. It provides information as to the relevant topography of function, presents clinical findings, explains imaging characteristics and also takes account of spectroscopic procedures. The multifarious methods of investigation are described and discussed in connection with the differential diagnoses. A score of suitable diagnostic measures is assigned to each region of examination. The method's value is assessed against that of other imaging techniques. (orig.) [de

  13. Investigation of the lithosphere of the Texas Gulf Coast using phase-specific Ps receiver functions produced by wavefield iterative deconvolution

    Science.gov (United States)

    Gurrola, H.; Berdine, A.; Pulliam, J.

    2017-12-01

    Interference between Ps phases and reverberations (PPs, PSs phases and reverberations thereof) make it difficult to use Ps receiver functions (RF) in regions with thick sediments. Crustal reverberations typically interfere with Ps phases from the lithosphere-asthenosphere boundary (LAB). We have developed a method to separate Ps phases from reverberations by deconvolution of all the data recorded at a seismic station by removing phases from a single wavefront at each iteration of the deconvolution (wavefield iterative deconvolution or WID). We applied WID to data collected in the Gulf Coast and Llano Front regions of Texas by the EarthScope Transportable array and by a temporary deployment of 23 broadband seismometers (deployed by Texas Tech and Baylor Universities). The 23 station temporary deployment was 300 km long; crossing from Matagorda Island onto the Llano uplift. 3-D imaging using these data shows that the deepest part of the sedimentary basin may be inboard of the coastline. The Moho beneath the Gulf Coast plain does not appear in many of the images. This could be due to interference from reverberations from shallower layers or it may indicate the lack of a strong velocity contrast at the Moho perhaps due to serpentinization of the uppermost mantle. The Moho appears to be flat, at 40 km) beneath most of the Llano uplift but may thicken to the south and thin beneath the Coastal plain. After application of WID, we were able to identify a negatively polarized Ps phase consistent with LAB depths identified in Sp RF images. The LAB appears to be 80-100 km deep beneath most of the coast but is 100 to 120 km deep beneath the Llano uplift. There are other negatively polarized phases between 160 and 200 km depths beneath the Gulf Coast and the Llano Uplift. These deeper phases may indicate that, in this region, the LAB is transitional in nature and rather than a discrete boundary.

  14. Books Received

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Books Received. Articles in Resonance – Journal of Science Education. Volume 1 Issue 1 January 1996 pp 118-118 Books Received. Books Received · More Details Fulltext PDF. Volume 1 Issue 2 February 1996 pp 120-120 Books Received. Books Received.

  15. 3-Tesla functional magnetic resonance imaging-guided tumor resection

    Energy Technology Data Exchange (ETDEWEB)

    Hall, W.A. [Univ. of Minnesota Medical School, Minneapolis, MN (United States). Depts. of Neurosurgery; Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Radiation Oncology; Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Radiology; University of Minnesota Medical Center (MMC), Minneapolis, MN (United States); Truwit, C.L. [Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Radiology; Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Pediatrics; Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Neurology; Hennepin Country Medical Center, Minneapolis, MN (United States). Dept. of Radiology

    2006-12-15

    Objective: We sought to determine the safety and efficacy of using 3-tesla (T) functional magnetic resonance imaging (fMRI) to guide brain tumor resection. Material and methods: From February 2004 to March 2006, fMRI was performed on 13 patients before surgical resection. Functional imaging was used to identify eloquent cortices for motor (8), speech (3), and motor and speech (2) activation using two different 3-T magnetic resonance (MR) scanners. Surgical resection was accomplished using a 1.5-T intraoperative MR system. Appropriate MR scan sequences were performed intraoperatively to determine and maximize the extent of the surgical resection. Results: Tumors included six oligodendrogliomas, three meningiomas, two astrocytomas and two glioblastomas multiforme. The fMRI data was accurate in all cases. After surgery, two patients had hemiparesis, two had worsening of their speech, and one had worsening of speech and motor function. Neurological function returned to normal in all patients within 1 month. Complete resections were possible in 10 patients (77%). Two patients had incomplete resections because of the proximity of their tumors to functional areas. Biopsy was performed in another patient with an astrocytoma in the motor strip. Conclusion: 3-T fMRI was accurate for locating neurologic function before tumor resection near eloquent cortex. (orig.)

  16. 3-Tesla functional magnetic resonance imaging-guided tumor resection

    International Nuclear Information System (INIS)

    Hall, W.A.; Truwit, C.L.; Univ. of Minnesota Medical School, Minneapolis, MN; Univ. of Minnesota Medical School, Minneapolis, MN; Hennepin Country Medical Center, Minneapolis, MN

    2006-01-01

    Objective: We sought to determine the safety and efficacy of using 3-tesla (T) functional magnetic resonance imaging (fMRI) to guide brain tumor resection. Material and methods: From February 2004 to March 2006, fMRI was performed on 13 patients before surgical resection. Functional imaging was used to identify eloquent cortices for motor (8), speech (3), and motor and speech (2) activation using two different 3-T magnetic resonance (MR) scanners. Surgical resection was accomplished using a 1.5-T intraoperative MR system. Appropriate MR scan sequences were performed intraoperatively to determine and maximize the extent of the surgical resection. Results: Tumors included six oligodendrogliomas, three meningiomas, two astrocytomas and two glioblastomas multiforme. The fMRI data was accurate in all cases. After surgery, two patients had hemiparesis, two had worsening of their speech, and one had worsening of speech and motor function. Neurological function returned to normal in all patients within 1 month. Complete resections were possible in 10 patients (77%). Two patients had incomplete resections because of the proximity of their tumors to functional areas. Biopsy was performed in another patient with an astrocytoma in the motor strip. Conclusion: 3-T fMRI was accurate for locating neurologic function before tumor resection near eloquent cortex. (orig.)

  17. Construction of multi-functional open modulized Matlab simulation toolbox for imaging ladar system

    Science.gov (United States)

    Wu, Long; Zhao, Yuan; Tang, Meng; He, Jiang; Zhang, Yong

    2011-06-01

    Ladar system simulation is to simulate the ladar models using computer simulation technology in order to predict the performance of the ladar system. This paper presents the developments of laser imaging radar simulation for domestic and overseas studies and the studies of computer simulation on ladar system with different application requests. The LadarSim and FOI-LadarSIM simulation facilities of Utah State University and Swedish Defence Research Agency are introduced in details. This paper presents the low level of simulation scale, un-unified design and applications of domestic researches in imaging ladar system simulation, which are mostly to achieve simple function simulation based on ranging equations for ladar systems. Design of laser imaging radar simulation with open and modularized structure is proposed to design unified modules for ladar system, laser emitter, atmosphere models, target models, signal receiver, parameters setting and system controller. Unified Matlab toolbox and standard control modules have been built with regulated input and output of the functions, and the communication protocols between hardware modules. A simulation based on ICCD gain-modulated imaging ladar system for a space shuttle is made based on the toolbox. The simulation result shows that the models and parameter settings of the Matlab toolbox are able to simulate the actual detection process precisely. The unified control module and pre-defined parameter settings simplify the simulation of imaging ladar detection. Its open structures enable the toolbox to be modified for specialized requests. The modulization gives simulations flexibility.

  18. Does hormonal therapy influence sexual function in men receiving 3D conformal radiation therapy for prostate cancer?

    International Nuclear Information System (INIS)

    Chen, Christopher T.; Valicenti, Richard K.; Lu Jiandong; Derose, Troy; Dicker, Adam P.; Strup, Stephen E.; Mulholland, S. Grant; Hirsch, Irvin H.; McGinnis, David E.; Gomella, Leonard G.

    2001-01-01

    Purpose: We evaluated the effect of three-dimensional conformal radiation therapy (3D-CRT) with or without hormonal therapy (HT) on sexual function (SF) in prostate cancer patients whose SF was known before all treatment. Methods and Materials: Between March 1996 and March 1999, 144 patients received 3D-CRT (median dose = 70.2 Gy, range 66.6-79.2 Gy) for prostate cancer and had pre- and post-therapy SF data. All SF data were obtained with the O'Leary Brief SF Inventory, a self-administered, multidimensional, validated instrument. We defined total sexual potency as erections firm enough for penetration during intercourse. Mean follow-up time was 21 months (SD ± 11 months). The Wilcoxon signed-rank test was used to test for significance of the change from baseline. Results: Before 3D-CRT, 87 (60%) of 144 men were totally potent as compared to only 47 (47%) of 101 at 1-year follow-up. Of the 60 men totally potent at baseline and followed for at least 1 year, 35 (58%) remained totally potent. These changes corresponded to a significant reduction in SF (p<0.05). Patients who had 3D-CRT alone were more likely to be totally potent at 1 year than those receiving 3D-CRT with HT (56% vs. 31%, p=0.012); however, they were also more likely to be potent at baseline (71% vs. 44%, p=0.001). Although these two groups had a significant reduction in SF from baseline, their change was not significantly different from each other. Conclusion: These data indicate that 3D-CRT causes a significant reduction in total sexual potency as compared to pretreatment baseline. The addition of HT does not appear to increase the risk of sexual dysfunction

  19. Towards functional 3D T-ray imaging

    International Nuclear Information System (INIS)

    Ferguson, Bradley; Wang, Shaohong; Gray, Doug; Abbott, Derek; Zhang, X-C

    2002-01-01

    We review the recent development of T-ray computed tomography, a terahertz imaging technique that allows the reconstruction of the three-dimensional refractive index profile of weakly scattering objects. Terahertz pulse imaging is used to obtain images of the target at multiple projection angles and the filtered backprojection algorithm enables the reconstruction of the object's frequency-dependent refractive index. The application of this technique to a biological bone sample and a plastic test structure is demonstrated. The structure of each target is accurately resolved and the frequency-dependent refractive index is determined. The frequency-dependent information may potentially be used to extract functional information from the target, to uniquely identify different materials or to diagnose medical conditions

  20. Selected Aspects of Functioning of the Sewage Treatment Plant in Szczawnica in Terms of Receiver Water Quality

    Directory of Open Access Journals (Sweden)

    Ewa Wąsik

    2017-12-01

    Full Text Available This article includes an assessment of the impact of sewage exiting from the sewage treatment plant in Szczawnica before and after the modernization of the facility, the physicochemical composition and the quality of the water of their receiver - Dunajec River. The work was carried out on the basis of analysis of samples taken from raw and purified sewage and receiver waters. The Dunajec water intake was above and below the point of sewer discharge from the WWTP. The range of contaminated indicators included 14 physicochemical parameters and two bacteriological indicators. On the basis of the research conducted, it was stated that the Szczawnica Forest Enterprise after its modernization in 2016 functioned correctly. The purified sewage on it complies with the requirements of a water permit, which translates directly into effective protection against the pollution of receiver waters. This was confirmed by the results of the Kruskal-Wallis test that showed statistically significant differences between the median values of overall nitrogen concentrations before and after the refurbishment of the facility. For the remaining pollutant indices (total suspensions, BOD5, CODCr, total phosphorus, no statistically significant differences were found between the medians. In addition, it was found that the physico-chemical composition of Dunajec waters was similar in both examined sections. The purified effluent discharged from the Szczawnica treatment plant to the Dunajec River did not contribute to deterioration of its water quality in the case of physico-chemical indicators. Based on the classification of these elements, it was determined that in the analyzed period, the Dunajec water in the section directly above and below the WWTP meets the requirements for category A1 of waters intended for the supply of the population (very good quality water. In the case of microbiological classification based on the number of bacteria of the coli group and

  1. Array-Based Receiver Function Analysis of the Subducting Juan de Fuca Plate Beneath the Mount St. Helens Region and its Implications for Subduction Geometry and Metamorphism

    Science.gov (United States)

    Mann, M. E.; Abers, G. A.; Creager, K. C.; Ulberg, C. W.; Crosbie, K.

    2017-12-01

    Mount St. Helens (MSH) is unusual as a prolific arc volcano located 50 km towards the forearc of the main Cascade arc. The iMUSH (imaging Magma Under mount St. Helens) broadband deployment featured 70 seismometers at 10-km spacing in a 50-km radius around MSH, spanning a sufficient width for testing along-strike variation in subsurface geometry as well as deep controls on volcanism in the Cascade arc. Previous estimates of the geometry of the subducting Juan de Fuca (JdF) slab are extrapolated to MSH from several hundred km to the north and south. We analyze both P-to-S receiver functions and 2-D Born migrations of the full data set to locate the upper plate Moho and the dip and depth of the subducting slab. The strongest coherent phase off the subducting slab is the primary reverberation (Ppxs; topside P-to-S reflection) from the Moho of the subducting JdF plate, as indicated by its polarity and spatial pattern. Migration images show a dipping low velocity layer at depths less than 50 km that we interpret as the subducting JdF crust. Its disappearance beyond 50 km depth may indicate dehydration of subducting crust or disruption of high fluid pressures along the megathrust. The lower boundary of the low velocity zone, the JdF Moho, persists in the migration image to depths of at least 90 km and is imaged at 74 km beneath MSH, dipping 23 degrees. The slab surface is 68 km beneath MSH and 85 km beneath Mount Adams volcano to the east. The JdF Moho exhibits 10% velocity contrasts as deep as 85 km, an observation difficult to reconcile with simple models of crustal eclogitization. The geometry and thickness of the JdF crust and upper plate Moho is consistent with similar transects of Cascadia and does not vary along strike beneath iMUSH, indicating a continuous slab with no major disruption. The upper plate Moho is clear on the east side of the array but it disappears west of MSH, a feature we interpret as a result of both serpentinization of the mantle wedge and a

  2. The Under-side of the Andes: Using Receiver Functions to Map the North Central Andean Subsurface

    Science.gov (United States)

    Ryan, J. C.; Beck, S. L.; Zandt, G.; Wagner, L. S.; Minaya, E.; Tavera, H.

    2012-12-01

    The Central Andean Uplift and Geodynamics of High Topography (CAUGHT) project is an interdisciplinary project to investigate connections between lithospheric removal, crustal shortening and surface uplift in the northern Bolivia and southern Peru region of the South American Andean orogen. The central Andes are defined by six major tectonomorphic provinces; the forearc, the volcanically active Western Cordillera (WC, ~6 km elevation), the internally drained Altiplano (~4 km elevation), an inactive fold and thrust belt in the Eastern Cordillera (EC, ~6 km elevation), a lower elevation active fold and thrust belt in the Subandean (SA) zone and the Beni, a foreland basin. Forty seismic stations installed for the CAUGHT project were deployed between 13° and 18° S latitude, covering the transition zone where the Altiplano region pinches out in southern Peru, in an effort to better constrain the changing character of the crust and mantle lithosphere. Geologic studies across the northern Bolivian portion of the eastern Andean margin (15-17° S) have documented a total of 275 km of upper crustal shortening (McQuarrie et al, Tectonics, v27, 2008), which may be associated with crustal thickening and/or the removal of lithospheric material as a thickened lithosphere root becomes unstable. For this receiver function (converted wave) study, we have little coverage in the forearc and foreland, ~75 km spacing in most of the array, and a relatively dense ~20 km spaced profile along the Charaña-La Paz-Yucumo transect, the eastern portion of which is nearly coincident with the balanced cross-section of McQuarrie et al. (2008). Using the first year of available data, more than 1200 receiver functions have been calculated using an iterative deconvolution method, and stacked using the common conversion point (CCP) method, along profiles parallel to and nearly coincident to those used for the geologic shortening estimates. We identified arrivals for the Moho and generated a 3D map of

  3. A single-sided homogeneous Green's function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval

    Science.gov (United States)

    Wapenaar, Kees; Thorbecke, Jan; van der Neut, Joost

    2016-04-01

    Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a singularity on the right-hand side) is represented by a closed boundary integral. In practical applications, sources and/or receivers are usually present only on an open surface, which implies that a significant part of the closed boundary integral is by necessity ignored. Here we derive a homogeneous Green's function representation for the common situation that sources and/or receivers are present on an open surface only. We modify the integrand in such a way that it vanishes on the part of the boundary where no sources and receivers are present. As a consequence, the remaining integral along the open surface is an accurate single-sided representation of the homogeneous Green's function. This single-sided representation accounts for all orders of multiple scattering. The new representation significantly improves the aforementioned wavefield imaging applications, particularly in situations where the first-order scattering approximation breaks down.

  4. [Functional magnetic resonance imaging in psychiatry and psychotherapy].

    Science.gov (United States)

    Derntl, B; Habel, U; Schneider, F

    2010-01-01

    technical improvements, functional magnetic resonance imaging (fMRI) has become the most popular and versatile imaging method in psychiatric research. The scope of this manuscript is to briefly introduce the basics of MR physics, the blood oxygenation level-dependent (BOLD) contrast as well as the principles of MR study design and functional data analysis. The presentation of exemplary studies on emotion recognition and empathy in schizophrenia patients will highlight the importance of MR methods in psychiatry. Finally, we will demonstrate insights into new developments that will further boost MR techniques in clinical research and will help to gain more insight into dysfunctional neural networks underlying cognitive and emotional deficits in psychiatric patients. Moreover, some techniques such as neurofeedback seem promising for evaluation of therapy effects on a behavioral and neural level.

  5. Functional connectivity of the rodent brain using optical imaging

    Science.gov (United States)

    Guevara Codina, Edgar

    The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis

  6. Functional imaging of neurocognitive dysfunction in attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Wolf, I.; Tost, H.; Ruf, M.; Ende, G.

    2005-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is a neurobiological disorder of early childhood onset. Defining symptoms are chronic impairments of attention, impulse control and motor hyperactivity that frequently persist until adulthood. Miscellaneous causes of the disorder have been discussed. Accumulating evidence from imaging- and molecular genetic studies strengthened the theory of ADHS being a predominantly inherited disorder of neurobiological origin. In the last 15 years, non-invasive brain imaging methods were successfully implemented in pediatric research. Functional magnetic resonance imaging studies gave major insight into the neurobiological correlates of executive malfunction, inhibitory deficits and psychomotoric soft signs. These findings are in good accordance with brain morphometric data indicating a significant volumetric decrease of major components of striato-thalamo-cortical feedback loops, primarily influencing prefrontal executive functioning (e.g. basal ganglia). Empirical evidence points to a broad array of associated behavioral disturbances like deficient visuomotor abilities and oculomotor dysfunctions. This paper reviews the current empirical evidence derived from prior imaging studies. Special emphasis is given to the relevance of oculomotor dysfunctions in clinical and research settings, as well as their assessment in the MR environment. (orig.) [de

  7. The role of functional imaging techniques in the dementia

    International Nuclear Information System (INIS)

    Ryu, Young Hoon

    2004-01-01

    Evaluation of dementia in patients with early symptoms of cognitive decline is clinically challenging, but the need for early, accurate diagnosis has become more crucial, since several medication for the treatment of mild to moderate Alzheimer' disease are available. Many neurodegenerative diseases produce significant brain function alteration even when structural imaging (CT of MRI) reveal no specific abnormalities. The role of PET and SPECT brain imaging in the initial assessment and differential diagnosis of dementia is beginning to evolve rapidly and growing evidence indicates that appropriate incorporation of PET into the clinical work up can improve diagnostic and prognostic accuracy with respect to Alzheimer's disease, the most common cause of dementia in the geriatric population. In the fast few years, studies comparing neuropathologic examination with PET have established reliable and consistent accuracy for diagnostic evaluations using PET - accuracies substantially exceeding those of comparable studies of diagnostic value of SPECT or of both modalities assessed side by side, or of clinical evaluations done without nuclear imaging. This review deals the role of functional brian imaging techniques in the evaluation of dementias and the role of nuclear neuroimaging in the early detection and diagnosis of Alzheimer's disease

  8. Preliminary Results From the CAUGHT Experiment: Investigation of the North Central Andes Subsurface Using Receiver Functions and Ambient Noise Tomography

    Science.gov (United States)

    Ryan, J. C.; Ward, K. M.; Porter, R. C.; Beck, S. L.; Zandt, G.; Wagner, L. S.; Minaya, E.; Tavera, H.

    2011-12-01

    Jamie Ryan, Kevin M. Ward, Ryan Porter, Susan Beck, George Zandt, Lara Wagner, Estela Minaya, and Hernando Tavera The University of Arizona The University of North Carolina San Calixto Observatorio, La Paz, Bolivia IGP, Lima, Peru In order to investigate the interplay between crustal shortening, lithospheric removal, and surface uplift we have deployed 50 broadband seismometers in northwestern Bolivia and southern Peru as part of the interdisciplinary Central Andean Uplift and Geodynamics of High Topography (CAUGHT) project. The morphotectonic units of the central Andes from west to east, consist of the Western Cordillera, the active volcanic arc, the Altiplano, an internally drained basin (~4 km elevation), the Eastern Cordillera, the high peaks (~6 km elevation) of an older fold and thrust belt, the Subandean zone, the lower elevation active fold and thrust belt, and the foreland Beni basin. Between northwestern Bolivia and southern Peru, the Altiplano pinches out north of Lake Titicaca as the Andes narrow northward. The CAUGHT seismic instruments were deployed between 13° to 18° S latitudes to investigate the crust and mantle lithosphere of the central Andes in this transitional zone. In northwest Bolivia, perpendicular to the strike of the Andes, there is a total of 275 km of documented upper crustal shortening (15° to 17°S) (McQuarrie et al, 2008). Associated with the shortening is crustal thickening and possibly lithospheric removal as the thickening lithospheric root becomes unstable. An important first order study is to compare upper crustal shortening estimates with present day crustal thickness. To estimate crustal thickness, we have calculated receiver functions using an iterative deconvolution method and used common conversion point stacking along the same profile as the geologically based shortening estimates. In our preliminary results, we observed a strong P to S conversion corresponding to the Moho at approximately 60-65 km depth underneath the

  9. Crustal structure of the rifted volcanic margins and uplifted plateau of Western Yemen from receiver function analysis

    Science.gov (United States)

    Ahmed, Abdulhakim; Tiberi, Christel; Leroy, Sylvie; Stuart, Graham W.; Keir, Derek; Sholan, Jamal; Khanbari, Khaled; Al-Ganad, Ismael; Basuyau, Clémence

    2013-06-01

    We analyse P-wave receiver functions across the western Gulf of Aden and southern Red Sea continental margins in Western Yemen to constrain crustal thickness, internal crustal structure and the bulk seismic velocity characteristics in order to address the role of magmatism, faulting and mechanical crustal thinning during continental breakup. We analyse teleseismic data from 21 stations forming the temporary Young Conjugate Margins Laboratory (YOCMAL) network together with GFZ and Yemeni permanent stations. Analysis of computed receiver functions shows that (1) the thickness of unextended crust on the Yemen plateau is ˜35 km; (2) this thins to ˜22 km in coastal areas and reaches less than 14 km on the Red Sea coast, where presence of a high-velocity lower crust is evident. The average Vp/Vs ratio for the western Yemen Plateau is 1.79, increasing to ˜1.92 near the Red Sea coast and decreasing to 1.68 for those stations located on or near the granitic rocks. Thinning of the crust, and by inference extension, occurs over a ˜130-km-wide transition zone from the Red Sea and Gulf of Aden coasts to the edges of the Yemen plateau. Thinning of continental crust is particularly localized in a <30-km-wide zone near the coastline, spatially co-incident with addition of magmatic underplate to the lower crust, above which on the surface we observe the presence of seaward dipping reflectors (SDRs) and thickened Oligo-Miocene syn-rift basaltic flows. Our results strongly suggest the presence of high-velocity mafic intrusions in the lower crust, which are likely either synrift magmatic intrusion into continental lower crust or alternatively depleted upper mantle underplated to the base of the crust during the eruption of the SDRs. Our results also point towards a regional breakup history in which the onset of rifting was synchronous along the western Gulf of Aden and southern Red Sea volcanic margins followed by a second phase of extension along the Red Sea margin.

