WorldWideScience

Sample records for real-time tumor-tracking thoracic

  1. Detection of lung tumor movement in real-time tumor-tracking radiotherapy

    International Nuclear Information System (INIS)

    Shimizu, Shinichi; Shirato, Hiroki; Ogura, Shigeaki; Akita-Dosaka, Hirotoshi; Kitamura, Kei; Nishioka, Takeshi; Kagei, Kenji; Nishimura, Masaji; Miyasaka, Kazuo

    2001-01-01

    Purpose: External radiotherapy for lung tumors requires reducing the uncertainty due to setup error and organ motion. We investigated the three-dimensional movement of lung tumors through an inserted internal marker using a real-time tumor-tracking system and evaluated the efficacy of this system at reducing the internal margin. Methods and Materials: Four patients with lung cancer were analyzed. A 2.0-mm gold marker was inserted into the tumor. The real-time tumor-tracking system calculates and stores three-dimensional coordinates of the marker 30 times/s. The system can trigger the linear accelerator to irradiate the tumor only when the marker is located within the predetermined 'permitted dislocation'. The value was set at ±1 to ±3 mm according to the patient's characteristics. We analyzed 10,413-14,893 data sets for each of the 4 patients. The range of marker movement during normal breathing (beam-off period) was compared with that during gated irradiation (beam-on period) by Student's t test. Results: The range of marker movement during the beam-off period was 5.5-10.0 mm in the lateral direction (x), 6.8-15.9 mm in the craniocaudal direction (y) and 8.1-14.6 mm in the ventrodorsal direction (z). The range during the beam-on period was reduced to within 5.3 mm in all directions in all 4 patients. A significant difference was found between the mean of the range during the beam-off period and the mean of the range during the beam-on period in the x (p=0.007), y (p=0.025), and z (p=0.002) coordinates, respectively. Conclusion: The real-time tumor-tracking radiotherapy system was useful to analyze the movement of an internal marker. Treatment with megavoltage X-rays was properly given when the tumor marker moved into the 'permitted dislocation' zone from the planned position

  2. Radical stereotactic radiosurgery with real-time tumor motion tracking in the treatment of small peripheral lung tumors

    Directory of Open Access Journals (Sweden)

    Chang Thomas

    2007-10-01

    Full Text Available Abstract Background Recent developments in radiotherapeutic technology have resulted in a new approach to treating patients with localized lung cancer. We report preliminary clinical outcomes using stereotactic radiosurgery with real-time tumor motion tracking to treat small peripheral lung tumors. Methods Eligible patients were treated over a 24-month period and followed for a minimum of 6 months. Fiducials (3–5 were placed in or near tumors under CT-guidance. Non-isocentric treatment plans with 5-mm margins were generated. Patients received 45–60 Gy in 3 equal fractions delivered in less than 2 weeks. CT imaging and routine pulmonary function tests were completed at 3, 6, 12, 18, 24 and 30 months. Results Twenty-four consecutive patients were treated, 15 with stage I lung cancer and 9 with single lung metastases. Pneumothorax was a complication of fiducial placement in 7 patients, requiring tube thoracostomy in 4. All patients completed radiation treatment with minimal discomfort, few acute side effects and no procedure-related mortalities. Following treatment transient chest wall discomfort, typically lasting several weeks, developed in 7 of 11 patients with lesions within 5 mm of the pleura. Grade III pneumonitis was seen in 2 patients, one with prior conventional thoracic irradiation and the other treated with concurrent Gefitinib. A small statistically significant decline in the mean % predicted DLCO was observed at 6 and 12 months. All tumors responded to treatment at 3 months and local failure was seen in only 2 single metastases. There have been no regional lymph node recurrences. At a median follow-up of 12 months, the crude survival rate is 83%, with 3 deaths due to co-morbidities and 1 secondary to metastatic disease. Conclusion Radical stereotactic radiosurgery with real-time tumor motion tracking is a promising well-tolerated treatment option for small peripheral lung tumors.

  3. Development of real-time tumor tracking system for stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Yamanaka, Seiji; Sasagawa, Tsuyoshi; Uno, Yukimichi

    2011-01-01

    We are now developing the real-time tumor tracking system for stereotactic radiotherapy (SRT) to provide precise information on the location of a tumor and to reduce the irradiation to healthy tissue in a patient. The system has the following features: A motion tracking and processing unit recognizes a gold marker inserted in or near a tumor in real time by the pattern matching of a predetermined template image and acquired X-ray fluoroscopic images. When the gold marker is within a planned area, that is to say, when a tumor enters a target irradiation area, a gate signal is sent to a linear accelerator. A railway unit is equipped with two X-ray tubes and two detectors, which are controlled separately with their own drive mechanism. They travel with high accuracy and reproducibility to the best position for monitoring the gold marker. A synchronization controller controls the timing for X-ray fluoroscopy and the gate signals to the linear accelerator. The controller works for two types of detectors: a color X-ray detector and a flat panel detector (FPD). (author)

  4. [A review of progress of real-time tumor tracking radiotherapy technology based on dynamic multi-leaf collimator].

    Science.gov (United States)

    Liu, Fubo; Li, Guangjun; Shen, Jiuling; Li, Ligin; Bai, Sen

    2017-02-01

    While radiation treatment to patients with tumors in thorax and abdomen is being performed, further improvement of radiation accuracy is restricted by the tumor intra-fractional motion due to respiration. Real-time tumor tracking radiation is an optimal solution to tumor intra-fractional motion. A review of the progress of real-time dynamic multi-leaf collimator(DMLC) tracking is provided in the present review, including DMLC tracking method, time lag of DMLC tracking system, and dosimetric verification.

  5. Real-time tumor tracking using implanted positron emission markers: Concept and simulation study

    International Nuclear Information System (INIS)

    Xu Tong; Wong, Jerry T.; Shikhaliev, Polad M.; Ducote, Justin L.; Al-Ghazi, Muthana S.; Molloi, Sabee

    2006-01-01

    The delivery accuracy of radiation therapy for pulmonary and abdominal tumors suffers from tumor motion due to respiration. Respiratory gating should be applied to avoid the use of a large target volume margin that results in a substantial dose to the surrounding normal tissue. Precise respiratory gating requires the exact spatial position of the tumor to be determined in real time during treatment. Usually, fiducial markers are implanted inside or next to the tumor to provide both accurate patient setup and real-time tumor tracking. However, current tumor tracking systems require either substantial x-ray exposure to the patient or large fiducial markers that limit the value of their application for pulmonary tumors. We propose a real-time tumor tracking system using implanted positron emission markers (PeTrack). Each marker will be labeled with low activity positron emitting isotopes, such as 124 I, 74 As, or 84 Rb. These isotopes have half-lives comparable to the duration of radiation therapy (from a few days to a few weeks). The size of the proposed PeTrack marker will be 0.5-0.8 mm, which is approximately one-half the size of markers currently employed in other techniques. By detecting annihilation gammas using position-sensitive detectors, multiple positron emission markers can be tracked in real time. A multimarker localization algorithm was developed using an Expectation-Maximization clustering technique. A Monte Carlo simulation model was developed for the PeTrack system. Patient dose, detector sensitivity, and scatter fraction were evaluated. Depending on the isotope, the lifetime dose from a 3.7 MBq PeTrack marker was determined to be 0.7-5.0 Gy at 10 mm from the marker. At the center of the field of view (FOV), the sensitivity of the PeTrack system was 240-320 counts/s per 1 MBq marker activity within a 30 cm thick patient. The sensitivity was reduced by 45% when the marker was near the edge of the FOV. The scatter fraction ranged from 12% ( 124 I, 74 As

  6. Management of three-dimensional intrafraction motion through real-time DMLC tracking

    International Nuclear Information System (INIS)

    Sawant, Amit; Venkat, Raghu; Srivastava, Vikram; Carlson, David; Povzner, Sergey; Cattell, Herb; Keall, Paul

    2008-01-01

    Tumor tracking using a dynamic multileaf collimator (DMLC) represents a promising approach for intrafraction motion management in thoracic and abdominal cancer radiotherapy. In this work, we develop, empirically demonstrate, and characterize a novel 3D tracking algorithm for real-time, conformal, intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based radiation delivery to targets moving in three dimensions. The algorithm obtains real-time information of target location from an independent position monitoring system and dynamically calculates MLC leaf positions to account for changes in target position. Initial studies were performed to evaluate the geometric accuracy of DMLC tracking of 3D target motion. In addition, dosimetric studies were performed on a clinical linac to evaluate the impact of real-time DMLC tracking for conformal, step-and-shoot (S-IMRT), dynamic (D-IMRT), and VMAT deliveries to a moving target. The efficiency of conformal and IMRT delivery in the presence of tracking was determined. Results show that submillimeter geometric accuracy in all three dimensions is achievable with DMLC tracking. Significant dosimetric improvements were observed in the presence of tracking for conformal and IMRT deliveries to moving targets. A gamma index evaluation with a 3%-3 mm criterion showed that deliveries without DMLC tracking exhibit between 1.7 (S-IMRT) and 4.8 (D-IMRT) times more dose points that fail the evaluation compared to corresponding deliveries with tracking. The efficiency of IMRT delivery, as measured in the lab, was observed to be significantly lower in case of tracking target motion perpendicular to MLC leaf travel compared to motion parallel to leaf travel. Nevertheless, these early results indicate that accurate, real-time DMLC tracking of 3D tumor motion is feasible and can potentially result in significant geometric and dosimetric advantages leading to more effective management of intrafraction motion

  7. Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor

    International Nuclear Information System (INIS)

    Shirato, Hiroki; Shimizu, Shinichi; Kitamura, Kei; Nishioka, Takeshi; Kagei, Kenji; Hashimoto, Seiko; Aoyama, Hidefumi; Kunieda, Tatsuya; Shinohara, Nobuo; Dosaka-Akita, Hirotoshi; Miyasaka, Kazuo

