WorldWideScience

Sample records for rearrangement reactions catalyzed

  1. Degradations and Rearrangement Reactions

    Science.gov (United States)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  2. Beckmann rearrangement of aldoximes catalyzed by transition metal salts: mechanical aspects

    NARCIS (Netherlands)

    Leusink, A.J.; Meerbeek, T.G.; Noltes, J.G.

    1977-01-01

    The Beckmann rearrangement of aldoximes catalyzed by transition metal salts like palladium and nickel acetylacetonates is shown to be a dehydration‐hydration reaction in which the anti‐oxime is converted into nitrile and the nitrile is converted into amide.

  3. Aza Cope Rearrangement of Propargyl Enammonium Cations Catalyzed By a Self-Assembled `Nanozyme

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, Courntey J.; Fiedler, Dorothea; Bergman, Robert G.; Raymond, Kenneth N.

    2008-02-27

    The tetrahedral [Ga{sub 4}L{sub 6}]{sup 12-} assembly (L = N,N-bis(2,3-dihydroxybenzoyl)-1,5-diaminonaphthalene) encapsulates a variety of cations, including propargyl enammonium cations capable of undergoing the aza Cope rearrangement. For propargyl enammonium substrates that are encapsulated in the [Ga{sub 4}L{sub 6}]{sup 12-} assembly, rate accelerations of up to 184 are observed when compared to the background reaction. After rearrangement, the product iminium ion is released into solution and hydrolyzed allowing for catalytic turnover. The activation parameters for the catalyzed and uncatalyzed reaction were determined, revealing that a lowered entropy of activation is responsible for the observed rate enhancements. The catalyzed reaction exhibits saturation kinetics; the rate data obey the Michaelis-Menten model of enzyme kinetics, and competitive inhibition using a non-reactive guest has been demonstrated.

  4. Gold-catalyzed intermolecular coupling of sulfonylacetylene with allyl ethers: [3,3]- and [1,3]-rearrangements

    Directory of Open Access Journals (Sweden)

    Jungho Jun

    2013-08-01

    Full Text Available Gold-catalyzed intermolecular couplings of sulfonylacetylenes with allyl ethers are reported. A cooperative polarization of alkynes both by a gold catalyst and a sulfonyl substituent resulted in an efficient intermolecular tandem carboalkoxylation. Reactions of linear allyl ethers are consistent with the [3,3]-sigmatropic rearrangement mechanism, while those of branched allyl ethers provided [3,3]- and [1,3]-rearrangement products through the formation of a tight ion–dipole pair.

  5. Catalytic Asymmetric Piancatelli Rearrangement: Brønsted Acid Catalyzed 4π Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones

    KAUST Repository

    Cai, Yunfei; Tang, Yurong; Atodiresei, Iuliana; Rueping, Magnus

    2016-01-01

    The first catalytic asymmetric Piancatelli reaction is reported. Catalyzed by a chiral Brønsted acid, the rearrangement of a wide range of furylcarbinols with a series of aniline derivatives provides valuable aminocyclopentenones in high yields

  6. Unusual reactions of diazocarbonyl compounds with α,β-unsaturated δ-amino esters: Rh(II-catalyzed Wolff rearrangement and oxidative cleavage of N–H-insertion products

    Directory of Open Access Journals (Sweden)

    Valerij A. Nikolaev

    2016-08-01

    Full Text Available Rh(II-сatalyzed reactions of aroyldiazomethanes, diazoketoesters and diazodiketones with α,β-unsaturated δ-aminoesters, in contrast to reactions of diazomalonates and other diazoesters, give rise to the Wolff rearrangement and/or oxidative cleavage of the initially formed N–H-insertion products. These oxidation processes are mediated by Rh(II catalysts possessing perfluorinated ligands. The formation of pyrrolidine structures, characteristic for catalytic reactions of diazoesters, was not observed in these processes at all.

  7. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  8. Catalytic Asymmetric Piancatelli Rearrangement: Brønsted Acid Catalyzed 4π Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones

    KAUST Repository

    Cai, Yunfei

    2016-10-13

    The first catalytic asymmetric Piancatelli reaction is reported. Catalyzed by a chiral Brønsted acid, the rearrangement of a wide range of furylcarbinols with a series of aniline derivatives provides valuable aminocyclopentenones in high yields as well as excellent enantioselectivities and diastereoselectivities. The high value of the aza-Piancatelli rearrangement was demonstrated by the synthesis of a cyclopentane-based hNK1 antagonist analogue.

  9. A tandem cross-metathesis/semipinacol rearrangement reaction.

    Science.gov (United States)

    Plummer, Christopher W; Soheili, Arash; Leighton, James L

    2012-05-18

    An efficient and (E)-selective synthesis of a 6-alkylidenebicyclo[3.2.1]octan-8-one has been developed. The key step is a tandem cross-metathesis/semipinacol rearrangement reaction, wherein the Hoveyda-Grubbs II catalyst, or more likely a derivative thereof, serves as the Lewis acid for the rearrangement. Despite the fact that both the starting alkene and the cross-metathesis product are viable rearrangement substrates, only the latter rearranges, suggesting that the Lewis acidic species is generated only after the cross-metathesis reaction is complete.

  10. Tandem electrophilic cyclization-[3+2] cycloaddition-rearrangement reactions of 2-alkynylbenzaldoxime, DMAD, and Br2.

    Science.gov (United States)

    Ding, Qiuping; Wang, Zhiyong; Wu, Jie

    2009-01-16

    Tandem electrophilic cyclization-[3+2] cycloaddition-rearrangement reactions of 2-alkynylbenzaldoximes, DMAD, and bromine are described, which afford the unexpected isoquinoline-based azomethine ylides in good to excellent yields. The products could be further elaborated via palladium-catalyzed cross-coupling reactions to generate highly functionalized isoquinoline-based stable azomethine ylides.

  11. Constituent rearrangement model and large transverse momentum reactions

    International Nuclear Information System (INIS)

    Igarashi, Yuji; Imachi, Masahiro; Matsuoka, Takeo; Otsuki, Shoichiro; Sawada, Shoji.

    1978-01-01

    In this chapter, two models based on the constituent rearrangement picture for large p sub( t) phenomena are summarized. One is the quark-junction model, and the other is the correlating quark rearrangement model. Counting rules of the models apply to both two-body reactions and hadron productions. (author)

  12. Rearrangements of Cycloalkenyl Aryl Ethers

    Directory of Open Access Journals (Sweden)

    Mercedesz Törincsi

    2016-04-01

    Full Text Available Rearrangement reactions of cycloalkenyl phenol and naphthyl ethers and the acid-catalyzed cyclization of the resulting product were investigated. Claisen rearrangement afforded 2-substituted phenol and naphthol derivatives. Combined Claisen and Cope rearrangement resulted in the formation of 4-substituted phenol and naphthol derivatives. In the case of cycloocthylphenyl ether the consecutive Claisen and Cope rearrangements were followed by an alkyl migration. The mechanism of this novel rearrangement reaction is also discussed.

  13. Palladium-catalyzed coupling reactions

    CERN Document Server

    Molnár, Árpád

    2013-01-01

    This handbook and ready reference brings together all significant issues of practical importance for interested readers in one single volume. While covering homogeneous and heterogeneous catalysis, the text is unique in focusing on such important aspects as using different reaction media, microwave techniques or catalyst recycling. It also provides a comprehensive treatment of modern-day coupling reactions and emphasizes those topics that show potential for future development, such as continuous flow systems, water as a reaction medium, and catalyst immobilization, among others. With i

  14. Acid-catalyzed rearrangements of flavans to novelbenzofuran derivatives

    Science.gov (United States)

    Richard W. Hemingway; Weiling Peng; Anthony H. Conner; Petrus J. Steynberg; Jan P. Steynberg

    1998-01-01

    The objective of this work was to define reactions that occur when proanthocyanidins and their derivatives are reacted in the presence of acid catalysts. Pure compounds (either as the free phenols, the methyl ether, or the methyl ether-acetate derivatives) were isolated by a variety of chromatographic methods. Proof of their structure was based mainly on 2D-NMR, as...

  15. Desaturation reactions catalyzed by soluble methane monooxygenase.

    Science.gov (United States)

    Jin, Y; Lipscomb, J D

    2001-09-01

    Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.

  16. Heterogeneously Catalyzed Oxidation Reactions Using Molecular Oxygen

    DEFF Research Database (Denmark)

    Beier, Matthias Josef

    Heterogeneously catalyzed selective oxidation reactions have attracted a lot of attention in recent time. The first part of the present thesis provides an overview over heterogeneous copper and silver catalysts for selective oxidations in the liquid phase and compared the performance and catalytic...... that both copper and silver can function as complementary catalyst materials to gold showing different catalytic properties and being more suitable for hydrocarbon oxidation reactions. Potential opportunities for future research were outlined. In an experimental study, the potential of silver as a catalyst...... revealed that all catalysts were more active in combination with ceria nanoparticles and that under the tested reaction conditions silver was equally or even more efficient than the gold catalysts. Calcination at 900 °C of silver on silica prepared by impregnation afforded a catalyst which was used...

  17. Modeling the reactions catalyzed by coenzyme B12-dependent enzymes.

    Science.gov (United States)

    Sandala, Gregory M; Smith, David M; Radom, Leo

    2010-05-18

    Enzymes accelerate chemical reactions with an exceptional selectivity that makes life itself possible. Understanding the factors responsible for this efficient catalysis is of utmost importance in our quest to harness the tremendous power of enzymes. Computational chemistry has emerged as an important adjunct to experimental chemistry and biochemistry in this regard, because it provides detailed insights into the relationship between structure and function in a systematic and straightforward manner. In this Account, we highlight our recent high-level theoretical investigations toward this end in studying the radical-based reactions catalyzed by enzymes dependent on coenzyme B(12) (or adenosylcobalamin, AdoCbl). In addition to their fundamental position in biology, the AdoCbl-dependent enzymes represent a valuable framework within which to understand Nature's method of efficiently handling high-energy species to execute very specific reactions. The AdoCbl-mediated reactions are characterized by the interchange of a hydrogen atom and a functional group on adjacent carbon atoms. Our calculations are consistent with the conclusion that the main role of AdoCbl is to provide a source of radicals, thus moving the 1,2-rearrangements onto the radical potential energy surface. Our studies also show that the radical rearrangement step is facilitated by partial proton transfer involving the substrate. Specifically, we observe that the energy requirements for radical rearrangement are reduced dramatically with appropriate partial protonation or partial deprotonation or sometimes (synergistically) both. Such interactions are particularly relevant to enzyme catalysis, because it is likely that the local amino acid environment in the active site of an enzyme can function in this capacity through hydrogen bonding. Finally, our calculations indicate that the intervention of a very stable radical along the reaction pathway may inactivate the enzyme, demonstrating that sustained

  18. In situ generation of nitrilium from nitrile ylide and the subsequent Mumm rearrangement: copper-catalyzed synthesis of unsymmetrical diacylglycine esters.

    Science.gov (United States)

    Chen, Jijun; Shao, Ying; Ma, Liang; Ma, Meihua; Wan, Xiaobing

    2016-12-07

    A novel in situ generation of nitrilium from a nitrile ylide and the subsequent Mumm rearrangement of carboxylic acid, nitrile, and diazo compounds gave various unsymmetrical diacylglycine esters in moderate to high yields. This copper-catalyzed cascade reaction enables one-pot generation of two C-N bonds, one C[double bond, length as m-dash]O bond, and one C-H bond, with nitrogen as the only byproduct. The reaction has a broad functional-group tolerance, is rapid, easily scales up to the 100 mmol scale, and is insensitive to air and moisture.

  19. Representing Rate Equations for Enzyme-Catalyzed Reactions

    Science.gov (United States)

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  20. Multiple scattering in the nuclear rearrangement reactions at medium energy

    International Nuclear Information System (INIS)

    Tekou, A.

    1980-09-01

    It is shown that the multiple scattering mechanism is very important in the transfer of the large momenta involved in the nuclear rearrangement reactions at medium energy. In contrast to the usual belief, the reaction cross-section is not very sensitive to the high momenta components of the nuclear wave function. The multiple scattering mechanism is especially important in 4 He(p,d) 3 He reaction around 800 MeV. Here the collisions involving two nucleons of the target nucleus are dominant. The triple collisions contribution is also important. The four collision contribution is negligible in the forward direction and sizeable at large angles. Thus, using the K.M.T. approach in DWBA calculations, the second order term of the optical potential must be included. So, is it not well established that the second term of the K.M.T. optical potential is important for the proton elastic scattering on light nuclei. (author)

  1. Enantioselective γ-Alkylation of α,β-Unsaturated Malonates and Ketoesters by a Sequential Ir-Catalyzed Asymmetric Allylic Alkylation/Cope Rearrangement

    OpenAIRE

    Liu, Wen-Bo; Okamoto, Noriko; Alexy, Eric J.; Hong, Allen Y.; Tran, Kristy; Stoltz, Brian M.

    2016-01-01

    A catalytic, enantioselective ? -alkylation of ?,?-unsaturated malonates and ketoesters is reported. This strategy entails a highly regio- and enantioselective iridium-catalyzed ?-alkylation of an extended enolate, and a subsequent translocation of chirality to the ?-position via a Cope rearrangement.

  2. Sequential Diels–Alder/[3,3]-sigmatropic rearrangement reactions of β-nitrostyrene with 3-methyl-1,3-pentadiene

    Directory of Open Access Journals (Sweden)

    Peter A. Wade

    2013-10-01

    Full Text Available The tin(IV-catalyzed reaction of β-nitrostyrene with (E-3-methyl-1,3-pentadiene in toluene afforded two major nitronic ester cycloadducts in 27% and 29% yield that arise from the reaction at the less substituted diene double bond. Also present were four cycloadducts from the reaction at the higher substituted diene double bond, two of which were the formal cycloadducts of (Z-3-methyl-1,3-pentadiene. A Friedel–Crafts alkylation product from the reaction of the diene, β-nitrostyrene, and toluene was also obtained in 10% yield. The tin(IV-catalyzed reaction of β-nitrostyrene with (Z-3-methyl-1,3-pentadiene in dichloromethane afforded four nitronic ester cycloadducts all derived from the reaction at the higher substituted double bond. One cycloadduct was isolated in 45% yield and two others are formal adducts of the E-isomer of the diene. The product formation in these reactions is consistent with a stepwise mechanism involving a zwitterionic intermediate. The initially isolated nitronic ester cycloadducts underwent tin(IV-catalyzed interconversion, presumably via zwitterion intermediates. Cycloadducts derived from the reaction at the less substituted double bond of (E-3-methyl-1,3-pentadiene underwent a [3,3]-sigmatropic rearrangement on heating to afford 4-nitrocyclohexenes. Cycloadducts derived from the reaction at the higher substituted diene double bond of either diene failed to undergo a thermal rearrangement. Rates and success of the rearrangement are consistent with a concerted mechanism possessing a dipolar transition state. An initial assessment of substituent effects on the rearrangement process is presented.

  3. Cyclodextrin-Catalyzed Organic Synthesis: Reactions, Mechanisms, and Applications

    Directory of Open Access Journals (Sweden)

    Chang Cai Bai

    2017-09-01

    Full Text Available Cyclodextrins are well-known macrocyclic oligosaccharides that consist of α-(1,4 linked glucose units and have been widely used as artificial enzymes, chiral separators, chemical sensors, and drug excipients, owing to their hydrophobic and chiral interiors. Due to their remarkable inclusion capabilities with small organic molecules, more recent interests focus on organic reactions catalyzed by cyclodextrins. This contribution outlines the current progress in cyclodextrin-catalyzed organic reactions. Particular emphases are given to the organic reaction mechanisms and their applications. In the end, the future directions of research in this field are proposed.

  4. Metal-catalyzed asymmetric aldol reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Luiz C.; Lucca Junior, Emilio C. de; Ferreira, Marco A. B.; Polo, Ellen C., E-mail: ldias@iqm.unicamp.br [Universidade de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2012-12-15

    The aldol reaction is one of the most powerful and versatile methods for the construction of C-C bonds. Traditionally, this reaction was developed in a stoichiometric version; however, great efforts in the development of chiral catalysts for aldol reactions were performed in recent years. Thus, in this review article, the development of metal-mediated chiral catalysts in Mukaiyama-type aldol reaction, reductive aldol reaction and direct aldol reaction are discussed. Moreover, the application of these catalysts in the total synthesis of complex molecules is discussed. (author)

  5. Rationalization of the selectivity between 1,3- and 1,2-migration: a DFT study on gold(i)-catalyzed propargylic ester rearrangement.

    Science.gov (United States)

    Jiang, Jingxing; Liu, Yan; Hou, Cheng; Li, Yinwu; Luan, Zihong; Zhao, Cunyuan; Ke, Zhuofeng

    2016-04-14

    Gold catalyzed rearrangement of propargylic esters can undergo 1,3-acyloxy migration to form allenes, or undergo 1,2-acyloxy migration to access gold-carbenoids. The variation in migration leads to different reactivities and diverse cascade transformations. The effect of terminal substituents is very important for the rearrangement. However, it remains ambiguous how terminal substituents govern the selectivity of the rearrangement. This study presents a theoretical model based on the resonance structure of gold activated propargylic ester complexes to rationalize the rearrangement selectivity. Substrates with a major resonance contributor A prefer 5-exo-dig cyclization (1,2-migration), while those with a major resonance contributor B prefer 6-endo-dig cyclization (1,3-migration). This concise model would be helpful in understanding and tuning the selectivity of the metal catalyzed rearrangement of propargylic esters.

  6. Rh-Catalyzed rearrangement of vinylcyclopropane to 1,3-diene units attached to N-heterocycles

    Directory of Open Access Journals (Sweden)

    Alberto Brandi

    2011-03-01

    Full Text Available Dienes embedded in quinolizidine and indolizidine structures can be prepared in four steps from cyclic nitrones and bicyclopropylidene. The key intermediates α-spirocyclopropanated N-heterocyclic ketones, generated via a domino 1,3-dipolar cycloaddition/thermal rearrangement sequence, were converted by Wittig methylenation to the corresponding vinylcyclopropanes (VCPs, which underwent rearrangement to 1,3-dienes in the presence of the Wilkinson Rh(I complex under microwave heating. The previously unexplored Rh(I-catalyzed opening of the VCP moiety embedded in an azapolycyclic system occurs at high temperature (110–130 °C to afford the corresponding 1,3-dienes in moderate yield (34–53%.

  7. Method for predicting enzyme-catalyzed reactions

    Science.gov (United States)

    Hlavacek, William S.; Unkefer, Clifford J.; Mu, Fangping; Unkefer, Pat J.

    2013-03-19

    The reactivity of given metabolites is assessed using selected empirical atomic properties in the potential reaction center. Metabolic reactions are represented as biotransformation rules. These rules are generalized from the patterns in reactions. These patterns are not unique to reactants but are widely distributed among metabolites. Using a metabolite database, potential substructures are identified in the metabolites for a given biotransformation. These substructures are divided into reactants or non-reactants, depending on whether they participate in the biotransformation or not. Each potential substructure is then modeled using descriptors of the topological and electronic properties of atoms in the potential reaction center; molecular properties can also be used. A Support Vector Machine (SVM) or classifier is trained to classify a potential reactant as a true or false reactant using these properties.

  8. Insights into the formation of carlactone from in-depth analysis of the CCD8-catalyzed reactions

    KAUST Repository

    Bruno, Mark

    2017-02-10

    Strigolactones (SLs) are a new class of phytohormones synthesized from carotenoids via carlactone. The complex structure of carlactone is not easily deducible from its precursor, a cis-configured β-carotene cleavage product, and is thus formed via a poorly understood series of reactions and molecular rearrangements, all catalyzed by only one enzyme, the carotenoid cleavage dioxygenase 8 (CCD8). Moreover, the reactions leading to carlactone are expected to form a second, yet unidentified product. In this study, we used (13) C and (18) O-labelling to shed light on the reactions catalyzed by CCD8. The characterization of the resulting carlactone by LC-MS and NMR, and the identification of the assumed, less accessible second product allowed us to formulate a minimal reaction mechanism for carlactone generation. This article is protected by copyright. All rights reserved.

  9. Insights into the formation of carlactone from in-depth analysis of the CCD8-catalyzed reactions

    KAUST Repository

    Bruno, Mark; Vermathen, Martina; Alder, Adrian; Wü st, Florian; Schaub, Patrick; van der Steen, Rob; Beyer, Peter; Ghisla, Sandro; Al-Babili, Salim

    2017-01-01

    Strigolactones (SLs) are a new class of phytohormones synthesized from carotenoids via carlactone. The complex structure of carlactone is not easily deducible from its precursor, a cis-configured β-carotene cleavage product, and is thus formed via a poorly understood series of reactions and molecular rearrangements, all catalyzed by only one enzyme, the carotenoid cleavage dioxygenase 8 (CCD8). Moreover, the reactions leading to carlactone are expected to form a second, yet unidentified product. In this study, we used (13) C and (18) O-labelling to shed light on the reactions catalyzed by CCD8. The characterization of the resulting carlactone by LC-MS and NMR, and the identification of the assumed, less accessible second product allowed us to formulate a minimal reaction mechanism for carlactone generation. This article is protected by copyright. All rights reserved.

  10. Iridium-Catalyzed Dynamic Kinetic Isomerization: Expedient Synthesis of Carbohydrates from Achmatowicz Rearrangement Products.

    Science.gov (United States)

    Wang, Hao-Yuan; Yang, Ka; Bennett, Scott R; Guo, Sheng-rong; Tang, Weiping

    2015-07-20

    A highly stereoselective dynamic kinetic isomerization of Achmatowicz rearrangement products was discovered. This new internal redox isomerization provided ready access to key intermediates for the enantio- and diastereoselective synthesis of a series of naturally occurring sugars. The nature of the de novo synthesis also enables the preparation of both enantiomers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Stability and dynamics of reactors with heterogeneously catalyzed reactions

    Energy Technology Data Exchange (ETDEWEB)

    Eigenberger, G [BASF A.G., Ludwigshafen am Rhein (Germany, F.R.)

    1978-12-01

    Our knowledge of causes and consequences of problems arising from instability and dynamic effects in reactors with heterogeneously catalyzed reactions has increased remarkably in recent years. Especially thermal effects, caused by the self-acceleration of an exothermic reaction in combination with heat and mass transport, are now well understood. In addition, kinetic effects, i.e. phenomena which have to be explained by the kinetic peculiarities of surface reactions, have attracted increasing interest. For both cases the state of the art will be reviewed, highlighting the physical and chemical causes of the observed phenomena.

  12. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    Science.gov (United States)

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  13. Gold-Catalyzed Formal C-C Bond Insertion Reaction of 2-Aryl-2-diazoesters with 1,3-Diketones.

    Science.gov (United States)

    Ren, Yuan-Yuan; Chen, Mo; Li, Ke; Zhu, Shou-Fei

    2018-06-29

    The transition-metal-catalyzed formal C-C bond insertion reaction of diazo compounds with monocarbonyl compounds is well established, but the related reaction of 1,3-diketones instead gives C-H bond insertion products. Herein, we report a protocol for a gold-catalyzed formal C-C bond insertion reaction of 2-aryl-2-diazoesters with 1,3-diketones, which provides efficient access to polycarbonyl compounds with an all-carbon quaternary center. The aryl ester moiety plays a crucial role in the unusual chemoselectivity, and the addition of a Brønsted acid to the reaction mixture improves the yield of the C-C bond insertion product. A reaction mechanism involving cyclopropanation of a gold carbenoid with an enolate and ring-opening of the resulting donor-acceptor-type cyclopropane intermediate is proposed. This mechanism differs from that of the traditional Lewis-acid-catalyzed C-C bond insertion reaction of diazo compounds with monocarbonyl compounds, which involves a rearrangement of a zwitterion intermediate as a key step. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Condensed tannins. Base-catalysed reactions of polymeric procyanidins with phloroglucinol: Intramolecular rearrangements

    Science.gov (United States)

    Peter E. Laks; Richard W. Hemingway; Anthony H. Conner

    1987-01-01

    Reactions of polymeric procyanidins with phloroglucinol at pH 12.0 and temperatures of 23 or 50°C gave epicatechin-(4β)-phloroglucinol (7), by cleavage of the interflavanoid bond between procyanidin units with subsequent addition of phloroglucinol, and (+)-catechin from the terminal unit. The phloroglucinol adduct (7) rearranged to an enolic form of 8-(3,4-...

  15. Stochastic simulation of enzyme-catalyzed reactions with disparate timescales.

    Science.gov (United States)

    Barik, Debashis; Paul, Mark R; Baumann, William T; Cao, Yang; Tyson, John J

    2008-10-01

    Many physiological characteristics of living cells are regulated by protein interaction networks. Because the total numbers of these protein species can be small, molecular noise can have significant effects on the dynamical properties of a regulatory network. Computing these stochastic effects is made difficult by the large timescale separations typical of protein interactions (e.g., complex formation may occur in fractions of a second, whereas catalytic conversions may take minutes). Exact stochastic simulation may be very inefficient under these circumstances, and methods for speeding up the simulation without sacrificing accuracy have been widely studied. We show that the "total quasi-steady-state approximation" for enzyme-catalyzed reactions provides a useful framework for efficient and accurate stochastic simulations. The method is applied to three examples: a simple enzyme-catalyzed reaction where enzyme and substrate have comparable abundances, a Goldbeter-Koshland switch, where a kinase and phosphatase regulate the phosphorylation state of a common substrate, and coupled Goldbeter-Koshland switches that exhibit bistability. Simulations based on the total quasi-steady-state approximation accurately capture the steady-state probability distributions of all components of these reaction networks. In many respects, the approximation also faithfully reproduces time-dependent aspects of the fluctuations. The method is accurate even under conditions of poor timescale separation.

  16. Elucidation of Mechanisms and Selectivities of Metal-Catalyzed Reactions using Quantum Chemical Methodology.

    Science.gov (United States)

    Santoro, Stefano; Kalek, Marcin; Huang, Genping; Himo, Fahmi

    2016-05-17

    Quantum chemical techniques today are indispensable for the detailed mechanistic understanding of catalytic reactions. The development of modern density functional theory approaches combined with the enormous growth in computer power have made it possible to treat quite large systems at a reasonable level of accuracy. Accordingly, quantum chemistry has been applied extensively to a wide variety of catalytic systems. A huge number of problems have been solved successfully, and vast amounts of chemical insights have been gained. In this Account, we summarize some of our recent work in this field. A number of examples concerned with transition metal-catalyzed reactions are selected, with emphasis on reactions with various kinds of selectivities. The discussed cases are (1) copper-catalyzed C-H bond amidation of indoles, (2) iridium-catalyzed C(sp(3))-H borylation of chlorosilanes, (3) vanadium-catalyzed Meyer-Schuster rearrangement and its combination with aldol- and Mannich-type additions, (4) palladium-catalyzed propargylic substitution with phosphorus nucleophiles, (5) rhodium-catalyzed 1:2 coupling of aldehydes and allenes, and finally (6) copper-catalyzed coupling of nitrones and alkynes to produce β-lactams (Kinugasa reaction). First, the methodology adopted in these studies is presented briefly. The electronic structure method in the great majority of these kinds of mechanistic investigations has for the last two decades been based on density functional theory. In the cases discussed here, mainly the B3LYP functional has been employed in conjunction with Grimme's empirical dispersion correction, which has been shown to improve the calculated energies significantly. The effect of the surrounding solvent is described by implicit solvation techniques, and the thermochemical corrections are included using the rigid-rotor harmonic oscillator approximation. The reviewed examples are chosen to illustrate the usefulness and versatility of the adopted methodology in

  17. Synthesis of heterocycles through transition-metal-catalyzed isomerization reactions

    DEFF Research Database (Denmark)

    Ishøy, Mette; Nielsen, Thomas Eiland

    2014-01-01

    of structurally complex and diverse heterocycles. In this Concept article, we attempt to cover this area of research through a selection of recent versatile examples. A sea of opportunities! Transition-metal-catalyzed isomerization of N- and O-allylic compounds provides a mild, selective and synthetically...... versatile method to form iminium and oxocarbenium ions. Given the number of reactions involving these highly electrophilic intermediates, this concept provides a sea of opportunities for heterocycle synthesis, (see scheme; Nu=nucleophile). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  18. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions.

    Science.gov (United States)

    Park, Yongho; Harper, Kaid C; Kuhl, Nadine; Kwan, Eugene E; Liu, Richard Y; Jacobsen, Eric N

    2017-01-13

    Carbohydrates are involved in nearly all aspects of biochemistry, but their complex chemical structures present long-standing practical challenges to their synthesis. In particular, stereochemical outcomes in glycosylation reactions are highly dependent on the steric and electronic properties of coupling partners; thus, carbohydrate synthesis is not easily predictable. Here we report the discovery of a macrocyclic bis-thiourea derivative that catalyzes stereospecific invertive substitution pathways of glycosyl chlorides. The utility of the catalyst is demonstrated in the synthesis of trans-1,2-, cis-1,2-, and 2-deoxy-β-glycosides. Mechanistic studies are consistent with a cooperative mechanism in which an electrophile and a nucleophile are simultaneously activated to effect a stereospecific substitution reaction. Copyright © 2017, American Association for the Advancement of Science.

  19. Reactions of ethyl diazoacetate catalyzed by methylrhenium trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.; Espenson, H. [Iowa State Univ., Ames, IA (United States)

    1995-11-03

    Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) has found wise use in catalysis, including the epoxidation and metathesis of olefins, aldehyde olefination, and oxygen transfer. Extensive reports have now appeared in the area of MTO-catalyzed substrate oxidations with hydrogen peroxide. Certain catalytic applications of MTO for organic reactions that do not utilize peroxide have now been realized. In particular, a catalytic amount of MTO with ethyl diazoacetate (EDA) will convert aromatic imines to aziridines and convert aldehydes and ketones to epoxides. The aziridine preparation proceeds in high yields under anaerobic conditions more conveniently than with existing methods. Compounds with a three-membered heterocyclic ring can be obtained with the EDA/MTO catalytic system. Aromatic imines undergo cycloaddition reactions to give aziridines under mild conditions.

  20. Degradation of Perfluorooctanoic Acid and Perfluoroctane Sulfonate by Enzyme Catalyzed Oxidative Humification Reactions

    Science.gov (United States)

    Huang, Q.

    2016-12-01

    Poly- and perfluoroalkyl substances (PFASs) are alkyl based chemicals having multiple or all hydrogens replaced by fluorine atoms, and thus exhibit high thermal and chemical stability and other unusual characteristics. PFASs have been widely used in a wide variety of industrial and consumer products, and tend to be environmentally persistent. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two representative PFASs that have drawn particular attention because of their ubiquitous presence in the environment, resistance to degradation and toxicity to animals. This study examined the decomposition of PFOA and PFOS in enzyme catalyzed oxidative humification reactions (ECOHR), a class of reactions that are ubiquitous in the environment involved in natural organic humification. Reaction rates and influential factors were examined, and high-resolution mass spectrometry was used to identify possible products. Fluorides and partially fluorinated compounds were identified as likely products from PFOA and PFOS degradation, which were possibly formed via a combination of free radical decomposition, rearrangements and coupling processes. The findings suggest that PFOA and PFOS may be transformed during humification, and ECOHR can potentially be used for the remediation of these chemicals.

  1. A Divergent Mechanistic Course of Pd(0)-Catalyzed Aza-Claisen Rearrangement and Aza-Rautenstrauch-Type Cyclization of N-Allyl-Ynamides

    Science.gov (United States)

    DeKorver, Kyle A.; Hsung, Richard P.; Lohse, Andrew G.; Zhang, Yu

    2010-01-01

    A fascinating mechanistic study of ynamido-palladium-π-allyl complexes is described that features isolation of a unique silyl-ketenimine via aza-Claisen rearrangement, which can be accompanied by an unusual thermal N-to-C 1,3-Ts shift in the formation of tertiary nitriles, and a novel cyclopentenimine formation via a palladium catalyzed aza-Rautenstrauch-type cyclization pathway. PMID:20337418

  2. Fe(II)/Fe(III)-Catalyzed Intramolecular Didehydro-Diels-Alder Reaction of Styrene-ynes.

    Science.gov (United States)

    Mun, Hyeon Jin; Seong, Eun Young; Ahn, Kwang-Hyun; Kang, Eun Joo

    2018-02-02

    The intramolecular didehydro-Diels-Alder reaction of styrene-ynes was catalyzed by Fe(II) and Fe(III) to produce various naphthalene derivatives under microwave heating conditions. Mechanistic calculations found that the Fe(II) catalyst activates the styrenyl diene in an inverse-electron-demand Diels-Alder reaction, and the consecutive dehydrogenation reaction can be promoted by either Fe(II)-catalyzed direct dehydrogenation or an Fe(III)-catalyzed rearomatization/dehydrogenation pathway.

  3. Investigations Of Surface-Catalyzed Reactions In A Mars Mixture

    Science.gov (United States)

    Dougherty, Max; Owens, W.; Meyers, J.; Fletcher, D. G.

    2011-05-01

    In the design of a thermal protection system (TPS) for a planetary entry vehicle, accurate modeling of the trajectory aero-heating poses a significant challenge owing to large uncertainties in chemical processes taking place at the surface. Even for surface-catalyzed reactions, which have been investigated extensively, there is no consensus on how they should be modeled; or, in some cases, on which reactions are likely to occur. Current TPS designs for Mars missions rely on a super-catalytic boundary condition, which assumes that all dissociated species recombine to the free stream composition.While this is recognized to be the the most conservative approach, discrepancies in aero-heating measurements in ground test facilities preclude less conservative design options, resulting in an increased TPS mass at the expense of scientific pay- load.Using two-photon absorption laser induced fluorescence in a 30 kW inductively coupled plasma torch facility, preliminary studies have been performed to obtain spatially-resolved measurements of the dominant species in a plasma boundary layer for a Martian atmosphere mixture over catalytic and non-catalytic surfaces.

  4. A stereoselective synthesis of (+)-physoperuvine using a tandem aza-Claisen rearrangement and ring closing metathesis reaction.

    Science.gov (United States)

    Zaed, Ahmed M; Swift, Michael D; Sutherland, Andrew

    2009-07-07

    A stereoselective synthesis of (+)-physoperuvine, a tropane alkaloid from Physalis peruviana Linne has been developed using a one-pot tandem aza-Claisen rearrangement and ring closing metathesis reaction to form the key amino-substituted cycloheptene ring.

  5. Flavin-catalyzed redox tailoring reactions in natural product biosynthesis.

    Science.gov (United States)

    Teufel, Robin

    2017-10-15

    Natural products are distinct and often highly complex organic molecules that constitute not only an important drug source, but have also pushed the field of organic chemistry by providing intricate targets for total synthesis. How the astonishing structural diversity of natural products is enzymatically generated in biosynthetic pathways remains a challenging research area, which requires detailed and sophisticated approaches to elucidate the underlying catalytic mechanisms. Commonly, the diversification of precursor molecules into distinct natural products relies on the action of pathway-specific tailoring enzymes that catalyze, e.g., acylations, glycosylations, or redox reactions. This review highlights a selection of tailoring enzymes that employ riboflavin (vitamin B2)-derived cofactors (FAD and FMN) to facilitate unusual redox catalysis and steer the formation of complex natural product pharmacophores. Remarkably, several such recently reported flavin-dependent tailoring enzymes expand the classical paradigms of flavin biochemistry leading, e.g., to the discovery of the flavin-N5-oxide - a novel flavin redox state and oxygenating species. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Transition metal-catalyzed carboxylation reactions with carbon dioxide.

    Science.gov (United States)

    Martin, Ruben; Tortajada, Andreu; Juliá-Hernández, Francisco; Borjesson, Marino; Moragas, Toni

    2018-05-03

    Driven by the inherent synthetic potential of CO2 as an abundant, inexpensive and renewable C1 chemical feedstock, the recent years have witnessed renewed interest in devising catalytic CO2 fixations into organic matter. Although the formation of C-C bonds via catalytic CO2 fixation remained rather limited for a long period of time, a close look into the recent literature data indicates that catalytic carboxylation reactions have entered a new era of exponential growth, evolving into a mature discipline that allows for streamlining the synthesis of carboxylic acids, building blocks of utmost relevance in industrial endeavours. These strategies have generally proven broadly applicability and convenient to perform. However, substantial challenges still need to be addressed reinforcing the need to cover metal-catalyzed carboxylation arena in a conceptual and concise manner, delineating the underlying new principles that are slowly emerging in this vibrant area of expertise. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Radical Rearrangement Chemistry in Ultraviolet Photodissociation of Iodotyrosine Systems: Insights from Metastable Dissociation, Infrared Ion Spectroscopy, and Reaction Pathway Calculations.

    Science.gov (United States)

    Ranka, Karnamohit; Zhao, Ning; Yu, Long; Stanton, John F; Polfer, Nicolas C

    2018-05-29

    We report on the ultraviolet photodissociation (UVPD) chemistry of protonated tyrosine, iodotyrosine, and diiodotyrosine. Distonic loss of the iodine creates a high-energy radical at the aromatic ring that engages in hydrogen/proton rearrangement chemistry. Based on UVPD kinetics measurements, the appearance of this radical is coincident with the UV irradiation pulse (8 ns). Conversely, sequential UVPD product ions exhibit metastable decay on ca. 100 ns timescales. Infrared ion spectroscopy is capable of confirming putative structures of the rearrangement products as proton transfers from the imine and β-carbon hydrogens. Potential energy surfaces for the various reaction pathways indicate that the rearrangement chemistry is highly complex, compatible with a cascade of rearrangements, and that there is no preferred rearrangement pathway even in small molecular systems like these. Graphical Abstract.

  8. First Novozym 435 lipase-catalyzed Morita-Baylis-Hillman reaction in the presence of amides.

    Science.gov (United States)

    Tian, Xuemei; Zhang, Suoqin; Zheng, Liangyu

    2016-03-01

    The first Novozym 435 lipase-catalyzed Morita-Baylis-Hillman (MBH) reaction with amides as co-catalyst was realized. Results showed that neither Novozym 435 nor amide can independently catalyze the reaction. This co-catalytic system that used a catalytic amount of Novozym 435 with a corresponding amount of amide was established and optimized. The MBH reaction strongly depended on the structure of aldehyde substrate, amide co-catalyst, and reaction additives. The optimized reaction yield (43.4%) was achieved in the Novozym 435-catalyzed MBH reaction of 2, 4-dinitrobenzaldehyde and cyclohexenone with isonicotinamide as co-catalyst and β-cyclodextrin as additive only in 2 days. Although enantioselectivity of Novozym 435 was not found, the results were still significant because an MBH reaction using lipase as biocatalyst was realized for the first time. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Cloning and characterization of oxidosqualene cyclases from Kalanchoe daigremontiana: enzymes catalyzing up to 10 rearrangement steps yielding friedelin and other triterpenoids.

    Science.gov (United States)

    Wang, Zhonghua; Yeats, Trevor; Han, Hong; Jetter, Reinhard

    2010-09-24

    The first committed step in triterpenoid biosynthesis is the cyclization of oxidosqualene to polycyclic alcohols or ketones C(30)H(50)O. It is catalyzed by single oxidosqualene cyclase (OSC) enzymes that can carry out varying numbers of carbocation rearrangements and, thus, generate triterpenoids with diverse carbon skeletons. OSCs from diverse plant species have been cloned and characterized, the large majority of them catalyzing relatively few rearrangement steps. It was recently predicted that special OSCs must exist that can form friedelin, the pentacyclic triterpenoid whose formation involves the maximum possible number of rearrangement steps. The goal of the present study, therefore, was to clone a friedelin synthase from Kalanchoe daigremontiana, a plant species known to accumulate this triterpenoid in its leaf surface waxes. Five OSC cDNAs were isolated, encoding proteins with 761-779 amino acids and sharing between 57.4 and 94.3% nucleotide sequence identity. Heterologous expression in yeast and GC-MS analyses showed that one of the OSCs generated the steroid cycloartenol together with minor side products, whereas the other four enzymes produced mixtures of pentacyclic triterpenoids dominated by lupeol (93%), taraxerol (60%), glutinol (66%), and friedelin (71%), respectively. The cycloartenol synthase was found expressed in all leaf tissues, whereas the lupeol, taraxerol, glutinol, and friedelin synthases were expressed only in the epidermis layers lining the upper and lower surfaces of the leaf blade. It is concluded that the function of these enzymes is to form respective triterpenoid aglycones destined to coat the leaf exterior, probably as defense compounds against pathogens or herbivores.

  10. Design and synthesis of fused polycycles via Diels-Alder reaction and ring-rearrangement metathesis as key steps.

    Science.gov (United States)

    Kotha, Sambasivarao; Ravikumar, Ongolu

    2015-01-01

    Atom efficient processes such as the Diels-Alder reaction (DA) and the ring-rearrangement metathesis (RRM) have been used to design new polycycles. In this regard, ruthenium alkylidene catalysts are effective in realizing the RRM of bis-norbornene derivatives prepared by DA reaction and Grignard addition. Here, fused polycycles are assembled which are difficult to produce by conventional synthetic routes.

  11. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite

    NARCIS (Netherlands)

    Vos, A.M.; Rozanska, X.; Schoonheydt, R.A.; Santen, van R.A.; Hutschka, F.; Hafner, J.

    2001-01-01

    A theoretical study of the alkylation reaction of toluene with methanol catalyzed by the acidic Mordenite (Si/Al = 23) is reported. Cluster DFT as well as periodical structure DFT calculations have been performed. Full reaction energy diagrams of the elementary reaction steps that lead to the

  12. Synthesis of the AB ring system of clifednamide utilizing Claisen rearrangement and Diels-Alder reaction as key steps.

    Science.gov (United States)

    Loke, Inga; Bentzinger, Guillaume; Holz, Julia; Raja, Aruna; Bhasin, Aman; Sasse, Florenz; Köhn, Andreas; Schobert, Rainer; Laschat, Sabine

    2016-01-21

    In order to construct the functionalized AB ring system of clifednamide, member of the class of macrocyclic tetramic acid lactams, a synthesis was developed which utilized an Ireland-Claisen rearrangement and an intramolecular Diels-Alder reaction. Starting from di-O-isopropylidene-d-mannitol the allyl carboxylate precursor for the sigmatropic rearrangement was prepared. This rearrangement proceeded diastereoselectively only in the presence of an allyl silyl ether instead of the parent enone in the side chain, as suggested by deuteration experiments. A subsequent Diels-Alder reaction yielded the target ethyl hexahydro-1H-indene-carboxylate with high diastereoselectivity. Quantum-chemical investigations of this intramolecular Diels-Alder reaction support the proposed configuration of the final product.

  13. Recent developments in gold-catalyzed cycloaddition reactions

    Directory of Open Access Journals (Sweden)

    Fernando López

    2011-08-01

    Full Text Available In the last years there have been extraordinary advances in the development of gold-catalyzed cycloaddition processes. In this review we will summarize some of the most remarkable examples, and present the mechanistic rational underlying the transformations.

  14. Formation of Ketenimines via the Palladium-Catalyzed Decarboxylative π-Allylic Rearrangement of N-Alloc Ynamides.

    Science.gov (United States)

    Alexander, Juliana R; Cook, Matthew J

    2017-11-03

    A new approach for the formation of ketenimines via a decarboxylative allylic rearrangement pathway that does not require strong stabilizing or protecting groups has been developed. The products can be readily hydrolyzed into their corresponding secondary amides or reacted with sulfur ylides to perform an additional [2,3]-Wittig process. Mechanistic studies suggest an outer-sphere process in which reductive alkylation is rate-limiting.

  15. Eosin Y-catalyzed, visible-light-promoted carbophosphinylation of allylic alcohols via a radical neophyl rearrangement.

    Science.gov (United States)

    Yin, Yao; Weng, Wei-Zhi; Sun, Jian-Guo; Zhang, Bo

    2018-03-28

    A visible-light-promoted phosphinylation of allylic alcohols with concomitant 1,2-aryl migration is described. This transformation proceeds smoothly under metal-free and mild conditions by using an inexpensive organic dye, eosin Y, as the photocatalyst, affording various β-aryl-γ-ketophosphine oxides in moderate to good yields. Mechanistic studies suggested that the 1,2-aryl migration proceeded through a radical (neophyl) rearrangement.

  16. An intramolecular [2 + 2] cycloaddition of ketenimines via palladium-catalyzed rearrangements of N-allyl-ynamides.

    Science.gov (United States)

    DeKorver, Kyle A; Hsung, Richard P; Song, Wang-Ze; Wang, Xiao-Na; Walton, Mary C

    2012-06-15

    A cascade of Pd-catalyzed N-to-C allyl transfer-intramolecular ketenimine-[2 + 2] cycloadditions of N-allyl ynamides is described. This tandem sequence is highly stereoselective and the [2 + 2] cycloaddition could be rendered in a crossed or fused manner depending on alkene substitutions, leading to bridged and fused bicycloimines.

  17. Copper-catalyzed oxidative Heck reactions between alkyltrifluoroborates and vinyl arenes.

    Science.gov (United States)

    Liwosz, Timothy W; Chemler, Sherry R

    2013-06-21

    We report herein that potassium alkyltrifluoroborates can be utilized in oxidative Heck-type reactions with vinyl arenes. The reaction is catalyzed by a Cu(OTf)2/1,10-phenanthroline with MnO2 as the stoichiometric oxidant. In addition to the alkyl Heck, amination, esterification, and dimerization reactions of alkyltrifluoroborates are demonstrated under analogous reaction conditions. Evidence for an alkyl radical intermediate is presented.

  18. Transition-Metal-Catalyzed Decarbonylative Coupling Reactions: Concepts, Classifications, and Applications

    KAUST Repository

    Guo, Lin; Rueping, Magnus

    2018-01-01

    Transition metal‐catalyzed decarbonylative coupling reactions have emerged as a powerful alternative to conventional cross‐coupling protocols due to the advantages associated with the use of carbonyl‐containing functionalities as coupling electrophiles instead of commonly used organohalides or sulfates. A wide variety of novel transformations based on this concept have been successfully achieved, including decarbonylative carbon–carbon and carbon–heteroatom bond forming reactions. In this Review, we summarize the recent progress in this field and present a comprehensive overview of metal‐catalyzed decarbonylative coupling reactions with carbonyl derivatives.

  19. Transition-Metal-Catalyzed Decarbonylative Coupling Reactions: Concepts, Classifications, and Applications

    KAUST Repository

    Guo, Lin

    2018-05-14

    Transition metal‐catalyzed decarbonylative coupling reactions have emerged as a powerful alternative to conventional cross‐coupling protocols due to the advantages associated with the use of carbonyl‐containing functionalities as coupling electrophiles instead of commonly used organohalides or sulfates. A wide variety of novel transformations based on this concept have been successfully achieved, including decarbonylative carbon–carbon and carbon–heteroatom bond forming reactions. In this Review, we summarize the recent progress in this field and present a comprehensive overview of metal‐catalyzed decarbonylative coupling reactions with carbonyl derivatives.

  20. Sequential Au(I-catalyzed reaction of water with o-acetylenyl-substituted phenyldiazoacetates

    Directory of Open Access Journals (Sweden)

    Jianbo Wang

    2011-05-01

    Full Text Available The gold(I-catalyzed reaction of water with o-acetylenyl-substituted phenyldiazoacetates provides 1H-isochromene derivatives in good yields. The reaction follows a catalytic sequence of gold carbene formation/water O–H insertion/alcohol-alkyne cyclization. The gold(I complex is the only catalyst in each of these steps.

  1. Unexpected Reaction Pathway for butyrylcholinesterase-catalyzed inactivation of “hunger hormone” ghrelin

    Science.gov (United States)

    Yao, Jianzhuang; Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo

    2016-02-01

    Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (~19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway.

  2. Synthesis of 2-vinylic indoles and derivatives via a Pd-catalyzed tandem coupling reaction.

    Science.gov (United States)

    Fayol, Aude; Fang, Yuan-Qing; Lautens, Mark

    2006-09-14

    A novel one-step synthesis of valuable 2-vinylic indoles and their tricycle derivatives is described. This reaction, which utilizes a gem-dibromovinyl unit as a readily available starting material, occurs via an efficient Pd-catalyzed tandem Buchwald-Hartwig/Heck reaction.

  3. Molecular rearrangements of superelectrophiles

    Directory of Open Access Journals (Sweden)

    Douglas A. Klumpp

    2011-03-01

    Full Text Available Superelectrophiles are multiply charged cationic species (dications, trications, etc. which are characterized by their reactions with weak nucleophiles. These reactive intermediates may also undergo a wide variety of rearrangement-type reactions. Superelectrophilic rearrangements are often driven by charge–charge repulsive effects, as these densely charged ions react so as to maximize the distances between charge centers. These rearrangements involve reaction steps similar to monocationic rearrangements, such as alkyl group shifts, Wagner–Meerwein shifts, hydride shifts, ring opening reactions, and other skeletal rearrangements. This review will describe these types of superelectrophilic reactions.

  4. Palladium-Catalyzed Cross-Coupling Reactions of Perfluoro Organic Compounds

    Directory of Open Access Journals (Sweden)

    Masato Ohashi

    2014-09-01

    Full Text Available In this review, we summarize our recent development of palladium(0-catalyzed cross-coupling reactions of perfluoro organic compounds with organometallic reagents. The oxidative addition of a C–F bond of tetrafluoroethylene (TFE to palladium(0 was promoted by the addition of lithium iodide, affording a trifluorovinyl palladium(II iodide. Based on this finding, the first palladium-catalyzed cross-coupling reaction of TFE with diarylzinc was developed in the presence of lithium iodide, affording α,β,β-trifluorostyrene derivatives in excellent yield. This coupling reaction was expanded to the novel Pd(0/PR3-catalyzed cross-coupling reaction of TFE with arylboronates. In this reaction, the trifluorovinyl palladium(II fluoride was a key reaction intermediate that required neither an extraneous base to enhance the reactivity of organoboronates nor a Lewis acid additive to promote the oxidative addition of a C–F bond. In addition, our strategy utilizing the synergetic effect of Pd(0 and lithium iodide could be applied to the C–F bond cleavage of unreactive hexafluorobenzene (C6F6, leading to the first Pd(0-catalyzed cross-coupling reaction of C6F6 with diarylzinc compounds.

  5. Design and synthesis of fused polycycles via Diels–Alder reaction and ring-rearrangement metathesis as key steps

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2015-07-01

    Full Text Available Atom efficient processes such as the Diels–Alder reaction (DA and the ring-rearrangement metathesis (RRM have been used to design new polycycles. In this regard, ruthenium alkylidene catalysts are effective in realizing the RRM of bis-norbornene derivatives prepared by DA reaction and Grignard addition. Here, fused polycycles are assembled which are difficult to produce by conventional synthetic routes.

  6. Computational study for the circular redox reaction of N2O with CO catalyzed by fullerometallic cations C60Fe+ and C70Fe.

    Science.gov (United States)

    Anafcheh, Maryam; Naderi, Fereshteh; Khodadadi, Zahra; Ektefa, Fatemeh; Ghafouri, Reza; Zahedi, Mansour

    2017-03-01

    We applied density functional calculations to study the circular redox reaction mechanism of N 2 O with CO catalyzed by fullerometallic cations C 60 Fe + and C 70 Fe + . The on-top sites of six-membered rings (η 6 ) of fullerene cages are the most preferred binding sites for Fe + cation, and the hexagon to pentagon migration of Fe + is unlikely under ambient thermodynamic conditions. The initial ion/molecule reaction, N 2 O rearrangement and N 2 abstraction on the considered fullerometallic cations are easier than those on the bare Fe + cation in the gas phase. Generally, our results indicate that fullerometallic ions, C 60 Fe + and C 70 Fe + , are more favorable substrates for redox reaction of N 2 O with CO in comparison to the other previously studied carbon nanostructures such as graphene and nanotubes. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Cu(I)/Diamine-catalyzed Aryl-alkyne Coupling Reactions

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    CuI/ethylene diamine/K2CO3/dioxane is shown to be a useful system for the cross coupling reactions of various aryl iodides and bromides with aryl and alkyl alkynes. Compared to the conventional Sonogashira reactions, the new procedure is free of palladium and phosphines.

  8. Towards preparative peroxygenase-catalyzed oxyfunctionalization reactions in organic media

    NARCIS (Netherlands)

    Fernandez Fueyo, E.; Ni, Y.; Gomez Baraibar, A.; Alcalde, Miguel; van Langen, L.M.; Hollmann, F.

    2016-01-01

    The peroxygenase from Agrocybe aegerita (AaeUPO) has been evaluated for stereoselective oxyfunctionalization chemistry under non-aqueous reaction conditions. The stereoselective hydroxylation of ethylbenzene to (R)-1-phenylethanol was performed in neat substrate as reaction medium together with

  9. Reactions of the ionized enol tautomer of acetanilide: elimination of HNCO via a novel rearrangement.

    Science.gov (United States)

    Heydorn, Lisa N; Carter, Lynn M; Bowen, Richard D; Terlouw, Johan K

    2003-01-01

    The reactions of ionised acetanilide, C(6)H(5)NH(=O)CH(3)(.+), and its enol, C(6)H(5)NH(OH)=CH(2)(.+), have been studied by a combination of tandem mass spectrometric and computational methods. These two isomeric radical cations have distinct chemistries at low internal energies. The keto tautomer eliminates exclusively CH(2)=C=O to give ionised aniline. In contrast, the enol tautomer loses H-N=C=O, via an unusual skeletal rearrangement, to form predominantly ionised methylene cyclohexadiene. Hydrogen atom loss also occurs from the enol tautomer, with the formation of protonated oxindole. The mechanisms for H-N=C=O and hydrogen atom loss both involve cyclisation; the former proceeds via a spiro transition state formed by attachment of the methylene group to the ipso position, whereas the latter entails the formation of a five-membered ring by attachment to the ortho position. The behaviour of labelled analogues reveals that these two processes have different site selectivities. Hydrogen atom loss involves a reverse critical energy and is subject to an isotope effect. Surprisingly, attempts to promote the enolisation of ionised acetanilide by proton-transport catalysis were unsuccessful. In a reversal of the usual situation for ionised carbonyl compounds, ionised acetanilide is actually more stable than its enol tautomer. The enol tautomer was resistant to proton-transport catalysed ketonisation to ionised acetanilide, possibly because the favoured geometry of the encounter complex with the base molecule is inappropriate for facilitating tautomerisation.

  10. Expedient synthesis of fused azepine derivatives using a sequential rhodium(II)-catalyzed cyclopropanation/1-aza-Cope rearrangement of dienyltriazoles.

    Science.gov (United States)

    Schultz, Erica E; Lindsay, Vincent N G; Sarpong, Richmond

    2014-09-08

    A general method for the formation of fused dihydroazepine derivatives from 1-sulfonyl-1,2,3-triazoles bearing a tethered diene is reported. The process involves an intramolecular cyclopropanation of an α-imino rhodium(II) carbenoid, leading to a transient 1-imino-2-vinylcyclopropane intermediate which rapidly undergoes a 1-aza-Cope rearrangement to generate fused dihydroazepine derivatives in moderate to excellent yields. The reaction proceeds with similar efficiency on gram scale. The use of catalyst-free conditions leads to the formation of a novel [4.4.0] bicyclic heterocycle. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nickel-catalyzed reactions of enone with ethylene

    International Nuclear Information System (INIS)

    Nishimura, A; Haba, T; Ohashi, M; Ogoshi, S

    2010-01-01

    The reaction of (E)-1-phenylbut-2-en-1-one with ethylene in the presence of a catalytic amount of Ni(cod) 2 and PCy 3 at room temperature gave two kinds of three-component addition products; one is 1,6-enone composed of an enone and two ethylene molecules, and the other is 1,5-diketone composed of two enones and an ethylene. The reactions might proceed via oxidative cyclization of an enone and an ethylene with nickel(0).

  12. The Manganese-Catalyzed Cross-Coupling Reaction and the Influence of Trace Metals

    DEFF Research Database (Denmark)

    Santilli, Carola; Beigbaghlou, Somayyeh Sarvi; Ahlburg, Andreas

    2017-01-01

    The substrate scope of the MnCl2-catalyzed cross-coupling between aryl halides and Grignard reagents has been extended to several methyl-substituted aryl iodides by performing the reaction at elevated temperature in a microwave oven. A radical clock experiment revealed the presence of an aryl...

