WorldWideScience

Sample records for recalcitrant hydrocarbons biodegradabilite

  1. Biodegradation of gasoline in environment: from total assessment to the case of recalcitrant hydrocarbons; Biodegradabilite de l'essence dans l'environnement: de l'evaluation globale au cas des hydrocarbures recalcitrants

    Energy Technology Data Exchange (ETDEWEB)

    Solano-Serena, F.

    1999-11-26

    Because of their massive utilisation, hydrocarbons are major pollutants of soils and aquifers. Biodegradation is a key aspect of the fate of pollutants in the environment. Such knowledge, concerns in particular the intrinsic biodegradability of the products and the distribution in the environment of competent degradative microflora. In this study, a methodology has been developed to assess the aerobic biodegradability of gasoline. It is based on the direct gas chromatographic analysis of all hydrocarbons, after incubation in optimal conditions, of gasoline fractions and of model mixtures. The results demonstrated first the quasi-total biodegradability of gasoline ({>=} 94%). Concerning the distribution in the environment of degradative capacities, even microflora from non polluted sites exhibited a high performance (total degradation rates at least 85%) but were limited concerning the degradation of trimethyl-alkanes, such as 2,2,4-trimethyl-pentane (iso-octane) and 2,3,4-trimethyl-pentane, and of cyclohexane. Samples of polluted sites exhibited more extensive degradative capacities with total degradation in half of the cases studied. Cyclohexane was always degraded by mutualism and/or co-metabolism. Trimethyl-alkanes with quaternary carbons such as iso-octane and/or alkyl groups on consecutive carbons were degraded by co-metabolism but could also support growth of specialized strains. A strain of Mycobacterium austroafricanum (strain IFP 2173) growing on iso-octane was isolated from a gasoline polluted sample. This strain exhibited the capacity to co-metabolize various hydrocarbons (cyclic and branched alkanes, aromatics) and in particular cyclohexane. M austroafricanum lFP 2173 was also able to use a large spectrum of hydrocarbons (n- and iso-alkanes, aromatics) as sole carbon and energy source. (author)

  2. Recalcitrance of polycyclic aromatic hydrocarbons in soil contributes to background pollution

    International Nuclear Information System (INIS)

    Posada-Baquero, Rosa; Ortega-Calvo, Jose-Julio

    2011-01-01

    The microbial accessibility of native phenanthrene and pyrene was determined in soils representing background scenarios for pollution by polycyclic aromatic hydrocarbons (PAHs). The soils were selected to cover a wide range of concentrations of organic matter (1.7-10.0%) and total PAHs (85-952 μg/kg). The experiments included radiorespirometry determinations of biodegradation with 14 C-labeled phenanthrene and pyrene and chemical analyses to determine the residual concentrations of the native compounds. Part of the tests relied on the spontaneous biodegradation of the chemicals by native microorganisms; another part also involved inoculation with PAH-degrading bacteria. The results showed the recalcitrance of PAHs already present in the soils. Even after extensive mineralization of the added 14 C-PAHs, the concentrations of native phenanthrene and pyrene did not significantly decrease. We suggest that aging processes operating at background concentrations may contribute to recalcitrance and, therefore, to ubiquitous pollution by PAHs in soils. - Highlights: → Background PAHs in soils are highly resistant to biodegradation. → Recalcitrance occurs even after inoculation with specialized microorganisms. → Recalcitrance is caused by a low bioaccessibility and aging. → Time (aging) seems a relevant factor causing recalcitrance. → Recalcitrance can explain ubiquitous PAH background pollution. - Background soil PAHs are highly resistant to biodegradation.

  3. Recalcitrance of polycyclic aromatic hydrocarbons in soil contributes to background pollution

    Energy Technology Data Exchange (ETDEWEB)

    Posada-Baquero, Rosa [Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS), C.S.I.C., Apartado 1052, E-41080 Seville (Spain); Ortega-Calvo, Jose-Julio, E-mail: jjortega@irnase.csic.es [Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS), C.S.I.C., Apartado 1052, E-41080 Seville (Spain)

    2011-12-15

    The microbial accessibility of native phenanthrene and pyrene was determined in soils representing background scenarios for pollution by polycyclic aromatic hydrocarbons (PAHs). The soils were selected to cover a wide range of concentrations of organic matter (1.7-10.0%) and total PAHs (85-952 {mu}g/kg). The experiments included radiorespirometry determinations of biodegradation with {sup 14}C-labeled phenanthrene and pyrene and chemical analyses to determine the residual concentrations of the native compounds. Part of the tests relied on the spontaneous biodegradation of the chemicals by native microorganisms; another part also involved inoculation with PAH-degrading bacteria. The results showed the recalcitrance of PAHs already present in the soils. Even after extensive mineralization of the added {sup 14}C-PAHs, the concentrations of native phenanthrene and pyrene did not significantly decrease. We suggest that aging processes operating at background concentrations may contribute to recalcitrance and, therefore, to ubiquitous pollution by PAHs in soils. - Highlights: > Background PAHs in soils are highly resistant to biodegradation. > Recalcitrance occurs even after inoculation with specialized microorganisms. > Recalcitrance is caused by a low bioaccessibility and aging. > Time (aging) seems a relevant factor causing recalcitrance. > Recalcitrance can explain ubiquitous PAH background pollution. - Background soil PAHs are highly resistant to biodegradation.

  4. Phytoremediation of heavy metals and hydrocarbon contaminated soils; Phytoremediation des sols contamines aux metaux lourds et aux hydrocarbures recalcitrants

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, R.; Chateauneuf, G.; Sura, C. [Inspec-Sol Inc., Montreal, PQ (Canada); Labrecque, M.; Galipeau, C. [Jardin botanique de Montreal, Montreal, PQ (Canada). Institut de Recherche en Biologie Vegetale; Greer, C.; Delisle, S.; Roy, S.; Labelle, S. [National Research Council of Canada, Montreal, PQ (Canada). Inst. for Research in Biotechnology

    2003-07-01

    Phytoremediation is a technology that uses plants to decontaminate soils and underground water. Inspec-Sol, a company located in Montreal, Quebec, conducted a two-year study to evaluate the decontamination capabilities of this technology. Trials in greenhouses and field studies at the Pitt Park along the Lachine Canal were conducted. The soils chosen for the studies were soils with concentrations of polycyclic aromatic hydrocarbons (PAH) and heavy metals (lead, copper, zinc) higher than those prescribed for the safe utilization of soils. The trials identified the three plant species (Salix viminalis, Brassica juncea, and Festuca arundinacea) which had the best characteristics for phytoremediation. Controlled experiments were performed to optimize the technology to achieve the maximum extraction of contaminant. It was concluded that phytoremediation has potential for the remediation of urban soils contaminated with organic and inorganic pollutants.

  5. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes...... - this collective resistance is known as "biomass recalcitrance." Breakthrough technologies are needed to overcome barriers to developing cost-effective processes for converting biomass to fuels and chemicals. This book examines the connection between biomass structure, ultrastructure, and composition......, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments...

  6. Biomass Deconstruction and Recalcitrance

    DEFF Research Database (Denmark)

    Zhang, Heng

    This thesis is about the use of an agricultural residue as a feedstock for fermentable sugars to be used for second generation (2G) bioethanol. The main focus of this thesis work is upon the recalcitrance of different anatomical fractions of wheat straw. Biomass recalcitrance is a collective...... of lignocellulosic biomass’ degradability, a high throughput screening (HTS) platform was developed for combined thermochemical pretreatment and enzymatic degradation in Copenhagen laboratory during this thesis work. The platform integrates an automatized biomass grinding and dispensing system, a pressurized heating...... system, a plate incubator and a high performance liquid chromatography (HPLC) system. In comparison with the reported HTS platforms, the Copenhagen platform is featured by the fully automatic biomass sample preparation system, the bench-scale hydrothermal pretreatment setup, and precise sugar measurement...

  7. Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1927-02-22

    Coal tar, mineral oils, bitumens, coal extraction products, hydrogenation products of coal, oil schists can be atomized and heated with steam to decompose pyrogenetically and form gases rich in olefins which may be heated with or without pressure and with or without catalysts to produce liquid hydrocarbons of low boiling point, some of which may be aromatic. The apparatus should be lined with copper, silica, or ferrosilicon to prevent contact of the bases with iron which causes deposition of soot. Catalysts used may be metal oxides, silica, graphite, active charcoal, mica, pumice, porcelain, barium carbonate, copper, silver, gold, chromium, boron, or their compounds. At temperatures from 300 to 400/sup 0/C, olefins are produced. At higher temperatures, naphthenes and benzene hydrocarbons are produced.

  8. Hyfrecation for recalcitrant nongenital warts

    Directory of Open Access Journals (Sweden)

    Lawrence Leung

    2013-01-01

    Full Text Available Background: Verruca vulgaris is a common skin condition in general practice, which often resolves without treatment. For lesions needing treatment, they often persist despite repeated treatment and become recalcitrant warts. Hyfrecation is a form of electrosurgery which has been used in treating common and recalcitrant warts. Objectives: This article describes the history and mechanisms of hyfrecation and also reviews available evidence on the effectiveness of hyfrecation for recalcitrant nongenital warts. Discussion: Hyfrecation provides controlled tissue destruction with carbonized desiccated wounds which are ideal for eradicating recalcitrant warts. A systematic literature search revealed very minimal, if any, good-quality clinical studies that compare the efficacy of hyfrecation against other treatments (i.e., liquid nitrogen in treating recalcitrant nongenital warts. Other studies reported the benefits of hyfrecation for genital warts. The author illustrates with a case scenario, the benefits of hyfrecation in treating nongenital warts, and thereby, advocates its wider use in general practice.

  9. Biodegradability of fuel-ethers in environment; Biodegradabilite des ethers-carburants dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Fayolle-Guichard, F

    2005-04-01

    Fuel ethers (methyl tert-butyl ether or MTBE, ethyl tert-butyl ether or ETBE and tert-amyl methyl ether or TAME have been used as gasoline additives since about twenty years in order to meet the requirements for the octane index and to limit the polluting emission in exhaust pipe gas (unburnt hydrocarbons and carbon monoxide). The high water solubility and the poor biodegradability of these compounds make them pollutants frequently encountered in aquifers. The present manuscript summarizes the knowledge concerning the biodegradability of fuel ethers obtained both at IFP and during collaborations with the Pasteur Institute (Paris), the Biotechnology Research Institute (Montreal, Canada) and the Center for Environmental Biotechnology (University of Tennessee, USA). Rhodococcus ruber IFP 2001 and Mycobacterium austroafricanum IFP 2012, two microorganisms isolated at IFP for their ability to grow, respectively, on ETBE and MTBE, were studied in order to determine the intermediates produced during MTBE and ETBE biodegradation and the enzymes required for each biodegradation step, thus allowing us to propose MTBE and ETBE catabolic pathways. A proteomic approach, from the protein induced during the degradation of ETBE or MTBE to the genes encoding these different enzymes, was carried out. The isolation of such genes is required:1) to use them for help in determining the bio-remediation capacities in polluted aquifers (DNA micro-arrays), 2) to monitor the microorganisms isolated for their degradative capacities during bio-remediation processes (fluorescent in situ hybridization or FISH) and 3) to create new tools for the detection and the quantification of ETBE or MTBE in contaminated aquifers (bio-sensor). The manuscript also describes the different ways for the adaptation of microorganisms to the presence of a xenobiotic compound. (author)

  10. Androgenesis in recalcitrant solanaceous crops.

    Science.gov (United States)

    Seguí-Simarro, José M; Corral-Martínez, Patricia; Parra-Vega, Verónica; González-García, Beatriz

    2011-05-01

    Tomato, eggplant, and pepper are three solanaceous crops of outstanding importance worldwide. For hybrid seed production in these species, a fast and cheap method to obtain pure (homozygous) lines is a priority. Traditionally, pure lines are produced by classical inbreeding and selection techniques, which are time consuming (several years) and costly. Alternatively, it has become possible to accelerate the production of homozygous lines through a biotechnological approach: the induction of androgenesis to generate doubled haploid (homozygous) plants. This biotechnological in vitro tool reduces the process to only one generation, which implies important time and costs savings. These facts make androgenic doubled haploids the choice in a number of important crops where the methodology is well set up. Unfortunately, recalcitrant solanaceous crops such as tomato, eggplant, and pepper are still far from an efficient and reliable technology to be applied on a routine basis to different genotypes in breeding programs. In eggplant and pepper, only anther cultures are known to work relatively well. Unfortunately, a more efficient and promising technique, the culture of isolated microspores, is not sufficiently developed yet. In tomato, none of these methods is available nowadays. However, recent advances in the knowledge of embryo development are filling the gaps and opening new ways to achieve the final goal of an efficient protocol in these three recalcitrant species. In this review, we outline the state of the art on androgenic induction in tomato, eggplant, and pepper, and postulate new experimental ways in order to overcome current limitations.

  11. Biodegradability of fuel-ethers in environment; Biodegradabilite des ethers-carburants dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Fayolle-Guichard, F.

    2005-04-01

    Fuel ethers (methyl tert-butyl ether or MTBE, ethyl tert-butyl ether or ETBE and tert-amyl methyl ether or TAME have been used as gasoline additives since about twenty years in order to meet the requirements for the octane index and to limit the polluting emission in exhaust pipe gas (unburnt hydrocarbons and carbon monoxide). The high water solubility and the poor biodegradability of these compounds make them pollutants frequently encountered in aquifers. The present manuscript summarizes the knowledge concerning the biodegradability of fuel ethers obtained both at IFP and during collaborations with the Pasteur Institute (Paris), the Biotechnology Research Institute (Montreal, Canada) and the Center for Environmental Biotechnology (University of Tennessee, USA). Rhodococcus ruber IFP 2001 and Mycobacterium austroafricanum IFP 2012, two microorganisms isolated at IFP for their ability to grow, respectively, on ETBE and MTBE, were studied in order to determine the intermediates produced during MTBE and ETBE biodegradation and the enzymes required for each biodegradation step, thus allowing us to propose MTBE and ETBE catabolic pathways. A proteomic approach, from the protein induced during the degradation of ETBE or MTBE to the genes encoding these different enzymes, was carried out. The isolation of such genes is required:1) to use them for help in determining the bio-remediation capacities in polluted aquifers (DNA micro-arrays), 2) to monitor the microorganisms isolated for their degradative capacities during bio-remediation processes (fluorescent in situ hybridization or FISH) and 3) to create new tools for the detection and the quantification of ETBE or MTBE in contaminated aquifers (bio-sensor). The manuscript also describes the different ways for the adaptation of microorganisms to the presence of a xenobiotic compound. (author)

  12. Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property.

    Science.gov (United States)

    McCann, Maureen C; Carpita, Nicholas C

    2015-07-01

    Recalcitrance of plant biomass to enzymatic hydrolysis for biofuel production is thought to be a property conferred by lignin or lignin-carbohydrate complexes. However, chemical catalytic and thermochemical conversion pathways, either alone or in combination with biochemical and fermentative pathways, now provide avenues to utilize lignin and to expand the product range beyond ethanol or butanol. To capture all of the carbon in renewable biomass, both lignin-derived aromatics and polysaccharide-derived sugars need to be transformed by catalysts to liquid hydrocarbons and high-value co-products. We offer a new definition of recalcitrance as those features of biomass which disproportionately increase energy requirements in conversion processes, increase the cost and complexity of operations in the biorefinery, and/or reduce the recovery of biomass carbon into desired products. The application of novel processing technologies applied to biomass reveal new determinants of recalcitrance that comprise a broad range of molecular, nanoscale, and macroscale factors. Sampling natural genetic diversity within a species, transgenic approaches, and synthetic biology approaches are all strategies that can be used to select biomass for reduced recalcitrance in various pretreatments and conversion pathways. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Microbial Bioremediation of Fuel Oil Hydrocarbons in Marine Environment

    OpenAIRE

    Sapna Pavitran; C.B. Jagtap; S. Bala Subramanian; Susan Titus; Pradeep Kumar; P.C. Deb

    2006-01-01

    Pollution in marine environment due to heavier petroleum products such as high-speeddiesel is known to take from days to months for complete natural remediation owing to its lowvolatility. For the survival of marine flora and fauna, it is important to control pollution causedby such recalcitrant and xenobiotic substances. Several petroleum hydrocarbons found in natureare toxic and recalcitrant. Therefore, pollution due to high-speed diesel is a cause of concern.The natural dispersion of high-...

  14. Enhancing biogas production from recalcitrant lignocellulosic residue

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis

    Lignocellulosic substrates are abundant in agricultural areas around the world and lately, are utilized for biogas production in full-scale anaerobic digesters. However, the anaerobic digestion (AD) of these substrates is associated with specific difficulties due to their recalcitrant nature which...... protects them from enzymatic attack. Hence, the main purpose of this work was to define diverse ways to improve the performance of AD systems using these unconventional biomasses. Thus, mechanical and thermal alkaline pretreatments, microaeration and bioaugmentation with hydrolytic microbes were examined...... conductivity, soluble chemical oxygen demand and enzymatic hydrolysis) as a rapid way to predict the methane production. However, the precision of methane yield prediction was not high (R2

  15. Lignin- and Hemicellulose-derived Biomass Recalcitrance

    DEFF Research Database (Denmark)

    Deralia, Parveen Kumar

    technology bringing the multitude of chemical and physical changes, which govern the level of biomass recalcitrance. The lignocellulosic biomasses in question are wheat straw and poplar and the hydrothermal pretreatment is used as pretreatment technology. The 2D HSQC NMR and wet chemistry chemical...... degree to the biomass surface, giving a proportional increase in the specific surface area opposite to wheat straw, which has a marked increase in the specific surface area. The distinctly different chemistry of lignin and hemicellulose and different lignin migration and reorganization appear...... to be correlative, helping explain differences in enzymatic saccharification performance across the pretreatment severities and between two biomasses. The main contribution of this work to the current state-of-the-art in the field is the revelation of distinct behaviors of generation of different repolymerized...

  16. Environmental biodegradability of diesel oil: composition and performances of degradative micro-floras; Biodegradabilite du gazole dans l'environnement: composition et performances des microflores degradatrices

    Energy Technology Data Exchange (ETDEWEB)

    Penet, S.

    2004-09-01

    The large use of petroleum products makes them a significant source of pollutants in ground water and soils. Biodegradation studies are therefore relevant either to evaluate possibilities of natural attenuation or define bio-remediation strategies. In this study, the possible relationship between the environmental microflora structures and their capabilities for diesel oil biodegradation was investigated. The degradation capacities, i.e. kinetics and extent of biodegradation, were evaluated in closed batch systems by hydrocarbon consumption and CO{sub 2} production, both determined by gas chromatography. The intrinsic biodegradability of different types of diesel oils and the degradation capacities of microflora from ten polluted and ten unpolluted soils samples were determined. The data showed that: i) diesel oil was biodegradable, ii) n-alkanes were totally degraded by each microflora, the final amount of residual hydrocarbons being variable, iii) polluted-soil samples exhibited a slightly higher degradation rate (80%) that polluted-soil samples (67%) or activated sludge (64%). In order to define the contribution of various bacterial groups to diesel oil degradation, enrichment cultures were performed on hydrocarbons representative from the structural classes of diesel oil: hexadecane for n-alkanes, pristane for iso-alkanes, decalin for cyclo-alkanes, phenanthrene for aromatics. By using a 16S rDNA-sequencing method, the bacterial structures of the adapted microflora were determined and compared to that of the native microflora. A marked effect of the selection pressure was observed on the diversity of the microflora, each microflora harboring a major and specific bacterial group. The degradation capacities of the adapted microflora and the occurrence of genes coding for initial hydrocarbon oxidation (alkB, nahAc, cypP450) were also studied. No clear relationship between microflora genes and degradation performances was noted. This seemed to indicate that

  17. Environmental biodegradability of diesel oil: composition and performances of degradative micro-floras; Biodegradabilite du gazole dans l'environnement: composition et performances des microflores degradatrices

    Energy Technology Data Exchange (ETDEWEB)

    Penet, S

    2004-09-01

    The large use of petroleum products makes them a significant source of pollutants in ground water and soils. Biodegradation studies are therefore relevant either to evaluate possibilities of natural attenuation or define bio-remediation strategies. In this study, the possible relationship between the environmental microflora structures and their capabilities for diesel oil biodegradation was investigated. The degradation capacities, i.e. kinetics and extent of biodegradation, were evaluated in closed batch systems by hydrocarbon consumption and CO{sub 2} production, both determined by gas chromatography. The intrinsic biodegradability of different types of diesel oils and the degradation capacities of microflora from ten polluted and ten unpolluted soils samples were determined. The data showed that: i) diesel oil was biodegradable, ii) n-alkanes were totally degraded by each microflora, the final amount of residual hydrocarbons being variable, iii) polluted-soil samples exhibited a slightly higher degradation rate (80%) that polluted-soil samples (67%) or activated sludge (64%). In order to define the contribution of various bacterial groups to diesel oil degradation, enrichment cultures were performed on hydrocarbons representative from the structural classes of diesel oil: hexadecane for n-alkanes, pristane for iso-alkanes, decalin for cyclo-alkanes, phenanthrene for aromatics. By using a 16S rDNA-sequencing method, the bacterial structures of the adapted microflora were determined and compared to that of the native microflora. A marked effect of the selection pressure was observed on the diversity of the microflora, each microflora harboring a major and specific bacterial group. The degradation capacities of the adapted microflora and the occurrence of genes coding for initial hydrocarbon oxidation (alkB, nahAc, cypP450) were also studied. No clear relationship between microflora genes and degradation performances was noted. This seemed to indicate that

  18. Hydrocarbon phytoremediation in the family Fabaceae--a review.

    Science.gov (United States)

    Hall, Jessica; Soole, Kathleen; Bentham, Richard

    2011-04-01

    Currently, studies often focus on the use of Poaceae species (grasses) for phytoremediation of hydrocarbon-contaminated soils. Research into the use of Fabaceae species (legumes) to remediate hydrocarbons in soils has been conducted, but these plants are commonly overlooked due to slower recorded rates of degradation compared with many grass species. Evidence in the literature suggests that in some cases Fabaceae species may increase total degradation of hydrocarbons and stimulate degradative capacity of the soil microbial community, particularly for contaminants which are normally more recalcitrant to degradation. As many recalcitrant hydrocarbons have negative impacts on human and ecosystem health, development of remediation options is crucial. Reconsideration of Fabaceae species for removal of such contaminants may lead to environmentally and economically sustainable technologies for remediation of contaminated sites.

  19. Aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Roder, M.

    1985-01-01

    Papers dealing with radiolysis of aromatic hydrocarbons of different composition (from benzene to terphenyls and hydrocarbons with condensed rings) as well as their mixtures (with alkanes, alkenes, other aromatic hydrocarbons) are reviewed. High radiation stability of aromatic hydrocarbons in condensed phases associated with peculiarities of molecular structure of compounds is underlined. Mechanisms of radiolytic processes, vaues of product yields are considered

  20. On using rational enzyme redesign to improve enzyme-mediated microbial dehalogenation of recalcitrant substances in deep-subsurface environments

    International Nuclear Information System (INIS)

    Ornstein, R.L.

    1993-06-01

    Heavily halogenated hydrocarbons are one of the most prevalent classes of man-made recalcitrant environmental contaminants and often make their way into subsurface environments. Biodegradation of heavily chlorinated compounds in the deep subsurface often occurs at extremely slow rates because native enzymes of indigenous microbes are unable to efficiently metabolize such synthetic substances. Cost-effective engineering solutions do not exist for dealing with disperse and recalcitrant pollutants in the deep subsurface (i.e., ground water, soils, and sediments). Timely biodegradation of heavily chlorinated compounds in the deep subsurface may be best accomplished by rational redesign of appropriate enzymes that enhance the ability of indigenous microbes to metabolize these substances. The isozyme family cytochromes P450 are catalytically very robust and are found in all aerobic life forms and may be active in may anaerobes as well. The author is attempting to demonstrate proof-of-principle rational enzyme redesign of cytochromes P450 to enhance biodehalogenation

  1. MEMBRANE BIOREACTOR FOR TREATMENT OF RECALCITRANT WASTEWATERS

    Directory of Open Access Journals (Sweden)

    Suprihatin Suprihatin

    2012-02-01

    Full Text Available The low biodegradable wastewaters remain a challenge in wastewater treatment technology. The performance of membrane bioreactor systems with submerged hollow fiber micro- and ultrafiltration membrane modules were examined for purifying recalcitrant wastewaters of leachate of a municipal solid waste open dumping site and effluent of pulp and paper mill. The use of MF and UF membrane bioreactor systems showed an efficient treatment for both types wastewaters with COD reduction of 80-90%. The membrane process achieved the desirable effects of maintaining reasonably high biomass concentration and long sludge retention time, while producing a colloid or particle free effluent. For pulp and paper mill effluent a specific sludge production of 0.11 kg MLSS/kg COD removed was achieved. A permeate flux of about 5 L/m²h could be achieved with the submerged microfiltration membrane. Experiments using ultrafiltration membrane produced relatively low permeate fluxes of 2 L/m²h. By applying periodical backwash, the flux could be improved significantly. It was indicated that the particle or colloid deposition on membrane surface was suppressed by backwash, but reformation of deposit was not effectively be prevented by shear-rate effect of aeration. Particle and colloid started to accumulate soon after backwash. Construction of membrane module and operation mode played a critical role in achieving the effectiveness of aeration in minimizing deposit formation on the membrane surface.

  2. Topical ketoconazole therapy in a recalcitrant case of seborrhoeic dermatitis

    Directory of Open Access Journals (Sweden)

    Baishya B

    1996-01-01

    Full Text Available Ketoconazole 2% cream and 2% shampoo were found to be effective in controlling seborrhoeic dermatitis in a recalcitrant case. This topical ketoconazole therapy seems to be better than other conventional topical preparations prescribed in seborrhoeic dermatitis.

  3. Filamentous fungi remove weathered hydrocarbons from polluted soil of tropical Mexico

    OpenAIRE

    PÉREZ-ARMENDÁRIZ, Beatriz; MARTÍNEZ-CARRERA, Daniel; CALIXTO-MOSQUEDA, María; ALBA, Joel; RODRÍGUEZ-VÁZQUEZ, Refugio

    2010-01-01

    Weathered hydrocarbons from worldwide petrolic activities become more recalcitrant over time. The removal of petroleum hydrocarbons from a polluted soil [65,000 mg total petroleum hydrocarbons (TPH)/kg soil], which had been exposed to tropical environmental conditions for more than 20 years in southeast Mexico, was studied using filamentous fungi. Experiments were carried out in batch reactors (60 mL) containing a substrate consisting of polluted soil and sugar cane bagasse pith as bulk agent...

  4. The 'Recalcitrant Other': The Rhetorical Identity and Struggle of ...

    African Journals Online (AJOL)

    This article explores the complexity of Mandela's rhetorical identity as the Recalcitrant Other and his rhetorical struggle as informed by contesting influences such as his ancestral birthright, cultural upbringing, British mission education, and exposure to a racially constructed hegemonic order. By subversively drawing on his ...

  5. Petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Farrington, J.W.; Teal, J.M.; Parker, P.L.

    1976-01-01

    Methods for analysis of petroleum hydrocarbons in marine samples are presented. Types of hydrocarbons present and their origins are discussed. Principles and methods of analysis are outlined. Infrared spectrometry, uv spectrometry, gas chromatography, mass spectroscopy, and carbon 14 measurements are described

  6. Arthroscopic bursectomy for recalcitrant trochanteric bursitis after hip arthroplasty.

    Science.gov (United States)

    Van Hofwegen, Christopher; Baker, Champ L; Savory, Carlton G; Baker, Champ L

    2013-01-01

    This study evaluated the use of arthroscopic bursectomy for pain relief in patients with trochanteric bursitis after hip arthroplasty. In this retrospective case series of 12 patients undergoing arthroscopic treatment of recalcitrant trochanteric bursitis after hip arthroplasty, outcomes were assessed via phone interview with a numeric pain rating scale from 1 to 10 and were compared with preoperative pain ratings. Patients were asked the percentage of time they had painless hip function and whether they would have the surgery again. At an average 36-month follow-up (range, 4-85 months), the average numeric pain scale rating improved from 9.3 to 3.3. At an average of 62% of the time, patients had painless use of the hip. Ten of 12 patients in the study felt the pain relief gained was substantial enough to warrant having procedure again. In these patients, arthroscopic bursectomy was a viable option for patients with recalcitrant bursitis after hip arthroplasty.

  7. Four cases of recalcitrant pemphigus vulgaris salvaged with rituximab

    Directory of Open Access Journals (Sweden)

    Samyak Ganjre

    2017-01-01

    Full Text Available Although the long-term use of immunosuppressives – supplemented with more aggressive treatments such as immunoadsorption, intravenous immunoglobulins, or plasmapheresis in recalcitrant cases has dramatically improved the prognosis of pemphigus vulgaris, opportunistic infections secondary to immunosuppression continue to cause significant mortality. We report four cases– three old ones, who had accumulated significant morbidities over their disease duration ranging from 5 to 10 years, and the fourth, a teenage female intolerant to corticosteroids and idiosyncratic to methotrexate– who achieved complete remission on administration of rituximab by the lymphoma protocol. One of the old cases who had recalcitrant mucositis experienced its complete subsidence without any adjuvant whatsoever. All continue to remain asymptomatic for 11–20 months. None had infusion reactions or any delayed side effects.

  8. Clinical Outcomes after Arthroscopic Release for Recalcitrant Frozen Shoulder

    OpenAIRE

    Ebrahimzadeh, Mohammad H; Moradi, Ali; Pour, Mostafa Khalili; Moghadam, Mohammad Hallaj; Kachooei, Amir Reza

    2014-01-01

    Background: To explain the role of arthroscopic release in intractable frozen shoulders. We used different questionnaires and measuring tools to understand whether arthroscopic release is the superior modality to treat patients with intractable frozen shoulders. Methods: Between 2007 and 2013, in a prospective study, we enrolled 80 patients (52 females and 28 males) with recalcitrant frozen shoulder, who underwent arthroscopic release at Ghaem Hospital, a tertiary referral center, in Mashhad,...

  9. Autologous Blood Injection Works for Recalcitrant Lateral Epicondylitis

    Directory of Open Access Journals (Sweden)

    Bora Bostan

    2016-04-01

    Full Text Available Background: Recalcitrant lateral epicondylitis may be a disabling condition. Treatment of this condition is still controversial. Aims: In the present prospective study, we evaluated the long-term results of autologous blood injection for the treatment of recalcitrant lateral epicondylitis. Study Design: Prospective clinical study. Methods: A total of 42 elbows of 40 consecutive patients (28 female, 12 male were enrolled in this prospective study. Seven patients left the study (3 patients moved to another city, 1 patient died in the second week due to a heart condition, 1 patient quit the study because of the resolution of pain in the fourth week and 2 patients did not agree to the second injection. Thirteen patients were lost to third year follow-up. Therefore, a total of 21 elbows of 20 patients with 3 years of follow-up were included in this study. The mean age of the patients was 47.25 years (range, 20-68 years. Results: Visual analogue scale (VAS, Nirschl score and grip strength were significantly improved after injections when compared to before treatment. The best improvement in terms of grip strength, Nirschl score and VAS score was detected at the one year follow-up. The improvement in Nirschl and VAS score sustained until the third year. Conclusion: We suggest that autologous blood injection for the treatment of recalcitrant lateral epicondylitis is an effective, safe and successful procedure in the long-term.

  10. Autologous Blood Injection Works for Recalcitrant Lateral Epicondylitis.

    Science.gov (United States)

    Bostan, Bora; Balta, Orhan; Aşçı, Murat; Aytekin, Kürşad; Eser, Enes

    2016-03-01

    Recalcitrant lateral epicondylitis may be a disabling condition. Treatment of this condition is still controversial. In the present prospective study, we evaluated the long-term results of autologous blood injection for the treatment of recalcitrant lateral epicondylitis. Prospective clinical study. A total of 42 elbows of 40 consecutive patients (28 female, 12 male) were enrolled in this prospective study. Seven patients left the study (3 patients moved to another city, 1 patient died in the second week due to a heart condition, 1 patient quit the study because of the resolution of pain in the fourth week and 2 patients did not agree to the second injection). Thirteen patients were lost to third year follow-up. Therefore, a total of 21 elbows of 20 patients with 3 years of follow-up were included in this study. The mean age of the patients was 47.25 years (range, 20-68 years). Visual analogue scale (VAS), Nirschl score and grip strength were significantly improved after injections when compared to before treatment. The best improvement in terms of grip strength, Nirschl score and VAS score was detected at the one year follow-up. The improvement in Nirschl and VAS score sustained until the third year. We suggest that autologous blood injection for the treatment of recalcitrant lateral epicondylitis is an effective, safe and successful procedure in the long-term.

  11. Advances in High Throughput Screening of Biomass Recalcitrance (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Turner, G. B.; Decker, S. R.; Tucker, M. P.; Law, C.; Doeppke, C.; Sykes, R. W.; Davis, M. F.; Ziebell, A.

    2012-06-01

    This was a poster displayed at the Symposium. Advances on previous high throughput screening of biomass recalcitrance methods have resulted in improved conversion and replicate precision. Changes in plate reactor metallurgy, improved preparation of control biomass, species-specific pretreatment conditions, and enzymatic hydrolysis parameters have reduced overall coefficients of variation to an average of 6% for sample replicates. These method changes have improved plate-to-plate variation of control biomass recalcitrance and improved confidence in sugar release differences between samples. With smaller errors plant researchers can have a higher degree of assurance more low recalcitrance candidates can be identified. Significant changes in plate reactor, control biomass preparation, pretreatment conditions and enzyme have significantly reduced sample and control replicate variability. Reactor plate metallurgy significantly impacts sugar release aluminum leaching into reaction during pretreatment degrades sugars and inhibits enzyme activity. Removal of starch and extractives significantly decreases control biomass variability. New enzyme formulations give more consistent and higher conversion levels, however required re-optimization for switchgrass. Pretreatment time and temperature (severity) should be adjusted to specific biomass types i.e. woody vs. herbaceous. Desalting of enzyme preps to remove low molecular weight stabilizers and improved conversion levels likely due to water activity impacts on enzyme structure and substrate interactions not attempted here due to need to continually desalt and validate precise enzyme concentration and activity.

  12. Compost biodegradation of recalcitrant hoof keratin by bacteria and fungi.

    Science.gov (United States)

    Reuter, T; Gilroyed, B H; Xu, W; McAllister, T A; Stanford, K

    2015-08-01

    Compost activities efficiently break down a wide range of organic substances over time. In this study, bovine hoof was used as recalcitrant protein model to gain so far cryptic information on biodegradation during livestock mortalities composting. Bovine hooves (black and white), containing different amounts of melanin, placed into nylon bags were monitored during composting of cattle mortalities for up to 230 days. Besides physiochemical analysis, bacterial 16S and fungal 18S DNA fragments were amplified by PCR and profiles were separated by DGGE. Sequence analysis of separated fragments revealed various bacterial and fungal identities during composting. The microbial diversity was affected by a time-temperature interaction and by the hoof colour. Our molecular data, supported by electron microscopy, suggest hoof colonization by shifting bacteria and fungi communities. During composting, microbial communities work collaboratively in the degradation of recalcitrant organic matter such as keratin over time. A number of biomolecules including recalcitrant proteins may persist in environmental reservoirs, but breakdown can occur during composting. A combination of bioactivity and physiochemical conditions appear to be decisive for the fate of persistent biomolecules. © 2015 The Society for Applied Microbiology.

  13. Three-stage treatment protocol for recalcitrant distal femoral nonunion.

    Science.gov (United States)

    Ma, Ching-Hou; Chiu, Yen-Chun; Tu, Yuan-Kun; Yen, Cheng-Yo; Wu, Chin-Hsien

    2017-04-01

    In this study, we proposed a three-stage treatment protocol for recalcitrant distal femoral nonunion and aimed to analyze the clinical results. We retrospective reviewed 12 consecutive patients with recalcitrant distal femoral nonunion undergoing our three-stage treatment protocol from January 2010 to December 2014 in our institute. The three-stage treatment protocol comprised debridement of the nonunion site, lengthening to eliminate leg length discrepancy, deformity correction, stabilization with a locked plate, filling of the defect with cement spacer for inducing membrane formation, and bone reconstruction using a cancellous bone autograft (Masquelet technique) or free vascularized fibular bone graft. The bone union time, wound complication, lower limbs alignment, amount of lengthening, knee range of motion, and functional outcomes were evaluated. Osseous union with angular deformity lengthening was 5.88 cm (range 3.5-12 cm). Excellent or good outcomes were obtained in 9 patients. Although the current study involved only a small number of patients and the intervention comprised three stages, we believe that such a protocol may be a valuable alternative for the treatment of recalcitrant distal femoral nonunion.

  14. Temperature sensitivity of respiration scales with organic matter recalcitrance

    Science.gov (United States)

    Craine, J. M.; Fierer, N.; McLauchlan, K. K.

    2010-12-01

    Microbial decomposition of soil organic matter is a key process in determining the carbon sequestration potential of ecosystems and carbon fluxes to the atmosphere. Since microbial decomposition is highly sensitive to short-term changes in temperature, predicting the temperature sensitivity of microbial decomposition is critical to predicting future atmospheric carbon dioxide concentrations and feedbacks to anthropogenic warming. Fundamental principles of enzyme kinetics, embodied in the carbon-quality temperature hypothesis, predict that the temperature sensitivity of microbial decomposition should increase with increasing biochemical recalcitrance of a substrate. To test the generality of this principle, we measured the temperature sensitivity of microbial respiration of soil organic matter with serial short-term temperature manipulations over 365 days for 28 North American soils. When joined with data from similar studies that represent a wide variety of contrasts, we show that the temperature sensitivity of organic matter decomposition scales with biochemical recalcitrance. With physico-chemical protection likely an important covariate for relating plant and soil organic matter decomposition scalars, biochemically recalcitrant organic matter is highly susceptible to short-term increases in temperature, a key link in predicting the effects of warming on carbon cycling.

  15. Bioremediation of petroleum hydrocarbons in soil environments

    International Nuclear Information System (INIS)

    Rowell, M.J.; Ashworth, J.; Qureshi, A.A.

    1992-12-01

    The bioremediation of petroleum hydrocarbons in soil environments was reviewed via a literature survey and discussions with workers in relevant disciplines. The impacts of hydrocarbons on soil are discussed along with a range of methods available to assist in their decomposition by soil microorganisms. The range of petroleum-based materials considered includes conventional and synthetic crude oils, refined oils, sludges, asphalts and bitumens, drilling mud residues, creosote tars, and some pesticides. The degradability of hydrocarbons largely depends upon their aqueous solubility and their adsorption on soil surfaces and, therefore, is related to their molecular structures. The ease of decomposition decreases with increasing complexity of structure, in the order aliphatics > aromatics > heterocyclics and asphaltenes (most recalcitrant). Most soils contain an adequate population of microorganisms and hence bioaugmentation may only be needed in special circumstances. Decomposition is fastest in soils where the hydrocarbon loading rate, aeration, nutrition, moisture, and pH are all optimized. At spill sites there is little control over the application rate, although containment measures can assist in either limiting contamination or distributing it more evenly. The enhancement of bioremediation is discussed in light of all these factors. Other techniques such as enhanced aeration, hydrocarbon decomposition by anaerobic processes, surfactants, and burning are also discussed. 211 refs., 11 figs., 10 tabs

  16. Bioremediation of petroleum hydrocarbons in soil environments

    Energy Technology Data Exchange (ETDEWEB)

    Rowell, M J; Ashworth, J; Qureshi, A A

    1992-12-01

    The bioremediation of petroleum hydrocarbons in soil environments was reviewed via a literature survey and discussions with workers in relevant disciplines. The impacts of hydrocarbons on soil are discussed along with a range of methods available to assist in their decomposition by soil microorganisms. The range of petroleum-based materials considered includes conventional and synthetic crude oils, refined oils, sludges, asphalts and bitumens, drilling mud residues, creosote tars, and some pesticides. The degradability of hydrocarbons largely depends upon their aqueous solubility and their adsorption on soil surfaces and, therefore, is related to their molecular structures. The ease of decomposition decreases with increasing complexity of structure, in the order aliphatics > aromatics > heterocyclics and asphaltenes (most recalcitrant). Most soils contain an adequate population of microorganisms and hence bioaugmentation may only be needed in special circumstances. Decomposition is fastest in soils where the hydrocarbon loading rate, aeration, nutrition, moisture, and pH are all optimized. At spill sites there is little control over the application rate, although containment measures can assist in either limiting contamination or distributing it more evenly. The enhancement of bioremediation is discussed in light of all these factors. Other techniques such as enhanced aeration, hydrocarbon decomposition by anaerobic processes, surfactants, and burning are also discussed. 211 refs., 11 figs., 10 tabs.

  17. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Demoulins, H D; Garner, F H

    1923-02-07

    Hydrocarbon distillates, including natural gases and vapors produced by cracking hydrocarbon oils, are desulfurized etc. by treating the vapor with an aqueous alkaline solution of an oxidizing agent. The hydrocarbons may be previously purified by sulfuric acid. In examples aqueous solutions of sodium or calcium hydrochlorite containing 1.5 to 5.0 grams per liter of available chlorine and sufficient alkali to give an excess of 0.1 percent in the spent reagent are preheated to the temperature of the vapor, and either sprayed or atomized into the vapors near the outlet of the dephlegmator or fractionating tower, or passed in countercurrent to the vapors through one or a series of scrubbers.

  18. Robotic Y-V Plasty for Recalcitrant Bladder Neck Contracture.

    Science.gov (United States)

    Granieri, Michael A; Weinberg, Aaron C; Sun, Jeffrey Y; Stifleman, Michael; Zhao, Lee

    2018-07-01

    To demonstrate the technique and the outcomes of robot assisted Y-V plasty bladder neck reconstruction (RYVBNR). We present our technique for treatment of recalcitrant bladder neck contracture (BNC) in 7 patients who underwent RYVBNR at our institution between March 2016 and September 2017. Indication for the procedure was incomplete emptying, recurrent urinary tract infections, and dysuria. On follow-up, patients were assessed for clinical success by absence of infections, symptoms, and cystoscopic evaluation. Robotic assisted dissection is performed to open the space of Retzius and mobilize the bladder. The cystoscope is passed to the level of the BNC, and Firefly technology is used to localize the BNC. The BNC is incised anteriorly, and a V-shaped bladder flap is advanced into the BNC in a Y-V plasty fashion. We place a perioperative closed suction drain, which is removed before discharge, and a 22 Fr catheter, which that will be removed in the office at approximately 2 weeks. Six men developed recalcitrant BNCs and 1 developed a recalcitrant vesicourethral anastomotic stenosis. All patients had previously undergone an endoscopic procedure. Median time for last attempt at endoscopic management to robot-assisted bladder neck repair was 4.7 months. The average number of prior attempts at endoscopic management was 2. All patients underwent RYVBNR without conversion to open surgery. The median operative time was 240 minutes, estimated blood loss was 67 mL, and length of stay was 1 day. There were no intraoperative complications. Catheters were removed in the office at a median time of 15 days. At a median follow-up of 8 months, all cases were successful with no evidence of recurrence. Only 2 patients had persistent urinary incontinence at 1 pad per day. RYVBNR with a Y-V plasty is a feasible and effective technique for managing a difficult reconstructive problem. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Purifying hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dunstan, A E

    1918-06-03

    Ligroin, kerosene, and other distillates from petroleum and shale oil, are purified by treatment with a solution of a hypochlorite containing an excess of alkali. The hydrocarbon may be poured into brine, the mixture stirred, and an electric current passed through. Heat may be applied.

  20. Medium-Term Results After Treatment of Recalcitrant Lateral Epicondylitis

    Science.gov (United States)

    Meknas, Khaled; Al Hassoni, Thabit N.; Odden-Miland, Åshild; Castillejo, Miguel; Kartus, Jüri

    2013-01-01

    Background: Recalcitrant lateral epicondylitis (elbow extensor–origin tendinosis) is a common cause of elbow pain with many treatment options. In the present study, the medium-term results after open release and radiofrequency microtenotomy are reported. Hypothesis: Microtenotomy would provide long-term pain relief that was as good as the open release method. Study Design: Prospective, randomized trial. Methods: Twenty-four patients randomized to either open release or microtenotomy were assessed after 5 to 7 years. Clinical examination and dynamic infrared thermography (DIRT) of both elbows were performed preoperatively and at the medium-term follow-up. Magnetic resonance imaging (MRI) of both elbows was performed at the medium-term follow-up. Results: Significant pain reduction was found using a visual analog scale (VAS) at the medium-term follow-up in both groups compared with the preoperative assessment (P lateral epicondylitis. The hypothesis was thus verified. PMID:26535247

  1. Reducing biomass recalcitrance via mild sodium carbonate pretreatment.

    Science.gov (United States)

    Mirmohamadsadeghi, Safoora; Chen, Zhu; Wan, Caixia

    2016-06-01

    This study examined the effects of mild sodium carbonate (Na2CO3) pretreatment on enzymatic hydrolysis of different feedstocks (i.e., corn stover, Miscanthus, and switchgrass). The results showed that sodium carbonate pretreatment markedly enhanced the sugar yields of the tested biomass feedstocks. The pretreated corn stover, Miscanthus, and switchgrass gave the glucose yields of 95.1%, 62.3%, and 81.3%, respectively, after enzymatic hydrolysis. The above glucose yields of pretreated feedstocks were 2-4 times that of untreated ones. The pretreatment also enhanced the xylose yields, 4 times for corn stover and 20 times for both Miscanthus and switchgrass. Sodium carbonate pretreatment removed 40-59% lignin from the tested feedstocks while preserving most of cellulose (sodium carbonate pretreatment was effective for reducing biomass recalcitrance and subsequently improving the digestibility of lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Clinical outcomes after arthroscopic release for recalcitrant frozen shoulder.

    Science.gov (United States)

    Ebrahimzadeh, Mohammad H; Moradi, Ali; Pour, Mostafa Khalili; Moghadam, Mohammad Hallaj; Kachooei, Amir Reza

    2014-09-01

    To explain the role of arthroscopic release in intractable frozen shoulders. We used different questionnaires and measuring tools to understand whether arthroscopic release is the superior modality to treat patients with intractable frozen shoulders. Between 2007 and 2013, in a prospective study, we enrolled 80 patients (52 females and 28 males) with recalcitrant frozen shoulder, who underwent arthroscopic release at Ghaem Hospital, a tertiary referral center, in Mashhad, Iran. Before operation, all patients filled out the Disability of Arm, Shoulder and Hand (DASH), Constant, University of California Los Angeles (UCLA), ROWE and Visual Analogue Scale (VAS) for pain questionnaires. We measured the difference in range of motion between both the normal and the frozen shoulders in each patient. The average age of the patients was 50.8±7.1 years. In 49 patients, the right shoulder was affected and in the remaining 31 the left side was affected. Before surgery, the patients were suffering from this disease on average for 11.7±10.3 months. The average time to follow-up was 47.2±6.8 months (14 to 60 months). Diabetes mellitus (38%) and history of shoulder trauma (23%) were the most common comorbidities in our patients. We did not find any significant differences between baseline characteristics of diabetics patients with non-diabetics ones. After surgery, the average time to achieve maximum pain improvement and range of motion were 3.6±2.1 and 3.6±2 months, respectively. The VAS score, constant shoulder score, Rowe score, UCLA shoulder score, and DASH score showed significant improvement in shoulder function after surgery, and shoulder range of motion improved in all directions compared to pre-operation range of motion. According to our results, arthroscopic release of recalcitrant frozen shoulder is a valuable modality in treating this disease. This method could decrease pain and improve both subjective and objective mid-term outcomes.

  3. Reproducible gene targeting in recalcitrant Escherichia coli isolates

    Directory of Open Access Journals (Sweden)

    De Greve Henri

    2011-06-01

    Full Text Available Abstract Background A number of allele replacement methods can be used to mutate bacterial genes. For instance, the Red recombinase system of phage Lambda has been used very efficiently to inactivate chromosomal genes in E. coli K-12, through recombination between regions of homology. However, this method does not work reproducibly in some clinical E. coli isolates. Findings The procedure was modified by using longer homologous regions (85 bp and 500-600 bp, to inactivate genes in the uropathogenic E. coli strain UTI89. An lrhA regulator mutant, and deletions of the lac operon as well as the complete type 1 fimbrial gene cluster, were obtained reproducibly. The modified method is also functional in other recalcitrant E. coli, like the avian pathogenic E. coli strain APEC1. The lrhA regulator and lac operon deletion mutants of APEC1 were successfully constructed in the same way as the UTI89 mutants. In other avian pathogenic E. coli strains (APEC3E, APEC11A and APEC16A it was very difficult or impossible to construct these mutants, with the original Red recombinase-based method, with a Red recombinase-based method using longer (85 bp homologous regions or with our modified protocol, using 500 - 600 bp homologous regions. Conclusions The method using 500-600 bp homologous regions can be used reliably in some clinical isolates, to delete single genes or entire operons by homologous recombination. However, it does not invariably show a greater efficiency in obtaining mutants, when compared to the original Red-mediated gene targeting method or to the gene targeting method with 85 bp homologous regions. Therefore the length of the homology regions is not the only limiting factor for the construction of mutants in these recalcitrant strains.

  4. Cracking hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Forwood, G F; Lane, M; Taplay, J G

    1921-10-07

    In cracking and hydrogenating hydrocarbon oils by passing their vapors together with steam over heated carbon derived from shale, wood, peat or other vegetable or animal matter, the gases from the condenser are freed from sulfuretted hydrogen, and preferably also from carbon dioxide, and passed together with oil vapors and steam through the retort. Carbon dioxide may be removed by passage through slaked lime, and sulfuretted hydrogen by means of hydrated oxide of iron. Vapors from high-boiling oils and those from low-boiling oils are passed alternately through the retort, so that carbon deposited from the high-boiling oils is used up during treatment of low-boiling oils.

  5. Distilling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Bataafsche, N V; de Brey, J H.C.

    1918-10-30

    Hydrocarbons containing a very volatile constituent and less volatile constituents, such as casing-head gases, still gases from the distillation of crude petroleum and bituminous shale are separated into their constituents by rectification under pressure; a pressure of 20 atmospheres and limiting temperatures of 150/sup 0/C and 40/sup 0/C are mentioned as suitable. The mixture may be subjected to a preliminary treatment consisting in heating to a temperature below the maximum rectification temperature at a pressure greater than that proposed to be used in the rectification.

  6. Hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Foorwood, G F; Taplay, J G

    1916-12-12

    Hydrocarbon oils are hydrogenated, cracked, or treated for the removal of sulfur by bringing their vapors mixed with steam at temperatures between 450 and 600/sup 0/C into contact with a form of carbon that is capable of decomposing steam with the production of nascent hydrogen at those temperatures. The forms of carbon used include lamp-black, soot, charcoals derived from wood, cellulose, and lignite, and carbons obtained by carbonizing oil residues and other organic bodies at temperatures below 600/sup 0/C. The process is applied to the treatment of coal oil, shale oil, petroleum, and lignite oil. In examples, kerosene is cracked at 570/sup 0/C, cracked spirit is hydrogenated at 500/sup 0/C, and shale spirit is desulfurized at 530/sup 0/C. The products are led to a condenser and thence to a scrubber, where they are washed with creosote oil. After desulfurization, the products are washed with dilute caustic soda to remove sulfurretted hydrogen.

  7. Hydrocarbon exploration

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, I. (South Carolina Univ., Columbia, SC (United States). Dept. of Geological Sciences)

    1993-01-01

    This special issue of the journal examines various aspects of the on-going search for hydrocarbons, ranging from frontier basins where little data are available, to more mature areas where considerable data are available. The incentives underlying the search for oil are roughly: the social, economic and industrial needs of a nation; the incentive of a corporation to be profitable; and the personal incentives of individuals in the oil industry and governments, which range from financial wealth to power and which are as diverse as the individuals who are involved. From a geopolitical perspective, the needs, requirements, goals, strategies, and philosophies of nations, and groups of nations, also impact on the oil exploration game. Strategies that have been employed have ranged from boycott to austerity and rationing, to physical intervention, to global ''flooding'' with oil by over-production. (author)

  8. Clinical Outcomes after Arthroscopic Release for Recalcitrant Frozen Shoulder

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Ebrahimzadeh

    2014-09-01

    Full Text Available Background: To explain the role of arthroscopic release in intractable frozen shoulders. We used different questionnaires and measuring tools to understand whether arthroscopic release is the superior modality to treat patients with intractable frozen shoulders. Methods: Between 2007 and 2013, in a prospective study, we enrolled 80 patients (52 females and 28 males with recalcitrant frozen shoulder, who underwent arthroscopic release at Ghaem Hospital, a tertiary referral center, in Mashhad, Iran. Before operation, all patients filled out the Disability of Arm, Shoulder and Hand (DASH, Constant, University of California Los Angeles (UCLA, ROWE and Visual Analogue Scale (VAS for pain questionnaires. We measured the difference in range of motion between both the normal and the frozen shoulders in each patient. Results: The average age of the patients was 50.8±7.1 years. In 49 patients, the right shoulder was affected and in the remaining 31 the left side was affected. Before surgery, the patients were suffering from this disease on average for 11.7±10.3 months.  The average time to follow-up was 47.2±6.8 months (14 to 60 months. Diabetes mellitus (38% and history of shoulder trauma (23% were the most common comorbidities in our patients. We did not find any significant differences between baseline characteristics of diabetics patients with non-diabetics ones. After surgery, the average time to achieve maximum pain improvement and range of motion were 3.6±2.1 and 3.6±2 months, respectively. The VAS score, constant shoulder score, Rowe score, UCLA shoulder score, and DASH score showed significant improvement in shoulder function after surgery, and shoulder range of motion improved in all directions compared to pre-operation range of motion. Conclusions: According to our results, arthroscopic release of recalcitrant frozen shoulder is a valuable modality in treating this disease. This method could decrease pain and improve both subjective and

  9. The outcome of endoscopy for recalcitrant greater trochanteric pain syndrome.

    Science.gov (United States)

    Drummond, James; Fary, Camdon; Tran, Phong

    2016-11-01

    Greater trochanteric pain syndrome (GTPS), previously referred as trochanteric bursitis, is a debilitating condition characterised by chronic lateral hip pain. The syndrome is thought to relate to gluteal tendinopathy, with most cases responding to non-operative treatment. A number of open and endoscopic surgical techniques targeting the iliotibial band, trochanteric bursa and gluteal tendons have, however, been described for severe recalcitrant cases. We report the outcomes of one such endoscopic approach here. We retrospectively reviewed 49 patients (57 operations) who had undergone endoscopic longitudinal vertical iliotibial band release and trochanteric bursectomy. Inclusion criteria included diagnosed GTPS with a minimum of six months of non-operative treatment. Exclusion criteria included concomitant intra- or extra-articular hip pathology and previous hip surgery including total hip arthroplasty. Outcomes were assessed using the Visual Analogue Scale, Oxford hip Score and International Hip Outcome Tool (iHOT-33). The series included 42 females and 7 males with a mean age of 65.0 years (26.7-88.6). Mean follow-up time was 20.7 months (5.3-41.2). Eight patients had full thickness gluteal tendon tears, of which 7 were repaired. Adjuvant PRP was injected intraoperatively in 38 of 57 operations (67.2 %). At follow-up, overall mean Visual Analogue Scale values had decreased from 7.8 to 2.8 (p < 0.001), Oxford hip Scores had increased from 20.4 to 37.3 (p < 0.001) and iHOT-33 scores had increased from 23.8 to 70.2 (p < 0.001). Of the 57 operations performed, patients reported feeling very satisfied with the surgical outcome in 28 operations (49.1 %), satisfied in 17 operations (29.8 %) and less than satisfied in 12 operations (21.1 %). While the majority of patients with GTPS will improve with non-operative management, endoscopic iliotibial band release, trochanteric bursectomy and gluteal tendon repair is a safe and effective treatment for severe

  10. Common extensor origin release in recalcitrant lateral epicondylitis - role justified?

    Directory of Open Access Journals (Sweden)

    Mukundan Cibu

    2010-05-01

    Full Text Available Abstract The aim of our study was to analyse the efficacy of operative management in recalcitrant lateral epicondylitis of elbow. Forty patients included in this study were referred by general practitioners with a diagnosis of tennis elbow to the orthopaedic department at a district general hospital over a five year period. All had two or more steroid injections at the tender spot, without permanent relief of pain. All subsequently underwent simple fasciotomy of the extensor origin. Of forty patients thirty five had improvement in pain and function, two had persistent symptoms and three did not perceive any improvement. Twenty five had excellent, ten had well, two had fair and three had poor outcomes (recurrent problem; pain at rest and night. Two patients underwent revision surgery. Majority of the patients had improvement in pain and function following operative treatment. In this study, an extensor fasciotomy was demonstrated to be an effective treatment for refractory chronic lateral epicondylitis; however, further studies are warranted.

  11. Medial maxillectomy in recalcitrant sinusitis: when, why and how?

    Science.gov (United States)

    Konstantinidis, Iordanis; Constantinidis, Jannis

    2014-02-01

    We reviewed all journal articles relevant to endoscopic medial maxillectomy in patients with recalcitrant chronic maxillary sinusitis in order to present all indications, the underlying pathophysiology and the developed surgical techniques. Despite the high success rate of middle meatal antrostomy, cases with persistent maxillary sinus disease exist and often need a more extended endoscopic procedure for the better control of the disease. Such surgical option uses gravity for better sinus drainage and offers better saline irrigation, local application of medications and follow-up inspection. An endoscopic medial maxillectomy and its modified forms offer a wider surgical field and access to all 'difficult' areas of the maxillary sinus. Patients with previous limited endoscopic sinus surgery or extended open surgery, cystic fibrosis, extensive mucoceles, allergic fungal sinusitis, odontogenic infections, foreign bodies and so on may suffer from recurrent disease requiring an endoscopic medial maxillectomy. Depending on the disease, various modifications of the procedure can be performed preserving the anterior buttress, nasolacrimal duct and inferior turbinate if possible.