    2000-01-01

    Purpose: To achieve precise three-dimensional (3D) conformal radiotherapy for mobile tumors, a new radiotherapy system and its treatment planning system were developed and used for clinical practice. Methods and Materials: We developed a linear accelerator synchronized with a fluoroscopic real-time tumor tracking system by which 3D coordinates of a 2.0-mm gold marker in the tumor can be determined every 0.03 second. The 3D relationships between the marker and the tumor at different respiratory phases are evaluated using CT image at each respiratory phase, whereby the optimum phase can be selected to synchronize with irradiation (4D treatment planning). The linac is triggered to irradiate the tumor only when the marker is located within the region of the planned coordinates relative to the isocenter. Results: The coordinates of the marker were detected with an accuracy of ± 1 mm during radiotherapy in the phantom experiment. The time delay between recognition of the marker position and the start or stop of megavoltage X-ray irradiation was 0.03 second. Fourteen patients with various tumors were treated by conformal radiotherapy with a 'tight' planning target volume (PTV) margin. They were surviving without relapse or complications with a median follow-up of 6 months. Conclusion: Fluoroscopic real-time tumor tracking radiotherapy following 4D treatment planning was developed and shown to be feasible to improve the accuracy of the radiotherapy for mobile tumors

  8. SU-G-JeP1-11: Feasibility Study of Markerless Tracking Using Dual Energy Fluoroscopic Images for Real-Time Tumor-Tracking Radiotherapy System

    Energy Technology Data Exchange (ETDEWEB)

    Shiinoki, T; Shibuya, K [Yamaguchi University, Ube, Yamaguchi (Japan); Sawada, A [Kyoto college of medical science, Nantan, Kyoto (Japan); Uehara, T; Yuasa, Y; Koike, M; Kawamura, S [Yamaguchi University Hospital, Ube, Yamaguchi (Japan)

    2016-06-15

    Purpose: The new real-time tumor-tracking radiotherapy (RTRT) system was installed in our institution. This system consists of two x-ray tubes and color image intensifiers (I.I.s). The fiducial marker which was implanted near the tumor was tracked using color fluoroscopic images. However, the implantation of the fiducial marker is very invasive. Color fluoroscopic images enable to increase the recognition of the tumor. However, these images were not suitable to track the tumor without fiducial marker. The purpose of this study was to investigate the feasibility of markerless tracking using dual energy colored fluoroscopic images for real-time tumor-tracking radiotherapy system. Methods: The colored fluoroscopic images of static and moving phantom that had the simulated tumor (30 mm diameter sphere) were experimentally acquired using the RTRT system. The programmable respiratory motion phantom was driven using the sinusoidal pattern in cranio-caudal direction (Amplitude: 20 mm, Time: 4 s). The x-ray condition was set to 55 kV, 50 mA and 105 kV, 50 mA for low energy and high energy, respectively. Dual energy images were calculated based on the weighted logarithmic subtraction of high and low energy images of RGB images. The usefulness of dual energy imaging for real-time tracking with an automated template image matching algorithm was investigated. Results: Our proposed dual energy subtraction improve the contrast between tumor and background to suppress the bone structure. For static phantom, our results showed that high tracking accuracy using dual energy subtraction images. For moving phantom, our results showed that good tracking accuracy using dual energy subtraction images. However, tracking accuracy was dependent on tumor position, tumor size and x-ray conditions. Conclusion: We indicated that feasibility of markerless tracking using dual energy fluoroscopic images for real-time tumor-tracking radiotherapy system. Furthermore, it is needed to investigate the

  9. Real-Time Tumor Tracking in the Lung Using an Electromagnetic Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Amish P., E-mail: Amish.Shah@orlandohealth.com [Department of Radiation Oncology, MD Anderson Cancer Center Orlando, Orlando, Florida (United States); Kupelian, Patrick A.; Waghorn, Benjamin J.; Willoughby, Twyla R.; Rineer, Justin M.; Mañon, Rafael R.; Vollenweider, Mark A.; Meeks, Sanford L. [Department of Radiation Oncology, MD Anderson Cancer Center Orlando, Orlando, Florida (United States)

    2013-07-01

    Purpose: To describe the first use of the commercially available Calypso 4D Localization System in the lung. Methods and Materials: Under an institutional review board-approved protocol and an investigational device exemption from the US Food and Drug Administration, the Calypso system was used with nonclinical methods to acquire real-time 4-dimensional lung tumor tracks for 7 lung cancer patients. The aims of the study were to investigate (1) the potential for bronchoscopic implantation; (2) the stability of smooth-surface beacon transponders (transponders) after implantation; and (3) the ability to acquire tracking information within the lung. Electromagnetic tracking was not used for any clinical decision making and could only be performed before any radiation delivery in a research setting. All motion tracks for each patient were reviewed, and values of the average displacement, amplitude of motion, period, and associated correlation to a sinusoidal model (R{sup 2}) were tabulated for all 42 tracks. Results: For all 7 patients at least 1 transponder was successfully implanted. To assist in securing the transponder at the tumor site, it was necessary to implant a secondary fiducial for most transponders owing to the transponder's smooth surface. For 3 patients, insertion into the lung proved difficult, with only 1 transponder remaining fixed during implantation. One patient developed a pneumothorax after implantation of the secondary fiducial. Once implanted, 13 of 14 transponders remained stable within the lung and were successfully tracked with the tracking system. Conclusions: Our initial experience with electromagnetic guidance within the lung demonstrates that transponder implantation and tracking is achievable though not clinically available. This research investigation proved that lung tumor motion exhibits large variations from fraction to fraction within a single patient and that improvements to both transponder and tracking system are still

  10. Real-time tumor-tracking radiotherapy for adrenal tumors

    International Nuclear Information System (INIS)

    Katoh, Norio; Onimaru, Rikiya; Sakuhara, Yusuke; Abo, Daisuke; Shimizu, Shinichi; Taguchi, Hiroshi; Watanabe, Yoshiaki; Shinohara, Nobuo; Ishikawa, Masayori; Shirato, Hiroki

    2008-01-01

    Purpose: To investigate the three-dimensional movement of internal fiducial markers near the adrenal tumors using a real-time tumor-tracking radiotherapy (RTRT) system and to examine the feasibility of high-dose hypofractionated radiotherapy for the adrenal tumors. Materials and methods: The subjects considered in this study were 10 markers of the 9 patients treated with RTRT. A total of 72 days in the prone position and 61 treatment days in the supine position for nine of the 10 markers were analyzed. All but one patient were prescribed 48 Gy in eight fractions at the isocenter. Results: The average absolute amplitude of the marker movement in the prone position was 6.1 ± 4.4 mm (range 2.3-14.4), 11.1 ± 7.1 mm (3.5-25.2), and 7.0 ± 3.5 mm (3.9-12.5) in the left-right (LR), craniocaudal (CC), and anterior-posterior (AP) directions, respectively. The average absolute amplitude in the supine position was 3.4 ± 2.9 mm (0.6-9.1), 9.9 ± 9.8 mm (1.1-27.1), and 5.4 ± 5.2 mm (1.7-26.6) in the LR, CC, and AP directions, respectively. Of the eight markers, which were examined in both the prone and supine positions, there was no significant difference in the average absolute amplitude between the two positions. No symptomatic adverse effects were observed within the median follow-up period of 16 months (range 5-21 months). The actuarial freedom-from-local-progression rate was 100% at 12 months. Conclusions: Three-dimensional motion of a fiducial marker near the adrenal tumors was detected. Hypofractionated RTRT for adrenal tumors was feasible for patients with metastatic tumors

  11. Speed and amplitude of lung tumor motion precisely detected in four-dimensional setup and in real-time tumor-tracking radiotherapy

    International Nuclear Information System (INIS)

    Shirato, Hiroki; Suzuki, Keishiro; Sharp, Gregory C.; Fujita, Katsuhisa R.T.; Onimaru, Rikiya; Fujino, Masaharu; Kato, Norio; Osaka, Yasuhiro; Kinoshita, Rumiko; Taguchi, Hiroshi; Onodera, Shunsuke; Miyasaka, Kazuo

    2006-01-01

    Background: To reduce the uncertainty of registration for lung tumors, we have developed a four-dimensional (4D) setup system using a real-time tumor-tracking radiotherapy system. Methods and Materials: During treatment planning and daily setup in the treatment room, the trajectory of the internal fiducial marker was recorded for 1 to 2 min at the rate of 30 times per second by the real-time tumor-tracking radiotherapy system. To maximize gating efficiency, the patient's position on the treatment couch was adjusted using the 4D setup system with fine on-line remote control of the treatment couch. Results: The trajectory of the marker detected in the 4D setup system was well visualized and used for daily setup. Various degrees of interfractional and intrafractional changes in the absolute amplitude and speed of the internal marker were detected. Readjustments were necessary during each treatment session, prompted by baseline shifting of the tumor position. Conclusion: The 4D setup system was shown to be useful for reducing the uncertainty of tumor motion and for increasing the efficiency of gated irradiation. Considering the interfractional and intrafractional changes in speed and amplitude detected in this study, intercepting radiotherapy is the safe and cost-effective method for 4D radiotherapy using real-time tracking technology

  12. Histopathologic Consideration of Fiducial Gold Markers Inserted for Real-Time Tumor-Tracking Radiotherapy Against Lung Cancer

    International Nuclear Information System (INIS)

    Imura, Mikado; Yamazaki, Koichi; Kubota, Kanako C.; Itoh, Tomoo; Onimaru, Rikiya; Cho, Yasushi; Hida, Yasuhiro; Kaga, Kichizo; Onodera, Yuya; Ogura, Shigeaki; Dosaka-Akita, Hirotoshi; Shirato, Hiroki; Nishimura, Masaharu

    2008-01-01

    Purpose: Internal fiducial gold markers, safely inserted with bronchoscopy, have been used in real-time tumor-tracking radiotherapy for lung cancer. We investigated the histopathologic findings at several points after the insertion of the gold markers. Methods and Materials: Sixteen gold markers were inserted for preoperative marking in 7 patients who subsequently underwent partial resection of tumors by video-assisted thoracoscopic surgery within 7 days. Results: Fibrotic changes and hyperplasia of type 2 pneumocytes around the markers were seen 5 or 7 days after insertion, and fibrin exudation without fibrosis was detected 1 or 2 days after insertion. Conclusions: Because fibroblastic changes start approximately 5 days after gold marker insertion, real-time tumor-tracking radiotherapy should be started >5 days after gold marker insertion

  13. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Menten, Martin J., E-mail: martin.menten@icr.ac.uk; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe, E-mail: uwe.oelfke@icr.ac.uk [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2015-12-15

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  14. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    International Nuclear Information System (INIS)

    Menten, Martin J.; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2015-01-01

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  15. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy.