  10. Structure of the mantle lithosphere in continental collision zones of Europe, North America and China from S-receiver functions

    Science.gov (United States)

    Kind, R.; Shen, X.

    2017-12-01

    Seismic tomography and receiver functions are the most common methods to study the structure of the mantle lithosphere. We use S-receiver functions to study continent-continent collision zones in Europe, North America and China. In order to avoid possible numerical problems caused by filtering effects (side lobes) we process the data practically without filtering (also excluding deconvolution). Side lobes are still a fundamental question to check the reality of the Mid-Lithospheric Discontinuity (MLD). We use openly available data of mostly permanent seismic broadband stations from the European portal EIDA, from IRIS and from the Chinese Seismic Network. We obtained several ten thousands of useful records in each region by visual and fully automatic processing. We observed the MLD in all cratonic regions near 100 km depth and the Lithosphere-Asthenosphere Boundary (LAB) partly in cratonic regions near 200 km depth. The observation of the cratonic LAB with converted waves requires a relatively sharp discontinuity which excludes temperature as only cause of the LAB. In younger tectonic active regions we observed the LAB near 100 km depth. TheLAB and MLD are in collision zones significantly structured. In central Europe we observed the deep cratonic LAB reaching far to the west of the Tornquist-Teisseyre Zone below Phanerozoic cover. Below the northern edge of the Bohemian Massif seems to be a tear in the LAB leading to a jump in its depth of about 100 km. In North America we see north of Yellowstone a smooth deepening of the western LAB from about 100 km depth to 200 km depth at the Mid-Continental Rift System. Similarly to the LAB jump below the Bohemian Massif in Europe, we see below the Sevier Thrust Belt also a jump of about 100 km in the LAB depth. In China we see the cratonic LAB deepening to the south-west far below eastern Tibet. Below the craton in north-east China is only the shallow LAB/MLD visible. These observations in three continents show that the

  11. Functional magnetic resonance imaging with ultra-high fields

    International Nuclear Information System (INIS)

    Windischberger, C.; Schoepf, V.; Sladky, R.; Moser, E.; Fischmeister, F.P.S.

    2010-01-01

    Functional magnetic resonance imaging (fMRI) is currently the primary method for non-invasive functional localization in the brain. With the emergence of MR systems with field strengths of 4 Tesla and above, neuronal activation may be studied with unprecedented accuracy. In this article we present different approaches to use the improved sensitivity and specificity for expanding current fMRT resolution limits in space and time based on several 7 Tesla studies. In addition to the challenges that arise with ultra-high magnetic fields possible solutions will be discussed. (orig.) [de

  12. Functional magnetic resonance imaging of higher brain activity

    International Nuclear Information System (INIS)

    Cui He; Wang Yunjiu; Chen Runsheng; Tang Xiaowei.

    1996-01-01

    Functional magnetic resonance images (fMRIs) exhibit small differences in the magnetic resonance signal intensity in positions corresponding to focal areas of brain activation. These signal are caused by variation in the oxygenation state of the venous vasculature. Using this non-invasive and dynamic method, it is possible to localize functional brain activation, in vivo, in normal individuals, with an accuracy of millimeters and a temporal resolution of seconds. Though a series of technical difficulties remain, fMRI is increasingly becoming a key method for visualizing the working brain, and uncovering the topographical organization of the human brain, and understanding the relationship between brain and the mind

  13. Functional photoacoustic tomography for neonatal brain imaging: developments and challenges

    Science.gov (United States)

    Hariri, Ali; Tavakoli, Emytis; Adabi, Saba; Gelovani, Juri; Avanaki, Mohammad R. N.

    2017-03-01

    Transfontanelle ultrasound imaging (TFUSI) is a routine diagnostic brain imaging method in infants who are born prematurely, whose skull bones have not completely fused together and have openings between them, so-called fontanelles. Open fontanelles in neonates provide acoustic windows, allowing the ultrasound beam to freely pass through. TFUSI is used to rule out neurological complications of premature birth including subarachnoid hemorrhage (SAH), intraventricular (IVH), subependimal (SEPH), subdural (SDH) or intracerebral (ICH) hemorrhages, as well as hypoxic brain injuries. TFUSI is widely used in the clinic owing to its low cost, safety, accessibility, and noninvasive nature. Nevertheless, the accuracy of TFUSI is limited. To address several limitations of current clinical imaging modalities, we develop a novel transfontanelle photoacoustic imaging (TFPAI) probe, which, for the first time, should allow for non-invasive structural and functional imaging of the infant brain. In this study, we test the feasibility of TFPAI for detection of experimentally-induced intra ventricular and Intraparenchymal hemorrhage phantoms in a sheep model with a surgically-induced cranial window which will serve as a model of neonatal fontanelle. This study is towards using the probe we develop for bedside monitoring of neonates with various disease conditions and complications affecting brain perfusion and oxygenation, including apnea, asphyxia, as well as for detection of various types of intracranial hemorrhages (SAH, IVH, SEPH, SDH, ICH).

  14. Fundamentals of functional imaging I: current clinical techniques.

    Science.gov (United States)

    Luna, A; Martín Noguerol, T; Mata, L Alcalá

    2018-05-01

    Imaging techniques can establish a structural, physiological, and molecular phenotype for cancer, which helps enable accurate diagnosis and personalized treatment. In recent years, various imaging techniques that make it possible to study the functional characteristics of tumors quantitatively and reproducibly have been introduced and have become established in routine clinical practice. Perfusion studies enable us to estimate the microcirculation as well as tumor angiogenesis and permeability using ultrafast dynamic acquisitions with ultrasound, computed tomography, or magnetic resonance (MR) imaging. Diffusion-weighted sequences now form part of state-of-the-art MR imaging protocols to evaluate oncologic lesions in any anatomic location. Diffusion-weighted imaging provides information about the occupation of the extracellular and extravascular space and indirectly estimates the cellularity and apoptosis of tumors, having demonstrated its relation with biologic aggressiveness in various tumor lines and its usefulness in the evaluation of the early response to systemic and local targeted therapies. Another tool is hydrogen proton MR spectroscopy, which is used mainly in the study of the metabolic characteristics of brain tumors. However, the complexity of the technique and its lack of reproducibility have limited its clinical use in other anatomic areas, although much experience with the use of this technique in the assessment of prostate and breast cancers as well as liver lesions has also accumulated. This review analyzes the imaging techniques that make it possible to evaluate the physiological and molecular characteristics of cancer that have already been introduced into clinical practice, such as techniques that evaluate angiogenesis through dynamic acquisitions after the administration of contrast material, diffusion-weighted imaging, or hydrogen proton MR spectroscopy, as well as their principal applications in oncology. Copyright © 2018 SERAM. Publicado

  15. Development of integrated semiconductor optical sensors for functional brain imaging

    Science.gov (United States)

    Lee, Thomas T.

    Optical imaging of neural activity is a widely accepted technique for imaging brain function in the field of neuroscience research, and has been used to study the cerebral cortex in vivo for over two decades. Maps of brain activity are obtained by monitoring intensity changes in back-scattered light, called Intrinsic Optical Signals (IOS), that correspond to fluctuations in blood oxygenation and volume associated with neural activity. Current imaging systems typically employ bench-top equipment including lamps and CCD cameras to study animals using visible light. Such systems require the use of anesthetized or immobilized subjects with craniotomies, which imposes limitations on the behavioral range and duration of studies. The ultimate goal of this work is to overcome these limitations by developing a single-chip semiconductor sensor using arrays of sources and detectors operating at near-infrared (NIR) wavelengths. A single-chip implementation, combined with wireless telemetry, will eliminate the need for immobilization or anesthesia of subjects and allow in vivo studies of free behavior. NIR light offers additional advantages because it experiences less absorption in animal tissue than visible light, which allows for imaging through superficial tissues. This, in turn, reduces or eliminates the need for traumatic surgery and enables long-term brain-mapping studies in freely-behaving animals. This dissertation concentrates on key engineering challenges of implementing the sensor. This work shows the feasibility of using a GaAs-based array of vertical-cavity surface emitting lasers (VCSELs) and PIN photodiodes for IOS imaging. I begin with in-vivo studies of IOS imaging through the skull in mice, and use these results along with computer simulations to establish minimum performance requirements for light sources and detectors. I also evaluate the performance of a current commercial VCSEL for IOS imaging, and conclude with a proposed prototype sensor.

  16. Free-radical probes for functional in vivo EPR imaging

    Science.gov (United States)

    Subramanian, S.; Krishna, M. C.

    2007-02-01

    Electron paramagnetic resonance imaging (EPRI) is one of the recent functional imaging modalities that can provide valuable in vivo physiological information on its own merit and aids as a complimentary imaging technique to MRI and PET of tissues especially with respect to in vivo pO II (oxygen partial pressure), redox status and pharmacology. EPR imaging mainly deals with the measurement of distribution and in vivo dynamics and redox changes using special nontoxic paramagnetic spin probes that can be infused into the object of investigation. These spin probes should be characterized by simple EPR spectra, preferably with narrow EPR lines. The line width should be reversibly sensitive to the concentration of in vivo pO II with a linear dependence. Several non-toxic paramagnetic probes, some particulate and insoluble and others water-soluble and infusible (by intravenous or intramuscular injection) have been developed which can be effectively used to quantitatively assess tissue redox status, and tumor hypoxia. Quantitative assessment of the redox status of tissue in vivo is important in investigating oxidative stress, and that of tissue pO II is very important in radiation oncology. Other areas in which EPR imaging and oxymetry may help are in the investigation of tumorangiogenesis, wound healing, oxygenation of tumor tissue by the ingestion of oxygen-rich gases, etc. The correct choice of the spin probe will depend on the modality of measurement (whether by CW or time-domain EPR imaging) and the particular physiology interrogated. Examples of the available spin probes and some EPR imaging applications employing them are presented.

  17. One-Year Linear Trajectories of Symptoms, Physical Functioning, Cognitive Functioning, Emotional Well-being, and Spiritual Well-being Among Patients Receiving Dialysis.

    Science.gov (United States)

    Song, Mi-Kyung; Paul, Sudeshna; Ward, Sandra E; Gilet, Constance A; Hladik, Gerald A

    2018-01-25

    This study evaluated 1-year linear trajectories of patient-reported dimensions of quality of life among patients receiving dialysis. Longitudinal observational study. 227 patients recruited from 12 dialysis centers. Sociodemographic and clinical characteristics. Participants completed an hour-long interview monthly for 12 months. Each interview included patient-reported outcome measures of overall symptoms (Edmonton Symptom Assessment System), physical functioning (Activities of Daily Living/Instrumental Activities of Daily Living), cognitive functioning (Patient's Assessment of Own Functioning Inventory), emotional well-being (Center for Epidemiologic Studies Depression Scale, State Anxiety Inventory, and Positive and Negative Affect Schedule), and spiritual well-being (Functional Assessment of Chronic Illness Therapy-Spiritual Well-Being Scale). For each dimension, linear and generalized linear mixed-effects models were used. Linear trajectories of the 5 dimensions were jointly modeled as a multivariate outcome over time. Although dimension scores fluctuated greatly from month to month, overall symptoms, cognitive functioning, emotional well-being, and spiritual well-being improved over time. Older compared with younger participants reported higher scores across all dimensions (all Pspiritual well-being compared with their white counterparts (P<0.01). Clustering analysis of dimension scores revealed 2 distinctive clusters. Cluster 1 was characterized by better scores than those of cluster 2 in nearly all dimensions at baseline and by gradual improvement over time. Study was conducted in a single region of the United States and included mostly patients with high levels of function across the dimensions of quality of life studied. Multidimensional patient-reported quality of life varies widely from month to month regardless of whether overall trajectories improve or worsen over time. Additional research is needed to identify the best approaches to incorporate

  18. Methods for processing and analysis functional and anatomical brain images: computerized tomography, emission tomography and nuclear resonance imaging

    International Nuclear Information System (INIS)

    Mazoyer, B.M.

    1988-01-01

    The various methods for brain image processing and analysis are presented and compared. The following topics are developed: the physical basis of brain image comparison (nature and formation of signals intrinsic performance of the methods image characteristics); mathematical methods for image processing and analysis (filtering, functional parameter extraction, morphological analysis, robotics and artificial intelligence); methods for anatomical localization (neuro-anatomy atlas, proportional stereotaxic atlas, numerized atlas); methodology of cerebral image superposition (normalization, retiming); image networks [fr

  19. Hypercholesterolemia and Myocardial function evaluated via Tissue Doppler Imaging

    Directory of Open Access Journals (Sweden)

    Kotaru Pavan

    2009-11-01

    Full Text Available Abstract Objective To establish a link between hypercholesterolemia and myocardial dysfunction. Background Heart failure is a complex disease involving changes in systolic and diastolic function. Newer echocardiographic imaging modalities may be able to detect discreet changes in myocardial function associated with hypercholesterolemia. Therefore we sought to establish a link between hypercholesterolemia and myocardial dysfunction with tissue Doppler imaging (TDI. Methods Twenty-seven rabbits were studied: 7 were fed normal chow (group 1 and 20 a high cholesterol diet (10 with ezetimibe, 1 mg/kg/day; group 2 and 10 without, group 3. Echocardiographic images were obtained under general anesthesia. Serum cholesterol levels were obtained at baseline, 3 and 6 months and myocardial cholesterol levels measured following euthanasia. Results Doppler measurements, including E/A, E'/A' and S' were significantly lower in group 3 compared to both groups 1 and 2 but no significant differences were noted in chamber sizes or ejection fraction among the groups. Average serum cholesterol was higher in group 3 compared to groups 1 and 2 respectively (495 ± 305 mg/dl vs. 114 ± 95 mg/dl and 87 ± 37 mg/dl; p 2 = 0.17 p = 0.04, r2 = 0.37 p = 0.001 and r2 = 0.24 p = 0.01. Conclusion Cholesterol load in the serum and myocardium was significantly associated with decreased systolic and diastolic function by TDI. Moreover, lipid lowering was protective.

  20. High temporal resolution functional MRI using parallel echo volumar imaging

    International Nuclear Information System (INIS)

    Rabrait, C.; Ciuciu, P.; Ribes, A.; Poupon, C.; Dehaine-Lambertz, G.; LeBihan, D.; Lethimonnier, F.; Le Roux, P.; Dehaine-Lambertz, G.

    2008-01-01

    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  1. Functional imaging of the sensorimotor cortex using an ultra-fast MR imaging method

    International Nuclear Information System (INIS)

    Tsunoda, Akira; Nakajima, Yasoichi; Sato, Kiyoshi; Katayama, Jin; Machida, Yoshio; Nozaki, Seiji; Makita, Jun-ichi.

    1996-01-01

    The aim of this study was to assess changes in brain activity during a motor task and variable sensory stimulation using echo planar imaging, which represents the fastest clinically useful imaging technique available. The subjects of this study were 11 healthy volunteers, 4 males and 11 females, with an average of 26.4 years. The subjects were instructed to tap the fingers of one hand as the motor task. Compressed air was applied 5 times a second as 'simple' sensory stimulation. Simple figures were drawn on the subjects palm as 'complex' sensory stimulation. In all cases, functional imaging was performed by T 2 * -weighted echo planar imaging (TE=53 msec, TR=3000 msec, flip angle=90 degrees, matrix 64 x 64, FOV=205 mm, slice thickness=8 mm) alternately at rest and during the task (intervals: 30 sec). A total of 60 images was collected in 3 minutes. Images obtained by subtracting images at rest and during the task were analyzed. Almost all subjects showed a transient signal increase in the contralateral paracentral region during simple sensory stimulation. Continuous signal increases in the contra- and/or ipsi-lateral para-central region were observed durirg complex sensory stimulation. Some exhibited signal increases in the parietal or frontal association cortex, but they disappeared when subject's attention was distracted during stimulation. All subjects displayed signal increases in the contralateral para-central region during the motor task. Some of them exhibited signal increases in the medial frontal area (supplementary motor area) and ipsilateral para-central region. These results suggest that the signal increases of functional MRI reflect not only simple reactions to stimulation but higher cerebral function as well. (J.P.N.)

  2. Subsurface signature of North Anatolian Fault Zone and its relation with old sutures: New insight from receiver function analysis.

    Science.gov (United States)

    Özacar, Arda A.; Abgarmi, Bizhan

    2017-04-01

    The North Anatolian Fault Zone (NAFZ) is an active continental transform plate boundary that accommodates the westward extrusion of the Anatolian plate. The central segment of NAFZ displays northward convex surface trace which coincides partly with the Paleo-Tethyan suture formed during the early Cenozoic. The depth extent and detailed structure of the actively deforming crust along the NAF is still under much debate and processes responsible from rapid uplift are enigmatic. In this study, over five thousand high quality P receiver functions are computed using teleseismic earthquakes recorded by permanent stations of national agencies and temporary North Anatolian Fault Passive Seismic experiment (2005-2008). In order to map the crustal thickness and Vp/Vs variations accurately, the study area is divided into grids with 20 km spacing and along each grid line Moho phase and its multiples are picked through constructed common conversion point (CCP) profiles. According to our results, nature of discontinuities and crustal thickness display sharp changes across the main strand of NAFZ supporting a lithospheric scale faulting that offsets Moho discontinuity. In the southern block, crust is relatively thin in the west ( 35 km) and becomes thicker gradually towards east ( 40 km). In contrast, the northern block displays a strong lateral change in crustal thickness reaching up to 10 km across a narrow roughly N-S oriented zone which is interpreted as the subsurface signature of the ambiguous boundary between Istanbul Block and Pontides located further west at the surface.

  3. A harmonic analysis approach to joint inversion of P-receiver functions and wave dispersion data in high dense seismic profiles

    Science.gov (United States)

    Molina-Aguilera, A.; Mancilla, F. D. L.; Julià, J.; Morales, J.

    2017-12-01

    Joint inversion techniques of P-receiver functions and wave dispersion data implicitly assume an isotropic radial stratified earth. The conventional approach invert stacked radial component receiver functions from different back-azimuths to obtain a laterally homogeneous single-velocity model. However, in the presence of strong lateral heterogeneities as anisotropic layers and/or dipping interfaces, receiver functions are considerably perturbed and both the radial and transverse components exhibit back azimuthal dependences. Harmonic analysis methods exploit these azimuthal periodicities to separate the effects due to the isotropic flat-layered structure from those effects caused by lateral heterogeneities. We implement a harmonic analysis method based on radial and transverse receiver functions components and carry out a synthetic study to illuminate the capabilities of the method in isolating the isotropic flat-layered part of receiver functions and constrain the geometry and strength of lateral heterogeneities. The independent of the baz P receiver function are jointly inverted with phase and group dispersion curves using a linearized inversion procedure. We apply this approach to high dense seismic profiles ( 2 km inter-station distance, see figure) located in the central Betics (western Mediterranean region), a region which has experienced complex geodynamic processes and exhibit strong variations in Moho topography. The technique presented here is robust and can be applied systematically to construct a 3-D model of the crust and uppermost mantle across large networks.

  4. Functional MR imaging of working memory in the human brain

    International Nuclear Information System (INIS)

    Na, Dong Gyu; Ryu, Jae Wook; Byun, Hong Sik; Lee, Eun Jeong; Chung, Woo In; Cho, Jae Min; Han, Boo Kyung; Choi, Dae Seob

    2000-01-01

    In order to investigate the functional brain anatomy associated with verbal and visual working memory, functional magnetic resonance imaging was performed. In ten normal right handed subjects, functional MR images were obtained using a 1.5-T MR scanner and the EPI BOLD technique. An item recognition task was used for stimulation, and during the activation period of the verbal working memory task, consonant letters were used. During the activation period of the visual working memory task, symbols or diagrams were employed instead of letters. For the post-processing of images, the SPM program was used, with the threshold of significance set at p < .001. We assessed activated brain areas during the two stimulation tasks and compared the activated regions between the two tasks. The prefrontal cortex and secondary visual cortex were activated bilaterally by both verbal and visual working memory tasks, and the patterns of activated signals were similar in both tasks. The superior parietal cortex was also activated by both tasks, with lateralization to the left in the verbal task, and bilaterally without lateralization in the visual task. The inferior frontal cortex, inferior parietal cortex and temporal gyrus were activated exclusively by the verbal working memory task, predominantly in the left hemisphere. The prefrontal cortex is activated by two stimulation tasks, and this is related to the function of the central executive. The language areas activated by the verbal working memory task may be a function of the phonological loop. Bilateral prefrontal and superior parietal cortices activated by the visual working memory task may be related to the visual maintenance of objects, representing visual working memory

  5. Functional MR imaging of working memory in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Na, Dong Gyu; Ryu, Jae Wook; Byun, Hong Sik; Lee, Eun Jeong; Chung, Woo In; Cho, Jae Min; Han, Boo Kyung [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Choi, Dae Seob [Dongguk University College of Medicine, Seoul (Korea, Republic of)

    2000-03-01

    In order to investigate the functional brain anatomy associated with verbal and visual working memory, functional magnetic resonance imaging was performed. In ten normal right handed subjects, functional MR images were obtained using a 1.5-T MR scanner and the EPI BOLD technique. An item recognition task was used for stimulation, and during the activation period of the verbal working memory task, consonant letters were used. During the activation period of the visual working memory task, symbols or diagrams were employed instead of letters. For the post-processing of images, the SPM program was used, with the threshold of significance set at p < .001. We assessed activated brain areas during the two stimulation tasks and compared the activated regions between the two tasks. The prefrontal cortex and secondary visual cortex were activated bilaterally by both verbal and visual working memory tasks, and the patterns of activated signals were similar in both tasks. The superior parietal cortex was also activated by both tasks, with lateralization to the left in the verbal task, and bilaterally without lateralization in the visual task. The inferior frontal cortex, inferior parietal cortex and temporal gyrus were activated exclusively by the verbal working memory task, predominantly in the left hemisphere. The prefrontal cortex is activated by two stimulation tasks, and this is related to the function of the central executive. The language areas activated by the verbal working memory task may be a function of the phonological loop. Bilateral prefrontal and superior parietal cortices activated by the visual working memory task may be related to the visual maintenance of objects, representing visual working memory.