  12. Successful treatment of recalcitrant nonunions with combined magnetic field stimulation.

    Science.gov (United States)

    Longo, J A

    1997-01-01

    Nonunions and delayed unions have been classically defined by Bassett as an arrest of the fracture healing process at an intermediary stage of repair, at which time the fracture gap is bridged by fibrocartilage. It is estimated that approximately 10-20 % of long bone fractures in the United States will result in delayed unions when compared to the average rate of healing for the location and type of fracture. Many of these will go on to a nonunion if biological or biomechanical factors are not optimized to enhance healing. Additional commorbities such as smoking, ethanol abuse, malnutrition, malabsorption and altered neurologic conditions can contribute to delayed unions or nonunions. Even despite appropriate and aggressive early management of long bone fractures, a certain percentage still lack progression of healing and go on to nonunion. Classical surgical management of nonunions includes obtaininjg fracture stabilization with ORIF techniques and bone grafting, with reported clinical successes ranging from 50-80%. Those that fail to achieve union despite classical management are indeed recalcitrant nonunions.

  13. Surfactant biocatalyst for remediation of recalcitrant organics and heavy metals

    Science.gov (United States)

    Brigmon, Robin L [North Augusta, SC; Story, Sandra [Greenville, SC; Altman, Denis [Evans, GA; Berry, Christopher J [Aiken, SC

    2009-01-06

    Novel strains of isolated and purified bacteria have been identified which have the ability to degrade petroleum hydrocarbons including a variety of PAHs. Several isolates also exhibit the ability to produce a biosurfactant. The combination of the biosurfactant-producing ability along with the ability to degrade PAHs enhances the efficiency with which PAHs may be degraded. Additionally, the biosurfactant also provides an additional ability to bind heavy metal ions for removal from a soil or aquatic environment.

  14. Adalimumab treatment for severe recalcitrant chronic plaque psoriasis.

    LENUS (Irish Health Repository)

    Ryan, C

    2012-02-01

    AIM: To assess the efficacy and safety profile of adalimumab in patients with severe, recalcitrant chronic plaque psoriasis, and to assess short-term overlapping of other systemic treatment with adalimumab to prevent flaring of disease. METHODS: This was a retrospective study comprising 39 patients with chronic plaque psoriasis treated with adalimumab between October 2005 and January 2008. All had failed treatment with other systemic agents, including biological therapies in 59% of patients. Patients were started on adalimumab 40 mg weekly or fortnightly, as clinically indicated. Severity of psoriasis was assessed by the Psoriasis Area and Severity Index (PASI). Therapeutic response was assessed by 75% improvement on PASI (PASI 75). All adverse events were recorded. RESULTS: Results were analysed separately for those treated with adalimumab only and those on combination treatment. PASI 75 was achieved in 38% (8 of 21 patients at week 16), 62% (13 of 21 patients) at week 24, 69% (9 of 13 patients) at week 48% and 71% (5 of 7 patients) at week 72 in the adalimumab-only group, compared with 56% (5 of 9 patients) at week 16, 50% (4 of 8 patients) at week 24, 80% (4 of 5 patients) at week 48% and 67% (2 of 3 patients) at week 72 in the combined group. Of the 39 patients, 15 (38%) achieved a PASI of 0 at some point in their treatment. Adalimumab was well tolerated; 38% of patients experienced side-effects, which were generally mild. CONCLUSION: Adalimumab was effective in a group of patients with psoriasis refractory to other systemic therapies, including biological treatments, and was well tolerated.

  15. Converting high boiling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; DuFour, L

    1929-02-12

    A process is given for converting high boiling hydrocarbons into low boiling hydrocarbons, characterized in that the high boiling hydrocarbons are heated to 200 to 500/sup 0/C in the presence of ferrous chloride and of such gases as hydrogen, water gas, and the like gases under a pressure of from 5 to 40 kilograms per square centimeter. The desulfurization of the hydrocarbons occurs simultaneously.

  16. Recalcitrant Lateral Premalleolar Bursitis of the Ankle Associated with Lateral Ankle Instability

    Directory of Open Access Journals (Sweden)

    Masashi Naito

    2017-01-01

    Full Text Available Lateral premalleolar bursitis of the ankle is a rarely reported disorder in the English literature although it is not uncommon in Asian countries where people commonly sit on their feet. Here, we present the case of a 66-year-old woman with recalcitrant lateral premalleolar bursitis associated with lateral ankle instability which was successfully treated with surgical resection of the bursa and repair of the anterior talofibular ligament. Operative findings revealed a communication between the bursa and articular cavity of the ankle joint via the sheath of the extensor digitorum longus tendon, which was considered to act as a check valve leading to a large and recalcitrant bursitis. This report provides a novel concept about the etiology of recalcitrant lateral premalleolar bursitis of the ankle.

  17. Synovial Cyst: A Culprit for Recalcitrant Iliotibial Band Syndrome: A Case Report

    Directory of Open Access Journals (Sweden)

    Yeoh CSN

    2015-11-01

    Full Text Available We present the case of a 56-year old gentleman who presented with recalcitrant iliotibial band (ITB friction syndrome which did not improve with various modalities of conservative treatment. Magnetic Resonance Imaging (MRI of the affected knee did not show pathology typical of ITB friction syndrome. However, open exploration revealed a synovial cyst deep to the iliotibial band, abutting against the anterolateral capsule. The presence of distinctive clinical signs on physical examination should alert clinicians to consider knee synovial cyst as a differential diagnosis when dealing with recalcitrant ITB syndrome.

  18. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    isolated fungi could be useful in the bioremediation of hydrocarbon polluted sites. Keywords: ... Technologies such as mechanical force, burying, evaporation, dispersant application, and ..... The effects of drilling fluids on marine bacteria from a.

  19. Comparison of plants with C3 and C4 carbon fixation pathways for remediation of polycyclic aromatic hydrocarbon contaminated soils

    OpenAIRE

    Sivaram, Anithadevi Kenday; Logeshwaran, Panneerselvan; Subashchandrabose, Suresh R.; Lockington, Robin; Naidu, Ravi; Megharaj, Mallavarapu

    2018-01-01

    The phytoremediation technique has been demonstrated to be a viable option for the remediation of polycyclic aromatic hydrocarbons (PAHs) contaminated sites. This study evaluated the potential applicability of plants with C3 and C4 carbon fixation pathways for the phytoremediation of recalcitrant high molecular weight (HMW) PAHs contaminated soil. A 60 and 120-day greenhouse study was conducted which showed higher degradation of HMW PAHs in soil grown with C4 plants when compared to C3 plants...

  20. Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Angelidaki, Irini

    1998-01-01

    The biogas potential of manure could be significantly increased by treatment of the recalcitrant organic matter (biofibers) contained in the manure. Several treatment methods were tested. Mechanical maceration resulted in an average increase of the biogas potential of approx. 17% as shown...

  1. On polydispersity of plant biomass recalcitrance and its effects on pretreatment optimization for sugar production

    Science.gov (United States)

    J.Y. Zhu; Steve P. Verrill; Hao Liu; Victoria L. Herian; Xuejun Pan; Donald L. Rockwood

    2011-01-01

    This paper discusses a property associated with plant biomass recalcitrance to enzyme and microbial deconstructions in sugar production from cellulose and hemicelluloses. The hemicelluloses are more readily hydrolyzed to sugars than is cellulose. As a result, optimization to maximize individual glucose and hemicellulose sugar recovery is not possible. This property is...

  2. Oxidative Copper-Enzymes are the Key for Unlocking Recalcitrant Biopolymers

    DEFF Research Database (Denmark)

    Johansen, Katja Salomon

    as the electron donating cofactor for the enzyme. The discovery of LPMOs and the understanding that they constitute the “first wave of attack” by microbial organisms on the most recalcitrant natural polysaccharides, highlights the need to reflect on the specific roles of LPMOs in biology. Many good and relevant...

  3. Hydrocarbons and air pollution

    International Nuclear Information System (INIS)

    Herz, O.

    1992-01-01

    This paper shows the influence of hydrocarbons vapors, emitted by transports or by volatile solvents using, on air pollution. Hydrocarbons are the principal precursors of photochemical pollution. After a brief introduction on atmospheric chemistry and photochemical reactions, the author describes the french prevention program against hydrocarbons emissions. In the last chapter, informations on international or european community programs for photochemical pollution study are given. 5 figs., 10 tabs

  4. Production of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Day, D T; Day, R E

    1920-04-27

    A process is disclosed of converting hydro-carbon oils having high boiling points to hydro-carbon oils having low boiling points, which process comprises adding the oil to be treated to a mass of hydro-carbon oil bearing shale, passing the shale with the oil through a conveyor retort and subjecting the material while in the retort to a heat treatment involving a temperature of at least 500/sup 0/F.

  5. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min

    2017-01-01

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured

  6. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  7. A Proteomics Sample Preparation Method for Mature, Recalcitrant Leaves of Perennial Plants

    Science.gov (United States)

    Na, Zhang; Chengying, Lao; Bo, Wang; Dingxiang, Peng; Lijun, Liu

    2014-01-01

    Sample preparation is key to the success of proteomics studies. In the present study, two sample preparation methods were tested for their suitability on the mature, recalcitrant leaves of six representative perennial plants (grape, plum, pear, peach, orange, and ramie). An improved sample preparation method was obtained: Tris and Triton X-100 were added together instead of CHAPS to the lysis buffer, and a 20% TCA-water solution and 100% precooled acetone were added after the protein extraction for the further purification of protein. This method effectively eliminates nonprotein impurities and obtains a clear two-dimensional gel electrophoresis array. The method facilitates the separation of high-molecular-weight proteins and increases the resolution of low-abundance proteins. This method provides a widely applicable and economically feasible technology for the proteomic study of the mature, recalcitrant leaves of perennial plants. PMID:25028960

  8. A proteomics sample preparation method for mature, recalcitrant leaves of perennial plants.

    Directory of Open Access Journals (Sweden)

    Deng Gang

    Full Text Available Sample preparation is key to the success of proteomics studies. In the present study, two sample preparation methods were tested for their suitability on the mature, recalcitrant leaves of six representative perennial plants (grape, plum, pear, peach, orange, and ramie. An improved sample preparation method was obtained: Tris and Triton X-100 were added together instead of CHAPS to the lysis buffer, and a 20% TCA-water solution and 100% precooled acetone were added after the protein extraction for the further purification of protein. This method effectively eliminates nonprotein impurities and obtains a clear two-dimensional gel electrophoresis array. The method facilitates the separation of high-molecular-weight proteins and increases the resolution of low-abundance proteins. This method provides a widely applicable and economically feasible technology for the proteomic study of the mature, recalcitrant leaves of perennial plants.

  9. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, K.C.; Karaoz, U.; Hanson, C.A.; Santee, C.A.; Bradford, M.A.; Treseder, K.K.; Wallenstein, M.D.; Brodie, E.L.

    2011-04-18

    Soils are immensely diverse microbial habitats with thousands of co-existing bacterial, archaeal, and fungal species. Across broad spatial scales, factors such as pH and soil moisture appear to determine the diversity and structure of soil bacterial communities. Within any one site however, bacterial taxon diversity is high and factors maintaining this diversity are poorly resolved. Candidate factors include organic substrate availability and chemical recalcitrance, and given that they appear to structure bacterial communities at the phylum level, we examine whether these factors might structure bacterial communities at finer levels of taxonomic resolution. Analyzing 16S rRNA gene composition of nucleotide analog-labeled DNA by PhyloChip microarrays, we compare relative growth rates on organic substrates of increasing chemical recalcitrance of >2,200 bacterial taxa across 43 divisions/phyla. Taxa that increase in relative abundance with labile organic substrates (i.e., glycine, sucrose) are numerous (>500), phylogenetically clustered, and occur predominantly in two phyla (Proteobacteria and Actinobacteria) including orders Actinomycetales, Enterobacteriales, Burkholderiales, Rhodocyclales, Alteromonadales, and Pseudomonadales. Taxa increasing in relative abundance with more chemically recalcitrant substrates (i.e., cellulose, lignin, or tannin-protein) are fewer (168) but more phylogenetically dispersed, occurring across eight phyla and including Clostridiales, Sphingomonadalaes, Desulfovibrionales. Just over 6% of detected taxa, including many Burkholderiales increase in relative abundance with both labile and chemically recalcitrant substrates. Estimates of median rRNA copy number per genome of responding taxa demonstrate that these patterns are broadly consistent with bacterial growth strategies. Taken together, these data suggest that changes in availability of intrinsically labile substrates may result in predictable shifts in soil bacterial composition.

  10. Two unusual cases of severe recalcitrant hypocalcemia due to aminoglycoside-induced hypomagnesemia

    Directory of Open Access Journals (Sweden)

    Tarun Varma

    2013-01-01

    Full Text Available Aminoglycoside (AMG-induced renal toxicity is well-known and may manifest with non-oliguric renal failure or renal tubular dysfunction like Fanconi-like syndrome, Barter syndrome-like syndrome or distal renal tubular acidosis (RTA. These phenomena have been described with Gentamycin and Amikacin though rarely with Kanamycin. We present two cases of pulmonary tuberculosis that were treated with Kanamycin and during the course of treatment, developed severe recalcitrant hypocalcemia along with hypomagnesemia.

  11. Omalizumab therapy for treatment of recalcitrant chronic spontaneous urticaria in an Asian population.

    Science.gov (United States)

    Kulthanan, Kanokvalai; Tuchinda, Papapit; Chularojanamontri, Leena; Likitwattananurak, Chayanee; Ungaksornpairote, Chanida

    2017-03-01

    There are limited data regarding omalizumab in the treatment of recalcitrant chronic spontaneous urticaria (CSU) in Asian populations. This study evaluated the effectiveness and the proper dosage of omalizumab for Asian CSU patients in a real-life setting. We retrospectively reviewed recalcitrant CSU patients seeking treatment at the Skin Allergy Clinic, Siriraj Hospital during the 3-year period. All patients were treated with omalizumab as an add-on therapy. Standard seven-day urticaria activity score (UAS7) and medication score were used to assess omalizumab response. Of 13 patients, 9 patients (70%) responded well to 150 mg omalizumab injection every month, whereas 4 patients requiring updosing to 300 mg. In the 150 mg group, one patient achieved complete symptom control without antihistamine intake. Most of them required antihistamines without prednisolone and ciclosporin. Onset of omalizumab was fast, usually within the first week. Though only two patients in the 300 mg group achieved complete absence of symptoms, ciclosporin and oral corticosteroids could be discontinued. No patients reported adverse effects. Omalizumab at an initial dosage of 150 mg was effective in the treatment of recalcitrant CSU among Asians. Updosing to 300 mg was required to achieve satisfactory outcomes.

  12. Outcomes of treatment of nine cases of recalcitrant severe hidradenitis suppurativa with carbon dioxide laser.

    Science.gov (United States)

    Madan, V; Hindle, E; Hussain, W; August, P J

    2008-12-01

    Hidradenitis suppurativa (HS) is a chronic and often a recalcitrant inflammatory skin condition. To present the results of carbon dioxide (CO2) laser treatment of recalcitrant HS in nine patients who had failed to improve on medical and other surgical treatments. HS lesions consisting of abscesses, sinuses and granulation tissue were completely excised using the cutting mode of a CO2 laser, leaving only healthy residual subcutaneous fat. The wounds were closed by primary intention where possible and left to granulate otherwise. Outcomes were determined by clinical review and questionnaire. Twenty-seven sites were treated in 19 sessions on nine patients. Seven procedures were performed under general anaesthesia and 12 under local. All patients rated their postoperative discomfort as less or equal to their preoperative state. Seven of the nine patients had complete remission for 12 months or longer after their last laser treatment and ceased all medications. High levels of patient satisfaction were reported with CO2 laser treatment. The main complication was axillary scar contracture in two patients but this was insufficient to limit limb movement. CO2 laser treatment should be considered as a treatment option in recalcitrant HS, where multiple medical treatments have been ineffective.

  13. Investigating commercial cellulase performances toward specific biomass recalcitrance factors using reference substrates.

    Science.gov (United States)

    Ju, Xiaohui; Bowden, Mark; Engelhard, Mark; Zhang, Xiao

    2014-05-01

    Three commercial cellulase preparations, Novozymes Cellic(®) Ctec2, Dupont Accellerase(®) 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulase enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulase performance. While the degree of polymerization of cellulose in the reference substrates did not present a major recalcitrance factor to Novozymes Cellic(®) Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.

  14. Comparative transcriptional analysis provides new insights into the molecular basis of adventitious rooting recalcitrance in Eucalyptus.

    Science.gov (United States)

    de Almeida, Márcia Rodrigues; de Bastiani, Daniela; Gaeta, Marcos Letaif; de Araújo Mariath, Jorge Ernesto; de Costa, Fernanda; Retallick, Jeffrey; Nolan, Lana; Tai, Helen H; Strömvik, Martina V; Fett-Neto, Arthur Germano

    2015-10-01

    Adventitious rooting (AR) is essential in clonal propagation. Eucalyptus globulus is relevant for the cellulose industry due to its low lignin content. However, several useful clones are recalcitrant to AR, often requiring exogenous auxin, adding cost to clonal garden operations. In contrast, E. grandis is an easy-to-root species widely used in clonal forestry. Aiming at contributing to the elucidation of recalcitrance causes in E. globulus, we conducted a comparative analysis with these two species differing in rooting competence, combining gene expression and anatomical techniques. Recalcitrance in E. globulus is reversed by exposure to exogenous indole-3-acetic acid (IAA), which promotes important gene expression modifications in both species. The endogenous content of IAA was significantly higher in E. grandis than in E. globulus. The cambium zone was identified as an active area during AR, concentrating the first cell divisions. Immunolocalization assay showed auxin accumulation in cambium cells, further indicating the importance of this region for rooting. We then performed a cambium zone-specific gene expression analysis during AR using laser microdissection. The results indicated that the auxin-related genes TOPLESS and IAA12/BODENLOS and the cytokinin-related gene ARR1may act as negative regulators of AR, possibly contributing to the hard-to-root phenotype of E. globulus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. β-Glucans and Resistant Starch Alter the Fermentation of Recalcitrant Fibers in Growing Pigs.

    Directory of Open Access Journals (Sweden)

    Sonja de Vries

    Full Text Available Interactions among dietary ingredients are often assumed non-existent when evaluating the nutritive value and health effects of dietary fiber. Specific fibers can distinctly affect digestive processes; therefore, digestibility and fermentability of the complete diet may depend on fiber types present. This study aimed to evaluate the effects of readily fermentable fibers (β-glucans and resistant starch on the degradation of feed ingredients containing more persistent, recalcitrant, fibers. Six semi-synthetic diets with recalcitrant fibers from rapeseed meal (pectic polysaccharides, xyloglucans, and cellulose or corn distillers dried grain with solubles (DDGS; (glucuronoarabinoxylans and cellulose with or without inclusion of β-glucans (6% or retrograded tapioca (40% substituted for corn starch were formulated. Six ileal-cannulated pigs (BW 28±1.4 kg were assigned to the diets according to a 6×6 Latin square. β-glucan-extract increased apparent total tract digestibility (ATTD of non-glucosyl polysaccharides (accounting for ~40% of the fiber-fraction from rapeseed meal (6%-units, P10%-units, P<0.001, indicating that the large amount of resistant starch entering the hindgut was preferentially degraded over recalcitrant fibers from rapeseed meal and DDGS, possibly related to reduced hindgut-retention time following the increased intestinal bulk. Fermentation of fiber sources was not only dependent on fiber characteristics, but also on the presence of other fibers in the diet. Hence, interactions in the gastrointestinal tract among fibrous feed ingredients should be considered when evaluating their nutritive value.

  16. Carbohydrate metabolism before and after dehiscence in the recalcitrant pollen of pumpkin (Cucurbita pepo L.).

    Science.gov (United States)

    Carrizo García, C; Guarnieri, M; Pacini, E

    2015-05-01

    Pumpkin (Cucurbita pepo L.) pollen is starchy, sucrose-poor and recalcitrant, features opposite to those of several model species; therefore, some differences in carbohydrate metabolism could be expected in this species. By studying pumpkin recalcitrant pollen, the objective was to provide new biochemical evidence to improve understanding of how carbohydrate metabolism might be involved in pollen functioning in advanced stages. Four stages were analysed: immature pollen from 1 day before anthesis, mature pollen, mature pollen exposed to the environment for 7 h, and pollen rehydrated in a culture medium. Pollen viability, water and carbohydrate content and activity of enzymes involved in carbohydrate metabolism were quantified in each stage. Pollen viability and water content dropped quickly after dehiscence, as expected. The slight changes in carbohydrate concentration and enzyme activity during pollen maturation contrast with major changes recorded with ageing and rehydration. Pumpkin pollen seems highly active and closely related to its surrounding environment in all the stages analysed; the latter is particularly evident among insoluble sucrolytic enzymes, mainly wall-bound acid invertase, which would be the most relevant for sucrose cleavage. Each stage was characterised by a particular metabolic/enzymatic profile; some particular features, such as the minor changes during maturation, fast sucrolysis upon rehydration or sharp decrease in insoluble sucrolytic activity with ageing seem to be related to the lack of dormancy and recalcitrant nature of pumpkin pollen. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Visualising recalcitrance by colocalisation of cellulase, lignin and cellulose in pretreated pine biomass using fluorescence microscopy

    Science.gov (United States)

    Donaldson, Lloyd; Vaidya, Alankar

    2017-03-01

    Mapping the location of bound cellulase enzymes provides information on the micro-scale distribution of amenable and recalcitrant sites in pretreated woody biomass for biofuel applications. The interaction of a fluorescently labelled cellulase enzyme cocktail with steam-exploded pine (SEW) was quantified using confocal microscopy. The spatial distribution of Dylight labelled cellulase was quantified relative to lignin (autofluorescence) and cellulose (Congo red staining) by measuring their colocalisation using Pearson correlations. Correlations were greater in cellulose-rich secondary cell walls compared to lignin-rich middle lamella but with significant variations among individual biomass particles. The distribution of cellulose in the pretreated biomass accounted for 30% of the variation in the distribution of enzyme after correcting for the correlation between lignin and cellulose. For the first time, colocalisation analysis was able to quantify the spatial distribution of amenable and recalcitrant sites in relation to the histochemistry of cellulose and lignin. This study will contribute to understanding the role of pretreatment in enzymatic hydrolysis of recalcitrant softwood biomass.

  18. The effectiveness of combined prescription of ankle–foot orthosis and stretching program for the treatment of recalcitrant plantar fasciitis

    Directory of Open Access Journals (Sweden)

    Rehab A.E. Sallam

    2016-01-01

    Combined prescription of night-stretch ankle–foot orthosis and stretching exercises for plantar flexors and fascia had greater therapeutic effects compared with each treatment alone. Stretching exercises alone are not beneficial in the treatment of recalcitrant plantar fasciitis.

  19. Thraustochytrid protists degrade hydrocarbons

    Digital Repository Service at National Institute of Oceanography (India)

    Raikar, M.T.; Raghukumar, S.; Vani, V.; David, J.J.; Chandramohan, D.

    isolation tubes with crude oil. Three isolates tested showed positive hydrophobicity of cell walls as judged by the Microbial Adhesion to Hydrocarbons (MATH) assay. Addition of Bombay High crude oil to nutrient broth slightly enhanced growth of the protists...

  20. Purifying hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Rostin, H

    1938-08-11

    A process is described for continuously purifying hydrocarbon oils consisting in conducting the vapors of the same at a temperature of 300 to 400/sup 0/C over the oelitic ore minette together with reducing gases in presence of steam the proportion of the reducing gases and steam being such that the sulfur of the hydrocarbons escapes from the reaction chamber in the form of sulfuretted hydrogen without permanent sulfide of iron being formed.

  1. Process for refining hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Risenfeld, E H

    1924-11-26

    A process is disclosed for the refining of hydrocarbons or other mixtures through treatment in vapor form with metal catalysts, characterized by such metals being used as catalysts, which are obtained by reduction of the oxide of minerals containing the iron group, and by the vapors of the hydrocarbons, in the presence of the water vapor, being led over these catalysts at temperatures from 200 to 300/sup 0/C.

  2. A comparative study of pulsed dye laser versus long pulsed Nd:YAG laser treatment in recalcitrant viral warts.

    Science.gov (United States)

    Shin, Yo Sup; Cho, Eun Byul; Park, Eun Joo; Kim, Kwang Ho; Kim, Kwang Joong

    2017-08-01

    Viral warts are common infectious skin disease induced by human papillomavirus (HPV). But the treatment of recalcitrant warts is still challenging. In this study, we compared the effectiveness of pulsed dye laser (PDL) and long pulsed Nd:YAG (LPNY) laser in the treatment of recalcitrant viral warts. We retrospectively analyzed the medical records of patients with recalcitrant warts treated with laser therapy between January 2013 and February 2016. Seventy-two patients with recalcitrant warts were evaluated. Thirty-nine patients were treated with pulsed dye laser and thirty-three patients were treated with LPNY laser. The following parameters were used: PDL (spot size, 7 mm; pulse duration, 1.5 ms; and fluence, 10-14 J/cm 2 ) and LPNY (spot size, 5 mm; pulse duration, 20 ms; and fluence, 240-300 J/cm 2 ). Complete clearance of two patients (5.1%) in PDL group, and three patients (9.1%) in LPNY group were observed without significant side effects. The patients who achieved at least 50% improvement from baseline were 20 (51.3%) in PDL and 22 (66.7%) in LPNY, respectively. This research is meaningful because we compared the effectiveness of the PDL and LPNY in the recalcitrant warts. Both PDL and LPNY laser could be used as a safe and alternative treatment for recalcitrant warts.

  3. Effect of temperature on the decomposition of labile and recalcitrant organic matter in Chernozem

    Science.gov (United States)

    Larioinova, Alla; Kvitkina, Anna; Bykhovets, Sergey; Stulin, Alexandr; Blagodatskaya, Evgenia

    2017-04-01

    We tested the hypothesis that the recalcitrant pool of soil organic matter (SOM) is more temperature sensitive to decomposition than the labile one. The hypothesis was verified for Chernozem soil sampled from the control (unfertilized) and fertilized with NPK experimental plots of the 50 year field experiment with maize monoculture in Voronezh Region, Russia (51o41'N, 39o15'E). The labile and recalcitrant SOM pools at 2, 12, and 22°C in a long-term (430 d) incubation experiment were traced using the method of 13C natural abundance by C3-C4 transition. Based on decomposition rate constants, the SOM pools followed the order plant residues < new (C4) SOM < old (C3) SOM, with plant residues as the most labile C pool. The hypothesis was valid only for the temperature interval of 12-22°C, where Q10 values increased in the recalcitrance order from 1.2 (plant residues) to 4.3 (C3 SOM). At low temperatures (2-12°C), the values of Q10 varied in the narrow range of 2.2-2.8 irrespective of a SOM pool. In the soil under maize monoculture fertilized with NPK, the increased decomposition of C3 SOM was observed compared to the unfertilized control. The input of new C4 carbon decreased the rate of CO2 emission during the decomposition of the old C3 SOM, i.e. induced negative priming effect (PE). To the contrast, the fertilization increased the positive PE for the C3 SOM. Along with the SOM decomposition rate constants, the magnitude of PE was also temperature dependent. The maximal negative PE in control treatment was found at the lowest temperature of 2oC, while the highest positive PE in NPK fertilized soil was observed at the highest temperature of 22oC.

  4. Recalcitrant deep and shallow nodes in Aristolochia (Aristolochiaceae) illuminated using anchored hybrid enrichment.

    Science.gov (United States)

    Wanke, Stefan; Granados Mendoza, Carolina; Müller, Sebastian; Paizanni Guillén, Anna; Neinhuis, Christoph; Lemmon, Alan R; Lemmon, Emily Moriarty; Samain, Marie-Stéphanie

    2017-12-01

    Recalcitrant relationships are characterized by very short internodes that can be found among shallow and deep phylogenetic scales all over the tree of life. Adding large amounts of presumably informative sequences, while decreasing systematic error, has been suggested as a possible approach to increase phylogenetic resolution. The development of enrichment strategies, coupled with next generation sequencing, resulted in a cost-effective way to facilitate the reconstruction of recalcitrant relationships. By applying the anchored hybrid enrichment (AHE) genome partitioning strategy to Aristolochia using an universal angiosperm probe set, we obtained 231-233 out of 517 single or low copy nuclear loci originally contained in the enrichment kit, resulting in a total alignment length of 154,756bp to 160,150bp. Since Aristolochia (Piperales; magnoliids) is distantly related to any angiosperm species whose genome has been used for the plant AHE probe design (Amborella trichopoda being the closest), it serves as a proof of universality for this probe set. Aristolochia comprises approximately 500 species grouped in several clades (OTUs), whose relationships to each other are partially unknown. Previous phylogenetic studies have shown that these lineages branched deep in time and in quick succession, seen as short-deep internodes. Short-shallow internodes are also characteristic of some Aristolochia lineages such as Aristolochia subsection Pentandrae, a clade of presumably recent diversification. This subsection is here included to test the performance of AHE at species level. Filtering and subsampling loci using the phylogenetic informativeness method resolves several recalcitrant phylogenetic relationships within Aristolochia. By assuming different ploidy levels during bioinformatics processing of raw data, first hints are obtained that polyploidization contributed to the evolution of Aristolochia. Phylogenetic results are discussed in the light of current systematics and

  5. The use of immunosuppressive agents in the management of recalcitrant lower limb ulcers.

    Science.gov (United States)

    Millen, A; Coulston, J; Brennan, J; Kennedy, T

    2014-08-01

    Lower limb ulcers that are resistant to standard forms of treatment place a significant burden on both patients and health services. There is no widely agreed definition of a recalcitrant ulcer but failure to heal following 6-12 months of focused treatment would identify a small group of patients with highly resistant ulceration. We describe a series of patients with recalcitrant ulceration for which immunosuppressive agents have been used. This is a case series of 13 patients who underwent immunomodulation therapy for lower limb ulcers at a tertiary referral university hospital. Regimens of immunomodulation used mainly ciclosporin and/or cyclophosphamide, with concurrent antibiotic therapy. Case notes and computer systems were analysed by two reviewers. A patient was deemed to have a success if their ulcer fully healed while on immunomodulation therapy. Over a period of eight years, from 2004-2012, 13 patients underwent immunomodulation therapy. Among these patients there were 18 ulcerated limbs. Ulcer healing occurred in 10 limbs out of 18 (55.6%) and full healing occurred in six patients (46.2%). Ulcers were present for a median of five years (range 2-40 years), with a median diameter of 7.5 cm (range 4-18 cm) before treatment. Treatment of truly recalcitrant ulceration can be very frustrating for both the patient and physician, with poor success from more standard forms of treatment. We report experience with immunomodulation therapy that suggests there may be benefit from using this treatment in a subset of patients with this debilitating disease.

  6. Process for desulfurizing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-04-12

    A process is described for the desulfurization of a mixture of hydrocarbons, and in particular hydrocarbons containing less than 7 atoms of carbon and sulfur compounds of the type of sulfur carbonyl, characterized by the fact that the mixture, preferably in the liquid phase, is brought in contact with a solution of caustic alkali, essentially anhydrous or preferably with a solution of alkali hydroxide in an organic hydroxy nonacid solvent, for example, an alcohol, or with an alkaline alcoholate, under conditions suitable to the formation of hydrogen sulfide which produces a hydrocarbon mixture free from sulfur compounds of the sulfur carbonyl type but containing hydrogen sulfide, and that it is treated, following mixing, having beem submitted to the first treatment, by means of aqueous alkaline hydroxide to eliminate the hydrogen sulfide.

  7. Cam Femoroacetabular Impingement as a Possible Explanation of Recalcitrant Anterior Knee Pain

    OpenAIRE

    Sanchis-Alfonso, Vicente; Tey, Marc; Monllau, Joan Carles

    2016-01-01

    We present a case of a patient with chronic anterior knee pain (AKP) recalcitrant to conservative treatment who returned to our office for severe hip pain secondary to Cam femoroacetabular impingement (Cam FAI) at 10 months after the onset of knee pain. This case highlights the fact that the main problem is not in the patella but in the hip in some patients with AKP. We hypothesize that there is an external femoral rotation in order to avoid the impingement and therefore the hip pain in patie...

  8. Recovery of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1941-02-10

    A process is disclosed for recovery of hydrocarbon oils, especially lubricating oils or diesel oils, through pressure hydrogenation of distillation, extraction of hydrogenation products from coal or coaly materials or from oils such as mineral oils or tars in liquid phase by use in a reaction vessel of fixed-bed catalysts, characterized in that as starting material is employed material which has been freed of asphaltic and resinous material by hydrogenation refining, vacuum-steam distillation, treatment with hydrogen-rich hydrocarbons (hydroforming), or sulfuric acid.

  9. Emulsification of Hydrocarbons by Biosurfactant: Exclusive Use of Agrowaste

    Directory of Open Access Journals (Sweden)

    Olusola Solomon Amodu

    2014-04-01

    Full Text Available Novel biosurfactant-producing strains were isolated from hydrocarbon-contaminated environments that exclusively utilize agro-waste as their primary carbon source for the expression of biosurfactants. These were quantified using various standardized methods. Among the agro-waste screened, Beta vulgaris (Beetroot proved to be the most suitable substrate, for which the biosurfactants produced by three bacterial isolates–B. licheniformis STK01, B. subtilis STK02, and P. aeruginosa STK03–lowered the surface tension of the culture media to 30.0, 32.98, and 30.37 mN/m, respectively. The biosurfactants achieved considerable emulsification activity, particularly for heavy hydrocarbons, with the highest emulsification indices being 65.5% and 95% for anthracene and lubricant oil, respectively. The emulsion formed with lubricant oil was thermally stable even up to 50 °C for 21 days. The results showed the proficiency of the novel bacterial isolates used, as well as the suitability of solid agro-waste for biosurfactant production, thus suggesting that exclusive utilization of solid agro-waste is a promising option for use in biosurfactant production for environmental remediation. The outstanding emulsification activity and thermal stability demonstrated by the biosurfactants produced showed their potential applications in enhancing bioavailability and bioremediation of recalcitrant and hydrophobic environmental contaminants.

  10. Optrode for sensing hydrocarbons

    Science.gov (United States)

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1988-09-13

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.

  11. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  12. Insights into cell wall structure of Sida hermaphrodita and its influence on recalcitrance.

    Science.gov (United States)

    Damm, Tatjana; Pattathil, Sivakumar; Günl, Markus; Jablonowski, Nicolai David; O'Neill, Malcolm; Grün, Katharina Susanne; Grande, Philipp Michael; Leitner, Walter; Schurr, Ulrich; Usadel, Björn; Klose, Holger

    2017-07-15

    The perennial plant Sida hermaphrodita (Sida) is attracting attention as potential energy crop. Here, the first detailed view on non-cellulosic Sida cell wall polysaccharide composition, structure and architecture is given. Cell walls were prepared from Sida stems and sequentially extracted with aqueous buffers and alkali. The structures of the quantitatively predominant polysaccharides present in each fraction were determined by biochemical characterization, glycome profiling and mass spectrometry. The amounts of glucose released by Accellerase-1500 ® treatment of the cell wall and the cell wall residue remaining after each extraction were used to assess the roles of pectin and hemicellulose in the recalcitrance of Sida biomass. 4-O-Methyl glucuronoxylan with a low proportion of side substitutions was identified as the major non-cellulosic glycan component of Sida stem cell walls. Pectic polysaccharides and xylans were found to be associated with lignin, suggesting that these polysaccharides have roles in Sida cell wall recalcitrance to enzymatic hydrolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of some cryopreservation procedures on recalcitrant zygotic embryos of Ammocharis coranica.

    Science.gov (United States)

    Nomali, Z; Ngobese; Sershen; Berjak, P; Pammenter, N W

    2014-01-01

    Cryopreservation, the most promising method for the long-term conservation of recalcitrant (desiccation-sensitive) seed germplasm, is often associated with high viability losses. Cryo-procedures involve a sequence of steps which must be optimised to reduce the impact of the stresses. This study reports on the effects of some of the steps of cryopreservation on the recalcitrant zygotic embryos of the amaryllid, Ammocharis coranica. Embryos were subjected to cryoprotection with glycerol and/or DMSO, rapid (flash) drying, and rapid (>100 degree C s(-1)) or slow (1 degree C s(-1)) cooling. Rapid dehydration (from c. 2.7 to 0.9 g g(-1) over 60 min) and cooling had a detrimental effect on the viability of the embryos, which was exacerbated when these steps were applied sequentially. After cooling, seedling production (30%) was obtained only from embryos that had been cryoprotected with glycerol prior to drying and rapid cooling, while 30% of non-treated embryos and 70% of those that had undergone cathodic protection during flash drying produced callus. Noting that no post-cryo survival of A. coranica embryos had previously been obtained, this study identified cryoprotection with glycerol and the incorporation of cathodic protection during flash drying as promising intervention points for future studies.

  14. Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance.

    Science.gov (United States)

    Kalluri, Udaya C; Yin, Hengfu; Yang, Xiaohan; Davison, Brian H

    2014-12-01

    Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host that carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Modified natural zeolite as heterogeneous Fenton catalyst in treatment of recalcitrants in industrial effluent

    Directory of Open Access Journals (Sweden)

    Milton M. Arimi

    2017-04-01

    Full Text Available Industrial effluents with high recalcitrants should undergo post-treatment after biological treatment. The aim of this study was to use cheap and abundantly available natural materials to develop heterogeneous Fenton catalysts for the removal of colored recalcitrants in molasses distillery wastewater (MDW. The pellets of zeolite, which is naturally available in many countries, were modified by pre-treatment with sulphuric acid, nitric acid and hydrochloric acid, before embedding on them the ferrous ions. The effects of pH and temperature on heterogeneous Fenton were studied using the modified catalysts. The sulphuric acid-ferrous modified catalysts showed the highest affectivity which achieved 90% color and 60% TOC (total organic carbon removal at 150 g/L pellet catalyst dosage, 2 g/L H2O2 and 25 °C. The heterogeneous Fenton with the same catalyst caused improvement in the biodegradability of anaerobic effluent from 0.07 to 0.55. The catalyst was also applied to pre-treat the raw MDW and increased it's biodegradability by 4%. The color of the resultant anaerobic effluent was also reduced. The kinetics of total TOC removal was found to depend on operation temperature. It was best described by simultaneous first and second order kinetics model for the initial reaction and second order model for the rest of the reaction.

  16. Results of operative treatment for recalcitrant retrocalcaneal bursitis and midportion Achilles tendinopathy in athletes.

    Science.gov (United States)

    Lohrer, Heinz; Nauck, Tanja

    2014-08-01

    The results of operative treatment for recalcitrant midportion Achilles tendinopathy and recalcitrant retrocalcaneal bursitis were evaluated using the patient administered, disease specific, and validated VISA-A-G questionnaire. A cohort of 89 patients was prospectively followed. These patients underwent operations for sport induced midportion Achilles tendinopathy (39 procedures) or retrocalcaneal bursitis (55 procedures). Depending on the individual intraoperative findings the patients of either disease were treated with two respective operative modifications (tendon repair or no tendon repair). Preoperative and follow-up status (3, 6, and 12 months) were investigated using the VISA-A-G questionnaire. Preoperatively, the four groups scored from 37.0 ± 17.6 to 45.9 ± 15.2 (p = 0.376-0.993) on the VISA-A-G questionnaire. Six and 12 months postoperatively, the VISA-A-G scores improved significantly (p bursitis and midportion Achilles tendinopathy responded equally well to operative treatment. When repaired, additional tendon lesions did not influence this result. We demand to differentiate not only between midportion Achilles tendinopathy and retrocalcaneal bursitis but also to identify additional Achilles tendon lesions to specifically address these lesions during operative procedures.

  17. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?

    Science.gov (United States)

    Wei, Ren; Zimmermann, Wolfgang

    2017-11-01

    Petroleum-based plastics have replaced many natural materials in their former applications. With their excellent properties, they have found widespread uses in almost every area of human life. However, the high recalcitrance of many synthetic plastics results in their long persistence in the environment, and the growing amount of plastic waste ending up in landfills and in the oceans has become a global concern. In recent years, a number of microbial enzymes capable of modifying or degrading recalcitrant synthetic polymers have been identified. They are emerging as candidates for the development of biocatalytic plastic recycling processes, by which valuable raw materials can be recovered in an environmentally sustainable way. This review is focused on microbial biocatalysts involved in the degradation of the synthetic plastics polyethylene, polystyrene, polyurethane and polyethylene terephthalate (PET). Recent progress in the application of polyester hydrolases for the recovery of PET building blocks and challenges for the application of these enzymes in alternative plastic waste recycling processes will be discussed. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. TREHALOSE-BASED ADDITIVE IMPROVED INTER-PRIMER BINDING SITE REACTIONS FOR DNA ISOLATED FROM RECALCITRANT PLANTS

    Directory of Open Access Journals (Sweden)

    Veronika Lancíková

    2014-02-01

    Full Text Available Trehalose-based (TBT-PAR additive was tested in order to optimize PCR amplification for DNA isolated from recalcitrant plants. Retrotransposon-based inter-primer binding site reactions were significantly improved with TBT-PAR solution using genomic DNA isolated from flax (Linum usitatissimum L., genotypes Kyivskyi, Bethune grown in radio-contaminated and non-radioactive remediated Chernobyl experimental fields. Additionally, similar improvements were observed using 19 recalcitrant genotypes of maize (Zea mays L. and three genotypes of yacon (Smallanthus sonchifolius, Poepp. et Endl., genotypes PER05, ECU45, BOL22 grown in standard field conditions.

  19. Distilling hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C

    1917-11-23

    In the fractional or destructive distillation of hydrocarbon oils or other liquids, the pressure in the still is raised and lowered alternately. The still is closed to raise the pressure, and is opened to lower the pressure rapidly solely by expansion of the vapors. The operation is effected without intermittent cooling, except such as may occur during the lowering of the pressure. In distilling hydrocarbon oil, pressure steam is blown into the oil until the pressure reaches 5 lb/in./sup 2/. The vapor outlet is then opened until the pressure falls to 2 lb/in./sup 2/, whereupon the vapor outlet is closed and steam is again admitted. The operation is continued until the steam, which is of 20 lb pressure, no longer effects distillation; after this stage, superheated steam is used.

  20. Distilling hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Tausz, J

    1924-07-16

    Hydrocarbon oils such as petroleum, shale oils, lignite or coal tar oils are purified by distilling them and collecting the distillate in fractions within narrow limits so that all the impurities are contained in one or more of the narrow fractions. In distilling ligroin obtained by destructive distillation of brown coal, it is found that the coloring and resin-forming constituents are contained in the fractions distilling over at 62 to 86/sup 0/C and 108/sup 0/C. The ligroin is purified, therefore, by distillating in an apparatus provided with an efficient dephlegmotor and removing these two fractions. The distillation may be carried out wholly or in part under reduced pressure, and fractions separated under ordinary pressure may be subsequently distilled under reduced pressure. The hydrocarbons may be first separated into fractions over wider limits and the separate fractions be subjected to a further fractional distillation.

  1. Nuclear explosives and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P

    1971-10-01

    A nuclear explosive 12 in. in diam and producing very little tritium is feasible in France. Such a device would be well adapted for contained nuclear explosions set off for the purpose of hydrocarbon storage or stimulation. The different aspects of setting off the explosive are reviewed. In the particular case of gas storage in a nuclear cavity in granite, it is demonstrated that the dose of irradiation received is extremely small. (18 refs.)

  2. Treatment of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1936-02-22

    A process is described for refining a mixture of liquid hydrocarbons containing harmful substances, this process permitting the operation, which consists in treating the liquid mixture at a temperature higher than 200/sup 0/C with a solid catalyst of phosphoric acid, consisting of phosphoric acid deposited on a solid support of the type of metallurgical coke, for a time sufficient to convert the harmful components to inoffensive substances.

  3. Biogeochemistry of Halogenated Hydrocarbons

    Science.gov (United States)

    Adriaens, P.; Gruden, C.; McCormick, M. L.

    2003-12-01

    Halogenated hydrocarbons originate from both natural and industrial sources. Whereas direct anthropogenic emissions to the atmosphere and biosphere are often easy to assess, particularly when they are tied to major industrial activities, the attribution of emissions to other human activities (e.g., biomass burning), diffuse sources (e.g., atmospheric discharge, run off), and natural production (e.g., soils, fungi, algae, microorganisms) are difficult to quantify. The widespread occurrence of both alkyl and aryl halides in groundwater, surface water, soils, and various trophic food chains, even those not affected by known point sources, suggests a substantial biogeochemical cycling of these compounds (Wania and Mackay, 1996; Adriaens et al., 1999; Gruden et al., 2003). The transport and reactive fate mechanisms controlling their reactivity are compounded by the differences in sources of alkyl-, aryl-, and complex organic halides, and the largely unknown impact of biogenic processes, such as enzymatically mediated halogenation of organic matter, fungal production of halogenated hydrocarbons, and microbial or abiotic transformation reactions (e.g., Asplund and Grimvall, 1991; Gribble, 1996; Watling and Harper, 1998; Oberg, 2002). The largest source may be the natural halogenation processes in the terrestrial environment, as the quantities detected often exceed the amount that can be explained by human activities in the surrounding areas ( Oberg, 1998). Since biogeochemical processes result in the distribution of a wide range of halogenated hydrocarbon profiles, altered chemical structures, and isomer distributions in natural systems, source apportionment (or environmental forensics) can often only be resolved using multivariate statistical methods (e.g., Goovaerts, 1998; Barabas et al., 2003; Murphy and Morrison, 2002).This chapter will describe the widespread occurrence of halogenated hydrocarbons, interpret their distribution and biogeochemical cycling in light of

  4. Cracking hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Seigle, A A.F.M.

    1922-12-20

    Hydrocarbon oils such as petroleum, peat, shale, or lignite oils, heavy tars, resin oils, naphthalene oils, etc., are vaporized by being fed from a tank through a preheater to the lower part of a vertical annular retort heated by a flame projected down the central cavity from a burner. The oil vapors rise through annular passages formed by disks, on which are placed chips of copper, iron, aluminum, etc., to act as catalysts.

  5. High boiling point hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1929-04-29

    A process is given for the production of hydrocarbons of high boiling point, such as lubricating oils, from bituminous substances, such as varieties of coal, shale, or other solid distillable carbonaceous materials. The process consists of treating the initial materials with organic solvents and then subjecting the products extracted from the initial materials, preferably directly, to a reducing treatment in respect to temperature, pressure, and time. The reduction treatment is performed by means of hydrogen under pressure.

  6. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  7. Management of recalcitrant oral pemphigus vulgaris with CO 2 laser - Report of two cases

    Directory of Open Access Journals (Sweden)

    Bhardwaj Ashu

    2010-01-01

    Full Text Available Laser has been used efficiently for treatment of oral lichen planus, leukoplakia, aphthous ulcers and oral manifestations of HIV. Two cases of recalcitrant oral pemphigus vulgaris that were successfully treated with CO 2 laser are described. The patients had been treated by a dermatologist with pulse therapy of methyl prednisolone and cyclophosphamide over a period of 6 to 8 months, but the clinical course was characterized by episodes of painful flare-ups and nonresponsiveness. The patients were extremely uncomfortable with recurrent oral lesions. CO 2 laser at low power was used to irradiate the lesions. It was shown to be effective in relieving pain and healing of lesions, with nonrecurrence. To the best of our knowledge, this is the first case report of such a treatment of oral pemphigus vulgaris. Further clinical studies are warranted to confirm efficacy and to optimize the treatment protocol.

  8. Performance Evaluation of AOP/Biological Hybrid System for Treatment of Recalcitrant Organic Compounds

    Directory of Open Access Journals (Sweden)

    Stanford S. Makgato

    2010-01-01

    Full Text Available Process water from nuclear fuel recovery unit operations contains a variety of toxic organic compounds. The use of decontamination reagents such as CCl4 together with phenolic tar results in wastewater with a high content of chlorophenols. In this study, the extent of dehalogenation of toxic aromatic compounds was evaluated using a photolytic advanced oxidation process (AOP followed by biodegradation in the second stage. A hard-to-degrade toxic pollutant, 4-chlorophenol (4-CP, was used to represent a variety of recalcitrant aromatic pollutants in effluent from the nuclear industry. A UV-assisted AOP/bioreactor system demonstrated a great potential in treatment of nuclear process wastewater and this was indicated by high removal efficiency (>98% under various 4-CP concentrations. Adding hydrogen peroxide (H2O2 as a liquid catalyst further improved biodegradation rate but the effect was limited by the scavenging of OH• radicals under high concentrations of H2O2.

  9. Cam Femoroacetabular Impingement as a Possible Explanation of Recalcitrant Anterior Knee Pain.

    Science.gov (United States)

    Sanchis-Alfonso, Vicente; Tey, Marc; Monllau, Joan Carles

    2016-01-01

    We present a case of a patient with chronic anterior knee pain (AKP) recalcitrant to conservative treatment who returned to our office for severe hip pain secondary to Cam femoroacetabular impingement (Cam FAI) at 10 months after the onset of knee pain. This case highlights the fact that the main problem is not in the patella but in the hip in some patients with AKP. We hypothesize that there is an external femoral rotation in order to avoid the impingement and therefore the hip pain in patients with Cam FAI. This functional femoral rotation could provoke a patellofemoral imbalance that may be, in theory, responsible for patellofemoral pain in this particular patient. In our case, Cam FAI resolution was related to the resolution of AKP.

  10. Cam Femoroacetabular Impingement as a Possible Explanation of Recalcitrant Anterior Knee Pain

    Directory of Open Access Journals (Sweden)

    Vicente Sanchis-Alfonso

    2016-01-01

    Full Text Available We present a case of a patient with chronic anterior knee pain (AKP recalcitrant to conservative treatment who returned to our office for severe hip pain secondary to Cam femoroacetabular impingement (Cam FAI at 10 months after the onset of knee pain. This case highlights the fact that the main problem is not in the patella but in the hip in some patients with AKP. We hypothesize that there is an external femoral rotation in order to avoid the impingement and therefore the hip pain in patients with Cam FAI. This functional femoral rotation could provoke a patellofemoral imbalance that may be, in theory, responsible for patellofemoral pain in this particular patient. In our case, Cam FAI resolution was related to the resolution of AKP.

  11. Tracing the long-term microbial production of recalcitrant fluorescent dissolved organic matter in seawater

    DEFF Research Database (Denmark)

    Jørgensen, Linda; Stedmon, Colin A.; Granskog, Mats A.

    2014-01-01

    The majority of dissolved organic matter (DOM) in the ocean is resistant to microbial degradation, yet its formation remains poorly understood. The fluorescent fraction of DOM can be used to trace the formation of recalcitrant DOM (RDOM). A long-term (> 1 year) experiment revealed 27–52% removal...... of dissolved organic carbon and a nonlinear increase in RDOM fluorescence associated with microbial turnover of semilabile DOM. This fluorescence was also produced using glucose as the only initial carbon source, suggesting that degradation of prokaryote remnants contributes to RDOM. Our results indicate...... that the formation of a fluorescent RDOM component depends on the bioavailability of the substrate: the less labile, the larger the production of fluorescent RDOM relative to organic carbon remineralized. The anticipated increase in microbial carbon demand due to ocean warming can potentially forcemicrobes...

  12. Cellulose-Hemicellulose Interactions at Elevated Temperatures Increase Cellulose Recalcitrance to Biological Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kumar, Rajeev [University of California, Riverside; Oak Ridge National Laboratory; ; Smith, Micholas Dean [Oak Ridge National Laboratory; University of Tennessee; Petridis, Loukas [Oak Ridge National Laboratory; University of Tennessee; Ong, Rebecca G. [Michigan Technological University; Cai, Charles M. [University of California, Riverside; Oak Ridge National Laboratory; Balan, Venkatesh [University of Houston; Dale, Bruce E. [Michigan State University; Ragauskas, Arthur J. [Oak Ridge National Laboratory; University of Tennessee; Smith, Jeremy C. [Oak Ridge National Laboratory; University of Tennessee; Wyman, Charles E. [University of California, Riverside; Oak Ridge National Laboratory

    2018-01-23

    It has been previously shown that cellulose-lignin droplets' strong interactions, resulting from lignin coalescence and redisposition on cellulose surface during thermochemical pretreatments, increase cellulose recalcitrance to biological conversion, especially at commercially viable low enzyme loadings. However, information on the impact of cellulose-hemicellulose interactions on cellulose recalcitrance following relevant pretreatment conditions are scarce. Here, to investigate the effects of plausible hemicellulose precipitation and re-association with cellulose on cellulose conversion, different pretreatments were applied to pure Avicel(R) PH101 cellulose alone and Avicel mixed with model hemicellulose compounds followed by enzymatic hydrolysis of resulting solids at both low and high enzyme loadings. Solids produced by pretreatment of Avicel mixed with hemicelluloses (AMH) were found to contain about 2 to 14.6% of exogenous, precipitated hemicelluloses and showed a remarkably much lower digestibility (up to 60%) than their respective controls. However, the exogenous hemicellulosic residues that associated with Avicel following high temperature pretreatments resulted in greater losses in cellulose conversion than those formed at low temperatures, suggesting that temperature plays a strong role in the strength of cellulose-hemicellulose association. Molecular dynamics simulations of hemicellulosic xylan and cellulose were found to further support this temperature effect as the xylan-cellulose interactions were found to substantially increase at elevated temperatures. Furthermore, exogenous, precipitated hemicelluloses in pretreated AMH solids resulted in a larger drop in cellulose conversion than the delignified lignocellulosic biomass containing comparably much higher natural hemicellulose amounts. Increased cellulase loadings or supplementation of cellulase with xylanases enhanced cellulose conversion for most pretreated AMH solids; however, this approach

  13. High-volume image-guided injection for recalcitrant medial collateral ligament injuries of the knee

    International Nuclear Information System (INIS)

    Drumm, O.; Chan, O.; Malliaras, P.; Morrissey, D.; Maffulli, N.

    2014-01-01

    Aim: To evaluate the effectiveness of a novel injection technique in the management of recalcitrant medial collateral ligament (MCL) injuries of the knee. Materials and methods: The injection, comprising 10 ml local anaesthetic with 25–50 mg hydrocortisone, is directed beneath the periosteal attachment of the MCL. Twenty-eight patients who received the intervention were asked to complete a questionnaire, a visual analogue scale (VAS) and the International Knee Documentation Committee (IKDC) subjective knee form to quantify symptoms pre-injection and at follow-up. Data were assessed using descriptive statistics. Further analysis was conducted using the Wilcoxon signed-rank test and Fisher's exact test. Results: Sixty-eight percent (n = 19) of patients responded. Three patients were excluded according to the exclusion criteria. Of those studied, 37.5% (n = 6) were professional athletes. At follow-up, patients reported a mean improvement on the VAS of 75.5% (SD = 23.6). There was a significant improvement in IKDC scores (mean difference 42%, SD = 14.2) pre- and post-injection (Wilcoxon signed-rank test, p < 0.001). No residual symptoms were reported by 50% (n = 8) of patients, and a further 37.5% (n = 6) of patients had improved. Of those patients who played sport, two-thirds (n = 10) had returned to their previous level of sport at follow-up, including all of the professional athletes. Conclusion: Periosteal high-volume image-guided injection is a useful treatment for recalcitrant MCL injury. Results are encouraging, particularly amongst the professional athletes studied

  14. The effectiveness of topical colloidal silver in recalcitrant chronic rhinosinusitis: a randomized crossover control trial.

    Science.gov (United States)

    Scott, John R; Krishnan, Rohin; Rotenberg, Brian W; Sowerby, Leigh J

    2017-11-25

    Recalcitrant chronic rhinosinusitis without polyposis (CRSsP) is a challenging condition to manage as traditional medical therapies and surgery fail to provide satisfactory clinical improvements. Colloidal silver (CS), a widely used naturopathic agent, has recently shown anti-biofilm properties both in vitro and within a rhinosinusitis animal model. To date, no trials involving humans have been published in world literature. The purpose of this study was to assess the efficacy of CS as a topical nasal spray in patients with refractory CRSsP. A prospective cohort study was conducted using a convenience sample of 20 randomized patients with crossover methodology, comparing nasal sprays with CS versus saline. Patients sprayed twice daily for six weeks with the first intervention and then switched to the second for the next six weeks, with measurements made at baseline and each time point. Primary outcomes were changes in SNOT-22 and Lund-Kennedy (LK) endoscopic scores. All analysis was non-parametric and was conducted using STATA 14. Twenty-two patients were enrolled in the study with 20 completing the entire protocol. Mean 6-week change in SNOT-22 scores were -2.8 and 1.0 for saline and CS, respectively (p = 0.373). Similarly, mean 6-week change in LK scores were -1.4 and -1.1 for saline and CS, respectively (p = 0.794). Significant period effects were observed with the SNOT-22 score between the randomized groups. No participants experienced negative health effects directly attributable to the administration of intranasal CS. Commercially available CS nasal spray did not demonstrate any meaningful subjective or objective improvements in patients with recalcitrant CRSsP. NCT02403479 . Registered on March 1, 2015.

  15. Recalcitrant Behavior of Cherrybark Oak Seed: An FT-IR Study of Desiccation Sensitivity in Quercus pagoda Raf. Acorns

    Science.gov (United States)

    Sharon Sowa; Kristina F. Connor

    2003-01-01

    The recalcitrant behavior of cherrybark oak (Quercus pagoda Raf.) acorns was examined in terms of effects of moisture content on seed storage longevity and (short term) seed germination. Seed samples collected over two consecutive years were fully hydrated, then subjected to drying under ambient conditions of temperature and relative humidity on the...

  16. Evaluation of mountain beetle-infested lodgepole pine for cellulosic ethanol production by sulfite pretreatment to overcome recalcitrance of lignocellulose

    Science.gov (United States)

    X. Luo; R. Gleisner; S. Tian; J. Negron; W. Zhu; E. Horn; X. J. Pan; J. Y. Zhu

    2010-01-01

    The potentials of deteriorated mountain pine beetle (Dendroctonus ponderosae)-killed lodgepole pine (Pinus contorta) trees for cellulosic ethanol production were evaluated using the sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) process. The trees were harvested from two sites in the United States Arapaho-Roosevelt National Forest, Colorado....

  17. Measuring Trace Hydrocarbons in Silanes

    Science.gov (United States)

    Lesser, L. A.

    1984-01-01

    Technique rapid and uses standard analytical equipment. Silane gas containing traces of hydrocarbons injected into carrier gas of moist nitrogen having about 0.2 percent water vapor. Carrier, water and silane pass through short column packed with powdered sodium hydroxide which combines moisture and silane to form nonvolatile sodium silicate. Carrier gas free of silane but containing nonreactive hydrocarbons, pass to silica-gel column where chromatographic separation takes place. Hydrocarbons measured by FID.

