WorldWideScience

Sample records for real-time vision systems

  1. Real-time vision systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  2. Near real-time stereo vision system

    Science.gov (United States)

    Anderson, Charles H. (Inventor); Matthies, Larry H. (Inventor)

    1993-01-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  3. A modular real-time vision system for humanoid robots

    Science.gov (United States)

    Trifan, Alina L.; Neves, António J. R.; Lau, Nuno; Cunha, Bernardo

    2012-01-01

    Robotic vision is nowadays one of the most challenging branches of robotics. In the case of a humanoid robot, a robust vision system has to provide an accurate representation of the surrounding world and to cope with all the constraints imposed by the hardware architecture and the locomotion of the robot. Usually humanoid robots have low computational capabilities that limit the complexity of the developed algorithms. Moreover, their vision system should perform in real time, therefore a compromise between complexity and processing times has to be found. This paper presents a reliable implementation of a modular vision system for a humanoid robot to be used in color-coded environments. From image acquisition, to camera calibration and object detection, the system that we propose integrates all the functionalities needed for a humanoid robot to accurately perform given tasks in color-coded environments. The main contributions of this paper are the implementation details that allow the use of the vision system in real-time, even with low processing capabilities, the innovative self-calibration algorithm for the most important parameters of the camera and its modularity that allows its use with different robotic platforms. Experimental results have been obtained with a NAO robot produced by Aldebaran, which is currently the robotic platform used in the RoboCup Standard Platform League, as well as with a humanoid build using the Bioloid Expert Kit from Robotis. As practical examples, our vision system can be efficiently used in real time for the detection of the objects of interest for a soccer playing robot (ball, field lines and goals) as well as for navigating through a maze with the help of color-coded clues. In the worst case scenario, all the objects of interest in a soccer game, using a NAO robot, with a single core 500Mhz processor, are detected in less than 30ms. Our vision system also includes an algorithm for self-calibration of the camera parameters as well

  4. Neuromorphic VLSI vision system for real-time texture segregation.

    Science.gov (United States)

    Shimonomura, Kazuhiro; Yagi, Tetsuya

    2008-10-01

    The visual system of the brain can perceive an external scene in real-time with extremely low power dissipation, although the response speed of an individual neuron is considerably lower than that of semiconductor devices. The neurons in the visual pathway generate their receptive fields using a parallel and hierarchical architecture. This architecture of the visual cortex is interesting and important for designing a novel perception system from an engineering perspective. The aim of this study is to develop a vision system hardware, which is designed inspired by a hierarchical visual processing in V1, for real time texture segregation. The system consists of a silicon retina, orientation chip, and field programmable gate array (FPGA) circuit. The silicon retina emulates the neural circuits of the vertebrate retina and exhibits a Laplacian-Gaussian-like receptive field. The orientation chip selectively aggregates multiple pixels of the silicon retina in order to produce Gabor-like receptive fields that are tuned to various orientations by mimicking the feed-forward model proposed by Hubel and Wiesel. The FPGA circuit receives the output of the orientation chip and computes the responses of the complex cells. Using this system, the neural images of simple cells were computed in real-time for various orientations and spatial frequencies. Using the orientation-selective outputs obtained from the multi-chip system, a real-time texture segregation was conducted based on a computational model inspired by psychophysics and neurophysiology. The texture image was filtered by the two orthogonally oriented receptive fields of the multi-chip system and the filtered images were combined to segregate the area of different texture orientation with the aid of FPGA. The present system is also useful for the investigation of the functions of the higher-order cells that can be obtained by combining the simple and complex cells.

  5. Real time image processing with an analog vision chip system.

    Science.gov (United States)

    Kameda, S; Honda, A; Yagi, T

    1999-10-01

    A linear analog network model is proposed to characterize the function of the outer retinal circuit in terms of the standard regularization theory. Inspired by the function and the architecture of the model, a vision chip has been designed using analog CMOS Very Large Scale Integrated circuit technology. In the chip, sample/hold amplifier circuits are incorporated to compensate for statistic transistor mismatches. Accordingly, extremely low noise outputs were obtained from the chip. Using the chip and a zero-crossing detector, edges of given images were effectively extracted in indoor illumination.

  6. A Concept of Dynamically Reconfigurable Real-Time Vision System for Autonomous Mobile Robotics.

    OpenAIRE

    De Cabrol, Aymeric; Garcia, Thibault; Bonnin, Patrick; Chetto, Maryline

    2007-01-01

    International audience; Abstract: In this article, we describe specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC based hardware architecture is convenient in this field because of its versatility, its flexibility, its performance and its cost, current real-time operating systems are not completely adapted to long processings with varying duration, and it is often necessary to oversize the system to guarantee fail-safe functioning. Also, interactions...

  7. A Concept of Dynamically Reconfigurable Real-time Vision System for Autonomous Mobile Robotics

    Institute of Scientific and Technical Information of China (English)

    Aymeric De Cabrol; Thibault Garcia; Patrick Bonnin; Maryline Chetto

    2008-01-01

    This paper describes specific constraints of vision systems that are dedicated to be embedded in mobile robots. If PC-based hardware architecture is convenient in this field because of its versatility, flexibility, performance, and cost, current real-time operating systems are not completely adapted to long processing with varying duration, and it is often necessary to oversize the system to guarantee fail-safe functioning. Also, interactions with other robotic tasks having more priority are difficult to handle. To answer this problem, we have developed a dynamically reconfigurable vision processing system, based on the innovative features of Cleopatre real-time applicative layer concerning scheduling and fault tolerance. This framework allows to define emergency and optional tasks to ensure a minimal quality of service for the other subsystems of the robot, while allowing to adapt dynamically vision processing chain to an exceptional everlasting vision process or processor overload. Thus, it allows a better cohabitation of several subsystems in a single hardware, and to develop less expensive but safe systems, as they will be designed for the regular case and not rare exceptional ones. Finally, it brings a new way to think and develop vision systems, with pairs of complementary operators.

  8. Real-time systems

    OpenAIRE

    Badr, Salah M.; Bruztman, Donald P.; Nelson, Michael L.; Byrnes, Ronald Benton

    1992-01-01

    This paper presents an introduction to the basic issues involved in real-time systems. Both real-time operating sys and real-time programming languages are explored. Concurrent programming and process synchronization and communication are also discussed. The real-time requirements of the Naval Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real-time operating system, real-time programming language, real-time sy...

  9. A Novel Bioinspired Vision System: A Step toward Real-Time Human-Robot Interactions

    Directory of Open Access Journals (Sweden)

    Abdul Rahman Hafiz

    2011-01-01

    Full Text Available Building a human-like robot that could be involved in our daily lives is a dream of many scientists. Achieving a sophisticated robot's vision system, which can enhance the robot's real-time interaction ability with the human, is one of the main keys toward realizing such an autonomous robot. In this work, we are suggesting a bioinspired vision system that helps to develop an advanced human-robot interaction in an autonomous humanoid robot. First, we enhance the robot's vision accuracy online by applying a novel dynamic edge detection algorithm abstracted from the rules that the horizontal cells play in the mammalian retina. Second, in order to support the first algorithm, we improve the robot's tracking ability by designing a variant photoreceptors distribution corresponding to what exists in the human vision system. The experimental results verified the validity of the model. The robot could have a clear vision in real time and build a mental map that assisted it to be aware of the frontal users and to develop a positive interaction with them.

  10. A real-time surface inspection system for precision steel balls based on machine vision

    Science.gov (United States)

    Chen, Yi-Ji; Tsai, Jhy-Cherng; Hsu, Ya-Chen

    2016-07-01

    Precision steel balls are one of the most fundament components for motion and power transmission parts and they are widely used in industrial machinery and the automotive industry. As precision balls are crucial for the quality of these products, there is an urgent need to develop a fast and robust system for inspecting defects of precision steel balls. In this paper, a real-time system for inspecting surface defects of precision steel balls is developed based on machine vision. The developed system integrates a dual-lighting system, an unfolding mechanism and inspection algorithms for real-time signal processing and defect detection. The developed system is tested under feeding speeds of 4 pcs s-1 with a detection rate of 99.94% and an error rate of 0.10%. The minimum detectable surface flaw area is 0.01 mm2, which meets the requirement for inspecting ISO grade 100 precision steel balls.

  11. Computer vision system in real-time for color determination on flat surface food

    Directory of Open Access Journals (Sweden)

    Erick Saldaña

    2013-03-01

    Full Text Available Artificial vision systems also known as computer vision are potent quality inspection tools, which can be applied in pattern recognition for fruits and vegetables analysis. The aim of this research was to design, implement and calibrate a new computer vision system (CVS in real-time for the color measurement on flat surface food. For this purpose was designed and implemented a device capable of performing this task (software and hardware, which consisted of two phases: a image acquisition and b image processing and analysis. Both the algorithm and the graphical interface (GUI were developed in Matlab. The CVS calibration was performed using a conventional colorimeter (Model CIEL* a* b*, where were estimated the errors of the color parameters: eL* = 5.001%, and ea* = 2.287%, and eb* = 4.314 % which ensure adequate and efficient automation application in industrial processes in the quality control in the food industry sector.

  12. Computer vision system in real-time for color determination on flat surface food

    Directory of Open Access Journals (Sweden)

    Erick Saldaña

    2013-01-01

    Full Text Available Artificial vision systems also known as computer vision are potent quality inspection tools, which can be applied in pattern recognition for fruits and vegetables analysis. The aim of this research was to design, implement and calibrate a new computer vision system (CVS in real - time f or the color measurement on flat surface food. For this purpose was designed and implemented a device capable of performing this task (software and hardware, which consisted of two phases: a image acquisition and b image processing and analysis. Both th e algorithm and the graphical interface (GUI were developed in Matlab. The CVS calibration was performed using a conventional colorimeter (Model CIEL* a* b*, where were estimated the errors of the color parameters: e L* = 5.001%, and e a* = 2.287%, and e b* = 4.314 % which ensure adequate and efficient automation application in industrial processes in the quality control in the food industry sector.

  13. Cost-Effective Video Filtering Solution for Real-Time Vision Systems

    Directory of Open Access Journals (Sweden)

    Karl Martin

    2005-08-01

    Full Text Available This paper presents an efficient video filtering scheme and its implementation in a field-programmable logic device (FPLD. Since the proposed nonlinear, spatiotemporal filtering scheme is based on order statistics, its efficient implementation benefits from a bit-serial realization. The utilization of both the spatial and temporal correlation characteristics of the processed video significantly increases the computational demands on this solution, and thus, implementation becomes a significant challenge. Simulation studies reported in this paper indicate that the proposed pipelined bit-serial FPLD filtering solution can achieve speeds of up to 97.6 Mpixels/s and consumes 1700 to 2700 logic cells for the speed-optimized and area-optimized versions, respectively. Thus, the filter area represents only 6.6 to 10.5% of the Altera STRATIX EP1S25 device available on the Altera Stratix DSP evaluation board, which has been used to implement a prototype of the entire real-time vision system. As such, the proposed adaptive video filtering scheme is both practical and attractive for real-time machine vision and surveillance systems as well as conventional video and multimedia applications.

  14. MOBLAB: a mobile laboratory for testing real-time vision-based systems in path monitoring

    Science.gov (United States)

    Cumani, Aldo; Denasi, Sandra; Grattoni, Paolo; Guiducci, Antonio; Pettiti, Giuseppe; Quaglia, Giorgio

    1995-01-01

    In the framework of the EUREKA PROMETHEUS European Project, a Mobile Laboratory (MOBLAB) has been equipped for studying, implementing and testing real-time algorithms which monitor the path of a vehicle moving on roads. Its goal is the evaluation of systems suitable to map the position of the vehicle within the environment where it moves, to detect obstacles, to estimate motion, to plan the path and to warn the driver about unsafe conditions. MOBLAB has been built with the financial support of the National Research Council and will be shared with teams working in the PROMETHEUS Project. It consists of a van equipped with an autonomous power supply, a real-time image processing system, workstations and PCs, B/W and color TV cameras, and TV equipment. This paper describes the laboratory outline and presents the computer vision system and the strategies that have been studied and are being developed at I.E.N. `Galileo Ferraris'. The system is based on several tasks that cooperate to integrate information gathered from different processes and sources of knowledge. Some preliminary results are presented showing the performances of the system.

  15. Feedback strategy on real-time multiple target tracking in cognitive vision system

    Science.gov (United States)

    Shao, Jie; Jia, Zhen; Li, Zhipeng; Liu, Fuqiang; Zhao, Jianwei; Peng, Pei-Yuan

    2011-10-01

    Under pedestrian and vehicle mixed traffic conditions, the potential accident rate is high due to a complex traffic environment. In order to solve this problem, we present a real-time cognitive vision system. In the scene-capture level, foreground objects are extracted based on the combination of spatial and temporal information. Then, a coarse-to-fine algorithm is employed in tracking. After filtering-based normal tracking, problems of the target blob missing, merging, and splitting are resolved by the adaptive tracking modification method in fine tracking. For greater robustness, the key idea of our approach is adaptively adjusting the classification sensibility of each pixel by employing tracking results as feedback cues for target detection in the next frame. On the basis of the target trajectories, behavior models are evaluated according to a decision logic table in the behavior-evaluation level. The decision logic table is set based on rules of real scenes. The resulting system interprets different kinds of traffic behavior and warns in advance. Experiments show robust and accurate results of abnormality detection and forewarning under different conditions. All the experimental results run at real-time frame rates (>=25 fps) on standard hardware. Therefore, the system is suitable for actual Intelligent Traffic System applications.

  16. Development of a machine vision system for a real-time precision sprayer

    Science.gov (United States)

    Bossu, Jérémie; Gée, Christelle; Truchetet, Frédéric

    2007-01-01

    In the context of precision agriculture, we have developed a machine vision system for a real time precision sprayer. From a monochrome CCD camera located in front of the tractor, the discrimination between crop and weeds is obtained with an image processing based on spatial information using a Gabor filter. This method allows to detect the periodic signals from the non periodic one and it enables to enhance the crop rows whereas weeds have patchy distribution. Thus, weed patches were clearly identified by a blob-coloring method. Finally, we use a pinhole model to transform the weed patch coordinates image in world coordinates in order to activate the right electro-pneumatic valve of the sprayer at the right moment.

  17. A Real-Time Embedded System for Stereo Vision Preprocessing Using an FPGA

    DEFF Research Database (Denmark)

    Kjær-Nielsen, Anders; Jensen, Lars Baunegaard With; Sørensen, Anders Stengaard

    2008-01-01

    In this paper a low level vision processing node for use in existing IEEE 1394 camera setups is presented. The processing node is a small embedded system, that utilizes an FPGA to perform stereo vision preprocessing at rates limited by the bandwidth of IEEE 1394a (400Mbit). The system is used...

  18. Design and implementation of real-time multi-sensor vision systems

    CERN Document Server

    Popovic, Vladan; Cogal, Ömer; Akin, Abdulkadir; Leblebici, Yusuf

    2017-01-01

    This book discusses the design of multi-camera systems and their application to fields such as the virtual reality, gaming, film industry, medicine, automotive industry, drones, etc.The authors cover the basics of image formation, algorithms for stitching a panoramic image from multiple cameras, and multiple real-time hardware system architectures, in order to have panoramic videos. Several specific applications of multi-camera systems are presented, such as depth estimation, high dynamic range imaging, and medical imaging.

  19. Research of Real-time Grabbing Yarn Tube System Based on Machine Vision

    Directory of Open Access Journals (Sweden)

    Cui Shigang

    2015-01-01

    Full Text Available The current yarn tube manipulator just finishes yarn tube grabbing work according to the fixed coordinates. In the actual production process, equipment problems or human factors which make the spindles not on fixed coordinates cause the damage of the manipulator. Real-time grabbing yarn tube system with visual sensing has been designed and a extraction algorithm of spindles coordinates based on a mixed image morphology and Hough transform algorithm has been proposed. Through the combination of the yarn tube image characteristics which are extracted by the algorithm and the visual measurement model which is established by pinhole imaging principle, the mapping relation of yarn tube image coordinates and world coordinates has been gained to get the location information of yarn tube in real time. Results show that the proposed method could make the robot complete the grabbing job precisely and efficiently, under which the system meet the requirement of spinning and dyeing production line.

  20. Real-time measurement system for in-plane displacement and strain based on vision

    Science.gov (United States)

    Luo, Tao; Jin, Yi; Zhu, Ye; Zhai, Chao

    2013-08-01

    In this paper, combining optical measurement with conventional material testing machine, a real-time in-plane displacement and strain measurement system is built, which is applied to the material testing machine. This system can realize displacement and strain measurement of a large deformation sample moreover it can observe the sample crack on line. The change of displacement field is obtained through the change of center coordinate of each point of a grid lattice in the surface of the testing sample, according to two-dimensional sort coding for the grid in the traditional automated grid method, in this paper, an improved one-dimensional code method is adopted which make calculating speed much faster and the algorithm more adaptable. The measurement of the stability and precision of this system are made using the calibration board whose position precision is about 1.5 micron. The results show that the short-time stability of this system is about 0.5micron. At last, this system is used for strain measurement in a sample tension test, and the result shows that the system can acquire in-plane displacement and strain measurement results accurately and real-time, the velocity of image processing can reach 10 frame per second; or it can observe sample crack on line and storage the test process, the max velocity of observation and storage is 100 frame per second.

  1. A Vision System for Real Time Road and Object Recognition for Vehicle Guidance

    Science.gov (United States)

    Jackson, T. A.; Samuelsen, G. S.

    1987-02-01

    One crucial component of a control system for autonomous vehicle guidance is real time image analysis. This system part is burdened by the maximum flow of information. To overcome the high demands in computation power a combination of knowledge based scene analysis and special hardware has been developed. The use of knowledge based image analysis supports real time processing not by schematically evaluating all parts of the image, but only evaluating those which contain relevant information. This is due to the fact that in many practical problems the relevant information is very unevenly distributed over the image. Preknowledge of the problem or the aim of the mission and expectations or predictions about the scene sustantially reduce the amount of information to be processed. The operations during such an analysis may be divided into two classes - simple processes, e.g. filters, correlation, contour processing and simple search strategies - complex search and control strategy This classification supplied the concept for a special hardware. The complex tasks are performed by a universal processor 80286 while the remaining tasks are executed by a special coprocessor (including image memory). This combination permits the use of filter masks with a arbitrary geometry together with a powerful search strategy. A number of these basic modules may be configured into a multiprocessor system. The universal processor is programmed in a high level language. To support the coprocessor a set of software tools has been built. They permit interactive graphical manipulation of filtermasks, generation of simple search strategies and non real time simulation. Also the real data structures that control the function of the coprocessor are generated by this software package. The system is used within our autonomous vehicle project. One set of algorithms tracks the border lines of the road even if they are broken or disturbed by dirt. Also shadows of bridges crossing the road are

  2. A Real-time Range Finding System with Binocular Stereo Vision

    Directory of Open Access Journals (Sweden)

    Xiao-bo Lai

    2012-05-01

    Full Text Available To acquire range information for mobile robots, a TMS320DM642 DSP‐based range finding system with binocular stereo vision is proposed. Firstly, paired images of the target are captured and a Gaussian filter, as well as improved Sobel kernels, are achieved. Secondly, a feature‐based local stereo matching algorithm is performed so that the space location of the target can be determined. Finally, in order to improve the reliability and robustness of the stereo matching algorithm under complex conditions, the confidence filter and the left‐right consistency filter are investigated to eliminate the mismatching points. In addition, the range finding algorithm is implemented in the DSP/BIOS operating system to gain real‐time control. Experimental results show that the average accuracy of range finding is more than 99% for measuring single‐point distances equal to 120cm in the simple scenario and the algorithm takes about 39ms for ranging a time in a complex scenario. The effectivity, as well as the feasibility, of the proposed range finding system are verified.

  3. Real Time Systems

    DEFF Research Database (Denmark)

    Christensen, Knud Smed

    2000-01-01

    Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems.......Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems....

  4. Real Time Systems

    DEFF Research Database (Denmark)

    Christensen, Knud Smed

    2000-01-01

    Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems.......Describes fundamentals of parallel programming and a kernel for that. Describes methods for modelling and checking parallel problems. Real time problems....

  5. A cost-effective intelligent robotic system with dual-arm dexterous coordination and real-time vision

    Science.gov (United States)

    Marzwell, Neville I.; Chen, Alexander Y. K.

    1991-01-01

    Dexterous coordination of manipulators based on the use of redundant degrees of freedom, multiple sensors, and built-in robot intelligence represents a critical breakthrough in development of advanced manufacturing technology. A cost-effective approach for achieving this new generation of robotics has been made possible by the unprecedented growth of the latest microcomputer and network systems. The resulting flexible automation offers the opportunity to improve the product quality, increase the reliability of the manufacturing process, and augment the production procedures for optimizing the utilization of the robotic system. Moreover, the Advanced Robotic System (ARS) is modular in design and can be upgraded by closely following technological advancements as they occur in various fields. This approach to manufacturing automation enhances the financial justification and ensures the long-term profitability and most efficient implementation of robotic technology. The new system also addresses a broad spectrum of manufacturing demand and has the potential to address both complex jobs as well as highly labor-intensive tasks. The ARS prototype employs the decomposed optimization technique in spatial planning. This technique is implemented to the framework of the sensor-actuator network to establish the general-purpose geometric reasoning system. The development computer system is a multiple microcomputer network system, which provides the architecture for executing the modular network computing algorithms. The knowledge-based approach used in both the robot vision subsystem and the manipulation control subsystems results in the real-time image processing vision-based capability. The vision-based task environment analysis capability and the responsive motion capability are under the command of the local intelligence centers. An array of ultrasonic, proximity, and optoelectronic sensors is used for path planning. The ARS currently has 18 degrees of freedom made up by two

  6. Rapid prototyping of SoC-based real-time vision system: application to image preprocessing and face detection

    Science.gov (United States)

    Jridi, Maher; Alfalou, Ayman

    2017-05-01

    By this paper, the major goal is to investigate the Multi-CPU/FPGA SoC (System on Chip) design flow and to transfer a know-how and skills to rapidly design embedded real-time vision system. Our aim is to show how the use of these devices can be benefit for system level integration since they make possible simultaneous hardware and software development. We take the facial detection and pretreatments as case study since they have a great potential to be used in several applications such as video surveillance, building access control and criminal identification. The designed system use the Xilinx Zedboard platform. The last is the central element of the developed vision system. The video acquisition is performed using either standard webcam connected to the Zedboard via USB interface or several camera IP devices. The visualization of video content and intermediate results are possible with HDMI interface connected to HD display. The treatments embedded in the system are as follow: (i) pre-processing such as edge detection implemented in the ARM and in the reconfigurable logic, (ii) software implementation of motion detection and face detection using either ViolaJones or LBP (Local Binary Pattern), and (iii) application layer to select processing application and to display results in a web page. One uniquely interesting feature of the proposed system is that two functions have been developed to transmit data from and to the VDMA port. With the proposed optimization, the hardware implementation of the Sobel filter takes 27 ms and 76 ms for 640x480, and 720p resolutions, respectively. Hence, with the FPGA implementation, an acceleration of 5 times is obtained which allow the processing of 37 fps and 13 fps for 640x480, and 720p resolutions, respectively.

  7. Advances in Real-Time Systems

    CERN Document Server

    Chakraborty, Samarjit

    2012-01-01

    This volume contains the lectures given in honor to Georg Farber as tribute to his contributions in the area of real-time and embedded systems. The chapters of many leading scientists cover a wide range of aspects, like robot or automotive vision systems or medical aspects.

  8. Automated packaging employing real-time vision

    Science.gov (United States)

    Chang, Wen-Chung; Wu, Chia-Hung

    2016-07-01

    Existing packaging systems rely on human operation to position a box in the packaging device perform do the packaging task. Current facilities are not capable of handling boxes with different sizes in a flexible way. In order to improve the above-mentioned problems, an eye-to-hand visual servo automated packaging approach is proposed in this paper. The system employs two cameras to observe the box and the gripper mounted on the robotic manipulator to precisely control the manipulator to complete the packaging task. The system first employs two-camera vision to determine the box pose. With appropriate task encoding, a closed-loop visual servoing controller is designed to drive a manipulator to accomplish packaging tasks. The proposed approach can be used to complete automated packaging tasks in the case of uncertain location and size of the box. The system has been successfully validated by experimenting with an industrial robotic manipulator for postal box packaging.

  9. Real-Time Structure and Motion by Fusion of Inertial and Vision Data for Mobile AR System

    Institute of Scientific and Technical Information of China (English)

    CHEN Jing; WANG Yong-tian; LIU Yue; AXEL Pinz

    2006-01-01

    The performance of adding additional inertial data to improve the accuracy and robustness of visual tracking is investigated. For this real-time structure and motion algorithm, fusion is based on Kalman filter framework while using an extended Kalman filter to fuse the inertial and vision data, and a bank of Kalman filters to estimate the sparse 3D structure of the real scene. A simple, known tar get is used for the initial pose estimation. Motion and structure estimation filters can work alternately to recover the sensor motion, scene structure and other parameters. Real image sequences are utilized to test the capability of this algorithm. Experimental results show that the proper use of an additional inertial information can not only effectively improve the accuracy of the pose and structure estimation, but also handle occlusion problem.

  10. A Real-Time Early Cognitive Vision System based on a Hybrid coarse and fine grained Parallel Architecture

    DEFF Research Database (Denmark)

    Jensen, Lars Baunegaard With

    .The ECV stage has been introduced as a means to bridge the gap between Early Vision (EV) and Cognitive Vision (CV) processes. Where the EV stage deals with analyzing the images through linear and nonlinear local filtering operations on a pixel level, CV deals with higher cognitive processes...

  11. Mobile real time radiography system

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Taggart, D.; Betts, S. [Los Alamos National Lab., NM (United States)] [and others

    1997-11-01

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights {approximately}38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility.

  12. A real time vehicles detection algorithm for vision based sensors

    CERN Document Server

    Płaczek, Bartłomiej

    2011-01-01

    A vehicle detection plays an important role in the traffic control at signalised intersections. This paper introduces a vision-based algorithm for vehicles presence recognition in detection zones. The algorithm uses linguistic variables to evaluate local attributes of an input image. The image attributes are categorised as vehicle, background or unknown features. Experimental results on complex traffic scenes show that the proposed algorithm is effective for a real-time vehicles detection.

  13. Design Fabrication & Real Time Vision Based Control of Gaming Board

    Directory of Open Access Journals (Sweden)

    Muhammad Nauman Mubarak

    2012-01-01

    Full Text Available This paper presents design, fabrication and real time vision based control of a two degree of freedom (d.o.f robot capable of playing a carom board game. The system consists of three main components: (a a high resolution digital camera (b a main processing and controlling unit (c a robot with two servo motors and striking mechanism. The camera captures the image of arena and transmits it to central processing unit. CPU processes the image and congregate useful information using adaptive histogram technique. Congregated information about the coordinates of the object is then sent to the RISC architecture based microcontroller by serial interface. Microcontroller implements inverse kinematics algorithms and PID control on motors with feedback from high resolution quadrature encoders to reach at the desired coordinates and angles. The striking unit exerts a controlled force on the striker when it is in-line with the disk and carom hole (or, pocket. The striker strikes with the disk and pots (to hit (a ball into a pocket it in the pocket. The objective is to develop an intelligent, cost effective and user friendly system that fulfil the idea of technology for entertainment.

  14. Embed System for Robotic Arm with 3 Degree of Freedom Controller Using Computational Vision on Real-Time

    Directory of Open Access Journals (Sweden)

    Luiz Cortinhas

    2014-04-01

    Full Text Available This Paper deals with robotic arm embed controller system, with distributed system based on protocol communication between one server supportin g multiple points and mobile applications trough sockets .The proposed system utilizes hand with glove gesture in three-dimensional recognition using fuzzy implementation to set x,y,z coordinates. This approach present all implementation over: two raspberry PI arm based com puter running client program, x64 PC running server program, and one robot arm controlle d by ATmega328p based board.

  15. Research in Distributed Real-Time Systems

    Science.gov (United States)

    Mukkamala, R.

    1997-01-01

    This document summarizes the progress we have made on our study of issues concerning the schedulability of real-time systems. Our study has produced several results in the scalability issues of distributed real-time systems. In particular, we have used our techniques to resolve schedulability issues in distributed systems with end-to-end requirements. During the next year (1997-98), we propose to extend the current work to address the modeling and workload characterization issues in distributed real-time systems. In particular, we propose to investigate the effect of different workload models and component models on the design and the subsequent performance of distributed real-time systems.

  16. GPU-based real-time trinocular stereo vision

    Science.gov (United States)

    Yao, Yuanbin; Linton, R. J.; Padir, Taskin

    2013-01-01

    Most stereovision applications are binocular which uses information from a 2-camera array to perform stereo matching and compute the depth image. Trinocular stereovision with a 3-camera array has been proved to provide higher accuracy in stereo matching which could benefit applications like distance finding, object recognition, and detection. This paper presents a real-time stereovision algorithm implemented on a GPGPU (General-purpose graphics processing unit) using a trinocular stereovision camera array. Algorithm employs a winner-take-all method applied to perform fusion of disparities in different directions following various image processing techniques to obtain the depth information. The goal of the algorithm is to achieve real-time processing speed with the help of a GPGPU involving the use of Open Source Computer Vision Library (OpenCV) in C++ and NVidia CUDA GPGPU Solution. The results are compared in accuracy and speed to verify the improvement.

  17. The ALMA Real Time Control System

    Science.gov (United States)

    Kern, Jeffrey S.; Juerges, Thomas A.; Marson, Ralph G.

    2009-01-01

    The Atacama Large Millimeter Array (ALMA) is a revolutionary millimeter and submillimeter array being developed on the Atacama plateau of northern Chile. An international partnership lead by NRAO, ESO, and NAOJ this powerful and flexible telescope will provide unprecedented observations of this relatively unexplored frequency range. The control subsystem for the Atacama Large Millimeter Array must coordinate the monitor and control of at least sixty six antennas (in four different styles), two correlators, and all of the ancillary equipment (samplers, local oscillators, front ends, etc.). This equipment will be spread over tens of kilometers and operated remotely. Operation of the array requires a robust, scalable, and maintainable real time control system. The real time control system is responsible for monitoring and control of any devices where there are fixed deadlines. Examples in the ALMA context are antenna pointing and fringe tracking. Traditionally the real time portion of a large software system is an intricate and error prone portion of the software. As a result the real time portion is very expensive in terms of effort expended both during construction and during maintenance phases of a project. The ALMA real time control system uses a Linux based real time operating system to interact with the hardware and the CORBA based ALMA Common Software to communicate in the distributed computing environment. Mixing the requirements of real time computing and the non-deterministic CORBA middleware has produced an interesting design. We discuss the architecture, design, and implementation of the ALMA real time control system. Highlight some lessons learned along the way, and justify our assertion that this should be the last large scale real time control system in radio astronomy.

  18. Hardware Approach for Real Time Machine Stereo Vision

    Directory of Open Access Journals (Sweden)

    Michael Tornow

    2006-02-01

    Full Text Available Image processing is an effective tool for the analysis of optical sensor information for driver assistance systems and controlling of autonomous robots. Algorithms for image processing are often very complex and costly in terms of computation. In robotics and driver assistance systems, real-time processing is necessary. Signal processing algorithms must often be drastically modified so they can be implemented in the hardware. This task is especially difficult for continuous real-time processing at high speeds. This article describes a hardware-software co-design for a multi-object position sensor based on a stereophotogrammetric measuring method. In order to cover a large measuring area, an optimized algorithm based on an image pyramid is implemented in an FPGA as a parallel hardware solution for depth map calculation. Object recognition and tracking are then executed in real-time in a processor with help of software. For this task a statistical cluster method is used. Stabilization of the tracking is realized through use of a Kalman filter. Keywords: stereophotogrammetry, hardware-software co-design, FPGA, 3-d image analysis, real-time, clustering and tracking.

  19. Multiprocessor scheduling for real-time systems

    CERN Document Server

    Baruah, Sanjoy; Buttazzo, Giorgio

    2015-01-01

    This book provides a comprehensive overview of both theoretical and pragmatic aspects of resource-allocation and scheduling in multiprocessor and multicore hard-real-time systems.  The authors derive new, abstract models of real-time tasks that capture accurately the salient features of real application systems that are to be implemented on multiprocessor platforms, and identify rules for mapping application systems onto the most appropriate models.  New run-time multiprocessor scheduling algorithms are presented, which are demonstrably better than those currently used, both in terms of run-time efficiency and tractability of off-line analysis.  Readers will benefit from a new design and analysis framework for multiprocessor real-time systems, which will translate into a significantly enhanced ability to provide formally verified, safety-critical real-time systems at a significantly lower cost.

  20. Scala for Real-Time Systems?

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2015-01-01

    Java served well as a general-purpose language. However, during its two decades of constant change it has gotten some weight and legacy in the language syntax and the libraries. Furthermore, Java's success for real-time systems is mediocre. Scala is a modern object-oriented and functional language...... with interesting new features. Although a new language, it executes on a Java virtual machine, reusing that technology. This paper explores Scala as language for future real-time systems....

  1. Real Time Information Fusion in Military Systems

    Directory of Open Access Journals (Sweden)

    E. Bhagiratharao

    1990-01-01

    Full Text Available With the proliferation of sensors on platforms like battle ships and aircraft, the information to be handled by the battlefield commanders has significantly increased in the recent time. From a deluge of information flowing from sensors, the battlefield commander is required to make situation assessment in real-time and take appropriate action. Recent studies by cognitive scientists have indicated that decision making by individuals as well as a team suffer from several biases. For these two reasons, the battlefield commanders need assistance of real-time information fusion systems to take objective assessment of highly dynamic battle situation in real-time information fusion systems to take objective assessment of a highly dynamic battle situation in real-time. The real-time information fusion systems at a single platform level as well as that applicable for geographically distributed platforms is discussed in detail in this paper. It was concluded that by carrying out these activities at the platform level as well as at 'global' level involving several platforms, the limitations in performance of any sensor due to propagation effects or due to enemy counter measures can be significantly minimised or totally eliminated. At the same time the functional effectiveness of each sensor onboard different platforms, becomes better than when it had to operate autonomously within the real-time information fusion facility. By carrying out global real-time information fusion activity in a theatre of war, all the platforms operating in the area will have the benefit of the best sensor in that area on each aspect of the capability. A few examples of real-time information fusion system are also discussed.

  2. Real Time Implementation Of Face Recognition System

    Directory of Open Access Journals (Sweden)

    Megha Manchanda

    2014-10-01

    Full Text Available This paper proposes face recognition method using PCA for real time implementation. Nowadays security is gaining importance as it is becoming necessary for people to keep passwords in their mind and carry cards. Such implementations however, are becoming less secure and practical, also is becoming more problematic thus leading to an increasing interest in techniques related to biometrics systems. Face recognition system is amongst important subjects in biometrics systems. This system is very useful for security in particular and has been widely used and developed in many countries. This study aims to achieve face recognition successfully by detecting human face in real time, based on Principal Component Analysis (PCA algorithm.

  3. REAL TIME SYSTEM OPERATIONS 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  4. Real-time systems scheduling fundamentals

    CERN Document Server

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc.  Scheduling is a central problem for these computing/communication systems since responsible of software execution in a timely manner. This book provides state of knowledge in this domain with special emphasis on the key results obtained within the last decade. This book addresses foundations as well as the latest advances and findings in Real-Time Scheduling, giving all references to important papers. But nevertheless the chapters will be short and not overloaded with confusing details.

  5. Real-time systems scheduling 2 focuses

    CERN Document Server

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc. Scheduling is a central problem for these computing/communication systems since it is responsible for software execution in a timely manner. This book, the second of two volumes on the subject, brings together knowledge on specific topics and discusses the recent advances for some of them.  It addresses foundations as well as the latest advances and findings in real-time scheduling, giving comprehensive references to important papers, but the chapters are short and not overloaded with co

  6. Real-time RGBD SLAM system

    Science.gov (United States)

    Czupryński, BłaŻej; Strupczewski, Adam

    2015-09-01

    A real-time tracking and mapping SLAM system is presented. The developed system uses input from an RGBD sensor and tracks the camera pose from frame to frame. The tracking is based on matched feature points and is performed with respect to selected keyframes. The system is robust and scalable, as an arbitrary number of keyframes can be chosen for visualization and tracking depending on the desired accuracy and speed. The presented system is also a good platform for further research.

  7. System Equivalent for Real Time Digital Simulator

    Science.gov (United States)

    Lin, Xi

    2011-07-01

    The purpose of this research is to develop a method of making system equivalents for the Real Time Digital Simulator (RTDS), which should enhance its capability of simulating large power systems. The proposed equivalent combines a Frequency Dependent Network Equivalent (FDNE) for the high frequency electromagnetic transients and a Transient Stability Analysis (TSA) type simulation block for the electromechanical transients. The frequency dependent characteristic for FDNE is obtained by curve-fitting frequency domain admittance characteristics using the Vector Fitting method. An approach for approximating the frequency dependent characteristic of large power networks from readily available typical power-flow data is also introduced. A new scheme of incorporating TSA solution in RTDS is proposed. This report shows how the TSA algorithm can be adapted to a real time platform. The validity of this method is confirmed with examples, including the study of a multi in-feed HVDC system based network.

  8. Low cost real time interactive analysis system

    Science.gov (United States)

    Stetina, F.

    1988-01-01

    Efforts continue to develop a low cost real time interactive analysis system for the reception of satellite data. A multi-purpose ingest hardware software frame formatter was demonstrated for GOES and TIROS data and work is proceeding on extending the capability to receive GMS data. A similar system was proposed as an archival and analysis system for use with INSAT data and studies are underway to modify the system to receive the planned SeaWiFS (ocean color) data. This system was proposed as the core of a number of international programs in support of U.S. AID activities. Systems delivered or nearing final testing are listed.

  9. Development of embedded real-time and high-speed vision platform

    Science.gov (United States)

    Ouyang, Zhenxing; Dong, Yimin; Yang, Hua

    2015-12-01

    Currently, high-speed vision platforms are widely used in many applications, such as robotics and automation industry. However, a personal computer (PC) whose over-large size is not suitable and applicable in compact systems is an indispensable component for human-computer interaction in traditional high-speed vision platforms. Therefore, this paper develops an embedded real-time and high-speed vision platform, ER-HVP Vision which is able to work completely out of PC. In this new platform, an embedded CPU-based board is designed as substitution for PC and a DSP and FPGA board is developed for implementing image parallel algorithms in FPGA and image sequential algorithms in DSP. Hence, the capability of ER-HVP Vision with size of 320mm x 250mm x 87mm can be presented in more compact condition. Experimental results are also given to indicate that the real-time detection and counting of the moving target at a frame rate of 200 fps at 512 x 512 pixels under the operation of this newly developed vision platform are feasible.

  10. Robust synthesis for real-time systems

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Legay, Axel; Traonouez, Louis-Marie;

    2014-01-01

    Specification theories for real-time systems allow reasoning about interfaces and their implementation models, using a set of operators that includes satisfaction, refinement, logical and parallel composition. To make such theories applicable throughout the entire design process from an abstract ...... strategies in timed games. Finally, we consider the parametric robustness problem and propose a counter-example refinement heuristic for computing safe perturbation values....

  11. A Real Time Quality Monitoring System for the Lighting Industry: A Practical and Rapid Approach Using Computer Vision and Image Processing (CVIP Tools

    Directory of Open Access Journals (Sweden)

    C.K. Ng

    2011-11-01

    Full Text Available In China, the manufacturing of lighting products is very labour intensive. The approach used to check quality and control production relies on operators who test using various types of fixtures. In order to increase the competitiveness of the manufacturer and the efficiency of production, the authors propose an integrated system. This system has two major elements: a computer vision system (CVS and a real‐time monitoring system (RTMS. This model focuses not only on the rapid and practical application of modern technology to a traditional industry, but also represents a process innovation in the lighting industry. This paper describes the design and development of the prototyped lighting inspection system based on a practical and fast approach using computer vision and imaging processing (CVIP tools. LabVIEW with IMAQ Vision Builder is the chosen tool for building the CVS. Experimental results show that this system produces a lower error rate than humans produce in the quality checking process. The whole integrated manufacturing strategy, aimed at achieving a better performance, is most suitable for a China and other labour intensive environments such as India.

  12. Augmenting full colour-fused multi-band night vision imagery with synthetic imagery in real-time

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.; Son, R. van; Dijk, J.

    2011-01-01

    We present the design and first field trial results of an all-day all-weather enhanced and synthetic-fused multi-band colour night vision surveillance and observation system. The system augments a fused and dynamic three-band natural-colour night vision image with synthetic 3D imagery in real-time.

  13. Testing Real-Time Systems Using UPPAAL

    DEFF Research Database (Denmark)

    Hessel, Anders; Larsen, Kim Guldstrand; Mikucionis, Marius

    2008-01-01

    This chapter presents principles and techniques for model-based black-box conformance testing of real-time systems using the Uppaal model-checking tool-suite. The basis for testing is given as a network of concurrent timed automata specified by the test engineer. Relativized input....../output conformance serves as the notion of implementation correctness, essentially timed trace inclusion taking environment assumptions into account. Test cases can be generated offline and later executed, or they can be generated and executed online. For both approaches this chapter discusses how to specify test...... objectives, derive test sequences, apply these to the system under test, and assign a verdict....

  14. Embedded and real-time operating systems

    CERN Document Server

    Wang, K C

    2017-01-01

    This book covers the basic concepts and principles of operating systems, showing how to apply them to the design and implementation of complete operating systems for embedded and real-time systems. It includes all the foundational and background information on ARM architecture, ARM instructions and programming, toolchain for developing programs, virtual machines for software implementation and testing, program execution image, function call conventions, run-time stack usage and link C programs with assembly code. It describes the design and implementation of a complete OS for embedded systems in incremental steps, explaining the design principles and implementation techniques. For Symmetric Multiprocessing (SMP) embedded systems, the author examines the ARM MPcore processors, which include the SCU and GIC for interrupts routing and interprocessor communication and synchronization by Software Generated Interrupts (SGIs). Throughout the book, complete working sample systems demonstrate the design principles and...

  15. Memory controllers for real-time embedded systems predictable and composable real-time systems

    CERN Document Server

    Akesson, Benny

    2012-01-01

      Verification of real-time requirements in systems-on-chip becomes more complex as more applications are integrated. Predictable and composable systems can manage the increasing complexity using formal verification and simulation.  This book explains the concepts of predictability and composability and shows how to apply them to the design and analysis of a memory controller, which is a key component in any real-time system. This book is generally intended for readers interested in Systems-on-Chips with real-time applications.   It is especially well-suited for readers looking to use SDRAM memories in systems with hard or firm real-time requirements. There is a strong focus on real-time concepts, such as predictability and composability, as well as a brief discussion about memory controller architectures for high-performance computing. Readers will learn step-by-step how to go from an unpredictable SDRAM memory, offering highly variable bandwidth and latency, to a predictable and composable shared memory...

  16. Wi-Fi real time location systems

    Science.gov (United States)

    Doll, Benjamin A.

    This thesis objective was to determine the viability of utilizing an untrained Wi-Fi. real time location system as a GPS alternative for indoor environments. Background. research showed that GPS is rarely able to penetrate buildings to provide reliable. location data. The benefit of having location information in a facility and how they might. be used for disaster or emergency relief personnel and their resources motivated this. research. A building was selected with a well-deployed Wi-Fi infrastructure and its. untrained location feature was used to determine the distance between the specified. test points and the system identified location. It was found that the average distance. from the test point throughout the facility was 14.3 feet 80% of the time. This fell within. the defined viable range and supported that an untrained Wi-Fi RTLS system could be a. viable solution for GPS's lack of availability indoors.

  17. CRANS - CONFIGURABLE REAL-TIME ANALYSIS SYSTEM

    Science.gov (United States)

    Mccluney, K.

    1994-01-01

    In a real-time environment, the results of changes or failures in a complex, interconnected system need evaluation quickly. Tabulations showing the effects of changes and/or failures of a given item in the system are generally only useful for a single input, and only with regard to that item. Subsequent changes become harder to evaluate as combinations of failures produce a cascade effect. When confronted by multiple indicated failures in the system, it becomes necessary to determine a single cause. In this case, failure tables are not very helpful. CRANS, the Configurable Real-time ANalysis System, can interpret a logic tree, constructed by the user, describing a complex system and determine the effects of changes and failures in it. Items in the tree are related to each other by Boolean operators. The user is then able to change the state of these items (ON/OFF FAILED/UNFAILED). The program then evaluates the logic tree based on these changes and determines any resultant changes to other items in the tree. CRANS can also search for a common cause for multiple item failures, and allow the user to explore the logic tree from within the program. A "help" mode and a reference check provide the user with a means of exploring an item's underlying logic from within the program. A commonality check determines single point failures for an item or group of items. Output is in the form of a user-defined matrix or matrices of colored boxes, each box representing an item or set of items from the logic tree. Input is via mouse selection of the matrix boxes, using the mouse buttons to toggle the state of the item. CRANS is written in C-language and requires the MIT X Window System, Version 11 Revision 4 or Revision 5. It requires 78K of RAM for execution and a three button mouse. It has been successfully implemented on Sun4 workstations running SunOS, HP9000 workstations running HP-UX, and DECstations running ULTRIX. No executable is provided on the distribution medium; however

  18. Real time detecting system for turning force

    CERN Document Server

    Yue Xiao Bin

    2001-01-01

    How to get the real-time value of forces dropped on the tool in the course of processing by piezoelectric sensors is introduced. First, the analog signals of the cutting force were achieved by these sensors, amplified and transferred into digital signals by A/D transferring card. Then real-time software reads the information, put it into its own coordinate, drew the curve of forces, displayed it on the screen by the real time and saved it for the technicians to analyze the situation of the tool. So the cutting parameter can be optimized to improve surface quality of the pieces

  19. "Fast" Is Not "Real-Time": Designing Effective Real-Time AI Systems

    Science.gov (United States)

    O'Reilly, Cindy A.; Cromarty, Andrew S.

    1985-04-01

    Realistic practical problem domains (such as robotics, process control, and certain kinds of signal processing) stand to benefit greatly from the application of artificial intelligence techniques. These problem domains are of special interest because they are typified by complex dynamic environments in which the ability to select and initiate a proper response to environmental events in real time is a strict prerequisite to effective environmental interaction. Artificial intelligence systems developed to date have been sheltered from this real-time requirement, however, largely by virtue of their use of simplified problem domains or problem representations. The plethora of colloquial and (in general) mutually inconsistent interpretations of the term "real-time" employed by workers in each of these domains further exacerbates the difficul-ties in effectively applying state-of-the-art problem solving tech-niques to time-critical problems. Indeed, the intellectual waters are by now sufficiently muddied that the pursuit of a rigorous treatment of intelligent real-time performance mandates the redevelopment of proper problem perspective on what "real-time" means, starting from first principles. We present a simple but nonetheless formal definition of real-time performance. We then undertake an analysis of both conventional techniques and AI technology with respect to their ability to meet substantive real-time performance criteria. This analysis provides a basis for specification of problem-independent design requirements for systems that would claim real-time performance. Finally, we discuss the application of these design principles to a pragmatic problem in real-time signal understanding.

  20. Study on real-time registration in dual spectrum low level light night vision technique

    Science.gov (United States)

    Bai, Lian-fa; Zhang, Yi; Zhang, Chuang; Chen, Qian; Gu, Guo-hua

    2009-07-01

    In low level light (LLL) color night vision technology, dual spectrum images with respective special information were acquired, and target identification probability would be effectively improved through dual spectrum image fusion. Image registration is one of the key technologies during this process. Current dual spectrum image registration methods mainly include dual imaging channel common optical axis scheme and image characteristic pixel searching scheme. In dual imaging channel common optical axis scheme, additional prismatic optical components should be used, and large amount of radiative energy was wasted. In image characteristic pixel searching scheme, complicated arithmetic made it difficult for its real time realization. In this paper, dual channel dual spectrum LLL color night vision system structure feature and dual spectrum image characteristics was studied, dual spectrum image gray scale symbiotic matrix 2-dimensional histogram was analysed, and a real time image registration method including electronic digital shifting, pixel extension and extraction was put forward. By the analysis of spatial gray-scale relativity of fusion image, registration precision is quantitatively expressed. Emulation experiments indicate that this arithmetic is fast and exact for our dual channel dual spectrum image registration. This method was realized on dual spectrum LLL color night vision experimental apparatus based on Texas Instruments digital video processing device DM642.

  1. A two-level real-time vision machine combining coarse and fine grained parallelism

    DEFF Research Database (Denmark)

    Jensen, Lars Baunegaard With; Kjær-Nielsen, Anders; Pauwels, Karl;

    2010-01-01

    In this paper, we describe a real-time vision machine having a stereo camera as input generating visual information on two different levels of abstraction. The system provides visual low-level and mid-level information in terms of dense stereo and optical flow, egomotion, indicating areas...... a factor 90 and a reduction of latency of a factor 26 compared to processing on a single CPU--core. Since the vision machine provides generic visual information it can be used in many contexts. Currently it is used in a driver assistance context as well as in two robotic applications....... with independently moving objects as well as a condensed geometric description of the scene. The system operates at more than 20 Hz using a hybrid architecture consisting of one dual--GPU card and one quad-core CPU. The different processing stages of visual information have rather different characteristics...