  6. Functional Brain Imaging Synthesis Based on Image Decomposition and Kernel Modeling: Application to Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Francisco J. Martinez-Murcia

    2017-11-01

    Full Text Available The rise of neuroimaging in research and clinical practice, together with the development of new machine learning techniques has strongly encouraged the Computer Aided Diagnosis (CAD of different diseases and disorders. However, these algorithms are often tested in proprietary datasets to which the access is limited and, therefore, a direct comparison between CAD procedures is not possible. Furthermore, the sample size is often small for developing accurate machine learning methods. Multi-center initiatives are currently a very useful, although limited, tool in the recruitment of large populations and standardization of CAD evaluation. Conversely, we propose a brain image synthesis procedure intended to generate a new image set that share characteristics with an original one. Our system focuses on nuclear imaging modalities such as PET or SPECT brain images. We analyze the dataset by applying PCA to the original dataset, and then model the distribution of samples in the projected eigenbrain space using a Probability Density Function (PDF estimator. Once the model has been built, we can generate new coordinates on the eigenbrain space belonging to the same class, which can be then projected back to the image space. The system has been evaluated on different functional neuroimaging datasets assessing the: resemblance of the synthetic images with the original ones, the differences between them, their generalization ability and the independence of the synthetic dataset with respect to the original. The synthetic images maintain the differences between groups found at the original dataset, with no significant differences when comparing them to real-world samples. Furthermore, they featured a similar performance and generalization capability to that of the original dataset. These results prove that these images are suitable for standardizing the evaluation of CAD pipelines, and providing data augmentation in machine learning systems -e.g. in deep

  7. Functional imaging of the multidrug resistance in vivo

    International Nuclear Information System (INIS)

    Lee, Jae Tae

    2001-01-01

    Although diverse mechanisms are involved in multidrug resistance for chemotherapeutic drugs, the development of cellular P-glycoprotein(Pgp) and multidrug-resistance associated protein (MRP) are improtant factors in the chemotherapy failure to cancer. Various detection assays provide information about the presence of drug efflux pumps at the mRNA and protein levels. However these methods do not yield information about dynamic function of Pgp and MRP in vivo. Single photon emission tomograpy (SPECT) and positron emission tomograpy (PET) are available for the detection of Pgp and MRP-mediated transport. 99m Tc-sestaMIBI and other 99m Tc-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies of tumor imaging, and to visualize blockade of Pgp-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with 11 C have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and N- (11 C]acetyl-leukotriene E4 provides an opportunity to study MRP function non-invasively in vivo. Results obtained from recent publications are reviewed to confirm the feasibility of using SPECT and PET to study the functionality of MDR transportes in vivo

  8. Study of functional brain imaging for bilingual language cognition

    International Nuclear Information System (INIS)

    Sun Da

    2008-01-01

    Bilingual and multilingual brain studies of language recognition is an interdisciplinary subject which needs to identify different levels involved in the neural representation of languages, such as neuroanatomical, neurofunctional, biochemical, psychological and linguistic levels. Furthermore, specific factor's such as age, manner of acquisition and environmental factors seem to affect the neural representation. Functional brain imaging, such as PET, SPECT and functional MRI can explore the neurolinguistics representation of bilingualism in the brain in subjects, and elucidate the neuronal mechanisms of bilingual language processing. Functional imaging methods show differences in the pattern of cerebral activation associated with a second language compared with the subject's native language. It shows that verbal memory processing in two unrelated languages is mediated by a common neural system with some distinct cortical areas. The different patterns of activation differ according to the language used. It also could be ascribed either to age of acquisition or to proficiency level. And attained proficiency is more important than age of acquisition as a determinant of the cortical representation of the second language. The study used PET and SPECT shows that sign and spoken language seem to be localized in the same brain areas, and elicit similar regional cerebral blood flow patterns. But for sign language perception, the functional anatomy overlaps that of language processing contain both auditory and visual components. And the sign language is dependent on spatial information too. (authors)

  9. Imaging structural and functional brain networks in temporal lobe epilepsy

    Science.gov (United States)

    Bernhardt, Boris C.; Hong, SeokJun; Bernasconi, Andrea; Bernasconi, Neda

    2013-01-01

    Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy. PMID:24098281

  10. Imaging structural and functional brain networks in temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Boris eBernhardt

    2013-10-01

    Full Text Available Early imaging studies in temporal lobe epilepsy (TLE focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy.

  11. Imaging structural and functional brain networks in temporal lobe epilepsy.

    Science.gov (United States)

    Bernhardt, Boris C; Hong, Seokjun; Bernasconi, Andrea; Bernasconi, Neda

    2013-10-01

    Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy.

  12. Imaging of human vertebral surface using ultrasound RF data received at each element of probe for thoracic anesthesia

    Science.gov (United States)

    Takahashi, Kazuki; Taki, Hirofumi; Onishi, Eiko; Yamauchi, Masanori; Kanai, Hiroshi

    2017-07-01

    Epidural anesthesia is a common technique for perioperative analgesia and chronic pain treatment. Since ultrasonography is insufficient for depicting the human vertebral surface, most examiners apply epidural puncture by body surface landmarks on the back such as the spinous process and scapulae without any imaging, including ultrasonography. The puncture route to the epidural space at thoracic vertebrae is much narrower than that at lumber vertebrae, and therefore, epidural anesthesia at thoracic vertebrae is difficult, especially for a beginner. Herein, a novel imaging method is proposed based on a bi-static imaging technique by making use of the transmit beam width and direction. In an in vivo experimental study on human thoracic vertebrae, the proposed method succeeded in depicting the vertebral surface clearly as compared with conventional B-mode imaging and the conventional envelope method. This indicates the potential of the proposed method in visualizing the vertebral surface for the proper and safe execution of epidural anesthesia.

  13. WE-AB-202-04: Statistical Evaluation of Lung Function Using 4DCT Ventilation Imaging: Proton Therapy VS IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Q; Zhang, M; Chen, T; Yue, N; Zou, J [Rutgers University, New Brunswick, NJ (United States)

    2016-06-15

    Purpose: Variation in function of different lung regions has been ignored so far for conventional lung cancer treatment planning, which may lead to higher risk of radiation induced lung disease. 4DCT based lung ventilation imaging provides a novel yet convenient approach for lung functional imaging as 4DCT is taken as routine for lung cancer treatment. Our work aims to evaluate the impact of accounting for spatial heterogeneity in lung function using 4DCT based lung ventilation imaging for proton and IMRT plans. Methods: Six patients with advanced stage lung cancer of various tumor locations were retrospectively evaluated for the study. Proton and IMRT plans were designed following identical planning objective and constrains for each patient. Ventilation images were calculated from patients’ 4DCT using deformable image registration implemented by Velocity AI software based on Jacobian-metrics. Lung was delineated into two function level regions based on ventilation (low and high functional area). High functional region was defined as lung ventilation greater than 30%. Dose distribution and statistics in different lung function area was calculated for patients. Results: Variation in dosimetric statistics of different function lung region was observed between proton and IMRT plans. In all proton plans, high function lung regions receive lower maximum dose (100.2%–108.9%), compared with IMRT plans (106.4%–119.7%). Interestingly, three out of six proton plans gave higher mean dose by up to 2.2% than IMRT to high function lung region. Lower mean dose (lower by up to 14.1%) and maximum dose (lower by up to 9%) were observed in low function lung for proton plans. Conclusion: A systematic approach was developed to generate function lung ventilation imaging and use it to evaluate plans. This method hold great promise in function analysis of lung during planning. We are currently studying more subjects to evaluate this tool.

  14. Methods for modeling and quantification in functional imaging by positron emissions tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Costes, Nicolas

    2017-01-01

    This report presents experiences and researches in the field of in vivo medical imaging by positron emission tomography (PET) and magnetic resonance imaging (MRI). In particular, advances in terms of reconstruction, quantification and modeling in PET are described. The validation of processing and analysis methods is supported by the creation of data by simulation of the imaging process in PET. The recent advances of combined PET/MRI clinical cameras, allowing simultaneous acquisition of molecular/metabolic PET information, and functional/structural MRI information opens the door to unique methodological innovations, exploiting spatial alignment and simultaneity of the PET and MRI signals. It will lead to an increase in accuracy and sensitivity in the measurement of biological phenomena. In this context, the developed projects address new methodological issues related to quantification, and to the respective contributions of MRI or PET information for a reciprocal improvement of the signals of the two modalities. They open perspectives for combined analysis of the two imaging techniques, allowing optimal use of synchronous, anatomical, molecular and functional information for brain imaging. These innovative concepts, as well as data correction and analysis methods, will be easily translated into other areas of investigation using combined PET/MRI. (author) [fr

  15. Effects of electroconvulsive therapy on amygdala function in major depression - a longitudinal functional magnetic resonance imaging study.

    Science.gov (United States)

    Redlich, R; Bürger, C; Dohm, K; Grotegerd, D; Opel, N; Zaremba, D; Meinert, S; Förster, K; Repple, J; Schnelle, R; Wagenknecht, C; Zavorotnyy, M; Heindel, W; Kugel, H; Gerbaulet, M; Alferink, J; Arolt, V; Zwanzger, P; Dannlowski, U

    2017-09-01

    Electroconvulsive therapy (ECT) is one of the most effective treatments for severe depression. However, little is known regarding brain functional processes mediating ECT effects. In a non-randomized prospective study, functional magnetic resonance imaging data during the automatic processing of subliminally presented emotional faces were obtained twice, about 6 weeks apart, in patients with major depressive disorder (MDD) before and after treatment with ECT (ECT, n = 24). Additionally, a control sample of MDD patients treated solely with pharmacotherapy (MED, n = 23) and a healthy control sample (HC, n = 22) were obtained. Before therapy, both patient groups equally showed elevated amygdala reactivity to sad faces compared with HC. After treatment, a decrease in amygdala activity to negative stimuli was discerned in both patient samples indicating a normalization of amygdala function, suggesting mechanisms potentially unspecific for ECT. Moreover, a decrease in amygdala activity to sad faces was associated with symptomatic improvements in the ECT sample (r spearman = -0.48, p = 0.044), and by tendency also for the MED sample (r spearman = -0.38, p = 0.098). However, we did not find any significant association between pre-treatment amygdala function to emotional stimuli and individual symptom improvement, neither for the ECT sample, nor for the MED sample. In sum, the present study provides first results regarding functional changes in emotion processing due to ECT treatment using a longitudinal design, thus validating and extending our knowledge gained from previous treatment studies. A limitation was that ECT patients received concurrent medication treatment.

  16. Functional and morphological imaging of thyroid associated eye disease. Data evaluation by means of image fusion

    International Nuclear Information System (INIS)

    Kainz, H.

    2002-08-01

    Aim: to recognize the structures that show an uptake of a 99mTc-labeled octreotide tracer within the orbit and head in patients with thyroid associated eye disease relying on image fusion. Methods: A series of 18 patients presenting the signs and symptoms of thyroid associated eye disease were studied. Functional imaging was done with 99mTc-HYNIC-TOC, a newly in-house developed tracer. Both whole body as well as single photon emission tomographies (SPECT) of the head were obtained in each patient. Parallel to nuclear medicine imaging, morphological imaging was done using either computed tomography or magnetic resonance. Results: By means of image fusion farther more information on the functional status of the patients was obtained. All areas showing an uptake could be anatomically identified, revealing a series of organs that had not yet been consideren in this disease. The organs presenting tracer uptake showed characteristic forms as described below: - eye glass sign: lacrimal gland and lacrimal ducts - scissors sign: eye muscles, rectus sup. and inf. - arch on CT: muscle displacement - Omega sign: tonsils and salivary glands - W- sign: tonsils and salivary glands Conclusions: By means of image fusion it was possible to recognize that a series of organs of the neck and head express somatostatin receptors. We interpret these results as a sign of inflammation of the lacrimal glands, the lacrimal ducts, the cervical lymphatics, the anterior portions of the extra ocular eye muscles and muscles of the posterior cervical region. Somatostatin uptake in these sturctures reflects the prescence of specific receptors which reflect the immuno regulating function of the peptide. (author)

  17. Functional Imaging of Working Memory and Peripheral Endothelial Function in Middle-Aged Adults

    Science.gov (United States)

    Gonzales, Mitzi M.; Tarumi, Takashi; Tanaka, Hirofumi; Sugawara, Jun; Swann-Sternberg, Tali; Goudarzi, Katayoon; Haley, Andreana P.

    2010-01-01

    The current study examined the relationship between a prognostic indicator of vascular health, flow-mediated dilation (FMD), and working memory-related brain activation in healthy middle-aged adults. Forty-two participants underwent functional magnetic resonance imaging while completing a 2-Back working memory task. Brachial artery…

  18. The relationship between functional magnetic resonance imaging activation, diffusion tensor imaging, and training effects.

    Science.gov (United States)

    Farrar, Danielle; Budson, Andrew E

    2017-04-01

    While the relationship between diffusion tensor imaging (DTI) measurements and training effects is explored by Voelker et al. (this issue), a cursory discussion of functional magnetic resonance imaging (fMRI) measurements categorizes increased activation with findings of greater white matter integrity. Evidence of the relationship between fMRI activation and white matter integrity is conflicting, as is the relationship between fMRI activation and training effects. An examination of the changes in fMRI activation in response to training is helpful, but the relationship between DTI and fMRI activation, particularly in the context of white matter changes, must be examined further before general conclusions can be drawn.

  19. Seismic velocity structure of the crust and upper mantle beneath the Texas-Gulf of Mexico margin from joint inversion of Ps and Sp receiver functions and surface wave dispersion

    Science.gov (United States)

    Agrawal, M.; Pulliam, J.; Sen, M. K.

    2013-12-01

    The seismic structure beneath Texas Gulf Coast Plain (GCP) is determined via velocity analysis of stacked common conversion point (CCP) Ps and Sp receiver functions and surface wave dispersion. The GCP is a portion of a ocean-continental transition zone, or 'passive margin', where seismic imaging of lithospheric Earth structure via passive seismic techniques has been rare. Seismic data from a temporary array of 22 broadband stations, spaced 16-20 km apart, on a ~380-km-long profile from Matagorda Island, a barrier island in the Gulf of Mexico, to Johnson City, Texas were employed to construct a coherent image of the crust and uppermost mantle. CCP stacking was applied to data from teleseismic earthquakes to enhance the signal-to-noise ratios of converted phases, such as Ps phases. An inaccurate velocity model, used for time-to-depth conversion in CCP stacking, may produce higher errors, especially in a region of substantial lateral velocity variations. An accurate velocity model is therefore essential to constructing high quality depth-domain images. To find accurate velocity P- and S-wave models, we applied a joint modeling approach that searches for best-fitting models via simulated annealing. This joint inversion approach, which we call 'multi objective optimization in seismology' (MOOS), simultaneously models Ps receiver functions, Sp receiver functions and group velocity surface wave dispersion curves after assigning relative weights for each objective function. Weights are computed from the standard deviations of the data. Statistical tools such as the posterior parameter correlation matrix and posterior probability density (PPD) function are used to evaluate the constraints that each data type places on model parameters. They allow us to identify portions of the model that are well or poorly constrained.

  20. Structure of the crust beneath Cameroon, West Africa, from the joint inversion of Rayleigh wave group velocities and receiver functions

    Science.gov (United States)

    Tokam, Alain-Pierre K.; Tabod, Charles T.; Nyblade, Andrew A.; Julià, Jordi; Wiens, Douglas A.; Pasyanos, Michael E.

    2010-11-01

    The Cameroon Volcanic Line (CVL) consists of a linear chain of Tertiary to Recent, generally alkaline, volcanoes that do not exhibit an age progression. Here we study crustal structure beneath the CVL and adjacent regions in Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broad-band seismic stations deployed between 2005 January and 2007 February. We find that (1) crustal thickness (35-39km) and velocity structure is similar beneath the CVL and the Pan African Oubanguides Belt to the south of the CVL, (2) crust is thicker (43-48km) under the northern margin of the Congo Craton and is characterized by shear wave velocities >=4.0kms-1 in its lower part and (3) crust is thinner (26-31km) under the Garoua rift and the coastal plain. In addition, a fast velocity layer (Vs of 3.6-3.8kms-1) in the upper crust is found beneath many of the seismic stations. Crustal structure beneath the CVL and the Oubanguides Belt is very similar to Pan African crustal structure in the Mozambique Belt, and therefore it appears not to have been modified significantly by the magmatic activity associated with the CVL. The crust beneath the coastal plain was probably thinned during the opening of the southern Atlantic Ocean, while the crust beneath the Garoua rift was likely thinned during the formation of the Benue Trough in the early Cretaceous. We suggest that the thickened crust and the thick mafic lower crustal layer beneath the northern margin of the Congo Craton may be relict features from a continent-continent collision along this margin during the formation of Gondwana.

  1. Structure of the Crust Beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions

    International Nuclear Information System (INIS)

    Tokam, Alain-Pierre K.; Tabod, Charles T.; Nyblade, Andrew A.; Jordi Julia; Wiens, Douglas A.; Pasyanos, Michael E.

    2009-09-01

    The joint inversion of Rayleigh wave group velocities and receiver functions was carried out to investigate the crustal and uppermost mantle structures beneath Cameroon. This was achieved using data from 32 broadband seismic stations installed for 2 years across Cameroon. The Moho depth estimates reveal that the Precambrian crust is variable across the country and shows some significant differences compared to other similar geologic units in East and South Africa. These differences suggest that the setting of the Cameroon Volcanic Line (CVL) and the eastward extension of the Benue Trough have modified the crust of the Panafrican mobile belt in Cameroon by thinning beneath the Rift area and CVL. The velocity models obtained from the joint inversion show at most stations, a layer with shear wave velocities ≥ 4.0 km/s, indicating the presence of a mafic component in the lower crust, predominant beneath the Congo Craton. The lack of this layer at stations within the Panafrican mobile belt may partly explain the crustal thinning observed beneath the CVL and rift area. The significant presence of this layer beneath the Craton, results from the 2100 Ma magmatic events at the origin of the emplacement of swarms of mafic dykes in the region. The CVL stations are underlain by a crust of 35 km on average except near Mt-Cameroon where it is about 25 km. The crustal thinning observed beneath Mt. Cameroon supported by the observed positive gravity anomalies here, suggests the presence of dense astenospheric material within the lithosphere. Shear wave velocities are found to be slower in the crust and uppermost mantle beneath the CVL than the nearby tectonic terrains, suggesting that the origin of the line may be an entirely mantle process through the edge-flow convection process. (author)

  2. Crustal Thickness Beneath Libya and the Origin of Partial Melt Beneath AS Sawda Volcanic Province From Receiver Function Constraints

    Science.gov (United States)

    Lemnifi, Awad A.; Elshaafi, Abdelsalam; Browning, John; Aouad, Nassib S.; El Ebaidi, Saad K.; Liu, Kelly K.; Gudmundsson, Agust

    2017-12-01

    This study investigates crustal thickness and properties within the Libyan region. Results obtained from 15 seismic stations belonging to the Libyan Center for Remote Sensing and Space Science are reported, in addition to 3 seismic stations publically available, using receiver functions. The results show crustal thicknesses ranging from 24 km to 36 km (with uncertainties ranging between ±0.10 km and ±0.90 km). More specifically, crustal thickness ranges from 32 km to 36 km in the southern portion of the Libyan territory then becomes thinner, between 24 km and 30 km, in the coastal areas of Libya and thinnest, between 24 km and 28 km, in the Sirt Basin. The observed high Vp/Vs value of 1.91 at one station located at the AS Sawda Volcanic Province in central Libya indicates the presence of either partial melt or an abnormally warm area. This finding suggests that magma reservoirs beneath the Libyan territory may still be partially molten and active, thereby posing significant earthquake and volcanic risks. The hypothesis of an active magma source is further demonstrated though the presence of asthenospheric upwelling and extension of the Sirt Basin. This study provides a new calculation of unconsolidated sediment layers by using the arrival time of the P to S converted phases. The results show sediments thicknesses of 0.4 km to 3.7 km, with the Vp/Vs values ranging from 2.2 to 4.8. The variations in crustal thickness throughout the region are correlated with surface elevation and Bouguer gravity anomalies, which suggest that they are isostatically compensated.

  3. Receiver function and gravity constraints on crustal structure and vertical movements of the Upper Mississippi Embayment and Ozark Uplift

    Science.gov (United States)

    Liu, Lin; Gao, Stephen S.; Liu, Kelly H.; Mickus, Kevin

    2017-06-01

    The Upper Mississippi Embayment (UME), where the seismically active New Madrid Seismic Zone resides, experienced two phases of subsidence commencing in the Late Precambrian and Cretaceous, respectively. To provide new constraints on models proposed for the mechanisms responsible for the subsidence, we computed and stacked P-to-S receiver functions recorded by 49 USArray and other seismic stations located in the UME and the adjacent Ozark Uplift and modeled Bouguer gravity anomaly data. The inferred thickness, density, and Vp/Vs of the upper and lower crustal layers suggest that the UME is characterized by a mafic and high-density upper crustal layer of ˜30 km thickness, which is underlain by a higher-density lower crustal layer of up to ˜15 km. Those measurements, in the background of previously published geological observations on the subsidence and uplift history of the UME, are in agreement with the model that the Cretaceous subsidence, which was suggested to be preceded by an approximately 2 km uplift, was the consequence of the passage of a previously proposed thermal plume. The thermoelastic effects of the plume would have induced wide-spread intrusion of mafic mantle material into the weak UME crust fractured by Precambrian rifting and increased its density, resulting in renewed subsidence after the thermal source was removed. In contrast, the Ozark Uplift has crustal density, thickness, and Vp/Vs measurements that are comparable to those observed on cratonic areas, suggesting an overall normal crust without significant modification by the proposed plume, probably owing to the relatively strong and thick lithosphere.

  4. Morphological and functional MR imaging of the pharyngotympanic tube

    International Nuclear Information System (INIS)

    Krombach, G.A.; Nolte-Ernsting, C.; Schmitz-Rode, T.; Guenther, R.W.; Di Martino, E.; Westhofen, M.; Prescher, A.

    2000-01-01

    Purpose: To develop and evaluate a protocol for the anatomic depiction and functional testing of the auditory tube with the use of MR imaging. Methods: Eleven volunteers were included into this study. For the morphological assessment, the imaging protocol included axial and coronal T 2 -weighted turbo-spin echo sequences (T R /T E =3194/100 ms) and a T 1 -weighted gradient echo sequence (T R /T E =42/4.6 ms). For the functional test a dynamic turbo-gradient echo sequence (TFE) with spectral fat suppression (T R /T E =15/6,2 ms; 4 sec) was obtained using the single slice technique before and during the Valsalva manoeuvre. Results: With multi-slice sequences, the osseous part of the auditory tube, the tubal cartilage (middle and lateral lamina), the ciliated epithelium, Ostmann's adipose body and the levator and tensor veli palatini muscles were delineated in all cases. During the Valsalva test, opening of the auditory tube was demonstrated in 20 of the 22 investigated sides using the dynamic TFE single slice sequence. Conclusions: The introduced MRI protocol allow visualization of the opening of the auditory tube and provides detailed anatomical information of the nasopharynx. Comprehensive morphological and functional evaluation of the auditory tube becomes possible within a single examination. (orig.) [de

  5. A Functional Approach to Hyperspectral Image Analysis in the Cloud

    Science.gov (United States)

    Wilson, A.; Lindholm, D. M.; Coddington, O.; Pilewskie, P.