  18. Fractional separation of hydrocarbon vapours

    Energy Technology Data Exchange (ETDEWEB)

    1937-07-10

    A process is described for converting higher boiling hydrocarbons to lower boiling hydrocarbons by subjecting them at elevated temperatures to a conversion operation, then separating the higher and lower boiling fractions. The separation takes place while the reaction products are maintained in the vapor phase by contact with a mass of solid porous material which has little or no catalytic activity but does have a preferential absorption property for higher boiling hydrocarbons so that the lower boiling part of the reaction products pass through the separation zone while the heavier hydrocarbons are retained. The separation is accomplished without substantial loss of heat of these reaction products.

  19. Process for preparing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Krauch, C; Anther, E; Pier, M

    1926-04-07

    A process is described for the conversion of coal of all kinds, wood, oil, shale, as well as other carbonaceous materials into liquid hydrocarbons in two steps, characterized by treatment of the coal and so forth with a stream of hydrogen or hydrogen-containing gases at raised temperatures and raised pressures and producing a tarry product which, after separation of the ashlike residue, is converted by a further treatment, in the presence of catalysts, with hydrogen or hydrogen-containing gases at raised temperature and pressure, largely into low-boiling products.

  20. Recovering valuable liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1931-06-11

    A process for recovering valuable liquid hydrocarbons from coking coal, mineral coal, or oil shale through treatment with hydrogen under pressure at elevated temperature is described. Catalysts and grinding oil may be used in the process if necessary. The process provides for deashing the coal prior to hydrogenation and for preventing the coking and swelling of the deashed material. During the treatment with hydrogen, the coal is either mixed with coal low in bituminous material, such as lean coal or active coal, as a diluent or the bituminous constituents which cause the coking and swelling are removed by extraction with solvents. (BLM)

  1. Hydrogen production from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Docekal, J

    1986-01-01

    Hydrogen is an important feed stock for chemical and petroleum industries, in addition to being considered as the energy carrier of the future. At the present time the feed stock hydrogen is mainly manufactured from hydrocarbons using steam reforming. In steam reforming two processes are employed, the conventional process and PSA (pressure swing adsorption) process. These two processes are described and compared. The results show that the total costs and the maintenance costs are lower for the PSA process, the capital outlay is lower for the conventional process, and the operating costs are similar for the two processes.

  2. Determination of polynuclear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lodge, Jr, J P

    1963-01-01

    At the present time, the method of choice for the determination of polynuclear hydrocarbons appears to be the following, (a) extraction of the benzene-soluble fraction from the gross collected particulate matter, (b) one pass through a chromatographic column of partially deactivated alumina, (c) spectral examination of the fractions and (d) the application of appropriate chemical tests as indicated by the previous step. Using this method, the presence of pyrene, fluoranthene, one of the benzofluorenes, chrysens, benz(a)anthracene, benzo(a)pyrene, benzo(e)pyrene, benzo(k)fluoranthene, anthanthrene, and coronene was demonstrated in the air of numerous American cities, and benzo(a)pyrene was measured at some 130 sites. Invaluable as such accurate determinations may be for research purposes, they are still too costly and time-consuming for routine survey purposes. While studies on the subject are by no means complete, they indicate the validity of piperonal chloride test as a general index of polycyclic hydrocarbons. This procedure is described in this paper. 7 references.

  3. Hydrocarbons: source of energy

    International Nuclear Information System (INIS)

    Imarisio, G.; Frias, M.; Bemtgen, J.M.

    1989-01-01

    Hydrocarbons are at present the single most important source of energy, since they are the most versatile and widely used. It is expected that their importance will extend well into the next century and therefore it is essential to provide for all those improvements which will extend their availability and usefulness. The sub-programme ''Optimization of the production and utilization of hydrocarbons'' (within the Non-Nuclear Energy R and D Programme of the European Communities) is pursuing a number of R and D topics aimed at the above-mentioned results. It is implemented by means of shared-cost R and D contracts. At this first Seminar held in Lyon (France) from 21-23 September, 1988, all contractors of the sub-programme presented the state of progress of their R and D projects. These proceedings comprise all the papers presented at the Seminar. The section on oilfield exploration includes a report of work on the interpretation of nuclear logs by means of mathematical models. (author)

  4. Steam hydrocarbon cracking and reforming

    NARCIS (Netherlands)

    Golombok, M.

    2004-01-01

    Many industrial chemical processes are taught as distinct contrasting reactions when in fact the unifying comparisons are greater than the contrasts. We examine steam hydrocarbon reforming and steam hydrocarbon cracking as an example of two processes that operate under different chemical reactivity

  5. Ultrasonic Percutaneous Tenotomy for Recalcitrant Lateral Elbow Tendinopathy: Sustainability and Sonographic Progression at 3 Years.

    Science.gov (United States)

    Seng, Chusheng; Mohan, P Chandra; Koh, Suang Bee Joyce; Howe, Tet Sen; Lim, Yee Gen; Lee, Brian P; Morrey, Bernard F

    2016-02-01

    percutaneous ultrasonic tenotomy provided sustained pain relief and functional improvement for recalcitrant tennis elbow at 3-year follow-up. It is one of the few procedures to demonstrate positive sonographic evidence of tissue-healing response and is an attractive alternative to surgical intervention for definitive treatment of recalcitrant elbow tendinopathy. © 2015 The Author(s).

  6. Photodynamic therapy combined with antivascular endothelial growth factor treatment for recalcitrant chronic central serous chorioretinopathy

    Directory of Open Access Journals (Sweden)

    Asahi MG

    2017-11-01

    Full Text Available Masumi G Asahi,1 Andrew T Chon,1 Esmeralda Gallemore,1 Ron P Gallemore1,2 1Clinical Research Department, Retina Macula Institute, Torrance, CA, USA; 2Jules Stein Eye Institute, University of California, Los Angeles, CA, USA Purpose: To determine whether combination photodynamic therapy (PDT and antivascular endothelial growth factor (VEGF therapy is effective in the management of chronic central serous chorioretinopathy (CSC recalcitrant to conventional therapy. Methods: This was a retrospective analysis of eight patients with chronic CSC unresponsive to topical nonsteroidal anti-inflammatory drugs, focal photocoagulation, anti-VEGF alone, or PDT alone. All patients were evaluated with a full ophthalmic examination, spectral-domain optical coherence tomography (OCT, fluorescein angiography (FA, and most with indocyanine green angiography (ICGA followed by treatment with half-fluence PDT and intravitreal anti-VEGF injection (seven bevacizumab, one aflibercept. Patients were seen in follow-up 1 month after treatment. Results: All eight patients achieved complete resolution in subretinal fluid following combination treatment. Average duration of CSC prior to initiation of combination therapy was 7.5 months. Mean central macular thickness on OCT decreased significantly from 401.2±52.7 µm to 297.9±18.2 µm (p=0.0010 by 4 months after treatment (1.63±1.18 months. Seven of eight patients were followed up for an average of 13 months with no recurrence during that time. One case recurred at 8 months and was treated with repeat combination at that time. Frank choroidal neovascularization (CNV was not identified in these cases on FA or ICGA studies. Eight of eight patients showed significant improvement in vision from a logMAR of 0.1125±0.099 to 0.0125±0.064 (p=0.019. Conclusion: Combination PDT and anti-VEGF is effective for chronic CSC which has failed conventional therapy. Associated CNV and/or inflammation may be reasons for greater success in

  7. Fungal post-treatment of pulp mill effluents for the removal of recalcitrant pollutants.

    Science.gov (United States)

    Ortega-Clemente, Alfredo; Caffarel-Méndez, S; Ponce-Noyola, M T; Barrera-Córtes, J; Poggi-Varaldo, Héctor M

    2009-03-01

    The objective of this work was to evaluate the post-treatment of an anaerobic recalcitrant effluent (anaerobically-treated weak black liquor, AnE) in an aerobic, upflow reactor packed with "biocubes" of Trametes versicolor immobilized onto small cubes of holm oak wood. The treated effluent (named anaerobic effluent; AnE) from an anaerobic fluidized bed reactor was fed to an up-flow aerobic fungal packed bed reactor (PBR). Two HRT were tested in this unit, namely 5 and 2.5days; the PBR operated 60days at 5-day HRT and 35days at 2.5-day HRT. The aerobic packed bench scale reactor was a glass column 1.5L total geometric volume containing 0.75L biocubes of T. versicolor immobilized onto holm oak wood small cubes of 5mm side. The reactor was operated at 25 degrees C. The pH of the AnE was adjusted to 4.5 before feeding; no carbohydrates or other soluble carbon source was supplemented. The fungal packed bed bioreactor averaged organic matter removals of 30% and 32% COD basis, during an experimental run of 60days at 5-day HRT and 35days at 2.5-day HRT, respectively. Colour and ligninoids contents were removed at higher percentages (69% and 54% respectively, average of both HRT). There was no significant difference between reactor performance at 5- and 2.5-day HRT, so, operation at 2.5-day HRT is recommended since reactor throughput is double. Activity of manganese peroxidase and laccase was found during the entire operation of the fungal PBR whereas lignin peroxidase activity practically disappeared in the second operation period. In general, enzyme activities were higher in the first period of operation (5-day HRT) than at 2.5-day HRT. To the best of our knowledge, this is one of the few works that demonstrated extended performance (3months) of a fungal bioreactor for the treatment of a recalcitrant wastewater with no supplementation of glucose or other expensive, soluble carbohydrate.

  8. Recalcitrant soil organic matter : how useful is radiocarbon for estimating its amount and variability?

    International Nuclear Information System (INIS)

    Tate, K.; Parshotam, A.; Scott, Neal

    1997-01-01

    The role of the terrestrial biosphere in the global carbon (C) cycle is poorly understood because of the complex biology underlying C storage, the spatial variability of vegetation and soils, and the effects of land use. Little is known about the nature, amount and variability of recalcitrant C in soils, despite the importance of determining whether soils behave as sources or sinks of CO 2 . 14 C dating indicates that most soils contain this very stable C fraction, with turnover times of millennia. The amount of this fraction, named the Inert Organic Matter (IOM) in one model, is estimated indirectly using the 'bomb' 14 C content of soil. In nine New Zealand grassland and forest ecosystems, amounts of IOM-C ranged between 0.03 to 2.9 kg C m -2 (1-18% of soil C to 0.25m depth). A decomposable C fraction, considered to be more susceptible to the effects of climate and land use, was estimated by subtracting the IOM-C fraction from the total soil organic C. Turnover times ranged between 8 and 36 years, and were inversely related to mean annual temperature (R 2 0.91, P 13 C NMR and pyrolysis-mass spectrometry as alkyl C. Paradoxically, for some ecosystems, the variation in IOM-C appears to be best explained by differences in soil hydrological conditions rather than by the accumulation of a discrete C fraction. Thus characterisation of environmental factors that constrain decomposition could be most useful for explaining the differences observed in IOM across different ecosystems, climates and soils. Despite the insights the modelling approach using 'bomb' 14 C provides into mechanisms for organic matter stabilisation, on theoretical grounds the validity of using 14 C measurements to estimate a recalcitrant C fraction that by definition contains no 14 C is questionable. We conclude that more rigorous models are needed with pools that can be experimentally verified, to improve understanding of the spatial variability of soil C storage. (author)

  9. Canada's hydrocarbon processing evolution

    International Nuclear Information System (INIS)

    Wise, T.H.; Horton, R.

    2000-01-01

    The development of petroleum refining, petrochemicals and natural gas industries in Canada are discussed together with future issues and prospects. Figures give data on (a) refined products trade 1998; (b) refining capacity; (c) product demand 1980-1999; (d) refinery crude runs and capacity; (e) refining and marketing, historical returns 1993-1999; (f) processing power index for Canada and USA; (g) ethylene capacity; (eye) Montreal petrochemical capacities; (j) Sarnia petrochemical capacities in 2000; (k) Alberta petrochemicals capacities 2001; (l) ethylene net equivalent trade; (m) ethylene costs 1999 for W. Canada and other countries. It was concluded that the hydrocarbon processing business continues to expand in Canada and natural gas processing is likely to increase. Petrochemicals may expand in W. Canada, possibly using feed stock from the Far North. Offshore developments may stimulate new processing on the E. Coast

  10. Hydrogenating gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nicolardot, P L.F.

    1930-08-06

    Gaseous hydrocarbons obtained by the destructive distillation of carbonaceous materials are simultaneously desulfurized and hydrogenated by passing them at 350 to 500/sup 0/C, mixed with carbon monoxide and water vapor over lime mixed with metallic oxides present in sufficient amount to absorb the carbon dioxide as it is formed. Oxides of iron, copper, silver, cobalt, and metals of the rare earths may be used and are mixed with the lime to form a filling material of small pieces filling the reaction vessel which may have walls metallized with copper and zinc dust. The products are condensed and fixed with absorbents, e.g. oils, activated carbon, silica gels. The metallic masses may be regenerated by a hot air stream and by heating in inert gases.

  11. Treating hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R; MacIvor, W

    1869-09-01

    The treatment of hydrocarbon oils, such as coal or shale oils, paraffin oils, and petroleum, either in the crude or more or less refined state has the object of reducing the specific gravity and otherwise improving the qualities of such oils. The oil to be treated is put into any ordinary still and distilled. The vapor escaping during the distillation is passed through one or more heating vessels or chambers and exposed to the heat necessary to produce the change. The heating vessels or chambers may be made of metal, clay, or any other material adapted to endure heat, and they may be made of any desired form, or they may be constituted of a coil of metal pipes or a series of tubes such as are used for heating air for blast furnaces.

  12. An improved Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.) cultivars.

    Science.gov (United States)

    Shri, Manju; Rai, Arti; Verma, Pankaj Kumar; Misra, Prashant; Dubey, Sonali; Kumar, Smita; Verma, Sikha; Gautam, Neelam; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar; Chakrabarty, Debasis

    2013-04-01

    Agrobacterium-mediated transformation of indica rice varieties has been quite difficult as these are recalcitrant to in vitro responses. In the present study, we established a high-efficiency Agrobacterium tumefaciens-mediated transformation system of rice (Oryza sativa L. ssp. indica) cv. IR-64, Lalat, and IET-4786. Agrobacterium strain EHA-101 harboring binary vector pIG121-Hm, containing a gene encoding for β-glucuronidase (GUS) and hygromycin resistance, was used in the transformation experiments. Manipulation of different concentrations of acetosyringone, days of co-culture period, bacterial suspension of different optical densities (ODs), and the concentrations of L-cysteine in liquid followed by solid co-culture medium was done for establishing the protocol. Among the different co-culture periods, 5 days of co-culture with bacterial cells (OD600 nm = 0.5-0.8) promoted the highest frequency of transformation (83.04 %) in medium containing L-cysteine (400 mg l(-1)). Putative transformed plants were analyzed for the presence of a transgene through genomic PCR and GUS histochemical analyses. Our results also suggest that different cultural conditions and the addition of L-cysteine in the co-culture medium improve the Agrobacterium-mediated transformation frequencies from an average of 12.82 % to 33.33 % in different indica rice cultivars.

  13. Outcome of Boyd-McLeod procedure for recalcitrant lateral epicondylitis of elbow.

    Science.gov (United States)

    Reddy, V R M; Satheesan, K S; Bayliss, N

    2011-08-01

    Various surgical procedures including percutaneous and open release and arthroscopic procedures have been described to treat recalcitrant tennis elbow. We present the outcome of Boyd-McLeod surgical procedure for tennis elbow resistant to non-operative treatment in twenty-seven patients (twenty-nine limbs). Boyd McLeod procedure involves excision of the proximal portion of the annular ligament, release of the origin of the extensor muscles, excision of the bursa if present, and excision of the synovial fringe. The average time interval from the onset of symptoms of tennis elbow until surgery was 28 months (range 8-72 months). Of those patients, 91% reported complete relief of symptoms with return to full normal activities including sports. Average post-operative time for return to professional/recreational activity was 5 weeks. One case developed pain secondary to ectopic bone formation after surgery, which settled after excision, and in another there was no pain relief with Boyd McLeod procedure. Two patients had scar tenderness that did not affect the final outcome. We conclude that Boyd-McLeod procedure is an effective treatment option in patients with resistant lateral epicondylitis.

  14. Arthroscopic surgical treatment of recalcitrant lateral epicondylitis - A series of 47 cases

    Directory of Open Access Journals (Sweden)

    Alexandre Tadeu do Nascimento

    Full Text Available ABSTRACT OBJECTIVE: To evaluate the results of patients undergoing arthroscopic surgical treatment of refractory lateral epicondylitis, identifying poor prognosis factors. METHODS: A retrospective study of 44 patients (47 elbows who underwent arthroscopic debridement of the extensor carpi radialis brevis (ECRB tendon to treat refractory lateral epicondylitis from February 2013 to February 2015, operated by a single surgeon at one center. Patients were assessed by DASH score, visual analog scale of pain (VAS, and ShortForm 36 (SF-36. The mean age at surgery was 44.4 years (32-60. The duration of symptoms prior to the surgery was approximately 2.02 years (range: 6 months to 10 years. Mean follow-up was 18.6 months (range of 6-31.9 . RESULTS: The mean postoperative DASH score was 25.9 points; mean VAS, 1.0 point at rest (all the patients with mild pain and 3.0 points at activity, of which 31 (66% cases presented mild pain, 10 (21% moderate pain, and six (13% severe pain; mean SF-36 score was 62.5. A moderate correlation was observed between duration of pain before surgery and the DASH score with the final functional outcome. No significant complications with the arthroscopic procedure were observed. CONCLUSIONS: Arthroscopic surgical treatment for recalcitrant lateral elbow epicondylitis presented good results, being effective and safe. The shorter the time of pain before surgery and the lower the preoperative DASH score, the better the prognosis.

  15. Genetic Engineering of Energy Crops to Reduce Recalcitrance and Enhance Biomass Digestibility

    Directory of Open Access Journals (Sweden)

    Monika Yadav

    2018-06-01

    Full Text Available Bioenergy, biofuels, and a range of valuable chemicals may be extracted from the abundantly available lignocellulosic biomass. To reduce the recalcitrance imposed by the complex cell wall structure, genetic engineering has been proposed over the years as a suitable solution to modify the genes, thereby, controlling the overall phenotypic expression. The present review provides a brief description of the plant cell wall structure and its compositional array i.e., lignin, cellulose, hemicellulose, wall proteins, and pectin, along with their effect on biomass digestibility. Also, this review discusses the potential to increase biomass by gene modification. Furthermore, the review highlights the potential genes associated with the regulation of cell wall structure, which can be targeted for achieving energy crops with desired phenotypes. These genetic approaches provide a robust and assured method to bring about the desired modifications in cell wall structure, composition, and characteristics. Ultimately, these genetic modifications pave the way for achieving enhanced biomass yield and enzymatic digestibility of energy crops, which is crucial for maximizing the outcomes of energy crop breeding and biorefinery applications.

  16. The stimulating effects of the addition of glucose on denitrification and removal of recalcitrant organic compounds

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2014-03-01

    Full Text Available A laboratory scale aerobic oxidation ditch combined with an anoxic reactor was conducted to treat wastewater from a chemical industrial park in Tianjin, China. The wastewater exhibited a low biodegradability, and the results of gas chromatography mass spectrometry (GC-MS analysis showed that some recalcitrant organic components are present in the wastewater. Ammonia nitrogen (NH4+-N removal efficiency of over 90% was obtained. However, the removal efficiencies of total nitrogen (TN and chemical oxygen demand (COD were below 16% and 15%, respectively. The addition of glucose to the anoxic reactor in the system increased the removal efficiencies of TN and COD to approximately 72% and 25.57%, respectively. Results of mass balance indicate that about 60% of the external carbon was consumed as electron donor for denitrification, while 40% was consumed as a substrate for co-metabolism. The optimal dose of added glucose was also investigated, which was determined at 0.35 to 1.20 (CODglucose:CODoriginal.

  17. Assessing two different peroxidases´ potential for application in recalcitrant organic compound bioremediation

    Directory of Open Access Journals (Sweden)

    Nelson Caicedo

    2001-07-01

    Full Text Available This work shows the promising future presented by the following enzymes: Chloroperoxidase (CPO from Caldariomyces fumago and royal palm peroxidase (Roystonea regia, PPR. These peroxidases were obtained from different sources (microbial and vegetable and used as biocatalysts for applicating them in bioremediation of recalcitrant organic compounds. Each one of the enzymes' peroxidase catalytic activity was evaluated in organic phase systems, using different model compounds such as: PAHs (pyrene and anthracene, organic-nitrogenated compounds (diphenylamine, monoaromatic phenolic molecules (guayacol and dyes (methyl orange and ABTS. The reaction systems were composed of mono-phase water mixtures and organic miscible solvent (methanol, ethanol, isopropanol, acetonitrile, tetrahydrofuran, dimethyl sulfoxide and dimethyl formamide, on which both peroxidases' catalytic activity was evaluated. The two enzymes' catalytic activity was observed on the evaluated substrates in most of these assays. However, PPR did not show biocatalytic oxidation for methyl orange dye and some PAHs. This enzyme did show the best tolerance to the evaluated solvents. Its catalytic activity was appreciably enhanced when low hydrophobic solvents were used. The kcat was calculated from this experimental data (as kinetic parameter leading to each enzyme's biocatalytic performance on substrates being compared.

  18. Arthroscopic surgical treatment of recalcitrant lateral epicondylitis - A series of 47 cases.

    Science.gov (United States)

    Nascimento, Alexandre Tadeu do; Claudio, Gustavo Kogake

    2017-01-01

    To evaluate the results of patients undergoing arthroscopic surgical treatment of refractory lateral epicondylitis, identifying poor prognosis factors. A retrospective study of 44 patients (47 elbows) who underwent arthroscopic debridement of the extensor carpi radialis brevis (ECRB) tendon to treat refractory lateral epicondylitis from February 2013 to February 2015, operated by a single surgeon at one center. Patients were assessed by DASH score, visual analog scale of pain (VAS), and ShortForm 36 (SF-36). The mean age at surgery was 44.4 years (32-60). The duration of symptoms prior to the surgery was approximately 2.02 years (range: 6 months to 10 years). Mean follow-up was 18.6 months (range of 6-31.9). The mean postoperative DASH score was 25.9 points; mean VAS, 1.0 point at rest (all the patients with mild pain) and 3.0 points at activity, of which 31 (66%) cases presented mild pain, 10 (21%) moderate pain, and six (13%) severe pain; mean SF-36 score was 62.5. A moderate correlation was observed between duration of pain before surgery and the DASH score with the final functional outcome. No significant complications with the arthroscopic procedure were observed. Arthroscopic surgical treatment for recalcitrant lateral elbow epicondylitis presented good results, being effective and safe. The shorter the time of pain before surgery and the lower the preoperative DASH score, the better the prognosis.

  19. Selective degradation of the recalcitrant cell wall of Scenedesmus quadricauda CASA CC202.

    Science.gov (United States)

    Reshma, Ragini; Arumugam, Muthu

    2017-10-01

    An eco-friendly cell wall digestion strategy was developed to enhance the availability of nutritionally important bio molecules of edible microalgae and exploit them for cloning, transformation, and expression of therapeutic proteins. Microalgae are the source for many nutritionally important bioactive compounds and potential drugs. Even though edible microalgae are rich in nutraceutical, bioavailability of all these molecules is very less due to their rigid recalcitrant cell wall. For example, the cell wall of Scenedesmus quadricauda CASA CC202 is made up of three layers comprising of rigid outer pectin and inner cellulosic layer separated by a thin middle layer. In the present investigation, a comprehensive method has been developed for the selective degradation of S. quadricauda CASA CC202 cell wall, by employing both mechanical and enzymatic treatments. The efficiency of cell wall removal was evaluated by measuring total reducing sugar (TRS), tannic acid-ferric chloride staining, calcoflour white staining, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) analysis. It was confirmed that the yield of TRS increased from 129.82 mg/g in 14 h from pectinase treatment alone to 352.44 mg/g by combined sonication and enzymatic treatment within 12 h. As a result, the combination method was found to be effective for the selective degradation of S. quadricauda CASA CC202 cell wall. This study will form a base for our future works, where this will help to enhance the digestibility and availability of nutraceutically important proteins.

  20. Outcomes of recalcitrant idiopathic epistaxis in children: Septoplasty as a surgical treatment.

    Science.gov (United States)

    Levi, Jessica M; McKee-Cole, Katherine M; Barth, Patrick C; Brody, Robert M; Reilly, James S

    2016-12-01

    Our objective was to measure short- and long-term outcomes of children presenting with recalcitrant idiopathic epistaxis. The study was an 11-year (2000-2011) retrospective chart review of children evaluated and treated for epistaxis. A retrospective review of patients with diagnostic International Classification of Diseases, Ninth Revision code 784.7 (epistaxis) and 21.5/21.88 (septoplasty) was completed reviewing age at presentation, type of surgery, and number of bleeding events prior to and after surgery. In our cohort, almost 100% of children with idiopathic recurrent epistaxis responded to topical treatments. About 0.2% were refractory (20/9239), and 90% of those (18/20) resolved with either a traditional septoplasty (14/20) or modified septoplasty (6/20) without cartilage excision, with a mean follow-up of 35 months. One of the patients who did not show resolution was found to have Von Willebrand disease, which likely contributed to this outcome. Septoplasty surgery, with or without cartilage removal, appears beneficial for refractory idiopathic epistaxis in children. 4 Laryngoscope, 126:2833-2837, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere

    Energy Technology Data Exchange (ETDEWEB)

    Joner, Erik J. [Laboratoire des Interactions Microorganismes-Mineraux-Matiere Organique dans les Sols (LIMOS), Universite H. Poincare Nancy 1, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy (France)]. E-mail: erik.joner@jordforsk.no; Leyval, Corinne [Laboratoire des Interactions Microorganismes-Mineraux-Matiere Organique dans les Sols (LIMOS), Universite H. Poincare Nancy 1, P.O. Box 239, F-54506 Vandoeuvre-les-Nancy (France); Colpaert, Jan V. [Centre for Environmental Sciences, Environmental Biology Group, Hasselt University, Agoralaan, Gebouw D, B-3590 Diepenbeek (Belgium)

    2006-07-15

    Exploitation of mycorrhizas to enhance phytoremediation of organic pollutants has received attention recently due to their positive effects on establishment of plants in polluted soils. Some evidence exist that ectomycorrhizas enhance the degradation of pollutants of low recalcitrance, while less easily degradable polyaromatic molecules have been degraded only by some of these fungi in vitro. Natural polyaromatic (humic) substances are degraded more slowly in soil where ectomycorrhizal fungi are present, thus phytoremediation of recalcitrant pollutants may not benefit from the presence of these fungi. Using a soil spiked with three polycyclic aromatic hydrocarbons (PAHs) and an industrially polluted soil (1 g kg{sup -1} of {sigma}12 PAHs), we show that the ectomycorrhizal fungus Suillus bovinus, forming hydrophobic mycelium in soil that would easily enter into contact with hydrophobic pollutants, impedes rather than promotes PAH degradation. This result is likely to be a nutrient depletion effect caused by fungal scavenging of mineral nutrients. - The ectomycorrhizal fungus S. bovinus impeded degradation of PAHs in soil, probably due to its negative effect on the availability of mineral nutrients of more potent PAH degraders.

  2. Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere

    International Nuclear Information System (INIS)

    Joner, Erik J.; Leyval, Corinne; Colpaert, Jan V.

    2006-01-01

    Exploitation of mycorrhizas to enhance phytoremediation of organic pollutants has received attention recently due to their positive effects on establishment of plants in polluted soils. Some evidence exist that ectomycorrhizas enhance the degradation of pollutants of low recalcitrance, while less easily degradable polyaromatic molecules have been degraded only by some of these fungi in vitro. Natural polyaromatic (humic) substances are degraded more slowly in soil where ectomycorrhizal fungi are present, thus phytoremediation of recalcitrant pollutants may not benefit from the presence of these fungi. Using a soil spiked with three polycyclic aromatic hydrocarbons (PAHs) and an industrially polluted soil (1 g kg -1 of Σ12 PAHs), we show that the ectomycorrhizal fungus Suillus bovinus, forming hydrophobic mycelium in soil that would easily enter into contact with hydrophobic pollutants, impedes rather than promotes PAH degradation. This result is likely to be a nutrient depletion effect caused by fungal scavenging of mineral nutrients. - The ectomycorrhizal fungus S. bovinus impeded degradation of PAHs in soil, probably due to its negative effect on the availability of mineral nutrients of more potent PAH degraders

  3. Bioremediation of polyaromatic hydrocarbons (PAHs using rhizosphere technology

    Directory of Open Access Journals (Sweden)

    Sandeep Bisht

    2015-03-01

    Full Text Available The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e.polyaromatic hydrocarbons (PAHs due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective.

  4. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology

    Science.gov (United States)

    Bisht, Sandeep; Pandey, Piyush; Bhargava, Bhavya; Sharma, Shivesh; Kumar, Vivek; Sharma, Krishan D.

    2015-01-01

    The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e. polyaromatic hydrocarbons (PAHs) due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa , Pseudomons fluoresens , Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective. PMID:26221084

  5. Assessment of Bioavailability Limitations During Slurry Biodegradation of Petroleum Hydrocarbons in Aged Soils

    International Nuclear Information System (INIS)

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.

    2003-01-01

    In an effort to determine whether bioavailability limitations are responsible for the slow or incomplete hydrocarbon biodegradation in aged soils, both the rate of desorption (rdes) and biodegradation (rbio) was measured for n-alkanes and polynuclear aromatic hydrocarbons (PAHs) at different times during the slurry biotreatment of six different soils. While all n-alkanes were biodegraded to various degrees depending on their respective carbon number and the soil organic matter content, none of them were desorbed to a significant extent indicating that these saturated hydrocarbons do not need to be transferred from the soil particles into the aqueous phase in order to be metabolized by microorganisms. Most 2 and 3 ring PAHs biodegraded as fast as they were desorbed (rbio=rdes), i.e., desorption rates controlled biodegradation rates. By contrast, the biodegradation kinetics of 4, 5, and 6 ring PAHs was limited by microbial factors during the initial phase (rbio > 0) but was more likely caused by microbial factors such as the absence of specific PAH degraders or cometabolic substrates. Consequently, PAHs that are found to be microbially recalcitrant in aged soils may not be so because of limited bioavailability and thus could pose a greater risk to the environment than previously thought

  6. Bioavailability of hydrocarbons to bacterial consortia during Triton X-100 mediated biodegradation in aqueous media.

    Science.gov (United States)

    Pęziak, Daria; Piotrowska, Aleksandra; Marecik, Roman; Lisiecki, Piotr; Woźniak, Marta; Szulc, Alicja; Ławniczak, Łukasz; Chrzanowski, Łukasz

    2013-01-01

    The aim of our study was to investigate the effect of Triton X-100 on the biodegradation efficiency of hexadecane and phenanthrene carried out by two bacterial consortia. It was established that the tested consortia were not able to directly uptake compounds closed in micelles. It was observed that in micellar systems the nonionic synthetic surfactant was preferentially degraded (the degradation efficiency of Triton X-100 after 21 days was 70% of the initial concentration - 500 mg/l), followed by a lesser decomposition of hydrocarbon released from the micelles (30% for hexadecane and 20% for phenanthrene). However, when hydrocarbons were used as the sole carbon source, 70% of hexadecane and 30% of phenanthrene were degraded. The degradation of the surfactant did not contribute to notable shifts in bacterial community dynamics, as determined by Real-Time PCR. The obtained results suggest that if surfactant-supplementation is to be used as an integral part of a bioremediation process, then possible bioavailability decrease due to entrapment of the contaminant into surfactant micelles should also be taken into consideration, as this phenomenon may have a negative impact on the biodegradation efficiency. Surfactant-induced mobilization of otherwise recalcitrant hydrocarbons may contribute to the spreading of contaminants in the environment and prevent their biodegradation.

  7. Pyrolytic Treatment and Fertility Enhancement of Soils Contaminated with Heavy Hydrocarbons.

    Science.gov (United States)

    Vidonish, Julia E; Zygourakis, Kyriacos; Masiello, Caroline A; Gao, Xiaodong; Mathieu, Jacques; Alvarez, Pedro J J

    2016-03-01

    Pyrolysis of contaminated soils at 420 °C converted recalcitrant heavy hydrocarbons into "char" (a carbonaceous material similar to petroleum coke) and enhanced soil fertility. Pyrolytic treatment reduced total petroleum hydrocarbons (TPH) to below regulatory standards (typically hydrocarbons (PAHs) was not observed, with post-pyrolysis levels well below applicable standards. Plant growth studies showed a higher biomass production of Arabidopsis thaliana and Lactuca sativa (Simpson black-seeded lettuce) (80-900% heavier) in pyrolyzed soils than in contaminated or incinerated soils. Elemental analysis showed that pyrolyzed soils contained more carbon than incinerated soils (1.4-3.2% versus 0.3-0.4%). The stark color differences between pyrolyzed and incinerated soils suggest that the carbonaceous material produced via pyrolysis was dispersed in the form of a layer coating the soil particles. Overall, these results suggest that soil pyrolysis could be a viable thermal treatment to quickly remediate soils impacted by weathered oil while improving soil fertility, potentially enhancing revegetation.

  8. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  9. Relationship of Plantar Fascia Thickness and Preoperative Pain, Function, and Quality of Life in Recalcitrant Plantar Fasciitis.

    Science.gov (United States)

    Gamba, Carlo; Sala-Pujals, Aleix; Perez-Prieto, Daniel; Ares-Vidal, Jesus; Solano-Lopez, Alberto; Gonzalez-Lucena, Gemma; Ginés-Caspedosa, Alberto

    2018-04-01

    The measurement of plantar fascia thickness has been advocated as a diagnostic and prognostic instrument in patients with plantar fasciitis, but there are no data relative to it in recalcitrant plantar fasciitis. The aim of the study is to evaluate the correlation between plantar fascia thickness and pain, functional score, and health perception in patients with this condition. Thirty-eight feet were studied with ultrasound and magnetic resonance imaging to measure plantar fascia thickness. The visual analogue scale (VAS), American Orthopaedic Foot & Ankle Hindfoot Score (AOFAS), and SF-36 were then recorded for each patient. The relationship between the fascia and these scores was analyzed to evaluate the correlation of thickness with pain, functional level, and health perception of patients. In patients with recalcitrant plantar fasciitis, plantar fascia thickness did not correlate with pain (VAS), AOFAS, or any item of the SF-36. The thickness of the plantar fascia in patients with recalcitrant plantar fasciitis did not correlate with its clinical impact, and thus, we believe it should not be used in treatment planning. Level IV, case series.

  10. Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components.

    Science.gov (United States)

    Guo, Jianhua; Chen, Baoliang

    2014-08-19

    Few studies have investigated the effects of structural heterogeneity (particularly the interactions of silicon and carbon) on the mechanisms for the recalcitrance of biochar. In this study, the molecular mechanisms for the recalcitrance of biochars derived from rice straw at 300, 500, and 700 °C (named RS300, RS500, and RS700, respectively) were elucidated. Short-term (24 h) and long-term (240 h) oxidation kinetics experiments were conducted under different concentrations of H2O2 to distinguish the stable carbon pools in the biochars. We discovered that the stabilities of the biochars were influenced not only by their aromaticity but also through possible protection by silicon encapsulation, which is regulated by pyrolysis temperatures. The aromatic components and recalcitrance of the biochars increased with increasing pyrolysis temperatures. The morphologies of the carbon forms in all of the biochars were also greatly associated with those of silica. Silica-encapsulation protection only occurred for RS500, not for RS300 and RS700. In RS300, carbon and silica were both amorphous, and they were easily decomposed by H2O2. The separation of crystalline silica from condensed aromatic carbon in RS700 eliminated the protective role of silicon on carbon. The effect of the biochar particle size on the stability of the biochar was greatly influenced by C-Si interactions and by the oxidation intensities. A novel silicon-and-carbon-coupled framework model was proposed to guide biochar carbon sequestration.

  11. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars).

    Science.gov (United States)

    Harvey, Omar R; Kuo, Li-Jung; Zimmerman, Andrew R; Louchouarn, Patrick; Amonette, James E; Herbert, Bruce E

    2012-02-07

    The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R(50), for assessing biochar quality for carbon sequestration is proposed. The R(50) is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R(50), with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R(50) and biochar recalcitrance. As presented here, the R(50) is immediately applicable to pre-land application screening of biochars into Class A (R(50) ≥ 0.70), Class B (0.50 ≤ R(50) carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R(50), to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.

  12. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    CSIR Research Space (South Africa)

    Wesley-Smith, J

    2014-03-01

    Full Text Available Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus...

  13. High Pressure Preignition Chemistry of Hydrocarbons and Hydrocarbon Mixtures

    National Research Council Canada - National Science Library

    Cernansky, N.P

    1998-01-01

    .... The research program entailed mechanistic studies examining the oxidation chemistry of single-component hydrocarbons and ignition studies examining the overall ignition of pure single component fuels and fuel blends...

  14. Growth of hydrocarbon utilizing microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Mavinkurve, S.

    Two isolates from marine mud having broad spectrum hydrocarbon utilizing profile were identified as Arthrobacter simplex and Candida tropicalis.Both the organisms grew exponentially on crude oil. The cell yield of the organisms was influenced...

  15. Process for treating hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    1933-09-15

    A process is described for treating simultaneously bituminous substances and hydrocarbon oils for the production of low-boiling hydrocarbons and volatilization of the bituminous substances, characterized by the fact that it consists of heating a current of charge constituted by a mixture of the bituminous substances and hydrocarbon oils, to a high temperature, passing the heated current into a zone of extended reaction where the vapors are separated from the liquid or solid residue to favor transformation of the liquid hydrocarbons and volatilization of the bituminous substances, owing to the utilization of a heating agent carried to a high temperature being brought in contact with the heated charge in order to communicate its heat to the charge, while this later presents itself as relatively fine pellet or in the condition of distinct particles, particularly separated from one another.

  16. New Innovations in Highly Ion Specific Media for Recalcitrant Waste stream Radioisotopes

    International Nuclear Information System (INIS)

    Denton, M. S.; Wilson, J.; Ahrendt, M.; Bostick, W. D.; DeSilva, F.; Meyers, P.

    2006-01-01

    Specialty ion specific media were examined and developed for, not only pre- and post-outage waste streams, but also for very difficult outage waste streams. This work was carried out on first surrogate waste streams, then laboratory samples of actual waste streams, and, finally, actual on-site waste streams. This study was particularly focused on PWR wastewaters such as Floor Drain Tank (FDT), Boron Waste Storage Tank (BWST), and Waste Treatment Tank (WTT, or discharge tank). Over the last half decade, or so, treatment technologies have so greatly improved and discharge levels have become so low, that certain particularly problematic isotopes, recalcitrant to current treatment skids, are all that remain prior to discharge. In reality, they have always been present, but overshadowed by the more prevalent and higher activity isotopes. Such recalcitrants include cobalt, especially Co 58 [both ionic/soluble (total dissolved solids, TDS) and colloidal (total suspended solids, TSS)] and antimony (Sb). The former is present in most FDT and BWST wastewaters, while the Sb is primarily present in BWST waste streams. The reasons Co 58 can be elusive to granulated activated carbon (GAC), ultrafiltration (UF) and ion exchange (IX) demineralizers is that it forms submicron colloids as well as has a tendency to form metal complexes with chelating agents (e.g., ethylene diamine tetraacetic acid, or EDTA). Such colloids and non-charged complexes will pass through the entire treatment skid. Antimony (Sb) on the other hand, has little or no ionic charge, and will, likewise, pass through both the filtration and de-min skids into the discharge tanks. While the latter will sometimes (the anionic vs. the cationic or neutral species) be removed on the anion bed(s), it will slough off (snow-plow effect) when a higher affinity anion (iodine slugs, etc.) comes along; thus causing effluents not meeting discharge criteria. The answer to these problems found in this study, during an actual

  17. Removal of recalcitrant organic matter content in wastewater by means of AOPs aiming industrial water reuse.

    Science.gov (United States)

    Souza, Bianca M; Souza, Bruno S; Guimarães, Tarsila M; Ribeiro, Thiago F S; Cerqueira, Ana C; Sant'Anna, Geraldo L; Dezotti, Márcia

    2016-11-01

    This paper comes out from the need to provide an improvement in the current oil refinery wastewater treatment plant (WWTP) aiming to generate water for reuse. The wastewater was pretreated and collected in the WWTP after the biological treatment unit (bio-disks) followed by sand filtration. Ozonation (ozone concentration from 3.0-60 mgO 3  L -1 ), UV (power lamp from 15 to 95 W), H 2 O 2 (carbon:H 2 O 2 molar ratio of 1:1, 1:2, and 1:4), and two advanced oxidation processes (UV/O 3 and UV/H 2 O 2 ) were investigated aiming to reduce the wastewater organic matter and generate water with suitable characteristics for the reverse osmosis operation and subsequent industrial reuse. Even after the biological and filtration treatments, the oil refinery wastewater still presented an appreciable amount of recalcitrant organic matter (TOC of 12-19 mgC L -1 ) and silt density index (SDI) higher than 4, which is considered high for subsequent reverse osmosis due to membrane fouling risks. Experiments using non combined processes (O 3 , H 2 O 2 , and UV only) showed a low degree of mineralization after 60 min of reaction, although the pretreatment with ozone had promoted the oxidation of aromatic compounds originally found in the real matrix, which suggests the formation of recalcitrant compounds. When the combined processes were applied, a considerable increase in the TOC removal was observed (max of 95 % for UV/O 3 process, 55 W, 60 mgO 3  L -1 ), likely due the presence of higher amounts of reactive species, specially hydroxyl radicals, confirming the important role of these species on the photochemical degradation of the wastewater compounds. A zero-order kinetic model was fitted to the experimental data and the rate constant values (k, mgC L -1  h -1 ) ranged from 4.8 < k UV/O3  < 11 ([O 3 ] 0  = 30-60 mg L -1 ), and 8.6 < k UV/H2O2  < 11 (C:H 2 O 2 from 1:1 to 1:4). The minimum and maximum electrical energy per order (E EO ) required for 60 min of

  18. Investigation of Plant Cell Wall Properties: A Study of Contributions from the Nanoscale to the Macroscale Impacting Cell Wall Recalcitrance

    Science.gov (United States)

    Crowe, Jacob Dillon

    Biochemical conversion of lignocellulosic biomass to fuel ethanol is one of a few challenging, yet opportune technologies that can reduce the consumption of petroleum-derived transportation fuels, while providing parallel reductions in greenhouse gas emissions. Biomass recalcitrance, or resistance to deconstruction, is a major technical challenge that limits effective conversion of biomass to fermentable sugars, often requiring a costly thermochemical pretreatment step to improve biomass deconstruction. Biomass recalcitrance is imparted largely by the secondary cell wall, a complex polymeric matrix of cell wall polysaccharides and aromatic heteropolymers, that provides structural stability to cells and enables plant upright growth. Polymers within the cell wall can vary both compositionally and structurally depending upon plant species and anatomical fraction, and have varied responses to thermochemical pretreatments. Cell wall properties impacting recalcitrance are still not well understood, and as a result, the goal of this dissertation is to investigate structural features of the cell wall contributing to recalcitrance (1) in diverse anatomical fractions of a single species, (2) in response to diverse pretreatments, and (3) resulting from genetic modification. In the first study, feedstock cell wall heterogeneity was investigated in anatomical (stem, leaf sheaths, and leaf blades) and internode fractions of switchgrass at varying tissue maturities. Lignin content was observed as the key contributor to recalcitrance in maturing stem tissues only, with non-cellulosic substituted glucuronoarabinoxylans and pectic polysaccharides contributing to cell wall recalcitrance in leaf sheath and leaf blades. Hydroxycinnamate (i.e., saponifiable p-coumarate and ferulate) content along with xylan and pectin extractability decreased with tissue maturity, suggesting lignification is only one component imparting maturity specific cell wall recalcitrance. In the second study

  19. Predicting hydrocarbon release from soil

    International Nuclear Information System (INIS)

    Poppendieck, D.; Loehr, R.C.

    2002-01-01

    'Full text:' The remediation of hazardous chemicals from soils can be a lengthy and costly process. As a result, recent regulatory initiatives have focused on risk-based corrective action (RBCA) approaches. Such approaches attempt to identify the amount of chemical that can be left at a site with contaminated soil and still be protective of human health and the environment. For hydrocarbons in soils to pose risk to human heath and the environment, the hydrocarbons must be released from the soil and accessible to microorganisms, earthworms, or other higher level organisms. The sorption of hydrocarbons to soil can reduce the availability of the hydrocarbon to receptors. Typically in soils and sediments, there is an initial fast release of a hydrocarbon from the soil to the aqueous phase followed by a slower release of the remaining hydrocarbon to the aqueous phase. The rate and extent of slow release can influence aqueous hydrocarbon concentrations and the fate and transport of hydrocarbons in the subsurface. Once the fast fraction of the chemical has been removed from the soil, the remaining fraction of a chemical may desorb at a rate that natural mechanisms can attenuate the released hydrocarbon. Hence, active remediation may be needed only until the fast fraction has been removed. However, the fast fraction is a soil and chemical specific parameter. This presentation will present a tier I type protocol that has been developed to quickly estimate the fraction of hydrocarbons that are readily released from the soil matrix to the aqueous phase. Previous research in our laboratory and elsewhere has used long-term desorption (four months) studies to determine the readily released fraction. This research shows that a single short-term (less than two weeks) batch extraction procedure provides a good estimate of the fast released fraction derived from long-term experiments. This procedure can be used as a tool to rapidly evaluate the release and bioavailability of

  20. The influence of dissolved phosphorus molecular form on recalcitrance and bioavailability

    International Nuclear Information System (INIS)

    Li, Bo; Brett, Michael T.

    2013-01-01

    Several studies have shown Soluble Reactive Phosphorus (SRP) analyses provide a poor index of dissolved phosphorus (P) bioavailability in natural systems. We tested 21 inorganic and organic P containing compounds with series of nutrient uptake and bioavailability bioassay experiments and chemical characterizations. Our results show that in 81% of cases, these compounds did not fit the classic assumption that SRP approximately equals Bioavailable P (BAP). Many organic compounds were classified as non-reactive, but had very rapid uptake kinetics and were nearly entirely bioavailable (e.g., several nucleic acids, ATP, RNA, DNA and phosphatidylcholine). Several inorganic compounds also classified as non-reactive but had high bioavailability (i.e., sodium tripolyphosphate and phosphorus pentoxide). Conversely, apatite was operationally classified as reactive, but had low bioavailability. Due to their tendency to alias as SRP, but recalcitrance and very low bioavailability, humic-(Al/Fe)-phosphorus complexes may play an especially important role in the dissolved phosphorus dynamics of natural systems. Highlights: •We tested 21 P containing compounds with bioassay and chemical speciation. •The acid molybdate method does not consistently predict the bioavailability of P compounds. •The P in humic substances was bounded with Al/Fe and could not be taken up by algal. •A new classification scheme divided P species based on bioavailability and chemical speciation. -- SRP is a poor indicator of the bioavailability of many of P containing compounds and much of what is classified as SRP in nature could be associated with humic-metal complexes with low bioavailability

  1. Solar photocatalytic oxidation of recalcitrant natural metabolic by-products of amoxicillin biodegradation.

    Science.gov (United States)

    Pereira, João H O S; Reis, Ana C; Homem, Vera; Silva, José A; Alves, Arminda; Borges, Maria T; Boaventura, Rui A R; Vilar, Vítor J P; Nunes, Olga C

    2014-11-15

    The contamination of the aquatic environment by non-metabolized and metabolized antibiotic residues has brought the necessity of alternative treatment steps to current water decontamination technologies. This work assessed the feasibility of using a multistage treatment system for amoxicillin (AMX) spiked solutions combining: i) a biological treatment process using an enriched culture to metabolize AMX, with ii) a solar photocatalytic system to achieve the removal of the metabolized transformation products (TPs) identified via LC-MS, recalcitrant to further biological degradation. Firstly, a mixed culture (MC) was obtained through the enrichment of an activated sludge sample collected in an urban wastewater treatment plant (WWTP). Secondly, different aqueous matrices spiked with AMX were treated with the MC and the metabolic transformation products were identified. Thirdly, the efficiency of two solar assisted photocatalytic processes (TiO2/UV or Fe(3+)/Oxalate/H2O2/UV-Vis) was assessed in the degradation of the obtained TPs using a lab-scale prototype photoreactor equipped with a compound parabolic collector (CPC). Highest AMX specific biodegradation rates were obtained in buffer and urban wastewater (WW) media (0.10 ± 0.01 and 0.13 ± 0.07 g(AMX) g(biomass)(-1) h(-1), respectively). The resulting TPs, which no longer presented antibacterial activity, were identified as amoxicilloic acid (m/z = 384). The performance of the Fe(3+)/Oxalate/H2O2/UV-Vis system in the removal of the TPs from WW medium was superior to the TiO2/UV process (TPs no longer detected after 40 min (QUV = 2.6 kJ L(-1)), against incomplete TPs removal after 240 min (QUV = 14.9 kJ L(-1)), respectively). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Transient phytoextraction agents: establishing criteria for the use of chelants in phytoextraction of recalcitrant metals.

    Science.gov (United States)

    Parra, R; Ulery, A L; Elless, M P; Blaylock, M J

    2008-01-01

    The phytoremediation of recalcitrant metals such as lead and uranium rely on soil amendments to enhance metal availability within the rhizosphere. Because these amendments may persist in soils, agents that not only biodegrade rapidly but also are effective in triggering metal uptake in plants are needed for metals phytoextraction to be considered as an accepted practice. In this study, several biodegradable organic acids and chelating agents were assessed to determine if these amendments can be used in an effective manner, and if their activity and use is consistent with a proposed class of soil amendments for phytoextraction, here termed transient phytoextraction agents (TPAs). A TPA is proposed as an agent that would exhibit both effectiveness in triggering plant accumulation of the targeted metal while minimizing the risk of migration through rapid degradation or inactivation of the soluble complex. Eleven candidate TPAs (acetic acid, ascorbic acid, citric acid, malic acid, oxalic acid, succinic acid, ethylenediaminedisuccinic acid, dicarboxymethylglutamic acid, nitrilotriacetic acid, BayPure CX 100, and the siderophore desferrioxamine B) were tested in batch studies to evaluate their complexation behavior using contaminated soils, with uranium and lead as the target metals. A growth chamber study was then conducted with Brassica juncea (Indian mustard), Helianthus annuus (sunflower), and Festuca arundinacea (tall fescue) grown in a lead-contaminated soil that was treated with the candidate TPAs to assess phytoextraction effectiveness. For the soils tested, citric acid, oxalic acid, and succinic acid were found to be effective complexing agents for uranium phytoextraction, whereas Baypure CX 100 and citric acid exhibited effectiveness for lead phytoextraction.

  3. Decolorization of a recalcitrant organic compound (Melanoidin by a novel thermotolerant yeast, Candida tropicalis RG-9

    Directory of Open Access Journals (Sweden)

    Tiwari Soni

    2012-06-01

    Full Text Available Abstract Background Sugarcane distilleries use molasses for ethanol production and generate large volume of effluent containing high biological oxygen demand (BOD and chemical oxygen demand (COD along with melanoidin pigment. Melanoidin is a recalcitrant compound that causes several toxic effects on living system, therefore, may be treated before disposal. The aim of this study was to isolate a potential thermotolerant melanoidin decolorizing yeast from natural resources, and optimized different physico-chemical and nutritional parameters. Results Total 24 yeasts were isolated from the soil samples of near by distillery site, in which isolate Y-9 showed maximum decolorization and identified as Candida tropicalis by Microbial Type Culture Collection (MTCC Chandigarh, India. The decolorization yield was expressed as the decrease in the absorbance at 475 nm against initial absorbance at the same wavelength. Uninoculated medium served as control. Yeast showed maximum decolorization (75% at 45°C using 0.2%, glucose; 0.2%, peptone; 0.05%, MgSO4; 0.01%, KH2PO4; pH-5.5 within 24 h of incubation under static condition. Decolorizing ability of yeast was also confirmed by high performance liquid chromatography (HPLC analysis. Conclusion The yeast strain efficiently decolorized melanoidin pigment of distillery effluent at higher temperature than the other earlier reported strains of yeast, therefore, this strain could also be used at industrial level for melanoidin decolorization as it tolerated a wide range of temperature and pH with very small amount of carbon and nitrogen sources.

  4. Evaluation of biodegradation feasibility through rotary drum composting recalcitrant primary paper mill sludge.

    Science.gov (United States)

    Hazarika, Jayeeta; Khwairakpam, Meena

    2018-04-03

    Primary paper mill sludge (PPMS) is the major waste expelled from the pulp and paper industries contributing soil and water pollution through the recalcitrant organic and inorganic constituents. These pollutants can, however, be transformed into a high-value soil ameliorating material with nominal investment and time. Current study therefore evaluated the potential of rotary drum composting PPMS for 20 days to delineate an environmentally sustainable option. Five trials with proportions of PPMS, cow dung and saw dust: Trial 1 (10:0:0), Trial 2 (8:1:1), Trial 3 (7:2:1), Trial 4 (6:3:1) and Trial 5 (5:4:1) were performed for evaluation of degrading and nutritive ability along with the fate of pollutants for total mass of 150 kg. Trial 4 exhibited highest metabolic activity contributing higher temperature evolution and longer thermophilic phase (10 days) owing to optimum addition of innoculum and nitrogen through the cattle manure. Moreover, degradation of 16.8% organic matter was also best achieved in Trial 4 following up first-order kinetics. Furthermore, BOD, COD and C/N ratio also explains degradation to be maximum in trial 4 (6:3:1) with reduction of 59.3%, 60.1% and C/N ratio from 55.1 to 18 respectively, proving to be the essential determining factors. Phosphorus availability increased by around 67% in trial 4. PPMS can be thus transformed into a potential valued added product and safe for subsequent land application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Hydrocarbon removal with constructed wetlands

    OpenAIRE

    Eke, Paul Emeka

    2008-01-01

    Wetlands have long played a significant role as natural purification systems, and have been effectively used to treat domestic, agricultural and industrial wastewater. However, very little is known about the biochemical processes involved, and the use of constructed treatment wetlands in the removal of petroleum aromatic hydrocarbons from produced and/or processed water. Wastewaters from the oil industry contain aromatic hydrocarbons such as benzene, toluene, ethylbenzene and x...

  6. Bioassay of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  7. Catalytic pyrolysis of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Vail' eva, N A; Buyanov, R A

    1979-01-01

    Catalytic pyrolysis of petroleum fractions (undecane) was performed with the object of clarifying such questions as the mechanism of action of the catalyst, the concepts of activity and selectivity of the catalyst, the role of transport processes, the temperature ranges and limitations of the catalytic process, the effect of the catalyst on secondary processes, and others. Catalysts such as quartz, MgO, Al/sub 2/O/sub 3/, were used. Analysis of the experimental findings and the fact that the distribution of products is independent of the nature of the surface, demonstrate that the pyrolysis of hydrocarbons in the presence of catalysts is based on the heterogeneous-homogeneous radical-chain mechanism of action, and that the role of the catalysts reduces to increasing the concentration of free radicals. The concept of selectivity cannot be applied to catalysts here, since they do not affect the mechanism of the unfolding of the process of pyrolysis and their role consists solely in initiating the process. In catalytic pyrolysis the concepts of kinetic and diffusive domains of unfolding of the catalytic reaction do not apply, and only the outer surface of the catalyst is engaged, whereas the inner surface merely promotes deletorious secondary processes reducing the selectivity of the process and the activity of the catalyst. 6 references, 2 figures.

  8. Electrostatically atomised hydrocarbon sprays

    Energy Technology Data Exchange (ETDEWEB)

    Yule, A.J.; Shrimpton, J.S.; Watkins, A.P.; Balachandran, W.; Hu, D. [UMIST, Manchester (United Kingdom). Thermofluids Division, Dept. of Mechanical Engineering

    1995-07-01

    A burner using an electrostatic method to produce and control a fuel spray is investigated for non-burning sprays. The burner has a charge injection nozzle and the liquid flow rate and charge injection rate are varied using hydrocarbon liquids of differing viscosities, surface tensions and electrical conductivities (kerosene, white spirit and diesel oil). Droplet size distributions are measured and it is shown how the dropsize, spray pattern, breakup mechanism and breakup length depend on the above variables, and in particular on the specific charge achieved in the spray. The data are valuable for validating two computer models under development. One predicts the electric field and flow field inside the nozzle as a function of emitter potential, geometry and flow rate. The other predicts the effect of charge on spray dispersion, with a view to optimizing spray combustion. It is shown that electrostatic disruptive forces can be used to atomize oils at flow rates commensurate with practical combustion systems and that the charge injection technique is particularly suitable for highly resistive liquids. Possible limitations requiring further research include the need to control the wide spray angle, which may provide fuel-air mixtures too lean near the nozzle, and the need to design for maximum charge injection rate, which is thought to be limited by corona breakdown in the gas near the nozzle orifice. 30 refs., 15 figs., 1 tab.

  9. HYDROCARBONS RESERVES IN VENEZUELA

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Cruz, D.J.

    2007-07-01

    Venezuela is an important player in the energy world, because of its hydrocarbons reserves. The process for calculating oil and associated gas reserves is described bearing in mind that 90% of the gas reserves of Venezuela are associated to oil. Likewise, an analysis is made of the oil reserves figures from 1975 to 2003. Reference is also made to inconsistencies found by international experts and the explanations offered in this respect by the Ministry of Energy and Petroleum (MENPET) and Petroleos de Venezuela (PDVSA) regarding the changes that took place in the 1980s. In turn, Hubbert's Law is explained to determine peak production of conventional oil that a reservoir or field will reach, as well as its relationship with remaining reserves. Emphasis is placed on the interest of the United Nations on this topic. The reserves of associated gas are presented along with their relationship with the different crude oils that are produced and with injected gas, as well as with respect to the possible changes that would take place in the latter if oil reserves are revised. Some recommendations are submitted so that the MENPET starts preparing the pertinent policies ruling reserves. (auth)

  10. Evaluation of hydrocarbon potential

    International Nuclear Information System (INIS)

    Cashman, P.H.; Trexler, J.H. Jr.