  13. Mild and Efficient Nickel-Catalyzed Heck Reactions with Electron-Rich Olefins

    DEFF Research Database (Denmark)

    Gøgsig, Thomas; Kleimark, Jonatan; Lill, Sten O. Nilsson

    2012-01-01

    proved compatible, and the corresponding aryl methyl ketone could be secured after hydrolysis in yields approaching quantitative. Good functional group tolerance was observed matching the characteristics of the analogous Pd-catalyzed Heck reaction. The high levels of catalytic activity were explained...

  14. Crystal structure of a trapped phosphate intermediate in vanadium apochloroperoxidase catalyzing a dephosphorylation reaction

    NARCIS (Netherlands)

    de Macedo-Ribeiro, S.; Renirie, R.; Wever, R.; Messerschmidt, A.

    2008-01-01

    The crystal structure of the apo form of vanadium chloroperoxidase from Curvularia inaequalis reacted with para-nitrophenylphosphate was determined at a resolution of 1.5 Å. The aim of this study was to solve structural details of the dephosphorylation reaction catalyzed by this enzyme. Since the

  15. An efficient synthesis of isocoumarins via a CuI catalyzed cascade reaction process

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    3-Alkyl isocoumarins are provided by CuI/amino acid-catalyzed Sonogashira coupling reaction of o-bromo benzoic acids and terminal alkynes and the subsequent additive cyclization. This cascade process allows synthesis of diverse isocoumarins by varying both coupling partners bearing a wide range of functional groups.

  16. Pd-Catalyzed Cross-Coupling Reactions of Amides and Aryl Mesylates

    Science.gov (United States)

    Dooleweerdt, Karin; Fors, Brett P.; Buchwald, Stephen L.

    2010-01-01

    A catalyst, based on a biarylphosphine ligand, for the Pd-catalyzed cross-coupling reactions of amides and aryl mesylates is described. This system allows an array of aryl and heteroaryl mesylates to be transformed into the corresponding N-arylamides in moderate to excellent yields. PMID:20420379

  17. S,O-Ligand-Promoted Palladium-Catalyzed C-H Functionalization Reactions of Nondirected Arenes

    NARCIS (Netherlands)

    Naksomboon, K.; Valderas, C.; Gomez-Martinez, M.; Alvarez-Casao, Y.; Fernández Ibáñez, M.A.

    Pd(II)-catalyzed C-H functionalization of non directed arenes has been realized using an inexpensive and easily accessible type of bidentate S,O-ligand. The catalytic system shows high efficiency in the C-H olefination reaction of electron-rich and electron-poor arenes. This methodology is

  18. Direct activation of allylic alcohols in palladium catalyzed coupling reactions

    NARCIS (Netherlands)

    Gümrükçü, Y.

    2014-01-01

    The direct use of allylic alcohols in substitution reactions without pre-activation of the hydroxyl-group into a better leaving group or the use of additional stoichiometric in situ activators remains challenging due to the poor leaving group ability of the hydroxyl-group. Hence, it is important to

  19. Photochemical primary process of photo-Fries rearrangement reaction of 1-naphthyl acetate as studied by MFE probe.

    Science.gov (United States)

    Gohdo, Masao; Takamasu, Tadashi; Wakasa, Masanobu

    2011-01-14

    Photo-Fries rearrangement reactions of 1-naphthyl acetate (NA) in n-hexane and in cyclohexane were studied by the magnetic field effect probe (MFE probe) under magnetic fields (B) of 0 to 7 T. Transient absorptions of the 1-naphthoxyl radical, T-T absorption of NA, and a short-lifetime intermediate (τ = 24 ns) were observed by a nanosecond laser flash photolysis technique. In n-hexane, the yield of escaped 1-naphthoxyl radicals dropped dramatically upon application of a 3 mT field, but then the yield increased with increasing B for 3 mT < B≤ 7 T. These observed MFEs can be explained by the hyperfine coupling and the Δg mechanisms through the singlet radical pair. The fact that MFEs were observed for the present photo-Fries rearrangement reaction indicates the presence of a singlet radical pair intermediate with a lifetime as long as several tens of nanoseconds.

  20. Ring Expansion and Rearrangements of Rhodium(II) Azavinyl Carbenes

    Science.gov (United States)

    Selander, Nicklas; Worrell, Brady T.

    2013-01-01

    An efficient, regioselective and convergent method for the ring expansion and rearrangement of 1-sulfonyl-1,2,3-triazoles under rhodium(II)-catalyzed conditions is described. These denitrogenative reactions form substituted enaminone and olefin-based products, which in the former case can be further functionalized to unique products rendering the sulfonyl triazole traceless. PMID:23161725

  1. Efficient Synthesis of Spirobarbiturates and Spirothiobarbiturates Bearing Cyclopropane Rings by Rhodium(II)-Catalyzed Reactions of Cyclic Diazo Compounds

    International Nuclear Information System (INIS)

    Wang, Xue; Lee, Yong Rok

    2013-01-01

    Rhodium(II)-catalyzed reactions of cyclic diazo compounds derived from barbituric acid and thiobarbituric acid with a variety of styrene moieties were examined. These reactions provide rapid synthetic routes to the preparations of spirobarbiturates and spirothiobarbiturates bearing cyclopropane rings

  2. Efficient Synthesis of Spirobarbiturates and Spirothiobarbiturates Bearing Cyclopropane Rings by Rhodium(II)-Catalyzed Reactions of Cyclic Diazo Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue; Lee, Yong Rok [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    2013-06-15

    Rhodium(II)-catalyzed reactions of cyclic diazo compounds derived from barbituric acid and thiobarbituric acid with a variety of styrene moieties were examined. These reactions provide rapid synthetic routes to the preparations of spirobarbiturates and spirothiobarbiturates bearing cyclopropane rings.

  3. The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms

    NARCIS (Netherlands)

    Veen, Bart A. van der; Alebeek, Gert-Jan W.M. van; Uitdehaag, Joost C.M.; Dijkstra, Bauke W.; Dijkhuizen, Lubbert

    Cyclodextrin glycosyltransferase (CGTase) catalyzes three transglycosylation reactions via a double displacement mechanism involving a covalent enzyme-intermediate complex (substituted-enzyme intermediate). Characterization of the three transglycosylation reactions, however, revealed that they

  4. Design and synthesis of polycyclic sulfones via Diels-Alder reaction and ring-rearrangement metathesis as key steps.

    Science.gov (United States)

    Kotha, Sambasivarao; Gunta, Rama

    2015-01-01

    Here, we describe a new and simple synthetic strategy to various polycyclic sulfones via Diels-Alder reaction and ring-rearrangement metathesis (RRM) as the key steps. This approach delivers tri- and tetracyclic sulfones with six (n = 1), seven (n = 2) or eight-membered (n = 3) fused-ring systems containing trans-ring junctions unlike the conventional all cis-ring junctions generally obtained during the RRM sequence. Interestingly the starting materials used are simple and commercially available.

  5. Efficient assembly of polysubstituted pyrroles via a (3 + 2) cycloaddition/skeletal rearrangement/redox isomerization cascade reaction.

    Science.gov (United States)

    Yu, Yuanyuan; Wang, Chunyu; He, Xinze; Yao, Xiaotong; Zu, Liansuo

    2014-07-03

    An unprecedented cascade strategy, used in conjunction with a redox isomerization, for the synthesis of 3-allyl pyrroles is reported. In a single step, readily accessible simple starting materials are transformed into highly substituted pyrroles with high efficiency. The products obtained contain allyl substituents, which can be readily elaborated to other useful functional groups. The reaction proceeds through an unusual (3 + 2) cycloaddition/skeletal rearrangement/redox isomerization pathway.

  6. Design, development, mechanistic elucidation, and rational optimization of a tandem Ireland Claisen/Cope rearrangement reaction for rapid access to the (iso)cyclocitrinol core.

    Science.gov (United States)

    Plummer, Christopher W; Wei, Carolyn S; Yozwiak, Carrie E; Soheili, Arash; Smithback, Sara O; Leighton, James L

    2014-07-16

    An approach to the synthesis of the (iso)cyclocitrinol core structure is described. The key step is a tandem Ireland Claisen/Cope rearrangement sequence, wherein the Ireland Claisen rearrangement effects ring contraction to a strained 10-membered ring, and that strain in turn drives the Cope rearrangement under unusually mild thermal conditions. A major side product was identified as resulting from an unexpected and remarkably facile [1,3]-sigmatropic rearrangement, and a tactic to disfavor the [1,3] pathway and increase the efficiency of the tandem reaction was rationally devised.

  7. Pentanidium-catalyzed enantioselective phase-transfer conjugate addition reactions

    KAUST Repository

    Ma, Ting

    2011-03-09

    A new chiral entity, pentanidium, has been shown to be an excellent chiral phase-transfer catalyst. The enantioselective Michael addition reactions of tert-butyl glycinate-benzophenone Schiff base with various α,β- unsaturated acceptors provide adducts with high enantioselectivities. A successful gram-scale experiment at a low catalyst loading of 0.05 mol % indicates the potential for practical applications of this methodology. Phosphoglycine ester analogues can also be utilized as the Michael donor, affording enantioenriched α-aminophosphonic acid derivatives and phosphonic analogues of (S)-proline. © 2011 American Chemical Society.

  8. Enzyme-catalyzed and binding reaction kinetics determined by titration calorimetry.

    Science.gov (United States)

    Hansen, Lee D; Transtrum, Mark K; Quinn, Colette; Demarse, Neil

    2016-05-01

    Isothermal calorimetry allows monitoring of reaction rates via direct measurement of the rate of heat produced by the reaction. Calorimetry is one of very few techniques that can be used to measure rates without taking a derivative of the primary data. Because heat is a universal indicator of chemical reactions, calorimetry can be used to measure kinetics in opaque solutions, suspensions, and multiple phase systems and does not require chemical labeling. The only significant limitation of calorimetry for kinetic measurements is that the time constant of the reaction must be greater than the time constant of the calorimeter which can range from a few seconds to a few minutes. Calorimetry has the unique ability to provide both kinetic and thermodynamic data. This article describes the calorimetric methodology for determining reaction kinetics and reviews examples from recent literature that demonstrate applications of titration calorimetry to determine kinetics of enzyme-catalyzed and ligand binding reactions. A complete model for the temperature dependence of enzyme activity is presented. A previous method commonly used for blank corrections in determinations of equilibrium constants and enthalpy changes for binding reactions is shown to be subject to significant systematic error. Methods for determination of the kinetics of enzyme-catalyzed reactions and for simultaneous determination of thermodynamics and kinetics of ligand binding reactions are reviewed. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions.

    Science.gov (United States)

    Ruiz-Castillo, Paula; Buchwald, Stephen L

    2016-10-12

    Pd-catalyzed cross-coupling reactions that form C-N bonds have become useful methods to synthesize anilines and aniline derivatives, an important class of compounds throughout chemical research. A key factor in the widespread adoption of these methods has been the continued development of reliable and versatile catalysts that function under operationally simple, user-friendly conditions. This review provides an overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present. Selected examples of C-N cross-coupling reactions between nine classes of nitrogen-based coupling partners and (pseudo)aryl halides are described for the synthesis of heterocycles, medicinally relevant compounds, natural products, organic materials, and catalysts.

  10. Copper-catalyzed selective hydroamination reactions of alkynes

    Science.gov (United States)

    Shi, Shi-Liang; Buchwald, Stephen L.

    2014-01-01

    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a longstanding goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective, and step-efficient synthesis of amines is still needed. In this work we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines, and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio-, and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine, and tolterodine. PMID:25515888

  11. Steroid hydroxylations: A paradigm for cytochrome P450 catalyzed mammalian monooxygenation reactions

    International Nuclear Information System (INIS)

    Estabrook, Ronald W.

    2005-01-01

    The present article reviews the history of research on the hydroxylation of steroid hormones as catalyzed by enzymes present in mammalian tissues. The report describes how studies of steroid hormone synthesis have played a central role in the discovery of the monooxygenase functions of the cytochrome P450s. Studies of steroid hydroxylation reactions can be credited with showing that: (a) the adrenal mitochondrial enzyme catalyzing the 11β-hydroxylation of deoxycorticosterone was the first mammalian enzyme shown by O 18 studies to be an oxygenase; (b) the adrenal microsomal enzyme catalyzing the 21-hydroxylation of steroids was the first mammalian enzyme to show experimentally the proposed 1:1:1 stoichiometry (substrate:oxygen:reduced pyridine nucleotide) of a monooxygenase reaction; (c) application of the photochemical action spectrum technique for reversal of carbon monoxide inhibition of the 21-hydroxylation of 17α-OH progesterone was the first demonstration that cytochrome P450 was an oxygenase; (d) spectrophotometric studies of the binding of 17α-OH progesterone to bovine adrenal microsomal P450 revealed the first step in the cyclic reaction scheme of P450, as it catalyzes the 'activation' of oxygen in a monooxygenase reaction; (e) purified adrenodoxin was shown to function as an electron transport component of the adrenal mitochondrial monooxygenase system required for the activity of the 11β-hydroxylase reaction. Adrenodoxin was the first iron-sulfur protein isolated and purified from mammalian tissues and the first soluble protein identified as a reductase of a P450; (f) fractionation of adrenal mitochondrial P450 and incubation with adrenodoxin and a cytosolic (flavoprotein) fraction were the first demonstration of the reconstitution of a mammalian P450 monooxygenase reaction

  12. EncM, a versatile enterocin biosynthetic enzyme involved in Favorskii oxidative rearrangement, aldol condensation, and heterocycle-forming reactions

    Science.gov (United States)

    Xiang, Longkuan; Kalaitzis, John A.; Moore, Bradley S.

    2004-01-01

    The bacteriostatic natural product enterocin from the marine microbe “Streptomyces maritimus” has an unprecedented carbon skeleton that is derived from an aromatic polyketide biosynthetic pathway. Its caged tricyclic, nonaromatic core is derived from a linear poly-β-ketide precursor that formally undergoes a Favorskii-like oxidative rearrangement. In vivo characterization of the gene encM through mutagenesis and heterologous biosynthesis demonstrated that its protein product not only is solely responsible for the oxidative C—C rearrangement, but also facilitates two aldol condensations plus two heterocycle forming reactions. In total, at least five chiral centers and four rings are generated by this multifaceted flavoprotein. Heterologous expression of the enterocin biosynthesis genes encABCDLMN in Streptomyces lividans resulted in the formation of the rearranged metabolite desmethyl-5-deoxyenterocin and the shunt products wailupemycins D-G. Addition of the methyltransferase gene encK, which was previously proposed through mutagenesis to additionally assist EncM in the Favorskii rearrangement, shifted the production to the O-methyl derivative 5-deoxyenterocin. The O-methyltransferase EncK seems to be specific for the pyrone ring of enterocin, because bicyclic polyketides bearing pyrone rings are not methylated in vivo. Expression of encM with different combinations of homologous actinorhodin biosynthesis genes did not result in the production of oxidatively rearranged enterocin-actinorhodin hybrid compounds as anticipated, suggesting that wild-type EncM may be specific for its endogenous type II polyketide synthase or for benzoyl-primed polyketide precursors. PMID:15505225

  13. The Reaction Mechanism of Claisen Rearrangement Obtained by Transition State Spectroscopy and Single Direct-Dynamics Trajectory

    Directory of Open Access Journals (Sweden)

    Takayoshi Kobayashi

    2013-02-01

    Full Text Available Chemical bond breaking and formation during chemical reactions can be observed using “transition state spectroscopy”. Comparing the measurement result of the transition state spectroscopy with the simulation result of single direct-dynamics trajectory, we have elucidated the reaction dynamics of Claisen rearrangement of allyl vinyl ether. Observed the reaction of the neat sample liquid, we have estimated the time constants of transformation from straight-chain structure to aromatic-like six-membered ring structure forming the C1-C6 bond. The result clarifies that the reaction proceeds via three steps taking longer time than expected from the gas phase calculation. This finding provides new hypothesis and discussions, helping the development of the field of reaction mechanism analysis.

  14. Development of Fluorous Lewis Acid-Catalyzed Reactions

    Directory of Open Access Journals (Sweden)

    Joji Nishikido

    2006-08-01

    Full Text Available Organic synthetic methodology in the 21st century aims to conform to the principles of green sustainable chemistry (GSC and we may expect that in the future, the realization of GSC will be an important objective for chemical industries. An important aim of synthetic organic chemistry is to implement waste-free and environmentally-benign industrial processes using Lewis acids as versatile as aluminum choride. A key technological objective of our work in this area has been to achieve a “catalyst recycling system that utilizes the high activity and structural features of fluorous Lewis acid catalysts”. Thus, we have developed a series of novel fluorous Lewis acid catalysts, namely the ytterbium(III, scandium(III, tin(IV or hafnium(IV bis(perfluoroalkanesulfonylamides or tris(perfluoro- alkanesulfonylmethides. Our catalysts are recyclable and effective for acylations of alcohols and aromatics, Baeyer-Villiger reactions, direct esterifications and transesterifications in a fluorous biphasic system (FBS, in supercritical carbon dioxide and on fluorous silica gel supports.

  15. Cascade Wittig reaction-double Claisen and Cope rearrangements: one-pot synthesis of diprenylated coumarins gravelliferone, balsamiferone, and 6,8-diprenylumbelliferone

    Digital Repository Service at National Institute of Oceanography (India)

    Patre, R.E.; Shet, J.B.; Parameswaran, P.S.; Tilve, S.G.

    A cascade Wittig reaction-double Claisen and Cope rearrangements has been employed for a one-pot synthesis of diprenylated coumarins gravelliferone, balsamiferone, and 6,8-diprenylumbelliferone from a common precursor 2,4-diprenyloxybenzaldehyde...

  16. Palladium-catalyzed ring-opening reactions of cyclopropanated 7-oxabenzonorbornadiene with alcohols

    Directory of Open Access Journals (Sweden)

    Katrina Tait

    2016-10-01

    Full Text Available Palladium-catalyzed ring-opening reactions of cyclopropanated 7-oxabenzonorbornadiene derivatives using alcohol nucleophiles were investigated. The optimal conditions were found to be 10 mol % PdCl2(CH3CN2 in methanol, offering yields up to 92%. The reaction was successful using primary, secondary and tertiary alcohol nucleophiles and was compatible with a variety of substituents on cyclopropanated oxabenzonorbornadiene. With unsymmetrical C1-substituted cyclopropanated 7-oxabenzonorbornadienes, the regioselectivity of the reaction was excellent, forming only one regioisomer in all cases.

  17. Glutathiolactaldehyde as a probe of the overall stereochemical course of glyoxalase-I catalyzed reactions

    International Nuclear Information System (INIS)

    Brush, E.J.; Kozarich, J.W.

    1986-01-01

    The overall stereochemical course of the reactions catalyzed by glyoxalase-I (GX-I) has remained elusive as the substrates are equilibrium mixtures of rapidly interconverting diastereomeric thiohemiacetals. However, with the discovery of inverse substrate processing by Kozarich and coworkers, it is possible to design GX-I substrate analogs that are intrinsically more stable than the thiohemiacetals. Hence, Chari and Kozarich reported that glutathiohydroxyacetone (GHA, GSCH 2 COCH 2 OH) undergoes GX-I catalyzed exchange of the pro-S hydroxymethyl proton with solvent deuterium. Their data suggest that GX-I processes a single diastereomeric thiohemiacetal, and are consistent with a cis-enediol intermediate. To test this hypothesis and to follow the overall stereochemistry on a single substrate, they have prepared glutathiolactaldehyde (GLA, GSCH 2 CHOHCHO) as a potential inverse substrate. Human erythrocyte GX-I catalyzes the isomerization of GLA to GHA as evidenced by UV and NMR spectra of the product. Solvent deuterium is incorporated into the hydroxymethyl position, and NMR data suggest that incorporation is stereospecific. Furthermore, 50% of the expected amount of GHA is produced indicating that only one diastereomer of GLA is processed by GX-I. Identification of the absolute stereochemistry of the substrate diastereomer will lead to a clarification of the overall stereochemical and mechanistic course of GX-I catalyzed reactions

  18. Gold-Catalyzed Cyclization of Furan-Ynes bearing a Propargyl Carbonate Group: Intramolecular Diels-Alder Reaction with In Situ Generated Allenes.

    Science.gov (United States)

    Sun, Ning; Xie, Xin; Chen, Haoyi; Liu, Yuanhong

    2016-09-26

    Gold-catalyzed cyclization of various furan-ynes with a propargyl carbonate or ester moiety results in the formation of a series of polycyclic aromatic ring systems. The reactions can be rationalized through a tandem gold-catalyzed 3,3-rearrangement of the propargyl carboxylate moiety in furan-yne substrates to form an allenic intermediate, which is followed by an intramolecular Diels-Alder reaction of furan and subsequent ring-opening of the oxa-bridged cycloadduct. It was found that the steric and electronic properties of phosphine ligands on the gold catalyst had a significant impact on the reaction outcome. In the case of 1,5-furan-yne, the cleavage of the oxa-bridge in the cycloadduct with concomitant 1,2-migration of the R(1) group occurs to furnish anthracen-1(2H)-ones bearing a quaternary carbon center. For 1,4-furan-yne, a facile aromatization of the cycloadduct takes place to give 9-oxygenated anthracene derivatives. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. ON THE PECULIARITIES OF THE RING CONTRACTION REACTIONS OF HOMODRIMANES VIA ACID MEDIATED EPOXIDE REARRANGEMENT

    Directory of Open Access Journals (Sweden)

    Veaceslav Kulciţki

    2011-06-01

    Full Text Available A selective rearrangement of a epoxy-homodrimanic substrate is described. Using fluorosulfonic acid at low temperature leads by ring contraction to a perhydrindanic structure. On the contrary, using boron trifluoride-diethyl ether at r.t. selectively brings about angular methyl migration.

  20. Density functional computational studies on the glucose and glycine Maillard reaction: Formation of the Amadori rearrangement products

    Science.gov (United States)

    Jalbout, Abraham F.; Roy, Amlan K.; Shipar, Abul Haider; Ahmed, M. Samsuddin

    Theoretical energy changes of various intermediates leading to the formation of the Amadori rearrangement products (ARPs) under different mechanistic assumptions have been calculated, by using open chain glucose (O-Glu)/closed chain glucose (A-Glu and B-Glu) and glycine (Gly) as a model for the Maillard reaction. Density functional theory (DFT) computations have been applied on the proposed mechanisms under different pH conditions. Thus, the possibility of the formation of different compounds and electronic energy changes for different steps in the proposed mechanisms has been evaluated. B-Glu has been found to be more efficient than A-Glu, and A-Glu has been found more efficient than O-Glu in the reaction. The reaction under basic condition is the most favorable for the formation of ARPs. Other reaction pathways have been computed and discussed in this work.0

  1. Selectivity control in pd-catalyzed c-h functionalization reactions

    OpenAIRE

    Flores Gaspar, Areli

    2013-01-01

    Benzocyclobutenones are an intriguing four-membered ring ketone. In the present thesis, we have developed a new protocol for selectively preparing benzocyclobutenones through intramolecular acylation of aryl bromides via palladium catalyzed C-H bond functionalization reactions based on rac-BINAP ligand. We also found that a subtle modification on the ligand backbone lead to a new catalytic manifold for preparing configurationally-pure styrene derivatives, when using dcpp (bis-dicyclohexylphos...

  2. Enantioconvergent synthesis by sequential asymmetric Horner-Wadsworth-Emmons and palladium-catalyzed allylic substitution reactions

    DEFF Research Database (Denmark)

    Pedersen, Torben Møller; Hansen, E. Louise; Kane, John

    2001-01-01

    A new method for enantioconvergent synthesis has been developed. The strategy relies on the combination of an asymmetric Horner-Wadsworth-Emmons (HWE) reaction and a palladium-catalyzed allylic substitution. Different $alpha@-oxygen-substituted, racemic aldehydes were initially transformed by asy...... the allylic stereocenter and the alkene geometry. Thus, a single $gamma@-substituted ester was obtained as the overall product, in high isomeric purity. The method was applied to a synthesis of a subunit of the iejimalides, a group of cytotoxic macrolides.......A new method for enantioconvergent synthesis has been developed. The strategy relies on the combination of an asymmetric Horner-Wadsworth-Emmons (HWE) reaction and a palladium-catalyzed allylic substitution. Different $alpha@-oxygen-substituted, racemic aldehydes were initially transformed...... by asymmetric HWE reactions into mixtures of two major $alpha@,$beta@-unsaturated esters, possessing opposite configurations at their allylic stereocenters as well as opposite alkene geometry. Subsequently, these isomeric mixtures of alkenes could be subjected to palladium-catalyzed allylic substitution...

  3. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review.

    Science.gov (United States)

    He, Jie; Yang, Xiaofang; Men, Bin; Wang, Dongsheng

    2016-01-01

    The heterogeneous Fenton reaction can generate highly reactive hydroxyl radicals (OH) from reactions between recyclable solid catalysts and H2O2 at acidic or even circumneutral pH. Hence, it can effectively oxidize refractory organics in water or soils and has become a promising environmentally friendly treatment technology. Due to the complex reaction system, the mechanism behind heterogeneous Fenton reactions remains unresolved but fascinating, and is crucial for understanding Fenton chemistry and the development and application of efficient heterogeneous Fenton technologies. Iron-based materials usually possess high catalytic activity, low cost, negligible toxicity and easy recovery, and are a superior type of heterogeneous Fenton catalysts. Therefore, this article reviews the fundamental but important interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials. OH, hydroperoxyl radicals/superoxide anions (HO2/O2(-)) and high-valent iron are the three main types of reactive oxygen species (ROS), with different oxidation reactivity and selectivity. Based on the mechanisms of ROS generation, the interfacial mechanisms of heterogeneous Fenton systems can be classified as the homogeneous Fenton mechanism induced by surface-leached iron, the heterogeneous catalysis mechanism, and the heterogeneous reaction-induced homogeneous mechanism. Different heterogeneous Fenton systems catalyzed by characteristic iron-based materials are comprehensively reviewed. Finally, related future research directions are also suggested. Copyright © 2015. Published by Elsevier B.V.

  4. Detection of clonal immunoglobulin heavy chain gene rearrangements by the polymerase chain reaction and capillary gel electrophoresis.

    Science.gov (United States)

    Fan, Hongxin; Robetorye, Ryan S

    2013-01-01

    Although well-established diagnostic criteria exist for mature B-cell neoplasms, a definitive diagnosis of a B-cell lymphoproliferative disorder cannot always be obtained using more conventional techniques such as flow cytometric immunophenotyping, conventional cytogenetics, fluorescence in situ hybridization, or immunohistochemistry. However, because B-cell malignancies contain identically rearranged immunoglobulin heavy chain genes, the polymerase chain reaction (PCR) can be a fast, convenient, and dependable option to identify clonal B-cell processes. This chapter describes the use of PCR and capillary electrophoresis to identify clonal immunoglobulin heavy chain (IGH) variable and joining region (VH-JH) gene rearrangements (IGH VH-JH PCR) using a commercially available method employing multiple multiplex PCR tubes that was originally developed as the result of a large European BIOMED-2 collaborative study (Invivoscribe Technologies). The core protocol involves the use of three separate master mix tubes that target the conserved framework (FR1, FR2, and FR3) and joining (J) regions of the IGH gene. Analysis of these three framework regions can detect approximately 88% of clonal IGH gene rearrangements.

  5. Mechanism of Cytochrome P450 17A1-Catalyzed Hydroxylase and Lyase Reactions

    DEFF Research Database (Denmark)

    Bonomo, Silvia; Jorgensen, Flemming Steen; Olsen, Lars

    2017-01-01

    Cytochrome P450 17A1 (CYP17A1) catalyzes C17 hydroxylation of pregnenolone and progesterone and the subsequent C17–C20 bond cleavage (lyase reaction) to form androgen precursors. Compound I (Cpd I) and peroxo anion (POA) are the heme-reactive species underlying the two reactions. We have characte...... the concept that the selectivity of the steroidogenic CYPs is ruled by direct interactions with the enzyme, in contrast to the selectivity of drug-metabolizing CYPs, where the reactivity of the substrates dominates....... characterized the reaction path for both the hydroxylase and lyase reactions using density functional theory (DFT) calculations and the enzyme–substrate interactions by molecular dynamics (MD) simulations. Activation barriers for positions subject to hydroxylase reaction have values close to each other and span...

  6. Triosephosphate isomerase: energetics of the reaction catalyzed by the yeast enzyme expressed in Escherichia coli

    International Nuclear Information System (INIS)

    Nickbarg, E.B.; Knowles, J.R.

    1988-01-01

    Triosephosphate isomerase from bakers' yeast, expressed in Escherichia coli strain DF502(p12), has been purified to homogeneity. The kinetics of the reaction in each direction have been determined at pH 7.5 and 30 degrees C. Deuterium substitution at the C-2 position of substrate (R)-glyceraldehyde phosphate and at the 1-pro-R position of substrate dihydroxyacetone phosphate results in kinetic isotope effects on kcat of 1.6 and 3.4, respectively. The extent of transfer of tritium from [1(R)- 3 H]dihydroxyacetone phosphate to product (R)-glyceraldehyde phosphate during the catalyzed reaction is only 3% after 66% conversion to product, indicating that the enzymic base that mediates proton transfer is in rapid exchange with solvent protons. When the isomerase-catalyzed reaction is run in tritiated water in each direction, radioactivity is incorporated both into the remaining substrate and into the product. In the exchange-conversion experiment with dihydroxyacetone phosphate as substrate, the specific radioactivity of remaining dihydroxyacetone phosphate rises as a function of the extent of reaction with a slope of about 0.3, while the specific radioactivity of the products is 54% that of the solvent. In the reverse direction with (R)-glyceraldehyde phosphate as substrate, the specific radioactivity of the product formed is only 11% that of the solvent, while the radioactivity incorporated into the remaining substrate (R)-glyceraldehyde phosphate also rises as a function of the extent of reaction with a slope of 0.3. These results have been analyzed according to the protocol described earlier to yield the free energy profile of the reaction catalyzed by the yeast isomerase

  7. Mechanisms of reactions of organoaluminium compounds with alkenes and alkynes catalyzed by Zr complexes

    International Nuclear Information System (INIS)

    Parfenova, L V; Khalilov, Leonard M; Dzhemilev, Usein M

    2012-01-01

    The results of studies dealing with mechanisms of hydro-, carbo- and cycloalumination of alkenes and alkynes catalyzed by zirconium complexes are generalized and systematized for the first time. Data about the structures of intermediates responsible for the formation of the target compounds are presented and the available data on the effect of the structure of organoaluminium compounds and the electronic and steric factors determining the catalytic activity of metal complexes in these reactions are considered in detail. Much attention is paid to studies of the influence of reaction conditions on the chemo-, regio- and stereoselectivity of the Zr-containing complex catalysts. The bibliography includes 217 references.

  8. Tandem catalytic allylic amination and [2,3]-Stevens rearrangement of tertiary amines.

    Science.gov (United States)

    Soheili, Arash; Tambar, Uttam K

    2011-08-24

    We have developed a catalytic allylic amination involving tertiary aminoesters and allylcarbonates, which is the first example of the use of tertiary amines as intermolecular nucleophiles in metal-catalyzed allylic substitution chemistry. This process is employed in a tandem ammonium ylide generation/[2,3]-rearrangement reaction, which formally represents a palladium-catalyzed Stevens rearrangement. Low catalyst loadings and mild reaction conditions are compatible with an unprecedented substrate scope for the ammonium ylide functionality, and products are generated in high yields and diastereoselectivities. Mechanistic studies suggested the reversible formation of an ammonium intermediate.

  9. Investigation of the complex reaction coordinate of acid catalyzed amide hydrolysis from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Zahn, Dirk

    2004-01-01

    The rate-determining step of acid catalyzed peptide hydrolysis is the nucleophilic attack of a water molecule to the carbon atom of the amide group. Therein the addition of the hydroxyl group to the amide carbon atom involves the association of a water molecule transferring one of its protons to an adjacent water molecule. The protonation of the amide nitrogen atom follows as a separate reaction step. Since the nucleophilic attack involves the breaking and formation of several bonds, the underlying reaction coordinate is rather complex. We investigate this reaction step from path sampling Car-Parrinello molecular dynamics simulations. This approach does not require the predefinition of reaction coordinates and is thus particularly suited for investigating reaction mechanisms. From our simulations the most relevant components of the reaction coordinate are elaborated. Though the C···O distance of the oxygen atom of the water molecule performing the nucleophilic attack and the corresponding amide carbon atom is a descriptor of the reaction progress, a complete picture of the reaction coordinate must include all three molecules taking part in the reaction. Moreover, the proton transfer is found to depend on favorable solvent configurations. Thus, also the arrangement of non-reacting, i.e. solvent water molecules needs to be considered in the reaction coordinate

  10. Kinetics and optimization on discoloration of dyeing wastewater by schorl-catalyzed fenton-like reaction

    Directory of Open Access Journals (Sweden)

    Xu Huan-Yan

    2014-01-01

    Full Text Available Kinetics and optimization on the discoloration of an active commercial dye, Argazol Blue BFBR (ABB by heterogeneous Fenton-like reaction catalyzed by natural schorl were investigated in this study. Kinetic investigations revealed that the first-order kinetic model was more favorable to describe the discoloration of ABB at different reaction conditions than the second-order and Behnajady-Modirshahla-Ghanbery models. The relationship between the reaction rate constant k and reaction temperature T followed the Arrhenius equation, with the apparent activation energy Ea of 51.31kJ•mol-1. The central composite design under the response surface methodology was employed for the experimental design and optimization of the ABB discoloration process. The significance of a second order polynomial model for predicting the optimal values of ABB discoloration was evaluated by the analysis of variance and 3D response surface plots for the interactions between two variables were constructed. Then, the optimum conditions were determined.

  11. Investigation of transition metal-catalyzed nitrene transfer reactions in water.

    Science.gov (United States)

    Alderson, Juliet M; Corbin, Joshua R; Schomaker, Jennifer M

    2018-04-11

    Transition metal-catalyzed nitrene transfer is a powerful method for incorporating new CN bonds into relatively unfunctionalized scaffolds. In this communication, we report the first examples of site- and chemoselective CH bond amination reactions in aqueous media. The unexpected ability to employ water as the solvent in these reactions is advantageous in that it eliminates toxic solvent use and enables reactions to be run at increased concentrations with lower oxidant loadings. Using water as the reaction medium has potential to expand the scope of nitrene transfer to encompass a variety of biomolecules and highly polar substrates, as well as enable pH control over the site-selectivity of CH bond amination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Flavin-N5 Covalent Intermediate in a Nonredox Dehalogenation Reaction Catalyzed by an Atypical Flavoenzyme.

    Science.gov (United States)

    Dai, Yumin; Kizjakina, Karina; Campbell, Ashley C; Korasick, David A; Tanner, John J; Sobrado, Pablo

    2018-01-04

    The flavin-dependent enzyme 2-haloacrylate hydratase (2-HAH) catalyzes the conversion of 2-chloroacrylate, a major component in the manufacture of acrylic polymers, to pyruvate. The enzyme was expressed in Escherichia coli, purified, and characterized. 2-HAH was shown to be monomeric in solution and contained a non-covalent, yet tightly bound, flavin adenine dinucleotide (FAD). Although the catalyzed reaction was redox-neutral, 2-HAH was active only in the reduced state. A covalent flavin-substrate intermediate, consistent with the flavin-acrylate iminium ion, was trapped with cyanoborohydride and characterized by mass spectrometry. Small-angle X-ray scattering was consistent with 2-HAH belonging to the succinate dehydrogenase/fumarate reductase family of flavoproteins. These studies establish 2-HAH as a novel noncanonical flavoenzyme. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Precision Synthesis of Functional Polysaccharide Materials by Phosphorylase-Catalyzed Enzymatic Reactions

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2016-04-01

    Full Text Available In this review article, the precise synthesis of functional polysaccharide materials using phosphorylase-catalyzed enzymatic reactions is presented. This particular enzymatic approach has been identified as a powerful tool in preparing well-defined polysaccharide materials. Phosphorylase is an enzyme that has been employed in the synthesis of pure amylose with a precisely controlled structure. Similarly, using a phosphorylase-catalyzed enzymatic polymerization, the chemoenzymatic synthesis of amylose-grafted heteropolysaccharides containing different main-chain polysaccharide structures (e.g., chitin/chitosan, cellulose, alginate, xanthan gum, and carboxymethyl cellulose was achieved. Amylose-based block, star, and branched polymeric materials have also been prepared using this enzymatic polymerization. Since phosphorylase shows a loose specificity for the recognition of substrates, different sugar residues have been introduced to the non-reducing ends of maltooligosaccharides by phosphorylase-catalyzed glycosylations using analog substrates such as α-d-glucuronic acid and α-d-glucosamine 1-phosphates. By means of such reactions, an amphoteric glycogen and its corresponding hydrogel were successfully prepared. Thermostable phosphorylase was able to tolerate a greater variance in the substrate structures with respect to recognition than potato phosphorylase, and as a result, the enzymatic polymerization of α-d-glucosamine 1-phosphate to produce a chitosan stereoisomer was carried out using this enzyme catalyst, which was then subsequently converted to the chitin stereoisomer by N-acetylation. Amylose supramolecular inclusion complexes with polymeric guests were obtained when the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of the guest polymers. Since the structure of this polymeric system is similar to the way that a plant vine twines around a rod, this polymerization system has been named

  14. Asymmetric Brønsted acid-catalyzed aza-Diels–Alder reaction of cyclic C-acylimines with cyclopentadiene

    Directory of Open Access Journals (Sweden)

    Magnus Rueping

    2012-10-01

    Full Text Available A new chiral Brønsted acid-catalyzed aza-Diels–Alder reaction of cyclic C-acylimines with cyclopentadiene has been developed. The reaction provides optically active aza-tetracycles in good yields with high diastereo- and enantioselectivities under mild reaction conditions.

  15. Silver-catalyzed formal inverse electron-demand Diels-Alder reaction of 1,2-diazines and siloxy alkynes.

    Science.gov (United States)

    Türkmen, Yunus E; Montavon, Timothy J; Kozmin, Sergey A; Rawal, Viresh H

    2012-06-06

    A highly effective silver-catalyzed formal inverse electron-demand Diels-Alder reaction of 1,2-diazines and siloxy alkynes has been developed. The reactions provide ready access to a wide range of siloxy naphthalenes and anthracenes, which are formed in good to high yields, under mild reaction conditions, using low catalyst loadings.

  16. Influence of hydroxylamine conformation on stereocontrol in Pd-catalyzed isoxazolidine-forming reactions.

    Science.gov (United States)

    Lemen, Georgia S; Giampietro, Natalie C; Hay, Michael B; Wolfe, John P

    2009-03-20

    Palladium-catalyzed carboamination reactions between N-Boc-O-(but-3-enyl)hydroxylamine derivatives and aryl or alkenyl bromides afford cis-3,5- and trans-4,5-disubstituted isoxazolidines in good yield with up to >20:1 dr. The diastereoselectivity observed in the formation of cis-3,5-disubstituted isoxazolidines is superior to selectivities typically obtained in other transformations, such as 1,3-dipolar cycloaddition reactions, that provide these products. In addition, the stereocontrol in the C-N bond-forming Pd-catalyzed carboamination reactions of N-Boc-O-(but-3-enyl)hydroxylamines is significantly higher than that of related C-O bond-forming carboetherification reactions of N-benzyl-N-(but-3-enyl)hydroxylamine derivatives. This is likely due to a stereoelectronic preference for cyclization via transition states in which the Boc group is placed in a perpendicular orientation relative to the plane of the developing ring, which derives from the conformational equilibria of substituted hydroxylamines.

  17. [Study of ATP-independent stages of reaction catalyzed by phage T4 RNA-ligase].

    Science.gov (United States)

    Zagrebel'nyĭ, S N; Zernov, Iu P

    1986-01-01

    The isotope exchange between [5'-32P]pAP and A(5')ppAp catalyzed by enzyme was shown not to take place in the absence of the acceptor; i. e. the necessity of the acceptor presence during the second step of the process was demonstrated. The isotope exchange reaction between [5'32P]pAp and (pA)5p was studied. It was demonstrated that acceptor (pA)4, slightly whereas the acceptor (pU)4 completely inhibits the isotope reaction. The isotope reaction exchange between [5'-32P]pAp and (pU)4pAp does not take place. The question of existence of adenylated donor elimination mechanism in the presence of "poor" acceptors is considered on the basis of the data obtained.

  18. Titanocene(III)-Catalyzed Three-Component Reaction of Secondary Amides, Aldehydes, and Electrophilic Alkenes.

    Science.gov (United States)

    Zheng, Xiao; He, Jiang; Li, Heng-Hui; Wang, Ao; Dai, Xi-Jie; Wang, Ai-E; Huang, Pei-Qiang

    2015-11-09

    An umpolung Mannich-type reaction of secondary amides, aliphatic aldehydes, and electrophilic alkenes has been disclosed. This reaction features the one-pot formation of C-N and C-C bonds by a titanocene-catalyzed radical coupling of the condensation products, from secondary amides and aldehydes, with electrophilic alkenes. N-substituted γ-amido-acid derivatives and γ-amido ketones can be efficiently prepared by the current method. Extension to the reaction between ketoamides and electrophilic alkenes allows rapid assembly of piperidine skeletons with α-amino quaternary carbon centers. Its synthetic utility has been demonstrated by a facile construction of the tricyclic core of marine alkaloids such as cylindricine C and polycitorol A. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Asymmetric Formal Aza-Diels-Alder Reaction of Trifluoromethyl Hemiaminals with Enones Catalyzed by Primary Amines.

    Science.gov (United States)

    Zhang, Sheng; Cha, Lide; Li, Lijun; Hu, Yanbin; Li, Yanan; Zha, Zhenggen; Wang, Zhiyong

    2016-04-15

    A primary amine-catalyzed asymmetric formal aza-Diels-Alder reaction of trifluoromethyl hemiaminals with enones was developed via a chiral gem-diamine intermediate. This novel protocol allowed facile access to structurally diverse trifluoromethyl-substituted piperidine scaffolds with high stereoselectivity. The utility of this method was further demonstrated through a concise approach to biologically active 4-hydroxypiperidine. More importantly, a stepwise mechanism involving an asymmetric induction process was proposed to rationalize the positive correlation between the chirality of the gem-diamine intermediate and the formal aza-Diels-Alder product.

  20. Ruthenium-catalyzed reactions--a treasure trove of atom-economic transformations.

    Science.gov (United States)

    Trost, Barry M; Frederiksen, Mathias U; Rudd, Michael T

    2005-10-21

    The demand for new chemicals spanning the fields of health care to materials science combined with the pressure to produce these substances in an environmentally benign fashion pose great challenges to the synthetic chemical community. The maximization of synthetic efficiency by the conversion of simple building blocks into complex targets remains a fundamental goal. In this context, ruthenium complexes catalyze a number of non-metathesis conversions and allow the rapid assembly of complex molecules with high selectivity and atom economy. These complexes often exhibit unusual reactivity. Careful consideration of the mechanistic underpinnings of the transformations can lead to the design of new reactions and the discovery of new reactivity.

  1. Reaction of hypochlorite with amino acids and peptides : EPR evidence for rapid rearrangement and fragmentation of nitrogen-centred radicals

    International Nuclear Information System (INIS)

    Hawkins, C.L.; Davies, M.J.

    1998-01-01

    Various amino acid side chains have been shown to be particularly susceptible to attack and modification by hypochlorite (HOCl). It is known that tyrosine is readily chlorinated by HOCl to give 3-chlorotyrosine and this product has been employed as a marker of HOCl-mediated damage to proteins. Cysteine and methionine react rapidly with HOCl to give oxy acids and cystine (from cysteine) and sulphoxides (from methionine). Lysine and amino acids which lack the above functional groups also react with HOCl via the free amino group which results in the generation of unstable chloramine intermediates; subsequent decomposition of these species gives NH 3 , CO 2 and aldehydes. While the products of reaction of HOCl with amino acids and peptides are reasonably well characterised, the mechanism(s) by which these products arise is less well understood. Electron paramagnetic resonance (EPR) spectroscopy with spin trapping and UV/visible spectroscopy has been employed to examine the reaction of HOCl with amino acids and some small peptides. Reaction of HOCl with N-acetyl amino acids or small peptides gives radicals predominantly at α-carbon sites via reaction at N-terminal free amino groups or amide (peptide) bonds. It is proposed that these carbon-centred radicals are produced as a result of the rearrangement of initial nitrogen-centred radicals formed on cleavage of the N-CI bond of the chloramine/chloramide species by a 1,2-shift reaction

  2. Mechanistic Implications for the Ni(I-Catalyzed Kumada Cross-Coupling Reaction

    Directory of Open Access Journals (Sweden)

    Linda Iffland

    2017-11-01

    Full Text Available Herein we report on the cross-coupling reaction of phenylmagnesium bromide with aryl halides using the well-defined tetrahedral Ni(I complex, [(TriphosNiICl] (Triphos = 1,1,1-tris(diphenylphosphinomethylethane. In the presence of 0.5 mol % [(TriphosNiICl], good to excellent yields (75–97% of the respective coupling products within a reaction time of only 2.5 h at room temperature were achieved. Likewise, the tripodal Ni(IIcomplexes [(κ2-TriphosNiIICl2] and [(κ3-TriphosNiIICl](X (X = ClO4, BF4 were tested as potential pre-catalysts for the Kumada cross-coupling reaction. While the Ni(II complexes also afford the coupling products in comparable yields, mechanistic investigations by UV/Vis and electron paramagnetic resonance (EPR spectroscopy indicate a Ni(I intermediate as the catalytically active species in the Kumada cross-coupling reaction. Based on experimental findings and density functional theory (DFT calculations, a plausible Ni(I-catalyzed reaction mechanism for the Kumada cross-coupling reaction is presented.

  3. Au-Cu core-shell nanocube-catalyzed click reactions for efficient synthesis of diverse triazoles.

    Science.gov (United States)

    Madasu, Mahesh; Hsia, Chi-Fu; Huang, Michael H

    2017-06-01

    Au-Cu core-shell nanocubes and octahedra synthesized in aqueous solution were employed to catalyze a 1,3-dipolar cycloaddition reaction between phenylacetylene and benzyl azide in water at 50 °C for 3 h. Interestingly, the nanocubes were far more efficient in catalyzing this reaction, giving 91% yield of a regioselective 1,4-triazole product, while octahedra only recorded 46% yield. The Au-Cu nanocubes were subsequently employed to catalyze the click reaction between benzyl azide and a broad range of aromatic and aliphatic alkynes. The product yields ranged from 78 to 99%. Clearly the Au-Cu cubes exposing {100} surfaces are an excellent and green catalyst for click reactions.

  4. Chiral Nickel(II) Complex Catalyzed Enantioselective Doyle-Kirmse Reaction of α-Diazo Pyrazoleamides.

    Science.gov (United States)

    Lin, Xiaobin; Tang, Yu; Yang, Wei; Tan, Fei; Lin, Lili; Liu, Xiaohua; Feng, Xiaoming

    2018-03-07

    Although high enantioselectivity of [2,3]-sigmatropic rearrangement of sulfonium ylides (Doyle-Kirmse reaction) has proven surprisingly elusive using classic chiral Rh(II) and Cu(I) catalysts, in principle it is due to the difficulty in fine discrimination of the heterotopic lone pairs of sulfur and chirality inversion at sulfur of sulfonium ylides. Here, we show that the synergistic merger of new α-diazo pyrazoleamides and a chiral N, N'-dioxide-nickel(II) complex catalyst enables a highly enantioselective Doyle-Kirmse reaction. The pyrazoleamide substituent serves as both an activating and a directing group for the ready formation of a metal-carbene- and Lewis-acid-bonded ylide intermediate in the assistance of a dual-tasking nickel(II) complex. An alternative chiral Lewis-acid-bonded ylide pathway greatly improves the product enantiopurity even for the reaction of a symmetric diallylsulfane. The majority of transformations over a series of aryl- or vinyl-substituted α-diazo pyrazoleamindes and sulfides proceed rapidly (within 5-20 min in most cases) with excellent results (up to 99% yield and 96% ee), providing a breakthrough in enantioselective Doyle-Kirmse reaction.

  5. Optimal control of a Cope rearrangement by coupling the reaction path to a dissipative bath or a second active mode

    International Nuclear Information System (INIS)

    Chenel, A.; Meier, C.; Dive, G.; Desouter-Lecomte, M.

    2015-01-01

    We compare the strategy found by the optimal control theory in a complex molecular system according to the active subspace coupled to the field. The model is the isomerization during a Cope rearrangement of Thiele’s ester that is the most stable dimer obtained by the dimerization of methyl-cyclopentadienenylcarboxylate. The crudest partitioning consists in retaining in the active space only the reaction coordinate, coupled to a dissipative bath of harmonic oscillators which are not coupled to the field. The control then fights against dissipation by accelerating the passage across the transition region which is very wide and flat in a Cope reaction. This mechanism has been observed in our previous simulations [Chenel et al., J. Phys. Chem. A 116, 11273 (2012)]. We compare here, the response of the control field when the reaction path is coupled to a second active mode. Constraints on the integrated intensity and on the maximum amplitude of the fields are imposed limiting the control landscape. Then, optimum field from one-dimensional simulation cannot provide a very high yield. Better guess fields based on the two-dimensional model allow the control to exploit different mechanisms providing a high control yield. By coupling the reaction surface to a bath, we confirm the link between the robustness of the field against dissipation and the time spent in the delocalized states above the transition barrier

  6. A 11-Steps Total Synthesis of Magellanine through a Gold(I)-Catalyzed Dehydro Diels-Alder Reaction.

    Science.gov (United States)

    McGee, Philippe; Bétournay, Geneviève; Barabé, Francis; Barriault, Louis

    2017-05-22

    We have developed an innovative strategy for the formation of angular carbocycles via a gold(I)-catalyzed dehydro Diels-Alder reaction. This transformation provides rapid access to a variety of complex angular cores in excellent diastereoselectivities and high yields. The usefulness of this Au I -catalyzed cycloaddition was further demonstrated by accomplishing a 11-steps total synthesis of (±)-magellanine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications

    KAUST Repository

    Ebner, Davidâ C.

    2009-12-07

    The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (-)-sparteine as a chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of the base and hydrogen-bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 degrees C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good-to-excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones.

  8. Negative resists for i-line lithography utilizing acid-catalyzed intramolecular dehydration reaction

    Science.gov (United States)

    Ueno, Takumi; Uchino, Shou-ichi; Hattori, Keiko T.; Onozuka, Toshihiko; Shirai, Seiichiro; Moriuchi, Noboru; Hashimoto, Michiaki; Koibuchi, S.

    1994-05-01

    Chemical amplification negative resist system composed of a novolak resin, a carbinol and an acid generator is investigated for i-line phase-shift lithography. The reaction in this resist is based on an acid-catalyzed intramolecular dehydration reaction. The dehydration products act as aqueous-base dissolution inhibitors, and carbinol compounds in unexposed areas work as dissolution promoters. The resist composed of a novolak resin, 1,4-bis((alpha) -hydroxyisopropyl) benzene (DIOL-1) and 2- naphthoylmethyltetramethylenesulfonium triflate (PAG-2) gives the best lithographic performance in terms of sensitivity and resolution. Line-and-space patterns of 0.275 micrometers are obtained using an i-line stepper (NA:0.45) in conjunction with a phase shifting mask.

  9. The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications

    KAUST Repository

    Ebner, Davidâ C.; Bagdanoff, Jeffreyâ T.; Ferreira, Ericâ M.; McFadden, Ryanâ M.; Caspi, Danielâ D.; Trend, Raissaâ M.; Stoltz, Brianâ M.

    2009-01-01

    The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (-)-sparteine as a chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of the base and hydrogen-bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 degrees C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good-to-excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones.

  10. Palladium-catalyzed domino C,N-coupling/carbonylation/Suzuki coupling reaction: an efficient synthesis of 2-aroyl-/heteroaroylindoles.

    Science.gov (United States)

    Arthuis, Martin; Pontikis, Renée; Florent, Jean-Claude

    2009-10-15

    A convenient one-pot synthesis of 2-aroylindoles using a domino palladium-catalyzed C,N-coupling/carbonylation/C,C-coupling sequence is described. The reaction involved easily prepared 2-gem-dibromovinylanilines and boronic acids under carbon monoxide. Optimized reaction conditions allowed the construction of a wide variety of highly functionalized 2-aroyl-/heteroaroylindoles in satisfactory yields.

  11. On the Effect of Microwave Energy on Lipase-Catalyzed Polycondensation Reactions

    Directory of Open Access Journals (Sweden)

    Alessandro Pellis

    2016-09-01

    Full Text Available Microwave energy (MWe is, nowadays, widely used as a clean synthesis tool to improve several chemical reactions, such as drug molecule synthesis, carbohydrate conversion and biomass pyrolysis. On the other hand, its exploitation in enzymatic reactions has only been fleetingly investigated and, hence, further study of MWe is required to reach a precise understanding of its potential in this field. Starting from the authors’ experience in clean synthesis and biocatalyzed reactions, this study sheds light on the possibility of using MWe for enhancing enzyme-catalyzed polycondensation reactions and pre-polymer formation. Several systems and set ups were investigated involving bulk and organic media (solution phase reactions, different enzymatic preparations and various starting bio-based monomers. Results show that MWe enables the biocatalyzed synthesis of polyesters and pre-polymers in a similar way to that reported using conventional heating with an oil bath, but in a few cases, notably bulk phase polycondensations under intense microwave irradiation, MWe leads to a rapid enzyme deactivation.

  12. State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production

    International Nuclear Information System (INIS)

    Amini, Zeynab; Ilham, Zul; Ong, Hwai Chyuan; Mazaheri, Hoora; Chen, Wei-Hsin

    2017-01-01

    Highlights: • Enzymatic transesterification process is less energy intensive and robust. • Nano-materials are promising immobilization supports for lipase. • Packed-bed reactors are appropriate for scale-up use. • Potential recombinant, whole cell and recombinant whole cell lipases were enlisted. • Genetic engineering is a promising prospect in biodiesel area. - Abstract: The world demand for fuel as energy sources have arisen the need for generating alternatives such as biofuel. Biodiesel is a renewable fuel used particularly in diesel engines. Currently, biodiesel is mainly produced through transesterification reactions catalyzed by chemical catalysts, which produces higher fatty acid alkyl esters in shorter reaction time. Although extensive investigations on enzymatic transesterification by downstream processing were carried out, enzymatic transesterification has yet to be used in scale-up since commercial lipases are chiefly limited to the cost as well as long reaction time. While numerous lipases were studied and proven to have the high catalytic capacity, still enzymatic reaction requires more investigation. To fill this gap, finding optimal conditions for the reaction such as alcohol and oil choice, water content, reaction time and temperature through proper reaction modelling and simulations as well as the appropriate design and use of reactors for large scale production are crucial issues that need to be accurately addressed. Furthermore, lipase concentration, alternative lipase resources through whole cell technology and genetic engineering, recent immobilizing materials including nanoparticles, and the capacity of enzyme to be reused are important criteria to be neatly investigated. The present work reviews the current biodiesel feedstock, catalysis, general and novel immobilizing materials, bioreactors for enzymatic transesterification, potential lipase resources, intensification technics, and process modelling for enzymatic

  13. Determination of selenium via the fluorescence quenching effect of selenium on hemoglobin-catalyzed peroxidative reaction.