    2017-12-01

    Hyperspectral image volumes are very large. A hyperspectral image analysis (HIA) may use 100TB of data, a huge barrier to their use. Hylatis is a new NASA project to create a toolset for HIA. Through web notebook and cloud technology, Hylatis will provide a more interactive experience for HIA by defining and implementing concepts and operations for HIA, identified and vetted by subject matter experts, and callable within a general purpose language, particularly Python. Hylatis leverages LaTiS, a data access framework developed at LASP. With an OPeNDAP compliant interface plus additional server side capabilities, the LaTiS API provides a uniform interface to virtually any data source, and has been applied to various storage systems, including: file systems, databases, remote servers, and in various domains including: space science, systems administration and stock quotes. In the LaTiS architecture, data `adapters' read data into a data model, where server-side computations occur. Data `writers' write data from the data model into the desired format. The Hylatis difference is the data model. In LaTiS, data are represented as mathematical functions of independent and dependent variables. Domain semantics are not present at this level, but are instead present in higher software layers. The benefit of a domain agnostic, mathematical representation is having the power of math, particularly functional algebra, unconstrained by domain semantics. This agnosticism supports reusable server side functionality applicable in any domain, such as statistical, filtering, or projection operations. Algorithms to aggregate or fuse data can be simpler because domain semantics are separated from the math. Hylatis will map the functional model onto the Spark relational interface, thereby adding a functional interface to that big data engine.This presentation will discuss Hylatis goals, strategies, and current state.

  6. Functional imaging in pre-motor Parkinson’s disease

    International Nuclear Information System (INIS)

    Arnaldi, D.; Picco, A.; Ferrara, M.; Nobili, F.; Famà, F.; Buschiazzo, A.; Morbelli, S.; De Carli, F.

    2014-01-01

    Several non motor symptoms (NMS) can precede the onset of the classical motor Parkinson’s disease (PD) syndrome. The existence of pre-motor and even pre-clinical PD stages has been proposed but the best target population to be screened to disclose PD patients in a pre-clinical, thus asymptomatic, stage is still matter of debate. The REM sleep behavior disorder (RBD) often affects PD patients at different stages of the disease and could precede the onset of motor symptoms by several years. However, RBD could also precede other synucleinopathies (namely, dementia with Lewy bodies and multisystem atrophy), and less frequently could be related to other neurological conditions or remain idiopathic. Moreover, not all PD patients exhibit RBD. Despite these caveats, RBD probably represents the best feature to disclose pre-motor PD patients given its high-risk of developing a full motor syndrome. Other clinical clues in the premotor stages of PD undergoing active investigation include hyposmia, depression, and autonomic dysfunction. Effective biomarkers are needed in order to improve the diagnostic accuracy in the pre-motor stage of PD, to monitor disease progression and to plan both pharmacological and non-pharmacological intervention. Functional imaging, in particular radionuclide methodologies, has been often used to investigate dopaminergic and non-dopaminergic features as well as cortical functioning in patients with RBD in its idiopathic form (iRBD) and/or associated with PD. Recently, new tracers to image α-synuclein pathologies are under development. Functional imaging in pre-motor PD, and in particular in iRBD, could improve our knowledge about the underlying mechanisms and the neurodegenerative progress of PD

  7. Image Inpainting Based on Coherence Transport with Adapted Distance Functions

    KAUST Repository

    März, Thomas

    2011-01-01

    We discuss an extension of our method image inpainting based on coherence transport. For the latter method the pixels of the inpainting domain have to be serialized into an ordered list. Until now, to induce the serialization we have used the distance to boundary map. But there are inpainting problems where the distance to boundary serialization causes unsatisfactory inpainting results. In the present work we demonstrate cases where we can resolve the difficulties by employing other distance functions which better suit the problem at hand. © 2011 Society for Industrial and Applied Mathematics.

  8. Functional MR imaging of psychogenic amnesia: a case report

    International Nuclear Information System (INIS)

    Yang, Jong Chul; Jeong, Gwang Woo; Lee, Moo Suk; Kang, Heoung Keun; Eun, Sung Jong; Lee, Yo Han; Kim, Yong Ku

    2005-01-01

    We present here a case in which functional MR imaging (fMRI) was done for a patient who developed retrograde psychogenic amnesia for a four year period of her life history after a severe stressful event. We performed the fMRI study for a face recognition task using stimulation with three kinds of face photographs: recognizable familiar faces, unrecognizable friends' faces due to the psychogenic amnesia, and unfamiliar control faces. Different activation patterns between the recognizable faces and unrecognizable faces were found in the limbic area, and especially in the amygdala and hippocampus

  9. Whiplash Injuries Can be Visible by Functional Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Bengt H Johansson

    2006-01-01

    Full Text Available Whiplash trauma can result in injuries that are difficult to diagnose. Diagnosis is particularly difficult in injuries to the upper segments of the cervical spine (craniocervical joint [CCJ] complex. Studies indicate that injuries in that region may be responsible for the cervicoencephalic syndrome, as evidenced by headache, balance problems, vertigo, dizziness, eye problems, tinnitus, poor concentration, sensitivity to light and pronounced fatigue. Consequently, diagnosis of lesions in the CCJ region is important. Functional magnetic resonance imaging is a radiological technique that can visualize injuries of the ligaments and the joint capsules, and accompanying pathological movement patterns.

  10. Functional MR imaging of psychogenic amnesia: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jong Chul; Jeong, Gwang Woo; Lee, Moo Suk; Kang, Heoung Keun; Eun, Sung Jong; Lee, Yo Han [Chonnam National Univeristy Hospital, Chonnam National University Medical School, Kwangju (Korea, Republic of); Kim, Yong Ku [Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2005-09-15

    We present here a case in which functional MR imaging (fMRI) was done for a patient who developed retrograde psychogenic amnesia for a four year period of her life history after a severe stressful event. We performed the fMRI study for a face recognition task using stimulation with three kinds of face photographs: recognizable familiar faces, unrecognizable friends' faces due to the psychogenic amnesia, and unfamiliar control faces. Different activation patterns between the recognizable faces and unrecognizable faces were found in the limbic area, and especially in the amygdala and hippocampus.

  11. A transmit/receive radiofrequency array for imaging the carotid arteries at 7 Tesla: coil design and first in vivo results.

    Science.gov (United States)

    Kraff, Oliver; Bitz, Andreas K; Breyer, Tobias; Kruszona, Stefan; Maderwald, Stefan; Brote, Irina; Gizewski, Elke R; Ladd, Mark E; Quick, Harald H

    2011-04-01

    To develop a transmit/receive radiofrequency (RF) array for magnetic resonance imaging (MRI) of the carotid arteries at 7 T. The prototype is characterized in numerical simulations and bench measurements, and the feasibility of plaque imaging at 7 T is demonstrated in first in vivo images. The RF phased array coil consists of 8 surface loop coils. To allow imaging of both sides of the neck, the RF array is divided into 2 coil clusters, each with 4 overlapping loop elements. For safety validation, numerical computations of the RF field distribution and the corresponding specific absorption rate were performed on the basis of a heterogeneous human body model. To validate the coil model, maps of the transmit B1(+) field were compared between simulation and measurement. In vivo images of a healthy volunteer and a patient (ulcerating plaque and a 50% stenosis of the right internal carotid artery) were acquired using a 3-dimensional FLASH sequence with a high isotropic spatial resolution of 0.54 mm as well as using pulse-triggered proton density (PD)/T2-weighted turbo spin echo sequences. Measurements of the S-parameters yielded a reflection and isolation of the coil elements of better than -18 and -13 dB, respectively. Measurements of the g-factor indicated good image quality for parallel imaging acceleration factors up to 2.4. A similar distribution and a very good match of the absolute values were found between the measured and simulated B1(+) transmit RF field for the validation of the coil model. In vivo images revealed good signal excitation of both sides of the neck and a high vessel-to-background image contrast for the noncontrast-enhanced 3-dimensional FLASH sequence. Imaging at 7 T could depict the extent of stenosis, and revealed the disruption and ulcer of the plaque. This study demonstrates that 2 four-channel transmit/receive RF arrays for each side of the neck is a suitable concept for in vivo MRI of the carotid arteries at 7 Tesla. Further studies are

  12. Speech system of the brain: Insight via functional imaging methods

    Directory of Open Access Journals (Sweden)

    Kristjan Sancin

    2004-08-01

    Full Text Available The study of neural correlates of language has always lagged behind the study of other aspects of behavior and cognition due to the lack of an animal model. Clinical data led to the idea that language perception is localized in the posterior superior temporal lobe (Wernicke's area and functions related to speech production are localized in the lateral frontal lobe (Broca's area of the dominant hemisphere. Recent data from electrophysiological and functional neuroimaging investigations shows that the roles of Wernicke's and Broca's areas are not as clear as they appeared. A variety of cortical and subcortical regions have been found to be critically important for language processing. Functional magnetic resonance imaging (fMRI can be used to study language system of the brain. When planning certain neurosurgical interventions, it is important to determine hemispheric language dominance and localization of language functions in order to avoid damaging these areas. Some fMRI language paradigms promise a completely noninvasive way of localizing language functions in an individual patient – a possible substitute for the tests currently in use. In our lab, we have recently started to use fMRI for localization of cortical language areas in healthy individuals and in neurological patients.

  13. Measurement of spatial correlation functions using image processing techniques

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1985-01-01

    A procedure for using digital image processing techniques to measure the spatial correlation functions of composite heterogeneous materials is presented. Methods for eliminating undesirable biases and warping in digitized photographs are discussed. Fourier transform methods and array processor techniques for calculating the spatial correlation functions are treated. By introducing a minimal set of lattice-commensurate triangles, a method of sorting and storing the values of three-point correlation functions in a compact one-dimensional array is developed. Examples are presented at each stage of the analysis using synthetic photographs of cross sections of a model random material (the penetrable sphere model) for which the analytical form of the spatial correlations functions is known. Although results depend somewhat on magnification and on relative volume fraction, it is found that photographs digitized with 512 x 512 pixels generally have sufficiently good statistics for most practical purposes. To illustrate the use of the correlation functions, bounds on conductivity for the penetrable sphere model are calculated with a general numerical scheme developed for treating the singular three-dimensional integrals which must be evaluated

  14. Lateral epicondylitis. Associations of MR imaging and clinical assessments with treatment options in patients receiving conservative and arthroscopic managements

    International Nuclear Information System (INIS)

    Jeon, Ji Young; Lee, Min Hee; Chung, Hye Won; Lee, Sang Hoon; Shin, Myung Jin; Jeon, In-Ho

    2018-01-01

    We assessed the implications of MR imaging with clinical history in lateral epicondylitis management by evaluating imaging and clinical features in patients with lateral epicondylitis treated conservatively or operatively. Sixty patients with lateral epicondylitis treated conservatively (n = 38) or operatively (n = 22) from 2011-2015 were included. MR imaging findings of common extensor tendon (CET), lateral collateral ligament (LCL) complex, muscle oedema, ulnar nerve and elbow joint were reviewed. Clinical data recorded were frequency, duration and intensity of pain, history of trauma and injection therapy, range of motion. MRI-assessed CET and LCL complex abnormalities, muscle oedema, radiocapitellar joint widening, joint effusion/synovitis, pain frequency and intensity differed significantly between the two groups (p <.05) with increased severity in operative group. Persistent pain (OR 12.2, p <.01), CET abnormality on longitudinal plane (OR 7.5, p =.03 for grade 2; OR 22.4, p <.01 for grade 3) and muscle oedema (OR 6.7, p =.03) were major factors associated with operative treatment. Area under the ROC curve of predicted probabilities for combination of these factors was 0.83. MR imaging, combined with clinical assessment, could facilitate appropriate management planning for patients with lateral epicondylitis. (orig.)

  15. Lateral epicondylitis. Associations of MR imaging and clinical assessments with treatment options in patients receiving conservative and arthroscopic managements

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Ji Young [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Gachon University, Department of Radiology, Incheon (Korea, Republic of); Lee, Min Hee; Chung, Hye Won; Lee, Sang Hoon; Shin, Myung Jin [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Jeon, In-Ho [University of Ulsan College of Medicine, Department of Orthopedic Surgery, Seoul (Korea, Republic of)

    2018-03-15

    We assessed the implications of MR imaging with clinical history in lateral epicondylitis management by evaluating imaging and clinical features in patients with lateral epicondylitis treated conservatively or operatively. Sixty patients with lateral epicondylitis treated conservatively (n = 38) or operatively (n = 22) from 2011-2015 were included. MR imaging findings of common extensor tendon (CET), lateral collateral ligament (LCL) complex, muscle oedema, ulnar nerve and elbow joint were reviewed. Clinical data recorded were frequency, duration and intensity of pain, history of trauma and injection therapy, range of motion. MRI-assessed CET and LCL complex abnormalities, muscle oedema, radiocapitellar joint widening, joint effusion/synovitis, pain frequency and intensity differed significantly between the two groups (p <.05) with increased severity in operative group. Persistent pain (OR 12.2, p <.01), CET abnormality on longitudinal plane (OR 7.5, p =.03 for grade 2; OR 22.4, p <.01 for grade 3) and muscle oedema (OR 6.7, p =.03) were major factors associated with operative treatment. Area under the ROC curve of predicted probabilities for combination of these factors was 0.83. MR imaging, combined with clinical assessment, could facilitate appropriate management planning for patients with lateral epicondylitis. (orig.)

  16. Functional image-based radiotherapy planning for non-small cell lung cancer: A simulation study

    International Nuclear Information System (INIS)

    Bates, Emma L.; Bragg, Christopher M.; Wild, Jim M.; Hatton, Matthew Q.F.; Ireland, Rob H.

    2009-01-01

    Background and purpose: To investigate the incorporation of data from single-photon emission computed tomography (SPECT) or hyperpolarized helium-3 magnetic resonance imaging ( 3 He-MRI) into intensity-modulated radiotherapy (IMRT) planning for non-small cell lung cancer (NSCLC). Material and methods: Seven scenarios were simulated that represent cases of NSCLC with significant functional lung defects. Two independent IMRT plans were produced for each scenario; one to minimise total lung volume receiving ≥20 Gy (V 20 ), and the other to minimise only the functional lung volume receiving ≥20 Gy (FV 20 ). Dose-volume characteristics and a plan quality index related to planning target volume coverage by the 95% isodose (V PTV95 /FV 20 ) were compared between anatomical and functional plans using the Wilcoxon signed ranks test. Results: Compared to anatomical IMRT plans, functional planning reduced FV 20 (median 2.7%, range 0.6-3.5%, p = 0.02), and total lung V 20 (median 1.5%, 0.5-2.7%, p = 0.02), with a small reduction in mean functional lung dose (median 0.4 Gy, 0-0.7 Gy, p = 0.03). There were no significant differences in target volume coverage or organ-at-risk doses. Plan quality index was improved for functional plans (median increase 1.4, range 0-11.8, p = 0.02). Conclusions: Statistically significant reductions in FV 20 , V 20 and mean functional lung dose are possible when IMRT planning is supplemented by functional information derived from SPECT or 3 He-MRI.

  17. Improvement in pulmonary functions and clinical parameters due to addition of breathing exercises in asthma patients receiving optimal treatment

    Directory of Open Access Journals (Sweden)

    Dipti Agarwal

    2017-01-01

    Conclusions: Breathing exercises provided significant improvements in spirometric parameters and significant reduction in breathlessness, wheezing, and nocturnal symptoms as well as requirements of rescue medicines in asthma patients who were receiving optimal asthma treatment.

  18. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  19. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  20. Functional magnetic resonance imaging for neurosurgical planning in neurooncology

    International Nuclear Information System (INIS)

    Vlieger, Erik-Jan; Majoie, Charles B.; Heeten, Gerard J. den; Leenstra, Sieger

    2004-01-01

    Functional magnetic resonance imaging (fMRI) is a non-invasive technique that is widely available and can be used to determine the spatial relationships between tumor tissue and eloquent brain areas. Within certain limits, this functional information can be applied in the field of neurosurgery as a pre-operative mapping tool to minimize damage to eloquent brain areas. In this article, we review the literature on the use of fMRI for neurosurgical planning. The issues addressed are: (1) stimulation paradigms, (2) the influence of tumors on the blood oxygenation level-dependent (BOLD) signal, (3) post-processing the fMRI time course, (4) integration of fMRI results into neuronavigation systems, (5) the accuracy of fMRI and (6) fMRI compared to intra-operative mapping (IOM). (orig.)

  1. Developmental imaging genetics: linking dopamine function to adolescent behavior.

    Science.gov (United States)

    Padmanabhan, Aarthi; Luna, Beatriz

    2014-08-01

    Adolescence is a period of development characterized by numerous neurobiological changes that significantly influence behavior and brain function. Adolescence is of particular interest due to the alarming statistics indicating that mortality rates increase two to three-fold during this time compared to childhood, due largely to a peak in risk-taking behaviors resulting from increased impulsivity and sensation seeking. Furthermore, there exists large unexplained variability in these behaviors that are in part mediated by biological factors. Recent advances in molecular genetics and functional neuroimaging have provided a unique and exciting opportunity to non-invasively study the influence of genetic factors on brain function in humans. While genes do not code for specific behaviors, they do determine the structure and function of proteins that are essential to the neuronal processes that underlie behavior. Therefore, studying the interaction of genotype with measures of brain function over development could shed light on critical time points when biologically mediated individual differences in complex behaviors emerge. Here we review animal and human literature examining the neurobiological basis of adolescent development related to dopamine neurotransmission. Dopamine is of critical importance because of (1) its role in cognitive and affective behaviors, (2) its role in the pathogenesis of major psychopathology, and (3) the protracted development of dopamine signaling pathways over adolescence. We will then focus on current research examining the role of dopamine-related genes on brain function. We propose the use of imaging genetics to examine the influence of genetically mediated dopamine variability on brain function during adolescence, keeping in mind the limitations of this approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Imaging tools to study pharmacology: functional MRI on small rodents

    Directory of Open Access Journals (Sweden)

    Elisabeth eJonckers

    2015-10-01

    Full Text Available Functional Magnetic Resonance Imaging (fMRI is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD fMRI techniques, including resting state (rsfMRI, stimulus-evoked (st-fMRI, and pharmacological MRI (phMRI. Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anaesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically-induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest (ROIs. In addition, fMRI techniques allow one to dissect how specific modifications (e.g. treatment, lesion etc. modulate the functioning of specific brain areas (st-fMRI, phMRI and how functional connectivity (rsfMRI between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with

  3. Analysis of a multi-frequency electromagnetic imaging functional for thin, crack-like electromagnetic inclusions

    OpenAIRE

    Park, Won-Kwang

    2012-01-01

    Recently, a non-iterative multi-frequency subspace migration imaging algorithm was developed based on an asymptotic expansion formula for thin, curve-like electromagnetic inclusions and the structure of singular vectors in the Multi-Static Response (MSR) matrix. The present study examines the structure of subspace migration imaging functional and proposes an improved imaging functional weighted by the frequency. We identify the relationship between the imaging functional and Bessel functions ...

  4. Meshfree Local Radial Basis Function Collocation Method with Image Nodes

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung Ki; Kim, Minjae [Pukyong National University, Busan (Korea, Republic of)

    2017-07-15

    We numerically solve two-dimensional heat diffusion problems by using a simple variant of the meshfree local radial-basis function (RBF) collocation method. The main idea is to include an additional set of sample nodes outside the problem domain, similarly to the method of images in electrostatics, to perform collocation on the domain boundaries. We can thereby take into account the temperature profile as well as its gradients specified by boundary conditions at the same time, which holds true even for a node where two or more boundaries meet with different boundary conditions. We argue that the image method is computationally efficient when combined with the local RBF collocation method, whereas the addition of image nodes becomes very costly in case of the global collocation. We apply our modified method to a benchmark test of a boundary value problem, and find that this simple modification reduces the maximum error from the analytic solution significantly. The reduction is small for an initial value problem with simpler boundary conditions. We observe increased numerical instability, which has to be compensated for by a sufficient number of sample nodes and/or more careful parameter choices for time integration.

  5. Task-related signal decrease on functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hara, Yoshie; Nakamura, Mitsugu; Tamaki, Norihiko; Tamura, Shogo; Kitamura, Junji

    2001-01-01

    An atypical pattern of signal change was identified on functional magnetic resonance (fMR) imaging in pathologic patients. Three normal volunteers and 34 patients with pathologic lesions near the primary motor cortex underwent fMR imaging with echo-planar imaging while performing a hand motor task. Signal intensities were evaluated with the z-score method, and the time course and changes of the signal intensity were calculated. Nine of the 34 patients with pathologic lesions displayed a significant task-related signal reduction in motor-related areas. They also presented a conventional task-related signal increase in other motor-related areas. The time courses of the increase and decrease were the inverse of each other. There was no significant difference between rates of signal increase and decrease. Our findings suggest that this atypical signal decrease is clinically significant, and that impaired vascular reactivity and altered oxygen metabolism could contribute to the task-related signal reduction. Brain areas showing such task-related signal decrease should be preserved at surgery. (author)

  6. Voltage imaging to understand connections and functions of neuronal circuits

    Science.gov (United States)

    Antic, Srdjan D.; Empson, Ruth M.

    2016-01-01

    Understanding of the cellular mechanisms underlying brain functions such as cognition and emotions requires monitoring of membrane voltage at the cellular, circuit, and system levels. Seminal voltage-sensitive dye and calcium-sensitive dye imaging studies have demonstrated parallel detection of electrical activity across populations of interconnected neurons in a variety of preparations. A game-changing advance made in recent years has been the conceptualization and development of optogenetic tools, including genetically encoded indicators of voltage (GEVIs) or calcium (GECIs) and genetically encoded light-gated ion channels (actuators, e.g., channelrhodopsin2). Compared with low-molecular-weight calcium and voltage indicators (dyes), the optogenetic imaging approaches are 1) cell type specific, 2) less invasive, 3) able to relate activity and anatomy, and 4) facilitate long-term recordings of individual cells' activities over weeks, thereby allowing direct monitoring of the emergence of learned behaviors and underlying circuit mechanisms. We highlight the potential of novel approaches based on GEVIs and compare those to calcium imaging approaches. We also discuss how novel approaches based on GEVIs (and GECIs) coupled with genetically encoded actuators will promote progress in our knowledge of brain circuits and systems. PMID:27075539

  7. Improved diagnostic performance of exercise thallium-201 single photon emission computed tomography over planar imaging in the diagnosis of coronary artery disease: a receiver operating characteristic analysis

    International Nuclear Information System (INIS)

    Fintel, D.J.; Links, J.M.; Brinker, J.A.; Frank, T.L.; Parker, M.; Becker, L.C.