  2. Real time control engineering systems and automation

    CERN Document Server

    Ng, Tian Seng

    2016-01-01

    This book covers the two broad areas of the electronics and electrical aspects of control applications, highlighting the many different types of control systems of relevance to real-life control system design. The control techniques presented are state-of-the-art. In the electronics section, readers will find essential information on microprocessor, microcontroller, mechatronics and electronics control. The low-level assembly programming language performs basic input/output control techniques as well as controlling the stepper motor and PWM dc motor. In the electrical section, the book addresses the complete elevator PLC system design, neural network plant control, load flow analysis, and process control, as well as machine vision topics. Illustrative diagrams, circuits and programming examples and algorithms help to explain the details of the system function design. Readers will find a wealth of computer control and industrial automation practices and applications for modern industries, as well as the educat...

  3. Real-Time, Multiple, Pan/Tilt/Zoom, Computer Vision Tracking, and 3D Position Estimating System for Unmanned Aerial System Metrology

    Science.gov (United States)

    2013-10-18

    series of successive states until a given name is reached such as: Object Animate Animal Mammal Dog Labrador Chocolate (Brown) Male Name...Processing and Pattern Recognition in Industrial Engineering. 2010. 32 77. Lindholm, G. and R. Cobb. “Closed-Loop Control of a Constrained, Resonant...to a desired amount. This system is tested against truth data obtained using an industrial system. object tracking, pan/tilt/zoom, optical flow, real

  4. Real-Time (Vision-Based) Road Sign Recognition Using an Artificial Neural Network

    Science.gov (United States)

    Islam, Kh Tohidul; Raj, Ram Gopal

    2017-01-01

    Road sign recognition is a driver support function that can be used to notify and warn the driver by showing the restrictions that may be effective on the current stretch of road. Examples for such regulations are ‘traffic light ahead’ or ‘pedestrian crossing’ indications. The present investigation targets the recognition of Malaysian road and traffic signs in real-time. Real-time video is taken by a digital camera from a moving vehicle and real world road signs are then extracted using vision-only information. The system is based on two stages, one performs the detection and another one is for recognition. In the first stage, a hybrid color segmentation algorithm has been developed and tested. In the second stage, an introduced robust custom feature extraction method is used for the first time in a road sign recognition approach. Finally, a multilayer artificial neural network (ANN) has been created to recognize and interpret various road signs. It is robust because it has been tested on both standard and non-standard road signs with significant recognition accuracy. This proposed system achieved an average of 99.90% accuracy with 99.90% of sensitivity, 99.90% of specificity, 99.90% of f-measure, and 0.001 of false positive rate (FPR) with 0.3 s computational time. This low FPR can increase the system stability and dependability in real-time applications. PMID:28406471

  5. Real-time DIRCM system modeling

    Science.gov (United States)

    Petersson, Mikael

    2004-12-01

    Directed infrared countermeasures (DIRCM) play an increasingly important role in electronic warfare to counteract threats posed by infrared seekers. The usefulness and performance of such countermeasures depend, for example, on atmospheric conditions (attenuation and turbulence) and platform vibrations, causing pointing and tracking errors for the laser beam and reducing the power transferred to the seeker aperture. These problems make it interesting to simulate the performance of a DIRCM system in order to understand how easy or difficult it is to counteract an approaching threat and evaluate limiting factors in various situations. This paper describes a DIRCM model that has been developed, including atmospheric effects such as attenuation and turbulence as well as closed loop tracking algorithms, where the retro reflex of the laser is used for the pointing control of the beam. The DIRCM model is part of a large simulation framework (EWSim), which also incorporates several descriptions of different seekers (e.g. reticle, rosette, centroid, nutating cross) and models of robot dynamics. Effects of a jamming laser on a specific threat can be readily verified by simulations within this framework. The duel between missile and countermeasure is simulated in near real-time and visualized graphically in 3D. A typical simulation with a reticle seeker jammed by a modulated laser is included in the paper.

  6. Real-time Vision using FPGAs, GPUs and Multi-core CPUs

    DEFF Research Database (Denmark)

    Kjær-Nielsen, Anders

    the introduction and evolution of a wide variety of powerful hardware architectures have made the developed theory more applicable in performance demanding and real-time applications. Three different architectures have dominated the field due to their parallel capabilities that are often desired when dealing...... processors in the vision community. The introduction of programming languages like CUDA from NVIDIA has made it easier to utilize the high parallel processing powers of the GPU for general purpose computing and thereby realistic to use based on the effort involved with development. The increased clock......-linear filtering processes on FPGAs that has been used for preprocessing images in the context of a bigger Early Cognitive Vision (ECV) system. With the introduction of GPUs for general purpose computing the preprocessing was re-implemented on this architecture and used together with a multi-core CPU to form...

  7. Using Multiple FPGA Architectures for Real-time Processing of Low-level Machine Vision Functions

    Science.gov (United States)

    Thomas H. Drayer; William E. King; Philip A. Araman; Joseph G. Tront; Richard W. Conners

    1995-01-01

    In this paper, we investigate the use of multiple Field Programmable Gate Array (FPGA) architectures for real-time machine vision processing. The use of FPGAs for low-level processing represents an excellent tradeoff between software and special purpose hardware implementations. A library of modules that implement common low-level machine vision operations is presented...

  8. Real time PV manufacturing diagnostic system

    Energy Technology Data Exchange (ETDEWEB)

    Kochergin, Vladimir [MicroXact Inc., Blacksburg, VA (United States); Crawford, Michael A. [MicroXact Inc., Blacksburg, VA (United States)

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  9. Real Time Wide Area Radiation Surveillance System

    Science.gov (United States)

    Biafore, M.

    2012-04-01

    We present the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). Within this project, we propose a novel mobile system for real time, wide area radiation surveillance. The system is based on the integration of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit will include a wireless communication interface to send the data remotely to a monitoring base station which also uses a GPS system to calculate the position of the tag. The system will also incorporate middleware and high level software to provide web-service interfaces for the exchange of information, and that will offer top level functionalities as management of users, mobile tags and environment data and alarms, database storage and management and a web-based graphical user interface. Effort will be spent to ensure that the software is modular and re-usable across as many architectural levels as possible. Finally, an expert system will continuously analyze the information from the radiation sensor and correlate it with historical data from the tag location in order to generate an alarm when an abnormal situation is detected. The system will be useful for many different scenarios, including such lost radioactive sources and radioactive contamination. It will be possible to deploy in emergency units and in general in any type of mobile or static equipment. The sensing units will be highly portable thanks to their low size and low energy consumption. The complete system will be scalable in terms of complexity and cost and will offer very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system will allow for a realistic introduction to the market. Authorities may start with a

  10. Real-time machine vision FPGA implementation for microfluidic monitoring on Lab-on-Chips.

    Science.gov (United States)

    Sotiropoulou, Calliope-Louisa; Voudouris, Liberis; Gentsos, Christos; Demiris, Athanasios M; Vassiliadis, Nikolaos; Nikolaidis, Spyridon

    2014-04-01

    A machine vision implementation on a field-programmable gate array (FPGA) device for real-time microfluidic monitoring on Lab-On-Chips is presented in this paper. The machine vision system is designed to follow continuous or plug flows, for which the menisci of the fluids are always visible. The system discriminates between the front or "head" of the flow and the back or "tail" and is able to follow flows with a maximum speed of 20 mm/sec in circular channels of a diameter of 200 μm (corresponding to approx. 60 μl/sec ). It is designed to be part of a complete Point-of-Care system, which will be portable and operate in non-ideal laboratory conditions. Thus, it is able to cope with noise due to lighting conditions and small LoC displacements during the experiment execution. The machine vision system can be used for a variety of LoC devices, without the need for fiducial markers (such as redundancy patterns) for its operation. The underlying application requirements called for a complete hardware implementation. The architecture uses a variety of techniques to improve performance and minimize memory access requirements. The system input is 8 bit grayscale uncompressed video of up to 1 Mpixel resolution. The system uses an operating frequency of 170 Mhz and achieves a computational time of 13.97 ms (worst case), which leads to a throughput of 71.6 fps for 1 Mpixel video resolution.

  11. Real-Time Gaze Holding in Binocular Robot Vision

    Science.gov (United States)

    1992-06-01

    34A New Approach to Vi- sion and Control for Road Following," NISTIR 4476, National Institute of Standards and Techonology (NIST). Robot Systems...of Rochester Rochester, New York June 1992 Aef"sIOU For /,.’ i"’,.tL~y Codes ,. endlor Special REPORT DOCUMENTATION PAGE Om No.4 0MB No. 07040f189...visual processing) do not execute instantaneously, delays are unavoidable. Suppose the tracking system needs to follow a target that jumps to a new

  12. Systems Analyze Water Quality in Real Time

    Science.gov (United States)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  13. Development of a Musical-based Interaction System for the Waseda Flutist Robot-Implementation of a Real-time Vision Interface Based on the Particle Filter Algorithm

    Institute of Scientific and Technical Information of China (English)

    Jorge Solis; Atsuo Takanishi

    2010-01-01

    -The aim of this paper is to create an interface for robot interaction.Specifically,musical performance parameters (i.e.vibrato expression) of the Waseda Flutist Robot No.4 Refined Ⅳ (WF-4RIV) are to be manipulated.This research focused on enabling the WF-4RIV to interact with human players (musicians) in a natural way.In this paper,as the first approach,a vision processing algorithm,which is able to track the 3D-orientation and position of a musical instrument,was developed.In particular,the robot acquires image data through two cameras attached to its head.Using color histogram matching and a particle filter,the position of the musician's hands on the instrument are tracked.Analysis of this data determines orientation and location of the instrument.These parameters are mapped to manipulate the musical expression of the WF4RIV,more specifically sound vibrato and volume values.The authors present preliminary experiments to determine if the robot may dynamically change musical paramenters while interacting with a human player (i.e.vibrato etc.).From the experimental results,they may confirm the feasibility of the interaction during the performance,although further research must be carried out to consider the physical constraints of the flutist robot.

  14. An efficient real time superresolution ASIC system

    Science.gov (United States)

    Reddy, Dikpal; Yue, Zhanfeng; Topiwala, Pankaj

    2008-04-01

    Superresolution of images is an important step in many applications like target recognition where the input images are often grainy and of low quality due to bandwidth constraints. In this paper, we present a real-time superresolution application implemented in ASIC/FPGA hardware, and capable of 30 fps of superresolution by 16X in total pixels. Consecutive frames from the video sequence are grouped and the registered values between them are used to fill the pixels in the higher resolution image. The registration between consecutive frames is evaluated using the algorithm proposed by Schaum et al. The pixels are filled by averaging a fixed number of frames associated with the smallest error distances. The number of frames (the number of nearest neighbors) is a user defined parameter whereas the weights in the averaging process are decided by inverting the corresponding smallest error distances. Wiener filter is used to post process the image. Different input parameters, such as size of input image, enlarging factor and the number of nearest neighbors, can be tuned conveniently by the user. We use a maximum word size of 32 bits to implement the algorithm in Matlab Simulink as well as the hardware, which gives us a fine balance between the number of bits and performance. The algorithm performs with real time speed with very impressive superresolution results.

  15. A Real-Time Apple Grading System Using Multicolor Space

    Directory of Open Access Journals (Sweden)

    Hayrettin Toylan

    2014-01-01

    Full Text Available This study was focused on the multicolor space which provides a better specification of the color and size of the apple in an image. In the study, a real-time machine vision system classifying apples into four categories with respect to color and size was designed. In the analysis, different color spaces were used. As a result, 97% identification success for the red fields of the apple was obtained depending on the values of the parameter “a” of CIE L*a*b*color space. Similarly, 94% identification success for the yellow fields was obtained depending on the values of the parameter y of CIE XYZ color space. With the designed system, three kinds of apples (Golden, Starking, and Jonagold were investigated by classifying them into four groups with respect to two parameters, color and size. Finally, 99% success rate was achieved in the analyses conducted for 595 apples.

  16. Supporting Real-Time Computer Vision Workloads using OpenVX on Multicore+GPU Platforms

    Science.gov (United States)

    2015-05-01

    workloads specified using OpenVX to be supported in a predictable way. I. INTRODUCTION In the automotive industry today, vision-based sensing through cameras...Supporting Real-Time Computer Vision Workloads using OpenVX on Multicore+GPU Platforms Glenn A. Elliott, Kecheng Yang, and James H. Anderson...Department of Computer Science, University of North Carolina at Chapel Hill Abstract—In the automotive industry, there is currently great interest in

  17. Verifying real-time systems against scenario-based requirements

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Li, Shuhao; Nielsen, Brian;

    2009-01-01

    subset of the LSC language. By equivalently translating an LSC chart into an observer TA and then non-intrusively composing this observer with the original system model, the problem of verifying a real-time system against a scenario-based requirement reduces to a classical real-time model checking......We propose an approach to automatic verification of real-time systems against scenario-based requirements. A real-time system is modeled as a network of Timed Automata (TA), and a scenario-based requirement is specified as a Live Sequence Chart (LSC). We define a trace-based semantics for a kernel...

  18. Unified Modeling of Complex Real-Time Control Systems

    CERN Document Server

    Hai, He; Chi-Lan, Cai

    2011-01-01

    Complex real-time control system is a software dense and algorithms dense system, which needs modern software engineering techniques to design. UML is an object-oriented industrial standard modeling language, used more and more in real-time domain. This paper first analyses the advantages and problems of using UML for real-time control systems design. Then, it proposes an extension of UML-RT to support time-continuous subsystems modeling. So we can unify modeling of complex real-time control systems on UML-RT platform, from requirement analysis, model design, simulation, until generation code.

  19. A machine vision approach to seam tracking in real-time in PAW of large-diameter stainless steel tube

    Institute of Scientific and Technical Information of China (English)

    葛景国; 朱政强; 何德孚; 陈立功

    2004-01-01

    Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to realize the automation of computer-aided seam tracking. A PAW (plasma arc welding) seam tracking system was developed, which senses the molten pool and the seam in one frame by a vision sensor, and then detects the seam deviation to adjust the work piece motion adaptively to the seam position sensed by vision sensor. A novel molten pool area image-processing algorithm based on machine vision was proposed. The algorithm processes each image at the speed of 20 frames/second in real-time to extract three feature variables to get the seam deviation. It is proved experimentally that the algorithm is very fast and effective. Issues related to the algorithm are also discussed.

  20. Online Vision as a Function of Real-Time Limb Velocity: Another Case for Optimal Windows.

    Science.gov (United States)

    Kennedy, Andrew; Bhattacharjee, Arindam; Hansen, Steve; Reid, Connor; Tremblay, Luc

    2015-01-01

    The efficiency of online visuomotor processes was investigated by manipulating vision based on real-time upper limb velocity. Participants completed rapid reaches under two control (full vision, no vision) and three experimental visual window conditions. The experimental visual windows were early: 0.8-1.4 m/s, middle: above 1.4 m/s, and late: 1.4 to 0.8 m/s. The results indicated that endpoint consistency comparable to that of full-vision trials was observed when using vision from the early (43 ms) and middle (89 ms) windows, but vision from the middle window entailed a longer deceleration phase (i.e., a temporal cost). The late window was not useful to implement online trajectory amendments. This study provides further support for the idea of early visuomotor control, which may involve multiple online control processes during voluntary movement.

  1. 76 FR 42536 - Real-Time System Management Information Program

    Science.gov (United States)

    2011-07-19

    ... Federal Highway Administration 23 CFR Part 511 RIN 2125-AF19 Real-Time System Management Information... additional comments relating to the costs and benefits of the Real-Time System Management Information Program... System Management Information Program on November 8, 2010, at 75 FR 68418. The final rule document...

  2. 75 FR 68418 - Real-Time System Management Information Program

    Science.gov (United States)

    2010-11-08

    ... Federal Highway Administration 23 CFR Part 511 RIN 2125-AF19 Real-Time System Management Information... System Management Information Program that provides, in all States, the capability to monitor, in real... traveler information. The purposes of the Real-Time System Management Information Program are to:...

  3. Self-Organization in Embedded Real-Time Systems

    CERN Document Server

    Brinkschulte, Uwe; Rettberg, Achim

    2013-01-01

    This book describes the emerging field of self-organizing, multicore, distributed and real-time embedded systems.  Self-organization of both hardware and software can be a key technique to handle the growing complexity of modern computing systems. Distributed systems running hundreds of tasks on dozens of processors, each equipped with multiple cores, requires self-organization principles to ensure efficient and reliable operation. This book addresses various, so-called Self-X features such as self-configuration, self-optimization, self-adaptation, self-healing and self-protection. Presents open components for embedded real-time adaptive and self-organizing applications; Describes innovative techniques in: scheduling, memory management, quality of service, communications supporting organic real-time applications; Covers multi-/many-core embedded systems supporting real-time adaptive systems and power-aware, adaptive hardware and software systems; Includes case studies of open embedded real-time self-organizi...

  4. Distributed, Embedded and Real-time Java Systems

    CERN Document Server

    Wellings, Andy

    2012-01-01

    Research on real-time Java technology has been prolific over the past decade, leading to a large number of corresponding hardware and software solutions, and frameworks for distributed and embedded real-time Java systems.  This book is aimed primarily at researchers in real-time embedded systems, particularly those who wish to understand the current state of the art in using Java in this domain.  Much of the work in real-time distributed, embedded and real-time Java has focused on the Real-time Specification for Java (RTSJ) as the underlying base technology, and consequently many of the Chapters in this book address issues with, or solve problems using, this framework. Describes innovative techniques in: scheduling, memory management, quality of service and communication systems supporting real-time Java applications; Includes coverage of multiprocessor embedded systems and parallel programming; Discusses state-of-the-art resource management for embedded systems, including Java’s real-time garbage collect...

  5. Real-time Vision using FPGAs, GPUs and Multi-core CPUs

    DEFF Research Database (Denmark)

    Kjær-Nielsen, Anders

    Frontend" has become the cornerstone for parallel and real-time processing within our group and is therefore modified and extended for the use in various projects that requires some sort of real-time performance. One example is a project called Robo Packman, where the fast processing of the ECV system has...

  6. Operational and logical semantics for polling real-time systems

    NARCIS (Netherlands)

    Anders, P.R.; Dierks, Henning; Fehnker, Ansgar; Rischel, H.; Fehnker, Ansgar; Mader, Angelika H.; Vaandrager, Frits

    PLC-Automata are a class of real-time automata suitable to describe the behavior of polling real-time systems. PLC-Automata can be compiled to source code for PLCs, a hardware widely used in industry to control processes. Also, PLC-Automata have been equipped with a logical and operational

  7. Analyzing Real-Time Systems: Theory and Tools

    DEFF Research Database (Denmark)

    Hune, Thomas Seidelin

    The main topic of this dissertation is the development and use of methods for formal reasoning about the correctness of real-time systems, in particular methods and tools to handle new classes of problems. In real-time systems the correctness of the system does not only depend on the order in which...... actions take place, but also the timing of the actions. The formal reasoning presented here is based on (extensions of) the model of timed automata and tools supporting this model, mainly UPPAAL. Real-time systems are often part of safety critical systems e.g. control systems for planes, trains......, or factories, though also everyday electronics as audio/video equipment and (mobile) phones are considered real-time systems. Often these systems are concurrent systems with a number of components interacting, and reasoning about such systems is notoriously difficult. However, since most of the systems...

  8. Analysis and Synthesis of Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    Embedded computer systems are now everywhere: from alarm clocks to PDAs, from mobile phones to cars, almost all the devices we use are controlled by embedded computers. An important class of embedded computer systems is that of hard real-time systems, which have to fulfill strict timing...... in important reductions of design costs. Analysis and Synthesis of Distributed Real-Time Embedded Systems will be of interest to advanced undergraduates, graduate students, researchers and designers involved in the field of embedded systems....

  9. Design a Fault Tolerance for Real Time Distributed System

    OpenAIRE

    Ban M. Khammas

    2012-01-01

    This paper designed a fault tolerance for soft real time distributed system (FTRTDS). This system is designed to be independently on specific mechanisms and facilities of the underlying real time distributed system. It is designed to be distributed on all the computers in the distributed system and controlled by a central unit.Besides gathering information about a target program spontaneously, it provides information about the target operating system and the target hardware in order to diagno...

  10. Real-time simulation of dissipation-driven quantum systems

    CERN Document Server

    Banerjee, Debasish; Jiang, Fu-Jiun; Kon, Mark; Wiese, Uwe-Jens

    2015-01-01

    We set up a real-time path integral to study the evolution of quantum systems driven in real-time completely by the coupling of the system to the environment. For specifically chosen interactions, this can be interpreted as measurements being performed on the system. For a spin-1/2 system, in particular, when the measurement results are averaged over, the resulting sign problem completely disappears, and the system can be simulated with an efficient cluster algorithm.

  11. Cluster Computing for Embedded/Real-Time Systems

    Science.gov (United States)

    Katz, D.; Kepner, J.

    1999-01-01

    Embedded and real-time systems, like other computing systems, seek to maximize computing power for a given price, and thus can significantly benefit from the advancing capabilities of cluster computing.

  12. Survey of real-time processing systems for big data

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Lftikhar, Nadeem; Xie, Xike

    2014-01-01

    In recent years, real-time processing and analytics systems for big data–in the context of Business Intelligence (BI)–have received a growing attention. The traditional BI platforms that perform regular updates on daily, weekly or monthly basis are no longer adequate to satisfy the fast......-changing business environments. However, due to the nature of big data, it has become a challenge to achieve the real-time capability using the traditional technologies. The recent distributed computing technology, MapReduce, provides off-the-shelf high scalability that can significantly shorten the processing time...... for big data; Its open-source implementation such as Hadoop has become the de-facto standard for processing big data, however, Hadoop has the limitation of supporting real-time updates. The improvements in Hadoop for the real-time capability, and the other alternative real-time frameworks have been...

  13. Survey of real-time processing systems for big data

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem

    2014-01-01

    In recent years, real-time processing and analytics systems for big data–in the context of Business Intelligence (BI)–have received a growing attention. The traditional BI platforms that perform regular updates on daily, weekly or monthly basis are no longer adequate to satisfy the fast......-changing business environments. However, due to the nature of big data, it has become a challenge to achieve the real-time capability using the traditional technologies. The recent distributed computing technology, MapReduce, provides off-the-shelf high scalability that can significantly shorten the processing time...... for big data; Its open-source implementation such as Hadoop has become the de-facto standard for processing big data, however, Hadoop has the limitation of supporting real-time updates. The improvements in Hadoop for the real-time capability, and the other alternative real-time frameworks have been...

  14. Real-time wideband holographic surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, David M. (1917 Hood, Richland, WA 99352); Collins, H. Dale (1751 Duluth, Richland, WA 99352); Hall, Thomas E. (8301 W. Entiat Pl., Kennewick, WA 99336); McMakin, Douglas L. (2173 Shasta Ave., Richland, WA 99352); Gribble, R. Parks (1215 Cottonwood Dr., Richland, WA 99352); Severtsen, Ronald H. (1803 Birch Ave., Richland, WA 99352); Prince, James M. (3029 W. 2nd Ave., Apt. F95, Kennewick, WA 99336); Reid, Larry D. (Rt. 1, Box 1291B, Benton City, WA 99320)

    1996-01-01

    A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm.

  15. Real-time embedded systems design principles and engineering practices

    CERN Document Server

    Fan, Xiaocong

    2015-01-01

    This book integrates new ideas and topics from real time systems, embedded systems, and software engineering to give a complete picture of the whole process of developing software for real-time embedded applications. You will not only gain a thorough understanding of concepts related to microprocessors, interrupts, and system boot process, appreciating the importance of real-time modeling and scheduling, but you will also learn software engineering practices such as model documentation, model analysis, design patterns, and standard conformance. This book is split into four parts to help you

  16. A real-time camera calibration system based on OpenCV

    Science.gov (United States)

    Zhang, Hui; Wang, Hua; Guo, Huinan; Ren, Long; Zhou, Zuofeng

    2015-07-01

    Camera calibration is one of the essential steps in the computer vision research. This paper describes a real-time OpenCV based camera calibration system, and developed and implemented in the VS2008 environment. Experimental results prove that the system to achieve a simple and fast camera calibration, compared with MATLAB, higher precision and does not need manual intervention, and can be widely used in various computer vision system.

  17. Axo: Masking Delay Faults in Real-Time Control Systems

    OpenAIRE

    Maaz, Mashood Mohiuddin; Saab, Wajeb; Bliudze, Simon; Le Boudec, Jean-Yves

    2016-01-01

    We consider real-time control systems that consist of a controller that computes and sends setpoints to be implemented in physical processes through process agents. We focus on systems that use commercial off-the-shelf hardware and software components. Setpoints of these systems have strict real-time constraints: Implementing a setpoint after its deadline, or not receiving setpoints within a deadline, can cause failure. In this paper, we address delay faults: faults that cause setpoints to vi...

  18. UML statechart based rigorous modeling of real-time system

    Institute of Scientific and Technical Information of China (English)

    LAI Ming-zhi; YOU Jin-yuan

    2005-01-01

    Rigorous modeling could ensure correctness and could verify a reduced cost in embedded real-time system development for models. Software methods are needed for rigorous modeling of embedded real-time systems. PVS is a formal method with precise syntax and semantics defined. System modeled by PVS specification could be verified by tools. Combining the widely used UML with PVS, this paper provides a novel modeling and verification approach for embedded real-time systems. In this approach, we provide 1 ) a time-extended UML statechart for modeling dynamic behavior of an embedded real-time system; 2) an approach to capture timed automata based semantics from a timed statechart; and 3) an algorithm to generate a finite state model expressed in PVS specification for model checking. The benefits of our approach include flexibility and user friendliness in modeling, extendability in formalization and verification content, and better performance. Time constraints are modeled and verified and is a highlight of this paper.

  19. Games and Scenarios for Real-Time System Validation

    DEFF Research Database (Denmark)

    Li, Shuhao

    This thesis presents research on the validation of real-time embedded software systems in the context of model-based development. The thesis proposes scenario-based and game-theoretic approaches to system analysis, verification, synthesis and testing to address the challenges that arise from....... By linking our prototype translators with existing model checker Uppaal and game solver Uppaal-Tiga, we show that these methods contribute to the interaction correctness and timeliness of early system designs. The thesis also shows that testing a real-time reactive system can be viewed as playing a timed...... communicating real-time systems can be modeled and specified with LSC. By translating LSC to timed automata (TAs), we reduce scenario-based model consistency checking and property verification to CTL real-time model checking problems, and reduce scenario-based synthesis to a timed game solving problem...

  20. Reviewing real-time performance of nuclear reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Preckshot, G.G. [Lawrence Livermore National Lab., CA (United States)

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  1. The Effects of Real-Time Interactive Multimedia Teleradiology System.

    Science.gov (United States)

    Al-Safadi, Lilac

    2016-01-01

    This study describes the design of a real-time interactive multimedia teleradiology system and assesses how the system is used by referring physicians in point-of-care situations and supports or hinders aspects of physician-radiologist interaction. We developed a real-time multimedia teleradiology management system that automates the transfer of images and radiologists' reports and surveyed physicians to triangulate the findings and to verify the realism and results of the experiment. The web-based survey was delivered to 150 physicians from a range of specialties. The survey was completed by 72% of physicians. Data showed a correlation between rich interactivity, satisfaction, and effectiveness. The results of our experiments suggest that real-time multimedia teleradiology systems are valued by referring physicians and may have the potential for enhancing their practice and improving patient care and highlight the critical role of multimedia technologies to provide real-time multimode interactivity in current medical care.

  2. Novel Real-Time Flight Envelope Monitoring System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an aircraft flight envelope monitoring system that will provide real-time in-cockpit estimations of aircraft flight envelope boundaries,...

  3. Novel Real-Time Flight Envelope Monitoring System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an aircraft flight envelope monitoring system that will provide real-time in-cockpit estimations of aircraft flight envelope boundaries....

  4. A Remote Real-Time Monitoring System for Power Quality

    Institute of Scientific and Technical Information of China (English)

    黄治清; 贺建闽

    2003-01-01

    An introduction is made to the composition, design method and engineering application of a remote real-time monitoring system of power quality in substations based on internet. With virtual instrument and network technique adopted, this system is characterized by good real-time property, high reliability, plentiful functions, and so on. It also can be used to monitor the load of a substation, such as electric locomotives.

  5. FPGA-Based Real-Time Motion Detection for Automated Video Surveillance Systems

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2016-03-01

    Full Text Available Design of automated video surveillance systems is one of the exigent missions in computer vision community because of their ability to automatically select frames of interest in incoming video streams based on motion detection. This research paper focuses on the real-time hardware implementation of a motion detection algorithm for such vision based automated surveillance systems. A dedicated VLSI architecture has been proposed and designed for clustering-based motion detection scheme. The working prototype of a complete standalone automated video surveillance system, including input camera interface, designed motion detection VLSI architecture, and output display interface, with real-time relevant motion detection capabilities, has been implemented on Xilinx ML510 (Virtex-5 FX130T FPGA platform. The prototyped system robustly detects the relevant motion in real-time in live PAL (720 × 576 resolution video streams directly coming from the camera.

  6. Multi-Threat Real-Time Separating System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper describes a multi-threat real-time separating system for broadband anti-radiation missile seeker.It presents a method, with a dual-port memory as comparer, to perform PF and PW hardware real-time separation and to determine the time-of-arrival (TOA) by use of sequential difference histogram (SDIF). The method has been applied to practice, which has achieved good results.

  7. The Dynamic Checking of Complex Real Time System

    Institute of Scientific and Technical Information of China (English)

    YU Chao; HUANG Benwen; WU Guoqing

    2006-01-01

    The paper presents an dynamic execution model of complex real-time software based on requirement description model RTRSM, and then propose a checking method based on configuration covering and its corresponding algorithm. This checking method can check the execution situations between parallel elements in a dynamic execution step of real-time software systems. It also can check all the states and transitions which assure the completeness of checking. In the end, related theorem is proofed.

  8. OpenVX-based Python Framework for real-time cross platform acceleration of embedded computer vision applications

    Directory of Open Access Journals (Sweden)

    Ori Heimlich

    2016-11-01

    Full Text Available Embedded real-time vision applications are being rapidly deployed in a large realm of consumer electronics, ranging from automotive safety to surveillance systems. However, the relatively limited computational power of embedded platforms is considered as a bottleneck for many vision applications, necessitating optimization. OpenVX is a standardized interface, released in late 2014, in an attempt to provide both system and kernel level optimization to vision applications. With OpenVX, Vision processing are modeled with coarse-grained data flow graphs, which can be optimized and accelerated by the platform implementer. Current full implementations of OpenVX are given in the programming language C, which does not support advanced programming paradigms such as object-oriented, imperative and functional programming, nor does it have runtime or type-checking. Here we present a python-based full Implementation of OpenVX, which eliminates much of the discrepancies between the object-oriented paradigm used by many modern applications and the native C implementations. Our open-source implementation can be used for rapid development of OpenVX applications in embedded platforms. Demonstration includes static and real-time image acquisition and processing using a Raspberry Pi and a GoPro camera. Code is given as supplementary information. Code project and linked deployable virtual machine are located on GitHub: https://github.com/NBEL-lab/PythonOpenVX.

  9. Multiscale Methods, Parallel Computation, and Neural Networks for Real-Time Computer Vision.

    Science.gov (United States)

    Battiti, Roberto

    1990-01-01

    This thesis presents new algorithms for low and intermediate level computer vision. The guiding ideas in the presented approach are those of hierarchical and adaptive processing, concurrent computation, and supervised learning. Processing of the visual data at different resolutions is used not only to reduce the amount of computation necessary to reach the fixed point, but also to produce a more accurate estimation of the desired parameters. The presented adaptive multiple scale technique is applied to the problem of motion field estimation. Different parts of the image are analyzed at a resolution that is chosen in order to minimize the error in the coefficients of the differential equations to be solved. Tests with video-acquired images show that velocity estimation is more accurate over a wide range of motion with respect to the homogeneous scheme. In some cases introduction of explicit discontinuities coupled to the continuous variables can be used to avoid propagation of visual information from areas corresponding to objects with different physical and/or kinematic properties. The human visual system uses concurrent computation in order to process the vast amount of visual data in "real -time." Although with different technological constraints, parallel computation can be used efficiently for computer vision. All the presented algorithms have been implemented on medium grain distributed memory multicomputers with a speed-up approximately proportional to the number of processors used. A simple two-dimensional domain decomposition assigns regions of the multiresolution pyramid to the different processors. The inter-processor communication needed during the solution process is proportional to the linear dimension of the assigned domain, so that efficiency is close to 100% if a large region is assigned to each processor. Finally, learning algorithms are shown to be a viable technique to engineer computer vision systems for different applications starting from

  10. Real-time Java for on-board systems

    Science.gov (United States)

    Cechticky, V.; Pasetti, A.

    2002-07-01

    The Java language has several attractive features but cannot at present be used in on-board systems primarily because it lacks support for hard real-time operation. This shortcoming is in being addressed: some suppliers are already providing implementations of Java that are RT-compliant; Sun Microsystem has approved a formal specification for a real-time extension of the language; and an independent consortium is working on an alternative specification for real-time Java. It is therefore expected that, within a year or so, standardized commercial implementations of real-time Java will be on the market. Availability of real-time implementations now opens the way to its use on-board. Within this context, this paper has two objectives. Firstly, it discusses the suitability of Java for on-board applications. Secondly, it reports the results of an ESA study to port a software framework for on-board control systems to a commercial real-time version of Java.

  11. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    Science.gov (United States)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  12. Analyzing Real-Time Systems: Theory and Tools

    DEFF Research Database (Denmark)

    Hune, Thomas Seidelin

    The main topic of this dissertation is the development and use of methods for formal reasoning about the correctness of real-time systems, in particular methods and tools to handle new classes of problems. In real-time systems the correctness of the system does not only depend on the order in which...... actions take place, but also the timing of the actions. The formal reasoning presented here is based on (extensions of) the model of timed automata and tools supporting this model, mainly UPPAAL. Real-time systems are often part of safety critical systems e.g. control systems for planes, trains......, and successfully tested on a number of case studies. In particular, part of the Sidmar steel production plant, which is a case study of the Esprit VHS project, has been studied. Schedulability, without considering cost and optimality, has also been addressed using standard timed automata and UPPAAL. In order...

  13. Real-time alerts and reminders using information systems.

    Science.gov (United States)

    Wanderer, Jonathan P; Sandberg, Warren S; Ehrenfeld, Jesse M

    2011-09-01

    Adoption of information systems throughout the hospital environment has enabled the development of real-time physiologic alerts and clinician reminder systems. These clinical tools can be made available through the deployment of anesthesia information management systems (AIMS). Creating usable alert systems requires understanding of technical considerations. Various successful implementations are reviewed, encompassing cost reduction, improved revenue capture, timely antibiotic administration, and postoperative nausea and vomiting prophylaxis. Challenges to the widespread use of real-time alerts and reminders include AIMS adoption rates and the difficulty in choosing appropriate areas and approaches for information systems support.

  14. Specifying and verifying requirements of real-time systems

    DEFF Research Database (Denmark)

    Ravn, Anders P.; Rischel, Hans; Hansen, Kirsten Mark

    1993-01-01

    An approach to specification of requirements and verification of design for real-time systems is presented. A system is defined by a conventional mathematical model for a dynamic system where application specific states denote functions of real time. Specifications are formulas in duration calculus......, a real-time interval logic, where predicates define durations of states. Requirements define safety and functionality constraints on the system or a component. A top-level design is given by a control law: a predicate that defines an automation controlling the transition between phases of operation. Each...... control the distributed computation through synchronous events. Sensors and actuators relate events with system states. Verification is a deduction showing that a design implies requirements...

  15. Real-time stereo generation for surgical vision during minimal invasive robotic surgery

    Science.gov (United States)

    Laddi, Amit; Bhardwaj, Vijay; Mahapatra, Prasant; Pankaj, Dinesh; Kumar, Amod

    2016-03-01

    This paper proposes a framework for 3D surgical vision for minimal invasive robotic surgery. It presents an approach for generating the three dimensional view of the in-vivo live surgical procedures from two images captured by very small sized, full resolution camera sensor rig. A pre-processing scheme is employed to enhance the image quality and equalizing the color profile of two images. Polarized Projection using interlacing two images give a smooth and strain free three dimensional view. The algorithm runs in real time with good speed at full HD resolution.

  16. Integration of Real-Time Data Into Building Automation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

    2003-04-16

    The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

  17. Simultaneous real-time monitoring of multiple cortical systems

    Science.gov (United States)

    Gupta, Disha; Hill, N. Jeremy; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Schalk, Gerwin

    2014-10-01

    Objective. Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. Approach. We study these questions using electrocorticographic signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (six for offline parameter optimization, six for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main results. Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelopes. These decoders were trained separately and executed simultaneously in real time. Significance. This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple

  18. System security assessment in real-time using synchrophasor measurements

    DEFF Research Database (Denmark)

    Jóhannsson, Hjörtur; Wache, Markus

    2013-01-01

    assessment and sheds light on ongoing research activities that focus on exploiting wide-area synchrophasor measurements for real-time security assessment of sustainable power systems. At last, an mathematical mapping enabling informative visualization of the system state in respect to aperiodic rotor angle...... measures to ensure stable and secure operation of the system are necessary. Time stamped synchrophasor measurements lay the foundation for development of new real-time applications for security and stability assessment. The paper provides overview of existing solutions for synchrophasor based security...

  19. An Intelligent Real-Time System Architecture Implemented in ADA

    Science.gov (United States)

    1992-12-01

    performed by the system is procedural in nature [ Wilber , 1989:75]. For example, if one was to create a fully autonomous system to pilot a modem fighter...Tindell, Ken , Bums, Alan, and Wellings, Andy, Allocating Hard Real Time Tasks (An NP-Hard Problem Made Easy), e-mail via ftp, 1992, Real Time Systems...Technology/ENS Wright-Patterson AFB, Ohio 45433-6583, Distribution Limited to DoD and DoD contractors only, April 1990. [ Wilber , 1989]. Wilber , George

  20. A Real-Time Simulation Platform for Power System Operation

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Østergaard, Jacob; Wu, Qiuwei

    2010-01-01

    This paper describes the real-time digital simulation platform that can be used for power system operation, analysis, and power system modeling. This particular platform gives grid operators, planners and researchers the opportunity to observe how a power system behaves and can be used...

  1. Testing power system controllers by real-time simulation

    DEFF Research Database (Denmark)

    Venne, Philippe; Guillaud, Xavier; Sirois, Frédéric

    2007-01-01

    In this paper, we present a number of state-of-the art methods for testing power system controllers based on the use of a real-time power system simulator. After introducing Hypersim, we list and discuss the different means of connection between the controller under tests and the power system...

  2. Real-time Simulation of Turboprop Engine Control System

    Science.gov (United States)

    Sheng, Hanlin; Zhang, Tianhong; Zhang, Yi

    2017-05-01

    On account of the complexity of turboprop engine control system, real-time simulation is the technology, under the prerequisite of maintaining real-time, to effectively reduce development cost, shorten development cycle and avert testing risks. The paper takes RT-LAB as a platform and studies the real-time digital simulation of turboprop engine control system. The architecture, work principles and external interfaces of RT-LAB real-time simulation platform are introduced firstly. Then based on a turboprop engine model, the control laws of propeller control loop and fuel control loop are studied. From that and on the basis of Matlab/Simulink, an integrated controller is designed which can realize the entire process control of the engine from start-up to maximum power till stop. At the end, on the basis of RT-LAB platform, the real-time digital simulation of the designed control system is studied, different regulating plans are tried and more ideal control effects have been obtained.

  3. Coordinated scheduling for dynamic real-time systems

    Science.gov (United States)

    Natarajan, Swaminathan; Zhao, Wei

    1994-01-01

    In this project, we addressed issues in coordinated scheduling for dynamic real-time systems. In particular, we concentrated on design and implementation of a new distributed real-time system called R-Shell. The design objective of R-Shell is to provide computing support for space programs that have large, complex, fault-tolerant distributed real-time applications. In R-shell, the approach is based on the concept of scheduling agents, which reside in the application run-time environment, and are customized to provide just those resource management functions which are needed by the specific application. With this approach, we avoid the need for a sophisticated OS which provides a variety of generalized functionality, while still not burdening application programmers with heavy responsibility for resource management. In this report, we discuss the R-Shell approach, summarize the achievement of the project, and describe a preliminary prototype of R-Shell system.

  4. A real-time VLC to UART protocol conversion system

    Science.gov (United States)

    Deng, Jian-zhi; Yao, Meng; Cheng, Xiao-hui; Deng, Zhuo-hong

    2016-07-01

    A real-time visible light communication (VLC) to universal asynchronous receiver/transmitter (UART) conversion system is made up of a transmitter with a light emitting diode (LED) and a receiver with a photodiode (PD), by which a VLC system is connected to traditional communication modes, and the data are transferred by wireless visible light. UART packets are converted to light packets by the modulation of a 10 kHz on-off-keying (OOK) light signal, and the data losses in the transportation are avoided by the protection of a data buffer mechanism. The experimental results reveal that the real-time VLC to UART conversion system can provide a real-time VLC transmission way for two UART devices in not less than 10 m at a baud rate not less than 19 200 Bd with stable ambient lighting at the same time.

  5. Modelling and analysis of real-time and hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Olivero, A.

    1994-09-29

    This work deals with the modelling and analysis of real-time and hybrid systems. We first present the timed-graphs as model for the real-time systems and we recall the basic notions of the analysis of real-time systems. We describe the temporal properties on the timed-graphs using TCTL formulas. We consider two methods for property verification: in one hand we study the symbolic model-checking (based on backward analysis) and in the other hand we propose a verification method derived of the construction of the simulation graph (based on forward analysis). Both methods have been implemented within the KRONOS verification tool. Their application for the automatic verification on several real-time systems confirms the practical interest of our approach. In a second part we study the hybrid systems, systems combining discrete components with continuous ones. As in the general case the analysis of this king of systems is not decidable, we identify two sub-classes of hybrid systems and we give a construction based method for the generation of a timed-graph from an element into the sub-classes. We prove that in one case the timed-graph obtained is bi-similar with the considered system and that there exists a simulation in the other case. These relationships allow the application of the described technics on the hybrid systems into the defined sub-classes. (authors). 60 refs., 43 figs., 8 tabs., 2 annexes.

  6. Development of automated system for real-time LIBS analysis

    Science.gov (United States)

    Mazalan, Elham; Ali, Jalil; Tufail, Kashif; Haider, Zuhaib

    2017-03-01

    Recent developments in Laser Induced Breakdown Spectroscopy (LIBS) instrumentation allow the acquisition of several spectra in a second. The dataset from a typical LIBS experiment can consist of a few thousands of spectra. To extract the useful information from that dataset is painstaking effort and time consuming process. Most of the currently available softwares for spectral data analysis are expensive and used for offline data analysis. LabVIEW software compatible with spectrometer (in this case Ocean Optics Maya pro spectrometer), can be used to for data acquisition and real time analysis. In the present work, a LabVIEW based automated system for real-time LIBS analysis integrated with spectrometer device is developed. This system is capable of performing real time analysis based on as-acquired LIBS spectra. Here, we have demonstrated the LIBS data acquisition and real time calculations of plasma temperature and electron density. Data plots and variations in spectral intensity in response to laser energy were observed on LabVIEW monitor interface. Routine laboratory samples of brass and calcine bone were utilized in this experiment. Developed program has shown impressive performance in real time data acquisition and analysis.

  7. DSP Based System for Real time Voice Synthesis Applications Development

    CERN Document Server

    Arsinte, Radu; Miron, Costin

    2008-01-01

    This paper describes an experimental system designed for development of real time voice synthesis applications. The system is composed from a DSP coprocessor card, equipped with an TMS320C25 or TMS320C50 chip, voice acquisition module (ADDA2),host computer (IBM-PC compatible), software specific tools.

  8. Magneto-optical system for high speed real time imaging

    Science.gov (United States)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  9. Analysis and Optimization of Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2006-01-01

    An increasing number of real-time applications are today implemented using distributed heterogeneous architectures composed of interconnected networks of processors. The systems are heterogeneous not only in terms of hardware and software components, but also in terms of communication protocols...

  10. Emergency Department Real Time Location System Patient and Equipment Tracking

    Science.gov (United States)

    2013-10-01

    solution complies with all RF transmission guidelines to avoid interference with Hospital’s wireless communication systems and clinical...technology path that the messages will follow is, AgileTrac ESB services will capture real time updates of patient locations and push that

  11. A distributed Real-Time Java system based on CSP

    NARCIS (Netherlands)

    Hilderink, G.H.; Bakkers, André; Broenink, Johannes F.

    2000-01-01

    CSP is a fundamental concept for developing software for distributed real time systems. The CSP paradigm constitutes a natural addition to object orientation and offers higher order multithreading constructs. The CSP channel concept that has been implemented in Java deals with single- and

  12. Analysis and optimisation of heterogeneous real-time embedded systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2006-01-01

    An increasing number of real-time applications are today implemented using distributed heterogeneous architectures composed of interconnected networks of processors. The systems are heterogeneous, not only in terms of hardware components, but also in terms of communication protocols and schedulin...

  13. A Real-Time Simulation Platform for Power System Operation

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Østergaard, Jacob; Wu, Qiuwei

    2010-01-01

    This paper describes the real-time digital simulation platform that can be used for power system operation, analysis, and power system modeling. This particular platform gives grid operators, planners and researchers the opportunity to observe how a power system behaves and can be used...... in real time. Various phenomena commonly encountered when dealing with the two-area system is studied. Despite its small size, it mimics very closely the behavior of typical systems in actual operation. The electromagnetic transient type of simulation made in RSCAD enables the study of fast and detailed...... to demonstrate modeling, system disturbances of various types, and proper recovery actions, as well as to illustrate complex power system concepts. The Kundur power system consists of two fully symmetrical areas linked together by two 230kV lines is modeled by using RSCAD in order to carry out simulations...

  14. A coincidence detection system based on real-time software

    Science.gov (United States)

    Ayuso, Sindulfo; José Blanco, Juan; Medina, José; Gómez-Herrero, Raúl; García-Población, Oscar; García Tejedor, Ignacio

    2016-09-01

    Conventional real-time coincidence systems use electronic circuitry to detect coincident pulses (hardware coincidence). In this work, a new concept of coincidence system based on real-time software (software coincidence) is presented. This system is based on the recurrent supervision of the analogue-to-digital converters status, which is described in detail. A prototype has been designed and built using a low-cost development platform. It has been applied to two different experimental sets for cosmic ray muon detection. Experimental muon measurements recorded simultaneously using conventional hardware coincidence and our software coincidence system have been compared, yielding identical results. These measurements have also been validated using simultaneous neutron monitor observations. This new software coincidence system provides remarkable advantages such as higher simplicity of interconnection and adjusting. Thus, our system replaces, at least, three Nuclear Instrument Modules (NIMs) required by conventional coincidence systems, reducing its cost by a factor of 40 and eliminating pulse delay adjustments.

  15. Stereo vision for planetary rovers - Stochastic modeling to near real-time implementation

    Science.gov (United States)

    Matthies, Larry

    1991-01-01

    JPL has achieved the first autonomous cross-country robotic traverses to use stereo vision, with all computing onboard the vehicle. This paper describes the stereo vision system, including the underlying statistical model and the details of the implementation. It is argued that the overall approach provides a unifying paradigm for practical domain-independent stereo ranging.

  16. Application Of UML In Real-Time Embedded Systems

    Directory of Open Access Journals (Sweden)

    Aman Kaur

    2012-04-01

    Full Text Available The UML was designed as a graphical notation for use with object-oriented systems and applications. Because of its popularity, now it is emerging in the field of embedded systems design as a modeling language. The UML notation is useful in capturing the requirements, documenting the structure, decomposing into objects and defining relationships between objects. It is a notational language that is very useful in modelling the real-time embedded systems. This paper presents the requirements and analysis modelling of a real-time embedded system related to a control system application for platformstabilization using COMET method of design with UML notation. These applications involve designing of electromechanical systems that are controlled by multi-processors.

  17. Implementation of a Real Time Passenger Information System

    CERN Document Server

    Ganesh, K; Kuri, Joy; Dagale, Haresh; Sudhakar, G; Sanyal, Sugata

    2012-01-01

    Intelligent Transportation Systems (ITS) are gaining recognition in developing countries like India. This paper describes the various components of our prototype implementation of a Real-time Passenger Information System (RTPIS) for a public transport system like a fleet of buses. Vehicle-mounted units, bus station units and a server located at the transport company premises comprise the system. The vehicle unit reports the current position of the vehicle to a central server periodically via General Packet Radio Service (GPRS). An Estimated Time of Arrival (ETA) algorithm running on the server predicts the arrival times of buses at their stops based on real-time observations of the buses' current Global Positioning System (GPS) coordinates. This information is displayed and announced to passengers at stops using station units, which periodically fetch the required ETA from the server via GPRS. Novel features of our prototype include: (a) a route creator utility which automatically creates new routes from scra...

  18. High Performance Embedded System for Real-Time Pattern Matching

    CERN Document Server

    Sotiropoulou, Calliope Louisa; The ATLAS collaboration; Gkaitatzis, Stamatios; Citraro, Saverio; Giannetti, Paola; Dell'Orso, Mauro

    2016-01-01

    We present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics (HEP) and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturized version of this complex system is being developed for pattern matching in generic image processing applications. The design uses the flexibility of Field Programmable Gate Arrays (FPGAs) and the powerful Associative Memory Chip (ASIC) to achieve real-time performance. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain.

  19. Analysis and Optimization of Heterogeneous Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2005-01-01

    . The success of such new design methods depends on the availability of analysis and optimization techniques. In this paper, we present analysis and optimization techniques for heterogeneous real-time embedded systems. We address in more detail a particular class of such systems called multi-clusters, composed......An increasing number of real-time applications are today implemented using distributed heterogeneous architectures composed of interconnected networks of processors. The systems are heterogeneous not only in terms of hardware components, but also in terms of communication protocols and scheduling...... of several networks interconnected via gateways. We present a schedulability analysis for safety-critical applications distributed on multi-cluster systems and briefly highlight characteristic design optimization problems: the partitioning and mapping of functionality, and the packing of application messages...