    Science.gov (United States)

    Chen, Ya-Hong; Zhang, Ya-Nan; Tian, Feng-Shou

    2015-05-01

    A new method for the determination of selenium based on its fluorescence quenching on the hemoglobin-catalyzed reaction of H2 O2 and l-tyrosine has been established. The effect of pH, foreign ions and the optimization of variables on the determination of selenium was examined. The calibration curve was found to be linear between the fluorescence quenching (F0 /F) and the concentration of selenium within the range of 0.16-4.00 µg/mL. The detection limit was 1.96 ng/mL and the relative standard deviation was 3.14%. This method can be used for the determination of selenium in Se-enriched garlic bulbs with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Transition Metal Catalyzed Reactions of Carbohydrates: a Nonoxidative Approach to Oxygenated Organics

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Mark

    1997-01-08

    There is a critical need for new environmentally friendly processes in the United States chemical industry as legislative and economic pressures push the industry to zero-waste and cradle-to-grave responsibility for the products they produce. Carbohydrates represent a plentiful, renewable resource, which for some processes might economically replace fossil feedstocks. While the conversion of biomass to fuels, is still not generally economical, the selective synthesis of a commodity or fine chemical, however, could compete effectively if appropriate catalytic conversion systems can be found. Oxygenated organics, found in a variety of products such as nylon and polyester, are particularly attractive targets. We believe that with concerted research efforts, homogeneous transition metal catalyzed reactions could play a significant role in bringing about this future green chemistry technology.

  15. Caryophyllene driven diversity in an one-pot rearrangement of oxidation and transanular reactions

    Science.gov (United States)

    Tang, Hao-Yu; Quan, Lu-Lu; Yu, Jie; Zhang, Qiang; Gao, Jin-Ming

    2018-03-01

    Diversity oriented synthesis starting from natural products is a newly coming strategy to build diverse skeletons to meet the demands of high throughput screening in drug development. Caryophyllene was being considered as an ideal starting point to build divers natural-like sesquiterpenes due to its rich sources and build-in reactivity. In this paper, six new natural-like products (2-7) were synthesized form the natural cryophyllene oxide via cascade oxidation and transannular reactions in a one-pot procedure. Their structures were elucidated by exhaustive spectra method including 2D NMR and X-ray diffraction. Of the products, compounds 6 and 7 possess very similar skeleton to natural products. Our findings demonstrated that one-pot cascade reactions on macrocyclic natural products is a concise strategy to create diverse natural-like skeletons.

  16. Rapid analysis of rearranged kappa light chain genes of circulating polysaccharide-specific B lymphocytes by means of immunomagnetic beads and the polymerase chain reaction

    DEFF Research Database (Denmark)

    Hougs, L; Barington, T; Madsen, HO

    1993-01-01

    reaction (PCR) using in addition a degenerate kappa light chain signal peptide region primer. The PCR product was cloned into the M13mp18 phage. The cloning efficiency was 100-600 clones/ml of blood. Of the 86 clones sequenced, 90% represented rearranged kappa light chain genes from different antibody...... of the B lymphocytes activated in vivo. Here, we present a method for rapid analysis of the rearranged kappa light chain genes used by human circulating antigen-specific B lymphocytes. After vaccination with Haemophilus influenzae type b capsular polysaccharide (HibCP) conjugated with protein, the Hib...

  17. Hydrogen-deuterium exchange reaction of 2-methylpyridine catalyzed by several fatty acids

    International Nuclear Information System (INIS)

    Hirata, Hirohumi; Fukuzumi, Kazuo.

    1976-01-01

    Hydrogen-deuterium exchange reaction of 2-methylpyridine has been studied by using several fatty acids as catalysts. The reaction was carried out in a sealed pyrex tube at 120 0 C, and the contents of the products were determined by mass spectrometry. Reaction of 2-methylpyridine with monodeuteroacetic acid (1 : 1, mol/mol) arrived at a equilibrium (d 0 reversible d 1 reversible d 2 reversible d 3 ) in 2 hr (d 0 41%, d 1 42%, d 2 15%, d 3 2%). No exchange was observed for the reaction of pyridine with monodeuteroacetic acid. The conversion-time curves of typical series reactions (d 0 → d 1 → d 2 → d 3 ) were obtained for the fatty acid catalyzed exchange in deuterium oxide. The effect of the fatty acid RCO 2 H (substrate : fatty acid : D 2 O=1 : 0.86 : 27.6, mol/mol/mol) on the conversion was in the order of R; C 1 --C 3 4 --C 10 , where the reaction mixtures were homogeneous in the case of C 1 --C 3 and were heterogeneous in the case of C 4 --C 10 . The effects of the initial concentration of the substrates and the catalysts (RCO 2 H) on the total conversion were studied by using some fatty acids (R; C 2 , C 4 and C 9 ) in deuterium oxide (for 2 hr). The total conversion of the substrate increases with increasing the concentration of the acids. The total conversion decreases in the case of R=C 9 , but, increases in the case of R=C 2 with increasing the concentration of the substrate. In the case of reactions with low concentrations of the substrate, the reactivity was in the order of C 9 >C 4 >C 2 , while with high concentrations, the reactivity was in the order of C 4 >C 2 >C 9 and C 9 >C 4 >C 2 with high and low concentrations of the acids, respectively. A possible reaction mechanism was proposed and discussed. (auth.)

  18. Palladium-catalyzed three-component reaction of N-tosyl hydrazones, isonitriles and amines leading to amidines.

    Science.gov (United States)

    Dai, Qiang; Jiang, Yan; Yu, Jin-Tao; Cheng, Jiang

    2015-12-04

    A palladium-catalyzed three-component reaction between N-tosyl hydrazones, aryl isonitriles and amines was developed, leading to amidines in moderate to good yields. This procedure features the rapid construction of amidine frameworks with high diversity and complexity. Ketenimines serve as intermediates, which encounter nucleophilic attack by amines to produce amidines.

  19. An Efficient Synthesis of Substituted Quinolines via Indium(III) Chloride Catalyzed Reaction of Imines with Alkynes

    International Nuclear Information System (INIS)

    Zhu, Mei; Fu, Weijun; Xun, Chen; Zou, Guanglong

    2012-01-01

    An efficient synthetic method for the preparation of quinolines through indium(III) chloride-catalyzed tandem addition-cyclization-oxidation reactions of imines with alkynes was developed. The processes can provide a diverse range of quinoline derivatives in good yields from simple imines and alkynes

  20. Synthesis of 1,1-Diborylalkenes through a Bronsted Base Catalyzed Reaction between Terminal Alkynes and Bis(pinacolato)diboron

    OpenAIRE

    Morinaga, Akira; Nagao, Kazunori; Ohmiya, Hirohisa; Sawamura, Masaya

    2015-01-01

    A method for the synthesis of 1,1-diborylalkenes through a Bronsted base catalyzed reaction between terminal alkynes and bis(pinacolato)diboron has been developed. The procedure allows direct synthesis of functionalized 1,1-diborylalkenes from various terminal alkynes including propiolates, propiolamides, and 2-ethynylazoles.

  1. Nafion®-catalyzed microwave-assisted Ritter reaction: An atom-economic solvent-free synthesis of amides

    Science.gov (United States)

    An atom-economic solvent-free synthesis of amides by the Ritter reaction of alcohols and nitriles under microwave irradiation is reported. This green protocol is catalyzed by solid supported Nafion®NR50 with improved efficiency and reduced waste production.

  2. Diazo compounds and N-tosylhydrazones: novel cross-coupling partners in transition-metal-catalyzed reactions.

    Science.gov (United States)

    Xiao, Qing; Zhang, Yan; Wang, Jianbo

    2013-02-19

    Transition-metal-catalyzed carbene transformations and cross-couplings represent two major reaction types in organometallic chemistry and organic synthesis. However, for a long period of time, these two important areas have evolved separately, with essentially no overlap or integration. Thus, an intriguing question has emerged: can cross-coupling and metal carbene transformations be merged into a single reaction cycle? Such a combination could facilitate the development of novel carbon-carbon bond-forming methodologies. Although this concept was first explored about 10 years ago, rapid developments inthis area have been achieved recently. Palladium catalysts can be used to couple diazo compounds with a wide variety of organic halides. Under oxidative coupling conditions, diazo compounds can also react with arylboronic acids and terminal alkynes. Both of these coupling reactions form carbon-carbon double bonds. As the key step in these catalytic processes, Pd carbene migratory insertion plays a vital role in merging the elementary steps of Pd intermediates, leading to novel carbon-carbon bond formations. Because the diazo substrates can be generated in situ from N-tosylhydrazones in the presence of base, the N-tosylhydrazones can be used as reaction partners, making this type of cross-coupling reaction practical in organic synthesis. N-Tosylhydrazones are easily derived from the corresponding aldehydes or ketones. The Pd-catalyzed cross-coupling of N-tosylhydrazones is considered a complementary reaction to the classic Shapiro reaction for converting carbonyl functionalities into carbon-carbon double bonds. It can also serve as an alternative approach for the Pd-catalyzed cross-coupling of carbonyl compounds, which is usually achieved via triflates. The combination of carbene formation and cross-coupling in a single catalytic cycle is not limited to Pd-catalyzed reactions. Recent studies of Cu-, Rh-, Ni-, and Co-catalyzed cross-coupling reactions with diazo

  3. Palladium(II-catalyzed Heck reaction of aryl halides and arylboronic acids with olefins under mild conditions

    Directory of Open Access Journals (Sweden)

    Tanveer Mahamadali Shaikh

    2013-08-01

    Full Text Available A series of general and selective Pd(II-catalyzed Heck reactions were investigated under mild reaction conditions. The first protocol has been developed employing an imidazole-based secondary phosphine oxide (SPO ligated palladium complex (6 as a precatalyst. The catalytic coupling of aryl halides and olefins led to the formation of the corresponding coupled products in excellent yields. A variety of substrates, both electron-rich and electron-poor olefins, were converted smoothly to the targeted products in high yields. Compared with the existing approaches employing SPO–Pd complexes in a Heck reaction, the current strategy features mild reaction conditions and broad substrate scope. Furthermore, we described the coupling of arylboronic acids with olefins, which were catalyzed by Pd(OAc2 and employed N-bromosuccinimide as an additive under ambient conditions. The resulted biaryls have been obtained in moderate to good yields.

  4. Copper-Catalyzed Sulfonyl Azide-Alkyne Cycloaddition Reactions: Simultaneous Generation and Trapping of Copper-Triazoles and -Ketenimines for the Synthesis of Triazolopyrimidines.

    Science.gov (United States)

    Nallagangula, Madhu; Namitharan, Kayambu

    2017-07-07

    First simultaneous generation and utilization of both copper-triazole and -ketenimine intermediates in copper-catalyzed sulfonyl azide-alkyne cycloaddition reactions is achieved for the one-pot synthesis of triazolopyrimidines via a novel copper-catalyzed multicomponent cascade of sulfonyl azides, alkynes, and azirines. Significantly, the reaction proceeds under very mild conditions in good yields.

  5. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.

    Science.gov (United States)

    Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso

    2012-08-10

    This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Methanetrisulfonic Acid: A Highly Efficient Strongly Acidic Catalyst for Wagner-Meerwein Rearrangement, Friedel-Crafts Alkylation and Acylation Reactions. Examples from Vitamin E Synthesis

    Directory of Open Access Journals (Sweden)

    Francesco Pace

    2009-04-01

    Full Text Available Methanetrisulfonic acid had been prepared for the first time over 140 years ago, but it was used only scarcely in chemical transformations. In the course of our activities dealing with key-steps of industrial syntheses of vitamins, e.g. economically important vitamin E (acetate, we found that methanetrisulfonic acid is an extremely effective catalyst in a variety of reactions. Examples of its applications are Wagner-Meerwein rearrangements, Friedel-Crafts alkylations and ring closures, as well as acylation reactions. Use of this catalyst in truly catalytic amounts (0.04-1.0 mol% resulted in highly selective transformations and yields over 95%. (Remark by the authors: We are describing only one example each for the various types of reactions. Therefore, it would be more appropriate to write (here and in the Introduction and in the Conclusion sections: “Wagner-Meerwein rearrangement, Friedel-Crafts alkylation and ring closure, as well as acylation reactions”

  7. Possible pathophysiological roles of transglutaminase-catalyzed reactions in the pathogenesis of human neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Enrica Serretiello

    2015-09-01

    Full Text Available Transglutaminases (TG, E.C. 2.3.2.13 are related and ubiquitous enzymes that catalyze the cross linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. These enzymes are also capable of catalyzing other post-translational reactions important for cell life. The distribution and the physiological roles of human TGs have been widely studied in numerous cell types and tissues and recently their roles in several diseases have begun to be identified. It has been hypothesized that transglutaminase activity is directly involved in the pathogenetic mechanisms responsible for several human diseases. In particular, tissue TG (tTG, TG2, a member of the TG enzyme family, has been recently shown to be involved in the molecular mechanisms responsible for a very widespread human pathology, Celiac Disease (CD, one of the most common food intolerances described in the western population. The main food agent that provokes the strong and diffuse clinical symptoms has been known for several years to be gliadin, a protein present in a very large number of human foods derived from vegetables. Recently, some biochemical and immunological aspects of this very common disease have been clarified, and “tissue” transglutaminase, a multifunctional and ubiquitous enzyme, has been identified as one of the major factors. The aim of this review is to summarize the most recent findings concerning the relationships between the biochemical properties of the transglutaminase activity and the basic molecular mechanisms responsible for some human diseases, with particular reference to neuropsychiatric disorders. Possible molecular links between CD and neuropsychiatric disorders, and the use of transglutaminase inhibitors are also discussed.

  8. The bacterial catabolism of polycyclic aromatic hydrocarbons: Characterization of three hydratase-aldolase-catalyzed reactions

    Directory of Open Access Journals (Sweden)

    Jake A. LeVieux

    2016-12-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are highly toxic, pervasive environmental pollutants with mutagenic, teratogenic, and carcinogenic properties. There is interest in exploiting the nutritional capabilities of microbes to remove PAHs from various environments including those impacted by improper disposal or spills. Although there is a considerable body of literature on PAH degradation, the substrates and products for many of the enzymes have never been identified and many proposed activities have never been confirmed. This is particularly true for high molecular weight PAHs (e.g., phenanthrene, fluoranthene, and pyrene. As a result, pathways for the degradation of these compounds are proposed to follow one elucidated for naphthalene with limited experimental verification. In this pathway, ring fission produces a species that can undergo a non-enzymatic cyclization reaction. An isomerase opens the ring and catalyzes a cis to trans double bond isomerization. The resulting product is the substrate for a hydratase-aldolase, which catalyzes the addition of water to the double bond of an α,β-unsaturated ketone, followed by a retro-aldol cleavage. Initial kinetic and mechanistic studies of the hydratase-aldolase in the naphthalene pathway (designated NahE and two hydratase-aldolases in the phenanthrene pathway (PhdG and PhdJ have been completed. Crystallographic work on two of the enzymes (NahE and PhdJ provides a rudimentary picture of the mechanism and a platform for future work to identify the structural basis for catalysis and the individual specificities of these hydratase-aldolases.

  9. Palladium-catalyzed cyclization reactions of 2-vinylthiiranes with heterocumulenes. Regioselective and enantioselective formation of thiazolidine, oxathiolane, and dithiolane derivatives.

    Science.gov (United States)

    Larksarp, C; Sellier, O; Alper, H

    2001-05-18

    The first palladium-catalyzed ring-expansion reaction of 2-vinylthiiranes with heterocumulenes to form sulfur-containing five-membered-ring heterocycles is described. This regioselective reaction requires 5 mol % of Pd(2)(dba)(3).CHCl(3) and 10 mol % of bidendate phosphine ligand (dppp, BINAP), at 50-80 degrees C, in THF. The reaction of 2-vinylthiiranes with carbodiimides, isocyanates, and ketenimines affords 1,3-thiazolidine derivatives, whereas the reaction with diphenylketene or isothiocyanates results in the formation of 1,3-oxathiolane or 1,3-dithiolane compounds in good to excellent isolated yields and in up to 78% ee.

  10. DNA and Protein Requirements for Substrate Conformational Changes Necessary for Human Flap Endonuclease-1-catalyzed Reaction*

    Science.gov (United States)

    Algasaier, Sana I.; Exell, Jack C.; Bennet, Ian A.; Thompson, Mark J.; Gotham, Victoria J. B.; Shaw, Steven J.; Craggs, Timothy D.; Finger, L. David; Grasby, Jane A.

    2016-01-01

    Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5′-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5′-termini in vivo. Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5′-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5′-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr40, Asp181, and Arg100 and a reacting duplex 5′-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5′-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage. PMID:26884332

  11. Structural characterization of tartrate dehydrogenase: a versatile enzyme catalyzing multiple reactions

    International Nuclear Information System (INIS)

    Malik, Radhika; Viola, Ronald E.

    2010-01-01

    The first structure of an NAD-dependent tartrate dehydrogenase (TDH) has been solved to 2 (angstrom) resolution by single anomalous diffraction (SAD) phasing as a complex with the intermediate analog oxalate, Mg 2+ and NADH. This TDH structure from Pseudomonas putida has a similar overall fold and domain organization to other structurally characterized members of the hydroxy-acid dehydrogenase family. However, there are considerable differences between TDH and these functionally related enzymes in the regions connecting the core secondary structure and in the relative positioning of important loops and helices. The active site in these complexes is highly ordered, allowing the identification of the substrate-binding and cofactor-binding groups and the ligands to the metal ions. Residues from the adjacent subunit are involved in both the substrate and divalent metal ion binding sites, establishing a dimer as the functional unit and providing structural support for an alternating-site reaction mechanism. The divalent metal ion plays a prominent role in substrate binding and orientation, together with several active-site arginines. Functional groups from both subunits form the cofactor-binding site and the ammonium ion aids in the orientation of the nicotinamide ring of the cofactor. A lysyl amino group (Lys192) is the base responsible for the water-mediated proton abstraction from the C2 hydroxyl group of the substrate that begins the catalytic reaction, followed by hydride transfer to NAD. A tyrosyl hydroxyl group (Tyr141) functions as a general acid to protonate the enolate intermediate. Each substrate undergoes the initial hydride transfer, but differences in substrate orientation are proposed to account for the different reactions catalyzed by TDH.

  12. Possibilities and scope of the double isotope effect method in the elucidation of mechanisms of enzyme catalyzed reactions

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H L; Medina, R [Technische Univ. Muenchen, Freising (Germany, F.R.). Lehrstuhl fuer Allgemeine Chemie und Biochemie

    1991-01-01

    Kinetic isotope effects on enzyme catalyzed reactions are indicative for the first irreversible in a sequence of individual steps. Hints on the relative velocities of other steps can only be obtained from the partitioning factor R and its dependence on external reaction conditions. In general, the experimental data needed are obtained from isotope abundance measurements in a defined position of the substrate or product as a function of turnover. This method does not reveal events dealing with neighbour atoms or preceding the main isotope sensitive step. In the method presented here, the analytical measurement is extended to the second atom involved in a bond fission of formation (Double Isotope Effect Method). It is shown that the additional results obtained support the identification of the main isotopically sensitive step and its relative contribution to the overall reaction rate, the identification of other kinetically significant steps and the differentiation between stepwise and concerted reaction mechanisms. The method and its advantages are demonstrated on reactions comprising C-N-bond splitting (urease and arginase reaction), C-C-bound fission (reactions catalyzed by pyruvate-dehydrogenase, pyruvate-formiate-lyase and lactate-oxidase), C-O-bound formation (ribulose-bisphosphate-oxygenase reaction), and N-O-bond fission (nitrate- and nitrite-reductase reactions). (orig.).

  13. The conversion of dimethyl ether over Pt/H-ZSM5. A bifunctional catalyzed reaction

    NARCIS (Netherlands)

    Engelen, C.W.R.; Wolthuizen, J.P.; Hooff, van J.H.C.; Imelik, B.; Naccache, C.; Coudurier, G.

    1985-01-01

    At low temperatures dimethylether mixed with hydrogen reacts over a platinum loaded H-ZSM5 catalyst selectivity to methane. Two successive steps can be distinguished; first the acid-catalyzed formation of a trimethyloxoniumion, followed by a metal-catalyzed hydrogenation to methane. Experiments with

  14. Oxidoreduction reactions involving the electrostatic and the covalent complex of cytochrome c and plastocyanin: Importance of the protein rearrangement for the intracomplex electron-transfer reaction

    International Nuclear Information System (INIS)

    Peerey, L.M.; Kostic, N.M.

    1989-01-01

    Horse heart cytochrome c and French bean plastocyanin are cross-linked one-to-one by a carbodiimide in the same general orientation in which they associate electrostatically. The reduction potentials of the Fe and Cu atoms in the covalent diprotein complex are respectively 245 and 385 mV vs NHE; the EPR spectra of the two metals are not perturbed by cross-linking. For isomers of the covalent diprotein complex, which probably differ slightly from one another in the manner of cross-linking, are separated efficiently by cation-exchange chromatography. Stopped-flow spectrophotometric experiments with the covalent diprotein complex show that the presence of plastocyanin somewhat inhibits oxidation of ferrocytochrome c by [Fe(CN) 6 ] 3- and somewhat promotes oxidation of this protein by [Fe(C 5 H 5 ) 2 ] + . These changes in reactivity are explained in terms of electrostatic and steric effects. Pulse-radiolysis experiments with the electrostatic diprotein complex yield association constants of ≥5 x 10 6 and 1 x 10 5 M -1 at ionic strengths of 1 and 40 mM, respectively, and the rate constant of 1.05 x 10 3 s -1 , regardless of the ionic strength, for the intracomplex electron-transfer reaction. Analogous pulse-radiolysis experiments with each of the four isomers of the covalent diprotein complex, at ionic strengths of both 2 and 200 mM, show an absence of the intracomplex electron-transfer reaction. A rearrangement of the proteins for this reaction seems to be possible (or unnecessary) in the electrostatic complex but impossible in the covalent complex

  15. Copper-Catalyzed Oxidative Reaction of β-Keto Sulfones with Alcohols via C-S Bond Cleavage: Reaction Development and Mechanism Study.

    Science.gov (United States)

    Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi

    2018-02-16

    A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. N-Heterocyclic Carbene-Catalyzed Vinylogous Mukaiyama Aldol Reaction of α-Keto Esters and α-Trifluoromethyl Ketones

    KAUST Repository

    Du, Guang-Fen; Wang, Ying; Xing, Fen; Xue, Mei; Guo, Xu-Hong; Huang, Kuo-Wei; Dai, Bin

    2015-01-01

    © Georg Thieme Verlag Stuttgart · New York · Synthesis 2016. N-Heterocyclic carbene (NHC)-catalyzed vinylogous Mukaiyama aldol reaction of ketones was developed. Under the catalysis of 5 mol% NHC, α-keto esters and α-trifluoromethyl ketones reacted with 2-(trimethysilyloxy)furan efficiently to produce γ-substituted butenolides containing adjacent quaternary and tertiary carbon centers in high yields with good diastereoselectivities.

  17. Supercritical CO2 as a reaction medium for synthesis of capsaicin analogues by lipase-catalyzed transacylation of capsaicin.

    Science.gov (United States)

    Kobata, Kenji; Kobayashi, Mamiko; Kinpara, Sachiyo; Watanabe, Tatsuo

    2003-09-01

    Capsaicin analogues having different acyl moiety were synthesized by lipase-catalyzed transacylation of capsaicin with a corresponding acyl donor in supercritical CO2 as a reaction medium. Transacylation with methyl tetradecanoate using Novozym 435 as a catalyst gave vanillyl tetradecanamide in a 54% yield at 80 degrees C and 19 MPa over 72 h. Vanillyl (Z)-9-octadecenamide, olvanil, was synthesized from triolein in a 21% yield over 7 d.

  18. Recent Advances in Recoverable Systems for the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction (CuAAC

    Directory of Open Access Journals (Sweden)

    Alessandro Mandoli

    2016-09-01

    Full Text Available The explosively-growing applications of the Cu-catalyzed Huisgen 1,3-dipolar cycloaddition reaction between organic azides and alkynes (CuAAC have stimulated an impressive number of reports, in the last years, focusing on recoverable variants of the homogeneous or quasi-homogeneous catalysts. Recent advances in the field are reviewed, with particular emphasis on systems immobilized onto polymeric organic or inorganic supports.

  19. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    Science.gov (United States)

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  20. Rhodium(III)-catalyzed three-component reaction of imines, alkynes, and aldehydes through C-H activation.

    Science.gov (United States)

    Huang, Ji-Rong; Song, Qiang; Zhu, Yu-Qin; Qin, Liu; Qian, Zhi-Yong; Dong, Lin

    2014-12-15

    An efficient rhodium(III)-catalyzed tandem three-component reaction of imines, alkynes and aldehydes through CH activation has been developed. High stereo- and regioselectivity, as well as good yields were obtained in most cases. The simple and atom-economical approach offers a broad scope of substrates, providing polycyclic skeletons with potential biological properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 1H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    International Nuclear Information System (INIS)

    Esaki, N.; Nakayama, T.; Sawada, S.; Tanaka, H.; Soda, K.

    1985-01-01

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. For L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically

  2. Combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase for catalyzing cascade chemical reactions.

    Science.gov (United States)

    Nguyen, Le Truc; Yang, Kun-Lin

    2017-05-01

    Cascade reactions involved unstable intermediates are often encountered in biological systems. In this study, we developed combined cross-linked enzyme aggregates (combi-CLEA) to catalyze a cascade reaction which involves unstable hydrogen peroxide as an intermediate. The combi-CLEA contains two enzymes̶ glucose oxidase (GOx) and horseradish peroxidase (HRP) which are cross-linked together as solid aggregates. The first enzyme GOx catalyzes the oxidation of glucose and produces hydrogen peroxide, which is used by the second enzyme HRP to oxidize 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The apparent reaction rate of the cascade reaction reaches 10.5±0.5μM/min when the enzyme ratio is 150:1 (GOx:HRP). Interestingly, even in the presence of catalase, an enzyme that quickly decomposes hydrogen peroxide, the reaction rate only decreases by 18.7% to 8.3±0.3μM/min. This result suggests that the intermediate hydrogen peroxide is not decomposed by catalase due to a short diffusion distance between GOx and HRP in the combi-CLEA. Scanning electron microscopy images suggest that combi-CLEA particles are hollow spheres and have an average diameter around 250nm. Because of their size, combi-CLEA particles can be entrapped inside a nylon membrane for detecting glucose by using the cascade reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Rhodium-Catalyzed Insertion Reaction of PhP Group of Pentaphenylcyclopentaphosphine with Acyclic and Cyclic Disulfides.

    Science.gov (United States)

    Arisawa, Mieko; Sawahata, Kyosuke; Yamada, Tomoki; Sarkar, Debayan; Yamaguchi, Masahiko

    2018-02-16

    Organophosphorus compounds with a phosphorus atom attached to a phenyl group and two organothio/organoseleno groups were synthesized using the rhodium-catalyzed insertion reaction of the PhP group of pentaphenylcyclopentaphosphine (PhP) 5 with acyclic disulfides and diselenides. The method was applied to the synthesis of heterocyclic compounds containing the S-P-S group by the reaction of (PhP) 5 and cyclic disulfides such as 1,2-dithietes, 1,2-dithiocane, 1,4,5-dithiopane, and 1,2-dithiolanes.

  4. Solvent- and ligand-induced switch of selectivity in gold(I-catalyzed tandem reactions of 3-propargylindoles

    Directory of Open Access Journals (Sweden)

    Roberto Sanz

    2011-06-01

    Full Text Available The selectivity of our previously described gold-catalyzed tandem reaction, 1,2-indole migration followed by aura-iso-Nazarov cyclization, of 3-propargylindoles bearing (heteroaromatic substituents at both the propargylic and terminal positions, was reversed by the proper choice of the catalyst and the reaction conditions. Thus, 3-(inden-2-ylindoles, derived from an aura-Nazarov cyclization (instead of an aura-iso-Nazarov cyclization, were obtained in moderate to good yields from a variety of 3-propargylindoles.

  5. Au-Catalyzed Synthesis of 2-Alkylindoles from N-Arylhydroxylamines and Terminal Alkynes

    Science.gov (United States)

    Wang, Yanzhao; Ye, Longwu

    2012-01-01

    The first gold-catalyzed addition of N-arylhydroxylamines to aliphatic terminal alkynes is developed to access O-alkenyl-N-arylhydroxylamines, which undergo facile in situ sequential 3,3-rearrangements and cyclodehydrations to afford 2-alkylindoles with regiospecificity and under exceptionally mild reaction conditions. PMID:21637891

  6. Radical S-adenosylmethionine (SAM) enzymes in cofactor biosynthesis: a treasure trove of complex organic radical rearrangement reactions.

    Science.gov (United States)

    Mehta, Angad P; Abdelwahed, Sameh H; Mahanta, Nilkamal; Fedoseyenko, Dmytro; Philmus, Benjamin; Cooper, Lisa E; Liu, Yiquan; Jhulki, Isita; Ealick, Steven E; Begley, Tadhg P

    2015-02-13

    In this minireview, we describe the radical S-adenosylmethionine enzymes involved in the biosynthesis of thiamin, menaquinone, molybdopterin, coenzyme F420, and heme. Our focus is on the remarkably complex organic rearrangements involved, many of which have no precedent in organic or biological chemistry. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Detection of clonal T-cell receptor beta and gamma chain gene rearrangement by polymerase chain reaction and capillary gel electrophoresis.

    Science.gov (United States)

    Fan, Hongxin; Robetorye, Ryan S

    2013-01-01

    Although established diagnostic criteria exist for mature T-cell neoplasms, a definitive diagnosis of a T-cell lymphoproliferative disorder cannot always be obtained using more conventional techniques such as flow cytometric immunophenotyping, conventional cytogenetics, fluorescence in situ hybridization, or immunohistochemistry. However, because T-cell malignancies contain identically rearranged T-cell receptor gamma (TCRG) and/or beta (TCRB) genes, the polymerase chain reaction (PCR) can be a fast, convenient, and dependable option to identify clonal T-cell processes. This chapter describes the use of PCR and capillary electrophoresis to identify clonal TCRB and TCRG gene rearrangements (TCRB and TCRG PCR) using a commercially available method employing multiple multiplex PCR tubes that was originally developed as the result of a large European BIOMED-2 collaborative study (Invivoscribe Technologies). The core protocol for the TCRB assay involves the use of three separate multiplex master mix tubes. Tubes A and B target the framework regions within the variable and joining regions of the TCRB gene, and Tube C targets the diversity and joining regions of the TCRB gene. The core protocol for the TCRG assay utilizes two multiplex master mix tubes (Tubes A and B) that target the variable and joining regions of the TCRG gene. Use of the five BIOMED-2 TCRB and TCRG PCR multiplex tubes in parallel can detect approximately 94% of clonal TCR gene rearrangements.

  8. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    International Nuclear Information System (INIS)

    Martin del Campo, Julia S.; Patino, Rodrigo

    2011-01-01

    Research highlights: → The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. → A spectrophotometric method is proposed for kinetic and thermodynamic analysis. → The pH and the temperature influences are reported on physical chemical properties. → Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD ox ) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD ox as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, Δ f G o = -1784 ± 5 kJ mol -1 .

  9. Kinetic and thermodynamic study of the reaction catalyzed by glucose-6-phosphate dehydrogenase with nicotinamide adenine dinucleotide

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo, Julia S. [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico); Patino, Rodrigo, E-mail: rtarkus@mda.cinvestav.mx [Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados - Unidad Merida, Carretera antigua a Progreso Km. 6, A.P. 73 Cordemex, 97310, Merida, Yucatan (Mexico)

    2011-04-20

    Research highlights: {yields} The reaction catalyzed by one enzyme of the pentose phosphate pathway was studied. {yields} A spectrophotometric method is proposed for kinetic and thermodynamic analysis. {yields} The pH and the temperature influences are reported on physical chemical properties. {yields} Relative concentrations of substrates are also important in the catalytic process. - Abstract: The enzyme glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) from Leuconostoc mesenteroides has a dual coenzyme specificity with oxidized nicotinamide adenine dinucleotide (NAD{sub ox}) and oxidized nicotinamide adenine dinucleotide phosphate as electron acceptors. The G6PD coenzyme selection is determined by the metabolic cellular prevailing conditions. In this study a kinetic and thermodynamic analysis is presented for the reaction catalyzed by G6PD from L. mesenteroides with NAD{sub ox} as coenzyme in phosphate buffer. For this work, an in situ spectrophotometric technique was employed based on the detection of one product of the reaction. Substrate and coenzyme concentrations as well as temperature and pH effects were evaluated. The apparent equilibrium constant, the Michaelis constant, and the turnover number were determined as a function of each experimental condition. The standard transformed Gibbs energy of reaction was determined from equilibrium constants at different initial conditions. For the product 6-phospho-D-glucono-1,5-lactone, a value of the standard Gibbs energy of formation is proposed, {Delta}{sub f}G{sup o} = -1784 {+-} 5 kJ mol{sup -1}.

  10. Combining the [2,3] Sigmatropic Rearrangement and Ring-Closing Metathesis Strategies for the Synthesis of Spirocyclic Alkaloids. A Short and Efficient Route to (+/-)-Perhydrohistrionicotoxin

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Hagberg, Lars; Poulsen, Anders

    1999-01-01

    This paper describes the use of selenium-based [2,3] sigmatropic rearrangement in combination with ruthenium-catalyzed ring-closing metathesis (RCM) for the synthesis of azaspiro ring systems, as exemplified by the reactions of model substrates 5 and 6. The methodology has been applied to a short...... is potentially enantioselective, and key steps were the [2,3] sigmatropic rearrangement of 11 to 12 via the corresponding allylic selenide (86% yield) and ruthenium-catalyzed RCM of 13 to 14 (80%). (C) 1999 Elsevier Science Ltd. All rights reserved....

  11. Nickel-Catalyzed Decarbonylative Silylation, Borylation, and Amination of Arylamides via a Deamidative Reaction Pathway

    KAUST Repository

    Rueping, Magnus; Lee, Shao-Chi; Guo, Lin; Yue, Huifeng; Liao, Hsuan-Hung

    2017-01-01

    A nickel-catalyzed decarbonylative silylation, borylation, and amination of amides has been developed. This new methodology allows the direct interconversion of amides to arylsilanes, arylboronates, and arylamines and enables a facile route for carbon–heteroatom bond formations in a straightforward and mild fashion.

  12. Nickel-Catalyzed Decarbonylative Silylation, Borylation, and Amination of Arylamides via a Deamidative Reaction Pathway

    KAUST Repository

    Rueping, Magnus

    2017-10-23

    A nickel-catalyzed decarbonylative silylation, borylation, and amination of amides has been developed. This new methodology allows the direct interconversion of amides to arylsilanes, arylboronates, and arylamines and enables a facile route for carbon–heteroatom bond formations in a straightforward and mild fashion.

  13. Cu(OAc)2 catalyzed Sonogashira cross-coupling reaction in amines

    Institute of Scientific and Technical Information of China (English)

    Sheng Mei Guo; Chen Liang Deng; Jin Heng Li

    2007-01-01

    A simple Cu(OAc)2 catalyzed Sonogashira coupling protocol is presented. It was found that the couplings of a variety of aryl halides with terminal alkynes were conducted smoothly to afford the corresponding desired products in moderate to excellent yields, using Cu(OAc)2 as the catalyst and Et3N as the solvent.

  14. Beta-D-xylosidase from Selenomonas ruminantium: thermodynamics of enzyme-catalyzed and noncatalyzed reactions

    Science.gov (United States)

    Beta-D-xylosidase/alpha-L-arabinofuranosidase from Selenomonas ruminantium (SXA) is the most active enzyme known for catalyzing hydrolysis of 1,4-beta-D-xylooligosaccharides to D-xylose. Temperature dependence for hydrolysis of 4-nitrophenyl-beta-D-xylopyranoside (4NPX), 4-nitrophenyl-alpha-L-arabi...

  15. Pd-catalyzed ethylene methoxycarbonylation with Brønsted acid ionic liquids as promoter and phase-separable reaction media

    DEFF Research Database (Denmark)

    Garcia-Suarez, Eduardo J.; Khokarale, Santosh Govind; Nguyen van Buu, Olivier

    2014-01-01

    Brønsted acid ionic liquids (BAILs) were prepared and applied as combined acid promoters and reaction media in Pd–phosphine catalyzed methoxycarbonylation of ethylene to produce methyl propionate. The BAILs served as alternatives to common mineral acids required for the reaction, e.g. methanesulf......Brønsted acid ionic liquids (BAILs) were prepared and applied as combined acid promoters and reaction media in Pd–phosphine catalyzed methoxycarbonylation of ethylene to produce methyl propionate. The BAILs served as alternatives to common mineral acids required for the reaction, e...

  16. Optimizing Metalloporphyrin-Catalyzed Reduction Reactions for In Situ Remediation of DOE Contaminants

    International Nuclear Information System (INIS)

    Schlautman, Mark A.

    2013-01-01

    Past activities have resulted in a legacy of contaminated soil and groundwater at Department of Energy facilities nationwide. Uranium and chromium are among the most frequently encountered and highest-priority metal and radionuclide contaminants at DOE installations. Abiotic chemical reduction of uranium and chromium at contaminated DOE sites can be beneficial because the reduced metal species are less soluble in water, less mobile in the environment, and less toxic to humans and ecosystems. Although direct biological reduction has been reported for U(VI) and Cr(VI) in laboratory studies and at some field sites, the reactions can sometimes be slow or even inhibited due to unfavorable environmental conditions. One promising approach for the in-situ remediation of DOE contaminants is to develop electron shuttle catalysts that can be delivered precisely to the specific subsurface locations where contaminants reside. Previous research has shown that reduction of oxidized organic and inorganic contaminants often can be catalyzed by electron shuttle systems. Metalloporphyrins and their derivatives are well known electron shuttles for many biogeochemical systems, and thus were selected to study their catalytic capabilities for the reduction of chromium and uranium in the presence of reducing agents. Zero valent iron (ZVI) was chosen as the primary electron donor in most experimental systems. Research proceeded in three phases and the key findings of each phase are reported here. Phase I examined Cr(VI) reduction and utilized micro- and nano-sized ZVI as the electron donors. Electron shuttle catalysts tested were cobalt- and iron-containing metalloporphyrins and Vitamin B12. To aid in the recycle and reuse of the nano-sized ZVI and soluble catalysts, sol-gels and calcium-alginate gel beads were tested as immobilization/support matrices. Although the nano-sized ZVI could be incorporated within the alginate gel beads, preliminary attempts to trap it in sol-gels were not

  17. Optimizing Metalloporphyrin-Catalyzed Reduction Reactions for In Situ Remediation of DOE Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Schlautman, Mark A. [Clemson University, Clemson, SC (United States)

    2013-07-14

    Past activities have resulted in a legacy of contaminated soil and groundwater at Department of Energy facilities nationwide. Uranium and chromium are among the most frequently encountered and highest-priority metal and radionuclide contaminants at DOE installations. Abiotic chemical reduction of uranium and chromium at contaminated DOE sites can be beneficial because the reduced metal species are less soluble in water, less mobile in the environment, and less toxic to humans and ecosystems. Although direct biological reduction has been reported for U(VI) and Cr(VI) in laboratory studies and at some field sites, the reactions can sometimes be slow or even inhibited due to unfavorable environmental conditions. One promising approach for the in-situ remediation of DOE contaminants is to develop electron shuttle catalysts that can be delivered precisely to the specific subsurface locations where contaminants reside. Previous research has shown that reduction of oxidized organic and inorganic contaminants often can be catalyzed by electron shuttle systems. Metalloporphyrins and their derivatives are well known electron shuttles for many biogeochemical systems, and thus were selected to study their catalytic capabilities for the reduction of chromium and uranium in the presence of reducing agents. Zero valent iron (ZVI) was chosen as the primary electron donor in most experimental systems. Research proceeded in three phases and the key findings of each phase are reported here. Phase I examined Cr(VI) reduction and utilized micro- and nano-sized ZVI as the electron donors. Electron shuttle catalysts tested were cobalt- and iron-containing metalloporphyrins and Vitamin B12. To aid in the recycle and reuse of the nano-sized ZVI and soluble catalysts, sol-gels and calcium-alginate gel beads were tested as immobilization/support matrices. Although the nano-sized ZVI could be incorporated within the alginate gel beads, preliminary attempts to trap it in sol-gels were not

  18. Catalytic Ester and Amide to Amine Interconversion: Nickel-Catalyzed Decarbonylative Amination of Esters and Amides by C−O and C−C Bond Activation

    KAUST Repository

    Yue, Huifeng

    2017-03-15

    An efficient nickel-catalyzed decarbonylative amination reaction of aryl and heteroaryl esters has been achieved for the first time. The new amination protocol allows the direct interconversion of esters and amides into the corresponding amines and represents a good alternative to classical rearrangements as well as cross coupling reactions.

  19. Catalytic Ester and Amide to Amine Interconversion: Nickel-Catalyzed Decarbonylative Amination of Esters and Amides by C−O and C−C Bond Activation

    KAUST Repository

    Yue, Huifeng; Guo, Lin; Liao, Hsuan-Hung; Cai, Yunfei; Zhu, Chen; Rueping, Magnus

    2017-01-01

    An efficient nickel-catalyzed decarbonylative amination reaction of aryl and heteroaryl esters has been achieved for the first time. The new amination protocol allows the direct interconversion of esters and amides into the corresponding amines and represents a good alternative to classical rearrangements as well as cross coupling reactions.

  20. Cu-catalyzed esterification reaction via aerobic oxygenation and C-C bond cleavage: an approach to α-ketoesters.

    Science.gov (United States)

    Zhang, Chun; Feng, Peng; Jiao, Ning

    2013-10-09

    The Cu-catalyzed novel aerobic oxidative esterification reaction of 1,3-diones for the synthesis of α-ketoesters has been developed. This method combines C-C σ-bond cleavage, dioxygen activation and oxidative C-H bond functionalization, as well as provides a practical, neutral, and mild synthetic approach to α-ketoesters which are important units in many biologically active compounds and useful precursors in a variety of functional group transformations. A plausible radical process is proposed on the basis of mechanistic studies.

  1. The reaction mechanism for dehydration process catalyzed by type I dehydroquinate dehydratase from Gram-negative Salmonella enterica

    Science.gov (United States)

    Yao, Yuan; Li, Ze-Sheng

    2012-01-01

    The fundamental reaction mechanism for the dehydration process catalyzed by type I dehydroquinate dehydratase from Gram-negative Salmonella enterica has been studied by density functional theory calculations. The results indicate that the dehydration process undergoes a two-step cis-elimination mechanism, which is different from the previously proposed one. The catalytic roles of both the highly conserved residue His143 and the Schiff base formed between the substrate and Lys170 have also been elucidated. The structural and mechanistic insight presented here may direct the design of type I dehydroquinate dehydratase enzyme inhibitors as non-toxic antimicrobials, anti-fungals, and herbicides.

  2. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klobukowski, Erik [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallic complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system and

  3. Laccase-catalyzed removal of the antimicrobials chlorophene and dichlorophen from water: Reaction kinetics, pathway and toxicity evaluation.

    Science.gov (United States)

    Shi, Huanhuan; Peng, Jianbiao; Li, Jianhua; Mao, Liang; Wang, Zunyao; Gao, Shixiang

    2016-11-05

    As active agents in cleaning and disinfecting products, antimicrobials have been widely spread in the environment and have drawn extensive attention as potential threats to the ecological system and human health. In this study, the laccase-catalyzed removal of two emerging antimicrobials, chlorophene (CP) and dichlorophen (DCP), was investigated under simulated environmental conditions. Intrinsic reaction kinetics showed that the removal of CP and DCP followed second-order reaction kinetics, first-order with respect to both the enzyme and the substrate concentration. It was also found that fulvic acid could suppress the transformation of CP and DCP by reversing the oxidation reactions through its action as a scavenger of the free radical intermediates produced from reactions between laccase and the substrates. Several reaction products were identified by a quadrupole time-of-flight mass spectrometer, and detailed reaction pathways were proposed. For both CP and DCP, direct polymerization was the principal pathway, and the coupling patterns were further corroborated based on molecular modeling. The nucleophilic substitution of chlorine by the hydroxyl group was observed, and further oxidation products capable of coupling with each other were also found. Additionally, toxicity evaluation tests using Scenedesmus obliquus confirmed that the toxicity of CP and DCP was effectively eliminated during the reaction processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Exploiting the CNC side chain in heterocyclic rearrangements: synthesis of 4(5)-acylamino-imidazoles.

    Science.gov (United States)

    Piccionello, Antonio Palumbo; Buscemi, Silvestre; Vivona, Nicolò; Pace, Andrea

    2010-08-06

    A new variation on the Boulton-Katritzky reaction is reported, namely, involving use of a CNC side chain. A novel Montmorillonite-K10 catalyzed nonreductive transamination of a 3-benzoyl-1,2,4-oxadiazole afforded a 3-(alpha-aminobenzyl)-1,2,4-oxadiazole, which was condensed with benzaldehydes to afford the corresponding imines. In the presence of strong base, these imines underwent Boulton-Katritzky-type rearrangement to afford novel 4(5)-acylaminoimidazoles.

  5. Regioselective syntheses of 1,2-benzothiazines by rhodium-catalyzed annulation reactions.

    Science.gov (United States)

    Cheng, Ying; Bolm, Carsten

    2015-10-12

    Rhodium-catalyzed directed carbene insertions into aromatic CH bonds of S-aryl sulfoximines lead to intermediates, which upon dehydration provide 1,2-benzothiazines in excellent yields. The domino-type process is regioselective and shows a high functional-group tolerance. It is scalable, and the only by-products are dinitrogen and water. Three illustrative transformations underscore the synthetic value of the products. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Theoretical Study on the Aza-Diels-Alder Reaction Catalyzed by PHCl2 Lewis Acid via Pnicogen Bonding.

    Science.gov (United States)

    Yaghoobi, Fereshteh; Sohrabi Mahboub, Mahdi

    2018-03-15

    The reaction mechanism of the Aza-Diels-Alder (A-D-A) cycloaddition reaction between X 2 C═NNH 2 , where X = H, F, Cl, Br, and 1,3-butadiene catalyzed by a PHCl 2 Lewis acid was characterized using density functional theory calculations. The influences of various substituents of X on the studied reaction were analyzed using the activation strain model (ASM), which is also termed as the distortion-interaction model. Calculations showed that the smallest and largest values of the activation energies belong to the substituents of F and Br, respectively. The activation energy of the studied reactions was decreased within 8.6 kcal·mol -1 in the presence of PHCl 2 catalyst. Investigations showed that the pnicogen bonding is adequately capable of activating the A-D-A reaction. The quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis were implemented to understand the nature of C 4,Cbut ···C XIm and C 1,Cbut ···N XIm bonds at the TS structures. Additionally, the energy decomposition analysis (EDA) based on the ETS-NOCV scheme was used to characterize the nature of C 4,Cbut ···C XIm and C 1,Cbut ···N XIm bond. The results of the study mirror the fact that the PHCl 2 Lewis acid may be suggested as a simple suitable catalyst for experimental studies on the A-D-A reactions.

  7. The photochemical reaction of 1,1-dicyano-3-phenylbut-1-ene. Simultaneous occurrence of p-methane and di-p-methane rearrangements

    Directory of Open Access Journals (Sweden)

    Silva Francisco A. da

    1999-01-01

    Full Text Available The direct photolysis of 1,1-dicyano-3-phenylbut-1-ene (3-MDCN was investigated at room temperature in solvents of different polarities (hexane, dichloromethane and acetonitrile. Cyclopropanes arising from both the di-pi-methane and pi-methane (1,2-H migration processes were obtained as photoproducts. The structures of the products were elucidated by ¹H-NMR, GC/MS, IR and chromatography. Relative quantum yield determination and GC analysis of sequential irradiations gave evidence that: i no secondary reactions occur, even at high conversions; ii the di-pi-methane rearrangement is significantly more affected by the solvent variation than the pi-methane reaction. Photosensitization with acetophenone or acetone did not yield any observable products. The existence of the simultaneous mechanisms and the observed effects were considered as evidence of a possible differentiation between localized and delocalized excitation on the excited state surface.

  8. Switchable Diastereoselectivity in the Fluoride Promoted Vinylogous Mukaiyama-Michael Reaction of 2-Trimethylsilyloxyfuran Catalyzed by Crown Ethers

    KAUST Repository

    Della Sala, Giorgio

    2017-05-31

    The fluoride promoted vinylogous Mukaiyama-Michael reaction (VMMR) of 2-trimethylsilyloxyfuran with diverse α,β-unsaturated ketones is described. The TBAF catalyzed VMMR afforded high anti-diastereoselectivity irrespective of the solvents used. The KF/crown ethers catalytic systems proved to be highly efficient in terms of yields and resulted in a highly diastereoselective unprecedented solvent/catalyst switchable reaction. Anti-adducts were obtained as single diastereomers or with excellent diastereoselectivities when benzo-15-crown-5 in CH2Cl2 was employed. On the other hand, high syn-diastereoselectivities (from 76:24 to 96:4) were achieved by employing dicyclohexane-18-crown-6 in toluene. Based on DFT calculations, the catalysts/solvents-dependent switchable diastereoselectivities are proposed to be the result of loose or tight cation-dienolate ion pairs.

  9. Ligand-Controlled Synthesis of Azoles via Ir-Catalyzed Reactions of Sulfoxonium Ylides with 2-Amino Heterocycles.

    Science.gov (United States)

    Phelps, Alicia M; Chan, Vincent S; Napolitano, José G; Krabbe, Scott W; Schomaker, Jennifer M; Shekhar, Shashank

    2016-05-20

    An iridium-catalyzed method was developed for the synthesis of imidazo-fused pyrrolopyrazines. The presence or absence of a nitrogenated ligand controlled the outcome of the reaction, leading to simple β-keto amine products in the absence of added ligand and the cyclized 7- and 8-substituted-imidazo[1,2-a]pyrrolo[2,3-e]pyrazine products in the presence of ligand. This catalyst control was conserved across a variety of ylide and amine coupling partners. The substrate was shown to act as a ligand for the iridium catalyst in the absence of other ligands via NMR spectroscopy. Kinetic studies indicated that formation of the Ir-carbene was reversible and the slow step of the reaction. These mechanistic investigations suggest that the β-keto amine products form via an intramolecular carbene N-H insertion, and the imidazopyrrolopyrazines form via an intermolecular carbene N-H insertion.

  10. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N-C Amide Bond Activation.

    Science.gov (United States)

    Liu, Chengwei; Szostak, Michal

    2017-05-29

    The concept of using amide bond distortion to modulate amidic resonance has been known for more than 75 years. Two classic twisted amides (bridged lactams) ingeniously designed and synthesized by Kirby and Stoltz to feature fully perpendicular amide bonds, and as a consequence emanate amino-ketone-like reactivity, are now routinely recognized in all organic chemistry textbooks. However, only recently the use of amide bond twist (distortion) has advanced to the general organic chemistry mainstream enabling a host of highly attractive N-C amide bond cross-coupling reactions of broad synthetic relevance. In this Minireview, we discuss recent progress in this area and present a detailed overview of the prominent role of amide bond destabilization as a driving force in the development of transition-metal-catalyzed cross-coupling reactions by N-C bond activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Lipase-catalyzed glycerolysis of fats and oils in ionic liquids: a further study on the reaction system

    DEFF Research Database (Denmark)

    Guo, Zheng; Xu, Xuebing

    2006-01-01

    Candida antarctica lipase B-catalyzed glycerolysis of sunflower oil in a tetraammonium-based ionic liquid (IL) was studied to elucidate its distinct characteristics and to evaluate the contributions of important parameters. Mass transfer limitations and occurring partial phase separation were found...... and enzyme loading study. Interestingly, increasing water activity resulted in a decreasing initial reaction rate and a prolonged induction period, which possibly resulted from an elevated solvation barrier and the phase separation at higher water content. Studies on thermodynamics of glycerolysis show......) equation, and the viscosity of the mixture is strongly agitation-dependent. A comparable diffusion time constant of the oil molecule in the IL to that of the reaction shows that the glycerolysis in the IL is controlled both diffusionally and kinetically, as experimentally verified by agitation effect...

  12. Kinetic Studies on Enzyme-Catalyzed Reactions: Oxidation of Glucose, Decomposition of Hydrogen Peroxide and Their Combination

    Science.gov (United States)

    Tao, Zhimin; Raffel, Ryan A.; Souid, Abdul-Kader; Goodisman, Jerry

    2009-01-01

    The kinetics of the glucose oxidase-catalyzed reaction of glucose with O2, which produces gluconic acid and hydrogen peroxide, and the catalase-assisted breakdown of hydrogen peroxide to generate oxygen, have been measured via the rate of O2 depletion or production. The O2 concentrations in air-saturated phosphate-buffered salt solutions were monitored by measuring the decay of phosphorescence from a Pd phosphor in solution; the decay rate was obtained by fitting the tail of the phosphorescence intensity profile to an exponential. For glucose oxidation in the presence of glucose oxidase, the rate constant determined for the rate-limiting step was k = (3.0 ± 0.7) ×104 M−1s−1 at 37°C. For catalase-catalyzed H2O2 breakdown, the reaction order in [H2O2] was somewhat greater than unity at 37°C and well above unity at 25°C, suggesting different temperature dependences of the rate constants for various steps in the reaction. The two reactions were combined in a single experiment: addition of glucose oxidase to glucose-rich cell-free media caused a rapid drop in [O2], and subsequent addition of catalase caused [O2] to rise and then decrease to zero. The best fit of [O2] to a kinetic model is obtained with the rate constants for glucose oxidation and peroxide decomposition equal to 0.116 s−1 and 0.090 s−1 respectively. Cellular respiration in the presence of glucose was found to be three times as rapid as that in glucose-deprived cells. Added NaCN inhibited O2 consumption completely, confirming that oxidation occurred in the cellular mitochondrial respiratory chain. PMID:19348778

  13. Tailored Cyclic and Linear Polycarbosilazanes by Barium-Catalyzed N-H/H-Si Dehydrocoupling Reactions.

    Science.gov (United States)

    Bellini, Clément; Orione, Clément; Carpentier, Jean-François; Sarazin, Yann

    2016-03-07

    Ba[CH(SiMe3 )2 ]2 (THF)3 catalyzes the fast and controlled dehydrogenative polymerization of Ph2 SiH2 and p-xylylenediamine to afford polycarbosilazanes. The structure (cyclic versus linear; end-groups) and molecular weight of the macromolecules can be tuned by adjusting the Ph2 SiH2 /diamine feed ratio. A detailed analysis of the resulting materials (mol. wt up to ca. 10 000 g mol(-1) ) is provided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cationic Pd(II-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies

    Directory of Open Access Journals (Sweden)

    Takashi Nishikata

    2016-05-01

    Full Text Available Cationic palladium(II complexes have been found to be highly reactive towards aromatic C–H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN4](BF42 or a nitrile-free cationic palladium(II complex generated in situ from the reaction of Pd(OAc2 and HBF4, effectively catalyzes C–H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C–H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1 C–H activation to generate a cationic palladacycle; (2 reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3 regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied.

  15. Stereospecific nickel-catalyzed cross-coupling reactions of alkyl ethers: enantioselective synthesis of diarylethanes.

    Science.gov (United States)

    Taylor, Buck L H; Swift, Elizabeth C; Waetzig, Joshua D; Jarvo, Elizabeth R

    2011-01-26

    Secondary benzylic ethers undergo stereospecific substitution reactions with Grignard reagents in the presence of nickel catalysts. Reactions proceed with inversion of configuration and high stereochemical fidelity. This reaction allows for facile enantioselective synthesis of biologically active diarylethanes from readily available optically enriched carbinols.

  16. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: Kinetics, reaction pathways, and formation of brominated by-products

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yuefei [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Kong, Deyang [Nanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC, Nanjing 210042 (China); Lu, Junhe, E-mail: jhlu@njau.edu.cn [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Jin, Hao; Kang, Fuxing; Yin, Xiaoming; Zhou, Quansuo [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-08-05

    Highlights: • Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A. • Phenolic moiety was the reactive site for sulfate radical attack. • Pathways include β-scission, oxidation, debromination and coupling reactions. • Brominated disinfection by-products were found during TBBPA degradation. • Humic acid inhibited TBBPA degradation but promoted DBPs formation. - Abstract: Degradation of tetrabromobisphenol A (TBBPA), a flame retardant widely spread in the environment, in Co(II) catalyzed peroxymonosulfate (PMS) oxidation process was systematically explored. The second-order-rate constant for reaction of sulfate radical (SO{sub 4}{sup ·−}) with TBBPA was determined to be 5.27 × 10{sup 10} M{sup −1} s{sup −1}. Apparently, degradation of TBBPA showed first-order kinetics to the concentrations of both Co(II) and PMS. The presence of humic acid (HA) and bicarbonate inhibited TBBPA degradation, most likely due to their competition for SO{sub 4}{sup ·−}. Degradation of TBBPA was initiated by an electron abstraction from one of the phenolic rings. Detailed transformation pathways were proposed, including β-scission of isopropyl bridge, phenolic ring oxidation, debromination and coupling reactions. Further oxidative degradation of intermediates in Co(II)/PMS process yielded brominated disinfection by-products (Br-DBPs) such as bromoform and brominated acetic acids. Evolution profile of Br-DBPs showed an initially increasing and then decreasing pattern with maximum concentrations occurring around 6–10 h. The presence of HA enhanced the formation of Br-DBPs significantly. These findings reveal potentially important, but previously unrecognized, formation of Br-DBPs during sulfate radical-based oxidation of bromide-containing organic compounds that may pose toxicological risks to human health.