    1989-01-01

    Qualitative interpretation of tomographic and planar scintigrams, a five point rating scale and receiver operating characteristic analysis were utilized to compare single photon emission computed tomography and conventional planar imaging of myocardial thallium-201 uptake in the accuracy of the diagnosis of coronary artery disease and individual vessel involvement. One hundred twelve patients undergoing cardiac catheterization and 23 normal volunteers performed symptom-limited treadmill exercise, followed by stress and redistribution imaging by both tomographic and planar techniques, with the order determined randomly. Paired receiver operating characteristic curves revealed that single photon emission computed tomography was more accurate than planar imaging over the entire range of decision thresholds for the overall detection and exclusion of coronary artery disease and involvement of the left anterior descending and left circumflex coronary arteries. Tomography offered relatively greater advantages in male patients and in patients with milder forms of coronary artery disease, who had no prior myocardial infarction, only single vessel involvement or no lesion greater than or equal to 50 to 69%. Tomography did not appear to provide improved diagnosis in women or in detection of disease in the right coronary artery. Although overall detection of coronary artery disease was not improved in patients with prior myocardial infarction, tomography provided improved identification of normal and abnormal vascular regions. These results indicate that single photon emission computed tomography provides improved diagnostic performance compared with planar imaging in many clinical subgroups

  8. Structure of the Crust beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions

    Energy Technology Data Exchange (ETDEWEB)

    Tokam, A K; Tabod, C T; Nyblade, A A; Julia, J; Wiens, D A; Pasyanos, M E

    2010-02-18

    Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broadband seismic stations. From the 1-D shear wave velocity models, we obtain new insights into the composition and structure of the crust and upper mantle across Cameroon. After briefly reviewing the geological framework of Cameroon, we describe the data and the joint inversion method, and then interpret variations in crustal structure found beneath Cameroon in terms of the tectonic history of the region.

  9. Exploring Moho sharpness in Northeastern North China Craton with frequency-dependence analysis of Ps receiver function

    Science.gov (United States)

    Zhang, P.; Yao, H.; Chen, L.; WANG, X.; Fang, L.

    2017-12-01

    The North China Craton (NCC), one of the oldest cratons in the world, has attracted wide attention in Earth Science for decades because of the unusual Mesozoic destruction of its cratonic lithosphere. Understanding the deep processes and mechanism of this craton destruction demands detailed knowledge about the deep structure of this region. In this study, we calculate P-wave receiver functions (RFs) with two-year teleseismic records from the North China Seismic Array ( 200 stations) deployed in the northeastern NCC. We observe both diffused and concentered PpPs signals from the Moho in RF waveforms, which indicates heterogeneous Moho sharpness variations in the study region. Synthetic Ps phases generated from broad positive velocity gradients at the depth of the Moho (referred as Pms) show a clear frequency dependence nature, which in turn is required to constrain the sharpness of the velocity gradient. Practically, characterizing such a frequency dependence feature in real data is challenging, because of low signal-to-noise ratio, contaminations by multiples generated from shallow structure, distorted signal stacking especially in double-peak Pms signals, etc. We attempt to address these issues by, firstly, utilizing a high-resolution Moho depth model of this region to predict theoretical delay times of Pms that facilitate more accurate Pms identifications. The Moho depth model is derived by wave-equation based poststack depth migration on both Ps phase and surface-reflected multiples in RFs in our previous study (Zhang et al., submitted to JGR). Second, we select data from a major back azimuth range of 100° - 220° that includes 70% teleseismic events due to the uneven data coverage and to avoid azimuthal influence as well. Finally, we apply an adaptive cross-correlation stacking of Pms signals in RFs for each station within different frequency bands. High-quality Pms signals at different frequencies will be selected after careful visual inspection and adaptive

  10. Rift Structure in Eastern Papua New Guinea From the Joint Inversion of Receiver Functions and Seismic Noise

    Science.gov (United States)

    Abers, G. A.; Obrebski, M. J.; Jin, G.; Eilon, Z.

    2014-12-01

    The recent CDPapua seismic array in the active D'Entrecasteaux-Woodlark Rift provides insights into how continental crust accommodates large extension. Here, >100 km of extension has occurred in the last 4-6 Ma, exhuming rocks from 100 km depth. To better understand the modes of deformation of the crust, we analyze shear wave velocity (Vs) distribution for a set of temporary land and ocean bottom broadband stations. We resolve the depth of the main velocity contrasts using receiver function (RF) analysis, alleviating the intrinsic trade-off between depth and velocity intrinsic by joint inversion with dispersion constraints (10 - 100 s) from earthquake surface waves and ambient noise. A transdimensional Bayesian scheme explores the model space (Vs in each layer, number of interfaces and their respective depths), minimizing the number of layers required to fit the observations given their noise level. Preliminary results suggest that the Moho is sharp in most places, with a depth of 28-38 km and 20-27 km below the Papuan Peninsula and the highly-extended D'Entracasteaux Islands, respectively. The mid-lower crust of these regions appears to be similar and consistent with felsic compositions, 3.25≤Vs≤3.5 km/s, and may represent the Owen-Stanley Metamorphic Belt or underlying continental rocks. A fast layer (3.75≤Vs≤4 km/s) is observed below the Papuan Peninsula in the 20-30 km depth range and may indicate more mafic lower crust. In contrast, faster velocities between 10 and 20km depth are modeled below the Goodenough Basin (3.75≤Vs≤4 km/s) and the Trobriand Basin (3.5≤Vs≤3.75 km/s) where rocks of the Papuan Ultramafic Belt have been suggested, although these results partly depend upon complicated signals from ocean-bottom seismometers. Well-located seismicity shows that active fault systems generally follow the boundaries between regions of different crustal velocity structure. Overall these results confirm a continental velocity structure for the

  11. The prognostic value of functional and anatomical parameters for the selection of patients receiving yttrium-90 microspheres for the treatment of liver cancer

    Science.gov (United States)

    Mesoloras, Geraldine

    Yttrium-90 (90Y) microsphere therapy is being utilized as a treatment option for patients with primary and metastatic liver cancer due to its ability to target tumors within the liver. The success of this treatment is dependent on many factors, including the extent and type of disease and the nature of prior treatments received. Metabolic activity, as determined by PET imaging, may correlate with the number of viable cancer cells and reflect changes in viable cancer cell volume. However, contouring of PET images by hand is labor intensive and introduces an element of irreproducibility into the determination of functional target/tumor volume (FTV). A computer-assisted method to aid in the automatic contouring of FTV has the potential to substantially improve treatment individualization and outcome assessment. Commercial software to determine FTV in FDG-avid primary and metastatic liver tumors has been evaluated and optimized. Volumes determined using the automated technique were compared to those from manually drawn contours identified using the same cutoff in the standard uptake value (SUV). The reproducibility of FTV is improved through the introduction of an optimal threshold value determined from phantom experiments. Application of the optimal threshold value from the phantom experiments to patient scans was in good agreement with hand-drawn determinations of the FTV. It is concluded that computer-assisted contouring of the FTV for primary and metastatic liver tumors improves reproducibility and increases accuracy, especially when combined with the selection of an optimal SUV threshold determined from phantom experiments. A method to link the pre-treatment assessment of functional (PET based) and anatomical (CT based) parameters to post-treatment survival and time to progression was evaluated in 22 patients with colorectal cancer liver metastases treated using 90Y microspheres and chemotherapy. The values for pre-treatment parameters that were the best

  12. Functional MR imaging of working memory before neurosurgery

    International Nuclear Information System (INIS)

    Wunderlich, A.P.; Groen, G.; Braun, V.

    2007-01-01

    Information concerning the tissue adjacent to a brain tumour is crucial for planning and performing a neurosurgical intervention. In this study, we evaluated the usefulness of functional imaging of working memory in terms of working memory preservation. Working memory performance of 14 patients with prefrontal tumours was tested preoperatively by means of a standardized neuropsychological test battery. Also, functional magnetic resonance imaging (fMRI) using a so-called two-back paradigm was performed to visualize brain areas related to that task. Working memory areas were reliably detected in all patients. Surgery was then planned on the basis of this information, and the data were used for intra-operative cranial neuronavigation. Three to twelve months after surgery, patients were tested again with the test battery in order to detect possible changes in working memory performance. In 13 cases the memory performance was unchanged, only one female patient had a slight impairment of working memory compared to the pre-operative status. (orig.)

  13. Evaluation of renal transplant perfusion by functional imaging

    International Nuclear Information System (INIS)

    Nicoletti, R.

    1990-01-01

    Radionuclide angiography (RNA) is used as a noninvasive method for the evaluation of renal transplant perfusion. The computer processing method generally used, based on regions of interest, is unsatisfactory because it does not permit the regional differentiation of perfusion defects. Furthermore, the subjective delineation of the regions of interest introduces considerable inter-observer variation of results. We developed a processing method which is less operator-dependent and permits the evaluation of local defects; it is based on the concept of functional imaging. The method was evaluated in 62 patient examinations, which were subdivided into four groups: Normal transplant perfusion (23 examinations), acute tubular necrose (ATN) (16), cellular rejection (13), and vascular rejection (10). Quantitative results derived from profile curves were combined with visual estimation of the functional images and yielded a synoptic graph which allowed differentiation into three groups: Normal transplant perfusion (sensitivity 0.78, specificity 0.97), ATN or cellular rejection (sens. 0.83, spec. 0.82), and vascular rejection (sens. 0.90, spec. 0.92). (orig.)

  14. Magnetic resonance imaging of hypertrophic cardiomyopathy. Evaluation of diastolic function

    International Nuclear Information System (INIS)

    Schwarz, F.; Reiser, M.F.; Theisen, D.; Schwab, F.; Beckmann, B.M.; Schuessler, F.; Kaeaeb, S.; Zinsser, D.; Goelz, T.

    2013-01-01

    Hypertrophic cardiomyopathy (HCM) has a prevalence of approximately 0.2% and is clinically asymptomatic in many patients or presents with unspecific symptoms. This explains the importance of imaging for the diagnosis of HCM as well as for the assessment of the clinical course. The definitive finding in HCM is myocardial hypertrophy with thickening of the ventricular wall ≥ 15 mm. While echocardiography is an excellent screening tool magnetic resonance imaging (MRI) allows a comprehensive analysis of the heart in HCM. This includes a detailed analysis of the distribution and extent of myocardial hypertrophy, a thorough evaluation of systolic and diastolic cardiac function, the assessment of the presence and extent of dynamic outflow tract obstruction as well as the description of the systolic anterior motion (SAM) phenomenon of the mitral valve with secondary mitral insufficiency. When contrast material is administered, additional information about myocardial perfusion as well as the presence and extent of myocardial fibrosis can be obtained. This study compared systolic functional parameters as well as end systolic and end diastolic wall thickness of patients with and without diastolic dysfunction. (orig.) [de

  15. Correlating Function and Imaging Measures of the Medial Longitudinal Fasciculus.

    Directory of Open Access Journals (Sweden)

    Ken Sakaie

    Full Text Available To test the validity of diffusion tensor imaging (DTI measures of tissue injury by examining such measures in a white matter structure with well-defined function, the medial longitudinal fasciculus (MLF. Injury to the MLF underlies internuclear ophthalmoparesis (INO.40 MS patients with chronic INO and 15 healthy controls were examined under an IRB-approved protocol. Tissue integrity of the MLF was characterized by DTI parameters: longitudinal diffusivity (LD, transverse diffusivity (TD, mean diffusivity (MD and fractional anisotropy (FA. Severity of INO was quantified by infrared oculography to measure versional disconjugacy index (VDI.LD was significantly lower in patients than in controls in the medulla-pons region of the MLF (p < 0.03. FA was also lower in patients in the same region (p < 0.0004. LD of the medulla-pons region correlated with VDI (R = -0.28, p < 0.05 as did FA in the midbrain section (R = 0.31, p < 0.02.This study demonstrates that DTI measures of brain tissue injury can detect injury to a functionally relevant white matter pathway, and that such measures correlate with clinically accepted evaluation indices for INO. The results validate DTI as a useful imaging measure of tissue integrity.

  16. Radiologic imaging of the renal parenchyma structure and function.

    Science.gov (United States)

    Grenier, Nicolas; Merville, Pierre; Combe, Christian

    2016-06-01

    Radiologic imaging has the potential to identify several functional and/or structural biomarkers of acute and chronic kidney diseases that are useful diagnostics to guide patient management. A renal ultrasound examination can provide information regarding the gross anatomy and macrostructure of the renal parenchyma, and ultrasound imaging modalities based on Doppler or elastography techniques can provide haemodynamic and structural information, respectively. CT is also able to combine morphological and functional information, but the use of CT is limited due to the required exposure to X-ray irradiation and a risk of contrast-induced nephropathy following intravenous injection of a radio-contrast agent. MRI can be used to identify a wide range of anatomical and physiological parameters at the tissue and even cellular level, such as tissue perfusion, oxygenation, water diffusion, cellular phagocytic activity, tissue stiffness, and level of renal filtration. The ability of MRI to provide valuable information for most of these parameters within a renal context is still in development and requires more clinical experience, harmonization of technical procedures, and an evaluation of reliability and validity on a large scale.

  17. Developments in 99Tcm complexes for functional imaging

    International Nuclear Information System (INIS)

    Ramamoorthy, N.

    1998-01-01

    Technetium-99m coordination complexes constitute the backbone of diagnostic nuclear medicine. Early exciting advances in products for excretory organs / pathways were followed by arduous research efforts to design and optimise 99 Tc m compounds for imaging renal tubular function and mapping blood flow to myocardium and brain. A variety of neutral, cationic and anionic complexes of technetium, mostly in +5 or +3 oxidation states and usually involving N, S. P, O as coordinating atoms, have dominated the field. Blending the well-known versatile coordination chemistry of technetium with biochemical principles and pharmacology of some functional groups has helped achieve desirable properties in at least some of the resultant 99 Tc m complexes. Fascinating developments to tap the merits of 99 Tc m tracer for more sophisticated targeting approach involving biological substrates have yielded promising results. Use of appropriate ligands as bifunctional chelating agents (BCA) to form 99 Tc m labelled radiopharmaceuticals has also led to development of several new 99 Tc m complexes. Although 99 Tc m complexes for metabolism or receptor imaging may still be far from a clinical reality, many useful efficacious clinical applications have become feasible with the advent of some new 99 Tc m complexes, e.g. imaging infection / inflammation, certain tumours and even hypoxia. A strong synergism between academic universities and industries has evolved, amidst the rush for patenting all products and processes, despite low chances of success in developing a clinically useful product. The enormous research costs have made the new products very expensive and, in turn, driven many developing countries and large hospital radiopharmacies to seek alternate means of formulating equivalent products in-house or evolve modified protocols with commercial products for better economy. This review covers the major investigations of the last decade (but by no means exhaustive) after touching upon the

  18. Functional image-guided stereotactic body radiation therapy planning for patients with hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Tsegmed, Uranchimeg [Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp [Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Nakashima, Takeo [Division of Radiation Therapy, Hiroshima University Hospital, Hiroshima (Japan); Nakamura, Yuko; Higaki, Toru [Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Imano, Nobuki; Doi, Yoshiko; Kenjo, Masahiro; Ozawa, Shuichi; Murakami, Yuji [Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Awai, Kazuo [Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Nagata, Yasushi [Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan)

    2017-07-01

    The aim of the current planning study is to evaluate the ability of gadoxetate disodium-enhanced magnetic resonance imaging (EOB-MRI)–guided stereotactic body radiation therapy (SBRT) planning by using intensity-modulated radiation therapy (IMRT) techniques in sparing the functional liver tissues during SBRT for hepatocellular carcinoma. In this study, 20 patients with hepatocellular carcinoma were enrolled. Functional liver tissues were defined according to quantitative liver-spleen contrast ratios ≥ 1.5 on a hepatobiliary phase scan. Functional images were fused with the planning computed tomography (CT) images; the following 2 SBRT plans were designed using a “step-and-shoot” static IMRT technique for each patient: (1) an anatomical SBRT plan optimization based on the total liver; and (2) a functional SBRT plan based on the functional liver. The total prescribed dose was 48 gray (Gy) in 4 fractions. Dosimetric parameters, including dose to 95% of the planning target volume (PTV D{sub 95%}), percentages of total and functional liver volumes, which received doses from 5 to 30 Gy (V5 to V30 and fV5 to fV30), and mean doses to total and functional liver (MLD and fMLD, respectively) of the 2 plans were compared. Compared with anatomical plans, functional image-guided SBRT plans reduced MLD (mean: plan A, 5.5 Gy; and plan F, 5.1 Gy; p < 0.0001) and fMLD (mean: plan A, 5.4 Gy; and plan F, 4.9 Gy; p < 0.0001), as well as V5 to V30 and fV5 to fV30. No differences were noted in PTV coverage and nonhepatic organs at risk (OARs) doses. In conclusion, EOB-MRI–guided SBRT planning using the IMRT technique may preserve functional liver tissues in patients with hepatocellular carcinoma (HCC).

  19. Pheochromocytoma and Paraganglioma: Current Functional and Future Molecular Imaging

    International Nuclear Information System (INIS)

    Blanchet, Elise M.; Martucci, Victoria; Pacak, Karel

    2012-01-01

    Paragangliomas are neural crest-derived tumors, arising either from chromaffin sympathetic tissue (in adrenal, abdominal, intra-pelvic, or thoracic paraganglia) or from parasympathetic tissue (in head and neck paraganglia). They have a specific cellular metabolism, with the ability to synthesize, store, and secrete catecholamines (although most head and neck paragangliomas do not secrete any catecholamines). This disease is rare and also very heterogeneous, with various presentations (e.g., in regards to localization, multifocality, potential to metastasize, biochemical phenotype, and genetic background). With growing knowledge, notably about the pathophysiology and genetic background, guidelines are evolving rapidly. In this context, functional imaging is a challenge for the management of paragangliomas. Nuclear imaging has been used for exploring paragangliomas for the last three decades, with MIBG historically as the first-line exam. Tracers used in paragangliomas can be grouped in three different categories. Agents that specifically target catecholamine synthesis, storage, and secretion pathways include: 123 and 131I-metaiodobenzylguanidine (123/131I-MIBG), 18F-fluorodopamine (18F-FDA), and 18F-fluorodihydroxyphenylalanine (18F-FDOPA). Agents that bind somatostatin receptors include 111In-pentetreotide and 68Ga-labeled somatostatin analog peptides (68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE). The non-specific agent most commonly used in paragangliomas is 18F-fluorodeoxyglucose (18F-FDG). This review will first describe conventional scintigraphic exams that are used for imaging paragangliomas. In the second part we will emphasize the interest in new PET approaches (specific and non-specific), considering the growing knowledge about genetic background and pathophysiology, with the aim of understanding how tumors behave, and optimally adjusting imaging technique for each tumor type.

  20. Lateral epicondylitis: Associations of MR imaging and clinical assessments with treatment options in patients receiving conservative and arthroscopic managements.

    Science.gov (United States)

    Jeon, Ji Young; Lee, Min Hee; Jeon, In-Ho; Chung, Hye Won; Lee, Sang Hoon; Shin, Myung Jin

    2018-03-01

    We assessed the implications of MR imaging with clinical history in lateral epicondylitis management by evaluating imaging and clinical features in patients with lateral epicondylitis treated conservatively or operatively. Sixty patients with lateral epicondylitis treated conservatively (n = 38) or operatively (n = 22) from 2011-2015 were included. MR imaging findings of common extensor tendon (CET), lateral collateral ligament (LCL) complex, muscle oedema, ulnar nerve and elbow joint were reviewed. Clinical data recorded were frequency, duration and intensity of pain, history of trauma and injection therapy, range of motion. MRI-assessed CET and LCL complex abnormalities, muscle oedema, radiocapitellar joint widening, joint effusion/synovitis, pain frequency and intensity differed significantly between the two groups (p lateral epicondylitis. • MRI can reflect different disease severity between patients treated conservatively/operatively. • CET abnormality, muscle oedema were major MRI findings with operative treatment. • Patients in operative group were more likely to experience persistent pain. • MRI plus clinical symptoms could facilitate appropriate management for lateral epicondylitis.

  1. Shear wave velocity model beneath CBJI station West Java, Indonesia from joint inversion of teleseismic receiver functions and surface wave dispersion

    Science.gov (United States)

    Simanungkalit, R. H.; Anggono, T.; Syuhada; Amran, A.; Supriyanto

    2018-03-01

    Earthquake signal observations around the world allow seismologists to obtain the information of internal structure of the Earth especially the Earth’s crust. In this study, we used joint inversion of receiver functions and surface wave group velocities to investigate crustal structure beneath CBJI station in West Java, Indonesia. Receiver function were calculated from earthquakes with magnitude more than 5 and at distance 30°-90°. Surface wave group velocities were calculated using frequency time analysis from earthquakes at distance of 30°- 40°. We inverted shear wave velocity model beneath the station by conducting joint inversion from receiver functions and surface wave dispersions. We suggest that the crustal thickness beneath CBJI station, West Java, Indonesia is about 35 km.