    Science.gov (United States)

    Menten, Martin J; Fast, Martin F; Nill, Simeon; Oelfke, Uwe

    2015-12-01

    Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Regular dual-energy imaging was able to increase tracking accuracy in left-right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. This study has highlighted the influence of patient anatomy on the success rate of real-time

  16. Stereotactic radiotherapy with real-time tumor tracking for non-small cell lung cancer: Clinical outcome

    International Nuclear Information System (INIS)

    Voort van Zyp, Noelle C. van der; Prevost, Jean-Briac; Hoogeman, Mischa S.; Praag, John; Holt, Bronno van der; Levendag, Peter C.; Klaveren, Robertus J. van; Pattynama, Peter; Nuyttens, Joost J.

    2009-01-01

    Purpose: To report the clinical outcome of treatment using real-time tumor tracking for 70 patients with inoperable stage I non-small cell lung cancer (NSCLC). Materials and methods: Seventy inoperable patients with peripherally located early-stage NSCLC were treated with 45 or 60 Gy in three fractions using CyberKnife. Pathology was available in 51% of patients. Thirty-nine patients had a T1-tumor and 31 had a T2-tumor. Markers were placed using the vascular, percutaneous intra-, or extra-pulmonary approach, depending on the risk of pneumothorax. Results: The actuarial 2-year local control rate for patients treated with 60 Gy was 96%, compared to 78% for patients treated with a total dose of 45 Gy (p = 0.197). All local recurrences (n = 4) occurred in patients with T2-tumors. Overall survival for the whole group at two years was 62% and the cause specific survival was 85%. The median follow-up was 15 months. Grade 3 toxicity occurred in two patients (3%) after marker placement. Treatment-related late grade 3 toxicity occurred in 7 patients (10%). No grade ≥4 toxicity occurred. Conclusion: Excellent local control of 96% at 1- and 2-years was achieved using 60 Gy in three fractions for NSCLC patients treated with the real-time tumor tracking. Toxicity was low.

  17. Prospective phase II study of image-guided local boost using a real-time tumor-tracking radiotherapy (RTRT) system for locally advanced bladder cancer

    International Nuclear Information System (INIS)

    Nishioka, Kentaro; Shimizu, Shinichi; Shinohara, Nobuo

    2014-01-01

    The real-time tumor-tracking radiotherapy system with fiducial markers has the advantage that it can be used to verify the localization of the markers during radiation delivery in real-time. We conducted a prospective Phase II study of image-guided local-boost radiotherapy for locally advanced bladder cancer using a real-time tumor-tracking radiotherapy system for positioning, and here we report the results regarding the safety and efficacy of the technique. Twenty patients with a T2-T4N0M0 urothelial carcinoma of the bladder who were clinically inoperable or refused surgery were enrolled. Transurethral tumor resection and 40 Gy irradiation to the whole bladder was followed by the transurethral endoscopic implantation of gold markers in the bladder wall around the primary tumor. A boost of 25 Gy in 10 fractions was made to the primary tumor while maintaining the displacement from the planned position at less than ±2 mm during radiation delivery using a real-time tumor-tracking radiotherapy system. The toxicity, local control and survival were evaluated. Among the 20 patients, 14 were treated with concurrent chemoradiotherapy. The median follow-up period was 55.5 months. Urethral and bowel late toxicity (Grade 3) were each observed in one patient. The local-control rate, overall survival and cause-specific survival with the native bladder after 5 years were 64, 61 and 65%. Image-guided local-boost radiotherapy using a real-time tumor-tracking radiotherapy system can be safely accomplished, and the clinical outcome is encouraging. A larger prospective multi-institutional study is warranted for more precise evaluations of the technological efficacy and patients' quality of life. (author)

  18. A comparison of gantry-mounted x-ray-based real-time target tracking methods.

    Science.gov (United States)

    Montanaro, Tim; Nguyen, Doan Trang; Keall, Paul J; Booth, Jeremy; Caillet, Vincent; Eade, Thomas; Haddad, Carol; Shieh, Chun-Chien

    2018-03-01

    Most modern radiotherapy machines are built with a 2D kV imaging system. Combining this imaging system with a 2D-3D inference method would allow for a ready-made option for real-time 3D tumor tracking. This work investigates and compares the accuracy of four existing 2D-3D inference methods using both motion traces inferred from external surrogates and measured internally from implanted beacons. Tumor motion data from 160 fractions (46 thoracic/abdominal patients) of Synchrony traces (inferred traces), and 28 fractions (7 lung patients) of Calypso traces (internal traces) from the LIGHT SABR trial (NCT02514512) were used in this study. The motion traces were used as the ground truth. The ground truth trajectories were used in silico to generate 2D positions projected on the kV detector. These 2D traces were then passed to the 2D-3D inference methods: interdimensional correlation, Gaussian probability density function (PDF), arbitrary-shape PDF, and the Kalman filter. The inferred 3D positions were compared with the ground truth to determine tracking errors. The relationships between tracking error and motion magnitude, interdimensional correlation, and breathing periodicity index (BPI) were also investigated. Larger tracking errors were observed from the Calypso traces, with RMS and 95th percentile 3D errors of 0.84-1.25 mm and 1.72-2.64 mm, compared to 0.45-0.68 mm and 0.74-1.13 mm from the Synchrony traces. The Gaussian PDF method was found to be the most accurate, followed by the Kalman filter, the interdimensional correlation method, and the arbitrary-shape PDF method. Tracking error was found to strongly and positively correlate with motion magnitude for both the Synchrony and Calypso traces and for all four methods. Interdimensional correlation and BPI were found to negatively correlate with tracking error only for the Synchrony traces. The Synchrony traces exhibited higher interdimensional correlation than the Calypso traces especially in the anterior

  19. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy.

    Science.gov (United States)

    Via, Riccardo; Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Riboldi, Marco; Ciocca, Mario; Orecchia, Roberto; Baroni, Guido

    2015-05-01

    External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring during ocular radiotherapy treatments. The

  20. Fast leaf-fitting with generalized underdose/overdose constraints for real-time MLC tracking

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Douglas, E-mail: douglas.moore@utsouthwestern.edu; Sawant, Amit [Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Ruan, Dan [Department of Radiation Oncology, University of California, Los Angeles, California 90095 (United States)

    2016-01-15

    Purpose: Real-time multileaf collimator (MLC) tracking is a promising approach to the management of intrafractional tumor motion during thoracic and abdominal radiotherapy. MLC tracking is typically performed in two steps: transforming a planned MLC aperture in response to patient motion and refitting the leaves to the newly generated aperture. One of the challenges of this approach is the inability to faithfully reproduce the desired motion-adapted aperture. This work presents an optimization-based framework with which to solve this leaf-fitting problem in real-time. Methods: This optimization framework is designed to facilitate the determination of leaf positions in real-time while accounting for the trade-off between coverage of the PTV and avoidance of organs at risk (OARs). Derived within this framework, an algorithm is presented that can account for general linear transformations of the planned MLC aperture, particularly 3D translations and in-plane rotations. This algorithm, together with algorithms presented in Sawant et al. [“Management of three-dimensional intrafraction motion through real-time DMLC tracking,” Med. Phys. 35, 2050–2061 (2008)] and Ruan and Keall [Presented at the 2011 IEEE Power Engineering and Automation Conference (PEAM) (2011) (unpublished)], was applied to apertures derived from eight lung intensity modulated radiotherapy plans subjected to six-degree-of-freedom motion traces acquired from lung cancer patients using the kilovoltage intrafraction monitoring system developed at the University of Sydney. A quality-of-fit metric was defined, and each algorithm was evaluated in terms of quality-of-fit and computation time. Results: This algorithm is shown to perform leaf-fittings of apertures, each with 80 leaf pairs, in 0.226 ms on average as compared to 0.082 and 64.2 ms for the algorithms of Sawant et al., Ruan, and Keall, respectively. The algorithm shows approximately 12% improvement in quality-of-fit over the Sawant et al

  1. Fast leaf-fitting with generalized underdose/overdose constraints for real-time MLC tracking

    International Nuclear Information System (INIS)