  17. Phospholipids chiral at phosphorus. Steric course of the reactions catalyzed by phosphatidylserine synthase from Escherichia coli and yeast

    International Nuclear Information System (INIS)

    Raetz, C.R.H.; Carman, G.M.; Dowhan, W.; Jiang, R.T.; Waszkuc, W.; Loffredo, W.; Tsai, M.D.

    1987-01-01

    The steric courses of the reactions catalyzed by phosphatidylserine (PS) synthase from Escherichia coli and yeast were elucidated by the following procedure. R/sub P/ and S/sub P/ isomers of 1,2-dipalmitoyl-sn-glycero-3-[ 17 O, 18 O]phosphoethanolamine ([ 17 O, 18 O]DPPE) were synthesized and converted to (R/sub P/)- and (S/sub P/)-1,2-dipalmitoyl-sn-glycero-3-[ 16 O, 17 O, 18 O]DPPA), respectively, by incubating with phospholipase D. Condensation of [ 16 O, 17 O, 18 O]DPPA with cytidine 5'-monophosphomorpholidate in pyridine gave the desired substrate for PS synthase, [ 17 O, 18 O]cytidine 5'-diphospho-1,2-dipalmitoyl-sn-glycerol ([ 17 O, 18 O]CDP-DPG), as a mixture of several isotopic and configurational isomers. Incubation of [ 17 O, 18 O]CDP-DPG), as a mixture of several isotopic and configurational isomers. Incubation of [ 17 O, 18 O] CDP-DPG with a mixture of L-serine, PS synthase and PS decarboxylase gave [ 17 O, 18 O]DPPE. The configuration and isotopic enrichments of the starting [ 17 O, 18 O]DPPE and the product were analyzed by 31 P NMR following trimethylsilylation of the DPPE. The results indicate that the reaction of E. coli PS synthase proceeds with retention of configuration at phosphorus, which suggests a two-step mechanism involving a phosphatidyl-enzyme intermediate, while the yeast PS synthase catalyzes the reaction with inversion of configuration, which suggests a single-displacement mechanism. Such results lend strong support to the ping-pong mechanism proposed for the E. coli enzyme and the sequential Bi-Bi mechanism proposed for the yeast enzyme, both based on previous isotopic exchange experiments

  18. Thermal aromatic Claisen rearrangement and Strecker reaction of alkyl(allyl-aryl ethers under green reaction conditions: Efficient and clean preparation of ortho-allyl phenols (naphthols and alkyl(allyloxyarene-based γ-amino nitriles

    Directory of Open Access Journals (Sweden)

    Kheila N. Silgado-Gómez

    2017-11-01

    Full Text Available Chemical transformations of 13 diverse allyl(alkyl-aryl ethers, easily prepared using Williamson reaction of different hydroxyarenes and allyl bromide and alkyl (n-butyl, n-octyl bromides, were studied. Thermal aromatic Claisen rearrangement of allyl-aryl ethers to obtain ortho-allyl phenols (naphthols employing propylene carbonate as a nontoxic and biodegradable solvent was described for the first time. The use of this green solvent allowed to enhance notably product yields and reduce significantly the reaction time comparing with the use of 1,2-dichlorobenzene, toxic solvent, which is traditionally employed in this type of Claisen rearrangement. Three-component Strecker reaction of selected alkyl(allyl-aryl ethers with formyl function on aryl fragment and, piperidine and potassium cyanide in the presence of sulfuric acid supported on silica gel (SSA, SiO2-O-SO3H under mild reaction conditions was used in the preparation of new γ-amino nitriles, analogues of alkaloid girgensohnine [2-(4-hydroxyphenyl-2-(piperidin-1-ylacetonitrile], a perspective biological model in the search for new insecticidal agrochemicals against Aedes aegypti. The use of SSA, an inexpensive and reusable solid catalyst, allowed to obtain new series of 2-[4-alkyl(allyloxyphenyl]-2-(piperidin-1-ylacetonitriles in short time at room temperature with good yields.

  19. Tetramethyl guanidine (TMG catalyzed synthesis of novel a -amino phosphonates by one-pot reaction

    Directory of Open Access Journals (Sweden)

    S. Annar

    2010-07-01

    Full Text Available An efficient method has been developed for the synthesis of a -amino phosphonates (4a-j by the three component one-pot reaction of equimolar quantities of 2-amino methyl furan (1, dimethyl / diethyl phosphite (2 and various aldehydes (3a-j in dry toluene at reflux conditions via Kabachnik – Fields reaction in high yields (70-80% in the presence of tetramethyl guanidine (TMG as catalyst. The TMG can be easily recovered from the reaction mixture after completion of the reaction and can be reused. Their antimicrobial activity has also been evaluated.

  20. Controlling site selectivity in Pd-catalyzed oxidative cross-coupling reactions.

    Science.gov (United States)

    Lyons, Thomas W; Hull, Kami L; Sanford, Melanie S

    2011-03-30

    This paper presents a detailed investigation of the factors controlling site selectivity in the Pd-mediated oxidative coupling of 1,3-disubstituted and 1,2,3-trisubstituted arenes (aryl-H) with cyclometalating substrates (L~C-H). The influence of both the concentration and the steric/electronic properties of the quinone promoter are studied in detail. In addition, the effect of steric/electronic modulation of the carboxylate ligand is discussed. Finally, we demonstrate that substitution of the carboxylate for a carbonate X-type ligand leads to a complete reversal in site selectivity for many arene substrates. The origins of these trends in site selectivity are discussed in the context of the mechanism of Pd-catalyzed oxidative cross-coupling.

  1. Hydrophosphination of alkynes and related reactions catalyzed by rare-earth amides

    International Nuclear Information System (INIS)

    Takaki, Ken; Komeyama, Kimihiro; Kobayashi, Daisuke; Kawabata, Tomonori; Takehira, Katsuomi

    2006-01-01

    Intermolecular hydrophosphination of alkynes with Ph 2 PH was effectively catalyzed by Yb-imine complex [Yb(η 2 -Ph 2 CNPh)(hmpa) 3 ], in which the empirical rate law was described as v = k [catalyst] 2 [alkyne] 1 [phosphine] . The active catalysts were proved to be ytterbium(II) mono- and diphosphido species generated in situ. Although trivalent phosphido complex [Yb(PPh 2 ) 3 (hmpa) n ], gave the same results as the divalent complexes, Yb metals of the both complexes seemed to keep their original oxidation state unchanged. When Ph 2 PH was substituted by Ph 2 P-SiMe 3 , silylphosphination of aromatic internal alkynes took place to afford 1-trimethylsilyl-2-diphenylphosphinoalkenes in moderate yields. Moreover, one-pot synthesis of 1-diphenylphosphino-1,3-butadienes from terminal alkynes and Ph 2 PH has been achieved using Y[N(SiMe 3 ) 2 ] 3 catalyst through the alkyne dimerization and subsequent hydrophosphination

  2. Assessment Of Surface-Catalyzed Reaction Products From High Temperature Materials In Plasmas

    Science.gov (United States)

    Allen, Luke Daniel

    Current simulations of atmospheric entry into both Mars and Earth atmospheres for the design of thermal protections systems (TPS) typically invoke conservative assumptions regarding surface-catalyzed recombination and the amount of energy deposited on the surface. The need to invoke such assumptions derives in part from lack of adequate experimental data on gas-surface interactions at trajectory relevant conditions. Addressing this issue, the University of Vermont's Plasma Test and Diagnostics Laboratory has done extensive work to measure atomic specie consumption by measuring the concentration gradient over various material surfaces. This thesis extends this work by attempting to directly diagnose molecular species production in air plasmas. A series of spectral models for the A-X and B-X systems of nitric oxide (NO), and the B-X system of boron monoxide (BO) have been developed. These models aim to predict line positions and strengths for the respective molecules in a way that is best suited for the diagnostic needs of the UVM facility. From the NO models, laser induced fluorescence strategies have been adapted with the intent of characterizing the relative quantity and thermodynamic state of NO produced bysurface-catalyzed recombination, while the BO model adds a diagnostic tool for the testing of diboride-based TPS materials. Boundary layer surveys of atomic nitrogen and NO have been carried out over water-cooled copper and nickel surfaces in air/argon plasmas. Translation temperatures and relative number densities throughout the boundary layer are reported. Additional tests were also conducted over a water-cooled copper surface to detect evidence of highly non-equilibrium effects in the form of excess population in elevated vibrational levels of the A-X system of NO. The tests showed that near the sample surface there is a much greater population in the upsilon'' = 1ground state than is predicted by a Boltzmann distribution.

  3. Selective coupling reaction between 2,6-diiodoanisoles and terminal alkynes catalyzed by Pd(PPh32Cl2 and CuI

    Directory of Open Access Journals (Sweden)

    Allan F. C. Rossini

    2012-06-01

    Full Text Available The cross-coupling reaction between aryl halides and terminal alkynes, catalyzed by palladium complexes and copper (I salts, consists in an efficient synthetic tool for the formation of C-C bonds, resulting in disubstituted acetylenic compounds. Accordingly, in this work we present our preliminary results involving the selective cross-coupling reaction between 2,6-diiodoanisoles and terminal alkynes, catalyzed by Pd(PPh32Cl2 and CuI, in the formation of 2-iodo-alkynylanisoles (scheme 1.

  4. Multidentate Di-N-heterocyclic carbene ligands for transition metal catalyzed hydrogenation reactions

    NARCIS (Netherlands)

    Sluijter, S.N.

    2015-01-01

    Synthetic catalysts play an important role in creating a more sustainable society. The use of catalysts has environmental as well as economic advantages. They speed up reactions without being consumed in the reaction itself. Moreover, they reduce the amount of byproducts and waste significantly.

  5. Influence of gamma radiation reaction on the hydroesterification of butenes catalyzed by metal carbonyls

    International Nuclear Information System (INIS)

    Velde, J. van der.

    1976-01-01

    In the hydro carboxylation reaction, which first has been studied by Reppe, olefine and acetylene compounds are processed with carbon monoxide and water at high pressures and high temperatures in the presence of metal carbonyls. This reaction can be enhanced considerably by application of ionizing radiation. Lower pressures and in particular lower temperatures can be used if gamma irradiation is performed during carboxylation. For the experiments a mixture of buten-1 and buten-2 as well as pure buten-1 and pure buten-2 has been used to study the behaviour of these olefines with respect to the isomerization of the reaction products and to the olefines not transformed in the reaction process. Replacing water, methanol has been used as a reaction component, thus obtaining directly the respective carbonyl acid esters, which can be analysed quantitatively and qualitatively with respect to their isomeric composition by gaschromatography. (orig./HK) [de

  6. Multicomponent Reaction of Z-Chlorooximes, Isocyanides, and Hydroxylamines as Hypernucleophilic Traps. A One-Pot Route to Aminodioximes and Their Transformation into 5-Amino-1,2,4-oxadiazoles by Mitsunobu-Beckmann Rearrangement.

    Science.gov (United States)

    Mercalli, Valentina; Massarotti, Alberto; Varese, Monica; Giustiniano, Mariateresa; Meneghetti, Fiorella; Novellino, Ettore; Tron, Gian Cesare

    2015-10-02

    Synthetically useful aminodioximes are prepared via a novel three-component reaction among Z-chlorooximes, isocyanides, and hydroxylamines by exploiting the preferential attack of isocyanides to nitrile N-oxides via a [3 + 1] cycloaddition reaction. The results of quantum mechanical studies of the reaction mechanism are also discussed. Furthermore, the one-pot conversion of aminodioximes to 1,2,3-oxadiazole-5-amines via Mitsunobu-Beckmann rearrangement is reported for the first time.

  7. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.; Gates, B.C. [Univ. of California, Davis, CA (United States)

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part from coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.

  8. Monitoring mass transport in heterogeneously catalyzed reactions by field-gradient NMR for assessing reaction efficiency in a single pellet

    Science.gov (United States)

    Buljubasich, L.; Blümich, B.; Stapf, S.

    2011-09-01

    An important aspect in assessing the performance of a catalytically active reactor is the accessibility of the reactive sites inside the individual pellets, and the mass transfer of reactants and products to and from these sites. Optimal design often requires a suitable combination of micro- and macropores in order to facilitate mass transport inside the pellet. In an exothermic reaction, fluid exchange between the pellet and the surrounding medium is enhanced by convection, and often by the occurrence of gas bubbles. Determining mass flow in the vicinity of a pellet thus represents a parameter for quantifying the reaction efficiency and its dependence on time or external reaction conditions. Field gradient Nuclear Magnetic Resonance (NMR) methods are suggested as a tool for providing parameters sensitive to this mass flow in a contact-free and non-invasive way. For the example of bubble-forming hydrogen peroxide decomposition in an alumina pellet, the dependence of the mean-squared displacement of fluid molecules on spatial direction, observation time and reaction time is presented, and multi-pulse techniques are employed in order to separate molecular displacements from coherent and incoherent motion on the timescale of the experiment. The reaction progress is followed until the complete decomposition of H 2O 2.

  9. Pd-catalyzed coupling reaction on the organic monolayer: Sonogashira reaction on the silicon (1 1 1) surfaces

    International Nuclear Information System (INIS)

    Qu Mengnan; Zhang Yuan; He Jinmei; Cao Xiaoping; Zhang Junyan

    2008-01-01

    Iodophenyl-terminated organic monolayers were prepared by thermally induced hydrosilylation on hydrogen-terminated silicon (1 1 1) surfaces. The films were characterized by ellipsometry, contact-angle goniometry, and X-ray photoelectron spectroscopy (XPS). To modify the surface chemistry and the structure of the monolayers, the Sonogashira coupling reaction was performed on the as-prepared monolayers. The iodophenyl groups on the film surfaces reacted with 1-ethynyl-4-fluorobenzene or the 1-chloro-4-ethynylbenzene under the standard Sonogashira reaction conditions for attaching conjugated molecules via the formation of C-C bonds. It is expected that this surface coupling reaction will present a new method to modify the surface chemistry and the structure of monolayers

  10. Efficient buchwald hartwig reaction catalyzed by spions-bis(NHC-Pd(II

    Directory of Open Access Journals (Sweden)

    Marzieh Ghotbinejad

    2016-01-01

    Full Text Available A powerful and convenient reaction procedure for the C-N coupling reaction (the Buchwald-Hartwig reaction, yielding products of N-arylanilines and N-arylamines in both conventional heating and microwave irradiation has been reported. The protocol utilizes a stable and new supper ferromagnetic nanoparticle chelating N-heterocyclic dicarbene palladium(II complex (Pd-NHC as catalyst which helps/allows us to complete the reaction with only 0.002 mol% Pd producing high yield products. We also examined the reusability of the catalyst. It was found that the catalyst could be recovered by external magnetic field and  reused for seven times without obvious loss in catalytic activity.

  11. An investigation of molybdenum and molybdenum oxide catalyzed hydrocarbon formation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tysoe, W.T.

    1995-09-01

    The document is divided into: experiments on model catalysts at high pressure, reaction studies on metallic Mo, surface chemistry experiments (metallic surfaces in ultrahigh vacuum; Mo(CO){sub 6} adsorption on alumina), and theoretical calculations.

  12. DNA-Catalyzed Henry Reaction in Pure Water and the Striking Influence of Organic Buffer Systems

    Directory of Open Access Journals (Sweden)

    Marleen Häring

    2015-03-01

    Full Text Available In this manuscript we report a critical evaluation of the ability of natural DNA to mediate the nitroaldol (Henry reaction at physiological temperature in pure water. Under these conditions, no background reaction took place (i.e., control experiment without DNA. Both heteroaromatic aldehydes (e.g., 2-pyridinecarboxaldehyde and aromatic aldehydes bearing strong or moderate electron-withdrawing groups reacted satisfactorily with nitromethane obeying first order kinetics and affording the corresponding β-nitroalcohols in good yields within 24 h. In contrast, aliphatic aldehydes and aromatic aldehydes having electron-donating groups either did not react or were poorly converted. Moreover, we discovered that a number of metal-free organic buffers efficiently promote the Henry reaction when they were used as reaction media without adding external catalysts. This constitutes an important observation because the influence of organic buffers in chemical processes has been traditionally underestimated.

  13. Transition metal catalyzed carbonylation reactions carbonylative activation of C-X bonds

    CERN Document Server

    Beller, Matthias

    2014-01-01

    This book provides students and researchers in organic synthesis with a detailed discussion of carbonylation from the basics through to applications. It discusses the past, present and future of carbonylation reactions.

  14. Infrared laser induced organic reactions. 2. Laser vs. thermal inducment of unimolecular and hydrogen bromide catalyzed bimolecular dehydration of alcohols

    International Nuclear Information System (INIS)

    Danen, W.C.

    1979-01-01

    It has been demonstrated that a mixture of reactant molecules can be induced by pulsed infrared laser radiation to react via a route which is totally different from the pathway resulting from heating the mixture at 300 0 C. The high-energy unimolecular elimination of H 2 O from ethanol in the presence of 2-propanol and HBr can be selectively induced with a pulsed CO 2 laser in preference to either a lower energy bimolecular HBr-catalyzed dehydration or the more facile dehydration of 2-propanol. Heating the mixture resulted in the almost exclusive reaction of 2-propanol to produce propylene. It was demonstrated that the bimolecular ethanol + HBr reaction cannot be effectively induced by the infrared laser radiation as evidenced by the detrimental effect on the yield of ethylene as the HBr pressure was increased. The selective, nonthermal inducement of H 2 O elimination from vibrationally excited ethanol in the presence of 2-propanol required relatively low reactant pressures. At higher pressures intermolecular V--V energy transfer allowed the thermally more facile dehydration from 2-propanol to become the predominant reaction channel

  15. Theoretical insights into the sites and mechanisms for base catalyzed esterification and aldol condensation reactions over Cu.

    Science.gov (United States)

    Neurock, Matthew; Tao, Zhiyuan; Chemburkar, Ashwin; Hibbitts, David D; Iglesia, Enrique

    2017-04-28

    Condensation and esterification are important catalytic routes in the conversion of polyols and oxygenates derived from biomass to fuels and chemical intermediates. Previous experimental studies show that alkanal, alkanol and hydrogen mixtures equilibrate over Cu/SiO 2 and form surface alkoxides and alkanals that subsequently promote condensation and esterification reactions. First-principle density functional theory (DFT) calculations were carried out herein to elucidate the elementary paths and the corresponding energetics for the interconversion of propanal + H 2 to propanol and the subsequent C-C and C-O bond formation paths involved in aldol condensation and esterification of these mixtures over model Cu surfaces. Propanal and hydrogen readily equilibrate with propanol via C-H and O-H addition steps to form surface propoxide intermediates and equilibrated propanal/propanol mixtures. Surface propoxides readily form via low energy paths involving a hydrogen addition to the electrophilic carbon center of the carbonyl of propanal or via a proton transfer from an adsorbed propanol to a vicinal propanal. The resulting propoxide withdraws electron density from the surface and behaves as a base catalyzing the activation of propanal and subsequent esterification and condensation reactions. These basic propoxides can readily abstract the acidic C α -H of propanal to produce the CH 3 CH (-) CH 2 O* enolate, thus initiating aldol condensation. The enolate can subsequently react with a second adsorbed propanal to form a C-C bond and a β-alkoxide alkanal intermediate. The β-alkoxide alkanal can subsequently undergo facile hydride transfer to form the 2-formyl-3-pentanone intermediate that decarbonylates to give the 3-pentanone product. Cu is unique in that it rapidly catalyzes the decarbonylation of the C 2n intermediates to form C 2n-1 3-pentanone as the major product with very small yields of C 2n products. This is likely due to the absence of Brønsted acid sites

  16. Recent progress in transition-metal-catalyzed reduction of molecular dinitrogen under ambient reaction conditions.

    Science.gov (United States)

    Nishibayashi, Yoshiaki

    2015-10-05

    This paper describes our recent progress in catalytic nitrogen fixation by using transition-metal-dinitrogen complexes as catalysts. Two reaction systems for the catalytic transformation of molecular dinitrogen into ammonia and its equivalent such as silylamine under ambient reaction conditions have been achieved by the molybdenum-, iron-, and cobalt-dinitrogen complexes as catalysts. Many new findings presented here may provide new access to the development of economical nitrogen fixation in place of the Haber-Bosch process.

  17. Rh(II)-catalyzed reactions of differentially substituted bis(diazo) functionalities.

    Science.gov (United States)

    Bonderoff, Sara A; Padwa, Albert

    2013-08-16

    The chemoselective reaction of donor/acceptor (D/A) and acceptor/acceptor (A/A) diazo moieties in the same molecule was examined using 3-diazo-1-(ethyl 2-diazomalonyl)indolin-2-one under rhodium(II) catalysis. The D/A diazo group undergoes selective cyclopropanation as well as XH-insertion, leaving behind the second diazo group for a further intramolecular dipolar cycloaddition reaction.

  18. Pd(II/HPMoV-Catalyzed Direct Oxidative Coupling Reaction of Benzenes with Olefins

    Directory of Open Access Journals (Sweden)

    Yasutaka Ishii

    2010-03-01

    Full Text Available The direct aerobic coupling reaction of arenes with olefins was successfully achieved by the use of Pd(OAc2/molybdovanadophosphoric acid (HPMoV as a key catalyst under 1 atm of dioxygen. This catalytic system could be extended to the coupling reaction of various substituted benzenes with olefins such as acrylates, aclrolein, and ethylene through the direct aromatic C-H bond activation.

  19. Degradation of Anthraquinone Dye Reactive Blue 4 in Pyrite Ash Catalyzed Fenton Reaction

    Directory of Open Access Journals (Sweden)

    Milena Becelic-Tomin

    2014-01-01

    Full Text Available Pyrite ash (PA is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4 degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH=2.5; [PA]0=0.2 g L−1; [H2O2]0=5 mM and initial RB4 concentration up to 100 mg L−1. The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes.

  20. Catalyzed oxidation reactions. IV. Picolinic acid catalysis of chromic acid oxidations

    International Nuclear Information System (INIS)

    Rocek, J.; Peng, T.Y.

    1977-01-01

    Picolinic acid and several closely related acids are effective catalysts in the chromic acid oxidation of primary and secondary alcohols; the oxidation of other substrates is accelerated only moderately. The reaction is first order in chromium-(VI), alcohol, and picolinic acid; it is second order in hydrogen ions at low acidity and approaches acidity independence at high perchloric acid concentrations. A primary deuterium kinetic isotope effect is observed at high but not at low acidities. At low acidity the reaction has a considerably lower activation energy and more negative activation entropy than at higher acidities. The reactive intermediate in the proposed mechanism is a negatively charged termolecular complex formed from chromic acid, picolinic acid, and alcohol. The rate-limiting step of the reaction changes with the acidity of the solution. At higher acidities the intermediate termolecular complex is formed reversibly and the overall reaction rate is determined by the rate of its decomposition into reaction products; at low acidities the formation of the complex is irreversible and hence rate limiting. Picolinic acids with a substituent in the 6 position show a greatly reduced catalytic activity. This observation is interpreted as suggesting a square pyramidal or octahedral structure for the reactive chromium (VI) intermediate. The temperature dependence of the deuterium isotope effect has been determined and the significance of the observed large values for E/sub a//sup D/ - E/sub a//sup H/ and A/sup D//A/sup H/ is discussed

  1. [Mechanism of reaction catalyzed by RNA-ligase from bacteriophage T4].

    Science.gov (United States)

    Zagrebel'nyĭ, S N; Zernov, Iu P

    1987-01-01

    The dissociation constants of the complexes of RNA-ligase with acceptors, donors and the adenylylated donor A(5')ppAp have been determined on the basis of the inhibition of ATP-pyrophosphate exchange reaction. The dissociation constants of the complexes of the enzyme with "poor" acceptors (oligouridilates) have been shown to be slightly different from those with "good" acceptors (oligoadenylates). The dependence of the reaction velocity of the formation of ligation products on the concentration of acceptors (pA)4, (pU)4 and the adenylylated donor A(5)ppAp has been studied. On the basis of the data obtained the conclusion about the random addition mechanism has been drawn. The reaction takes place in the steady-state conditions in the case of (pA)4 and in the equilibrium conditions--in the case of (pU)4.

  2. Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil

    DEFF Research Database (Denmark)

    Andrade, Thalles Allan; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    The identification of the influence of the reaction parameters is of paramount importance when defining a process design. In this work, non-edible castor oil was reacted with methanol to produce a possible component for biodiesel blends, using liquid enzymes as the catalyst. Temperature, alcohol......-to-oil molar ratio, enzyme and added water contents were the reaction parameters evaluated in the transesterification reactions. The optimal conditions, giving the optimal final FAME yield and FFA content in the methyl ester-phase was identified. At 35 °C, 6.0 methanol-to-oil molar ratio, 5 wt% of enzyme and 5...... wt% of water contents, 94 % of FAME yield and 6.1 % of FFA in the final composition were obtained. The investigation was completed with the analysis of the component profiles, showing that at least 8 hours are necessary to reach a satisfactory FAME yield together with a minor FFA content....

  3. Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration.

    Science.gov (United States)

    Marpani, Fauziah; Sárossy, Zsuzsa; Pinelo, Manuel; Meyer, Anne S

    2017-12-01

    Enzymatic reduction of carbon dioxide (CO 2 ) to methanol (CH 3 OH) can be accomplished using a designed set-up of three oxidoreductases utilizing reduced pyridine nucleotide (NADH) as cofactor for the reducing equivalents electron supply. For this enzyme system to function efficiently a balanced regeneration of the reducing equivalents during reaction is required. Herein, we report the optimization of the enzymatic conversion of formaldehyde (CHOH) to CH 3 OH by alcohol dehydrogenase, the final step of the enzymatic redox reaction of CO 2 to CH 3 OH, with kinetically synchronous enzymatic cofactor regeneration using either glucose dehydrogenase (System I) or xylose dehydrogenase (System II). A mathematical model of the enzyme kinetics was employed to identify the best reaction set-up for attaining optimal cofactor recycling rate and enzyme utilization efficiency. Targeted process optimization experiments were conducted to verify the kinetically modeled results. Repetitive reaction cycles were shown to enhance the yield of CH 3 OH, increase the total turnover number (TTN) and the biocatalytic productivity rate (BPR) value for both system I and II whilst minimizing the exposure of the enzymes to high concentrations of CHOH. System II was found to be superior to System I with a yield of 8 mM CH 3 OH, a TTN of 160 and BPR of 24 μmol CH 3 OH/U · h during 6 hr of reaction. The study demonstrates that an optimal reaction set-up could be designed from rational kinetics modeling to maximize the yield of CH 3 OH, whilst simultaneously optimizing cofactor recycling and enzyme utilization efficiency. © 2017 Wiley Periodicals, Inc.

  4. High Pressure Diels Alder Reactions of 1-Vinyl-2,2,6-trimethylcyclohexene Catalyzed by Chiral Lewis Acids; An Enantioselective Route to a Drimane Sesquiterpene Precursor.

    NARCIS (Netherlands)

    Knol, Joop; Meetsma, Auke; Feringa, Bernard

    1995-01-01

    The Diels Alder reaction of 1-vinyl-2,2,6-trimethylcyclohexene and 3-((E)-3-(methoxycarbonyl)propenoyl)-1,3-oxazolidin-2-one under high pressure, catalyzed by a chiral bis-imine copper(II) complex, yields a drimane sesquiterpene precursor in a highly regio- and diastereoselective manner with

  5. Bicyclic Guanidine Catalyzed Asymmetric Tandem Isomerization Intramolecular-Diels-Alder Reaction: The First Catalytic Enantioselective Total Synthesis of (+)-alpha-Yohimbine.

    Science.gov (United States)

    Feng, Wei; Jiang, Danfeng; Kee, Choon-Wee; Liu, Hongjun; Tan, Choon-Hong

    2016-02-04

    Hydroisoquinoline derivatives were prepared in moderate to good enantioselectivities via a bicyclic guanidine-catalyzed tandem isomerization intramolecular-Diels-Alder (IMDA) reaction of alkynes. With this synthetic method, the first enantioselective synthesis of (+)-alpha-yohimbine was completed in 9 steps from the IMDA products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Uptake kinetics and biodistribution of C-14-D-luciferin-a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction : impact on bioluminescence based reporter gene imaging

    NARCIS (Netherlands)

    Berger, Frank; Paulmurugan, Ramasamy; Bhaumik, Srabani; Gambhir, Sanjiv Sam

    2008-01-01

    Purpose Firefly luciferase catalyzes the oxidative decarboxylation of D-luciferin to oxyluciferin in the presence of cofactors, producing bioluminescence. This reaction is used in optical bioluminescence-based molecular imaging approaches to detect the expression of the firefly luciferase reporter

  7. Cu-catalyzed C(sp³)-H bond activation reaction for direct preparation of cycloallyl esters from cycloalkanes and aromatic aldehydes.

    Science.gov (United States)

    Zhao, Jincan; Fang, Hong; Han, Jianlin; Pan, Yi

    2014-05-02

    Cu-catalyzed dehydrogenation-olefination and esterification of C(sp(3))-H bonds of cycloalkanes with TBHP as an oxidant has been developed. The reaction involves four C-H bond activations and gives cycloallyl ester products directly from cycloalkanes and aromatic aldehydes.

  8. Visible-light photoredox catalyzed synthesis of pyrroloisoquinolines via organocatalytic oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade with Rose Bengal

    Directory of Open Access Journals (Sweden)

    Carlos Vila

    2014-05-01

    Full Text Available Pyrrolo[2,1-a]isoquinoline alkaloids have been prepared via a visible light photoredox catalyzed oxidation/[3 + 2] cycloaddition/oxidative aromatization cascade using Rose Bengal as an organo-photocatalyst. A variety of pyrroloisoquinolines have been obtained in good yields under mild and metal-free reaction conditions.

  9. One-pot synthesis of 2H-pyrans by indium(III) chloride-catalyzed reactions. efficient synthesis of pyranocoumarins, pyranophenalenones, and pyranoquinolinones

    International Nuclear Information System (INIS)

    Lee, Yong Rok; Kim, Do Hoon; Shim, Jae Jin; Kim, Seog K.; Park, Jung Hag; Cha, Jin Soon; Lee, Chong Soon

    2002-01-01

    An efficient synthesis of 2H-pyrans is achieved by indium (III) chloride-catalyzed reactions of 1,3-dicarbonyl compounds with a variety of α.β-unsaturated aldehydes in moderates yields. This method has been applied to the synthesis of pyranocoumarins, pyranophenaleneones, and pyranoquinolinone alkaloids

  10. Syntheses of the hexahydroindene cores of indanomycin and stawamycin by combinations of iridium-catalyzed asymmetric allylic alkylations and intramolecular Diels-Alder reactions.

    Science.gov (United States)

    Gärtner, Martin; Satyanarayana, Gedu; Förster, Sebastian; Helmchen, Günter

    2013-01-02

    Short and concise syntheses of the hexahydroindene cores of the antibiotics indanomycin (X-14547 A) and stawamycin are presented. Key methods used are an asymmetric iridium-catalyzed allylic alkylation, a modified Julia olefination, a Suzuki-Miyaura coupling, and an intramolecular Diels-Alder reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. One-pot synthesis of 2H-pyrans by indium(III) chloride-catalyzed reactions. efficient synthesis of pyranocoumarins, pyranophenalenones, and pyranoquinolinones

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Rok; Kim, Do Hoon; Shim, Jae Jin; Kim, Seog K.; Park, Jung Hag; Cha, Jin Soon; Lee, Chong Soon [Yeungnam Univ., Kyongsan (Korea, Republic of)

    2002-08-01

    An efficient synthesis of 2H-pyrans is achieved by indium (III) chloride-catalyzed reactions of 1,3-dicarbonyl compounds with a variety of {alpha}.{beta}-unsaturated aldehydes in moderates yields. This method has been applied to the synthesis of pyranocoumarins, pyranophenaleneones, and pyranoquinolinone alkaloids.

  12. A coumarin-specific prenyltransferase catalyzes the crucial biosynthetic reaction for furanocoumarin formation in parsley.

    Science.gov (United States)

    Karamat, Fazeelat; Olry, Alexandre; Munakata, Ryosuke; Koeduka, Takao; Sugiyama, Akifumi; Paris, Cedric; Hehn, Alain; Bourgaud, Frédéric; Yazaki, Kazufumi

    2014-02-01

    Furanocoumarins constitute a sub-family of coumarin compounds with important defense properties against pathogens and insects, as well as allelopathic functions in plants. Furanocoumarins are divided into two sub-groups according to the alignment of the furan ring with the lactone structure: linear psoralen and angular angelicin derivatives. Determination of furanocoumarin type is based on the prenylation position of the common precursor of all furanocoumarins, umbelliferone, at C6 or C8, which gives rise to the psoralen or angelicin derivatives, respectively. Here, we identified a membrane-bound prenyltransferase PcPT from parsley (Petroselinum crispum), and characterized the properties of the gene product. PcPT expression in various parsley tissues is increased by UV irradiation, with a concomitant increase in furanocoumarin production. This enzyme has strict substrate specificity towards umbelliferone and dimethylallyl diphosphate, and a strong preference for the C6 position of the prenylated product (demethylsuberosin), leading to linear furanocoumarins. The C8-prenylated derivative (osthenol) is also formed, but to a much lesser extent. The PcPT protein is targeted to the plastids in planta. Introduction of this PcPT into the coumarin-producing plant Ruta graveolens showed increased consumption of endogenous umbelliferone. Expression of PcPT and a 4-coumaroyl CoA 2'-hydroxylase gene in Nicotiana benthamiana, which does not produce furanocoumarins, resulted in formation of demethylsuberosin, indicating that furanocoumarin production may be reconstructed by a metabolic engineering approach. The results demonstrate that a single prenyltransferase, such as PcPT, opens the pathway to linear furanocoumarins in parsley, but may also catalyze the synthesis of osthenol, the first intermediate committed to the angular furanocoumarin pathway, in other plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  13. RUTHENIUM-CATALYZED TANDEM OLEFIN MIGRATION-ALDOL AND MANNICH-TYPE REACTIONS IN IONIC LIQUID.

    Science.gov (United States)

    In the presence of a catalytic amount of RuCl2(PPh3)3, a cross-coupling of 3-buten-2-ol with aldehydes and imines was developed via a tandem olefin migration--aldol--Mannich reaction in bmim[PF6]. With In(OAc)3 as a co-catalyst, a-vinylbenzyl alcohol and aldehydes underwent sim...

  14. In(OTf)3 catalyzed allylation reaction of imines with tetraallyltin

    Institute of Scientific and Technical Information of China (English)

    Xiao Ning Wei; Ling Yan Liu; Bing Wang; Wei Xing Chang; Jing Li

    2009-01-01

    In the presence of catalytic amount of In(OTf)3 (10 mol%), a series of aldimines reacted with tetraallyltin in a 2:1 molar ratio to afford the corresponding homoallylic amines in good yields. The good atom efficiency was achieved under mild reaction conditions and a new protocol (allyl)4Sn/In(OTf)3 for simple imines was developed.

  15. The Effect of Temperature on the Enzyme-Catalyzed Reaction: Insights from Thermodynamics

    Science.gov (United States)

    Aledo, Juan Carlos; Jimenez-Riveres, Susana; Tena, Manuel

    2010-01-01

    When teaching the effect of temperature on biochemical reactions, the problem is usually oversimplified by confining the thermal effect to the catalytic constant, which is identified with the rate constant of the elementary limiting step. Therefore, only positive values for activation energies and values greater than 1 for temperature coefficients…

  16. Metal-catalyzed Asymmetric Hetero-Diels-Alder Reactions of Unactivated Dienes with Glyoxylates

    DEFF Research Database (Denmark)

    Johannsen, Mogens; Yao, Sulan; Graven, Anette

    1998-01-01

    The development of a catalytic asymmetric hetero-Diels-Alder methodology for the reaction of unactivated dienes with glyoxylates is presented. Several different asymmetric catalysts can be used, but copper-bisoxazolines and aluminium-BINOL give the highest yield, and the best chemo...

  17. (SalenMn(III Catalyzed Asymmetric Epoxidation Reactions by Hydrogen Peroxide in Water: A Green Protocol

    Directory of Open Access Journals (Sweden)

    Francesco Paolo Ballistreri

    2016-07-01

    Full Text Available Enantioselective epoxidation reactions of some chosen reactive alkenes by a chiral Mn(III salen catalyst were performed in H2O employing H2O2 as oxidant and diethyltetradecylamine N-oxide (AOE-14 as surfactant. This procedure represents an environmentally benign protocol which leads to e.e. values ranging from good to excellent (up to 95%.

  18. Degradation of sulfadimethoxine catalyzed by laccase with soybean meal extract as natural mediator: Mechanism and reaction pathway.

    Science.gov (United States)

    Liang, Shangtao; Luo, Qi; Huang, Qingguo

    2017-08-01

    Natural laccase-mediator systems have been well recognized as an eco-friendly and energy-saving approach in environmental remediation, whose further application is however limited by the high cost of natural mediators and relatively long treatment time span. This study evaluated the water extract of soybean meal, a low-cost compound system, in mediating the laccase catalyzed degradation of a model contaminant of emerging concern, sulfadimethoxine (SDM), and demonstrated it as a promising alternative mediator for soil and water remediation. Removal of 73.3% and 65.6% was achieved in 9 h using soybean meal extract (SBE) as the mediating system for laccase-catalyzed degradation of sulfadimethoxine at the concentration of 1 ppm and 10 ppm, respectively. Further degradation of sulfadimethoxine was observed with multiple SBE additions. Using SBE as mediator increased the 9-h removal of SDM at 1 ppm initial concentration by 52.9%, 49.4%, and 36.3% in comparison to the system mediated by 1-Hydroxybenzotriazole (HBT), p-Coumaric acid (COU) and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS), respectively. With the detection of stable coupling products formed with radical scavenger (5,5-Dimethyl-1-pyrroline N-oxide, DMPO), three phenolic compounds (vanillin, apocynin, and daidzein) in SBE were confirmed to serve as mediators for Trametes versicolor laccase. Reaction pathways were proposed based on the results of High Resolution Mass Spectrometry. SO 2 excursion happened during SDM transformation, leading to elimination of antimicrobial activity. Therefore, as a natural, phenol rich, and affordable compound system, the future application of SBE in wastewater and soil remediation is worth exploring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Enzymatic Synthesis and Structural Characterization of Theanderose through Transfructosylation Reaction Catalyzed by Levansucrase from Bacillus subtilis CECT 39.

    Science.gov (United States)

    Ruiz-Aceituno, Laura; Sanz, Maria Luz; de Las Rivas, Blanca; Muñoz, Rosario; Kolida, Sofia; Jimeno, Maria Luisa; Moreno, F Javier

    2017-12-06

    This work addresses the high-yield and fast enzymatic production of theanderose, a naturally occurring carbohydrate, also known as isomaltosucrose, whose chemical structure determined by NMR is α-d-glucopyranosyl-(1 → 6)-α-d-glucopyranosyl-(1 → 2)-β-d-fructofuranose. The ability of isomaltose to act as an acceptor in the Bacillus subtilis CECT 39 levansucrase-catalyzed transfructosylation reaction to efficiently produce theanderose in the presence of sucrose as a donor is described by using four different sucrose:isomaltose concentration ratios. The maximum theanderose concentration ranged from 122.4 to 130.4 g L -1 , was obtained after only 1 h and at a moderate temperature (37 °C), leading to high productivity (109.7-130.4 g L -1 h -1 ) and yield (up to 37.3%) values. The enzymatic synthesis was highly regiospecific, since no other detectable acceptor reaction products were formed. The development of efficient and cost-effective procedures for the biosynthesis of unexplored but appealing oligosaccharides as potential sweeteners, such as theanderose, could help to expand its potential applications which are currently limited by their low availability.

  20. Tunable differentiation of tertiary C-H bonds in intramolecular transition metal-catalyzed nitrene transfer reactions.

    Science.gov (United States)

    Corbin, Joshua R; Schomaker, Jennifer M

    2017-04-13

    Metal-catalyzed nitrene transfer reactions are an appealing and efficient strategy for accessing tetrasubstituted amines through the direct amination of tertiary C-H bonds. Traditional catalysts for these reactions rely on substrate control to achieve site-selectivity in the C-H amination event; thus, tunability is challenging when competing C-H bonds have similar steric or electronic features. One consequence of this fact is that the impact of catalyst identity on the selectivity in the competitive amination of tertiary C-H bonds has not been well-explored, despite the potential for progress towards predictable and catalyst-controlled C-N bond formation. In this communication, we report investigations into tunable and site-selective nitrene transfers between tertiary C(sp 3 )-H bonds using a combination of transition metal catalysts, including complexes based on Ag, Mn, Rh and Ru. Particularly striking was the ability to reverse the selectivity of nitrene transfer by a simple change in the identity of the N-donor ligand supporting the Ag(i) complex. The combination of our Ag(i) catalysts with known Rh 2 (ii) complexes expands the scope of successful catalyst-controlled intramolecular nitrene transfer and represents a promising springboard for the future development of intermolecular C-H N-group transfer methods.

  1. Regio-, Diastereo-, and Enantioselective Nitroso-Diels-Alder Reaction of 1,3-Diene-1-carbamates Catalyzed by Chiral Phosphoric Acids.

    Science.gov (United States)

    Pous, Jonathan; Courant, Thibaut; Bernadat, Guillaume; Iorga, Bogdan I; Blanchard, Florent; Masson, Géraldine

    2015-09-23

    Chiral phosphoric acid-catalyzed asymmetric nitroso-Diels-Alder reaction of nitrosoarenes with carbamate-dienes afforded cis-3,6-disubstituted dihydro-1,2-oxazines in high yields with excellent regio-, diastereo-, and enantioselectivities. Interestingly, we observed that the catalyst is able not only to control the enantioselectivity but also to reverse the regioselectivity of the noncatalyzed nitroso-Diels-Alder reaction. The regiochemistry reversal and asynchronous concerted mechanism were confirmed by DFT calculations.

  2. FeCl3- and GaCl3-Catalyzed Dehydrative Coupling Reaction of Chromone-Derived Morita-Baylis-Hillman Alcohols with Terminal Alkynes%FeCl3- and GaCl3-Catalyzed Dehydrative Coupling Reaction of Chromone-Derived Morita-Baylis-Hillman Alcohols with Terminal Alkynes

    Institute of Scientific and Technical Information of China (English)

    武陈; 曾皓; 刘哲; 刘利; 王东; 陈拥军

    2011-01-01

    FeCl3- and GaCl3-catalyzed dehydrative coupling reactions of chromone-derived Morita-Baylis-Hillman (MBH) alcohols with terminal alkynes were developed. The reactions provided exclusively a-regioselective and acetylene-substituted products in good yields.

  3. Pd-catalyzed versus uncatalyzed, PhI(OAc)2-mediated cyclization reactions of N6-([1,1'-biaryl]-2-yl)adenine nucleosides.

    Science.gov (United States)

    Satishkumar, Sakilam; Poudapally, Suresh; Vuram, Prasanna K; Gurram, Venkateshwarlu; Pottabathini, Narender; Sebastian, Dellamol; Yang, Lijia; Pradhan, Padmanava; Lakshman, Mahesh K

    2017-11-09

    In this work we have assessed reactions of N 6 -([1,1'-biaryl]-2-yl)adenine nucleosides with Pd(OAc) 2 and PhI(OAc) 2 , via a Pd II /Pd IV redox cycle. The substrates are readily obtained by Pd/Xantphos-catalyzed reaction of adenine nucleosides with 2-bromo-1,1'-biaryls. In PhMe, the N 6 -biarylyl nucleosides gave C6-carbazolyl nucleoside analogues by C-N bond formation with the exocyclic N 6 nitrogen atom. In the solvent screening for the Pd-catalyzed reactions, an uncatalyzed process was found to be operational. It was observed that the carbazolyl products could also be obtained in the absence of a metal catalyst by reaction with PhI(OAc) 2 in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP). Thus, under Pd catalysis and in HFIP, reactions proceed to provide carbazolyl nucleoside analogues, with some differences. If reactions of N 6 -biarylyl nucleoside substrates were conducted in MeCN, formation of aryl benzimidazopurinyl nucleoside derivatives was observed in many cases by C-N bond formation with the N 1 ring nitrogen atom of the purine (carbazole and benzimidazole isomers are readily separated by chromatography). Whereas Pd II /Pd IV redox is responsible for carbazole formation under the metal-catalyzed conditions, in HFIP and MeCN radical cations and/or nitrenium ions can be intermediates. An extensive set of radical inhibition experiments was conducted and the data are presented.

  4. Process limitations of a whole-cell P450 catalyzed reaction using a CYP153A-CPR fusion construct expressed in Escherichia coli

    DEFF Research Database (Denmark)

    Lundemo, M. T.; Notonier, S.; Striedner, G.

    2016-01-01

    fatty acids at the terminal position. ω-Hydroxylated fatty acids can be used in the field of high-end polymers and in the cosmetic and fragrance industry. Here, we have identified the limitations for implementation of a whole-cell P450-catalyzed reaction by characterizing the chosen biocatalyst as well......Cytochrome P450s are interesting biocatalysts due to their ability to hydroxylate non-activated hydrocarbons in a selective manner. However, to date only a few P450-catalyzed processes have been implemented in industry due to the difficulty of developing economically feasible processes...

  5. How low does iron go? Chasing the active species in fe-catalyzed cross-coupling reactions.

    Science.gov (United States)

    Bedford, Robin B

    2015-05-19

    The catalytic cross-coupling reactions of organic halides or related substrates with organometallic nucleophiles form the cornerstone of many carbon-carbon bond-forming processes. While palladium-based catalysts typically mediate such reactions, there are increasing concerns about the long-term sustainability of palladium in synthesis. This is due to the high cost of palladium, coupled with its low natural abundance, environmentally deleterious extraction (∼6 g of metal are produced per ton of ore), toxicity, and competition for its use from the automotive and consumer electronics sectors. Therefore, there is a growing interest in replacing palladium-based catalysts with those incorporating more earth-abundant elements. With its low cost, high natural abundance, and low toxicity, iron makes a particularly appealing alternative, and accordingly, the development of iron-catalyzed cross-coupling is undergoing explosive growth. However, our understanding of the mechanisms that underpin the iron-based catalytic cycles is still very much in its infancy. Mechanistic insight into catalytic reactions is not only academically important but also allows us to maximize the efficiency of processes or even to develop entirely new transformations. Key to the development of robust mechanistic models for cross-coupling is knowing the lowest oxidation state in the cycle. Once this is established, we can explore subsequent redox processes and build the catalytic manifold. Until we know with confidence what the lowest oxidation state is, any cycles proposed are largely just guesswork. To date, Fe(-II), Fe(-I), Fe(0), Fe(I), and Fe(II) have been proposed as contenders for the lowest-oxidation-state species in the cycle in iron-catalyzed cross-coupling; the aim of this Account is to pull together the various pieces of evidence in support, or otherwise, of each of these suggestions in turn. There currently exists no direct evidence that oxidation states below Fe(0) are active in the

  6. An Alternative Reaction Pathway for Iridium Catalyzed Water Oxidation Driven by CAN

    KAUST Repository

    Bucci, Alberto

    2016-06-10

    The generation of solar fuels by means of a photosynthetic apparatus strongly relies on the development of an efficient water oxidation catalyst (WOC). Cerium ammonium nitrate (CAN) is the most commonly used sacrificial oxidant to explore the potentiality of WOCs. It is usually assumed that CAN has the unique role to oxidatively energize WOCs, making them capable to offer a low energy reaction pathway to transform H2O to O2. Herein we show that CAN might have a much more relevant and direct role in WO, mainly related to the capture and liberation of O–O containing molecular moieties.

  7. Cascade olefin isomerization/intramolecular Diels-Alder reaction catalyzed by N-heterocyclic carbenes.

    Science.gov (United States)

    Kowalczyk, Marcin; Lupton, David W

    2014-05-19

    The addition of an N-heterocyclic carbene to the carbonyl group of an α,β,γ,δ-unsaturated enol ester affords a hemiacetal azolium intermediate that enables a cascade olefin isomerization/Diels-Alder reaction, for which mechanistic studies implicate Lewis base catalysis. Preliminary studies into the utility of the products have been undertaken with reductive and oxidative cleavage, giving materials for potential use in complex-target synthesis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. An Alternative Reaction Pathway for Iridium Catalyzed Water Oxidation Driven by CAN

    KAUST Repository

    Bucci, Alberto; Menendez Rodriguez, Gabriel; Bellachioma, Gianfranco; Zuccaccia, Cristiano; Poater, Albert; Cavallo, Luigi; Macchioni, Alceo

    2016-01-01

    The generation of solar fuels by means of a photosynthetic apparatus strongly relies on the development of an efficient water oxidation catalyst (WOC). Cerium ammonium nitrate (CAN) is the most commonly used sacrificial oxidant to explore the potentiality of WOCs. It is usually assumed that CAN has the unique role to oxidatively energize WOCs, making them capable to offer a low energy reaction pathway to transform H2O to O2. Herein we show that CAN might have a much more relevant and direct role in WO, mainly related to the capture and liberation of O–O containing molecular moieties.

  9. Universal, colorimetric microRNA detection strategy based on target-catalyzed toehold-mediated strand displacement reaction

    Science.gov (United States)

    Park, Yeonkyung; Lee, Chang Yeol; Kang, Shinyoung; Kim, Hansol; Park, Ki Soo; Park, Hyun Gyu

    2018-02-01

    In this work, we developed a novel, label-free, and enzyme-free strategy for the colorimetric detection of microRNA (miRNA), which relies on a target-catalyzed toehold-mediated strand displacement (TMSD) reaction. The system employs a detection probe that specifically binds to the target miRNA and sequentially releases a catalyst strand (CS) intended to trigger the subsequent TMSD reaction. Thus, the presence of target miRNA releases the CS that mediates the formation of an active G-quadruplex DNAzyme which is initially caged and inactivated by a blocker strand. In addition, a fuel strand that is supplemented for the recycling of the CS promotes another TMSD reaction, consequently generating a large number of active G-quadruplex DNAzymes. As a result, a distinct colorimetric signal is produced by the ABTS oxidation promoted by the peroxidase mimicking activity of the released G-quadruplex DNAzymes. Based on this novel strategy, we successfully detected miR-141, a promising biomarker for human prostate cancer, with high selectivity. The diagnostic capability of this system was also demonstrated by reliably determining target miR-141 in human serum, showing its great potential towards real clinical applications. Importantly, the proposed approach is composed of separate target recognition and signal transduction modules. Thus, it could be extended to analyze different target miRNAs by simply redesigning the detection probe while keeping the same signal transduction module as a universal signal amplification unit, which was successfully demonstrated by analyzing another target miRNA, let-7d.

  10. Asymmetric effect of mechanical stress on the forward and reverse reaction catalyzed by an enzyme.

    Directory of Open Access Journals (Sweden)

    Collin Joseph

    Full Text Available The concept of modulating enzymatic activity by exerting a mechanical stress on the enzyme has been established in previous work. Mechanical perturbation is also a tool for probing conformational motion accompanying the enzymatic cycle. Here we report measurements of the forward and reverse kinetics of the enzyme Guanylate Kinase from yeast (Saccharomyces cerevisiae. The enzyme is held in a state of stress using the DNA spring method. The observation that mechanical stress has different effects on the forward and reverse reaction kinetics suggests that forward and reverse reactions follow different paths, on average, in the enzyme's conformational space. Comparing the kinetics of the stressed and unstressed enzyme we also show that the maximum speed of the enzyme is comparable to the predictions of the relaxation model of enzyme action, where we use the independently determined dissipation coefficient [Formula: see text] for the enzyme's conformational motion. The present experiments provide a mean to explore enzyme kinetics beyond the static energy landscape picture of transition state theory.

  11. Chemical Reactions Catalyzed by Metalloporphyrin-Based Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Kelly Aparecida Dias de Freitas Castro

    2013-06-01

    Full Text Available The synthetic versatility and the potential application of metalloporphyrins (MP in different fields have aroused researchers’ interest in studying these complexes, in an attempt to mimic biological systems such as cytochrome P-450. Over the last 40 years, synthetic MPs have been mainly used as catalysts for homogeneous or heterogeneous chemical reactions. To employ them in heterogeneous catalysis, chemists have prepared new MP-based solids by immobilizing MP onto rigid inorganic supports, a strategy that affords hybrid inorganic-organic materials. More recently, materials obtained by supramolecular assembly processes and containing MPs as building blocks have been applied in a variety of areas, like gas storage, photonic devices, separation, molecular sensing, magnets, and heterogeneous catalysis, among others. These coordination polymers, known as metal-organic frameworks (MOFs, contain organic ligands or complexes connected by metal ions or clusters, which give rise to a 1-, 2- or 3-D network. These kinds of materials presents large surface areas, Brønsted or redox sites, and high porosity, all of which are desirable features in catalysts with potential use in heterogeneous phases. Building MOFs based on MP is a good way to obtain solid catalysts that offer the advantages of bioinspired systems and zeolitic materials. In this mini review, we will adopt a historical approach to present the most relevant MP-based MOFs applicable to catalytic reactions such as oxidation, reduction, insertion of functional groups, and exchange of organic functions.

  12. Gold-catalyzed tandem hydroamination/formal aza-Diels-Alder reaction of homopropargyl amino esters: a combined computational and experimental mechanistic study.

    Science.gov (United States)

    Miró, Javier; Sánchez-Roselló, María; González, Javier; del Pozo, Carlos; Fustero, Santos

    2015-03-27

    A tandem gold-catalyzed hydroamination/formal aza-Diels-Alder reaction is described. This process, which employs quaternary homopropargyl amino ester substrates, leads to the formation of an intrincate tetracyclic framework and involves the generation of four bonds and five stereocenters in a highly diastereoselective manner. Theoretical calculations have allowed us to propose a suitable mechanistic rationalization for the tandem protocol. Additionally, by studying the influence of the ligands on the rate of the gold-catalyzed reactions, it was possible to establish optimum conditions in which to perform the process with a variety of substituents on the amino ester substrates. Notably, the asymmetric version of the tandem reaction was also evaluated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    Science.gov (United States)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  14. Theoretical study on platinum-catalyzed isotope exchange reaction mechanism of hydrogen and liquid water

    International Nuclear Information System (INIS)

    Hu Sheng; Wang Heyi; Luo Shunzhong

    2009-04-01

    Based on electron and vibration approximate means and the density function theory B3LYP, the ΔG degree and equilibrium pressures of adsorption and dissociation reactions of H 2 and water vapor on Pt surface have been calculated. The adsorption, dissociation and coadsorption actions of H 2 and water were analyzed. According to the ΔG degree, hydrogen molecule combines with metal atoms in single atom, and water vapor molecule has no tendency to dissociate on Pt surface. The dissociation of hydrogen molecule would hold back the direct adsorption of water vapor molecules on Pt surface. The structures of Pt-H (OH 2 ) n + (n=1, 2, 3) hydroniums were optimized. According to the mulliken overlap populations, Pt-H (OH 2 ) + is not stable or produced. Hydrogen isotope exchange occurs between hydration layer and D atoms which adsorb on Pt surface via intermediates (H 2 O) n D + (ads) (n≥2). (authors)

  15. Cooperative Effects Between Arginine and Glutamic Acid in the Amino Acid-Catalyzed Aldol Reaction.

    Science.gov (United States)

    Valero, Guillem; Moyano, Albert

    2016-08-01

    Catalysis of the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde by mixtures of L-Arg and of L-Glu in wet dimethyl sulfoxide (DMSO) takes place with higher enantioselectivity (up to a 7-fold enhancement in the anti-aldol for the 1:1 mixture) than that observed when either L-Glu or L-Arg alone are used as the catalysts. These results can be explained by the formation of a catalytically active hydrogen-bonded complex between both amino acids, and demonstrate the possibility of positive cooperative effects in catalysis by two different α-amino acids. Chirality 28:599-605, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Selective Production of Renewable para-Xylene by Tungsten Carbide Catalyzed Atom-Economic Cascade Reactions.