  20. Analysis and optimisation of heterogeneous real-time embedded systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2005-01-01

    . The success of such new design methods depends on the availability of analysis and optimisation techniques. Analysis and optimisation techniques for heterogeneous real-time embedded systems are presented in the paper. The authors address in more detail a particular class of such systems called multi......An increasing number of real-time applications are today implemented using distributed heterogeneous architectures composed of interconnected networks of processors. The systems are heterogeneous, not only in terms of hardware components, but also in terms of communication protocols and scheduling......-clusters, composed of several networks interconnected via gateways. They present a schedulability analysis for safety-critical applications distributed on multi-cluster systems and briefly highlight characteristic design optimisation problems: the partitioning and mapping of functionality, and the packing...

  1. Analysis and optimisation of heterogeneous real-time embedded systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2006-01-01

    . The success of such new design methods depends on the availability of analysis and optimisation techniques. Analysis and optimisation techniques for heterogeneous real-time embedded systems are presented in the paper. The authors address in more detail a particular class of such systems called multi......An increasing number of real-time applications are today implemented using distributed heterogeneous architectures composed of interconnected networks of processors. The systems are heterogeneous, not only in terms of hardware components, but also in terms of communication protocols and scheduling......-clusters, composed of several networks interconnected via gateways. They present a schedulability analysis for safety-critical applications distributed on multi-cluster systems and briefly highlight characteristic design optimisation problems: the partitioning and mapping of functionality, and the packing...

  2. Object-Oriented Design of Real-Time Telecom Systems

    OpenAIRE

    Jézéquel, Jean-Marc

    1998-01-01

    International audience; Many engineers are still reluctant to adopt advanced object-oriented technologies (such as high modularity, dynamic binding, automatic garbage collection, etc.) for embedded systems with real-time constraints, because of their supposed inefficiency. We set ourselves into the context of building telecommunication systems with a standard object-oriented analysis and design approach. We describe how we use relevant design patterns, followed with an implementation in a pur...

  3. A Model for Industrial Real-Time Systems

    DEFF Research Database (Denmark)

    Bin Waez, Md Tawhid; Wasowski, Andrzej; Dingel, Juergen

    2015-01-01

    Introducing automated formal methods for large industrial real-time systems is an important research challenge. We propose timed process automata (TPA) for modeling and analysis of time-critical systems which can be open, hierarchical, and dynamic. The model offers two essential features for larg...... establish safety and reachability properties of TPA by reduction to solving timed games. To mitigate the state-space explosion problem, an automated state-space reduction technique using compositional reasoning and aggressive abstractions is also proposed....

  4. Real-Time Visualization System for Computational Offloading

    Science.gov (United States)

    2015-01-01

    dependencies are hard- coded into the visualization system. The remainder of this report is organized as follows. In Section 2, we discuss the...timer. Such a driver has access to all the visualization functionality present in the visualization pane. In Fig. 8, we show a code snippet required...Real-Time Visualization System for Computational Offloading by Bryan Dawson and David L Doria ARL-TN-0655 January 2015

  5. Tactical Atmospheric Modeling System-Real Time (TAMS-RT)

    Science.gov (United States)

    2016-06-07

    subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 30...mesoscale model analysis and forecast fields as inputs. OBJECTIVES Support the NRL Tactical Atmospheric Modeling System-Real Time (TAMS-RT) installed in...installation at NCMOC, the Space and Naval Warfare Systems Command (SPAWAR), who has configuration management oversight for TEDS, has changed the TEDS

  6. Infrared Real-time Thermal System Based on DSP

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An infrared real-time imaging system using DSP(digital signal processor) as the kernel of digital signal processing board is presented. In this system, the imaging difference and nonuniformity correction method is developed on the chip taking advantage of DSP with high speed. The method combines hardware and software together, so that the difficulty for realizing such a method with other hardware can be overcome.

  7. ISTAR: Intelligent System for Telemetry Analysis in Real-time

    Science.gov (United States)

    Simmons, Charles

    1994-01-01

    The intelligent system for telemetry analysis in real-time (ISTAR) is an advanced vehicle monitoring environment incorporating expert systems, analysis tools, and on-line hypermedia documentation. The system was developed for the Air Force Space and Missile Systems Center (SMC) in Los Angeles, California, in support of the inertial upper stage (IUS) booster vehicle. Over a five year period the system progressed from rapid prototype to operational system. ISTAR has been used to support five IUS missions and countless mission simulations. There were a significant number of lessons learned with respect to integrating an expert system capability into an existing ground system.

  8. RT-Syn: A real-time software system generator

    Science.gov (United States)

    Setliff, Dorothy E.

    1992-01-01

    This paper presents research into providing highly reusable and maintainable components by using automatic software synthesis techniques. This proposal uses domain knowledge combined with automatic software synthesis techniques to engineer large-scale mission-critical real-time software. The hypothesis centers on a software synthesis architecture that specifically incorporates application-specific (in this case real-time) knowledge. This architecture synthesizes complex system software to meet a behavioral specification and external interaction design constraints. Some examples of these external constraints are communication protocols, precisions, timing, and space limitations. The incorporation of application-specific knowledge facilitates the generation of mathematical software metrics which are used to narrow the design space, thereby making software synthesis tractable. Success has the potential to dramatically reduce mission-critical system life-cycle costs not only by reducing development time, but more importantly facilitating maintenance, modifications, and extensions of complex mission-critical software systems, which are currently dominating life cycle costs.

  9. Specification and Test of Real-Time Systems

    DEFF Research Database (Denmark)

    Nielsen, Brian

    with this complexity. This thesis proposes new specification and testing techniques. We propose a real-time specification language which facilitates modular specification and programming of reusable components. A specification consists of a set of concurrent untimed components which describes the functional behavior...... of the system, and a set of constraint patterns which describes and enforces the timing and synchronization constraints among components. We propose new techniques for automated black box conformance testing of real-time systems against densely timed speci cations. A test generator tool examines a specification...... of the desired system behavior and generates the necessary test cases. A main problem is to construct a reasonably small test suite that can be executed within allotted resources, while having a high likelihood of detecting unknown errors. Our goal has been to treat the time dimension of this problem thoroughly...

  10. Heterogeneous computing for a real-time pig monitoring system

    Science.gov (United States)

    Choi, Younchang; Kim, Jinseong; Kim, Jaehak; Chung, Yeonwoo; Chung, Yongwha; Park, Daihee; Kim, Hakjae

    2017-06-01

    Video sensor data has been widely used in automatic surveillance applications. In this study, we present a method that automatically detects pigs in a pig room by using depth information obtained from a Kinect sensor. For a real-time implementation, we propose a means of reducing the execution time by applying parallel processing techniques. In general, most parallel processing techniques have been used to parallelize a specific task. In this study, we consider parallelization of an entire system that consists of several tasks. By applying a scheduling strategy to identify a computing device for each task and implementing it with OpenCL, we can reduce the total execution time efficiently. Experimental results reveal that the proposed method can automatically detect pigs using a CPU-GPU hybrid system in real time, regardless of the relative performance between the CPU and GPU.

  11. Real-time EEG-based happiness detection system.

    Science.gov (United States)

    Jatupaiboon, Noppadon; Pan-ngum, Setha; Israsena, Pasin

    2013-01-01

    We propose to use real-time EEG signal to classify happy and unhappy emotions elicited by pictures and classical music. We use PSD as a feature and SVM as a classifier. The average accuracies of subject-dependent model and subject-independent model are approximately 75.62% and 65.12%, respectively. Considering each pair of channels, temporal pair of channels (T7 and T8) gives a better result than the other area. Considering different frequency bands, high-frequency bands (Beta and Gamma) give a better result than low-frequency bands. Considering different time durations for emotion elicitation, that result from 30 seconds does not have significant difference compared with the result from 60 seconds. From all of these results, we implement real-time EEG-based happiness detection system using only one pair of channels. Furthermore, we develop games based on the happiness detection system to help user recognize and control the happiness.

  12. Real-time moving object detection for video monitoring systems

    Institute of Scientific and Technical Information of China (English)

    Wei Zhiqiang; Ji Xiaopeng; Wang Peng

    2006-01-01

    Moving object detection is one of the challenging problems in video monitoring systems, especially when the illumination changes and shadow exists. A method for real-time moving object detection is described. A new background model is proposed to handle the illumination varition problem. With optical flow technology and background subtraction, a moving object is extracted quickly and accurately. An effective shadow elimination algorithm based on color features is used to refine the moving objects. Experimental results demonstrate that the proposed method can update the background exactly and quickly along with the varition of illumination, and the shadow can be eliminated effectively. The proposed algorithm is a real-time one which the foundation for further object recognition and understanding of video monitoring systems.

  13. Real-time vehicle tracking for traffic monitoring systems

    Institute of Scientific and Technical Information of China (English)

    胡硕

    2016-01-01

    A real-time vehicle tracking method is proposed for traffic monitoring system at road intersec-tions, and the vehicle tracking module consists of an initialization stage and a tracking stage .Li-cense plate location based on edge density and color analysis is used to detect the license plate re -gion for tracking initialization .In the tracking stage , covariance matching is employed to track the license plate .Genetic algorithm is used to reduce the computational cost .Real-time image tracking of multi-lane vehicles is achieved .In the experiment , test videos are recorded in advance by record-ers of actual E-police systems at several different city intersections .In the tracking module , the av-erage false detection rate and missed plates rate are 1.19%, and 1.72%, respectively.

  14. Real-time performance monitoring and management system

    Science.gov (United States)

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2007-06-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  15. A distributed agent architecture for real-time knowledge-based systems: Real-time expert systems project, phase 1

    Science.gov (United States)

    Lee, S. Daniel

    1990-01-01

    We propose a distributed agent architecture (DAA) that can support a variety of paradigms based on both traditional real-time computing and artificial intelligence. DAA consists of distributed agents that are classified into two categories: reactive and cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time requirements and be deployed on on-board embedded processors. A traditional real-time computing methodology under consideration is the rate monotonic theory that can guarantee schedulability based on analytical methods. AI techniques under consideration for reactive agents are approximate or anytime reasoning that can be implemented using Bayesian belief networks as in Guardian. Cognitive agents are traditional expert systems that can be implemented in ART-Ada to meet soft real-time requirements. During the initial design of cognitive agents, it is critical to consider the migration path that would allow initial deployment on ground-based workstations with eventual deployment on on-board processors. ART-Ada technology enables this migration while Lisp-based technologies make it difficult if not impossible. In addition to reactive and cognitive agents, a meta-level agent would be needed to coordinate multiple agents and to provide meta-level control.

  16. Real-Time RFID-Based Intelligent Healthcare Diagnosis System

    Science.gov (United States)

    Khosla, Rajiv; Chowdhury, Belal

    In a health care context, the use of RFID (Radio Frequency Identi- fication) technology can be employed for not only bringing down health care costs but also to facilitate automatic streamlining patient identification processes in health centers and assist medical practitioners in quick and accurate diagnosis and treatments. In this paper, we outline a describe design and application of RFID-based Real-time Intelligent Clinical Diagnosis and Treatment Support System (ICDTS) in health care.

  17. Real-time Data Communication in Photoelectric Image Detection System

    Institute of Scientific and Technical Information of China (English)

    CHEN Wen-tao; LIU Yong-gui; HUANG Min

    2006-01-01

    High speed data communication between digital signal processor and the host is required to meet the demand of most real-time systems. PCI bus technology is a solution of this problem. The principle of data communication based on PCI has been explained. Meanwhile,the technology of data transfer between synchronous dynamic RAM(SDRAM) and an mapping space of on-chip memory(L2) by expansion direct memory access(EDMA) has also been realized.

  18. System Integration for Real-time Mobile Manipulation

    Directory of Open Access Journals (Sweden)

    Reza Oftadeh

    2014-03-01

    Full Text Available Mobile manipulators are one of the most complicated types of mechatronics systems. The performance of these robots in performing complex manipulation tasks is highly correlated with the synchronization and integration of their low-level components. This paper discusses in detail the mechatronics design of a four wheel steered mobile manipulator. It presents the manipulator ’s mechanical structure and electrical interfaces, designs low-level software architecture based on embedded PC-based controls, and proposes a systematic solution based on code generation products of MATLAB and Simulink. The remote development environment described here is used to develop real-time controller software and modules for the mobile manipulator under a POSIX-compliant, real-time Linux operating system. Our approach enables developers to reliably design controller modules that meet the hard real-time constraints of the entire low-level system architecture. Moreover, it provides a systematic framework for the development and integration of hardware devices with various communication mediums and protocols, which facilitates the development and integration process of the software controller.

  19. A Real-Time Face Recognition System Using Eigenfaces

    Directory of Open Access Journals (Sweden)

    Daniel Georgescu

    2011-12-01

    Full Text Available A real-time system for recognizing faces in a video stream provided by a surveillance camera was implemented, having real-time face detection. Thus, both face detection and face recognition techniques are summary presented, without skipping the important technical aspects. The proposed approach essentially was to implement and verify the algorithm Eigenfaces for Recognition, which solves the recognition problem for two dimensional representations of faces, using the principal component analysis. The snapshots, representing input images for the proposed system, are projected in to a face space (feature space which best defines the variation for the face images training set. The face space is defined by the ‘eigenfaces’ which are the eigenvectors of the set of faces. These eigenfaces contribute in face reconstruction of a new face image projected onto face space with a meaningful (named weight.The projection of the new image in this feature space is then compared to the available projections of training set to identify the person using the Euclidian distance.  The implemented system is able to perform real-time face detection, face recognition and can give feedback giving a window with the subject's info from database and sending an e-mail notification to interested institutions.

  20. Enhanced Utility Accrual Scheduling Algorithms for Adaptive Real Time System

    Directory of Open Access Journals (Sweden)

    Idawaty Ahmad

    2009-01-01

    Full Text Available Problem statement: This study proposed two utility accrual real time scheduling algorithms named as Preemptive Utility Accrual Scheduling (PUAS and Non-preemptive Utility Accrual Scheduling (NUAS algorithms. These algorithms addressed the unnecessary abortion problem that was identified in the existing algorithm known as General Utility Scheduling (GUS. It is observed that GUS is inefficient for independent task model because it simply aborts any task that currently executing a resource with lower utility when a new task with higher utility requests the resource. The scheduling optimality criteria are based on maximizing accrued utility accumulated from execution of all tasks in the system. These criteria are named as Utility Accrual (UA. The UA scheduling algorithms are design for adaptive real time system environment where deadline misses are tolerable and do not have great consequences to the system. Approach: We eliminated the scheduling decision to abort a task in GUS and proposed to preempt a task instead of being aborted if the task is preemptive able. We compared the performances of these algorithms by using discrete event simulation. Results: The proposed PUAS algorithm achieved the highest accrued utility for the entire load range. This is followed by the NUAS and GUS algorithms. Conclusion: Simulation results revealed that the proposed algorithms were more efficient than the existing algorithm, producing with higher accrued utility ratio and less abortion ratio making it more suitable and efficient for real time application domain.

  1. Experimental ultrasound system for real-time synthetic imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Holm, Ole; Jensen, Lars Joost

    1999-01-01

    Digital signal processing is being employed more and more in modern ultrasound scanners. This has made it possible to do dynamic receive focusing for each sample and implement other advanced imaging methods. The processing, however, has to be very fast and cost-effective at the same time. Dedicated...... chips are used in order to do real time processing. This often makes it difficult to implement radically different imaging strategies on one platform and makes the scanners less accessible for research purposes. Here flexibility is the prime concern, and the storage of data from all transducer elements......-element ultrasound transducers, and to enable real-time or near realtime processing of the acquired data. The system will be capable of performing the processing for the currently available imaging methods, and will make it possible to perform initial trials in a clinical environment with new imaging modalities...

  2. Real-Time Mapping alert system; user's manual

    Science.gov (United States)

    Torres, L.A.

    1996-01-01

    The U.S. Geological Survey has an extensive hydrologic network that records and transmits precipitation, stage, discharge, and other water- related data on a real-time basis to an automated data processing system. Data values are recorded on electronic data collection platforms at field monitoring sites. These values are transmitted by means of orbiting satellites to receiving ground stations, and by way of telecommunication lines to a U.S. Geological Survey office where they are processed on a computer system. Data that exceed predefined thresholds are identified as alert values. These alert values can help keep water- resource specialists informed of current hydrologic conditions. The current alert status at monitoring sites is of critical importance during floods, hurricanes, and other extreme hydrologic events where quick analysis of the situation is needed. This manual provides instructions for using the Real-Time Mapping software, a series of computer programs developed by the U.S. Geological Survey for quick analysis of hydrologic conditions, and guides users through a basic interactive session. The software provides interactive graphics display and query of real-time information in a map-based, menu-driven environment.

  3. Testing power system controllers by real-time simulation

    DEFF Research Database (Denmark)

    Venne, Philippe; Guillaud, Xavier; Sirois, Frédéric

    2007-01-01

    In this paper, we present a number of state-of-the art methods for testing power system controllers based on the use of a real-time power system simulator. After introducing Hypersim, we list and discuss the different means of connection between the controller under tests and the power system...... simulator. We then present two applications based on this method. The first one is an agent based controller used to increase the penetration of wind energy in a weak grid, and the second one is the controller of a gas micro turbine connected to the distribution grid....

  4. Real-time deformation measurement using a transportable shearography system

    Science.gov (United States)

    Weijers, A. L.; van Brug, Hedser H.; Frankena, Hans J.

    1997-03-01

    A new system for deformation visualization has been developed, being a real time phase stepped shearing speckle interferometer. This system provides the possibility to measure quantitatively deformations of diffusely reflecting objects in an industrial environment. The main characteristics of this interferometer are its speed of operation and its reduced sensitivity to external disturbances. Apart from its semiconductor laser source, this system has a shoe-box size and is mounted on a tripod for easy handling during inspection. This paper describes the shearing speckle interferometry set-up, as it is developed at our laboratory and its potential for detecting defects.

  5. Games and Scenarios for Real-Time System Validation

    DEFF Research Database (Denmark)

    Li, Shuhao

    This thesis presents research on the validation of real-time embedded software systems in the context of model-based development. The thesis proposes scenario-based and game-theoretic approaches to system analysis, verification, synthesis and testing to address the challenges that arise from...... the system characteristics of environment uncertainties, complex process interactions, quantitative timing constraints, partial observability and combinations thereof. We make timed extensions to live sequence chart (LSC) such that the inter-process behaviors and scenario-based requirements of concurrent...

  6. GPU real-time processing in NA62 trigger system

    Science.gov (United States)

    Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2017-01-01

    A commercial Graphics Processing Unit (GPU) is used to build a fast Level 0 (L0) trigger system tested parasitically with the TDAQ (Trigger and Data Acquisition systems) of the NA62 experiment at CERN. In particular, the parallel computing power of the GPU is exploited to perform real-time fitting in the Ring Imaging CHerenkov (RICH) detector. Direct GPU communication using a FPGA-based board has been used to reduce the data transmission latency. The performance of the system for multi-ring reconstrunction obtained during the NA62 physics run will be presented.

  7. A distributed scheduling algorithm for heterogeneous real-time systems

    Science.gov (United States)

    Zeineldine, Osman; El-Toweissy, Mohamed; Mukkamala, Ravi

    1991-01-01

    Much of the previous work on load balancing and scheduling in distributed environments was concerned with homogeneous systems and homogeneous loads. Several of the results indicated that random policies are as effective as other more complex load allocation policies. The effects of heterogeneity on scheduling algorithms for hard real time systems is examined. A distributed scheduler specifically to handle heterogeneities in both nodes and node traffic is proposed. The performance of the algorithm is measured in terms of the percentage of jobs discarded. While a random task allocation is very sensitive to heterogeneities, the algorithm is shown to be robust to such non-uniformities in system components and load.

  8. An open real-time tele-stethoscopy system

    Directory of Open Access Journals (Sweden)

    Foche-Perez Ignacio

    2012-08-01

    Full Text Available Abstract Background Acute respiratory infections are the leading cause of childhood mortality. The lack of physicians in rural areas of developing countries makes difficult their correct diagnosis and treatment. The staff of rural health facilities (health-care technicians may not be qualified to distinguish respiratory diseases by auscultation. For this reason, the goal of this project is the development of a tele-stethoscopy system that allows a physician to receive real-time cardio-respiratory sounds from a remote auscultation, as well as video images showing where the technician is placing the stethoscope on the patient’s body. Methods A real-time wireless stethoscopy system was designed. The initial requirements were: 1 The system must send audio and video synchronously over IP networks, not requiring an Internet connection; 2 It must preserve the quality of cardiorespiratory sounds, allowing to adapt the binaural pieces and the chestpiece of standard stethoscopes, and; 3 Cardiorespiratory sounds should be recordable at both sides of the communication. In order to verify the diagnostic capacity of the system, a clinical validation with eight specialists has been designed. In a preliminary test, twelve patients have been auscultated by all the physicians using the tele-stethoscopy system, versus a local auscultation using traditional stethoscope. The system must allow listen the cardiac (systolic and diastolic murmurs, gallop sound, arrhythmias and respiratory (rhonchi, rales and crepitations, wheeze, diminished and bronchial breath sounds, pleural friction rub sounds. Results The design, development and initial validation of the real-time wireless tele-stethoscopy system are described in detail. The system was conceived from scratch as open-source, low-cost and designed in such a way that many universities and small local companies in developing countries may manufacture it. Only free open-source software has been used in order to

  9. Real-time implementation of an interactive jazz accompaniment system

    Science.gov (United States)

    Deshpande, Nikhil

    Modern computational algorithms and digital signal processing (DSP) are able to combine with human performers without forced or predetermined structure in order to create dynamic and real-time accompaniment systems. With modern computing power and intelligent algorithm layout and design, it is possible to achieve more detailed auditory analysis of live music. Using this information, computer code can follow and predict how a human's musical performance evolves, and use this to react in a musical manner. This project builds a real-time accompaniment system to perform together with live musicians, with a focus on live jazz performance and improvisation. The system utilizes a new polyphonic pitch detector and embeds it in an Ableton Live system - combined with Max for Live - to perform elements of audio analysis, generation, and triggering. The system also relies on tension curves and information rate calculations from the Creative Artificially Intuitive and Reasoning Agent (CAIRA) system to help understand and predict human improvisation. These metrics are vital to the core system and allow for extrapolated audio analysis. The system is able to react dynamically to a human performer, and can successfully accompany the human as an entire rhythm section.

  10. Real-time drogue recognition and 3D locating for UAV autonomous aerial refueling based on monocular machine vision

    Institute of Scientific and Technical Information of China (English)

    Wang Xufeng; Kong Xingwei; Zhi Jianhui; Chen Yong; Dong Xinmin

    2015-01-01

    Drogue recognition and 3D locating is a key problem during the docking phase of the autonomous aerial refueling (AAR). To solve this problem, a novel and effective method based on monocular vision is presented in this paper. Firstly, by employing computer vision with red-ring-shape feature, a drogue detection and recognition algorithm is proposed to guarantee safety and ensure the robustness to the drogue diversity and the changes in environmental condi-tions, without using a set of infrared light emitting diodes (LEDs) on the parachute part of the dro-gue. Secondly, considering camera lens distortion, a monocular vision measurement algorithm for drogue 3D locating is designed to ensure the accuracy and real-time performance of the system, with the drogue attitude provided. Finally, experiments are conducted to demonstrate the effective-ness of the proposed method. Experimental results show the performances of the entire system in contrast with other methods, which validates that the proposed method can recognize and locate the drogue three dimensionally, rapidly and precisely.

  11. Wide area surveillance real-time motion detection systems

    CERN Document Server

    2014-01-01

    The book describes a system for visual surveillance using intelligent cameras. The camera uses robust techniques for detecting and tracking moving objects. The real time capture of the objects is then stored int he database. The tracking data stored in the database is analysed to study the camera view, detect and track objects, and study object behavior. These set of models provide a robust framework for coordinating the tracking of objects between overlapping and non-overlapping cameras, and recording the activity of objects detected by the system.

  12. Real-time jam-session support system

    CERN Document Server

    Tigkas, Panagiotis

    2012-01-01

    We propose a method for the problem of real time chord accompaniment of improvised music. Our implementation can learn an underlying structure of the musical performance and predict next chord. The system uses Hidden Markov Model to find the most probable chord sequence for the played melody and then a Variable Order Markov Model is used to a) learn the structure (if any) and b) predict next chord. We implemented our system in Java and MAX/Msp and compared and evaluated using objective (prediction accuracy) and subjective (questionnaire) evaluation methods.

  13. A Text Categorization System with Soft Real-Time Guarantee

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to provide predictable runtime performance for text categorization (TC) systems, an innovative system design method is proposed for soft real-time TC systems. An analyzable mathematical model is established to approximately describe the nonlinear and time-varying TC systems. According to this mathematical model, the feedback control theory is adopted to prove the system's stableness and zero steady state error. The experiments result shows that the error of deadline satisfied ratio in the system is kept within 4% of the desired value. And the number of classifiers can be dynamically adjusted by the system itself to save the computation resources. The proposed methodology enables the theoretical analysis and evaluation to the TC systems, leading to a high-quality and low-cost implementation approach.

  14. Space Shuttle telemetry analysis by a real time expert system

    Science.gov (United States)

    Muratore, John F.

    1987-01-01

    During early manned spacecraft operations, the primary role of ground telemetry systems was data display to flight controllers. As manned spaceflights have increased in complexity, greater demands have been placed on flight controllers to simultaneously monitor systems and replan systems operations. This has led to interest in automated telemetry monitoring systems to decrease the workload on flight controllers. The Mission Operations Directorate at the Lyndon B. Johnson Space Center has developed a five layer model to integrate various monitoring and analysis technologies such as digital filtering, fault detection algorithms, and expert systems. The paper describes the five layer model and explains how it has been used to guide prototyping efforts at Mission Control. Results from some initial expert systems are presented. The paper also describes the integrated prototype currently under development which implements a real time expert system to assist flight controllers in the Mission Control Center in monitoring Space Shuttle communications systems.

  15. A noninvasive technique for real-time detection of bruises in apple surface based on machine vision

    Science.gov (United States)

    Zhao, Juan; Peng, Yankun; Dhakal, Sagar; Zhang, Leilei; Sasao, Akira

    2013-05-01

    Apple is one of the highly consumed fruit item in daily life. However, due to its high damage potential and massive influence on taste and export, the quality of apple has to be detected before it reaches the consumer's hand. This study was aimed to develop a hardware and software unit for real-time detection of apple bruises based on machine vision technology. The hardware unit consisted of a light shield installed two monochrome cameras at different angles, LED light source to illuminate the sample, and sensors at the entrance of box to signal the positioning of sample. Graphical Users Interface (GUI) was developed in VS2010 platform to control the overall hardware and display the image processing result. The hardware-software system was developed to acquire the images of 3 samples from each camera and display the image processing result in real time basis. An image processing algorithm was developed in Opencv and C++ platform. The software is able to control the hardware system to classify the apple into two grades based on presence/absence of surface bruises with the size of 5mm. The experimental result is promising and the system with further modification can be applicable for industrial production in near future.

  16. Survey of real-time processing systems for big data

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Lftikhar, Nadeem; Xie, Xike

    2014-01-01

    for big data; Its open-source implementation such as Hadoop has become the de-facto standard for processing big data, however, Hadoop has the limitation of supporting real-time updates. The improvements in Hadoop for the real-time capability, and the other alternative real-time frameworks have been...

  17. Real-Time Multimission Event Notification System for Mars Relay

    Science.gov (United States)

    Wallick, Michael N.; Allard, Daniel A.; Gladden, Roy E.; Wang, Paul; Hy, Franklin H.

    2013-01-01

    As the Mars Relay Network is in constant flux (missions and teams going through their daily workflow), it is imperative that users are aware of such state changes. For example, a change by an orbiter team can affect operations on a lander team. This software provides an ambient view of the real-time status of the Mars network. The Mars Relay Operations Service (MaROS) comprises a number of tools to coordinate, plan, and visualize various aspects of the Mars Relay Network. As part of MaROS, a feature set was developed that operates on several levels of the software architecture. These levels include a Web-based user interface, a back-end "ReSTlet" built in Java, and databases that store the data as it is received from the network. The result is a real-time event notification and management system, so mission teams can track and act upon events on a moment-by-moment basis. This software retrieves events from MaROS and displays them to the end user. Updates happen in real time, i.e., messages are pushed to the user while logged into the system, and queued when the user is not online for later viewing. The software does not do away with the email notifications, but augments them with in-line notifications. Further, this software expands the events that can generate a notification, and allows user-generated notifications. Existing software sends a smaller subset of mission-generated notifications via email. A common complaint of users was that the system-generated e-mails often "get lost" with other e-mail that comes in. This software allows for an expanded set (including user-generated) of notifications displayed in-line of the program. By separating notifications, this can improve a user's workflow.

  18. A Model for Industrial Real-Time Systems

    DEFF Research Database (Denmark)

    Bin Waez, Md Tawhid; Wasowski, Andrzej; Dingel, Juergen;

    2015-01-01

    Introducing automated formal methods for large industrial real-time systems is an important research challenge. We propose timed process automata (TPA) for modeling and analysis of time-critical systems which can be open, hierarchical, and dynamic. The model offers two essential features for larg...... establish safety and reachability properties of TPA by reduction to solving timed games. To mitigate the state-space explosion problem, an automated state-space reduction technique using compositional reasoning and aggressive abstractions is also proposed.......Introducing automated formal methods for large industrial real-time systems is an important research challenge. We propose timed process automata (TPA) for modeling and analysis of time-critical systems which can be open, hierarchical, and dynamic. The model offers two essential features for large...... industrial systems: (i) compositional modeling with reusable designs for different contexts, and (ii) an automated state-space reduction technique. Timed process automata model dynamic networks of continuous-time communicating control processes which can activate other processes. We show how to automatically...

  19. Randomized Caches Considered Harmful in Hard Real-Time Systems

    Directory of Open Access Journals (Sweden)

    Jan Reineke

    2014-06-01

    Full Text Available We investigate the suitability of caches with randomized placement and replacement in the context of hard real-time systems. Such caches have been claimed to drastically reduce the amount of information required by static worst-case execution time (WCET analysis, and to be an enabler for measurement-based probabilistic timing analysis. We refute these claims and conclude that with prevailing static and measurement-based analysis techniques caches with deterministic placement and least-recently-used replacement are preferable over randomized ones.

  20. Real-Time Evaluation of Breast Self-Examination Using Computer Vision

    Directory of Open Access Journals (Sweden)

    Eman Mohammadi

    2014-01-01

    Full Text Available Breast cancer is the most common cancer among women worldwide and breast self-examination (BSE is considered as the most cost-effective approach for early breast cancer detection. The general objective of this paper is to design and develop a computer vision algorithm to evaluate the BSE performance in real-time. The first stage of the algorithm presents a method for detecting and tracking the nipples in frames while a woman performs BSE; the second stage presents a method for localizing the breast region and blocks of pixels related to palpation of the breast, and the third stage focuses on detecting the palpated blocks in the breast region. The palpated blocks are highlighted at the time of BSE performance. In a correct BSE performance, all blocks must be palpated, checked, and highlighted, respectively. If any abnormality, such as masses, is detected, then this must be reported to a doctor to confirm the presence of this abnormality and proceed to perform other confirmatory tests. The experimental results have shown that the BSE evaluation algorithm presented in this paper provides robust performance.

  1. Real-time expert system monitors complex air regs

    Energy Technology Data Exchange (ETDEWEB)

    Hasbach, A.

    1995-07-01

    The South Coast Air Quality Management District (SCAQMD) in southern California monitors NO{sub x} emissions in real time from a total of 60 boilers at the area`s five electric utilities. SCAQMD accomplishes this with an application developed using G2, an expert system from Gensym Corp., Cambridge, Mass., interfaced to monitoring equipment at each remote facility. In 1991, the SCAQMD board passed Rule 1135 requiring monitoring of nitrogen oxide (NO{sub x}) emissions from electric-power generating systems. The rule requires utilities to transmit boiler emissions data in near real-time to SCAQMD. Each utility had to install a continuous emission monitoring system (CEMS) to measure emissions from each boiler and a remote terminal unit (RTU) to telecommunicate emissions data to SCAQMD. The CEMS acquires data from sensing devices for each boiler. The RTU collects the data, performs calculations, and transmits formatted information to the Central Station Compliance Advisory Expert System at SCAQMD. This information includes NO{sub x} emissions, power generation, fuel usage, stack gas flow and equipment status.

  2. A real-time treatment guidance system for Pleural PDT

    Science.gov (United States)

    Zhu, Timothy C.; Liang, Xing; Sandell, Julia; Finlay, Jarod C.; Dimofte, Andreea; Rodriguez, Carmen; Cengel, Keith; Friedberg, Joseph; Hahn, Stephen M; Glatstein, Eli

    2015-01-01

    Intrapleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for mesothelioma. In the current intrapleural PDT protocol, a moving fiber-based point source is used to deliver the light and the light dose are monitored by 7 detectors placed in the pleural cavity. To improve the delivery of light dose uniformity, an infrared (IR) camera system is used to track the motion of the light sources. A treatment planning system uses feedback from the detectors as well as the IR camera to update light fluence distribution in real-time, which is used to guide the light source motion for uniform light dose distribution. We have reported previously the success of using IR camera to passively monitor the light fluence rate distribution. In this study, the real-time feedback has been implemented in the current system prototype, by transferring data from the IR camera to a computer at a rate of 20 Hz, and by calculation/displaying using Matlab. A dual-correction method is used in the feedback system, so that fluence calculation can match detector readings. Preliminary data from a phantom showed superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown using the correction method dose model. PMID:26005245

  3. A real-time treatment guidance system for pleural PDT

    Science.gov (United States)

    Zhu, Timothy C.; Liang, Xing; Sandell, Julia; Finlay, Jarod C.; Dimofte, Andreea; Rodriguez, Carmen; Cengel, Keith; Friedberg, Joseph; Hahn, Stephen M.; Glatstein, Eli

    2012-02-01

    Intrapleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for mesothelioma. In the current intrapleural PDT protocol, a moving fiber-based point source is used to deliver the light and the light dose are monitored by 7 detectors placed in the pleural cavity. To improve the delivery of light dose uniformity, an infrared (IR) camera system is used to track the motion of the light sources. A treatment planning system uses feedback from the detectors as well as the IR camera to update light fluence distribution in real-time, which is used to guide the light source motion for uniform light dose distribution. We have reported previously the success of using IR camera to passively monitor the light fluence rate distribution. In this study, the real-time feedback has been implemented in the current system prototype, by transferring data from the IR camera to a computer at a rate of 20 Hz, and by calculation/displaying using Matlab. A dual-correction method is used in the feedback system, so that fluence calculation can match detector readings. Preliminary data from a phantom showed superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown using the correction method dose model.

  4. Real-time vision-based detection of Rumex obtusifolius in grassland

    NARCIS (Netherlands)

    Evert, van F.K.; Polder, G.; Heijden, van der G.W.A.M.; Kempenaar, C.; Lotz, L.A.P.

    2009-01-01

    Rumex obtusifolius is a common grassland weed that is hard to control in a non-chemical way. The objective of our research was to automate the detection of R. obtusifolius as a step towards fully automated mechanical control of the weed. We have developed a vision-based system that uses textural ana

  5. Real-time vision-based detection of Rumex obtusifolius in grassland

    NARCIS (Netherlands)

    Evert, van F.K.; Polder, G.; Heijden, van der G.W.A.M.; Kempenaar, C.; Lotz, L.A.P.

    2009-01-01

    Rumex obtusifolius is a common grassland weed that is hard to control in a non-chemical way. The objective of our research was to automate the detection of R. obtusifolius as a step towards fully automated mechanical control of the weed. We have developed a vision-based system that uses textural ana

  6. Physical Oceanographic Real-Time System (PORTS) (Invited)

    Science.gov (United States)

    Wright, D.

    2013-12-01

    The 1999 Assessment of U.S. Marine Transportation System report to Congress noted that the greatest safety concern voiced by the maritime community was the availability of timely, accurate, and reliable navigation information, including real time environment data. Real time oceanographic and meteorological data, along with other navigation tools, gives the mariner a good situational understanding of their often challenging operational environment, to make the best safety of life and property decisions. The National Oceanic and Atmospheric Administration's (NOAA) Physical Oceanographic Real Time System (PORTS) was developed in response to accidents like the Sunshine Skyway Bridge collision in Tampa, FL in 1980, where the lack of accurate, reliable and timely environmental conditions directly contributed to an accident that resulted in a high loss of life and property. Since that time, PORTS has expanded to over 20 locations around the country, and its capabilities have been continually expanded and improved as well. PORTS primary mission is to prevent maritime accidents. Preventing an accident from occurring is the most cost effective approach and the best way to avoid damage to the environment. When accidents do occur, PORTS data is used to improve the effectiveness of response efforts by providing input for trajectory models and real time conditions for response efforts. However, benefits derived from PORTS go well beyond navigation safety. Another large benefit to the local maritime community is potential efficiencies in optimizing use of the existing water column. PORTS provides information that can be used to make economic decisions to add or offload cargo to a vessel and/or to maintain or adjust transit schedules based upon availability of water depth, strength/timing of tidal currents, and other conditions. PORTS data also helps improve and validate local National Weather Service marine weather forecasts. There are many benefits beyond the local maritime

  7. Distributed digital real-time control system for TCV tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.B. [École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association EURATOM-Confédération Suisse, CH-1015 Lausanne (Switzerland); Felici, F. [Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Paley, J.I.; Duval, B.P.; Moret, J.-M.; Coda, S.; Sauter, O.; Fasel, D.; Marmillod, P. [École Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association EURATOM-Confédération Suisse, CH-1015 Lausanne (Switzerland)

    2014-03-15

    Highlights: • A new distributed digital control system for the TCV tokamak has been commissioned. • Data is shared in real-time between all nodes using the reflective memory. • The customised Linux OS allows achieving deterministic and low latency behaviour. • The control algorithm design in Simulink together with the automatic code generation using Embedded Coder allow rapid algorithm development. • Controllers designed outside the TCV environment can be ported easily. • The previous control system functions have been emulated and improved. • New capabilities include MHD control, profile control, equilibrium reconstruction. - Abstract: A new digital feedback control system (named the SCD “Système de Contrôle Distribué”) has been developed, integrated and used successfully to control TCV (Tokamak à Configuration Variable) plasmas. The system is designed to be modular, distributed, and scalable, accommodating hundreds of diagnostic inputs and actuator outputs. With many more inputs and outputs available than previously possible, it offers the possibility to design advanced control algorithms with better knowledge of the plasma state and to coherently control all TCV actuators, including poloidal field (PF) coils, gas valves, the gyrotron powers and launcher angles of the electron cyclotron heating and current drive system (ECRH/ECCD) together with diagnostic triggering signals. The system consists of multiple nodes; each is a customised Linux desktop or embedded PC which may have local ADC and DAC cards. Each node is also connected to a memory network (reflective memory) providing a reliable, deterministic method of sharing memory between all nodes. Control algorithms are programmed as block diagrams in Matlab-Simulink providing a powerful environment for modelling and control design. The C code is generated automatically from the Simulink block diagram and compiled, with the Simulink Embedded Coder (SEC, formerly Real-Time Workshop Embedded

  8. Programmable Real-time Clinical Photoacoustic and Ultrasound Imaging System.

    Science.gov (United States)

    Kim, Jeesu; Park, Sara; Jung, Yuhan; Chang, Sunyeob; Park, Jinyong; Zhang, Yumiao; Lovell, Jonathan F; Kim, Chulhong

    2016-10-12

    Photoacoustic imaging has attracted interest for its capacity to capture functional spectral information with high spatial and temporal resolution in biological tissues. Several photoacoustic imaging systems have been commercialized recently, but they are variously limited by non-clinically relevant designs, immobility, single anatomical utility (e.g., breast only), or non-programmable interfaces. Here, we present a real-time clinical photoacoustic and ultrasound imaging system which consists of an FDA-approved clinical ultrasound system integrated with a portable laser. The system is completely programmable, has an intuitive user interface, and can be adapted for different applications by switching handheld imaging probes with various transducer types. The customizable photoacoustic and ultrasound imaging system is intended to meet the diverse needs of medical researchers performing both clinical and preclinical photoacoustic studies.

  9. Real-Time EEG-Based Happiness Detection System

    Directory of Open Access Journals (Sweden)

    Noppadon Jatupaiboon

    2013-01-01

    Full Text Available We propose to use real-time EEG signal to classify happy and unhappy emotions elicited by pictures and classical music. We use PSD as a feature and SVM as a classifier. The average accuracies of subject-dependent model and subject-independent model are approximately 75.62% and 65.12%, respectively. Considering each pair of channels, temporal pair of channels (T7 and T8 gives a better result than the other area. Considering different frequency bands, high-frequency bands (Beta and Gamma give a better result than low-frequency bands. Considering different time durations for emotion elicitation, that result from 30 seconds does not have significant difference compared with the result from 60 seconds. From all of these results, we implement real-time EEG-based happiness detection system using only one pair of channels. Furthermore, we develop games based on the happiness detection system to help user recognize and control the happiness.

  10. Runtime verification of embedded real-time systems.

    Science.gov (United States)

    Reinbacher, Thomas; Függer, Matthias; Brauer, Jörg

    We present a runtime verification framework that allows on-line monitoring of past-time Metric Temporal Logic (ptMTL) specifications in a discrete time setting. We design observer algorithms for the time-bounded modalities of ptMTL, which take advantage of the highly parallel nature of hardware designs. The algorithms can be translated into efficient hardware blocks, which are designed for reconfigurability, thus, facilitate applications of the framework in both a prototyping and a post-deployment phase of embedded real-time systems. We provide formal correctness proofs for all presented observer algorithms and analyze their time and space complexity. For example, for the most general operator considered, the time-bounded Since operator, we obtain a time complexity that is doubly logarithmic both in the point in time the operator is executed and the operator's time bounds. This result is promising with respect to a self-contained, non-interfering monitoring approach that evaluates real-time specifications in parallel to the system-under-test. We implement our framework on a Field Programmable Gate Array platform and use extensive simulation and logic synthesis runs to assess the benefits of the approach in terms of resource usage and operating frequency.

  11. Monitoring and Acquisition Real-time System (MARS)

    Science.gov (United States)

    Holland, Corbin

    2013-01-01

    MARS is a graphical user interface (GUI) written in MATLAB and Java, allowing the user to configure and control the Scalable Parallel Architecture for Real-Time Acquisition and Analysis (SPARTAA) data acquisition system. SPARTAA not only acquires data, but also allows for complex algorithms to be applied to the acquired data in real time. The MARS client allows the user to set up and configure all settings regarding the data channels attached to the system, as well as have complete control over starting and stopping data acquisition. It provides a unique "Test" programming environment, allowing the user to create tests consisting of a series of alarms, each of which contains any number of data channels. Each alarm is configured with a particular algorithm, determining the type of processing that will be applied on each data channel and tested against a defined threshold. Tests can be uploaded to SPARTAA, thereby teaching it how to process the data. The uniqueness of MARS is in its capability to be adaptable easily to many test configurations. MARS sends and receives protocols via TCP/IP, which allows for quick integration into almost any test environment. The use of MATLAB and Java as the programming languages allows for developers to integrate the software across multiple operating platforms.

  12. IMPLEMENTATION OF IMAGE PROCESSING IN REAL TIME CAR PARKING SYSTEM

    Directory of Open Access Journals (Sweden)

    SAYANTI BANERJEE,

    2011-02-01

    Full Text Available Car parking lots are an important object class in many traffic and civilian applications. With the problems of increasing urban trafficcongestion and the ever increasing shortage of space, these car parking lots are needed to be well equipped with automatic parkingInformation and Guidance systems. Goals of intelligent parking lot management include counting the number of parked cars, and identifyingthe available location. This work proposes a new system for providing parking information and guidance using image processing. The proposed system includes counting the number of parked vehicles, and dentifying the stalls available. The system detects cars through images instead of using electronic sensors embedded on the floor. A camera is installed at the entry point of the parking lot. It capturesimage sequences. The image sequences are then analyzed using digital image processing for vehicle detection and according to the status ofvehicle occupancy inside, real time guidance and information is provided to the incoming driver.

  13. Real-time control open systems of five DOF nanomanipulators

    Science.gov (United States)

    Vladareanu, Luige; Vasile, Alexandru

    2010-11-01

    The main paper presents studies and research concerning the development of new open architectures for real-time control of a 5 degrees of freedom platform with 4 nano-manipulators, based on multiprocessor systems operating in a cooperation regime in order to achieve experiments in the 4 research domains: robotics, vibro-acustica, tribology, carbon nano tubes (CNTs ). In order to obtain this performance a positioning method with high precision at high speed is developed through reducing and compensating the induced dynamic vibrations by the system movement using the inverse dynamics method. The system's performance will allow the introduction of new functions without significant change to the hardware system. Through determining the optimal trajectory using a quadratic cost function for reducing tracking errors results increased motion speed and micro or nanometric positioning precision.

  14. Optimal Real-time Dispatch for Integrated Energy Systems

    DEFF Research Database (Denmark)

    Anvari-Moghaddam, Amjad; Guerrero, Josep M.; Rahimi-Kian, Ashkan

    2016-01-01

    With the emerging of small-scale integrated energy systems (IESs), there are significant potentials to increase the functionality of a typical demand-side management (DSM) strategy and typical implementation of building-level distributed energy resources (DERs). By integrating DSM and DERs...... into a cohesive, networked package that fully utilizes smart energy-efficient end-use devices, advanced building control/automation systems, and integrated communications architectures, it is possible to efficiently manage energy and comfort at the end-use location. In this paper, an ontology-driven multi......-agent control system with intelligent optimizers is proposed for optimal real-time dispatch of an integrated building and microgrid system considering coordinated demand response (DR) and DERs management. The optimal dispatch problem is formulated as a mixed integer nonlinear programing problem (MINLP...

  15. Real-time fetal ECG system design using embedded microprocessors

    Science.gov (United States)

    Meyer-Baese, Uwe; Muddu, Harikrishna; Schinhaerl, Sebastian; Kumm, Martin; Zipf, Peter

    2016-05-01

    The emphasis of this project lies in the development and evaluation of new robust and high fidelity fetal electrocardiogram (FECG) systems to determine the fetal heart rate (FHR). Recently several powerful algorithms have been suggested to improve the FECG fidelity. Until now it is unknown if these algorithms allow a real-time processing, can be used in mobile systems (low power), and which algorithm produces the best error rate for a given system configuration. In this work we have developed high performance, low power microprocessor-based biomedical systems that allow a fair comparison of proposed, state-of-the-art FECG algorithms. We will evaluate different soft-core microprocessors and compare these solutions to other commercial off-the-shelf (COTS) hardcore solutions in terms of price, size, power, and speed.

  16. High Performance Embedded System for Real-Time Pattern Matching

    CERN Document Server

    Sotiropoulou, Calliope Louisa; The ATLAS collaboration; Gkaitatzis, Stamatios; Citraro, Saverio; Giannetti, Paola; Dell'Orso, Mauro

    2016-01-01

    In this paper we present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics (HEP) and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturised version of this complex system is being developed for pattern matching in generic image processing applications. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain. The pattern matching can be executed by a custom designed Associative Memory (AM) chip. The reference patterns are chosen by a complex training algorithm implemented on an FPGA device. Post processing algorithms (e.g. pixel clustering...

  17. High-resolution imaging with a real-time synthetic aperture ultrasound system: a phantom study

    Science.gov (United States)

    Huang, Lianjie; Labyed, Yassin; Simonetti, Francesco; Williamson, Michael; Rosenberg, Robert; Heintz, Philip; Sandoval, Daniel

    2011-03-01

    It is difficult for ultrasound to image small targets such as breast microcalcifications. Synthetic aperture ultrasound imaging has recently developed as a promising tool to improve the capabilities of medical ultrasound. We use two different tissueequivalent phantoms to study the imaging capabilities of a real-time synthetic aperture ultrasound system for imaging small targets. The InnerVision ultrasound system DAS009 is an investigational system for real-time synthetic aperture ultrasound imaging. We use the system to image the two phantoms, and compare the images with those obtained from clinical scanners Acuson Sequoia 512 and Siemens S2000. Our results show that synthetic aperture ultrasound imaging produces images with higher resolution and less image artifacts than Acuson Sequoia 512 and Siemens S2000. In addition, we study the effects of sound speed on synthetic aperture ultrasound imaging and demonstrate that an accurate sound speed is very important for imaging small targets.

  18. TractorEYE: Vision-based Real-time Detection for Autonomous Vehicles in Agriculture

    DEFF Research Database (Denmark)

    Christiansen, Peter

    2017-01-01

    and algorithms that have been demonstrated in an end-to-end real-time detection system. The contributions of this thesis have demonstrated, addressed and solved critical issues to utilize camera-based perception systems that are essential to make autonomous vehicles in agriculture a reality....... for autonomous vehicles in agriculture. The multi-sensor system consists of three hardware synchronized and registered sensors (stereo camera, thermal camera and multi-beam lidar) mounted on/in a ruggedized and water-resistant casing. Algorithms have been developed to run a total of six detection algorithms...... (four for rgb camera, one for thermal camera and one for a Multi-beam lidar) and fuse detection information in a common format using either 3D positions or Inverse Sensor Models. A GPU powered computational platform is able to run detection algorithms online. For the rgb camera, a deep learning...