    Moore, Douglas; Sawant, Amit; Ruan, Dan

    2016-01-01

    Purpose: Real-time multileaf collimator (MLC) tracking is a promising approach to the management of intrafractional tumor motion during thoracic and abdominal radiotherapy. MLC tracking is typically performed in two steps: transforming a planned MLC aperture in response to patient motion and refitting the leaves to the newly generated aperture. One of the challenges of this approach is the inability to faithfully reproduce the desired motion-adapted aperture. This work presents an optimization-based framework with which to solve this leaf-fitting problem in real-time. Methods: This optimization framework is designed to facilitate the determination of leaf positions in real-time while accounting for the trade-off between coverage of the PTV and avoidance of organs at risk (OARs). Derived within this framework, an algorithm is presented that can account for general linear transformations of the planned MLC aperture, particularly 3D translations and in-plane rotations. This algorithm, together with algorithms presented in Sawant et al. [“Management of three-dimensional intrafraction motion through real-time DMLC tracking,” Med. Phys. 35, 2050–2061 (2008)] and Ruan and Keall [Presented at the 2011 IEEE Power Engineering and Automation Conference (PEAM) (2011) (unpublished)], was applied to apertures derived from eight lung intensity modulated radiotherapy plans subjected to six-degree-of-freedom motion traces acquired from lung cancer patients using the kilovoltage intrafraction monitoring system developed at the University of Sydney. A quality-of-fit metric was defined, and each algorithm was evaluated in terms of quality-of-fit and computation time. Results: This algorithm is shown to perform leaf-fittings of apertures, each with 80 leaf pairs, in 0.226 ms on average as compared to 0.082 and 64.2 ms for the algorithms of Sawant et al., Ruan, and Keall, respectively. The algorithm shows approximately 12% improvement in quality-of-fit over the Sawant et al

  2. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Berbeco, R. [Brigham and Women’s Hospital and Dana-Farber Cancer Institute (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  3. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Low, D. [University of California Los Angeles: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  4. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Keall, P. [University of Sydney (Australia)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  5. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    International Nuclear Information System (INIS)

    Low, D.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  6. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    International Nuclear Information System (INIS)

    Keall, P.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  7. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    International Nuclear Information System (INIS)

    Berbeco, R.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  8. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy

    International Nuclear Information System (INIS)

    Via, Riccardo; Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Ciocca, Mario; Riboldi, Marco; Baroni, Guido; Orecchia, Roberto

    2015-01-01

    Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Methods: Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Results: Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. Conclusions: A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring

  9. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery

    International Nuclear Information System (INIS)

    Rottmann, Joerg; Berbeco, Ross; Keall, Paul

    2013-01-01

    Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient.Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps.Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm.Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time

  10. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery

    Energy Technology Data Exchange (ETDEWEB)

    Rottmann, Joerg; Berbeco, Ross [Brigham and Women' s Hospital, Dana Farber-Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Keall, Paul [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney NSW 2006 (Australia)

    2013-09-15

    Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient.Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps.Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm.Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.

  11. Intrafractional Baseline Shift or Drift of Lung Tumor Motion During Gated Radiation Therapy With a Real-Time Tumor-Tracking System

    International Nuclear Information System (INIS)

    Takao, Seishin; Miyamoto, Naoki; Matsuura, Taeko; Onimaru, Rikiya; Katoh, Norio; Inoue, Tetsuya; Sutherland, Kenneth Lee; Suzuki, Ryusuke; Shirato, Hiroki; Shimizu, Shinichi

    2016-01-01

    Purpose: To investigate the frequency and amplitude of baseline shift or drift (shift/drift) of lung tumors in stereotactic body radiation therapy (SBRT), using a real-time tumor-tracking radiation therapy (RTRT) system. Methods and Materials: Sixty-eight patients with peripheral lung tumors were treated with SBRT using the RTRT system. One of the fiducial markers implanted near the tumor was used for the real-time monitoring of the intrafractional tumor motion every 0.033 seconds by the RTRT system. When baseline shift/drift is determined by the system, the position of the treatment couch is adjusted to compensate for the shift/drift. Therefore, the changes in the couch position correspond to the baseline shift/drift in the tumor motion. The frequency and amount of adjustment to the couch positions in the left-right (LR), cranio-caudal (CC), and antero-posterior (AP) directions have been analyzed for 335 fractions administered to 68 patients. Results: The average change in position of the treatment couch during the treatment time was 0.45 ± 2.23 mm (mean ± standard deviation), −1.65 ± 5.95 mm, and 1.50 ± 2.54 mm in the LR, CC, and AP directions, respectively. Overall the baseline shift/drift occurs toward the cranial and posterior directions. The incidence of baseline shift/drift exceeding 3 mm was 6.0%, 15.5%, 14.0%, and 42.1% for the LR, CC, AP, and for the square-root of sum of 3 directions, respectively, within 10 minutes of the start of treatment, and 23.0%, 37.6%, 32.5%, and 71.6% within 30 minutes. Conclusions: Real-time monitoring and frequent adjustments of the couch position and/or adding appropriate margins are suggested to be essential to compensate for possible underdosages due to baseline shift/drift in SBRT for lung cancers.

  12. MO-FG-BRD-01: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: Introduction and KV Tracking

    International Nuclear Information System (INIS)

    Fahimian, B.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  13. MO-FG-BRD-01: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: Introduction and KV Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Fahimian, B. [Stanford University (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  14. A motion-compensated image filter for low-dose fluoroscopy in a real-time tumor-tracking radiotherapy system

    International Nuclear Information System (INIS)

    Miyamoto, Naoki; Ishikawa, Masayori; Sutherland, Kenneth

    2015-01-01

    In the real-time tumor-tracking radiotherapy system, a surrogate fiducial marker inserted in or near the tumor is detected by fluoroscopy to realize respiratory-gated radiotherapy. The imaging dose caused by fluoroscopy should be minimized. In this work, an image processing technique is proposed for tracing a moving marker in low-dose imaging. The proposed tracking technique is a combination of a motion-compensated recursive filter and template pattern matching. The proposed image filter can reduce motion artifacts resulting from the recursive process based on the determination of the region of interest for the next frame according to the current marker position in the fluoroscopic images. The effectiveness of the proposed technique and the expected clinical benefit were examined by phantom experimental studies with actual tumor trajectories generated from clinical patient data. It was demonstrated that the marker motion could be traced in low-dose imaging by applying the proposed algorithm with acceptable registration error and high pattern recognition score in all trajectories, although some trajectories were not able to be tracked with the conventional spatial filters or without image filters. The positional accuracy is expected to be kept within ±2 mm. The total computation time required to determine the marker position is a few milliseconds. The proposed image processing technique is applicable for imaging dose reduction. (author)

  15. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery.

    Science.gov (United States)

    Rottmann, Joerg; Keall, Paul; Berbeco, Ross

    2013-09-01

    To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient. 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps. Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.

  16. Development of the compact proton beam therapy system dedicated to spot scanning with real-time tumor-tracking technology

    Science.gov (United States)

    Umezawa, Masumi; Fujimoto, Rintaro; Umekawa, Tooru; Fujii, Yuusuke; Takayanagi, Taisuke; Ebina, Futaro; Aoki, Takamichi; Nagamine, Yoshihiko; Matsuda, Koji; Hiramoto, Kazuo; Matsuura, Taeko; Miyamoto, Naoki; Nihongi, Hideaki; Umegaki, Kikuo; Shirato, Hiroki

    2013-04-01

    Hokkaido University and Hitachi Ltd. have started joint development of the Gated Spot Scanning Proton Therapy with Real-Time Tumor-Tracking System by integrating real-time tumor tracking technology (RTRT) and the proton therapy system dedicated to discrete spot scanning techniques under the "Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)". In this development, we have designed the synchrotron-based accelerator system by using the advantages of the spot scanning technique in order to realize a more compact and lower cost proton therapy system than the conventional system. In the gated irradiation, we have focused on the issues to maximize irradiation efficiency and minimize the dose errors caused by organ motion. In order to understand the interplay effect between scanning beam delivery and target motion, we conducted a simulation study. The newly designed system consists of the synchrotron, beam transport system, one compact rotating gantry treatment room with robotic couch, and one experimental room for future research. To improve the irradiation efficiency, the new control function which enables multiple gated irradiations per synchrotron cycle has been applied and its efficacy was confirmed by the irradiation time estimation. As for the interplay effect, we confirmed that the selection of a strict gating width and scan direction enables formation of the uniform dose distribution.

  17. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  18. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    International Nuclear Information System (INIS)

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  19. Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy.

    Science.gov (United States)

    Terunuma, Toshiyuki; Tokui, Aoi; Sakae, Takeji

    2018-03-01

    Robustness to obstacles is the most important factor necessary to achieve accurate tumor tracking without fiducial markers. Some high-density structures, such as bone, are enhanced on X-ray fluoroscopic images, which cause tumor mistracking. Tumor tracking should be performed by controlling "importance recognition": the understanding that soft-tissue is an important tracking feature and bone structure is unimportant. We propose a new real-time tumor-contouring method that uses deep learning with importance recognition control. The novelty of the proposed method is the combination of the devised random overlay method and supervised deep learning to induce the recognition of structures in tumor contouring as important or unimportant. This method can be used for tumor contouring because it uses deep learning to perform image segmentation. Our results from a simulated fluoroscopy model showed accurate tracking of a low-visibility tumor with an error of approximately 1 mm, even if enhanced bone structure acted as an obstacle. A high similarity of approximately 0.95 on the Jaccard index was observed between the segmented and ground truth tumor regions. A short processing time of 25 ms was achieved. The results of this simulated fluoroscopy model support the feasibility of robust real-time tumor contouring with fluoroscopy. Further studies using clinical fluoroscopy are highly anticipated.