    Science.gov (United States)

    Dai, Tao; Li, Changzhi; Li, Lin; Zhao, Zongbao Kent; Zhang, Bo; Cong, Yu; Wang, Aiqin

    2018-02-12

    Tungsten carbide was employed as the catalyst in an atom-economic and renewable synthesis of para-xylene with excellent selectivity and yield from 4-methyl-3-cyclohexene-1-carbonylaldehyde (4-MCHCA). This intermediate is the product of the Diels-Alder reaction between the two readily available bio-based building blocks acrolein and isoprene. Our results suggest that 4-MCHCA undergoes a novel dehydroaromatization-hydrodeoxygenation cascade process by intramolecular hydrogen transfer that does not involve an external hydrogen source, and that the hydrodeoxygenation occurs through the direct dissociation of the C=O bond on the W 2 C surface. Notably, this process is readily applicable to the synthesis of various (multi)methylated arenes from bio-based building blocks, thus potentially providing a petroleum-independent solution to valuable aromatic compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Comparative analyses of laccase-catalyzed amination reactions for production of novel β-lactam antibiotics.

    Science.gov (United States)

    Mikolasch, Annett; Manda, Katrin; Schlüter, Rabea; Lalk, Michael; Witt, Sabine; Seefeldt, Simone; Hammer, Elke; Schauer, Frieder; Jülich, Wolf-Dieter; Lindequist, Ulrike

    2012-01-01

    Seven novel β-lactam antibiotics with activities against Gram-positive bacterial strains, among them methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, were synthesized by amination of 2,5-dihydroxyphenylacetic acid in usable yields (30-60%). These products protected mice against an infection with S. aureus lethal to the control animals. The results show the usefulness of laccase for the synthesis of potential new antibiotics, in addition to the interdependence of the laccase substrates, the amino coupling partners, and the product formation, yield, and activity. The syntheses of β-lactam antibiotics with 2,5-dihydroxyaromatic acid substructures (para-substituted) are then compared with those of 3,4-dihydroxyaromatic acid substructures (ortho-substituted). Para-substituted laccase substrates were better reaction partners in these syntheses than ortho-substituted compounds. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  18. Dienone-phenol Rearrangement of C-9 Oxygenated Decalinic Dienone and Analogs through B-Ring Cleavage

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Dehydrogenation of 9-hydroxy decalinic enones and analogs with DDQ resulted in a formal dienone-phenol type rearrangement via B-ring cleavage, while the corresponding dienone acetates underwent base-catalyzed formal dienone-phenol type rearrangement analogously.

  19. The Ultrafast Wolff Rearrangement in the Gas Phase

    Science.gov (United States)

    Steinbacher, Andreas; Roeding, Sebastian; Brixner, Tobias; Nuernberger, Patrick

    The Wolff rearrangement of gas-phase 5-diazo Meldrum's acid is disclosed with femtosecond ion spectroscopy. Distinct differences are found for 267 nm and 200 nm excitation, the latter leading to even two ultrafast rearrangement reactions.

  20. Copper-Catalyzed Trifluoromethylazidation of Alkynes: Efficient Access to CF3-Substituted Azirines and Aziridines.

    Science.gov (United States)

    Wang, Fei; Zhu, Na; Chen, Pinhong; Ye, Jinxing; Liu, Guosheng

    2015-08-03

    A novel method for convenient access to CF3-containing azirines has been developed, and involves a copper-catalyzed trifluoromethylazidation of alkynes and a photocatalyzed rearrangement. Both terminal and internal alkynes are compatible with the mild reaction conditions, thus delivering the CF3-containing azirines in moderate to good yields. The azirines can be converted into various CF3-substituted aziridines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Evaluation of multiplex ligation-dependent probe amplification analysis versus multiplex polymerase chain reaction assays in the detection of dystrophin gene rearrangements in an Iranian population subset

    Directory of Open Access Journals (Sweden)

    Nayereh Nouri

    2014-01-01

    Full Text Available Background: The Duchenne muscular dystrophy (DMD gene is located in the short arm of the X chromosome (Xp21. It spans 2.4 Mb of the human genomic DNA and is composed of 79 exons. Mutations in the Dystrophin gene result in DMD and Becker muscular dystrophy. In this study, the efficiency of multiplex ligation-dependent probe amplification (MLPA over multiplex polymerase chain reaction (PCR assays in an Iranian population was investigated. Materials and Methods: Multiplex PCR assays and MLPA analysis were carried out in 74 patients affected with DMD. Results: Multiplex PCR detected deletions in 51% of the patients with DMD. MLPA analysis could determine all the deletions detected by the multiplex PCR. Additionally, MLPA was able to identify one more deletion and duplication in patients without detectable mutations by multiplex PCR. Moreover, MLPA precisely determined the exact size of the deletions. Conclusion: Although MLPA analysis is more sensitive for detection of deletions and duplications in the dystrophin gene, multiplex PCR might be used for the initial analysis of the boys affected with DMD in the Iranian population as it was able to detect 95% of the rearrangements in patients with DMD.

  2. Mission to Mars by catalyzed nuclear reactions of the commercialized cold fusion power

    International Nuclear Information System (INIS)

    Woo, Tae Ho

    2016-01-01

    The chemical compound source is deficient to reach to the power as much as the journey to Mars, unless the massive equipment is installed like the nuclear fusion reactor. However, there is very significant limitations of making up the facility due to the propellant power. Therefore, the light and cheap energy source, Low energy nuclear reactions (LENRs), powered rocket has been proposed. In this paper, the power conditions by LENRs are analyzed. After the successful Apollo mission to Moon of the National Aeronautics and Space Administration (NASA) in the U.S. government, the civilian companies have proposed for the manned mission to Mars for the commercial journey purposes. The nuclear power has been a critical issue for the energy source in the travel, especially, by the LENR of LENUCO, Champaign, USA. As the velocity of the rocket increases, the mass flow rate decreases. It could be imaginable to take the reasonable velocity of spacecraft. The energy of the travel system is and will be created for the better one in economical and safe method. There is the imagination of boarding pass for spacecraft ticket shows the selected companies of cold fusion products. In order to solve the limitations of the conventional power sources like the chemical and solar energies, it is reasonable to design LENR concept. Since the economical and safe spacecraft is very important in the long journey on and beyond the Mars orbit, a new energy source, LENR, should be studied much more

  3. Quantum chemical modeling of zeolite-catalyzed methylation reactions: toward chemical accuracy for barriers.

    Science.gov (United States)

    Svelle, Stian; Tuma, Christian; Rozanska, Xavier; Kerber, Torsten; Sauer, Joachim

    2009-01-21

    The methylation of ethene, propene, and t-2-butene by methanol over the acidic microporous H-ZSM-5 catalyst has been investigated by a range of computational methods. Density functional theory (DFT) with periodic boundary conditions (PBE functional) fails to describe the experimentally determined decrease of apparent energy barriers with the alkene size due to inadequate description of dispersion forces. Adding a damped dispersion term expressed as a parametrized sum over atom pair C(6) contributions leads to uniformly underestimated barriers due to self-interaction errors. A hybrid MP2:DFT scheme is presented that combines MP2 energy calculations on a series of cluster models of increasing size with periodic DFT calculations, which allows extrapolation to the periodic MP2 limit. Additionally, errors caused by the use of finite basis sets, contributions of higher order correlation effects, zero-point vibrational energy, and thermal contributions to the enthalpy were evaluated and added to the "periodic" MP2 estimate. This multistep approach leads to enthalpy barriers at 623 K of 104, 77, and 48 kJ/mol for ethene, propene, and t-2-butene, respectively, which deviate from the experimentally measured values by 0, +13, and +8 kJ/mol. Hence, enthalpy barriers can be calculated with near chemical accuracy, which constitutes significant progress in the quantum chemical modeling of reactions in heterogeneous catalysis in general and microporous zeolites in particular.

  4. Synthesis of L-Ascorbyl Flurbiprofenate by Lipase-Catalyzed Esterification and Transesterification Reactions

    Directory of Open Access Journals (Sweden)

    Jia-ying Xin

    2017-01-01

    Full Text Available The synthesis of L-ascorbyl flurbiprofenate was achieved by esterification and transesterification in nonaqueous organic medium with Novozym 435 lipase as biocatalyst. The conversion was greatly influenced by the kinds of organic solvents, speed of agitation, catalyst loading amount, reaction time, and molar ratio of acyl donor to L-ascorbic acid. A series of solvents were investigated, and tert-butanol was found to be the most suitable from the standpoint of the substrate solubility and the conversion for both the esterification and transesterification. When flurbiprofen was used as acyl donor, 61.0% of L-ascorbic acid was converted against 46.4% in the presence of flurbiprofen methyl ester. The optimal conversion of L-ascorbic acid was obtained when the initial molar ratio of acyl donor to ascorbic acid was 5 : 1. kinetics parameters were solved by Lineweaver-Burk equation under nonsubstrate inhibition condition. Since transesterification has lower conversion, from the standpoint of productivity and the amount of steps required, esterification is a better method compared to transesterification.

  5. Mission to Mars by catalyzed nuclear reactions of the commercialized cold fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Yonsei University, Wonju (Korea, Republic of)

    2016-05-15

    The chemical compound source is deficient to reach to the power as much as the journey to Mars, unless the massive equipment is installed like the nuclear fusion reactor. However, there is very significant limitations of making up the facility due to the propellant power. Therefore, the light and cheap energy source, Low energy nuclear reactions (LENRs), powered rocket has been proposed. In this paper, the power conditions by LENRs are analyzed. After the successful Apollo mission to Moon of the National Aeronautics and Space Administration (NASA) in the U.S. government, the civilian companies have proposed for the manned mission to Mars for the commercial journey purposes. The nuclear power has been a critical issue for the energy source in the travel, especially, by the LENR of LENUCO, Champaign, USA. As the velocity of the rocket increases, the mass flow rate decreases. It could be imaginable to take the reasonable velocity of spacecraft. The energy of the travel system is and will be created for the better one in economical and safe method. There is the imagination of boarding pass for spacecraft ticket shows the selected companies of cold fusion products. In order to solve the limitations of the conventional power sources like the chemical and solar energies, it is reasonable to design LENR concept. Since the economical and safe spacecraft is very important in the long journey on and beyond the Mars orbit, a new energy source, LENR, should be studied much more.

  6. Phosphoryl transfer is not rate-limiting for the ROCK I-catalyzed kinase reaction.

    Science.gov (United States)

    Futer, Olga; Saadat, Ahmad R; Doran, John D; Raybuck, Scott A; Pazhanisamy, S

    2006-06-27

    Rho-associated coiled-coil kinase, ROCK, is implicated in Rho-mediated cell adhesion and smooth muscle contraction. Animal models suggest that the inhibition of ROCK can ameliorate conditions, such as vasospasm, hypertension, and inflammation. As part of our effort to design novel inhibitors of ROCK, we investigated the kinetic mechanism of ROCK I. Steady-state bisubstrate kinetics, inhibition kinetics, isotope partition analysis, viscosity effects, and presteady-state kinetics were used to explore the kinetic mechanism. Plots of reciprocals of initial rates obtained in the presence of nonhydrolyzable ATP analogues and the small molecule inhibitor of ROCK, Y-27632, against the reciprocals of the peptide concentrations yielded parallel lines (uncompetitive pattern). This pattern is indicative of an ordered binding mechanism, with the peptide adding first. The staurosporine analogue K252a, however, gave a noncompetitive pattern. When a pulse of (33)P-gamma-ATP mixed with ROCK was chased with excess unlabeled ATP and peptide, 0.66 enzyme equivalent of (33)P-phosphate was incorporated into the product in the first turnover. The presence of ATPase activity coupled with the isotope partition data is a clear evidence for the existence of a viable [E-ATP] complex in the kinase reaction and implicates a random binding mechanism. The k(cat)/K(m) parameters were fully sensitive to viscosity (viscosity effects of 1.4 +/- 0.2 and 0.9 +/- 0.3 for ATP and peptide 5, respectively), and therefore, the barriers to dissociation of either substrate are higher than the barrier for the phosphoryl transfer step. As a consequence, not all the binding steps are at fast equilibrium. The observation of a burst in presteady-state kinetics (k(b) = 10.2 +/- 2.1 s(-)(1)) and the viscosity effect on k(cat) of 1.3 +/- 0.2 characterize the phosphoryl transfer step to be fast and the release of product and/or the enzyme isomerization step accompanying it as rate-limiting at V(max) conditions. From

  7. Synthesis of Imidazopyridines via Copper-Catalyzed, Formal Aza-[3 + 2] Cycloaddition Reaction of Pyridine Derivatives with α-Diazo Oxime Ethers.

    Science.gov (United States)

    Park, Sangjune; Kim, Hyunseok; Son, Jeong-Yu; Um, Kyusik; Lee, Sooho; Baek, Yonghyeon; Seo, Boram; Lee, Phil Ho

    2017-10-06

    The Cu-catalyzed, formal aza-[3 + 2] cycloaddition reaction of pyridine derivatives with α-diazo oxime ethers in trifluoroethanol was used to synthesize imidazopyridines via the release of molecular nitrogen and elimination of alcohol. These methods enabled modular synthesis of a wide range of N-heterobicyclic compounds such as imidazopyridazines, imidazopyrimidines, and imidazopyrazines with an α-imino Cu-carbenoid generated from the α-diazo oxime ethers and copper.

  8. Sonogashira Reaction of Aryl and Heteroaryl Halides with Terminal Alkynes Catalyzed by a Highly Efficient and Recyclable Nanosized MCM-41 Anchored Palladium Bipyridyl Complex

    Directory of Open Access Journals (Sweden)

    Chung-Yuan Mou

    2010-12-01

    Full Text Available A heterogeneous catalyst, nanosized MCM-41-Pd, was used to catalyze the Sonogashira coupling of aryl and heteroaryl halides with terminal alkynes in the presence of CuI and triphenylphosphine. The coupling products were obtained in high yields using low Pd loadings to 0.01 mol%, and the nanosized MCM-41-Pd catalyst was recovered by centrifugation of the reaction solution and re-used in further runs without significant loss of reactivity.

  9. Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α-Amino Radicals to Electron-Deficient Olefins

    KAUST Repository

    Millet, Anthony; Lefebvre, Quentin; Rueping, Magnus

    2016-01-01

    A tin- and halide-free, visible-light photoredox-catalyzed Giese reaction was developed. Primary and secondary α-amino radicals were generated readily from amino acids in the presence of catalytic amounts of an iridium photocatalyst. The reactivity of the α-amino radicals has been evaluated for the functionalization of a variety of activated olefins. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  10. Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α-Amino Radicals to Electron-Deficient Olefins

    KAUST Repository

    Millet, Anthony

    2016-06-20

    A tin- and halide-free, visible-light photoredox-catalyzed Giese reaction was developed. Primary and secondary α-amino radicals were generated readily from amino acids in the presence of catalytic amounts of an iridium photocatalyst. The reactivity of the α-amino radicals has been evaluated for the functionalization of a variety of activated olefins. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  11. Cyclic aldimines as superior electrophiles for Cu-catalyzed decarboxylative Mannich reaction of β-ketoacids with a broad scope and high enantioselectivity.

    Science.gov (United States)

    Zhang, Heng-Xia; Nie, Jing; Cai, Hua; Ma, Jun-An

    2014-05-02

    A novel Cu-catalyzed enantioselective decarboxylative Mannich reaction of cyclic aldimines with β-ketoacids is described. The cyclic structure of these aldimines, in which the C═N bond is constrained in the Z geometry, appears to be important, allowing Mannich condensation to proceed in high yields with excellent enantioselectivities. A chiral chroman-4-amine was synthesized from the decarboxylative Mannich product in several steps without loss of enantioselectivity.

  12. A hydrogen-bonding network is important for oxidation and isomerization in the reaction catalyzed by cholesterol oxidase

    International Nuclear Information System (INIS)

    Lyubimov, Artem Y.; Chen, Lin; Sampson, Nicole S.; Vrielink, Alice

    2009-01-01

    The importance of active-site electrostatics for oxidative and reductive half-reactions in a redox flavoenzyme (cholesterol oxidase) have been investigated by a combination of biochemistry and atomic resolution crystallography. A detailed examination of active-site dynamics demonstrates that the oxidation of substrate and the re-oxidation of the flavin cofactor by molecular oxygen are linked by a single active-site asparagine. Cholesterol oxidase is a flavoenzyme that catalyzes the oxidation and isomerization of 3β-hydroxysteroids. Structural and mutagenesis studies have shown that Asn485 plays a key role in substrate oxidation. The side chain makes an NH⋯π interaction with the reduced form of the flavin cofactor. A N485D mutant was constructed to further test the role of the amide group in catalysis. The mutation resulted in a 1800-fold drop in the overall k cat . Atomic resolution structures were determined for both the N485L and N485D mutants. The structure of the N485D mutant enzyme (at 1.0 Å resolution) reveals significant perturbations in the active site. As predicted, Asp485 is oriented away from the flavin moiety, such that any stabilizing interaction with the reduced flavin is abolished. Met122 and Glu361 form unusual hydrogen bonds to the functional group of Asp485 and are displaced from the positions they occupy in the wild-type active site. The overall effect is to disrupt the stabilization of the reduced FAD cofactor during catalysis. Furthermore, a narrow transient channel that is shown to form when the wild-type Asn485 forms the NH⋯π interaction with FAD and that has been proposed to function as an access route of molecular oxygen, is not observed in either of the mutant structures, suggesting that the dynamics of the active site are altered

  13. One-Pot Synthesis of Novel Chiral β-Amino Acid Derivatives by Enantioselective Mannich Reactions Catalyzed by Squaramide Cinchona Alkaloids

    Directory of Open Access Journals (Sweden)

    Kankan Zhang

    2013-05-01

    Full Text Available An efficient one-pot synthesis of novel β-amino acid derivatives containing a thiadiazole moiety was developed using a chiral squaramide cinchona alkaloid as organocatalyst. The reactions afforded chiral β-amino acid derivatives in moderate yields and with moderate to excellent enantioselectivities. The present study demonstrated for the first time the use of a Mannich reaction catalyzed by a chiral bifunctional organocatalyst for the one-pot synthesis of novel β-amino acid derivatives bearing a 1,3,4-thiadiazole moiety on nitrogen.

  14. Rearrangements of organic peroxides and related processes

    Directory of Open Access Journals (Sweden)

    Ivan A. Yaremenko

    2016-08-01

    Full Text Available This review is the first to collate and summarize main data on named and unnamed rearrangement reactions of peroxides. It should be noted, that in the chemistry of peroxides two types of processes are considered under the term rearrangements. These are conventional rearrangements occurring with the retention of the molecular weight and transformations of one of the peroxide moieties after O–O-bond cleavage. Detailed information about the Baeyer−Villiger, Criegee, Hock, Kornblum−DeLaMare, Dakin, Elbs, Schenck, Smith, Wieland, and Story reactions is given. Unnamed rearrangements of organic peroxides and related processes are also analyzed. The rearrangements and related processes of important natural and synthetic peroxides are discussed separately.

  15. Novel Rearrangements in the Reactions Directed Toward Preparation of Spiro-N,N-ketals: Reactions of Naphthalene-1,8-diamine with Ninhydrin and Isatin

    Directory of Open Access Journals (Sweden)

    Keiji Kobayashi

    2012-11-01

    Full Text Available Spiro-N,N-ketal 5, consisting of a phthaloperine heterocyclic ring and a naphtha[1,8-ef][1,4]diazepine ring, was obtained along with spiro-N,N-ketal 2 via 2,2-condensation in the reaction of ninhydrin with naphthalene-1,8-diamine. Their molecular structures were elucidated by X-ray crystal structural analysis. Aside from these spiro compounds, the diazapleiadiene compound 3 formed by 1,2-condensation and the 1,4-isoquinolinedione compound 4 arising from ring expansion were isolated. When isatin was reacted with naphthalene-1,8-diamine, spiro-N,N-ketal 6 and the two 1H-perimidine-based compounds 7 and 8 were isolated. Compound 8 was revealed to undergo a fast dynamic prototropic tautomerization in solution. Plausible mechanisms of the formation of the products are proposed.

  16. N,N'-dioxide/nickel(II)-catalyzed asymmetric inverse-electron-demand hetero-diels-alder reaction of β,γ-unsaturated α-ketoesters with enecarbamates.

    Science.gov (United States)

    Zhou, Yuhang; Zhu, Yin; Lin, Lili; Zhang, Yulong; Zheng, Jianfeng; Liu, Xiaohua; Feng, Xiaoming

    2014-12-08

    N,N'-Dioxide/nickel(II) complexes have been developed to catalyze the inverse-electron-demand hetero-Diels-Alder reaction of β,γ-unsaturated α-ketoesters with acyclic enecarbamates. After detailed screening of the reaction parameters, mild optimized reaction conditions were established, affording 3,4-dihydro-2H-pyranamines in up to 99 % yield, 99 % ee and more than 95:5 d.r. The catalytic system was also efficient for β-substituted acyclic enecarbamates, affording more challenging 2,3,4-trisubstituted 3,4-dihydro-2H-pyranamine with three contiguous stereogenic centers in excellent yields, diastereoselectivities, and enantioselectivities. The reaction could be scaled up to a gram scale with no deterioration of either enantioselectivity or yield. Based on these experiments and on previous reports, a possible transition state was proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Visible-light-induced, Ir-catalyzed reactions of N-methyl-N-((trimethylsilylmethylaniline with cyclic α,β-unsaturated carbonyl compounds

    Directory of Open Access Journals (Sweden)

    Dominik Lenhart

    2014-04-01

    Full Text Available N-Methyl-N-((trimethylsilylmethylaniline was employed as reagent in visible-light-induced, iridium-catalyzed addition reactions to cyclic α,β-unsaturated carbonyl compounds. Typical reaction conditions included the use of one equivalent of the reaction substrate, 1.5 equivalents of the aniline and 2.5 mol % (in MeOH or 1.0 mol % (in CH2Cl2 [Ir(ppy2(dtbbpy]BF4 as the catalyst. Two major reaction products were obtained in combined yields of 30–67%. One product resulted from aminomethyl radical addition, the other product was a tricyclic compound, which is likely formed by attack of the intermediately formed α-carbonyl radical at the phenyl ring. For five-membered α,β-unsaturated lactone and lactam substrates, the latter products were the only products isolated. For the six-membered lactones and lactams and for cyclopentenone the simple addition products prevailed.

  18. Enhanced removal of aqueous acetaminophen by a laccase-catalyzed oxidative coupling reaction under a dual-pH optimization strategy.

    Science.gov (United States)

    Wang, Kaidong; Huang, Ke; Jiang, Guoqiang

    2018-03-01

    Acetaminophen is one kind of pharmaceutical contaminant that has been detected in municipal water and is hard to digest. A laccase-catalyzed oxidative coupling reaction is a potential method of removing acetaminophen from water. In the present study, the kinetics of radical polymerization combined with precipitation was studied, and the dual-pH optimization strategy (the enzyme solution at pH7.4 being added to the substrate solution at pH4.2) was proposed to enhance the removal efficiency of acetaminophen. The reaction kinetics that consisted of the laccase-catalyzed oxidation, radical polymerization and precipitation were studied by UV in situ, LC-MS and DLS (dynamic light scattering) in situ. The results showed that the laccase-catalyzed oxidation is the rate-limiting step in the whole process. The higher rate of enzyme-catalyzed oxidation under a dual-pH optimization strategy led to much faster formation of the dimer, trimer and tetramer. Similarly, the formation of polymerized products that could precipitate naturally from water was faster. Under the dual-pH optimization strategy, the initial laccase activity was increased approximately 2.9-fold, and the activity remained higher for >250s, during which approximately 63.7% of the total acetaminophen was transformed into biologically inactive polymerized products, and part of these polymerized products precipitated from the water. Laccase belongs to the family of multi-copper oxidases, and the present study provides a universal method to improve the activity of multi-copper oxidases for the high-performance removal of phenol and its derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The acid-catalyzed hydrolysis of an α-pinene-derived organic nitrate: kinetics, products, reaction mechanisms, and atmospheric impact

    Science.gov (United States)

    Rindelaub, Joel D.; Borca, Carlos H.; Hostetler, Matthew A.; Slade, Jonathan H.; Lipton, Mark A.; Slipchenko, Lyudmila V.; Shepson, Paul B.

    2016-12-01

    The production of atmospheric organic nitrates (RONO2) has a large impact on air quality and climate due to their contribution to secondary organic aerosol and influence on tropospheric ozone concentrations. Since organic nitrates control the fate of gas phase NOx (NO + NO2), a byproduct of anthropogenic combustion processes, their atmospheric production and reactivity is of great interest. While the atmospheric reactivity of many relevant organic nitrates is still uncertain, one significant reactive pathway, condensed phase hydrolysis, has recently been identified as a potential sink for organic nitrate species. The partitioning of gas phase organic nitrates to aerosol particles and subsequent hydrolysis likely removes the oxidized nitrogen from further atmospheric processing, due to large organic nitrate uptake to aerosols and proposed hydrolysis lifetimes, which may impact long-range transport of NOx, a tropospheric ozone precursor. Despite the atmospheric importance, the hydrolysis rates and reaction mechanisms for atmospherically derived organic nitrates are almost completely unknown, including those derived from α-pinene, a biogenic volatile organic compound (BVOC) that is one of the most significant precursors to biogenic secondary organic aerosol (BSOA). To better understand the chemistry that governs the fate of particle phase organic nitrates, the hydrolysis mechanism and rate constants were elucidated for several organic nitrates, including an α-pinene-derived organic nitrate (APN). A positive trend in hydrolysis rate constants was observed with increasing solution acidity for all organic nitrates studied, with the tertiary APN lifetime ranging from 8.3 min at acidic pH (0.25) to 8.8 h at neutral pH (6.9). Since ambient fine aerosol pH values are observed to be acidic, the reported lifetimes, which are much shorter than that of atmospheric fine aerosol, provide important insight into the fate of particle phase organic nitrates. Along with rate constant

  20. Label-Free and Ultrasensitive Biomolecule Detection Based on Aggregation Induced Emission Fluorogen via Target-Triggered Hemin/G-Quadruplex-Catalyzed Oxidation Reaction.

    Science.gov (United States)

    Li, Haiyin; Chang, Jiafu; Gai, Panpan; Li, Feng

    2018-02-07

    Fluorescence biosensing strategy has drawn substantial attention due to their advantages of simplicity, convenience, sensitivity, and selectivity, but unsatisfactory structure stability, low fluorescence quantum yield, high cost of labeling, and strict reaction conditions associated with current fluorescence methods severely prohibit their potential application. To address these challenges, we herein propose an ultrasensitive label-free fluorescence biosensor by integrating hemin/G-quadruplex-catalyzed oxidation reaction with aggregation induced emission (AIE) fluorogen-based system. l-Cysteine/TPE-M, which is carefully and elaborately designed and developed, obviously contributes to strong fluorescence emission. In the presence of G-rich DNA along with K + and hemin, efficient destruction of l-cysteine occurs due to hemin/G-quadruplex-catalyzed oxidation reactions. As a result, highly sensitive fluorescence detection of G-rich DNA is readily realized, with a detection limit down to 33 pM. As a validation for the further development of the proposed strategy, we also successfully construct ultrasensitive platforms for microRNA by incorporating the l-cysteine/TPE-M system with target-triggered cyclic amplification reaction. Thus, this proposed strategy is anticipated to find use in basic biochemical research and clinical diagnosis.

  1. Acid-catalyzed rearrangements of flavan-4-phloroglucinol derivatives to novel 6-hydroxyphenyl-6a,llb-dihydro-6H-[1]benzofuro[2,3-c]-chromenes and hydroxyphenyl-3,2'-spirobi[dihydro[l]benzofurans

    Science.gov (United States)

    Petrus J. Steynberg; Jan P. Steynberg; Richard W. Hemingway; Daneel Ferreira; G. Wayne McGraw

    1997-01-01

    Acetic acid-catalyzed cleavage of proanthocyanidins in the presence of phloroglucinol gives a series of 2R procyanidin- and prodelphinidin-phloroglucinol adducts together with a novel 2S all-cis derivative implicating cleavage of the pyran ring and subsequent inversion of stereochernistry at C-2c. These flavan-4-phloroglucinol adducts also suffer dehydration to...

  2. Acid- and base-catalysis in the mononuclear rearrangement of some (Z)-arylhydrazones of 5-amino-3-benzoyl-1,2,4-oxadiazole in toluene: effect of substituents on the course of reaction.

    Science.gov (United States)

    D'Anna, Francesca; Frenna, Vincenzo; Ghelfi, Franco; Marullo, Salvatore; Spinelli, Domenico

    2011-04-15

    The reaction rates for the rearrangement of eleven (Z)-arylhydrazones of 5-amino-3-benzoyl-1,2,4-oxadiazole 3a-k into the relevant (2-aryl-5-phenyl-2H-1,2,3-triazol-4-yl)ureas 4a-k in the presence of trichloroacetic acid or of piperidine have been determined in toluene at 313.1 K. The results have been related to the effect of the aryl substituent by using Hammett and/or Ingold-Yukawa-Tsuno correlations and have been compared with those previously collected in a protic polar solvent (dioxane/water) as well as with those on the analogous rearrangement of the corresponding (Z)-arylhydrazones of 3-benzoyl-5-phenyl-1,2,4-oxadiazole 1a-k in benzene. Some light can thus be shed on the general differences of chemical reactivity between protic polar (or dipolar aprotic) and apolar solvents.

  3. Cu(II)-catalyzed esterification reaction via aerobic oxidative cleavage of C(CO)-C(alkyl) bonds.

    Science.gov (United States)

    Ma, Ran; He, Liang-Nian; Liu, An-Hua; Song, Qing-Wen

    2016-02-04

    A novel Cu(II)-catalyzed aerobic oxidative esterification of simple ketones for the synthesis of esters has been developed with wide functional group tolerance. This process is assumed to go through a tandem sequence consisting of α-oxygenation/esterification/nucleophilic addition/C-C bond cleavage and carbon dioxide is released as the only byproduct.

  4. A note on the Noyori model for chiral amplification in the aminoalcohol-catalyzed reaction of aldehydes with dialkylzinc

    Directory of Open Access Journals (Sweden)

    IVAN GUTMAN

    1999-11-01

    Full Text Available The Noyori model of chiral amplification in the alkylation of aldehydes by means of dialkylzinc, catalyzed by chiral aminoalcohols, is further elaborated. A direct, but approximate, relation is obtained between the enantiomeric excess of the catalyst added and the enantiomeric excess of the product.

  5. Intermolecular rhodium-catalyzed [2 + 2 + 2] carbocyclization reactions of 1,6-enynes with symmetrical and unsymmetrical alkynes†

    Science.gov (United States)

    Andrew Evans, P.; Sawyer, James R.; Lai, Kwong Wah; Huffman, John C.

    2006-01-01

    The crossed intermolecular rhodium-catalyzed [2 + 2 + 2] carbocyclization of carbon and heteroatom tethered 1,6-enynes can be accomplished with symmetrical and unsymmetrical alkynes, to afford the corresponding bicyclohexadienes in an efficient and highly selective manner. PMID:16075089

  6. Direct Synthesis of 5-Aryl Barbituric Acids by Rhodium(II)-Catalyzed Reactions of Arenes with Diazo Compounds**

    Science.gov (United States)

    Best, Daniel; Burns, David J; Lam, Hon Wai

    2015-01-01

    A commercially available rhodium(II) complex catalyzes the direct arylation of 5-diazobarbituric acids with arenes, allowing straightforward access to 5-aryl barbituric acids. Free N—H groups are tolerated on the barbituric acid, with no complications arising from N—H insertion processes. This method was applied to the concise synthesis of a potent matrix metalloproteinase (MMP) inhibitor. PMID:25959544

  7. Synthesis of rearranged unsaturated drimane derivatives

    Directory of Open Access Journals (Sweden)

    Miranda Domingos S. de

    2001-01-01

    Full Text Available A full account to the preparation and application of three appropriately substituted vinylcyclohexenes (2,2-dimethyl-3-vinylcyclohex-3-en-1-ol, 2,2-dimethyl-3-vinylcyclohex-3-en-1-one and 3,3-dimethyl-2-vinylcyclohexene in thermal Diels-Alder reactions with alpha,beta-unsaturated esters (methyl tiglate and methyl angelate is given. This approach delivered the racemic synthesis of ten octalin derivatives bearing a rearranged drimane skeleton (4 diastereomers of 1-methoxycarbonyl-6-hydroxy-1,2,5,5-tetramethyl-1,2,3,5,6,7, 8,8a-octahydronaphthalene; 1-methoxycarbonyl-6-oxo-1,2,5,5-tetramethyl-1,2,3,4,5,6,7,8-octahydronaphthalene; 2-methoxycarbonyl-6-oxo-1,2,5,5-tetramethyl-1,2,3,5,6,7,8,8a-octahydronaphthalene; 3 diastereomers of 1-methoxycarbonyl-1,2,5,5-tetramethyl-1,2,3,5,6,7,8,8a-octahydronaphthalene and 2-methoxycarbonyl-1,2,5,5-tetramethyl-1,2,3,5,6,7,8,8a-octahydronaphthalene . Central synthetic features included preparation of enoltriflates by Stang's protocol and the successful palladium-catalyzed cross-coupling reaction (Stille reaction of the triflate with the tri-n-butylvinylstannane. The octalins relative stereochemistry was unequivocally ascertained by spectroscopic methods and/or X-ray crystallography and these data now stand as useful tools to support the correct assignment of related natural products usually isolated in minute amounts.

  8. Lecithin-cholesterol acyltransferase (LCAT) catalyzes transacylation of intact cholesteryl esters. Evidence for the partial reversal of the forward LCAT reaction

    International Nuclear Information System (INIS)

    Sorci-Thomas, M.; Babiak, J.; Rudel, L.L.

    1990-01-01

    Lecithin-cholesterol acyltransferase (LCAT) catalyzes the intravascular synthesis of lipoprotein cholesteryl esters by converting cholesterol and lecithin to cholesteryl ester and lysolecithin. LCAT is unique in that it catalyzes sequential reactions within a single polypeptide sequence. In this report we find that LCAT mediates a partial reverse reaction, the transacylation of lipoprotein cholesteryl oleate, in whole plasma and in a purified, reconstituted system. As a result of the reverse transacylation reaction, a linear accumulation of [3H]cholesterol occurred during incubations of plasma containing high density lipoprotein labeled with [3H]cholesteryl oleate. When high density lipoprotein labeled with cholesteryl [14C]oleate was also included in the incubation the labeled fatty acyl moiety remained in the cholesteryl [14C]oleate pool showing that the formation of labeled cholesterol did not result from hydrolysis of the doubly labeled cholesteryl esters. The rate of release of [3H]cholesterol was only about 10% of the forward rate of esterification of cholesterol using partially purified human LCAT and was approximately 7% in whole monkey plasma. Therefore, net production of cholesterol via the reverse LCAT reaction would not occur. [3H]Cholesterol production from [3H]cholesteryl oleate was almost completely inhibited by a final concentration of 1.4 mM 5,5'-dithiobis(nitrobenzoic acid) during incubation with either purified LCAT or whole plasma. Addition of excess lysolecithin to the incubation system did not result in the formation of [14C]oleate-labeled lecithin, showing that the reverse reaction found here for LCAT was limited to the last step of the reaction. To explain these results we hypothesize that LCAT forms a [14C]oleate enzyme thioester intermediate after its attack on the cholesteryl oleate molecule

  9. Structure and Reaction Mechanism of Pyrrolysine Synthase (PylD)

    KAUST Repository

    Quitterer, Felix; Beck, Philipp; Bacher, Adelbert; Groll, Michael

    2013-01-01

    The final step in the biosynthesis of the 22nd genetically encoded amino acid, pyrrolysine, is catalyzed by PylD, a structurally and mechanistically unique dehydrogenase. This catalyzed reaction includes an induced-fit mechanism achieved by major structural rearrangements of the N-terminal helix upon substrate binding. Different steps of the reaction trajectory are visualized by complex structures of PylD with substrate and product. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structure and Reaction Mechanism of Pyrrolysine Synthase (PylD)

    KAUST Repository

    Quitterer, Felix

    2013-05-29

    The final step in the biosynthesis of the 22nd genetically encoded amino acid, pyrrolysine, is catalyzed by PylD, a structurally and mechanistically unique dehydrogenase. This catalyzed reaction includes an induced-fit mechanism achieved by major structural rearrangements of the N-terminal helix upon substrate binding. Different steps of the reaction trajectory are visualized by complex structures of PylD with substrate and product. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A chiral Brønsted acid-catalyzed highly enantioselective Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines.

    Science.gov (United States)

    Unhale, Rajshekhar A; Sadhu, Milon M; Ray, Sumit K; Biswas, Rayhan G; Singh, Vinod K

    2018-04-03

    A chiral phosphoric acid-catalyzed asymmetric Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines, derived from 3-hydroxyisoindolinones has been demonstrated in this communication. A variety of isoindolinone-based α-amino diazo esters bearing a quaternary stereogenic center were afforded in high yields (up to 99%) with excellent enantioselectivities (up to 99% ee). Furthermore, the synthetic utility of the products has been depicted by the hydrogenation of the diazo moiety of adducts.

  12. Synthesis of (±)-amathaspiramide F and discovery of an unusual stereocontrolling element for the [2,3]-Stevens rearrangement.

    Science.gov (United States)

    Soheili, Arash; Tambar, Uttam K

    2013-10-04

    A formal total synthesis of (±)-amathaspiramide F through a tandem palladium-catalyzed allylic amination/[2,3]-Stevens rearrangement is reported. The unexpected diastereoselectivity of the [2,3]-Stevens rearrangement was controlled by the substitution patterns of an aromatic ring. This discovery represents a new stereocontrolling element for [2,3]-sigmatropic rearrangements in complex molecular settings.

  13. Theoretical study on the reaction mechanisms of Michael chirality addition between propionaldehyde and nitroalkene catalyzed by an enantioselective catalyst.

    Science.gov (United States)

    Zhou, Xinming; Li, Ling; Sun, Xuejun; Wang, Yajun; Du, Dongmei; Fu, Hui

    2018-06-01

    The asymmetric Michael addition between propionaldehyde and nitroalkene catalyzed by 8-(ethoxycarbonyl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid has obtained relatively high yields and excellent enantioselectivities at room temperature. In this study, the molecular structures and optical activity of the most stable conformation I are optimized at B3LYP/6-311++ G(d,p) level. We find that levorotatory conformation I catalyzing the same Michael addition can produce laevo-product A and dextrorotatory conformation I' can obtain the dextral-product A'. These results have guiding significance for further studying on the new chemzymes and the mechanism of the obtained different chiral products. © 2018 Wiley Periodicals, Inc.

  14. Synthesis of Novel Aliphatic N-sulfonylamidino Thymine Derivatives by Cu(I)-catalyzed Three-component Coupling Reaction

    OpenAIRE

    Krstulović, Luka; Ismaili, Hamit; Višnjevac, Aleksandar; Glavaš-Obrovac, Ljubica; Žinić, Biserka

    2012-01-01

    A series of new aliphatic N-sulfonylamidino thymine derivatives containing nucleobase, N-sulfonyl and amidine pharmacophores in the structure were synthesized by Cu(I)-catalyzed threecomponent coupling of 1-propargyl thymine, benzenesulfonyl azides and amines or ammonium salts. Preliminary in vitro antitumor screening (human cervix adenocarcinoma -HeLa and leukemia cells - Jurkat) revealed promising activities of N,N-diethyl- (2) and N-4-cyanobenzyl- (6) derivatives of 4-acetamido...

  15. Asymmetric Diels-Alder Reaction of α,β-Unsaturated Oxazolidin-2-one Derivatives Catalyzed by a Chiral Fe(III)-Bipyridine Diol Complex.

    Science.gov (United States)

    Li, Mao; Carreras, Virginie; Jalba, Angela; Ollevier, Thierry

    2018-02-16

    An asymmetric Fe III -bipyridine diol catalyzed Diels-Alder reaction of α,β-unsaturated oxazolidin-2-ones has been developed. Among various Fe II /Fe III salts, Fe(ClO 4 ) 3 ·6H 2 O was selected as the Lewis acid of choice. The use of a low catalyst loading (2 mol % of Fe(ClO 4 ) 3 ·6H 2 O and 2.4 mol % of Bolm's ligand) afforded high yields (up to 99%) and high enantiomeric excesses (up to 98%) of endo-cycloadducts for the Diels-Alder reaction between cyclopentadiene and substituted acryloyloxazolidin-2-ones. Other noncyclic dienes led to decreased enantioselectivities. A proposed model supports the observed stereoinduction.

  16. Copper(I)-Catalyzed Asymmetric Desymmetrization through Inverse-Electron-Demand aza-Diels-Alder Reaction: Efficient Access to Tetrahydropyridazines Bearing a Unique α-Chiral Silane Moiety.

    Science.gov (United States)

    Wei, Liang; Zhou, Yu; Song, Zhi-Min; Tao, Hai-Yan; Lin, Zhenyang; Wang, Chun-Jiang

    2017-04-11

    An unprecedented copper(I)-catalyzed asymmetric desymmetrization of 5-silylcyclopentadienes with in situ formed azoalkene was realized through an inverse-electron-demand aza-Diels-Alder reaction (IEDDA) pathway, in which 5-silylcyclopentadienes served as efficient enophiles. This new protocol provides a facile access to the biologically important heterocyclic tetrahydropyridazines containing a unique α-chiral silane motif and three adjoining stereogenic centers in generally good yield (up to 92 %) with exclusive regioselectivity, high diastereoselectivity (>20:1 diastereomeric ratio), and excellent enantioselectivity (up to 98 % enantiomeric excess). DFT calculations and control experiments further confirmed the proposed reaction mechanism. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Reaction of CO2 with propylene oxide and styrene oxide catalyzed by a chromium(III) amine-bis(phenolate) complex.

    Science.gov (United States)

    Dean, Rebecca K; Devaine-Pressing, Katalin; Dawe, Louise N; Kozak, Christopher M

    2013-07-07

    A diamine-bis(phenolate) chromium(III) complex, {CrCl[O2NN'](BuBu)}2 catalyzes the copolymerization of propylene oxide with carbon dioxide. The synthesis of this metal complex is straightforward and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities when the reaction is performed at room temperature. Performing the reaction at elevated temperatures causes the selective synthesis of propylene carbonate. The copolymerization activity for propylene oxide and carbon dioxide, as well as the coupling of carbon dioxide and styrene oxide to give styrene carbonate are presented.

  18. Synthesis of Cyclohexane-Fused Isocoumarins via Cationic Palladium(II)-Catalyzed Cascade Cyclization Reaction of Alkyne-Tethered Carbonyl Compounds Initiated by Intramolecular Oxypalladation of Ester-Substituted Aryl Alkynes.

    Science.gov (United States)

    Zhang, Jianbo; Han, Xiuling; Lu, Xiyan

    2016-04-15

    A cationic Pd(II)-catalyzed cascade cyclization reaction of alkyne-tethered carbonyl compounds was developed. This reaction is initiated by intramolecular oxypalladation of alkynes with an ester group followed by 1,2-addition of the formed C-Pd(II) bond to the carbonyl group, providing a highly efficient method for the synthesis of cyclohexane-fused isocoumarins.

  19. Biotransformation and Rearrangement of Laromustine.

    Science.gov (United States)

    Nassar, Alaa-Eldin F; Wisnewski, Adam V; King, Ivan

    2016-08-01

    This review highlights the recent research into the biotransformations and rearrangement of the sulfonylhydrazine-alkylating agent laromustine. Incubation of [(14)C]laromustine with rat, dog, monkey, and human liver microsomes produced eight radioactive components (C-1 to C-8). There was little difference in the metabolite profile among the species examined, partly because NADPH was not required for the formation of most components, which instead involved decomposition and/or hydrolysis. The exception was C-7, a hydroxylated metabolite, largely formed by CYP2B6 and CYP3A4/5. Liquid chromatography-multistage mass spectrometry (LC-MS(n)) studies determined that collision-induced dissociation, and not biotransformation or enzyme catalysis, produced the unique mass spectral rearrangement. Accurate mass measurements performed with a Fourier-transform ion cyclotron resonance mass spectrometer (FTICR-MS) significantly aided determination of the elemental compositions of the fragments and in the case of laromustine revealed the possibility of rearrangement. Further, collision-induced dissociation produced the loss of nitrogen (N2) and methylsulfonyl and methyl isocyanate moieties. The rearrangement, metabolite/decomposition products, and conjugation reactions were analyzed utilizing hydrogen-deuterium exchange, exact mass, (13)C-labeled laromustine, nuclear magnetic resonance spectroscopy (NMR), and LC-MS(n) experiments to assist with the assignments of these fragments and possible mechanistic rearrangement. Such techniques produced valuable insights into these functions: 1) Cytochrome P450 is involved in C-7 formation but plays little or no role in the conversion of [(14)C]laromustine to C-1 through C-6 and C-8; 2) the relative abundance of individual degradation/metabolite products was not species-dependent; and 3) laromustine produces several reactive intermediates that may produce the toxicities seen in the clinical trials. Copyright © 2016 by The American Society for

  20. Unraveling the reaction mechanism on nitrile hydration catalyzed by [Pd(OH2)4]2+: insights from theory.

    Science.gov (United States)

    Tílvez, Elkin; Menéndez, María I; López, Ramón

    2013-07-01

    Density functional theory methodologies combined with continuum and discrete-continuum descriptions of solvent effects were used to investigate the [Pd(OH2)4](2+)-catalyzed acrylonitrile hydration to yield acrylamide. According to our results, the intramolecular hydroxide attack mechanism and the external addition mechanism of a water molecule with rate-determining Gibbs energy barriers in water solution of 27.6 and 28.3 kcal/mol, respectively, are the most favored. The experimental kinetic constants of the hydration started by hydroxide, k(OH), and water, k(H2O), attacks for the cis-[Pd(en)(OH2)2](2+)-catalyzed dichloroacetonitrile hydration rendered Gibbs energy barriers whose energy difference, 0.7 kcal/mol, is the same as that obtained in the present study. Our investigation reveals the nonexistence of the internal attack of a water ligand for Pd-catalyzed nitrile hydration. At the low pHs used experimentally, the equilibrium between [Pd(OH2)3(nitrile)](2+) and [Pd(OH2)2(OH)(nitrile)](+) is completely displaced to [Pd(OH2)3(nitrile)](2+). Experimental studies in these conditions stated that water acts as a nucleophile, but they could not distinguish whether it was a water ligand, an external water molecule, or a combination of both possibilities. Our theoretical explorations clearly indicate that the external water mechanism becomes the only operative one at low pHs. On the basis of this mechanistic proposal it is also possible to ascribe an (1)H NMR signal experimentally detected to the presence of a unidentate iminol intermediate and to explain the influence of nitrile concentration reported experimentally for nitriles other than acrylonitrile in the presence of aqua-Pd(II) complexes. Therefore, our theoretical point of view on the mechanism of nitrile hydration catalyzed by aqua-Pd(II) complexes can shed light on these relevant processes at a molecular level as well as afford valuable information that can help in designing new catalysts in milder and more

  1. Direct Synthesis of 5-Aryl Barbituric Acids by Rhodium(II)-Catalyzed Reactions of Arenes with Diazo Compounds.

    Science.gov (United States)

    Best, Daniel; Burns, David J; Lam, Hon Wai

    2015-06-15

    A commercially available rhodium(II) complex catalyzes the direct arylation of 5-diazobarbituric acids with arenes, allowing straightforward access to 5-aryl barbituric acids. Free N-H groups are tolerated on the barbituric acid, with no complications arising from N-H insertion processes. This method was applied to the concise synthesis of a potent matrix metalloproteinase (MMP) inhibitor. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  2. Unexpected catalytic reactions of silyl-protected enol diazoacetates with nitrile oxides that form 5-arylaminofuran-2(3H)-one-4-carboxylates.

    Science.gov (United States)

    Xu, Xinfang; Shabashov, Dmitry; Zavalij, Peter Y; Doyle, Michael P

    2012-02-03

    Silyl-protected enol diazoacetates undergo dirhodium(II)-catalyzed reactions with nitrile oxides to form acid-labile ketenimines via dipolar cycloaddition of nitrile oxides to a donor/acceptor cyclopropene and Lossen rearrangement of the dipolar adduct; acid catalysis converts the ketenimine to the furan product. © 2012 American Chemical Society

  3. A computational study on Lewis acid-catalyzed diastereoselective acyclic radical allylation reactions with unusual selectivity dependence on temperature and epimer precursor.

    Science.gov (United States)

    Georgieva, Miglena K; Santos, A Gil

    2014-12-05

    In stereoselective radical reactions, it is accepted that the configuration of the radical precursor has no impact on the levels of stereoinduction, as a prochiral radical intermediate is planar, with two identical faces, independently of its origin. However, Sibi and Rheault (J. Am. Chem. Soc. 2000, 122, 8873-8879) remarkably obtained different selectivities in the trapping of radicals originated from two epimeric bromides, catalyzed by chelating Lewis acids. The selectivity rationalization was made on the basis of different conformational properties of each epimer. However, in this paper we show that the two epimers have similar conformational properties, which implies that the literature proposal is unable to explain the experimental results. We propose an alternative mechanism, in which the final selectivity is dependent on different reaction rates for radical formation from each epimer. By introducing a different perspective of the reaction mechanism, our model also allows the rationalization of different chemical yields obtained from each epimer, a result not rationalized by the previous model. Adaptation to other radical systems, under different reaction conditions, is also possible.

  4. Rhodium-catalyzed [5 + 2 + 1] cycloaddition of ene-vinylcyclopropanes and CO: reaction design, development, application in natural product synthesis, and inspiration for developing new reactions for synthesis of eight-membered carbocycles.

    Science.gov (United States)

    Wang, Yi; Yu, Zhi-Xiang

    2015-08-18

    Practical syntheses of natural products and their analogues with eight-membered carbocyclic skeletons are important for medicinal and biological investigations. However, methods and strategies to construct the eight-membered carbocycles are limited. Therefore, developing new methods to synthesize the eight-membered carbocycles is highly desired. In this Account, we describe our development of three rhodium-catalyzed cycloadditions for the construction of the eight-membered carbocycles, which have great potential in addressing the challenges in the synthesis of medium-sized ring systems. The first reaction described in this Account is our computationally designed rhodium-catalyzed two-component [5 + 2 + 1] cycloaddition of ene-vinylcyclopropanes (ene-VCPs) and CO for the diastereoselective construction of bi- and tricyclic cyclooctenones. The design of this reaction is based on the hypothesis that the C(sp(3))-C(sp(3)) reductive elimination of the eight-membered rhodacycle intermediate generated from the rhodium-catalyzed cyclopropane cleavage and alkene insertion, giving Wender's [5 + 2] cycloadduct, is not easy. Under CO atmosphere, CO insertion may occur rapidly, converting the eight-membered rhodacycle into a nine-membered rhodacycle, which then undergoes an easy C(sp(2))-C(sp(3)) reductive elimination process and furnishes the [5 + 2 + 1] product. This hypothesis was supported by our preliminary DFT studies and also served as inspiration for the development of two [7 + 1] cycloadditions: the [7 + 1] cycloaddition of buta-1,3-dienylcyclopropanes (BDCPs) and CO for the construction of cyclooctadienones, and the benzo/[7 + 1] cycloaddition of cyclopropyl-benzocyclobutenes (CP-BCBs) and CO to synthesize the benzocyclooctenones. The efficiency of these rhodium-catalyzed cycloadditions can be revealed by the application in natural product synthesis. Two eight-membered ring-containing natural products, (±)-asterisca-3(15),6-diene and (+)-asteriscanolide, have been

  5. Oxidation reactions catalyzed by cobalt ions in a photocatalytic system based on solutions of lecit hin vesicles

    International Nuclear Information System (INIS)

    Tsvetkov, I.M.; Lymar, S.V.; Parmon, V.N.; Zamaraev, V.I.

    1986-01-01

    The features of the light-induced transfer of electrons through the membranes of lecithin vesicles with an electron carrier, viz., cetyl viologen, incorporated in the lipid bilayer have been studied with the use of the water-soluble trisbipyridyl complex of ruthenium (II) as a photocatalyst. It has been shown that additions of cobalt ions to the systems just indicated are capable of catalyzing the oxidation processes of organic compounds (most probably, of lecithin), the role of the oxidizing agent being played by Ru(bpy) 3 3+ , which forms upon the transfer of an electron to the acceptor Fe(CN) 6 3- through the lipid membrane The possibility of the utilization of the photocatalytic oxidation of water to oxygen under the action of visible light has been discussed

  6. Cascade synthesis of dihydrobenzofuran via Claisen rearrangement of allyl aryl ethers using FeCl3/MCM-41 catalyst

    Directory of Open Access Journals (Sweden)

    Sachin S. Sakate

    2018-05-01

    Full Text Available Dihydrobenzofuran as one of the active ingredients of the naturally occurring motif is synthesized by using in situ generation of ortho allyl phenols. Aryl allyl ethers on reacting with catalytic amounts of non noble metal iron (III chloride supported on MCM-41 under moderate reaction conditions yield dihydrobenzofuran. First step via Claisen rearrangement gives ortho allyl phenol followed by its in situ cyclization to yield dihydrobenzofuran in very good yields. Both Lewis as well as Brønsted acidity of the catalyst as evidenced by Py-FTIR studies was found to catalyze the cascade synthesis of dihydrobenzofuran. The scope of the present strategy was successfully demonstrated for several substrates with varying electronic effects for the synthesis of corresponding dihydrobenzofuran with high yields in a range of 71–86%. Keywords: Claisen rearrangement, Dihydrobenzofuran, Aryl allyl ether, MCM-41, Ferric chloride

  7. Equilibrium coverage of OHad in correlation with platinum catalyzed fuel cell reactions in HClO4

    DEFF Research Database (Denmark)

    Deng, Yujia; Arenz, Matthias; Wiberg, Gustav Karl Henrik

    2015-01-01

    We employ a recently developed stripping protocol to examine the equilibrium coverage of oxygenated species and their influence on the oxygen reduction reaction (ORR) and the hydrogen oxidation reaction (HOR). In particular we aim to distinguish between dynamic and steady state conditions...

  8. Hexacationic Dendriphos ligands in the Pd-catalyzed Suzuki-Miyaura cross-coupling reaction: scope and mechanistic studies

    NARCIS (Netherlands)

    Snelders, D.J.M.; van Koten, G.; Klein Gebbink, R.J.M.

    2009-01-01

    The combination of Pd2dba3·CHCl3and hexacationic triarylphosphine-based Dendriphos ligands (1-3) leads to a highly active catalytic system in the Suzuki-Miyaura cross-coupling reaction. Under relatively mild reaction conditions, nonactivated aryl bromides and activated aryl chlorides can be coupled

  9. Palladium on Carbon-Catalyzed Suzuki-Miyaura Coupling Reaction Using an Efficient and Continuous Flow System

    Directory of Open Access Journals (Sweden)

    Tomohiro Hattori

    2015-01-01

    Full Text Available The continuous flow Suzuki-Miyaura reaction between various haloarenes and arylboronic acids was successfully achieved within only ca. 20 s during the single-pass through a cartridge filled with palladium on carbon (Pd/C. No palladium leaching was observed in the collected reaction solution by atomic absorption spectrometry (detection limit: 1 ppm.

  10. Evaluation of the Optimal Reaction Conditions for the Methanolysis and Ethanolysis of Castor Oil Catalyzed by Immobilized Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles Allan; Al-Kabalawi, Ibrahim; Errico, Massimiliano

    This study aims to compare the efficiency of the transesterification of castor oil with methanol and ethanol as part of the biodiesel production, using immobilized enzyme Lipozyme IM as catalyst. Different reaction conditions were evaluated and optimized, including the reaction temperature, alcohol...