  19. Real Time Decoding of Color Symbol for Optical Positioning System

    Directory of Open Access Journals (Sweden)

    Abdul Waheed Malik

    2015-01-01

    Full Text Available This paper presents the design and real-time decoding of a color symbol that can be used as a reference marker for optical navigation. The designed symbol has a circular shape and is printed on paper using two distinct colors. This pair of colors is selected based on the highest achievable signal to noise ratio. The symbol is designed to carry eight bit information. Real time decoding of this symbol is performed using a heterogeneous combination of Field Programmable Gate Array (FPGA and a microcontroller. An image sensor having a resolution of 1600 by 1200 pixels is used to capture images of symbols in complex back‐ grounds. Dynamic image segmentation, component labeling and feature extraction was performed on the FPGA. The region of interest was further computed from the extracted features. Feature data belonging to the symbol was sent from the FPGA to the microcontroller. Image processing tasks are partitioned between the FPGA and microcontroller based on data intensity. Experiments were performed to verify the rotational independence of the symbols. The maximum distance between camera and symbol allowing for correct detection and decoding was analyzed. Experiments were also performed to analyze the number of generated image components and sub-pixel precision versus different light sources and intensities. The proposed hardware architecture can process up to 55 frames per second for accurate detection and decoding of symbols at two Megapixels resolution. The power consumption of the complete system is 342mw.

  20. Real Time Decoding of Color Symbol for Optical Positioning System

    Directory of Open Access Journals (Sweden)

    Abdul Waheed Malik

    2015-01-01

    Full Text Available This paper presents the design and real-time decoding of a color symbol that can be used as a reference marker for optical navigation. The designed symbol has a circular shape and is printed on paper using two distinct colors. This pair of colors is selected based on the highest achievable signal to noise ratio. The symbol is designed to carry eight bit information. Real time decoding of this symbol is performed using a heterogeneous combination of Field Programmable Gate Array (FPGA and a microcontroller. An image sensor having a resolution of 1600 by 1200 pixels is used to capture images of symbols in complex backgrounds. Dynamic image segmentation, component labeling and feature extraction was performed on the FPGA. The region of interest was further computed from the extracted features. Feature data belonging to the symbol was sent from the FPGA to the microcontroller. Image processing tasks are partitioned between the FPGA and microcontroller based on data intensity. Experiments were performed to verify the rotational independence of the symbols. The maximum distance between camera and symbol allowing for correct detection and decoding was analyzed. Experiments were also performed to analyze the number of generated image components and sub-pixel precision versus different light sources and intensities. The proposed hardware architecture can process up to 55 frames per second for accurate detection and decoding of symbols at two Megapixels resolution. The power consumption of the complete system is 342mw.

  1. Low-cost real-time automatic wheel classification system

    Science.gov (United States)

    Shabestari, Behrouz N.; Miller, John W. V.; Wedding, Victoria

    1992-11-01

    This paper describes the design and implementation of a low-cost machine vision system for identifying various types of automotive wheels which are manufactured in several styles and sizes. In this application, a variety of wheels travel on a conveyor in random order through a number of processing steps. One of these processes requires the identification of the wheel type which was performed manually by an operator. A vision system was designed to provide the required identification. The system consisted of an annular illumination source, a CCD TV camera, frame grabber, and 386-compatible computer. Statistical pattern recognition techniques were used to provide robust classification as well as a simple means for adding new wheel designs to the system. Maintenance of the system can be performed by plant personnel with minimal training. The basic steps for identification include image acquisition, segmentation of the regions of interest, extraction of selected features, and classification. The vision system has been installed in a plant and has proven to be extremely effective. The system properly identifies the wheels correctly up to 30 wheels per minute regardless of rotational orientation in the camera's field of view. Correct classification can even be achieved if a portion of the wheel is blocked off from the camera. Significant cost savings have been achieved by a reduction in scrap associated with incorrect manual classification as well as a reduction of labor in a tedious task.

  2. Resource-Parameterized Timing Analysis of Real-Time Systems

    DEFF Research Database (Denmark)

    Kim, Jin Hyun; Legay, Axel; Larsen, Kim Guldstrand

    2015-01-01

    Cyber-Physical Systems (CPS) are subject to platform-given resource constraints upon such resources as CPU, memory, and bus, in executing their functionalities. This causes the behavior of a verified application to deviate from its intended timing behavior when the application is integrated...... on a specic platform. For the same reason, a configuration of platforms cannot be independent from applications in most cases. This paper proposes a new analysis framework of real-time systems where an application and a platform can be analyzed in a fully independent way such that not only the application...... be parameterized by various resource congurations. For analysis of application and platform models, we use two model checking techniques: symbolic and statistical model checking techniques of Uppaal. Our framework is demonstrated by a case study where a turn indicator system is analyzed with respect to various...

  3. Model Checking Real-Time Value-Passing Systems

    Institute of Scientific and Technical Information of China (English)

    Jing Chen; Zio-Ning Cao

    2004-01-01

    In this paper,to model check real-time value-passing systems,a formal language Timed Symbolic Transition Graph and a logic system named Timed Predicate μ-Calculus are proposed.An algorithm is presented which is local in that it generates and investigates the reachable state space in top-down fashion and maintains the partition for time evaluations as coarse as possible while on-the-fly instantiating data variables.It can deal with not only data variables with finite value domain,but also the so called data independent variables with infinite value domain.To authors knowledge,this is the first algorithm for model checking timed systems containing value-passing features.

  4. Bird Vision System

    Science.gov (United States)

    2008-01-01

    The Bird Vision system is a multicamera photogrammerty software application that runs on a Microsoft Windows XP platform and was developed at Kennedy Space Center by ASRC Aerospace. This software system collects data about the locations of birds within a volume centered on the Space Shuttle and transmits it in real time to the laptop computer of a test director in the Launch Control Center (LCC) Firing Room.

  5. PRIMAS: real-time image-based motion measurement system

    Science.gov (United States)

    Furnee, E. Hans

    1990-08-01

    The PRIMAS system derives from a long line of development at Delft University of Technology , originating from [1] with subsequent innovations such as strobed illumination (1974) of reflective markers, to obtain the simultaneous, equidistant, periodic sampling of all marker positions; real-time estimation of the marker centroids from the full, digitized, contours (1984) to retain the on-line data reduction, while enhancing the resolution; interfacing to industry-standard AT type personal computers, with modest disk requirements and no buffering, even for long data runs; 100 Hz, 0.1 ms integration time, electronically-shuttered TV cameras, to get an optimum marker contrast in high ambient or outdoor light conditions (1986). System specifications include a precision of typ. 1:18000 (X) for 2-D coordinate noise or repeatability. With the 100 Hz sample rate this implies an unprecedented spatio-temporal resolution [2]. This favors 3-D reconstruction, as well as a low noise propagation in the estimation of first and higher order derivatives, as are routinely required in biomechanics analysis. The latest feature is real-time marker identification by a software module within the data acquisition program. This option, for the not too complex situations, is feasible only by the data reduction inherent in on-line marker centroid processing. The 3-D calibration, reconstruction and further analytical and display programs are available in the ASYST 3.2 Scientific Language System. A source code option caters for customer extensions. The internal VME/VSB system bus allows the basic dual or quad camera 3-D systems to be readily expanded to larger configurations.

  6. Real-time monitoring of drowsiness through wireless nanosensor systems

    Science.gov (United States)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Detection of sleepiness and drowsiness in human beings has been a daunting task for both engineering and medical technologies. Accuracy, precision and promptness of detection have always been an issue that has to be dealt by technologists. Generally, the bio potential signals - ECG, EOG, EEG and EMG are used to classify and discriminate sleep from being awake. However, the potential drawbacks may be high false detections, low precision, obtrusiveness, aftermath analysis, etc. To overcome the disadvantages, this paper reviews the design aspects of a wireless and a real time monitoring system to track sleep and detect fatigue. This concept involves the use of EOG and EEG to measure the blink rate and asses the person's condition. In this user friendly and intuitive approach, EOG and EEG signals are obtained by the textile based nanosensors mounted on the inner side of a flexible headband. The acquired signals are then electrically transmitted to the data processing and transmission unit, which transmits the processed data to the receiver/monitoring module through ZigBee communication. This system is equipped with a software program to process, feature extract, analyze, display and store the information. Thereby, immediate detection of a person falling asleep is made feasible and, tracking the sleep cycle continuously provides an insight about the fatigue level. This approach of using a wireless, real time, dry sensor on a flexible substrate mitigates obtrusiveness that is expected from a wearable system. We have previously presented the results of the aforementioned wearable systems. This paper aims to extend our work conceptually through a review of engineering and medical techniques involved in wearable systems to detect drowsiness.

  7. SABA: A Testbed for a Real-Time MIMO System

    Directory of Open Access Journals (Sweden)

    Brühl Lars

    2006-01-01

    Full Text Available The growing demand for high data rates for wireless communication systems leads to the development of new technologies to increase the channel capacity thus increasing the data rate. MIMO (multiple-input multiple-output systems are best qualified for these applications. In this paper, we present a MIMO test environment for high data rate transmissions in frequency-selective environments. An overview of the testbed is given, including the analyzed algorithms, the digital signal processing with a new highly parallel processor to perform the algorithms in real time, as well as the analog front-ends. A brief overview of the influence of polarization on the channel capacity is given as well.

  8. Design and implementation of real time AES-128 on real time operating system for multiple FPGA communication

    CERN Document Server

    Paul, Rourab; Sau, Suman; Chakrabarti, Amlan

    2012-01-01

    Security is the most important part in data communication system, where more randomization in secret keys increases the security as well as complexity of the cryptography algorithms. As a result in recent dates these algorithms are compensating with enormous memory spaces and large execution time on hardware platform. Field programmable gate arrays (FPGAs), provide one of the major alternative in hardware platform scenario due to its reconfiguration nature, low price and marketing speed. In FPGA based embedded system we can use embedded processor to execute particular algorithm with the inclusion of a real time operating System (RTOS), where threads may reduce resource utilization and time consumption. A process in the runtime is separated in different smaller tasks which are executed by the scheduler to meet the real time dead line using RTOS. In this paper we demonstrate the design and implementation of a 128-bit Advanced Encryption Standard (AES) both symmetric key encryption and decryption algorithm by de...

  9. Visualizing Concurrency Control Algorithms for Real-Time Database Systems

    Directory of Open Access Journals (Sweden)

    Olusegun Folorunso

    2008-11-01

    Full Text Available This paper describes an approach to visualizing concurrency control (CC algorithms for real-time database systems (RTDBs. This approach is based on the principle of software visualization, which has been applied in related fields. The Model-View-controller (MVC architecture is used to alleviate the black box syndrome associated with the study of algorithm behaviour for RTDBs Concurrency Controls. We propose a Visualization "exploratory" tool that assists the RTDBS designer in understanding the actual behaviour of the concurrency control algorithms of choice and also in evaluating the performance quality of the algorithm. We demonstrate the feasibility of our approach using an optimistic concurrency control model as our case study. The developed tool substantiates the earlier simulation-based performance studies by exposing spikes at some points when visualized dynamically that are not observed using usual static graphs. Eventually this tool helps solve the problem of contradictory assumptions of CC in RTDBs.

  10. Real-time, interactive, visually updated simulator system for telepresence

    Science.gov (United States)

    Schebor, Frederick S.; Turney, Jerry L.; Marzwell, Neville I.

    1991-01-01

    Time delays and limited sensory feedback of remote telerobotic systems tend to disorient teleoperators and dramatically decrease the operator's performance. To remove the effects of time delays, key components were designed and developed of a prototype forward simulation subsystem, the Global-Local Environment Telerobotic Simulator (GLETS) that buffers the operator from the remote task. GLETS totally immerses an operator in a real-time, interactive, simulated, visually updated artificial environment of the remote telerobotic site. Using GLETS, the operator will, in effect, enter into a telerobotic virtual reality and can easily form a gestalt of the virtual 'local site' that matches the operator's normal interactions with the remote site. In addition to use in space based telerobotics, GLETS, due to its extendable architecture, can also be used in other teleoperational environments such as toxic material handling, construction, and undersea exploration.

  11. Real-time control of sewer systems using turbidity measurements.

    Science.gov (United States)

    Lacour, C; Schütze, M

    2011-01-01

    Real-time control (RTC) of urban drainage systems has been proven useful as a means to reduce pollution by combined sewer overflow discharges. So far, RTC has been investigated mainly with a sole focus on water quantity aspects. However, as measurement techniques for pollution of wastewater are advancing, pollution-based RTC might be of increasing interest. For example, turbidity data sets from an extensive measurement programme in two Paris catchments allow a detailed investigation of the benefits of using pollution-based data for RTC. This paper exemplifies this, comparing pollution-based RTC with flow-based RTC. Results suggest that pollution-based RTC indeed has some potential, particularly when measurements of water-quality characteristics are readily available.

  12. Weighted Clustering Based Preemptive Scheduling For Real Time System

    Directory of Open Access Journals (Sweden)

    H.S Behera

    2012-05-01

    Full Text Available In this paper a new improved clustering based scheduling algorithm for a single processor environment is proposed. In the proposed method, processes are organized into non-overlapping clusters.For each process the variance from the median, is calculated and compared with the variance from the means of other clusters. Each process is assigned to the cluster associated with the closest median. The new median of each cluster is calculated and the procedure is repeated until the medians are fixed. Weight is assigned to each cluster using the externally assigned priorities and the burst time. The cluster with highest weight is executed first and jobs are scheduled using the Round Robin algorithm with calculated dynamic time slice.. The experimental study of the proposed scheduling algorithm shows that the high priority jobs can be executed first to meet the deadlines and also prevents starvation of processes at the same time which is crucial in a real time system.

  13. Wavelet-Based Real-Time Diagnosis of Complex Systems

    Science.gov (United States)

    Gulati, Sandeep; Mackey, Ryan

    2003-01-01

    A new method of robust, autonomous real-time diagnosis of a time-varying complex system (e.g., a spacecraft, an advanced aircraft, or a process-control system) is presented here. It is based upon the characterization and comparison of (1) the execution of software, as reported by discrete data, and (2) data from sensors that monitor the physical state of the system, such as performance sensors or similar quantitative time-varying measurements. By taking account of the relationship between execution of, and the responses to, software commands, this method satisfies a key requirement for robust autonomous diagnosis, namely, ensuring that control is maintained and followed. Such monitoring of control software requires that estimates of the state of the system, as represented within the control software itself, are representative of the physical behavior of the system. In this method, data from sensors and discrete command data are analyzed simultaneously and compared to determine their correlation. If the sensed physical state of the system differs from the software estimate (see figure) or if the system fails to perform a transition as commanded by software, or such a transition occurs without the associated command, the system has experienced a control fault. This method provides a means of detecting such divergent behavior and automatically generating an appropriate warning.

  14. A Real-Time Offshore Weather Risk Advisory System

    Science.gov (United States)

    Jolivet, Samuel; Zemskyy, Pavlo; Mynampati, Kalyan; Babovic, Vladan

    2015-04-01

    Offshore oil and gas operations in South East Asia periodically face extended downtime due to unpredictable weather conditions, including squalls that are accompanied by strong winds, thunder, and heavy rains. This downtime results in financial losses. Hence, a real time weather risk advisory system is developed to provide the offshore Oil and Gas (O&G) industry specific weather warnings in support of safety and environment security. This system provides safe operating windows based on sensitivity of offshore operations to sea state. Information products for safety and security include area of squall occurrence for the next 24 hours, time before squall strike, and heavy sea state warning for the next 3, 6, 12 & 24 hours. These are predicted using radar now-cast, high resolution Numerical Weather Prediction (NWP) and Data Assimilation (DA). Radar based now-casting leverages the radar data to produce short term (up to 3 hours) predictions of severe weather events including squalls/thunderstorms. A sea state approximation is provided through developing a translational model based on these predictions to risk rank the sensitivity of operations. A high resolution Weather Research and Forecasting (WRF, an open source NWP model) is developed for offshore Brunei, Malaysia and the Philippines. This high resolution model is optimized and validated against the adaptation of temperate to tropical met-ocean parameterization. This locally specific parameters are calibrated against federated data to achieve a 24 hour forecast of high resolution Convective Available Potential Energy (CAPE). CAPE is being used as a proxy for the risk of squall occurrence. Spectral decomposition is used to blend the outputs of the now-cast and the forecast in order to assimilate near real time weather observations as an implementation of the integration of data sources. This system uses the now-cast for the first 3 hours and then the forecast prediction horizons of 3, 6, 12 & 24 hours. The output is

  15. New real-time image processing system for IRFPA

    Institute of Scientific and Technical Information of China (English)

    WANG Bing-jian; LIU Shang-qian; CHENG Yu-bao

    2006-01-01

    Influenced by detectors' material,manufacturing technology etc,every detector in infrared focal plane array (IRFPA) will output different voltages even if their input radiation flux is the same.And this is called non-uniformity of IRFPA.At the same time,the high background temperature,low temperature difference between targets and background and the low responsivity of IRFPA result in low contrast of infrared images.So non-uniformity correction and image enhancement are important techniques for IRFPA imaging system.This paper proposes a new real-time infrared image processing system based on Field Programmable Gate Array(FPGA).The system implements non-uniformity correction,image enhancement and video synthesization etc.By using parallel architecture and pipeline technique,the system processing speed is as high as 50Mx12bits per second.It is appropriate greatly to a large IRFPA and a high frame frequency IRFPA imaging system.The system is miniatured in one FPGA.

  16. High performance embedded system for real-time pattern matching

    Science.gov (United States)

    Sotiropoulou, C.-L.; Luciano, P.; Gkaitatzis, S.; Citraro, S.; Giannetti, P.; Dell'Orso, M.

    2017-02-01

    In this paper we present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturized version of this complex system is being developed for pattern matching in generic image processing applications. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain. The pattern matching can be executed by a custom designed Associative Memory chip. The reference patterns are chosen by a complex training algorithm implemented on an FPGA device. Post processing algorithms (e.g. pixel clustering) are also implemented on the FPGA. The pattern matching can be executed on a 2D or 3D space, on black and white or grayscale images, depending on the application and thus increasing exponentially the processing requirements of the system. We present the firmware implementation of the training and pattern matching algorithm, performance and results on a latest generation Xilinx Kintex Ultrascale FPGA device.

  17. Real-Time Verification of Integrity Policies for Distributed Systems

    Directory of Open Access Journals (Sweden)

    Ernesto Buelna

    2013-12-01

    Full Text Available We introduce a mechanism for the verification of real-time integrity policies about the operation of a distributed system. Our mechanism is based on Microsoft .NET technologies. Unlike rival competitors, it is not intrusive, as it hardly modifies the source code of any component of the system to be monitored. Our mechanism consists of four modules: the specification module, which comes with a security policy specification language, geared towards the capture of integrity policies; the monitoring module, which includes a code injector, whereby the mechanism observes how specific methods of the system, referred to by some policy, are invoked; the verifier module, which examines the operation of the distributed system in order to determine whether is policy compliant or not; and, the reporter module, which notifies the system is policy compliant, or sends an alert upon the occurrence of a contingency, indicating policy violation. We argue that our mechanism can be framed within the Clark and Wilson security model, and, thus, used to realise information integrity. We illustrate the workings and the power of our mechanism on a simple, but industrial-strength, case study.

  18. Precomputed Clustering for Movie Recommendation System in Real Time

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-01-01

    of recommendation systems grows, we started working on the movie recommendation systems. Most research efforts in the fields of movie recommendation system are focusing on discovering the most relevant features from users, or seeking out users who share same tastes as that of the given user as well as recommending the movies according to the liking of these sought users or seeking out users who share a connection with other people (friends, classmates, colleagues, etc. and make recommendations based on those related people’s tastes. However, little research has focused on recommending movies based on the movie’s features. In this paper, we present a novel idea that applies machine learning techniques to construct a cluster for the movie by implementing a distance matrix based on the movie features and then make movie recommendation in real time. We implement some different clustering methods and evaluate their performance in a real movie forum website owned by one of our authors. This idea can also be used in other types of recommendation systems such as music, news, and articles.

  19. Development of a real-time radiological dose assessment system

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moon Hee; Lee, Young Bok; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae; Choi, Young Gil

    1997-07-01

    A radiological dose assessment system named FADAS has been developed. This system is necessary to estimated the radiological consequences against a nuclear accident. Mass-consistent wind field module was adopted for the generation of wind field over the whole domain using the several measured wind data. Random-walk dispersion module is used for the calculation of the distribution of radionuclides in the atmosphere. And volume-equivalent numerical integration method has been developed for the assessment of external gamma exposure given from a randomly distributed radioactive materials and a dose data library has been made for rapid calculation. Field tracer experiments have been carried out for the purpose of analyzing the site-specific meteorological characteristics and increasing the accuracy of wind field generation and atmospheric dispersion module of FADAS. At first, field tracer experiment was carried out over flat terrain covered with rice fields using the gas samplers which were designed and manufactured by the staffs of KAERI. The sampled gas was analyzed using gas chromatograph. SODAR and airsonde were used to measure the upper wind. Korean emergency preparedness system CARE was integrated at Kori 4 nuclear power plants in 1995. One of the main functions of CARE is to estimate the radiological dose. The developed real-time dose assessment system FADAS was adopted in CARE as a tool for the radiological dose assessment. (author). 79 refs., 52 tabs., 94 figs.

  20. GPUs for real-time processing in HEP trigger systems

    Science.gov (United States)

    Ammendola, R.; Biagioni, A.; Deri, L.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Messina, A.; Sozzi, M.; Pantaleo, F.; Paolucci, Ps; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.; Gap Collaboration

    2014-06-01

    We describe a pilot project (GAP - GPU Application Project) for the use of GPUs (Graphics processing units) for online triggering applications in High Energy Physics experiments. Two major trends can be identified in the development of trigger and DAQ systems for particle physics experiments: the massive use of general-purpose commodity systems such as commercial multicore PC farms for data acquisition, and the reduction of trigger levels implemented in hardware, towards a fully software data selection system ("trigger-less"). The innovative approach presented here aims at exploiting the parallel computing power of commercial GPUs to perform fast computations in software not only in high level trigger levels but also in early trigger stages. General-purpose computing on GPUs is emerging as a new paradigm in several fields of science, although so far applications have been tailored to the specific strengths of such devices as accelerators in offline computation. With the steady reduction of GPU latencies, and the increase in link and memory throughputs, the use of such devices for real-time applications in high energy physics data acquisition and trigger systems is becoming relevant. We discuss in detail the use of online parallel computing on GPUs for synchronous low-level triggers with fixed latency. In particular we show preliminary results on a first test in the CERN NA62 experiment. The use of GPUs in high level triggers is also considered, the CERN ATLAS experiment being taken as a case study of possible applications.

  1. Real-Time Safety Risk Assessment Based on a Real-Time Location System for Hydropower Construction Sites

    Directory of Open Access Journals (Sweden)

    Hanchen Jiang

    2014-01-01

    Full Text Available The concern for workers’ safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM, the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns.

  2. Real-time safety risk assessment based on a real-time location system for hydropower construction sites.

    Science.gov (United States)

    Jiang, Hanchen; Lin, Peng; Fan, Qixiang; Qiang, Maoshan

    2014-01-01

    The concern for workers' safety in construction industry is reflected in many studies focusing on static safety risk identification and assessment. However, studies on real-time safety risk assessment aimed at reducing uncertainty and supporting quick response are rare. A method for real-time safety risk assessment (RTSRA) to implement a dynamic evaluation of worker safety states on construction site has been proposed in this paper. The method provides construction managers who are in charge of safety with more abundant information to reduce the uncertainty of the site. A quantitative calculation formula, integrating the influence of static and dynamic hazards and that of safety supervisors, is established to link the safety risk of workers with the locations of on-site assets. By employing the hidden Markov model (HMM), the RTSRA provides a mechanism for processing location data provided by the real-time location system (RTLS) and analyzing the probability distributions of different states in terms of false positives and negatives. Simulation analysis demonstrated the logic of the proposed method and how it works. Application case shows that the proposed RTSRA is both feasible and effective in managing construction project safety concerns.

  3. Integrated real time bowel sound detector for artificial pancreas systems

    Directory of Open Access Journals (Sweden)

    Khandaker A. Al Mamun

    2016-03-01

    Full Text Available This paper reports an ultra-low power real time bowel sound detector with integrated feature extractor for physiologic measure of meal instances in artificial pancreas devices. The system can aid in improving long term diabetic patient care and consists of a front end detector and signal processing unit. The front end detector transduces the initial bowel sound recorded from a piezoelectric sensor into a voltage signal. The signal processor uses a feature extractor to determine whether a bowel sound is detected. The feature extractor consists of a low noise, low power signal front-end, peak and trough locator, signal slope and width detector, digitizer, and bowel pulse locator. The system was fabricated in a standard 0.18 μm CMOS process, and the bowel sound detection system was characterized and verified with experimentally recorded bowel sounds. The integrated instrument consumes 53 μW of power from a 1 V supply in a 0.96 mm2 area, and is suitable for integration with portable devices.

  4. Real-time evolution of quenched quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Moeckel, Michael

    2009-06-24

    Detailed geometries in heterostructures allow for nonequilibrium transport measurements in correlated systems, pump-probe experiments for time-resolved study of many-body relaxation in molecules and solids and ultracold atom gases loaded onto optical lattices for high control of system parameters in real time. In all of these fields of research the nonequilibrium properties of a Fermi liquid can be relevant. A first approach to their understanding is the main content of this thesis. At the beginning I collect a variety of nonequilibrium phenomena and introduce to basic questions and concepts for their study. The key observation of this thesis, namely a characteristic mismatch of expectation values in equilibrium and nonequilibrium, is first illustrated for the squeezed oscillator. Afterwards, these observations are generalized to a larger class of one-particle models. Then the nonequilibrium behavior of a Fermi liquid is examined by analyzing the Fermi liquid phase of the Hubbard model in more than one dimension. After a sudden switch-on of a weak two-particle interaction to the noninteracting Fermi gas the relaxation of the many-body system is observed. For this purpose, the flow equation transformation is implemented for the Hubbard Hamiltonian. Then the discussion of the momentum distribution function and of the kinetic energy displays a three-step relaxation behavior of the Fermi liquid from the initial perturbation until thermalization is reached. In order to extend the study of sudden switching to arbitrary switching processes the calculation is repeated using the Keldysh perturbation theory. (orig.)

  5. A Replication Protocol for Real Time database System

    Directory of Open Access Journals (Sweden)

    Ashish Srivastava

    2012-06-01

    Full Text Available Database replication protocols for real time system based on a certification approach are usually the best ones for achieving good performance. The weak voting approach achieves a slightly longer transaction completion time, but with a lower abortion rate. So, both techniques can be considered as the best ones for replication when performance is a must, and both of them take advantage of the properties provided by atomic broadcast. We propose a new database replication strategy that shares many characteristics with such previous strategies. It is also based on totally ordering the application of writesets, using only an unordered reliable broadcast, instead of an atomic broadcast. Additionally, the writesets of transactions that are aborted in the final validation phase along with verification phase incorporated in the new system are not broadcast in our strategy rather than only validation phase. Thus, this new approach certainly reducesc the communication traffic and also achieves a good transaction response time (even shorter than those previous strategies associated with only validation phase in some system configurations.

  6. Video-based real-time on-street parking occupancy detection system

    Science.gov (United States)

    Bulan, Orhan; Loce, Robert P.; Wu, Wencheng; Wang, YaoRong; Bernal, Edgar A.; Fan, Zhigang

    2013-10-01

    Urban parking management is receiving significant attention due to its potential to reduce traffic congestion, fuel consumption, and emissions. Real-time parking occupancy detection is a critical component of on-street parking management systems, where occupancy information is relayed to drivers via smart phone apps, radio, Internet, on-road signs, or global positioning system auxiliary signals. Video-based parking occupancy detection systems can provide a cost-effective solution to the sensing task while providing additional functionality for traffic law enforcement and surveillance. We present a video-based on-street parking occupancy detection system that can operate in real time. Our system accounts for the inherent challenges that exist in on-street parking settings, including illumination changes, rain, shadows, occlusions, and camera motion. Our method utilizes several components from video processing and computer vision for motion detection, background subtraction, and vehicle detection. We also present three traffic law enforcement applications: parking angle violation detection, parking boundary violation detection, and exclusion zone violation detection, which can be integrated into the parking occupancy cameras as a value-added option. Our experimental results show that the proposed parking occupancy detection method performs in real-time at 5 frames/s and achieves better than 90% detection accuracy across several days of videos captured in a busy street block under various weather conditions such as sunny, cloudy, and rainy, among others.

  7. Real-time infrared test set: system design and development

    Science.gov (United States)

    Johnson, R. Barry; Martin, Diehl H.; Chung, Ronald; Geist, Jon C.; Burrell, Jack O.; Slemp, Jim L.; Umstead, Jeffrey R.; Mann, Allen; Marlin, H. Ronald; Bates, Richard L.; Sweet, Miles H.; Williams, Donald N.; Carlson, Rowena M.; Gaitan, Michael; Marshall, Janet C.; Mulford, Charles D.; Zakar, Eugene S.; Zeto, Robert J.; Olson, Russ; Perkins, Gordon C.

    1997-07-01

    During the past several years, the technology for designing and fabricating thermal pixel arrays (TPAs) using silicon micromachined CMOS devices has been developed adequately to support the development of a real-time infrared test set (RTIR) for sensors and seekers. The TPA is a custom application-specific integrated circuit device that is fabricated using a low-cost commercial CMOS process. The system architecture and development of the initial RTIR Test Set is described. The RTIR is a compact, self-contained test instrument that is intended for test and evaluation of infrared systems in the field. In addition to the TPA, the RTIR contains projection optics and electronics which drive the TPA, provide TPA nonuniformity compensation, data translation, data transformation, and user interface. The RTIR can display internal test patterns (static and dynamic), external digital video data, and NTSC video. The initial RTIR unit incorporates a 64 X 64 TPA to provide flickerless infrared scenes at 30 frames per second. Additional TPAs are under development with formats of 128 X 128, 256 X 256, and 512 X 512 pixels.

  8. Cybersecurity through Real-Time Distributed Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger A [ORNL; Manges, Wayne W [ORNL; MacIntyre, Lawrence Paul [ORNL; Nutaro, James J [ORNL; Munro Jr, John K [ORNL; Ewing, Paul D [ORNL; Howlader, Mostofa [ORNL; Kuruganti, Phani Teja [ORNL; Wallace, Richard M [ORNL; Olama, Mohammed M [ORNL

    2010-04-01

    Critical infrastructure sites and facilities are becoming increasingly dependent on interconnected physical and cyber-based real-time distributed control systems (RTDCSs). A mounting cybersecurity threat results from the nature of these ubiquitous and sometimes unrestrained communications interconnections. Much work is under way in numerous organizations to characterize the cyber threat, determine means to minimize risk, and develop mitigation strategies to address potential consequences. While it seems natural that a simple application of cyber-protection methods derived from corporate business information technology (IT) domain would lead to an acceptable solution, the reality is that the characteristics of RTDCSs make many of those methods inadequate and unsatisfactory or even harmful. A solution lies in developing a defense-in-depth approach that ranges from protection at communications interconnect levels ultimately to the control system s functional characteristics that are designed to maintain control in the face of malicious intrusion. This paper summarizes the nature of RTDCSs from a cybersecurity perspec tive and discusses issues, vulnerabilities, candidate mitigation approaches, and metrics.

  9. TeleOph: a secure real-time teleophthalmology system.

    Science.gov (United States)

    Wu, Yongdong; Wei, Zhou; Yao, Haixia; Zhao, Zhigang; Ngoh, Lek Heng; Deng, Robert H; Yu, Shengsheng

    2010-09-01

    Teleophthalmology (TeleOph) is an electronic counterpart of today's face-to-face, patient-to-specialist ophthalmology system. It enables one or more ophthalmologists to remotely examine a patient's condition via a confidential and authentic communication channel. Specifically, TeleOph allows a trained nonspecialist in a primary clinic to screen the patients with digital instruments (e.g., camera, ophthalmoscope). The acquired medical data are delivered to the hospital where an ophthalmologist will review the data collected and, if required, provide further consultation for the patient through a real-time secure channel established over a public Internet network. If necessary, the ophthalmologist is able to further sample the images/video of the patient's eyes remotely. In order to increase the productivity of the ophthalmologist in terms of number of patients reviewed, and to increase the efficiency of network resource, we manage the network bandwidth based on a Poisson model to estimate patient arrival at the clinics, and the rate of ophthalmologist consultation service for better overall system efficiency. The main objective of TeleOph is therefore to provide the remote patients with a cost-effective access to specialist's eye checkups at primary healthcare clinics, and at the same time, minimize unnecessary face-to-face consultation at the hospital specialist's center.

  10. Digital Signal Processing Based Real Time Vehicular Detection System

    Institute of Scientific and Technical Information of China (English)

    YANG Zhaoxuan; LIN Tao; LI Xiangping; LIU Chunyi; GAO Jian

    2005-01-01

    Traffic monitoring is of major importance for enforcing traffic management policies.To accomplish this task,the detection of vehicle can be achieved by exploiting image analysis techniques.In this paper,a solution is presented to obtain various traffic parameters through vehicular video detection system(VVDS).VVDS exploits the algorithm based on virtual loops to detect moving vehicle in real time.This algorithm uses the background differencing method,and vehicles can be detected through luminance difference of pixels between background image and current image.Furthermore a novel technology named as spatio-temporal image sequences analysis is applied to background differencing to improve detection accuracy.Then a hardware implementation of a digital signal processing (DSP) based board is described in detail and the board can simultaneously process four-channel video from different cameras. The benefit of usage of DSP is that images of a roadway can be processed at frame rate due to DSP′s high performance.In the end,VVDS is tested on real-world scenes and experiment results show that the system is both fast and robust to the surveillance of transportation.

  11. FPGA Based Real Time Monitoring System for Agricultural Field

    Directory of Open Access Journals (Sweden)

    M. Dinesh,

    2012-06-01

    Full Text Available The most important factors for the quality and productivity of plant growth are temperature, humidity, light and the level of the carbon dioxide. Continuous monitoring of these environmental variables gives information to the grower to better understand, how each factor affects growth and how to manage maximal crop productiveness .The optimal greenhouse climate adjustment can enable us to improve productivity and to achieve remarkable energy savings - especially during the winter in northern countries. The system itself was usually simple without opportunities to control locally heating, lights, ventilation or some other activity, which was affecting the greenhouse interior climate. This all has changed in the modern greenhouses. The typical size of the greenhouse itself is much bigger what it was before, and the greenhouse facilities provide several options to make local adjustments to the lights, ventilation, heating and other greenhouse support systems.However, more measurement data is also needed to make this kind of automation system work properly. Increased number of measurement points should not dramatically increase the automation system cost. It should also be possible to easily change the location of the measurement points according to the particular needs, which depend on the specific plant, on the possible changes in the external weather or greenhouse structure and on the plant placement in the greenhouse. For the implementation of agricultural technologies, low cost and real time remote monitoring are needed, in this sense, programmable Logic Devices (PLDs present as a good option for the technology development and implementation, because PLDs allow fast development of prototypes and the design of complex hardware systems using FPGAs (Field Programmable Gate Arrays and Complex Programmable Logic Devices.

  12. Real Time Multiple Hand Gesture Recognition System for Human Computer Interaction

    Directory of Open Access Journals (Sweden)

    Siddharth S. Rautaray

    2012-05-01

    Full Text Available With the increasing use of computing devices in day to day life, the need of user friendly interfaces has lead towards the evolution of different types of interfaces for human computer interaction. Real time vision based hand gesture recognition affords users the ability to interact with computers in more natural and intuitive ways. Direct use of hands as an input device is an attractive method which can communicate much more information by itself in comparison to mice, joysticks etc allowing a greater number of recognition system that can be used in a variety of human computer interaction applications. The gesture recognition system consist of three main modules like hand segmentation, hand tracking and gesture recognition from hand features. The designed system further integrated with different applications like image browser, virtual game etc. possibilities for human computer interaction. Computer Vision based systems has the potential to provide more natural, non-contact solutions. The present research work focuses on to design and develops a practical framework for real time hand gesture.

  13. Real-time drought forecasting system for irrigation managment

    Science.gov (United States)

    Ceppi, Alessandro; Ravazzani, Giovanni; Corbari, Chiara; Masseroni, Daniele; Meucci, Stefania; Pala, Francesca; Salerno, Raffaele; Meazza, Giuseppe; Chiesa, Marco; Mancini, Marco

    2013-04-01

    In recent years frequent periods of water scarcity have enhanced the need to use water more carefully, even in in European areas traditionally rich of water such as the Po Valley. In dry periods, the problem of water shortage can be enhanced by conflictual use of water such as irrigation, industrial and power production (hydroelectric and thermoelectric). Further, over the last decade the social perspective on this issue is increasing due to climate change and global warming scenarios which come out from the last IPCC Report. The increased frequency of dry periods has stimulated the improvement of irrigation and water management. In this study we show the development and implementation of the real-time drought forecasting system Pre.G.I., an Italian acronym that stands for "Hydro-Meteorological forecast for irrigation management". The system is based on ensemble prediction at long range (30 days) with hydrological simulation of water balance to forecast the soil water content in every parcel over the Consorzio Muzza basin. The studied area covers 74,000 ha in the middle of the Po Valley, near the city of Lodi. The hydrological ensemble forecasts are based on 20 meteorological members of the non-hydrostatic WRF model with 30 days as lead-time, provided by Epson Meteo Centre, while the hydrological model used to generate the soil moisture and water table simulations is the rainfall-runoff distributed FEST-WB model, developed at Politecnico di Milano. The hydrological model was validated against measurements of latent heat flux and soil moisture acquired by an eddy-covariance station. Reliability of the forecasting system and its benefits was assessed on some cases-study occurred in the recent years.

  14. Approaches of Seismic Vulnerability Assessments in Near Real Time Systems

    Science.gov (United States)

    Frolova, Nina; Larionov, Valery; Bonnin, Jean; Ugarov, Alexander

    2014-05-01

    Data on seismic vulnerability of existing building stock and other elements at risk are rather important for near real time earthquake loss estimations by global systems. These data together with information on regional peculiarities of seismic intensity attenuation and other factors contribute greatly to the reliability of strong event consequences estimated in emergency mode. There are different approaches for vulnerability functions' development and the empirical one is most often used. It is based on analysis of engineering consequences of past strong events when well documented descriptions of damage to different building types and other elements at risk are available for the earthquake prone area under consideration. In the case such data do not exist the information from macroseismic scales may be used. Any approach of vulnerability functions' development requires the proper classification of buildings and structures under consideration. According to national and international building codes, as well as macroseismic scales different buildings' classifications exist. As a result the global systems, such as Extremum and PAGER, as well as GEM project make use of the non-unified information on building stock distribution worldwide. The paper addresses the issues of buildings' classification and city models in terms of these classifications. Distribution of different buildings types in Extremum and PAGER/GEM systems is analyzed for earthquake prone countries. The comparison of city models revealed significant differences which influence greatly earthquake loss estimations in emergency mode. The paper describes the practice of city models' development which make use of space images and web technology in social networks. It is proposed to use the G8 country (and other) initiatives related to open data and transparency aimed at improving building stock distribution and global population databases.

  15. Real-time performance modeling of (3G) UMTS system

    Science.gov (United States)

    Badrinath, R.; Mitra, Abhijit; Sinha, Nishant; Mukherjee, Niloy

    2001-11-01

    Universal Mobile Telecommunications System (UMTS) wireless technologies is a proposed standardization as a part of 3GPP solutions to satisfy IMT-2000 requirements. It is based on wideband CDMA technology. It will provide full coverage and mobility for 144 Kb/s, preferably 384 Kb/s and limited coverage and mobility for 2 Mb/s. It proposes high spectrum efficiency compared to existing systems, handling of different QOS profiles and high flexibility to introduce new service. In this paper, we present our work on modeling of the access stratum (AS) on the User Equipment/Mobile Termination (UE/MT) side of the radio (Uu) interface in accordance with 3GPP UMTS standards. The AS has the following sub-layers: Medium Access Control/Radio Link Control (MAC/RLC), Broadcast Multicast Control (BMC), Packet Data Convergence Protocol (PDCP) and Radio Resource Control (RRC). We have assumed the number of transport channels interfacing the AS MAC sub layer and the physical layer to be eight. The data rates have been assumed to be 384 Kb/s per transport channel both in uplink and downlink. Processing in each sub-layer with corresponding delays and interaction between adjacent sublayers having timing restrictions or rate restrictions have been analyzed. Interaction of the upper sub-layers with the non-access stratum (NAS) and interaction between peer AS sub-layers in the UE and the UTRAN have also been incorporated. A real time priority based scheduler process has been specified to honor the time restrictions e.g. the Transmission Time Intervals (TTI) of the channels. The system has been simulated on Virtual Silicon, a C based SDL tool and evaluated on CR16C architecture family using CR16C debugger, both developed by National Semi Conductor Corp., U.S.A.

  16. Optimal Real-time Dispatch for Integrated Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, Ryan Michael [Univ. of California, Berkeley, CA (United States)

    2007-05-31

    This report describes the development and application of a dispatch optimization algorithm for integrated energy systems (IES) comprised of on-site cogeneration of heat and electricity, energy storage devices, and demand response opportunities. This work is intended to aid commercial and industrial sites in making use of modern computing power and optimization algorithms to make informed, near-optimal decisions under significant uncertainty and complex objective functions. The optimization algorithm uses a finite set of randomly generated future scenarios to approximate the true, stochastic future; constraints are included that prevent solutions to this approximate problem from deviating from solutions to the actual problem. The algorithm is then expressed as a mixed integer linear program, to which a powerful commercial solver is applied. A case study of United States Postal Service Processing and Distribution Centers (P&DC) in four cities and under three different electricity tariff structures is conducted to (1) determine the added value of optimal control to a cogeneration system over current, heuristic control strategies; (2) determine the value of limited electric load curtailment opportunities, with and without cogeneration; and (3) determine the trade-off between least-cost and least-carbon operations of a cogeneration system. Key results for the P&DC sites studied include (1) in locations where the average electricity and natural gas prices suggest a marginally profitable cogeneration system, optimal control can add up to 67% to the value of the cogeneration system; optimal control adds less value in locations where cogeneration is more clearly profitable; (2) optimal control under real-time pricing is (a) more complicated than under typical time-of-use tariffs and (b) at times necessary to make cogeneration economic at all; (3) limited electric load curtailment opportunities can be more valuable as a compliment to the cogeneration system than alone; and

  17. A wearable real-time image processor for a vision prosthesis.

    Science.gov (United States)

    Tsai, D; Morley, J W; Suaning, G J; Lovell, N H

    2009-09-01

    Rapid progress in recent years has made implantable retinal prostheses a promising therapeutic option in the near future for patients with macular degeneration or retinitis pigmentosa. Yet little work on devices that encode visual images into electrical stimuli have been reported to date. This paper presents a wearable image processor for use as the external module of a vision prosthesis. It is based on a dual-core microprocessor architecture and runs the Linux operating system. A set of image-processing algorithms executes on the digital signal processor of the device, which may be controlled remotely via a standard desktop computer. The results indicate that a highly flexible and configurable image processor can be built with the dual-core architecture. Depending on the image-processing requirements, general-purpose embedded microprocessors alone may be inadequate for implementing image-processing strategies required by retinal prostheses.

  18. Interactive and Audience Adaptive Digital Signage Using Real-Time Computer Vision

    Directory of Open Access Journals (Sweden)

    Robert Ravnik

    2013-02-01

    Full Text Available In this paper we present the development of an interactive, content‐aware and cost‐effective digital signage system. Using a monocular camera installed within the frame of a digital signage display, we employ real‐time computer vision algorithms to extract temporal, spatial and demographic features of the observers, which are further used for observer‐specific broadcasting of digital signage content. The number of observers is obtained by the Viola and Jones face detection algorithm, whilst facial images are registered using multi‐view Active Appearance Models. The distance of the observers from the system is estimated from the interpupillary distance of registered faces. Demographic features, including gender and age group, are determined using SVM classifiers to achieve individual observer‐specific selection and adaption of the digital signage broadcasting content. The developed system was evaluated at the laboratory study level and in a field study performed for audience measurement research. Comparison of our monocular localization module with the Kinect stereo‐system reveals a comparable level of accuracy. The facial characterization module is evaluated on the FERET database with 95% accuracy for gender classification and 92% for age group. Finally, the field study demonstrates the applicability of the developed system in real‐life environments.

  19. Real time Aanderaa current meter data collection system

    Digital Repository Service at National Institute of Oceanography (India)

    AshokKumar, K.; Diwan, S.G.

    in laboratory. In this paper a method is described to read the real time current meter data and display/print/store on cartridge. For this, binary coded electrical signal available at the top end plate of the current meter is connectEd. by underwater cable...

  20. An Advanced Real-Time Earthquake Information System in Japan

    Science.gov (United States)

    Takahashi, I.; Nakamura, H.; Suzuki, W.; Kunugi, T.; Aoi, S.; Fujiwara, H.

    2015-12-01

    J-RISQ (Japan Real-time Information System for earthquake) has been developing in NIED for appropriate first-actions to big earthquakes. When an earthquake occurs, seismic intensities (SI) are calculated first at each observation station and sent to the Data Management Center in different timing. The system begins the first estimation when the number of the stations observing the SI of 2.5 or larger exceeds the threshold amount. It estimates SI distribution, exposed population and earthquake damage on buildings by using basic data for estimation, such as subsurface amplification factors, population, and building information. It has been accumulated in J-SHIS (Japan Seismic Information Station) developed by NIED, a public portal for seismic hazard information across Japan. The series of the estimation is performed for each 250m square mesh and finally the estimated data is converted into information for each municipality. Since October 2013, we have opened estimated SI, exposed population etc. to the public through the website by making full use of maps and tables.In the previous system, we sometimes could not inspect the information of the surrounding areas out of the range suffered from strong motions, or the details of the focusing areas, and could not confirm whether the present information was the latest or not without accessing the website. J-RISQ has been advanced by introducing the following functions to settle those problems and promote utilization in local areas or in personal levels. In addition, the website in English has been released.・It has become possible to focus on the specific areas and inspect enlarged information.・The estimated information can be downloaded in the form of KML.・The estimated information can be updated automatically and be provided as the latest one.・The newest information can be inspected by using RSS readers or browsers corresponding to RSS.・Exclusive pages for smartphones have been prepared.The information estimated

  1. Nanodroplet real-time PCR system with laser assisted heating.

    Science.gov (United States)

    Kim, Hanyoup; Dixit, Sanhita; Green, Christopher J; Faris, Gregory W

    2009-01-01

    We report the successful application of low-power (approximately 30 mW) laser radiation as an optical heating source for high-speed real-time polymerase chain reaction (PCR) amplification of DNA in nanoliter droplets dispersed in an oil phase. Light provides the heating, temperature measurement, and Taqman real-time readout in nanoliter droplets on a disposable plastic substrate. A selective heating scheme using an infrared laser appears ideal for driving PCR because it heats only the droplet, not the oil or plastic substrate, providing fast heating and completing the 40 cycles of PCR in 370 seconds. No microheaters or microfluidic circuitry were deposited on the substrate, and PCR was performed in one droplet without affecting neighboring droplets. The assay performance was quantitative and its amplification efficiency was comparable to that of a commercial instrument.

  2. A Real-Time System for Abusive Network Traffic Detection

    Science.gov (United States)

    2011-03-01

    modular architecture, SpamAssassin can be extended to include other filtering techniques, such as real-time blackhole lists (RBLs), whitelists...lookups in blackhole lists (RBL), collaborative filtering with Ryzor [30], Pyzor [53], and DCC [33]), because our virtual environment was insulated from...realtime blackhole list (RBL). Available: http://www.mail-abuse.com/pdf/WP_MAPS_RBL_060104.pdf. [13] J. Postel. (1981, September). Internet

  3. Integrating Security in Real-Time Embedded Systems

    Science.gov (United States)

    2017-04-26

    requirements in the form of real- time scheduling constraints. This enabled us to directly reason about the effects of integrating security into RTS (e.g...a set of sporadic tasks scheduled based on the Rate Monotone (RM) policy. We are concerned with the leakage of information between tasks of...a task with the high- est priori ty has the shortest period (rate- monotonic scheduling) that gives it privileges to be scheduled with a higher

  4. Experimental ultrasound system for real-time synthetic imaging

    OpenAIRE

    1999-01-01

    Digital signal processing is being employed more and more in modern ultrasound scanners. This has made it possible to do dynamic receive focusing for each sample and implement other advanced imaging methods. The processing, however, has to be very fast and cost-effective at the same time. Dedicated chips are used in order to do real time processing. This often makes it difficult to implement radically different imaging strategies on one platform and makes the scanners less accessible for rese...