    1992-01-01

    Task 8 is responsible for assessing the hydrocarbon potential of the Yucca Mountain vincinity. Our main focus is source rock stratigraphy in the NTS area in southern Nevada. (In addition, Trexler continues to work on a parallel study of source rock stratigraphy in the oil-producing region of east central Nevada, but this work is not funded by Task 8.) As a supplement to the stratigraphic studies, we are studying the geometry and kinematics of deformation at NTS, particularly as these pertain to reconstructing Paleozoic stratigraphy and to predicting the nature of the Late Paleozoic rocks under Yucca Mountain. Our stratigraphic studies continue to support the interpretation that rocks mapped as the open-quotes Eleana Formationclose quotes are in fact parts of two different Mississippian units. We have made significant progress in determining the basin histories of both units. These place important constraints on regional paleogeographic and tectonic reconstructions. In addition to continued work on the Eleana, we plan to look at the overlying Tippipah Limestone. Preliminary TOC and maturation data indicate that this may be another potential source rock

  11. Microbial activity and soil organic matter decay in roadside soils polluted with petroleum hydrocarbons

    Science.gov (United States)

    Mykhailova, Larysa; Fischer, Thomas; Iurchenko, Valentina

    2015-04-01

    positively correlated with the carbohydrate fraction and negatively correlated with the aliphatic fraction of the soil C, while carbohydrate-C and alkyl-C increased and decreased with distance from the road, respectively. It is proposed that petroleum hydrocarbons supress soil biological activity at concentrations above 1500 mg kg-1, and that soil organic matter priming primarily affects the carbohydrate fraction of soil organic matter. It can be concluded that the abundance of solid carbohydrates (O-alkyl C) is of paramount importance for the hydrocarbon mineralization under natural conditions, compared to more recalcitrant SOM fractions (mainly aromatic and alkyl C). References Mykhailova, L., Fischer, T., Iurchenko, V. (2013) Distribution and fractional composition of petroleum hydrocarbons in roadside soils. Applied and Environmental Soil Science, vol. 2013, Article ID 938703, 6 pages, DOI 10.1155/2013/938703 Mykhailova, L., Fischer, T., Iurchenko, V. (2014) Deposition of petroleum hydrocarbons with sediment trapped in snow in roadside areas. Journal of Environmental Engineering and Landscape Management 22(3):237-244, DOI 10.3846/16486897.2014.889698 Nelson P.N. and Baldock J.A. (2005) Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses, 2005, Biogeochemistry (2005) 72: 1-34, DOI 10.1007/s10533-004-0076-3 Zyakun, A., Nii-Annang, S., Franke, G., Fischer, T., Buegger, F., Dilly, O. (2011) Microbial Actvity and 13C/12C Ratio as Evidence of N-Hexadecane and N-Hexadecanoic Acid Biodegradation in Agricultural and Forest Soils. Geomicrobiology Journal 28:632-647, DOI 10.1080/01490451.2010.489922

  12. Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  13. [Edge effects of forest gap in Pinus massoniana plantations on the decomposition of leaf litter recalcitrant components of Cinnamomum camphora and Toona ciliata.

    Science.gov (United States)

    Zhang, Yan; Zhang, Dan Ju; Li, Xun; Liu, Hua; Zhang, Ming Jin; Yang, Wan Qin; Zhang, Jian

    2016-04-22

    The objective of the study was to evaluate the dynamics of recalcitrant components during foliar litter decomposition under edge effects of forest gap in Pinus massoniana plantations in the low hilly land, Sichuan basin. A field litterbag experiment was conducted in seven forest gaps with different sizes (100, 225, 400, 625, 900, 1225, 1600 m 2 ) which were generated by thinning P. massoniana plantations. The degradation rate of four recalcitrant components, i.e., condensed tannins, total phenol, lignin and cellulose in foliar litter of two native species (Cinnamomum camphora and Toona ciliata) at the gap edge and under the closed canopy were measured. The results showed that the degradation rate of recalcitrant components in T. ciliata litter except for cellulose at the gap edge were significantly higher than that under the closed canopy. For C. camphora litter, only the degradation of lignin at the gap edge was higher than that under the closed canopy. After one-year decomposition, four recalcitrant components in two types of foliar litter exhibited an increment of degradation rate, and the degradation rate of condensed tannin was the fastest, followed by total phenol and cellulose, but the lignin degradation rate was the slowest. With the increase of gap size, except for cellulose, the degradation rate ofthe other three recalcitrant components of the T. ciliata at the edge of medium sized gaps (400 and 625 m 2 ) were significantly higher than at the edge of other gaps. However, lignin in the C. camphora litter at the 625 m 2 gap edge showed the greatest degradation rate. Both temperature and litter initial content were significantly correlated with litter recalcitrant component degradation. Our results suggested that medium sized gaps (400-625 m 2 ) had a more significant edge effect on the degradation of litter recalcitrant components in the two native species in P. massoniana plantations, however, the effect also depended on species.

  14. Impacts of simulated acid rain on recalcitrance of two different soils.

    Science.gov (United States)

    Dai, Zhongmin; Liu, Xingmei; Wu, Jianjun; Xu, Jianming

    2013-06-01

    Laboratory experiments were conducted to estimate the impacts of simulated acid rain (SAR) on recalcitrance in a Plinthudult and a Paleudalfs soil in south China, which were a variable and a permanent charge soil, respectively. Simulated acid rains were prepared at pH 2.0, 3.5, 5.0, and 6.0, by additions of different volumes of H2SO4 plus HNO3 at a ratio of 6 to 1. The leaching period was designed to represent 5 years of local annual rainfall (1,200 mm) with a 33 % surface runoff loss. Both soils underwent both acidification stages of (1) cation exchange and (2) mineral weathering at SAR pH 2.0, whereas only cation exchange occurred above SAR pH 3.5, i.e., weathering did not commence. The cation exchange stage was more easily changed into that of mineral weathering in the Plinthudult than in the Paleudalfs soil, and there were some K(+) and Mg(2+) ions released on the stages of mineral weathering in the Paleudalfs soil. During the leaching, the release of exchangeable base cations followed the order Ca(2+) >K(+) >Mg(2+) >Na(+) for the Plinthudult and Ca(2+) >Mg(2+) >Na(+) >K(+) for the Paleudalfs soil. The SARs above pH 3.5 did not decrease soil pH or pH buffering capacity, while the SAR at pH 2.0 decreased soil pH and the buffering capacity significantly. We conclude that acid rain, which always has a pH from 3.5 to 5.6, only makes a small contribution to the acidification of agricultural soils of south China in the short term of 5 years. Also, Paleudalfs soils are more resistant to acid rain than Plinthudult soils. The different abilities to prevent leaching by acid rain depend upon the parent materials, types of clay minerals, and soil development degrees.

  15. Comparison of low-strength compression stockings with bandages for the treatment of recalcitrant venous ulcers.

    Science.gov (United States)

    Brizzio, Eugenio; Amsler, Felix; Lun, Bertrand; Blättler, Werner

    2010-02-01

    To compare the proportion and rate of healing, pain, and quality of life of low-strength medical compression stockings (MCS) with traditional bandages applied for the treatment of recalcitrant venous leg ulcers. A single-center, randomized, open-label study was performed with consecutive patients. Sigvaris prototype MCS providing 15 mm Hg-25 mm Hg at the ankle were compared with multi-layer short-stretch bandages. In both groups, pads were placed above incompetent perforating veins in the ulcer area. The initial static pressure between the dressing-covered ulcer and the pad was 29 mm Hg and 49 mm Hg with MCS and bandages, respectively. Dynamic pressure measurements showed no difference. Compression was maintained day and night and changed every week. The primary endpoint was healing within 90 days. Secondary endpoints were healing within 180 days, time to healing, pain (weekly Likert scales), and monthly quality of life (ChronIc Venous Insufficiency Quality of Life [CIVIQ] questionnaire). Of 74 patients screened, 60 fulfilled the selection criteria and 55 completed the study; 28 in the MCS and 27 in the bandage group. Ulcers were recurrent (48%), long lasting (mean, 27 months), and large (mean, 13 cm2). All but one patient had deep venous reflux and/or incompetent perforating veins in addition to trunk varices. Characteristics of patients and ulcers were evenly distributed (exception: more edema in the MCS group; P = .019). Healing within 90 days was observed in 36% with MCS and in 48% with bandages (P = .350). Healing within 180 days was documented in 50% with MCS and in 67% with bandages (P = .210). Time to healing was identical. Pain scored 44 and 46 initially (on a scale in which 100 referred to maximum and 0 to no pain) and decreased within the first week to 20 and 28 in the MCS and bandage groups, respectively (P ulcers only. Our study illustrates the difficulty of bringing large and long-standing venous ulcers to heal. The effect of compression with MCS was

  16. Recalcitrant Compounds Removal in Raw Leachate and Synthetic Effluents Using the White-Rot Fungus Bjerkandera adusta

    Directory of Open Access Journals (Sweden)

    Alessandra Bardi

    2017-10-01

    Full Text Available Recalcitrant compounds limit the efficiency of conventional biological processes for wastewater treatment, representing one of the major issues in the field. This study focused on the treatment of three effluents with White-Rot-Fungus (WRF Bjerkandera adusta MUT 2295 in batch tests, with biomass cultivated in attached form on polyurethane foam cubes (PUFs to test its efficiency in the removal of the target effluents’ recalcitrant fraction. Treatment efficiency of B. adusta was evaluated on landfill leachate (Canada and two solutions containing synthetic recalcitrant compounds, which were prepared with tannic and humic acid. Chemical Oxygen Demand (COD and color removal, the production of manganese peroxidases, and the consumption of a co-substrate (glucose were monitored during the experiment. Biological Oxygen Demand (BOD5 and fungal dry weight were measured at the beginning and at the end of the experiment. After co-substrate addition, effluent COD was 2300 ± 85, 2545 ± 84, and 2580 ± 95 (mg/L in raw leachate and tannic and humic acids, respectively. COD removal of 48%, 61%, and 48% was obtained in raw leachate and in the synthetic effluents containing tannic and humic acids, respectively. Color removal of 49%, 25%, and 42% was detected in raw leachate and in tannic and humic acid solutions, respectively. COD and color removals were associated with the increase of fungal dry weight, which was observed in all the trials. These results encourage the use of the selected fungal strain to remove tannic acid, while further investigations are required to optimize leachate and humic acid bioremediation.

  17. Clinical and ultrasonographic results of ultrasonographically guided percutaneous radiofrequency lesioning in the treatment of recalcitrant lateral epicondylitis.

    Science.gov (United States)

    Lin, Cheng-Li; Lee, Jung-Shun; Su, Wei-Ren; Kuo, Li-Chieh; Tai, Ta-Wei; Jou, I-Ming

    2011-11-01

    In patients with lateral epicondylitis recalcitrant to nonsurgical treatments, surgical intervention is considered. Despite the numerous therapies reported, the current trend of treatment places particular emphasis on minimally invasive techniques. The authors present a newly developed minimally invasive procedure, ultrasonographically guided percutaneous radiofrequency thermal lesioning (RTL), and its clinical efficacy in treating recalcitrant lateral epicondylitis. Level of evidence, 4. Thirty-four patients (35 elbows), with a mean age of 52.1 years (range, 35-65 years), suffered from symptomatic lateral epicondylitis for more than 6 months and had exhausted nonoperative therapies. They were treated with ultrasonographically guided RTL. Patients were followed up at least 6 months by physical examination and 12 months by interview. The intensity of pain was recorded with a visual analog scale (VAS) score. The functional outcome was evaluated using grip strength, the upper limb Disability of Arm, Shoulder and Hand (QuickDASH) outcome measure, and the Modified Mayo Clinic Performance Index (MMCPI) for the elbow. The ultrasonographic findings regarding the extensor tendon origin were recorded, as were the complications. At the time of the 6-month follow-up, the average VAS score in resting (from 4.9 to 0.9), palpation (from 7.6 to 2.5), and grip (from 8.2 to 2.9) had improved significantly compared with the preoperative condition (P lateral epicondylitis was found to be a minimally invasive treatment with satisfactory results in this pilot investigation. This innovative method can be considered as an alternative treatment of recalcitrant lateral epicondylitis before further surgical intervention.

  18. Revisiting the concept of recalcitrance and organic matter persistence in soils and aquatic systems: Does environment trump chemistry?

    Science.gov (United States)

    Marin-Spiotta, E.

    2014-12-01

    Most ecological models of decomposition rely on plant litter chemistry. However, growing evidence suggests that the chemical composition of organic matter (OM) is not a good predictor of its eventual fate in terrestrial or aquatic environments. New data on variable decomposition rates of select organic compounds challenge concepts of chemical recalcitrance, i.e. the inherent ability of certain molecular structures to resist biodegradation. The role of environmental or "ecosystem" properties on influencing decomposition dates back to some of the earliest research on soil OM. Despite early recognition that the physical and aqueous matrices are critical in determining the fate of organic compounds, the prevailing paradigm hinges on intrinsic chemical properties as principal predictors of decay rate. Here I build upon recent reviews and discuss new findings that contribute to three major transformations in our understanding of OM persistence: (1) a shift away from an emphasis on chemical recalcitrance as a primary predictor of turnover, (2) new interpretations of radiocarbon ages which challenge predictions of reactivity, and (3) the recognition that most detrital OM accumulating in soils and in water has been microbially processed. Predictions of OM persistence due to aromaticity are challenged by high variability in lignin and black C turnover observed in terrestrial and aquatic environments. Contradictions in the behavior of lignin are, in part, influenced by inconsistent methodologies among research communities. Even black C, long considered to be one of the most recalcitrant components of OM, is susceptible to biodegradation, challenging predictions of the stability of aromatic structures. At the same time, revised interpretations of radiocarbon data suggest that organic compounds can acquire long mean residence times by various mechanisms independent of their molecular structure. Understanding interactions between environmental conditions and biological

  19. Syntrophic biodegradation of hydrocarbon contaminants.

    Science.gov (United States)

    Gieg, Lisa M; Fowler, S Jane; Berdugo-Clavijo, Carolina

    2014-06-01

    Anaerobic environments are crucial to global carbon cycling wherein the microbial metabolism of organic matter occurs under a variety of redox conditions. In many anaerobic ecosystems, syntrophy plays a key role wherein microbial species must cooperate, essentially as a single catalytic unit, to metabolize substrates in a mutually beneficial manner. Hydrocarbon-contaminated environments such as groundwater aquifers are typically anaerobic, and often methanogenic. Syntrophic processes are needed to biodegrade hydrocarbons to methane, and recent studies suggest that syntrophic hydrocarbon metabolism can also occur in the presence of electron acceptors. The elucidation of key features of syntrophic processes in defined co-cultures has benefited greatly from advances in 'omics' based tools. Such tools, along with approaches like stable isotope probing, are now being used to monitor carbon flow within an increasing number of hydrocarbon-degrading consortia to pinpoint the key microbial players involved in the degradative pathways. The metagenomic sequencing of hydrocarbon-utilizing consortia should help to further identify key syntrophic features and define microbial interactions in these complex communities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Production of light hydrocarbons, etc. [from heavy hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1937-10-07

    A process is given for the production of light hydrocarbons of the gasoline type and, if desired, of the middle-oil type, from liquid or fusible heavy or medium heavy hydrocarbon materials. The process comprises subjecting the said initial materials in the first stage to catalytic hydrofining, separating the lower boiling constituents and the hydrogenating gas from the resulting products and then subjecting the higher boiling constituents in a second stage to a splitting destructive hydrogenation and then recycling substantially the entire reaction mixture obtained in the second stage to the frst stage.

  1. Saccharification of recalcitrant biomass and integration options for lignocellulosic sugars from Catchlight Energy's sugar process (CLE Sugar).

    Science.gov (United States)

    Gao, Johnway; Anderson, Dwight; Levie, Benjamin

    2013-01-28

    Woody biomass is one of the most abundant biomass feedstocks, besides agriculture residuals in the United States. The sustainable harvest residuals and thinnings alone are estimated at about 75 million tons/year. These forest residuals and thinnings could produce the equivalent of 5 billion gallons of lignocellulosic ethanol annually. Softwood biomass is the most recalcitrant biomass in pretreatment before an enzymatic hydrolysis. To utilize the most recalcitrant lignocellulosic materials, an efficient, industrially scalable and cost effective pretreatment method is needed. Obtaining a high yield of sugar from recalcitrant biomass generally requires a high severity of pretreatment with aggressive chemistry, followed by extensive conditioning, and large doses of enzymes. Catchlight Energy's Sugar process, CLE Sugar, uses a low intensity, high throughput variation of bisulfite pulping to pretreat recalcitrant biomass, such as softwood forest residuals. By leveraging well-proven bisulfite technology and the rapid progress of enzyme suppliers, CLE Sugar can achieve a high yield of total biomass carbohydrate conversion to monomeric lignocellulosic sugars. For example, 85.8% of biomass carbohydrates are saccharified for un-debarked Loblolly pine chips (softwood), and 94.0% for debarked maple chips (hardwood). Furan compound formation was 1.29% of biomass feedstock for Loblolly pine and 1.10% for maple. At 17% solids hydrolysis of pretreated softwood, an enzyme dose of 0.075 g Sigma enzyme mixture/g dry pretreated (unwashed) biomass was needed to achieve 8.1% total sugar titer in the hydrolysate and an overall prehydrolysate liquor plus enzymatic hydrolysis conversion yield of 76.6%. At a much lower enzyme dosage of 0.044 g CTec2 enzyme product/g dry (unwashed) pretreated softwood, hydrolysis at 17% solids achieved 9.2% total sugar titer in the hydrolysate with an overall sugar yield of 85.0% in the combined prehydrolysate liquor and enzymatic hydrolysate. CLE Sugar has

  2. Platelet-Rich Plasma Injection With Percutaneous Needling for Recalcitrant Lateral Epicondylitis: Comparison of Tenotomy and Fenestration Techniques.

    Science.gov (United States)

    Gaspar, Michael P; Motto, Michael A; Lewis, Sarah; Jacoby, Sidney M; Culp, Randall W; Lee Osterman, A; Kane, Patrick M

    2017-12-01

    Recalcitrant lateral epicondylitis (LE) is a common debilitating condition, with numerous treatment options of varying success. An injection of platelet-rich plasma (PRP) has been shown to improve LE, although it is unclear whether the method of needling used in conjunction with a PRP injection is of clinical importance. To determine whether percutaneous needle tenotomy is superior to percutaneous needle fenestration when each is combined with a PRP injection for the treatment of recalcitrant LE. Cohort study; Level of evidence, 3. A total of 93 patients with recalcitrant LE were treated with a PRP injection and percutaneous needle fenestration (n = 45) or percutaneous needle tenotomy (n = 48) over a 5-year study interval. Preoperative patient data, including visual analog scale for pain (VAS-P), Quick Disabilities of the Arm, Shoulder and Hand (QuickDASH), and Patient-Rated Tennis Elbow Evaluation (PRTEE) scores and grip strength, were obtained from a chart review and compared with postoperative values obtained prospectively. Secondary outcomes included the incidence of complications, need for additional interventions, return to work, and patient satisfaction. At a mean follow-up of 40 months, significant improvements in VAS-P (mean, -6.1; 95% CI, -6.8 to -5.5; P < .0001), QuickDASH (mean, -46; 95% CI, -52 to -40; P < .0001), and PRTEE (mean, -57; 95% CI, -64 to -50; P < .0001) scores and grip strength (mean, +6.1 kg; 95% CI, 4.9 to 7.3; P < .0001) were observed across the entire study cohort, with no significant differences noted between the fenestration and tenotomy groups. Nine of 45 patients (22%) underwent additional procedures to treat recurrent symptoms in the fenestration group compared with 5 of 48 patients (10%) in the tenotomy group ( P = .05). No complications occurred in any patients, and no patients expressed dissatisfaction with their treatment course. A PRP injection with concomitant percutaneous needling is an effective treatment for recalcitrant

  3. Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties: Rice straw as a feedstock for biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Satlewal, Alok [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Joint Inst. for Biological Sciences, Biosciences Division; Indian Oil Corporation Ltd, Faridabad (India), Dept. of Bioenergy, DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre; Agrawal, Ruchi [Indian Oil Corporation Ltd, Faridabad (India), Dept. of Bioenergy, DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre; Bhagia, Samarthya [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Das, Parthapratim [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Ragauskas, Arthur J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering

    2017-10-17

    The surplus availability of rice straw, its limited usage and environment pollution caused by inefficient burning has fostered research for its valorization to biofuels. This review elucidates the current status of rice straw potential around the globe along with recent advances in revealing the critical factors responsible for its recalcitrance and chemical properties. The role and accumulation of high silica content in rice straw has been elucidated with its impact on enzymatic hydrolysis in a biorefinery environment. The correlation of different pretreatment approaches in modifying the physiochemical properties of rice straw and improving the enzymatic accessibility has also been discussed. This study highlights new challenges, resolutions and opportunities for rice straw based biorefineries.

  4. Platelet-Rich Plasma Injection With Percutaneous Needling for Recalcitrant Lateral Epicondylitis: Comparison of Tenotomy and Fenestration Techniques

    Science.gov (United States)

    Gaspar, Michael P.; Motto, Michael A.; Lewis, Sarah; Jacoby, Sidney M.; Culp, Randall W.; Lee Osterman, A.; Kane, Patrick M.

    2017-01-01

    Background: Recalcitrant lateral epicondylitis (LE) is a common debilitating condition, with numerous treatment options of varying success. An injection of platelet-rich plasma (PRP) has been shown to improve LE, although it is unclear whether the method of needling used in conjunction with a PRP injection is of clinical importance. Purpose: To determine whether percutaneous needle tenotomy is superior to percutaneous needle fenestration when each is combined with a PRP injection for the treatment of recalcitrant LE. Study Design: Cohort study; Level of evidence, 3. Methods: A total of 93 patients with recalcitrant LE were treated with a PRP injection and percutaneous needle fenestration (n = 45) or percutaneous needle tenotomy (n = 48) over a 5-year study interval. Preoperative patient data, including visual analog scale for pain (VAS-P), Quick Disabilities of the Arm, Shoulder and Hand (QuickDASH), and Patient-Rated Tennis Elbow Evaluation (PRTEE) scores and grip strength, were obtained from a chart review and compared with postoperative values obtained prospectively. Secondary outcomes included the incidence of complications, need for additional interventions, return to work, and patient satisfaction. Results: At a mean follow-up of 40 months, significant improvements in VAS-P (mean, –6.1; 95% CI, –6.8 to –5.5; P < .0001), QuickDASH (mean, –46; 95% CI, –52 to –40; P < .0001), and PRTEE (mean, –57; 95% CI, –64 to –50; P < .0001) scores and grip strength (mean, +6.1 kg; 95% CI, 4.9 to 7.3; P < .0001) were observed across the entire study cohort, with no significant differences noted between the fenestration and tenotomy groups. Nine of 45 patients (22%) underwent additional procedures to treat recurrent symptoms in the fenestration group compared with 5 of 48 patients (10%) in the tenotomy group (P = .05). No complications occurred in any patients, and no patients expressed dissatisfaction with their treatment course. Conclusion: A PRP injection

  5. Production of hydrocarbons, especially ethylene

    Energy Technology Data Exchange (ETDEWEB)

    1952-01-17

    The invention has for its object a process for the production of gaseous nonsaturated hydrocarbons, particularly ethylene and aromatic hydrocarbons, by starting with hydrocarbon oils entirely of paraffinic nature or their fractions, which consists in putting the separated products in contact with solid inert material especially with porous nonmetallic inert material or of heavy metals or their alloys, maybe in a finely divided state or in the form, of pieces or chips, at a temperature above 500/sup 0/C, or better between 600 and 700/sup 0/C at a velocity per hour of 0.6 to 3.0, and preferably 0.75 to 1.5 parts per volume of products per each part of space volume of catalyst.

  6. Enrichment of light hydrocarbon mixture

    Science.gov (United States)

    Yang,; Dali, [Los Alamos, NM; Devlin, David [Santa Fe, NM; Barbero, Robert S [Santa Cruz, NM; Carrera, Martin E [Naperville, IL; Colling, Craig W [Warrenville, IL

    2010-08-10

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  7. Production of hydrocarbons of value

    Energy Technology Data Exchange (ETDEWEB)

    1931-06-16

    A process is described for the production of hydrocarbons of great value by treating with heat and pressure carbonaceous materials such as coals, tars, mineral oils, and products of distillation and transformation of these materials, also for the refining with heat and pressure of mixed liquid hydrocarbons by means of hydrogen gas, preferably in the presence of catalysts, consisting in using as the hydrogenating gas that obtained by gasification of combustible solids after partial or complete cleaning at atmospheric or elevated pressures, by means of solid adsorbents, chemical agents or catalysts, or mixtures of these agents, the hydrocarbons being characterized by strong unsaturation, and the presence of oxygen, sulfur compounds, and oxides of nitrogen.

  8. Process of distilling heavy hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1929-12-03

    This invention has for its object the distillation of heavy liquid hydrocarbons for the purpose of obtaining lighter hydrocarbons stable and immediately salable for fuels in combustion motors. The process is distinguished by the fact that the heavy hydrocarbon is distilled by means of heating to a temperature in keeping with the nature of the material to be treated up to 350/sup 0/C under pressure or without pressure the distillation being carried out on catalysts containing successively nickel, copper, and iron (3 parts of nickel, 1 part of copper, and 1 part of iron), the vapors produced by this distillation being exposed in turn to the action of catalysts of the same nature and in the same proportion.

  9. Microbial removal of weathered hydrocarbons by well adapted ...

    African Journals Online (AJOL)

    The effectiveness of bioremediation processes may be limited by the physical and chemical properties of the pollutant, such as availability, recalcitrance, concentration and weathering, among others. The aim of this work was to evaluate the removal of recalcitrant oil fractions (aliphatic-aromatic and asphaltenic fractions) ...

  10. Analysis of a Modern Hybrid and an Ancient Sugarcane Implicates a Complex Interplay of Factors in Affecting Recalcitrance to Cellulosic Ethanol Production.

    Directory of Open Access Journals (Sweden)

    Viviane Guzzo de Carli Poelking

    Full Text Available Abundant evidence exists to support a role for lignin as an important element in biomass recalcitrance. However, several independent studies have also shown that factors apart from lignin are also relevant and overall, the relative importance of different recalcitrance traits remains in dispute. In this study we used two genetically distant sugarcane genotypes, and performed a correlational study with the variation in anatomical parameters, cell wall composition, and recalcitrance factors between these genotypes. In addition we also tracked alterations in these characteristics in internodes at different stages of development. Significant differences in the development of the culm between the genotypes were associated with clear differential distributions of lignin content and composition that were not correlated with saccharification and fermentation yield. Given the strong influence of the environment on lignin content and composition, we hypothesized that sampling within a single plant could allow us to more easily interpret recalcitrance and changes in lignin biosynthesis than analysing variations between different genotypes with extensive changes in plant morphology and culm anatomy. The syringyl/guaiacyl (S/G ratio was higher in the oldest internode of the modern genotype, but S/G ratio was not correlated with enzymatic hydrolysis yield nor fermentation efficiency. Curiously we observed a strong positive correlation between ferulate ester level and cellulose conversion efficiency. Together, these data support the hypothesis that biomass enzymatic hydrolysis recalcitrance is governed by a quantitative heritage rather than a single trait.

  11. Preparing valuable hydrocarbons by hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1930-08-22

    A process is described for the preparation of valuable hydrocarbons by treatment of carbonaceous materials, like coal, tars, minerals oils, and their distillation and conversion products, and for refining of liquid hydrocarbon mixture obtained at raised temperature and under pressure, preferably in the presence of catalysts, by the use of hydrogen-containing gases, purified and obtained by distilling solid combustibles, characterized by the purification of the hydrogen-containing gases being accomplished for the purpose of practically complete removal of the oxygen by heating at ordinary or higher pressure in the presence of a catalyst containing silver and oxides of metals of group VI of the periodic system.

  12. Purifying and regenerating hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1931-11-19

    Hydrocarbons are freed from sulfur-containing compounds, colloidal asphaltic bodies and unstable unsaturated substances by treatment with a small amount of dilute sulfuric acid and a salt of a trivalent cation, such as ferric chloride or sulfate. Hydrocarbons specified are petroleum, crude benzol, low temperature tars, shale oil or vapor-phase cracked spirit. Motor spirit or lubricating oil distillates are refined and finally distilled. The acid reagent may be regenerated by filtering through sand or asbestos. Used lubricating oils may be treated similarly and after removal of refining agent, the oil is heated with an adsorbent and decolorizing material and then filtered.

  13. Hydrocarbons cocktails of the future

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    This publication of the Areva Group, a world nuclear industry leader, provides information on the energy in many domains. This issue deals with the CO 2 pollution exchange, the carbon sinks to compensate the CO 2 , the green coal as an innovative solution, an outsize dam in China, the solar energy progresses in France and the french medicine academy in favor of Nuclear. A special chapter is devoted to the hydrocarbons of the future, artificial chemical combination created from constituents of hydrocarbons and derived from various sources. (A.L.B.)

  14. BIOREMEDIATION OF A PETROLEUM-HYDROCARBON

    African Journals Online (AJOL)

    ES OBE

    under field conditions in the bioremediation of a petroleum- hydrocarbon polluted ... an accelerated biodegradation of petroleum hydrocarbons in a polluted agricultural soil ..... 12) Jackson, M.L. Soil chemical analysis. ... biological assay. 3 rd.

  15. Total Petroleum Hydrocarbons (TPH): ToxFAQs

    Science.gov (United States)

    ... a state: This map displays locations where Total Petroleum Hydrocarbons (TPH) is known to be present. On ... I get more information? ToxFAQs TM for Total Petroleum Hydrocarbons (TPH) ( Hidrocarburos Totales de Petróleo (TPH) ) August ...

  16. Rates of Water Loss and Uptake in Recalcitrant Fruits of Quercus Species Are Determined by Pericarp Anatomy

    Science.gov (United States)

    Xia, Ke; Daws, Matthew I.; Stuppy, Wolfgang; Zhou, Zhe-Kun; Pritchard, Hugh W.

    2012-01-01

    Desiccation-sensitive recalcitrant seeds and fruits are killed by the loss of even moderate quantities of water. Consequently, minimizing the rate of water loss may be an important ecological factor and evolutionary driver by reducing the risk of mortality during post-dispersal dry-spells. For recalcitrant fruits of a range of Quercus species, prolonged drying times have been observed previously. However, the underlying mechanism(s) for this variation is unknown. Using nine Quercus species we investigated the major route(s) of water flow into and out of the fruits and analysed the relative importance of the different pericarp components and their anatomy on water uptake/loss. During imbibition (rehydration), the surface area of the cupule scar and the frequency and area of the vascular bundles contained therein were significantly correlated with the rates of water uptake across the scar. The vascular bundles serving the apex of the fruit were a minor contributor to overall water. Further, the rate of water uptake across the remainder of the pericarp surface was significantly correlated with the thickness of the vascularised inner layer in the pericarp. Fruits of Q. franchetii and Q. schottkyana dried most slowly and had a comparatively small scar surface area with few vascular bundles per unit area. These species inhabit drier regions than the other species studied, suggesting these anatomical features may have ecological value by reducing the risk of desiccation stress. However, this remains to be tested in the field. PMID:23071795

  17. The potential of the innovative SeMPAC process for enhancing the removal of recalcitrant organic micropollutants

    Energy Technology Data Exchange (ETDEWEB)

    Alvarino, T., E-mail: teresa.alvarino@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Komesli, O. [Ataturk University, Department of Environmental Engineering, 25250 Erzurum (Turkey); Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey); Suarez, S., E-mail: sonia.suarez@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Lema, J.M., E-mail: juan.lema@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Omil, F., E-mail: francisco.omil@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2016-05-05

    Highlights: • Complete OMPs mass balance in a combined system biological treatment plus PAC. • Improvement of the denitrification after PAC addition. • Enhancement of OMPs biotransformation after PAC addition. • Relation between hydrophobicity (log D) and sorption onto the PAC. • Progressive saturation of the activated carbon in the solid phase with the time. - Abstract: SeMPAC is an innovative process based on a membrane sequential batch reactor to which powdered activated carbon (PAC) is directly added. It was developed with the aim of obtaining a high quality effluent in terms of conventional pollutants and organic micropollutants (OMPs). High COD removal and nitrification efficiencies (>95%) were obtained already during the operation without PAC, although denitrification was enhanced by PAC addition. OMPs were followed in the solid and liquid matrixes so that biotransformation, sorption onto the sludge and adsorption onto the PAC could be assessed. Recalcitrant compounds, such as carbamazepine and diazepam, were readily removed only after PAC addition (>99%). Progressive saturation of PAC was observed, with increasing concentrations of OMPs in the solid phase. Removal efficiencies for recalcitrant compounds were used as indicators for new additions of PAC. An improvement in the moderately biodegradable OMPs removal was observed after PAC addition (e.g. fluoxetine, trimethoprim) which was attributed to the biofilm that grew onto the sorbent, as well as to adsorption onto PAC.

  18. Nanometer-scale structure of alkali-soluble bio-macromolecules of maize plant residues explains their recalcitrance in soil.

    Science.gov (United States)

    Adani, Fabrizio; Salati, Silvia; Spagnol, Manuela; Tambone, Fulvia; Genevini, Pierluigi; Pilu, Roberto; Nierop, Klaas G J

    2009-07-01

    The quantity and quality of plant litter in the soil play an important role in the soil organic matter balance. Besides other pedo-climatic aspects, the content of recalcitrant molecules of plant residues and their chemical composition play a major role in the preservation of plant residues. In this study, we report that intrinsically resistant alkali-soluble bio-macromolecules extracted from maize plant (plant-humic acid) (plant-HA) contribute directly to the soil organic matter (OM) by its addition and conservation in the soil. Furthermore, we also observed that a high syringyl/guaiacyl (S/G) ratio in the lignin residues comprising the plant tissue, which modifies the microscopic structure of the alkali-soluble plant biopolymers, enhances their recalcitrance because of lower accessibility of molecules to degrading enzymes. These results are in agreement with a recent study, which showed that the humic substance of soil consists of a mixture of identifiable biopolymers obtained directly from plant tissues that are added annually by maize plant residues.

  19. Introduction of a leucine half-zipper engenders multiple high-quality crystals of a recalcitrant tRNA synthetase

    International Nuclear Information System (INIS)

    Guo, Min; Shapiro, Ryan; Schimmel, Paul; Yang, Xiang-Lei

    2010-01-01

    E. coli alanyl-tRNA synthetase is recalcitrant to crystallization. A group of leucine substitutions has transformed the protein. Although Escherichia coli alanyl-tRNA synthetase was among the first tRNA synthetases to be sequenced and extensively studied by functional analysis, it has proved to be recalcitrant to crystallization. This challenge remained even for crystallization of the catalytic fragment. By mutationally introducing three stacked leucines onto the solvent-exposed side of an α-helix, an engineered catalytic fragment of the synthetase was obtained that yielded multiple high-quality crystals and cocrystals with different ligands. The engineered α-helix did not form a leucine zipper that interlocked with the same α-helix from another molecule. Instead, using the created hydrophobic spine, it interacted with other surfaces of the protein as a leucine half-zipper (LHZ) to enhance the crystal lattice interactions. The LHZ made crystal lattice contacts in all crystals of different space groups. These results illustrate the power of introducing an LHZ into helices to facilitate crystallization. The authors propose that the method can be unified with surface-entropy reduction and can be broadly used for protein-surface optimization in crystallization

  20. Significance of Lignin S/G Ratio in Biomass Recalcitrance of Populus trichocarpa Variants for Bioethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Chang Geun [BioEnergy; amp, Center for BioEnergy Innovation, Biosciences; UT−ORNL; Dumitrache, Alexandru [BioEnergy; amp, Center for BioEnergy Innovation, Biosciences; Muchero, Wellington [BioEnergy; amp, Center for BioEnergy Innovation, Biosciences; Natzke, Jace [BioEnergy; amp, Center for BioEnergy Innovation, Biosciences; Akinosho, Hannah [School; Li, Mi [BioEnergy; amp, Center for BioEnergy Innovation, Biosciences; UT−ORNL; Sykes, Robert W. [National Renewable Energy Laboratory, U.S. Department of Energy, 15013 Denver West Parkway, Golden, Colorado 80401, United States; Brown, Steven D. [BioEnergy; amp, Center for BioEnergy Innovation, Biosciences; Davison, Brian [BioEnergy; amp, Center for BioEnergy Innovation, Biosciences; Tuskan, Gerald A. [BioEnergy; amp, Center for BioEnergy Innovation, Biosciences; Pu, Yunqiao [BioEnergy; amp, Center for BioEnergy Innovation, Biosciences; UT−ORNL; Ragauskas, Arthur J. [BioEnergy; amp, Center for BioEnergy Innovation, Biosciences; UT−ORNL; Department; amp, Center for Renewable

    2017-12-27

    Lignin S/G ratio has been investigated as an important factor in biomass recalcitrance to bioethanol production. Because of the complexity and variety of biomass, recalcitrance was also reportedly influenced by several other factors, such as total lignin content, degree of cellulose polymerization, etc. In addition, the effect of S/G ratio on biomass conversion is not uniform across plant species. Herein, 11 Populus trichocarpa natural variants grown under the same conditions with similar total lignin content were selected to minimize the effects of other factors. The lignin S/G ratio of the selected P. trichocarpa natural variants showed negative correlations with p-hydroxybenzoate (PB) and ..beta..-5 linkage contents, while it had positive ones with ..beta..-O-4 linkage, lignin molecular weight, and ethanol production. This study showed the importance of lignin S/G ratio as an independent recalcitrance factor that may aid future energy crop engineering and biomass conversion strategies.

  1. Effective viscosity of confined hydrocarbons

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.

    2012-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity ηeff for nanometer-thin films depends linearly on the logarithm of the shear rate: log ηeff=C-nlog γ̇, where...

  2. Interactions between marine bacteria and dissolved-phase and beached hydrocarbons after the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    Button, D.K.; Robertson, B.R.; McIntosh, D.; Juettner, F.

    1992-01-01

    Turnover times for toluene in Resurrection Bay after the Exxon Valdez grounding were determined to be decades, longer than expected considering that dissolved hydrocarbons were anticipated to drift with the current and stimulate development of additional hydrocarbon-utilizing capacity among the microflora in that downcurrent location. These turnover times were based on the recovery of 14 CO 2 from added [ 14 C]toluene that was oxidized. The concentrations of toluene there, 0.1 to 0.2 μg/liter, were similar to prespill values. Oxidation rates appeared to be enhanced upstream near islands in the wake of the wind-blown slick, and even more within the slick itself. Since current-driven mixing rates exceeded those of oxidation, dissolved spill components such as toluene should enter the world-ocean pool of hydrocarbons rather than biooxidize in place. Some of the floating oil slick washed ashore and permeated a coarse gravel beach. A bacterial biomass of 2 to 14 mg/kg appeared in apparent response to the new carbon and energy source. A large population of carbon- and energy-starved, induced hydrocarbon oxidizers with metabolism limited by the physical and molecular recalcitrance of the heavier components is suggested. The effects of a surfactant that was widely applied were unremarkable on a test beach after 1.5 months. Unresolved components appearing in chromatograms from the remaining mixture were characteristic of partial oxidation products. Such compounds, known to accumulate when concentrations of smaller aqueous-phase hydrocarbons exceed the K m , may form in sediments as well

  3. A pilot study to evaluate the safety and clinical performance of Leucopatch, an autologous, additive-free, platelet-rich fibrin for the treatment of recalcitrant chronic wounds

    DEFF Research Database (Denmark)

    Jørgensen, Bo; Karlsmark, Tonny; Vogensen, Hanne

    2011-01-01

    This prospective, uncontrolled pilot study evaluated the safety and clinical performance of Leucopatch an additive-free, autologous platelet-rich fibrin in the treatment of recalcitrant chronic wounds. Fifteen patients, with 16 lower extremity chronic wounds of varying etiologies were treated...... events. Two adverse events, one of noncompliance and one infection, were observed; neither was considered to be related to treatment. The results indicate that Leucopatch is easy to prepare and apply in the clinic, is safe, and may be a clinically effective treatment of recalcitrant chronic wounds....

  4. Biodegradation of petroleum hydrocarbons in hypersaline environments

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Martins

    2012-09-01

    Full Text Available Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.

  5. Process for separating liquid hydrocarbons from waxes

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, F J

    1948-03-08

    A process is described for the separation of liquid hydrocarbons from waxes comprising adding to a mixture of liquid hydrocarbons and waxes a sufficient quantity of an organo-silicon compound to cause the separation of the hydrocarbon and wax. The organo-silicon compounds are selected from the class of organic silicanes and their hydrolysis products and polymers. The silicanes have the formula R/sub y/SiX/sub z/, in which R is a saturated or unsaturated hydrocarbon radical, X is a halogen or another hydrocarbon radical or an -OR group, y has a value 1, 2, or 3 and z has a value 1, 2, or 3.

  6. Tolerance of Antarctic soil fungi to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Kevin A.; Bridge, Paul; Clark, Melody S. [British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET (United Kingdom)

    2007-01-01

    Little is known about the effects of hydrocarbons and fuel oil on Antarctic filamentous fungi in the terrestrial Antarctic environment. Growth of fungi and bacteria from soils around Rothera Research Station (Adelaide Island, Antarctic Peninsula) was assessed in the presence of ten separate aromatic and aliphatic hydrocarbons [marine gas oil (MGO), dodecane, hexadecane, benzoic acid, p-hydroxybenzoic acid, toluene, phenol, biphenyl, naphthalene and m- and p-xylenes with ethylbenzene]. Aromatic hydrocarbons inhibited soil microbial growth more than aliphatic hydrocarbons. Soil microorganisms from a moss patch, where little previous impact or hydrocarbon contamination had occurred, were less tolerant of hydrocarbons than those from high impact sites. Fungal growth rates of Mollisia sp., Penicillium commune, Mortierella sp., Trichoderma koningii, Trichoderma sp. and Phoma herbarum were assessed in the presence of hydrocarbons. Generally, aromatic hydrocarbons inhibited or stopped hyphal extension, though growth rates increased with some aliphatic hydrocarbons. Hyphal dry weight measurements suggested that Mortierella sp. may be able to use dodecane as sole carbon and energy source. Hydrocarbon-degrading Antarctic fungi may have use in future hydrocarbon spill bioremediation. (author)

  7. Hydrocarbon Rocket Technology Impact Forecasting

    Science.gov (United States)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Ever since the Apollo program ended, the development of launch propulsion systems in the US has fallen drastically, with only two new booster engine developments, the SSME and the RS-68, occurring in the past few decades.1 In recent years, however, there has been an increased interest in pursuing more effective launch propulsion technologies in the U.S., exemplified by the NASA Office of the Chief Technologist s inclusion of Launch Propulsion Systems as the first technological area in the Space Technology Roadmaps2. One area of particular interest to both government agencies and commercial entities has been the development of hydrocarbon engines; NASA and the Air Force Research Lab3 have expressed interest in the use of hydrocarbon fuels for their respective SLS Booster and Reusable Booster System concepts, and two major commercially-developed launch vehicles SpaceX s Falcon 9 and Orbital Sciences Antares feature engines that use RP-1 kerosene fuel. Compared to engines powered by liquid hydrogen, hydrocarbon-fueled engines have a greater propellant density (usually resulting in a lighter overall engine), produce greater propulsive force, possess easier fuel handling and loading, and for reusable vehicle concepts can provide a shorter turnaround time between launches. These benefits suggest that a hydrocarbon-fueled launch vehicle would allow for a cheap and frequent means of access to space.1 However, the time and money required for the development of a new engine still presents a major challenge. Long and costly design, development, testing and evaluation (DDT&E) programs underscore the importance of identifying critical technologies and prioritizing investment efforts. Trade studies must be performed on engine concepts examining the affordability, operability, and reliability of each concept, and quantifying the impacts of proposed technologies. These studies can be performed through use of the Technology Impact Forecasting (TIF) method. The Technology Impact

  8. Microbial production of gaseous hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Hideo

    1987-10-20

    Microbial production of ethylene, isobutane and a saturated gaseous hydrocarbon mixture was described. Microbial ethylene production was studied with Penicillium digitatum IFO 9372 and a novel pathway of the ethylene biosynthesis through alpha-ketoglutarate was proposed. Rhodotorula minuta IFO 1102 was selected for the microbial production of isobutane and the interesting actions of L-leucine and L-phenylalanine for the isobutane production were found. It was finally presented about the microbial production of a saturated gaseous hydrocarbon mixture with Rhizopus japonicus IFO 4758 was described. A gas mixture was produced through a chemical reaction of SH compounds and some cellular component such as squalene under aerobic conditions. (4 figs, 7 tabs, 41 refs)

  9. Scottish hydrocarbons: Borders and bounty

    International Nuclear Information System (INIS)

    Roberts, John

    1999-01-01

    On 6 May, the people of Scotland will vote for the country's first parliament in almost three centuries. One issue is expected to arouse particularly strong views: the question of North Sea oil and gas, and who benefits from its production and taxation. Most of these hydrocarbons lie in the northern half of the British Isles, but drawing boundaries to settle contentious issues such as oil and gas fields is not an easy task. And, if boundaries were to be drawn, then a scarcely less contentious subject arises: just how much cash might an independent Scotland expect to receive? Reading between the lines it's clear that in hard cash terms, were Scotland to be independent whilst still retaining the vast bulk of North Sea oilfields, depressed prices would ensure that hydrocarbon tax revenues would be unlikely to constitute a particularly impressive addition to the Scottish Treasury. (UK)

  10. Biofilm-Related Infections: Bridging the Gap between Clinical Management and Fundamental Aspects of Recalcitrance toward Antibiotics

    Science.gov (United States)

    Lebeaux, David; Ghigo, Jean-Marc

    2014-01-01

    SUMMARY Surface-associated microbial communities, called biofilms, are present in all environments. Although biofilms play an important positive role in a variety of ecosystems, they also have many negative effects, including biofilm-related infections in medical settings. The ability of pathogenic biofilms to survive in the presence of high concentrations of antibiotics is called “recalcitrance” and is a characteristic property of the biofilm lifestyle, leading to treatment failure and infection recurrence. This review presents our current understanding of the molecular mechanisms of biofilm recalcitrance toward antibiotics and describes how recent progress has improved our capacity to design original and efficient strategies to prevent or eradicate biofilm-related infections. PMID:25184564

  11. Treatment of hydrocarbon oil vapours

    Energy Technology Data Exchange (ETDEWEB)

    Lamplough, F

    1923-03-01

    An apparatus for treating hydrocarbon vapors for the purpose of preventing dehydrogenation is disclosed which comprises in combination a cooling tower having a vapor inlet at the bottom and a vapor outlet at the top, means to direct the entering vapors laterally in a plurality of jets against an interior side wall or walls of the tower and means to constrain the condensate to gravitate down the tower in the interior wall or walls against which the encountering vapor is forced to impinge.

  12. Deep desulfurization of hydrocarbon fuels

    Science.gov (United States)

    Song, Chunshan [State College, PA; Ma, Xiaoliang [State College, PA; Sprague, Michael J [Calgary, CA; Subramani, Velu [State College, PA

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  13. Characterization of the serological biomarkers associated with Sjögren’s syndrome in patients with recalcitrant dry eye disease

    Directory of Open Access Journals (Sweden)

    Matossian C

    2016-07-01

    Full Text Available Cynthia Matossian,1,2 Joan Micucci1 1Matossian Eye Associates, Doylestown, PA, USA; 2Department of Ophthalmology, Temple University School of Medicine, Philadelphia, PA, USA Purpose: The purpose was to characterize the biomarkers associated with Sjögren’s syndrome (SS identified in the serological samples of patients with recalcitrant dry eye disease; additionally, the modalities utilized in the treatment of dry eye disease were evaluated for subsets of patients with and without SS. Patients and methods: Data for this retrospective, single-center, pilot study were based on a chart review of 48 sequential patients with recalcitrant dry eye who were evaluated for SS via serological analysis. Data presented include the presence of the autoantibodies identified through the serological biomarker analysis and identification of the concurrent dry eye treatment modalities. Results: Eleven out of 48 patients (23% tested positive for biomarkers associated with SS. Autoantibodies for salivary protein-1, parotid secretory protein 1, and carbonic anhydrase VI, markers associated with the early development of SS, were detected in 91% (ten out of eleven of the patients who tested positive for SS, whereas 27% (three out of eleven of patients tested positive for the traditional SS markers, SS-A and/or SS-B. Common treatment modalities utilized in SS patients included omega-3 supplements (82%, topical cyclosporine (74%, and artificial tear solutions (64%, as compared to omega-3 supplements (80%, hot-mask therapy (77%, and artificial tear solutions (77%, in SS-negative patients. Conclusion: Evaluation for salivary protein-1, parotid secretory protein 1, and carbonic anhydrase VI biomarkers allows for identification of a subset of patients with biomarkers associated with SS that may not be identified through the traditional assessments (SS-A/SS-B. Earlier recognition of SS biomarkers allows for a confirmatory diagnosis and appropriate management of this

  14. Immobilization of biogenic Pd(0) in anaerobic granular sludge for the biotransformation of recalcitrant halogenated pollutants in UASB reactors.

    Science.gov (United States)

    Pat-Espadas, Aurora M; Razo-Flores, Elías; Rangel-Mendez, J Rene; Ascacio-Valdes, Juan A; Aguilar, Cristobal N; Cervantes, Francisco J

    2015-10-19

    The capacity of anaerobic granular sludge to reduce Pd(II), using ethanol as electron donor, in an upflow anaerobic sludge blanket (UASB) reactor was demonstrated. Results confirmed complete reduction of Pd(II) and immobilization as Pd(0) in the granular sludge. The Pd-enriched sludge was further evaluated regarding biotransformation of two recalcitrant halogenated pollutants: 3-chloro-nitrobenzene (3-CNB) and iopromide (IOP) in batch and continuous operation in UASB reactors. The superior removal capacity of the Pd-enriched biomass when compared with the control (not exposed to Pd) was demonstrated in both cases. Results revealed 80 % of IOP removal efficiency after 100 h of incubation in batch experiments performed with Pd-enriched biomass whereas only 28 % of removal efficiency was achieved in incubations with biomass lacking Pd. The UASB reactor operated with the Pd-enriched biomass achieved 81 ± 9.5 % removal efficiency of IOP and only 61 ± 8.3 % occurred in the control reactor lacking Pd. Regarding 3-CNB, it was demonstrated that biogenic Pd(0) promoted both nitro-reduction and dehalogenation resulting in the complete conversion of 3-CNB to aniline while in the control experiment only nitro-reduction was documented. The complete biotransformation pathway of both contaminants was proposed by high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis evidencing a higher degree of nitro-reduction and dehalogenation of both contaminants in the experiments with Pd-enriched anaerobic sludge as compared with the control. A biotechnological process is proposed to recover Pd(II) from industrial streams and to immobilize it in anaerobic granular sludge. The Pd-enriched biomass is also proposed as a biocatalyst to achieve the biotransformation of recalcitrant compounds in UASB reactors.

  15. Impact of Restoration of Soil in a Humid Tropical Region on Storage of Organic Carbon in a Recalcitrant Pool

    Science.gov (United States)

    Jyoti Nath, Arun; Brahma, Biplab; Lal, Rattan; Das, Ashesh Kumar

    2017-04-01

    Quantifying soil organic carbon (SOC) changes through restoration of degraded lands is important to assessing the changes in soil properties. However, SOC measures all C fractions and its assessment is not adequate to distinguish between the more dynamic or active C (AC) fractions and the recalcitrant or passive C (PC) form. SOC fractions comprising of the recalcitrant pools have been suggested as a driver for long term soil C sink management. Therefore, the present study was undertaken at a site within the North Eastern India (NEI) region with an objective to explore whether or not SOC fractions change with restoration of degraded lands under humid tropical climate. An age-chronosequence study was established comprising of four different aged rubber plantations (6, 15, 27 and 34 yr. old) planted on Imperata grasslands. The site was selected to study changes in the different fractions of SOC and total SOC stock, and the data were compared with that of a native forest. The data indicated that the SOC stock increased from 106 Mg ha-1 under 6 yr. to 130 Mg ha-1 under 34 yr. old plantations. The SOC stock after 34 yr. of plantation was 20% higher than that under Imperata grassland, but was 34% lower than that under the native forest soil. With respect to lability of C fractions, proportion of AC pool decreased linearly with increase in plantation age from 59 % under 6 yr to 33 % under 34 yr. old plantations. In contrast, proportion of PC pool increased from 41 % of SOC stock under 6 yr. to 67 % of SOC under 34 yr. old plantations, suggesting the significant role of old aged plantation in C sink management.

  16. Ultrasound therapy for recalcitrant diabetic foot ulcers: results of a randomized, double-blind, controlled, multicenter study.

    Science.gov (United States)

    Ennis, William J; Foremann, Phil; Mozen, Neal; Massey, Joi; Conner-Kerr, Teresa; Meneses, Patricio

    2005-08-01

    An estimated 15% of patients with diabetes will develop a foot ulcer sometime in their life, making them 30 to 40 times more likely to undergo amputation due to a non-healing foot ulcer than the non-diabetic population. To determine the safety and efficacy of a new, non-contact, kilohertz ultrasound therapy for the healing of recalcitrant diabetic foot ulcers - as well as to evaluate the impact on total closure and quantitative bacterial cultures and the effect on healing of various levels of sharp/surgical debridement - a randomized, double-blinded, sham-controlled, multicenter study was conducted in hospital-based and private wound care clinics. Patients (55 met criteria for efficacy analysis) received standard of care, which included products that provide a moist environment, offloading diabetic shoes and socks, debridement, wound evaluation, and measurement. The "therapy" was either active 40 KHz ultrasound delivered by a saline mist or a "sham device" which delivered a saline mist without the use of ultrasound. After 12 weeks of care, the proportion of wounds healed (defined as complete epithelialization without drainage) in the active ultrasound therapy device group was significantly higher than that in the sham control group (40.7% versus 14.3%, P = 0.0366, Fisher's exact test). The ultrasound treatment was easy to use and no difference in the number and type of adverse events between the two treatment groups was noted. Of interest, wounds were debrided at baseline followed by a quantitative culture biopsy. The results of these cultures demonstrated a significant bioburden (greater than 10(5)) in the majority of cases, despite a lack of clinical signs of infection. Compared to control, this therapeutic modality was found to increase the healing rate of recalcitrant, diabetic foot ulcers.

  17. Source rock hydrocarbons. Present status

    International Nuclear Information System (INIS)

    Vially, R.; Maisonnier, G.; Rouaud, T.

    2013-01-01

    This report first presents the characteristics of conventional oil and gas system, and the classification of liquid and gaseous non conventional hydrocarbons, with the peculiar case of coal-bed methane. The authors then describe how source rock hydrocarbons are produced: production of shale oils and gases (horizontal drilling, hydraulic fracturing, exploitation) and of coal-bed methane and coal mine methane. In the next part, they address and discuss the environmental impact of source rock hydrocarbon production: installation footprint, water resource management, drilling fluids, fracturing fluids composition, toxicity and recycling, air pollution, induced seismicity, pollutions from other exploitation and production activities. They propose an overview of the exploitation and production of source rock gas, coal-bed gas and other non conventional gases in the world. They describe the current development and discuss their economic impacts: world oil context and trends in the USA, in Canada and other countries, impacts on the North American market, on the world oil industry, on refining industries, on the world oil balance. They analyse the economic impacts of non conventional gases: development potential, stakes for the world gas trade, consequence for gas prices, development opportunities for oil companies and for the transport sector, impact on CO 2 emissions, macro-economic impact in the case of the USA

  18. Combined 595-nm and 1,064-nm laser irradiation of recalcitrant and hypertrophic port-wine stains in children and adults.

    Science.gov (United States)

    Alster, Tina S; Tanzi, Elizabeth L

    2009-06-01

    Although pulsed dye laser (PDL) treatment of port-wine stain (PWS) has long been proven safe and effective, incomplete clearance of these vascular malformations can be problematic. In addition, advanced PWS with deeper coloration and tissue hypertrophy can be particularly difficult to treat because of the superficial dermal penetration of 585- to 595-nm light. The purpose of this study was to evaluate the safety and efficacy of a novel device that delivers sequential pulses of 595- and 1,064-nm wavelengths in the treatment of recalcitrant and hypertrophic PWS. Twenty-five children and adults (skin phototypes I-III) with recalcitrant or hypertrophic PWS showing incomplete clearance after 10 prior PDL treatments were included in the study. Successive treatments using a 595-nm PDL and a 1,064-nm neodymium-doped yttrium-aluminum-garnet (Nd:YAG) laser were delivered at 6- to 8-week intervals. Two masked assessors determined clinical improvement of treatment areas using independent evaluation of comparative photographs at baseline and 3 months after treatment using a standard quartile grading scale. The use of dual 595-/1,064-nm wavelengths provided continued improvement of PWS that were previously recalcitrant to ongoing PDL therapy. Side effects were limited to transient erythema, edema, and mild purpura. Rare vesicle formation was observed, with no subsequent scarring or undesirable pigmentary changes. The novel dual 595-nm PDL and 1,064-nm Nd:YAG laser is an effective treatment for PWS that are recalcitrant to PDL therapy alone.

  19. Effect of the TNF-α inhibitor adalimumab in patients with recalcitrant sarcoidosis: a prospective observational study using FDG-PET

    DEFF Research Database (Denmark)

    Milman, Nils; Graudal, Niels; Loft, Annika

    2012-01-01

    -PET) in patients with recalcitrant sarcoidosis treated with adalimumab. Methods: Prospective 24-week observational study. Patients continued medication with steroids and antimetabolites and received adalimumab 40 mg subcutaneously every other week. Ten patients with biopsy-proven sarcoidosis (two men) were...

  20. Combination treatment of extensive and recalcitrant alopecia areata with oral and topical steroids with topical minoxidil: An open-label study of efficacy and safety in pediatric patients

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Dey

    2016-01-01

    Conclusion: Finding an effective and safe treatment regimen for AA, especially in children is difficult. Our regimen allows for more rapid lowering of oral doses with maintaining the cosmetic response and minimizing the side effects. Therefore, a trial course of this regiment would seem to be a reasonable approach for nearly hopeless but highly motivated pediatric patients of extensive and recalcitrant AA.

  1. A pilot study to evaluate the safety and clinical performance of Leucopatch, an autologous, additive-free, platelet-rich fibrin for the treatment of recalcitrant chronic wounds

    DEFF Research Database (Denmark)

    Jørgensen, Bo; Karlsmark, Tonny; Vogensen, Hanne

    2011-01-01

    This prospective, uncontrolled pilot study evaluated the safety and clinical performance of Leucopatch an additive-free, autologous platelet-rich fibrin in the treatment of recalcitrant chronic wounds. Fifteen patients, with 16 lower extremity chronic wounds of varying etiologies were treated...