  20. Evaluation of the Effectiveness of the Stereotactic Body Frame in Reducing Respiratory Intrafractional Organ Motion Using the Real-Time Tumor-Tracking Radiotherapy System

    International Nuclear Information System (INIS)

    Bengua, Gerard; Ishikawa, Masayori; Sutherland, Kenneth; Horita, Kenji; Yamazaki, Rie; Fujita, Katsuhisa; Onimaru, Rikiya; Katoh, Noriwo; Inoue, Tetsuya; Onodera, Shunsuke; Shirato, Hiroki

    2010-01-01

    Purpose: To evaluate the effectiveness of the stereotactic body frame (SBF), with or without a diaphragm press or a breathing cycle monitoring device (Abches), in controlling the range of lung tumor motion, by tracking the real-time position of fiducial markers. Methods and Materials: The trajectories of gold markers in the lung were tracked with the real-time tumor-tracking radiotherapy system. The SBF was used for patient immobilization and the diaphragm press and Abches were used to actively control breathing and for self-controlled respiration, respectively. Tracking was performed in five setups, with and without immobilization and respiration control. The results were evaluated using the effective range, which was defined as the range that includes 95% of all the recorded marker positions in each setup. Results: The SBF, with or without a diaphragm press or Abches, did not yield effective ranges of marker motion which were significantly different from setups that did not use these materials. The differences in the effective marker ranges in the upper lobes for all the patient setups were less than 1mm. Larger effective ranges were obtained for the markers in the middle or lower lobes. Conclusion: The effectiveness of controlling respiratory-induced organ motion by using the SBF+diaphragm press or SBF + Abches patient setups were highly dependent on the individual patient reaction to the use of these materials and the location of the markers. They may be considered for lung tumors in the lower lobes, but are not necessary for tumors in the upper lobes.

  1. A robotic approach to 4D real-time tumor tracking for radiotherapy

    International Nuclear Information System (INIS)

    Buzurovic, I; Yu, Y; Huang, K; Podder, T K

    2011-01-01

    Respiratory and cardiac motions induce displacement and deformation of the tumor volumes in various internal organs. To accommodate this undesired movement and other errors, physicians incorporate a large margin around the tumor to delineate the planning target volume, so that the clinical target volume receives the prescribed radiation dose under any scenario. Consequently, a large volume of healthy tissue is irradiated and sometimes it is difficult to spare critical organs adjacent to the tumor. In this study we have proposed a novel approach to the 4D active tracking and dynamic delivery incorporating the tumor motion prediction technique. This method has been applied to the two commercially available robotic treatment couches. The proposed algorithm can predict the tumor position and the robotic systems are able to continuously track the tumor during radiation dose delivery. Therefore a precise dose is given to a moving target while the dose to the nearby critical organs is reduced to improve the patient treatment outcome. The efficacy of the proposed method has been investigated by extensive computer simulation. The tumor tracking method is simulated for two couches: HexaPOD robotic couch and ELEKTA Precise Table. The comparison results have been presented in this paper. In order to assess the clinical significance, dosimetric effects of the proposed method have been analyzed.

  2. Tracking errors in a prototype real-time tumour tracking system

    International Nuclear Information System (INIS)

    Sharp, Gregory C; Jiang, Steve B; Shimizu, Shinichi; Shirato, Hiroki

    2004-01-01

    In motion-compensated radiation therapy, radio-opaque markers can be implanted in or near a tumour and tracked in real-time using fluoroscopic imaging. Tracking these implanted markers gives highly accurate position information, except when tracking fails due to poor or ambiguous imaging conditions. This study investigates methods for automatic detection of tracking errors, and assesses the frequency and impact of tracking errors on treatments using the prototype real-time tumour tracking system. We investigated four indicators for automatic detection of tracking errors, and found that the distance between corresponding rays was most effective. We also found that tracking errors cause a loss of gating efficiency of between 7.6 and 10.2%. The incidence of treatment beam delivery during tracking errors was estimated at between 0.8% and 1.25%

  3. Robust Real-Time Tracking for Visual Surveillance

    Directory of Open Access Journals (Sweden)

    Aguilera Josep

    2007-01-01

    Full Text Available This paper describes a real-time multi-camera surveillance system that can be applied to a range of application domains. This integrated system is designed to observe crowded scenes and has mechanisms to improve tracking of objects that are in close proximity. The four component modules described in this paper are (i motion detection using a layered background model, (ii object tracking based on local appearance, (iii hierarchical object recognition, and (iv fused multisensor object tracking using multiple features and geometric constraints. This integrated approach to complex scene tracking is validated against a number of representative real-world scenarios to show that robust, real-time analysis can be performed.

  4. Real-time 2D/3D registration using kV-MV image pairs for tumor motion tracking in image guided radiotherapy.

    Science.gov (United States)

    Furtado, Hugo; Steiner, Elisabeth; Stock, Markus; Georg, Dietmar; Birkfellner, Wolfgang

    2013-10-01

    Intra-fractional respiratory motion during radiotherapy leads to a larger planning target volume (PTV). Real-time tumor motion tracking by two-dimensional (2D)/3D registration using on-board kilo-voltage (kV) imaging can allow for a reduction of the PTV though motion along the imaging beam axis cannot be resolved using only one projection image. We present a retrospective patient study investigating the impact of paired portal mega-voltage (MV) and kV images on registration accuracy. Material and methods. We used data from 10 patients suffering from non-small cell lung cancer (NSCLC) undergoing stereotactic body radiation therapy (SBRT) lung treatment. For each patient we acquired a planning computed tomography (CT) and sequences of kV and MV images during treatment. We compared the accuracy of motion tracking in six degrees-of-freedom (DOF) using the anterior-posterior (AP) kV sequence or the sequence of kV-MV image pairs. Results. Motion along cranial-caudal direction could accurately be extracted when using only the kV sequence but in AP direction we obtained large errors. When using kV-MV pairs, the average error was reduced from 2.9 mm to 1.5 mm and the motion along AP was successfully extracted. Mean registration time was 188 ms. Conclusion. Our evaluation shows that using kV-MV image pairs leads to improved motion extraction in six DOF and is suitable for real-time tumor motion tracking with a conventional LINAC.

  5. SU-G-BRA-09: Estimation of Motion Tracking Uncertainty for Real-Time Adaptive Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yan, H [Capital Medical University, Beijing, Beijing (China); Chen, Z [Yale New Haven Hospital, New Haven, CT (United States); Nath, R; Liu, W [Yale University School of Medicine, New Haven, CT (United States)

    2016-06-15

    Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertainty through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the

  6. SU-G-BRA-09: Estimation of Motion Tracking Uncertainty for Real-Time Adaptive Imaging

    International Nuclear Information System (INIS)

    Yan, H; Chen, Z; Nath, R; Liu, W

    2016-01-01

    Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertainty through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the

  7. CNR considerations for rapid real-time MRI tumor tracking in radiotherapy hybrid devices: Effects of B0 field strength

    International Nuclear Information System (INIS)

    Wachowicz, K.; De Zanche, N.; Yip, E.; Volotovskyy, V.; Fallone, B. G.

    2016-01-01

    Purpose: This work examines the subject of contrast-to-noise ratio (CNR), specifically between tumor and tissue background, and its dependence on the MRI field strength, B 0 . This examination is motivated by the recent interest and developments in MRI/radiotherapy hybrids where real-time imaging can be used to guide treatment beams. The ability to distinguish a tumor from background tissue is of primary importance in this field, and this work seeks to elucidate the complex relationship between the CNR and B 0 that is too often assumed to be purely linear. Methods: Experimentally based models of B 0 -dependant relaxation for various tumor and normal tissues from the literature were used in conjunction with signal equations for MR sequences suitable for rapid real-time imaging to develop field-dependent predictions for CNR. These CNR models were developed for liver, lung, breast, glioma, and kidney tumors for spoiled gradient-echo, balanced steady-state free precession (bSSFP), and single-shot half-Fourier fast spin echo sequences. Results: Due to the pattern in which the relaxation properties of tissues are found to vary over B 0 field (specifically the T 1 time), there was always an improved CNR at lower fields compared to linear dependency. Further, in some tumor sites, the CNR at lower fields was found to be comparable to, or sometimes higher than those at higher fields (i.e., bSSFP CNR for glioma, kidney, and liver tumors). Conclusions: In terms of CNR, lower B 0 fields have been shown to perform as well or better than higher fields for some tumor sites due to superior T 1 contrast. In other sites this effect was less pronounced, reversing the CNR advantage. This complex relationship between CNR and B 0 reveals both low and high magnetic fields as viable options for tumor tracking in MRI/radiotherapy hybrids.

  8. Real-time logo detection and tracking in video

    Science.gov (United States)

    George, M.; Kehtarnavaz, N.; Rahman, M.; Carlsohn, M.

    2010-05-01

    This paper presents a real-time implementation of a logo detection and tracking algorithm in video. The motivation of this work stems from applications on smart phones that require the detection of logos in real-time. For example, one application involves detecting company logos so that customers can easily get special offers in real-time. This algorithm uses a hybrid approach by initially running the Scale Invariant Feature Transform (SIFT) algorithm on the first frame in order to obtain the logo location and then by using an online calibration of color within the SIFT detected area in order to detect and track the logo in subsequent frames in a time efficient manner. The results obtained indicate that this hybrid approach allows robust logo detection and tracking to be achieved in real-time.

  9. SU-E-J-240: Development of a Novel 4D MRI Sequence for Real-Time Liver Tumor Tracking During Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, L; Burmeister, J [Department of Oncology, Wayne State Univ School of Medicine, Detroit, MI (United States); Ye, Y [Department of Radiology, Wayne State Univ School of Medicine, Detroit, MI (United States)

    2015-06-15

    Purpose: To develop a Novel 4D MRI Technique that is feasible for realtime liver tumor tracking during radiotherapy. Methods: A volunteer underwent an abdominal 2D fast EPI coronal scan on a 3.0T MRI scanner (Siemens Inc., Germany). An optimal set of parameters was determined based on image quality and scan time. A total of 23 slices were scanned to cover the whole liver in the test scan. For each scan position, the 2D images were retrospectively sorted into multiple phases based on breathing signal extracted from the images. Consequently the 2D slices with same phase numbers were stacked to form one 3D image. Multiple phases of 3D images formed the 4D MRI sequence representing one breathing cycle. Results: The optimal set of scan parameters were: TR= 57ms, TE= 19ms, FOV read= 320mm and flip angle= 30°, which resulted in a total scan time of 14s for 200 frames (FMs) per slice and image resolution of (2.5mm,2.5mm,5.0mm) in three directions. Ten phases of 3D images were generated, each of which had 23 slices. Based on our test scan, only 100FMs were necessary for the phase sorting process which may lower the scan time to 7s/100FMs/slice. For example, only 5 slices/35s are necessary for a 4D MRI scan to cover liver tumor size ≤ 2cm leading to the possibility of tumor trajectory tracking every 35s during treatment. Conclusion: The novel 4D MRI technique we developed can reconstruct a 4D liver MRI sequence representing one breathing cycle (7s/ slice) without an external monitor. This technique can potentially be used for real-time liver tumor tracking during radiotherapy.