  5. A Provenance Model for Real-Time Water Information Systems

    Science.gov (United States)

    Liu, Q.; Bai, Q.; Zednik, S.; Taylor, P.; Fox, P. A.; Taylor, K.; Kloppers, C.; Peters, C.; Terhorst, A.; West, P.; Compton, M.; Shu, Y.; Provenance Management Team

    2010-12-01

    Generating hydrological data products, such as flow forecasts, involves complex interactions among instruments, data simulation models, computational facilities and data providers. Correct interpretation of the data produced at various stages requires good understanding of how data was generated or processed. Provenance describes the lineage of a data product. Making provenance information accessible to hydrologists and decision makers not only helps to determine the data’s value, accuracy and authorship, but also enables users to determine the trustworthiness of the data product. In the water domain, WaterML2 [1] is an emerging standard which describes an information model and format for the publication of water observations data in XML. The W3C semantic sensor network incubator group (SSN-XG) [3] is producing ontologies for the description of sensor configurations. By integrating domain knowledge of this kind into the provenance information model, the integrated information model will enable water domain researchers and water resource managers to better analyse how observations and derived data products were generated. We first introduce the Proof Mark Language (PML2) [2], WaterML2 and the SSN-XG sensor ontology as the proposed provenance representation formalism. Then we describe some initial implementations how these standards could be integrated to represent the lineage of water information products. Finally we will highlight how the provenance model for a distributed real-time water information system assists the interpretation of the data product and establishing trust. Reference [1] Taylor, P., Walker, G., Valentine, D., Cox, Simon: WaterML2.0: Harmonising standards for water observation data. Geophysical Research Abstracts. Vol. 12. [2] da Silva, P.P., McGuinness, D.L., Fikes, R.: A proof markup language for semantic web services. Inf. Syst. 31(4) (2006), 381-395. [3] W3C Semantic Sensor Network Incubator Group http://www.w3.org/2005/Incubator

  6. The Multi-level Recovery of Main-memory Real-time Database Systems with ECBH

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Storing the whole database in the main-memory is a common method to process real-time transaction in real-time database systems. The recovery mechanism of Main-memory Real-time Database Systems (MMRTDBS) should reflect the characteristics of the main-memory database and real-time database because their structures are quite different from other conventional database systems. In this paper, therefore, we propose a multi-level recovery mechanism for main-memory real-time database systems with Extendible Chained Bucket Hashing (ECBH). Owing to the occurrence of real-time data in real-time systems, we should also consider it in our recovery mechanism. According to our performance test, this mechanism can improve the transaction concurrency, reducing transactions' deadline missing rate.

  7. Computer vision for real-time orbital operations. Center directors discretionary fund

    Science.gov (United States)

    Vinz, F. L.; Brewster, L. L.; Thomas, L. D.

    1984-01-01

    Machine vision research is examined as it relates to the NASA Space Station program and its associated Orbital Maneuvering Vehicle (OMV). Initial operation of OMV for orbital assembly, docking, and servicing are manually controlled from the ground by means of an on board TV camera. These orbital operations may be accomplished autonomously by machine vision techniques which use the TV camera as a sensing device. Classical machine vision techniques are described. An alternate method is developed and described which employs a syntactic pattern recognition scheme. It has the potential for substantial reduction of computing and data storage requirements in comparison to the Two-Dimensional Fast Fourier Transform (2D FFT) image analysis. The method embodies powerful heuristic pattern recognition capability by identifying image shapes such as elongation, symmetry, number of appendages, and the relative length of appendages.

  8. Real-time visual tracking system modelling in MPSoC using platform based design

    Science.gov (United States)

    Jia, Zai Jian; Bautista, Tomás; Núñez, Antonio; Guerra, Cayetano; Hernández, Mario

    2009-02-01

    In this paper, we present the modelling of a real-time tracking system on a Multi-Processor System on Chip (MPSoC). Our final goal is to build a more complex computer vision system (CVS) by integrating several applications in a modular way, which performs different kind of data processing issues but sharing a common platform, and this way, a solution for a set of applications using the same architecture is offered and not just for one application. In our current work, a visual tracking system with real-time behaviour (25 frames/sec) is used like a reference application, and also, guidelines for our future CVS applications development. Our algorithm written in C++ is based on correlation technique and the threshold dynamic update approach. After an initial computational complexity analysis, a task-graph was generated from this tracking algorithm. Concurrently with this functionality correctness analysis, a generic model of multi-processor platform was developed. Finally, the tracking system performance mapped onto the proposed architecture and shared resource usage were analyzed to determine the real architecture capacity, and also to find out possible bottlenecks in order to propose new solutions which allow more applications to be mapped on the platform template in the future.

  9. A Real-Time Augmented Reality System to See-Through Cars.

    Science.gov (United States)

    Rameau, Francois; Ha, Hyowon; Joo, Kyungdon; Choi, Jinsoo; Park, Kibaek; Kweon, In So

    2016-11-01

    One of the most hazardous driving scenario is the overtaking of a slower vehicle, indeed, in this case the front vehicle (being overtaken) can occlude an important part of the field of view of the rear vehicle's driver. This lack of visibility is the most probable cause of accidents in this context. Recent research works tend to prove that augmented reality applied to assisted driving can significantly reduce the risk of accidents. In this paper, we present a real-time marker-less system to see through cars. For this purpose, two cars are equipped with cameras and an appropriate wireless communication system. The stereo vision system mounted on the front car allows to create a sparse 3D map of the environment where the rear car can be localized. Using this inter-car pose estimation, a synthetic image is generated to overcome the occlusion and to create a seamless see-through effect which preserves the structure of the scene.

  10. Quality of Service in Real Time Services in Wireless Systems

    Directory of Open Access Journals (Sweden)

    Ambar Yadav, Arti Singh

    2014-05-01

    Full Text Available In Real time message transmission there is no time delay between a message sending and reception. Real time messaging defines standard packet format and data delivery for transmission of audio and video data over IP networks. Video enable applications are mostly used in our life without any delay, which also improve the quality of video. The needs for a central buffer management to achieves better memory utilization by enabling video stream sharing across components and to all network condition. This buffer management avoids congestion in networks. Our work is focused on a queue management scheme to manage the buffer at destination for video enable services which carries huge amount of data through network channel. Video data is generated at source which it reached to destination through various nodes and links. So, there may be delay, packet loss and jitter. To provide the better service at destination, we require a less delay, less amount of packet loss and less jitter. So in this paper we are working on a buffer management mechanism which cares about packet loss and jitter and try to resolve and will find out better scheduling in existing schemes

  11. Fault recovery for real-time, multi-tasking computer system

    Science.gov (United States)

    Hess, Richard (Inventor); Kelly, Gerald B. (Inventor); Rogers, Randy (Inventor); Stange, Kent A. (Inventor)

    2011-01-01

    System and methods for providing a recoverable real time multi-tasking computer system are disclosed. In one embodiment, a system comprises a real time computing environment, wherein the real time computing environment is adapted to execute one or more applications and wherein each application is time and space partitioned. The system further comprises a fault detection system adapted to detect one or more faults affecting the real time computing environment and a fault recovery system, wherein upon the detection of a fault the fault recovery system is adapted to restore a backup set of state variables.

  12. A method of real-time detection for distant moving obstacles by monocular vision

    Science.gov (United States)

    Jia, Bao-zhi; Zhu, Ming

    2013-12-01

    In this paper, we propose an approach for detection of distant moving obstacles like cars and bicycles by a monocular camera to cooperate with ultrasonic sensors in low-cost condition. We are aiming at detecting distant obstacles that move toward our autonomous navigation car in order to give alarm and keep away from them. Method of frame differencing is applied to find obstacles after compensation of camera's ego-motion. Meanwhile, each obstacle is separated from others in an independent area and given a confidence level to indicate whether it is coming closer. The results on an open dataset and our own autonomous navigation car have proved that the method is effective for detection of distant moving obstacles in real-time.

  13. Capturing Real-Time Power System Dynamics: Opportunities and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenyu; Zhou, Ning; Diao, Ruisheng; Wang, Shaobu; Elbert, Stephen T.; Meng, Da; Lu, Shuai

    2015-09-01

    The power grid evolves towards a new mix of generation and consumption that introduces new dynamic and stochastic behaviors. These emerging grid behaviors would invalidate the steady-state assumption in today’s state estimation – an essential function for real-time power grid operation. This paper examines this steady-state assumption and identifies the need for estimating dynamic states. Supporting technologies are presented as well as a proposed formulation for estimating dynamic states. Metrics for evaluating methods for solving the dynamic state estimation problem are proposed, with example results to illustrate the use of these metrics. The overall objective of this paper is to provide a basis that more research on this topic can follow.

  14. Research on Web-based Real-time Monitoring System on SVG and Comet

    Directory of Open Access Journals (Sweden)

    Xuehui Xian

    2012-09-01

    Full Text Available For the lack of real-time performance of browser technology in existing Web-based real-time monitoring system, takes use of SVG (Scalable Vector Graphics and the Comet to design a new Web-based real-time monitoring system. In this system, JSON (JavaScript Object Notation is the data transmission carrier, Comet is the key technology for system communication and data transmission, and SVG is a chart drawing tool in the browser side. So this system has a good real-time and is rich in the form of show.

  15. Coherent laser vision system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastion, R.L. [Coleman Research Corp., Springfield, VA (United States)

    1995-10-01

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  16. NOAA Satellite Based Real Time Forest Fire Monitoring System for Russia and North Asian Region

    OpenAIRE

    Kalpoma,Kazi A. / Kawano,Koichi / Kudoh,Jun-ichi; / カワノ,コウイチ / クドウ,ジュンイチ

    2007-01-01

    Forest fires cause severe damages to natural resources and human lives all over the world. Though a lot of forest fires occur in Russia and North Asia every year, there is no system available that monitors forest fire in real time processing. However the MODIS Land Rapid Response System provides near-real time fire observations globally, currently forest fire monitoring techniques are not efficient enough to optimally monitor this disaster. For a real-time forest fire monitor system an effici...

  17. Zynq-Based Reconfigurable System for Real-Time Edge Detection of Noisy Video Sequences

    Directory of Open Access Journals (Sweden)

    Iljung Yoon

    2016-01-01

    Full Text Available We implement Zynq-based self-reconfigurable system to perform real-time edge detection of 1080p video sequences. While object edge detection is a fundamental tool in computer vision, noises in the video frames negatively affect edge detection results significantly. Moreover, due to the high computational complexity of 1080p video filtering operations, hardware implementation on reconfigurable hardware fabric is necessary. Here, the proposed embedded system utilizes dynamic reconfiguration capability of Zynq SoC so that partial reconfiguration of different filter bitstreams is performed during run-time according to the detected noise density level in the incoming video frames. Pratt’s Figure of Merit (PFOM to evaluate the accuracy of edge detection is analyzed for various noise density levels, and we demonstrate that adaptive run-time reconfiguration of the proposed filter bitstreams significantly increases the accuracy of edge detection results while efficiently providing computing power to support real-time processing of 1080p video frames. Performance results on configuration time, CPU usage, and hardware resource utilization are also compared.

  18. Building XenoBuntu Linux Distribution for Teaching and Prototyping Real-Time Operating Systems

    OpenAIRE

    Slim BEN SAOUD; Ahmed BEN ACHBALLAH; Litayem, Nabil

    2011-01-01

    This paper describes the realization of a new Linux distribution based on Ubuntu Linux and Xenomai Real-Time framework. This realization is motivated by the eminent need of real-time systems in modern computer science courses. The majority of the technical choices are made after qualitative comparison. The main goal of this distribution is to offer standard Operating Systems (OS) that include Xenomai infrastructure and the essential tools to begin hard real-time application development inside...

  19. A cohesive modular system for real-time stereoscopic secure image processing and evaluation

    Science.gov (United States)

    Galli, Raffaello; Lazarus, Ed

    2007-02-01

    In this paper we define an innovative modular real-time system to visualize, capture, manage, securely preserve, store and playback stereoscopic images. The system, called "Solid-Look" together with the cameras "StereOpsis" will allow military, EOD specialists, and private industry operators to literally "see through the robot's eyes". The system enables the operator to control the robot as if his/her head were located on the robot itself, positioning and zooming the camera to the visual target object using the operator's eye and head movement, without any wearable devices and allowing the operator's hands to perform other tasks. The stereo cameras perform zooming and image stabilization for a controlled and smooth vision. The display enables stereoscopic vision without the need of glasses. Every image frame is authenticated, encrypted and timestamped to allow certainty and confidentiality during post-capture playback or to show evidence in court. The system secures the ability to operate it, requiring administrator's biometrical authentication. Solid-Look modular design can be used in multiple industries from Homeland Security to Pharmaceutical including research, forensic and underwater inspections and will certainly provide great benefit to the performance, speed and accuracy of the operations.

  20. Research & Reform on Real-Time Operating System Applied to Robot

    Institute of Scientific and Technical Information of China (English)

    CHENYimin; CHENYangbin

    2004-01-01

    The paper describes some current popular real-time operation systems such as QNX, VxWorks, and analyses Linux present status and weak points for real-time supporting characteristics and related main trend technology of real-time support based on Linux kernel, and compares comprehensively strong and weak points among different kinds of solutions. By drawing out a typical realtime application model and combining some present research results and thoughts, this paper puts forward reform scheme of real-time operation system which is realized in Linux operation system, and some good results are given at last.

  1. VISIONS At-Sea Telepresence (VAST): Educating in Real Time, Seafloor to Shore

    Science.gov (United States)

    Sautter, L. R.; Fundis, A. T.; Kelley, D. S.; Delaney, J. R.; McNichol, E.; Stoermer, M.; Glenn, S. M.

    2012-12-01

    The University of Washington (UW) has recently led the VISIONS 2011 and 2012 cruises aboard the R/V Thompson to Axial Seamount on the Juan de Fuca Ridge, part of the NSF Ocean Observatory Initiative. During each cruise the VISIONS At-Sea Telepresence, or VAST Program was piloted, consisting of several live 30-60 minute shipboard broadcasts highlighted by streaming live HD video from the ROV ROPOS documenting investigations of the seamount's hydrothermal vents and recent lava flows. Broadcasts also included short lectures and pre-taped documentaries and seafloor video narrated live by shipboard scientists and students. Pilot audiences at UW, the College of Charleston and Rutgers University included undergraduate marine geology, oceanography and education students, high school students, graduate students and teachers. Multiple public audiences were also recipients of VAST programming, and all broadcasts were viewable in standard definition to any web users. Question/answer interactivity via Twitter and Skype were promoted throughout the broadcasts. To supplement live broadcasts with additional content, a VAST Program website was created on UW's Interactive Oceans site, providing a wealth of hyperlinked online resources covering six program themes, as well as a college-level online laboratory exercise, "Characterizing Lava Flow Morphologies." The online resources are primarily suited to inform a high school and older audience, and thus serves to reach a vast audience. The VAST Program was very successful at engaging and educating both formal and informal audiences. Preliminary VAST results documented by user surveys will be presented.

  2. A METHODOLOGY FOR DESIGN SPACE EXPLORATION OF REAL-TIME LOCATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    R. Passerone

    2015-07-01

    Full Text Available Scope of Research. This paper deals with the problem of design space exploration for a particular class of networked embedded systems called Real-Time Location Systems (RTLS. Methods. The paper contains a clear and detailed plan of anongoing research and could be considered as a review, a vision and a statement of objectives. Analytical and formal methods, simulation and automated verification will be involved in the research. Main Results. Analysis of the state of the art (current design flow, existing simulation tools and verification techniques has revealed several limitations for performing efficientdesign space exploration of RTLS, especially for safety-critical applications. The review part of the paper also contains a clear problem statement. The main outcome of this research is the proposed vision of a novel methodology for determining the best-suited technology and its configuration from the space of potential solutions. In particular, it is planned to extend an existing simulation framework and apply automated verification techniques. The latter will be used for checking simulation results and also for exploring different system configuration alternatives, that is, to optimize the design, which is a novel approach. A case study for validating the methodology is also proposed. Practical Significance. The proposed methodology will highly increase the breadth of design space exploration of RTLS as well as the confidence on taken design decisions. It will also contribute to optimizing the design.

  3. Real-time image processing of TOF range images using a reconfigurable processor system

    Science.gov (United States)

    Hussmann, S.; Knoll, F.; Edeler, T.

    2011-07-01

    During the last years, Time-of-Flight sensors achieved a significant impact onto research fields in machine vision. In comparison to stereo vision system and laser range scanners they combine the advantages of active sensors providing accurate distance measurements and camera-based systems recording a 2D matrix at a high frame rate. Moreover low cost 3D imaging has the potential to open a wide field of additional applications and solutions in markets like consumer electronics, multimedia, digital photography, robotics and medical technologies. This paper focuses on the currently implemented 4-phase-shift algorithm in this type of sensors. The most time critical operation of the phase-shift algorithm is the arctangent function. In this paper a novel hardware implementation of the arctangent function using a reconfigurable processor system is presented and benchmarked against the state-of-the-art CORDIC arctangent algorithm. Experimental results show that the proposed algorithm is well suited for real-time processing of the range images of TOF cameras.

  4. Real-Time Systems: Reflections on higher education in the Czech Republic, Hungary, Poland and Slovenia

    NARCIS (Netherlands)

    File, Jon; Goedegebuure, Leo

    2003-01-01

    Real-time systems (An ICT definition) In real-time multiprocessing there is the extra requirement that the system complete its response to any input within a certain critical time. This poses additional problems, particularly in situations where the system is heavily loaded and is subject to many si

  5. Scheduling transactions in mobile distributed real-time database systems

    Institute of Scientific and Technical Information of China (English)

    LEI Xiang-dong; ZHAO Yue-long; CHEN Song-qiao; YUAN Xiao-li

    2008-01-01

    A DMVOCC-MVDA (distributed multiversion optimistic concurrency control with multiversion dynamic adjustment) protocol was presented to process mobile distributed real-time transaction in mobile broadcast environments. At the mobile hosts, all transactions perform local pre-validation. The local pre-validation process is carried out against the committed transactions at the server in the last broadcast cycle. Transactions that survive in local pre-validation must be submitted to the server for local final validation. The new protocol eliminates conflicts between mobile read-only and mobile update transactions, and resolves data conflicts flexibly by using multiversion dynamic adjustment of serialization order to avoid unnecessary restarts of transactions.Mobile read-only transactions can be committed with no-blocking, and respond time of mobile read-only transactions is greatly shortened. The tolerance of mobile transactions of disconnections from the broadcast channel is increased. In global validation mobile distributed transactions have to do check to ensure distributed serializability in all participants. The simulation results show that the new concurrency control protocol proposed offers better performance than other protocols in terms of miss rate, restart rate,commit rate. Under high work load (think time is 1s) the miss rate of DMVOCC-MVDA is only 14.6%, is significantly lower than that of other protocols. The restart rate of DMVOCC-MVDA is only 32.3%, showing that DMVOCC-MVDA can effectively reduce the restart rate of mobile transactions. And the commit rate of DMVOCC-MVDA is up to 61.2%, which is obviously higher than that of other protocols.

  6. Real-Time Brain-Computer Interface System Based on Motor Imagery

    Institute of Scientific and Technical Information of China (English)

    Tie-Jun Liu; Ping Yang; Xu-Yong Peng; Yu Huang; De-Zhong Yao

    2009-01-01

    A brain-computer interface (BCI) real-time system based on motor imagery translates the user's motor intention into a real-time control signal for peripheral equipments.A key problem to be solved for practical applications is real-time data collection and processing.In this paper,a real-time BCI system is implemented on computer with electroencephalogram amplifier.In our implementation,the on-line voting method is adopted for feedback control strategy,and the voting results are used to control the cursor horizontal movement.Three subjects take part in the experiment.The results indicate that the best accuracy is 90%.

  7. INTELLIGENT TIME SLICE FOR ROUND ROBIN IN REAL TIME OPERATING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Yaashuwanth C. and Dr.R.Ramesh

    2010-02-01

    Full Text Available The main objective of this paper is to develop a new scheduling algorithm for scheduling tasks in real time operating systems. Scheduling algorithms play a significant role in the design of real time embedded systems. Simple round robin architecture cannot be implemented in real time operating systems because of high context switch rate, large waiting time and larger response time. Missing deadlines will degrade the system performance in real time embedded systems. The proposed algorithm modifies all the drawbacks of simple round robin architecture, the proposed architecture calculates the time slice for tasks and exclusively allocates the time slice for every individual tasks. A comparison with round robin architecture to the proposed architecture has been made. It is observed that the proposed architecture solves the problems encountered in simple round robin architecture in real time operating systems by decreasing the number of context switches waiting time and response time thereby increasing the system throughput.

  8. Miniature embedded real-time image processor system for smart sensor systems

    Science.gov (United States)

    Baxter, Christopher R.; Cicchi, Todd R.; Massie, Mark A.; McCarley, Paul L.

    2004-08-01

    Programs at Nova Biomimetics have led to the design and development of a set of miniature electronics to be used for the application of a wide variety of point- and area-type mathematical operations to be applied in real time to the digital data produced by a variety of real-time digital video camera systems. Nova is planning to market these electronics in partial satisfaction of Small Business Innovation Research (SBIR) Program dual-use commercialization requirements.

  9. Capability of a Mobile Monitoring System to Provide Real-Time Data Broadcasting and Near Real-Time Source Attribution

    Science.gov (United States)

    Erickson, M.; Olaguer, J.; Wijesinghe, A.; Colvin, J.; Neish, B.; Williams, J.

    2014-12-01

    It is becoming increasingly important to understand the emissions and health effects of industrial facilities. Many areas have no or limited sustained monitoring capabilities, making it difficult to quantify the major pollution sources affecting human health, especially in fence line communities. Developments in real-time monitoring and micro-scale modeling offer unique ways to tackle these complex issues. This presentation will demonstrate the capability of coupling real-time observations with micro-scale modeling to provide real-time information and near real-time source attribution. The Houston Advanced Research Center constructed the Mobile Acquisition of Real-time Concentrations (MARC) laboratory. MARC consists of a Ford E-350 passenger van outfitted with a Proton Transfer Reaction Mass Spectrometer (PTR-MS) and meteorological equipment. This allows for the fast measurement of various VOCs important to air quality. The data recorded from the van is uploaded to an off-site database and the information is broadcast to a website in real-time. This provides for off-site monitoring of MARC's observations, which allows off-site personnel to provide immediate input to the MARC operators on how to best achieve project objectives. The information stored in the database can also be used to provide near real-time source attribution. An inverse model has been used to ascertain the amount, location, and timing of emissions based on MARC measurements in the vicinity of industrial sites. The inverse model is based on a 3D micro-scale Eulerian forward and adjoint air quality model known as the HARC model. The HARC model uses output from the Quick Urban and Industrial Complex (QUIC) wind model and requires a 3D digital model of the monitored facility based on lidar or industrial permit data. MARC is one of the instrument platforms deployed during the 2014 Benzene and other Toxics Exposure Study (BEE-TEX) in Houston, TX. The main goal of the study is to quantify and explain the

  10. Embedded and real time system development a software engineering perspective concepts, methods and principles

    CERN Document Server

    Saeed, Saqib; Darwish, Ashraf; Abraham, Ajith

    2014-01-01

    Nowadays embedded and real-time systems contain complex software. The complexity of embedded systems is increasing, and the amount and variety of software in the embedded products are growing. This creates a big challenge for embedded and real-time software development processes and there is a need to develop separate metrics and benchmarks. “Embedded and Real Time System Development: A Software Engineering Perspective: Concepts, Methods and Principles” presents practical as well as conceptual knowledge of the latest tools, techniques and methodologies of embedded software engineering and real-time systems. Each chapter includes an in-depth investigation regarding the actual or potential role of software engineering tools in the context of the embedded system and real-time system. The book presents state-of-the art and future perspectives with industry experts, researchers, and academicians sharing ideas and experiences including surrounding frontier technologies, breakthroughs, innovative solutions and...

  11. Real-time Interactive Steerable Scientific Visualisation of Free Surface Flow in the Context of Synthetic Vision (Review Paper

    Directory of Open Access Journals (Sweden)

    G. M. Lingaraju

    2011-07-01

    Full Text Available The existing techniques in the context of fluid modelling and simulation have been reviewed. Generic framework that enables an easy integration of various modules has been developed, extending the work to real-time simulation and visualisation, and developed user interaction during run-time using the concept of computational steering. Inthe generic framework developed, a new class of visualisation technique that simplifies the visualisation tasks of a scientist has been identified. Investigating these techniques is important as the tools such as visualisation tool kit (VTK and VTK designer are freely available (Open Source and easy to integrate. A technique for interactivevisualisation of the free surface flow, that introduces the concepts of geometrical steering and properties steering, has been developed. These techniques constitute computational steering. The concept of real-time interactive scientific visualisation using a surface flow application has been demonstrated. As a proof of concept, the behaviour of flow is simulated and visualised during training in a virtual environment on a desktop computer. It is expected that the generic framework, device, interface, and simulation engine, used in this work will not only have a significant impact in the area of free surface flow, but also in real-time applications such as synthetic vision in avionics. The underlying formulation/methodology involved in parametric approach is explained.Defence Science Journal, 2011, 61(4, pp.299-305, DOI:http://dx.doi.org/10.14429/dsj.61.1115

  12. Real-time operating system for selected Intel processors

    Science.gov (United States)

    Pool, W. R.

    1980-01-01

    The rationale for system development is given along with reasons for not using vendor supplied operating systems. Although many system design and performance goals were dictated by problems with vendor supplied systems, other goals surfaced as a result of a design for a custom system able to span multiple projects. System development and management problems and areas that required redesign or major code changes for system implementation are examined as well as the relative successes of the initial projects. A generic description of the actual project is provided and the ongoing support requirements and future plans are discussed.

  13. Real time modeling, simulation and control of dynamical systems

    CERN Document Server

    Mughal, Asif Mahmood

    2016-01-01

    This book introduces modeling and simulation of linear time invariant systems and demonstrates how these translate to systems engineering, mechatronics engineering, and biomedical engineering. It is organized into nine chapters that follow the lectures used for a one-semester course on this topic, making it appropriate for students as well as researchers. The author discusses state space modeling derived from two modeling techniques and the analysis of the system and usage of modeling in control systems design. It also contains a unique chapter on multidisciplinary energy systems with a special focus on bioengineering systems and expands upon how the bond graph augments research in biomedical and bio-mechatronics systems.

  14. Supporting Development of Energy-Optimised Java Real-Time Systems using TetaSARTS

    DEFF Research Database (Denmark)

    Luckow, Kasper Søe; Bøgholm, Thomas; Thomsen, Bent

    2013-01-01

    This paper presents how the tool TetaSARTS can be used to support the development of embedded hard real-time systems written in Java using the emerging Safety Critical Java (SCJ) profile. TetaSARTS facilitates control-flow sensitive schedulability analysis of a set of real-time tasks, and features...

  15. Energy-Aware Synthesis of Fault-Tolerant Schedules for Real-Time Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Poulsen, Kåre Harbo; Pop, Paul; Izosimov, Viacheslav

    2007-01-01

    This paper presents a design optimisation tool for distributed embedded real-time systems that 1) decides mapping, fault-tolerance policy and generates a fault-tolerant schedule, 2) is targeted for hard real-time, 3) has hard reliability goal, 4) generates static schedule for processes and messages...

  16. Real-Time Tariffs for Electric Vehicles in Wind Power based Power Systems

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago; Silva, Marco

    2013-01-01

    The use of Electric Vehicles (EVs) will change significantly the planning and management of power systems in a near future. This paper proposes a real-time tariff strategy for the charge process of the EVs. The main objective is to evaluate the influence of real-time tariffs in the EVs owners...

  17. A Theory for the Initial Allocating of Real Time Tasks in Distributed Systems

    Institute of Scientific and Technical Information of China (English)

    鄢勇; 金灿明

    1992-01-01

    Referring to a set of real time tasks with arriving time,executing time and deadline,this paper discusses the problem of polynomial time initial-allocating approximation algorithms in a distributed system and five new results are gained which provide a theory for the designing of initial-allocating algorithms of real time tasks.

  18. Online Real-Time Tribology Failure Detection System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under NASA Phase I funding, we have developed a system for the ball bearing fault detection and identification. Our system can effectively identify multiple fault...

  19. System on a Chip Real-Time Emulation (SOCRE)

    Science.gov (United States)

    2006-09-01

    Xilinx System Generator library components. The edge detection emulation system takes advantage of a video test bench environment developed for the... System Generator , and synthesized to target libraries using Insecta. The resulting design contained fully compiled and synthesized subsystems for key

  20. Hybrid systems: a real-time interface to control engineering

    DEFF Research Database (Denmark)

    Eriksen, Thomas Juul; Heilmann, Søren; Holdgaard, Michael

    1996-01-01

    are usually investigated by control engineers that base their work on the theory of dynamic systems. The mathematical tool for this work is thus mathematical analysis, in particular the theory of differential equations. The paper gives an introduction to a general hybrid systems model for definition of system...

  1. Scheduling and Communication Synthesis for Distributed Real-Time Systems

    DEFF Research Database (Denmark)

    Pop, Paul

    2000-01-01

    Embedded systems are now omnipresent: from cellular phones to pagers, from microwave ovens to PDAs, almost all the devices we use are controlled by embedded systems. Many embedded systems have to fulfill strict requirements in terms of performance and cost efficiency. Emerging designs are usually...

  2. Scheduling and Communication Synthesis for Distributed Real-Time Systems

    DEFF Research Database (Denmark)

    Pop, Paul

    2000-01-01

    Embedded systems are now omnipresent: from cellular phones to pagers, from microwave ovens to PDAs, almost all the devices we use are controlled by embedded systems. Many embedded systems have to fulfill strict requirements in terms of performance and cost efficiency. Emerging designs are usually...

  3. Real-time monitoring system of composite aircraft wings utilizing Fibre Bragg Grating sensor

    Science.gov (United States)

    Vorathin, E.; Hafizi, Z. M.; Che Ghani, S. A.; Lim, K. S.

    2016-10-01

    Embedment of Fibre Bragg Grating (FBG) sensor in composite aircraft wings leads to the advancement of structural condition monitoring. The monitored aircraft wings have the capability to give real-time response under critical loading circumstances. The main objective of this paper is to develop a real-time FBG monitoring system for composite aircraft wings to view real-time changes when the structure undergoes some static loadings and dynamic impact. The implementation of matched edge filter FBG interrogation system to convert wavelength variations to strain readings shows that the structure is able to response instantly in real-time when undergoing few loadings and dynamic impact. This smart monitoring system is capable of updating the changes instantly in real-time and shows the weight induced on the composite aircraft wings instantly without any error. It also has a good agreement with acoustic emission (AE) sensor in the dynamic test.

  4. Real-time panoramic infrared imaging system based on FPGA

    Science.gov (United States)

    Zhang, Hao-Jun; Shen, Yong-Ge

    2010-11-01

    During the past decades, signal processing architecture, which is based on FPGA, conventional DSP processor and host computer, is popular for infrared or other electro-optical systems. With the increasing processing requirement, the former architecture starts to show its limitation in several respects. This paper elaborates a solution based on FPGA for panoramic imaging system as our first step of upgrading the processing module to System-on-Chip (SoC) solution. Firstly, we compare this new architecture with the traditional to show its superiority mainly in the video processing ability, reduction in the development workload and miniaturization of the system architecture. Afterwards, this paper provides in-depth description of this imaging system, including the system architecture and its function, and addresses several related issues followed by the future development. FPGA has developed so rapidly during the past years, not only in silicon device but also in the design flow and tools. In the end, we briefly present our future system development and introduce those new design tools to make up the limitation of the traditional FPGA design methodology. The advanced design flow through Simulink and Xilinx System Generator (Sysgen) has been elaborated, which enables engineers to develop sophisticated DSP algorithms and implement them in FPGA more efficiently. It is believed that this new design approach can shorten system design cycle by allowing rapid prototyping and refining design process.

  5. Runtime support for reconfigurable real-time embedded systems

    NARCIS (Netherlands)

    Papp, Z.

    2001-01-01

    As the embedding environment becomes more and more complex so does the embedded system itself. An aspect of the complexity, the demand for robust and fault tolerant embedded solutions is ever increasing. Consequently the embedded system design and development face new challenges including modeling,

  6. Structure and Hierarchy in Real-Time Systems

    DEFF Research Database (Denmark)

    Möller, Michael Oliver

    The development of digital systems is particularly challenging, if their correctness depends on the right timing of operations. One approach to enhance the reliability of such systems is model-based development. This allows for a formal analysis throughout all stages of design. Model-based develo...

  7. Operating system for a real-time multiprocessor propulsion system simulator. User's manual

    Science.gov (United States)

    Cole, G. L.

    1985-01-01

    The NASA Lewis Research Center is developing and evaluating experimental hardware and software systems to help meet future needs for real-time, high-fidelity simulations of air-breathing propulsion systems. Specifically, the real-time multiprocessor simulator project focuses on the use of multiple microprocessors to achieve the required computing speed and accuracy at relatively low cost. Operating systems for such hardware configurations are generally not available. A real time multiprocessor operating system (RTMPOS) that supports a variety of multiprocessor configurations was developed at Lewis. With some modification, RTMPOS can also support various microprocessors. RTMPOS, by means of menus and prompts, provides the user with a versatile, user-friendly environment for interactively loading, running, and obtaining results from a multiprocessor-based simulator. The menu functions are described and an example simulation session is included to demonstrate the steps required to go from the simulation loading phase to the execution phase.

  8. Theoretical research on construction quality real-time monitoring and system integration of core rockfill dam

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    With the enlargement of core rockfill dam construction scale and the improvement of construction mechanization level, the traditional manual construction quality control method is now difficult to meet the quality and safety demands of modern dam construction, so automatic and real-time dam construction quality monitoring with high-techs is urgently needed. The paper makes theoretical research on construction quality real-time monitoring and system integration of core rockfill dam, proposes implementation method and integrated solution of construction quality real-time monitoring of core rockfill dam construction process, realizes refining, all-whether, entire-process and real-time control and analysis on key links of dam construction, and introduces the application of the construction quality real-time monitoring and system integration technology to a practical core rockfill dam project.

  9. Theoretical research on construction quality real-time monitoring and system integration of core rockfill dam

    Institute of Scientific and Technical Information of China (English)

    ZHONG DengHua; CUI Bo; LIU DongHai; TONG DaWei

    2009-01-01

    With the enlargement of core rockfill dam construction scale and the Improvement of construction mechanization level, the traditional manual construction quality control method is now difficult to meet the quality and safety demands of modern dam construction, so automatic and real-time dam con-struction quality monitoring with high-techs is urgently needed.The paper makes theoretical research on construction quality real-time monitoring and system integration of core rock/ill dam, proposes im-plementation method and integrated solution of construction quality real-time monitoring of core rock-fill dam construction process, realizes refining, all-whether, entire-process and real-time control and analysis on key links of dam construction, and introduces the application of the construction quality real-time monitoring and system integration technology to a practical core rockfill dam project.

  10. Building XenoBuntu Linux Distribution for Teaching and Prototyping Real-Time Operating Systems

    CERN Document Server

    Litayem, Nabil; Saoud, Slim Ben

    2011-01-01

    This paper describes the realization of a new Linux distribution based on Ubuntu Linux and Xenomai Real-Time framework. This realization is motivated by the eminent need of real-time systems in modern computer science courses. The majority of the technical choices are made after qualitative comparison. The main goal of this distribution is to offer standard Operating Systems (OS) that include Xenomai infrastructure and the essential tools to begin hard real-time application development inside a convivial desktop environment. The released live/installable DVD can be adopted to emulate several classic RTOS Application Program Interfaces (APIs), directly use and understand real-time Linux in convivial desktop environment and prototyping real-time embedded applications.

  11. Concept of Operations for Real-time Airborne Management System

    Energy Technology Data Exchange (ETDEWEB)

    Barr, Jonathan L.; Taira, Randal Y.; Orr, Heather M.

    2013-03-04

    The purpose of this document is to describe the operating concepts, capabilities, and benefits of RAMS including descriptions of how the system implementations can improve emergency response, damage assessment, task prioritization, and situation awareness. This CONOPS provides general information on operational processes and procedures required to utilize RAMS, and expected performance benefits of the system. The primary audiences for this document are the end users of RAMS (including flight operators and incident commanders) and the RAMS management team. Other audiences include interested offices within the Department of Homeland Security (DHS), and officials from other state and local jurisdictions who want to implement similar systems.

  12. Real-time supervision of building HVAC system performance

    Energy Technology Data Exchange (ETDEWEB)

    Djuric, Natasa

    2008-07-01

    This thesis presents techniques for improving building HVAC system performance in existing buildings generated using simulation-based tools and real data. Therefore, one of the aims has been to research the needs and possibilities to assess and improve building HVAC system performance. In addition, this thesis aims at an advanced utilization of building energy management system (BEMS) and the provision of useful information to building operators using simulation tools. Buildings are becoming more complex systems with many elements, while BEMS provide many data about the building systems. There are, however, many faults and issues in building performance, but there are legislative and cost-benefit forces induced by energy savings. Therefore, both BEMS and the computer-based tools have to be utilized more efficiently to improve building performance. The thesis consists of four main parts that can be read separately. The first part explains the term commissioning and the commissioning tool work principal based on literature reviews. The second part presents practical experiences and issues introduced through the work on this study. The third part deals with the computer-based tools application in design and operation. This part is divided into two chapters. The first deals with improvement in the design, and the second deals with the improvement in the control strategies. The last part of the thesis gives several rules for fault diagnosis developed using simulation tools. In addition, this part aims at the practical explanation of the faults in the building HVAC systems. The practical background for the thesis was obtained though two surveys. The first survey was carried out with the aim to find the commissioning targets in Norwegian building facilities. In that way, an overview of the most typical buildings, HVAC equipment, and their related problems was obtained. An on-site survey was carried out on an example building, which was beneficial for introducing the

  13. High speed preprocessing in real time telemetry systems

    Science.gov (United States)

    Strock, O. J.; O'Brien, Michael

    A versatile high-speed preprocessor, the EMR 8715, is described which is used as a closed-coupled input device for the host computer in a telemetry system. Much of the data and time merging, number conversion, floating-point processing, and data distribution are performed by the system, reducing the host load. The EMR 8715 allows a choice of serial processing, parallel processing, or a combination of the two, on a measurement-by-measurement basis.

  14. A Real-Time Nearshore Wave and Current Prediction System

    Science.gov (United States)

    2008-01-01

    The MRFA04 Trial provided an opportunity to test (DIAS), developed by the Argonne National Laboratory, and evaluate a beach environmental...this component of the The Dclfl3D system, developed by Delft Hydraulics nearshorc modeling system was tailored specifically tbr ( htp :,’www.wldelft.nl...and 0.96. study, we performed three hindcasts using the following Scatter indices for all three test cases were consistently meteorological

  15. Task Scheduling in Energy Harvesting Real-time Embedded Systems

    OpenAIRE

    Chetto, Maryline

    2012-01-01

    International audience; Harvesting energy from the environment is very desirable for many emerging applications that use embedded devices. Energy harvesting also known as energy scavenging enables us to guarantee quasi-perpetual system operation for wireless sensors, medical implants, etc. without requiring human intervention which is normally necessary for recharging batteries in classical battery-operated systems. Nevertheless, energy harvesting calls for solving numerous technological prob...

  16. IMPLEMENTATION OF IMAGE PROCESSING IN REAL TIME CAR PARKING SYSTEM

    OpenAIRE

    2011-01-01

    Car parking lots are an important object class in many traffic and civilian applications. With the problems of increasing urban trafficcongestion and the ever increasing shortage of space, these car parking lots are needed to be well equipped with automatic parkingInformation and Guidance systems. Goals of intelligent parking lot management include counting the number of parked cars, and identifyingthe available location. This work proposes a new system for providing parking information and g...

  17. Integrated active sensor system for real time vibration monitoring.

    Science.gov (United States)

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  18. Real-time embedded systems open-source operating systems perspective

    CERN Document Server

    Bertolotti, Ivan Cibrario

    2012-01-01

    From the Foreword: "!the presentation of real-time scheduling is probably the best in terms of clarity I have ever read in the professional literature. Easy to understand, which is important for busy professionals keen to acquire (or refresh) new knowledge without being bogged down in a convoluted narrative and an excessive detail overload. The authors managed to largely avoid theoretical-only presentation of the subject, which frequently affects books on operating systems. ! an indispensable [resource] to gain a thorough understanding of the real-time systems from the operating systems p

  19. Real-time supervision of building HVAC system performance

    Energy Technology Data Exchange (ETDEWEB)

    Djuric, Natasa

    2008-07-01

    This thesis presents techniques for improving building HVAC system performance in existing buildings generated using simulation-based tools and real data. Therefore, one of the aims has been to research the needs and possibilities to assess and improve building HVAC system performance. In addition, this thesis aims at an advanced utilization of building energy management system (BEMS) and the provision of useful information to building operators using simulation tools. Buildings are becoming more complex systems with many elements, while BEMS provide many data about the building systems. There are, however, many faults and issues in building performance, but there are legislative and cost-benefit forces induced by energy savings. Therefore, both BEMS and the computer-based tools have to be utilized more efficiently to improve building performance. The thesis consists of four main parts that can be read separately. The first part explains the term commissioning and the commissioning tool work principal based on literature reviews. The second part presents practical experiences and issues introduced through the work on this study. The third part deals with the computer-based tools application in design and operation. This part is divided into two chapters. The first deals with improvement in the design, and the second deals with the improvement in the control strategies. The last part of the thesis gives several rules for fault diagnosis developed using simulation tools. In addition, this part aims at the practical explanation of the faults in the building HVAC systems. The practical background for the thesis was obtained though two surveys. The first survey was carried out with the aim to find the commissioning targets in Norwegian building facilities. In that way, an overview of the most typical buildings, HVAC equipment, and their related problems was obtained. An on-site survey was carried out on an example building, which was beneficial for introducing the

  20. Architecture for Multi-Technology Real-Time Location Systems

    Directory of Open Access Journals (Sweden)

    Javier Rodas

    2013-02-01

    Full Text Available The rising popularity of location-based services has prompted considerable research in the field of indoor location systems. Since there is no single technology to support these systems, it is necessary to consider the fusion of the information coming from heterogeneous sensors. This paper presents a software architecture designed for a hybrid location system where we can merge information from multiple sensor technologies. The architecture was designed to be used by different kinds of actors independently and with mutual transparency: hardware administrators, algorithm developers and user applications. The paper presents the architecture design, work-flow, case study examples and some results to show how different technologies can be exploited to obtain a good estimation of a target position.

  1. GPUs for real-time processing in HEP trigger systems

    CERN Document Server

    Ammendola, R; Deri, L; Fiorini, M; Frezza, O; Lamanna, G; Lo Cicero, F; Lonardo, A; Messina, A; Sozzi, M; Pantaleo, F; Paolucci, Ps; Rossetti, D; Simula, F; Tosoratto, L; Vicini, P

    2014-01-01

    We describe a pilot project (GAP - GPU Application Project) for the use of GPUs (Graphics processing units) for online triggering applications in High Energy Physics experiments. Two major trends can be identied in the development of trigger and DAQ systems for particle physics experiments: the massive use of general-purpose commodity systems such as commercial multicore PC farms for data acquisition, and the reduction of trigger levels implemented in hardware, towards a fully software data selection system (\\trigger-less"). The innovative approach presented here aims at exploiting the parallel computing power of commercial GPUs to perform fast computations in software not only in high level trigger levels but also in early trigger stages. General-purpose computing on GPUs is emerging as a new paradigm in several elds of science, although so far applications have been tailored to the specic strengths of such devices as accelerators in oine computation. With the steady reduction of GPU latencies, and the incre...

  2. Earthquake early warning system using real-time signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Leach, R.R. Jr.; Dowla, F.U.

    1996-02-01

    An earthquake warning system has been developed to provide a time series profile from which vital parameters such as the time until strong shaking begins, the intensity of the shaking, and the duration of the shaking, can be derived. Interaction of different types of ground motion and changes in the elastic properties of geological media throughout the propagation path result in a highly nonlinear function. We use neural networks to model these nonlinearities and develop learning techniques for the analysis of temporal precursors occurring in the emerging earthquake seismic signal. The warning system is designed to analyze the first-arrival from the three components of an earthquake signal and instantaneously provide a profile of impending ground motion, in as little as 0.3 sec after first ground motion is felt at the sensors. For each new data sample, at a rate of 25 samples per second, the complete profile of the earthquake is updated. The profile consists of a magnitude-related estimate as well as an estimate of the envelope of the complete earthquake signal. The envelope provides estimates of damage parameters, such as time until peak ground acceleration (PGA) and duration. The neural network based system is trained using seismogram data from more than 400 earthquakes recorded in southern California. The system has been implemented in hardware using silicon accelerometers and a standard microprocessor. The proposed warning units can be used for site-specific applications, distributed networks, or to enhance existing distributed networks. By producing accurate, and informative warnings, the system has the potential to significantly minimize the hazards of catastrophic ground motion. Detailed system design and performance issues, including error measurement in a simple warning scenario are discussed in detail.

  3. Real Time Medical Image Consultation System Through Internet

    Directory of Open Access Journals (Sweden)

    D. Durga Prasad

    2010-01-01

    Full Text Available Teleconsultation among doctors using a telemedicine system typically involves dealing with and sharing medical images of the patients. This paper describes a software tool written in Java which enables the participating doctors to view medical images such as blood slides, X-Ray, USG, ECG etc. online and even allows them to mark and/or zoom specific areas. It is a multi-party secure image communication system tool that can be used by doctors and medical consultants over the Internet.

  4. An SDRAM controller for real-time systems

    DEFF Research Database (Denmark)

    Lakis, Edgar; Schoeberl, Martin

    2013-01-01

    system, and the application software itself. All those components need to be timing analyzable. Current computers use DRAM as a cost effective main memory. However, these DRAM chips have timing requirements that depend on former accesses and also need to be refreshed to retain their content. Standard...

  5. Real-time qualitative reasoning for telerobotic systems

    Science.gov (United States)

    Pin, Eancois G.

    1993-02-01

    This paper discusses the sensor-based telerobotic driving of a car in a-priori unknown environments using 'human-like' reasoning schemes implemented on custom-designed VLSI fuzzy inferencing boards. These boards use the Fuzzy Set theoretic framework to allow very vast (30 kHz) processing of full sets of information that are expressed in qualitative form using membership functions. The sensor-based and fuzzy inferencing system was incorporated on an outdoor test-bed platform to investigate two control modes for driving a car on the basis of very sparse and imprecise range data. In the first mode, the car navigates fully autonomously to a goal specified by the operator, while in the second mode, the system acts as a telerobotic driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right, speed up, slow down, stop, or back up depending on the obstacles perceived by the sensors. Indoor and outdoor experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Sample results are presented that illustrate the feasibility of developing autonomous navigation modules and robust, safety-enhancing driver's aids for telerobotic systems using the new fuzzy inferencing VLSI hardware and 'human-like' reasoning schemes.

  6. Online, real-time corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.

    2005-01-01

    The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress...

  7. Real-time strap pressure sensor system for powered exoskeletons.

    Science.gov (United States)

    Tamez-Duque, Jesús; Cobian-Ugalde, Rebeca; Kilicarslan, Atilla; Venkatakrishnan, Anusha; Soto, Rogelio; Contreras-Vidal, Jose Luis

    2015-02-16

    Assistive and rehabilitative powered exoskeletons for spinal cord injury (SCI) and stroke subjects have recently reached the clinic. Proper tension and joint alignment are critical to ensuring safety. Challenges still exist in adjustment and fitting, with most current systems depending on personnel experience for appropriate individual fastening. Paraplegia and tetraplegia patients using these devices have impaired sensation and cannot signal if straps are uncomfortable or painful. Excessive pressure and blood-flow restriction can lead to skin ulcers, necrotic tissue and infections. Tension must be just enough to prevent slipping and maintain posture. Research in pressure dynamics is extensive for wheelchairs and mattresses, but little research has been done on exoskeleton straps. We present a system to monitor pressure exerted by physical human-machine interfaces and provide data about levels of skin/body pressure in fastening straps. The system consists of sensing arrays, signal processing hardware with wireless transmission, and an interactive GUI. For validation, a lower-body powered exoskeleton carrying the full weight of users was used. Experimental trials were conducted with one SCI and one able-bodied subject. The system can help prevent skin injuries related to excessive pressure in mobility-impaired patients using powered exoskeletons, supporting functionality, independence and better overall quality of life.

  8. Usable, Real-Time, Interactive Spoken Language Systems

    Science.gov (United States)

    1994-09-01

    data coming from MIT. 1,289 utterances were truncated or contained word fragments due to stuttering . Many more contained various nonspeech sounds...performed well. Delphi has also been ported to a spuken language demonstrcation system in an Air Force Resource Management domain. We disc~ iss results of

  9. SARUS: A Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Holten-Lund, Hans; Nilsson, Ronnie Thorup

    2013-01-01

    -resolution images/s. Both RF element data and beamformed data can be stored in the system for later storage and processing. The stored data can be transferred in parallel using the system’s sixty-four 1-Gbit Ethernet interfaces at a theoretical rate of 3.2 GB/s to a 144-core Linux cluster....

  10. Real-Time Strap Pressure Sensor System for Powered Exoskeletons

    Directory of Open Access Journals (Sweden)

    Jesús Tamez-Duque

    2015-02-01

    Full Text Available Assistive and rehabilitative powered exoskeletons for spinal cord injury (SCI and stroke subjects have recently reached the clinic. Proper tension and joint alignment are critical to ensuring safety. Challenges still exist in adjustment and fitting, with most current systems depending on personnel experience for appropriate individual fastening. Paraplegia and tetraplegia patients using these devices have impaired sensation and cannot signal if straps are uncomfortable or painful. Excessive pressure and blood-flow restriction can lead to skin ulcers, necrotic tissue and infections. Tension must be just enough to prevent slipping and maintain posture. Research in pressure dynamics is extensive for wheelchairs and mattresses, but little research has been done on exoskeleton straps. We present a system to monitor pressure exerted by physical human-machine interfaces and provide data about levels of skin/body pressure in fastening straps. The system consists of sensing arrays, signal processing hardware with wireless transmission, and an interactive GUI. For validation, a lower-body powered exoskeleton carrying the full weight of users was used. Experimental trials were conducted with one SCI and one able-bodied subject. The system can help prevent skin injuries related to excessive pressure in mobility-impaired patients using powered exoskeletons, supporting functionality, independence and better overall quality of life.

  11. Real-time Implementation of Vision, Inertial, and GPS Sensors to Navigate in an Urban Environment

    Science.gov (United States)

    2015-03-01

    errors from a GPS outage , and provide a better navigation solution than which would be available if the system operated on GPS and IMU solutions...t is the change in time. The discretized noise power matrix Qd(tk) will be determined by using the Van Loan method [22]. The three step Van Loan...be rotated into the navigation frame defined at the time of the final image. The reason for not rotating the translation into the navigation frame at

  12. Online, real-time corrosion monitoring in district heating systems

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Thorarinsdottir, R.I.