  2. WE-FG-206-08: Pulmonary Functional Imaging Biomarkers of NSCLC to Guide and Optimize Functional Lung Avoidance Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh, Khadija; Capaldi, Dante PI; Parraga, Grace [Robarts Research Institute (Canada); Hoover, Douglas A; Palma, David A [Department of Medical Biophysics, Department of Oncology, The University of Western Ontario, London (Canada); Yaremko, Brian P [Department of Oncology, The University of Western Ontario, London (Canada)

    2016-06-15

    Purpose: Functional lung avoidance radiotherapy promises optimized therapy planning by minimizing dose to well-functioning lung and maximizing dose to the rest of the lung. Patients with NSCLC commonly present with co-morbid COPD and heterogeneously distributed ventilation abnormalities stemming from emphysema, airways disease, and tumour burden. We hypothesized that pulmonary functional imaging methods may be used to optimize radiotherapy plans to avoid regions of well-functioning lung and significantly improve outcomes like quality-of-life and survival. To ascertain the utility of functional lung avoidance therapy in clinical practice, we measured COPD phenotypes in NSCLC patients enrolled in a randomized-controlled-clinical-trial prior to curative intent therapy. Methods: Thirty stage IIIA/IIIB NSCLC patients provided written informed consent to a randomized-controlled-clinical-trial ( http://clinicaltrials.gov/ct2/show/NCT02002052 ) comparing outcomes in patients randomized to standard or image-guided radiotherapy. Hyperpolarized noble gas MRI ventilation-defect-percent (VDP) (Kirby et al, Acad Radiol, 2012) as well as CT-emphysema measurements were determined. Patients were stratified based on quantitative imaging evidence of ventilation-defects and emphysema into two subgroups: 1) tumour-specific ventilation defects only (TSD), and, 2) tumour-specific and other ventilation defects with and without emphysema (TSD{sub VE}). Receiver-operating-characteristic (ROC) curves were used to characterize the performance of clinical measures as predictors of the presence of non-tumour specific ventilation defects. Results: Twenty-one out of thirty subjects (70%) had non-tumour specific ventilation defects (TSD{sub VE}) and nine subjects had ONLY tumour-specific defects (TSD). Subjects in the TSD{sub VE} group had significantly greater smoking-history (p=.006) and airflow obstruction (FEV{sub 1}/FVC) (p=.001). ROC analysis demonstrated an 87% classification rate for

  3. The Functional Diffusion Map: An Imaging Biomarker for the Early Prediction of Cancer Treatment Outcome

    Directory of Open Access Journals (Sweden)

    Bradford A. Moffat

    2006-04-01

    Full Text Available Functional diffusion map (fDM has been recently reported as an early and quantitative biomarker of clinical brain tumor treatment outcome. This MRI approach spatially maps and quantifies treatment-induced changes in tumor water diffusion values resulting from alterations in cell density/cell membrane function and microenvironment. This current study was designed to evaluate the capability of fDM for preclinical evaluation of dose escalation studies and to determine if these changes were correlated with outcome measures (cell kill and overall survival. Serial T2-weighted and diffusion MRI were carried out on rodents with orthotopically implanted 9L brain tumors receiving three doses of 1,3-bis(2-chloroethyl-1-nitrosourea (6.65, 13.3, and 26.6 mg/kg, i.p.. All images were coregistered to baseline T2-weighted images for fDM analysis. Analysis of tumor fDM data on day 4 posttreatment detected dosedependent changes in tumor diffusion values, which were also found to be spatially dependent. Histologic analysis of treated tumors confirmed spatial changes in cellularity as observed by fDM. Early changes in tumor diffusion values were found to be highly correlative with drug dose and independent biologic outcome measures (cell kill and survival. Therefore, the fDM imaging biomarker for early prediction of treatment efficacy can be used in the drug development process.

  4. Functional MR imaging on an open 1T MR imaging system: exploiting the advantages of an open MR imaging system for functional MR imaging

    NARCIS (Netherlands)

    van de Giessen, E.; Groot, P. F. C.; Booij, J.; van den Brink, W.; Veltman, D. J.; Nederveen, A. J.

    2011-01-01

    Open MR imaging scanners are designed for imaging of specific patient groups that cannot be routinely scanned with conventional MR imaging scanners (eg, patients with obesity and claustrophobia). This study aims to determine whether BOLD sensitivity on an open 1T scanner is adequate for fMRI for

  5. Functional imaging for brain tumors (perfusion, DTI and MR spectroscopy)

    International Nuclear Information System (INIS)

    Essig, M.; Giesel, F.; Stieltjes, B.; Weber, M.A.

    2007-01-01

    This contribution considers the possibilities involved with using functional methods in magnetic resonance imaging (MRI) diagnostics for brain tumors. Of the functional methods available, we discuss perfusion MRI (PWI), diffusion MRI (DWI and DTI) and MR spectroscopy (H-MRS). In cases of brain tumor, PWI aids in grading and better differentiation in diagnostics as well as for pre-therapeutic planning. In addition, the course of treatment, both after chemo- as well as radiotherapy in combination with surgical treatment, can be optimized. PWI allows better estimates of biological activity and aggressiveness in low grade brain tumors, and in the case of WHO grade II astrocytoma showing anaplastically transformed tumor areas, allows more rapid visualization and a better prediction of the course of the disease than conventional MRI diagnostics. Diffusion MRI, due to the directional dependence of the diffusion, can illustrate the course and direction of the nerve fibers, as well as reconstructing the nerve tracts in the cerebrum, pons and cerebellum 3-dimensionally. Diffusion imaging can be used for describing brain tumors, for evaluating contralateral involvement and the course of the nerve fibers near the tumor. Due to its operator dependence, DTI based fiber tracking for defining risk structures is controversial. DWI can also not differentiate accurately between cystic and necrotic brain tumors, or between metastases and brain abscesses. H-MRS provides information on cell membrane metabolism, neuronal integrity and the function of neuronal structures, energy metabolism and the formation of tumors and brain tissue necroses. Diagnostic problems such as the differentiation between neoplastic and non-neoplastic lesions, grading cerebral glioma and distinguishing between primary brain tumors and metastases can be resolved. An additional contribution will discuss the control of the course of glial tumors after radiotherapy. (orig.)

  6. Magnetic resonance imaging research progress on brain functional reorganization after peripheral nerve injury

    International Nuclear Information System (INIS)

    Wang Weiwei; Liu Hanqiu

    2013-01-01

    In the recent years, with the development of functional magnetic resonance imaging technology the brain plasticity and functional reorganization are hot topics in the central nervous system imaging studies. Brain functional reorganization and rehabilitation after peripheral nerve injury may have certain regularity. In this paper, the progress of brain functional magnetic resonance imaging technology and its applications in the world wide clinical and experimental researches of the brain functional reorganization after peripheral nerve injury is are reviewed. (authors)

  7. On the Viability of Using Autonomous Three-Component Nodal Geophones to Calculate Teleseismic Ps Receiver Functions with an Application to the Old Faithful Hydrothermal System and the Cascadia Subduction Zone

    Science.gov (United States)

    Ward, K. M.; Lin, F. C.

    2017-12-01

    Recent advances in seismic data-acquisition technology paired with an increasing interest from the academic passive source seismological community have opened up new scientific targets and imaging possibilities, often referred to as Large-N experiments (large number of instruments). The success of these and other deployments has motivated individual researchers, as well as the larger seismological community, to invest in the next generation of nodal geophones. Although the new instruments have battery life and bandwidth limitations compared to broadband instruments, the relatively low deployment and procurement cost of these new nodal geophones provides an additional novel tool for researchers. Here, we explore the viability of using autonomous three-component nodal geophones to calculate teleseismic Ps receiver functions by comparison of co-located broadband stations and highlight some potential advantages with a dense nodal array deployed around the Upper Geyser basin in Yellowstone National Park. Two key findings from this example include (1) very dense nodal arrays can be used to image small-scale features in the shallow crust that typical broadband station spacing would alias, and (2) nodal arrays with a larger footprint could be used to image deeper features with greater or equal detail as typical broadband deployments but at a reduced deployment cost. The success of the previous example has motivated a larger 2-D line across the Cascadia subduction zone. In the summer of 2017, we deployed 174 nodal geophones with an average site spacing of 750 m. Synthetic tests with dense station spacing ( 1 km) reveal subtler features of the system that is consistent with our preliminary receiver function results from our Cascadia deployment. With the increasing availability of nodal geophones to individual researchers and the successful demonstration that nodal geophones are a viable instrument for receiver function studies, numerous scientific targets can be investigated

  8. Functional evaluation of transplanted kidneys in normal function and acute rejection using BOLD MR imaging

    International Nuclear Information System (INIS)

    Xiao Wenbo; Xu Jingjing; Wang Qindong; Xu Ying; Zhang Minming

    2012-01-01

    In this study, we evaluated a large number of subjects using BOLD MRI to provide more information about oxygen metabolism in the normal function of transplanted kidneys and to distinguish acute graft rejection from normal function kidneys. This study included 122 subjects (20 volunteers, 72 patients with normal functioning transplants, and 21 patients with acute rejection), and 9 patients had normal function grafts received examination while grafts dysfunction occurred within 6 months during the follow-up. The R2* (1/s) values in the cortex and medulla as well as the R2* ratio of the medulla to cortex (R2* ratio of M/C) were recorded. The R2* values of the medulla were higher than those of the cortex in the normal function group and the volunteers which have a steep R2* ratio of M/C. All the R2* values in the acute rejection group were lower than those in the normal function grafts group (P 1.1) is an important reason for keeping clinical normal function.

  9. Impact of field number and beam angle on functional image-guided lung cancer radiotherapy planning

    Science.gov (United States)

    Tahir, Bilal A.; Bragg, Chris M.; Wild, Jim M.; Swinscoe, James A.; Lawless, Sarah E.; Hart, Kerry A.; Hatton, Matthew Q.; Ireland, Rob H.

    2017-09-01

    To investigate the effect of beam angles and field number on functionally-guided intensity modulated radiotherapy (IMRT) normal lung avoidance treatment plans that incorporate hyperpolarised helium-3 magnetic resonance imaging (3He MRI) ventilation data. Eight non-small cell lung cancer patients had pre-treatment 3He MRI that was registered to inspiration breath-hold radiotherapy planning computed tomography. IMRT plans that minimised the volume of total lung receiving  ⩾20 Gy (V20) were compared with plans that minimised 3He MRI defined functional lung receiving  ⩾20 Gy (fV20). Coplanar IMRT plans using 5-field manually optimised beam angles and 9-field equidistant plans were also evaluated. For each pair of plans, the Wilcoxon signed ranks test was used to compare fV20 and the percentage of planning target volume (PTV) receiving 90% of the prescription dose (PTV90). Incorporation of 3He MRI led to median reductions in fV20 of 1.3% (range: 0.2-9.3% p  =  0.04) and 0.2% (range: 0 to 4.1%; p  =  0.012) for 5- and 9-field arrangements, respectively. There was no clinically significant difference in target coverage. Functionally-guided IMRT plans incorporating hyperpolarised 3He MRI information can reduce the dose received by ventilated lung without comprising PTV coverage. The effect was greater for optimised beam angles rather than uniformly spaced fields.

  10. Functional disability in patients with low back pain: the mediator role of suffering and beliefs about pain control in patients receiving physical and chiropractic treatment.

    Science.gov (United States)

    Pereira, M Graça; Roios, Edite; Pereira, Marta

    Low back pain is the leading cause of disability worldwide. There is evidence that depression, anxiety, and external locus of control are negative predictors of functional disability in low back patients. This study focused on the mediator role of suffering and beliefs about pain control in the relationship between psychological morbidity and functional disability in patients receiving physical therapy and chiropractic treatment for chronic low back pain. The sample included 213 patients receiving chiropractic treatment and 125 receiving physical therapy, who answered the following instruments: Beliefs about Pain Control Questionnaire; Inventory of Subjective Experiences of Suffering in Illness; Oswestry Low Back Pain Disability Questionnaire; and the Hospital Anxiety and Depression Scales. Suffering was a mediator in the relationship between depression and functional disability in both treatment groups. Only beliefs related to external chance events mediated the relationship between depression and functional disability in the physical therapy group, but not in the chiropratic teratment group. Intervention should focus on suffering regardless of the type of treatment and target beliefs about pain control, in patients receiving physical therapy treatment since they seem to play a key role in functional disability in patients with low back pain. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  11. High-resolution imaging of the layers of the gastrointestinal wall of pig and human specimens using an endoluminal MR receiver coil. Correlation to histology

    International Nuclear Information System (INIS)

    Kramer, Sebastian; Palmowski, M.; Macher-Goeppinger, S.; Mueller, M.; Volke, F.; Duex, M.; Kauczor, H.U.; Grenacher, L.

    2009-01-01

    Purpose: High-resolution MR imaging of the layers of the gastrointestinal wall to provide a foundation for tumor staging based on morphological criteria. Materials and Methods: Over a period of 12 months, miscellaneous parts of the gastrointestinal tract of 15 human specimens and 30 porcine specimens were scanned using a 1.5 Tesla clinical MRI scanner combined with an endoluminal receiver coil. The sequences used were T1-weighted opposed-phase, T2-weighted turbo spin echo with fat saturation and fast T2-weighted inversion recovery. The number of differentiable layers, their width and the signal intensity were documented. Then, the results were compared with histological specimens in order to link the imaged wall layers to the anatomical layers. Spearman's Rank Correlation was used to determine the soundness of the link between the images and their related histology. Results: For both human and animal specimens, the MRI scanning produced 3 to 5, maximum 6 (pig), differentiable layers. The mucosa, submucosa and muscularis could be differentiated with a hyperintense, hypointense and intermediary signal, respectively. The subserosal layer displayed a hypointense signal. Conclusion: High-resolution MRI is able to produce differentiable images of the anatomical layers of the gastrointestinal wall in both humans and pigs. Accordingly, it is possible to use MR imaging to diagnose the extent of local tumor infiltration of the gastrointestinal wall. (orig.)

  12. Functional magnetic resonance imaging of autism spectrum disorders

    Science.gov (United States)

    Dichter, Gabriel S.

    2012-01-01

    This review presents an overview of functional magnetic resonance imaging findings in autism spectrum disorders (ASDs), Although there is considerable heterogeneity with respect to results across studies, common themes have emerged, including: (i) hypoactivation in nodes of the “social brain” during social processing tasks, including regions within the prefrontal cortex, the posterior superior temporal sulcus, the amygdala, and the fusiform gyrus; (ii) aberrant frontostriatal activation during cognitive control tasks relevant to restricted and repetitive behaviors and interests, including regions within the dorsal prefrontal cortex and the basal ganglia; (iii) differential lateralization and activation of language processing and production regions during communication tasks; (iv) anomalous mesolimbic responses to social and nonsocial rewards; (v) task-based long-range functional hypoconnectivity and short-range hyper-connectivity; and (vi) decreased anterior-posterior functional connectivity during resting states. These findings provide mechanistic accounts of ASD pathophysiology and suggest directions for future research aimed at elucidating etiologic models and developing rationally derived and targeted treatments. PMID:23226956

  13. The application of functional magnetic resonance imaging to neuropharmacology.

    Science.gov (United States)

    Shah, Yasmene B; Marsden, Charles A

    2004-10-01

    The technique of functional magnetic resonance imaging (fMRI) has the capacity to acquire data with spatial and temporal resolution that far exceeds other currently available methods of non-invasive investigation of brain function. This coupled with its ability for serial studies makes it an attractive prospect for investigating the effects of pharmacological agents in the brain. Recent advances in fMRI have been made in the areas of reward and dependence, brain trauma and injury, psychotropic drugs and pain using small animals. Although the use of fMRI in pharmacological studies is becoming popular, there are various associated complications, such as the possible interference of drugs with the mechanisms that give rise to the pharmacological fMRI signal, and local or global cardiovascular changes that might produce functional responses unrelated to neural activity. Consideration of these concerns, coupled with careful attention to experimental detail and verification procedures, promises to make pharmacological fMRI use a valuable tool for understanding the actions of drugs in the brain.

  14. Diversity receiver

    NARCIS (Netherlands)

    2005-01-01

    The invention is directed to the reception of high rate radio signals (for example DVB-T signals) while the receiver is moving at a high speed (for example in or with a car). Two or more antennas (12, 16) are closely spaced and arranged behind each other in the direction of motion (v) for receiving

  15. Receiver function and magnetotelluric analysis to understand the first stage of a continental lithospheric break-up : case of the North Tanzanian Rift

    Science.gov (United States)

    Plasman, M.; Tiberi, C.; Tarits, P.; Hautot, S.; Gautier, S.; Ebinger, C. J.; Mulibo, G. D.; Khalfan, M.

    2015-12-01

    First stage of continental break-up, though intensively studied, is yet poorly understood. This is partly because actual rifting areas are either too mature (more than 10 My) or not easily accessible (thick sediment cover or under water). The North Tanzania part of the East African Rift is the place of a lithosphere's early break-up (less than 5My) in response to a combination of regional pulling forces and mantle upwelling. Deformation there results from complex interactions between magmatic intrusions, faulting, asthenospheric dynamics and far field stresses. CoLiBrEA (ANR) and CRAFTI (NSF) are two multidisciplinary projects which collaboratively focus on this area to understand the interactions between faults and magma, the role of inherited structures and rheological heterogeneities of the lithosphere. For that purpose, we deployed 38 broadband seismic stations in the Natron and Ngorongoro areas from January 2013 to December 2014 and carried out a 120 km East-West magnetotelluric (MT) profile to image the crustal and mantle structures. The 3D resistivity model, obtained from the inversion of the MT data along the profile, shows an highly heterogeneous crust with three-dimensional structures over a more homogeneous upper mantle. The first inversion result from the receiver function (RF) by the Zhu and Kanamori's inversion method show a thick crust (~35 km) with important variations (maximum 15km) especially in the Ngorongoro area, and an average Vp/Vs ratio of 1.75. We then completed this study by combining the MT data and the RF at the 11 sites of the EW profile. For each site, we built a 1D velocity model (Vs and VpVs) obtained by combining the Sambridge forward solution with a non linear descent research algorithm and constrained by the resistivity structure. The inversion shows an heterogeneous crust obviously dominated by the Moho interface at different depths, with low velocity layers mainly corresponding to low resistivity features.

  16. Hyperpolarized 129Xe MRI: A viable functional lung imaging modality?

    International Nuclear Information System (INIS)

    Patz, Samuel; Hersman, F. William; Muradian, Iga; Hrovat, Mirko I.; Ruset, Iulian C.; Ketel, Stephen; Jacobson, Francine; Topulos, George P.; Hatabu, Hiroto; Butler, James P.

    2007-01-01

    The majority of researchers investigating hyperpolarized gas MRI as a candidate functional lung imaging modality have used 3 He as their imaging agent of choice rather than 129 Xe. This preference has been predominantly due to, 3 He providing stronger signals due to higher levels of polarization and higher gyromagnetic ratio, as well as its being easily available to more researchers due to availability of polarizers (USA) or ease of gas transport (Europe). Most researchers agree, however, that hyperpolarized 129 Xe will ultimately emerge as the imaging agent of choice due to its unlimited supply in nature and its falling cost. Our recent polarizer technology delivers vast improvements in hyperpolarized 129 Xe output. Using this polarizer, we have demonstrated the unique property of xenon to measure alveolar surface area noninvasively. In this article, we describe our human protocols and their safety, and our results for the measurement of the partial pressure of pulmonary oxygen (pO 2 ) by observation of 129 Xe signal decay. We note that the measurement of pO 2 by observation of 129 Xe signal decay is more complex than that for 3 He because of an additional signal loss mechanism due to interphase diffusion of 129 Xe from alveolar gas spaces to septal tissue. This results in measurements of an equivalent pO 2 that accounts for both traditional T 1 decay from pO 2 and that from interphase diffusion. We also provide an update on new technological advancements that form the foundation for an improved compact design polarizer as well as improvements that provide another order-of-magnitude scale-up in xenon polarizer output

  17. Functional magnetic resonance imaging in the activation of working memory

    International Nuclear Information System (INIS)

    Spitzer, M.; Kammer, T.; Bellemann, M.E.; Gueckel, F.; Georgi, M.; Gass, A.; Brix, G.

    1996-01-01

    Functional magnetic resonance imaging was used in conjunction with a letter detection task for the study of working memory in 16 normal subjects. Because of movement artifacts, data from only 9 subjects were analysed. In the activation taks, subjects responded by pressing a button whenever any presented letter was the same as the second last in the sequence. In the control condition, the subjects had to respond to a fixed letter. Hence, the activation condition and the control condition differend only subjectively, i.e., regarding the task demand, whereas the stimuli and the type and frequency of response were identical. The activation condition produced significant activation in the dorsolateral prefrontal cortex (Brodmann's areas 10, 46, and 9). In contrast to experimental tasks previsouly used rather extensively to study the prefrontal cortex, the present paradigm is characterized by its simplicity, interpretability, and its ties to known neurophysiology of the frontal cortex. (orig.) [de

  18. AFM imaging of functionalized carbon nanotubes on biological membranes

    International Nuclear Information System (INIS)

    Lamprecht, C; Danzberger, J; Rangl, M; Gruber, H J; Hinterdorfer, P; Kienberger, F; Ebner, A; Liashkovich, I; Neves, V; Heister, E; Coley, H M; McFadden, J; Flahaut, E

    2009-01-01

    Multifunctional carbon nanotubes are promising for biomedical applications as their nano-size, together with their physical stability, gives access into the cell and various cellular compartments including the nucleus. However, the direct and label-free detection of carbon nanotube uptake into cells is a challenging task. The atomic force microscope (AFM) is capable of resolving details of cellular surfaces at the nanometer scale and thus allows following of the docking of carbon nanotubes to biological membranes. Here we present topographical AFM images of non-covalently functionalized single walled (SWNT) and double walled carbon nanotubes (DWNT) immobilized on different biological membranes, such as plasma membranes and nuclear envelopes, as well as on a monolayer of avidin molecules. We were able to visualize DWNT on the nuclear membrane while at the same time resolving individual nuclear pore complexes. Furthermore, we succeeded in localizing individual SWNT at the border of incubated cells and in identifying bundles of DWNT on cell surfaces by AFM imaging.

  19. Aircraft path planning for optimal imaging using dynamic cost functions

    Science.gov (United States)

    Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin

    2015-05-01

    Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.

  20. Pulmonary ventilation imaging and function studies with krypton-81m

    International Nuclear Information System (INIS)

    Kaplan, E.; Mayron, L.W.; Gergans, G.A.; Friedman, A.M.; Gindler, J.E.

    1976-01-01

    Chronic obstructive lung disease is a significant entity throughout the world. It is etiologically related to smoking, air pollution and mining. To arrest asymptomatic disease, early diagnosis is required, implying an efficacious, reliable and available methodology, which has the potential for screening suspect populations. Krypton-81m is a 13-second radionuclide that emits a 190 keV gamma ray; it may be produced from a rubidium-81-krypton-81m generator and delivery system, devised, produced and evaluated by the authors. The generator effluent, in gaseous form, may be continually inhaled by a subject while static equilibrium images and dynamic studies of ventilation are produced with a gamma scintillation camera system. The wash-in of /sup 81m/Kr produces heterogeneous images, the activity being proportional to regional ventilation due to rapid decay. Minimal ventilatory delays are detectable. Normal subjects and patients with obstructive lung disease have been evaluated by static equilibrium and dynamic studies. The sensitivity of /sup 81m/Kr studies is currently being compared with various other pulmonary function tests, to evaluate its potential as an appropriate screening technique

  1. PET imaging reveals brain functional changes in internet gaming disorder

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Mei; Zhang, Ying; Du, Fenglei; Hou, Haifeng; Chao, Fangfang; Zhang, Hong [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Chen, Qiaozhen [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Psychiatry, Hangzhou (China)

    2014-07-15

    Internet gaming disorder is an increasing problem worldwide, resulting in critical academic, social, and occupational impairment. However, the neurobiological mechanism of internet gaming disorder remains unknown. The aim of this study is to assess brain dopamine D{sub 2} (D{sub 2})/Serotonin 2A (5-HT{sub 2A}) receptor function and glucose metabolism in the same subjects by positron emission tomography (PET) imaging approach, and investigate whether the correlation exists between D{sub 2} receptor and glucose metabolism. Twelve drug-naive adult males who met criteria for internet gaming disorder and 14 matched controls were studied with PET and {sup 11}C-N-methylspiperone ({sup 11}C-NMSP) to assess the availability of D{sub 2}/5-HT{sub 2A} receptors and with {sup 18}F-fluoro-D-glucose ({sup 18}F-FDG) to assess regional brain glucose metabolism, a marker of brain function. {sup 11}C-NMSP and {sup 18}F-FDG PET imaging data were acquired in the same individuals under both resting and internet gaming task states. In internet gaming disorder subjects, a significant decrease in glucose metabolism was observed in the prefrontal, temporal, and limbic systems. Dysregulation of D{sub 2} receptors was observed in the striatum, and was correlated to years of overuse. A low level of D{sub 2} receptors in the striatum was significantly associated with decreased glucose metabolism in the orbitofrontal cortex. For the first time, we report the evidence that D{sub 2} receptor level is significantly associated with glucose metabolism in the same individuals with internet gaming disorder, which indicates that D{sub 2}/5-HT{sub 2A} receptor-mediated dysregulation of the orbitofrontal cortex could underlie a mechanism for loss of control and compulsive behavior in internet gaming disorder subjects. (orig.)