  10. Tumor tracking and motion compensation with an adaptive tumor tracking system (ATTS): System description and prototype testing

    International Nuclear Information System (INIS)

    Wilbert, Juergen; Meyer, Juergen; Baier, Kurt; Guckenberger, Matthias; Herrmann, Christian; Hess, Robin; Janka, Christian; Ma Lei; Mersebach, Torben; Richter, Anne; Roth, Michael; Schilling, Klaus; Flentje, Michael

    2008-01-01

    A novel system for real-time tumor tracking and motion compensation with a robotic HexaPOD treatment couch is described. The approach is based on continuous tracking of the tumor motion in portal images without implanted fiducial markers, using the therapeutic megavoltage beam, and tracking of abdominal breathing motion with optical markers. Based on the two independently acquired data sets the table movements for motion compensation are calculated. The principle of operation of the entire prototype system is detailed first. In the second part the performance of the HexaPOD couch was investigated with a robotic four-dimensional-phantom capable of simulating real patient tumor trajectories in three-dimensional space. The performance and limitations of the HexaPOD table and the control system were characterized in terms of its dynamic behavior. The maximum speed and acceleration of the HexaPOD were 8 mm/s and 34.5 mm/s 2 in the lateral direction, and 9.5 mm/s and 29.5 mm/s 2 in longitudinal and anterior-posterior direction, respectively. Base line drifts of the mean tumor position of realistic lung tumor trajectories could be fully compensated. For continuous tumor tracking and motion compensation a reduction of tumor motion up to 68% of the original amplitude was achieved. In conclusion, this study demonstrated that it is technically feasible to compensate breathing induced tumor motion in the lung with the adaptive tumor tracking system

  11. SU-G-BRA-05: Application of a Feature-Based Tracking Algorithm to KV X-Ray Fluoroscopic Images Toward Marker-Less Real-Time Tumor Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Matsuo, Y; Mukumoto, N; Iizuka, Y; Yokota, K; Mizowaki, T; Hiraoka, M [Kyoto University, Graduate School of Medicine, Kyoto (Japan); Nakao, M [Kyoto University, Graduate School of Informatics, Kyoto (Japan)

    2016-06-15

    Purpose: To detect target position on kV X-ray fluoroscopic images using a feature-based tracking algorithm, Accelerated-KAZE (AKAZE), for markerless real-time tumor tracking (RTTT). Methods: Twelve lung cancer patients treated with RTTT on the Vero4DRT (Mitsubishi Heavy Industries, Japan, and Brainlab AG, Feldkirchen, Germany) were enrolled in this study. Respiratory tumor movement was greater than 10 mm. Three to five fiducial markers were implanted around the lung tumor transbronchially for each patient. Before beam delivery, external infrared (IR) markers and the fiducial markers were monitored for 20 to 40 s with the IR camera every 16.7 ms and with an orthogonal kV x-ray imaging subsystem every 80 or 160 ms, respectively. Target positions derived from the fiducial markers were determined on the orthogonal kV x-ray images, which were used as the ground truth in this study. Meanwhile, tracking positions were identified by AKAZE. Among a lot of feature points, AKAZE found high-quality feature points through sequential cross-check and distance-check between two consecutive images. Then, these 2D positional data were converted to the 3D positional data by a transformation matrix with a predefined calibration parameter. Root mean square error (RMSE) was calculated to evaluate the difference between 3D tracking and target positions. A total of 393 frames was analyzed. The experiment was conducted on a personal computer with 16 GB RAM, Intel Core i7-2600, 3.4 GHz processor. Results: Reproducibility of the target position during the same respiratory phase was 0.6 +/− 0.6 mm (range, 0.1–3.3 mm). Mean +/− SD of the RMSEs was 0.3 +/− 0.2 mm (range, 0.0–1.0 mm). Median computation time per frame was 179 msec (range, 154–247 msec). Conclusion: AKAZE successfully and quickly detected the target position on kV X-ray fluoroscopic images. Initial results indicate that the differences between 3D tracking and target position would be clinically acceptable.

  12. SU-G-BRA-05: Application of a Feature-Based Tracking Algorithm to KV X-Ray Fluoroscopic Images Toward Marker-Less Real-Time Tumor Tracking

    International Nuclear Information System (INIS)

    Nakamura, M; Matsuo, Y; Mukumoto, N; Iizuka, Y; Yokota, K; Mizowaki, T; Hiraoka, M; Nakao, M

    2016-01-01

    Purpose: To detect target position on kV X-ray fluoroscopic images using a feature-based tracking algorithm, Accelerated-KAZE (AKAZE), for markerless real-time tumor tracking (RTTT). Methods: Twelve lung cancer patients treated with RTTT on the Vero4DRT (Mitsubishi Heavy Industries, Japan, and Brainlab AG, Feldkirchen, Germany) were enrolled in this study. Respiratory tumor movement was greater than 10 mm. Three to five fiducial markers were implanted around the lung tumor transbronchially for each patient. Before beam delivery, external infrared (IR) markers and the fiducial markers were monitored for 20 to 40 s with the IR camera every 16.7 ms and with an orthogonal kV x-ray imaging subsystem every 80 or 160 ms, respectively. Target positions derived from the fiducial markers were determined on the orthogonal kV x-ray images, which were used as the ground truth in this study. Meanwhile, tracking positions were identified by AKAZE. Among a lot of feature points, AKAZE found high-quality feature points through sequential cross-check and distance-check between two consecutive images. Then, these 2D positional data were converted to the 3D positional data by a transformation matrix with a predefined calibration parameter. Root mean square error (RMSE) was calculated to evaluate the difference between 3D tracking and target positions. A total of 393 frames was analyzed. The experiment was conducted on a personal computer with 16 GB RAM, Intel Core i7-2600, 3.4 GHz processor. Results: Reproducibility of the target position during the same respiratory phase was 0.6 +/− 0.6 mm (range, 0.1–3.3 mm). Mean +/− SD of the RMSEs was 0.3 +/− 0.2 mm (range, 0.0–1.0 mm). Median computation time per frame was 179 msec (range, 154–247 msec). Conclusion: AKAZE successfully and quickly detected the target position on kV X-ray fluoroscopic images. Initial results indicate that the differences between 3D tracking and target position would be clinically acceptable.

  13. Stability of Markers Used for Real-Time Tumor Tracking After Percutaneous Intrapulmonary Placement

    International Nuclear Information System (INIS)

    Voort van Zyp, Noelle C. van der; Hoogeman, Mischa S.; Water, Steven van de; Levendag, Peter C.; Holt, Bronno van der; Heijmen, Ben J.M.; Nuyttens, Joost J.

    2011-01-01

    Purpose: To determine the stability of markers used for real-time tumor tracking after percutaneous intrapulmonary placement. Methods and Materials: A total of 42 patients with 44 lesions, 111 markers, and ≥2 repeat computed tomography (CT) scans were studied. The tumor on the repeat CT scans was registered with the tumor on the planning CT scan. Next, the three-dimensional marker coordinates were determined on the planning CT scan and repeat CT scans. Marker stability was analyzed by the displacement of the markers and the displacement of the center of mass (COM) of the marker configurations. In addition, we assessed the reliability of using the intermarker distance as a check for displacements in the COM of the marker configurations. Results: The median marker displacement was 1.3 mm (range, 0.1-53.6). The marker displacement was >5 mm in 12% of the markers and >10 mm in 5% of the markers. The causes of marker displacement >5 mm included marker migration (2 of 13) and target volume changes (5 of 13). Nonsynchronous tumor and marker movement during breathing might have been responsible for the displacements >5 mm in the other 6 of 13 markers. The median displacement in the COM of the marker configurations was 1.0 mm (range, 0.1-23.3). Displacements in the COM of the marker configurations of ≥2.0 mm were detected by changes in the intermarker distance of >1.5 mm in 96% of the treatment fractions. Conclusion: The median marker displacement was small (1.3 mm). Nevertheless, displacements >5 mm occurred in 12% of the markers. Therefore, we recommend the implantation of multiple markers because multiple markers will enable a quick and reliable check of marker displacement by determining the change in the intermarker distance. A displacement in the COM of the marker configuration of ≥2.0 mm was almost always detected (96%) by a change in the distance between the markers of >1.5 mm. This enabled the displaced marker to be disabled, such that tumor localization was

  14. Three-dimensional liver motion tracking using real-time two-dimensional MRI.

    Science.gov (United States)

    Brix, Lau; Ringgaard, Steffen; Sørensen, Thomas Sangild; Poulsen, Per Rugaard

    2014-04-01

    Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Axial, sagittal, and coronal 2D MRI series

  15. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Brix, Lau, E-mail: lau.brix@stab.rm.dk [Department of Procurement and Clinical Engineering, Region Midt, Olof Palmes Allé 15, 8200 Aarhus N, Denmark and MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Ringgaard, Steffen [MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Sørensen, Thomas Sangild [Department of Computer Science, Aarhus University, Aabogade 34, 8200 Aarhus N, Denmark and Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Poulsen, Per Rugaard [Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark and Department of Oncology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C (Denmark)

    2014-04-15

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  16. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    International Nuclear Information System (INIS)

    Brix, Lau; Ringgaard, Steffen; Sørensen, Thomas Sangild; Poulsen, Per Rugaard

    2014-01-01

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  17. Combined kV and MV imaging for real-time tracking of implanted fiducial markers

    International Nuclear Information System (INIS)

    Wiersma, R. D.; Mao Weihua; Xing, L.