    2005-01-01

    The corrosion control in district heating systems is today performed primarily with control of the water quality. The corrosion rate is kept low by assuring low dissolved oxygen concentration, high pH and low conductivity. Corrosion failures can occur, e.g. as a result of unknown oxygen ingress......, precipitation of deposits or crevices. The authors describe methods used for on-line monitoring of corrosion, cover the complications and the main results of a Nordic project....

  13. Augmented reality based real-time subcutaneous vein imaging system

    OpenAIRE

    Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian

    2016-01-01

    A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. V...

  14. Real-Time Configuration of Networked Embedded Systems

    Science.gov (United States)

    2005-05-01

    Patashnik, Concrete Mathematics : A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994. [22] G. Arfken , Mathematical Methods for...using simple graph methods (JAVA). The points were being read from a file. The interface was as shown below. 26 The second step was to create a...net- works of embedded systems require sound mathematical models that capture the probabilistic and dynamic character of these networks, including the

  15. Documentation Driven Development for Complex Real-Time Systems

    Science.gov (United States)

    2004-12-01

    limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore . Restrictions apply. carry out the development...licensed use limited to: Naval Postgraduate School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore . Restrictions apply. efforts have...School. Downloaded on April 26,2010 at 20:13:16 UTC from IEEE Xplore . Restrictions apply. 3 DOCUMENTATION MANAGEMENT SYSTEM (DMS) DMS will create

  16. Augmented reality based real-time subcutaneous vein imaging system.

    Science.gov (United States)

    Ai, Danni; Yang, Jian; Fan, Jingfan; Zhao, Yitian; Song, Xianzheng; Shen, Jianbing; Shao, Ling; Wang, Yongtian

    2016-07-01

    A novel 3D reconstruction and fast imaging system for subcutaneous veins by augmented reality is presented. The study was performed to reduce the failure rate and time required in intravenous injection by providing augmented vein structures that back-project superimposed veins on the skin surface of the hand. Images of the subcutaneous vein are captured by two industrial cameras with extra reflective near-infrared lights. The veins are then segmented by a multiple-feature clustering method. Vein structures captured by the two cameras are matched and reconstructed based on the epipolar constraint and homographic property. The skin surface is reconstructed by active structured light with spatial encoding values and fusion displayed with the reconstructed vein. The vein and skin surface are both reconstructed in the 3D space. Results show that the structures can be precisely back-projected to the back of the hand for further augmented display and visualization. The overall system performance is evaluated in terms of vein segmentation, accuracy of vein matching, feature points distance error, duration times, accuracy of skin reconstruction, and augmented display. All experiments are validated with sets of real vein data. The imaging and augmented system produces good imaging and augmented reality results with high speed.

  17. Detection and Control of Mobile Robot Motion by Real-Time Computer Vision

    Science.gov (United States)

    Wunsche, H. J.

    1987-02-01

    An approach is presented that combines dynamical models of 3D motion with geometric models of the scene and the laws of perspective projection to estimate all motion parameters necessary to control a mobile robot vehicle. The approach is demonstrated by autonomous con-trol of a jet propelled air-cushion vehicle, navigating through a technical environment with three degrees of motion freedom and performing a rendezvous maneuver with a passive partner. Features of the partner and other objects in the scene, the 3D shapes of which are known, are looked for and then tracked by the processors of a multimicroprocessor system. A sequential Kalman filter formulation is used to detect and to cope with variable feature visibility due to occlusion and motion while determining the complete relative motion state without inversion of the projection equations. A scheme is developed for always selecting those features for tracking which yield the best state estimate, the quality of which is demonstrated by physical docking with a static partner. The system operates at 0.13 seconds cycle time, half of which is spent for I/O operations. Experimental results are given.

  18. Real-time Algorithms for Sparse Neuronal System Identification.

    Science.gov (United States)

    Sheikhattar, Alireza; Babadi, Behtash

    2016-08-01

    We consider the problem of sparse adaptive neuronal system identification, where the goal is to estimate the sparse time-varying neuronal model parameters in an online fashion from neural spiking observations. We develop two adaptive filters based on greedy estimation techniques and regularized log-likelihood maximization. We apply the proposed algorithms to simulated spiking data as well as experimentally recorded data from the ferret's primary auditory cortex during performance of auditory tasks. Our results reveal significant performance gains achieved by the proposed algorithms in terms of sparse identification and trackability, compared to existing algorithms.

  19. Mean waiting time approximation for a real time polling system

    Institute of Scientific and Technical Information of China (English)

    Cao Chunsheng; Yin Rupo; Zhang Weidong; Cai Yunze

    2007-01-01

    This paper considers a novel polling system with two classes of message which can experience an upper bounded time before being served . The station serves these two classes with mixed service discipline , one class with exhaustive service discipline, and the other with gated service discipline. Using iterative method, we have developed an approximation method to obtain the mean waiting time for each message class . The performance of approximation has been compared with the simulation results . The expression for the upper bound of waiting time is given too .

  20. Compositional verification of real-time systems using Ecdar

    DEFF Research Database (Denmark)

    David, A.; Larsen, K.G.; Møller, M.H.;

    2012-01-01

    We present a specification theory for timed systems implemented in the Ecdar tool. We illustrate the operations of the specification theory on a running example, showing the models and verification checks. To demonstrate the power of the compositional verification, we perform an in depth case study...... of a leader election protocol; Modeling it in Ecdar as Timed input/output automata Specifications and performing both monolithic and compositional verification of two interesting properties on it. We compare the execution time of the compositional to the classical verification showing a huge difference...

  1. Development of a real-time radiological dose assessment system

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moon Hee; Lee, Young Bok; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae

    1997-01-01

    Inspection and repair of tower structure and lift, instrument calibration have been done. Wireless data transmission to MIPS (Meteorological Information Processing System) has been done after collection in the DAS where environmental assessment can be done by the developed simulation programs in both cases of normal operation and emergency. Wind direction, wind speed, temperature, humidity at 67m, 27m, and 10m height and temperature, humidity, atmospheric pressure, solar radiation, precipitation, and visibility at surface have been measured analyzed with statistical methods. At the site, the prevailing wind directions were SW in spring and summer, NNW in winter season. (author). 6 refs., 9 tabs., 4 figs.

  2. Design and Implementation of Real Time Remote Supervisory System

    Directory of Open Access Journals (Sweden)

    Mr. Mudit Goenka,

    2015-02-01

    Full Text Available In today’s fast growing communication environment and rapid exchange of data in networking field has triggered us to develop a home based remote supervisory monitoring system. In the present paper the physiological parameters of the patient such as body temperature, ECG, Pulse rate and Oxygen Saturation is displayed in MATLAB graphical user interface which is processed using ARM7 LPC2138. In case any emergency persist and parameters goes abnormal over the optimum level then a buzzer will ring to alert the caretaker. And the vital parameters will be displayed on the patient side computer and an automatic SMS will be sent to the doctor using GSM interface.

  3. Knowledge based support for real time application of multiagent control and automation in electric power systems

    DEFF Research Database (Denmark)

    Saleem, Arshad; Nordstrom, Lars; Lind, Morten

    2011-01-01

    This paper presents a mechanism for developing knowledge based support for real time application of multiagent systems (MAS) in control, automation and diagnosis of electric power systems. In particular it presents a way for autonomous agents to utilize a qualitative means-ends based model...... and choose an appropriate control action. The paper also elaborates on real time interfacing between multi-agent systems and industry standard distribution automation and control system....

  4. A Night Time Application for a Real-Time Vehicle Detection Algorithm Based on Computer Vision

    Directory of Open Access Journals (Sweden)

    Shifu Zhou

    2013-03-01

    Full Text Available Vehicle detection technology is the key technology of intelligent transportation systems, attracting the attention of many researchers. Although much literature has been published concerning daytime vehicle detection, little has been published concerning nighttime vehicle detection. In this study, a nighttime vehicle detection algorithm, consisting of headlight segmentation, headlight pairing and headlight tracking, is proposed. First, the pixels of the headlights are segmented in nighttime traffic images, through the use of the thresholding method. Then the pixels of the headlights are grouped and labeled, to analyze the characteristics of related components, such as area, location and size. Headlights are paired based on their location and size and then tracked via a tracking procedure designed to detect vehicles. Vehicles with only one headlight or those with three or four headlights are also detected. Experimental results show that the proposed algorithm is robust and effective in detecting vehicles in nighttime traffic.

  5. A Real-Time Multi-Agent System Architecture for E-Commerce Applications

    Science.gov (United States)

    2000-12-01

    1 A Real-Time Multi-Agent System Architecture for E - Commerce Applications* Lisa Cingiser DiPippo, Victor Fay-Wolfe, Lekshmi Nair, Ethan Hodys and...2000 to 00-00-2000 4. TITLE AND SUBTITLE A Real-Time Multi-Agent System Architecture for E - Commerce Applications 5a. CONTRACT NUMBER 5b. GRANT...develop real-time e - commerce agent applications such as the stock trading system described throughout the paper. It provides agents with the ability to

  6. MODEL-BASED DEVELOPMENT OF REAL-TIME SOFTWARE SYSTEM FOR ELECTRONIC UNIT PUMP SYSTEM

    Institute of Scientific and Technical Information of China (English)

    YU Shitao; YANG Shiwei; YANG Lin; GONG Yuanming; ZHUO Bin

    2007-01-01

    A real-time operating system (RTOS), also named OS, is designed based on the hardware platform of MC68376, and is implemented in the electronic control system for unit pump in diesel engine. A parallel and time-based task division method is introduced and the multi-task software architecture is built in the software system for electronic unit pump (EUP) system. The V-model software development process is used to control algorithm of each task. The simulation results of the hardware-in-the-loop simulation system (HILSS) and the engine experimental results show that the OS is an efficient real-time kernel, and can meet the real-time demands of EUP system; The built multi-task software system is real-time, determinate and reliable. V-model development is a good development process of control algorithms for EUP system, the control precision of control system can be ensured, and the development cycle and cost are also decreased.

  7. Real-Time Minimization of Tracking Error for Aircraft Systems

    Science.gov (United States)

    Garud, Sumedha; Kaneshige, John T.; Krishnakumar, Kalmanje S.; Kulkarni, Nilesh V.; Burken, John

    2013-01-01

    This technology presents a novel, stable, discrete-time adaptive law for flight control in a Direct adaptive control (DAC) framework. Where errors are not present, the original control design has been tuned for optimal performance. Adaptive control works towards achieving nominal performance whenever the design has modeling uncertainties/errors or when the vehicle suffers substantial flight configuration change. The baseline controller uses dynamic inversion with proportional-integral augmentation. On-line adaptation of this control law is achieved by providing a parameterized augmentation signal to a dynamic inversion block. The parameters of this augmentation signal are updated to achieve the nominal desired error dynamics. If the system senses that at least one aircraft component is experiencing an excursion and the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, then the neural network (NN) modeling of aircraft operation may be changed.

  8. Research of smart real-time robot navigation system

    Science.gov (United States)

    Rahmani, Budi; Harjoko, A.; Priyambodo, T. K.; Aprilianto, H.

    2016-02-01

    In this paper described how the humanoid robot measures its distance to the orange ball on green floor. We trained the robot camera (CMUcam5) to detect and track the block color of the orange ball. The block color also used to estimate the distance of the camera toward the ball by comparing its block color size when its in the end of field of view and when its near of the camera. Then, using the pythagoras equation we calculate the distance estimation between the whole humanoid robot toward the ball. The distance will be used to estimate how many step the robot must perform to approach the ball and doing another task like kick the ball. The result shows that our method can be used as one of smart navigation system using a camera as the only one sensor to perceive the information of environtment.

  9. A Saccade Based Framework for Real-Time Motion Segmentation Using Event Based Vision Sensors

    Science.gov (United States)

    Mishra, Abhishek; Ghosh, Rohan; Principe, Jose C.; Thakor, Nitish V.; Kukreja, Sunil L.

    2017-01-01

    Motion segmentation is a critical pre-processing step for autonomous robotic systems to facilitate tracking of moving objects in cluttered environments. Event based sensors are low power analog devices that represent a scene by means of asynchronous information updates of only the dynamic details at high temporal resolution and, hence, require significantly less calculations. However, motion segmentation using spatiotemporal data is a challenging task due to data asynchrony. Prior approaches for object tracking using neuromorphic sensors perform well while the sensor is static or a known model of the object to be followed is available. To address these limitations, in this paper we develop a technique for generalized motion segmentation based on spatial statistics across time frames. First, we create micromotion on the platform to facilitate the separation of static and dynamic elements of a scene, inspired by human saccadic eye movements. Second, we introduce the concept of spike-groups as a methodology to partition spatio-temporal event groups, which facilitates computation of scene statistics and characterize objects in it. Experimental results show that our algorithm is able to classify dynamic objects with a moving camera with maximum accuracy of 92%. PMID:28316563

  10. A multimodal spectroscopy system for real-time disease diagnosis

    Science.gov (United States)

    Šćepanović, Obrad R.; Volynskaya, Zoya; Kong, Chae-Ryon; Galindo, Luis H.; Dasari, Ramachandra R.; Feld, Michael S.

    2009-04-01

    The combination of reflectance, fluorescence, and Raman spectroscopy—termed multimodal spectroscopy (MMS)—provides complementary and depth-sensitive information about tissue composition. As such, MMS is a promising tool for disease diagnosis, particularly in atherosclerosis and breast cancer. We have developed an integrated MMS instrument and optical fiber spectral probe for simultaneous collection of all three modalities in a clinical setting. The MMS instrument multiplexes three excitation sources, a xenon flash lamp (370-740 nm), a nitrogen laser (337 nm), and a diode laser (830 nm), through the MMS probe to excite tissue and collect the spectra. The spectra are recorded on two spectrograph/charge-coupled device modules, one optimized for visible wavelengths (reflectance and fluorescence) and the other for the near-infrared (Raman), and processed to provide diagnostic parameters. We also describe the design and calibration of a unitary MMS optical fiber probe 2 mm in outer diameter, containing a single appropriately filtered excitation fiber and a ring of 15 collection fibers, with separate groups of appropriately filtered fibers for efficiently collecting reflectance, fluorescence, and Raman spectra from the same tissue location. A probe with this excitation/collection geometry has not been used previously to collect reflectance and fluorescence spectra, and thus physical tissue models ("phantoms") are used to characterize the probe's spectroscopic response. This calibration provides probe-specific modeling parameters that enable accurate extraction of spectral parameters. This clinical MMS system has been used recently to analyze artery and breast tissue in vivo and ex vivo.

  11. Range Safety Real-time System for Satellite Launch Vehicle Missions–Testing Methodologies

    Directory of Open Access Journals (Sweden)

    R. Varaprasad

    2006-11-01

    Full Text Available A real-time system plays a critical role in the range safety decision-making in a satellitelaunch mission. Real-time software, the heart of such systems, is becoming an issue of criticality.Emphasis is being laid on the development of reliable, robust, and operational system. Thispaper purports to delineate prudent testing methodologies implemented to test the real-timesystem.

  12. Alternate Data Acquisition and Real-time Monitoring System on HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    Wei Peijie; Luo Jiarong; Wang Hua; Li Guiming

    2005-01-01

    A new system called alternate data acquisition and real-time monitoring system has been developed for long-time discharge in tokamak operation. It can support continuous on-line data acquisition at a high sampling rate and a graphic display of the plasma parameters during the discharge. Thus operators can monitor and control the plasma state in real time. An application of this system has been demonstrated on the HT-7 tokamak.

  13. Priority Based Dynamic Round Robin (PBDRR) Algorithm with Intelligent Time Slice for Soft Real Time Systems

    OpenAIRE

    Prof. Rakesh Mohanty; Prof H.S Behera; Khusbu Patwari; Monisha Dash; M. Lakshmi Prasanna

    2011-01-01

    In this paper, a new variant of Round Robin (RR) algorithm is proposed which is suitable for soft real time systems. RR algorithm performs optimally in timeshared systems, but it is not suitable for soft real time systems. Because it gives more number of context switches, larger waiting time and larger response time. We have proposed a novel algorithm, known as Priority Based Dynamic Round Robin Algorithm(PBDRR), which calculates intelligent time slice for individual processes and changes aft...

  14. Large Field-of-View Real-Time MRI With a 32-Channel System

    OpenAIRE

    2004-01-01

    The emergence of parallel MRI techniques and new applications for real-time interactive MRI underscores the need to evaluate performance gained by increasing the capability of MRI phased-array systems beyond the standard four to eight high-bandwidth channels. Therefore, to explore the advantages of highly parallel MRI a 32-channel 1.5 T MRI system and 32-element torso phased arrays were designed and constructed for real-time interactive MRI. The system was assembled from multiple synchronized...

  15. Detection of influenza A virus RNA in birds by optimized Real-Time PCR system

    Institute of Scientific and Technical Information of China (English)

    Ilinykh Ph A; Shestopalova EM; Khripko Yu I; Durimanov AG; Sharshov KA; Shestopalov AM

    2010-01-01

    Objective: To evaluate the use of Real-Time PCR system based on specific amplification of matrix protein gene fragment for influenza A virus RNA detection in cloacal swabs from wild birds. Methods:Sensitivity, specificity and reproducibility of analysis results were identified. Study of cloacal swabs from wild birds for influenza A virus presence was performed. Results:Reproducibility of low concentrations of virus detection in samples by Real-Time PCR was significantly higher than that of detection based on cytopathic effect of viruses grown on MDCK cell culture. Conclusions: Real-Time PCR system for influenza A virus RNA detection is developed and applied for virus surveillance study.

  16. Real-Time and Real-Fast Performance of General-Purpose and Real-Time Operating Systems in Multithreaded Physical Simulation of Complex Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Carlos Garre

    2014-01-01

    Full Text Available Physical simulation is a valuable tool in many fields of engineering for the tasks of design, prototyping, and testing. General-purpose operating systems (GPOS are designed for real-fast tasks, such as offline simulation of complex physical models that should finish as soon as possible. Interfacing hardware at a given rate (as in a hardware-in-the-loop test requires instead maximizing time determinism, for which real-time operating systems (RTOS are designed. In this paper, real-fast and real-time performance of RTOS and GPOS are compared when simulating models of high complexity with large time steps. This type of applications is usually present in the automotive industry and requires a good trade-off between real-fast and real-time performance. The performance of an RTOS and a GPOS is compared by running a tire model scalable on the number of degrees-of-freedom and parallel threads. The benchmark shows that the GPOS present better performance in real-fast runs but worse in real-time due to nonexplicit task switches and to the latency associated with interprocess communication (IPC and task switch.

  17. Arrow-bot: A Teaching Tool for Real-Time Embedded System Course

    Directory of Open Access Journals (Sweden)

    Zakaria Mohamad Fauzi

    2017-01-01

    Full Text Available This paper presents the design of a line following Arduino-based mobile robot for Real-Time Embedded System course at Universiti Tun Hussein Onn Malaysia. The real-time system (RTS concept was implementing is based on rate monotonic scheduling (RMS on an ATmega328P microcontroller. Three infrared line sensors were used as input for controlling two direct current (DC motors. A RTS software was programmed in Arduino IDE which relied on a real-time operating system (RTOS of ChibiOS/RT library. Three independent tasks of software functions were created for testing real-time scheduling capability and the result of temporal scope was collected. The microcontroller succeeded to handle multiple tasks without missed their dateline. This implementation of the RTOS in embedded system for mobile robotics system is hoped to increase students understanding and learning capability.

  18. Real-time simulation based on a high-speed signal processing system VHS-ADC

    Science.gov (United States)

    Fu, Zhihong; Ma, Jing; Sun, Rui

    2006-11-01

    Real-time simulation for power electronics needs high-speed data processing and sampling, but most real-time simulation systems, such as dSPACE, can't meet the high-speed demands. Lyrtech's VHS-ADC, a high-speed signal processing system based on FPGA, is configured with multi-channels A/D, D/A and GPIO port, seamless interoperability with MATLAB, which has been applied widely in communication, audio, video and radar high-speed signal processing fields. However, VHS-ADC doesn't support real-time controller modeling. By constructing real-time control models including PI, PWM, Limiter and Reset-integrator model, this paper constructs a high-speed real-time simulation platform suitable for power electronics field. Further, the PWM-based Boost converter experiments prove the feasibility of real-time simulation by the rebuilt system, with Boost's switching frequency 100 kHz and its cycle 10μs. At frequency 100MHz, the corresponding simulation cycle is no more than 300ns, much less than switching cycle. Compared with TL494's waveform, it is proved that, as a novel way, VHS-ADC can support flexibly modeling process in real-time simulations with significant performance.

  19. Real-Time Projection-Based Augmented Reality System for Dynamic Objects in the Performing Arts

    National Research Council Canada - National Science Library

    Jaewoon Lee; Yeonjin Kim; Myeong-Hyeon Heo; Dongho Kim; Byeong-Seok Shin

    2015-01-01

    ... say real-time projection-based augmented reality system for dynamic objects in performing arts. We installed the sets on a stage for live performance, and rehearsed particular scenes of a musical...

  20. Scenario-based verification of real-time systems using UPPAAL

    DEFF Research Database (Denmark)

    Li, Shuhao; Belaguer, Sandie; David, Alexandre;

    2010-01-01

    as a separate monitored LSC chart. We make timed extensions to a kernel subset of the LSC language and define a trace-based semantics. By translating a monitored LSC chart to a behavior-equivalent observer TA and then non-intrusively composing this observer with the original TA modeled real-time system......, the problem of scenario-based verification reduces to a computation tree logic (CTL) real-time model checking problem. In case the real time system is modeled as a set of driving LSC charts, we translate these driving charts and the monitored chart into a behavior-equivalent network of TAs by using a “one......Abstract This paper proposes two approaches to tool-supported automatic verification of dense real-time systems against scenario-based requirements, where a system is modeled as a network of timed automata (TAs) or as a set of driving live sequence charts (LSCs), and a requirement is specified...

  1. Real Time Corner Detection for Miniaturized Electro-Optical Sensors Onboard Small Unmanned Aerial Systems

    Directory of Open Access Journals (Sweden)

    Antonio Moccia

    2012-01-01

    Full Text Available This paper describes the target detection algorithm for the image processor of a vision-based system that is installed onboard an unmanned helicopter. It has been developed in the framework of a project of the French national aerospace research center Office National d’Etudes et de Recherches Aérospatiales (ONERA which aims at developing an air-to-ground target tracking mission in an unknown urban environment. In particular, the image processor must detect targets and estimate ground motion in proximity of the detected target position. Concerning the target detection function, the analysis has dealt with realizing a corner detection algorithm and selecting the best choices in terms of edge detection methods, filtering size and type and the more suitable criterion of detection of the points of interest in order to obtain a very fast algorithm which fulfills the computation load requirements. The compared criteria are the Harris-Stephen and the Shi-Tomasi, ones, which are the most widely used in literature among those based on intensity. Experimental results which illustrate the performance of the developed algorithm and demonstrate that the detection time is fully compliant with the requirements of the real-time system are discussed.

  2. Real time corner detection for miniaturized electro-optical sensors onboard small unmanned aerial systems.

    Science.gov (United States)

    Forlenza, Lidia; Carton, Patrick; Accardo, Domenico; Fasano, Giancarmine; Moccia, Antonio

    2012-01-01

    This paper describes the target detection algorithm for the image processor of a vision-based system that is installed onboard an unmanned helicopter. It has been developed in the framework of a project of the French national aerospace research center Office National d'Etudes et de Recherches Aérospatiales (ONERA) which aims at developing an air-to-ground target tracking mission in an unknown urban environment. In particular, the image processor must detect targets and estimate ground motion in proximity of the detected target position. Concerning the target detection function, the analysis has dealt with realizing a corner detection algorithm and selecting the best choices in terms of edge detection methods, filtering size and type and the more suitable criterion of detection of the points of interest in order to obtain a very fast algorithm which fulfills the computation load requirements. The compared criteria are the Harris-Stephen and the Shi-Tomasi, ones, which are the most widely used in literature among those based on intensity. Experimental results which illustrate the performance of the developed algorithm and demonstrate that the detection time is fully compliant with the requirements of the real-time system are discussed.

  3. A Real-Time Semiautonomous Audio Panning System for Music Mixing

    Directory of Open Access Journals (Sweden)

    Perez_Gonzalez Enrique

    2010-01-01

    Full Text Available A real-time semiautonomous stereo panning system for music mixing has been implemented. The system uses spectral decomposition, constraint rules, and cross-adaptive algorithms to perform real-time placement of sources in a stereo mix. A subjective evaluation test was devised to evaluate its quality against human panning. It was shown that the automatic panning technique performed better than a nonexpert and showed no significant statistical difference to the performance of a professional mixing engineer.

  4. A Comparison and Evaluation of Real-Time Software Systems Modeling Languages

    Science.gov (United States)

    Evensen, Kenneth D.; Weiss, Kathryn Anne

    2010-01-01

    A model-driven approach to real-time software systems development enables the conceptualization of software, fostering a more thorough understanding of its often complex architecture and behavior while promoting the documentation and analysis of concerns common to real-time embedded systems such as scheduling, resource allocation, and performance. Several modeling languages have been developed to assist in the model-driven software engineering effort for real-time systems, and these languages are beginning to gain traction with practitioners throughout the aerospace industry. This paper presents a survey of several real-time software system modeling languages, namely the Architectural Analysis and Design Language (AADL), the Unified Modeling Language (UML), Systems Modeling Language (SysML), the Modeling and Analysis of Real-Time Embedded Systems (MARTE) UML profile, and the AADL for UML profile. Each language has its advantages and disadvantages, and in order to adequately describe a real-time software system's architecture, a complementary use of multiple languages is almost certainly necessary. This paper aims to explore these languages in the context of understanding the value each brings to the model-driven software engineering effort and to determine if it is feasible and practical to combine aspects of the various modeling languages to achieve more complete coverage in architectural descriptions. To this end, each language is evaluated with respect to a set of criteria such as scope, formalisms, and architectural coverage. An example is used to help illustrate the capabilities of the various languages.

  5. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural" grasping task induces pantomime-like grasps.

    Science.gov (United States)

    Whitwell, Robert L; Ganel, Tzvi; Byrne, Caitlin M; Goodale, Melvyn A

    2015-01-01

    Investigators study the kinematics of grasping movements (prehension) under a variety of conditions to probe visuomotor function in normal and brain-damaged individuals. "Natural" prehensile acts are directed at the goal object and are executed using real-time vision. Typically, they also entail the use of tactile, proprioceptive, and kinesthetic sources of haptic feedback about the object ("haptics-based object information") once contact with the object has been made. Natural and simulated (pantomimed) forms of prehension are thought to recruit different cortical structures: patient DF, who has visual form agnosia following bilateral damage to her temporal-occipital cortex, loses her ability to scale her grasp aperture to the size of targets ("grip scaling") when her prehensile movements are based on a memory of a target previewed 2 s before the cue to respond or when her grasps are directed towards a visible virtual target but she is denied haptics-based information about the target. In the first of two experiments, we show that when DF performs real-time pantomimed grasps towards a 7.5 cm displaced imagined copy of a visible object such that her fingers make contact with the surface of the table, her grip scaling is in fact quite normal. This finding suggests that real-time vision and terminal tactile feedback are sufficient to preserve DF's grip scaling slopes. In the second experiment, we examined an "unnatural" grasping task variant in which a tangible target (along with any proxy such as the surface of the table) is denied (i.e., no terminal tactile feedback). To do this, we used a mirror-apparatus to present virtual targets with and without a spatially coincident copy for the participants to grasp. We compared the grasp kinematics from trials with and without terminal tactile feedback to a real-time-pantomimed grasping task (one without tactile feedback) in which participants visualized a copy of the visible target as instructed in our laboratory in the

  6. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a “natural” grasping task induces pantomime-like grasps

    Science.gov (United States)

    Whitwell, Robert L.; Ganel, Tzvi; Byrne, Caitlin M.; Goodale, Melvyn A.

    2015-01-01

    Investigators study the kinematics of grasping movements (prehension) under a variety of conditions to probe visuomotor function in normal and brain-damaged individuals. “Natural” prehensile acts are directed at the goal object and are executed using real-time vision. Typically, they also entail the use of tactile, proprioceptive, and kinesthetic sources of haptic feedback about the object (“haptics-based object information”) once contact with the object has been made. Natural and simulated (pantomimed) forms of prehension are thought to recruit different cortical structures: patient DF, who has visual form agnosia following bilateral damage to her temporal-occipital cortex, loses her ability to scale her grasp aperture to the size of targets (“grip scaling”) when her prehensile movements are based on a memory of a target previewed 2 s before the cue to respond or when her grasps are directed towards a visible virtual target but she is denied haptics-based information about the target. In the first of two experiments, we show that when DF performs real-time pantomimed grasps towards a 7.5 cm displaced imagined copy of a visible object such that her fingers make contact with the surface of the table, her grip scaling is in fact quite normal. This finding suggests that real-time vision and terminal tactile feedback are sufficient to preserve DF’s grip scaling slopes. In the second experiment, we examined an “unnatural” grasping task variant in which a tangible target (along with any proxy such as the surface of the table) is denied (i.e., no terminal tactile feedback). To do this, we used a mirror-apparatus to present virtual targets with and without a spatially coincident copy for the participants to grasp. We compared the grasp kinematics from trials with and without terminal tactile feedback to a real-time-pantomimed grasping task (one without tactile feedback) in which participants visualized a copy of the visible target as instructed in our

  7. A Statistical Approach to Performance Monitoring in Soft Real-Time Distributed Systems

    CERN Document Server

    Bickson, Danny; Hoch, Ezra N; Shagin, Konstantin

    2009-01-01

    Soft real-time applications require timely delivery of messages conforming to the soft real-time constraints. Satisfying such requirements is a complex task both due to the volatile nature of distributed environments, as well as due to numerous domain-specific factors that affect message latency. Prompt detection of the root-cause of excessive message delay allows a distributed system to react accordingly. This may significantly improve compliance with the required timeliness constraints. In this work, we present a novel approach for distributed performance monitoring of soft-real time distributed systems. We propose to employ recent distributed algorithms from the statistical signal processing and learning domains, and to utilize them in a different context of online performance monitoring and root-cause analysis, for pinpointing the reasons for violation of performance requirements. Our approach is general and can be used for monitoring of any distributed system, and is not limited to the soft real-time dom...

  8. A rule-based system for real-time analysis of control systems

    Science.gov (United States)

    Larson, Richard R.; Millard, D. Edward

    1992-01-01

    An approach to automate the real-time analysis of flight critical health monitoring and system status is being developed and evaluated at the NASA Dryden Flight Research Facility. A software package was developed in-house and installed as part of the extended aircraft interrogation and display system. This design features a knowledge-base structure in the form of rules to formulate interpretation and decision logic of real-time data. This technique has been applied for ground verification and validation testing and flight testing monitoring where quick, real-time, safety-of-flight decisions can be very critical. In many cases post processing and manual analysis of flight system data are not required. The processing is described of real-time data for analysis along with the output format which features a message stack display. The development, construction, and testing of the rule-driven knowledge base, along with an application using the X-31A flight test program, are presented.

  9. Real-time PCR Machine System Modeling and a Systematic Approach for the Robust Design of a Real-time PCR-on-a-Chip System

    Directory of Open Access Journals (Sweden)

    Da-Sheng Lee

    2010-01-01

    Full Text Available Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design.

  10. Dynamic Real Time Distributed Sensor Network Based Database Management System Using XML, JAVA and PHP Technologies

    Directory of Open Access Journals (Sweden)

    D. Sudharsan

    2012-03-01

    Full Text Available Wireless Sensor Network (WSN is well known for distributed real time systems for various applications. In order to handle the increasing functionality and complexity of high resolution spatio-temporal sensorydatabase, there is a strong need for a system/tool to analyse real time data associated with distributed sensor network systems. There are a few package/systems available to maintain the near real time database system/management, which are expensive and requires expertise. Hence, there is a need for a cost effective and easy to use dynamic real-time data repository system to provide real time data (raw as well as usable units in a structured format. In the present study, a distributed sensor network system, with Agrisens (AS and FieldServer (FS as well as FS-based Flux Tower and FieldTwitter, is used, which consists of network of sensors and field images to observe/collect the real time weather, crop and environmental parameters for precision agriculture. The real time FieldServer-based spatio-temporal high resolution dynamic sensory data was converted into Dynamic Real-Time Database Management System (DRTDBMS in a structured format for both raw and converted (with usable units data. A web interface has been developed to access the DRTDBMS and exclusive domain has been created with the help of open/free Information and Communication Technology (ICT tools in Extendable Markup Language (XML using (Hypertext preprocessor PHP algorithms and with eXtensible Hyper Text Markup Language (XHTML self-scripting. The proposed DRTDBMS prototype, called GeoSense DRTDBMS, which is a part of the ongoing IndoJapan initiative ‘ICT and Sensor Network based Decision Support Systems in Agriculture and EnvironmentAssessment’, will be integrated with GeoSense cloud server to provide database (dynamic real-time weather/soil/crop and environmental parameters and modeling services (crop water requirement and simulated rice yield modeling. GeoSense-cloud server

  11. Real-time Process Simulator of Wind Turbine Control Systems. Modelling and Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Van der Hooft, E.L.; Van Engelen, T.G.; Pierik, J.T.G.; Schaak, P. [ECN Wind Energy, Petten (Netherlands)

    2007-06-15

    The development of a real-time simulator for a complete wind turbine system has been carried out for the evaluation of the overall control system. The real-time simulator software has been developed in Matlab/Simulink and supports automated real-time compilation (Real Time Workshop) to a real-time code for use at a hardware platform (dSpace, xPC-target). The following program modules were developed and implemented: efficient integrated linear structural models for the rotor, drive-train and support structure in a working point range; an interpolation method between these models has been derived; non-linear aerodynamic (BEM) and hydrodynamic (Morison) conversion models; a blade effective windspeed model, which account for the rotational sampling of spatial turbulence, for tower shadow and wind shear, and for oblique inflow; a wave generation model (Airy) in order to cope with offshore situations; an electric system model in a rotating reference frame (Park) consisting of a doubly fed induction generator, converter, transformer and cabling; quasi-steady and easy to parametrise models for turbine specific peripheral devices like pumps, motors, valves, brakes, heat exchangers; models of peripheral devices which comprise discontinuous behaviour such as switching and Coulomb friction; generic models for the thermic behaviour of the heat generating systems like gearbox, brake and generator. These subsystem models were integrated in an overall Simulink scheme for time-domain simulation and compilation to real-time code.

  12. Control an Electromechanical System in the Real-Time Linux Environment

    Directory of Open Access Journals (Sweden)

    Matej Dobšovič

    2008-05-01

    Full Text Available This article is concerned with possibilities of control in real-time using Real-Time Linux (RTL. It describes the control abilities of a Personal Computer (PC with RTLoperating system, cooperation with industrial control cards, the architecture of controlsoftware and possibilities of use in real applications. We are putting forward experiencewith a simple interconnection between the RTL kernel and a control card using the Comedisoftware package.

  13. The Artificial Reverberation Real-time Processing System Based On DSP

    Institute of Scientific and Technical Information of China (English)

    WEN Chuan-xue; ZHENG Sheng-lin; ZHANG Cheng-yun

    2008-01-01

    A real-time process system of artificial reverberation based on fixed-point DSP is presented in this paper. This paper dis- cusses the hardware interface and software between TMS320VC5509 DSP chip and TLV320AIC23 cedee chip. Based on this, it intro- duces the design and working of the artificial reverberation algorithm. At last, the paper discusses the sticking point in realization of real-time process.

  14. Real-Time Business Intelligence in the MIRABEL Smart Grid System

    DEFF Research Database (Denmark)

    Fischer, Ulrike; Kaulakiene, Dalia; Khalefa, Mohamed

    2012-01-01

    of energy related data, and must be able to react rapidly (but intelligently) when conditions change, leading to substantial real-time business intelligence challenges. This paper discusses these challenges and presents data management solutions in the European smart grid project MIRABEL. These solutions......) data. Experimental studies show that the proposed solutions support important real-time business intelligence tasks in a smart grid system....

  15. A New Design Method of Automotive Electronic Real-time Control System

    Science.gov (United States)

    Zuo, Wenying; Li, Yinguo; Wang, Fengjuan; Hou, Xiaobo

    Structure and functionality of automotive electronic control system is becoming more and more complex. The traditional manual programming development mode to realize automotive electronic control system can't satisfy development needs. So, in order to meet diversity and speedability of development of real-time control system, combining model-based design approach and auto code generation technology, this paper proposed a new design method of automotive electronic control system based on Simulink/RTW. Fristly, design algorithms and build a control system model in Matlab/Simulink. Then generate embedded code automatically by RTW and achieve automotive real-time control system development in OSEK/VDX operating system environment. The new development mode can significantly shorten the development cycle of automotive electronic control system, improve program's portability, reusability and scalability and had certain practical value for the development of real-time control system.

  16. Real-time object tracking system based on field-programmable gate array and convolution neural network

    Directory of Open Access Journals (Sweden)

    Congyi Lyu

    2016-12-01

    Full Text Available Vision-based object tracking has lots of applications in robotics, like surveillance, navigation, motion capturing, and so on. However, the existing object tracking systems still suffer from the challenging problem of high computation consumption in the image processing algorithms. The problem can prevent current systems from being used in many robotic applications which have limitations of payload and power, for example, micro air vehicles. In these applications, the central processing unit- or graphics processing unit-based computers are not good choices due to the high weight and power consumption. To address the problem, this article proposed a real-time object tracking system based on field-programmable gate array, convolution neural network, and visual servo technology. The time-consuming image processing algorithms, such as distortion correction, color space convertor, and Sobel edge, Harris corner features detector, and convolution neural network were redesigned using the programmable gates in field-programmable gate array. Based on the field-programmable gate array-based image processing, an image-based visual servo controller was designed to drive a two degree of freedom manipulator to track the target in real time. Finally, experiments on the proposed system were performed to illustrate the effectiveness of the real-time object tracking system.

  17. High performance reconfigurable hardware system for real-time image processing

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A novel reconfigurable hardware system which uses both multi-DSP and FPGA to attain high performance and real-time image processing are presented. The system structure and working principle of mainly processing multi-DSP board, extended multi-DSP board are analysed. The outstanding advantage is that the communication among different board components of this system is supported by high speed link ports & serial ports for increasing the system performance and computational power. Then the implementation of embedded real-time operating systems (RTOS) by us is discussed in detail. In this system, we adopt two kinds of parallel structures controlled by RTOS for parallel processing of algorithms. The experimental results show that exploitive period of the system is short, and maintenance convenient.Thus it is suitable for real-time image processing and can get satisfactory effect of image recognition.

  18. A portable device for real time drowsiness detection using novel active dry electrode system.

    Science.gov (United States)

    Tsai, Pai-Yuan; Hu, Weichih; Kuo, Terry B J; Shyu, Liang-Yu

    2009-01-01

    Electroencephalogram (EEG) signals give important information about the vigilance states of a subject. Therefore, this study constructs a real-time EEG-based system for detecting a drowsy driver. The proposed system uses a novel six channels active dry electrode system to acquire EEG non-invasively. In addition, it uses a TMS320VC5510 DSP chip as the algorithm processor, and a MSP430F149 chip as a controller to achieve a real-time portable system. This study implements stationary wavelet transform to extract two features of EEG signal: integral of EEG and zero crossings as the input to a back propagation neural network for vigilance states classification. This system can discriminate alertness and drowsiness in real-time. The accuracy of the system is 79.1% for alertness and 90.91% for drowsiness states. When the system detects drowsiness, it will warn drivers by using a vibrator and a beeper.

  19. The Design Approach for Real-Time System%实时系统设计方法

    Institute of Scientific and Technical Information of China (English)

    王莲; 张云勇

    2001-01-01

    The real-time system is used widely since the 1990's. In the paper some typical design approaches are introduced. Then the object-oriented design approach for real-time system and the use of UML is analyzed.

  20. HyperForest: A high performance multi-processor architecture for real-time intelligent systems

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, P. Jr.; Rebeil, J.P. [Sandia National Labs., Albuquerque, NM (United States); Pollard, H. [Univ. of New Mexico, Albuquerque, NM (United States). Electrical Engineering and Computer Engineering Dept.

    1997-04-01

    Intelligent Systems are characterized by the intensive use of computer power. The computer revolution of the last few years is what has made possible the development of the first generation of Intelligent Systems. Software for second generation Intelligent Systems will be more complex and will require more powerful computing engines in order to meet real-time constraints imposed by new robots, sensors, and applications. A multiprocessor architecture was developed that merges the advantages of message-passing and shared-memory structures: expendability and real-time compliance. The HyperForest architecture will provide an expandable real-time computing platform for computationally intensive Intelligent Systems and open the doors for the application of these systems to more complex tasks in environmental restoration and cleanup projects, flexible manufacturing systems, and DOE`s own production and disassembly activities.

  1. Real-time systems design and analysis tools for the practitioner

    CERN Document Server

    Laplante, Phillip A

    2012-01-01

    An important resource, this book offers an introduction and overview of real-time systems: systems where timeliness is a crucial part of the correctness of the system. It contains a pragmatic overview of key topics (computer architecture and organization, operating systems, software engineering, programming languages, and compiler theory) from the perspective of the real-time systems designer and is organized into chapters that are essentially self-contained. In addition, each chapter contains both basic and more challenging exercises that will help the reader to confront actual problems.

  2. Design and Research of Distributed Real TimeSurveillance Control System

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Distributed real time surveillance control system is used especially in distributed computer measure and control system, mostly inwidely dispersed measure points without human surveillance. This paper describes theory、construction、control strategy, stabilityanalysis of distributed real time supervisory control and data acquisition system, implements distributed measure signals collectionand design of supervisory control system. The realization of virtual instrument based on VC++ can accomplish measurementsignals acquisition, storage, display and analysis, also the result of surveillance control system is provided, and shows thefunctional powerful agility of virtual instrument based on VC++.

  3. Operating system for a real-time multiprocessor propulsion system simulator

    Science.gov (United States)

    Cole, G. L.

    1984-01-01

    The success of the Real Time Multiprocessor Operating System (RTMPOS) in the development and evaluation of experimental hardware and software systems for real time interactive simulation of air breathing propulsion systems was evaluated. The Real Time Multiprocessor Operating System (RTMPOS) provides the user with a versatile, interactive means for loading, running, debugging and obtaining results from a multiprocessor based simulator. A front end processor (FEP) serves as the simulator controller and interface between the user and the simulator. These functions are facilitated by the RTMPOS which resides on the FEP. The RTMPOS acts in conjunction with the FEP's manufacturer supplied disk operating system that provides typical utilities like an assembler, linkage editor, text editor, file handling services, etc. Once a simulation is formulated, the RTMPOS provides for engineering level, run time operations such as loading, modifying and specifying computation flow of programs, simulator mode control, data handling and run time monitoring. Run time monitoring is a powerful feature of RTMPOS that allows the user to record all actions taken during a simulation session and to receive advisories from the simulator via the FEP. The RTMPOS is programmed mainly in PASCAL along with some assembly language routines. The RTMPOS software is easily modified to be applicable to hardware from different manufacturers.

  4. Real-Time Reliability Verification for UAV Flight Control System Supporting Airworthiness Certification.

    Science.gov (United States)

    Xu, Haiyang; Wang, Ping

    2016-01-01

    In order to verify the real-time reliability of unmanned aerial vehicle (UAV) flight control system and comply with the airworthiness certification standard, we proposed a model-based integration framework for modeling and verification of time property. Combining with the advantages of MARTE, this framework uses class diagram to create the static model of software system, and utilizes state chart to create the dynamic model. In term of the defined transformation rules, the MARTE model could be transformed to formal integrated model, and the different part of the model could also be verified by using existing formal tools. For the real-time specifications of software system, we also proposed a generating algorithm for temporal logic formula, which could automatically extract real-time property from time-sensitive live sequence chart (TLSC). Finally, we modeled the simplified flight control system of UAV to check its real-time property. The results showed that the framework could be used to create the system model, as well as precisely analyze and verify the real-time reliability of UAV flight control system.

  5. A customizable system for real-time image processing using the Blackfin DSProcessor and the MicroC/OS-II real-time kernel

    Science.gov (United States)

    Coffey, Stephen; Connell, Joseph

    2005-06-01

    This paper presents a development platform for real-time image processing based on the ADSP-BF533 Blackfin processor and the MicroC/OS-II real-time operating system (RTOS). MicroC/OS-II is a completely portable, ROMable, pre-emptive, real-time kernel. The Blackfin Digital Signal Processors (DSPs), incorporating the Analog Devices/Intel Micro Signal Architecture (MSA), are a broad family of 16-bit fixed-point products with a dual Multiply Accumulate (MAC) core. In addition, they have a rich instruction set with variable instruction length and both DSP and MCU functionality thus making them ideal for media based applications. Using the MicroC/OS-II for task scheduling and management, the proposed system can capture and process raw RGB data from any standard 8-bit greyscale image sensor in soft real-time and then display the processed result using a simple PC graphical user interface (GUI). Additionally, the GUI allows configuration of the image capture rate and the system and core DSP clock rates thereby allowing connectivity to a selection of image sensors and memory devices. The GUI also allows selection from a set of image processing algorithms based in the embedded operating system.

  6. Analysis and Synthesis of Communication-Intensive Heterogeneous Real-Time Systems

    DEFF Research Database (Denmark)

    Pop, Paul

    2003-01-01

    Embedded computer systems are now everywhere: from alarm clocks to PDAs, from mobile phones to cars, almost all the devices we use are controlled by embedded computer systems. An important class of embedded computer systems is that of real-time systems, which have to fulfill strict timing...

  7. Multi-channel holographic birfurcative neural network system for real-time adaptive EOS data analysis

    Science.gov (United States)

    Liu, Hua-Kuang; Diep, J.; Huang, K.

    1991-01-01

    Viewgraphs on multi-channel holographic bifurcative neural network system for real-time adaptive Earth Observing System (EOS) data analysis are presented. The objective is to research and develop an optical bifurcating neuromorphic pattern recognition system for making optical data array comparisons and to evaluate the use of the system for EOS data classification, reduction, analysis, and other applications.

  8. Real-time marker-free motion capture system using blob feature analysis

    Science.gov (United States)

    Park, Chang-Joon; Kim, Sung-Eun; Kim, Hong-Seok; Lee, In-Ho

    2005-02-01

    This paper presents a real-time marker-free motion capture system which can reconstruct 3-dimensional human motions. The virtual character of the proposed system mimics the motion of an actor in real-time. The proposed system captures human motions by using three synchronized CCD cameras and detects the root and end-effectors of an actor such as a head, hands, and feet by exploiting the blob feature analysis. And then, the 3-dimensional positions of end-effectors are restored and tracked by using Kalman filter. At last, the positions of the intermediate joint are reconstructed by using anatomically constrained inverse kinematics algorithm. The proposed system was implemented under general lighting conditions and we confirmed that the proposed system could reconstruct motions of a lot of people wearing various clothes in real-time stably.

  9. Real-Time Grouting Monitoring and Visualization Analysis System for Dam Foundation Curtain Grouting

    Institute of Scientific and Technical Information of China (English)

    樊贵超; 钟登华; 任炳昱; 崔博; 李晓超; 岳攀

    2016-01-01

    A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model of the system is established. The real-time collection and transmission technology of the grouting data pro-vides a data foundation for the system. The real-time grouting monitoring and dynamic alarming method helps the system control the grouting quality during the grouting process, thus, the abnormalities of grouting, such as jacking and hydraulic uplift, can be effectively controlled. In addition, the 3D grouting visualization analysis technology is proposed to establish the grouting information model(GIM). The GIM provides a platform to visualize and ana-lyze the grouting process and results. The system has been applied to a hydraulic project of China as a case study, and the application results indicate that the real-time grouting monitoring and 3D visualization analysis for the grouting process can help engineers control the grouting quality more efficiently.

  10. Real-time visual simulation of APT system based on RTW and Vega

    Science.gov (United States)

    Xiong, Shuai; Fu, Chengyu; Tang, Tao

    2012-10-01

    The Matlab/Simulink simulation model of APT (acquisition, pointing and tracking) system is analyzed and established. Then the model's C code which can be used for real-time simulation is generated by RTW (Real-Time Workshop). Practical experiments show, the simulation result of running the C code is the same as running the Simulink model directly in the Matlab environment. MultiGen-Vega is a real-time 3D scene simulation software system. With it and OpenGL, the APT scene simulation platform is developed and used to render and display the virtual scenes of the APT system. To add some necessary graphics effects to the virtual scenes real-time, GLSL (OpenGL Shading Language) shaders are used based on programmable GPU. By calling the C code, the scene simulation platform can adjust the system parameters on-line and get APT system's real-time simulation data to drive the scenes. Practical application shows that this visual simulation platform has high efficiency, low charge and good simulation effect.

  11. Three axis electronic flight motion simulator real time control system design and implementation.

    Science.gov (United States)

    Gao, Zhiyuan; Miao, Zhonghua; Wang, Xuyong; Wang, Xiaohua

    2014-12-01

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  12. Three axis electronic flight motion simulator real time control system design and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiyuan; Miao, Zhonghua, E-mail: zhonghua-miao@163.com; Wang, Xiaohua [School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200072 (China); Wang, Xuyong [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-12-15

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  13. Thermal Imaging Systems for Real-Time Applications in Smart Cities

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.; Nielsen, Søren Zebitz

    2016-01-01

    In the modern world, cities need to keep up with the demand for mobility, efficient infrastructure and environmental sustainability. The future smart cities use intelligent information and communication technologies to raise the quality of life. This includes computer vision as one of the main...... of thermal imaging in real-time smart city applications. Thermal cameras operate independently of light and measure the radiated infrared waves representing the temperature of the scene. In order to showcase the possibilities, we present five different applications which use thermal imaging only...