  2. Biodegradation Of Polycyclic Aromatic Hydrocarbons In Petroleum Oil Contaminating The Environment

    International Nuclear Information System (INIS)

    Partila, A.M.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in urban atmospheres (Chen et al., 2013). PAHs enter the environment via incomplete combustion of fossil fuels and accidental leakage of petroleum products, and as components of products such as creosote (Muckian et al., 2009). Due to PAHs carcinogenic activity, they have been included in the European Union (EU) and the Environmental Protection Agency (EPA) priority pollutant lists. Human exposure to PAHs occurs in three ways, inhalation, dermal contact and consumption of contaminated foods, which account for 88-98% of such contamination; in other words, diet is the major source of human exposure to these contaminants (Rey-Salgueiro et al., 2008). Both the World Health Organization and the UK Expert Panel on Air Quality Standards (EPAQS) have considered benzo(a)pyrene (BaP) as a marker of the carcinogenic potency of the polycyclic aromatic hydrocarbons (PAH) mixture (Delgado-Saborit et al., 2011). Polycyclic aromatic and heavier aliphatic hydrocarbons, which have a stable recalcitrant molecular structure, exhibit high hydrophobicity and low aqueous solubility, are not readily removed from soil through leaching and volatilization (Brassington et al., 2007). The hydrophobicity of PAHs limits desorption to the aqueous phase (Donlon et al., 2002). Six main ways of dissipation, i.e. disappearance, are recognized in the environment: volatilization, photooxidation, Aim of the Work chemical oxidation, sorption, leaching and biodegradation. Microbial degradation is considered to be the main process involved in the dissipation of PAH (Yuan et al., 2002). Thus, more and more research interests are turning to the biodegradation of PAHs. Some microorganisms can utilize PAHs as a source of carbon and energy so that PAHs can be degraded to carbon dioxide and water, or transformed to other nontoxic or low-toxic substances (Perelo, 2010). Compared with other physical and chemical methods such as combustion

  3. Hydrocarbon Reserves: Abundance or Scarcity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may impact on the growth

  4. Hydrocarbon Reserves: Abundance or Scarcity

    International Nuclear Information System (INIS)

    2005-01-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may impact on the growth

  5. Hydrocarbon Reserves: Abundance or Scarcity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may

  6. Detection of hydrocarbons in irradiated foods

    International Nuclear Information System (INIS)

    Miyahara, Makoto; Maitani, Tamio; Saito, Akiko; Kamimura, Tomomi; Nagasawa, Taeko; Kobayashi, Yasuo; Ito, Hitoshi

    2003-01-01

    The hydrocarbon method for the detection of irradiated foods is now recognized as the international technique. This method is based on radiolysis of fatty acids in food to give hydrocarbons. In order to expand this technique's application, ten foods (butter, cheese, chicken, pork, beef, tuna, dry shrimp, avocado, papaya, and mango) were irradiated in the range from 0.5 to 10 kGy and the hydrocarbons in them were detected. Recoveries of the hydrocarbons from most foods were acceptable (38-128%). Some hydrocarbons were found in non-irradiated foods, particularly, in butter, cheese, tuna, and shrimp. Seven irradiated foods, butter, cheese, chicken, beef, pork, tuna, dry shrimp, and avocado were detectable at their practical doses by measuring the appropriate marker hydrocarbons. In most case, marker hydrocarbon will be 1,7-hexadecadiene. However, the marker hydrocarbons produced only in irradiated foods varied from food to food; therefore, it is necessary to check a specific irradiated food for marker hydrocarbons. On the other hand, two irradiated foods (papaya and mango which were irradiated at their practical doses) were difficult to distinguish from non-irradiated foods using this method. (author)

  7. Detection of hydrocarbons in irradiated foods

    Energy Technology Data Exchange (ETDEWEB)

    Miyahara, Makoto; Maitani, Tamio [National Inst. of Health Sciences, Tokyo (Japan); Saito, Akiko; Kamimura, Tomomi; Nagasawa, Taeko [Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Allied Health Sciences; Kobayashi, Yasuo; Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Establishment

    2003-06-01

    The hydrocarbon method for the detection of irradiated foods is now recognized as the international technique. This method is based on radiolysis of fatty acids in food to give hydrocarbons. In order to expand this technique's application, ten foods (butter, cheese, chicken, pork, beef, tuna, dry shrimp, avocado, papaya, and mango) were irradiated in the range from 0.5 to 10 kGy and the hydrocarbons in them were detected. Recoveries of the hydrocarbons from most foods were acceptable (38-128%). Some hydrocarbons were found in non-irradiated foods, particularly, in butter, cheese, tuna, and shrimp. Seven irradiated foods, butter, cheese, chicken, beef, pork, tuna, dry shrimp, and avocado were detectable at their practical doses by measuring the appropriate marker hydrocarbons. In most case, marker hydrocarbon will be 1,7-hexadecadiene. However, the marker hydrocarbons produced only in irradiated foods varied from food to food; therefore, it is necessary to check a specific irradiated food for marker hydrocarbons. On the other hand, two irradiated foods (papaya and mango which were irradiated at their practical doses) were difficult to distinguish from non-irradiated foods using this method. (author)

  8. Hydrocarbon-degrading sulfate-reducing bacteria in marine hydrocarbon seep sediments

    OpenAIRE

    Kleindienst, Sara

    2012-01-01

    Microorganisms are key players in our biosphere because of their ability to degrade various organic compounds including a wide range of hydrocarbons. At marine hydrocarbon seeps, more than 90% of sulfate reduction (SR) is potentially coupled to non-methane hydrocarbon oxidation. Several hydrocarbon-degrading sulfate-reducing bacteria (SRB) were enriched or isolated from marine sediments. However, in situ active SRB remained largely unknown. In the present thesis, the global distribution and a...

  9. Halogenated hydrocarbons - an environmental problem

    Energy Technology Data Exchange (ETDEWEB)

    Schoeler, H F; Thofern, E

    1984-01-01

    The paper provides a survey of the incidence of highly volatile halogenated hydrocarbons in ground, surface and drinking water as well as in the snows of Western Germany. Almost the entire production of chlorinated solvents is released into the environment. The absorption media are mostly soil, water and atmosphere. Whereas in the atmosphere elimination reactions take place, solvents that have passed the soil get into the ground water owing to their persistence and can cause considerable pollutions of drinking water. Moreover haloforms may occur in drinking water, which are produced during chlorine disinfection of pre-treated water.

  10. Catalytic treatment of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1940-02-23

    A process is described for increasing the octane number of a hydrocarbon oil. The substance is subjected under pressure to a temperature between 800 and 1100/sup 0/C. Catalysts include metal compounds of Groups IV, V, Vi, or VIII (Group VI is perferred). Experiments are performed under a hydrogen atmosphere. Reaction time, temperature, pressure, and partial pressure of the hydrogen are adjusted so that there will be no net hydrogen consumption. The reaction gases (including the products) are recycled in whole or in part to supply the hydrogen gas required.

  11. Catalytic cracking of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1940-09-12

    A process is described for the vapor phase catalytic cracking of hydrocarbon oils boiling substantially in the gas oil range. The reaction takes place in the presence of a solid catalyst between 700 to 900/sup 0/F under pressure between atmospheric and 400 psi. A gas containing between 20 and 90 mol % of free hydrogen is used. The reaction is allowed to proceed until consumption of the free begins. The reaction is discontinued at that point and the catalyst is regenerated for further use.

  12. Performance of a Throttle Cycle Refrigerator with Nitrogen-Hydrocarbon and Argon-Hydrocarbon Mixtures

    Science.gov (United States)

    Venkatarathnam, G.; Senthil Kumar, P.; Srinivasa Murthy, S.

    2004-06-01

    Throttle cycle refrigerators are a class of vapor compression refrigerators that can provide refrigeration at cryogenic temperatures and operate with refrigerant mixtures. The performance of our prototype refrigerators with nitrogen-hydrocarbon, nitrogen-hydrocarbon-helium and argon-hydrocarbon refrigerant mixtures is presented in this paper.

  13. Decontamination of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Smith, A.J.

    1991-01-01

    This patent describes the method of treating hydrocarbon contaminated soil. It comprises forming the soil into a flowing particulate stream, forming an aqueous liquid mixture of water and treating substance that reacts with hydrocarbon to form CO 2 and water, dispersing the liquid mixture into the particulate soil stream to wet the particulate, allowing the substance to react with the wetted soil particulate to thereby form CO 2 and water, thereby the resultant soil is beneficially treated, the stream being freely projected to dwell at a level and then fall, and the dispersing includes spraying the liquid mixture into the projected stream at the dwell, the substance consisting of natural bacteria, and at a concentration level in the mixture of between 100 to 3,000 PPM of bacteria to water, the soil forming step including impacting the soil to reduce it to particles less than about 1 inches in cross dimension, and including forming the wetting particulate into a first layer on a surface to allow the substance to react

  14. Hydrocarbon production with nuclear explosives

    International Nuclear Information System (INIS)

    Wade Watkins, J.

    1970-01-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  15. Hydrocarbon production with nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Wade Watkins, J [Petroleum Research, Bureau of Mines, U.S. Department of the Interior, Washington, DC (United States)

    1970-05-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  16. Unsaturated medium hydrocarbons pollution evaluation

    International Nuclear Information System (INIS)

    Di Luise, G.

    1991-01-01

    When the so called porous unsaturated medium, that's the vertical subsoil section between both the ground and water-table level, is interested by a hydrocarbons spill, the problem to evaluate the pollution becomes difficult: considering, essentially, the natural coexistence in it of two fluids, air and water, and the interactions between them. This paper reports that the problems tend to increase when a third fluid, the pollutant, immiscible with water, is introduced into the medium: a three-phases flow, which presents several analogies with the flow conditions present in an oil-reservoir, will be established. In such a situation, it would be very useful to handle the matter by the commonly used parameters in the oil reservoirs studies such as: residual saturation, relative permeability, phases mobility, to derive a first semiquantitative estimation of the pollution. The subsoil pollution form hydrocarbons agents is one of the worldwide more diffused causes of contamination: such events are generally referable to two main effects: accidental (oil pipeline breakdowns, e.g.), and continuous (underground tanks breaks, industrial plants leakages, e.g.)

  17. Production of hydrogen from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lohmueller, R

    1984-03-01

    Hydrocarbons are the preferred starting materials for the industrial production of hydrogen. Most hydrogen is produced by steam reforming of light hydrocarbons. Partial oxidation of heavy oil and residue is used for the production of H/sub 2/ and synthesis gas in large plants. In both cases gas purification was improved. Hydrogen-rich gases like coke oven gas, refinery-offgas, and offgases from the chemical and petrochemical industry have high potential for becoming a major source of hydrogen. Processes for recovering H/sub 2/ (and by-products) are condensation and rectification at low temperatures and, most attractive and versatile for the production of very pure H/sub 2/, adsorption (PSA). The environmental impact of H/sub 2/ production lies mainly in the emission of CO/sub 2/ and heat. Other forms of pollution can be considerably reduced by conventional methods. The economy of H/sub 2/ production depends essentially on price and availability of the raw materials.

  18. The electrostatic atomization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, A J

    1984-06-01

    Exploitation of the unique and potentially beneficial characteristics of electrostatic atomization in combustion systems has foundered upon the inability of two element, diode devices to operate at flow rates that are larger than a fraction of a millilitre per second. This restriction has been attributed to the high innate electrical resistivity of hydrocarbon fuels. A discussion of proposed electrostatic fuel atomizers and their limitations is presented from the vantage of a recently developed theory of electrostatic spraying. Comparison of theory and experiment reveals the existence of a 'constant of spraying' and the presence of an operational regime in which low charge density droplet development is possible. Operation with hydrocarbons in this regime occurs when the mean droplet size is greater than or equal to 10 ..mu..m and fluid viscosity is below about 250 cp. The resulting spray has a mean droplet size that is functionally dependent only upon the free charge density level of the fluid. Consequently there is no theoretical impediment to the attainment of high flow rate electrostatic atomization with fluids of arbitrary conductivity. Implementation is achieved by a general class of electrostatic spray devices which employ direct charge injection. The Spray Triode, a submerged field-emission electron gun, represents a particularly simple member of this new class of atomizer. Among the Spray Triode operational characteristics to be discussed is insensitivity to spray fluid properties and flow rate.

  19. Primary biodegradation of petroleum hydrocarbons in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Comber, M.I.H.; Den Haan, K.H.; Djemel, N.; Eadsforth, C.V.; King, D.; Paumen, M.L.; Parkerton, T.; Dmytrasz, B.

    2012-12-15

    This report describes primary biodegradation experiments performed to determine the persistence of higher molecular weight petroleum hydrocarbons in seawater. Results from the biodegradation experiments show that the majority of tested petroleum hydrocarbons have half-lives in seawater less than 60 days.

  20. Mechanistic model for microbial growth on hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Mallee, F M; Blanch, H W

    1977-12-01

    Based on available information describing the transport and consumption of insoluble alkanes, a mechanistic model is proposed for microbial growth on hydrocarbons. The model describes the atypical growth kinetics observed, and has implications in the design of large scale equipment for single cell protein (SCP) manufacture from hydrocarbons. The model presents a framework for comparison of the previously published experimental kinetic data.

  1. Identification and Characterisation of Major Hydrocarbons in ...

    African Journals Online (AJOL)

    Identification and Characterisation of Major Hydrocarbons in Thermally Degraded Low Density Polyethylene Films. ... There were alkanes, alkenes, halogenated alkanes, and very few aromatics in the liquid product and, the hydrocarbons were observed to range between C10 - C27. The FTIR and GC-MS results show the ...

  2. Molecular characterization of autochthonous hydrocarbon utilizing ...

    African Journals Online (AJOL)

    Prof. Ogunji

    Materials and Methods ... culturable hydrocarbon utilizing bacteria (HUB) were enumerated by vapour phase ... hydrocarbon utilizing bacterial isolates by boiling method according to ... obtained in this investigation are consistent with past field studies (Kostka et ... Microbial and other related changes in a Niger sediment.

  3. Versatility of hydrocarbon production in cyanobacteria.

    Science.gov (United States)

    Xie, Min; Wang, Weihua; Zhang, Weiwen; Chen, Lei; Lu, Xuefeng

    2017-02-01

    Cyanobacteria are photosynthetic microorganisms using solar energy, H 2 O, and CO 2 as the primary inputs. Compared to plants and eukaryotic microalgae, cyanobacteria are easier to be genetically engineered and possess higher growth rate. Extensive genomic information and well-established genetic platform make cyanobacteria good candidates to build efficient biosynthetic pathways for biofuels and chemicals by genetic engineering. Hydrocarbons are a family of compounds consisting entirely of hydrogen and carbon. Structural diversity of the hydrocarbon family is enabled by variation in chain length, degree of saturation, and rearrangements of the carbon skeleton. The diversified hydrocarbons can be used as valuable chemicals in the field of food, fuels, pharmaceuticals, nutrition, and cosmetics. Hydrocarbon biosynthesis is ubiquitous in bacteria, yeasts, fungi, plants, and insects. A wide variety of pathways for the hydrocarbon biosynthesis have been identified in recent years. Cyanobacteria may be superior chassis for hydrocabon production in a photosynthetic manner. A diversity of hydrocarbons including ethylene, alkanes, alkenes, and terpenes can be produced by cyanobacteria. Metabolic engineering and synthetic biology strategies can be employed to improve hydrocarbon production in cyanobacteria. This review mainly summarizes versatility and perspectives of hydrocarbon production in cyanobacteria.

  4. 33 CFR 157.166 - Hydrocarbon emissions.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hydrocarbon emissions. 157.166 Section 157.166 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.166 Hydrocarbon emissions. If the...

  5. Hydrocarbon formation mechanism during uranium monocarbide hydrolysis

    International Nuclear Information System (INIS)

    Ermolaev, M.I.; Tishchenko, G.V.

    1979-01-01

    The hydrolysis of uranium monocarbide in oxidative media and in the presence of excessive hydrogen in statu nascendi has been investigated. It was found that oxydants promote the formation of elementary carbon, while in the presence of hydrogen the yield of light C-C hydrocarbons increases. EPR data confirm the radical mechanism of hydrocarbons formation during the decomposition of uranium monocarbide

  6. George A. Olah, Carbocation and Hydrocarbon Chemistry

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis George A. Olah, Carbocation and Hydrocarbon Chemistry George Olah received the 1994 Nobel Prize in Chemistry "for his contribution to carbocation chemistry" and his 'role in the chemistry of hydrocarbons. In particular, he developed superacids

  7. Leucoagaricus gongylophorus produces diverse enzymes for the degradation of recalcitrant plant polymers in leaf-cutter ant fungus gardens.

    Science.gov (United States)

    Aylward, Frank O; Burnum-Johnson, Kristin E; Tringe, Susannah G; Teiling, Clotilde; Tremmel, Daniel M; Moeller, Joseph A; Scott, Jarrod J; Barry, Kerrie W; Piehowski, Paul D; Nicora, Carrie D; Malfatti, Stephanie A; Monroe, Matthew E; Purvine, Samuel O; Goodwin, Lynne A; Smith, Richard D; Weinstock, George M; Gerardo, Nicole M; Suen, Garret; Lipton, Mary S; Currie, Cameron R

    2013-06-01

    Plants represent a large reservoir of organic carbon comprised primarily of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous fungus that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and, using genomic and metaproteomic tools, we investigate its role in lignocellulose degradation in the gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in ant gardens and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that likely play an important role in lignocellulose degradation. Our study provides a detailed analysis of plant biomass degradation in leaf-cutter ant fungus gardens and insight into the enzymes underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.

  8. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    International Nuclear Information System (INIS)

    Chan, Wai Kit; Jouët, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-01-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: ► Novel reactor using membranes for ozone distributor, reaction contactor and water separator. ► Designed to achieve an order of magnitude enhancement over traditional reactor. ► Al 2 O 3 and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. ► High surface area coating prevents polarization and improves membrane separation and life.

  9. Electrochemical oxidation of recalcitrant organic compounds in biologically treated municipal solid waste leachate in a flow reactor.

    Science.gov (United States)

    Quan, Xuejun; Cheng, Zhiliang; Chen, Bo; Zhu, Xincai

    2013-10-01

    Biologically-treated municipal solid waste (MSW) leachate still contains many kinds of bio-recalcitrant organic matter. A new plate and frame electrochemical reactor was designed to treat these materials under flow conditions. In the electrochemical oxidation process, NH3 and color could be easily removed by means of electro-generated chlorine/hypochlorite within 20 min. The effects of major process parameters on the removal of organic pollutants were investigated systematically. Under experimental conditions, the optimum operation parameters were current density of 65 mA/cm2, flow velocity of 2.6 cm/sec in electrode gap, and initial chloride ion concentration of 5000 mg/L. The COD in the leachate could be reduced below 100 mg/L after 1 hr of treatment. The kinetics and mechanism of COD removal were investigated by simultaneously monitoring the COD change and chlorine/hypochlorite production. The kinetics of COD removal exhibited a two-stage kinetic model, and the decrease of electro-generated chlorine/hypochlorite production was the major mechanism for the slowing down of the COD removal rate in the second stage. The narrowing of the electrode gap is beneficial for COD removal and energy consumption.

  10. Performance of sulphate- and selenium-reducing biochemical reactors using different ratios of labile to recalcitrant organic materials.

    Science.gov (United States)

    Mirjafari, Parissa; Baldwin, Susan A

    2015-01-01

    Successful operation of sulphate-reducing bioreactors using complex organic materials depends on providing a balance between more easily degrading material that achieves reasonable kinetics and low hydraulic retention times, and more slowly decomposing material that sustains performance in the long term. In this study, two organic mixtures containing the same ingredients typical of bioreactors used at mine sites (woodchips, hay and cow manure) but with different ratios of wood (recalcitrant) to hay (labile) were tested in six continuous flow bioreactors treating synthetic mine-affected water containing 600 mg/L of sulphate and 15 μg/L of selenium. The reactors were operated for short (5-6 months) and long (435-450 days) periods of time at the same hydraulic retention time of 15 days. There were no differences in the performance of the bioreactors in terms of sulphate-reduction over the short term, but the wood-rich bioreactors experienced variable and sometimes unreliable sulphate-reduction over the long term. Presence of more hay in the organic mixture was able to better sustain reliable performance. Production of dissolved organic compounds due to biodegradation within the bioreactors was detected for the first 175-230 days, after which their depletion coincided with a crash phase observed in the wood-rich bioreactors only.

  11. Improvement in Saccharification Yield of Mixed Rumen Enzymes by Identification of Recalcitrant Cell Wall Constituents Using Enzyme Fingerprinting.

    Science.gov (United States)

    Badhan, Ajay; Wang, Yu-Xi; Gruninger, Robert; Patton, Donald; Powlowski, Justin; Tsang, Adrian; McAllister, Tim A

    2015-01-01

    Identification of recalcitrant factors that limit digestion of forages and the development of enzymatic approaches that improve hydrolysis could play a key role in improving the efficiency of meat and milk production in ruminants. Enzyme fingerprinting of barley silage fed to heifers and total tract indigestible fibre residue (TIFR) collected from feces was used to identify cell wall components resistant to total tract digestion. Enzyme fingerprinting results identified acetyl xylan esterases as key to the enhanced ruminal digestion. FTIR analysis also suggested cross-link cell wall polymers as principal components of indigested fiber residues in feces. Based on structural information from enzymatic fingerprinting and FTIR, enzyme pretreatment to enhance glucose yield from barley straw and alfalfa hay upon exposure to mixed rumen-enzymes was developed. Prehydrolysis effects of recombinant fungal fibrolytic hydrolases were analyzed using microassay in combination with statistical experimental design. Recombinant hemicellulases and auxiliary enzymes initiated degradation of plant structural polysaccharides upon application and improved the in vitro saccharification of alfalfa and barley straw by mixed rumen enzymes. The validation results showed that microassay in combination with statistical experimental design can be successfully used to predict effective enzyme pretreatments that can enhance plant cell wall digestion by mixed rumen enzymes.

  12. Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes.

    Science.gov (United States)

    Salony; Mishra, S; Bisaria, V S

    2006-08-01

    Many fungi (particularly the white rot) are well suited for treatment of a broad range of textile dye effluents due to the versatility of the lignin-degrading enzymes produced by them. We have investigated decolourization of a number of recalcitrant reactive azo and acid dyes using the culture filtrate and purified laccase from the fungus Cyathus bulleri. For this, the enzyme was purified from the culture filtrate to a high specific activity of 4,022 IU mg(-1) protein, produced under optimized carbon, nitrogen and C/N ratio with induction by 2,6-dimethylaniline. The protein was characterized as a monomer of 58+/-5.0 kDa with carbohydrate content of 16% and was found to contain all three Cu(II) centres. The three internal peptide sequences showed sequence identity (80-92%) with laccases of a number of white rot fungi. Substrate specificity indicated highest catalytic efficiency (k(cat)/K(M)) on guaiacol followed by 2,2'-azino-bis(3-ethylthiazoline-6-sulfonic acid) (ABTS). Decolourization of a number of reactive azo and acid dyes was seen with the culture filtrate of the fungus containing predominantly laccase. In spite of no observable effect of purified laccase on other dyes, the ability to decolourize these was achieved in the presence of the redox mediator ABTS, with 50% decolourization in 0.5-5.4 days.

  13. Rehabilitation for a child with recalcitrant anti-N-methyl-d-aspartate receptor encephalitis: case report and literature review

    Science.gov (United States)

    Guo, Yao-Hong; Kuan, Ta-Shen; Hsieh, Pei-Chun; Lien, Wei-Chih; Chang, Chun-Kai; Lin, Yu-Ching

    2014-01-01

    Anti-N-methyl-d-aspartate (anti-NMDA) receptor encephalitis is a newly recognized, potentially fatal, but treatable autoimmune disease. Good outcome predictors include milder severity of symptoms, no need for intensive care unit admission, early aggressive immunotherapy, and prompt tumor removal. We report a case of a young girl aged 3 years 2 months and diagnosed as recalcitrant anti-NMDA receptor encephalitis without any underlying neoplasm. The patient had initial symptoms of behavioral changes that progressed to generalized choreoathetosis and orofacial dyskinesia, which resulted in 6 months of hospitalization in the pediatric intensive care unit. One year after initial onset of the disease, she had only achieved the developmental age of an infant aged 6–8 months in terms of gross and fine motor skills, but she resumed total independence in activities of daily living after receiving extensive immunotherapy and 28 months of rehabilitation. Our brief review will help clinical practitioners become more familiar with this disease and the unique rehabilitation programs. PMID:25473290

  14. Reuse of recalcitrant-rich anaerobic effluent as dilution water after enhancement of biodegradability by Fenton processes.

    Science.gov (United States)

    Arimi, Milton M; Zhang, Yongjun; Namango, Saul S; Geißen, Sven-Uwe

    2016-03-01

    Anaerobic digestion is used to treat effluents with a lot of organics, such as molasses distillery wastewater (MDW) which is the effluent of bioethanol production from molasses. The raw MDW requires a lot of dilution water before biodigestion, while the digested MDW has high level of recalcitrants which are problematic for its discharge. This study investigated ferric coagulation, Fenton, Fenton-like (with ferric ions as catalyst) processes and their combinations on the biodegradability of digested MDW. The Fenton and Fenton-like processes after coagulation increased the MDW biodegradability defined by (BOD5/COD) from 0.07 to (0.4-0.6) and saved 50% of H2O2 consumed in the classic Fenton process. The effluent from coagulation coupled to a Fenton-like process was used as dilution water for the raw MDW before the anaerobic digestion. The process was stable with volumetric loading of approx. 2.7 g COD/L/d. It resulted in increased overall biogas recovery and significantly decreased the demand for the dilution water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Efficient extraction of proteins from recalcitrant plant tissue for subsequent analysis by two-dimensional gel electrophoresis.

    Science.gov (United States)

    Parkhey, Suruchi; Chandrakar, Vibhuti; Naithani, S C; Keshavkant, S

    2015-10-01

    Protein extraction for two-dimensional electrophoresis from tissues of recalcitrant species is quite problematic and challenging due to the low protein content and high abundance of contaminants. Proteomics in Shorea robusta is scarcely conducted due to the lack of a suitable protein preparation procedure. To establish an effective protein extraction protocol suitable for two-dimensional electrophoresis in Shorea robusta, four procedures (borate buffer/trichloroacetic acid extraction, organic solvent/trichloroacetic acid precipitation, sucrose/Tris/phenol, and organic solvent/phenol/sodium dodecyl sulfate) were evaluated. Following these, proteins were isolated from mature leaves and were analyzed for proteomics, and also for potential contaminants, widely reported to hinder proteomics. The borate buffer/trichloroacetic acid extraction had the lowest protein yield and did not result in any banding even in one-dimensional electrophoresis. In contrast, organic solvent/phenol/sodium dodecyl sulfate extraction allowed the highest protein yield. Moreover, during proteomics, organic solvent/phenol/sodium dodecyl sulfate extracted protein resolved the maximum number (144) of spots. Further, when proteins were evaluated for contaminants, significant (77-95%) reductions in the nucleic acids, phenol, and sugars were discernible with refinement in extraction procedure. Accumulated data suggested that the organic solvent/phenol/sodium dodecyl sulfate extraction was the most effective protocol for protein isolation for proteomics of Shorea robusta and can be used for plants that have a similar set of contaminants. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, Frank O. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burnum-Johnson, Kristin E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tringe, Susannah G. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Teiling, Clotilde [Roche Diagnostics, Indianapolis, IN (United States); Tremmel, Daniel [Univ. of Wisconsin, Madison, WI (United States); Moeller, Joseph [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scott, Jarrod J. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barry, Kerrie W. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Piehowski, Paul D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nicora, Carrie D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Malfatti, Stephanie [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Monroe, Matthew E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Purvine, Samuel O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Goodwin, Lynne A. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weinstock, George [Washington Univ. School of Medicine, St. Louis, MS (United States); Gerardo, Nicole [Emory Univ., Atlanta, GA (United States); Suen, Garret [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Lipton, Mary S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Currie, Cameron R. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smothsonian Tropical Research Inst., Balboa (Panama)

    2013-06-12

    Plants represent a large reservoir of organic carbon comprised largely of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate fungus gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous symbiont that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and using genomic, metaproteomic, and phylogenetic tools we investigate its role in lignocellulose degradation in the fungus gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in fungus gardens, and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that may be playing an important but previously uncharacterized role in lignocellulose degradation. Our study provides a comprehensive analysis of plant biomass degradation in leaf-cutter ant fungus gardens and provides insight into the molecular dynamics underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.

  17. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    International Nuclear Information System (INIS)

    Haritash, A.K.; Kaushik, C.P.

    2009-01-01

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H 2 O, CO 2 (aerobic) or CH 4 (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate can

  18. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    Energy Technology Data Exchange (ETDEWEB)

    Haritash, A.K., E-mail: akharitash@gmail.com [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India); Kaushik, C.P. [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India)

    2009-09-30

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H{sub 2}O, CO{sub 2} (aerobic) or CH{sub 4} (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions

  19. Photodynamic activity of polycyclic hydrocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, S S

    1963-01-01

    Exposure of Paramecium caudatum to suspensions of 3,4-benzopyrene, followed by long wave ultraviolet irradiation, results in cell death at times related, inter alia, to carcinogen concentration. Prior to death, the cells exhibit progressive immobilization and blebbing. This photodynamic response is a sensitized photo-oxidation, as it is oxygen-dependent and inhibited by anti-oxidants, such as butylated hydroxy anisole and ..cap alpha..-tocopherol. Protection is also afforded by other agents, including Tweens, tryptophan and certain fractions of plasma proteins. No evidence was found for the involvement of peroxides or sulfhydryl groups. The correlations between photodynamic toxicity and carcinogenicity in a large series of polycyclic hydrocarbons is under investigation. Assays of air extracts for photodynamic toxicity are in progress. Significant toxicity has been found in oxygenated besides aromatic fractions.

  20. Significance of Lignin S/G Ratio in Biomass Recalcitrance of Populus trichocarpa Variants for Bioethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Chang Geun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dumitrache, Alexandru [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Muchero, Wellington [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Natzke, Jace [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Akinosho, Hannah [Georgia Inst. of Technology, Atlanta, GA (United States); Li, Mi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sykes, Robert W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brown, Steven D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Davison, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tuskan, Gerald A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pu, Yunqiao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ragauskas, Arthur J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2017-12-11

    Lignin S/G ratio has been investigated as an important factor in biomass recalcitrance to bioethanol production. Because of the complexity and variety of biomass, recalcitrance was also reportedly influenced by several other factors, such as total lignin content, degree of cellulose polymerization, etc. In addition, the effect of S/G ratio on biomass conversion is not uniform across plant species. Herein, 11 Populus trichocarpa natural variants grown under the same conditions with similar total lignin content were selected to minimize the effects of other factors. The lignin S/G ratio of the selected P. trichocarpa natural variants showed negative correlations with p-hydroxybenzoate (PB) and β–5 linkage contents, while it had positive ones with β-O-4 linkage, lignin molecular weight, and ethanol production. In conclusion, this study showed the importance of lignin S/G ratio as an independent recalcitrance factor that may aid future energy crop engineering and biomass conversion strategies.

  1. The effectiveness of long-pulse 1064 nm neoymium-doped yttrium aluminum garnet laser for recalcitrant palmoplantar and ungual warts

    Directory of Open Access Journals (Sweden)

    Ali Balevi

    2015-12-01

    Full Text Available Background and Design: Some of palmoplantar and ungual warts are resistant to conventional treatments. In this study, we aimed to investigate the efficacy of non-ablative 1064 nm long pulsed neoymium-doped yttrium aluminum garnet (Nd: YAG laser treatment on recalcitrant palmoplantar and ungual warts. Materials and Methods: Sixty-three patients with recalcitrant palmar, plantar and ungual warts were included in the study. Laser is applied in 4 sessions at 4-week intervals. The study employed the Nd: YAG (80 W. The following parameters were used: spot size: 4 mm; pulse duration: 15 msec; and fluence: 150 J/cm2. Treatment responses were evaluated statistically and side effects were recorded. Results: The number of patients who were completely cleaned and partially cleaned were 37 (66% and 15 (26%, respectively. Four patients (4% did not respond to treatment. In statistical analysis, there were no significant differences in palmar, plantar or ungual sites in term of complete clearance (p=0.20, p=0.82 and p=0.94, respectively. In addition, there was no association between the number of lesions and complete clearance (p=0.97. Conclusion: Long-pulsed Nd: YAG laser, which does not affect daily activity, is a safe and alternative method and may be recommended for patients with recalcitrant palmoplantar and ungual warts.

  2. Complete remission of recalcitrant genital warts with a combination approach of surgical debulking and oral isotretinoin in a patient with systemic lupus erythematosus.

    Science.gov (United States)

    Yew, Yik Weng; Pan, Jiun Yit

    2014-01-01

    Genital warts in immunocompromised patients can be extensive and recalcitrant to treatment. We report a case of recalcitrant genital warts in a female patient with systemic lupus erythematosus (SLE), who achieved complete remission with a combination approach of surgical debulking and oral isotretinoin at an initial dose of 20 mg/day with a gradual taper of dose over 8 months. She had previously been treated with a combination of topical imiquimod cream and regular fortnightly liquid nitrogen. Although there was partial response, there was no complete clearance. Her condition worsened after topical imiquimod cream was stopped because of her pregnancy. She underwent a combination approach of surgical debulking and oral isotretinoin after her delivery and achieved full clearance for more than 2 years duration. Oral isotretinoin, especially in the treatment of recalcitrant genital warts, is a valuable and feasible option when other more conventional treatment methods have failed or are not possible. It can be used alone or in combination with other local or physical treatment methods. © 2013 Wiley Periodicals, Inc.

  3. Polycyclic aromatic hydrocarbons degradation by marine-derived basidiomycetes: optimization of the degradation process.

    Science.gov (United States)

    Vieira, Gabriela A L; Magrini, Mariana Juventina; Bonugli-Santos, Rafaella C; Rodrigues, Marili V N; Sette, Lara D

    2018-05-03

    Pyrene and benzo[a]pyrene (BaP) are high molecular weight polycyclic aromatic hydrocarbons (PAHs) recalcitrant to microbial attack. Although studies related to the microbial degradation of PAHs have been carried out in the last decades, little is known about degradation of these environmental pollutants by fungi from marine origin. Therefore, this study aimed to select one PAHs degrader among three marine-derived basidiomycete fungi and to study its pyrene detoxification/degradation. Marasmiellus sp. CBMAI 1062 showed higher levels of pyrene and BaP degradation and was subjected to studies related to pyrene degradation optimization using experimental design, acute toxicity, organic carbon removal (TOC), and metabolite evaluation. The experimental design resulted in an efficient pyrene degradation, reducing the experiment time while the PAH concentration applied in the assays was increased. The selected fungus was able to degrade almost 100% of pyrene (0.08mgmL -1 ) after 48h of incubation under saline condition, without generating toxic compounds and with a TOC reduction of 17%. Intermediate metabolites of pyrene degradation were identified, suggesting that the fungus degraded the compound via the cytochrome P450 system and epoxide hydrolases. These results highlight the relevance of marine-derived fungi in the field of PAH bioremediation, adding value to the blue biotechnology. Copyright © 2018. Published by Elsevier Editora Ltda.

  4. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil

    Energy Technology Data Exchange (ETDEWEB)

    Zakia D. Parrish; M. Katherine Banks; A. Paul Schwab [Connecticut Agricultural Experiment Station, New Haven, CT (United States). Department of Soil and Water

    2005-09-15

    Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant compounds, some of which are known carcinogens, often found in high residual soil concentrations at industrial sites. Recent research has confirmed that phytoremediation holds promise as a low-cost treatment method for PAH contaminated soil. In this study, the lability of soil bound PAHs in the rhizosphere was estimated using solid phase extraction resin. An extraction time of 14 days was determined to be appropriate for this study. Resin-extractable PAHs, which are assumed to be more bioavailable, decreased during plant treatments. Significant reductions in the labile concentrations of several PAH compounds occurred over 12 months of plant growth. The differences in concentration between the unplanted and the planted soil indicate that the presence of plant roots, in addition to the passage of time, contributes to reduction in the bioavailability of target PAHs. The lability of sorbed contaminants is modified by the presence of plants. Remediation coupled with plant treatment can change the bioavailability of contaminants in soil.

  5. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, Zakia D. [Department of Soil and Water, Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511 (United States); Banks, M. Katherine [School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051 (United States)]. E-mail: kbanks@ecn.purdue.edu; Schwab, A. Paul [Department of Agronomy, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054 (United States)

    2005-09-15

    Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant compounds, some of which are known carcinogens, often found in high residual soil concentrations at industrial sites. Recent research has confirmed that phytoremediation holds promise as a low-cost treatment method for PAH contaminated soil. In this study, the lability of soil bound PAHs in the rhizosphere was estimated using solid phase extraction resin. An extraction time of 14 days was determined to be appropriate for this study. Resin-extractable PAHs, which are assumed to be more bioavailable, decreased during plant treatments. Significant reductions in the labile concentrations of several PAH compounds occurred over 12 months of plant growth. The differences in concentration between the unplanted and the planted soil indicate that the presence of plant roots, in addition to the passage of time, contributes to reduction in the bioavailability of target PAHs. - The lability of sorbed contaminants is modified by the presence of plants. Remediation coupled with plant treatment can change the bioavailability of contaminants in soil.

  6. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil

    International Nuclear Information System (INIS)

    Parrish, Zakia D.; Banks, M. Katherine; Schwab, A. Paul

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant compounds, some of which are known carcinogens, often found in high residual soil concentrations at industrial sites. Recent research has confirmed that phytoremediation holds promise as a low-cost treatment method for PAH contaminated soil. In this study, the lability of soil bound PAHs in the rhizosphere was estimated using solid phase extraction resin. An extraction time of 14 days was determined to be appropriate for this study. Resin-extractable PAHs, which are assumed to be more bioavailable, decreased during plant treatments. Significant reductions in the labile concentrations of several PAH compounds occurred over 12 months of plant growth. The differences in concentration between the unplanted and the planted soil indicate that the presence of plant roots, in addition to the passage of time, contributes to reduction in the bioavailability of target PAHs. - The lability of sorbed contaminants is modified by the presence of plants. Remediation coupled with plant treatment can change the bioavailability of contaminants in soil

  7. Distribution of hydrocarbon-utilizing microorganisms and hydrocarbon biodegradation potentials in Alaskan continental shelf areas

    International Nuclear Information System (INIS)

    Roubal, G.; Atlas, R.M.

    1978-01-01

    Hydrocarbon-utilizing microogranisms were enumerated from Alaskan continental shelf areas by using plate counts and a new most-probable-number procedure based on mineralization of 14 C-labeled hydrocarbons. Hydrocarbon utilizers were ubiquitously distributed, with no significant overall concentration differences between sampling regions or between surface water and sediment samples. There were, however, significant seasonal differences in numbers of hydrocarbon utilizers. Distribution of hydrocarbon utilizers within Cook Inlet was positively correlated with occurrence of hydrocarbons in the environment. Hydrocarbon biodegradation potentials were measured by using 14 C-radiolabeled hydrocarbon-spiked crude oil. There was no significant correlation between numbers of hydrocarbon utilizers and hydrocarbon biodegradation potentials. The biodegradation potentials showed large seasonal variations in the Beaufort Sea, probably due to seasonal depletion of available nutrients. Non-nutrient-limited biodegradation potentials followed the order hexadecane > naphthalene >> pristane > benzanthracene. In Cook Inlet, biodegradation potentials for hexadecane and naphthalene were dependent on availability of inorganic nutrients. Biodegradation potentials for pristane and benzanthracene were restricted, probably by resistance to attack by available enzymes in the indigenous population

  8. Hydrocarbon pollution from marinas in estuarine sediments

    Science.gov (United States)

    Voudrias, Evangelos A.; Smith, Craig L.

    1986-03-01

    A measure of the impact of marinas on three Eastern Virginia estuarine creeks was obtained by a study of hydrocarbons in their sediments. Two of the creeks support considerable marine activity, including pleasure boat marinas, boat repair facilities, and commercial fishing operations. The third creek, which served as a control, is seldom used by boats, and is surrounded by marsh and woodland. Sediments from the creeks with marinas contained significantly higher levels of both aromatic and aliphatic hydrocarbons than did the control. Differences in the concentrations of certain oil-pollution indicators, such as the 17α,21β-hopane homologs and phytane, and low molecular weight aromatic hydrocarbons, are indicative of light petroleum fractions. Most of the aromatic hydrocarbons from all creeks, however, appear to have a pyrogenic origin. Although hydrocarbons from three probable origins (petroleum, pyrogenesis, and recent biosynthesis) were detected in all locations, the petroleum-derived and pyrogenic hydrocarbons were of only minor importance relative to the biogenic hydrocarbons in the control creek.

  9. Detection of irradiated meats by hydrocarbon method

    International Nuclear Information System (INIS)

    Goto, Michiko; Miyakawa, Hiroyuki; Fujinuma, Kenji; Ozawa, Hideki

    2005-01-01

    Meats, for example, lamb, razorback, wild duck and turkey were irradiated by gamma ray, and the amounts of hydrocarbons formed from fatty acids were measured. Since C 20:0 was found from wild duck and turkey. C 1-18:1 was recommended for internal standard. Good correlation was found between the amount of hydrocarbons and the doses of gamma irradiation. This study shows that such hydrocarbons induced after radiation procedure as C 1,7-16:2 , C 8-17:1 , C 1-14:1 , and C 15:0 may make it possible to detect irradiated lamb, razorback, wild duck and turkey. (author)

  10. Process for recovery of liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Millar, J.F.; Cockshott, J.E.

    1978-04-11

    Methane is recovered as a gas for discharge to a pipeline from a gas stream containing methane and heavier hydrocarbons, principally ethane and propane. Separation is accomplished by condensing the heavier hydrocarbons and distilling the methane therefrom. A liquid product (LPG) comprising the heavier hydrocarbons is subsequently recovered and transferred to storage. Prior to being discharged to a pipeline, the recovered methane gas is compressed and in undergoing compression the gas is heated. The heat content of the gas is employed to reboil the refrigerant in an absorption refrigeration unit. The refrigeration unit is used to cool the LPG prior to its storage.

  11. Method of recovering hydrocarbons from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D.K.; Slusser, M.S.

    1970-11-24

    A method is described for recovering hydrocarbons from an oil-shale formation by in situ retorting. A well penetrating the formation is heated and gas is injected until a pressure buildup within the well is reached, due to a decrease in the conductivity of naturally occurring fissures within the formation. The well is then vented, in order to produce spalling of the walls. This results in the formation of an enlarged cavity containing rubberized oil shale. A hot gas then is passed through the rubberized oil shale in order to retort hydrocarbons and these hydrocarbons are recovered from the well. (11 claims)

  12. The offshore hydrocarbon releases (HCR) database

    International Nuclear Information System (INIS)

    Bruce, R.A.P.

    1995-01-01

    Following Cullen Recommendation 39 which states that: ''The regulatory body should be responsible for maintaining a database with regard to hydrocarbon leaks, spills, and ignitions in the Industry and for the benefit of Industry'', HSE Offshore Safety Division (HSE-OSD) has now been operating the Hydrocarbon Releases (HCR) Database for approximately 3 years. This paper deals with the reporting of Offshore Hydrocarbon Releases, the setting up of the HCR Database, the collection of associated equipment population data, and the main features and benefits of the database, including discussion on the latest output information. (author)

  13. Waste Plastic Converting into Hydrocarbon Fuel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin; Mamunor Rashid, Mohammad; Molla, Mohammad

    2010-09-15

    The increased demand and high prices for energy sources are driving efforts to convert organic compounds into useful hydrocarbon fuels. Although much of this work has focused on biomass, there are strong benefits to deriving fuels from waste plastic material. Natural State Research Inc. (NSR) has invented a simple and economically viable process to decompose the hydrocarbon polymers of waste plastic into the shorter chain hydrocarbon of liquid fuel (patent pending). The method and principle of the production / process will be discussed. Initial tests with several widely used polymers indicate a high potential for commercialization.

  14. Conversion of hydrocarbon oils into motor fuels

    Energy Technology Data Exchange (ETDEWEB)

    1937-11-09

    The abstract describes a process for producing lower boiling hydrocarbon motor fuels with a starting material of wide boiling range composed primarily of hydrocarbon oils boiling substantially above the boiling range of the desired product. Separate catalytic and pyrolytic conversion zones are simultaneously maintained in an interdependent relationship. Higher boiling constituents are separated from residual constituents by fractionation while desirable reaction conditions are maintained. All or at least a portion of the products from the catalytic and pyrolytic conversion zones are blended to yield the desired lower boiling hydrocarbons or motor fuels.

  15. Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Vega-Sánchez, Miguel E. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Loqué, Dominique [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Lao, Jeemeng [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Catena, Michela [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Verhertbruggen, Yves [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Herter, Thomas [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Yang, Fan [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Harholt, Jesper [Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C Denmark; Ebert, Berit [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C Denmark; Baidoo, Edward E. K. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Keasling, Jay D. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Department of Chemical and Biomolecular Engineering, and Department of Bioengineering, University of California, Berkeley CA USA; Scheller, Henrik V. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Department of Plant and Microbial Biology, University of California, Berkeley CA USA; Heazlewood, Joshua L. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Ronald, Pamela C. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Department of Plant Pathology and the Genome Center, University of California, Davis CA USA

    2015-01-14

    Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed-linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both β-1,3 and β-1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio-temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing the rice CslF6 MLG synthase using secondary cell wall and senescence-associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence-associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops.

  16. Content and carbon stocks in labile and recalcitrant organic matter of the soil under crop-livestock integration in Cerrado

    Directory of Open Access Journals (Sweden)

    Itaynara Batista

    2013-12-01

    Full Text Available The study of organic matter and its compartments and their relationship with management, aims to develop strategies for increasing their levels in soils and better understanding of its dynamics. This work aimed to evaluate the fractions of soil organic matter and their carbon stocks in different soil cover system in crop-livestock integration and native Cerrado vegetation. The study was conducted at the farm Cabeceira, Maracajú – MS, sample area have the following history: soybean/corn + brachiaria/cotton/oat + pasture/soybean/formation of pasture/grazing, sampling was carried out in two seasons, dry (May/2009 and rainy (March 2010, in the dry season, crops present were: pasture, corn and cotton + brachiaria and in the rainy season were corn, cotton and soybeans, so the areas in the two evaluation periods were: pasture / maize + brachiaria / cotton, cotton / soybean area and a native of Savanna. Was performed to determine the exchangeable cations, particle size analysis, bulk density, organic carbon, particle size fractionation of organic matter of the soil with the quantification of particulate organic carbon (POC and organic carbon associated with minerals (OCam. Was also quantified the carbon stock and size fractions. The area of pasture / maize showed higher carbon stock in the particulate fraction in the topsoil. The area of cotton / soy due to its lower clay, showed the greatest loss of carbon. Because of the areas have the same history, the stock of more recalcitrant fraction was not sensitive to variations in coverage. The POC fraction appears more sensitive to different soil covers and seasonality.

  17. A Global Assessment of the Chemical Recalcitrance of Seagrass Tissues: Implications for Long-Term Carbon Sequestration

    Directory of Open Access Journals (Sweden)

    Stacey M. Trevathan-Tackett

    2017-06-01

    Full Text Available Seagrass ecosystems have recently been identified for their role in climate change mitigation due to their globally-significant carbon sinks; yet, the capacity of seagrasses to sequester carbon has been shown to vary greatly among seagrass ecosystems. The recalcitrant nature of seagrass tissues, or the resistance to degradation back into carbon dioxide, is one aspect thought to influence sediment carbon stocks. In this study, a global survey investigated how the macromolecular chemistry of seagrass leaves, sheaths/stems, rhizomes and roots varied across 23 species from 16 countries. The goal was to understand how this seagrass chemistry might influence the capacity of seagrasses to contribute to sediment carbon stocks. Three non-destructive analytical chemical analyses were used to investigate seagrass chemistry: thermogravimetric analysis (TGA and solid state 13C-NMR and infrared spectroscopy. A strong latitudinal influence on carbon quality was found, whereby temperate seagrasses contained 5% relatively more labile carbon, and tropical seagrasses contained 3% relatively more refractory carbon. Sheath/stem tissues significantly varied across taxa, with larger morphologies typically containing more refractory carbon than smaller morphologies. Rhizomes were characterized by a higher proportion of labile carbon (16% of total organic matter compared to 8–10% in other tissues; however, high rhizome biomass production and slower remineralization in anoxic sediments will likely enhance these below-ground tissues' contributions to long-term carbon stocks. Our study provides a standardized and global dataset on seagrass carbon quality across tissue types, taxa and geography that can be incorporated in carbon sequestration and storage models as well as ecosystem valuation and management strategies.

  18. High taxonomic diversity of cultivation-recalcitrant endophytic bacteria in grapevine field shoots, their in vitro introduction, and unsuspected persistence.

    Science.gov (United States)

    Thomas, Pious; Sekhar, Aparna C; Shaik, Sadiq Pasha

    2017-11-01

    corroborated enormous endophytic bacteria. This study elucidates a vast diversity of cultivation-recalcitrant endophytic bacteria prevailing in grapevine field shoots, their in vitro introduction, and unsuspecting sustenance with possible silent participation in tissue culture processes.

  19. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities.

    Science.gov (United States)

    Fan, Lu; Brett, Michael T; Jiang, Wenju; Li, Bo

    2017-10-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L -1 . Nitrate (NO 3 - ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 -  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Sequestration of maize crop straw C in different soils: role of oxyhydrates in chemical binding and stabilization as recalcitrance.

    Science.gov (United States)

    Song, Xiangyun; Li, Lianqing; Zheng, Jufeng; Pan, Genxing; Zhang, Xuhui; Zheng, Jinwei; Hussain, Qaiser; Han, Xiaojun; Yu, Xinyan

    2012-05-01

    While biophysical controls on the sequestration capacity of soils have been well addressed with physical protection, chemical binding and stabilization processes as well as microbial community changes, the role of chemical binding and stabilization has not yet well characterized for soil organic carbon (SOC) sequestration in rice paddies. In this study, a 6-month laboratory incubation with and without maize straw amendment (MSA) was conducted using topsoil samples from soils with different clay mineralogy and free oxy-hydrate contents collected across Southern China. The increase in SOC under MSA was found coincident with that in Fe- and Al-bound OC (Fe/Al-OC) after incubation for 30 d (R(2)=0.90, P=0.05), and with sodium dithionate-citrate-bicarbonate (DCB) extractable Fe after incubation for 180 d (R(2)=0.99, Psoils rich in DCB extractable Fe than those poor in DCB extractable Fe. The greater SOC sequestration in soils rich in DCB extractable Fe was further supported by the higher abundance of (13)C which was a natural signature of MSA. Moreover, a weak positive correlation of the increased SOC under MSA with the increased humin (R(2)=0.87, P=0.06) observed after incubation for 180 d may indicate a chemical stabilization of sequestered SOC as humin in the long run. These results improved our understanding of SOC sequestration in China's rice paddies that involves an initial chemical binding of amended C and a final stabilization as recalcitrant C of humin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Radiolysis of hydrocarbons in liquid phase (Modern state of problem)

    International Nuclear Information System (INIS)

    Saraeva, V.V.

    1986-01-01

    Problems of ionizing radiation effect on hydrocarbons and hydrocarbon systems in a liquid phase are considered. Modern representations on the mechanism of hydrocarbon radiolysis are presented. Electron moderation and ion-electron pair formation, behaviour of charged particles, excited states, radical formation and their reactions are discussed. Behaviour of certain hydrocarbon classes: alkanes, cyclic hydrocarbons, olefines, aromatic hydrocarbons as well as different hydrocarbon mixtures is considered in detail. Radiation-chemical changes in organic coolants and ways of increasing radiation resistance are considered. Polyphenyl compounds are noted to be most perspective here

  2. Method for the conversion of hydrocarbon charges

    Energy Technology Data Exchange (ETDEWEB)

    Whittam, T V

    1976-11-11

    The basis of the invention is the application of defined zeolites as catalysts to hydrocarbon conversion processes such as reformation, isomerization, dehydrocyclization, and cracking. By charging the zeolite carrier masses with 0.001 to 5% metal of the 8th group of the periodic system, preferably noble metals, a wide region of applications for the catalysts is achieved. A method for the isomerization of an alkyl benzene (or mixture of alkyl benzenes) in the liquid or gas phase under suitable temperature, pressure and flow-rate conditions, as well as in the presence of a cyclic hydrocarbon, is described as preferential model form of the invention; furthermore, a method for the reformation of a hydrocarbon fraction boiling in the gasoline or benzene boiling region and a method for the hydrocracking of hydrocarbon charge (e.g. naphtha, kerosine, gas oils) are given. Types of performance of the methods are explained using various examples.

  3. Using microorganisms to aid in hydrocarbon degradation

    International Nuclear Information System (INIS)

    Black, W.; Zamora, J.

    1993-01-01

    Aliphatic hydrocarbons are threatening the potable water supply and the aquatic ecosystem. Given the right microbial inhabitant(s), a large portion of these aliphatic hydrocarbons could be biodegraded before reaching the water supply. The authors' purpose is to isolate possible oil-degrading organisms. Soil samples were taken from hydrocarbon-laden soils at petroleum terminals, a petroleum refinery waste-treatment facility, a sewage-treatment plant grease collector, a site of previous bioremediation, and various other places. Some isolates known to be good degraders were obtained from culture collection services. These samples were plated on a 10w-30 multigrade motor oil solid medium to screen for aliphatic hydrocarbon degraders. The degrading organisms were isolated, identified, and tested (CO 2 evolution, BOD, and COD) to determine the most efficient degrader(s). Thirty-seven organisms were tested, and the most efficient degraders were Serratia marcescens, Escherichia coli, and Enterobacter agglomerans

  4. Volatilisation of aromatic hydrocarbons from soil

    DEFF Research Database (Denmark)

    Lindhardt, B.; Christensen, T.H.

    1996-01-01

    The non-steady-state fluxes of aromatic hydrocarbons were measured in the laboratory from the surface of soils contaminated with coal tar Four soil samples from a former gasworks site were used for the experiments. The fluxes were quantified for 11 selected compounds, 4 mono- and 7 polycyclic...... aromatic hydrocarbons, for a period of up to 8 or 16 days. The concentrations of the selected compounds in the soils were between 0.2 and 3,100 mu g/g. The study included the experimental determination of the distribution coefficient of the aromatic hydrocarbons between the sorbed phase and the water under...... saturated conditions. The determined distribution coefficients showed that the aromatic hydrocarbons were more strongly sorbed to the total organic carbon including the coal tar pitch - by a factor of 8 to 25 - than expected for natural organic matter. The fluxes were also estimated using an analytical...

  5. Recovering low-boiling hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1934-10-03

    A process is described for the recovery of low-boiling hydrocarbons of the nature of benzine through treatment of liquid carbonaceous materials with hydrogen under pressure at raised temperature, suitably in the presence of catalysts. Middle oils (practically saturated with hydrogen) or higher boiling oils at a temperature above 500/sup 0/ (with or without the addition of hydrogen) containing cyclic hydrocarbons not saturated with hydrogen are changed into low boiling hydrocarbons of the nature of benzine. The cracking takes place under strongly hydrogenating conditions (with the use of a strongly active hydrogenating catalyst or high pressure) at temperatures below 500/sup 0/. If necessary, the constituents boiling below 200/sup 0/ can be reconverted into cyclic hydrocarbons partially saturated with hydrogen. (BLM)

  6. Determination of polynuclear aromatic hydrocarbons (PAHs) in ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-11-02

    Nov 2, 2006 ... Several water bodies in the Niger Delta region of Nigeria where extensive crude oil ..... hydrocarbons (PAHs) in fish from the Red Sea Coast of Yemem. ... smoked meat products and smoke flavouring food additives. J.

  7. Population dynamics and distribution of hydrocarbon utilizing ...

    African Journals Online (AJOL)

    Bacillus species was found to be present in all the soil samples analysed ... The presence of these organisms in soils contaminated with spent and unspent lubricating oil ... hydrocarbon utilizing bacteria, bioremediation, enrichment medium,

  8. Collision data involving hydro-carbon molecules

    International Nuclear Information System (INIS)

    Tawara, H.; Itikawa, Y.; Nishimura, H.; Tanaka, H.; Nakamura, Y.

    1990-07-01

    Hydro-carbon molecules are abundantly produced when graphites are used as internal wall materials of hydrogen plasmas and strongly influence properties of low temperature plasmas near the edges as well as those of high temperature plasmas at the center. In this report, following simple description of the production mechanisms of hydro-carbon molecules under the interactions between graphite and hydrogen plasma, the present status of collision data for hydro-carbon molecules by electron impact is discussed and the relevant data are summarized in a series of figures and tables. It should also be noted that, in addition to fusion plasmas, these hydrocarbon data compiled here are quite useful in other applications such as plasma chemistry and material processing. (author)

  9. Zeolitic catalytic conversion of alcohols to hydrocarbons

    Science.gov (United States)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2018-04-10

    A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100.degree. C. and up to 550.degree. C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.

  10. Formation of hydrocarbons by bacteria and algae

    Energy Technology Data Exchange (ETDEWEB)

    Tornabene, T.G.

    1980-12-01

    A literature review has been performed summarizing studies on hydrocarbon synthesis by microorganisms. Certain algal and bacterial species produce hydrocarbons in large quantities, 70 to 80% of dry cell mass, when in a controlled environment. The nutritional requirements of these organisms are simple: CO/sub 2/ and mineral salts. The studies were initiated to determine whether or not microorganisms played a role in petroleum formation. 90 references. (DMC)

  11. Nitrocarburizing in ammonia-hydrocarbon gas mixtures

    DEFF Research Database (Denmark)

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.

    2011-01-01

    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammonia-propene-hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere...... microscopy and X-ray diffraction analysis. It is shown that the use of unsaturated hydrocarbon gas in nitrocarburising processes is a viable alternative to traditional nitrocarburising methods....

  12. Nitrocarburising in ammonia-hydrocarbon gas mixtures

    DEFF Research Database (Denmark)

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammoniapropene- hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere...... microscopy and X-ray diffraction analysis. It is shown that the use of unsaturated hydrocarbon gas in nitrocarburising processes is a viable alternative to traditional nitrocarburising methods....