  2. PET imaging reveals brain functional changes in internet gaming disorder

    International Nuclear Information System (INIS)

    Tian, Mei; Zhang, Ying; Du, Fenglei; Hou, Haifeng; Chao, Fangfang; Zhang, Hong; Chen, Qiaozhen

    2014-01-01

    Internet gaming disorder is an increasing problem worldwide, resulting in critical academic, social, and occupational impairment. However, the neurobiological mechanism of internet gaming disorder remains unknown. The aim of this study is to assess brain dopamine D 2 (D 2 )/Serotonin 2A (5-HT 2A ) receptor function and glucose metabolism in the same subjects by positron emission tomography (PET) imaging approach, and investigate whether the correlation exists between D 2 receptor and glucose metabolism. Twelve drug-naive adult males who met criteria for internet gaming disorder and 14 matched controls were studied with PET and 11 C-N-methylspiperone ( 11 C-NMSP) to assess the availability of D 2 /5-HT 2A receptors and with 18 F-fluoro-D-glucose ( 18 F-FDG) to assess regional brain glucose metabolism, a marker of brain function. 11 C-NMSP and 18 F-FDG PET imaging data were acquired in the same individuals under both resting and internet gaming task states. In internet gaming disorder subjects, a significant decrease in glucose metabolism was observed in the prefrontal, temporal, and limbic systems. Dysregulation of D 2 receptors was observed in the striatum, and was correlated to years of overuse. A low level of D 2 receptors in the striatum was significantly associated with decreased glucose metabolism in the orbitofrontal cortex. For the first time, we report the evidence that D 2 receptor level is significantly associated with glucose metabolism in the same individuals with internet gaming disorder, which indicates that D 2 /5-HT 2A receptor-mediated dysregulation of the orbitofrontal cortex could underlie a mechanism for loss of control and compulsive behavior in internet gaming disorder subjects. (orig.)

  3. Occupational (? constrictive bronchiolitis with normal physical, functional and image findings

    Directory of Open Access Journals (Sweden)

    Sandra Figueiredo

    2009-07-01

    Full Text Available Constrictive bronchiolitis is characterized by alterations in the walls of membranous and respiratory bronchioles. These changes lead to concentric narrowing or complete obliteration of the airway lumen. Suspicion of possible bronchiolar disorders may arise from clinical, funcional, and radiologic findings. However, constrictive bronchiolitis may be present even with normal physical, functional and image findings, which turns the diagnosis difficult. A high index of suspicion is necessary to justify invasive tests that lead to pulmonary biopsy. In this report, we describe a patient with cough and dyspnoea, with normal physical, functional and image findings, whose work-up leaded to the diagnosis of constrictive bronchiolitis. Resumo: A bronquiolite constritiva é caracterizada por alterações das paredes dos bronquíolos membranosos e respiratórios. Estas alterações incluem um espectro de alterações que podem variar, desde a inflamação à fibrose concêntrica progressiva, com obstrução completa do lúmen bronquiolar. O diagnóstico pode ser sugerido pela história clínica e por alterações radiológicas e funcionais. No entanto, o exame físico e os exames complementares de diagnóstico podem ser normais, o que dificulta o diagnóstico, sendo necessário um elevado índice de suspeita para se sujeitar o doente a exames invasivos, tal como a biópsia pulmonar cirúrgica. Os autores apresentam um caso clínico de uma doente com quadro arrastado de tosse e dispneia, com exame físico, funcional e imagiológico normais, cujo estudo exaustivo veio a revelar o diagnóstico de bronquiolite constritiva. Key-words: Constrictive bronchiolitis, iron oxide, Palavras-chave: Bronquiolite constritiva, óxido de ferro

  4. Functional brain imaging of episodic memory decline in ageing.

    Science.gov (United States)

    Nyberg, L

    2017-01-01

    The episodic long-term memory system supports remembering of events. It is considered to be the most age-sensitive system, with an average onset of decline around 60 years of age. However, there is marked interindividual variability, such that some individuals show faster than average change and others show no or very little change. This variability may be related to the risk of developing dementia, with elevated risk for individuals with accelerated episodic memory decline. Brain imaging with functional magnetic resonance imaging (MRI) of blood oxygen level-dependent (BOLD) signalling or positron emission tomography (PET) has been used to reveal the brain bases of declining episodic memory in ageing. Several studies have demonstrated a link between age-related episodic memory decline and the hippocampus during active mnemonic processing, which is further supported by studies of hippocampal functional connectivity in the resting state. The hippocampus interacts with anterior and posterior neocortical regions to support episodic memory, and alterations in hippocampus-neocortex connectivity have been shown to contribute to impaired episodic memory. Multimodal MRI studies and more recently hybrid MRI/PET studies allow consideration of various factors that can influence the association between the hippocampal BOLD signal and memory performance. These include neurovascular factors, grey and white matter structural alterations, dopaminergic neurotransmission, amyloid-Β and glucose metabolism. Knowledge about the brain bases of episodic memory decline can guide interventions to strengthen memory in older adults, particularly in those with an elevated risk of developing dementia, with promising results for combinations of cognitive and physical stimulation. © 2016 The Association for the Publication of the Journal of Internal Medicine.

  5. Functional magnetic resonance imaging of internet addiction in young adults.

    Science.gov (United States)

    Sepede, Gianna; Tavino, Margherita; Santacroce, Rita; Fiori, Federica; Salerno, Rosa Maria; Di Giannantonio, Massimo

    2016-02-28

    To report the results of functional magnetic resonance imaging (fMRI) studies pertaining internet addiction disorder (IAD) in young adults. We conducted a systematic review on PubMed, focusing our attention on fMRI studies involving adult IAD patients, free from any comorbid psychiatric condition. The following search words were used, both alone and in combination: fMRI, internet addiction, internet dependence, functional neuroimaging. The search was conducted on April 20(th), 2015 and yielded 58 records. Inclusion criteria were the following: Articles written in English, patients' age ≥ 18 years, patients affected by IAD, studies providing fMRI results during resting state or cognitive/emotional paradigms. Structural MRI studies, functional imaging techniques other than fMRI, studies involving adolescents, patients with comorbid psychiatric, neurological or medical conditions were excluded. By reading titles and abstracts, we excluded 30 records. By reading the full texts of the 28 remaining articles, we identified 18 papers meeting our inclusion criteria and therefore included in the qualitative synthesis. We found 18 studies fulfilling our inclusion criteria, 17 of them conducted in Asia, and including a total number of 666 tested subjects. The included studies reported data acquired during resting state or different paradigms, such as cue-reactivity, guessing or cognitive control tasks. The enrolled patients were usually males (95.4%) and very young (21-25 years). The most represented IAD subtype, reported in more than 85% of patients, was the internet gaming disorder, or videogame addiction. In the resting state studies, the more relevant abnormalities were localized in the superior temporal gyrus, limbic, medial frontal and parietal regions. When analyzing the task related fmri studies, we found that less than half of the papers reported behavioral differences between patients and normal controls, but all of them found significant differences in cortical

  6. Schizophrenia symptoms and functioning in patients receiving long-term treatment with olanzapine long-acting injection formulation

    DEFF Research Database (Denmark)

    Peuskens, Joseph; Porsdal, Vibeke; Pecenak, Jan

    2012-01-01

    : At baseline, 434 (36.8%) patients had minimal Positive and Negative Syndrome Scale (PANSS) symptoms but seriously impaired Heinrich Carpenter's Quality of Life Scale (QLS) functioning; 303 (25.6%) had moderate to severe symptoms and seriously impaired function; 208 (17.6%) had mild to moderate symptoms...... but good functioning, and 162 (13.7%) had minimal symptoms and good functioning. Baseline category was significantly associated with Clinical Global Impression - Severity (CGI-S), extrapyramidal symptoms, working status, age, and number of previous episodes. The majority of all patients starting OLAI...... treatment maintained or improved (62% 6 months and 52% 12 months) their symptom and functioning levels on OLAI maintenance treatment. Less than 8% of the patients showed worsening of symptoms or functioning. An improvement in category was associated with high PANSS positive and low CGI-S scores at baseline...

  7. MR imaging of kidneys: functional evaluation using F-15 perfusion imaging

    International Nuclear Information System (INIS)

    Grattan-Smith, J. Damien; Jones, Richard A.; Little, Stephen; Perez-Bayfield, Marcos R.; Broecker, Bruce; Smith, Edwin A.; Scherz, Hal C.; Kirsch, Andrew J.

    2003-01-01

    Children with hydronephrosis are typically investigated by a combination of diuretic renal scintigraphy, ultrasound, and voiding cystourethrography. Unfortunately, there is no gold standard to assess obstruction. The purpose of our study was to evaluate the utility of dynamic contrast enhanced MR urography in the investigation of children with hydronephrosis to define urinary tract anatomy, to calculate differential renal function and to assess urinary tract obstruction. Dynamic contrast-enhanced MR imaging was performed in 40 children with unilateral hydronephrosis. There were 14 girls and 26 boys with an age range of 1 month to 14 years (mean 1.4 years). The information from traditional imaging modalities was compared to the information obtained from the single MR study. The anatomic imaging with MR urography was superior to other modalities. The split renal function was estimated with MR urography by calculating the volume of enhancing renal parenchyma and was comparable to renal scintigraphy (r=0.98). By using surgery versus non-surgery as the decision point, with MR urography the sensitivity was 100%, specificity 71%, positive predictive value 86%, negative predictive value 100%, and diagnostic efficiency 90%. For renal scintigraphy the sensitivity was 96%, the specificity 56%, positive predictive value 76%, negative predictive value 90%, and diagnostic efficiency 79%. Dynamic contrast-enhanced MR urography provides superior anatomic and functional information when compared with ultrasound and diuretic renal scintigraphy. The information is gathered in a single study that does not use ionizing radiation. It is likely that MR urography will replace renal scintigraphy in the evaluation of hydronephrosis in children. (orig.)

  8. MR imaging of kidneys: functional evaluation using F-15 perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Grattan-Smith, J. Damien; Jones, Richard A.; Little, Stephen [Department of Pediatric Radiology, Children' s Healthcare of Atlanta, Emory University School of Medicine, 1001 Johnson Ferry Road, GA 30342, Atlanta (United States); Perez-Bayfield, Marcos R.; Broecker, Bruce; Smith, Edwin A.; Scherz, Hal C.; Kirsch, Andrew J. [Department of Pediatric Urology, Children' s Healthcare of Atlanta, Emory University School of Medicine, GA 30342, Atlanta (United States)

    2003-05-01

    Children with hydronephrosis are typically investigated by a combination of diuretic renal scintigraphy, ultrasound, and voiding cystourethrography. Unfortunately, there is no gold standard to assess obstruction. The purpose of our study was to evaluate the utility of dynamic contrast enhanced MR urography in the investigation of children with hydronephrosis to define urinary tract anatomy, to calculate differential renal function and to assess urinary tract obstruction. Dynamic contrast-enhanced MR imaging was performed in 40 children with unilateral hydronephrosis. There were 14 girls and 26 boys with an age range of 1 month to 14 years (mean 1.4 years). The information from traditional imaging modalities was compared to the information obtained from the single MR study. The anatomic imaging with MR urography was superior to other modalities. The split renal function was estimated with MR urography by calculating the volume of enhancing renal parenchyma and was comparable to renal scintigraphy (r=0.98). By using surgery versus non-surgery as the decision point, with MR urography the sensitivity was 100%, specificity 71%, positive predictive value 86%, negative predictive value 100%, and diagnostic efficiency 90%. For renal scintigraphy the sensitivity was 96%, the specificity 56%, positive predictive value 76%, negative predictive value 90%, and diagnostic efficiency 79%. Dynamic contrast-enhanced MR urography provides superior anatomic and functional information when compared with ultrasound and diuretic renal scintigraphy. The information is gathered in a single study that does not use ionizing radiation. It is likely that MR urography will replace renal scintigraphy in the evaluation of hydronephrosis in children. (orig.)

  9. Evaluation of diagnostic thresholds dependability for tribologic signals received in the environment disturbed by vibroacoustic and functional signals

    Directory of Open Access Journals (Sweden)

    Lindstedt Paweł

    2015-12-01

    Full Text Available Determination of dependable diagnostic thresholds for tribologic signals received e.g. from antifriction bearings (in particular for insufficient number of measurements, only 4÷5 is a really difficult task due to complexity of working environment where such bearings are operated. Typical working environment for such objects must take account for operation time under various working conditions and accompanying (and disturbing signals, e.g. vibroacoustic ones. The sought assessment of the relationship between diagnostic signals and environmental noise can be determined from convolution of both diagnostic and environments signals that make up the complete set of received information. The convolution of these two series of signals can be obtained from an algorithm based on the Cauchy product. Then one has to find the coherence factor and the square of amplitude gain for the set of diagnostic signals with reference to various sets of signals received from environment, which makes it possible to evaluate cohesion of the investigated series of signals, thus their suitability to determine diagnostic threshold for tribologic signals intended for the analysis.

  10. Dynamic Functional Connectivity States Between the Dorsal and Ventral Sensorimotor Networks Revealed by Dynamic Conditional Correlation Analysis of Resting-State Functional Magnetic Resonance Imaging.

    Science.gov (United States)

    Syed, Maleeha F; Lindquist, Martin A; Pillai, Jay J; Agarwal, Shruti; Gujar, Sachin K; Choe, Ann S; Caffo, Brian; Sair, Haris I

    2017-12-01

    Functional connectivity in resting-state functional magnetic resonance imaging (rs-fMRI) has received substantial attention since the initial findings of Biswal et al. Traditional network correlation metrics assume that the functional connectivity in the brain remains stationary over time. However, recent studies have shown that robust temporal fluctuations of functional connectivity among as well as within functional networks exist, challenging this assumption. In this study, these dynamic correlation differences were investigated between the dorsal and ventral sensorimotor networks by applying the dynamic conditional correlation model to rs-fMRI data of 20 healthy subjects. k-Means clustering was used to determine an optimal number of discrete connectivity states (k = 10) of the sensorimotor system across all subjects. Our analysis confirms the existence of differences in dynamic correlation between the dorsal and ventral networks, with highest connectivity found within the ventral motor network.

  11. WE-DE-207A-02: Advances in Cone Beam CT Anatomical and Functional Imaging in Angio-Suite to Enable One-Stop-Shop Stroke Imaging Workflow

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G. [University of Wisconsin (United States)

    2016-06-15

    pursued. For the highest spatial and temporal resolution, x-ray guidance with fluoroscopy and angiography although dominant are still being vastly improved. New detectors such as the Micro-Angiographic Fluoroscope (MAF) and x-ray source designs that enable higher outputs while maintaining small focal spots will be highlighted along with new methods for minimizing the radiation dose to patients. Additionally, new platforms for training and device testing that include patient-specific 3D printed vascular phantoms and new metrics such as generalized relative object detectability for objectively inter-comparing systems will be discussed. This will improve the opportunity for better evaluation of these technological advances which should contribute to the safety and efficacy of image guided minimally invasive neuro-endovascular procedures. Learning Objectives: To understand the operation of new x-ray imaging chain components such as detectors and sources To be informed about the latest testing methods, with 3D printed vascular phantoms, and new evaluation metrics for advanced imaging in x-ray image guided neurovascular interventions Advances in cone beam CT anatomical and functional imaging in angio-suite to enable one-stop-shop stroke imaging workflow Guang-Hong Chen - The introduction of flat-panel detector based cone-beam CT in clinical angiographic imaging systems enabled treating physicians to obtain three-dimensional anatomic roadmaps for bony structure, soft brain tissue, and vasculatures for treatment planning and efficacy checking after the procedures. However, much improvement is needed to reduce image artifacts, reduce radiation dose, and add potential functional imaging capability to provide four-dimensional dynamic information of vasculature and brain perfusion. In this presentation, some of the new techniques developed to address radiation dose issues, image artifact reduction and brain perfusion using C-arm cone-beam CT imaging system will be introduced for the

  12. WE-DE-207A-02: Advances in Cone Beam CT Anatomical and Functional Imaging in Angio-Suite to Enable One-Stop-Shop Stroke Imaging Workflow

    International Nuclear Information System (INIS)

    Chen, G.

    2016-01-01

    pursued. For the highest spatial and temporal resolution, x-ray guidance with fluoroscopy and angiography although dominant are still being vastly improved. New detectors such as the Micro-Angiographic Fluoroscope (MAF) and x-ray source designs that enable higher outputs while maintaining small focal spots will be highlighted along with new methods for minimizing the radiation dose to patients. Additionally, new platforms for training and device testing that include patient-specific 3D printed vascular phantoms and new metrics such as generalized relative object detectability for objectively inter-comparing systems will be discussed. This will improve the opportunity for better evaluation of these technological advances which should contribute to the safety and efficacy of image guided minimally invasive neuro-endovascular procedures. Learning Objectives: To understand the operation of new x-ray imaging chain components such as detectors and sources To be informed about the latest testing methods, with 3D printed vascular phantoms, and new evaluation metrics for advanced imaging in x-ray image guided neurovascular interventions Advances in cone beam CT anatomical and functional imaging in angio-suite to enable one-stop-shop stroke imaging workflow Guang-Hong Chen - The introduction of flat-panel detector based cone-beam CT in clinical angiographic imaging systems enabled treating physicians to obtain three-dimensional anatomic roadmaps for bony structure, soft brain tissue, and vasculatures for treatment planning and efficacy checking after the procedures. However, much improvement is needed to reduce image artifacts, reduce radiation dose, and add potential functional imaging capability to provide four-dimensional dynamic information of vasculature and brain perfusion. In this presentation, some of the new techniques developed to address radiation dose issues, image artifact reduction and brain perfusion using C-arm cone-beam CT imaging system will be introduced for the

  13. Functional improvement and correlations with symptomatic improvement in adults with attention deficit hyperactivity disorder receiving long-acting methylphenidate.

    NARCIS (Netherlands)

    Buitelaar, J.K.; Casas, M.; Philipsen, A.; Kooij, J.J.; Ramos-Quiroga, J.A.; Dejonckheere, J.; Oene, J.C. van; Schauble, B.

    2012-01-01

    BACKGROUND: Data on the relationship between core symptoms and daily functioning in adults with attention deficit hyperactivity disorder (ADHD) are limited. Daily functioning was assessed as part of an open-label extension, and associations with symptom scores were evaluated. METHOD: After a 5-week

  14. A compatible electrocutaneous display for functional magnetic resonance imaging application.

    Science.gov (United States)

    Hartwig, V; Cappelli, C; Vanello, N; Ricciardi, E; Scilingo, E P; Giovannetti, G; Santarelli, M F; Positano, V; Pietrini, P; Landini, L; Bicchi, A

    2006-01-01

    In this paper we propose an MR (magnetic resonance) compatible electrocutaneous stimulator able to inject an electric current, variable in amplitude and frequency, into the fingertips in order to elicit tactile skin receptors (mechanoreceptors). The desired goal is to evoke specific tactile sensations selectively stimulating skin receptors by means of an electric current in place of mechanical stimuli. The field of application ranges from functional magnetic resonance imaging (fMRI) tactile studies to augmented reality technology. The device here proposed is designed using safety criteria in order to comply with the threshold of voltage and current permitted by regulations. Moreover, MR safety and compatibility criteria were considered in order to perform experiments inside the MR scanner during an fMRI acquisition for functional brain activation analysis. Psychophysical laboratory tests are performed in order to define the different evoked tactile sensation. After verifying the device MR safety and compatibility on a phantom, a test on a human subject during fMRI acquisition is performed to visualize the brain areas activated by the simulated tactile sensation.

  15. Serial functional imaging poststroke reveals visual cortex reorganization.

    Science.gov (United States)

    Brodtmann, Amy; Puce, Aina; Darby, David; Donnan, Geoffrey

    2009-02-01

    Visual cortical reorganization following injury remains poorly understood. The authors performed serial functional magnetic resonance imaging (fMRI) on patients with visual cortex infarction to evaluate early and late striate, ventral, and dorsal extrastriate cortical activation. Patients were studied with fMRI within 10 days and at 6 months. The authors used a high-level visual activation task designed to activate the ventral extrastriate cortex. These data were compared to those of age-appropriate healthy control participants. The results from 24 healthy control individuals (mean age 65.7 +/- SE 3.6 years, range 32-89) were compared to those from 5 stroke patients (mean age 73.8 +/- SE 7 years, range 49-86). Patients had infarcts involving the striate and ventral extrastriate cortex. Patient activation patterns were markedly different to controls. Bilateral striate and ventral extrastriate activation was reduced at both sessions, but dorsal extrastriate activated voxel counts remained comparable to controls. Conversely, mean percent magnetic resonance signal change increased in dorsal sites. These data provide strong evidence of bilateral poststroke functional depression of striate and ventral extrastriate cortices. Possible utilization or surrogacy of the dorsal visual system was demonstrated following stroke. This activity could provide a target for novel visual rehabilitation therapies.

  16. Evaluation of Esophageal Motility Utilizing the Functional Lumen Imaging Probe.

    Science.gov (United States)

    Carlson, Dustin A; Kahrilas, Peter J; Lin, Zhiyue; Hirano, Ikuo; Gonsalves, Nirmala; Listernick, Zoe; Ritter, Katherine; Tye, Michael; Ponds, Fraukje A; Wong, Ian; Pandolfino, John E

    2016-12-01

    Esophagogastric junction (EGJ) distensibility and distension-mediated peristalsis can be assessed with the functional lumen imaging probe (FLIP) during a sedated upper endoscopy. We aimed to describe esophageal motility assessment using FLIP topography in patients presenting with dysphagia. In all, 145 patients (aged 18-85 years, 54% female) with dysphagia that completed upper endoscopy with a 16-cm FLIP assembly and high-resolution manometry (HRM) were included. HRM was analyzed according to the Chicago Classification of esophageal motility disorders; major esophageal motility disorders were considered "abnormal". FLIP studies were analyzed using a customized program to calculate the EGJ-distensibility index (DI) and generate FLIP topography plots to identify esophageal contractility patterns. FLIP topography was considered "abnormal" if EGJ-DI was esophageal motility and 29 normal motility. In all, 17 (50%) had abnormal FLIP topography including 13 (37%) with abnormal EGJ-DI. FLIP topography provides a well-tolerated method for esophageal motility assessment (especially to identify achalasia) at the time of upper endoscopy. FLIP topography findings that are discordant with HRM may indicate otherwise undetected abnormalities of esophageal function, thus FLIP provides an alternative and complementary method to HRM for evaluation of non-obstructive dysphagia.