  14. Vessel thermal map real-time system for the JET tokamak

    Directory of Open Access Journals (Sweden)

    D. Alves

    2012-05-01

    Full Text Available The installation of international thermonuclear experimental reactor-relevant materials for the plasma facing components (PFCs in the Joint European Torus (JET is expected to have a strong impact on the operation and protection of the experiment. In particular, the use of all-beryllium tiles, which deteriorate at a substantially lower temperature than the formerly installed carbon fiber composite tiles, imposes strict thermal restrictions on the PFCs during operation. Prompt and precise responses are therefore required whenever anomalous temperatures are detected. The new vessel thermal map real-time application collects the temperature measurements provided by dedicated pyrometers and infrared cameras, groups them according to spatial location and probable offending heat source, and raises alarms that will trigger appropriate protective responses. In the context of the JET global scheme for the protection of the new wall, the system is required to run on a 10 ms cycle communicating with other systems through the real-time data network. In order to meet these requirements a commercial off-the-shelf solution has been adopted based on standard x86 multicore technology. Linux and the multithreaded application real-time executor (MARTe software framework were respectively the operating system of choice and the real-time framework used to build the application. This paper presents an overview of the system with particular technical focus on the configuration of its real-time capability and the benefits of the modular development approach and advanced tools provided by the MARTe framework.

  15. SAFCM: A Security-Aware Feedback Control Mechanism for Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Ma, Yue; Jiang, Wei; Sang, Nan

    2012-01-01

    -time systems, a multi-input multi-output feedback loop is designed and a model predictive controller is deployed based on an equation model that describes the dynamic behavior of the DRE systems. This control loop uses security level scaling to globally control the CPU utilization and security performance......Distributed Real-time Embedded (DRE) systems are facing great challenges in networked, unpredictable and especially unsecured environments. In such systems, there is a strong need to enforce security on distributed computing nodes in order to guard against potential threats, while satisfying...... the real-time requirements. This paper proposes a Security-Aware Feedback Control Mechanism (SAFCM) which has the ability to dynamically change the security level to guarantee soft real-time requirements and make the security protection as strong as possible. In order to widely support distributed real...

  16. The iterative and incremental development on real-time database systems

    Science.gov (United States)

    Guo, Shuang; Li, Haiying; Ding, Chunfang; Ren, Honghong

    2011-12-01

    Our new idea can make the system classification technology requirements with value-oriented requirements more easily and less ambiguous. So, the new concept is platform to refine the value orientation for the requirements of iterative and incremental development real-time database system. This idea gives us life time keep a single platform of real-time database update user needs and full availability, guarantees the reliability of the real-time database system. The method of the value orientation is the evolution of proof that the batter support requirements and specifications. This new model more system structure of the definition and model is better than the existing iterative and incremental model. All kinds of relations attribute and traceability value the requirement to alleviate.

  17. Design of real-time voice over internet protocol system under bandwidth network

    Science.gov (United States)

    Zhang, Li; Gong, Lina

    2017-04-01

    With the increasing bandwidth of the network and network convergence accelerating, VoIP means of communication across the network is becoming increasingly popular phenomenon. The real-time identification and analysis for VOIP flow over backbone network become the urgent needs and research hotspot of network operations management. Based on this, the paper proposes a VoIP business management system over backbone network. The system first filters VoIP data stream over backbone network and further resolves the call signaling information and media voice. The system can also be able to design appropriate rules to complete real-time reduction and presentation of specific categories of calls. Experimental results show that the system can parse and process real-time backbone of the VoIP call, and the results are presented accurately in the management interface, VoIP-based network traffic management and maintenance provide the necessary technical support.

  18. Real Time Part Input Control of a Pull Production System by Finding IF-THEN Rules

    Science.gov (United States)

    Ramli, Rizauddin; Yamamoto, Hidehiko; Abu Qudeiri, Jaber

    This paper considers the part input problem of a production system where two Flexible Transfer Lines (FTLs) consisting of an up-stream production line and a down-stream production line while operating under Just In Time (JIT) production management. The up-stream production line processes the raw material after receiving them from suppliers, and after processing them, delivers the processed product to a down-stream production line via a conveyer. In this paper, we have proposed a novel idea for a part input real time control system, known as Algorithm for Real Time Control of Part Input Systems (ARTCOPS). The algorithm is useful when FTLs are in operation under a production order that is different from the pre-decided production schedule. Simulations of virtual production systems have been carried out to verify that ARTCOPS is useful in real time control, although the production orders are different from the pre-decided production scheduling.

  19. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fuangrod, Todsaporn [Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science, the University of Newcastle, NSW 2308 (Australia); Woodruff, Henry C.; O’Connor, Daryl J. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308 (Australia); Uytven, Eric van; McCurdy, Boyd M. C. [Division of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Department of Radiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Kuncic, Zdenka [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Greer, Peter B. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308, Australia and Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Locked Bag 7, Hunter region Mail Centre, Newcastle, NSW 2310 (Australia)

    2013-09-15

    Purpose: To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient.Methods: The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance.Results: The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s).Conclusions: A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

  20. Dynamic Scheduling of Skippable Periodic Tasks With Energy Efficiency In Weakly Hard Real-Time System

    Directory of Open Access Journals (Sweden)

    Santhi Baskaran

    2010-12-01

    Full Text Available Energy consumption is a critical design issue in real-time systems, especially in battery- operated systems. Maintaining high performance, while extending the battery life between charges is an interesting challenge for system designers. Dynamic Voltage Scaling (DVS allows a processor to dynamically change speed and voltage at run time, thereby saving energy by spreading run cycles into idle time.Knowing when to use full power and when not, requires the cooperation of the operating system scheduler. Usually, higher processor voltage and frequency leads to higher system throughput whileenergy reduction can be obtained using lower voltage and frequency. Instead of lowering processorvoltage and frequency as much as possible, energy efficient real-time scheduling adjusts voltage andfrequency according to some optimization criteria, such as low energy consumption or high throughput,while it meets the timing constraints of the real-time tasks. As the quantity and functional complexity ofbattery powered portable devices continues to raise, energy efficient design of such devices has becomeincreasingly important. Many real-time scheduling algorithms have been developed recently to reduceenergy consumption in the portable devices that use DVS capable processors. Extensive power awarescheduling techniques have been published for energy reduction, but most of them have been focusedsolely on reducing the processor energy consumption. While the processor is one of the major powerhungry units in the system, other peripherals such as network interface card, memory banks, disks alsoconsume significant amount of power. Dynamic Power Down (DPD technique is used to reduce energyconsumption by shutting down the processing unit and peripheral devices, when the system is idle. Threealgorithms namely Red Tasks Only (RTO, Blue When Possible (BWP and Red as Late as Possible (RLPare proposed in the literature to schedule the real-time tasks in Weakly-hard real-time

  1. GPS Real-Time Supervisory System and Application in the Construction of Face Rockfill Dam

    Institute of Scientific and Technical Information of China (English)

    HUANG Shengxiang; LIU Jingnan; ZENG Huai'en

    2005-01-01

    According to the quality control needs of filling construction of the face rockfill dam, by means of the global satellite positioning technology, the wireless data communication technology, the computer technology and the data processing and analysis technology, and integrating with the roller compaction machine, the GPS real-time supervisory system is developed in this paper. It can be used to real-timely supervise the construction quality of the roller compaction for filling engineering. The composition and applied characteristics of GPS system, and the key technique problem and solution of the design are discussed. The height accuracy of GPS system is analyzed and the preliminary application is introduced.

  2. Implementation of a Real-time JPEG2000 System Using DSPs for 2 Digital Cameras

    Institute of Scientific and Technical Information of China (English)

    何得平

    2006-01-01

    This paper presents techniques and approaches capable of achieving a real-time JPEG2000compressing system using DSP chips. We propose a three-DSP real-time parallel processing system usingefficient memory management for discrete wavelet transform (DWT) and parallel-pass architecture forembedded block coding with optimized truncation (EBCOT). This system performs compression of 1392×1040pixels monochrome images with the speed of 10 fps/camera of 2 digital still cameras and is proven to be apractical and efficient DSP solution.

  3. A real-time data acquisition and elaboration system for instabilities control in the FTU tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, E., E-mail: alessi@ifp.cnr.it [Associazione EURATOM-ENEA, IFP-CNR, Milano (Italy); Boncagni, L. [Associazione EURATOM-ENEA, C.R. Frascati (Italy); Galperti, C.; Marchetto, C.; Nowak, S.; Sozzi, C. [Associazione EURATOM-ENEA, IFP-CNR, Milano (Italy); Apruzzese, G. [Associazione EURATOM-ENEA, C.R. Frascati (Italy); Bin, W. [Associazione EURATOM-ENEA, IFP-CNR, Milano (Italy); Belli, F.; Botrugno, A. [Associazione EURATOM-ENEA, C.R. Frascati (Italy); Bruschi, A.; Cirant, S. [Associazione EURATOM-ENEA, IFP-CNR, Milano (Italy); D' Antona, G.; Davoudi, M. [Politecnico di Milano, Dipartimento di Elettrotecnica (Italy); Figini, L. [Associazione EURATOM-ENEA, IFP-CNR, Milano (Italy); Ferrero, R. [Politecnico di Milano, Dipartimento di Elettrotecnica (Italy); Gabellieri, L. [Associazione EURATOM-ENEA, C.R. Frascati (Italy); Garavaglia, S.; Granucci, G. [Associazione EURATOM-ENEA, IFP-CNR, Milano (Italy); Grosso, A. [Associazione EURATOM-ENEA, C.R. Frascati (Italy); and others

    2013-08-21

    A real-time data acquisition and elaboration system is being implemented to control the new ECH launcher recently installed at FTU (Frascati Tokamak Upgrade). The system is aimed at controlling different kinds of magnetohydrodynamic instabilities, in particular the deleterious 3/2 and 2/1 (neoclassical) tearing modes, (N)TM, and the saw teeth period in order to prevent the seeding of NTMs. The complete system is presented here together with preliminary offline and real-time tests. © 2001 Elsevier Science. All rights reserved.

  4. The inverse method parametric verification of real-time embedded systems

    CERN Document Server

    André , Etienne

    2013-01-01

    This book introduces state-of-the-art verification techniques for real-time embedded systems, based on the inverse method for parametric timed automata. It reviews popular formalisms for the specification and verification of timed concurrent systems and, in particular, timed automata as well as several extensions such as timed automata equipped with stopwatches, linear hybrid automata and affine hybrid automata.The inverse method is introduced, and its benefits for guaranteeing robustness in real-time systems are shown. Then, it is shown how an iteration of the inverse method can solv

  5. Energy-Efficient Deterministic Fault-Tolerant Scheduling for Embedded Real-Time Systems

    Institute of Scientific and Technical Information of China (English)

    LI Guo-hui; HU Fang-xiao; DU Xiao-kun; TANG Xiang-hong

    2009-01-01

    By combining fault-tolerance with power management, this paper developed a new method for aperiodic task set for the problem of task scheduling and voltage allocation in embedded real-time systems. The schedulability of the system was analyzed through checkpointing and the energy saving was considered via dynamic voltage and frequency scaling. Simulation results showed that the proposed algorithm had better performance compared with the existing voltage allocation techniques. The proposed technique saves 51.5% energy over FT-Only and 19.9% over FT+EC on average. Therefore, the proposed method was more appropriate for aperiodic tasks in embedded real-time systems.

  6. Scheduling and Mapping in an Incremental Design Methodology for Distributed Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo;

    2004-01-01

    In this paper we present an approach to mapping and scheduling of distributed embedded systems for hard real-time applications, aiming at a minimization of the system modification cost. We consider an incremental design process that starts from an already existing system running a set of applicat...

  7. A real-time system for biomechanical analysis of human movement and muscle function.

    Science.gov (United States)

    van den Bogert, Antonie J; Geijtenbeek, Thomas; Even-Zohar, Oshri; Steenbrink, Frans; Hardin, Elizabeth C

    2013-10-01

    Mechanical analysis of movement plays an important role in clinical management of neurological and orthopedic conditions. There has been increasing interest in performing movement analysis in real-time, to provide immediate feedback to both therapist and patient. However, such work to date has been limited to single-joint kinematics and kinetics. Here we present a software system, named human body model (HBM), to compute joint kinematics and kinetics for a full body model with 44 degrees of freedom, in real-time, and to estimate length changes and forces in 300 muscle elements. HBM was used to analyze lower extremity function during gait in 12 able-bodied subjects. Processing speed exceeded 120 samples per second on standard PC hardware. Joint angles and moments were consistent within the group, and consistent with other studies in the literature. Estimated muscle force patterns were consistent among subjects and agreed qualitatively with electromyography, to the extent that can be expected from a biomechanical model. The real-time analysis was integrated into the D-Flow system for development of custom real-time feedback applications and into the gait real-time analysis interactive lab system for gait analysis and gait retraining.

  8. Real-time surface tracking system using common-path spectral domain optical coherence tomography

    Science.gov (United States)

    Kim, Keo-Sik; Park, Hyoung-Jun; Kang, Hyun Seo; Kang, Jin U.; Song, Chul-Gyu

    2012-11-01

    An enhanced surface tracking system based on optical coherence tomography (OCT) modality has been developed and tested for use in a surgical guidance system. A surface detection algorithm based on a Savitzky-Golay filter of A-scan data and thresholding was applied to real-time depth tracking. The algorithm output controlled a motorized stage to adjust the probe position according to the sample's topological variance in real-time. As a result, the root mean square error (RMSE: 4.2 μm) of our algorithm was relatively lower than the conventional method (RMSE: 16.6 μm). Also, OCT images obtained using the algorithm showed a significantly extended imaging range and active surface tracking in real time. Consequently, the devised method demonstrated potential for use in systems for guiding surgical robots and endoscopic OCT.

  9. A real-time cardiac surface tracking system using Subspace Clustering.

    Science.gov (United States)

    Singh, Vimal; Tewfik, Ahmed H; Gowreesunker, B

    2010-01-01

    Catheter based radio frequency ablation of atrial fibrillation requires real-time 3D tracking of cardiac surfaces with sub-millimeter accuracy. To best of our knowledge, there are no commercial or non-commercial systems capable to do so. In this paper, a system for high-accuracy 3D tracking of cardiac surfaces in real-time is proposed and results applied to a real patient dataset are presented. Proposed system uses Subspace Clustering algorithm to identify the potential deformation subspaces for cardiac surfaces during the training phase from pre-operative MRI scan based training set. In Tracking phase, using low-density outer cardiac surface samples, active deformation subspace is identified and complete inner & outer cardiac surfaces are reconstructed in real-time under a least squares formulation.

  10. The real-time complex cruise scene motion detection system based on DSP

    Science.gov (United States)

    Wu, Zhi-guo; Wang, Ming-jia

    2014-11-01

    Dynamic target recognition is an important issue in the field of image processing research. It is widely used in photoelectric detection, target tracking, video surveillance areas. Complex cruise scene of target detection, compared to the static background, since the target and background objects together and both are in motion, greatly increases the complexity of moving target detection and recognition. Based on the practical engineering applications, combining an embedded systems and real-time image detection technology, this paper proposes a real-time movement detection method on an embedded system based on the FPGA + DSP system architecture on an embedded system. The DSP digital image processing system takes high speed digital signal processor DSP TMS320C6416T as the main computing components. And we take large capacity FPGA as coprocessor. It is designed and developed a high-performance image processing card. The FPGA is responsible for the data receiving and dispatching, DSP is responsible for data processing. The FPGA collects image data and controls SDRAM according to the digital image sequence. The SDRAM realizes multiport image buffer. DSP reads real-time image through SDRAM and performs scene motion detection algorithm. Then we implement the data reception and data processing parallelization. This system designs and realizes complex cruise scene motion detection for engineering application. The image edge information has the anti-light change and the strong anti-interference ability. First of all, the adjacent frame and current frame image are processed by convolution operation, extract the edge images. Then we compute correlation strength and the value of movement offset. We can complete scene motion parameters estimation by the result, in order to achieve real-time accurate motion detection. We use images in resolution of 768 * 576 and 25Hz frame rate to do the real-time cruise experiment. The results show that the proposed system achieves real-time

  11. Advanced Kalman Filter for Real-Time Responsiveness in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Gregory Francis [UNC-Chapel Hill/University of Central Florida; Zhang, Jinghe [UNC-Chapel Hill/Virginia Tech

    2014-06-10

    Complex engineering systems pose fundamental challenges in real-time operations and control because they are highly dynamic systems consisting of a large number of elements with severe nonlinearities and discontinuities. Today’s tools for real-time complex system operations are mostly based on steady state models, unable to capture the dynamic nature and too slow to prevent system failures. We developed advanced Kalman filtering techniques and the formulation of dynamic state estimation using Kalman filtering techniques to capture complex system dynamics in aiding real-time operations and control. In this work, we looked at complex system issues including severe nonlinearity of system equations, discontinuities caused by system controls and network switches, sparse measurements in space and time, and real-time requirements of power grid operations. We sought to bridge the disciplinary boundaries between Computer Science and Power Systems Engineering, by introducing methods that leverage both existing and new techniques. While our methods were developed in the context of electrical power systems, they should generalize to other large-scale scientific and engineering applications.

  12. MS-BWME: a wireless real-time monitoring system for brine well mining equipment.

    Science.gov (United States)

    Xiao, Xinqing; Zhu, Tianyu; Qi, Lin; Moga, Liliana Mihaela; Zhang, Xiaoshuan

    2014-10-23

    This paper describes a wireless real-time monitoring system (MS-BWME) to monitor the running state of pumps equipment in brine well mining and prevent potential failures that may produce unexpected interruptions with severe consequences. MS-BWME consists of two units: the ZigBee Wireless Sensors Network (WSN) unit and the real-time remote monitoring unit. MS-BWME was implemented and tested in sampled brine wells mining in Qinghai Province and four kinds of indicators were selected to evaluate the performance of the MS-BWME, i.e., sensor calibration, the system's real-time data reception, Received Signal Strength Indicator (RSSI) and sensor node lifetime. The results show that MS-BWME can accurately judge the running state of the pump equipment by acquiring and transmitting the real-time voltage and electric current data of the equipment from the spot and provide real-time decision support aid to help workers overhaul the equipment in a timely manner and resolve failures that might produce unexpected production down-time. The MS-BWME can also be extended to a wide range of equipment monitoring applications.

  13. Design of Embedded Real-time Systems: Developing a Method for Practical Software Engineering

    DEFF Research Database (Denmark)

    Løvengreen, Hans Henrik; Ravn, Anders P.; Rischel, Hans

    1990-01-01

    The methodological issues and practical problems in development and industrial use of a theory-based design method for embedded, real-time systems are discussed. The method has been used for several years in a number of smaller industries that develop both electronics and software for a professio......The methodological issues and practical problems in development and industrial use of a theory-based design method for embedded, real-time systems are discussed. The method has been used for several years in a number of smaller industries that develop both electronics and software...

  14. Real Time Superresolution by Means of an Ultrasonic Light Diffractor and TV System.

    Science.gov (United States)

    Sato, T; Ueda, M; Ikeda, T

    1974-06-01

    The change of angle and the shift of frequency of light by an ultrasonic light diffractor are used for real time realization of a holographic superresolution system. A TV system and an electrical filter are used to pick up the desired image hologram from the superposed, images, which are obtained by a number of object-beam lights and reference beams. For two-dimensional as well as one-dimensional objects, images superresolved three to five times are displayed on a TV monitor in real time.

  15. Real-time simulation requirements for study and optimization of power system controls

    Energy Technology Data Exchange (ETDEWEB)

    Nakra, Harbans; McCallum, David; Gagnon, Charles [Institut de Recherche d`Hydro-Quebec, Quebec, PQ (Canada); Venne, Andre; Gagnon, Julien [Hydro-Quebec, Montreal, PQ (Canada)

    1994-12-31

    At the time of ordering for the multi-terminal dc system linking Hydro-Quebec with New England, Hydro-Quebec also ordered functionally duplicate controls of all the converters and installed these in its real time simulation laboratory. The Hydro-Quebec ac system was also simulated in detail and the testing of the controls as thus made possible in a realistic environment. Many field tests were duplicated and many additional tests were done for correction and optimization. This paper describes some of the features of the real-time simulation carried out for this purpose. (author) 3 figs.

  16. Class of modified parallel combined methods of real-time numerical simulation for a stiff system

    Institute of Scientific and Technical Information of China (English)

    朱珍民; 刘德贵; 陈丽容

    2004-01-01

    A class of modified parallel combined methods of real-time numerical simulation are presented for a stiff dynamic system. By combining the parallelism across the system with the parallelism across the method, and relaxing the dependence of stage value computation on sampling time of input function, a class of modified real-time parallel combined methods are constructed. Stiff and nonstiff subsystems are solved in parallel on a parallel computer by a parallel Rosenbrock method and a parallel RK method, respectively. Their order conditions and convergences are discussed. The numerical simulation experiments show that this class of modified algorithms can get high speed and efficiency.

  17. Optimization of large scale distribution systems in normal and emergency state for real time application

    Energy Technology Data Exchange (ETDEWEB)

    Gotzig, B. [Laboratoire d`Electrotechnique de Grenoble (France)]|[Schneider Electric S.A., Grenoble (France); Hadjsaid, N.; Feuillet, R. [Laboratoire d`Electrotechnique de Grenoble (France); Jeannot, R. [Schneider Electric S.A., Grenoble (France)

    1998-12-31

    Optimization of large scale distribution systems on a real time base requires computationally efficient algorithms. In this paper a fast general branch exchange algorithm is proposed. Depending on the objective function which is optimized, both the line loss reduction in the normal state and the restoration of de-energized loads can be carried out. Tests were carried out on a real large scale distribution network. They demonstrate that the method is fast and that it can be used in distribution management systems on real time base. (author)

  18. The Real-Time system for MHD activity control in the FTU tokamak

    Directory of Open Access Journals (Sweden)

    Minelli D.

    2012-09-01

    Full Text Available The Real-Time system for the control of the magnetohydrodynamics instabilities in FTU tokamak is presented. It is based on both a-priori information derived from statistical treatment of a database and Real-Time elaboration of live diagnostics data. The analysis codes are executed in different time threads based on multi-processors machines. The actuator is the 2×0.4MW 140 GHz ECRH system equipped with the new fast quasi-optical steerable launcher.

  19. The Smartphone Brain Scanner: A Portable Real-Time Neuroimaging System

    DEFF Research Database (Denmark)

    Stopczynski, Arkadiusz; Stahlhut, Carsten; Larsen, Jakob Eg

    2014-01-01

    Combining low-cost wireless EEG sensors with smartphones offers novel opportunities for mobile brain imaging in an everyday context. Here we present the technical details and validation of a framework for building multi-platform, portable EEG applications with real-time 3D source reconstruction....... The system – Smartphone Brain Scanner – combines an off-the-shelf neuroheadset or EEG cap with a smartphone or tablet, and as such represents the first fully portable system for real-time 3D EEG imaging. We discuss the benefits and challenges, including technical limitations as well as details of real...

  20. Real time fabric defect detection system on an embedded DSP platform

    Science.gov (United States)

    Raheja, Jagdish Lal; Ajay, Bandla; Chaudhary, Ankit

    2013-11-01

    In industrial fabric productions, automated real time systems are needed to find out the minor defects. It will save the cost by not transporting defected products and also would help in making compmay image of quality fabrics by sending out only undefected products. A real time fabric defect detection system (FDDS), implementd on an embedded DSP platform is presented here. Textural features of fabric image are extracted based on gray level co-occurrence matrix (GLCM). A sliding window technique is used for defect detection where window moves over the whole image computing a textural energy from the GLCM of the fabric image. The energy values are compared to a reference and the deviations beyond a threshold are reported as defects and also visually represented by a window. The implementation is carried out on a TI TMS320DM642 platform and programmed using code composer studio software. The real time output of this implementation was shown on a monitor.

  1. Performance Evaluation of a Synthetic Aperture Real-Time Ultrasound System

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2011-01-01

    This paper evaluates the signal-to-noise ratio, the time stability, and the phase difference of the sampling in the experimental ultrasound scanner SARUS: A synthetic aperture, real-time ultrasound system. SARUS has 1024 independent transmit and receive channels and is capable of handling 2D probes...... for 3D ultrasound imaging. It samples at 12 bits per sample and has a sampling rate of 70 MHz with the possibility of decimating the sampling frequency at the input. SARUS is capable of advanced real-time computations such as synthetic aperture imaging. The system is built using fieldprogrammable gate...... arrays (FPGAs) making it very flexible and allowing implementation of other real-time ultrasound processing methods in the future. For conventional B-mode imaging, a penetration depth around 7 cm for a 7 MHz transducer is obtained (signal-tonoise ratio of 0 dB), which is comparable to commercial...

  2. The Angstrom Project Alert System: real-time detection of extragalactic microlensing

    CERN Document Server

    Darnley, M J; Newsam, A; Duke, J P; Gould, A; Han, C; Ibrahimov, M A; Im, M; Jeon, Y B; Karimov, R G; Lee, C U; Park, B G

    2006-01-01

    The Angstrom Project is undertaking an optical survey of stellar microlensing events across the bulge region of the Andromeda Galaxy (M31) using a distributed network of two-meter class telescopes. The Angstrom Project Alert System (APAS) has been developed to identify in real time candidate microlensing and transient events using data from the Liverpool and Faulkes North robotic telescopes. This is the first time that real-time microlensing discovery has been attempted outside of the Milky Way and its satellite galaxies. The APAS is designed to enable follow-up studies of M31 microlensing systems, including searches for gas giant planets in M31. Here we describe the APAS and we present a few example light curves obtained during its commissioning phase which clearly demonstrate its real-time capability to identify microlensing candidates as well as other transient sources.

  3. Efficient implementation of real-time programs under the VAX/VMS operating system

    Science.gov (United States)

    Johnson, S. C.

    1985-01-01

    Techniques for writing efficient real-time programs under the VAX/VMS oprating system are presented. Basic operations are presented for executing at real-time priority and for avoiding needlless processing delays. A highly efficient technique for accessing physical devices by mapping to the input/output space and accessing the device registrs directly is described. To illustrate the application of the technique, examples are included of different uses of the technique on three devices in the Langley Avionics Integration Research Lab (AIRLAB): the KW11-K dual programmable real-time clock, the Parallel Communications Link (PCL11-B) communication system, and the Datacom Synchronization Network. Timing data are included to demonstrate the performance improvements realized with these applications of the technique.

  4. Formal Model Engineering for Embedded Systems Using Real-Time Maude

    Directory of Open Access Journals (Sweden)

    Peter Csaba Ölveczky

    2011-06-01

    Full Text Available This paper motivates why Real-Time Maude should be well suited to provide a formal semantics and formal analysis capabilities to modeling languages for embedded systems. One can then use the code generation facilities of the tools for the modeling languages to automatically synthesize Real-Time Maude verification models from design models, enabling a formal model engineering process that combines the convenience of modeling using an informal but intuitive modeling language with formal verification. We give a brief overview six fairly different modeling formalisms for which Real-Time Maude has provided the formal semantics and (possibly formal analysis. These models include behavioral subsets of the avionics modeling standard AADL, Ptolemy II discrete-event models, two EMF-based timed model transformation systems, and a modeling language for handset software.

  5. Formal Model Engineering for Embedded Systems Using Real-Time Maude

    CERN Document Server

    Ölveczky, Peter Csaba

    2011-01-01

    This paper motivates why Real-Time Maude should be well suited to provide a formal semantics and formal analysis capabilities to modeling languages for embedded systems. One can then use the code generation facilities of the tools for the modeling languages to automatically synthesize Real-Time Maude verification models from design models, enabling a formal model engineering process that combines the convenience of modeling using an informal but intuitive modeling language with formal verification. We give a brief overview six fairly different modeling formalisms for which Real-Time Maude has provided the formal semantics and (possibly) formal analysis. These models include behavioral subsets of the avionics modeling standard AADL, Ptolemy II discrete-event models, two EMF-based timed model transformation systems, and a modeling language for handset software.

  6. Real-time FPGA-based Non-Cryptography System for Wireless Network

    Directory of Open Access Journals (Sweden)

    Mostafa Abutaleb

    2012-05-01

    Full Text Available Traditional privacy techniques for wireless communications are facing great challenges, due to the open radio propagation environment and limited options of transmission techniques. A new bilateral pilot aided protocol is presented, with single-tone based burst transmission over slow time varying flat fading wireless channels, and is investigated to enhance the security of quadrature amplitude modulation (QAM system. In this paper, a real-time and link privacy method with FPGA-based design is proposed, which is based on the characteristics of radio channel including randomness and privacy. For the proposed approach, the unique instant channel state information (CSI of channel can be estimated in real-time by a proposed FPGA-based circuit to be used in giving confidentiality for transmitted data. The proposed approach is adequate for most real-time wireless communication systems.

  7. Power Aware Scheduling for Resource Constrained Distributed Real-Time Systems

    Directory of Open Access Journals (Sweden)

    Santhi Baskaran

    2010-08-01

    Full Text Available Power management has become popular in mobile computing as well as in server farms. Although a lot of work has been done to manage the energy consumption on uniprocessor real-time systems, there is less work done on their multicomputer counterparts. For a set of real-time tasks with precedence and resource constraints executing on a distributed system, we propose a dynamic slack management technique for feedback control scheduling (FCS algorithm known as modifiedFCS algorithm. This algorithm schedules dependant periodic real-time task sets by effectively managing exclusive access resources with strict timing constraints along with energy efficiency. Simulation results show that, in comparison to commonly used greedy technique, the proposed technique achieves 28 percent less power consumption when validated with random task graphs.

  8. Timing System Solution for MedAustron; Real-time Event and Data Distribution Network

    CERN Document Server

    Štefanič, R; Dedič, J; Gutleber, J; Moser, R

    2011-01-01

    MedAustron is an ion beam research and therapy centre under construction in Wiener Neustadt, Austria. The facility features a synchrotron particle accelerator for light ions. The timing system for this class of accelerators has been developed in close collaboration between MedAustron and Cosylab. Mitigating economical and technological risks, we have chosen a proven, widely used Micro Research Finland (MRF) timing equipment and redesigned its FPGA firmware, extending its high-logic services above transport layer, as required by machine specifics. We obtained a generic real-time broadcast network for coordinating actions of a compact, pulse-to-pulse modulation based particle accelerator. High-level services include support for virtual accelerators and a rich selection of event response mechanisms. The system uses a combination of a real-time link for downstream events and a non-real-time link for upstream messaging and non time-critical communication. It comes with National Instruments LabVI...

  9. Real-time operating system for a multi-laser/multi-detector system

    Science.gov (United States)

    Coles, G.

    1980-01-01

    The laser-one hazard detector system, used on the Rensselaer Mars rover, is reviewed briefly with respect to the hardware subsystems, the operation, and the results obtained. A multidetector scanning system was designed to improve on the original system. Interactive support software was designed and programmed to implement real time control of the rover or platform with the elevation scanning mast. The formats of both the raw data and the post-run data files were selected. In addition, the interface requirements were selected and some initial hardware-software testing was completed.

  10. A high performance real-time plasma control and event detection DSP based VME system

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, A.P. E-mail: pinto@ci.uc.pt; Correia, Carlos; Varandas, Carlos

    2002-06-01

    This paper describes the digital signal processors module of a high performance system, specially designed for real-time plasma control and event detection on the next generation fusion experiments with long duration discharges. The system is composed of a commercial CPU board and several on-site developed intelligent modules inserted in the same VME crate.

  11. Verification and controller synthesis for resource-constrained real-time systems

    DEFF Research Database (Denmark)

    Li, Shuhao; Pettersson, Paul

    2010-01-01

    integer functions to approximate the continuous resources in real-time embedded systems. Based on these formal models and techniques, we employ the realtime model checker UPPAAL to verify a system against a given functional and/or timing requirement. Furthermore, we employ the timed game solver UPPAAL...

  12. T-UPPAAL: Online Model-based Testing of Real-Time Systems

    DEFF Research Database (Denmark)

    Mikucionis, Marius; Larsen, Kim Guldstrand; Nielsen, Brian

    2004-01-01

    The goal of testing is to gain confidence in a physical computer based system by means of executing it. More than one third of typical project resources is spent on testing embedded and real-time systems, but still it remains ad-hoc, based on heuristics, and error-prone. Therefore systematic...

  13. Real-time B-scan ultrasonic imaging using a digital phased array system for NDE

    Science.gov (United States)

    Dunki-Jacobs, Robert; Thomas, Lewis

    A demonstration is presented of the ability to produce real-time images of metals on the basis of a phased-array ultrasound system. Attention is given to the critical role played by a beam-former. It is established that the present imaging system's resolution approaches the theoretical capabilities of the given aperture size and wavelength.

  14. A HARDWARE SUPPORTED OPERATING SYSTEM KERNEL FOR EMBEDDED HARD REAL-TIME APPLICATIONS

    NARCIS (Netherlands)

    COLNARIC, M; HALANG, WA; TOL, RM

    1994-01-01

    The concept of the kernel, i.e. the time critical part of a real-time operating system, and its dedicated co-processor, especially tailored for embedded applications, are presented. The co-processor acts as a system controller and operates in conjunction with one or more conventional processors in

  15. Developing a Real-Time Web Questionnaire System for Interactive Presentations

    Directory of Open Access Journals (Sweden)

    Yusuke Niwa

    2016-07-01

    Full Text Available Conducting presentations with bi-directional communication requires extended presentation systems, e.g., having sophisticated expressions and gathering real-time feedback. We aim to develop an interactive presentation system to enhance presentations with bi-directional communication during presentations. We developed a hybrid interactive presentation system that is a collaboration between the traditional presentation supporting system, e.g. PowerPoint, and a web application. To gather feedback from audiences at presentations, the web application delivers presentation slides to audiences. The client system provides a feature of creating annotations and answering the questions on delivered presentation slides for making feedback. Specifically, the system provides a real-time questionnaire function where the result is displayed on a shared screen in real time while gathering answers. Since users can make their questionnaire on PowerPoint, the task becomes quite easy. This paper explains the development of the system and demonstrates that the real-time questionnaire system realizes high performance scalability.

  16. RePIDS: a multi tier real-time payload-based intrusion detection system

    NARCIS (Netherlands)

    Jamdagni, Aruna; Tan, Zhiyuan; Nanda, Priyadarsi; He, Xiangjian; Liu, Ren Ping

    2013-01-01

    Intrusion Detection System (IDS) deals with huge amount of network traffic and uses large feature set to discriminate normal pattern and intrusive pattern. However, most of existing systems lack the ability to process data for real-time anomaly detection. In this paper, we propose a 3-Tier Iterative

  17. The ASDEX upgrade digital video processing system for real-time machine protection

    Energy Technology Data Exchange (ETDEWEB)

    Drube, Reinhard, E-mail: reinhard.drube@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Neu, Gregor [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Cole, Richard H.; Lüddecke, Klaus [Unlimited Computer Systems GmbH, Seeshaupterstr. 15, 82393 Iffeldorf (Germany); Lunt, Tilmann; Herrmann, Albrecht [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany)

    2013-11-15

    Highlights: • We present the Real-Time Video diagnostic system of ASDEX Upgrade. • We show the implemented image processing algorithms for machine protection. • The way to achieve a robust operating multi-threading Real-Time system is described. -- Abstract: This paper describes the design, implementation, and operation of the Video Real-Time (VRT) diagnostic system of the ASDEX Upgrade plasma experiment and its integration with the ASDEX Upgrade Discharge Control System (DCS). Hot spots produced by heating systems erroneously or accidentally hitting the vessel walls, or from objects in the vessel reaching into the plasma outer border, show up as bright areas in the videos during and after the reaction. A system to prevent damage to the machine by allowing for intervention in a running discharge of the experiment was proposed and implemented. The VRT was implemented on a multi-core real-time Linux system. Up to 16 analog video channels (color and b/w) are acquired and multiple regions of interest (ROI) are processed on each video frame. Detected critical states can be used to initiate appropriate reactions – e.g. gracefully terminate the discharge. The system has been in routine operation since 2007.

  18. CyNC - towards a General Tool for Performance Analysis of Complex Distributed Real Time Systems

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Jessen, Jan Jakob; Nielsen, Jens F. Dalsgaard

    2005-01-01

    The paper addresses the current state and the ongoing activities of a tool for performance analysis of complex real time systems. The tool named CyNC is based on network calculus allowing for the computation of backlogs and delays in a system from specified lower and upper bounds of external...

  19. A Statically Scheduled Time-Division-Multiplexed Network-on-Chip for Real-Time Systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Brandner, Florian; Sparsø, Jens

    2012-01-01

    This paper explores the design of a circuit-switched network-on-chip (NoC) based on time-division-multiplexing (TDM) for use in hard real-time systems. Previous work has primarily considered application-specific systems. The work presented here targets general-purpose hardware platforms. We...

  20. A self-contained, programmable microfluidic cell culture system with real-time microscopy access

    DEFF Research Database (Denmark)

    Skafte-Pedersen, Peder; Hemmingsen, Mette; Sabourin, David

    2011-01-01

    Utilizing microfluidics is a promising way for increasing the throughput and automation of cell biology research. We present a complete self-contained system for automated cell culture and experiments with real-time optical read-out. The system offers a high degree of user-friendliness, stability...

  1. Kajian dan Implementasi Real Time Operating System pada Single Board Computer Berbasis ARM

    OpenAIRE

    Wiedjaja; Handi Muljoredjo; Jonathan Lukas; Benyamin Christian; Luis Kristofel

    2014-01-01

    Operating System is an important software in computer system. For personal and office use the operating system is sufficient. However, to critical mission applications such as nuclear power plants and braking system on the car (auto braking system) which need a high level of reliability, it requires operating system which operates in real time. The study aims to assess the implementation of the Linux-based operating system on a Single Board Computer (SBC) ARM-based, namely Pandaboard ES with ...

  2. MS-BWME: A Wireless Real-Time Monitoring System for Brine Well Mining Equipment

    Directory of Open Access Journals (Sweden)

    Xinqing Xiao

    2014-10-01

    Full Text Available This paper describes a wireless real-time monitoring system (MS-BWME to monitor the running state of pumps equipment in brine well mining and prevent potential failures that may produce unexpected interruptions with severe consequences. MS-BWME consists of two units: the ZigBee Wireless Sensors Network (WSN unit and the real-time remote monitoring unit. MS-BWME was implemented and tested in sampled brine wells mining in Qinghai Province and four kinds of indicators were selected to evaluate the performance of the MS-BWME, i.e., sensor calibration, the system’s real-time data reception, Received Signal Strength Indicator (RSSI and sensor node lifetime. The results show that MS-BWME can accurately judge the running state of the pump equipment by acquiring and transmitting the real-time voltage and electric current data of the equipment from the spot and provide real-time decision support aid to help workers overhaul the equipment in a timely manner and resolve failures that might produce unexpected production down-time. The MS-BWME can also be extended to a wide range of equipment monitoring applications.

  3. Weak Serializable Concurrency Control in Distributed Real-Time Database Systems

    Institute of Scientific and Technical Information of China (English)

    党德鹏; 刘云生; 等

    2002-01-01

    Most of the proposed concurrency control protocols for real-time database systems are based on serializability theorem.Owing to the unique characteristics of real-time database applications and the importance of satisfying the timing constraints of transactions,serializability is too strong as a correctness criterion and not suitable for real-time databases in most cases.On the other hand,relaxed serializability including epsilon-serializability and similarity-serializability can allow more real-time transactions to satisfy their timing constraints,but database consistency may be sacrificed to some extent.We thus propose the use of weak serializability(WSR)that is more relaxed than conflicting serializability while database consistency is maintained.In this paper,we first formally define the new notion of correctness called weak serializability.After the necessary and sufficient conditions for weak serializability are shown,corresponding concurrency control protocol WDHP(weak serializable distributed high prority protocol)is outlined for distributed real time databases,where a new lock mode called mask lock mode is proposed for simplifying the condition of global consistency.Finally,through a series of simulation studies,it is shown that using the new concurrency control protocol the performance of distributed realtime databases can be greatly improved.

  4. [Study on real-time wearable monitoring system for human heat and cold stresses].

    Science.gov (United States)

    Shen, Yuhong; Wang, Tianhao; Li, Chenming

    2013-02-01

    In order to study the way of evaluating human performance under heat and cold stresses, we developed a wearable physiological monitoring system-intelligent belt system, capable of providing real-time, continuous and dynamic monitoring of multiple physiological parameters. The system has following features: multiuser communication, high integration, strong environment adaptability, dynamic features and real time physiological monitoring ability. The system uses sensing belts and elastic belts to acquire physiological parameters, uses WIFI to build wireless network monitoring for multiuser, and uses Delphi to develop data processing software capable of real-time viewing, storagng, processing, and alerting. With four different intensity-activity trials on six subjects and compared with standard laboratory human physiological acquisition instruments, the system was proved to be able to acquire accu-rate physiological parameters such as ECG, respiration, multi-point body temperatures, and body movement. The system worked steadily and reliably. This wearable real-time monitoring system for human heat and cold stresses can solve the problem facing our country that human heat stress and cold stress monitoring technology is insufficient, provide new methods and new ways for monitoring and evaluation of human heat and cold stresses under real task or stress environment, and provide technical platform for the study on human ergonomics.

  5. Detailed design of the kernel of a real-time multiprocessor operating system.

    OpenAIRE

    Wasson, Warren James

    1980-01-01

    This thesis describes the detailed design of a distributed operating system for a real-time, microcomputer based multiprocessor system. Process structuring and segmented address spaces comprise the central concepts around which this system is built. The system particularly supports applications where processing is partitioned into a set of multiple processes. One such area is that of digital signal processing for which this system has been specifically developed. The operating system is hiera...

  6. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    Science.gov (United States)

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  7. Investigation of a Real-time Processing System for the NASA Multifrequency Microwave Radiometer

    Science.gov (United States)

    1976-01-01

    A study was conducted to investigate the data reduction and processing requirements for the multifrequency microwave radiometer system (MFMR). The objectives were to develop and evaluate algorithms and processing techniques which might provide for dedicated real time or near real time data processing and to develop a configuration design and processor recommendation to accomplish the data reduction. An analysis of the required data reduction and calibration equations was included along with the identification of sources of error which may be present in the (MFMR) data. The definition and evaluation of the significance of effects introduced by aircraft perturbation was given.

  8. Building Real-Time Network Intrusion Detection System Based on Parallel Time-Series Mining Techniques

    Institute of Scientific and Technical Information of China (English)

    Zhao Feng; Li Qinghua

    2005-01-01

    A new real-time model based on parallel time-series mining is proposed to improve the accuracy and efficiency of the network intrusion detection systems. In this model, multidimensional dataset is constructed to describe network events, and sliding window updating algorithm is used to maintain network stream. Moreover, parallel frequent patterns and frequent episodes mining algorithms are applied to implement parallel time-series mining engineer which can intelligently generate rules to distinguish intrusions from normal activities. Analysis and study on the basis of DAWNING 3000 indicate that this parallel time-series mining-based model provides a more accurate and efficient way to building real-time NIDS.

  9. Stand-alone system for high-resolution, real-time terahertz imaging.

    Science.gov (United States)

    Amanti, Maria I; Scalari, Giacomo; Beck, Mattias; Faist, Jerome

    2012-01-30

    In this work we present a stand-alone, portable system for high resolution real-time THz imaging. The total weight of the apparatus is less than 15 kg and its physical dimension is of ~(65 cm)3. A quantum cascade laser emitting at 3.4 THz laser based on a third-order distributed feedback cavity is used as source. It operates in continuous-wave at 50 K with more than 1 mW output power and less than 300 mW of power consumption. High resolution real-time THz imaging is reported: resolution of 2.5 times the wavelength is demonstrated.

  10. 4g-Based Specialty Vehicles Real-Time Monitoring System Design and Implementation

    Directory of Open Access Journals (Sweden)

    Zhuang Yu-Feng

    2017-01-01

    Full Text Available In the future development of natural gas transportation industry, emerging ITS technology will be applied more and more, aiming at integrating precise positioning technology, geographic information system technology, database technology, multimedia technology and modern communication technology, sensor network technology and video capture technology, so as to achieve the transport steam (oil vehicles in real time monitoring and management. The main research content of this paper is to design and research the monitoring and locating system of luck (oil vehicle based on 4G on Android System. Real-time monitoring and alarming by sensor module, real-time video recording and uploading through camera module, real-time position recording and uploading through GPS module, vehicle navigation module and quick alarm module, which is composed of five parts. The system is the application of new intelligent transport technology in the field of special vehicle transport. It apply electronic information technology and internet of things technology to the vehicle system, so we can monitor natural gas and other special dangerous goods anytime, anywhere.

  11. Real-time single-ion hit position detecting system for cell irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Takahiro, E-mail: satoh.takahiro37@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Koka, Masahi [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Kada, Wataru [Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-machi, Kiryu, Gunma 376-8515 (Japan); Yokoyama, Akihito; Kamiya, Tomihiro [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2014-08-01

    We have developed a real-time single-ion hit position detecting system to replace a CR-39 solid-state nuclear-track detector for cell irradiation experiments because the CR-39 takes several minutes for off-line etching. The new real-time system consists of a 500-μm-thick CaF{sub 2}(Eu) scintillator, an optical microscope with a 10× objective lens, and a high-gain charge-coupled device camera. Each of the 260-MeV neon ions passing through a 100-μm-thick CR-39 sheet was detected using the real-time system in a performance test for the spatial resolution. The full width at half maxima (FWHMs) of the distances between positions detected by the real-time system and the centers of the etch pits on CR-39 were 6.5 and 6.9 μm in the x and y directions, respectively. The result shows that the system is useful for typical cultured cells of a few tens of micrometers in size.

  12. Reasoning about real-time systems with temporal interval logic constraints on multi-state automata

    Science.gov (United States)

    Gabrielian, Armen

    1991-01-01

    Models of real-time systems using a single paradigm often turn out to be inadequate, whether the paradigm is based on states, rules, event sequences, or logic. A model-based approach to reasoning about real-time systems is presented in which a temporal interval logic called TIL is employed to define constraints on a new type of high level automata. The combination, called hierarchical multi-state (HMS) machines, can be used to model formally a real-time system, a dynamic set of requirements, the environment, heuristic knowledge about planning-related problem solving, and the computational states of the reasoning mechanism. In this framework, mathematical techniques were developed for: (1) proving the correctness of a representation; (2) planning of concurrent tasks to achieve goals; and (3) scheduling of plans to satisfy complex temporal constraints. HMS machines allow reasoning about a real-time system from a model of how truth arises instead of merely depending of what is true in a system.

  13. Exploiting Real-Time FPGA Based Adaptive Systems Technology for Real-Time Sensor Fusion in Next Generation Automotive Safety Systems

    CERN Document Server

    Chappell, Steve; Preston, Dan; Olmstead, Dave; Flint, Bob; Sullivan, Chris

    2011-01-01

    We present a system for the boresighting of sensors using inertial measurement devices as the basis for developing a range of dynamic real-time sensor fusion applications. The proof of concept utilizes a COTS FPGA platform for sensor fusion and real-time correction of a misaligned video sensor. We exploit a custom-designed 32-bit soft processor core and C-based design & synthesis for rapid, platform-neutral development. Kalman filter and sensor fusion techniques established in advanced aviation systems are applied to automotive vehicles with results exceeding typical industry requirements for sensor alignment. Results of the static and the dynamic tests demonstrate that using inexpensive accelerometers mounted on (or during assembly of) a sensor and an Inertial Measurement Unit (IMU) fixed to a vehicle can be used to compute the misalignment of the sensor to the IMU and thus vehicle. In some cases the model predications and test results exceeded the requirements by an order of magnitude with a 3-sigma or ...

  14. Analysis and Synthesis of Communication-Intensive Heterogeneous Real-Time Systems

    DEFF Research Database (Denmark)

    Pop, Paul

    2003-01-01

    requirements. As realtime systems become more complex, they are often implemented using distributed heterogeneous architectures. The main objective of this thesis is to develop analysis and synthesis methods for communication-intensive heterogeneous hard real-time systems. The systems are heterogeneous......Embedded computer systems are now everywhere: from alarm clocks to PDAs, from mobile phones to cars, almost all the devices we use are controlled by embedded computer systems. An important class of embedded computer systems is that of real-time systems, which have to fulfill strict timing...... interconnected nature of the architecture, and is based on an application model that captures both the dataflow and the flow of control. The proposed synthesis techniques derive optimized implementations of the system that fulfill the design constraints. An important part of the system implementation...

  15. Development of a real-time microchip PCR system for portable plant disease diagnosis.

    Directory of Open Access Journals (Sweden)

    Chiwan Koo

    Full Text Available Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.

  16. Real-time monitoring and structural control of a wind turbine using a rocking system

    DEFF Research Database (Denmark)

    Caterino, Nicola; Spizzuoco, Mariacristina; Georgakis, Christos T.

    2016-01-01

    The design of a semi-active (SA) control system to mitigate wind induced structural demand to high wind turbine towers is discussed herein. A variable restraint at the base, able to modify in real time its mechanical properties according to the instantaneous response of the tower, is proposed...

  17. Real-Time Scheduling Approaches for Vehicle-Based Internal Transport Systems

    NARCIS (Netherlands)

    T. Le-Anh (Tuan); M.B.M. de Koster (René)

    2004-01-01

    textabstractIn this paper, we study the problem of scheduling and dispatching vehicles in vehicle-based internal transport systems within warehouses and production facilities. We develop and use two rolling horizon policies to solve real-time vehicle scheduling problems. To solve static instances of

  18. AmbientRT - real time system software support for data centric sensor networks

    NARCIS (Netherlands)

    Hofmeijer, T.J.; Dulman, S.O.; Jansen, P.G.; Havinga, Paul J.M.