  13. The future of oil and hydrocarbon man

    CERN Document Server

    Campbell, Colin

    1999-01-01

    Man appeared on the planet about four million years ago, and by 1850 numbered about one billion Ten came Hydrocarbon man. World population has since increased six-fold. After the oil price shocks of the 1970s, people asked "when will production peak?". It is not easy to answer this question because of the very poor database. Reserves and the many different hydrocarbon categories are poorly defined, reporting practices are ambiguous, revisions are not backdated...

  14. Zeolitic catalytic conversion of alochols to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2017-01-03

    A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100.degree. C. and up to 550.degree. C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.

  15. Birds and polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Albers, P.H.

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAH) are present throughout the global environment and are produced naturally and by activities of humans. Effects of PAH on birds have been determined by studies employing egg injection, egg immersion, egg shell application, single and multiple oral doses, subcutaneous injection, and chemical analysis of field-collected eggs and tissue. The four-to six-ring aromatic compounds are the most toxic to embryos, young birds, and adult birds. For embryos, effects include death, developmental abnormalities, and a variety of cellular and biochemical responses. For adult and young birds, effects include reduced egg production and hatching, increased clutch or brood abandonment, reduced growth, increased organweights, and a variety of biochemical responses. Trophic level accumulation is unlikely. Environmental exposure to PAH in areas of high human population or habitats affected by recent petroleum spills might be sufficient to adversely affect reproduction. Evidence of long-term effects of elevated concentrations of environmental PAH on bird populations is very limited and the mechanisms of effect are unclear.

  16. PROTONATED POLYCYCLIC AROMATIC HYDROCARBONS REVISITED

    International Nuclear Information System (INIS)

    Ricca, Alessandra; Bauschlicher, Charles W. Jr; Allamandola, Louis J.

    2011-01-01

    We reconsider the contribution that singly protonated polycyclic aromatic hydrocarbons (PAHs; HPAH + s) might make to the Class A component of the 6.2 μm interstellar emission feature in light of the recent experimental measurements of protonated naphthalene and coronene. Our calculations on the small HPAH + s have a band near 6.2 μm, as found in experiment. While the larger HPAH + s still have emission near 6.2 μm, the much larger intensity of the band near 6.3 μm overwhelms the weaker band at 6.2 μm, so that the 6.2 μm band is barely visible. Since the large PAHs are more representative of those in the interstellar medium, our work suggests that large HPAH + s cannot be major contributors to the observed emission at 6.2 μm (i.e., Class A species). Saturating large PAH cations with hydrogen atoms retains the 6.2 μm Class A band position, but the rest of the spectrum is inconsistent with observed spectra.

  17. Polycyclic hydrocarbons - occurrence and determination

    International Nuclear Information System (INIS)

    Drzewicz, P.

    2007-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a special group of atmospheric contaminants included in the persistent toxic substances (PTS) and also in the volatile organic compounds (VOC) groups. PAHs are present in the atmosphere and their origin can be due to anthropogenic activities. The main source of emission of PAH is the combustion of fossil fuels. Their specific characteristics, high volatility, mutagenic and carcinogenic power, easily transportable for long distances with the wind, make them important contaminants despite of the fact that they are present at very low concentrations. The report provides a review of main analytical methods applied in the determination of PAH in air. Special attention was devoted to heterocyclic PAH which contain one or more heteroatom (sulphur, oxygen, nitrogen) in the multiple-fused ring. The presence of heterocyclic PAH requires very complex, laborious and long lasting sample separation methods before analysis. In some cases, application of different temperature programs in gas chromatography allows to determine PAH and heterocyclic PAH in gaseous samples without sample pretreatment. Gas chromatography methods for the determination of PAH and heterocyclic PAH in the gas from combustion of light heating oil has been optimized. (author) [pl

  18. Dewaxing hydrocarbon oils. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    1933-06-23

    In dewaxing hydrocarbon oils such as residium stocks, overhead distillates and crude petroleum or shale oils, by admixing with a liquefied normally gaseous solvent, such as liquefied propane, and cooling to crystallize the wax, the rate of crystallization diminishes rapidly when a certain temperature in an example about 20/sup 0/F is reached. The diminution is prevented during further cooling by removing solvent by evaporation at such a rate that the proporation of solvent in the oil solvent component is maintained at about that existing at the temperature at which the alteration in the rate of crystallization takes place. The evaporation is effected by adjusting the pressure on the mixture, preferably in stages. Solvents for coloring matters and asphaltic compounds, such as carbon disulfide sulfur dioxide, methyl chloride or butyl alcohol may be added to the mixture before crystallization. Chilled solvent may be added to the chilled mixture before separation of the wax in a centrifuge, in order to increase the difference in specific gravity between the wax and the oil-solvent component.

  19. Biodegradation of petroleum hydrocarbons at low temperatures

    International Nuclear Information System (INIS)

    Whyte, L. G.; Greer, C W.

    1999-01-01

    Bioremediation of contaminated Arctic sites has been proposed as the logistically and economically most favorable solution despite the known technical difficulties. The difficulties involve the inhibition of pollutants removal by biodegradation below freezing temperatures and the relative slowness of the process to remove enough hydrocarbon pollutants during the above-freezing summer months. Despite these formidable drawbacks, biodegradation of hydrocarbon contaminants is possible even in below-zero temperatures, especially if indigenous psychrophilic and psychrotropic micro-organism are used. This paper reports results of a study involving several hydrocarbon-degrading psychrotropic bacteria and suggests bioaugmentation with specific cold-adapted organisms and/or biostimulation with commercial fertilizers for enhancing degradation of specific contaminants in soils from northern Canada. An evaluation of the biodegradation potential of hydrocarbon contaminated soils in the high Arctic suggested that the contaminated soils contained sufficient numbers of cold-adapted hydrocarbon-degrading bacteria and that the addition of fertilizer was sufficient to enhance the level of hydrocarbon degradation at low ambient summer temperatures. 9 refs., 2 tabs., 3 figs

  20. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs: a review

    Directory of Open Access Journals (Sweden)

    Debajyoti Ghosal

    2016-08-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs include a group of organic priority pollutants of critical environmental and public health concern due to their toxic, genotoxic, mutagenic and/or carcinogenic properties and their ubiquitous occurrence as well as recalcitrance. The increased awareness of their various adverse effects on ecosystem and human health has led to a dramatic increase in research aimed towards removing PAHs from the environment. PAHs may undergo adsorption, volatilization, photolysis, and chemical oxidation, although transformation by microorganisms is the major neutralization process of PAH-contaminated sites in an ecologically accepted manner. Microbial degradation of PAHs depends on various environmental conditions, such as nutrients, number and kind of the microorganisms, nature as well as chemical property of the PAH being degraded. A wide variety of bacterial, fungal and algal species have the potential to degrade/transform PAHs, among which bacteria and fungi mediated degradation has been studied most extensively. In last few decades microbial community analysis, biochemical pathway for PAHs degradation, gene organization, enzyme system, genetic regulation for PAH degradation have been explored in great detail. Although, xenobiotic-degrading microorganisms have incredible potential to restore contaminated environments inexpensively yet effectively, but new advancements are required to make such microbes effective and more powerful in removing those compounds, which were once thought to be recalcitrant. Recent analytical chemistry and genetic engineering tools might help to improve the efficiency of degradation of PAHs by microorganisms, and minimize uncertainties of successful bioremediation. However, appropriate implementation of the potential of naturally occurring microorganisms for field bioremediation could be considerably enhanced by optimizing certain factors such as bioavailability, adsorption and mass transfer of

  1. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review

    Science.gov (United States)

    Ghosal, Debajyoti; Ghosh, Shreya; Dutta, Tapan K.; Ahn, Youngho

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) include a group of organic priority pollutants of critical environmental and public health concern due to their toxic, genotoxic, mutagenic and/or carcinogenic properties and their ubiquitous occurrence as well as recalcitrance. The increased awareness of their various adverse effects on ecosystem and human health has led to a dramatic increase in research aimed toward removing PAHs from the environment. PAHs may undergo adsorption, volatilization, photolysis, and chemical oxidation, although transformation by microorganisms is the major neutralization process of PAH-contaminated sites in an ecologically accepted manner. Microbial degradation of PAHs depends on various environmental conditions, such as nutrients, number and kind of the microorganisms, nature as well as chemical property of the PAH being degraded. A wide variety of bacterial, fungal and algal species have the potential to degrade/transform PAHs, among which bacteria and fungi mediated degradation has been studied most extensively. In last few decades microbial community analysis, biochemical pathway for PAHs degradation, gene organization, enzyme system, genetic regulation for PAH degradation have been explored in great detail. Although, xenobiotic-degrading microorganisms have incredible potential to restore contaminated environments inexpensively yet effectively, but new advancements are required to make such microbes effective and more powerful in removing those compounds, which were once thought to be recalcitrant. Recent analytical chemistry and genetic engineering tools might help to improve the efficiency of degradation of PAHs by microorganisms, and minimize uncertainties of successful bioremediation. However, appropriate implementation of the potential of naturally occurring microorganisms for field bioremediation could be considerably enhanced by optimizing certain factors such as bioavailability, adsorption and mass transfer of PAHs. The main

  2. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities

    International Nuclear Information System (INIS)

    Fan, Lu; Brett, Michael T.; Jiang, Wenju; Li, Bo

    2017-01-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L −1 . Nitrate (NO 3 − ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 −  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. - Highlights: • DIN was the dominated N pool for most of the tested effluent samples. • DON bioavailability considerably varied depending on the WWTP assessed.

  3. Old and stable soil organic matter is not necessarily chemically recalcitrant: Implications for modeling concepts and temperature sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kleber, M.; Nico, P.S.; Plante, A.; Filley, T.; Kramer, M.; Swanston, C.; Sollins, P.

    2010-03-01

    of complex or 'recalcitrant' compounds will erroneously attribute a greater temperature sensitivity to those materials than they may actually possess.

  4. High-resolution gas chromatographic analysis of polycyclic aromatic hydrocarbons and aliphatic hydrocarbons

    International Nuclear Information System (INIS)

    Perez, M.; Gonzalez, D.

    1988-01-01

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons and aliphatic hydrocarbons is presented. The separation has been carried out by glass and fused silica capillary column in two different polar stationary phases OV-1 and SE-54. The limitation and the advantages of the procedure are discussed in terms of separation, sensitivity and precision. (Author) 20 refs

  5. Contralateral eye-to-eye comparison of intravitreal ranibizumab and a sustained-release dexamethasone intravitreal implant in recalcitrant diabetic macular edema

    Directory of Open Access Journals (Sweden)

    Thomas BJ

    2016-08-01

    Full Text Available Benjamin J Thomas, Yoshihiro Yonekawa, Jeremy D Wolfe, Tarek S Hassan Department of Vitreoretinal Surgery, William Beaumont Hospital, Royal Oak, MI, USA Objective: To compare the effects of intravitreal ranibizumab (RZB or dexamethasone (DEX intravitreal implant in cases of recalcitrant diabetic macular edema (DME.Methods: Retrospective, interventional study examining patients with symmetric bilateral, center-involved DME recalcitrant to treatment with RZB, who received DEX in one eye while the contralateral eye continued to receive RZB every 4–5 weeks for a study period of 3 months.Results: Eleven patients (22 eyes were included: mean logarithm of the minimal angle of resolution (logMAR visual acuity (VA for the DEX arm improved from 0.415 (standard deviation [SD] ±0.16 to 0.261 (SD ±0.18 at final evaluation, and mean central macular thickness (CMT improved from 461 µm (SD ±156 to 356 µm (SD ±110; net decrease: 105 µm, P=0.01. Mean logMAR VA for the RZB arm improved from 0.394 (SD ±0.31 to 0.269 (SD ±0.19 at final evaluation. Mean CMT improved from 421 µm (SD ±147 to 373 µm (SD ±129; net decrease: 48 µm, P=0.26.Conclusion: A subset of recalcitrant DME patients demonstrated significant CMT reduction and VA improvement after a single DEX injection. Keywords: aflibercept, bevacizumab, central macular thickness, macular edema, dexamethasone implant, diabetic macular edema, diabetic retinopathy, ranibizumab

  6. Petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in Hong Kong marine sediments

    International Nuclear Information System (INIS)

    Zheng, G.J.; Richardson, B.J.

    1999-01-01

    A total of 20 surficial sediment samples, obtained from Hong Kong coastal waters, were analysed for petroleum hydrocarbons (PHCs) and a suite of 15 polycyclic aromatic hydrocarbons (PAHs). The results indicate that Hong Kong coastal sediments are often seriously polluted with petroleum related hydrocarbons. This is especially so in heavily urbanised or industrialized localities, such as Kowloon Bay (Victoria Harbour), Tsing Yi North and Tolo Harbour. Petroleum hydrocarbon pollutants in marine sediments are believed to be mainly derived from the transportation of oil, shipping activities, spillages, and industrial, stormwater and waste wastewater discharge. The ratio of unresolved complex mixture (UCM) to n-alkanes, carbon preference index (CPI), and n-C 16 values indicate that the main contribution to petroleum hydrocarbon contamination is via oil and its products. Pollutant sources appear to be stable and continuing when compared with previous data. (author)

  7. Worldwide overview of hydrocarbons and perspectives

    International Nuclear Information System (INIS)

    Tonnac, Alain de; Perves, Jean-Pierre

    2013-12-01

    This publication presents and comments data regarding the share of hydrocarbons in the world energy consumption, hydrocarbon trade flows, the new situation created by the emergence of shale hydrocarbons and the consequences for the world economy, and possible risks. The authors first comment the evolution of energy consumption and outline that the objectives of CO 2 and greenhouse gas emission will not be reached (these emissions increased in 2012 and in 2013). They indicate the emission situation in the USA and Japan, and notice that the objectives defined by the IEA are quite different from those defined by the EU. They analyse the evolutions by distinguishing different periods: 2005-2008 as a reference period, 2008-2012 as a period of change, and the current period as a period of flow inversion. Then, the authors propose two different scenarios of evolution of economic and energy policies. The evolution of hydrocarbon demand is commented, and the levels of reserves (oil, conventional gas, coal, nuclear fuels) are discussed. The market evolution is also discussed, not only from an economic point of view, but also in relationship with geopolitics. The authors notably outline that the energy price is different from one country to the other, discuss the issue of hydrocarbon refining, the role of CO 2 tax

  8. Emissions of hydrocarbons from combustion of biofuels

    International Nuclear Information System (INIS)

    Olsson, Mona; Persson, Eva Marie.

    1991-10-01

    Evaluations and measurements of emissions of hydrocarbons from power plants with a capacity exceeding 1 MW using biofuels (wood fuels and peat) have been studied in order to identify and quantify the emissions of incompletely combusted hydrocarbons. The influence of the type of fuel and the combustion technology applied were also studied, using literature references. The report summarizes monitoring results from a number of plants using biofuels. The reported emissions from the different plants can not be compared as they are relatively few and the test results have been obtained under various conditions using different methods of testing and analysis. The methods used are often poorly documented in the studied reports. Few investigations of emissions of hydrocarbons from plants in the range of 1 to 10 MW have been carried out. The plant and the technology used are important factors determining the amount and type of emissions of hydrocarbons. Larger temporary emissions can occur during start up, operational disturbances or when using fuel of inhomogeneous quality. In order to minimize the emissions the combustion process must be efficiently controlled, and a fuel of a hohogeneous quality must be used. The report also summarizes sampling and analysis methods used for monitoring emissions of hydrocarbons. (29 refs., 17 figs.)

  9. Condensation Mechanism of Hydrocarbon Field Formation.

    Science.gov (United States)

    Batalin, Oleg; Vafina, Nailya

    2017-08-31

    Petroleum geology explains how hydrocarbon fluids are generated, but there is a lack of understanding regarding how oil is expelled from source rocks and migrates to a reservoir. To clarify the process, the multi-layer Urengoy field in Western Siberia was investigated. Based on this example, we have identified an alternative mechanism of hydrocarbon field formation, in which oil and gas accumulations result from the phase separation of an upward hydrocarbon flow. There is evidence that the flow is generated by the gases released by secondary kerogen destruction. This study demonstrates that oil components are carried by the gas flow and that when the flow reaches a low-pressure zone, it condenses into a liquid with real oil properties. The transportation of oil components in the gas flow provides a natural explanation for the unresolved issues of petroleum geology concerning the migration process. The condensation mechanism can be considered as the main process of oil field formation.

  10. EVALUATION OF PETROLEUM HYDROCARBONS ELUTION FROM SOIL

    Directory of Open Access Journals (Sweden)

    Janina Piekutin

    2015-06-01

    Full Text Available The paper presents studies on oil removal from soil by means of water elution with a help of shaking out the contaminants from the soil. The tests were performed on simulated soil samples contaminated with a mixture of petroleum hydrocarbons. The study consisted in recording the time influence and the number of elution cycles to remove contaminants from the soil. The samples were then subject to the determination of petroleum hydrocarbons, aliphatic hydrocarbons, and BTEX compounds (benzene, toluene, ethylbenzene, xylene. Due to adding various concentrations of petroleum into particular soil samples and applying different shaking times, it was possible to find out the impact of petroleum content and sample shaking duration on the course and possibility of petroleum substances removal by means of elution process.

  11. Direct electroreduction of CO2 into hydrocarbon

    International Nuclear Information System (INIS)

    Winea, Gauthier; Ledoux, Marc-Jacques; Pham-Huu, Cuong; Gangeri, Miriam; Perathoner, Siglinda; Centi, Gabriele

    2006-01-01

    A lot of methods exist to directly reduce carbon dioxide into hydrocarbons: the photoelectrochemical process is certainly the most interesting, essentially due to the similarities with photosynthesis. As the human activities produce a great quantity of CO 2 , this one can then be considered as an infinite source of carbon. The products of this reaction are identical to those obtained during a Fischer-Tropsch reaction, that is to say hydrocarbons, alcohols and carboxylic acids. These works deal with the electrochemical reduction of CO 2 in standard conditions of temperature and pressure. The photochemical part has been replaced by a current generator as electrons source and a KHCO 3 aqueous solution as protons source. The first catalytic results clearly show that it is possible to reduce CO 2 into light hydrocarbons, typically from C1 to C9. (O.M.)

  12. Microbial hydrocarbon degradation - bioremediation of oil spills

    Energy Technology Data Exchange (ETDEWEB)

    Atlas, R M [Louisville Univ., KY (United States). Dept. of Biology

    1991-01-01

    Bioremediation has become a major method employed in restoration of oil-polluted environments that makes use of natural microbial biodegradative activities. Bioremediation of petroleum pollutants overcomes the factors limiting rates of microbial hydrocarbon biodegradation. Often this involves using the enzymatic capabilities of the indigenous hydrocarbon-degrading microbial populations and modifying environmental factors, particularly concentrations of molecular oxygen, fixed forms of nitrogen and phosphate to achieve enhanced rates of hydrocarbon biodegradation. Biodegradation of oily sludges and bioremediation of oil-contaminated sites has been achieved by oxygen addition-e.g. by tilling soils in landfarming and by adding hydrogen peroxide or pumping oxygen into oiled aquifers along with addition of nitrogen- and phosphorous-containing fertilizers. The success of seeding oil spills with microbial preparations is ambiguous. Successful bioremediation of a major marine oil spill has been achieved based upon addition of nitrogen and phosphorus fertilizers. (author).

  13. Technical Protocol for Using Soluble Carbohydrates to Enhance Reductive Dechlorination of Chlorinated Aliphatic Hydrocarbons

    Science.gov (United States)

    2002-12-19

    lead, arsenic, nickel, mercury and cadmium) is also widespread at the same military facilities due to the use of these metals in ordnance...Eds.), Bioremediation and phytoremediation of chlorinated and recalcitrant compounds. Battelle Second International Conference on Remediation of...Electron Donors, in Wickramanayake, G., Gavashkar, A., Alleman, B., Magar, V., eds. Bioremediation and Phytoremediation of Chlorinated and Recalcitrant

  14. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Fallgren, Paul

    2009-03-30

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of

  15. Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water.

    Science.gov (United States)

    Banaschik, Robert; Jablonowski, Helena; Bednarski, Patrick J; Kolb, Juergen F

    2018-01-15

    Seven recalcitrant pharmaceutical residues (diclofenac, 17α-ethinylestradiol, carbamazepine, ibuprofen, trimethoprim, diazepam, diatrizoate) were decomposed by pulsed corona plasma generated directly in water. The detailed degradation pathway was investigated for diclofenac and 21 intermediates could be identified in the degradation cascade. Hydroxyl radicals have been found primarily responsible for decomposition steps. By spin trap enhanced electron paramagnetic resonance spectroscopy (EPR), OH-adducts and superoxide anion radical adducts were detected and could be distinguished applying BMPO as a spin trap. The increase of concentrations of adducts follows qualitatively the increase of hydrogen peroxide concentrations. Hydrogen peroxide is eventually consumed in Fenton-like processes but the concentration is continuously increasing to about 2mM for a plasma treatment of 70min. Degradation of diclofenac is inversely following hydrogen peroxide concentrations. No qualitative differences between byproducts formed during plasma treatment or due to degradation via Fenton-induced processes were observed. Findings on degradation kinetics of diclofenac provide an instructive understanding of decomposition rates for recalcitrant pharmaceuticals with respect to their chemical structure. Accordingly, conclusions can be drawn for further development and a first risk assessment of the method which can also be applied towards other AOPs that rely on the generation of hydroxyl radicals. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Proper Particle Size Range for Resistance to Chemical Oxidation: A Perspective on the Recalcitrance of Beanpod Biochar for Soil Carbon Sequestration

    Institute of Scientific and Technical Information of China (English)

    Jianhua GUO; Dongyun ZHANG

    2017-01-01

    The effect of particle size on the recalcitrance of biochar against oxidation has been regarded as one of the most important factors influencing its stability and transportation in soils. Little is known about the peculiar stability of different particle sizes under chemical oxidation conditions. In this study, several sizes of biochar particles derived from beanpod were produced,and their stabilities were tested by using acid dichromate and hydrogen peroxide. We discovered that the 60-100 mesh size of particles produced at 400 and 500 ℃ showed the least carbon loss under the oxidation of both dichromate and hydrogen peroxide.In addition, this particle size also shows great stability at 600 and 700 ℃, but this stability was not observed below 300 °C for all temperature-dependent biochars. Medium-sized particles composed of exclusively heterogeneous components produced a biochar at temperatures over 400 ℃ with comparatively stronger chemical anti-oxidation characteristics. The chemical recalcitrance of biochar should be reevaluated based on particle size before soil application.

  17. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)?

    International Nuclear Information System (INIS)

    Escolà Casas, Mònica; Bester, Kai

    2015-01-01

    The degradation of seven compounds which are usually recalcitrant in classical activated sludge treatment (e.g., diclofenac, propranolol, iopromide, iohexol, iomeprol tebuconazole and propiconazole) was studied in a biofilm reactor (slow sand filtration). This reactor was used to treat real effluent-wastewater at different flow rates (hydraulic loadings) under aerobic conditions so removal and degradation kinetics of these recalcitrant compounds were calculated. With the hydraulic loading rate of 0.012 m 3 m 2 h −1 the reactor removed 41, 94, 58, 57 and 85% of diclofenac, propranolol, iopromide, iohexol and iomeprol respectively. For these compounds the removal efficiency was dependent on hydraulic residence-times. Only 59 and 21% of the incoming tebuconazole and propiconazole respectively were removed but their removal did not depend on hydraulic residence time. Biofilm reactors are thus efficient in removing micro-pollutants and could be considered as an option for advanced treatment in small wastewater treatment plants. - Highlights: • A biofilm reactor (biofilter) can remove micro-pollutants from WWTP effluent. • Sorption could be excluded as the dominant removal mechanism. • Biodegradation was responsible for removing seven compounds. • The removal efficiency was usually proportional to the hydraulic residence-time. • Single first-order removal rates apply for most compounds

  18. A Comparison of Radiofrequency-Based Microtenotomy and Arthroscopic Release of the Extensor Carpi Radialis Brevis Tendon in Recalcitrant Lateral Epicondylitis: A Prospective Randomized Controlled Study.

    Science.gov (United States)

    Lee, Jae-Hoo; Park, In; Hyun, Hwan-Sub; Shin, Sang-Jin

    2018-01-20

    To compare the clinical effects of radiofrequency (RF)-based microtenotomy and arthroscopic release of the extensor carpi radialis brevis (ECRB) tendon in patients with recalcitrant lateral epicondylitis through a prospective randomized controlled study. A total of 46 patients were randomly assigned to receive arthroscopic release (group A, 24 patients) or RF-based microtenotomy (group B, 22 patients). The visual analog scale (VAS) score for pain, flexion-extension arc, operation time, Disabilities of the Arm, Shoulder, and Hand questionnaire (DASH), Mayo Elbow Performance Score (MEPS), and grip power of groups A and B were compared during the recovery phases for up to 2 postoperative years. Both groups showed statistically significant functional improvement compared with their preoperative grip strength and DASH, VAS, and MEPS scores at 2 years after surgery (P lateral epicondylitis provided clinical outcomes comparable with those from arthroscopic release of ECRB tendon during the recovery phase. RF-based microtenotomy is considered as one of the surgical procedures for treating recalcitrant lateral epicondylitis, with the advantages of reliable elbow functional restoration and significantly shorter operation time. Level I, prospective randomized trial. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  19. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)?

    Energy Technology Data Exchange (ETDEWEB)

    Escolà Casas, Mònica; Bester, Kai, E-mail: kb@dmu.dk

    2015-02-15

    The degradation of seven compounds which are usually recalcitrant in classical activated sludge treatment (e.g., diclofenac, propranolol, iopromide, iohexol, iomeprol tebuconazole and propiconazole) was studied in a biofilm reactor (slow sand filtration). This reactor was used to treat real effluent-wastewater at different flow rates (hydraulic loadings) under aerobic conditions so removal and degradation kinetics of these recalcitrant compounds were calculated. With the hydraulic loading rate of 0.012 m{sup 3} m{sup 2} h{sup −1} the reactor removed 41, 94, 58, 57 and 85% of diclofenac, propranolol, iopromide, iohexol and iomeprol respectively. For these compounds the removal efficiency was dependent on hydraulic residence-times. Only 59 and 21% of the incoming tebuconazole and propiconazole respectively were removed but their removal did not depend on hydraulic residence time. Biofilm reactors are thus efficient in removing micro-pollutants and could be considered as an option for advanced treatment in small wastewater treatment plants. - Highlights: • A biofilm reactor (biofilter) can remove micro-pollutants from WWTP effluent. • Sorption could be excluded as the dominant removal mechanism. • Biodegradation was responsible for removing seven compounds. • The removal efficiency was usually proportional to the hydraulic residence-time. • Single first-order removal rates apply for most compounds.

  20. Hydrocarbon Plume Dynamics in the Worldś Most Spectacular Hydrocarbon Seeps, Santa Barbara Channel, California

    Science.gov (United States)

    Mau, S.; Reed, J.; Clark, J.; Valentine, D.

    2006-12-01

    Large quantities of natural gas are emitted from the seafloor into the coastal ocean near Coal Oil Point, Santa Barbara Channel (SBC), California. Methane, ethane, and propane were quantified in the surface water at 79 stations in a 270 km2 area in order to map the surficial hydrocarbon plume and to quantify air-sea exchange of these gases. A time series was initiated for 14 stations to identify the variability of the mapped plume, and biologically-mediated oxidation rates of methane were measured to quantify the loss of methane in surface water. The hydrocarbon plume was found to comprise ~70 km2 and extended beyond study area. The plume width narrowed from 3 km near the source to 0.7 km further from the source, and then expanded to 6.7 km at the edge of the study area. This pattern matches the cyclonic gyre which is the normal current flow in this part of the Santa Barbara Channel - pushing water to the shore near the seep field and then broadening the plume while the water turns offshore further from the source. Concentrations of gaseous hydrocarbons decrease as the plume migrates. Time series sampling shows similar plume width and hydrocarbon concentrations when normal current conditions prevail. In contrast, smaller plume width and low hydrocarbon concentrations were observed when an additional anticyclonic eddy reversed the normal current flow, and a much broader plume with higher hydrocarbon concentrations was observed during a time of diminished speed within the current gyre. These results demonstrate that surface currents control hydrocarbon plume dynamics in the SBC, though hydrocarbon flux to the atmosphere is likely less dependent on currents. Estimates of air- sea hydrocarbon flux and biological oxidation rates will also be presented.

  1. Electrochemical removal of NOx and hydrocarbons

    DEFF Research Database (Denmark)

    Friedberg, Anja Zarah

    on the electrodes during polarisation, probably because of strong adsorption of the hydrocarbon relative to NO. On LSF/CGO electrode the impregnation of ionic conducting material increased the oxidation of NO to NO2 which is an important step before nitrogen formation. The propene inhibited this reaction because....... This could only be done if the electrode was impregnated with BaO. The nitrate formation did not seem to be inhibited by the presence of the hydrocarbon. However, the oxidation of propene was inhibited by the BaO because the active sites for oxidations were partially covered by the BaO nanoparticles...

  2. Mathematics of Periodic Tables for Benzenoid Hydrocarbons.

    Science.gov (United States)

    Dias, Jerry Ray

    2007-01-01

    The upper and lower bounds for invariants of polyhex systems based on the Harary and Harborth inequalities are studied. It is shown that these invariants are uniquely correlated by the Periodic Table for Benzenoid Hydrocarbons. A modified periodic table for total resonant sextet (TRS) benzenoids based on the invariants of Ds and r(empty) is presented; Ds is the number of disconnections among the empty rings for fused TRS benzenoid hydrocarbons. This work represents a contribution toward deciphering the topological information content of benzenoid formulas.

  3. Plasma-catalytic reforming of liquid hydrocarbons

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Chernyak, V.Ya; Kolgan, V.V.; Iukhymenko, V.V.; Solomenko, O.V.; Fedirchyk, I.I.; Martysh, E.V.; Demchina, V.P.; Klochok, N.V.; Dragnev, S.V.

    2015-01-01

    The series of experiments studying the plasma-catalytic reforming of liquid hydrocarbons was carried out. The dynamic plasma-liquid system based on a low-power rotating gliding arc with solid electrodes was used for the investigation of liquid hydrocarbons reforming process. Conversion was done via partial oxidation. A part of oxidant flow was activated by the discharge. Synthesis-gas composition was analysed by means of mass-spectrometry and gas-chromatography. A standard boiler, which operates on natural gas and LPG, was used for the burning of synthesis-gas

  4. Motor fuels by hydrogenation of liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1938-05-07

    A process is disclosed for the production of knock-stable low-boiling motor fuels by conversion of liquid hydrocarbons which are vaporizable under the reaction conditions, which comprises passing the initial material at a temperature above 380/sup 0/C in a true vapor phase under pressure of more than 40 atmospheres together with hydrogen and gaseous hydrocarbons containing more than 1 carbon atom in the molecule in an amount by volume larger than that of the hydrogen over catalysts stable to poisoning stationarily confined in the reaction vessel.

  5. Photodynamic therapy (PDT and waterfiltered infrared A (wIRA in patients with recalcitrant common hand and foot warts

    Directory of Open Access Journals (Sweden)

    Hoffmann, Gerd

    2004-10-01

    Full Text Available Background: Common warts (verrucae vulgares are human papilloma virus (HPV infections with a high incidence and prevalence, most often affecting hands and feet, being able to impair quality of life. About 30 different therapeutic regimens described in literature reveal a lack of a single striking strategy. Recent publications showed positive results of photodynamic therapy (PDT with 5-aminolevulinic acid (5-ALA in the treatment of HPV-induced skin diseases, especially warts, using visible light (VIS to stimulate an absorption band of endogenously formed protoporphyrin IX. Additional experiences adding waterfiltered infrared A (wIRA during 5-ALA-PDT revealed positive effects. Aim of the study: First prospective randomised controlled blind study including PDT and wIRA in the treatment of recalcitrant common hand and foot warts. Comparison of "5-ALA cream (ALA vs. placebo cream (PLC" and "irradiation with visible light and wIRA (VIS+wIRA vs. irradiation with visible light alone (VIS". Methods: Pre-treatment with keratolysis (salicylic acid and curettage. PDT treatment: topical application of 5-ALA (Medac in "unguentum emulsificans aquosum" vs. placebo; irradiation: combination of VIS and a large amount of wIRA (Hydrosun® radiator type 501, 4 mm water cuvette, waterfiltered spectrum 590-1400 nm, contact-free, typically painless vs. VIS alone. Post-treatment with retinoic acid ointment. One to three therapy cycles every 3 weeks. Main variable of interest: "Percent change of total wart area of each patient over the time" (18 weeks. Global judgement by patient and by physician and subjective rating of feeling/pain (visual analogue scales. 80 patients with therapy-resistant common hand and foot warts were assigned randomly into one of the four therapy groups with comparable numbers of warts at comparable sites in all groups. Results: The individual total wart area decreased during 18 weeks in group 1 (ALA+VIS+wIRA and in group 2 (PLC

  6. Culture-dependent characterization of hydrocarbon utilizing bacteria ...

    African Journals Online (AJOL)

    EARNEST

    Hydrocarbons interact with the environment and micro- organisms determining the .... it is pertinent to study the community dynamics of hydrocarbon degrading bacteria ... Chikere CB (2013). Application of molecular microbiology techniques in.

  7. Response of microalgae from mud-flats to petroleum hydrocarbons ...

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... hydrocarbons in the presence of nitrogenous fertilizer ... the hydrocarbon, there was delayed nutrient uptake. ... waters, but the use of inorganic of organic nitrogen in ... ment, fish kills as oxygen is depleted, offensive odour.

  8. Velocity Dependence of Friction of Confined Hydrocarbons

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    2010-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon “polymer” solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: (a) polymer sliding against a hard substrate and (b) polymer sliding on polymer. We discuss the velocity dependence of the f......We present molecular dynamics friction calculations for confined hydrocarbon “polymer” solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: (a) polymer sliding against a hard substrate and (b) polymer sliding on polymer. We discuss the velocity dependence...... of the frictional shear stress for both cases. In our simulations, the polymer films are very thin (∼3 nm), and the solid walls are connected to a thermostat at a short distance from the polymer slab. Under these circumstances we find that frictional heating effects are not important, and the effective temperature...... in the polymer film is always close to the thermostat temperature. In the first setup (a), for hydrocarbons with molecular lengths from 60 to 1400 carbon atoms, the shear stresses are nearly independent of molecular length, but for the shortest hydrocarbon C20H42 the frictional shear stress is lower. In all...

  9. Taxation on mining and hydrocarbon investments

    Directory of Open Access Journals (Sweden)

    Beatriz De La Vega Rengifo

    2014-07-01

    Full Text Available This article comments the most important aspects of the tax treatment applicable to investments of mining and oil and gas industry. The document highlights the relevant tax topics of the general tax legislation(Income Tax Law and the special legislation of both industries (General Mining Law and Hydrocarbons Organic Law.

  10. Dissolved petroleum hydrocarbons in the Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Topgi, R.S.; Noronha, R.J.; Fondekar, S.P.

    Mean dissolved petroleum hydrocarbons, measured using UV-spectrophotometry, at 0 and 10m were 51 plus or minus 1 and 55 plus or minus 1.2 mu g/litre respectively; range of variation being between 28 and 83 mu g/litre. Very little difference...

  11. Hydrocarbons in Argentina: networks, territories, integration

    International Nuclear Information System (INIS)

    Carrizo, S.C.

    2003-12-01

    Argentinean hydrocarbons networks have lived a huge reorganizing the structure, after the State reform in the 90's. Activities deregulation and the privatization of YPF and Gas del Estado forced the sector re-concentration, since then dominated by foreign companies, leaded by Repsol YPF. The hydrocarbons federalization contributed to the weakening and un-capitalization loss of wealth of the State. These changes resulted in an increase of the hydrocarbons production allowing to achieve the self-supply. Nevertheless, the expansion of internal networks has not been large enough to ensure the coverage of new requirements. Besides, several infrastructures have been built up to join external markets. National networks are connected to those of near neighboring countries. This integration is an opportunity for the 'South Cone' countries to enhance their potentials. In the country, hydrocarbons territories undergo the reorganizing the structure effects (unemployment, loss of territorial identity, etc). With many difficulties and very different possibilities, those territories, like Comodoro Rivadavia, Ensenada et and Bahia Blanca, look for their re-invention. (author)

  12. Cuticle hydrocarbons in saline aquatic beetles

    Directory of Open Access Journals (Sweden)

    María Botella-Cruz

    2017-07-01

    Full Text Available Hydrocarbons are the principal component of insect cuticle and play an important role in maintaining water balance. Cuticular impermeability could be an adaptative response to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have been poorly explored in this group and there are no previous data on saline species. We characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles, namely Nebrioporus baeticus (Dytiscidae and Enochrus jesusarribasi (Hydrophilidae, using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults of both species, characterized by a high abundance of branched alkanes and low of unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g., desert Tenebrionidae compared with other aquatic Coleoptera (freshwater Dytiscidae. Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement with their higher resistance to salinity and desiccation. The more permeable cuticle of larvae was characterized by a lower diversity in compounds, shorter carbon chain length and a higher proportion of unsaturated hydrocarbons compared with that of the adults. These results suggest that osmotic stress on aquatic insects could exert a selection pressure on CHC profile similar to aridity in terrestrial species.

  13. Wireless sensing on surface hydrocarbon production systems

    International Nuclear Information System (INIS)

    Kane, D; McStay, D; Mulholland, J; Costello, L

    2009-01-01

    The use of wireless sensor networks for monitoring and optimising the performance of surface hydrocarbon production systems is reported. Wireless sensor networks are shown to be able to produce comprehensively instrumented XTs and other equipment that generate the data required by Intelligent Oilfield systems. The information produced by such systems information can be used for real-time operational control, production optimization and troubleshooting.

  14. Identifying specific interstellar polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Mulas, Giacomo; Malloci, Giuliano; Porceddu, Ignazio

    2005-01-01

    Interstellar Polycyclic Aromatic Hydrocarbons (PAHs) have been thought to be ubiquitous for more than twenty years, yet no single species in this class has been identified in the Interstellar Medium (ISM) to date. The unprecedented sensitivity and resolution of present Infrared Space Observatory (ISO) and forthcoming Herschel observations in the far infrared spectral range will offer a unique way out of this embarrassing impasse

  15. Palynofacies characterization for hydrocarbon source rock ...

    Indian Academy of Sciences (India)

    source rock potential of the Subathu Formation in the area. Petroleum geologists are well aware of the fact that the dispersed organic matter derived either from marine or non-marine sediments on reach- ing its maturation level over extended period of time contributes as source material for the produc- tion of hydrocarbons.

  16. Toxic Potential of Carcinogenic Polycyclic Aromatic Hydrocarbons ...

    African Journals Online (AJOL)

    Toxic Potential of Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) and Heavy Metal in Crude Oil from Gokana Area, Rivers State, Nigeria. ... Considerable caution should be applied in exploration, exposure and distribution of the crude oil through protected and well maintained pipelines to avoid the possible ...

  17. Earthworm-assisted bioremediation of petroleum hydrocarbon ...

    African Journals Online (AJOL)

    Ameh

    The use of earthworms (Eudrilus eugenia) for vermi-assisted bioremediation of petroleum hydrocarbon contaminated mechanic workshop soils ... not always result in complete neutrali- zation of pollutants (Yerushalmi et al., 2003). ..... Screening of biofouling activity in marine bacterial isolate from ship hull. Int. J. Environ. Sci.

  18. Petroleum-hydrocarbons biodegradation by Pseudomonas strains ...

    African Journals Online (AJOL)

    The capability of these isolates to degrade petroleum was performed by measuring the optical density, colony forming unit counts (CFU/ml) and concentration of total petroleum hydrocarbons (TPH). Degradation of Isomerate by these isolates was analyzed by gas chromatography with flame ionization detector (FID). Results ...

  19. Polycyclic Aromatic Hydrocarbons (PAHs) Levels in Two ...

    African Journals Online (AJOL)

    Polycyclic aromatic hydrocarbons (PAHs) concentrations were measured by gas chromatography with flame ionization detector (GC/FID) in two fish species, Sardinella maderensis (Flat sardinella) and Galeoides decadactylus (Lesser African threadfin or Shine-nose or Common threadfin) from Ghanaian coastal waters and ...

  20. Bioremediation of Polycyclic Aromatic Hydrocarbon contaminated ...

    African Journals Online (AJOL)

    This study investigates the effect of lead and chromium on the rate of bioremediation of polycyclic aromatic hydrocarbon (PAH) contaminated clay soil. Naphthalene was used as a target PAH. The soil was sterilized by heating at 120oC for one hour. 100g of the soil was contaminated with lead, chromium, nickel and mercury ...

  1. The presence of hydrocarbons in southeast Norway

    DEFF Research Database (Denmark)

    Hanken, Niels Martin; Hansen, Malene Dolberg; Kresten Nielsen, Jesper

    Hydrocarbons, mostly found as solid pyrobitumen, are known from more than 30 localities in southeast Norway. They occur as inclusions in a wide range of "reservoir rocks" spanning from Permo-Carboniferous breccias to veins (vein quartz and calcite veins) in Precambrian granites, gneisses and amph......Hydrocarbons, mostly found as solid pyrobitumen, are known from more than 30 localities in southeast Norway. They occur as inclusions in a wide range of "reservoir rocks" spanning from Permo-Carboniferous breccias to veins (vein quartz and calcite veins) in Precambrian granites, gneisses......, indicating that Alum Shale was the most important source rock. Petrographic investigations combined with stable isotope analyses (d13C and d18O) of the cement containing pyrobitumen indicate two phases of hydrocarbon migration. The first phase probably took place in Upper Silurian to Lower Devonian time......, when the Alum Shale entered the oil window. These hydrocarbons are mostly found as pyrobitumen in primary voids and calcite cemented veins in Cambro-Silurian sedimentary deposits. The second phase is probably of Late Carboniferous/Permian age and was due to the increased heat flow during the formation...

  2. Determination of carcinogenic polycyclic aromatic hydrocarbons in ...

    African Journals Online (AJOL)

    Determination of carcinogenic polycyclic aromatic hydrocarbons in air samples in Irbid, north Jordan. A Al-Gawadreh Sat, M.B. Gasim, A.R. Hassan, A Azid. Abstract. Air samples were collected at an urban site and a rural (BERQESH) site during February (2017) until March (2017) to determine concentrations of polycyclic ...

  3. Determination of carcinogenic polycyclic aromatic hydrocarbons ...

    African Journals Online (AJOL)

    Log in or Register to get access to full text downloads. ... collected from the most polluted part of Bangsai river at Saver industrial zone was analyzed for the presence of polycyclic aromatic hydrocarbon, anthracene, by gas chromatography-mass spectrometry (GC-MS). A ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  4. AD1995: NW Europe's hydrocarbon industry

    International Nuclear Information System (INIS)

    Glennie, K.; Hurst, A.

    1996-01-01

    This volume concerns itself with wide-ranging aspects of the upstream hydro-carbon industry over the whole of NW Europe. As such, the book contrasts with many thematic volumes by presenting a broad range of topics side-by-side. One section of the book looks back at the history of geological exploration and production, and provides an overview of hydrocarbon exploration across NW Europe. Another section covers the state of the art in hydrocarbon exploration and production. This includes an update on computer-based basin modelling overpressure systems, innovations in reservoir engineering and reserve estimation, 3D seismic and the geochemical aspects of secondary migration. The final section of the book takes a look into the future. This covers the remaining hydrocarbon resources of the North Sea, managing risk in oil field development, oil field economics, and pollution and the environment. It is the editors' hope that several key areas of NW Europe's upstream oil industry have been usefully summarized in the volume. (Author)

  5. The role of hydrocarbons in energy transition

    International Nuclear Information System (INIS)

    2015-11-01

    This publication presents some reflections and statements as well as data regarding the role of hydrocarbons in energy production and consumption, in order to better highlight the role hydrocarbons may have in energy transition. It outlines the still very important share of oil in primary and final energy, and more particularly in transports, and that, despite the development of other energies, an energy transition is always very slow. It discusses the perspectives for hydrocarbon reserves and production of oil and natural gas. It outlines that oil remains the most important energy for mobility, the benefits of conventional fuels, and that distribution infrastructures must be preserved and developed. It discusses the evolution of the economic situation of the refining activity (more particularly its margin). It outlines the high contribution of oil industry to economic activity and employment in France, discusses the French energy taxing policy and environmental taxing policy, discusses the issue of security of energy supply (with its different components: exploration-production, refining, logistics and depots, distribution and station network). It discusses the possible role shale hydrocarbons may have in the future. For each issue, the position and opinion of the UFIP (the French Union of oil industries) is stated. The second part of the document proposes a Power Point presentation with several figures and data on these issues

  6. Mathematical modelling on transport of petroleum hydrocarbons

    Indian Academy of Sciences (India)

    A brief theory has been included on the composition and transport of petroleum hydrocarbons following an onshore oil spill in order to demonstrate the level of complexity associated with the LNAPL dissolution mass transfer even in a classical porous medium. However, such studies in saturated fractured rocks are highly ...

  7. Task 8: Evaluation of hydrocarbon potential

    International Nuclear Information System (INIS)

    Cashman, P.H.; Trexler, J.H. Jr.

    1994-01-01

    Our studies focus on the stratigraphy of Late Devonian to early Pennsylvanian rocks at the NTS, because these are the best potential hydrocarbon source rocks in the vicinity of Yucca Mountain. In the last year, our stratigraphic studies have broadened to include the regional context for both the Chainman and the Eleana formations. New age data based on biostratigraphy constrain the age ranges of both Chainman and Eleana; accurate and reliable ages are essential for regional correlation and for regional paleogeographic reconstructions. Source rock analyses throughout the Chainman establish whether these rocks contained adequate organic material to generate hydrocarbons. Maturation analyses of samples from the Chainman determine whether the temperature history has been suitable for the generation of liquid hydrocarbons. Structural studies are aimed at defining the deformation histories and present position of the different packages of Devonian - Pennsylvanian rocks. This report summarizes new results of our structural, stratigraphic and hydrocarbon source rock potential studies at the Nevada Test Site and vicinity. Stratigraphy is considered first, with the Chainman Shale and Eleana Formation discussed separately. New biostratigraphic results are included in this section. New results from our structural studies are summarized next, followed by source rock and maturation analyses of the Chainman Shale. Directions for future work are included where appropriate

  8. Oxygenation of saturated and unsaturated hydrocarbons with ...

    Indian Academy of Sciences (India)

    Unknown

    Oxygenation of saturated and unsaturated hydrocarbons with sodium periodate. 431. Table 1. Competitive oxygenation of tetralin and cyclooctene with sodium periodate catalyzed by different manga- .... Teacher Education University. My grateful thanks also extend to Dr D Mohajer for his useful sugges- tions. References. 1.

  9. Process of converting phenols into hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Seelig, S

    1929-02-02

    A process is disclosed for the conversion of phenols into hydrocarbons, characterized by preheating a mixture of phenols and hydrogen or hydrogen-producing gases to approximately the reaction temperature under pressure, heating by passage percussion-like through a bath of metal to the reaction temperature, and rapidly cooling.

  10. Producing light hydrocarbons by destructive hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Fohlen, J H

    1928-06-20

    A method of obtaining light hydrocarbons from fuels and natural or industrial carbonaceous materials by cracking under pressure from 5 to 200 atmospheres and within a temperature range of 200 to 1,000/sup 0/C, the cracking operation being assisted by the presence of catalysts such as metallic halides, simultaneously, with hydrogenation by means of nascent hydrogen in the reaction chamber.

  11. Occurrence and growth potentials of hydrocarbon degrading ...

    African Journals Online (AJOL)

    The surface of leaf samples from ten tropical plants, Anthocleista, Sarcophrynium, Canna, Colocassia, Musa, Cola, Citrus, Mangifera, Terminalia and Annona were cultured for the estimation of total heterotrophic and hydrocarbon utilizing bacteria. The total heterotrophic bacteria ranged from 0.75 x 107 to 0.98 x 107 ...

  12. Source identification of hydrocarbons following environmental releases

    Energy Technology Data Exchange (ETDEWEB)

    Birkholz, D.A. [ALS Environmental, Edmonton, AB (Canada)

    2010-07-01

    Methods of identifying the sources of hydrocarbon contaminations were discussed in this PowerPoint presentation. Laboratories analyze for total petroleum hydrocarbons (TPH) by obtaining chromatograms of observed products. However, many petroleum products provide similar chromatograms. Several independent lines of evidence are needed for the purposes of accurate determination in legal applications. A case study of a lube oil plant spill was used to demonstrate the inconclusiveness of chromatograms and the need to determine petroleum biomarkers. Terpane, sterane, triaromatic sterane, isoprenoid, and alkylcyclohexane analyses were conducted to differentiate between the hydrocarbon samples. The analysis methods are being used with various soil, water, and crab species samples from the BP oil spill. Oil found at the different sites must be directly related to the spill. However, there are 3858 oil and gas platforms currently operating in the Gulf of Mexico. Ratios of biomarkers and polycyclic aromatic hydrocarbons (PAHs) are being developed to generate weight of evidence. A critical difference analysis was also presented. tabs., figs.

  13. Site characterization and petroleum hydrocarbon plume mapping

    Energy Technology Data Exchange (ETDEWEB)

    Ravishankar, K. [Harding Lawson Associates, Houston, TX (United States)

    1996-12-31

    This paper presents a case study of site characterization and hydrocarbon contamination plume mapping/delineation in a gas processing plant in southern Mexico. The paper describes innovative and cost-effective use of passive (non-intrusive) and active (intrusive) techniques, including the use of compound-specific analytical methods for site characterization. The techniques used, on a demonstrative basis, include geophysical, geochemical, and borehole drilling. Geochemical techniques used to delineate the horizontal extent of hydrocarbon contamination at the site include soil gas surveys. The borehole drilling technique used to assess the vertical extent of contamination and confirm geophysical and geochemical data combines conventional hollow-stem auguring with direct push-probe using Geoprobe. Compound-specific analytical methods, such as hydrocarbon fingerprinting and a modified method for gasoline range organics, demonstrate the inherent merit and need for such analyses to properly characterize a site, while revealing the limitations of noncompound-specific total petroleum hydrocarbon analysis. The results indicate that the techniques used in tandem can properly delineate the nature and extent of contamination at a site; often supplement or complement data, while reducing the risk of errors and omissions during the assessment phase; and provide data constructively to focus site-specific remediation efforts. 7 figs.

  14. Organic amendment optimization for treatment of hydrocarbon ...

    African Journals Online (AJOL)

    Sugar cane cachasse was tested as an organic soil amendment at 0, 2, 4 and 9% (dry weight), for the remediation of hydrocarbon contaminated soil (with an average initial concentration of 14,356 mg/Kg), which had been pre-treated by the incorporation of 4% (dry weight) calcium hydroxide according to the ...

  15. Process of converting heavy hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, F C

    1921-05-27

    A modification is described of the process of the principal Patent 373,060 for splitting and converting heavy hydrocarbons into low-boiling lighter products or into cylinder oil, characterized in that, in place of petroleum, brown-coal oil, shale oil, or the like is distilled in the presence of hydrosilicate as a catalyzer or is heated with refluxing.

  16. Antioxidant Functions of the Aryl Hydrocarbon Receptor

    Directory of Open Access Journals (Sweden)

    Cornelia Dietrich

    2016-01-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms.

  17. Hydrocarbon-degrading bacteria isolation and surfactant influence ...

    African Journals Online (AJOL)

    Hydrocarbons are substantially insoluble in water, often remaining partitioned in the non-aqueous phase liquid (NAPL). However, there had been little or no attempts to advance the bioavailability of hydrocarbons through the use of surfactants. This study was conducted based on the need to isolate hydrocarbon degrading ...

  18. Polycyclic’ Aromatic Hydrocarbon Induced Intracellular Signaling and Lymphocyte Apoptosis

    DEFF Research Database (Denmark)

    Schneider, Alexander M.

    The aryl hydrocarbon (dioxin) receptor (AhR) is a transcription factor possessing high affinity to potent environmental pollutants, polycyclic aromatic hydrocarbons (PAH) and related halogenated hydrocarbons (e.g. dioxins). Numerous research attribute toxicity of these compounds to the receptor...

  19. 27 CFR 21.125 - Rubber hydrocarbon solvent.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Rubber hydrocarbon solvent. 21.125 Section 21.125 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....125 Rubber hydrocarbon solvent. (a) Rubber hydrocarbon solvent is a petroleum derivative. (b...

  20. Russia and China hydrocarbon relations. A building block toward international hydrocarbon regulation?

    International Nuclear Information System (INIS)

    Locatelli, Catherine; Abbas, Mehdi; Rossiaud, Sylvain

    2015-12-01

    This article is a first step of a research agenda on international hydrocarbon regulations. With regards to both: i) the new wealth and power equilibrium in the international political economy and ii) the new political economy of carbon that is emerging from The Paris agreement on Climate changes, this research agenda aims at analysing the changing national structures of governance and the ways these changes lead to international, bilateral, pluri-lateral or multilateral hydrocarbon regulation

  1. Analysis of hydrocarbons generated in coalbeds

    Science.gov (United States)

    Butala, Steven John M.

    This dissertation describes kinetic calculations using literature data to predict formation rates and product yields of oil and gas at typical low-temperature conditions in coalbeds. These data indicate that gas formation rates from hydrocarbon thermolysis are too low to have generated commercial quantities of natural gas, assuming bulk first-order kinetics. Acid-mineral-catalyzed cracking, transition-metal-catalyzed hydrogenolysis of liquid hydrocarbons, and catalyzed CO2 hydrogenation form gas at high rates. The gaseous product compositions for these reactions are nearly the same as those for typical natural coalbed gases, while those from thermal and catalytic cracking are more representative of atypical coalbed gases. Three Argonne Premium Coals (Upper-Freeport, Pittsburgh #8 and Lewiston-Stockton) were extracted with benzene in both Soxhlet and elevated pressure extraction (EPE) systems. The extracts were compared on the basis of dry mass yield and hydrocarbon profiles obtained by gas chromatography/mass spectrometry. The dry mass yields for the Upper-Freeport coal gave consistent results by both methods, while the yields from the Pittsburgh #8 and Lewiston-Stockton coals were greater by the EPE method. EPE required ˜90 vol. % less solvent compared to Soxhlet extraction. Single-ion-chromatograms of the Soxhlet extracts all exhibited bimodal distributions, while those of the EPE extracts did not. Hydrocarbons analyzed from Greater Green River Basin samples indicate that the natural oils in the basin originated from the coal seams. Analysis of artificially produced oil indicates that hydrous pyrolysis mimics generation of C15+ n-alkanes, but significant variations were found in the branched alkane, low-molecular-weight n-alkanes, and high-molecular-weight aromatic hydrocarbon distributions.

  2. Chronic polyaromatic hydrocarbon (PAH contamination is a marginal driver for community diversity and prokaryotic predicted functioning in coastal sediments

    Directory of Open Access Journals (Sweden)

    Mathilde Jeanbille

    2016-08-01

    Full Text Available Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes. Prokaryotic alpha-diversity showed significant association with salinity, temperature, and organic carbon content. The effect of particle size distribution was strong on eukaryotic diversity. Similarly to alpha-diversity, beta-diversity patterns were strongly influenced by the environmental filter, while PAHs had no influence on the prokaryotic community structure and a weak impact on the eukaryotic community structure at the continental scale. However, at the regional scale, PAHs became the main driver shaping the structure of bacterial and eukaryotic communities. These patterns were not found for PICRUSt predicted prokaryotic functions, thus indicating some degree of functional redundancy. Eukaryotes presented a greater potential for their use as PAH contamination biomarkers, owing to their stronger response at both regional and continental scales.

  3. Sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants.

    Science.gov (United States)

    Gerner, Nadine V; Cailleaud, Kevin; Bassères, Anne; Liess, Matthias; Beketov, Mikhail A

    2017-11-01

    Hydrocarbons have an utmost economical importance but may also cause substantial ecological impacts due to accidents or inadequate transportation and use. Currently, freshwater biomonitoring methods lack an indicator that can unequivocally reflect the impacts caused by hydrocarbons while being independent from effects of other stressors. The aim of the present study was to develop a sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants, which can be used in hydrocarbon-specific bioindicators. We employed the Relative Sensitivity method and developed the sensitivity ranking S hydrocarbons based on literature ecotoxicological data supplemented with rapid and mesocosm test results. A first validation of the sensitivity ranking based on an earlier field study has been conducted and revealed the S hydrocarbons ranking to be promising for application in sensitivity based indicators. Thus, the first results indicate that the ranking can serve as the core component of future hydrocarbon-specific and sensitivity trait based bioindicators.

  4. Hydrocarbon-degradation by Isolate Pseudomonas lundensis UTAR FPE2

    Directory of Open Access Journals (Sweden)

    Adeline, S. Y. Ting

    2009-01-01

    Full Text Available In this study, the potential of isolate Pseudomonas lundensis UTAR FPE2 as a hydrocarbon degrader was established. Their biodegradation activity was first detected with the formation of clearing zones on Bushnell-Hass agar plates, with the largest diameter observed on plates supplemented with paraffin, followed by mineral oil and petrol. Utilization of hydrocarbon sources were again detected in broth cultures supplemented with similar hydrocarbon substrates, where the mean viable cell count recovered from hydrocarbon-supplemented broth cultures were higher than the initial inoculum except for napthalene. In both tests, the isolate showed higher degradability towards aliphatic hydrocarbon sources, and the least activity towards the aromatic hydrocarbon naphthalene. The isolate P. lundensis UTAR FPE2 (8 log10 cfu/mL also degraded crude diesel sample, with 69% degradation during the first three days. To conclude, this study suggests the potential use of this isolate for bioremediation of hydrocarbon-contaminated environments.

  5. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-03-08

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  6. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-09-06

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  7. A method of refining aromatic hydrocarbons from coal chemical production

    Energy Technology Data Exchange (ETDEWEB)

    Zieborak, K.; Koprowski, A.; Ratajczak, W.