    2008-01-01

    In the presence of intrafraction organ motion, target localization uncertainty can greatly hamper the advantage of highly conformal dose techniques such as intensity modulated radiation therapy (IMRT). To minimize the adverse dosimetric effect caused by tumor motion, a real-time knowledge of the tumor position is required throughout the beam delivery process. The recent integration of onboard kV diagnostic imaging together with MV electronic portal imaging devices on linear accelerators can allow for real-time three-dimensional (3D) tumor position monitoring during a treatment delivery. The aim of this study is to demonstrate a near real-time 3D internal fiducial tracking system based on the combined use of kV and MV imaging. A commercially available radiotherapy system equipped with both kV and MV imaging systems was used in this work. A hardware video frame grabber was used to capture both kV and MV video streams simultaneously through independent video channels at 30 frames per second. The fiducial locations were extracted from the kV and MV images using a software tool. The geometric tracking capabilities of the system were evaluated using a pelvic phantom with embedded fiducials placed on a moveable stage. The maximum tracking speed of the kV/MV system is approximately 9 Hz, which is primarily limited by the frame rate of the MV imager. The geometric accuracy of the system is found to be on the order of less than 1 mm in all three spatial dimensions. The technique requires minimal hardware modification and is potentially useful for image-guided radiation therapy systems

  18. SU-G-JeP1-08: Dual Modality Verification for Respiratory Gating Using New Real- Time Tumor Tracking Radiotherapy System

    Energy Technology Data Exchange (ETDEWEB)

    Shiinoki, T; Hanazawa, H; Shibuya, K [Yamaguchi University, Ube, Yamaguchi (Japan); Kawamura, S; Koike, M; Yuasa, Y; Uehara, T; Fujimoto, K [Yamaguchi University Hospital, Ube, Yamaguchi (Japan)

    2016-06-15

    Purpose: The respirato ry gating system combined the TrueBeam and a new real-time tumor-tracking radiotherapy system (RTRT) was installed. The RTRT system consists of two x-ray tubes and color image intensifiers. Using fluoroscopic images, the fiducial marker which was implanted near the tumor was tracked and was used as the internal surrogate for respiratory gating. The purposes of this study was to develop the verification technique of the respiratory gating with the new RTRT using cine electronic portal image device images (EPIDs) of TrueBeam and log files of the RTRT. Methods: A patient who underwent respiratory gated SBRT of the lung using the RTRT were enrolled in this study. For a patient, the log files of three-dimensional coordinate of fiducial marker used as an internal surrogate were acquired using the RTRT. Simultaneously, the cine EPIDs were acquired during respiratory gated radiotherapy. The data acquisition was performed for one field at five sessions during the course of SBRT. The residual motion errors were calculated using the log files (E{sub log}). The fiducial marker used as an internal surrogate into the cine EPIDs was automatically extracted by in-house software based on the template-matching algorithm. The differences between the the marker positions of cine EPIDs and digitally reconstructed radiograph were calculated (E{sub EPID}). Results: Marker detection on EPID using in-house software was influenced by low image contrast. For one field during the course of SBRT, the respiratory gating using the RTRT showed the mean ± S.D. of 95{sup th} percentile E{sub EPID} were 1.3 ± 0.3 mm,1.1 ± 0.5 mm,and those of E{sub log} were 1.5 ± 0.2 mm, 1.1 ± 0.2 mm in LR and SI directions, respectively. Conclusion: We have developed the verification method of respiratory gating combined TrueBeam and new real-time tumor-tracking radiotherapy system using EPIDs and log files.

  19. Registration accuracy and possible migration of internal fiducial gold marker implanted in prostate and liver treated with real-time tumor-tracking radiation therapy (RTRT)

    International Nuclear Information System (INIS)

    Kitamura, Kei; Shirato, Hiroki; Shimizu, Shinichi; Shinohara, Nobuo; Harabayashi, Toru; Shimizu, Tadashi; Kodama, Yoshihisa; Endo, Hideho; Onimaru, Rikiya; Nishioka, Seiko; Aoyama, Hidefumi; Tsuchiya, Kazuhiko; Miyasaka, Kazuo

    2002-01-01

    Background and purpose: We have developed a linear accelerator synchronized with a fluoroscopic real-time tumor-tracking system to reduce errors due to setup and organ motion. In the real-time tumor-tracking radiation therapy (RTRT) system, the accuracy of tumor tracking depends on the registration of the marker's coordinates. The registration accuracy and possible migration of the internal fiducial gold marker implanted into prostate and liver was investigated. Materials and methods: Internal fiducial gold markers were implanted in 14 patients with prostate cancer and four patients with liver tumors. Computed tomography (CT) was carried out as a part of treatment planning in the 18 patients. A total of 72 follow-up CT scans were taken. We calculated the relative relationship between the coordinates of the center of mass (CM) of the organs and those of the marker. The discrepancy in the CM coordinates during a follow-up CT compared to those recorded during the planning CT was used to study possible marker migration. Results: The standard deviation (SD) of interobserver variations in the CM coordinates was within 2.0 and 0.4 mm for the organ and the marker, respectively, in seven observers. Assuming that organs do not shrink, grow, or rotate, the maximum SD of migration error in each direction was estimated to be less than 2.5 and 2.0 mm for liver and prostate, respectively. There was no correlation between the marker position and the time after implantation. Conclusion: The degree of possible migration of the internal fiducial marker was within the limits of accuracy of the CT measurement. Most of the marker movement can be attributed to the measurement uncertainty, which also influences registration in actual treatment planning. Thus, even with the gold marker and RTRT system, a planning target volume margin should be used to account for registration uncertainty

  20. Real-time dose compensation methods for scanned ion beam therapy of moving tumors

    International Nuclear Information System (INIS)

    Luechtenborg, Robert

    2012-01-01

    Scanned ion beam therapy provides highly tumor-conformal treatments. So far, only tumors showing no considerable motion during therapy have been treated as tumor motion and dynamic beam delivery interfere, causing dose deteriorations. One proposed technique to mitigate these deteriorations is beam tracking (BT), which adapts the beam position to the moving tumor. Despite application of BT, dose deviations can occur in the case of non-translational motion. In this work, real-time dose compensation combined with beam tracking (RDBT) has been implemented into the control system to compensate these dose changes by adaptation of nominal particle numbers during irradiation. Compared to BT, significantly reduced dose deviations were measured using RDBT. Treatment planning studies for lung cancer patients including the increased biological effectiveness of ions revealed a significantly reduced over-dose level (3/5 patients) as well as significantly improved dose homogeneity (4/5 patients) for RDBT. Based on these findings, real-time dose compensated re-scanning (RDRS) has been proposed that potentially supersedes the technically complex fast energy adaptation necessary for BT and RDBT. Significantly improved conformity compared to re-scanning, i.e., averaging of dose deviations by repeated irradiation, was measured in film irradiations. Simulations comparing RDRS to BT revealed reduced under- and overdoses of the former method.

  1. Real-time model for simulating a tracked vehicle on deformable soils

    Directory of Open Access Journals (Sweden)

    Martin Meywerk

    2016-05-01

    Full Text Available Simulation is one possibility to gain insight into the behaviour of tracked vehicles on deformable soils. A lot of publications are known on this topic, but most of the simulations described there cannot be run in real-time. The ability to run a simulation in real-time is necessary for driving simulators. This article describes an approach for real-time simulation of a tracked vehicle on deformable soils. The components of the real-time model are as follows: a conventional wheeled vehicle simulated in the Multi Body System software TRUCKSim, a geometric description of landscape, a track model and an interaction model between track and deformable soils based on Bekker theory and Janosi–Hanamoto, on one hand, and between track and vehicle wheels, on the other hand. Landscape, track model, soil model and the interaction are implemented in MATLAB/Simulink. The details of the real-time model are described in this article, and a detailed description of the Multi Body System part is omitted. Simulations with the real-time model are compared to measurements and to a detailed Multi Body System–finite element method model of a tracked vehicle. An application of the real-time model in a driving simulator is presented, in which 13 drivers assess the comfort of a passive and an active suspension of a tracked vehicle.

  2. CNR considerations for rapid real-time MRI tumor tracking in radiotherapy hybrid devices: Effects of B{sub 0} field strength

    Energy Technology Data Exchange (ETDEWEB)

    Wachowicz, K., E-mail: keith.wachowicz@albertahealthservices.ca; De Zanche, N.; Yip, E. [Division of Medical Physics, Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Volotovskyy, V. [Cross Cancer Institute, Alberta Health Services, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Departments of Oncology and Physics, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2016-08-15

    Purpose: This work examines the subject of contrast-to-noise ratio (CNR), specifically between tumor and tissue background, and its dependence on the MRI field strength, B{sub 0}. This examination is motivated by the recent interest and developments in MRI/radiotherapy hybrids where real-time imaging can be used to guide treatment beams. The ability to distinguish a tumor from background tissue is of primary importance in this field, and this work seeks to elucidate the complex relationship between the CNR and B{sub 0} that is too often assumed to be purely linear. Methods: Experimentally based models of B{sub 0}-dependant relaxation for various tumor and normal tissues from the literature were used in conjunction with signal equations for MR sequences suitable for rapid real-time imaging to develop field-dependent predictions for CNR. These CNR models were developed for liver, lung, breast, glioma, and kidney tumors for spoiled gradient-echo, balanced steady-state free precession (bSSFP), and single-shot half-Fourier fast spin echo sequences. Results: Due to the pattern in which the relaxation properties of tissues are found to vary over B{sub 0} field (specifically the T{sub 1} time), there was always an improved CNR at lower fields compared to linear dependency. Further, in some tumor sites, the CNR at lower fields was found to be comparable to, or sometimes higher than those at higher fields (i.e., bSSFP CNR for glioma, kidney, and liver tumors). Conclusions: In terms of CNR, lower B{sub 0} fields have been shown to perform as well or better than higher fields for some tumor sites due to superior T{sub 1} contrast. In other sites this effect was less pronounced, reversing the CNR advantage. This complex relationship between CNR and B{sub 0} reveals both low and high magnetic fields as viable options for tumor tracking in MRI/radiotherapy hybrids.