    We present the architecture and design of a real time operating system for mobile wireless sensor networks. AmbientRT is being developed for environments with very limited resources in order to relieve the burden of the developer and to efficiently use the resources of the node. This paper presents

  19. AmbientRT - real time system software support for data centric sensor networks

    NARCIS (Netherlands)

    Hofmeijer, T.J.; Dulman, S.O.; Jansen, P.G.; Havinga, Paul J.M.

    2004-01-01

    We present the architecture and design of a real time operating system for mobile wireless sensor networks. AmbientRT is being developed for environments with very limited resources in order to relieve the burden of the developer and to efficiently use the resources of the node. This paper presents

  20. Rapid detection of Salmonella in bovine lymph nodes using a commercial real-time PCR system

    Science.gov (United States)

    Rapid Salmonella detection is needed to help prevent the distribution of contaminated food products. Using traditional culture methods, Salmonella detection can take up to 3-5 days. Using an improved protocol and a commercial real-time PCR system, we have shortened the detection time to under 24 h...

  1. A new Java Thread model for concurrent programming of real-time systems

    NARCIS (Netherlands)

    Hilderink, Gerald; Broenink, Jan; Bakkers, André

    1998-01-01

    The Java ™ Virtual Machine (JVM) provides a high degree of platform independence, but being an interpreter, Java has a poor system performance. New compiler techniques and Java processors will gradually improve the performance of Java, but despite these developments, Java is still far from real-time

  2. Design and implementation of an interactive web-based near real-time forest monitoring system

    NARCIS (Netherlands)

    Pratihast, Arun Kumar; Vries, de Ben; Avitabile, Valerio; Bruin, De Sytze; Herold, Martin; Bergsma, Aldo

    2016-01-01

    This paper describes an interactive web-based near real-time (NRT) forest monitoring system using four levels of geographic information services: 1) the acquisition of continuous data streams from satellite and community-based monitoring using mobile devices, 2) NRT forest disturbance detection base

  3. Online Operation Guidance of Computer System Used in Real-Time Distance Education Environment

    Science.gov (United States)

    He, Aiguo

    2011-01-01

    Computer system is useful for improving real time and interactive distance education activities. Especially in the case that a large number of students participate in one distance lecture together and every student uses their own computer to share teaching materials or control discussions over the virtual classrooms. The problem is that within…

  4. Potential and limitations of modern equipment for real time control of urban wastewater systems

    DEFF Research Database (Denmark)

    Campisano, A.; Cabot Ple, J.; Muschalla, D.

    2013-01-01

    Real Time Control (RTC) has become an accepted technique for improving the performance of Urban Drainage Systems (UDS) due to its flexibility and sustainability. Numerous implementations of RTC have been reported during the last decades. At the same time, guideline documents and state-of-the-art ...

  5. A Data Analytical Framework for Improving Real-Time, Decision Support Systems in Healthcare

    Science.gov (United States)

    Yahav, Inbal

    2010-01-01

    In this dissertation we develop a framework that combines data mining, statistics and operations research methods for improving real-time decision support systems in healthcare. Our approach consists of three main concepts: data gathering and preprocessing, modeling, and deployment. We introduce the notion of offline and semi-offline modeling to…

  6. Rigorous Modeling of Real-time System Based on UML and PVS

    Institute of Scientific and Technical Information of China (English)

    LAI Ming-zhi; YOU Jin-yuan

    2005-01-01

    Rigorous modeling could improve the correctness and reduce cost in embedded real-time system development for models could be verified. Tools are needed for rigorous modeling of embedded real-time system. UML is an industrial standard modeling language which provides a powerful expressi-veness, intuitive and easy to use interface to model. UML is widely accepted by software developer. However, for lack of precisely defined semantics, especially on the dynamic diagrams, UML model is hard to be verified. PVS is a general formal method which provides a high-order logic specification language and integrated with model checking and theorem proving tools. Combining the widely used UML with PVS, this paper provides a novel modeling and verification approach for embedded real-time system. In this approach, we provide 1) a timed extended UML statechart for modeling dynamic behavior of an embedded real-time system; 2) an approach to capture timed automata based semantics from timed statechart; and 3) an algorithm to generate a finite state model expressed in PVS specification for model checking. The benefits of our approach include flexible and friendly in modeling, extendable in formalization and verification content, and better performance. Time constraints are modeled and verified and its a highlight of this paper.

  7. HAPI: An event-driven simulator for real-time multiprocessor systems

    NARCIS (Netherlands)

    Kurtin, Philip S.; Hausmans, Joost P.H.M.; Bekooij, Marco J.G.

    2016-01-01

    Many embedded multiprocessor systems have hard real-time requirements which should be guaranteed at design time by means of analytical techniques that cover all cases. It is desirable to evaluate the correctness and tightness of the analysis results by means of simulation. However, verification of t

  8. DCOS, a Real-Time Light-weight Data Centric Operating System

    NARCIS (Netherlands)

    Hofmeijer, T.J.; Dulman, S.O.; Jansen, P.G.; Havinga, Paul J.M.; Sahni, S.

    DCOS is a Data Centric lightweight Operating System for embedded devices. Despite limited energy and hardware resources, it supports a data driven architecture with provisions for dynamic loadable Modules. It combines these with Real-Time provisions based on Earliest Deadline First with a simple but

  9. DCOS, a real-time light-weight Data Centric Operating System

    NARCIS (Netherlands)

    Hofmeijer, T.J.; Dulman, S.O.; Jansen, P.G.; Havinga, Paul J.M.

    2004-01-01

    DCOS is a Data Centric lightweight Operating System for embedded devices. Despite limited energy and hardware resources, it supports a data driven architecture with provisions for dynamic loadable Modules. It combines these with Real-Time provisions based on Earliest Deadline First with a simple but

  10. A Real-Time evaluation system for a state-of-charge indication algorithm

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Notten, P.H.L.; Regtien, Paulus P.L.

    2005-01-01

    The known methods of State-of-Charge (SoC) indication in portable applications are not accurate enough under all practical conditions. This paper describes a real- time evaluation LabVIEW system for an SoC algorithm, that calculates the SoC in [%] and also the remaining run-time available under the

  11. A Real-Time evaluation system for a state-of-charge indication algorithm

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Notten, P.H.L.; Regtien, P.P.L.

    2005-01-01

    The known methods of State-of-Charge (SoC) indication in portable applications are not accurate enough under all practical conditions. This paper describes a real- time evaluation LabVIEW system for an SoC algorithm, that calculates the SoC in [%] and also the remaining run-time available under the

  12. Model checking process algebra of communicating resources for real-time systems

    DEFF Research Database (Denmark)

    Boudjadar, Jalil; Kim, Jin Hyun; Larsen, Kim Guldstrand

    2014-01-01

    This paper presents a new process algebra, called PACoR, for real-time systems which deals with resource- constrained timed behavior as an improved version of the ACSR algebra. We define PACoR as a Process Algebra of Communicating Resources which allows to explicitly express preemptiveness...

  13. Model Checking Process Algebra of Communicating Resources for Real-time Systems

    DEFF Research Database (Denmark)

    Boudjadar, Jalil; Kim, Jin Hyun; Larsen, Kim Guldstrand

    2014-01-01

    This paper presents a new process algebra, called PACOR, for real-time systems which deals with resource constrained timed behavior as an improved version of the ACSR algebra. We define PACOR as a Process Algebra of Communicating Resources which allows to express preemptiveness, urgent ness...

  14. A Data Analytical Framework for Improving Real-Time, Decision Support Systems in Healthcare

    Science.gov (United States)

    Yahav, Inbal

    2010-01-01

    In this dissertation we develop a framework that combines data mining, statistics and operations research methods for improving real-time decision support systems in healthcare. Our approach consists of three main concepts: data gathering and preprocessing, modeling, and deployment. We introduce the notion of offline and semi-offline modeling to…

  15. An environment for object-oriented real-time system design

    NARCIS (Netherlands)

    van de Weg, R.L.W.; Engmann, R.G.R.; van de Hoef, Raoul; van de Hoef, R.; ten Thij, Vincent

    1997-01-01

    A concise object-oriented method for the development of real-time systems has been composed. Hardware components are modelled by (software) base objects; base objects are controlled by a hierarchy of coordinator objects, expressed in an organizational diagram. The behaviour of objects is specified

  16. A Real-Time Embedded Control System for Electro-Fused Magnesia Furnace

    Directory of Open Access Journals (Sweden)

    Fang Zheng

    2013-01-01

    Full Text Available Since smelting process of electro-fused magnesia furnace is a complicated process which has characteristics like complex operation conditions, strong nonlinearities, and strong couplings, traditional linear controller cannot control it very well. Advanced intelligent control strategy is a good solution to this kind of industrial process. However, advanced intelligent control strategy always involves huge programming task and hard debugging and maintaining problems. In this paper, a real-time embedded control system is proposed for the process control of electro-fused magnesia furnace based on intelligent control strategy and model-based design technology. As for hardware, an embedded controller based on an industrial Single Board Computer (SBC is developed to meet industrial field environment demands. As for software, a Linux based on Real-Time Application Interface (RTAI is used as the real-time kernel of the controller to improve its real-time performance. The embedded software platform is also modified to support generating embedded code automatically from Simulink/Stateflow models. Based on the proposed embedded control system, the intelligent embedded control software of electro-fused magnesium furnace can be directly generated from Simulink/Stateflow models. To validate the effectiveness of the proposed embedded control system, hardware-in-the-loop (HIL and industrial field experiments are both implemented. Experiments results show that the embedded control system works very well in both laboratory and industry environments.

  17. JPL's GNSS Real-Time Earthquake and Tsunami (GREAT) Alert System

    Science.gov (United States)

    Bar-Sever, Yoaz; Miller, Mark; Vallisneri, Michele; Khachikyan, Robert; Meyer, Robert

    2017-04-01

    We describe recent developments to the GREAT Alert natural hazard monitoring service from JPL's Global Differential GPS (GDGPS) System. GREAT Alert provides real-time, 1 Hz positioning solutions for hundreds of GNSS tracking sites, from both global and regional networks, aiming to monitor ground motion in the immediate aftermath of earthquakes. We take advantage of the centralized data processing, which is collocated with the GNSS orbit determination operations of the GDGPS System, to combine orbit determination with large-scale point-positioning in a grand estimation scheme, and as a result realize significant improvement to the positioning accuracy compared to conventional stand-alone point positioning techniques. For example, the measured median site (over all sites) real-time horizontal positioning accuracy is 2 cm 1DRMS, and the median real-time vertical accuracy is 4 cm RMS. The GREAT Alert positioning service is integrated with automated global earthquake notices from the United States Geodetic Survey (USGS) to support near-real-time calculations of co-seismic displacements with attendant formal errors based both short-term and long-term error analysis for each individual site. We will show the millimeter-level resolution of co-seismic displacement can be achieved by this system. The co-seismic displacements, in turn, are fed into a JPL geodynamics and ocean models, that estimate the Earthquake magnitude and predict the potential tsunami scale.

  18. Real-Time Digitization of Metabolomics Patterns from a Living System Using Mass Spectrometry

    Science.gov (United States)

    Heinemann, Joshua; Noon, Brigit; Mohigmi, Mohammad J.; Mazurie, Aurélien; Dickensheets, David L.; Bothner, Brian

    2014-10-01

    The real-time quantification of changes in intracellular metabolic activities has the potential to vastly improve upon traditional transcriptomics and metabolomics assays for the prediction of current and future cellular phenotypes. This is in part because intracellular processes reveal themselves as specific temporal patterns of variation in metabolite abundance that can be detected with existing signal processing algorithms. Although metabolite abundance levels can be quantified by mass spectrometry (MS), large-scale real-time monitoring of metabolite abundance has yet to be realized because of technological limitations for fast extraction of metabolites from cells and biological fluids. To address this issue, we have designed a microfluidic-based inline small molecule extraction system, which allows for continuous metabolomic analysis of living systems using MS. The system requires minimal supervision, and has been successful at real-time monitoring of bacteria and blood. Feature-based pattern analysis of Escherichia coli growth and stress revealed cyclic patterns and forecastable metabolic trajectories. Using these trajectories, future phenotypes could be inferred as they exhibit predictable transitions in both growth and stress related changes. Herein, we describe an interface for tracking metabolic changes directly from blood or cell suspension in real-time.

  19. Using the Simulation Modeling Methods for the Designing Real-Time Integrated Expert Systems

    OpenAIRE

    Rybina, Galina; Rybin, Victor

    2003-01-01

    Certain theoretical and methodological problems of designing real-time dynamical expert systems, which belong to the class of the most complex integrated expert systems, are discussed. Primary attention is given to the problems of designing subsystems for modeling the external environment in the case where the environment is represented by complex engineering systems. A specific approach to designing simulation models for complex engineering systems is proposed and examples of...

  20. An Automatic Testing System of Scheduling Strategies in Real-Time UNIX

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper proposes a formal model of the automatic testing system for scheduling strategies in real-time UNIX and describes the algorithm of the key part of the system. The model of the system is an important technology of the automatization of software development. According to the model presented in the paper, many different kinds of automatic testing systems can be designed and developed easily. At the end of the paper, the prototype proves the feasibility of the model and design.

  1. Research on Collaboration Theory of Distributed Measurement System and Real-Time of Communication Platform

    Institute of Scientific and Technical Information of China (English)

    SHEN Yan

    2005-01-01

    @@ With developments of technology of computer and network, researching on distributed measurement system becomes one of the hot problems in the field of automatic test. However, existing resolutions to distributed measurement system still have great limit,e.g. intelligence, self-adaptivity, collaboration, system load balance and integer view, and their capabilities need to be enhanced. Based on two key projects, this paper studies on collaboration mechanism and real-time of communication platform in distributed measurement system comprehensively and systematically.

  2. A High Speed Mobile Courier Data Access System That Processes Database Queries in Real-Time

    Science.gov (United States)

    Gatsheni, Barnabas Ndlovu; Mabizela, Zwelakhe

    A secure high-speed query processing mobile courier data access (MCDA) system for a Courier Company has been developed. This system uses the wireless networks in combination with wired networks for updating a live database at the courier centre in real-time by an offsite worker (the Courier). The system is protected by VPN based on IPsec. There is no system that we know of to date that performs the task for the courier as proposed in this paper.

  3. Mobile Embedded Real Time System (RTTCS for Monitoring and Controlling in Telemedicine

    Directory of Open Access Journals (Sweden)

    Basim Mohammed

    2010-10-01

    Full Text Available A real time system embedded in mobile phone was designed In this work, called (Real Time Telemonitoring and Controlling System RTTCS to telemonitor and control a patient's case in level two of telemedicine. The signals (ECG, Arterial Oxygen Saturation and Blood Pressure were transferred out of the patient's monitoring equipments to NOKIA12 unit. Then they were send wirelessly through GPRS to be received by the mobile phone interpreted by the specialist physician who is far a way from the patient. By which the physician can evaluate the patient's case through parameters displaced on the mobile phone screen, so he can provide the necessary medical orders. The suggested system consists of three units. The first is the NOKIA12 unit (T-Box N12 R which contains an embedded real time program works as its operating system. That depends upon two principles multithreading and preemptive and uses a proposed dynamic scheduling algorithm called (RTT with real time constraints to schedule the signals and to send them according to identified priorities to meet the deadline of signals. The second unit represents a web site which is the middle storage for the patient's data. The third unit is a mobile unit (mobile phone which receives the coming signals from the patient monitor accordingly through the previously mentioned first and second units, then the physician can evaluate and diagnose the patient’s case and order the necessary interventions. The system was applied on many cases of abnormal cardiac rhythm cases, where it had been send successfully to a mobile phone in it's real time, and had been read by the physician where it was clear and reliable for the medical diagnosis.

  4. STUDY OF REAL-TIME EXPERT SYSTEM TOOL FOR INDUSTRIAL FAULT MONITORING AND DIAGNOSIS

    Institute of Scientific and Technical Information of China (English)

    谢桂林; 周建荣

    1992-01-01

    From the requirements ot industrial production,an integrated fault monitoring,diagnosis and repairing system is suggested in this paper. This new scheme of fault monitoring and diagnosis system is realized by a master-slave real-time expert system,and a real-time expert system tool for this system is also developed accordingly. As an example of application of this tool,a realtime expert system for fault monitoring and diagnosis on DC mine hoist is developed. Experiments show that this tool possesses better supporting environment,strong knowledge acquisition ability, and convenience for use. The system developed by this tool not only meets the realtime requirement of DC hoist,but also can give correct diagnosis results.

  5. Fault-Tolerant Scheduling for Real-Time Embedded Control Systems

    Institute of Scientific and Technical Information of China (English)

    Chun-Hua Yang; Geert Deconinck; Wei-Hua Gui

    2004-01-01

    With the increasing complexity of industrial application, an embedded control system (ECS) requires processing a number of hard real-time tasks and needs fault-tolerance to assure high reliability. Considering the characteristics of real-time tasks in ECS, an integrated algorithm is proposed to schedule real-time tasks and to guarantee that all real-time tasks are completed before their deadlines even in the presence of faults. Based on the nonpreemptive critical-section protocol (NCSP), this paper analyzes the blocking time introduced by resource conflicts of relevancy tasks in fault-tolerant multiprocessor systems. An extended schedulability condition is presented to check the assignment feasibility of a given task to a processor. A primary/backup approach and on-line replacement of failed processors are used to tolerate processor failures. The analysis reveals that the integrated algorithm bounds the blocking time, requires limited overhead on the number of processors, and still assures good processor utilization. This is also demonstrated by simulation results. Both analysis and simulation show the effectiveness of the proposed algorithm in ECS.

  6. Combining instruction prefetching with partial cache locking to improve WCET in real-time systems.

    Directory of Open Access Journals (Sweden)

    Fan Ni

    Full Text Available Caches play an important role in embedded systems to bridge the performance gap between fast processor and slow memory. And prefetching mechanisms are proposed to further improve the cache performance. While in real-time systems, the application of caches complicates the Worst-Case Execution Time (WCET analysis due to its unpredictable behavior. Modern embedded processors often equip locking mechanism to improve timing predictability of the instruction cache. However, locking the whole cache may degrade the cache performance and increase the WCET of the real-time application. In this paper, we proposed an instruction-prefetching combined partial cache locking mechanism, which combines an instruction prefetching mechanism (termed as BBIP with partial cache locking to improve the WCET estimates of real-time applications. BBIP is an instruction prefetching mechanism we have already proposed to improve the worst-case cache performance and in turn the worst-case execution time. The estimations on typical real-time applications show that the partial cache locking mechanism shows remarkable WCET improvement over static analysis and full cache locking.

  7. Combining instruction prefetching with partial cache locking to improve WCET in real-time systems.

    Science.gov (United States)

    Ni, Fan; Long, Xiang; Wan, Han; Gao, Xiaopeng

    2013-01-01

    Caches play an important role in embedded systems to bridge the performance gap between fast processor and slow memory. And prefetching mechanisms are proposed to further improve the cache performance. While in real-time systems, the application of caches complicates the Worst-Case Execution Time (WCET) analysis due to its unpredictable behavior. Modern embedded processors often equip locking mechanism to improve timing predictability of the instruction cache. However, locking the whole cache may degrade the cache performance and increase the WCET of the real-time application. In this paper, we proposed an instruction-prefetching combined partial cache locking mechanism, which combines an instruction prefetching mechanism (termed as BBIP) with partial cache locking to improve the WCET estimates of real-time applications. BBIP is an instruction prefetching mechanism we have already proposed to improve the worst-case cache performance and in turn the worst-case execution time. The estimations on typical real-time applications show that the partial cache locking mechanism shows remarkable WCET improvement over static analysis and full cache locking.

  8. Real-time Series Resistance Monitoring in PV Systems; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Deceglie, M. G.; Silverman, T. J.; Marion, B.; Kurtz, S. R.

    2015-06-14

    We apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting IV curves or constructing full series-resistance-free IV curves. RTSR is most readily deployable at the module level on apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting IV curves or constructing full series-resistance-free IV curves. RTSR is most readily deployable at the module level on micro-inverters or module-integrated electronics, but it can also be extended to full strings. Automated detection of series resistance increases can provide early warnings of some of the most common reliability issues, which also pose fire risks, including broken ribbons, broken solder bonds, and contact problems in the junction or combiner box. We describe the method in detail and describe a sample application to data collected from modules operating in the field.

  9. Applying real-time control to enhance the performance of nitrogen removal in CAST system

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-po; PENG Yong-zhen; WANG Shu-ying; GAO Shou-you

    2005-01-01

    A bench-scale reactor(72 L) red with domestic sewage, was operated more than 3 months with three operation modes:traditional mode, modified mode and real-time control mode, so as to evaluate effects of the operation mode on the system performance and to develop a feasible control strategy. Results obtained from fixed-time control study indicate that the variations of the pH and oxidation-reduction potential(ORP) profiles can represent dynamic characteristics of system and the cycle sequences can be controlled and optimized by the control points on the pH and ORP profiles. A control strategy was, therefore, developed and applied to real-time control mode. Compared with traditional mode, the total nitrogen(TN) removal can be increased by approximately 16% in modified mode and a mean TN removal of 92% was achieved in real-time control mode. Moreover, approximately 12.5% aeration energy was saved in realtime control mode. The result of this study shows that the performance of nitrogen removal was enhanced in modified operation mode.Moreover, the real-time control made it possible to optimize process operation and save aeration energy.

  10. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    Science.gov (United States)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  11. Using Sun’s Java Real-Time System to Manage Behavior-Based Mobile Robot Controllers

    Directory of Open Access Journals (Sweden)

    Andrew McKenzie

    2011-01-01

    Full Text Available Implementing a robot controller that can effectively manage limited resources in a deterministic, real-time manner is challenging. Behavior-based architectures that decompose autonomy into levels of intelligence are popular due to their robustness but do not provide real-time features that enforce timing constraints or support determinism. We propose an architecture and approach for using the real-time features of the Real-Time Specification for Java (RTSJ in a behavior-based mobile robot controller to show that timing constraints affect performance. This is accomplished by extending a real-time aware architecture that explicitly enumerates timing requirements for each behavior. It is not enough to reduce latency. The usefulness of this approach is demonstrated via an implementation on Solaris 10 and the Sun Java Real-Time System (Java RTS. Experimental results are obtained using a K-team Koala robot performing path following with four composite behaviors. Experiments were conducted using several task period sets in three cases: real-time threads with the real-time garbage collector, real-time threads with the non- real-time garbage collector, and non-real-time threads with the non-real-time garbage collector. Results show that even if latency and determinism are improved, the timing of each individual behavior significantly affects task performance.

  12. Construction and Evaluation of Cytomegalovirus DNA Quantification System with Real-Time Detection Polymerase Chain Reaction

    OpenAIRE

    Hatayama, Yuki; Hashimoto, Yuki; Hara, Ayako; Motokura, Toru

    2016-01-01

    Background For patients with reactivation of human cytomegalovirus (CMV), a highly sensitive and accurate CMV quantification system is essential to monitor viral load. Methods We constructed a real-time detection PCR (RTD-PCR) system for CMV DNA and evaluated its linearity, lower detection limit, dynamic range and accuracy using two CMV standards. We used 219 clinical samples derived from 101 patients to compare the system with the pp65 antigen test. Results The 95% detection limit was determ...

  13. Real-time precision pedestrian navigation solution using Inertial Navigation System and Global Positioning System

    Directory of Open Access Journals (Sweden)

    Yong-Jin Yoon

    2015-03-01

    Full Text Available Global Positioning System and Inertial Navigation System can be used to determine position and velocity. A Global Positioning System module is able to accurately determine position without sensor drift, but its usage is limited in heavily urbanized environments and heavy vegetation. While high-cost tactical-grade Inertial Navigation System can determine position accurately, low-cost micro-electro-mechanical system Inertial Navigation System sensors are plagued by significant errors. Global Positioning System is coupled with Inertial Navigation System to correct the errors, while Inertial Navigation System itself can be used to provide navigation solution during a Global Positioning System outage. Data from Global Positioning System and Inertial Navigation System can be integrated by extensive Kalman filtering, using loosely coupled integration architecture to provide navigation solutions. In this study, real-time low-cost loosely coupled micro-electro-mechanical system Inertial Navigation System/Global Positioning System sensors have been used for pedestrian navigation. Trial runs of Global Positioning System outages have been conducted to determine the accuracy of the system described. The micro-electro-mechanical system Inertial Navigation System/Global Positioning System can successfully project a trajectory during a Global Positioning System outage and produces a root mean square error of 9.35 m in latitude direction and 10.8 m in longitude direction. This technology is very suitable for visually impaired pedestrians.

  14. Land and Atmosphere Near-Real-Time Capability for Earth Observing System

    Science.gov (United States)

    Murphy, Kevin J.

    2011-01-01

    The past decade has seen a rapid increase in availability and usage of near-real-time data from satellite sensors. The EOSDIS (Earth Observing System Data and Information System) was not originally designed to provide data with sufficiently low latency to satisfy the requirements for near-real-time users. The EOS (Earth Observing System) instruments aboard the Terra, Aqua and Aura satellites make global measurements daily, which are processed into higher-level 'standard' products within 8-40 hours of observation and then made available to users, primarily earth science researchers. However, applications users, operational agencies, and even researchers desire EOS products in near-real-time to support research and applications, including numerical weather and climate prediction and forecasting, monitoring of natural hazards, ecological/invasive species, agriculture, air quality, disaster relief and homeland security. These users often need data much sooner than routine science processing allows, usually within 3 hours, and are willing to trade science product quality for timely access. While Direct Broadcast provides more timely access to data, it does not provide global coverage. In 2002, a joint initiative between NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration), and the DOD (Department of Defense) was undertaken to provide data from EOS instruments in near-real-time. The NRTPE (Near Real Time Processing Effort) provided products within 3 hours of observation on a best-effort basis. As the popularity of these near-real-time products and applications grew, multiple near-real-time systems began to spring up such as the Rapid Response System. In recognizing the dependence of customers on this data and the need for highly reliable and timely data access, NASA's Earth Science Division sponsored the Earth Science Data and Information System Project (ESDIS)-led development of a new near-real-time system called

  15. A Probabilistic Approach to Control of Complex Systems and Its Application to Real-Time Pricing

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2014-01-01

    Full Text Available Control of complex systems is one of the fundamental problems in control theory. In this paper, a control method for complex systems modeled by a probabilistic Boolean network (PBN is studied. A PBN is widely used as a model of complex systems such as gene regulatory networks. For a PBN, the structural control problem is newly formulated. In this problem, a discrete probability distribution appeared in a PBN is controlled by the continuous-valued input. For this problem, an approximate solution method using a matrix-based representation for a PBN is proposed. Then, the problem is approximated by a linear programming problem. Furthermore, the proposed method is applied to design of real-time pricing systems of electricity. Electricity conservation is achieved by appropriately determining the electricity price over time. The effectiveness of the proposed method is presented by a numerical example on real-time pricing systems.

  16. Critical Task Re-assignment under Hybrid Scheduling Approach in Multiprocessor Real-Time Systems

    CERN Document Server

    Nair, Gopalakrishnan T R

    2012-01-01

    Embedded hard real time systems require substantial amount of emergency processing power for the management of large scale systems like a nuclear power plant under the threat of an earth quake or a future transport systems under a peril. In order to meet a fully coordinated supervisory control of multiple domains of a large scale system, it requires the scenario of engaging multiprocessor real time design. There are various types of scheduling schemes existing for meeting the critical task assignment in multiple processor environments and it requires the tracking of faulty conditions of the subsystem to avoid system underperformance from failure patterns. Hybrid scheduling usually engages a combined scheduling philosophy comprising of a static scheduling of a set of tasks and a highly pre-emptive scheduling for another set of tasks in different situations of process control. There are instances where highly critical tasks need to be introduced at a least expected catastrophe and it cannot be ensured to meet a...

  17. A distributed multiprocessor system designed for real-time image processing

    Science.gov (United States)

    Yin, Zhiyi; Heng, Wei

    2008-11-01

    In real-time image processing, a large amount of data is needed to be processed at a very high speed. Considering the problems faced in real-time image processing, a distributed multiprocessor system is proposed in this paper. In the design of the distributed multiprocessor system, processing tasks are allocated to various processes, which are bound to different CPUs. Several designs are discussed, and making full use of every process is very important to system's excellent performance. Furthermore, the problems of realization fasten on the inter-process communication, the synchronization, and the stability. System analysis and performance tests both show that the distributed multiprocessor system is able to improve system's performance variously, including the delay, the throughput rate, the stability, the scalability. And the system can be expanded easy at aspects of software and hardware. In a word, the distributed multiprocessor system designed for real-time image processing, based on distributed algorithms, not only improves system's performance variously, but also costs low and expands easy.

  18. Real-time fracture monitoring in Engineered Geothermal Systems with seismic waves

    Energy Technology Data Exchange (ETDEWEB)

    Jose A. Rial; Jonathan Lees

    2009-03-31

    As proposed, the main effort in this project is the development of software capable of performing real-time monitoring of micro-seismic activity recorded by an array of sensors deployed around an EGS. The main milestones are defined by the development of software to perform the following tasks: • Real-time micro-earthquake detection and location • Real-time detection of shear-wave splitting • Delayed-time inversion of shear-wave splitting These algorithms, which are discussed in detail in this report, make possible the automatic and real-time monitoring of subsurface fracture systems in geothermal fields from data collected by an array of seismic sensors. Shear wave splitting (SWS) is parameterized in terms of the polarization of the fast shear wave and the time delay between the fast and slow shear waves, which are automatically measured and stored. The measured parameters are then combined with previously measured SWS parameters at the same station and used to invert for the orientation (strike and dip) and intensity of cracks under that station. In addition, this grant allowed the collection of seismic data from several geothermal regions in the US (Coso) and Iceland (Hengill) to use in the development and testing of the software.

  19. A Real-Time Cardiac Arrhythmia Classification System with Wearable Sensor Networks

    Science.gov (United States)

    Hu, Sheng; Wei, Hongxing; Chen, Youdong; Tan, Jindong

    2012-01-01

    Long term continuous monitoring of electrocardiogram (ECG) in a free living environment provides valuable information for prevention on the heart attack and other high risk diseases. This paper presents the design of a real-time wearable ECG monitoring system with associated cardiac arrhythmia classification algorithms. One of the striking advantages is that ECG analog front-end and on-node digital processing are designed to remove most of the noise and bias. In addition, the wearable sensor node is able to monitor the patient's ECG and motion signal in an unobstructive way. To realize the real-time medical analysis, the ECG is digitalized and transmitted to a smart phone via Bluetooth. On the smart phone, the ECG waveform is visualized and a novel layered hidden Markov model is seamlessly integrated to classify multiple cardiac arrhythmias in real time. Experimental results demonstrate that the clean and reliable ECG waveform can be captured in multiple stressed conditions and the real-time classification on cardiac arrhythmia is competent to other workbenches. PMID:23112746

  20. A Real-Time Cardiac Arrhythmia Classification System with Wearable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jindong Tan

    2012-09-01

    Full Text Available Long term continuous monitoring of electrocardiogram (ECG in a free living environment provides valuable information for prevention on the heart attack and other high risk diseases. This paper presents the design of a real-time wearable ECG monitoring system with associated cardiac arrhythmia classification algorithms. One of the striking advantages is that ECG analog front-end and on-node digital processing are designed to remove most of the noise and bias. In addition, the wearable sensor node is able to monitor the patient’s ECG and motion signal in an unobstructive way. To realize the real-time medical analysis, the ECG is digitalized and transmitted to a smart phone via Bluetooth. On the smart phone, the ECG waveform is visualized and a novel layered hidden Markov model is seamlessly integrated to classify multiple cardiac arrhythmias in real time. Experimental results demonstrate that the clean and reliable ECG waveform can be captured in multiple stressed conditions and the real-time classification on cardiac arrhythmia is competent to other workbenches.

  1. A Real-Time System for Lane Detection Based on FPGA and DSP

    Science.gov (United States)

    Xiao, Jing; Li, Shutao; Sun, Bin

    2016-12-01

    This paper presents a real-time lane detection system including edge detection and improved Hough Transform based lane detection algorithm and its hardware implementation with field programmable gate array (FPGA) and digital signal processor (DSP). Firstly, gradient amplitude and direction information are combined to extract lane edge information. Then, the information is used to determine the region of interest. Finally, the lanes are extracted by using improved Hough Transform. The image processing module of the system consists of FPGA and DSP. Particularly, the algorithms implemented in FPGA are working in pipeline and processing in parallel so that the system can run in real-time. In addition, DSP realizes lane line extraction and display function with an improved Hough Transform. The experimental results show that the proposed system is able to detect lanes under different road situations efficiently and effectively.

  2. Five-Axis Machine Tool Condition Monitoring Using dSPACE Real-Time System

    Science.gov (United States)

    Sztendel, S.; Pislaru, C.; Longstaff, A. P.; Fletcher, S.; Myers, A.

    2012-05-01

    This paper presents the design, development and SIMULINK implementation of the lumped parameter model of C-axis drive from GEISS five-axis CNC machine tool. The simulated results compare well with the experimental data measured from the actual machine. Also the paper describes the steps for data acquisition using ControlDesk and hardware-in-the-loop implementation of the drive models in dSPACE real-time system. The main components of the HIL system are: the drive model simulation and input - output (I/O) modules for receiving the real controller outputs. The paper explains how the experimental data obtained from the data acquisition process using dSPACE real-time system can be used for the development of machine tool diagnosis and prognosis systems that facilitate the improvement of maintenance activities.

  3. Validation Support for Distributed Real-Time Embedded Systems in VDM++

    DEFF Research Database (Denmark)

    S. Fitzgerald, John; Gorm Larsen, Peter; Tjell, Simon

    2007-01-01

    We present a tool-supported approach to the validation of system-level timing properties in formal models of distributed real-time embedded systems. Our aim is to provide system architects with rapid feedback on the timing characteristics of alternative designs in the often volatile early stages...... of the development cycle. The approach extends the Vienna Development Method (VDM++), a formal objectoriented modeling language with facilities for describing real-time applications deployed over a distributed infrastructure. A new facility is proposed for stating and checking validation conjectures (assertions...... to visualise traces and validation conjecture violations. The approach and tool support are illustrated with a case study based on an in-car radio navigation system....

  4. A GPS-based Real-time Road Traffic Monitoring System

    Science.gov (United States)

    Tanti, Kamal Kumar

    In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.

  5. Dynamic Subcarrier Allocation for Real-Time Traffic over Multiuser OFDM Systems

    Directory of Open Access Journals (Sweden)

    Li VictorOK

    2009-01-01

    Full Text Available A dynamic resource allocation algorithm to satisfy the packet delay requirements for real-time services, while maximizing the system capacity in multiuser orthogonal frequency division multiplexing (OFDM systems is introduced. Our proposed cross-layer algorithm, called Dynamic Subcarrier Allocation algorithm for Real-time Traffic (DSA-RT, consists of two interactive components. In the medium access control (MAC layer, the users' expected transmission rates in terms of the number of subcarriers per symbol and their corresponding transmission priorities are evaluated. With the above MAC-layer information and the detected subcarriers' channel gains, in the physical (PHY layer, a modified Kuhn-Munkres algorithm is developed to minimize the system power for a certain subcarrier allocation, then a PHY-layer resource allocation scheme is proposed to optimally allocate the subcarriers under the system signal-to-noise ratio (SNR and power constraints. In a system where the number of mobile users changes dynamically, our developed MAC-layer access control and removal schemes can guarantee the quality of service (QoS of the existing users in the system and fully utilize the bandwidth resource. The numerical results show that DSA-RT significantly improves the system performance in terms of the bandwidth efficiency and delay performance for real-time services.

  6. A study for high accuracy real-time 3D ultrasonic location system.

    Science.gov (United States)

    Zhou, Ping; Ha, Zhang; Zhou, Kangyuan

    2006-12-22

    We discussed a high accuracy real-time 3D ultrasonic location system in this article. The signal received was sampled after it passed the TGC and the logarithmic amplifier. Inside the DSP, we used the dynamic threshold tracing technique to improve the accuracy. The result was processed with Weighted Arithmetic Average. By testing the 40 kHz 3D location system, we have arrived at the accuracy of 1 cm.

  7. A Class of Real-Time Parallel Combined Methods of Digital Simulation for Large Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, a class of real-time parallel combined methods (RTPCM) of the digital simulation for a partitioned large system is presented. By means of combination of the parallelism across the system with the parallelism across the method, stiff and non-stiff subsystems are solved in parallel on parallel computer by a parallel Rosenbrock method and a parallel RK method, re spectively. Their construction, convergence and numerical stability are discussed, and the digital simulation experiments are conducted.

  8. Methodology for object-oriented real-time systems analysis and design: Software engineering

    Science.gov (United States)

    Schoeffler, James D.

    1991-01-01

    Successful application of software engineering methodologies requires an integrated analysis and design life-cycle in which the various phases flow smoothly 'seamlessly' from analysis through design to implementation. Furthermore, different analysis methodologies often lead to different structuring of the system so that the transition from analysis to design may be awkward depending on the design methodology to be used. This is especially important when object-oriented programming is to be used for implementation when the original specification and perhaps high-level design is non-object oriented. Two approaches to real-time systems analysis which can lead to an object-oriented design are contrasted: (1) modeling the system using structured analysis with real-time extensions which emphasizes data and control flows followed by the abstraction of objects where the operations or methods of the objects correspond to processes in the data flow diagrams and then design in terms of these objects; and (2) modeling the system from the beginning as a set of naturally occurring concurrent entities (objects) each having its own time-behavior defined by a set of states and state-transition rules and seamlessly transforming the analysis models into high-level design models. A new concept of a 'real-time systems-analysis object' is introduced and becomes the basic building block of a series of seamlessly-connected models which progress from the object-oriented real-time systems analysis and design system analysis logical models through the physical architectural models and the high-level design stages. The methodology is appropriate to the overall specification including hardware and software modules. In software modules, the systems analysis objects are transformed into software objects.

  9. A Real-Time Decision Support System for Anesthesiologist End-of-Shift Relief.

    Science.gov (United States)

    Wax, David B; McCormick, Patrick J

    2017-02-01

    A decision support system using recent data about work hours and real-time data about relief events was developed to guide anesthesiologist end-of-shift relief decisions in an effort to promote a relief order that prioritized relief for those who had recently worked later than others. After system implementation, there were fewer deviations from this idealized order of relief, and early relief was more evenly distributed.

  10. Simulated Annealing Algorithm Combined with Chaos for Task Allocation in Real-Time Distributed Systems

    OpenAIRE

    Wenbo Wu; Jiahong Liang; Xinyu Yao; Baohong Liu

    2014-01-01

    This paper addresses the problem of task allocation in real-time distributed systems with the goal of maximizing the system reliability, which has been shown to be NP-hard. We take account of the deadline constraint to formulate this problem and then propose an algorithm called chaotic adaptive simulated annealing (XASA) to solve the problem. Firstly, XASA begins with chaotic optimization which takes a chaotic walk in the solution space and generates several local minima; secondly XASA improv...

  11. Acoustic Performance of a Real-Time Three-Dimensional Sound-Reproduction System

    Science.gov (United States)

    Faller, Kenneth J., II; Rizzi, Stephen A.; Aumann, Aric R.

    2013-01-01

    The Exterior Effects Room (EER) is a 39-seat auditorium at the NASA Langley Research Center and was built to support psychoacoustic studies of aircraft community noise. The EER has a real-time simulation environment which includes a three-dimensional sound-reproduction system. This system requires real-time application of equalization filters to compensate for spectral coloration of the sound reproduction due to installation and room effects. This paper describes the efforts taken to develop the equalization filters for use in the real-time sound-reproduction system and the subsequent analysis of the system s acoustic performance. The acoustic performance of the compensated and uncompensated sound-reproduction system is assessed for its crossover performance, its performance under stationary and dynamic conditions, the maximum spatialized sound pressure level it can produce from a single virtual source, and for the spatial uniformity of a generated sound field. Additionally, application examples are given to illustrate the compensated sound-reproduction system performance using recorded aircraft flyovers

  12. Real-time reliability prediction for dynamic systems with both deteriorating and unreliable components

    Institute of Scientific and Technical Information of China (English)

    XU ZhengGuo; JI YinDong; ZHOU DongHua

    2009-01-01

    As an important technology for predictive maintenance,failure prognosis has attracted more and more attentions in recent years.Real-time reliability prediction is one effective solution to failure prognosis.Considering a dynamic system that is composed of normal,deteriorating and unreliable components,this paper proposes an integrated approach to perform real-time reliability prediction for such a class of systems.For s deteriorating component,the degradation is modeled by a time-varying fault process which is a linear or approximately linear function of time.The behavior of an unreliable component is described by a random variable which has two possible values corresponding to the operating and malfunction conditions of this component.The whole proposed approach contains three algorithms.A modified interacting multiple model particle filter is adopted to estimate the dynamic system's state variables and the unmeasurable time-varying fault.An exponential smoothing algorithm named the Holt's method is used to predict the fault process.In the end,the system's reliability is predicted in real time by use of the Monte Carlo strategy.The proposed approach can effectively predict the impending failure of a dynamic system,which is verified by computer simulations based on a three-vessel water tank system.

  13. Methodology and planning for a microprocessor-oriented real time controller design automation system

    Energy Technology Data Exchange (ETDEWEB)

    Matelan, M.N.; Smith, R.J. II

    1976-11-04

    A methodology for reducing the complexity of designing dedicated real-time control systems is developed. It is shown that three areas are amenable to automation: the selection and configuration of hardware, the production of software, and the adaptation of a monitor to maintain real-time integrity of the entire system. The concept of hardware binding is introduced, and it is shown that delaying the point in the design cycle where hardware is functionally bound allows a new approach to machine independence. Concepts which allow expression of repetitive control situations are described, and a realization-independent language (CSDL), based on these concepts, is defined. Methods for automatically selecting a time-wise correct monitor are classified, and techniques for specifying the realization capabilities of digital processors are discussed. These concepts and techniques are brought together in a design automation system for the production of a complete controller design from a behavioral description. An example description is traced through the CSD System; a software listing and hardware configuration document for an actual microprocessor (the Intel 8080) is produced. This research provides a structured description of the control system design process, and allows a unified perspective in the realization of controllers for applications previously considered to be unrelated. The concepts developed define a new direction in the production of real-time control systems. 9 figures, 4 tables.

  14. VORBrouter: A dynamic data routing system for Real-Time Seismic networks

    Science.gov (United States)

    Hansen, T.; Vernon, F.; Lindquist, K.; Orcutt, J.

    2004-12-01

    For anyone who has managed a moderately complex buffered real-time data transport system, the need for reliable adaptive data transport is clear. The ROADNet VORBrouter system, an extension to the ROADNet data catalog system [AGU-2003, Dynamic Dataflow Topology Monitoring for Real-time Seismic Networks], allows dynamic routing of real-time seismic data from sensor to end-user. Traditional networks consist of a series of data buffer computers with data transport interconnections configured by hand. This allows for arbitrarily complex data networks, which can often exceed full comprehension by network administrators, sometimes resulting in data loops or accidental data cutoff. In order to manage data transport systems in the event of a network failure, a network administrator must be called upon to change the data transport paths and to recover the missing data. Using VORBrouter, administrators can sleep at night while still providing 7/24 uninterupted data streams at realistic cost. This software package uses information from the ROADNet data catalog system to route packets around failed link outages and to new consumers in real-time. Dynamic data routing protocols operating on top of the Antelope Data buffering layer allow authorized users to request data sets from their local buffer and to have them delivered from anywhere within the network of buffers. The VORBrouter software also allows for dynamic routing around network outages, and the elimination of duplicate data paths within the network, while maintaining the nearly lossless data transport features exhibited by the underlying Antelope system. We present the design of the VORBrouter system, its features, limitations and some future research directions.

  15. A Near Real-time Decision Support System Improving Forest Management in the Tropics

    Science.gov (United States)

    Tabor, K.; Musinsky, J.; Ledezma, J.; Rasolohery, A.; Mendoza, E.; Kistler, H.; Steininger, M.; Morton, D. C.; Melton, F. S.; Manwell, J.; Koenig, K.

    2013-12-01

    Conservation International (CI) has a decade of experience developing near real-time fire and deforestation monitoring and forecasting systems that channel monitoring information from satellite observations directly to national and sub-national government agencies, Non-Government Organizations (NGOs), and local communities. These systems are used to strengthen forest surveillance and monitoring, fire management and prevention, protected areas management and sustainable land use planning. With support from a NASA Wildland Fires grant, in September 2013 CI will launch a brand new near real-time alert system (FIRECAST) to better meet the outstanding needs and challenges users face in addressing ecosystem degradation from wildland fire and illegal forest activities. Outreach efforts and user feedback have indicated the need for seasonal fire forecasts for effective land use planning, faster alert delivery to enhance response to illegal forest activities, and expanded forest monitoring capabilities that enable proactive responses and that strengthen forest conservation and sustainable development actions. The new FIRECAST system addresses these challenges by integrating the current fire alert and deforestation systems and adding improved ecological forecasting of fire risk; expanding data exchange capabilities with mobile technologies; and delivering a deforestation alert product that can inform policies related to land use management and Reduced Emissions from Deforestation and forest Degradation (REDD+). In addition to demonstrating the capabilities of this new real-time alert system, we also highlight how coordination with host-country institutions enhances the system's capacity to address the implementation needs of REDD+ forest carbon projects, improve tropical forest management, strengthen environmental law enforcement, and facilitate the uptake of near real-time satellite monitoring data into business practices of these national/sub-national institutions.

  16. Multi-processor system for real-time deconvolution and flow estimation in medical ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jesper Lomborg; Jensen, Jørgen Arendt; Stetson, Paul F.

    1996-01-01

    filter is used with a second time-reversed recursive estimation step. Here it is necessary to perform about 70 arithmetic operations per RF sample or about 1 billion operations per second for real-time deconvolution. Furthermore, these have to be floating point operations due to the adaptive nature...... of the algorithms. Many of the algorithms can only be properly evaluated in a clinical setting with real-time processing, which generally cannot be done with conventional equipment. This paper therefore presents a multi-processor system capable of performing 1.2 billion floating point operations per second on RF...... of the system is its generous input/output bandwidth, that makes it easy to balance the computational load between the processors and prevents data starvation. Due to the use of floating point calculations it is possible to simulate all types of signal processing in modem ultrasound scanners, and this system is...

  17. Control System Design of a DSP-based Real-time Leveling Platform

    Directory of Open Access Journals (Sweden)

    Zhang Jin Ming

    2016-01-01

    Full Text Available Since platform working in the sea is badly influenced by the wave, leveling control system is researched to control the leveling platform, so as to prevent the device which is fixed on the platform from being affected. TMS320F2812 chip is set as the control core, and serial communication module, gyroscope etc. are adopted to design real-time leveling control system. Gyroscopes are used to measure the angular speed of the carrier and the angle of the platform, filtering processing is done to the data collected by the gyroscopes and PID algorithm is adopted to calculate the real-time speed of motor ,in order to control the leveling platform. Tests are conducted to prove that the system can well control the leveling platform, in which the shake range of the platform is (-12°, +12°, while the shake range of carrier is only about (-0.5° +0.5 °.

  18. Real-time Alarm Monitoring System for Detecting Driver Fatigue in Wireless Areas

    Directory of Open Access Journals (Sweden)

    Rongrong Fu

    2017-04-01

    Full Text Available The purpose of this paper was to develop a real-time alarm monitoring system that can detect the fatigue driving state through wireless communication. The drivers’ electroencephalogram (EEG signals were recorded from occipital electrodes. Seven EEG rhythms with different frequency bands as gamma, hbeta, beta, sigma, alpha, theta and delta waves were extracted. They were simultaneously assessed using relative operating characteristic (ROC curves and grey relational analysis to select one as the fatigue feature. The research results showed that the performance of theta wave was the best one. Therefore, theta wave was used as fatigue feature in the following alarm device. The real-time alarm monitoring system based on the result has been developed, once the threshold was settled by using the data of the first ten minutes driving period. The developed system can detect driver fatigue and give alarm to indicate the onset of fatigue automatically.

  19. Unavoidability Routine Enrichment for Real-Time Embedded Systems by Using Cache-Locking Technique

    Directory of Open Access Journals (Sweden)

    M. Shankar Dr. M. Sridar Dr. M. Rajani

    2012-02-01

    Full Text Available In multitask, preemptive real-time systems, the use of cache memories make difficult the estimation of the response time of tasks, due to the dynamic, adaptive and non predictable behavior of cache memories. But many embedded and critical applications need the increase of performance provided by cache memories. Recent studies indicate that for application-specific embedded systems, static cache-locking helps determining the worst case execution time (WCET and cache-related pre-emption delay. The determination of upper bounds on execution times, commonly called Worst-Case Execution Times (WCETs, is a necessary step in the development and validation process for hard real-time systems. This problem is hard if the underlying processor architecture has components such as caches, pipelines, branch prediction, and other speculative components. This article describes different approaches to this problem and surveys several commercially available tools and research prototypes

  20. The Chimera II Real-Time Operating System for advanced sensor-based control applications

    Science.gov (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1992-01-01

    Attention is given to the Chimera II Real-Time Operating System, which has been developed for advanced sensor-based control applications. The Chimera II provides a high-performance real-time kernel and a variety of IPC features. The hardware platform required to run Chimera II consists of commercially available hardware, and allows custom hardware to be easily integrated. The design allows it to be used with almost any type of VMEbus-based processors and devices. It allows radially differing hardware to be programmed using a common system, thus providing a first and necessary step towards the standardization of reconfigurable systems that results in a reduction of development time and cost.