    1979-10-01

    A method is disclosed for refining aromatic hydrocarbons of coal chemical production by contact of liquid aromatic hydrocarbons and their mixtures with a strongly acid macroporous sulfocationite in the H-form at atmospheric pressure and high temperature. The method is distinguished in that the aromatic hydrocarbons and their mixtures, from which alkali compounds have already been removed, are supplied for refinement with the sulfocationite with simultaneous addition of olefin derivatives of aromatic hydrocarbons, followed by separation of pure hydrocarbons by rectification. Styrene or alpha-methylstyrene is used as the olefin derivatives of the aromatic hydrocarbons. The method is performed in several stages with addition of olefin derivatives of aromatic hydrocarbons at each stage.

  8. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    Science.gov (United States)

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  9. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    Science.gov (United States)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  10. Effects of simulated acid rain on germination, seedling growth and oxidative metabolism of recalcitrant-seeded Trichilia dregeana grown in its natural seed bank.

    Science.gov (United States)

    Ramlall, Chandika; Varghese, Boby; Ramdhani, Syd; Pammenter, Norman W; Bhatt, Arvind; Berjak, Patricia; Sershen

    2015-01-01

    Increased air pollution in a number of developing African countries, together with the reports of vegetation damage typically associated with acid precipitation in commercial forests in South Africa, has raised concerns over the potential impacts of acid rain on natural vegetation in these countries. Recalcitrant (i.e. desiccation sensitive) seeds of many indigenous African species, e.g. must germinate shortly after shedding and hence, may not be able to avoid exposure to acid rain in polluted areas. This study investigated the effects of simulated acid rain (rainwater with pH adjusted to pH 3.0 and 4.5 with 70:30, H2 SO4 :HNO3 ) on germination, seedling growth and oxidative metabolism in a recalcitrant-seeded African tree species Trichilia dregeana Sond., growing in its natural seed bank. The results suggest that acid rain did not compromise T. dregeana seed germination and seedling establishment significantly, relative to the control (non-acidified rainwater). However, pH 3.0 treated seedlings exhibited signs of stress typically associated with acid rain: leaf tip necrosis, abnormal bilobed leaf tips, leaf necrotic spots and chlorosis, reduced leaf chlorophyll concentration, increased stomatal density and indications of oxidative stress. This may explain why total and root biomass of pH 3.0 treated seedlings were significantly lower than the control. Acid rain also induced changes in the species composition and relative abundance of the different life forms emerging from T. dregeana's natural seed bank and in this way could indirectly impact on T. dregeana seedling establishment success. © 2014 Scandinavian Plant Physiology Society.

  11. Analysis of monoterpene hydrocarbons in rural atmospheres

    International Nuclear Information System (INIS)

    Holdren, M.W.; Westberg, H.H.; Zimmerman, P.R.

    1979-01-01

    Gas chromatographic/mass spectrometric analysis of monoterpenes from a rural forested site in the northwestern United States is described. Use of a glass capillary column provided excellent resolution of the hydrocarbons. Increased sensitivity and specificity of the mass spectrometer detector over the flame ionization detector were demonstrated for trace (parts per trillion) atmospheric hydrocarbons. As little as 10 ppt of compound was detectable in 100-cc air samples. Two analytical methods (cryogenic and solid adsorbent--Tenax-GC) were used in the collection of ambient air. Analytical results from the two techniques compared very well. Rural concentrations of the monoterpenes varied considerably depending upon location within the forest canopy. The concentration of individual species never exceeded 1 ppb of compound during a 10-month sampling period. The monoterpene total for all samples fell in the range of 0.5- to 16-ppb compound for C 10 terpene

  12. CHARACTERISTICS OF HYDROCARBON EXPLOITATION IN ARCTIC CIRCLE

    Directory of Open Access Journals (Sweden)

    Vanja Lež

    2013-12-01

    Full Text Available The existence of large quantities of hydrocarbons is supposed within the Arctic Circle. Assumed quantities are 25% of the total undiscovered hydrocarbon reserves on Earth, mostly natural gas. Over 500 major and minor gas accumulations within the Arctic Circle were discovered so far, but apart from Snøhvit gas field, there is no commercial exploitation of natural gas from these fields. Arctic gas projects are complicated, technically hard to accomplish, and pose a great threat to the return of investment, safety of people and equipment and for the ecosystem. Russia is a country that is closest to the realization of the Arctic gas projects that are based on the giant gas fields. The most extreme weather conditions in the seas around Greenland are the reason why this Arctic region is the least explored and furthest from the realization of any gas project (the paper is published in Croatian .

  13. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  14. Hydrocarbons from plants: Analytical methods and observations

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1980-11-01

    We have suggested that certain plants rich in hydrocarbon-like materials might be cultivated for renewable photosynthetic products. Two species were selected for experimental plantations: Euphorbia lathyris, an annual from seed and Euphorbia tirucalli, a perennial from cuttings, The yield from each species is over 10 barrels of oil/acre/year without genetic or agronomic improvement. In addition to plants, there are trees, such as species of Copaifera in Brazil and other tropical areas, which produce a diesel-like oil upon tapping. Each tree produces approximately 40 liters of hydrocarbon per year, and this material can be used directly by a diesel-powered car. Further efforts to develop plants as alternate energy sources are underway, as well as a continuing search for additional plant species throughout the world which have a similar capability.

  15. Desorption and bioremediation of hydrocarbon contaminated soils

    International Nuclear Information System (INIS)

    Gray, M.R.

    1998-01-01

    A study was conducted in which the extent and pattern of contaminant biodegradation during bioremediation of four industrially-contaminated soils were examined to determine which factors control the ultimate extent of biodegradation and which limit the success of biological treatment. It was noted that although bioremediation is inexpensive and has low environmental impact, it often fails to completely remove the hydrocarbons in soils because of the complex interactions between contaminants, the soil environment, and the active microorganisms. In this study, the competency of the microorganisms in the soil to degrade the contaminants was examined. The equilibrium partitioning of the contaminants between the soil and the aqueous phase was also examined along with the transport of contaminants out of soil particles. The role of diffusion of compounds in the soil and the importance of direct contact between microorganisms and the hydrocarbons was determined. Methods for selecting suitable sites for biological treatment were also described

  16. Hydrocarbon potential of the Trinidad area - 1977

    Energy Technology Data Exchange (ETDEWEB)

    Persad, K.M.

    1978-06-01

    It is recognized that deltaic and associated sands, together with porous marine limestones, form the vast majority of the reservoirs in the major accumulations of hydrocarbons throughout the world. The source of the hydrocarbons is now thought to be kerogen which is generated from the organic content of principally marine shales which are formed in or near the continental shelves. The Trinidad area contains several sedimentary subbasins, most of which consist largely of deltaic and associated sediments. These sediments, like most of the ancient deltas of the world, contain major reserves of oil and gas. Other less important reserves should occur in sporadic (time-wise) porous limestones. The total proven and probable reserves of the Trinidad area are around 5 billion bbl of oil, of which 1.6 billion bbl already have been produced, and over 47 TCF of gas.

  17. Enumeration of petroleum hydrocarbon utilizing bacteria

    International Nuclear Information System (INIS)

    Mukherjee, S.; Barot, M.; Levine, A.D.

    1996-01-01

    In-situ biological treatment is one among a number of emerging technologies that may be applied to the remediation of contaminated soils and groundwater. In 1985, a surface spill of 1,500 gallons of dielectric transformer oil at the Sandia National Laboratories (HERMES II facility) resulted in contamination of soil up to depths of 160 feet. The extent of contamination and site characteristics favored the application of in-situ bioremediation as a potential remedial technology. The purpose of this research was to enumerate indigenous microbial populations capable of degrading petroleum hydrocarbons. Microbial enumeration and characterization methods suitably adapted for hydrocarbon utilizing bacteria were used as an indicator of the presence of viable microbial consortia in excavated oil samples with hydrocarbon (TPH) concentrations ranging from 300 to 26,850 ppm. Microbial activity was quantified by direct and streak plating soil samples on silica gel media. Effects of toxicity and temperature were studied using batch cultures of hydrocarbon utilizing bacteria (selectively isolated in an enrichment medium), at temperatures of 20 and 35 C. It was concluded from this study that it is possible to isolate native microorganisms from contaminated soils from depths of 60 to 160 feet, and with oil concentration ranging from 300 to 26,850 ppm. About 62% of the microorganisms isolated form the contaminated soil were capable of using contaminant oil as a substrate for growth and metabolism under aerobic conditions. Growth rates were observed to be 50% higher for the highest contaminant concentration at 20 C. Resistance to toxicity to contaminant oil was also observed to be greater at 20 C than at 35 C

  18. National Gas Survey. Synthesized gaseous hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The supply-Technical Advisory Task Force-Synthesized Gaseous Hydrocarbon Fuels considered coal, hydrocarbon liquids, oil shales, tar sands, and bioconvertible materials as potential feedstocks for gaseous fuels. Current status of process technology for each feedstock was reviewed, economic evaluations including sensitivity analysis were made, and constraints for establishment of a synthesized gaseous hydrocarbon fuels industry considered. Process technology is presently available to manufacture gaseous hydrocarbon fuels from each of the feedstocks. In 1975 there were eleven liquid feedstock SNG plants in the United States having a capacity of 1.1 billion SCFD. There can be no contribution of SNG before 1982 from plants using feedstocks other than liquids because there are no plants in operation or under construction as of 1977. Costs for SNG are higher than current regulated prices for U.S. natural gas. Because of large reserves, coal is a prime feedstock candidate although there are major constraints in the area of coal leases, mining and water permits, and others. Commercial technology is available and several new gasification processes are under development. Oil shale is also a feedstock in large supply and commercial process technology is available. There are siting and permit constraints, and water availability may limit the ultimate size of an oil shale processing industry. Under projected conditions, bioconvertible materials are not expected to support the production of large quantities of pipeline quality gas during the next decade. Production of low or medium Btu gas from municipal solid wastes can be expected to be developed in urban areas in conjunction with savings in disposal costs. In the economic evaluations presented, the most significant factor for liquid feedstock plants is the anticipated cost of feedstock and fuel. The economic viability of plants using other feedstocks is primarily dependent upon capital requirements.

  19. Hydrochloric acid recycling from chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sowieja, D. [Sulzer Escher Wyss GmbH, Ravensburg (Germany); Schaub, M. [Sulzer Chemtech Ltd., Winterthur (Switzerland)

    1993-12-31

    Chlorinated hydrocarbons present a major ecological hazard since most of them are only poorly biodegradable. Incineration is an economical process for their destruction, however the usually recovered sodium or calcium chlorides do not present a value and their disposal may even be very costly. Recovery of hydrochloric acid may therefore present an economical solution, mainly were large quantities of highly chlorinated compounds can be processed (author) 6 refs., 4 figs., 1 tab.

  20. Characterisation of unresolved complex mixtures of hydrocarbons

    OpenAIRE

    Gough, Mark Adrian

    1989-01-01

    Metadata merged with duplicate record (http://hdl.handle.net/10026.1/666) on 20.12.2016 by CS (TIS). This is a digitised version of a thesis that was deposited in the University Library. If you are the author please contact PEARL Admin () to discuss options. The hydrocarbons of Recent Polluted.., sediments, in-reservoir and laboratory biodegraded crude oils, and certain petroleum products (e. g. lubricating oils) often display "humps" or Unresolved Complex...

  1. Acquired and innate immunity to polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Yusuf, Nabiha; Timares, Laura; Seibert, Megan D.; Xu Hui; Elmets, Craig A.

    2007-01-01

    Polyaromatic hydrocarbons are ubiquitous environmental pollutants that are potent mutagens and carcinogens. Researchers have taken advantage of these properties to investigate the mechanisms by which chemicals cause cancer of the skin and other organs. When applied to the skin of mice, several carcinogenic polyaromatic hydrocarbons have also been shown to interact with the immune system, stimulating immune responses and resulting in the development of antigen-specific T-cell-mediated immunity. Development of cell-mediated immunity is strain-specific and is governed by Ah receptor genes and by genes located within the major histocompatibility complex. CD8 + T cells are effector cells in the response, whereas CD4 + T cells down-regulate immunity. Development of an immune response appears to have a protective effect since strains of mice that develop a cell-mediated immune response to carcinogenic polyaromatic hydrocarbons are less likely to develop tumors when subjected to a polyaromatic hydrocarbon skin carcinogenesis protocol than mice that fail to develop an immune response. With respect to innate immunity, TLR4-deficient C3H/HeJ mice are more susceptible to polyaromatic hydrogen skin tumorigenesis than C3H/HeN mice in which TLR4 is normal. These findings support the hypothesis that immune responses, through their interactions with chemical carcinogens, play an active role in the prevention of chemical skin carcinogenesis during the earliest stages. Efforts to augment immune responses to the chemicals that cause tumors may be a productive approach to the prevention of tumors caused by these agents

  2. Solo Mycoremediation Impacted by Waste Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Franklin Santos Freire

    2015-06-01

    Full Text Available Oil and its derivatives are the principal means of energy generation for vehicles that transport raw materials and goods produced in developed and developing regions accentuating the risk of accidents by spills in stockpiling, transport, use or discarding. The contamination by total hydrocarbons suggests the elevated propension to mutations and to the formation of carcinogenic tumors, as a consequence of the exposure to human contamination by these products. This work had as aims: a To investigate, in a laboratorial scale, the degrading capacity of autochthonous microbiota in the presence of differing concentrations of hydrocarbons (0%, 2,5%, 5% e 7,5%; b To isolate fungi tolerant to the contaminant; c To quantify and analyze the biodegradation capacity of soil through the microbial biomass and metabolic quotient; and d To set, in laboratory, ideal conditions of biodegradation of the xenobiotic compound. Some parameters of microbial activity have been evaluated, such as: biological (Carbon of microbial biomass, CO2 , qCO2 emission, and fungi growth, chemical (pH, electrical conductivity –EC –, analysis of fertility and total hydrocarbons and physical (physical composition of the soil for analysis and comparisons. The obtained results suggest that the adding of 5% of waste oil in the ground provided ideal condition for the biodegradation of he   contaminant in the environment. From the evaluated parameters, the emission of CO2 and microbial C were considered more indicative of changes in soil microbial activity subject to the addition of hydrocarbons, confirming the possibility of microremediation use.

  3. Adaptive dynamics of cuticular hydrocarbons in Drosophila

    Czech Academy of Sciences Publication Activity Database

    Rajpurohit, S.; Hanus, Robert; Vrkoslav, Vladimír; Behrman, E. L.; Bergland, A. O.; Petrov, D.; Cvačka, Josef; Schmidt, P. S.

    2017-01-01

    Roč. 30, č. 1 (2017), s. 66-80 ISSN 1010-061X R&D Projects: GA ČR GAP206/12/1093 Institutional support: RVO:61388963 Keywords : cuticular hydrocarbons * Drosophila * experimental evolution * spatiotemporal variation * thermal plasticity Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 2.792, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/jeb.12988/full

  4. Electrochemical Routes towards Sustainable Hydrocarbon Fuels

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    2012-01-01

    The potential of renewable energy and possible solution to the intermittency problem of renewable energy sources like sun and wind are explained. The densest storage of energy is in the form of hydrocarbons. The most suitable method of conversion and storage within a foreseeable future is electro...... in the future. In spite of this, it is important to research and develop as many viable sustainable energy technologies as economical possible. © 2012 ECS - The Electrochemical Society  ...

  5. Small Scale Hydrocarbon Fire Test Concept

    OpenAIRE

    Joachim Søreng Bjørge; Maria-Monika Metallinou; Arjen Kraaijeveld; Torgrim Log

    2017-01-01

    In the oil and gas industry, hydrocarbon process equipment was previously often thermally insulated by applying insulation directly to the metal surface. Fire protective insulation was applied outside the thermal insulation. In some cases, severe corrosion attacks were observed due to ingress of humidity and condensation at cold surfaces. Introducing a 25 mm air gap to prevent wet thermal insulation and metal wall contact is expected to solve the corrosion issues. This improved insulation met...

  6. Continuous process for converting hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    1934-05-01

    A continuous process is disclosed for converting hydrocarbons, liquid, semi-liquid, and solid, of all origins and kinds, into incondensable gases, without carbon deposits, characterized by the fact that an intimate mixture of the material and superheated steam before cracking is passed through a contact mass. The contact mass consists of all metals, metal alloys, and mineral salts which, at the reaction temperature, are fused and do not react with the water vapor or gaseous products.

  7. Hydrochloric acid recycling from chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sowieja, D [Sulzer Escher Wyss GmbH, Ravensburg (Germany); Schaub, M [Sulzer Chemtech Ltd., Winterthur (Switzerland)

    1994-12-31

    Chlorinated hydrocarbons present a major ecological hazard since most of them are only poorly biodegradable. Incineration is an economical process for their destruction, however the usually recovered sodium or calcium chlorides do not present a value and their disposal may even be very costly. Recovery of hydrochloric acid may therefore present an economical solution, mainly were large quantities of highly chlorinated compounds can be processed (author) 6 refs., 4 figs., 1 tab.

  8. Transformations of aromatic hydrocarbons over zeolites

    Czech Academy of Sciences Publication Activity Database

    Voláková, Martina; Žilková, Naděžda; Čejka, Jiří

    2008-01-01

    Roč. 34, 5-7 (2008), s. 439-454 ISSN 0922-6168 R&D Projects: GA ČR GA203/05/0197; GA AV ČR 1QS400400560; GA AV ČR KJB4040402 Institutional research plan: CEZ:AV0Z40400503 Keywords : aromatic hydrocarbons * zeolites * alkylation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.514, year: 2008

  9. Geophysical monitoring in a hydrocarbon reservoir

    Science.gov (United States)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  10. Aliphatic hydrocarbon and polycyclic aromatic hydrocarbon geochemistry of twelve major rivers in the Northwest Territories

    International Nuclear Information System (INIS)

    Backus, S.; Swyripa, M.; Peddle, J.; Jeffries, D.S.

    1995-01-01

    Suspended sediment and water samples collected from twelve major rivers in the Northwest Territories were analyzed for aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) to assess the sources and transport of hydrocarbons entering the Arctic Ocean. Three stations on the Mackenzie River and one station near the mouth of eleven other northern rivers were selected for sampling. Samples were collected on the Mackenzie River on four occasions to characterize spring, summer and fall flow conditions and once on the remaining eleven rivers during high flow conditions. The Mackenzie River is distinctively different then the other eleven rivers. Naturally occurring hydrocarbons predominate in the river. These hydrocarbons include biogenic alkanes, diagenic PAHs, petrogenic alkanes, and PAHs from oil seeps and/or bitumens. Anthropogenic inputs of PAHs are low as indicated by low concentrations of combustion PAHs. Alkyl PAH distributions indicate that a significant component of the lower molecular weight PAH fraction is petrogenic. The majority of the high molecular weight PAHs, together with the petrogenic PAHs have a principal source in the Mackenzie River

  11. Thermal Adsorption Processing Of Hydrocarbon Residues

    Directory of Open Access Journals (Sweden)

    Sudad H. Al.

    2017-04-01

    Full Text Available The raw materials of secondary catalytic processes must be pre-refined. Among these refining processes are the deasphalting and demetallization including their thermo adsorption or thermo-contact adsorption variety. In oil processing four main processes of thermo-adsorption refining of hydrocarbon residues are used ART Asphalt Residual Treating - residues deasphaltizing 3D Discriminatory Destructive Distillation developed in the US ACT Adsorption-Contact Treatment and ETCC Express Thermo-Contact Cracking developed in Russia. ART and ACT are processes with absorbers of lift type reactor while 3D and ETCC processes are with an adsorbing reactor having ultra-short contact time of the raw material with the adsorbent. In all these processes refining of hydrocarbon residues is achieved by partial Thermo-destructive transformations of hydrocarbons and hetero-atomic compounds with simultaneous adsorption of the formed on the surface of the adsorbents resins asphaltene and carboids as well as metal- sulphur - and nitro-organic compounds. Demetallized and deasphalted light and heavy gas oils or their mixtures are a quality raw material for secondary deepening refining processes catalytic and hydrogenation cracking etc. since they are characterized by low coking ability and low content of organometallic compounds that lead to irreversible deactivation of the catalysts of these deepening processes.

  12. Radiolytic degradation of chlorinated hydrocarbons in water

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xing-Zheng; Yamamoto, Takeshi [Fukui Univ., Faculty of Engineering, Dept. of Materials Science and Engineering, Fukui (Japan); Hatashita, Masanori [The Wakasa Wan Energy Research Center, Research Dept., Tsuruga, Fukui (Japan)

    2002-11-01

    Radiolytic degradation of chlorinated hydrocarbons (chloroform, trichloroethylene, and tetrachloroethylene) in water was carried out. Water solutions of the chlorinated hydrocarbons with different concentrations were irradiated with {gamma} rays. Concentrations of methane, ethane, CO, CO{sub 2}, H{sub 2}, and O{sub 2} after the irradiation were determined by gas chromatography. Concentration of chloride ion in the irradiated sample was determined by ion chromatography. Experimental results show that radiolytic degradation of the chlorinated hydrocarbon increased with the radiation dose. Methane, ethane, CO{sub 2}, H{sub 2}, and Cl{sup -} concentrations increased with the radiation dose and the sample concentration. On the other hand, O{sub 2} concentration decreased with the radiation dose and the sample concentration. When sample concentration was high, dissolved oxygen might be not enough for converting most of the C atoms in the sample into CO{sub 2}. This resulted in a low decomposition ratio. Addition of H{sub 2}O{sub 2} as an oxygen resource could increase the decomposition ratio greatly. Furthermore, gas chromatography-mass spectroscopy was applied to identify some intermediates of the radiolytic dehalogenation. Radiolytic degradation mechanisms are also discussed. (author)

  13. Recovering hydrocarbons with surfactants from lignin

    Energy Technology Data Exchange (ETDEWEB)

    Naae, D.G.; Whittington, L.E.; Ledoux, W.A.; Debons, F.E.

    1988-11-29

    This patent describes a method of recovering hydrocarbons from an underground hydrocarbon formation penetrated by at least one injection well and at least one production well, which comprises: injecting into the formation through an injection well a surfactant slug comprising about 0.1% to about 10% by weight of surfactants produced from lignin, the surfactants produced by placing lignin in contact with water, converting the lignin into low molecular weight lignin phenols by reducing the lignin in the presence of a reducing agent of carbon monoxide or hydrogen creating a reduction reaction mixture comprising oil soluble lignin phenols, the reduction occurring at a temperature greater than about 200/sup 0/C and a pressure greater than about 100 psi, recovering the oil soluble lignin phenols from the reduction mixture, and converting the lignin phenols into lignin surfactants by a reaction selected from the group consisting of alkoxylation, sulfonation, sulfation, aklylation, sulfomethylation, and alkoxysulfation; injecting into the formation through the injection well a drive fluid to push the surfactant slug towards a production well; and recovering hydrocarbons at the production well.

  14. Adsorption of hydrocarbons in chalk reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, L.

    1996-12-31

    The present work is a study on the wettability of hydrocarbon bearing chalk reservoirs. Wettability is a major factor that influences flow, location and distribution of oil and water in the reservoir. The wettability of the hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. Organic compounds such as carboxylic acids are found in formation waters from various hydrocarbon reservoirs and in crude oils. In the present investigation the wetting behaviour of chalk is studied by the adsorption of the carboxylic acids onto synthetic calcite, kaolinite, quartz, {alpha}-alumina, and chalk dispersed in an aqueous phase and an organic phase. In the aqueous phase the results clearly demonstrate the differences between the adsorption behaviour of benzoic acid and hexanoic acid onto the surfaces of oxide minerals and carbonates. With NaCl concentration of 0.1 M and with pH {approx_equal} 6 the maximum adsorption of benzoic acid decreases in the order: quartz, {alpha}-alumina, kaolinite. For synthetic calcite and chalk no detectable adsorption was obtaind. In the organic phase the order is reversed. The maximum adsorption of benzoic acid onto the different surfaces decreases in the order: synthetic calcite, chalk, kaolinite and quartz. Also a marked difference in adsorption behaviour between probes with different functional groups onto synthetic calcite from organic phase is observed. The maximum adsorption decreases in the order: benzoic acid, benzyl alcohol and benzylamine. (au) 54 refs.

  15. Biotransformation of monoaromatic hydrocarbons under anoxic conditions

    International Nuclear Information System (INIS)

    Ball, H.A.; Reinhard, M.; McCarty, P.L.

    1991-01-01

    Aromatic hydrocarbons contained in gasoline are environmental pollutants of particular concern since they are relatively soluble in water, many are toxic, and some are confirmed carcinogens, (e.g., benzene). Although most gasoline constituents are readily degraded in aerobic surface water systems, the groundwater environment associated with hydrocarbon spills is typically anaerobic, thus precluding aerobic degradation pathways. In the absence of oxygen, degradation of gasoline components can take place only with the utilization of alternate electron acceptors such as nitrate, sulfate, carbon dioxide, and possibly ferric iron or other metal oxides. Benzene, toluene, and xylene isomers were completely degraded by aquifer- or sewage sludge-derived microorganisms under dentrifying and methanogenic conditions. Recently, a pure culture was found to degrade toluene and m-xylene nitrate or nitrous oxide as an electron acceptor. This paper presents initial results of ongoing study to develop and characterize microbial consortia capable of transforming aromatic hydrocarbons under nitrate-reducing conditions, and understand the effect of environmental factors on the biotransformation processes

  16. Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils.

    Science.gov (United States)

    Adetutu, Eric; Weber, John; Aleer, Sam; Dandie, Catherine E; Aburto-Medina, Arturo; Ball, Andrew S; Juhasz, Albert L

    2013-10-15

    In this study, impediments to hydrocarbon biodegradation in contaminated soils were assessed using chemical and molecular methodologies. Two long-term hydrocarbon contaminated soils were utilised which were similar in physico-chemical properties but differed in the extent of hydrocarbon (C10-C40) contamination (S1: 16.5 g kg(-1); S2: 68.9 g kg(-1)). Under enhanced natural attenuation (ENA) conditions, hydrocarbon biodegradation was observed in S1 microcosms (26.4% reduction in C10-C40 hydrocarbons), however, ENA was unable to stimulate degradation in S2. Although eubacterial communities (PCR-DGGE analysis) were similar for both soils, the alkB bacterial community was less diverse in S2 presumably due to impacts associated with elevated hydrocarbons. When hydrocarbon bioaccessibility was assessed using HP-β-CD extraction, large residual concentrations remained in the soil following the extraction procedure. However, when linear regression models were used to predict the endpoints of hydrocarbon degradation, there was no significant difference (P>0.05) between HP-β-CD predicted and microcosm measured biodegradation endpoints. This data suggested that the lack of hydrocarbon degradation in S2 resulted primarily from limited hydrocarbon bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Novel Photocatalytic Reactor Development for Removal of Hydrocarbons from Water

    Directory of Open Access Journals (Sweden)

    Morgan Adams

    2008-01-01

    Full Text Available Hydrocarbons contamination of the marine environment generated by the offshore oil and gas industry is generated from a number of sources including oil contaminated drill cuttings and produced waters. The removal of hydrocarbons from both these sources is one of the most significant challenges facing this sector as it moves towards zero emissions. The application of a number of techniques which have been used to successfully destroy hydrocarbons in produced water and waste water effluents has previously been reported. This paper reports the application of semiconductor photocatalysis as a final polishing step for the removal of hydrocarbons from two waste effluent sources. Two reactor concepts were considered: a simple flat plate immobilised film unit, and a new rotating drum photocatalytic reactor. Both units proved to be effective in removing residual hydrocarbons from the effluent with the drum reactor reducing the hydrocarbon content by 90% under 10 minutes.

  18. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  19. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min; Zhang, Xuming

    2017-01-01

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  20. Sustainable treatment of hydrocarbon-contaminated industrial land

    OpenAIRE

    Cunningham, Colin John

    2012-01-01

    Land contamination by petroleum hydrocarbons is a widespread and global environmental pollution issue from recovery and refining of crude oil and the ubiquitous use of hydrocarbons in industrial processes and applications. Sustainable treatment of hydrocarbon-contaminated industrial land was considered with reference to seven published works on contaminated railway land including the track ballast, crude oil wastes and contaminated refinery soils. A methodology was developed...

  1. Bioremediation in soil contaminated with hydrocarbons in Colombia.

    OpenAIRE

    María Alejandra Trujillo Toro; Juan Fernando Ramírez Quirama

    2012-01-01

    This study analyzes bioremediation processes of hydrocarbon contaminated soils in Colombia as a sustainable alternative to the deterioration of environmental quality by hydrocarbon spillage. According to national and international environmental law, all waste contaminated with hydrocarbons is considered dangerous waste, and therefore it cannot be released in the ground, water or be incinerated. Such legislation has motivated companies around the world to implement treatment processes for cont...

  2. Global climate change due to the hydrocarbon industry

    International Nuclear Information System (INIS)

    Almasi, M.; Racz, L.

    1999-01-01

    An overview is presented on the industry's response to the agreements of the Rio de Janeiro (1992) and Kyoto (1987) conventions on climate change, and to other international agreements. The announcements by large petroleum companies on the changes introduced according to the international commitments in order to fight climatic impacts of hydrocarbon fuels. The problems and foreseeable future of the Hungarian hydrocarbon industry with environmental protection are discussed. Finally, emission abatement and control possibilities of hydrocarbon combustion are considered. (R.P.)

  3. Total site integration of light hydrocarbons separation process

    OpenAIRE

    Ulyev, L.; Vasilyev, M.; Maatouk, A.; Duic, Neven; Khusanovc, Alisher

    2016-01-01

    Ukraine is the largest consumer of hydrocarbons per unit of production in Europe (Ukraine policy review, 2006). The most important point is a reduction of energy consumption in chemical and metallurgical industries as a biggest consumer. This paper deals with energy savings potential of light hydrocarbons separation process. Energy consumption of light hydrocarbons separation process processes typical of Eastern European countries were analysed. Process Integration (PI) was used to perform a ...

  4. Methods for natural gas and heavy hydrocarbon co-conversion

    Science.gov (United States)

    Kong, Peter C [Idaho Falls, ID; Nelson, Lee O [Idaho Falls, ID; Detering, Brent A [Idaho Falls, ID

    2009-02-24

    A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

  5. Process for making unsaturated hydrocarbons using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Dublin, OH; Yuschak, Thomas [Lewis Center, OH; LaPlante, Timothy J [Columbus, OH; Rankin, Scott [Columbus, OH; Perry, Steven T [Galloway, OH; Fitzgerald, Sean Patrick [Columbus, OH; Simmons, Wayne W [Dublin, OH; Mazanec, Terry Daymo, Eric

    2011-04-12

    The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.

  6. Potential hydrocarbon producing species of Western Ghats, Tamil Nadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Augustus, G.D.P.S.; Jayabalan, M.; Rajarathinam, K. [Research Centre in Bombay, V.H.N.S.N. College, Virudhunagar (India); Ray, A.K. [Sardar Patel Univ., Anand (India). Dept. of Chemistry; Seiler, G.J. [USDA, ARS, Northern Crop Science Lab., Fargo, ND (United States)

    2002-09-01

    The decline in the world supplies of hydrocarbons has led to the search for alternate sources of fuel and chemicals. Plant species are potential sources of hydrocarbons. Large-scale screening of plants growing in the Western Ghats, Tamil Nadu, India was conducted to assess the hydrocarbon production and the type of isoprene compound(s) present. Three species contained more than 3% hydrocarbon. Sarcostemma brevistigma had the highest concentration of hydrocarbon with 3.6%. Seven species contained more than 2% of hydrocarbons among the plant species screened. The hydrocarbon fraction of Ficus elastica (leaf) had a gross heat value of 9834 cal/g (41.17 MJ/kg), which is close to the caloric value of fuel oil. Six hydrocarbon fractions contained gross heat values of more than 9000 cal/g (37.68 MJ/kg). Of the 13 species hydrocarbon fraction analysed, seven species contained cis-polyisoprene compounds, while two species contained trans-polyisoprenes. Cis and trans polyisoprenes are potential alternative energy sources for fuel and/or as industrial raw materials. (author)

  7. Process for in-situ biodegradation of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Ely, D.L.; Heffner, D.A.

    1991-01-01

    This patent describes an in situ process for biodegrading hydrocarbons by drawing oxygen into an undisturbed hydrocarbon contaminated zone in a fluid permeable soil. It comprises: establishing a borehole extending from the earth's surface through a hydrocarbon contaminated zone having hydrocarbon degrading microbes therein; lining the borehole with a fluid impermeable liner coaxially spaced and sealingly connected to the inside surface of the borehole and extending from the earth's surface to the hydrocarbon-contaminated zone; the liner including a fluid permeable portion extending from the lower end thereof and through at least a portion of the hydrocarbon contaminated zone, fluidly connecting a source of negative pressure to the fluid impermeable line; evacuating gas from the borehole through the fluid permeable portion of the liner at a rate sufficient to draw air from the earth's surface into the hydrocarbon containing zone; and adjusting the flow rate of the evacuated gas so that the amount of hydrocarbon biodegradation therein is within 50% of the maximum hydrocarbon biodegradation rate as detected by the volume of carbon dioxide in the evacuated gas

  8. Geophysical Signitures From Hydrocarbon Contaminated Aquifers

    Science.gov (United States)

    Abbas, M.; Jardani, A.

    2015-12-01

    The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole

  9. Canadian hydrocarbon transportation system : transportation assessment

    International Nuclear Information System (INIS)

    2006-06-01

    This document provided an assessment of the Canadian hydrocarbon transportation system. In addition to regulating the construction and operation of Canada's 45,000 km of pipeline that cross international and provincial borders, Canada's National Energy Board (NEB) regulates the trade of natural gas, oil and natural gas liquids. The ability of pipelines to delivery this energy is critical to the country's economic prosperity. The pipeline system includes large-diameter, cross-country, high-pressure natural gas pipelines, low-pressure crude oil and oil products pipelines and small-diameter pipelines. In order to assess the hydrocarbon transportation system, staff at the NEB collected data from pipeline companies and a range of publicly available sources. The Board also held discussions with members of the investment community regarding capital markets and emerging issues. The assessment focused largely on evaluating whether Canadians benefit from an efficient energy infrastructure and markets. The safety and environmental integrity of the pipeline system was also evaluated. The current adequacy of pipeline capacity was assessed based on price differentials compared with firm service tolls for major transportation paths; capacity utilization on pipelines; and, the degree of apportionment on major oil pipelines. The NEB concluded that the Canadian hydrocarbon transportation system is working effectively, with an adequate capacity in place on existing natural gas pipelines, but with a tight capacity on oil pipelines. It was noted that shippers continue to indicate that they are reasonably satisfied with the services provided by pipeline companies and that the NEB-regulated pipeline companies are financially stable. 14 refs, 11 tabs., 28 figs., 4 appendices

  10. Hydrocarbons on Saturn's satellites Iapetus and Phoebe

    Science.gov (United States)

    Cruikshank, D.P.; Wegryn, E.; Dalle, Ore C.M.; Brown, R.H.; Bibring, J.-P.; Buratti, B.J.; Clark, R.N.; McCord, T.B.; Nicholson, P.D.; Pendleton, Y.J.; Owen, T.C.; Filacchione, G.; Coradini, A.; Cerroni, P.; Capaccioni, F.; Jaumann, R.; Nelson, R.M.; Baines, K.H.; Sotin, Christophe; Bellucci, G.; Combes, M.; Langevin, Y.; Sicardy, B.; Matson, D.L.; Formisano, V.; Drossart, P.; Mennella, V.

    2008-01-01

    Material of low geometric albedo (pV ??? 0.1) is found on many objects in the outer Solar System, but its distribution in the saturnian satellite system is of special interest because of its juxtaposition with high-albedo ice. In the absence of clear, diagnostic spectral features, the composition of this low-albedo (or "dark") material is generally inferred to be carbon-rich, but the form(s) of the carbon is unknown. Near-infrared spectra of the low-albedo hemisphere of Saturn's satellite Iapetus were obtained with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft at the fly-by of that satellite of 31 December 2004, yielding a maximum spatial resolution on the satellite's surface of ???65 km. The spectral region 3-3.6 ??m reveals a broad absorption band, centered at 3.29 ??m, and concentrated in a region comprising about 15% of the low-albedo surface area. This is identified as the C{single bond}H stretching mode vibration in polycyclic aromatic hydrocarbon (PAH) molecules. Two weaker bands attributed to {single bond}CH2{single bond} stretching modes in aliphatic hydrocarbons are found in association with the aromatic band. The bands most likely arise from aromatic and aliphatic units in complex macromolecular carbonaceous material with a kerogen- or coal-like structure, similar to that in carbonaceous meteorites. VIMS spectra of Phoebe, encountered by Cassini on 11 June 2004, also show the aromatic hydrocarbon band, although somewhat weaker than on Iapetus. The origin of the PAH molecular material on these two satellites is unknown, but PAHs are found in carbonaceous meteorites, cometary dust particles, circumstellar dust, and interstellar dust. ?? 2007 Elsevier Inc. All rights reserved.

  11. Hydrocarbon transport in the laboratory plasma (MAP)

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Seiji; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Tanaka, Satoru

    1996-10-01

    Hydrocarbons are admitted in the laboratory plasma in order to investigate the transport processes of carbon - containing molecules in relation to redeposition processes in the fusion boundary plasma. When CH{sub 4} was introduced into the plasma, CH radical band spectra were optically identified, while in the case of C{sub 2}H{sub 2} introduction, C{sub 2} radicals were also identified in addition to CH radicals. Excitation temperature was determined from CH and C{sub 2} spectra band, which was observed to increase on approaching to the target. (author)

  12. Catalyst for reforming hydrocarbons with water vapors

    International Nuclear Information System (INIS)

    Nicklin, T.; Farrington, F.; Whittaker, J.R.

    1979-01-01

    The catalyst should reform hydrocarbons with water vapour. It consists of a carrier substance (preferably clay) on whose surface the catalytically active substances are formed. By impregnation one obtains this with a mixture of thermally destructable nickel and uranium compounds and calcination of the impregnated carrier. The catalyst is marked by a definite weight ratio of uranium to nickel (about 0.6 to 1), the addition of barium compounds and a maximum limit of these additives. All details of manufacture and the range of variations are described in detail. (UWI) [de

  13. HYDROCARBON FORMATION ON POLYMER-SUPPORTED COBALT

    Energy Technology Data Exchange (ETDEWEB)

    Benner, Linda S.; Perkins, Patrick; Vollhardt, K.Peter C.

    1980-10-01

    In this report we detail the synthesis catalytic chemistry of polystyrene supported {eta}{sup 5} ~cyclopentadienyl- dicarbonyl cobalt, CpCo(CO){sub 2}. This material is active in the hydrogenation of CO to saturated linear hydrocarbons and appears to retain its "homogeneous", mononuclear character during the course of its catalysis, During ·the course of our work 18% and 20% crosslinked analogs of polystyrene supported CpCo(CO){sub 2} were shown to exhibit limited catalytic activity and no CO activation.

  14. Polycyclic aromatic hydrocarbons in stellar medium

    Science.gov (United States)

    Rastogi, Shantanu

    2005-06-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important com- ponent of the Interstellar Medium (ISM). They are being used as probes for understanding of process and conditions of different astrophysical environments. The understanding of their IR spectra and its variations with PAH size and ionization state is useful in characterizing the ISM. Spectral features of model graphene sheets and also that of smaller PAH molecules are reported. The variation of intensity with charge state of the molecule shows that cations give a better correlation with observations. The relationship between changes in charge distribution with intensity changes upon ionization has been probed.

  15. Hydrocarbon storage caverns overhaul: A case study

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, N. [Bayer Inc., Sarnia, ON (Canada)

    1998-09-01

    Case studies of four hydrocarbon storage cavern overhauls by Bayer Inc., of Sarnia during the period 1993 to 1997 were reviewed and the lessons learned were discussed. Discussions included inspection requirements for each of the caverns, the logistics and planning plant production around the cavern outages, site and cavern preparation, including removal of the casing slips from the well heads. It was emphasized that cavern overhauls can be expensive operations, unless preceded by proper planning. The largest variable cost is likely to be rig time at about $ 2,000 per day. Planning for the unexpected with thoughtful contingencies can reduce costs and avoid expensive delays.

  16. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    Science.gov (United States)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  17. Microbial degradation of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Volkering, F.; Breure, A.M.; Andel, J.G. van

    1992-01-01

    Polycyclic aromatic hydrocarbons (PAH) are hazardous compounds originating from oil, tar, creosote, or from incomplete combustion of fossil fuels. Application of biotechnological techniques for remediation of polluted soils from PAH demonstrated that the high molecular compounds are degraded very slowly, and that the residual concentration of PAH often is too high to permit application of the treated soil. Investigations were started to establish process parameters for optimal biodegradation of PAH. The aim is to achieve a relation between the physical properties of PAH and the biodegradation kinetics in different matrices, in order to identify applicability of biotechnological cleanup methods for waste streams and polluted soil. (orig.) [de

  18. Petroleum hydrocarbon toxicity to corals: A review.

    Science.gov (United States)

    Turner, Nicholas R; Renegar, D Abigail

    2017-06-30

    The proximity of coral reefs to coastal urban areas and shipping lanes predisposes corals to petroleum pollution from multiple sources. Previous research has evaluated petroleum toxicity to coral using a variety of methodology, including monitoring effects of acute and chronic spills, in situ exposures, and ex situ exposures with both adult and larval stage corals. Variability in toxicant, bioassay conditions, species and other methodological disparities between studies prevents comprehensive conclusions regarding the toxicity of hydrocarbons to corals. Following standardized protocols and quantifying the concentration and composition of toxicant will aid in comparison of results between studies and extrapolation to actual spills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Method of cleansing and refining of liquid hydrocarbons and derivatives of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, C A; Nielsen, H

    1934-10-11

    A process is described for cleaning and refining liquid hydrocarbons and derivatives by utilization of acids, followed by washing partly with a basic solution, partly with clean water. The process is characterized by using, in connection with the acid solutions mentioned, a strong solution of a mixture of sulfuric acid and phosphoric acid.

  20. Bioremediation of soils containing petroleum hydrocarbons, chlorinated phenols, and polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Seech, A.; Burwell, S.; Marvan, I.

    1994-01-01

    Bench-scale treatability investigations, pilot-scale and full-scale bioremediation projects were conducted to evaluate Daramend trademark bioremediation of soils containing petroleum hydrocarbons, heavy oils, paraffins, chlorinated phenols and polycyclic aromatic hydrocarbons (PAHs). Bench-scale investigations were conducted using glass microcosms. Pilot-scale and full-scale demonstrations were conducted at industrial sites and included treatment of excavated soils and sediments in on-site cells constructed using synthetic liners and covered by steel/polyethylene structures as well as in-situ treatment. A total of approximately 5,000 tons of soil was treated. The soil treatment included organic soil amendments, specialized tillage/aeration apparatus, and strict control of soil moisture. The amendments are composed of naturally-occurring organic materials prepared to soil-specific particle size distributions, nutrient profiles, and nutrient-release kinetics. Bench-scale work indicated that in refinery soil containing high concentrations of heavy oils, extractable hydrocarbon concentrations could be rapidly reduced to industrial clean-up criteria, and that the hydrocarbons were fully mineralized with release of CO 2

  1. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    Energy Technology Data Exchange (ETDEWEB)

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi

  2. Detecting chlorinated hydrocarbon residues: Rachel Carson's villains.

    Science.gov (United States)

    Travis, Anthony S

    2012-07-01

    In 1962, Rachel Carson's Silent Spring drew the public's attention to the deleterious effects of chlorinated hydrocarbons employed as economic poisons in agriculture. However, she did not discuss how their residues could be routinely identified and quantified. In part, this was because the introduction of instruments for use in environmental analysis had only just begun, and she was probably unaware of their existence. The development of the instrumental methods began in industry, particularly at Dow and Shell, in the mid-1950s. Dow scientists, by combining mass spectrometry with gas chromatography, developed the most powerful technique, then and now, for the separation, quantitation and identification of chlorinated hydrocarbons. Shell scientists were no less innovative, particularly with the application of highly sensitive gas chromatography detectors to trace analysis. The first of these detectors, the electron capture detector, was invented by James Lovelock at the National Institute of Medical Research, North London, at the end of the 1950s. Around the same time, Dale Coulson in the USA developed his microcoulometric detector.

  3. Polycyclic aromatic hydrocarbons in Saccoglossus kowalewskyi (Agassiz)

    Science.gov (United States)

    Carey, D. A.; Farrington, J. W.

    1989-08-01

    Hydrocarbon extracts were analyzed from Saccoglossus kowalewskyi, a deposit-feeding enteropneust worm, and from surface sediments from Cape Cod, MA. Worms were held in experimental aquaria in sieved sediments and flowing seawater for four months and then fed sediments mixed with creosote, lampblack or clean sediment for two weeks as analogues of sediments containing degraded oil and pyrogenic compounds. Worms from all treatments contained polyaromatic hydrocarbons (PAHs) in amounts and composition that indicate that the worms were contaminated with weathered No. 2 fuel oil before our experimental treatment and that the contamination persisted for four months in clean conditions. The contamination was not detected in the clean sediments used in the experiment. The worms accumulated steroid transformation products in greater abundance than the odd chain n-alkanes that dominated the sediment extractions. This may indicate selective assimilation of algal detritus and microbial products over salt marsh detritus. Worms, actively feeding during the experiment, contained 1-3 × 10 -6 g g -1 dry weight of unknown brominated compounds which were not detected in the sediments. These compounds are similar to bromopyrroles found elsewhere in enteropneusts, polychaetes and bacteria and may cause substantial interference in analyses for some industrial pollutants.

  4. Chlorinated hydrocarbons in a pelagic community

    International Nuclear Information System (INIS)

    Elder, D.; Fowler, S.W.

    1976-01-01

    For several years data have been accruing on the distribution of chlorinated hydrocarbon pollutants in marine ecosystems. An overall picture of ambient levels in biota, water and sediments is now emerging however, despite the vast amount of data collected to date, questions still arise as to whether certain pollutants such as chlorinated hydrocarbons are indeed magnified through the marine food web. Evidence both for and against trophic concentration of PCB and DDT compounds has been cited. The answer to this question remains unclear due to lack of adequate knowledge on the relative importance of food and water in the uptake of these compounds as well as the fact that conclusions are often confounded by comparing pollutant concentrations in successive links in the food chain sampled at different geographical locations and/or at different points in time. The situation is further complicated by complex prey-predator relationships that exist in many marine communities. In the present study we have tried to eliminate some of these problems by examining PCB and DOT concentrations in species belonging to a relatively well-defined pelagic food chain sampled at one point in space and time

  5. Laboratory Studies of Hydrocarbon Oxidation Mechanisms

    Science.gov (United States)

    Orlando, J. J.; Tyndall, G. S.; Wallington, T. J.; Burkholder, J. B.; Bertman, S. B.; Chen, W.

    2001-12-01

    The oxidation of hydrocarbon species (alkanes, alkenes, halogenated species, and oxygenates of both natural and anthropogenic origin) in the troposphere leads to the generation of numerous potentially harmful secondary pollutants, such as ozone, organic nitrates and acids, and aerosols. These oxidations proceed via the formation of alkoxy radicals, whose complex chemistry controls the ultimate product distributions obtained. Studies of hydrocarbon oxidation mechanisms are ongoing at NCAR and Ford, using environmental chamber / FTIR absorption systems. The focus of these studies is often on the product distributions obtained at low temperature; these studies not only provide data of direct relevance to the free/upper troposphere, but also allow for a more fundamental understanding of the alkoxy radical chemistry (eg., from the determination of the Arrhenius parameters for unimolecular processes, and the quantification of the extent of the involvement of chemical activation in the alkoxy radical chemistry). In this paper, data will be presented on some or all of the following topics: kinetics/mechanisms for the reactions of OH with the unsaturated species MPAN, acrolein, and crotonaldehyde; the mechanism for the oxidation of ethyl chloride and ethyl bromide; and the mechanism for the reaction of OH with acetone and acetaldehyde at low temperature. The relevance of the data to various aspects of tropospheric chemistry will be discussed.

  6. Investigating hydrocarbon contamination using ground penetrating radar

    International Nuclear Information System (INIS)

    Roest, P.B. van der; Brasser, D.J.S.; Wagebaert, A.P.J.; Stam, P.H.

    1996-01-01

    The increasing costs of remediating contaminated sites has stimulated research for cost reducing techniques in soil investigation and clean-up techniques. Under the traditional approach soil borings and groundwater wells are used to investigate contaminated soil. These are useful tools to determine the amount and characteristics of the contamination, but they are inefficient and costly in providing information on the location and extent of contamination as they only give information on one point. This often leads to uncertainty in estimating clean-up costs or, even worse, to unsuccessful clean-ups. MAP Environmental Research has developed a technology using Ground Penetrating Radar (GPR) in combination with in-house developed software to locate and define the extent of hydrocarbon contamination. With this technology, the quality of site investigation is increased while costs are reduced. Since 1994 MAP has been improving its technology and has applied it to over 100 projects, which all have been checked afterwards by conventional drilling. This paper gives some general characteristics of the method and presents a case study. The emphasis of this paper lies on the practical application of GPR to hydrocarbon contamination detection

  7. Hydrocarbons as Refrigerants―A Review

    Directory of Open Access Journals (Sweden)

    J. H. KOH

    2017-08-01

    Full Text Available Refrigerants used in air conditioning and refrigeration (AC&R indusries have come full circle since the beginning of the industrialrevolution. With concern on issues relating to the environment such as the global warming and climate change issues, we should finda better alternative than to continue using these refrigerants that cause global warming and ozone depletion. AC&R industryplayers have blended in by introducing some new equipment and components that are specificallydesigned for hydrocarbon (HC use. Mostnew refrigerators sold in Malaysia are already equipped with isobutane [a hydrocarbon designated as R-600a by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE standards]as refrigerants. Malaysia has ratifiedthe Montreal Protocol and targetted a 10% reduction in hydrochlorofluorocarbon(HCFC consumption, beginning 2016 with the banning of 2.5 horsepower (hp and below in air-conditioning (AC equipment to be used. Instead,hydrofluorocarbon(HFC R-410a was introduced as a replacement for HCFC- 22, whereas in other countries this HFC has been phased down. This article was initiated  because of the difficultin findinga replacement for HCFC. Also, the possibilities of using HC as an alternative to replace HCFC insteadof using HFC as a transitional refrigerant in place of HCFC is reviewed in this article. The performance of HC is very similar to HCFC and flmmability issues could be easily overcome with the use of an effectivedesign. Their use could be facilitated with the adaptation of specific standards and properly enacted legislatio

  8. Mineral oil hydrocarbons in food - a review.

    Science.gov (United States)

    Grob, Koni

    2018-06-12

    Work on mineral oil hydrocarbons (MOH) contaminating food is reviewed up to about 2010, when the subject received broad publicity. It covers the period of the main discoveries and elimination or reduction of the dominant sources: release agents used in industrial bakeries, spraying of rice, additions to animal feed, contamination of edible oils from various sources and migration from paperboard packaging. In most cases highly refined ("white") oils were involved, but also technical oils, e.g. from the environment, and more or less crude oil fractions from jute and sisal bags. There were numerous unexpected sources, and there might still be more of those. The exposure of the consumers to MOH must have been markedly reduced in the meantime. Environmental influx may have become dominant, particularly when taking into account that these MOH go through several degradation processes which might enrich the species resisting metabolic elimination. Major gaps are in the systematic investigation of sources and the largely unavoidable levels from environmental contamination, but also in the toxicological evaluation of the various types of hydrocarbons. A regulation is overdue that avoids the present discrepancy between the low tolerance to MOH perceived as contaminants and the very high legal limits for some applications - the MOH are largely the same.

  9. 40 CFR Table 2b to Subpart E of... - Reactivity Factors for Aliphatic Hydrocarbon Solvent Mixtures

    Science.gov (United States)

    2010-07-01

    ... Hydrocarbon Solvent Mixtures 2B Table 2B to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Averageboiling point * (degrees F) Criteria Reactivityfactor 1 80-205 Alkanes... + Dry Point) / 2 (b) Aromatic Hydrocarbon Solvents ...

  10. Comparison of Efficiencies and Mechanisms of Catalytic Ozonation of Recalcitrant Petroleum Refinery Wastewater by Ce, Mg, and Ce-Mg Oxides Loaded Al2O3

    Directory of Open Access Journals (Sweden)

    Chunmao Chen

    2017-02-01

    Full Text Available The use of catalytic ozonation processes (COPs for the advanced treatment of recalcitrant petroleum refinery wastewater (RPRW is rapidly expanding. In this study, magnesium (Mg, cerium (Ce, and Mg-Ce oxide-loaded alumina (Al2O3 were developed as cost efficient catalysts for ozonation treatment of RPRW, having performance metrics that meet new discharge standards. Interactions between the metal oxides and the Al2O3 support influence the catalytic properties, as well as the efficiency and mechanism. Mg-Ce/Al2O3 (Mg-Ce/Al2O3-COP reduced the chemical oxygen demand by 4.7%, 4.1%, 6.0%, and 17.5% relative to Mg/Al2O3-COP, Ce/Al2O3-COP, Al2O3-COP, and single ozonation, respectively. The loaded composite metal oxides significantly increased the hydroxyl radical-mediated oxidation. Surface hydroxyl groups (–OHs are the dominant catalytic active sites on Al2O3. These active surface –OHs along with the deposited metal oxides (Mg2+ and/or Ce4+ increased the catalytic activity. The Mg-Ce/Al2O3 catalyst can be economically produced, has high efficiency, and is stable under acidic and alkaline conditions.

  11. The Morel-Lavallée Lesion as a Rare Differential Diagnosis for Recalcitrant Bursitis of the Knee: Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Ivor S. Vanhegan

    2012-01-01

    Full Text Available A 72 year-old-male was referred to our institution with recalcitrant prepatellar bursitis. The injury was sustained after striking his right knee against a post whilst horse riding 9 months ago. Previous treatments included repeated aspiration and excision of the bursa with elastic compression bandaging. A diagnosis of a Morel-Lavallée internal degloving injury was made, and the lesion was satisfactorily managed by an internal quilting procedure to eliminate the potential dead space. A review of the literature reveals 29 published reports of Morel-Lavallée lesions with sufficient information for inclusion. These came from 14 separate countries with a total of 204 lesions in 195 patients. The most common anatomical location was the greater trochanter/hip (36%, followed by the thigh (24% and the pelvis (19%. Most were managed surgically with evacuation of the haematoma and necrotic tissue followed by debridement, which was often repeated (36%. Conservative treatment with percutaneous aspiration and compression bandaging was the next most common treatment (23%. The knee was the fourth most common region affected (16%, and only 3 other lesions in the literature have been managed with a quilting procedure.

  12. Electrochemistry Combined with LC-HRMS: Elucidating Transformation Products of the Recalcitrant Pharmaceutical Compound Carbamazepine Generated by the White-Rot Fungus Pleurotus ostreatus.

    Science.gov (United States)

    Seiwert, Bettina; Golan-Rozen, Naama; Weidauer, Cindy; Riemenschneider, Christina; Chefetz, Benny; Hadar, Yitzhak; Reemtsma, Thorsten

    2015-10-20

    Transformation products (TPs) of environmental pollutants must be identified to understand biodegradation processes and reaction mechanisms and to assess the efficiency of treatment processes. The combination of oxidation by an electrochemical cell (EC) with analysis by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is a rapid approach for the determination and identification of TPs generated by natural microbial processes. Electrochemically generated TPs of the recalcitrant pharmaceutical carbamazepine (CBZ) were used for a target screening for TPs formed by the white-rot fungus Pleurotus ostreatus. EC with LC-HRMS facilitates detection and identification of TPs because the product spectrum is not superimposed with biogenic metabolites and elevated substrate concentrations can be used. A group of 10 TPs formed in the microbial process were detected by target screening for molecular ions, and another 4 were detected by screening on the basis of characteristic fragment ions. Three of these TPs have never been reported before. For CBZ, EC with LC-HRMS was found to be more effective than software tools in defining targets for the screening and faster than nontarget screening alone in TP identification. EC with LC-HRMS may be used to feed MS databases with spectra of possible TPs of larger numbers of environmental contaminants for an efficient target screening.

  13. BioDegradation of Refined Petroleum Hydrocarbons in Soil | Obire ...

    African Journals Online (AJOL)

    Carbon-dioxide production and hydrocarbon degradation of refined petroleum hydrocarbon in soils treated with 5% gasoline, kerosene and diesel oil were investigated. Soil for study was bulked from around a car park in Port Harcourt. Soil samples were collected at weekly intervals for four weeks and subsequently at ...

  14. Studies on hydrocarbon degradation by the bacterial isolate ...

    African Journals Online (AJOL)

    The hydrocarbon utilizing capability of Stenotrophomonas rhizophila (PM-1), isolated from oil contaminated soil composts from Western Ghats region of Karnataka was analyzed. In the bioremediation experiment, ONGC heavy crude oil and poly aromatic hydrocarbons (PAHs) utilization by the bacterial isolate was studied.

  15. Conversion of oligomeric starch, cellulose, or sugars to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Silks, Louis A.; Sutton, Andrew; Kim, Jin Kyung; Gordon, John Cameron; Wu, Ruilian; Kimball, David B.

    2016-10-18

    The present invention is directed to the one step selective conversion of starch, cellulose, or glucose to molecules containing 7 to 26 contiguous carbon atoms. The invention is also directed to the conversion of those intermediates to saturated hydrocarbons. Such saturated hydrocarbons are useful as, for example, fuels.

  16. A Review of Polycyclic Aromatic Hydrocarbons and Heavy Metal ...

    African Journals Online (AJOL)

    A Review of Polycyclic Aromatic Hydrocarbons and Heavy Metal Contamination of Fish from Fish Farms. ... Journal of Applied Sciences and Environmental Management ... Polycyclic aromatic hydrocarbons (PAHs) and heavy metals contribute to pollutants in aquaculture facilities and thus need to be further investigated.

  17. Comparative survey of petroleum hydrocarbons i lake sediments

    Energy Technology Data Exchange (ETDEWEB)

    Wakeham, S G

    1976-11-01

    Hydrocarbon distribution in sediments from three lakes in Washington State were studied and found to be related to the level of human activity in the respective drainage basins. Petroleum hydrocarbon contamination was found in surface sediments of a lake surrounded by a major city, compared to no detectable contamination in a lake located in a National Park.

  18. In-situ hydrocarbon delineation using laser-induced fluorescence

    International Nuclear Information System (INIS)

    Taer, A.D.; Hastings, R.W.; Brown, A.Y.; Frend, R.