  11. Synthesis of Bioactive 2-(Arylaminothiazolo[5,4-f]-quinazolin-9-ones via the Hügershoff Reaction or Cu- Catalyzed Intramolecular C-S Bond Formation

    Directory of Open Access Journals (Sweden)

    Damien Hédou

    2016-06-01

    Full Text Available A library of thirty eight novel thiazolo[5,4-f]quinazolin-9(8H-one derivatives (series 8, 10, 14 and 17 was prepared via the Hügershoff reaction and a Cu catalyzed intramolecular C-S bond formation, helped by microwave-assisted technology when required. The efficient multistep synthesis of the key 6-amino-3-cyclopropylquinazolin-4(3H-one (3 has been reinvestigated and performed on a multigram scale from the starting 5-nitroanthranilic acid. The inhibitory potency of the final products was evaluated against five kinases involved in Alzheimer’s disease and showed that some molecules of the 17 series described in this paper are particularly promising for the development of novel multi-target inhibitors of kinases.

  12. Unraveling the role of entropy in tuning unimolecular vs . bimolecular reaction rates: The case of olefin polymerization catalyzed by transition metals

    KAUST Repository

    Falivene, Laura

    2018-04-24

    Olefin polymerization catalyzed by Group 4 transition metals is studied here as test case to reveal the entropy effects when bimolecular and unimolecular reactions are computed for processes occurring in solution. Catalytic systems characterized by different ligand frameworks, metal, and growing polymeric chain for which experimental data are available have been selected in order to validate the main approaches to entropy calculation. Applying the “standard” protocol results in a strong disagreement with the experimental results and the methods introducing a direct correction of the translational entropy term based on a single experimental parameter emerge as the most reliable. The general and powerful computational tool achieved in this study can represent a further step towards the “catalyst design” to control and predict the molecular mass of the resulting polymers.

  13. New process of the preparation of catalyzed gas diffusion electrode for PEM fuel cells based on ultrasonic direct solution spray reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, K.; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    This paper reported on a newly developed process for in-situ catalyst deposition on gas diffusion electrodes (GDE) for polymer electrolyte fuel cells. This process has the potential to reduce the number of steps for catalyzed GDE fabrication. In addition, the process offers economic advantages for the fuel cell commercialization. In this study, a home-made catalyst maker with ultrasonic spray method was used to prepare a solution of the carbon supported platinum catalyst on the GDL. The sprayed catalyst powder consisted of carbon support. The catalyst particles did not prevent gas flow channels on the GDL. The catalyst layer was shown to be located only on the top surface of the GDL and was not packed into its flow channel. Results of Cross-section SEM image, crystallization, micro structure and electro-catalytic activity for the oxygen reduction reaction were also discussed. 1 ref., 1 fig.

  14. Eosin Y photoredox catalyzed net redox neutral reaction for regiospecific annulation to 3-sulfonylindoles via anion oxidation of sodium sulfinate salts.

    Science.gov (United States)

    Rohokale, Rajendra S; Tambe, Shrikant D; Kshirsagar, Umesh A

    2018-01-24

    An eosin Y photoredox catalyzed net redox neutral process for 3-sulfonylindoles via the anionic oxidation of sodium sulfinate salts and its radical cascade cyclization with 2-alkynyl-azidoarenes was developed with visible light as a mediator. The reaction offers metal and oxidant/reductant free, visible light mediated vicinal sulfonamination of alkynes to 2-aryl/alkyl-3-sulfonylindoles and proceeds via the generation of a sulfur-centered radical through direct oxidation of the sulfinate anion by an excited photocatalyst with a reductive quenching cycle. The mild conditions, use of an organic dye as photo-catalyst, bench stability and easily accessible starting materials make the present approach green and attractive.

  15. New Palladium-Catalyzed Domino Reaction with Intramolecular Ring Closure of an N-(2-Chloro-3-heteroaryl) arylamide: First Synthesis of Oxazolo[4,5-b] pyrazines

    DEFF Research Database (Denmark)

    Demmer, Charles S.; Hansen, Jacob C.; Kehler, Jan

    2014-01-01

    The synthesis of novel planar heterocycles is at the heart of basic research as such scaffolds constitute key building blocks in important diverse areas of research: drug discovery, material sciences, and pesticides. The well-known benzoxazole is often contained in drug candidates but tweaking its...... lipophilicity and target interaction points are often desired. In this respect, the oxazolo[4,5-b]pyrazine is an attractive heterocyclic scaffold as it possesses increased water solubility as well as two additional hydrogen bonding acceptors. We here report a new Pd(II)-catalyzed domino reaction comprising...... the first Pd(II)-assisted intramolecular cyclization of an N-(2-chloro-3-heteroaryl)arylamide and validate its value by application to the first synthesis of 2-substituted oxazolo[4,5-b]pyrazines. We demonstrate that a bidentate phosphorus ligand as well as the presence of an aromatic nitrogen atom...

  16. Roles of the redox-active disulfide and histidine residues forming a catalytic dyad in reactions catalyzed by 2-ketopropyl coenzyme M oxidoreductase/carboxylase.

    Science.gov (United States)

    Kofoed, Melissa A; Wampler, David A; Pandey, Arti S; Peters, John W; Ensign, Scott A

    2011-09-01

    NADPH:2-ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC), an atypical member of the disulfide oxidoreductase (DSOR) family of enzymes, catalyzes the reductive cleavage and carboxylation of 2-ketopropyl-coenzyme M [2-(2-ketopropylthio)ethanesulfonate; 2-KPC] to form acetoacetate and coenzyme M (CoM) in the bacterial pathway of propylene metabolism. Structural studies of 2-KPCC from Xanthobacter autotrophicus strain Py2 have revealed a distinctive active-site architecture that includes a putative catalytic triad consisting of two histidine residues that are hydrogen bonded to an ordered water molecule proposed to stabilize enolacetone formed from dithiol-mediated 2-KPC thioether bond cleavage. Site-directed mutants of 2-KPCC were constructed to test the tenets of the mechanism proposed from studies of the native enzyme. Mutagenesis of the interchange thiol of 2-KPCC (C82A) abolished all redox-dependent reactions of 2-KPCC (2-KPC carboxylation or protonation). The air-oxidized C82A mutant, as well as wild-type 2-KPCC, exhibited the characteristic charge transfer absorbance seen in site-directed variants of other DSOR enzymes but with a pK(a) value for C87 (8.8) four units higher (i.e., four orders of magnitude less acidic) than that for the flavin thiol of canonical DSOR enzymes. The same higher pK(a) value was observed in native 2-KPCC when the interchange thiol was alkylated by the CoM analog 2-bromoethanesulfonate. Mutagenesis of the flavin thiol (C87A) also resulted in an inactive enzyme for steady-state redox-dependent reactions, but this variant catalyzed a single-turnover reaction producing a 0.8:1 ratio of product to enzyme. Mutagenesis of the histidine proximal to the ordered water (H137A) led to nearly complete loss of redox-dependent 2-KPCC reactions, while mutagenesis of the distal histidine (H84A) reduced these activities by 58 to 76%. A redox-independent reaction of 2-KPCC (acetoacetate decarboxylation) was not decreased for any of the

  17. Data characterizing the energetics of enzyme-catalyzed hydrolysis and transglycosylation reactions by DFT cluster model calculations

    Directory of Open Access Journals (Sweden)

    Jitrayut Jitonnom

    2018-04-01

    Full Text Available The data presented in this paper are related to the research article entitled “QM/MM modeling of the hydrolysis and transfructosylation reactions of fructosyltransferase from Aspergillus japonicas, an enzyme that produces prebiotic fructooligosaccharide” (Jitonnom et al., 2018 [1]. This paper presents the procedure and data for characterizing the whole relative energy profiles of hydrolysis and transglycosylation reactions whose elementary steps differ in chemical composition. The data also reflects the choices of the QM cluster model, the functional/basis set method and the equations in determining the reaction energetics.

  18. Direct Kinetic Evidence for the Formation of an Acylpyridinium Intermediate in Synthetic p-Nitrophenyl Esterase-Catalyzed Hydrolysis Reactions

    National Research Council Canada - National Science Library

    Wang, Guang-Jia

    1996-01-01

    .... The deacylation rate was also found to exhibit a maximum for the same substrate 2 (n=6). These results are similar to those previously reported with cholesterol esterase as catalyst for the same hydrolysis reaction...

  19. Facile one-pot synthesis of 1-amido alkyl-2-naphthols by RuCl2(PPh3)3-catalyzed multi-component reactions

    International Nuclear Information System (INIS)

    Zhu, Xiaoyan; Lee, Yong Rok; Kim, Sung Hong

    2012-01-01

    We have developed an efficient and general synthesis of 1-amidoalkyl-2-naphthols by RuCl 2 (PPh 3 ) 3 -catalyzed one-pot multi-component reaction of 2-naphthol with aromatic aldehydes and amides. The advantages of these methodologies are easy handling, mild reaction conditions, and use of an effective and non-toxic catalyst. Molecules bearing 1,3-amino oxygenated functional groups have been reported to exhibit a variety of biological and pharmacological activities including nucleoside antibiotics and HIV protease inhibitors such as ritonavir and lipinavir. Importantly, 1-amidoalkyl-2-naphthols can be easily converted to biologically active 1-aminomethyl-2-naphthols by amide hydrolysis. These compounds also exhibit potent antihypertensive, adrenoceptor-blocking, and Ca +2 channel-blocking activities. Because of the importance of these compounds, numerous methods for the synthesis of 1-amidoalkyl-2-naphthols have been described. The reported methods mainly include one-pot three-component reactions of 2-naphthol, aromatic aldehydes, and amides

  20. The contribution of vanadium and titanium on improving methylene blue decolorization through heterogeneous UV-Fenton reaction catalyzed by their co-doped magnetite

    International Nuclear Information System (INIS)

    Liang, Xiaoliang; Zhong, Yuanhong; Zhu, Sanyuan; Ma, Lingya; Yuan, Peng; Zhu, Jianxi; He, Hongping; Jiang, Zheng

    2012-01-01

    Highlights: ► Ti-V co-doped magnetite has strong catalytic activity in UV-Fenton reaction. ► Ti 4+ is more positive to adsorption and catalytic activity of magnetite than V 3+ . ► Mechanism of substitution increasing the adsorption and catalytic activity. ► The obtained results are benefit for application of magnetite in treating wastewater. - Abstract: This study investigated the methylene blue (MB) decolorization through heterogeneous UV-Fenton reaction catalyzed by V-Ti co-doped magnetites, with emphasis on comparing the contribution of V and Ti cations on improving the adsorption and catalytic activity of magnetite. In the well crystallized spinel structure, both Ti 4+ and V 3+ occupied the octahedral sites. Ti 4+ showed a more obvious effect on increasing specific surface area and superficial hydroxyl amount than V 3+ did, resulting in a significant improvement of the adsorption ability of magnetite to MB. The UV introduction greatly accelerated MB degradation. And magnetite with more Ti and less V displayed better catalytic activity in MB degradation through heterogeneous UV-Fenton reaction. The transformation of degradation products and individual contribution from vanadium and titanium on improving adsorption and catalytic activity of magnetite were also investigated. These new insights are of high importance for well understanding the interface interaction between contaminants and metal doped magnetites, and the environmental application of natural and synthetic magnetites.

  1. Dynamic behavior of rearranging carbocations – implications for terpene biosynthesis

    Directory of Open Access Journals (Sweden)

    Stephanie R. Hare

    2016-02-01

    Full Text Available This review describes unexpected dynamical behaviors of rearranging carbocations and the modern computational methods used to elucidate these aspects of reaction mechanisms. Unique potential energy surface topologies associated with these rearrangements have been discovered in recent years that are not only of fundamental interest, but also provide insight into the way Nature manipulates chemical space to accomplish specific chemical transformations. Cautions for analyzing both experimental and theoretical data on carbocation rearrangements are included throughout.

  2. Palladium-Catalyzed Heck Coupling Reaction of Aryl Bromides in Aqueous Media Using Tetrahydropyrimidinium Salts as Carbene Ligands

    Directory of Open Access Journals (Sweden)

    İsmail Özdemir

    2010-01-01

    Full Text Available An efficient and stereoselective catalytic system for the Heck cross coupling reaction using novel 1,3-dialkyl-3,4,5,6-tetrahydropyrimidinium salts (1, LHX and Pd(OAc2 loading has been reported. The palladium complexes derived from the salts 1a-f prepared in situ exhibit good catalytic activity in the Heck coupling reaction of aryl bromides under mild conditions.

  3. Curing reactions of bismaleimide resins catalyzed by triphenylphosphine. High resolution solid-state 13C NMR study

    International Nuclear Information System (INIS)

    Shibahara, Sumio; Enoki, Takashi; Yamamoto, Takahisa; Motoyoshiya, Jiro; Hayashi, Sadao.

    1996-01-01

    The curing reactions of bismaleimide resins consisted of N,N'-4,4'-diphenylmethanebismaleimide (BMI) and o,o'-diallylbisphenol-A (DABA) in the presence of triphenylphosphine (TPP) as a catalyst were investigated. DSC measurements showed that the catalytic effect of TPP on the curing reaction of BMI was more in the presence of DABA than in its absence. In order to explore this curing reaction, N-phenylmaleimide (PMI) and o-allylphenol (AP) were selected as model compounds. The products of the PMI/TPP system were oligomers and polymers of PMI, whereas the main product of the PMI/AP/TPP system was the PMI trimer which had the five-membered ring formed via the phosphonium ylide intermediate. In these model reactions, 13 C NMR was found to be useful to distinguish between trimerization and polymerization of PMI. On the basis of the results of the model reactions, the curing reactions of bismaleimide resins were investigated by high resolution solid state 13 C NMR techniques. In the BMI/TPP system, maleimides polymerize above 175degC, but the polymerization does not proceed at 120degC. On the other hand, maleimides trimerize above 120degC in the presence of DABA and TPP. The mechanism of the trimerization is briefly discussed. (author)

  4. Rhodium Catalyzed Decarbonylation

    DEFF Research Database (Denmark)

    Garcia Suárez, Eduardo José; Kahr, Klara; Riisager, Anders

    2017-01-01

    Rhodium catalyzed decarbonylation has developed significantly over the last 50 years and resulted in a wide range of reported catalyst systems and reaction protocols. Besides experimental data, literature also includes mechanistic studies incorporating Hammett methods, analysis of kinetic isotope...

  5. Two Palladium-Catalyzed Domino Reactions from One Set of Substrates/Reagents: Efficient Synthesis of Substituted Indenes and cis-Stilbenoid Hydrocarbons from the Same Internal Alkynes and Hindered Grignard Reagents

    Science.gov (United States)

    Dong, Cheng-Guo; Yeung, Pik; Hu, Qiao-Sheng

    2008-01-01

    Two types of domino reactions from the same internal alkynes and hindered Grignard reagents based on carbopalladation, Pd-catalyzed cross-coupling reaction and C-H activation strategy are described. The realization of these domino reactions relied on the control of the use of the ligand and the reaction temperature. Our study provides an efficient access to useful polysubstituted indenes and cis-substituted stilbenes, and may offer new means to the development of tandem/domino reactions in a more efficient way. PMID:17217305

  6. Solvent-dependent reactions for the synthesis of β-keto-benzo-δ-sultone scaffolds via DBU-catalyzed O-sulfonylation/intramolecular Baylis-Hillman/1,3-H shift or dehydration tandem sequences.

    Science.gov (United States)

    Ghandi, Mehdi; Bozcheloei, Abolfazl Hasani; Nazari, Seyed Hadi; Sadeghzadeh, Masoud

    2011-12-16

    We have developed a solvent-dependent method for the synthesis of novel benzo-δ-sultone scaffolds. A variety of benzylbenzo[e][1,2]oxathiin-4(3H)-one-2,2-dioxides were obtained in high yields in DMF using a one-pot, DBU-catalyzed condensation of 2-hydroxybenzaldehydes with a number of (E)-2-phenylethenesulfonyl chlorides. On the other hand, the initially prepared 2-formylphenyl-(E)-2-phenylethenesulfonate derivatives underwent DBU-catalyzed reactions to a series of 3-[methoxy(phenyl)methyl]benzo[e][1,2]oxathiine-2,2-dioxides in moderate to good yields in MeOH. These reactions presumably proceed via DBU-catalyzed O-sulfonylation/intramolecular Baylis-Hillman/1,3-H shift or dehydration tandem sequences, respectively.

  7. The major/minor concept: dependence of the selectivity of homogeneously catalyzed reactions on reactivity ratio and concentration ratio of the intermediates.

    Science.gov (United States)

    Schmidt, Thomas; Dai, Zhenya; Drexler, Hans-Joachim; Hapke, Marko; Preetz, Angelika; Heller, Detlef

    2008-07-07

    The homogeneously catalyzed asymmetric hydrogenation of prochiral olefins with cationic Rh(I) complexes is one of the best-understood selection processes. For some of the catalyst/substrate complexes, experimental proof points out the validation of the major/minor principle; the concentration-deficient minor substrate complex, which has very high reactivity, yields the excess enantiomer. As exemplified by the reaction system of [Rh(dipamp)(MeOH)2]+/methyl (Z)-alpha-acetamidocinnamate (dipamp=1,2-bis((o-methoxyphenyl)phenylphosphino)ethane), all six of the characteristic reaction rate constants have been previously identified. Recently, it was found that the major substrate complex can also yield the major enantiomer (lock-and-key principle). The differential equation system that results from the reaction sequence can be solved numerically for different hydrogen partial pressures by including the known equilibrium constants. The result displays the concentration-time dependence of all species that exist in the catalytic cycle. On the basis of the known constants as well as further experimental evidence, this work focuses on the examination of all principal possibilities resulting from the reaction sequence and leading to different results for the stereochemical outcome. From the simulation, the following conclusions can be drawn: 1) When an intermediate has extreme reactivity, its stationary concentration can become so small that it can no longer be the source of product selectivity; 2) in principle, the major/minor and lock-and-key principles can coexist depending on the applied pressure; 3) thermodynamically determined intermediate ratios can be completely converted under reaction conditions for a selection process; and 4) the increase in enantioselectivity with increasing hydrogen partial pressure, a phenomenon that is experimentally proven but theoretically far from being well-understood, can be explained by applying both the lock-and-key as well as the major

  8. Claisen, Cope and Related Rearrangements in the Synthesis of Flavour and Fragrance Compounds

    Directory of Open Access Journals (Sweden)

    Janusz Nowicki

    2000-08-01

    Full Text Available A review of the use of the Claisen, Cope and related [3,3]-sigmatropic rearrangements, sequential ("tandem" sigmatropic rearrangements and the "ene" reaction in the syntheses of flavour and fragrance compounds is presented.

  9. Evaluation of the Optimal Reaction Conditions for the Methanolysis and Ethanolysis of Castor Oil Catalyzed by Immobilized Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles Allan; Al-Kabalawi, Ibrahim F.; Errico, Massimiliano

    :1 methanol-to-oil molar ratio, 5 wt% of enzymes, 7.5 wt% of water, 50 wt% n-hexane, at 50 °C. The fatty acid methyl esters content was 96.8 % and 1.0 % FFA. Regarding the reactions with ethanol, 98.0 % fatty acid ethyl ester was obtained and 1.3 % FFA, when the reaction was carried out at 60 °C, 4:1 ethanol......As an alternative to the use of chemical catalysts, immobilized enzyme Lipozyme 435 was evaluated as catalyst for biodiesel production, comparing its efficiency in the castor oil transesterification with methanol and ethanol. Different reaction conditions were assessed and optimized, including...... the reaction temperature (35 – 60 °C), alcohol-to-oil molar ratio (from 3:1 to 6:1), amount of catalyst (from 3 to 15 wt% by weight of oil), addition of water (0 – 15 wt%), and use of n-hexane as a solvent (0 – 75 wt%). For the transesterification with methanol, the optimal reaction conditions were 3...

  10. Solvent-Free Biginelli Reactions Catalyzed by Hierarchical Zeolite Utilizing a Ball Mill Technique: A Green Sustainable Process

    Directory of Open Access Journals (Sweden)

    Ameen Shahid

    2017-03-01

    Full Text Available A sustainable, green one-pot process for the synthesis of dihydropyrimidinones (DHPMs derivatives by a three-component reaction of β-ketoester derivatives, aldehyde and urea or thiourea over the alkali-treated H-ZSM-5 zeolite under ball-milling was developed. Isolation of the product with ethyl acetate shadowed by vanishing of solvent was applied. The hierachical zeolite catalyst (MFI27_6 showed high yield (86%–96% of DHPMs in a very short time (10–30 min. The recyclability of the catalyst for the subsequent reactions was examined in four subsequent runs. The catalyst was shown to be robust without a detectable reduction in catalytic activity, and high yields of products showed the efficient protocol of the Biginelli reactions.

  11. Pre-steady-state kinetics of Escherichia coli aspartate aminotransferase catalyzed reactions and thermodynamic aspects of its substrate specificity

    International Nuclear Information System (INIS)

    Kuramitsu, Seiki; Hiromi, Keitaro; Hayashi, Hideyuki; Morino, Yoshimasa; Kagamiyama, Hiroyuki

    1990-01-01

    The four half-transamination reactions [the pyridoxal form of Escherichia coli aspartate aminotransferase (AspAT) with aspartate or glutamate and the pyridoxamine form of the enzyme with oxalacetate or 2-oxoglutarate] were followed in a stopped-flow spectrometer by monitoring the absorbance change at either 333 or 358 nm. The reaction progress curves in all cases gave fits to a monophasic exponential process. Kinetic analyses of these reactions showed that each half-reaction is composed of the following three processes: (1) the rapid binding of an amino acid substrate to the pyridoxal form of the enzyme; (2) the rapid binding of the corresponding keto acid to the pyridoxamine form of the enzyme; (3) the rate-determining interconversion between the two complexes. This mechanism was supported by the findings that the equilibrium constants for half- and overall-transamination reactions and the steady-state kinetic constants agreed well with the predicted values on the basis of the above mechanism using pre-steady-state kinetic parameters. The significant primary kinetic isotope effect observed in the reaction with deuterated amino acid suggests that the withdrawal of the α-proton of the substrates is rate determining. The pyridoxal form of E. coli AspAT reacted with a variety of amino acids as substrates. The substrate specificity of the E. coli enzyme was much broader than that of pig isoenzymes, reflecting some subtle but distinct difference in microenvironment accommodating the side chain of the substrate between e. coli and mammalian AspATs

  12. Solvent 1H/2H isotopic effects in the reaction of the L-Tyrosine oxidation catalyzed by Tyrosinase

    International Nuclear Information System (INIS)

    Kozlowska, M.; Kanska, M.

    2006-01-01

    Tyrosinase is well known catalyst in the oxidation of L-Tyrosine to L-DOPA and following oxidation of L-DOPA to dopachinone. The aim of communication is to present the results of studies on the solvent isotopic effects (SIE) in the above reactions for the 1 H/ 2 H in the 3',5' and 2',6' substituted tyrosine. Obtained dependence of the reaction rate on the substrate concentration were applied for optimization of the kinetic parameters, k cat and k cat /K m , in the Michaelis-Menten equation. As a result - better understanding of the L-DOPA creation can be achieved

  13. One- and two-dimensional chemical exchange nuclear magnetic resonance studies of the creatine kinase catalyzed reaction

    International Nuclear Information System (INIS)

    Gober, J.R.

    1988-01-01

    The equilibrium chemical exchange dynamics of the creatine kinase enzyme system were studied by one- and two-dimensional 31 P NMR techniques. Pseudo-first-order reaction rate constants were measured by the saturation transfer method under an array of experimental conditions of pH and temperature. Quantitative one-dimensional spectra were collected under the same conditions in order to calculate the forward and reverse reaction rates, the K eq , the hydrogen ion stoichiometry, and the standard thermodynamic functions. The pure absorption mode in four quadrant two-dimensional chemical exchange experiment was employed so that the complete kinetic matrix showing all of the chemical exchange process could be realized

  14. Lewis Acid Catalyzed Asymmetric Three-Component Coupling Reaction: Facile Synthesis of α-Fluoromethylated Tertiary Alcohols.

    Science.gov (United States)

    Aikawa, Kohsuke; Kondo, Daisuke; Honda, Kazuya; Mikami, Koichi

    2015-12-01

    A chiral dicationic palladium complex is found to be an efficient Lewis acid catalyst for the synthesis of α-fluoromethyl-substituted tertiary alcohols using a three-component coupling reaction. The reaction transforms three simple and readily available components (terminal alkyne, arene, and fluoromethylpyruvate) to valuable chiral organofluorine compounds. This strategy is completely atom-economical and results in perfect regioselectivities and high enantioselectivities of the corresponding tertiary allylic alcohols in good to excellent yields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Improved Reaction and Activation Energies of [4+2] Cycloadditions, [3+3] Sigmatropic Rearrangements and Electrocyclizations with the Spin-Component-Scaled MP2 Method

    NARCIS (Netherlands)

    Goumans, T.P.M.; Ehlers, A.W.; Lammertsma, K.; Wuerthwein, E.-U.; Grimme, S.

    2004-01-01

    A new quantum mechanical scheme to calculate electronic correlation energies, spin-component-scaled MP2, was tested as a tool to predict reaction energies and barriers in computational organic chemistry. Three common pericyclic reactions with known unsatisfactory MP2 descriptions were reinvestigated

  16. Suzuki coupling reactions catalyzed by poly(N-ethyl-4-vinylpyridinium bromide stabilized palladium nanoparticles in aqueous solution

    Directory of Open Access Journals (Sweden)

    2008-04-01

    Full Text Available InIn this work, it was investigated to use of poly(N-ethyl-4-vinylpyridinium bromide stabilized palladium nanoparticles in the Suzuki reaction between phenylboronic acid and aryl halides in aqueous solution. The nanoparticles were isolated and re-used several times with low loss of activity.

  17. Molecular-weight-enlarged multiple-pincer ligands: synthesis and application in palladium-catalyzed allylic substitution reactions

    NARCIS (Netherlands)

    Ronde, N.J.; Totev, D.; Müller, Christian; Lutz, M.; Spek, A.L.; Vogt, D.

    2009-01-01

    Three different pincer ligand systems are synthesized via nucleophilic substitution reactions of polyaromatic benzyl bromides as support molecules and phenol derivatives as ligand precursors. Retention tests using a polymeric nanofiltration membrane show moderate to good retention in THF and CH2Cl2.

  18. Ionic liquids as recyclable and separable reaction media in Rh-catalyzed decarbonylation of aromatic and aliphatic aldehydes

    DEFF Research Database (Denmark)

    Malcho, Phillip; Garcia-Suarez, Eduardo J.; Riisager, Anders

    2014-01-01

    Ionic liquids (ILs) have been applied as recyclable reaction media in the decarbonylation of aldehydes in the presence of a rhodium-phosphine complex catalyst. The performance of several new catalytic systems based on imidazolium-based ILs and [Rh(dppp)2]Cl (dppp: 1,3-diphenylphosphinopropane) were...

  19. Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values

    Czech Academy of Sciences Publication Activity Database

    Zou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, Eliška; Asefa, T.

    2014-01-01

    Roč. 53, č. 17 (2014), s. 4372-4376 ISSN 1433-7851 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : carbon nanotubes * cobalt nanoparticles * electrocatalysis * hydrogen evolution reaction * water splitting Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 11.261, year: 2014

  20. Studies of Heterogeneously Catalyzed Liquid-Phase Alcohol Oxidation on Platinum bySum-frequency Generation Vibrational Spectroscopy and Reaction Rate Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher [Univ. of California, Berkeley, CA (United States)

    2014-05-15

    Compared to many branches of chemistry, the molecular level study of catalytically active surfaces is young. Only with the invention of ultrahigh vacuum technology in the past half century has it been possible to carry out experiments that yield useful molecular information about the reactive occurrences at a surface. The reason is two-fold: low pressure is necessary to keep a surface clean for an amount of time long enough to perform an experiment, and most atomic scale techniques that are surface speci c (x-ray photoelectron spectroscopy, electron energy loss spectroscopy, Auger electron spectroscopy, etc.) cannot be used at ambient pressures, because electrons, which act as chemical probes in these techniques, are easily scattered by molecules. Sum-frequency generation (SFG) vibrational spectroscopy is one technique that can provide molecular level information from the surface without the necessity for high vacuum. Since the advent of SFG as a surface spectroscopic tool it has proved its worth in the studies of surface catalyzed reactions in the gas phase, with numerous reactions in the gas phase having been investigated on a multitude of surfaces. However, in situ SFG characterization of catalysis at the solid-liquid interface has yet to be thoroughly pursued despite the broad interest in the use of heterogeneous catalysts in the liquid phase as replacements for homogeneous counterparts. This work describes an attempt to move in that direction, applying SFG to study the solid-liquid interface under conditions of catalytic alcohol oxidation on platinum.

  1. L-myo-inosose-1 as a probable intermediate in the reaction catalyzed by myo-inositol oxygenase

    International Nuclear Information System (INIS)

    Naber, N.I.; Swan, J.S.; Hamilton, G.A.

    1986-01-01

    In previous investigations, it was necessary to have Fe(II) and cysteine present in order to assay the catalytic activity of purified hog kidney myo-inositol oxygenase. In the present study it was found that, if this purified nonheme iron enzyme is slowly frozen in solution with glutathione and stored at -20 degrees C, it is fully active in the absence of activators if catalase is present to remove adventitious H 2 O 2 . With this simpler assay system it was possible to clarify the effects of several variables on the enzymic reaction. Thus, the maximum velocity is pH-dependent with a maximum around pH 9.5, but the apparent Km for myo-inositol (air atmosphere) remains constant at 5.0 mM throughout a broad pH range. The enzyme is quite specific for its substrate myo-inositol, is very sensitive to oxidants and reductants, but is not affected by a variety of complexing agents, nucleotides, sulfhydryl reagents, etc. In other experiments it was found that L-myo-inosose-1, a potential intermediate in the enzymic reaction, is a potent competitive inhibitor (Ki = 62 microM), while other inososes and a solution thought to contain D-glucodialdehyde, another potential intermediate, are weak inhibitors. Also, both a kinetic deuterium isotope effect (kH/kD = 2.1) and a tritium isotope effect (kH/kT = 7.5) are observed for the enzymic reaction when [1-2H]- and [1-3H]-myo-inositol are used as reactants. These latter results are considered strong evidence that the oxygenase reaction proceeds by a pathway involving L-myo-inosose-1 as an intermediate rather than by an alternative pathway that would have D-glucodialdehyde as the intermediate

  2. Study of hydrogen consumption reaction catalyzed by Pd ions in the simulated high-level liquid waste

    International Nuclear Information System (INIS)

    Kodama, Takashi

    2013-01-01

    To ensure the safety for storage of high-level liquid waste (HLLW) in tanks is one of the most important safety issues in a reprocessing plant since almost all radioactive materials under processing are collected in these tanks. Accordingly the behavior of radiolytically formed hydrogen (H 2 ) in these tanks is one of key issues and has been studied by several researchers because it might cause an explosion. They reported that not all of H 2 formed in HLLW comes out in the gas phase because H 2 is consumed by some un-clarified secondary reaction which may be caused by the irradiation and/or by the catalytic effect of certain fission product (FP) in HLLW. In order to clarify such effect, we carried out the experiments using the simulated high level liquid waste (SHLLW) with and without palladium (Pd) group ions under irradiation and non-irradiation conditions. As a result, it was found that H 2 consumption reaction is not caused by radiation as was understood so far but is caused by a catalytic effect of Pd ion in SHLLW. That is, H 2 is reacting with HNO 3 and forming H 2 O and NOx. Using the catalytic reaction rate constant measured in the experiments, the analysis showed that the H 2 concentration in the gas phase of an HLLW tank does not reach its explosion limit of 4% even if the sweeping air stops for a long time. (authors)

  3. Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil: A possible step in biodiesel production.

    Science.gov (United States)

    Andrade, Thalles A; Errico, Massimiliano; Christensen, Knud V

    2017-11-01

    The identification of the influence of the reaction parameters is of paramount importance when defining a process design. In this work, non-edible castor oil was reacted with methanol to produce a possible component for biodiesel blends, using liquid enzymes as the catalyst. Temperature, alcohol-to-oil molar ratio, enzyme and added water contents were the reaction parameters evaluated in the transesterification reactions. The optimal conditions, giving the optimal final FAME yield and FFA content in the methyl ester-phase was identified. At 35°C, 6.0 methanol-to-oil molar ratio, 5wt% of enzyme and 5wt% of water contents, 94% of FAME yield and 6.1% of FFA in the final composition were obtained. The investigation was completed with the analysis of the component profiles, showing that at least 8h are necessary to reach a satisfactory FAME yield together with a minor FFA content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Generalization of the quark rearrangement model

    International Nuclear Information System (INIS)

    Fields, T.; Chen, C.K.

    1976-01-01

    An extension and generalization of the quark rearrangement model of baryon annihilation is described which can be applied to all annihilation reactions and which incorporates some of the features of the highly successful quark parton model. Some p anti-p interactions are discussed

  5. Delineating pMDI model reactions with loblolly pine via solution-state NMR spectroscopy. Part 1, Catalyzed reactions with wood models and wood polymers

    Science.gov (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2011-01-01

    To better understand adhesive interactions with wood, reactions between model compounds of wood and a model compound of polymeric methylene diphenyl diisocyanate (pMDI) were characterized by solution-state NMR spectroscopy. For comparison, finely ground loblolly pine sapwood, milled-wood lignin and holocellulose from the same wood were isolated and derivatized with...

  6. Ruthenium-Catalyzed Formal Dehydrative [4 + 2] Cycloaddition of Enamides and Alkynes for the Synthesis of Highly Substituted Pyridines: Reaction Development and Mechanistic Study.

    Science.gov (United States)

    Wu, Jicheng; Xu, Wenbo; Yu, Zhi-Xiang; Wang, Jian

    2015-07-29

    Reported herein is a ruthenium-catalyzed formal dehydrative [4 + 2] cycloaddition of enamides and alkynes, representing a mild and economic protocol for the construction of highly substituted pyridines. Notably, the features of broad substrate scope, high efficiency, good functional group tolerance, and excellent regioselectivities were observed for this reaction. Density functional theory (DFT) calculations and experiments have been carried out to understand the mechanism and regiochemistry. DFT calculations suggested that this formal dehydrative [4 + 2] reaction starts with a concerted metalation deprotonation of the enamide by the acetate group in the Ru catalyst, which generates a six-membered ruthenacycle intermediate. Then alkyne inserts into the Ru-C bond of the six-membered ruthenacycle, giving rise to an eight-membered ruthenacycle intermediate. The carbonyl group (which comes originally from the enamide substrate and is coordinated to the Ru center in the eight-membered ruthenacycle intermediate) then inserts into the Ru-C bond to give an intermediate, which produces the final pyridine product through further dehydration. Alkyne insertion step is a regio-determining step and prefers to have the aryl groups of the used alkynes stay away from the catalyst in order to avoid repulsion of aryl group with the enamide moiety in the six-membered ruthenacycle and to keep the conjugation between the aryl group and the triple C-C bond of the alkynes. Consequently, the aryl groups of the used alkynes are in the β-position of the final pyridines, and the present reaction has high regioselectivity.

  7. TM0416, a Hyperthermophilic Promiscuous Nonphosphorylated Sugar Isomerase, Catalyzes Various C5 and C6 Epimerization Reactions.

    Science.gov (United States)

    Shin, Sun-Mi; Cao, Thinh-Phat; Choi, Jin Myung; Kim, Seong-Bo; Lee, Sang-Jae; Lee, Sung Haeng; Lee, Dong-Woo

    2017-05-15

    There is currently little information on nonphosphorylated sugar epimerases, which are of potential interest for producing rare sugars. We found a gene (the TM0416 gene) encoding a putative d-tagatose-3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima We overexpressed the TM0416 gene in Escherichia coli and purified the resulting recombinant protein for detailed characterization. Amino acid sequence alignment and a structural similarity search revealed that TM0416 is a putative nonphosphorylated sugar epimerase. The recombinant enzyme exhibited maximal C-3 epimerization of l-ribulose to l-xylulose at ∼80°C and pH 7 in the presence of 1 mM Mn 2+ In addition, this enzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose, with a conversion yield of 20% after 6 h at 80°C. Remarkably, the enzyme catalyzed the isomerization of d-erythrose or d-threose to d-erythrulose significantly, with conversion yields of 71% and 54.5%, respectively, after 6 h at 80°C at pH 7. To further investigate the substrate specificity of TM0416, we determined its crystal structures in complex with divalent metal ions and l-erythrulose at resolutions of 1.5 and 1.6 Å. Detailed inspection of the structural features and biochemical data clearly demonstrated that this metalloenzyme, with a freely accessible substrate-binding site and neighboring hydrophobic residues, exhibits different and promiscuous substrate preferences, compared with its mesophilic counterparts. Therefore, this study suggests that TM0416 can be functionally classified as a novel type of l-ribulose 3-epimerase (R3E) with d-erythrose isomerase activity. IMPORTANCE Rare sugars, which occur naturally in small amounts, have attracted considerable attention in the food and drug industries. However, there is little information on nonphosphorylated sugar epimerases, which might potentially be applied for the production of rare sugars. This study describes the

  8. Bacillus amyloliquefaciens levansucrase-catalyzed the synthesis of fructooligosaccharides, oligolevan and levan in maple syrup-based reaction systems.

    Science.gov (United States)

    Li, Mengxi; Seo, Sooyoun; Karboune, Salwa

    2015-11-20

    Maple syrups with selected degree Brix (°Bx) (15, 30, 60) were investigated as reaction systems for levansucrase from Bacillus amyloliquefaciens. The enzymatic conversion of sucrose present in the maple syrup and the production of the transfructosylation products were assessed over a time course of 48h. At 30°C, the use of maple syrup 30°Bx led to the highest levansucrase activity (427.53μmol/mg protein/min), while maple syrup 66°Bx led to the highest converted sucrose concentration (1.53M). In maple syrup 30°Bx, oligolevans (1080%). In maple syrup 66°Bx, the most abundant products were oligolevans at 30°C and levans (DP≥30) at 8°C. The acceptor specificity study revealed the ability of B. amyloliquefaciens levansucrase to synthesize a variety of hetero-fructooligosaccharides (FOSs) in maple syrups 15°Bx and 30°Bx enriched with various disaccharides, with lactose being the preferred fructosyl acceptor. The current study is the first to investigate maple-syrup-based reaction systems for the synthesis of FOSs/oligolevans/levans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. CYP-450 isoenzymes catalyze the generation of hazardous aromatic amines after reaction with the azo dye Sudan III.

    Science.gov (United States)

    Zanoni, Thalita Boldrin; Lizier, Thiago M; Assis, Marilda das Dores; Zanoni, Maria Valnice B; de Oliveira, Danielle Palma

    2013-07-01

    This work describes the mutagenic response of Sudan III, an adulterant food dye, using Salmonella typhimurium assay and the generation of hazardous aromatic amines after different oxidation methods of this azo dye. For that, we used metabolic activation by S9, catalytic oxidation by ironporphyrin and electrochemistry oxidation in order to simulate endogenous oxidation conditions. The oxidation reactions promoted discoloration from 65% to 95% of Sudan III at 1 × 10(-4)molL(-1) and generation of 7.6 × 10(-7)molL(-1) to 0.31 × 10(-4)molL(-1) of aniline, o-anisidine, 2-methoxi-5-methylaniline, 4-aminobiphenyl, 4,4'-oxydianiline; 4,4'-diaminodiphenylmethane and 2,6-dimethylaniline. The results were confirmed by LC-MS-MS experiments. We also correlate the mutagenic effects of Sudan III using S. typhimurium with the strain TA1535 in the presence of exogenous metabolic activation (S9) with the metabolization products of this compound. Our findings clearly indicate that aromatic amines are formed due to oxidative reactions that can be promoted by hepatic cells, after the ingestion of Sudan III. Considering that, the use of azo compounds as food dyestuffs should be carefully controlled. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Rearrangement of cluster structure during fission processes

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Andrey V.

    2004-01-01

    Results of molecular dynamics simulations of fission reactions $Na_10^2+ -->Na_7^++ Na_3^+ and Na_18^2+--> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analysed. It is demonstrated that the energy necessary for removing homothetic...... groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual...

  11. Efficient transfer hydrogenation reaction Catalyzed by a dearomatized PN 3P ruthenium pincer complex under base-free Conditions

    KAUST Repository

    He, Lipeng

    2012-03-01

    A dearomatized complex [RuH(PN 3P)(CO)] (PN 3PN, N′-bis(di-tert-butylphosphino)-2,6-diaminopyridine) (3) was prepared by reaction of the aromatic complex [RuH(Cl)(PN 3P)(CO)] (2) with t-BuOK in THF. Further treatment of 3 with formic acid led to the formation of a rearomatized complex (4). These new complexes were fully characterized and the molecular structure of complex 4 was further confirmed by X-ray crystallography. In complex 4, a distorted square-pyramidal geometry around the ruthenium center was observed, with the CO ligand trans to the pyridinic nitrogen atom and the hydride located in the apical position. The dearomatized complex 3 displays efficient catalytic activity for hydrogen transfer of ketones in isopropanol. © 2011 Elsevier B.V. All rights reserved.

  12. Exohedral and skeletal rearrangements in the molecules of fullerene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Ignat' eva, Daria V; Ioffe, I N; Troyanov, Sergey I; Sidorov, Lev N [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2011-07-31

    The data on the migration of monoatomic addends, perfluoroalkyl and more complex organic groups in the molecules of fullerene derivatives published mainly in the last decade are analyzed. Skeletal rearrangements of the carbon cage occurring during chemical reactions are considered.

  13. Glycerolysis of sardine oil catalyzed by a water dependent lipase in different tert-alcohols as reaction medium

    Directory of Open Access Journals (Sweden)

    Solaesa, Á. G.

    2015-12-01

    Full Text Available The production of monoacylglycerol rich in polyunsaturated fatty acids (PUFA via enzymatic glycerolysis of sardine oil in a homogeneous system was evaluated. Reactions were conducted in two different tert-alcohols. Based on the phase equilibrium data, the amount of solvent added to create a homogeneous system has been calculated and optimized. The immobilized lipase used in this work was Lipozyme RM IM from Rhizomucor miehei, a water dependent lipase. The amount of water added as well as other reaction parameters were studied to evaluate the optimum conditions for monoacylglycerol obtencion. An initial reactant mole ratio glycerol to sardine oil 3:1, 12 wt% of water based on glycerol content and 10 wt% of lipase loading (based on weight of reactants, achieved a MAG yield of around 70%, with nearly 28 wt% PUFA, with low free fatty acid content (lower than 18 wt%.En este trabajo se ha estudiado la producción de monoacilglicéridos, ricos en ácidos grasos poliinsaturados (AGPI, mediante glicerolisis enzimática de aceite de sardina. La reacción se ha llevado a cabo en dos tert-alcoholes para conseguir de esta forma un medio homogéneo de reacción. La cantidad de disolvente añadida al medio de reacción se ha optimizado y calculado en base al equilibrio de fases de los componentes del sistema. La lipasa empleada como biocatalizador ha sido la enzima inmovilizada Lipozyme RM IM de Rhizomucor miehei, una lipasa dependiente de agua. Se ha estudiado el efecto de distintos parámetros cinéticos, así como de la cantidad de agua añadida al medio de reacción, en la producción de monoacilglicéridos. De los resultados obtenidos, se puede concluir que, para una relación molar inicial de reactantes glicerol:aceite de sardina de 3:1, un 12 % en peso de agua en base al glicerol y un 10 % en peso de lipasa, en base al peso de reactantes; se puede llegar a conseguir un rendimiento en monoacilglicéridos alrededor del 70 % en peso, con casi un 28 % en

  14. A Novel Glucosylation Reaction on Anthocyanins Catalyzed by Acyl-Glucose–Dependent Glucosyltransferase in the Petals of Carnation and Delphinium[C][W

    Science.gov (United States)

    Matsuba, Yuki; Sasaki, Nobuhiro; Tera, Masayuki; Okamura, Masachika; Abe, Yutaka; Okamoto, Emi; Nakamura, Haruka; Funabashi, Hisakage; Takatsu, Makoto; Saito, Mikako; Matsuoka, Hideaki; Nagasawa, Kazuo; Ozeki, Yoshihiro

    2010-01-01

    Glucosylation of anthocyanin in carnations (Dianthus caryophyllus) and delphiniums (Delphinium grandiflorum) involves novel sugar donors, aromatic acyl-glucoses, in a reaction catalyzed by the enzymes acyl-glucose–dependent anthocyanin 5(7)-O-glucosyltransferase (AA5GT and AA7GT). The AA5GT enzyme was purified from carnation petals, and cDNAs encoding carnation Dc AA5GT and the delphinium homolog Dg AA7GT were isolated. Recombinant Dc AA5GT and Dg AA7GT proteins showed AA5GT and AA7GT activities in vitro. Although expression of Dc AA5GT in developing carnation petals was highest at early stages, AA5GT activity and anthocyanin accumulation continued to increase during later stages. Neither Dc AA5GT expression nor AA5GT activity was observed in the petals of mutant carnations; these petals accumulated anthocyanin lacking the glucosyl moiety at the 5 position. Transient expression of Dc AA5GT in petal cells of mutant carnations is expected to result in the transfer of a glucose moiety to the 5 position of anthocyanin. The amino acid sequences of Dc AA5GT and Dg AA7GT showed high similarity to glycoside hydrolase family 1 proteins, which typically act as β-glycosidases. A phylogenetic analysis of the amino acid sequences suggested that other plant species are likely to have similar acyl-glucose–dependent glucosyltransferases. PMID:20971893

  15. Kinetics of an acid-base catalyzed reaction (aspartame degradation) as affected by polyol-induced changes in buffer pH and pK values.

    Science.gov (United States)

    Chuy, S; Bell, L N

    2009-01-01

    The kinetics of an acid-base catalyzed reaction, aspartame degradation, were examined as affected by the changes in pH and pK(a) values caused by adding polyols (sucrose, glycerol) to phosphate buffer. Sucrose-containing phosphate buffer solutions had a lower pH than that of phosphate buffer alone, which contributed, in part, to reduced aspartame reactivity. A kinetic model was introduced for aspartame degradation that encompassed pH and buffer salt concentrations, both of which change with a shift in the apparent pK(a) value. Aspartame degradation rate constants in sucrose-containing solutions were successfully predicted using this model when corrections (that is, lower pH, lower apparent pK(a) value, buffer dilution from the polyol) were applied. The change in buffer properties (pH, pK(a)) from adding sucrose to phosphate buffer does impact food chemical stability. These effects can be successfully incorporated into predictive kinetic models. Therefore, pH and pK(a) changes from adding polyols to buffer should be considered during food product development.

  16. Rapid and accurate liquid chromatography and tandem mass spectrometry method for the simultaneous quantification of ten metabolic reactions catalyzed by hepatic cytochrome P450 enzymes.

    Science.gov (United States)

    Shi, Rong; Ma, Bingliang; Wu, Jiasheng; Wang, Tianming; Ma, Yueming

    2015-10-01

    The hepatic cytochrome P450 enzymes play a central role in the biotransformation of endogenous and exogenous substances. A sensitive high-throughput liquid chromatography with tandem mass spectrometry assay was developed and validated for the simultaneous quantification of the products of ten metabolic reactions catalyzed by hepatic cytochrome P450 enzymes. After the substrates were incubated separately, the samples were pooled and analyzed by liquid chromatography with tandem mass spectrometry using an electrospray ionization source in the positive and negative ion modes. The method exhibited linearity over a broad concentration range, insensitivity to matrix effects, and high accuracy, precision, and stability. The novel method was successfully applied to study the kinetics of phenacetin-O deethylation, coumarin-7 hydroxylation, bupropion hydroxylation, taxol-6 hydroxylation, omeprazole-5 hydroxylation, dextromethorphan-O demethylation, tolbutamide-4 hydroxylation, chlorzoxazone-6 hydroxylation, testosterone-6β hydroxylation, and midazolam-1 hydroxylation in rat liver microsomes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Solvent effects in the acid-catalysed rearrangements of 1,2-oxazines

    International Nuclear Information System (INIS)

    Yagoub, A.K.; Ogur, J.A.; Wanekaya, A.K.

    2005-12-01

    The rates of acid-catalyzed rearrangements of 6-ethoxy-5,6-dihydro-3-phenyl-4H-1,2-oxazines have been investigated in H 2 SO 4 /methanol, MeCN and Me 2 SO by means of spectrophotometric methods. Pseudo first order rate constants were obtained in each case. Results in methanol supported an A1 type mechanism. Also investigated were the correlation of reaction rates with Hammet acidity function (H 0 ) by application of the Bunnet criterion where a slope of -0.67 was obtained. Further, the solvent effect was considered from two points of mechanistic views: the thermodynamic transfer functions of MeOH to MeCN and Me 2 SO where the rate was found fast in MeCN and slow in Me 2 SO and the Kirkwood-Buff preferential solvation with aqueous MeOH, MeCN and Me 2 SO. The techniques supported the proposed transition state structure. (author)

  18. An Efficient Synthesis of de novo Imidates via Aza-Claisen Rearrangements of N-Allyl Ynamides

    Science.gov (United States)

    DeKorver, Kyle A.; North, Troy D.; Hsung, Richard P.

    2010-01-01

    A novel thermal 3-aza-Claisen rearrangement of N-allyl ynamides for the synthesis of α-allyl imidates is described. Also, a sequential aza-Claisen, Pd-catalyzed Overman rearrangement is described for the synthesis of azapine-2-ones. PMID:21278848

  19. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 3 presents essays on the chemical generation of excited states; the cis-trans isomerization of olefins; and the photochemical rearrangements in trienes. The book also includes essays on the zimmerman rearrangements; the photochemical rearrangements of enones; the photochemical rearrangements of conjugated cyclic dienones; and the rearrangements of the benzene ring. Essays on the photo rearrangements via biradicals of simple carbonyl compounds; the photochemical rearrangements involving three-membered rings or five-membered ring heterocycles;

  20. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 2 covers essays on the theoretical approach of rearrangements; the rearrangements involving boron; and the molecular rearrangements of organosilicon compounds. The book also includes essays on the polytopal rearrangement at phosphorus; the rearrangement in coordination complexes; and the reversible thermal intramolecular rearrangements of metal carbonyls. Chemists and people involved in the study of rearrangements will find the book invaluable.

  1. Enantioselective catalytic fluorinative aza-semipinacol rearrangement.

    Science.gov (United States)

    Romanov-Michailidis, Fedor; Pupier, Marion; Besnard, Céline; Bürgi, Thomas; Alexakis, Alexandre

    2014-10-03

    An efficient and highly stereoselective fluorinative aza-semipinacol rearrangement is described. The catalytic reaction requires use of Selectfluor in combination with the chiral, enantiopure phosphate anion derived from acid L3. Under optimized conditions, cyclopropylamines A were transformed into β-fluoro cyclobutylimines B in good yields and high levels of diastereo- and enantiocontrol. Furthermore, the optically active cyclobutylimines were reduced diastereoselectively with L-Selectride in the corresponding fluorinated amines C, compounds of significant interest in the pharmacological industry.

  2. Synthesis of Methylenebicyclo[3.2.1]octanol by a Sm(II)-Induced 1,2-Rearrangement Reaction with Ring Expansion of Methylenebicyclo[4.2.0]octanone.

    Science.gov (United States)

    Takatori, Kazuhiko; Ota, Shoya; Tendo, Kenta; Matsunaga, Kazuma; Nagasawa, Kokoro; Watanabe, Shinya; Kishida, Atsushi; Kogen, Hiroshi; Nagaoka, Hiroto

    2017-07-21

    Direct conversion of methylenebicyclo[4.2.0]octanone to methylenebicyclo[3.2.1]octanol by a Sm(II)-induced 1,2-rearrangement with ring expansion of the methylenecyclobutane is described. Three conditions were optimized to allow the adaptation of this approach to various substrates. A rearrangement mechanism is proposed involving the generation of a ketyl radical and cyclopentanation by ketyl-olefin cyclization, followed by radical fragmentation and subsequent protonation.

  3. Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement

    Science.gov (United States)

    Louie, Gordon; Noel, Joseph P.; Baran, Phil S.; Palfey, Bruce; Moore, Bradley S.

    2013-01-01

    Flavoproteins catalyze a diversity of fundamental redox reactions and are one of the most studied enzyme families1,2. As monooxygenases, they are universally thought to control oxygenation by means of a peroxyflavin species that transfers a single atom of molecular oxygen to an organic substrate1,3,4. Here we report that the bacterial flavoenzyme EncM5,6 catalyzes the peroxyflavin-independent oxygenation-dehydrogenation dual oxidation of a highly reactive poly(β-carbonyl). The crystal structure of EncM with bound substrate mimics coupled with isotope labeling studies reveal previously unknown flavin redox biochemistry. We show that EncM maintains an unanticipated stable flavin oxygenating species, proposed to be a flavin-N5-oxide, to promote substrate oxidation and trigger a rare Favorskii-type rearrangement that is central to the biosynthesis of the antibiotic enterocin. This work provides new insight into the fine-tuning of the flavin cofactor in offsetting the innate reactivity of a polyketide substrate to direct its efficient electrocyclization. PMID:24162851

  4. SOLVENT EFFECTS ON THE HYDRATION OF CYCLOHEXENE CATALYZED BY A STRONG ACID ION-EXCHANGE RESIN .2. EFFECT OF SULFOLANE ON THE REACTION-KINETICS

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    The kinetics of the' hydration of cyclohexene, catalyzed by a strong acid ion-exchange resin, have been studied in a packed bed reactor at temperatures between 353 and 413 K and a pressure of 20 bar. The kinetic rate constants were measured as a function of temperature and solvent composition (0-90

  5. Pyridine synthesis by reactions of allyl amines and alkynes proceeding through a Cu(OAc)2 oxidation and Rh(III)-catalyzed N-annulation sequence.

    Science.gov (United States)

    Kim, Dong-Su; Park, Jung-Woo; Jun, Chul-Ho

    2012-11-28

    A new methodology has been developed for the synthesis of pyridines from allyl amines and alkynes, which involves sequential Cu(II)-promoted dehydrogenation of the allylamine and Rh(III)-catalyzed N-annulation of the resulting α,β-unsaturated imine and alkyne.

  6. Catalytic synthesis of amides via aldoximes rearrangement.

    Science.gov (United States)

    Crochet, Pascale; Cadierno, Victorio

    2015-02-14

    Amide bond formation reactions are among the most important transformations in organic chemistry because of the widespread occurrence of amides in pharmaceuticals, natural products and biologically active compounds. The Beckmann rearrangement is a well-known method to generate secondary amides from ketoximes. However, under the acidic conditions commonly employed, aldoximes RHC=NOH rarely rearrange into the corresponding primary amides RC(=O)NH2. In recent years, it was demonstrated that this atom-economical transformation can be carried out efficiently and selectively with the help of metal catalysts. Several homogeneous and heterogenous systems have been described. In addition, protocols offering the option to generate the aldoximes in situ from the corresponding aldehydes and hydroxylamine, or even from alcohols, have also been developed, as well as a series of tandem processes allowing the access to N-substituted amide products. In this Feature article a comprehensive overview of the advances achieved in this particular research area is presented.

  7. Three-component reactions of kojic acid: Efficient synthesis of Dihydropyrano[3,2-b]chromenediones and aminopyranopyrans catalyzed with Nano-Bi2O3-ZnO and Nano-ZnO

    Directory of Open Access Journals (Sweden)

    Maryam Zirak

    2017-05-01

    Full Text Available Synthesis of pyrano-chromenes and pyrano-pyrans was developed by three-component reactions of kojic acid and aromatic aldehydes with dimethone and malononitrile, catalyzed with nano-Bi2O3-ZnO and nano-ZnO, respectively. Reactions proceeded smoothly and the corresponding heterocyclic products were obtained in good to high yields. Nano ZnO and nano Bi2O3-ZnO were prepared by sol-gel method and characterized by X-ray diffraction (XRD, energy-dispersive X-ray analysis (EDX, Fourier transform infrared (FT-IR, scanning electron microscopy (SEM, and transmission electron microscopy (TEM techniques. Supporting Bi3+ on ZnO nanoparticles as Bi2O3, is the main novelty of this work. The simple reaction procedure, easy separation of products, low catalyst loading, reusability of the catalyst are some advantageous of this protocol.