  17. Impact of SQUIDs on functional imaging in neuroscience

    International Nuclear Information System (INIS)

    Penna, Stefania Della; Pizzella, Vittorio; Romani, Gian Luca

    2014-01-01

    This paper provides an overview on the basic principles and applications of magnetoencephalography (MEG), a technique that requires the use of many SQUIDs and thus represents one of the most important applications of superconducting electronics. Since the development of the first SQUID magnetometers, it was clear that these devices could be used to measure the ultra-low magnetic signals associated with the bioelectric activity of the neurons of the human brain. Forty years on from the first measurement of magnetic alpha rhythm by David Cohen, MEG has become a fundamental tool for the investigation of brain functions. The simple localization of cerebral sources activated by sensory stimulation performed in the early years has been successively expanded to the identification of the sequence of neuronal pool activations, thus decrypting information of the hierarchy underlying cerebral processing. This goal has been achieved thanks to the development of complex instrumentation, namely whole head MEG systems, allowing simultaneous measurement of magnetic fields all over the scalp with an exquisite time resolution. The latest trends in MEG, such as the study of brain networks, i.e. how the brain organizes itself in a coherent and stable way, are discussed. These sound applications together with the latest technological developments aimed at implementing systems able to record MEG signals and magnetic resonance imaging (MRI) of the head with the same set-up pave the way to high performance systems for brain functional investigation in the healthy and the sick population. (paper)

  18. Improved H-κ Method by Harmonic Analysis on Ps and Crustal Multiples in Receiver Functions with respect to Dipping Moho and Crustal Anisotropy

    Science.gov (United States)

    Li, J.; Song, X.; Wang, P.; Zhu, L.

    2017-12-01

    The H-κ method (Zhu and Kanamori, 2000) has been widely used to estimate the crustal thickness and Vp/Vs ratio with receiver functions. However, in regions where the crustal structure is complicated, the method may produce uncertain or even unrealistic results, arising particularly from dipping Moho and/or crustal anisotropy. Here, we propose an improved H-κ method, which corrects for these effects first before stacking. The effect of dipping Moho and crustal anisotropy on Ps receiver function has been well studied, but not as much on crustal multiples (PpPs and PpSs+PsPs). Synthetic tests show that the effect of crustal anisotropy on the multiples are similar to Ps, while the effect of dipping Moho on the multiples is 5 times that on Ps (same cosine trend but 5 times in time shift). A Harmonic Analysis (HA) method for dipping/anisotropy was developed by Wang et al. (2017) for crustal Ps receiver functions to extract parameters of dipping Moho and crustal azimuthal anisotropy. In real data, the crustal multiples are much more complicated than the Ps. Therefore, we use the HA method (Wang et al., 2017), but apply separately to Ps and the multiples. It shows that although complicated, the trend of multiples can still be reasonably well represented by the HA. We then perform separate azimuthal corrections for Ps and the multiples and stack to obtain a combined receiver function. Lastly, the traditional H-κ procedure is applied to the stacked receiver function. We apply the improved H-κ method on 40 CNDSN (Chinese National Digital Seismic Network) stations distributed in a variety of geological setting across the Chinese continent. The results show apparent improvement compared to the traditional H-κ method, with clearer traces of multiples and stronger stacking energy in the grid search, as well as more reliable H-κ values.

  19. Functional magnetic resonance imaging of the brain - a link between brain morphology and function, imaging of the functional status of the brain on a detailed anatomic background

    International Nuclear Information System (INIS)

    Obenberger, J.; Seidl, Z.; Ruzicka, E.; Jech, R.; Krasensky, J.

    1998-01-01

    The basic principles of functional magnetic resonance imaging are outlined. The current status of knowledge and ideas for a future development are highlighted. The application fields of this technique include neurosurgery, neurology, psychiatry. The method also serves as a research tool, where it may prove helpful in solving problems of sleep disorder and the generation and perception of speech. A brief overview of the requirements and the necessary background is given for those wishing to start their own activity in this field

  20. Characterizing the Relationship Between Lithospheric Deformation and Seismic Anisotropy in the Basin and Range Province and San Andreas Fault System using Ps Receiver Function Analysis

    Science.gov (United States)

    Ford, H. A.; Schnorr, E.

    2017-12-01

    The presence of complex and spatially variable anisotropy in many parts of the western U.S. has been tied to regional tectonic and dynamic processes that go beyond the (frequently) assumed plate motion oriented shear. In the Basin and Range, a well-imaged "swirl" of shear wave splitting observations has been explained via a number of different dynamic processes, including a lithospheric drip and toroidal flow. In central California, rapid variations in splitting direction across the plate boundary have been attributed to a relatively narrow, well-defined shear zone. Ambient noise tomography has further complicated the picture, indicating that some of the observed complexity can be explained by incorporating multiple layers of anisotropy. The goal of this study is to place firm constraints on vertical variations in anisotropy over two tectonically distinct, yet related, regions- the Basin and Range province and the San Andreas fault system, in order to better understand how deformation of the lithosphere is accommodated. To do this, radial and transverse component Ps receiver functions have been calculated for 14 stations within the two regions. Within both study areas, variability exists between most stations at crust and lithospheric mantle depths. This is particularly true for stations located near the San Andreas Fault system. These differences may be attributed to variations in the provenance of the lithospheric "packages" in some areas, however several stations are located near or within the plate boundary system and may be sampling multiple regions with varying deformation fabrics. To account for this, future work will include binning as a function of piercing point. One notable exception to the generally observed variability is along the western margin of the Basin and Range, where several stations show similarities in back azimuthal variations at lower crust and uppermost mantle depths. Preliminary forwarding modeling of two of these stations indicates that

  1. Prospective study of cognitive function in children receiving whole-brain radiotherapy and chemotherapy: 2-year results

    International Nuclear Information System (INIS)

    Packer, R.J.; Sutton, L.N.; Atkins, T.E.; Radcliffe, J.; Bunin, G.R.; D'Angio, G.; Siegel, K.R.; Schut, L.

    1989-01-01

    As survival rates have risen for children with malignant primary brain tumors, so has the concern that many survivors have significant permanent cognitive deficits. Cranial irradiation (CRT) has been implicated as the major cause for cognitive dysfunction. To clarify the etiology, incidence, and severity of intellectual compromise in children with brain tumors after CRT, a prospective study was undertaken comparing the neuropsychological outcome in 18 consecutive children with malignant brain tumors treated with CRT to outcome in 14 children harboring brain tumors in similar sites in the nervous system who had not received CRT. Children with cortical or subcortical brain tumors were not eligible for study. Neuropsychological testing was performed after surgery prior to radiotherapy, after radiotherapy, and at 1- and 2-year intervals thereafter. Children who had received CRT had a mean full-scale intelligence quotient (FSIQ) of 105 at diagnosis which fell to 91 by Year 2. Similar declines were noted in their performance intelligence quotient (IQ) and verbal IQ. After CRT, patients demonstrated a statistically significant decline from baseline in FSIQ (p less than 0.02) and verbal IQ (p less than 0.04). Children who had not received CRT did not demonstrate a fall in any cognitive parameter over time. The decline between baseline testing and testing performed at Year 2 in patients who had CRT was inversely correlated with age (p less than 0.02), as younger children demonstrated the greatest loss of intelligence. Children less than 7 years of age at diagnosis had a mean decline in FSIQ of 25 points 2 years posttreatment. No other clinical parameter correlated with the overall IQ or decline in IQ. After CRT, children demonstrated a wide range of dysfunction including deficits in fine motor, visual-motor, and visual-spatial skills and memory difficulties

  2. Functional imaging reveals movement preparatory activity in the vegetative state

    Directory of Open Access Journals (Sweden)

    Tristan A Bekinschtein

    2011-01-01

    Full Text Available The Vegetative State (VS is characterized by the absence of awareness of self or the environment and preserved autonomic functions. The diagnosis relies critically on the lack of consistent signs of purposeful behavior in response to external stimulation. Yet, given that patients with disorders of consciousness often exhibit fragmented movement patterns, voluntary actions may go unnoticed. Here we designed a simple motor paradigm that could potentially detect residual conscious awareness in VS patients with mild to severe brain damage by examining the neural correlates of motor preparation in response to verbal commands. Twenty-four patients who met the diagnostic criteria for VS were recruited for this study. Eleven of these patients showing preserved auditory evoked potentials underwent functional magnetic resonance imaging (fMRI to test for basic speech processing. Five of these patients, who showed word related activity, were included in a second fMRI study aimed at detecting functional changes in premotor cortex elicited by specific verbal instructions to move either their left or their right hand. Despite the lack of overt muscle activity, two patients out of five activated the dorsal premotor cortex contralateral to the instructed hand, consistent with movement preparation. Given that movement preparation in response to a motor command is a sign of purposeful behavior, our results are consistent with residual conscious awareness in these patients. We believe that the identification of positive results with fMRI using this simple task, may complement the clinical assessment by helping attain a more precise diagnosis in patients with disorders of consciousness.

  3. Detection of soft-tissue sarcoma recurrence: added value of functional MR imaging techniques at 3.0 T.

    Science.gov (United States)

    Del Grande, Filippo; Subhawong, Ty; Weber, Kristy; Aro, Michael; Mugera, Charles; Fayad, Laura M

    2014-05-01

    To determine the added value of functional magnetic resonance (MR) sequences (dynamic contrast material-enhanced [DCE] and quantitative diffusion-weighted [DW] imaging with apparent diffusion coefficient [ADC] mapping) for the detection of recurrent soft-tissue sarcomas following surgical resection. This retrospective study was approved by the institutional review board. The requirement to obtain informed consent was waived. Thirty-seven patients referred for postoperative surveillance after resection of soft-tissue sarcoma (35 with high-grade sarcoma) were studied. Imaging at 3.0 T included conventional (T1-weighted, fluid-sensitive, and contrast-enhanced T1-weighted imaging) and functional (DCE MR imaging, DW imaging with ADC mapping) sequences. Recurrences were confirmed with biopsy or resection. A disease-free state was determined with at least 6 months of follow-up. Two readers independently recorded the signal and morphologic characteristics with conventional sequences, the presence or absence of arterial enhancement at DCE MR imaging, and ADCs of the surgical bed. The accuracy of conventional MR imaging in the detection of recurrence was compared with that with the addition of functional sequences. The Fisher exact and Wilcoxon rank sum tests were used to define the accuracy of imaging features, the Cohen κ and Lin interclass correlation were used to define interobserver variability, and receiver operating characteristic analysis was used to define a threshold to detect recurrence and assess reader confidence after the addition of functional imaging to conventional sequences. There were six histologically proved recurrences in 37 patients. Sensitivity and specificity of MR imaging in the detection of tumor recurrence were 100% (six of six patients) and 52% (16 of 31 patients), respectively, with conventional sequences, 100% (six of six patients) and 97% (30 of 31 patients) with the addition of DCE MR imaging, and 60% (three of five patients) and 97% (30 of

  4. Morphological, functional and metabolic imaging biomarkers: assessment of vascular-disrupting effect on rodent liver tumours

    International Nuclear Information System (INIS)

    Wang, Huaijun; Li, Junjie; Keyzer, Frederik De; Yu, Jie; Feng, Yuanbo; Marchal, Guy; Ni, Yicheng; Chen, Feng; Nuyts, Johan

    2010-01-01

    To evaluate effects of a vascular-disrupting agent on rodent tumour models. Twenty rats with liver rhabdomyosarcomas received ZD6126 intravenously at 20 mg/kg, and 10 vehicle-treated rats were used as controls. Multiple sequences, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI (DCE-MRI) with the microvascular permeability constant (K), were acquired at baseline, 1 h, 24 h and 48 h post-treatment by using 1.5-T MRI. [ 18 F]fluorodeoxyglucose micro-positron emission tomography ( 18 F-FDG μPET) was acquired pre- and post-treatment. The imaging biomarkers including tumour volume, enhancement ratio, necrosis ratio, apparent diffusion coefficient (ADC) and K from MRI, and maximal standardised uptake value (SUV max ) from FDG μPET were quantified and correlated with postmortem microangiography and histopathology. In the ZD6126-treated group, tumours grew slower with higher necrosis ratio at 48 h (P max dropped at 24 h (P < 0.01). Relative K of tumour versus liver at 48 h correlated with relative vascular density on microangiography (r = 0.93, P < 0.05). The imaging biomarkers allowed morphological, functional and metabolic quantifications of vascular shutdown, necrosis formation and tumour relapse shortly after treatment. A single dose of ZD6126 significantly diminished tumour blood supply and growth until 48 h post-treatment. (orig.)

  5. Functional Imaging of Autonomic Regulation: Methods and Key Findings

    Directory of Open Access Journals (Sweden)

    Paul M Macey

    2016-01-01

    Full Text Available Central nervous system processing of autonomic function involves a network of regions throughout the brain which can be visualized and measured with neuroimaging techniques, notably functional magnetic resonance imaging (fMRI. The development of fMRI procedures has both confirmed and extended earlier findings from animal models, and human stroke and lesion studies. Assessments with fMRI can elucidate interactions between different central sites in regulating normal autonomic patterning, and demonstrate how disturbed systems can interact to produce aberrant regulation during autonomic challenges. Understanding autonomic dysfunction in various illnesses reveals mechanisms that potentially lead to interventions in the impairments. The objectives here are to: 1 describe the fMRI neuroimaging methodology for assessment of autonomic neural control, 2 outline the widespread, lateralized distribution of function in autonomic sites in the normal brain which includes structures from the neocortex through the medulla and cerebellum, 3 illustrate the importance of the time course of neural changes when coordinating responses, and how those patterns are impacted in conditions of sleep-disordered breathing, and 4 highlight opportunities for future research studies with emerging methodologies. Methodological considerations specific to autonomic testing include timing of challenges relative to the underlying fMRI signal, spatial resolution sufficient to identify autonomic brainstem nuclei, blood pressure and blood oxygenation influences on the fMRI signal, and the sustained timing, often measured in minutes of challenge periods and recovery. Key findings include the lateralized nature of autonomic organization, which is reminiscent of asymmetric motor, sensory and language pathways. Testing brain function during autonomic challenges demonstrate closely-integrated timing of responses in connected brain areas during autonomic challenges, and the involvement with

  6. Dose-volume modeling of salivary function in patients with head-and-neck cancer receiving radiotherapy

    International Nuclear Information System (INIS)

    Blanco, Angel I.; Chao, K.S. Clifford; El Naqa, Issam; Franklin, Gregg E.; Zakarian, Konstantin; Vicic, Milos; Deasy, Joseph O.

    2005-01-01

    Purpose: We investigated the factors that affect salivary function after head-and-neck radiotherapy (RT), including parotid gland dose-volume effects, potential compensation by less-irradiated gland tissue, and functional recovery over time. Methods and Materials: Sixty-five patients with head-and-neck tumors were enrolled in a prospective salivary function study. RT was delivered using intensity-modulated RT (n = 45), forward-planning three-dimensional conformal RT (n = 14), or three-dimensional conformal RT with an intensity-modulated RT boost (n = 6). Whole salivary flow was measured before therapy and at 6 months (n = 61) and 12 months (n = 31) after RT. A wide variety of dose-volume models to predict post-RT salivary function were tested. Xerostomia was defined according to the subjective, objective, management, analytic (SOMA) criteria as occurring when posttreatment salivary function was s ] = 0.46, p s = 0.73), stimulated saliva flow at 12 months (R s = 0.54), and quality-of-life score at 6 months (R s = 0.35) after RT. Conclusion: Stimulated parotid salivary gland dose-volume models strongly correlated with both stimulated salivary function and quality-of-life scores at 6 months after RT. The mean stimulated saliva flow rates improved from 6 to 12 months after RT. Salivary function, in each gland, appeared to be lost exponentially at a rate of approximately 5%/1 Gy of mean dose. Additional research is necessary to distinguish among the models for use in treatment planning. The incidence of xerostomia was significantly decreased when the mean dose of at least one parotid gland was kept to <25.8 Gy with conventional fractionation. However, even lower mean doses imply increased late salivary function

  7. Functional imaging of semantic memory predicts postoperative episodic memory functions in chronic temporal lobe epilepsy.

    Science.gov (United States)

    Köylü, Bülent; Walser, Gerald; Ischebeck, Anja; Ortler, Martin; Benke, Thomas

    2008-08-05

    Medial temporal (MTL) structures have crucial functions in episodic (EM), but also in semantic memory (SM) processing. Preoperative functional magnetic resonance imaging (fMRI) activity within the MTL is increasingly used to predict post-surgical memory capacities. Based on the hypothesis that EM and SM memory functions are both hosted by the MTL the present study wanted to explore the relationship between SM related activations in the MTL as assessed before and the capacity of EM functions after surgery. Patients with chronic unilateral left (n=14) and right (n=12) temporal lobe epilepsy (TLE) performed a standard word list learning test pre- and postoperatively, and a fMRI procedure before the operation using a semantic decision task. SM processing caused significant bilateral MTL activations in both patient groups. While right TLE patients showed asymmetry of fMRI activation with more activation in the left MTL, left TLE patients had almost equal activation in both MTL regions. Contrasting left TLE versus right TLE patients revealed greater activity within the right MTL, whereas no significant difference was observed for the reverse contrast. Greater effect size in the MTL region ipsilateral to the seizure focus was significantly and positively correlated with preoperative EM abilities. Greater effect size in the contralateral MTL was correlated with better postoperative verbal EM, especially in left TLE patients. These results suggest that functional imaging of SM tasks may be useful to predict postoperative verbal memory in TLE. They also advocate a common neuroanatomical basis for SM and EM processes in the MTL.

  8. Neuropsychological assessment of language functions during functional magnetic resonance imaging: development of new tasks. Preliminary report.

    Science.gov (United States)

    Fersten, Ewa; Jakuciński, Maciej; Kuliński, Radosław; Koziara, Henryk; Mroziak, Barbara; Nauman, Paweł

    2011-01-01

    Due to the complex and extended cerebral organization of language functions, the brain regions crucial for speech and language, i.e. eloquent areas, have to be affected by neurooncological surgery. One of the techniques that may be helpful in pre-operative planning of the extent of tumour removal and estimating possible complications seems to be functional magnetic resonance imaging (fMRI). The aim of the study was to develop valid procedures for neuropsychological assessment of various language functions visualisable by fMRI in healthy individuals. In this fMRI study, 10 healthy (with no CNS pathology), right-handed volunteers aged 25-35 were examined using four tasks designed to measure different language functions, and one for short-term memory assessment. A 1.5-T MRI scanner performing ultrafast functional (EPI) sequences with 4-mm slice thickness and 1-mm interslice gap was used to detect the BOLD response to stimuli present-ed in a block design (30-second alternating blocks of activity and rest). The analyses used the SPM software running in a MATLAB environment, and the obtained data were interpreted by means of colour-coded maps superimposed on structural brain scans. For each of the tasks developed for particular language functions, a different area of increased neuronal activity was found. The differential localization of function-related neuronal activity seems interesting and the research worth continuing, since verbal communication failure may result from impairment of any of various language functions, and studies reported in the literature seem to focus on verbal expression only.

  9. Microwave tomography of extremities: 2. Functional fused imaging of flow reduction and simulated compartment syndrome

    International Nuclear Information System (INIS)

    Semenov, Serguei; Nair, Bindu; Kellam, James; Williams, Thomas; Quinn, Michael; Sizov, Yuri; Nazarov, Alexei; Pavlovsky, Andrey

    2011-01-01

    Medical imaging has recently expanded into the dual- or multi-modality fusion of anatomical and functional imaging modalities. This significantly improves the diagnostic power while simultaneously increasing the cost of already expensive medical devices or investigations and decreasing their mobility. We are introducing a novel imaging concept of four-dimensional (4D) microwave tomographic (MWT) functional imaging: three dimensional (3D) in the spatial domain plus one dimensional (1D) in the time, functional dynamic domain. Instead of a fusion of images obtained by different imaging modalities, 4D MWT fuses absolute anatomical images with dynamic, differential images of the same imaging technology. The approach was successively validated in animal experiments with short-term arterial flow reduction and a simulated compartment syndrome in an initial simplified experimental setting using a dedicated MWT system. The presented fused images are not perfect as MWT is a novel imaging modality at its early stage of the development and ways of reading reconstructed MWT images need to be further studied and understood. However, the reconstructed fused images present clear evidence that microwave tomography is an emerging imaging modality with great potentials for functional imaging.

  10. Self-calibrated correlation imaging with k-space variant correlation functions.

    Science.gov (United States)

    Li, Yu; Edalati, Masoud; Du, Xingfu; Wang, Hui; Cao, Jie J

    2018-03-01

    Correlation imaging is a previously developed high-speed MRI framework that converts parallel imaging reconstruction into the estimate of correlation functions. The presented work aims to demonstrate this framework can provide a speed gain over parallel imaging by estimating k-space variant correlation functions. Because of Fourier encoding with gradients, outer k-space data contain higher spatial-frequency image components arising primarily from tissue boundaries. As a result of tissue-boundary sparsity in the human anatomy, neighboring k-space data correlation varies from the central to the outer k-space. By estimating k-space variant correlation functions with an iterative self-calibration method, correlation imaging can benefit from neighboring k-space data correlation associated with both coil sensitivity encoding and tissue-boundary sparsity, thereby providing a speed gain over parallel imaging that relies only on coil sensitivity encoding. This new approach is investigated in brain imaging and free-breathing neonatal cardiac imaging. Correlation imaging performs better than existing parallel imaging techniques in simulated brain imaging acceleration experiments. The higher speed enables real-time data acquisition for neonatal cardiac imaging in which physiological motion is fast and non-periodic. With k-space variant correlation functions, correlation imaging gives a higher speed than parallel imaging and offers the potential to image physiological motion in real-time. Magn Reson Med 79:1483-1494, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. The Relationship Between Body Image and Domains of Sexual Functioning Among Heterosexual, Emerging Adult Women

    Directory of Open Access Journals (Sweden)

    Christopher Quinn-Nilas, MA

    2016-09-01

    Conclusion: Findings from this study suggest important linkages between body image and sexual functioning constructs and indicates that interventions to improve body image could have concomitant benefits related to sexual experience.

  12. Tumor markers CEA and CA 19-9 correlate with radiological imagin