    1996-01-01

    An investigation of hydrocarbons in soils was conducted at an active Shell Oil Company petroleum products terminal, located in Carson, California. An investigation approach involving Laser-Induced Fluorescence (LIF) and Cone Penetrometer Testing (CPT) technologies was implemented to provide real-time, in-situ characterization of site stratigraphy, hydrocarbon distribution and importantly, hydrocarbon product differentiation. The area of investigation is located along a property boundary, where a plume of separate phase hydrocarbons has been actively recovered for several years. CPT/LIF technology was selected for the investigation since previous delineation efforts using hydrocarbon fingerprinting methods proved inconclusive. Additionally, the CPT/LIF technology had the potential to provide a cost effective solution to accomplish project objectives. Based on the information obtained during this investigation, it was determined that the plume of separate phase hydrocarbons along the northern property boundary is from a source distinctly different than any identified hydrocarbons known to be from on-site sources. In addition, the plume was determined to not be connected with any other known on-site hydrocarbon plumes. The results of this CPT/LIF investigation were consistent with the known hydrogeologic conditions. This evaluation determined that CPT/LIF technology was very effective in addressing project objectives and resulted in a significant cost savings

  19. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  20. Application of fission track analysis to hydrocarbon exploration

    International Nuclear Information System (INIS)

    Duddy, I.R.; Green, P.F.; Gleadow, A.J.W.; Marshallsea, S.; Tingate, P.; Laslett, G.M.; Hegarty, K.A.; Lovering, J.F.

    1985-01-01

    The temperature range over which fission tracks in apatite show observable annealing effects coincides with that responsible for the maximum generation of liquid hydrocarbons. Work is currently in progress in a number of Australian and overseas sedimentary basins, applying Apatite Fission Track Analysis (AFTA) to investigate the thermal evolution of these hydrocarbon prospective regions

  1. Assessing human error during collecting a hydrocarbon sample of ...

    African Journals Online (AJOL)

    This paper reports the assessment method of the hydrocarbon sample collection standard operation procedure (SOP) using THERP. The Performance Shaping Factors (PSF) from THERP analyzed and assessed the human errors during collecting a hydrocarbon sample of a petrochemical refinery plant. Twenty-two ...

  2. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    International Nuclear Information System (INIS)

    Castaldi, F.J.; Bombaugh, K.J.; McFarland, B.

    1995-01-01

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period

  3. A PROCESS FOR THE CATALYTIC OXIDATION OF HYDROCARBONS

    DEFF Research Database (Denmark)

    1999-01-01

    A process for producing an alcohol from a gaseous hydrocarbon, e.g. a lower alkane such as methane, via oxidative reaction of the hydrocarbon in a concentrated sulfuric acid medium in the presence of a catalyst employs an added catalyst comprising a substance selected from iodine, iodine compounds...

  4. Cuticular hydrocarbons for species determination of tropical termites

    Science.gov (United States)

    Michael I. Haverty; Lori J. Nelson; Barbara L. Thorne; Margaret S. Collins; Johanna P.E.C. Darlington; Marion Page

    1992-01-01

    Cuticular hydrocarbons can be used to discriminate species in Coptotermes and Nasutitermes, here discussed for selected species from locations in the Pacific Rim and several Caribbean islands. We recently reexamined the cuticular hydrocarbons of Coptotermes formosanus and identified several dimethylalkanes that...

  5. Phenomenology of tremor-like signals observed over hydrocarbon reservoirs

    NARCIS (Netherlands)

    Dangel, S.; Schaepman, M.E.; Stoll, E.P.; Carniel, R.; Barzandji, O.; Rode, E.D.; Singer, J.M.

    2003-01-01

    We have observed narrow-band, low-frequency (1.5-4 Hz, amplitude 0.01-10 mum/s) tremor signals on the surface over hydrocarbon reservoirs (oil, gas and water multiphase fluid systems in porous media) at currently 15 sites worldwide. These 'hydrocarbon tremors' possess remarkably similar spectral and

  6. Conversion of oligomeric starch, cellulose, hydrolysates or sugars to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Silks, Louis A; Sutton, Andrew; Kim, Jin Kyung; Gordon, John Cameron; Wu, Ruilian; Kimball, David B.

    2017-09-05

    Embodiments of the present invention are directed to the conversion of a source material (e.g., a depolymerized oligosaccharide mixture, a monomeric sugar, a hydrolysate, or a mixture of monomeric sugars) to intermediate molecules containing 7 to 26 contiguous carbon atoms. These intermediates may also be converted to saturated hydrocarbons. Such saturated hydrocarbons are useful as, for example, fuels.

  7. The separation of hydrocarbons from waste vapor streams

    International Nuclear Information System (INIS)

    Behling, R.D.; Ohlrogge, K.; Peinemann, K.V.; Kyburz, E.

    1989-01-01

    Hydrocarbon vapors generated from industrial processes dispersed into air are contributing factors for the creation of photochemical smog. The separation of hydrocarbon vapor by means of membranes is in case of some applications a technically simple and economic process. A membrane vapor separation process with a following treatment of the retentate by catalytic incineration is introduced in this paper

  8. Graph theory for alternating hydrocarbons with attached ports

    NARCIS (Netherlands)

    Hesselink, Wim H.

    Properties of molecules of certain hydrocarbons give rise to difficult questions in graph theory. This paper is primarily devoted to the graph theory, but the physico-chemical motivation, which is somewhat speculative, is also presented. Molecules of unsaturated hydrocarbons exhibit alternating

  9. Performance estimation of ejector cycles using heavier hydrocarbon refrigerants

    International Nuclear Information System (INIS)

    Kasperski, Jacek; Gil, Bartosz

    2014-01-01

    Computer software basing on theoretical model of Huang et al. with thermodynamic properties of hydrocarbons was prepared. Investigation was focused on nine hydrocarbons: propane, butane, iso-butane, pentane, iso-pentane, hexane, heptane and octane. A series of calculations was carried out for the generator temperature between 70 and 200 °C, with assumed temperatures of evaporation 10 °C and condensation 40 °C. Calculation results show that none of the hydrocarbons enables high efficiency of a cycle in a wide range of temperature. Each hydrocarbon has its own maximal entrainment ratio at its individual temperature of optimum. Temperatures of entrainment ratios optimum increase according to the hydrocarbon heaviness with simultaneous increase of entrainment ratio peak values. Peak values of the COP do not increase according to the hydrocarbons heaviness. The highest COP = 0.32 is achieved for iso-butane at 102 °C and the COP = 0.28 for pentane at 165 °C. Heptane and octane can be ignored. - Highlights: • Advantages of use of higher hydrocarbons as ejector refrigerants were presumed. • Computer software basing on theoretical model of Huang et al. (1999) was prepared. • Optimal temperature range of vapor generation for each hydrocarbon was calculated

  10. Geochemical assessment of light gaseous hydrocarbons in near ...

    Indian Academy of Sciences (India)

    Light hydrocarbons in soil have been used as direct indicators in geochemical hydrocarbon exploration, which remains an unconventional path in the petroleum industry. The occurrence of adsorbed soil ... Kalpana1 D J Patil1 A M Dayal1. National Geophysical Research Institute, Uppal Road, Hyderabad 500606, India.

  11. Investigation Status of Heat Exchange while Boiling Hydrocarbon Fuel

    Directory of Open Access Journals (Sweden)

    D. S. Obukhov

    2006-01-01

    Full Text Available The paper contains analysis of heat exchange investigations while boiling hydrocarbon fuel. The obtained data are within the limits of the S.S. Kutateladze dependence proposed in 1939. Heat exchange at non-stationary heat release has not been investigated. The data for hydrocarbon fuel with respect to critical density of heat flow are not available even for stationary conditions.

  12. MICROORGANISMS’ SURFACE ACTIVE SUBSTANCES ROLE IN HYDROCARBONS BIODEGRADATION

    Directory of Open Access Journals (Sweden)

    Оlga Vasylchenko

    2012-09-01

    Full Text Available  Existing data and publications regarding oil, hydrocarbon biodegradation, metabolism, and bioremediation were analyzed. Search of hydrocarbon degrading bacteria which are producers of biosurfactants was provided, types of microbial surfactants and their physiological role were analyzed and ordered. The study of factors affecting the surface active properties of producers’ cultures was done.

  13. Management of the solid waste in perforation projects exploratory hydrocarbons

    International Nuclear Information System (INIS)

    Rodriguez Miranda, J.P.

    2010-01-01

    This paper describes de considerations for solid waste management in hydrocarbons exploration projects, as the serious environmental affectation as a function of soil contamination by leachate form the temporary storage of contaminated industrial waste hydrocarbons, altered by the presence of deposits landscaping waste materials, pollution of water and vegetation and the production of odors.

  14. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Biddy, M.; Tan, E.; Tao, L.; Jones, S.

    2013-03-01

    This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  15. Hydrocarbon toxicity: an analysis of AAPCC TESS data.

    Science.gov (United States)

    Cobaugh, Daniel J; Seger, Donna L; Krenzelok, Edward P

    2007-01-01

    Human hydrocarbon exposures have the potential to cause significant morbidity and mortality. To determine which hydrocarbons were associated with the most severe adverse outcomes, human exposure data reported to American poison information centers were analyzed. Outcome data for single-substance, hydrocarbon exposures reported to the American Association of Poison Control Centers Toxic Exposure Surveillance System from 1994 through 2003 were analyzed. Only cases with definitive medical outcomes were included. Analyses were stratified by five age groups: 59 years. Hazard factors were determined by calculating the sum of the major effects and fatalities for each hydrocarbon category and dividing this by the total number of exposures for that category. To normalize the data, the overall rate of major effects and deaths for each age group was assigned hazard factor value of 1. Hydrocarbon categories with a HF of > or = 1.5 were included in the final analyses. Estimated rates of major effect and fatal outcomes (outcomes/1000 people) were also calculated. 318,939 exposures were analyzed. Exposures to benzene, toluene/xylene, halogenated hydrocarbons, kerosene and lamp oil resulted in the highest hazard factor values. These data demonstrate that hydrocarbons that are absorbed systemically and those with low viscosities are associated with higher hazard factors. The risks associated with hydrocarbons often implicated in abuse by older children and adolescents are also confirmed.

  16. Study on surface geochemistry and microbiology for hydrocarbon exploration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The test results of the experimental device for extraction of dissolved gases from water show that the device can be utilized for the gas geochemistry of water. The device is capable of determining hydrocarbon gases in water to the concentration of less than 5 x 10{sup -4} ml/l of water. According to the results of microbiological studies, the plate count technique can be a useful supplementary method for hydrocarbon exploration. This is based on the facts that the average survival rate to hydrocarbons (pentane, hexane) for heterotrophs is higher in the area known as containing considerable hydrocarbon gases than other areas in the Pohang region. However, it is still necessary to develop techniques to treat the bacteria with gaseous hydrocarbons. (author). 2 figs., 41 tabs.

  17. Imaging fluid/solid interactions in hydrocarbon reservoir rocks.

    Science.gov (United States)

    Uwins, P J; Baker, J C; Mackinnon, I D

    1993-08-01

    The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions.

  18. Chemical fingerprinting of hydrocarbon-contamination in soil

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen; Nejrup, Jens; Jensen, Julie K.

    2015-01-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U...... and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends....... Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl...

  19. Aspects of petroleum hydrocarbon metabolism in marine animals

    Science.gov (United States)

    Mironov, O. G.

    1980-03-01

    Studies on hydrocarbon composition of Black Sea mussels Mytilus galloprovincialis sampled from different habitats indicate that the quantity and composition of hydrocarbons distributed in the molluscs depend on season and sea-water quality. The data obtained under experimental conditions testify to the possibility of hydrocarbon concentration in mussel tissues after death. During filtration in sea water containing oil and oil products, these pollutants are bound into faeces and pseudofaeces which contain a greater percentage of aromatic compounds than the oil initially present in sea water. Quantitative data are presented on hydrocarbon changes in mussel excretory products during transfer from oil-polluted to clean sea water. When Black Sea crabs Eriphia verrucosa are fed with mussels containing fuel-oil components accumulated from sea water, the pollutants concentrate in the whole body of the crab. This is in contrast to parenteral oil uptake, which leads to a concentration of most of the hydrocarbon in the muscles.

  20. Degradation of petroleum hydrocarbons in a laboratory aquifer column

    International Nuclear Information System (INIS)

    Billowits, M.; Whyte, L.; Greer, C.; Ramsay, J.

    1998-01-01

    One of the primary mechanisms for eliminating hydrocarbon pollutants from the environment is degradation of hydrocarbons by indigenous microorganisms. This report describes a study in which samples from a petroleum polluted shallow aquifer in the Yukon were used which contained a hundred times greater concentration of psychrotropic bacteria than mesophilic bacteria. Results showed a maximum degradation of 47 per cent of the total petroleum hydrocarbon in columns which simulated the aquifer conditions and to which nutrients were added. It was concluded that although in this case bioaugmentation of the columns with a psychrotropic hydrocarbon-degrading consortium increased microbial numbers, total petroleum hydrocarbon degradation was not much greater than could be achieved by remediation with nutrients alone

  1. Oils; lubricants; paraffin-wax compositions; hydrocarbon condensation products

    Energy Technology Data Exchange (ETDEWEB)

    1934-04-04

    Petroleum hydrocarbons such as gasoline, kerosene, Diesel fuel oil, lubricating-oil, and paraffin wax, and like hydrocarbons such as are obtainable from shale oil and by the hydrogenation of carbonaceous materials, are improved by addition of products obtained by condensing a cyclic hydrocarbon with a saturated dihalogen derivative of an aliphatic hydrocarbon containing less than five carbon atoms. The addition of the condensation products increases the viscosity of the hydrocarbon oils specified, and is particularly useful in the case of lubricating-oils; addition of the condensation products to paraffin wax increases the transparency and adherent properties of the wax, and is useful in the manufacture of moulded articles such as candles; the products may also be used in solid lubricating-compositions.

  2. Intralesional immunotherapy with tuberculin purified protein derivative (PPD) in recalcitrant wart: A randomized, placebo-controlled, double-blind clinical trial including an extra group of candidates for cryotherapy.

    Science.gov (United States)

    Amirnia, Mehdi; Khodaeiani, Effat; Fouladi, Daniel F; Masoudnia, Sima

    2016-01-01

    Due to paucity of randomized clinical trials, intralesional immunotherapy has not been yet accepted as a standard therapeutic method. To examine the efficacy and safety of intralesional immunotherapy with tuberculin purified protein derivative (PPD) for treating recalcitrant wart. In this randomized, placebo-controlled, double-blind clinical trial, a total of 69 patients with recalcitrant warts received either intralesional PPD antigen (n = 35) or intralesional saline (n = 34) for six times at 2-week intervals. A third group of candidates for cryotherapy (n = 33) was also included. The decrease in lesion size (good: complete response, intermediate: 50-99% improvement, poor: PPD patients; 0%, 14.7% and 85.3% of the placebo patients and 18.2%, 33.3% and 48.5% of the cryotherapy patients, respectively (PPD versus placebo: p PPD versus cryotherapy: p PPD group. The recurrence rate was 8.6%, 5.9% and 24.2% in the PPD, placebo and cryotherapy groups, respectively (p > 0.05). Intralesional immunotherapy with PPD antigen is highly effective and safe for treating recalcitrant warts. IRCT201407089844N3 in the Iranian Registry of Clinical Trials (IRCT).

  3. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.)

    Science.gov (United States)

    2010-01-01

    Background Because of the increasing quantity and high toxicity to humans of polycyclic aromatic hydrocarbons (PAHs) in the environment, several bioremediation mechanisms and protocols have been investigated to restore PAH-contaminated sites. The transport of organic contaminants among plant cells via tissues and their partition in roots, stalks, and leaves resulting from transpiration and lipid content have been extensively investigated. However, information about PAH distributions in intracellular tissues is lacking, thus limiting the further development of a mechanism-based phytoremediation strategy to improve treatment efficiency. Results Pyrene exhibited higher uptake and was more recalcitrant to metabolism in ryegrass roots than was phenanthrene. The kinetic processes of uptake from ryegrass culture medium revealed that these two PAHs were first adsorbed onto root cell walls, and they then penetrated cell membranes and were distributed in intracellular organelle fractions. At the beginning of uptake (< 50 h), adsorption to cell walls dominated the subcellular partitioning of the PAHs. After 96 h of uptake, the subcellular partition of PAHs approached a stable state in the plant water system, with the proportion of PAH distributed in subcellular fractions being controlled by the lipid contents of each component. Phenanthrene and pyrene primarily accumulated in plant root cell walls and organelles, with about 45% of PAHs in each of these two fractions, and the remainder was retained in the dissolved fraction of the cells. Because of its higher lipophilicity, pyrene displayed greater accumulation factors in subcellular walls and organelle fractions than did phenanthrene. Conclusions Transpiration and the lipid content of root cell fractions are the main drivers of the subcellular partition of PAHs in roots. Initially, PAHs adsorb to plant cell walls, and they then gradually diffuse into subcellular fractions of tissues. The lipid content of intracellular

  4. Airborne polycyclic aromatic hydrocarbons trigger human skin cells aging through aryl hydrocarbon receptor.

    Science.gov (United States)

    Qiao, Yuan; Li, Qiang; Du, Hong-Yang; Wang, Qiao-Wei; Huang, Ye; Liu, Wei

    2017-07-01

    Accumulating evidence suggests that polycyclic aromatic hydrocarbons (PAH) which adsorbed on the surface of ambient air particulate matters (PM), are the major toxic compound to cause cardiovascular and respiratory diseases, even cancer. However, its detrimental effects on human skin cell remain unclear. Here, we demonstrated that SRM1649b, a reference urban dust material of PAH, triggers human skin cells aging through cell cycle arrest, cell growth inhibition and apoptosis. Principally, SRM1649b facilitated Aryl hydrocarbon receptor (AhR) translocated into nucleus, subsequently activated ERK/MAPK signaling pathway, and upregulated aging-related genes expression. Most important, we found that AhR antagonist efficiently revert the aging of skin cells. Thus our novel findings firstly revealed the mechanism of skin aging under PAH contamination and provided potential strategy for clinical application. Copyright © 2017. Published by Elsevier Inc.

  5. Light hydrocarbon emissions from African savanna burnings

    International Nuclear Information System (INIS)

    Bonsang, B.; Lambert, G.; Boissard, C.C.

    1991-01-01

    A study was undertaken in West Africa to determine the background mixing ratio of nonmethane hydrocarbons (NMHC) during the dry season and to measure the composition of savanna burnings. The experiment was conducted from 13 to 22 January 1989 in the experimental station located at the border of the tropical rainforest and savanna. Samples were collected during aircraft flights at 2,400 m in the free troposphere, at 400 m in the haze layer and in a smoke plume at 200 m altitude. Samples representing the ground-level evolution of the local background were collected at 10 m altitude. Fire samples were collected at a short distance from the fires during the intensive experiments. Results are presented in tables and indicate that the effect of NMHC produced by biomass burning on the tropospheric photochemistry is limited to a few species, namely, C 2 -C 4 alkenes

  6. The uncertain future of hydrocarbons in Algeria

    International Nuclear Information System (INIS)

    Auge, Benjamin

    2013-01-01

    As it has been historically the first oil and gas producer in Africa with Gabon and Nigeria (it is now the third oil producer after Nigeria and Angola, and still the first gas producer), Algeria has faced a strong decrease of investments in this sector for the past ten years, for legal, security and political reasons. This resulted in a decrease of production whereas local consumption has been strongly increasing. The author examines whether measures voted in 2012 will be able to bring back the confidence of foreign investors which is needed to develop the huge oil, gas and shale gas potentials of this country. The author recalls this high resource level, and comments the role and behaviour of Sonatrach, the national company, and the consequences of the oil and gas revenues decrease. He outlines the importance of the issue of security (notably terrorism by AQMI), and comments expectations associated with the new law on hydrocarbons

  7. Identification of interstellar polysaccharides and related hydrocarbons

    International Nuclear Information System (INIS)

    Hoyle, F.; Olavesen, A.H.; Wickramasinghe, N.C.

    1978-01-01

    A discussion is presented on the infrared transmittance spectra of several polysaccharides that may be of interest as possible interstellar candidates. It is stated that a 2.5 to 15 μm spectrum computed from the author's measurements is remarkably close to that required to explain a wide range of astronomical data, except for two points. First the required relative opacity at the 3 μm absorption dip is a factor of about 1.5 lower than was found in laboratory measurements; this difference may arise from the presence of water in terrestrial polysaccharide samples. Secondly, in the 9.5 to 12 μm waveband an additional source of opacity appears to be necessary. Close agreement between the spectrum of this additional opacity and the absorption spectrum of propene, C 3 H 6 , points strongly to the presence of hydrocarbons of this type, which may be associated with polysaccharide grains in interstellar space. (U.K.)

  8. A method for producing a hydrocarbon resin

    Energy Technology Data Exchange (ETDEWEB)

    Tsachev, A B; Andonov, K S; Igliyev, S P

    1980-11-25

    Rock coal resin (KS), for instance, with a relative density of 1,150 to 1,190 kilograms per cubic meter, which contains 8 to 10 percent naphthaline, 1.5 to 2.8 percent phenol and 6 to 15 percent substances insoluble in toluene, or its mixture with rock coal or oil fractions of resin are subjected to distillation (Ds) in a pipe furnace with two evaporators (Is) and a distillation tower with a temperature mode in the second stage of 320 to 360 degrees and 290 to 340 degrees in the pitch compartment. A hydrocarbon resin is produced with a high carbon content, especially for the production of resin and dolomite refractory materials, as well as fuel mixtures for blast furnace and open hearth industry.

  9. Hydrocarbon fermentation: kinetics of microbial cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Goma, G [Institut National des Sciences Appliquees, Toulouse; Ribot, D

    1978-11-01

    Modeling of microbial growth using nonmiscible substrate is studied when kinetics of substrate dissolution is rate limiting. When the substrate concentration is low, the growth rate is described by an analytical relation that can be identified as a Contois relationship. If the substrate concentration is greater than a critical value S/sub crit/, the potentially useful hydrocarbon S* concentration is described by S* = S/sub crit//(1 + S/sub crit//S). A relationship was found between S/sub crit/ and the biomass concentration X. When X increased, S/sub crit/ decreased. The cell growth rate is related to a relation ..mu.. = ..mu../sub m/(A(X/S/sub crit/)(1 + S/sub crit//S) + 1)/sup -1/. This model describes the evolution of the growth rate when exponential or linear growth occurs, which is related to physico-chemical properties and hydrodynamic fermentation conditions. Experimental data to support the model are presented.

  10. Hydroprocessing using regenerated spent heavy hydrocarbon catalyst

    International Nuclear Information System (INIS)

    Clark, F.T.; Hensley, A.L. Jr.

    1992-01-01

    This patent describes a process for hydroprocessing a hydrocarbon feedstock. It comprises: contacting the feedstock with hydrogen under hydroprocessing conditions with a hydroprocessing catalyst wherein the hydroprocessing catalyst contains a total contaminant metals build-up of greater than about 4 wt. % nickel plus vanadium, a hydrogenation component selected from the group consisting of Group VIB metals and Group VIII metals and is regenerated spent hydroprocessing catalyst regenerated by a process comprising the steps: partially decoking the spent catalyst in an initial coke-burning step; impregnating the partially decoked catalyst with a Group IIA metal-containing impregnation solution; and decoking the impregnated catalyst in a final coke-burning step wherein the impregnated catalyst is contacted with an oxygen-containing gas at a temperature of about 600 degrees F to about 1400 degrees F

  11. Polycyclic aromatic hydrocarbons (PAHs) in yogurt samples.

    Science.gov (United States)

    Battisti, Chiara; Girelli, Anna Maria; Tarola, Anna Maria

    2015-01-01

    The concentrations and distributions of major polycyclic aromatic hydrocarbons (PAHs) were determined in 20 kinds of yogurt specimens collected from Italian supermarkets using reversed phase high-performance liquid chromatography equipped with fluorescence detection. The method was validated by determination of recovery percentages, precision (repeatability) and sensitivity (limits of detection) with yogurt samples fortified at 0.25, 0.5 and 1 µg/kg concentration levels. The recovery of 13 PAHs, with the exception of naphthalene and acenaphthene, ranged from 61% to 130% and from 60% to 97% at all the levels for yogurts with low (0.1%) and high (3.9%) fat content, respectively. The method is repeatable with relative standard deviation values yogurts with low and high fats were compared.

  12. System and process for upgrading hydrocarbons

    Science.gov (United States)

    Bingham, Dennis N.; Klingler, Kerry M.; Smith, Joseph D.; Turner, Terry D.; Wilding, Bruce M.

    2015-08-25

    In one embodiment, a system for upgrading a hydrocarbon material may include a black wax upgrade subsystem and a molten salt gasification (MSG) subsystem. The black wax upgrade subsystem and the MSG subsystem may be located within a common pressure boundary, such as within a pressure vessel. Gaseous materials produced by the MSG subsystem may be used in the process carried out within the black wax upgrade subsystem. For example, hydrogen may pass through a gaseous transfer interface to interact with black wax feed material to hydrogenate such material during a cracking process. In one embodiment, the gaseous transfer interface may include one or more openings in a tube or conduit which is carrying the black wax material. A pressure differential may control the flow of hydrogen within the tube or conduit. Related methods are also disclosed.

  13. Hydrocarbon control strategies for gasoline marketing operations

    Energy Technology Data Exchange (ETDEWEB)

    Norton, R.L.; Sakaida, R.R.; Yamada, M.M.

    1978-05-01

    This informational document provides basic and current descriptions of gasoline marketing operations and methods that are available to control hydrocarbon emissions from these operations. The three types of facilities that are described are terminals, bulk plants, and service stations. Operational and business trends are also discussed. The potential emissions from typical facilities, including transport trucks, are given. The operations which lead to emissions from these facilities include (1) gasoline storage, (2) gasoline loading at terminals and bulk plants, (3) gasoline delivery to bulk plants and service stations, and (4) the refueling of vehicles at service stations. Available and possible methods for controlling emissions are described with their estimated control efficiencies and costs. This report also includes a bibliography of references cited in the text, and supplementary sources of information.

  14. Method and apparatus for synthesizing hydrocarbons

    Science.gov (United States)

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1985-04-16

    A method and apparatus for synthesizing a mixture of aliphatic alcohols having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further optionally includes Na ions present as substitutional cations in an amount of about 5 to 10 atom %. At a temperature of about 570 to 630/sup 0/K, and at pressures of about 20 to 50 atm, methanol and isobutanol are the predominant products and are produced in amounts of about 90 wt % of the total hydrocarbon mixture. 6 figs.

  15. Microbial hydrocarbons: back to the future

    Energy Technology Data Exchange (ETDEWEB)

    Work, Victoria H.; Beliaev, Alex S.; Konopka, Allan; Posewitz, Matthew C.

    2012-03-01

    The defining challenge of energy research in the 21st century is the development and deployment of technologies for large-scale reconfiguration of global energy infrastructure. Modern society is built upon a concentrated yet finite reservoir of diverse hydrocarbons formed through the photosynthetic transformation of several hundred million years of solar energy. In human history, the fossil energy era will be short lived and never repeated. Although the timing of peak oil is extensively debated, it is an eventuality. It is, therefore, imperative that projections for both when it will occur and the degree to which supply will fall short of demand be taken into serious consideration, especially in the sectors of energy technology development, political and economic decision making, and societal energy usage. The requirement for renewable energy systems is no longer a point for discussion, and swift advances on many fronts are vital to counteract current and impending crises in both energy and the environment.

  16. Biodegrader metabolic expansion during polyaromatic hydrocarbons rhizoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, C.L.; Susilawati, E.; Kravchenko, A.N. [Dept. of Crop and Soil Sciences, Michigan State Univ., East Lansing, MI (United States); Thomas, J.C. [Dept. of Natural Sciences, Univ. of Michigan-Dearborn, Dearborn, MI (United States)

    2005-04-01

    Root-microbe interactions are considered to be the primary process of polyaromatic hydrocarbon (PAH) phytoremediation, since bacterial degradation has been shown to be the dominant pathway for environmental PAH dissipation. However, the precise mechanisms driving PAH rhizostimulation symbiosis remain largely unresolved. In this study, we assessed PAH degrading bacterial abundance in contaminated soils planted with 18 different native Michigan plant species. Phenanthrene metabolism assays suggested that each plant species differentially influenced the relative abundance of PAH biodegraders, though they generally were observed to increase heterotrophic and biodegradative cell numbers relative to unplanted soils. Further study of > 1800 phenanthrene degrading isolates indicated that most of the tested plant species stimulated biodegradation of a broader range of PAH compounds relative to the unplanted soil bacterial consortia. These observations suggest that a principal contribution of planted systems for PAH bioremediation may be via expanded metabolic range of the rhizosphere bacterial community. (orig.)

  17. In vitro toxicity of polycyclic aromatic hydrocarbons and halogenated aromatic hydrocarbons to cetacean cells and tissues

    Energy Technology Data Exchange (ETDEWEB)

    Carvan, M.J. III.

    1993-01-01

    Cetaceans bioaccumulate high aromatic hydrocarbon tissue residues, and elevated levels of PCB residues in tissues are proposed to have occurred concurrently with recent epizootic deaths of dolphins. The objectives of this study were: (1) to develop and characterize an epithelial cell line derived from dolphin tissues, (2) to investigate the effects of hydrocarbon pollutants on those cells, and (3) to analyze the toxicity of hydrocarbon pollutants on cetacean tissues in vitro. An epithelial cell line, Carvan dolphin kidney (CDK), isolated from a spontaneously aborted female bottlenose dolphin, Tursiops truncatus, grew rapidly. These cells were neither transformed nor immortal. Velocity sedimentation analysis showed CDK cells contained nuclear aryl hydrocarbon receptor, suggestive of cytochrome P450 inducibility. BaP inhibited mitosis in CDK cells in a dose-dependent manner. Data indicate that CDK cells metabolize BaP, that BaP metabolites bind to cellular DNA initiating unscheduled DNA synthesis, and that the inhibition of cytochrome P450 metabolism decrease the BaP-associated inhibition of mitosis in dolphin cells. The data also suggest that TCDD acts synergistically to increase the levels of DNA damage by the procarcinogen BaP. Cetacean liver microsomes was isolated and evaluated for the presence of cytochrome P450 proteins by SDS-PAGE, apparent minimum molecular weight determination, and immunoblot analysis. P450 activity was induced in cetacean tissue samples and CDK cells by exposure in vitro to one of several cytochrome P450-inducing chemicals. The data suggest that cetacean tissues and cells can be utilized to study the in vitro induction of cytochrome P450, resultant metabolism of xenobiotic contaminants, and the subsequent cellular and molecular responses. However, the identity of specific P450 isozymes involved in this process will remain undetermined until monoclonal antibodies that recognize cetacean P450s can be generated.

  18. Determination of polycyclic aromatic hydrocarbons in airborne

    International Nuclear Information System (INIS)

    Pachon Q, Jorge; Garcia L, Hector; Bustos L, Martha; Bravo A, Humberto; Sosa E, Rodolfo

    2004-01-01

    Rainfall polycyclic aromatic hydrocarbons (PAH) concentrations were determined in particulate matter with a <10 mm aerodynamic diameter (PM10) in three industrial municipalities of the metropolitan zone of Bogota City (MZBC). The 12 samples of greatest concentration of PM10 collected between 2001 and 2002 at the stations of atmospheric monitoring of Cundinamarca secretary of health (SSC), in the municipalities of Soacha, Sibate and Cajica, were analyzed. The results were correlated with emissions in the area, by means of emission factors and environmental agencies information. The particulate matter results for the analyzed period show concentrations that exceed the air quality standard of the US environmental protection agency EPA on several occasions at the Soacha municipality, whereas the air quality in the Sibate and Cajica municipalities did not show that to be the case. Despite the reduced number of samples and sampling sites, we believe that the reported profiles can be considered a valid estimation of the average air quality of the MZBC. The identified PAH species were: phenanthrene(Phe), anthracene(Ant), fluoranthene(Fla), pyrene(Pyr), benzo(a)anthracene (Baa), chrysene(chr), benzo(ghi)perylene(BgP) and indeno(1,2,3-cd)pyrene(Ind). It was not possible to quantify naphthalene (Nap), acenaphthy-lene(Acy), acenaphthene(Ace), nor fluorene(Flu), being light and volatile hydrocarbons with greater presence in the gaseous phase of the air. The correlation of PAH with source emissions shows mobile sources to be the main origin. The intervals of concentration of both individual PAH and the total species were similar to the ones usually found in other industrial zones of the world. PAHs correlations allowed pinpointing common emission sources between Soacha and Sibate municipalities

  19. Hydrocarbons biodegradation in unsaturated porous medium

    International Nuclear Information System (INIS)

    Gautier, C.

    2007-12-01

    Biological processes are expected to play an important role in the degradation of petroleum hydrocarbons in contaminated soils. However, factors influencing the kinetics of biodegradation are still not well known, especially in the unsaturated zone. To address these biodegradation questions in the unsaturated zone an innovative experimental set up based on a physical column model was developed. This experimental set up appeared to be an excellent tool for elaboration of a structured porous medium, with well defined porous network and adjusted water/oil saturations. Homogeneous repartition of both liquid phases (i.e., aqueous and non aqueous) in the soil pores, which also contain air, was achieved using ceramic membranes placed at the bottom of the soil column. Reproducible interfaces (and connectivity) are developed between gas, and both non mobile water and NAPL phases, depending on the above-defined characteristics of the porous media and on the partial saturations of these three phases (NAPL, water and gas). A respirometric apparatus was coupled to the column. Such experimental set up have been validated with hexadecane in dilution in an HMN phase. This approach allowed detailed information concerning n-hexadecane biodegradation, in aerobic condition, through the profile of the oxygen consumption rate. We have taken benefit of this technique, varying experimental conditions, to determine the main parameters influencing the biodegradation kinetics and compositional evolution of hydrocarbons, under steady state unsaturated conditions and with respect to aerobic metabolism. Impacts of the nitrogen quantity and of three different grain sizes have been examined. Biodegradation of petroleum cut, as diesel cut and middle distillate without aromatic fraction, were, also studied. (author)

  20. Two-liquid-phase system: A promising technique for predicting bioavailability of polycyclic aromatic hydrocarbons in long-term contaminated soils.

    Science.gov (United States)

    Wang, Congying; Wang, Ziyu; Li, Zengbo; Ahmad, Riaz

    2017-02-01

    A two-liquid-phase system (TLPS), which consisted of soil slurry and silicone oil, was employed to extract polycyclic aromatic hydrocarbons (PAHs) in four long-term contaminated soils in order to assess the bioavailability of PAHs. Extraction kinetics of six PAHs viz. phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, benzo(a)pyrene, dibenzo(a,h)anthrancene were selected to investigate as they covered the susceptible and recalcitrant PAHs in soil. A parallel experiments were also carried out on the microbial degradation of these PAHs in soil with and without biostimulation (by adding (NH 4 ) 2 HPO 4 ). The rapidly desorbed fraction of fluoranthene, as indicated by the two-fraction model, was found the highest, ranging from 21.4% to 37.4%, whereas dibenzo(a,h)anthrancene was the lowest, ranging from 8.9% to 20.5%. The rapid desorption of selected PAHs was found to be finished within 24 h. The rapidly desorbed fraction of PAHs investigated using TLPS, was significantly correlated (R 2  = 0.95) with that degraded by microorganisms in biostimulation treatment. This suggested that the TLPS-assisted extraction could be a promising technique in determining the bioavailability of aged PAHs in contaminated soils. It also suggested that applying sufficient nutrients in bioremediation of field contaminated soils is crucial. Further work is required to test its application to more hydrophobic organic pollutants in long-term contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Microbial consortia involved in the anaerobic degradation of hydrocarbons.

    Science.gov (United States)

    Zwolinski; Harris, R F; Hickey, W J

    2000-01-01

    In this review, we examine the energetics of well-characterized biodegradation pathways and explore the possibilities for these to support growth of multiple organisms interacting in consortia. The relevant phenotypic and/or phylogenetic characteristics of isolates and consortia mediating hydrocarbon degradation coupled with different terminal electron-accepting processes (TEAP) are also reviewed. While the information on metabolic pathways has been gained from the analysis of individual isolates, the energetic framework presented here demonstrates that microbial consortia could be readily postulated for hydrocarbon degradation coupled to any TEAP. Several specialized reactions occur within these pathways, and the organisms mediating these are likely to play a key role in defining the hydrocarbon degradation characteristics of the community under a given TEAP. Comparing these processes within and between TEAPs reveals biological unity in that divergent phylotypes display similar degradation mechanisms and biological diversity in that hydrocarbon-degraders closely related as phylotypes differ in the type and variety of hydrocarbon degradation pathways they possess. Analysis of microcosms and of field samples suggests that we have only begun to reveal the diversity of organisms mediating anaerobic hydrocarbon degradation. Advancements in the understanding of how hydrocarbon-degrading communities function will be significantly affected by the extent to which organisms mediating specialized reactions can be identified, and tools developed to allow their study in situ.

  2. Constructed wetlands for treatment of dissolved phase hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Moore, B J; Ross, S D [Komex International, Calgary, AB (Canada); Gibson, D [Calgary Univ., AB (Canada); Hardisty, P E [Komex Clarke Bond, Bristol (United Kingdom)

    1999-01-01

    The use of constructed wetlands as an alternative to conventional treatment of condensate-contaminated groundwater was studied. In 1997 a pilot scale wetland was constructed and implemented at the Gulf Strachan Gas Processing Plant to determine its ability in treating extracted groundwater contaminated with natural gas condensates. This paper presented the results of hydrocarbon removal efficiency, hydrocarbon removal mechanisms, winter operation, and the effect of hydrocarbons on vegetation health. The inflow water to the wetland contains 15 to 20 mg/L of C[sub 5]-C[sub 10] hydrocarbons, including 50 per cent BTEX compounds. During the summer months, hydrocarbon removal efficiency was 100 per cent, but decreased to 60 and 30 per cent in the spring and late fall, respectively. The hydrocarbons not removed in the wetland were eventually removed along the outflow channel. Temperature was determined to be an important factor in the variable removal rates, particularly when there is no aeration. The main hydrocarbon removal mechanisms appear to be volatilization, biodegradation and dilution. At present, plant uptake is not a factor. 12 refs., 1 tab., 3 figs.

  3. Saturated versus unsaturated hydrocarbon interactions with carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Deivasigamani eUmadevi

    2014-09-01

    Full Text Available The interactions of various acyclic and cyclic hydrocarbons in both saturated and unsaturated forms with the carbon nanostructures (CNSs have been explored by using density functional theory (DFT calculations. Model systems representing armchair and zigzag carbon nanotubes (CNTs and graphene have been considered to investigate the effect of chirality and curvature of the CNSs towards these interactions. Results of this study reveal contrasting binding nature of the acyclic and cyclic hydrocarbons towards CNSs. While the saturated molecules show stronger binding affinity in acyclic hydrocarbons; the unsaturated molecules exhibit higher binding affinity in cyclic hydrocarbons. In addition, acyclic hydrocarbons exhibit stronger binding affinity towards the CNSs when compared to their corresponding cyclic counterparts. The computed results excellently corroborate the experimental observations. The interaction of hydrocarbons with graphene is more favourable when compared with CNTs. Bader’s theory of atoms in molecules has been invoked to characterize the noncovalent interactions of saturated and unsaturated hydrocarbons. Our results are expected to provide useful insights towards the development of rational strategies for designing complexes with desired noncovalent interaction involving CNSs.

  4. Structural segregation of petroleum and prospective hydrocarbon regions in Azerbaijan

    International Nuclear Information System (INIS)

    Kerimov, K.M.; Huseynov, A.N.; Hajiyev, F.M.

    2002-01-01

    Full text : Structural segregation allows identify the earth crust blocks according to their geological setting and structural history conductive for hydrocarbon generation and their entrapment in the sedimentary fill reservoirs. Since then there has been a need to design a new tectonic map of petroleum and hydrocarbons potential systems in Azerbaijan embracing both on- and offshore areas. Map's legend designed upon above mentioned concepts and principles has made it possible to evaluate the role of individual stratigraphic units in hydrocarbon generation and its entrapment, as well as in recognition of regional structural criteria of the hydrocarbon bearing potential of different structural patterns. Tectonic map of petroleum and prospective hydrocarbon bearing on and offshore areas in Azerbaijan for the first time contained a wide range of information related to structural criteria of hydrocarbon bearing potential, sedimentary fill's structural architecture, its thickness, both timing of their formation stages and basement consolidation, its subsidence depth, as well as hydrocarbon deposit areal and vertical distribution across individual regions. This map was considered to be of important implication both for the petroleum geoscience and petroleum industry endeavors.

  5. Constructed wetlands for treatment of dissolved phase hydrocarbons

    International Nuclear Information System (INIS)

    Moore, B.J.; Ross, S.D.; Gibson, D.; Hardisty, P.E.

    1999-01-01

    The use of constructed wetlands as an alternative to conventional treatment of condensate-contaminated groundwater was studied. In 1997 a pilot scale wetland was constructed and implemented at the Gulf Strachan Gas Processing Plant to determine its ability in treating extracted groundwater contaminated with natural gas condensates. This paper presented the results of hydrocarbon removal efficiency, hydrocarbon removal mechanisms, winter operation, and the effect of hydrocarbons on vegetation health. The inflow water to the wetland contains 15 to 20 mg/L of C 5 -C 10 hydrocarbons, including 50 per cent BTEX compounds. During the summer months, hydrocarbon removal efficiency was 100 per cent, but decreased to 60 and 30 per cent in the spring and late fall, respectively. The hydrocarbons not removed in the wetland were eventually removed along the outflow channel. Temperature was determined to be an important factor in the variable removal rates, particularly when there is no aeration. The main hydrocarbon removal mechanisms appear to be volatilization, biodegradation and dilution. At present, plant uptake is not a factor. 12 refs., 1 tab., 3 figs

  6. Risk analysis associated with petroleum hydrocarbons: is everything running smoothly?

    International Nuclear Information System (INIS)

    Morin, D.

    1999-01-01

    Petroleum products represent one of the main sources of environmental contamination, and these products are complex, composed of several hundred individual hydrocarbons. The evaluation of the risks associated with petroleum products is often limited by certain specific parameters such as benzene. The petroleum hydrocarbons running from C(10) to C(50) are not often integrated in an analysis of the toxological risks since the toxological characterization of a complex mixture of hydrocarbons is difficult to carry out. There exist in the United States two approaches that were developed recently that allow the integration of various hydrocarbons comprising a mixture. In this presentation, two of these approaches are described and compared. An overview of these approaches related to Canadian regulatory bodies is included, and a case study completes the account. The two approaches that are most well known in this area are: 1) that of the Massachusetts Dept. of Environmental Protection, and 2) that of the Total Petroleum Hydrocarbon Criteria Working Group. The integration of petroleum hydrocarbons in a quantitative evaluation of their toxological risk is possible by present methods. This integration allows a reduction in the uncertainty associated with the use of an integrating parameter in the case of these petroleum hydrocarbons in the C(10) to the C(50) range

  7. Kinetics and oxidative mechanism for H2O2-enhanced iron-mediated aeration (IMA) treatment of recalcitrant organic compounds in mature landfill leachate

    International Nuclear Information System (INIS)

    Deng Yang; Englehardt, James D.

    2009-01-01

    A hydrogen peroxide (H 2 O 2 )-enhanced iron (Fe 0 )-mediated aeration (IMA) process has been recently demonstrated to effectively remove organic wastes from mature landfill leachate. In this paper, the kinetics and oxidative mechanisms of the enhanced IMA treatment were studied. Bench-scale full factorial tests were conducted in an orbital shaker reactor for treatment of a mature leachate with an initial chemical oxygen demand (COD) of 900-1200 mg/L. At the maximum aeration rate (8.3 mL air/min mL sample), process variables significantly influencing the rates of H 2 O 2 decay and COD removal were pH (3.0-8.0), initial H 2 O 2 doses (0.21-0.84 M), and Fe 0 surface area concentrations (0.06-0.30 m 2 /L). Empirical kinetic models were developed and verified for the degradation of H 2 O 2 and COD. High DO maintained by a high aeration rate slowed the H 2 O 2 self-decomposition, accelerated Fe 0 consumption, and enhanced the COD removal. In hydroxyl radical (OH·) scavenging tests, the rate of removal of glyoxylic acid (target compound) was not inhibited by the addition of para-chlorobenzoic acid (OH· scavenger) at pH 7.0-7.5, ruling out hydroxyl radical as the principal oxidant in neutral-weakly basic solution. These experimental results show that this enhanced IMA technology is a potential alternative for the treatment of high strength recalcitrant organic wastewaters.

  8. Kinetics and oxidative mechanism for H2O2-enhanced iron-mediated aeration (IMA) treatment of recalcitrant organic compounds in mature landfill leachate.

    Science.gov (United States)

    Deng, Yang; Englehardt, James D

    2009-09-30

    A hydrogen peroxide (H(2)O(2))-enhanced iron (Fe(0))-mediated aeration (IMA) process has been recently demonstrated to effectively remove organic wastes from mature landfill leachate. In this paper, the kinetics and oxidative mechanisms of the enhanced IMA treatment were studied. Bench-scale full factorial tests were conducted in an orbital shaker reactor for treatment of a mature leachate with an initial chemical oxygen demand (COD) of 900-1200 mg/L. At the maximum aeration rate (8.3 mL air/min mL sample), process variables significantly influencing the rates of H(2)O(2) decay and COD removal were pH (3.0-8.0), initial H(2)O(2) doses (0.21-0.84 M), and Fe(0) surface area concentrations (0.06-0.30 m(2)/L). Empirical kinetic models were developed and verified for the degradation of H(2)O(2) and COD. High DO maintained by a high aeration rate slowed the H(2)O(2) self-decomposition, accelerated Fe(0) consumption, and enhanced the COD removal. In hydroxyl radical (OH*) scavenging tests, the rate of removal of glyoxylic acid (target compound) was not inhibited by the addition of para-chlorobenzoic acid (OH* scavenger) at pH 7.0-7.5, ruling out hydroxyl radical as the principal oxidant in neutral-weakly basic solution. These experimental results show that this enhanced IMA technology is a potential alternative for the treatment of high strength recalcitrant organic wastewaters.

  9. Kinetics and oxidative mechanism for H{sub 2}O{sub 2}-enhanced iron-mediated aeration (IMA) treatment of recalcitrant organic compounds in mature landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Deng Yang, E-mail: yang.deng@upr.edu [Department of Civil Engineering and Surveying, University of Puerto Rico, PO BOX 9041, Mayaguez, PR 00681 (Puerto Rico); Englehardt, James D. [Department of Civil, Architectural and Environmental Engineering, University of Miami, PO BOX 248294, Coral Gables, FL 33124-0630 (United States)

    2009-09-30

    A hydrogen peroxide (H{sub 2}O{sub 2})-enhanced iron (Fe{sup 0})-mediated aeration (IMA) process has been recently demonstrated to effectively remove organic wastes from mature landfill leachate. In this paper, the kinetics and oxidative mechanisms of the enhanced IMA treatment were studied. Bench-scale full factorial tests were conducted in an orbital shaker reactor for treatment of a mature leachate with an initial chemical oxygen demand (COD) of 900-1200 mg/L. At the maximum aeration rate (8.3 mL air/min mL sample), process variables significantly influencing the rates of H{sub 2}O{sub 2} decay and COD removal were pH (3.0-8.0), initial H{sub 2}O{sub 2} doses (0.21-0.84 M), and Fe{sup 0} surface area concentrations (0.06-0.30 m{sup 2}/L). Empirical kinetic models were developed and verified for the degradation of H{sub 2}O{sub 2} and COD. High DO maintained by a high aeration rate slowed the H{sub 2}O{sub 2} self-decomposition, accelerated Fe{sup 0} consumption, and enhanced the COD removal. In hydroxyl radical (OH{center_dot}) scavenging tests, the rate of removal of glyoxylic acid (target compound) was not inhibited by the addition of para-chlorobenzoic acid (OH{center_dot} scavenger) at pH 7.0-7.5, ruling out hydroxyl radical as the principal oxidant in neutral-weakly basic solution. These experimental results show that this enhanced IMA technology is a potential alternative for the treatment of high strength recalcitrant organic wastewaters.

  10. Enhancement of Treatment Efficiency of Recalcitrant Wastewater Containing Textile Dyes Using a Newly Developed Iron Zeolite Socony Mobil-5 Heterogeneous Catalyst.

    Science.gov (United States)

    Ahmad, Mushtaq; Asghar, Anam; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2015-01-01

    Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption.

  11. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes.

    Science.gov (United States)

    Kuusk, Silja; Sørlie, Morten; Väljamäe, Priit

    2015-05-01

    Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the (14)C-labeled crystalline polymeric substrates (14)C chitin nanowhiskers and (14)C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki (obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki (obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Enhancement of Treatment Efficiency of Recalcitrant Wastewater Containing Textile Dyes Using a Newly Developed Iron Zeolite Socony Mobil-5 Heterogeneous Catalyst

    Science.gov (United States)

    Ahmad, Mushtaq; Asghar, Anam; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2015-01-01

    Fenton oxidation, an advanced oxidation process, is an efficient method for the treatment of recalcitrant wastewaters. Unfortunately, it utilizes H2O2 and iron-based homogeneous catalysts, which lead to the formation of high volumes of sludge and secondary pollutants. To overcome these problems, an alternate option is the usage of heterogeneous catalyst. In this study, a heterogeneous catalyst was developed to provide an alternative solution for homogeneous Fenton oxidation. Iron Zeolite Socony Mobile-5 (Fe-ZSM-5) was synthesized using a new two-step process. Next, the catalyst was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis and tested against a model wastewater containing the azo dye Acid Blue 113. Results showed that the loading of iron particles reduced the surface area of the catalyst from 293.59 to 243.93 m2/g; meanwhile, the average particle size of the loaded material was 12.29 nm. Furthermore, efficiency of the developed catalyst was evaluated by performing heterogeneous Fenton oxidation. Taguchi method was coupled with principal component analysis in order to assess and optimize mineralization efficiency. Experimental results showed that under optimized conditions, over 99.7% degradation and 77% mineralization was obtained, with a 90% reduction in the consumption of the developed catalyst. Furthermore, the developed catalyst was stable and reusable, with less than 2% leaching observed under optimized conditions. Thus, the present study proved that newly developed catalyst has enhanced the oxidation process and reduced the chemicals consumption. PMID:26517827

  13. Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases.

    Science.gov (United States)

    Kurašin, Mihhail; Kuusk, Silja; Kuusk, Piret; Sørlie, Morten; Väljamäe, Priit

    2015-11-27

    Processive glycoside hydrolases are the key components of enzymatic machineries that decompose recalcitrant polysaccharides, such as chitin and cellulose. The intrinsic processivity (P(Intr)) of cellulases has been shown to be governed by the rate constant of dissociation from polymer chain (koff). However, the reported koff values of cellulases are strongly dependent on the method used for their measurement. Here, we developed a new method for determining koff, based on measuring the exchange rate of the enzyme between a non-labeled and a (14)C-labeled polymeric substrate. The method was applied to the study of the processive chitinase ChiA from Serratia marcescens. In parallel, ChiA variants with weaker binding of the N-acetylglucosamine unit either in substrate-binding site -3 (ChiA-W167A) or the product-binding site +1 (ChiA-W275A) were studied. Both ChiA variants showed increased off-rates and lower apparent processivity on α-chitin. The rate of the production of insoluble reducing groups on the reduced α-chitin was an order of magnitude higher than koff, suggesting that the enzyme can initiate several processive runs without leaving the substrate. On crystalline chitin, the general activity of the wild type enzyme was higher, and the difference was magnifying with hydrolysis time. On amorphous chitin, the variants clearly outperformed the wild type. A model is proposed whereby strong interactions with polymer in the substrate-binding sites (low off-rates) and strong binding of the product in the product-binding sites (high pushing potential) are required for the removal of obstacles, like disintegration of chitin microfibrils. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures.

    Science.gov (United States)

    Wesley-Smith, James; Berjak, Patricia; Pammenter, N W; Walters, Christina

    2014-03-01

    Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm(2) in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches.

  15. Rehabilitation for a child with recalcitrant anti-N-methyl-D-aspartate receptor encephalitis: case report and literature review

    Directory of Open Access Journals (Sweden)

    Guo YH

    2014-11-01

    Full Text Available Yao-Hong Guo,1 Ta-Shen Kuan,1,2 Pei-Chun Hsieh,1 Wei-Chih Lien,1 Chun-Kai Chang,1 Yu-Ching Lin1–3 1Department of Physical Medicine and Rehabilitation, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; 2Department of Physical Medicine and Rehabilitation, College of Medicine, National Cheng Kung University, Tainan, Taiwan; 3Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan Abstract: Anti-N-methyl-d-aspartate (anti-NMDA receptor encephalitis is a newly recognized, potentially fatal, but treatable autoimmune disease. Good outcome predictors include milder severity of symptoms, no need for intensive care unit admission, early aggressive immunotherapy, and prompt tumor removal. We report a case of a young girl aged 3 years 2 months and diagnosed as recalcitrant anti-NMDA receptor encephalitis without any underlying neoplasm. The patient had initial symptoms of behavioral changes that progressed to generalized choreoathetosis and orofacial dyskinesia, which resulted in 6 months of hospitalization in the pediatric intensive care unit. One year after initial onset of the disease, she had only achieved the developmental age of an infant aged 6–8 months in terms of gross and fine motor skills, but she resumed total independence in activities of daily living after receiving extensive immunotherapy and 28 months of rehabilitation. Our brief review will help clinical practitioners become more familiar with this disease and the unique rehabilitation programs. Keywords: anti-NMDA receptor encephalitis, autoimmune encephalitis, rehabilitation, cognition deficits

  16. Juvenile generalized pustular psoriasis is a chronic recalcitrant disease: an analysis of 27 patients seen in a tertiary hospital in Johor, Malaysia.

    Science.gov (United States)

    Lau, Bi-Wen; Lim, Dee-Zhen; Capon, Francesca; Barker, Jonathan N; Choon, Siew-Eng

    2017-04-01

    Limited information exists regarding juvenile generalized pustular psoriasis (GPP). We aim to determine the clinical profile and outcome of Malaysians with juvenile GPP. Review of hospital case notes on patients with juvenile GPP. Twenty-seven patients with juvenile GPP were identified. Female to male ratio was 1.4:1. The median age at onset of GPP was 6.5 years. Ten patients had prior psoriasis with a median pre-pustular duration of 2.7 years. Onset of GPP was earlier in patients without prior psoriasis (5.1 years vs. 12.0 years, P = 0.002). Precipitating factors identified included stress, upper respiratory tract infection, systemic steroid use, vaccination, and pregnancy. A positive family history of psoriasis and GPP was present in six and one patient(s), respectively. Twenty-one patients had acute, five annular, and one localized variant of GPP. Arthritis was present in 22.2%. Fever, leukocytosis, and transaminitis were mainly seen in patients with acute GPP at 80.9, 72.2, and 11.1%, respectively. Among 20 patients screened, eight carry IL36RN variants and one has CARD14 mutation. IL36RN-positive patients have more severe disease characterized by early onset, low prevalence of prior plaque psoriasis, high prevalence of systemic inflammation, and need for continuous long-term systemic therapy. Acitretin and cyclosporine were effective in aborting acute GPP in 100% of 16 and 66.7% of six patients treated, respectively. However, relapses were common. Only three of the 17 patients whose initial acute GPP was controlled with systemic agents were successfully weaned off treatment. Juvenile GPP is a chronic recalcitrant disease. IL36RN-positive patients have more severe disease. © 2017 The International Society of Dermatology.

  17. Radiation-induced volatile hydrocarbon production in platelets

    International Nuclear Information System (INIS)

    Radha, E.; Vaishnav, Y.N.; Kumar, K.S.; Weiss, J.F.

    1989-01-01

    Generation of volatile hydrocarbons (ethane, pentane) as a measure of lipid peroxidation was followed in preparations from platelet-rich plasma irradiated in vitro. The hydrocarbons in the headspace of sealed vials containing irradiated and nonirradiated washed platelets, platelet-rich plasma, or platelet-poor plasma increased with time. The major hydrocarbon, pentane, increased linearly and significantly with increasing log radiation dose, suggesting that reactive oxygen species induced by ionizing radiation result in lipid peroxidation. Measurements of lipid peroxidation products may give an indication of suboptimal quality of stored and/or irradiated platelets

  18. Process for scavenging hydrogen sulfide from hydrocarbon gases

    International Nuclear Information System (INIS)

    Fox, I.

    1981-01-01

    A process for scavenging hydrogen sulfide from hydrocarbon gases utilizes iron oxide particles of unique chemical and physical properties. These particles have large surface area, and are comprised substantially of amorphous Fe 2 O 3 containing a crystalline phase of Fe 2 O 3 , Fe 3 O 4 and combinations thereof. In scavenging hydrogen sulfide, the iron oxide particles are suspended in a liquid which enters into intimate mixing contact with hydrocarbon gases; the hydrogen sulfide is reacted at an exceptional rate and only acid-stable reaction products are formed. Thereafter, the sweetened hydrocarbon gases are collected

  19. Mobile geophysics for searching and exploration of Domanic hydrocarbon deposits

    Science.gov (United States)

    Borovsky, M. Ya; Uspensky, B. V.; Valeeva, S. E.; Borisov, A. S.

    2018-05-01

    There are noted features of shale hydrocarbons occurrence. It is shown the role of geophysical prospecting in the geological prospecting process for non-traditional sources of hydrocarbon. There are considered the possibilities of non-seismic methods for forecasting, prospecting, exploration and preparation of Domanikovian hydrocarbons accumulations for exploration. It is emphasized the need for geophysical studies of tectonic disturbances. Modern aerogeophysical instrumentation and methodological support allows to combine high-precision magneto-prospecting with gravimetric and gamma spectrometry. This combination of geophysical methods contributes to the diagnosis of active and latent faults.

  20. Hydrocarbon composition products of the catalytic recycling plastics waste

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2013-09-01

    Full Text Available The paper represents the IR spectroscopy results of the hydrocarbon composition of products, which is obtained from catalytic processing of plastic wastes. The optimal conditions for the hydrogenation with to producny liquid of products are identified.  These liquid products are enriched with aromatics, paraffinic- naphthenic and unsaturated hydrocarbons. The main characteristics of the distillates received by hydrogenation of plastics (as density, refractive index, iodine number, pour point, cloud point, filtering, sulfur content,  fractional and composition of the hydrocarbon group.