  8. Gold-catalyzed aerobic epoxidation of trans-stilbene in methylcyclohexane. Part II: Identification and quantification of a key reaction intermediate

    KAUST Repository

    Guillois, Kevin

    2013-03-01

    The gold-catalyzed aerobic oxidations of alkenes are thought to rely on the in situ synthesis of hydroperoxide species, which have however never been clearly identified. Here, we show direct experimental evidence for the presence of 1-methylcyclohexyl hydroperoxide in the aerobic co-oxidation of stilbene and methylcyclohexane catalyzed by the Au/SiO2-R972 optimized catalyst prepared in Part I. Determination of its response in gas chromatography, by triphenylphosphine titration followed by 31P NMR, allows to easily follow its concentration throughout the co-oxidation process and to clearly highlight the simultaneous existence of the methylcyclohexane autoxidation pathway and the stilbene epoxidation pathway. © 2012 Elsevier B.V. All rights reserved.

  9. Gold-catalyzed aerobic epoxidation of trans-stilbene in methylcyclohexane. Part II: Identification and quantification of a key reaction intermediate

    KAUST Repository

    Guillois, Kevin; Mangematin, Sté phane; Tuel, Alain; Caps, Valerie

    2013-01-01

    The gold-catalyzed aerobic oxidations of alkenes are thought to rely on the in situ synthesis of hydroperoxide species, which have however never been clearly identified. Here, we show direct experimental evidence for the presence of 1-methylcyclohexyl hydroperoxide in the aerobic co-oxidation of stilbene and methylcyclohexane catalyzed by the Au/SiO2-R972 optimized catalyst prepared in Part I. Determination of its response in gas chromatography, by triphenylphosphine titration followed by 31P NMR, allows to easily follow its concentration throughout the co-oxidation process and to clearly highlight the simultaneous existence of the methylcyclohexane autoxidation pathway and the stilbene epoxidation pathway. © 2012 Elsevier B.V. All rights reserved.

  10. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand

    2015-01-01

    illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin......-substituted phenols, benzenethiols, polyphenols, and polyamines, which may be oxidized. In addition, the currently available analytical methods that can be used to detect enzyme catalyzed changes in lignin are summarized, and an improved nomenclature for unequivocal interpretation of the action of laccases on lignin...

  11. Piper-betle-shaped nano-S-catalyzed synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition: a greener "nanoparticle-catalyzed organic synthesis enhancement" approach.

    Science.gov (United States)

    Das, Vijay K; Borah, Madhurjya; Thakur, Ashim J

    2013-04-05

    Nano-S prepared by an annealing process showed excellent catalytic activity for the synthesis of 1-amidoalkyl-2-naphthols under solvent-free reaction condition at 50 °C. The catalyst could be reused up to the fifth cycle without loss in its action. The green-ness of the present protocol was also measured using green metrics drawing its superiority.

  12. Lipase-catalyzed asymmetric synthesis of naphtho[2,3-c]furan-1(3H)-one derivatives by a one-pot dynamic kinetic resolution/intramolecular Diels-Alder reaction: Total synthesis of (-)-himbacine.

    Science.gov (United States)

    Sugiyama, Koji; Kawanishi, Shinji; Oki, Yasuhiro; Kamiya, Marin; Hanada, Ryosuke; Egi, Masahiro; Akai, Shuji

    2018-04-01

    One-pot sequential reactions using the acyl moieties installed by enzymatic dynamic kinetic resolution of alcohols have been little investigated. In this work, the acryloyl moiety installed via the lipase/oxovanadium combo-catalyzed dynamic kinetic resolution of a racemic dienol [4-(cyclohex-1-en-1-yl)but-3-en-2-ol or 1-(cyclohex-1-en-1-yl)but-2-en-1-ol] with a (Z)-3-(phenylsulfonyl)acrylate underwent an intramolecular Diels-Alder reaction in a one-pot procedure to produce an optically active naphtho[2,3-c]furan-1(3H)-one derivative (98% ee). This method was successfully applied to the asymmetric total synthesis of (-)-himbacine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Claisen thermally rearranged (CTR) polymers

    Science.gov (United States)

    Tena, Alberto; Rangou, Sofia; Shishatskiy, Sergey; Filiz, Volkan; Abetz, Volker

    2016-01-01

    Thermally rearranged (TR) polymers, which are considered the next-generation of membrane materials because of their excellent transport properties and high thermal and chemical stability, are proven to have significant drawbacks because of the high temperature required for the rearrangement and low degree of conversion during this process. We demonstrate that using a [3,3]-sigmatropic rearrangement, the temperature required for the rearrangement of a solid glassy polymer was reduced by 200°C. Conversions of functionalized polyimide to polybenzoxazole of more than 97% were achieved. These highly mechanically stable polymers were almost five times more permeable and had more than two times higher degrees of conversion than the reference polymer treated under the same conditions. Properties of these second-generation TR polymers provide the possibility of preparing efficient polymer membranes in a form of, for example, thin-film composite membranes for various gas and liquid membrane separation applications. PMID:27482538

  14. Radical Smiles Rearrangement: An Update

    Directory of Open Access Journals (Sweden)

    Ingrid Allart-Simon

    2016-07-01

    Full Text Available Over the decades the Smiles rearrangement and its variants have become essential synthetic tools in modern synthetic organic chemistry. In this mini-review we summarized some very recent results of the radical version of these rearrangements. The selected examples illustrate the synthetic power of this approach, especially if it is incorporated into a domino process, for the preparation of polyfunctionalized complex molecules.

  15. Caffeine-catalyzed gels.

    Science.gov (United States)

    DiCiccio, Angela M; Lee, Young-Ah Lucy; Glettig, Dean L; Walton, Elizabeth S E; de la Serna, Eva L; Montgomery, Veronica A; Grant, Tyler M; Langer, Robert; Traverso, Giovanni

    2018-07-01

    Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. 2-Acetylthiamin pyrophosphate (acetyl-TPP) pH-rate profile for hydrolysis of acetyl-TPP and isolation of acetyl-TPP as a transient species in pyruvate dehydrogenase catalyzed reactions

    International Nuclear Information System (INIS)

    Gruys, K.J.; Datta, A.; Frey, P.A.

    1989-01-01

    Rate constants for the hydrolysis of acetyl-TPP were measured pH values of 2.5 and 7.5 and plotted as log k obs versus pH. The pH-rate profile defined two legs, each with a slope of +1 but separated by a region of decreased slope between pH 4 and pH 6. The rates were insensitive to buffer concentrations. Each leg of the profile reflected specific-base-catalyzed hydrolysis of acetyl-TPP, analogous to the hydrolysis of 2-acetyl-3,4-dimethylthiazolium ion. The separation of the two legs of this profile has been shown to be caused by the ionization of a group exhibiting a pK a of 4.73 within acetyl-TPP that is remote from the acetyl group, the aminopyrimidine ring, which is promoted below pH 4.73. The protonation level of this ring has been shown to control the equilibrium partitioning of acetyl-TPP among its carbinolamine, keto, and hydrate forms. The differential partitioning of these species is a major factor causing the separation between the two legs of the pH-rate profile. The characteristic pH-rate profile and the availability of synthetic acetyl-TPP have facilitated the isolation and identification of [1- 14 C]acetyl-TPP from acid-quenched enymatic reaction mixtures at steady states. [1- 14 C]Acetyl-TPP was identified as a transient species in reactions catalyzed by the PDH complex or the pyruvate dehydrogenase component of the complex (E 1 ). The pH-rate profile for hydrolysis of [1- 14 C]-acetyl-TPP, isolated from enzymatic reactions was found to be indistinguishable from that for authentic acetyl-TPP, which constituted positive identification of the 14 C-labeled enzymic species

  17. Recent applications of the divinylcyclopropane–cycloheptadiene rearrangement in organic synthesis

    Directory of Open Access Journals (Sweden)

    Sebastian Krüger

    2014-01-01

    Full Text Available This review summarizes the application of the divinylcyclopropane–cycloheptadiene rearrangement in synthetic organic chemistry. A brief overview of the new mechanistic insights concerning the title reaction is provided as well as a condensed account on the biological relevance of the topic. Heteroatom variants of this rearrangement are covered briefly.

  18. Stereoselective synthesis of functionalized cyclic amino acid derivatives via a [2,3]-Stevens rearrangement and ring-closing metathesis.

    Science.gov (United States)

    Nash, Aaron; Soheili, Arash; Tambar, Uttam K

    2013-09-20

    Unnatural cyclic amino acids are valuable tools in biomedical research and drug discovery. A two-step stereoselective strategy for converting simple glycine-derived aminoesters into unnatural cyclic amino acid derivatives has been developed. The process includes a palladium-catalyzed tandem allylic amination/[2,3]-Stevens rearrangement followed by a ruthenium-catalyzed ring-closing metathesis. The [2,3]-rearrangement proceeds with high diastereoselectivity through an exo transition state. Oppolzer's chiral auxiliary was utilized to access an enantiopure cyclic amino acid by this approach, which will enable future biological applications.

  19. Selenium-mediated synthesis of biaryls through rearrangement.

    Science.gov (United States)

    Shahzad, Sohail A; Vivant, Clotilde; Wirth, Thomas

    2010-03-19

    A new cyclization of beta-keto ester substituted stilbene derivatives using selenium electrophiles in the presence of Lewis acids is described. Substituted naphthols are obtained through cyclization and subsequent 1,2-rearrangement of aryl groups under very mild reaction conditions.

  20. catalyzed oxidation of formamidine derivative by hexacyanoferrate(III

    Indian Academy of Sciences (India)

    triazol-3-yl) formamidine (ATF) by hexacyanoferrate(III) (HCF) was studied spectrophotometrically in aqueous alkalinemedium. Both uncatalyzed and catalyzed reactions showed first order kinetics with respect to [HCF],whereas the reaction ...

  1. catalyzed oxidation of formamidine derivative by hexacyanoferrate(III)

    Indian Academy of Sciences (India)

    Both uncatalyzed and catalyzed reactions showed first order kinetics with respect to [HCF], whereas ... The rate laws associated with the reaction mechanisms ... activation and thermodynamic parameters have been computed and discussed.

  2. Highly Enantioselective Construction of Tertiary Thioethers and Alcohols via Phosphine-Catalyzed Asymmetric γ-Addition reactions of 5H-Thiazol-4-ones and 5H-Oxazol-4-ones: Scope and Mechanistic Understandings

    KAUST Repository

    Wang, Tianli

    2015-06-02

    Phosphine-catalyzed highly enantioselective γ-additions of 5H-thiazol-4-ones and 5H-oxazol-4-ones to allenoates have been developed for the first time. With the employment of amino-acid derived bifunctional phosphines, a wide range of substituted 5H-thiazol-4-one and 5H-oxazol-4-one derivatives bearing heteroarom (S or O)-containing tertiary chiral centers were constructed in high yields and excellent enantioselectivities. The reported method provides a facile access to enantioenriched tertiary thioether/alcohols. The mechanism of γ-addition reaction was investigated by performing DFT calculations, and the hydrogen bonding interactions between the Brønsted acid moiety of the phosphine catalysts and the “C=O” unit of donor molecules were shown to be crucial in asymmetric induction.

  3. Production of edible carbohydrates from formaldehyde in a spacecraft. pH variations in the calcium hydroxide catalyzed formose reaction. Final Report, 1 Jul. 1973 - 30 Jun. 1974. M.S. Thesis

    Science.gov (United States)

    Weiss, A. H.; Kohler, J. T.; John, T.

    1974-01-01

    The study of the calcium hydroxide catalyzed condensation of formaldehyde was extended to a batch reactor system. Decreases in pH were observed, often in the acid regime, when using this basic catalyst. This observation was shown to be similar to results obtained by others using less basic catalysts in the batch mode. The relative rates of these reactions are different in a batch reactor than in a continuous stirred tank reactor. This difference in relative rates is due to the fact that at any degree of advancement in the batch system, the products have a history of previous products, pH, and dissolved catalyst. The relative rate differences can be expected to yield a different nature of product sugars for the two types of reactors.

  4. Highly Enantioselective Construction of Tertiary Thioethers and Alcohols via Phosphine-Catalyzed Asymmetric γ-Addition reactions of 5H-Thiazol-4-ones and 5H-Oxazol-4-ones: Scope and Mechanistic Understandings

    KAUST Repository

    Wang, Tianli; Yu, Zhaoyuan; Hoon, Ding Long; Huang, Kuo-Wei; Lan, Yu; Lu, Yixin

    2015-01-01

    Phosphine-catalyzed highly enantioselective γ-additions of 5H-thiazol-4-ones and 5H-oxazol-4-ones to allenoates have been developed for the first time. With the employment of amino-acid derived bifunctional phosphines, a wide range of substituted 5H-thiazol-4-one and 5H-oxazol-4-one derivatives bearing heteroarom (S or O)-containing tertiary chiral centers were constructed in high yields and excellent enantioselectivities. The reported method provides a facile access to enantioenriched tertiary thioether/alcohols. The mechanism of γ-addition reaction was investigated by performing DFT calculations, and the hydrogen bonding interactions between the Brønsted acid moiety of the phosphine catalysts and the “C=O” unit of donor molecules were shown to be crucial in asymmetric induction.

  5. Studies on Pd/NiFe2O4 catalyzed ligand-free Suzuki reaction in aqueous phase: synthesis of biaryls, terphenyls and polyaryls

    Directory of Open Access Journals (Sweden)

    Suresh B. Waghmode

    2011-03-01

    Full Text Available Palladium supported on nickel ferrite (Pd/NiF2O4 was found to be a highly active catalyst for the Suzuki coupling reaction between various aryl halides and arylboronic acids. The reaction gave excellent yields (70–98% under ligand free conditions in a 1:1 DMF/H2O solvent mixture, in short reaction times (10–60 min. The catalyst could be recovered easily by applying an external magnetic field. The polyaryls were similarly synthesized.

  6. Chromosomal rearrangements in Tourette syndrome

    DEFF Research Database (Denmark)

    Bertelsen, Birgitte; Debes, Nanette Mol; Hjermind, Lena E

    2013-01-01

    , and identification of susceptibility genes through linkage and association studies has been complicated due to inherent difficulties such as no clear mode of inheritance, genetic heterogeneity, and apparently incomplete penetrance. Positional cloning through mapping of disease-related chromosome rearrangements has...... been an efficient tool for the cloning of disease genes in several Mendelian disorders and in a number of complex disorders. Through cytogenetic investigation of 205 TS patients, we identified three possibly disease-associated chromosome rearrangements rendering this approach relevant in chasing TS...

  7. Asymmetric NHC-catalyzed aza-Diels-Alder reactions: Highly enantioselective route to α-amino acid derivatives and DFT calculations

    KAUST Repository

    Yang, Limin; Wang, Fei; Lee, Richmond; Lv, Yunbo; Huang, Kuo-Wei; Zhong, Guofu

    2014-01-01

    A facile N-heterocyclic carbene catalytic enantioselective aza-Diels-Alder reaction of oxodiazenes with α-chloroaldehydes as dienophile precursors is reported, with excellent enantioselectivity (ee > 99%) and excellent yield (up to 93%). DFT study

  8. The origin of enantioselectivity in the l-threonine-derived phosphine-sulfonamide catalyzed aza-Morita-Baylis-Hillman reaction: Effects of the intramolecular hydrogen bonding

    KAUST Repository

    Lee, Richmond; Zhong, Fangrui; Zheng, Bin; Meng, Yuezhong; Lu, Yixin; Huang, Kuo-Wei

    2013-01-01

    in inducing a high degree of stereochemical control in both the enolate addition to imine and the subsequent proton transfer step, affording aza-MBH reactions with excellent enantioselectivity. © 2013 The Royal Society of Chemistry.

  9. CuI-catalyzed photochemical or thermal reactions of 3-(2-azidobenzylidene)lactams. Application to the synthesis of fused indoles.

    Science.gov (United States)

    Shi, Zongjun; Ren, Yuwei; Li, Bing; Lu, Shenci; Zhang, Wei

    2010-06-14

    Photochemical or thermal reactions of 3-(2-azidobenzylidene)-lactams afforded fused indoles such as indolo[3,2-c]quinolin-6-ones, pyrido[4,3-b]indol-1-ones and other similar compounds in moderate to high yields via cyclization-ring expansion reactions. The photolytic process was much more facile than the thermal process and could be further improved by addition of CuI.

  10. The hardness of train rearrangements

    NARCIS (Netherlands)

    Eggermont, C.E.J.; Hurkens, C.A.J.; Modelski, M.S.; Woeginger, G.J.

    2009-01-01

    We derive several results on the computational complexity of train rearrangement problems in railway optimization. Our main result states that arranging a departing train in a depot is NP-complete, even if each track in the depot contains only two cars.

  11. The Brønsted Acid-Catalyzed, Enantioselective Aza-Diels-Alder Reaction for the Direct Synthesis of Chiral Piperidones.

    Science.gov (United States)

    Weilbeer, Claudia; Sickert, Marcel; Naumov, Sergei; Schneider, Christoph

    2017-01-12

    We disclose herein the first enantioselective aza-Diels-Alder reaction of β-alkyl-substituted vinylketene silyl-O,O-acetals and imines furnishing a broad range of optically highly enriched 4-alkyl-substituted 2-piperidones. As a catalyst for this one-pot reaction we employed a chiral phosphoric acid which effects a vinylogous Mannich reaction directly followed by ring-closure to the lactam. Subsequent fully diastereoselective transformations including hydrogenation, enolate alkylation, and lactam alkylation/reduction processes converted the cycloadducts into various highly substituted piperidines of great utility for the synthesis of natural products and medicinally active compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. An efficient synthesis of novel pyrano[2,3-d]- and furopyrano[2,3-d]pyrimidines via indium-catalyzed multi-component domino reaction

    Directory of Open Access Journals (Sweden)

    Gohain Mukut

    2006-06-01

    Full Text Available Abstract Various novel pyrano [2,3-d]pyrimidines 5 and furopyrano [2,3-d]pyrimidines 7 were synthesized in 80–99% yields via a multicomponent domino Knoevenagel/hetero-Diels-Alder reaction of 1,3-dimethyl barbituric acid with an aromatic aldehyde and ethyl vinyl ether/2,3-dihydrofuran in presence of 1 mol% of indium(III chloride. The reaction also proceeds in aqueous media without using any catalyst, but the yield is comparatively less (65–70%.

  13. Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions

    DEFF Research Database (Denmark)

    Hansen, Thomas S.; Sádaba, Irantzu; Garcia, Eduardo

    2013-01-01

    containing promoters (NCPs) to obtain excellent yields. In acetonitrile a 95% DFF yield was obtained after 24h with ambient pressure of dioxygen at room temperature in the presence of different NCPs, which – to our knowledge – is the best result reported thus far for this reaction. The use of NCPs made...... it further possible to apply various traditional solvents, e.g. acetone, methanol and methyl isobutyl ketone for the reaction. The latter can be used as extraction solvent for HMF synthesis in aqueous media and thus integrate the two processes. Additionally, HMF was oxidized to 2,5-furandicarboxylic acid...

  14. The origin of enantioselectivity in the l-threonine-derived phosphine-sulfonamide catalyzed aza-Morita-Baylis-Hillman reaction: Effects of the intramolecular hydrogen bonding

    KAUST Repository

    Lee, Richmond

    2013-01-01

    l-Threonine-derived phosphine-sulfonamide 4 was identified as the most efficient catalyst to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions, affording the desired aza-MBH adducts with excellent enantioselectivities. Density functional theory (DFT) studies were carried out to elucidate the origin of the observed enantioselectivity. The importance of the intramolecular N-H⋯O hydrogen-bonding interaction between the sulfonamide and enolate groups was identified to be crucial in inducing a high degree of stereochemical control in both the enolate addition to imine and the subsequent proton transfer step, affording aza-MBH reactions with excellent enantioselectivity. © 2013 The Royal Society of Chemistry.

  15. Density functional theory analysis of the reaction pathway for methane oxidation to acetic acid catalyzed by Pd2+ in sulfuric acid.

    Science.gov (United States)

    Chempath, Shaji; Bell, Alexis T

    2006-04-12

    Density functional theory has been used to investigate the thermodynamics and activation barriers associated with the direct oxidation of methane to acetic acid catalyzed by Pd2+ cation in concentrated sulfuric acid. Pd2+ cations in such solutions are ligated by two bisulfate anions and by one or two molecules of sulfuric acid. Methane oxidation is initiated by the addition of CH4 across one of the Pd-O bonds of a bisulfate ligand to form Pd(HSO4)(CH3)(H2SO4)2. The latter species will react with CO to produce Pd(HSO4)(CH3CO)(H2SO4)2. The most likely path to the final products is found to be via oxidation of Pd(HSO4)(CH3)(H2SO4)2 and Pd(HSO4)(CH3CO)(H2SO4)2 to form Pd(eta2-HSO4)(HSO4)2(CH3)(H2SO4) and Pd(eta2-HSO4)(HSO4)2(CH3CO)(H2SO4), respectively. CH3HSO4 or CH3COHSO4 is then produced by reductive elimination from the latter two species, and CH(3)COOH is then formed by hydrolysis of CH3COHSO4. The loss of Pd2+ from solution to form Pd(0) or Pd-black is predicted to occur via reduction with CO. This process is offset, though, by reoxidation of palladium by either H2SO4 or O2.

  16. Ultrasound-assisted synthesis of β-amino ketones via a Mannich reaction catalyzed by Fe3O4 magnetite nanoparticles as an efficient, recyclable and heterogeneous catalyst

    Directory of Open Access Journals (Sweden)

    Naghi Saadatjoo

    2017-02-01

    The present methodology offers several advantages, such as good yields, short reaction times and a recyclable catalyst with a very easy work up. In addition, the obtained results indicated that MNPs can be used as an effective and inexpensive catalyst for stereoselective synthesis of β-amino carbonyl by a one-pot three component condensation of aldehydes, ketones and amines.

  17. Build/Couple/Pair Strategy Combining the Petasis 3-Component Reaction with Ru-Catalyzed Ring-Closing Metathesis and Isomerization

    DEFF Research Database (Denmark)

    Ascic, Erhad; Le Quement, Sebastian Thordal; Ishøy, Mette

    2012-01-01

    A “build/couple/pair” pathway for the systematic synthesis of structurally diverse small molecules is presented. The Petasis 3-component reaction was used to synthesize anti-amino alcohols displaying pairwise reactive combinations of alkene moieties. Upon treatment with a ruthenium alkylidene...

  18. Efficient C-O and C-N bond forming cross-coupling reactions catalyzed by core-shell structured Cu/Cu2O nanowires

    KAUST Repository

    Elshewy, Ahmed M.

    2013-01-01

    linkages in organic molecules. Despite significant advancements in this field, the construction of C-O and C–N bonds is still a major challenge for organic chemists, due to the involvement of harsh reaction conditions or the use of expensive catalysts

  19. Synthesis of 1-amidoalkyl-2-naphthols based on a three-component reaction catalyzed by boric acid as a solid heterogeneous catalyst under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Zahed Karimi-Jaberi

    2012-12-01

    Full Text Available An efficient method for the preparation of 1-amidoalkyl-2-naphthols has been described using a multi-component, one-pot condensation reaction of 2-naphthol, aldehydes and amides in the presence of boric acid under solvent-free conditions.DOI: http://dx.doi.org/10.4314/bcse.v26i3.18

  20. Palladium-catalyzed aerobic regio- and stereo-selective olefination reactions of phenols and acrylates via direct dehydrogenative C(sp2)-O cross-coupling.

    Science.gov (United States)

    Wu, Yun-Bin; Xie, Dan; Zang, Zhong-Lin; Zhou, Cheng-He; Cai, Gui-Xin

    2018-04-26

    An efficient olefination protocol for the oxidative dehydrogenation of phenols and acrylates has been achieved using a palladium catalyst and O2 as the sole oxidant. This reaction exhibits high regio- and stereo-selectivity (E-isomers) with moderate to excellent isolated yields and a wide substrate scope (32 examples) including ethyl vinyl ketone and endofolliculina.

  1. Study on the reactive transient α-λ3-iodanyl-acetophenone complex in the iodine(III)/PhI(I) catalytic cycle of iodobenzene-catalyzed α-acetoxylation reaction of acetophenone by electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Wang, Hao-Yang; Zhou, Juan; Guo, Yin-Long

    2012-03-30

    Hypervalent iodine compounds are important and widely used oxidants in organic chemistry. In 2005, Ochiai reported the PhI-catalyzed α-acetoxylation reaction of acetophenone by the oxidation of PhI with m-chloroperbenzoic acid (m-CPBA) in acetic acid. However, until now, the most critical reactive α-λ(3)-iodine alkyl acetophenone intermediate (3) had not been isolated or directly detected. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to intercept and characterize the transient reactive α-λ(3)-iodine alkyl acetophenone intermediate in the reaction solution. The trivalent iodine species was detected when PhI and m-CPBA in acetic acid were mixed, which indicated the facile oxidation of a catalytic amount of PhI(I) to the iodine(III) species by m-CPBA. Most importantly, 3·H(+) was observed at m/z 383 from the reaction solution and this ion gave the protonated α-acetoxylation product 4·H(+) at m/z 179 in MS/MS by an intramolecular reductive elimination of PhI. These ESI-MS/MS studies showed the existence of the reactive α-λ(3)-iodine alkyl acetophenone intermediate 3 in the catalytic cycle. Moreover, the gas-phase reactivity of 3·H(+) was consistent with the proposed solution-phase reactivity of the α-λ(3)-iodine alkyl acetophenone intermediate 3, thus confirming the reaction mechanism proposed by Ochiai. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Kinetics and mechanism of aquation and formation reactions of carbonato complexes. XII. Deuterium solvent isotope effect on the rate of acid-catalyzed decarboxylation of the carbonatobis (ethylenediamine) cobalt(III) complex ion. A mechanistic reappraisal

    International Nuclear Information System (INIS)

    Harris, G.M.; Hyde, K.E.

    1978-01-01

    A recent study of the acid-catalyzed decarboxylation of the carbonatotetrakis(pyridine)cobalt(III) complex ion showed there to be rate acceleration in D 2 O solvent, consistent with a proton-preequilibration mechanism. This observation directly contradicts the results of a similar study made some years ago of the analogous ion, carbonatobis(ethylenediamine)cobalt(III), for which there appeared to be deceleration in D 2 O solvent. A reinvestigation of the latter reaction over a much wider acidity range has now shown the earlier work to be in error. The previously proposed generalized mechanism for aquation of chelated carbonato complex ions of the form CoN 4 CO 3 + (N 4 identical with various tetramine ligand groupings of uni-, bi-, or quadridentate type) has thus been revised to include a proton equilibration step. An unexpected complication arises in the interpretation of the data for the bis(ethylenediamine) complex ion in the acidity range 0.1 + ] + ] term, overtakes and exceeds the true first-order rate constant for CO 2 release. The interesting implications of this unusual first-order successive reaction system are fully explored in the context of the present study

  3. Nuclear structure in cold rearrangement processes in fission and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, P.

    1998-11-01

    In fission and fusion of heavy nuclei large numbers of nucleons are rearranged at a scale of excitation energy very small compared to the binding energy of the nuclei. The energies involved are less than 40 MeV at nuclear temperatures below 1.5 MeV. The shapes of the configurations in the rearrangement of a binary system into a monosystem in fusion, or vice versa in fission, change their elongations by as much as 8 fm, the radius of the monosystem. The dynamics of the reactions macroscopically described by a potential energy surface, inertia parameters, dissipation, and a collision energy is strongly modified by the nuclear structure of the participating nuclei. Experiments showing nuclear structure effects in fusion and fission of the heaviest nuclei are reviewed. The reaction kinematics and the multitude of isotopes involved are investigated by detector techniques and by recoil spectrometers. The advancement of the latter allows to find very small reaction branches in the range of 10{sup -5} to 10{sup -10}. The experiments reveal nuclear structure effects in all stages of the rearrangement processes. These are discussed pointing to analogies in fusion and fission on the microscopic scale, notwithstanding that both processes macroscopically are irreversible. Heavy clusters, as 132Sn, 208Pb, nuclei with closed shell configurations N=82,126, Z=50,82 survive in large parts of the nuclear rearrangement. They determine the asymmetry in the mass distribution of low energy fission, and they allow to synthesise superheavy elements, until now up to element 112. Experiments on the cold rearrangement in fission and fusion are presented. Here, in the range of excitation energies below 12 MeV the phenomena are observed most convincingly. (orig.)

  4. Efficient C-O and C-N bond forming cross-coupling reactions catalyzed by core-shell structured Cu/Cu2O nanowires

    KAUST Repository

    Elshewy, Ahmed M.

    2013-12-01

    Oxygen and Nitrogen containing compounds are of utmost importance due to their interesting and diverse biological activities. The construction of the C-O and C–N bonds is of significance as it opens avenues for the introduction of ether and amine linkages in organic molecules. Despite significant advancements in this field, the construction of C-O and C–N bonds is still a major challenge for organic chemists, due to the involvement of harsh reaction conditions or the use of expensive catalysts or ligands in many cases. Thus, it is a challenge to develop alternative, milder, cheaper and more reproducible methodologies for the construction of these types of bonds. Herein, we introduce a new efficient ligand free catalytic system for C-O and C-N bond formation reactions.

  5. Asymmetric NHC-catalyzed aza-Diels-Alder reactions: Highly enantioselective route to α-amino acid derivatives and DFT calculations

    KAUST Repository

    Yang, Limin

    2014-08-01

    A facile N-heterocyclic carbene catalytic enantioselective aza-Diels-Alder reaction of oxodiazenes with α-chloroaldehydes as dienophile precursors is reported, with excellent enantioselectivity (ee > 99%) and excellent yield (up to 93%). DFT study showed that cis-TSa, formed from a top face approach of oxodiazene to cis-IIa, is the most favorable transition state and is consistent with the experimental observations. © 2014 American Chemical Society.

  6. Selective C–C Coupling Reaction of Dimethylphenol to Tetramethyldiphenoquinone Using Molecular Oxygen Catalyzed by Cu Complexes Immobilized in Nanospaces of Structurally-Ordered Materials

    Directory of Open Access Journals (Sweden)

    Zen Maeno

    2015-02-01

    Full Text Available Two high-performance Cu catalysts were successfully developed by immobilization of Cu ions in the nanospaces of poly(propylene imine (PPI dendrimer and magadiite for the selective C–C coupling of 2,6-dimethylphenol (DMP to 3,3',5,5'-tetramethyldiphenoquinone (DPQ with O2 as a green oxidant. The PPI dendrimer encapsulated Cu ions in the internal nanovoids to form adjacent Cu species, which exhibited significantly high catalytic activity for the regioselective coupling reaction of DMP compared to previously reported enzyme and metal complex catalysts. The magadiite-immobilized Cu complex acted as a selective heterogeneous catalyst for the oxidative C–C coupling of DMP to DPQ. This heterogeneous catalyst was recoverable from the reaction mixture by simple filtration, reusable without loss of efficiency, and applicable to a continuous flow reactor system. Detailed characterization using ultraviolet-visible (UV-vis, Fourier transform infrared (FTIR, electronic spin resonance (ESR, and X-ray absorption fine structure (XAFS spectroscopies and the reaction mechanism investigation revealed that the high catalytic performances of these Cu catalysts were ascribed to the adjacent Cu species generated within the nanospaces of the PPI dendrimer and magadiite.

  7. Mechanistic Study of Ni/CeO{sub 2}-catalyzed CO{sub 2}/CH{sub 4} Reaction Using Flow and Static Methods

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jin-Gyu; Roh, Joong-Seok; Kim, Ji-Yeong; Lee, Sung-Han; Choi, Jonng-Gill [Yonsei University, Seoul (Korea, Republic of)

    2016-08-15

    Ni/CeO{sub 2} catalysts with different Ni loadings (5, 7, 10, 12, and 14 wt% Ni) were prepared by an impregnation method and examined for the CO{sub 2} reforming of methane using flow and static reactors. Their catalytic activities and selectivities were measured under CO{sub 2}/CH{sub 4}/Ar (=5/5/40 cm{sup 3}/min) flow at 450-800 .deg. C using a flow reactor system with an on-line gas chromatography. At flexed temperature, the CO{sub 2} and CH{sub 4} conversions varied only slightly with the Ni wt%, whereas the H{sub 2}/CO ratio increased with increasing Ni wt%. The conversions increased with temperature, reaching 98% at 800 .deg. C. The H{sub 2}/CO ratio varied with temperature in the range of 450-800 .deg. C, from less than 1 below 550 .deg. C to close to 1 at 550-600 .deg. C and then back to less than 1 above 600 .deg. C. The apparent activation energies were determined to be 43.1 kJ/mol for the CO{sub 2} consumption and 50.2 kJ/mol for the CH{sub 4} consumption based on the rates measured for the reforming reaction over 5 wt% Ni/CeO{sub 2} catalyst at 550-750 .deg. C. Additionally, the catalytic reforming reaction at low pressure (40 Torr) was investigated by a static reactor system by using a differential photoacoustic cell, in which the rates were measured from the CO{sub 2} photoacoustic signal data at early reaction times over the temperature range of 460-610 .deg. C. Apparent activation energies of 25.5-30.1 kJ/mol were calculated from the CO{sub 2} disappearance rates. The CO{sub 2} adsorption on the Ni/CeO{sub 2} catalyst was investigated by the CO{sub 2} photoacoustic spectroscopy and Fourier transform infrared spectroscopy. Feasible side reactions during the catalytic CO{sub 2}/CH{sub 4} reaction were suggested on the basis of the kinetic and spectroscopic results.

  8. Reaction

    African Journals Online (AJOL)

    abp

    19 oct. 2017 ... Reaction to Mohamed Said Nakhli et al. concerning the article: "When the axillary block remains the only alternative in a 5 year old child". .... Bertini L1, Savoia G, De Nicola A, Ivani G, Gravino E, Albani A et al ... 2010;7(2):101-.

  9. Mechanistic and kinetic insights into the thermally induced rearrangement of alpha-pinene.

    Science.gov (United States)

    Stolle, Achim; Ondruschka, Bernd; Findeisen, Matthias

    2008-11-07

    The thermal rearrangement of alpha-pinene (1) is interesting from mechanistic as well as kinetic point of view. Carrier gas pyrolyses with 1 and its acyclic isomers ocimene (2) and alloocimene (3) were performed to investigate the thermal network of these hydrocarbons. Kinetic analysis of the major reaction steps allows for a deeper insight in the reaction mechanism. Thus it was possible to explain the racemization of 1, the formation of racemic limonene (4), and the absence of the primary pyrolysis product 2 in the reaction mixture resulting from thermal rearrangement of 1. Results supported the conclusion that the reactions starting with 1 involve biradical transition states.

  10. Synthesis of Chitin Oligosaccharides Using Dried Stenotrophomonas maltophilia Cells Containing a Transglycosylation Reaction-Catalyzing β-N-Acetylhexosaminidase as a Whole-Cell Catalyst.

    Science.gov (United States)

    Uehara, Asaki; Takahashi, Narumi; Moriyama, Mei; Hirano, Takako; Hakamata, Wataru; Nishio, Toshiyuki

    2018-02-01

    Bacterial strain NYT501, which we previously isolated from soil, was identified as Stenotrophomonas maltophilia, and it was confirmed that this strain produces an intracellular β-N-acetylhexosaminidase exhibiting transglycosylation activity. Several properties of this enzyme were characterized using a partially purified enzyme preparation. Using N,N'-diacetylchitobiose (GlcNAc) 2 and N,N',N″-triacetylchitotriose (GlcNAc) 3 as substrates and dried cells of this bacterium as a whole-cell catalyst, chitin oligosaccharides of higher degrees of polymerization were synthesized. (GlcNAc) 3 was generated from (GlcNAc) 2 as the major transglycosylation product, and a certain amount of purified sample of the trisaccharide was obtained. By contrast, in the case of the reaction using (GlcNAc) 3 as a substrate, the yield of higher-degree polymerization oligosaccharides was comparatively low.

  11. Mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli: pH and deuterium isotope effects with NADPH as the variable substrate

    International Nuclear Information System (INIS)

    Morrison, J.F.; Stone, S.R.

    1988-01-01

    The variations with pH of the kinetic parameters and primary deuterium isotope effects for the reaction of NADPH with dihydrofolate reductase from Escherichia coli have been determined. The aims of the investigations were to elucidate the chemical mechanism of the reaction and to obtain information about the location of the rate-limiting steps. The V and V/K/sub NADPH/ profiles indicate that a single ionizing group at the active center of the enzyme must be protonated for catalysis, whereas the K/sub i/ profiles show that the binding of NADPH to the free enzyme and of ATP-ribose to the enzyme-dihydrofolate complex is pH independent. From the results of deuterium isotope effects on V/K/sub NADPH/, it is concluded that NADPH behaves as a sticky substrate. It is this stickiness that raises artificially the intrinsic pK value of 6.4 for the Asp-27 residue of the enzyme-dihydrofolate complex to an observed value of 8.9. Thus, the binary enzyme complex is largely protonated at neutral pH. The elevation of the intrinsic pK value of 6.4 for the ternary enzyme-NADPH-dihydrofolate complex to 8.5 is not due to the kinetic effects of substrates. Rather, it is the consequence of the lower, pH-independent rate of product release and the faster pH-dependent catalytic step. The data for deuterium isotope and deuterium solvent isotope effects are consistent with the postulate that, for the reduction of dihydrofolate to tetrahydrofolate, protonation precedes hydride transfer. A scheme is proposed for the indirect transfer of a proton from the enzyme to dihydrofolate

  12. Atypical profiles and modulations of heme-enzymes catalyzed outcomes by low amounts of diverse additives suggest diffusible radicals' obligatory involvement in such redox reactions.

    Science.gov (United States)

    Manoj, Kelath Murali; Parashar, Abhinav; Venkatachalam, Avanthika; Goyal, Sahil; Satyalipsu; Singh, Preeti Gunjan; Gade, Sudeep K; Periyasami, Kalaiselvi; Jacob, Reeba Susan; Sardar, Debosmita; Singh, Shanikant; Kumar, Rajan; Gideon, Daniel A

    2016-06-01

    Peroxidations mediated by heme-enzymes have been traditionally studied under a single-site (heme distal pocket), non-sequential (ping-pong), two-substrates binding scheme of Michaelis-Menten paradigm. We had reported unusual modulations of peroxidase and P450 reaction outcomes and explained it invoking diffusible reactive species [Manoj, 2006; Manoj et al., 2010; Andrew et al., 2011, Parashar et al., 2014 & Venkatachalam et al., 2016]. A systematic investigation of specific product formation rates was undertaken to probe the hypothesis that involvement of diffusible reactive species could explain undefined substrate specificities and maverick modulations (sponsored by additives) of heme-enzymes. When the rate of specific product formation was studied as a function of reactants' concentration or environmental conditions, we noted marked deviations from normal profiles. We report that heme-enzyme mediated peroxidations of various substrates are inhibited (or activated) by sub-equivalent concentrations of diverse redox-active additives and this is owing to multiple redox equilibriums in the milieu. At low enzyme and peroxide concentrations, the enzyme is seen to recycle via a one-electron (oxidase) cycle, which does not require the substrate to access the heme centre. Schemes are provided that explain the complex mechanistic cycle, kinetics & stoichiometry. It is not obligatory for an inhibitor or substrate to interact with the heme centre for influencing overall catalysis. Roles of diffusible reactive species explain catalytic outcomes at low enzyme and reactant concentrations. The current work highlights the scope/importance of redox enzyme reactions that could occur "out of the active site" in biological or in situ systems. Copyright © 2016 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  13. Heterogeneity of BCR-ABL rearrangement in patients with chronic myeloid leukemia in Pakistan.

    Science.gov (United States)

    Tabassum, Najia; Saboor, Mohammad; Ghani, Rubina; Moinuddin, Moinuddin

    2014-07-01

    Breakpoint cluster region-Abelson (BCR-ABL) rearrangement or Philadelphia (Ph) chromosome in Chronic Myeloid Leukemia (CML) is derived from a reciprocal chromosomal translocation between ABL gene on chromosome 9 and BCR gene on chromosome 22. This chimeric protein has various sizes and therefore different clinical behaviour. The purpose of this study was to determine the heterogeneity of BCR-ABL rearrangement in patients with Ph(+)CML in Pakistan. The study was conducted at Civil Hospital and Baqai Institute of Hematology (BIH) Karachi. Blood samples from 25 patients with CML were collected. Multiplex reverse transcription polymerase chain reaction (RT-PCR) was performed to identify various BCR-ABL transcripts. All 25 samples showed BCR-ABL rearrangements. Out of these, 24 (96%) patients expressed p210 BCR-ABL rearrangements i.e. 60% (n=15) had b3a2 and 32% (n=8) had b2a2 rearrangements. Co-expression of b3a2 /b2a2 rearrangement and p190 (e1a3) rearrangement was also identified in two patients. It is apparent that majority of the patients had p210 BCR-ABL rearrangements. Frequency of co-expression and rare fusion transcripts was very low.

  14. Role of Ser-257 in the sliding mechanism of NADP(H) in the reaction catalyzed by the Aspergillus fumigatus flavin-dependent ornithine N5-monooxygenase SidA.

    Science.gov (United States)

    Shirey, Carolyn; Badieyan, Somayesadat; Sobrado, Pablo

    2013-11-08

    SidA (siderophore A) is a flavin-dependent N-hydroxylating monooxygenase that is essential for virulence in Aspergillus fumigatus. SidA catalyzes the NADPH- and oxygen-dependent formation of N(5)-hydroxyornithine. In this reaction, NADPH reduces the flavin, and the resulting NADP(+) is the last product to be released. The presence of NADP(+) is essential for activity, as it is required for stabilization of the C4a-hydroperoxyflavin, which is the hydroxylating species. As part of our efforts to determine the molecular details of the role of NADP(H) in catalysis, we targeted Ser-257 for site-directed mutagenesis and performed extensive characterization of the S257A enzyme. Using a combination of steady-state and stopped-flow kinetic experiments, substrate analogs, and primary kinetic isotope effects, we show that the interaction between Ser-257 and NADP(H) is essential for stabilization of the C4a-hydroperoxyflavin. Molecular dynamics simulation results suggest that Ser-257 functions as a pivot point, allowing the nicotinamide of NADP(+) to slide into position for stabilization of the C4a-hydroperoxyflavin.

  15. Enhanced hydrogen production from water via a photo-catalyzed reaction using chalcogenide d-element nanoparticles induced by UV light.

    Science.gov (United States)

    El Naggar, Ahmed M A; Nassar, Ibrahim M; Gobara, Heba M

    2013-10-21

    Hydrogen has the potential to meet the requirements as a clean non-fossil fuel in the future. The photocatalytic production of H2 through water splitting has been demonstrated and enormous efforts have been published. The present work is an attempt to enhance the production of H2 during water splitting using synthesized nanoparticles based on chalcogenide d-element semiconductors via a photochemical reaction under UV-light in the presence of methanol as a hole-scavenger. In general, the enhanced activity of a semiconductor is most likely due to the effective charge separation of photo generated electrons and holes in the semiconductors. Hence, the utilization of different semiconductors in combination can consequently provide better hydrogen production. Accordingly in this research work, two different semiconductors, with different concentrations, either used individually or combined together were introduced. They in turn produced a high concentration of H2 as detected and measured using gas chromatography. Herein, data revealed that the nano-structured semiconductors prepared through this work are a promising candidate in the production of an enhanced H2 flux under visible UV radiation.

  16. Programmed Rearrangement in Ciliates: Paramecium.

    Science.gov (United States)

    Betermier, Mireille; Duharcourt, Sandra

    2014-12-01

    Programmed genome rearrangements in the ciliate Paramecium provide a nice illustration of the impact of transposons on genome evolution and plasticity. During the sexual cycle, development of the somatic macronucleus involves elimination of ∼30% of the germline genome, including repeated DNA (e.g., transposons) and ∼45,000 single-copy internal eliminated sequences (IES). IES excision is a precise cut-and-close process, in which double-stranded DNA cleavage at IES ends depends on PiggyMac, a domesticated piggyBac transposase. Genome-wide analysis has revealed that at least a fraction of IESs originate from Tc/mariner transposons unrelated to piggyBac. Moreover, genomic sequences with no transposon origin, such as gene promoters, can be excised reproducibly as IESs, indicating that genome rearrangements contribute to the control of gene expression. How the system has evolved to allow elimination of DNA sequences with no recognizable conserved motif has been the subject of extensive research during the past two decades. Increasing evidence has accumulated for the participation of noncoding RNAs in epigenetic control of elimination for a subset of IESs, and in trans-generational inheritance of alternative rearrangement patterns. This chapter summarizes our current knowledge of the structure of the germline and somatic genomes for the model species Paramecium tetraurelia, and describes the DNA cleavage and repair factors that constitute the IES excision machinery. We present an overview of the role of specialized RNA interference machineries and their associated noncoding RNAs in the control of DNA elimination. Finally, we discuss how RNA-dependent modification and/or remodeling of chromatin may guide PiggyMac to its cognate cleavage sites.

  17. Enyne Metathesis Catalyzed by Ruthenium Carbene Complexes

    DEFF Research Database (Denmark)

    Poulsen, Carina Storm; Madsen, Robert

    2003-01-01

    Enyne metathesis combines an alkene and an alkyne into a 1,3-diene. The first enyne metathesis reaction catalyzed by a ruthenium carbene complex was reported in 1994. This review covers the advances in this transformation during the last eight years with particular emphasis on methodology...

  18. Enzyme-Catalyzed Transetherification of Alkoxysilanes

    Directory of Open Access Journals (Sweden)

    Peter G. Taylor

    2013-01-01

    Full Text Available We report the first evidence of an enzyme-catalyzed transetherification of model alkoxysilanes. During an extensive enzymatic screening in the search for new biocatalysts for silicon-oxygen bond formation, we found that certain enzymes promoted the transetherification of alkoxysilanes when tert-butanol or 1-octanol were used as the reaction solvents.

  19. Synthesis of heterocycles via transition-metal-catalyzed hydroarylation of alkynes.

    Science.gov (United States)

    Yamamoto, Yoshihiko

    2014-03-07

    Transition-metal (TM)-catalyzed hydroarylation reactions of alkynes have received much attention, because they enable the net insertion of alkyne C-C triple bonds into C-H bonds of aromatic precursors, resulting in regio- and stereo-selective formation of synthetically useful arylalkenes. Taking advantage of this feature, TM-catalyzed alkyne hydroarylations have been successfully used for the synthesis of heterocycles. TM-catalyzed alkyne hydroarylations can be classified into three major categories depending on the type of reaction and precursors involved: (1) palladium-catalyzed reductive Heck reactions of alkynes with aryl halides, (2) TM-catalyzed conjugate arylation reactions of activated alkynes with arylboronic acids, and (3) TM-catalyzed aromatic C-H alkenylations with alkynes. This review surveys heterocycle synthesis via TM-catalyzed hydroarylation of alkynes according to the above classification, with an emphasis on the scope and limitations, as well as the underlying mechanisms.

  20. Thermal rearrangement of 7-methylbicyclo

    Science.gov (United States)

    Bender; Leber; Lirio; Smith

    2000-08-25

    The gas-phase thermal rearrangement of exo-7-methylbicyclo[3.2.0]hept-2-ene yields almost exclusively 5-methylnorbornene products. Inversion (i) of configuration dominates this [1,3] sigmatropic shift although some retention (r) is also observed. Because the [1,3] migration can only occur suprafacially (s) in this geometrically constrained system, the si/sr ratio of 7 observed for the migration of C7 in exo-7-methylbicyclo[3.2.0]hept-2-ene indicates that the orbital symmetry rules are somewhat permissive for the [1,3] sigmatropic migration of carbon.

  1. The Effect of WO3 Modification of ZrO2 Support on the Ni-Catalyzed Dry Reforming of Biogas Reaction for Syngas Production

    Directory of Open Access Journals (Sweden)

    Nikolaos D. Charisiou

    2017-10-01

    Full Text Available The time-on-stream catalytic performance and stability of 8 wt. % Ni catalyst supported on two commercially available catalytic supports, ZrO2 and 15 wt.% WO3-ZrO2, was investigated under the biogas dry reforming reaction for syngas production, at 750°C and a biogas quality equal to CH4/CO2 = 1.5, that represents a common concentration of real biogas. A number of analytical techniques such as N2 adsorption/desorption (BET method, XRD, H2-TPR, NH3- and CO2-TPD, SEM, ICP, thermal analysis (TGA/DTG and Raman spectroscopy were used in order to determine textural, structural and other physicochemical properties of the catalytic materials, and the type of carbon deposited on the catalytic surface of spent samples. These techniques were used in an attempt to understand better the effects of WO3-induced modifications on the catalyst morphology, physicochemical properties and catalytic performance. Although Ni dispersion and reducibility characteristics were found superior on the modified Ni/WZr sample than that on Ni/Zr, its dry reforming of methane (DRM performance was inferior; a result attributed to the enhanced acidity and complete loss of the basicity recorded on this catalyst, an effect that competes and finally overshadows the benefits of the other superior properties. Raman studies revealed that the degree of graphitization decreases with the insertion of WO3 in the crystalline structure of the ZrO2 support, as the ID/IG peak intensity ratio is 1.03 for the Ni/Zr and 1.29 for the Ni/WZr catalyst.

  2. Synthesis of fused tricyclic systems by thermal Cope rearrangement of furan-substituted vinyl cyclopropanes.

    Science.gov (United States)

    Klaus, Verena; Wittmann, Stéphane; Senn, Hans M; Clark, J Stephen

    2018-05-15

    A novel method for the stereoselective construction of hexahydroazuleno[4,5-b]furans from simple precursors has been developed. The route involves the use of our recently developed Brønsted acid catalysed cyclisation reaction of acyclic ynenones to prepare fused 1-furanyl-2-alkenylcyclopropanes that undergo highly stereoselective thermal Cope rearrangement to produce fused tricyclic products. Substrates possessing an E-alkene undergo smooth Cope rearrangement at 40 °C, whereas the corresponding Z-isomers do not react at this temperature. Computational studies have been performed to explain the difference in behaviour of the E- and Z-isomers in the Cope rearrangement reaction. The hexahydroazuleno[4,5-b]furans produced by Cope rearrangement have potential as advanced intermediates for the synthesis of members of the guaianolide family of natural products.

  3. An enzyme-catalyzed multistep DNA refolding mechanism in hairpin telomere formation.

    Directory of Open Access Journals (Sweden)

    Ke Shi

    Full Text Available Hairpin telomeres of bacterial linear chromosomes are generated by a DNA cutting-rejoining enzyme protelomerase. Protelomerase resolves a concatenated dimer of chromosomes as the last step of chromosome replication, converting a palindromic DNA sequence at the junctions between chromosomes into covalently closed hairpins. The mechanism by which protelomerase transforms a duplex DNA substrate into the hairpin telomeres remains largely unknown. We report here a series of crystal structures of the protelomerase TelA bound to DNA that represent distinct stages along the reaction pathway. The structures suggest that TelA converts a linear duplex substrate into hairpin turns via a transient strand-refolding intermediate that involves DNA-base flipping and wobble base-pairs. The extremely compact di-nucleotide hairpin structure of the product is fully stabilized by TelA prior to strand ligation, which drives the reaction to completion. The enzyme-catalyzed, multistep strand refolding is a novel mechanism in DNA rearrangement reactions.

  4. Isotopic labelling studies for a gold-catalysed skeletal rearrangement of alkynyl aziridines

    Directory of Open Access Journals (Sweden)

    Neil Spencer

    2011-06-01

    Full Text Available Isotopic labelling studies were performed to probe a proposed 1,2-aryl shift in the gold-catalysed cycloisomerisation of alkynyl aziridines into 2,4-disubstituted pyrroles. Two isotopomers of the expected skeletal rearrangement product were identified using 13C-labelling and led to a revised mechanism featuring two distinct skeletal rearrangements. The mechanistic proposal has been rationalised against the reaction of a range of 13C- and deuterium-labelled substrates.

  5. Rhodium-Catalyzed Dehydrogenative Borylation of Cyclic Alkenes

    Science.gov (United States)

    Kondoh, Azusa; Jamison, Timothy F.

    2010-01-01

    A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented. PMID:20107646

  6. Catalyzing RE Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Kate; Elgqvist, Emma; Walker, Andy; Cutler, Dylan; Olis, Dan; DiOrio, Nick; Simpkins, Travis

    2016-09-01

    This poster details how screenings done with REopt - NREL's software modeling platform for energy systems integration and optimization - are helping to catalyze the development of hundreds of megawatts of renewable energy.

  7. Recent Syntheses of 1,2,3,4-Tetrahydroquinolines, 2,3-Dihydro-4(1H-quinolinones and 4(1H-Quinolinones using Domino Reactions

    Directory of Open Access Journals (Sweden)

    Baskar Nammalwar

    2013-12-01

    Full Text Available A review of the recent literature is given focusing on synthetic approaches to 1,2,3,4-tetrahydroquinolines, 2,3-dihydro-4(1H-quinolinones and 4(1H-quinolinones using domino reactions. These syntheses involve: (1 reduction or oxidation followed by cyclization; (2 SNAr-terminated sequences; (3 acid-catalyzed ring closures or rearrangements; (4 high temperature cyclizations and (5 metal-promoted processes as well as several less thoroughly studied reactions. Each domino method is presented with a brief discussion of mechanism, scope, yields, simplicity and potential utility.

  8. Exploring possible reaction pathways for the o-atom transfer reactions to unsaturated substrates catalyzed by a [Ni-NO2 ] ↔ [Ni-NO] redox couple using DFT methods.

    Science.gov (United States)

    Tsipis, Athanassios C

    2017-07-15

    The (nitro)(N-methyldithiocarbamato)(trimethylphospane)nickel(II), [Ni(NO 2 )(S 2 CNHMe)(PMe 3 )] complex catalyses efficiently the O-atom transfer reactions to CO and acetylene. Energetically feasible sequence of elementary steps involved in the catalytic cycle of the air oxidation of CO and acetylene are proposed promoted by the Ni(NO 2 )(S 2 CNHMe)(PMe 3 )] ↔ Ni(NO 2 )(S 2 CNHMe)(PMe 3 ) redox couple using DFT methods both in vacuum and dichloromethane solutions. The catalytic air oxidation of HC≡CH involves formation of a five-member metallacycle intermediate, via a [3 + 2] cyclo-addition reaction of HC≡CH to the Ni-N = O moiety of the Ni(NO 2 )(S 2 CNHMe)(PMe 3 )] complex, followed by a β H-atom migration toward the C α carbon atom of the coordinated acetylene and release of the oxidation product (ketene). The geometric and energetic reaction profile for the reversible [Ni( κN1-NO 2 )(S 2 CNHMe)(PMe 3 )] ⇌ [Ni( κO,O2-ONO)(S 2 CNHMe)(PMe 3 )] linkage isomerization has also been modeled by DFT calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Caryolene-forming carbocation rearrangements

    Directory of Open Access Journals (Sweden)

    Quynh Nhu N. Nguyen

    2013-02-01

    Full Text Available Density functional theory calculations on mechanisms of the formation of caryolene, a putative biosynthetic precursor to caryol-1(11-en-10-ol, reveal two mechanisms for caryolene formation: one involves a base-catalyzed deprotonation/reprotonation sequence and tertiary carbocation minimum, whereas the other (with a higher energy barrier involves intramolecular proton transfer and the generation of a secondary carbocation minimum and a hydrogen-bridged minimum. Both mechanisms are predicted to involve concerted suprafacial/suprafacial [2 + 2] cycloadditions, whose asynchronicity allows them to avoid the constraints of orbital symmetry.

  10. A proposal for calculating the importance of exchange effects in rearrangement collisions

    International Nuclear Information System (INIS)

    Mihailovic, M.V.; Nagarajan, M.A.

    1980-02-01

    A formalism based on the generator co-ordinate method (GCM) for reactions is derived to test approximations in the most commonly used methods for calculating the rearrangement amplitudes: namely the distorted wave Born approximation (DWBA), the coupled channel Born approximation (CCBA) and the coupled reaction channel (CRC). (author)

  11. Application of microwave irradiation to organic liquid phase reactions

    International Nuclear Information System (INIS)

    Huang Kun; Liu Hua; Ji Xuelin

    1994-01-01

    Microwave irradiation has been used in organic liquid phase reactions to significantly reduce the reaction time and improve the yield. The proposed mechanism, the development of techniques and reactions, such as Diels-Alder, ene, rearrangement reactions etc., are discussed

  12. Catalyzed reactions at illuminated semiconductor interfaces

    International Nuclear Information System (INIS)

    Wrighton, M.S.

    1984-01-01

    Many desirable minority carrier chemical redox processes are too slow to compete with e - -h + recombination at illuminated semiconductor/liquid electrolyte junction interfaces. Reductions of H 2 O to H 2 or CO 2 to compounds having C--H bonds are too slow to compete with e - -h + recombination at illuminated p-type semiconductors, for example. Approaches to improve the rate of the desired processes involving surface modification techniques are described. Photoanodes are plagued by the additional problem of oxidative decomposition under illumination with > or =E/sub g/ illumination. The photo-oxidation of Cl - , Br - , and H 2 O is considered to illustrate the concepts involved. Proof of concept experiments establish that catalysis can be effective in dramatically improving direct solar fuel production; efficiencies of >10% have been demonstrated

  13. Glicerólise de óleo de peixe catalisada por lipase comercial de Rhizomucor miehei em meio com surfactante de grau alimentício Glycerolysis of fish oil catalyzed by a commercial lipase from Rhizomucor miehei in reaction media containing food grade surfactant

    Directory of Open Access Journals (Sweden)

    Joanna Silva Santos

    2013-01-01

    Full Text Available Omega-3 enriched partial acylglycerols are beneficial for human health. The aim of this study was to obtain monoacylglycerols (MAG and diacylglycerols (DAG by means of glycerolysis of fish oil catalyzed by a lipase from Rhizomucor miehei in the presence of food grade surfactants (Tween 65, 80 or 85. Glycerolysis was successful in the reaction media for all the tested surfactants, showing their potential for use as additives in such a system. The best results, however, were obtained for the reaction medium in the absence of surfactant whose peroxide value was the lowest after glycerolysis.

  14. Transesterification of Jatropha curcas oil glycerides: Theoretical and experimental studies of biodiesel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Neyda C. Om Tapanes; Donato A. Gomes Aranda; Jose W. de Mesquita Carneiro; Octavio A. Ceva Antunes [Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil). Laboratorio GREENTEC

    2008-08-15

    Vegetal oil, also known as triglycerides, is a mixture of fatty acid triesters of glycerol. In the triglycerides alkyl chains of Jatropha curcas oil, predominate the palmitic, oleic and linoleic fatty acids. The process usually used to convert these triglycerides to biodiesel is called transesterification. The overall process is a sequence of three equivalent, consecutive and reversible reactions, in which di- and monoglycerides are formed as intermediates. Semi-empirical AM1 molecular orbital calculations were used to investigate the reaction pathways of base-catalyzed transesterification of glycerides of palmitic, oleic and linoleic acid. The most probable pathway and the rate determining-step of the reactions were estimated from the molecular orbital calculations. Our results suggest the formation of only one tetrahedral intermediate, which in a subsequent step rearranges to form the products. The rate determining-step is the break of this tetrahedral intermediate. 27 refs., 6 figs., 4 tabs.

  15. Muon catalyzed fusion under compressive conditions

    International Nuclear Information System (INIS)

    Cripps, G.; Goel, B.; Harms, A.A.

    1991-01-01

    The viability of a symbiotic combination of Muon Catalyzed Fusion (μCF) and high density generation processes has been investigated. The muon catalyzed fusion reaction rates are formulated in the temperature and density range found under moderate compressive conditions. Simplified energy gain and power balance calculations indicate that significant energy gain occurs only if standard type deuterium-tritium (dt) fusion is ignited. A computer simulation of the hydrodynamics and fusion kinetics of a spherical deuterium-tritium pellet implosion including muons is performed. Using the muon catalyzed fusion reaction rates formulated and under ideal conditions, the pellet ignites (and thus has a significant energy gain) only if the initial muon concentration is approximately 10 17 cm -3 . The muons need to be delivered to the pellet within a very short-time (≅ 1 ns). The muon pulse required in order to make the high density and temperature muon catalyzed fusion scheme viable is beyond the present technology for muon production. (orig.) [de

  16. Biodiesel production by enzyme-catalyzed transesterification

    Directory of Open Access Journals (Sweden)

    Stamenković Olivera S.

    2005-01-01

    Full Text Available The principles and kinetics of biodiesel production from vegetable oils using lipase-catalyzed transesterification are reviewed. The most important operating factors affecting the reaction and the yield of alkyl esters, such as: the type and form of lipase, the type of alcohol, the presence of organic solvents, the content of water in the oil, temperature and the presence of glycerol are discussed. In order to estimate the prospects of lipase-catalyzed transesterification for industrial application, the factors which influence the kinetics of chemically-catalysed transesterification are also considered. The advantages of lipase-catalyzed transesterification compared to the chemically-catalysed reaction, are pointed out. The cost of down-processing and ecological problems are significantly reduced by applying lipases. It was also emphasized that lipase-catalysed transesterification should be greatly improved in order to make it commercially applicable. The further optimization of lipase-catalyzed transesterification should include studies on the development of new reactor systems with immobilized biocatalysts and the addition of alcohol in several portions, and the use of extra cellular lipases tolerant to organic solvents, intracellular lipases (i.e. whole microbial cells and genetically-modified microorganisms ("intelligent" yeasts.

  17. Kinetics of aggregation growth with competition between catalyzed birth and catalyzed death

    International Nuclear Information System (INIS)

    Wang Haifeng; Gao Yan; Lin Zhenquan

    2008-01-01

    An aggregation growth model of three species A, B and C with the competition between catalyzed birth and catalyzed death is proposed. Irreversible aggregation occurs between any two aggregates of the like species with the constant rate kernels I n (n = 1,2,3). Meanwhile, a monomer birth of an A species aggregate of size k occurs under the catalysis of a B species aggregate of size j with the catalyzed birth rate kernel K(k,j) = Kkj v and a monomer death of an A species aggregate of size k occurs under the catalysis of a C species aggregate of size j with the catalyzed death rate kernel L(k,j)=Lkj v , where v is a parameter reflecting the dependence of the catalysis reaction rates of birth and death on the size of catalyst aggregate. The kinetic evolution behaviours of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A species a k (t) is found to be dependent crucially on the competition between the catalyzed birth and death of A species, as well as the irreversible aggregation processes of the three species: (1) In the v k (t) satisfies the conventional scaling form; (2) In the v ≥ 0 case, the competition between the catalyzed birth and death dominates the process. When the catalyzed birth controls the process, a k (t) takes the conventional or generalized scaling form. While the catalyzed death controls the process, the scaling description of the aggregate size distribution breaks down completely

  18. Iron-catalyzed intermolecular cycloaddition of diazo surrogates with hexahydro-1,3,5-triazines.

    Science.gov (United States)

    Liu, Pei; Zhu, Chenghao; Xu, Guangyang; Sun, Jiangtao

    2017-09-26

    We report here an unprecedented iron-catalyzed cycloaddition reaction of diazo surrogates with hexahydro-1,3,5-triazines, providing five-membered heterocycles in moderate to high yields under mild reaction conditions. This cycloaddition features C-N and C-C bond formation using a cheap iron catalyst. Importantly, different to our former report on a gold-catalyzed system, both donor/donor and donor/acceptor diazo substrates are tolerated in this iron-catalyzed protocol.

  19. Sorting permutations by prefix and suffix rearrangements.

    Science.gov (United States)

    Lintzmayer, Carla Negri; Fertin, Guillaume; Dias, Zanoni

    2017-02-01

    Some interesting combinatorial problems have been motivated by genome rearrangements, which are mutations that affect large portions of a genome. When we represent genomes as permutations, the goal is to transform a given permutation into the identity permutation with the minimum number of rearrangements. When they affect segments from the beginning (respectively end) of the permutation, they are called prefix (respectively suffix) rearrangements. This paper presents results for rearrangement problems that involve prefix and suffix versions of reversals and transpositions considering unsigned and signed permutations. We give 2-approximation and ([Formula: see text])-approximation algorithms for these problems, where [Formula: see text] is a constant divided by the number of breakpoints (pairs of consecutive elements that should not be consecutive in the identity permutation) in the input permutation. We also give bounds for the diameters concerning these problems and provide ways of improving the practical results of our algorithms.

  20. Input-output rearrangement of isolated converters

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Kovacevic, Milovan; Mønster, Jakob Døllner

    2015-01-01

    This paper presents a new way of rearranging the input and output of isolated converters. The new arrangement posses several advantages, as increased voltage range, higher power handling capabilities, reduced voltage stress and improved efficiency, for applications where galvanic isolation...

  1. Transition Metal Catalyzed Synthesis of Carboxylic Acids, Imines, and Biaryls

    DEFF Research Database (Denmark)

    Santilli, Carola; Madsen, Robert

    the carboxylate.  Manganese catalyzed radical Kumada-type reaction between aryl halidesand aryl Grignard reagents. The reaction between aryl halides and aryl Grignard reagents catalyzed by MnCl2 has been extended to several methyl-substituted aryl iodide reagents byperforming the reaction at 120 ˚C in a microwave...... oven (Scheme ii). A limitation of the heterocoupling process is the concomitant dehalogenation of the aryl halide and homocoupling of the Grignard reagent leading low to moderate yields of the desired heterocoupling product. The mechanism of the cross-coupling process was investigated by performing two...

  2. Rhenium and Manganese-Catalyzed Selective Alkenylation of Indoles

    KAUST Repository

    Wang, Chengming

    2018-04-06

    An efficient rhenium‐catalyzed regioselective C‐H bond alkenylation of indoles is reported. The protocol operates well for internal as well as terminal alkynes, affording products in good to excellent yields. Furthermore, a manganese catalyzed, acid free, regioselective C2‐alkenylation of indoles with internal alkynes is described. The directing groups can be easily removed after the reaction and the resulting products can be used as valuable building blocks for the synthesis of diverse heterocyclic compounds.

  3. Toward Efficient Palladium-Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Jensen, Thomas; Fristrup, Peter

    2009-01-01

    Recent breakthroughs have proved that direct palladium (II)-catalyzed allylic C-H alkylation can be achieved. This new procedure shows that the inherent requirement for a leaving group in the Tsuji-Trost palladium-catalyzed allylic alkylation can be lifted. These initial reports hold great promise...... for the development of allylic C-H alkylation into a widely applicable methodology, thus providing a means to enhance synthetic efficiency in these reactions....

  4. Rhenium and Manganese-Catalyzed Selective Alkenylation of Indoles

    KAUST Repository

    Wang, Chengming; Rueping, Magnus

    2018-01-01

    An efficient rhenium‐catalyzed regioselective C‐H bond alkenylation of indoles is reported. The protocol operates well for internal as well as terminal alkynes, affording products in good to excellent yields. Furthermore, a manganese catalyzed, acid free, regioselective C2‐alkenylation of indoles with internal alkynes is described. The directing groups can be easily removed after the reaction and the resulting products can be used as valuable building blocks for the synthesis of diverse heterocyclic compounds.

  5. Palladium(II)-catalyzed oxidation of L-tryptophan by ...

    Indian Academy of Sciences (India)

    dium(II)] were obtained. The reaction exhibits fractional-second order kinetics with respect to [H ... compounds. Its use- fulness may be due to its unequivocal stability, water. ∗ ... metals are known to catalyze many oxidation–reduction reactions because they ... prepared by dissolving potassium hexacyanoferrate(II). (SD Fine ...

  6. Manganese-Catalyzed Aerobic Heterocoupling of Aryl Grignard Reagents

    DEFF Research Database (Denmark)

    Ghaleshahi, Hajar Golshahi; Antonacci, Giuseppe; Madsen, Robert

    2017-01-01

    An improved protocol has been developed for the MnCl2-catalyzed cross-coupling reaction of two arylmagnesium bromides under dioxygen. The reaction was achieved by using the Grignard reagents in a 2:1 ratio and 20 % of MnCl2. Very good yields of the heterocoupling product were obtained when the li...

  7. CU(II): catalyzed hydrazine reduction of ferric nitrate

    International Nuclear Information System (INIS)

    Karraker, D.G.

    1981-11-01

    A method is described for producing ferrous nitrate solutions by the cupric ion-catalyzed reduction of ferric nitrate with hydrazine. The reaction is complete in about 1.5 hours at 40 0 C. Hydrazoic acid is also produced in substantial quantities as a reaction byproduct

  8. UDP-glucuronyltransferase-catalyzed deconjugation of bilirubin monoglucuronide

    NARCIS (Netherlands)

    Cuypers, H. T.; ter Haar, E. M.; Jansen, P. L.

    1984-01-01

    Bilirubin monoglucuronide is rapidly deconjugated when incubated with UDP and rat liver microsomal preparations at pH 5.1. The following evidence was found that this reaction is catalyzed by UDP-glucuronyltransferase: (i) unconjugated bilirubin and UDP-glucuronic acid were identified as the reaction

  9. Hexose rearrangements upon fragmentation of N-glycopeptides and reductively aminated N-glycans.

    Science.gov (United States)

    Wuhrer, Manfred; Koeleman, Carolien A M; Deelder, André M

    2009-06-01

    Tandem mass spectrometry of glycans and glycoconjugates in protonated form is known to result in rearrangement reactions leading to internal residue loss. Here we studied the occurrence of hexose rearrangements in tandem mass spectrometry of N-glycopeptides and reductively aminated N-glycans by MALDI-TOF/TOF-MS/MS and ESI-ion trap-MS/MS. Fragmentation of proton adducts of oligomannosidic N-glycans of ribonuclease B that were labeled with 2-aminobenzamide and 2-aminobenzoic acid resulted in transfer of one to five hexose residues to the fluorescently tagged innermost N-acetylglucosamine. Glycopeptides from various biological sources with oligomannosidic glycans were likewise shown to undergo hexose rearrangement reactions, resulting in chitobiose cleavage products that have acquired one or two hexose moieties. Tryptic immunoglobulin G Fc-glycopeptides with biantennary N-glycans likewise showed hexose rearrangements resulting in hexose transfer to the peptide moiety retaining the innermost N-acetylglucosamine. Thus, as a general phenomenon, tandem mass spectrometry of reductively aminated glycans as well as glycopeptides may result in hexose rearrangements. This characteristic of glycopeptide MS/MS has to be considered when developing tools for de novo glycopeptide structural analysis.

  10. Muon-catalyzed fusion revisited

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-12-15

    A negative muon can induce nuclear fusion in the reaction of deuteron and triton nuclei giving a helium nucleus, a neutron and an emerging negative muon. The muon forms a tightlybound deuteron-triton-muon molecule and fusion follows in about 10{sup -12}s. Then the muon is free again to induce further reactions. Thus the muon can serve as a catalyst for nuclear fusion, which can proceed without the need for the high temperatures which are needed in the confinement and inertial fusion schemes. At room temperature, up to 80 fusions per muon have recently been observed at the LAMPF machine at Los Alamos, and it is clear that this number can be exceeded. These and other results were presented at a summer Workshop on Muon-Catalyzed Fusion held in Jackson, Wyoming. Approximately fifty scientists attended from Austria, Canada, India, Italy, Japan, South Africa, West Germany, and the United States. The Workshop itself is symbolic of the revival of interest in this subject.

  11. Mapping of 5q35 chromosomal rearrangements within a genomically unstable region

    DEFF Research Database (Denmark)

    Buysse, Karen; Crepel, An; Menten, Björn

    2008-01-01

    these rearrangements. METHODS: We analysed a series of patients with breakpoints clustering within chromosome band 5q35. Using high density arrays and subsequent quantitative polymerase chain reaction (qPCR), we characterised the breakpoints of four interstitial deletions (including one associated with an unbalanced...

  12. Isotope effects in photochemical rearrangements

    International Nuclear Information System (INIS)

    Sommer, F.

    1983-01-01

    Taking anthracene resp. 9-deuteroanthracene as the initial substance, different substitution products have been prepared. The products originating by direct photolysis have been characterized and their structure has been determined. By comparing the measured kinetic isotope effect and the quantum yield of the nondeuterated and the monodeuterated fluorenes formed it could been demonstrated that the isotope effect mainly is due to the reaction rates and the influence of the deuterium substitution upon the radiationless desactivation against that is small. (HBR) [de

  13. Triflic Anhydride-Mediated Beckmann Rearrangement Reaction of β ...

    Indian Academy of Sciences (India)

    aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China. bKey Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry, ... which meanwhile releases quite a lot of acidic wastes.1,3.

  14. Curtius rearrangement reactions of 3-(4-azidocarbonyl ...

    Indian Academy of Sciences (India)

    Unknown

    Aedes aegypti mosquito is the vector responsible for dangerous diseases like dengue hemorrhagic fever and yellow fever. An attempt has been made to study the newly synthesized carbamate compounds with respect to their insecticidal properties against fourth instar larvae of Aedes aegypti under labora- tory conditions.

  15. Recent Developments in the Reformatsky-Claisen Rearrangement

    Directory of Open Access Journals (Sweden)

    Susumi Hatakeyama

    2012-11-01

    Full Text Available The rearrangement of allyl a-bromoacetates with Zn dust is known as the Reformatsky-Claisen rearrangement. Whereas the Ireland-Claisen rearrangement has been widely used in the synthesis of a diverse range of natural products, the Zn-mediated Reformatsky-Claisen rearrangement has not been utilized so often. In this article, we will provide an overview of recent advances in the Reformatsky-Claisen rearrangement field, including the In-mediated Reformatsky-Claisen rearrangement we have recently developed.

  16. Mutations and Rearrangements in the Genome of Sulfolobus solfataricus P2

    DEFF Research Database (Denmark)

    Redder, P.; Garrett, R. A.

    2006-01-01

    The genome of Sulfolobus solfataricus P2 carries a larger number of transposable elements than any other sequenced genome from an archaeon or bacterium and, as a consequence, may be particularly susceptible to rearrangement and change. In order to gain more insight into the natures and frequencies...... of different types of mutation and possible rearrangements that can occur in the genome, the pyrEF locus was examined for mutations that were isolated after selection with 5-fluoroorotic acid. About two-thirds of the 130 mutations resulted from insertions of mobile elements, including insertion sequence (IS...... deletions, insertions, and a duplication, were observed, and about one-fifth of the mutations occurred elsewhere in the genome, possibly in an orotate transporter gene. One mutant exhibited a 5-kb genomic rearrangement at the pyrEF locus involving a two-step IS element-dependent reaction, and its boundaries...

  17. Kinetics of Bio-Reactions

    DEFF Research Database (Denmark)

    Villadsen, John

    2015-01-01

    his chapter predicts the specific rates of reaction by means of a mathematical expression, the kinetics of the reaction. This expression can be derived through a mechanistic interpretation of an enzymatically catalyzed reaction, but it is essentially of empirical nature for cell reactions. The mo...

  18. Targeted next-generation sequencing at copy-number breakpoints for personalized analysis of rearranged ends in solid tumors.

    Directory of Open Access Journals (Sweden)

    Hyun-Kyoung Kim

    Full Text Available BACKGROUND: The concept of the utilization of rearranged ends for development of personalized biomarkers has attracted much attention owing to its clinical applicability. Although targeted next-generation sequencing (NGS for recurrent rearrangements has been successful in hematologic malignancies, its application to solid tumors is problematic due to the paucity of recurrent translocations. However, copy-number breakpoints (CNBs, which are abundant in solid tumors, can be utilized for identification of rearranged ends. METHOD: As a proof of concept, we performed targeted next-generation sequencing at copy-number breakpoints (TNGS-CNB in nine colon cancer cases including seven primary cancers and two cell lines, COLO205 and SW620. For deduction of CNBs, we developed a novel competitive single-nucleotide polymorphism (cSNP microarray method entailing CNB-region refinement by competitor DNA. RESULT: Using TNGS-CNB, 19 specific rearrangements out of 91 CNBs (20.9% were identified, and two polymerase chain reaction (PCR-amplifiable rearrangements were obtained in six cases (66.7%. And significantly, TNGS-CNB, with its high positive identification rate (82.6% of PCR-amplifiable rearrangements at candidate sites (19/23, just from filtering of aligned sequences, requires little effort for validation. CONCLUSION: Our results indicate that TNGS-CNB, with its utility for identification of rearrangements in solid tumors, can be successfully applied in the clinical laboratory for cancer-relapse and therapy-response monitoring.

  19. Targeted next-generation sequencing at copy-number breakpoints for personalized analysis of rearranged ends in solid tumors.

    Science.gov (United States)

    Kim, Hyun-Kyoung; Park, Won Cheol; Lee, Kwang Man; Hwang, Hai-Li; Park, Seong-Yeol; Sorn, Sungbin; Chandra, Vishal; Kim, Kwang Gi; Yoon, Woong-Bae; Bae, Joon Seol; Shin, Hyoung Doo; Shin, Jong-Yeon; Seoh, Ju-Young; Kim, Jong-Il; Hong, Kyeong-Man

    2014-01-01

    The concept of the utilization of rearranged ends for development of personalized biomarkers has attracted much attention owing to its clinical applicability. Although targeted next-generation sequencing (NGS) for recurrent rearrangements has been successful in hematologic malignancies, its application to solid tumors is problematic due to the paucity of recurrent translocations. However, copy-number breakpoints (CNBs), which are abundant in solid tumors, can be utilized for identification of rearranged ends. As a proof of concept, we performed targeted next-generation sequencing at copy-number breakpoints (TNGS-CNB) in nine colon cancer cases including seven primary cancers and two cell lines, COLO205 and SW620. For deduction of CNBs, we developed a novel competitive single-nucleotide polymorphism (cSNP) microarray method entailing CNB-region refinement by competitor DNA. Using TNGS-CNB, 19 specific rearrangements out of 91 CNBs (20.9%) were identified, and two polymerase chain reaction (PCR)-amplifiable rearrangements were obtained in six cases (66.7%). And significantly, TNGS-CNB, with its high positive identification rate (82.6%) of PCR-amplifiable rearrangements at candidate sites (19/23), just from filtering of aligned sequences, requires little effort for validation. Our results indicate that TNGS-CNB, with its utility for identification of rearrangements in solid tumors, can be successfully applied in the clinical laboratory for cancer-relapse and therapy-response monitoring.

  20. Genomic regulatory landscapes and chromosomal rearrangements

    DEFF Research Database (Denmark)

    Ladegaard, Elisabete L Engenheiro

    2008-01-01

    The main objectives of the PhD study are to identify and characterise chromosomal rearrangements within evolutionarily conserved regulatory landscapes around genes involved in the regulation of transcription and/or development (trans-dev genes). A frequent feature of trans-dev genes is that they ......The main objectives of the PhD study are to identify and characterise chromosomal rearrangements within evolutionarily conserved regulatory landscapes around genes involved in the regulation of transcription and/or development (trans-dev genes). A frequent feature of trans-dev genes...... the complex spatio-temporal expression of the associated trans-dev gene. Rare chromosomal breakpoints that disrupt the integrity of these regulatory landscapes may be used as a tool, not only to make genotype-phenotype associations, but also to link the associated phenotype with the position and tissue...... specificity of the individual CNEs. In this PhD study I have studied several chromosomal rearrangements with breakpoints in the vicinity of trans-dev genes. This included chromosomal rearrangements compatible with known phenotype-genotype associations (Rieger syndrome-PITX2, Mowat-Wilson syndrome-ZEB2...

  1. Regioselective 1-N-Alkylation and Rearrangement of Adenosine Derivatives.

    Science.gov (United States)

    Oslovsky, Vladimir E; Drenichev, Mikhail S; Mikhailov, Sergey N

    2015-01-01

    Several methods for the preparation of some N(6)-substituted adenosines based on selective 1-N-alkylation with subsequent Dimroth rearrangement were developed. The proposed methods seem to be effective for the preparation of natural N(6)-isopentenyl- and N(6)-benzyladenosines, which are known to possess pronounced biological activities. Direct 1-N-alkylation of 2',3',5'-tri-O-acetyladenosine and 3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides in N,N-dimethylformamide (DMF) in the presence of BaCO3 and KI gave 1-N-substituted derivatives with quantitative yields, whereas 1-N-alkylation of adenosine was accompanied by significant O-alkylation. Moreover, the reaction of trimethylsilyl derivatives of N(6)-acetyl-2',3',5'-tri-O-acetyladenosine and N(6)-acetyl-3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides leads to the formation of the stable 1-N-substituted adenosines. Dimroth rearrangement of 1-N-substituted adenosines in aqueous ammonia yields pure N(6)-substituted adenosines.

  2. Dynamics of genome rearrangement in bacterial populations.

    Directory of Open Access Journals (Sweden)

    Aaron E Darling

    2008-07-01

    Full Text Available Genome structure variation has profound impacts on phenotype in organisms ranging from microbes to humans, yet little is known about how natural selection acts on genome arrangement. Pathogenic bacteria such as Yersinia pestis, which causes bubonic and pneumonic plague, often exhibit a high degree of genomic rearrangement. The recent availability of several Yersinia genomes offers an unprecedented opportunity to study the evolution of genome structure and arrangement. We introduce a set of statistical methods to study patterns of rearrangement in circular chromosomes and apply them to the Yersinia. We constructed a multiple alignment of eight Yersinia genomes using Mauve software to identify 78 conserved segments that are internally free from genome rearrangement. Based on the alignment, we applied Bayesian statistical methods to infer the phylogenetic inversion history of Yersinia. The sampling of genome arrangement reconstructions contains seven parsimonious tree topologies, each having different histories of 79 inversions. Topologies with a greater number of inversions also exist, but were sampled less frequently. The inversion phylogenies agree with results suggested by SNP patterns. We then analyzed reconstructed inversion histories to identify patterns of rearrangement. We confirm an over-representation of "symmetric inversions"-inversions with endpoints that are equally distant from the origin of chromosomal replication. Ancestral genome arrangements demonstrate moderate preference for replichore balance in Yersinia. We found that all inversions are shorter than expected under a neutral model, whereas inversions acting within a single replichore are much shorter than expected. We also found evidence for a canonical configuration of the origin and terminus of replication. Finally, breakpoint reuse analysis reveals that inversions with endpoints proximal to the origin of DNA replication are nearly three times more frequent. Our findings

  3. Rearrangement moves on rooted phylogenetic networks.

    Science.gov (United States)

    Gambette, Philippe; van Iersel, Leo; Jones, Mark; Lafond, Manuel; Pardi, Fabio; Scornavacca, Celine

    2017-08-01

    Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network-that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose "horizontal" moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and "vertical" moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves-named rNNI and rSPR-reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results-separating the contributions of horizontal and vertical moves-we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide a solid basis for

  4. Rearrangement moves on rooted phylogenetic networks.

    Directory of Open Access Journals (Sweden)

    Philippe Gambette

    2017-08-01

    Full Text Available Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network-that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose "horizontal" moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and "vertical" moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves-named rNNI and rSPR-reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results-separating the contributions of horizontal and vertical moves-we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide

  5. Base-catalyzed tandem Michael/dehydro-Diels-Alder reaction of α,α-dicyanoolefins with electron-deficient 1,3-conjugated enynes: a facile entry to angularly fused polycycles.

    Science.gov (United States)

    Zhang, Mingrui; Zhang, Junliang

    2014-01-07

    Angularly fused carbocyclic frameworks and their heteroatom-substituted analogues exist in many natural products that display a broad and interesting range of biological activities. Preparation of polycyclic products by cycloaddition reactions have been the long-standing hot topic in the synthetic community. Dehydro-Diels-Alder (DDA) reactions are one class of dehydropericyclic reactions that are derived conceptually by systematic removal of hydrogen atom pairs. A base-promoted tandem Michael addition and DDA reaction of α,α-dicyanoolefins with electron-deficient 1,3-conjugated enynes was realized in which a DDA reaction takes place between the arylalkynes and electron-deficient tetrasubstituted olefin. The control experiments support the stepwise anionic reaction pathway rather than the concerted reaction pathway. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Rhodium-catalyzed chemo- and regioselective decarboxylative addition of β-ketoacids to alkynes.

    Science.gov (United States)

    Li, Changkun; Grugel, Christian P; Breit, Bernhard

    2016-04-30

    A highly efficient rhodium-catalyzed chemo- and regioselective addition of β-ketoacids to alkynes is reported. Applying a Rh(i)/(S,S)-DIOP catalyst system, γ,δ-unsaturated ketones were prepared with exclusively branched selectivity under mild conditions. This demonstrates that readily available alkynes can be an alternative entry to allyl electrophiles in transition-metal catalyzed allylic alkylation reactions.

  7. Catalyzing alignment processes

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jørgensen, Ulrik

    2004-01-01

    This paper describes how environmental management systems (EMS) spur the circulation of processes that support the constitution of environmental issues as specific environ¬mental objects and objectives. EMS catalyzes alignmentprocesses that produce coherence among the different elements involved......, the networks of environmental professionals that work in the environmental organisation, in consulting and regulatory enforcement, and dominating business cultures. These have previously been identified in the literature as individually significant in relation to the evolving environmental agendas...... they are implemented in and how the changing context is reflected in the environmental objectives that are established and prioritised. Our argument is, that the ability of the standard to achieve an impact is dependant on the constitution of ’coherent’ environmental issues in the context, where the management system...

  8. Chimeric Amino Acid Rearrangements as Immune Targets in Prostate Cancer

    Science.gov (United States)

    2016-05-01

    COVERED 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Chimeric Amino Acid Rearrangements as Immune Targets in Prostate Cancer 5b. GRANT NUMBER W81XWH...that result from gene rearrangements given their high frequency relative to somatic point mutations. Gene rearrangements can yield novel chimeric

  9. Synthesis of glycoluril catalyzed by potassium hydroxide under ultrasound irradiation.

    Science.gov (United States)

    Li, Ji-Tai; Liu, Xiao-Ru; Sun, Ming-Xuan

    2010-01-01

    Synthesis of the glycolurils catalyzed by potassium hydroxide was carried out in 17-75% yield at 40 degrees C in EtOH under ultrasound irradiation. Compared to the method using stirring, the main advantage of the present procedure is milder conditions and shorter reaction time.

  10. Palladium-catalyzed allylation of tautomerizable heterocycles with alkynes.

    Science.gov (United States)

    Lu, Chuan-Jun; Chen, Dong-Kai; Chen, Hong; Wang, Hong; Jin, Hongwei; Huang, Xifu; Gao, Jianrong

    2017-07-21

    A method for the allylic amidation of tautomerizable heterocycles was developed by a palladium catalyzed allylation reaction with 100% atom economy. A series of structurally diverse N-allylic substituted heterocycles can be synthesized in good yields with high chemo-, regio-, and stereoselectivities under mild conditions.

  11. Manganese Catalyzed α-Olefination of Nitriles by Primary Alcohols.

    Science.gov (United States)

    Chakraborty, Subrata; Das, Uttam Kumar; Ben-David, Yehoshoa; Milstein, David

    2017-08-30

    Catalytic α-olefination of nitriles using primary alcohols, via dehydrogenative coupling of alcohols with nitriles, is presented. The reaction is catalyzed by a pincer complex of an earth-abundant metal (manganese), in the absence of any additives, base, or hydrogen acceptor, liberating dihydrogen and water as the only byproducts.

  12. Highly selective cobalt-catalyzed hydrovinylation of styrene

    NARCIS (Netherlands)

    Grutters, M.M.P.; Müller, C.; Vogt, D.

    2006-01-01

    The hydrovinylation reaction is a codimerization of a 1,3-diene or vinyl arene and ethene with great potential for fine chemicals and pharmaceuticals. For the first time, enantioselective cobalt-catalyzed hydrovinylations of styrene were achieved with a cobalt-based system bearing a chiral

  13. System for the detection of chromosomal rearrangements using Sordaria macrospora

    Energy Technology Data Exchange (ETDEWEB)

    Arnaise, S.; Leblon, G.; Lares, L. (Paris-11 Univ., 91 - Orsay (France). Lab. de Biologie Cellulaire et Genetique)

    1984-01-01

    A system is described for the detection and diagnosis of induced chromosomal rearrangement using Sordaria macrospora. The system uses the property of the rearrangement to produce defective white ascospores as meiotic progeny from heterozygous crosses. Two reconstruction experiments have shown that this system is able to give reliable quantitative measures of rearrangement frequencies. Evidence for a photoreactivation process was obtained, suggesting that pyrimidine dimers may well be an important lesion in UV-induced chromosomal rearrangement. No evidence of induction of chromosomal rearrangement was obtained in experiments with the powerful chemical mutagen N-methyl-N'-nitro-N-nitrosoguanidine.

  14. The Wolff rearrangement in radical cations

    International Nuclear Information System (INIS)

    Ohashi, Mamoru; Tsujimoto, Kazuo; Shida, Yasuo; Yamada, Yasuji.

    1975-01-01

    The mass spectrometric behavior of 1-phenyl-4,5,6,7-tetrahydrobenzotriazole and its seven membered analog is described. The principal fragmentation process of the molecular ions is loss of nitrogen. It was concluded from the results of deuterium labeling and accurate mass measurements that the subsequent fragmentation of the M-N 2 ions proceeds via isomerization to the ring-contracted ketenimine ions by the Wolff rearrangement, in sharp contrast to the case of 1-phenylbenzotriazole. (auth.)

  15. Occupancy statistics arising from weighted particle rearrangements

    International Nuclear Information System (INIS)

    Huillet, Thierry

    2007-01-01

    The box-occupancy distributions arising from weighted rearrangements of a particle system are investigated. In the grand-canonical ensemble, they are characterized by determinantal joint probability generating functions. For doubly non-negative weight matrices, fractional occupancy statistics, generalizing Fermi-Dirac and Bose-Einstein statistics, can be defined. A spatially extended version of these balls-in-boxes problems is investigated

  16. Comparing genomes with rearrangements and segmental duplications.

    Science.gov (United States)

    Shao, Mingfu; Moret, Bernard M E

    2015-06-15

    Large-scale evolutionary events such as genomic rearrange.ments and segmental duplications form an important part of the evolution of genomes and are widely studied from both biological and computational perspectives. A basic computational problem is to infer these events in the evolutionary history for given modern genomes, a task for which many algorithms have been proposed under various constraints. Algorithms that can handle both rearrangements and content-modifying events such as duplications and losses remain few and limited in their applicability. We study the comparison of two genomes under a model including general rearrangements (through double-cut-and-join) and segmental duplications. We formulate the comparison as an optimization problem and describe an exact algorithm to solve it by using an integer linear program. We also devise a sufficient condition and an efficient algorithm to identify optimal substructures, which can simplify the problem while preserving optimality. Using the optimal substructures with the integer linear program (ILP) formulation yields a practical and exact algorithm to solve the problem. We then apply our algorithm to assign in-paralogs and orthologs (a necessary step in handling duplications) and compare its performance with that of the state-of-the-art method MSOAR, using both simulations and real data. On simulated datasets, our method outperforms MSOAR by a significant margin, and on five well-annotated species, MSOAR achieves high accuracy, yet our method performs slightly better on each of the 10 pairwise comparisons. http://lcbb.epfl.ch/softwares/coser. © The Author 2015. Published by Oxford University Press.

  17. One-Pot and Efficient Synthesis of Triazolo[1,2-a]indazole-triones via Reaction of Arylaldehydes with Urazole and Dimedone Catalyzed by Silica Nanoparticles Prepared from Rice Husk

    Directory of Open Access Journals (Sweden)

    Asadollah Hassankhani

    2011-10-01

    Full Text Available A novel synthesis of triazolo[1,2-a]indazole-1,3,8-trione derivatives by reaction of urazole, dimedone and aromatic aldehydes under conventional heating and microwave irradiation and solvent-free conditions using silica nanoparticles prepared from rice husk ash as catalyst is described. The new method features high yields, multicomponent reactions and environmental friendliness.

  18. One-pot and efficient synthesis of triazolo[1,2-a]indazole-triones via reaction of arylaldehydes with urazole and dimedone catalyzed by silica nanoparticles prepared from rice husk.

    Science.gov (United States)

    Hamidian, Hooshang; Fozooni, Samieh; Hassankhani, Asadollah; Mohammadi, Sayed Zia

    2011-10-26

    A novel synthesis of triazolo[1,2-a]indazole-1,3,8-trione derivatives by reaction of urazole, dimedone and aromatic aldehydes under conventional heating and microwave irradiation and solvent-free conditions using silica nanoparticles prepared from rice husk ash as catalyst is described. The new method features high yields, multicomponent reactions and environmental friendliness.

  19. Manganese Catalyzed C–H Halogenation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Groves, John T.

    2015-06-16

    The remarkable aliphatic C–H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon–halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C–H bonds to C–Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L–MnV$=$O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn–F fluorine source, effecting carbon–fluorine bond

  20. A general heuristic for genome rearrangement problems.

    Science.gov (United States)

    Dias, Ulisses; Galvão, Gustavo Rodrigues; Lintzmayer, Carla Négri; Dias, Zanoni

    2014-06-01

    In this paper, we present a general heuristic for several problems in the genome rearrangement field. Our heuristic does not solve any problem directly, it is rather used to improve the solutions provided by any non-optimal algorithm that solve them. Therefore, we have implemented several algorithms described in the literature and several algorithms developed by ourselves. As a whole, we implemented 23 algorithms for 9 well known problems in the genome rearrangement field. A total of 13 algorithms were implemented for problems that use the notions of prefix and suffix operations. In addition, we worked on 5 algorithms for the classic problem of sorting by transposition and we conclude the experiments by presenting results for 3 approximation algorithms for the sorting by reversals and transpositions problem and 2 approximation algorithms for the sorting by reversals problem. Another algorithm with better approximation ratio can be found for the last genome rearrangement problem, but it is purely theoretical with no practical implementation. The algorithms we implemented in addition to our heuristic lead to the best practical results in each case. In particular, we were able to improve results on the sorting by transpositions problem, which is a very special case because many efforts have been made to generate algorithms with good results in practice and some of these algorithms provide results that equal the optimum solutions in many cases. Our source codes and benchmarks are freely available upon request from the authors so that it will be easier to compare new approaches against our results.

  1. Rhodium(II)-catalyzed enantioselective synthesis of troponoids.

    Science.gov (United States)

    Murarka, Sandip; Jia, Zhi-Jun; Merten, Christian; Daniliuc, Constantin-G; Antonchick, Andrey P; Waldmann, Herbert

    2015-06-22

    We report a rhodium(II)-catalyzed highly enantioselective 1,3-dipolar cycloaddition reaction between the carbonyl moiety of tropone and carbonyl ylides to afford troponoids in good to high yields with excellent enantioselectivity. We demonstrate that α-diazoketone-derived carbonyl ylides, in contrast to carbonyl ylides derived from diazodiketoesters, undergo [6+3] cycloaddition reactions with tropone to yield the corresponding bridged heterocycles with excellent stereoselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Heterogeneously catalyzed reactive extraction for biomass valorization into chemicals and fuels

    NARCIS (Netherlands)

    Ordomskiy, V.; Khodakov, A.Y.; Nijhuis, T.A.; Schouten, J.C.

    2015-01-01

    This paper focuses on the heterogeneously catalyzed reactive extraction and separation in reaction steps in organic and aqueous phases during the transformation of biomass derived products. Two approaches are demonstrated for decomposing and preserving routes for biomass transformation into valuable

  3. Noncanonical Reactions of Flavoenzymes

    Directory of Open Access Journals (Sweden)

    Pablo Sobrado

    2012-11-01

    Full Text Available Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a “molecular scaffold” in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates.

  4. T-cell acute lymphoblastic leukemia associated with complex karyotype and SET-NUP214 rearrangement: a case study and review of the literature.

    Science.gov (United States)

    Lee, Sang-Guk; Park, Tae Sung; Cho, Sun Young; Lim, Gayoung; Park, Gwang Jin; Oh, Seung Hwan; Cho, Eun Hae; Chong, So Young; Huh, Ji Young

    2011-01-01

    SET-NUP214 rearrangements have been rarely reported in T-cell acute lymphoblastic leukemia (T-ALL), acute undifferentiated leukemia, and acute myeloid leukemia, and most documented cases have been associated with normal karyotypes in conventional cytogenetic analyses. Here, we describe a novel case of T-ALL associated with a mediastinal mass and a SET-NUP214 rearrangement, which was masked by a complex karyotype at the time of initial diagnosis. Using multiplex reverse transcriptase-polymerase chain reaction analysis, we detected a cryptic SET-NUP214 rearrangement in our patient. As only 11 cases (including the present study) of T-ALL with SET-NUP214 rearrangement have been reported, the clinical features and treatment outcomes have not been fully determined. Further studies are necessary to evaluate the incidence of SET-NUP214 rearrangement in T-ALL patients and the treatment responses as well as prognosis of these patients.

  5. Gold-Catalyzed Cyclizations of Alkynol-Based Compounds: Synthesis of Natural Products and Derivatives

    Directory of Open Access Journals (Sweden)

    Pedro Almendros

    2011-09-01

    Full Text Available The last decade has witnessed dramatic growth in the number of reactions catalyzed by gold complexes because of their powerful soft Lewis acid nature. In particular, the gold-catalyzed activation of propargylic compounds has progressively emerged in recent years. Some of these gold-catalyzed reactions in alkynes have been optimized and show significant utility in organic synthesis. Thus, apart from significant methodology work, in the meantime gold-catalyzed cyclizations in alkynol derivatives have become an efficient tool in total synthesis. However, there is a lack of specific review articles covering the joined importance of both gold salts and alkynol-based compounds for the synthesis of natural products and derivatives. The aim of this Review is to survey the chemistry of alkynol derivatives under gold-catalyzed cyclization conditions and its utility in total synthesis, concentrating on the advances that have been made in the last decade, and in particular in the last quinquennium.

  6. Metal-catalyzed living radical polymerization and radical polyaddition for precision polymer synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, M; Satoh, K [Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kamigaito, M, E-mail: kamigait@apchem.nagoya-u.ac.j

    2009-08-01

    The metal-catalyzed radical addition reaction can be evolved into two different polymerization mechanisms, i.e.; chain- and step-growth polymerizations, while both the polymerizations are based on the same metal-catalyzed radical formation reaction. The former is a widely employed metal-catalyzed living radical polymerization or atom transfer radical polymerization of common vinyl monomers, and the latter is a novel metal-catalyzed radical polyaddition of designed monomer with an unconjugated C=C double bond and a reactive C-Cl bond in one molecule. The simultaneous ruthenium-catalyzed living radical polymerization of methyl acrylate and radical polyaddition of 3-butenyl 2-chloropropionate was achieved with Ru(Cp*)Cl(PPh{sub 3}){sub 2} to afford the controlled polymers, in which the homopolymer segments with the controlled chain length were connected by the ester linkage.

  7. Iodine-Catalyzed Isomerization of Dimethyl Muconate

    Energy Technology Data Exchange (ETDEWEB)

    Settle, Amy E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berstis, Laura R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Shuting [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rorrer, Nicholas [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hu, Haiming [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, Ryan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vardon, Derek R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-12

    cis,cis-Muconic acid is a platform biobased chemical that can be upgraded to drop-in commodity and novel monomers. Among the possible drop-in products, dimethyl terephthalate can be synthesized via esterification, isomerization, Diels-Alder cycloaddition, and dehydrogenation. The isomerization of cis,cis-dimethyl muconate (ccDMM) to the trans,trans-form (ttDMM) can be catalyzed by iodine; however, studies have yet to address (i) the mechanism and reaction barriers unique to DMM, and (ii) the influence of solvent, potential for catalyst recycle, and recovery of high-purity ttDMM. To address this gap, we apply a joint computational and experimental approach to investigate iodine-catalyzed isomerization of DMM. Density functional theory calculations identified unique regiochemical considerations due to the large number of halogen-diene coordination schemes. Both transition state theory and experiments estimate significant barrier reductions with photodissociated iodine. Solvent selection was critical for rapid kinetics, likely due to solvent complexation with iodine. Under select conditions, ttDMM yields of 95% were achieved in <1 h with methanol, followed by high purity recovery (>98%) with crystallization. Lastly, post-reaction iodine can be recovered and recycled with minimal loss of activity. Overall, these findings provide new insight into the mechanism and conditions necessary for DMM isomerization with iodine to advance the state-of-the-art for biobased chemicals.

  8. Catalyzed deuterium fueled tokamak reactors

    International Nuclear Information System (INIS)

    Southworth, F.H.

    1977-01-01

    Catalyzed deuterium fuel presents several advantages relative to D-T. These are, freedom from tritium breeding, high charged particle power fraction and lowered neutron energy deposition in the blanket. Higher temperature operation, lower power densities and increased confinement are simultaneously required. However, the present study has developed designs which have capitalized upon the advantages of catalyzed deuterium to overcome the difficulties associated with the fuel while obtaining high efficiency

  9. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinhua [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I2, ICl, PhSeCl, PhSCl and p-O2NC6H4SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement

  10. Fries rearrangement of naphthyl benzoates; Ansoku kosan naphthyl no fries ten`i

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, J.; Haraguchi, Y.; Iwaki, T.; Yamana, Sasaki, H. [Tottori University, Tottori (Japan). Faculty of Engineering

    1996-10-10

    When 1-naphthyl benzoate (1{alpha}) was boiled with anhydrous aluminum chloride (AlCl3) in chlorobenzene, 2-benzoyl-l-naphthol(2) and 4-benzoyl-l-naphthol(3) were obtained as the rearrangement products. A product 1-benzoyl-2-naphthol (4) was given from 2-naphthyl benzoate (1{beta}) under the same reaction conditions. It seems that 2 and 3 are formed via intramolecular pathway from 1{alpha}. Other ester 1{beta} may proceed via both inter- and intramolecular pathways to give 4. Retro-Fries rearrangement of 2 and 3 to 1{alpha} took place in the presence of AlCl3 in boiling chlorobenzene. The compound 4 `however` was almost recovered the reaction of 4 with AlCl3 in chlorobenzene at refluxed temperature. 25 refs., 3 figs., 1 tab.

  11. Ethanol oxidation reactions catalyzed by water molecules: CH3CH2OH+n H2O→ CH3CHO+ H2+n H2O (n=0,1,2)

    Science.gov (United States)

    Takahashi, H.; Hisaoka, S.; Nitta, T.

    2002-09-01

    Ab initio density functional theory calculations have been performed to investigate the catalytic role of water molecules in the oxidation reaction of ethanol: CH3CH2OH+n H2O→ CH3CHO+ H2+n H2O (n=0,1,2) . The results show that the potential energy barrier for the reaction is 88.0 kcal/mol in case of n=0, while it is reduced by ˜34 kcal/mol when two water molecules are involved ( n=2) in the reaction. As a result, the rate constant increases to 3.31×10 -4 s-1, which shows a significant catalytic role of water molecules in the ethanol oxidation reactions.

  12. Asymmetric H-D exchange reactions of fluorinated aromatic ketones

    KAUST Repository

    Zhao, Yujun

    2012-01-01

    Chiral bicyclic guanidine catalyzes the asymmetric H-D exchange reactions. Up to 30% ee was achieved. DFT calculations were employed to elucidate and explain the origin of the reaction\\'s stereoselectivity. © 2012 The Royal Society of Chemistry.

  13. Intermolecular Dehydrative Coupling Reaction of Arylketones with Cyclic Alkenes Catalyzed by a Well-Defined Cationic Ruthenium-Hydride Complex: A Novel Ketone Olefination Method via Vinyl C–H Bond Activation

    Science.gov (United States)

    Yi, Chae S.; Lee, Do W.

    2010-01-01

    Summary The cationic ruthenium-hydride complex [(η6-C6H6)(PCy3)(CO)RuH]+BF4− was found to be a highly effective catalyst for the intermolecular olefination reaction of arylketones with cycloalkenes. The preliminary mechanistic analysis revealed that electrophilic ruthenium-vinyl complex is the key species for mediating both vinyl C–H bond activation and the dehydrative olefination steps of the coupling reaction. PMID:20567607

  14. Mechanism of Brønsted acid catalyzed conversion of carbohydrates

    NARCIS (Netherlands)

    Yang, G.; Pidko, E.A.; Hensen, E.J.M.

    2012-01-01

    A comprehensive DFT study of acid-catalyzed glucose and fructose reactions in water covering more than 100 potential reaction paths is performed with the aim to identify the main reaction channels for obtaining such desirable biorefinery platform products as 5-hydroxymethylfurfural (HMF) and

  15. Molecular screening of pituitary adenomas for gene mutations and rearrangements

    Energy Technology Data Exchange (ETDEWEB)

    Herman, V.; Drazin, N.Z.; Gonskey, R.; Melmed, S. (Cedars-Sinai Medical Center, Los Angeles, CA (United States))

    1993-07-01

    Although pituitary tumors arise as benign monoclonal neoplasms, genetic alterations have not readily been identified in these adenomas. The authors studied restriction fragment abnormalities involving the GH gene locus, and mutations in the p53 and H-, K-, and N-ras genes in 22 human GH cell adenomas. Twenty two nonsecretory adenomas were also examined for p53 and ras gene mutations. Seven prolactinoma DNA samples were tested for deletions in the multiple endocrine neoplasia-1 (MEN-1) locus, as well as for rearrangements in the hst gene, a member of the fibroblast growth factor family. In DNA from GH-cell adenomas, identical GH restriction patterns were detected in both pituitary and lymphocyte DNA in all patients and in one patient with a mixed GH-TSH cell adenoma. Using polymerase chain reaction (PCR)-single stranded conformation polymorphism analysis, no mutations were detected in exons 5, 6, 7 and 8 of the p53 gene in GH cell adenomas nor in 22 nonsecretory adenomas. Codons 12/13 and 61 of H-ras, K-ras, and N-ras genes were also intact on GH cell adenomas and in nonsecretory adenomas. Site-specific probes for chromosome 11q13 including, PYGM, D11S146, and INT2 were used in 7 sporadic PRL-secreting adenomas to detect deletions of the MEN-1 locus on chromosome 11. One patient was identified with a loss of 11p, and the remaining 6 patients did not demonstrate loss of heterozygosity in the pituitary 11q13 locus, compared to lymphocyte DNA. None of these patients demonstrated hst gene rearrangements which also maps to this locus. These results show that p53 and ras gene mutations are not common events in the pathogenesis of acromegaly and nonsecretory tumors. Although hst gene rearrangements and deletions of 11q13 are not associated with sporadic PRl-cell adenoma formation, a single patient was detected with a partial loss of chromosome 11, including the putative MEN-1 site. 31 refs., 5 figs., 2 tabs.

  16. Electron beam-induced Fries rearrangement of arylsulfonamides and arylsulfonates in the crystalline state

    International Nuclear Information System (INIS)

    Kato, Jun; Yuasa, Kanako; Yamashita, Takashi; Maekawa, Yasunari; Yoshida, Masaru

    2003-01-01

    Electron beam (EB)-induced reactions of organic crystals containing a carbonyl or a sulfonyl group have been investigated. The EB irradiation of benzenesulfonanilide (BSA) in the crystalline state induced the Fries rearrangement to yield o- and p-aminodiphenylsulfones as the major and minor products, respectively. Several BSA derivatives also had the same reactivity, while benzanilide as the corresponding carbonyl compound did not rearrange under the same conditions. These results showed that the S-N bond could be cleaved selectively by EB irradiation but the C-N bond couldn't, which could take place only by the use of EB. The EB irradiation of phenyl p-toluenesulfonate (PTS) crystals gave not only Fries-type products but also the oxidation product. By comparing with the reactivity of liquid phenyl benzenesulfonate, the EB-induced Fries rearrangement was suggested to proceed under crystalline lattice restrictions. The G-values of arylsulfonamides and arylsulfonates were in the range of ca. 1-2 molecules per 100 eV of absorbed energy. This is the first Fries rearrangement via direct excitation by EB irradiation. (author)

  17. Adiabatic Rearrangement of Hollow PV Towers

    Directory of Open Access Journals (Sweden)

    Eric A Hendricks

    2010-10-01

    Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane

  18. Gene activation by induced DNA rearrangements

    International Nuclear Information System (INIS)

    Schnipper, L.E.; Chan, V.; Sedivy, J.; Jat, P.; Sharp, P.A.

    1989-01-01

    A murine cell line (EN/NIH) containing the retroviral vector ZIPNeoSV(x)1 that was modified by deletion of the enhancer elements in the viral long terminal repeats has been used as an assay system to detect induced DNA rearrangements that result in activation of a transcriptionally silent reporter gene encoded by the viral genome. The spontaneous frequency of G418 resistance is less than 10(-7), whereas exposure to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) or the combination of UV irradiation plus TPA resulted in the emergence of drug resistant cell lines at a frequency of 5 per 10(6) and 67 per 10(6) cells, respectively. In several of the cell lines that were analyzed a low level of amplification of one of the two parental retroviral integrants was observed, whereas in others no alteration in the region of the viral genome was detected. To determine the effect of the SV40 large T antigen on induced DNA rearrangements, EN/NIH cells were transfected with a temperature sensitive (ts) mutant of SV40 T. Transfectants were maintained at the permissive temperature (33 degrees C) for varying periods of time (1-5 days) in order to vary SV40 T antigen exposure, after which they were shifted to 39.5 degrees C for selection in G418. The frequency of emergence of drug resistant cell clones increased with duration of exposure to large T antigen (9-52 per 10(6) cells over 1-5 days, respectively), and all cell lines analyzed demonstrated DNA rearrangements in the region of the neo gene. A novel 18-kilobase pair XbaI fragment was cloned from one cell line which revealed the presence of a 2.0-kilobase pair EcoRI segment containing an inverted duplication which hybridized to neo sequences. It is likely that the observed rearrangement was initiated by the specific binding of large T antigen to the SV40 origin of replication encoded within the viral genome

  19. Study of the rearrangement of N-alkylaniline to p-aminoalkylbencene. I. N-ethyl-l-14C-aniline

    International Nuclear Information System (INIS)

    Molera, M. J.; Gamboa, J. M.; Val Cob, M. del

    1961-01-01

    The rearrangement of N-ethylaniline to p-aminoethylbenzene has been studied over the temperature range 200-300 degree centigrade using different catalysts: Cl 2 Co, Cl 2 Zn, Cl 2 Ni, Cl 3 Al, Cl 2 Cd and Br H.N-ethyl-1- 1 4C-aniline has been synthesized from ethyl-1- 1 4C-iodide and aniline and its rearrangement to p-aminoethyl-benzene proves that the ethyl group does not rearrange itself during the reaction. A scheme for the degradation of both the N-ethyl-1- 1 4C aniline and the p-aminoethylbenzene produces is described. (Author) 14 refs

  20. Molecular Design of a Chiral Brønsted Acid with Two Different Acidic Sites: Regio-, Diastereo-, and Enantioselective Hetero-Diels-Alder Reaction of Azopyridinecarboxylate with Amidodienes Catalyzed by Chiral Carboxylic Acid-Monophosphoric Acid.

    Science.gov (United States)

    Momiyama, Norie; Tabuse, Hideaki; Noda, Hirofumi; Yamanaka, Masahiro; Fujinami, Takeshi; Yamanishi, Katsunori; Izumiseki, Atsuto; Funayama, Kosuke; Egawa, Fuyuki; Okada, Shino; Adachi, Hiroaki; Terada, Masahiro

    2016-09-07

    A chiral Brønsted acid containing two different acidic sites, chiral carboxylic acid-monophosphoric acid 1a, was designed to be a new and effective concept in catalytic asymmetric hetero-Diels-Alder reactions of azopyridinecarboxylate with amidodienes. The multipoint hydrogen-bonding interactions among the carboxylic acid, monophosphoric acid, azopyridinecarboxylate, and amidodiene achieved high catalytic and chiral efficiency, producing substituted 1,2,3,6-tetrahydropyridazines with excellent stereocontrol in a single step. This constitutes the first example of regio-, diastereo-, and enantioselective azo-hetero-Diels-Alder reactions by chiral Brønsted acid catalysis.