  3. The dosimetric impact of inversely optimized arc radiotherapy plan modulation for real-time dynamic MLC tracking delivery

    DEFF Research Database (Denmark)

    Falk, Marianne; Larsson, Tobias; Keall, P.

    2012-01-01

    Purpose: Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced......-to-peak displacement of 2 cm and a cycle time of 6 s. The delivery was adjusted to the target motion using MLC tracking, guided in real-time by an infrared optical system. The dosimetric results were evaluated using gamma index evaluation with static target measurements as reference. Results: The plan quality...

  4. Real-time resource allocation for tracking systems

    NARCIS (Netherlands)

    Satsangi, Y.; Whiteson, S.; Oliehoek, F.A.; Bouma, H.

    2017-01-01

    Automated tracking is key to many computer vision applications. However, many tracking systems struggle to perform in real-time due to the high computational cost of detecting people, especially in ultra high resolution images. We propose a new algorithm called PartiMax that greatly reduces this

  5. Simultaneous tumor and surrogate motion tracking with dynamic MRI for radiation therapy planning

    Science.gov (United States)

    Park, Seyoun; Farah, Rana; Shea, Steven M.; Tryggestad, Erik; Hales, Russell; Lee, Junghoon

    2018-01-01

    Respiration-induced tumor motion is a major obstacle for achieving high-precision radiotherapy of cancers in the thoracic and abdominal regions. Surrogate-based estimation and tracking methods are commonly used in radiotherapy, but with limited understanding of quantified correlation to tumor motion. In this study, we propose a method to simultaneously track the lung tumor and external surrogates to evaluate their spatial correlation in a quantitative way using dynamic MRI, which allows real-time acquisition without ionizing radiation exposure. To capture the lung and whole tumor, four MRI-compatible fiducials are placed on the patient’s chest and upper abdomen. Two different types of acquisitions are performed in the sagittal orientation including multi-slice 2D cine MRIs to reconstruct 4D-MRI and two-slice 2D cine MRIs to simultaneously track the tumor and fiducials. A phase-binned 4D-MRI is first reconstructed from multi-slice MR images using body area as a respiratory surrogate and groupwise registration. The 4D-MRI provides 3D template volumes for different breathing phases. 3D tumor position is calculated by 3D-2D template matching in which 3D tumor templates in the 4D-MRI reconstruction and the 2D cine MRIs from the two-slice tracking dataset are registered. 3D trajectories of the external surrogates are derived via matching a 3D geometrical model of the fiducials to their segmentations on the 2D cine MRIs. We tested our method on ten lung cancer patients. Using a correlation analysis, the 3D tumor trajectory demonstrates a noticeable phase mismatch and significant cycle-to-cycle motion variation, while the external surrogate was not sensitive enough to capture such variations. Additionally, there was significant phase mismatch between surrogate signals obtained from the fiducials at different locations.

  6. A phase I/II study on stereotactic body radiotherapy with real-time tumor tracking using CyberKnife based on the Monte Carlo algorithm for lung tumors.

    Science.gov (United States)

    Iwata, Hiromitsu; Ishikura, Satoshi; Murai, Taro; Iwabuchi, Michio; Inoue, Mitsuhiro; Tatewaki, Koshi; Ohta, Seiji; Yokota, Naoki; Shibamoto, Yuta

    2017-08-01

    In this phase I/II study, we assessed the safety and initial efficacy of stereotactic body radiotherapy (SBRT) for lung tumors with real-time tumor tracking using CyberKnife based on the Monte Carlo algorithm. Study subjects had histologically confirmed primary non-small-cell lung cancer staged as T1a-T2aN0M0 and pulmonary oligometastasis. The primary endpoint was the incidence of Grade ≥3 radiation pneumonitis (RP) within 180 days of the start of SBRT. The secondary endpoint was local control and overall survival rates. Five patients were initially enrolled at level 1 [50 Gy/4 fractions (Fr)]; during the observation period, level 0 (45 Gy/4 Fr) was opened. The dose was escalated to the next level when grade ≥3 RP was observed in 0 out of 5 or 1 out of 10 patients. Virtual quality assurance planning was performed for 60 Gy/4 Fr; however, dose constraints for the organs at risk did not appear to be within acceptable ranges. Therefore, level 2 (55 Gy/4 Fr) was regarded as the upper limit. After the recommended dose (RD) was established, 15 additional patients were enrolled at the RD. The prescribed dose was normalized at the 95% volume border of the planning target volume based on the Monte Carlo algorithm. Between September 2011 and September 2015, 40 patients (primary 30; metastasis 10) were enrolled. Five patients were enrolled at level 0, 15 at level 1, and 20 at level 2. Only one grade 3 RP was observed at level 1. Two-year local control and overall survival rates were 98 and 81%, respectively. The RD was 55 Gy/4 Fr. SBRT with real-time tumor tracking using CyberKnife based on the Monte Carlo algorithm was tolerated well and appeared to be effective for solitary lung tumors.

  7. Towards real-time detection and tracking of spatio-temporal features: Blob-filaments in fusion plasma

    International Nuclear Information System (INIS)

    Wu, Lingfei; Wu, Kesheng; Sim, Alex; Churchill, Michael; Choi, Jong Youl

    2016-01-01

    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes to detect and track blob-filaments in real time in fusion plasma. Here, on a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.

  8. Alternative fiducial markers for Vero real-time tumor tracking radiotherapy: A phantom study

    Science.gov (United States)

    Park, Shin-Hyung; Kim, Jae-Chul; Kim, Sung Joon

    2016-12-01

    The objective of this study was to investigate the feasibility of potential fiducial markers consisting of various materials in a Vero real-time tumor-tracking (RTTT) system. In order to determine the applicability of fiducial markers for the Vero RTTT system, we tested various markers consisting of 8 kinds of material (titanium, stainless steel, high-carbon steel, pure steel, copper, silver, tantalum, and gold) with various diameters ranging from 0.3 mm to 1.6 mm and a length of 5 mm. Additionally, a commercial gold coil marker (Visicoil™, IBA dosimetry, Schwarzenbruck, Germany) of diameter 0.5 mm and length 1 cm was included for evaluation. The radiologic visibility on kV fluoroscopy/kV CT scan images of the fiducial markers was evaluated. The detectability on the RTTT system was tested using a two-dimensional moving phantom (Brainlab AG, Feldkirchen, Germany), producing sinusoidal motion. The target center's accuracy was evaluated by calculating the deviation of the position of a metal sphere from the center on the dose profile. Dose profiles were measured using Gafchromic EBT2 films (International Specialty Products, NJ, USA). All markers were visible on kV fluoroscopy/kV CT while markers with atomic number ≥ 25.7 were detectable on the Vero RTTT system. All the detected markers showed excellent geometric accuracy.

  9. Online 4D ultrasound guidance for real-time motion compensation by MLC tracking.

    Science.gov (United States)

    Ipsen, Svenja; Bruder, Ralf; O'Brien, Rick; Keall, Paul J; Schweikard, Achim; Poulsen, Per R

    2016-10-01

    With the trend in radiotherapy moving toward dose escalation and hypofractionation, the need for highly accurate targeting increases. While MLC tracking is already being successfully used for motion compensation of moving targets in the prostate, current real-time target localization methods rely on repeated x-ray imaging and implanted fiducial markers or electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging can yield volumetric data in real-time (3D + time = 4D) without ionizing radiation. The authors report the first results of combining these promising techniques-online 4D ultrasound guidance and MLC tracking-in a phantom. A software framework for real-time target localization was installed directly on a 4D ultrasound station and used to detect a 2 mm spherical lead marker inside a water tank. The lead marker was rigidly attached to a motion stage programmed to reproduce nine characteristic tumor trajectories chosen from large databases (five prostate, four lung). The 3D marker position detected by ultrasound was transferred to a computer program for MLC tracking at a rate of 21.3 Hz and used for real-time MLC aperture adaption on a conventional linear accelerator. The tracking system latency was measured using sinusoidal trajectories and compensated for by applying a kernel density prediction algorithm for the lung traces. To measure geometric accuracy, static anterior and lateral conformal fields as well as a 358° arc with a 10 cm circular aperture were delivered for each trajectory. The two-dimensional (2D) geometric tracking error was measured as the difference between marker position and MLC aperture center in continuously acquired portal images. For dosimetric evaluation, VMAT treatment plans with high and low modulation were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using 3%/3 mm and 2

  10. Lung tumor tracking in fluoroscopic video based on optical flow

    International Nuclear Information System (INIS)

    Xu Qianyi; Hamilton, Russell J.; Schowengerdt, Robert A.; Alexander, Brian; Jiang, Steve B.

    2008-01-01

    Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (∼0.7 mm) in the best case and 2.8 pixels (∼1.4 mm) in the worst case for the five patients studied.

  11. The effect of tumor location and respiratory function on tumor movement estimated by real-time tracking radiotherapy (RTRT) system

    International Nuclear Information System (INIS)

    Onimaru, Rikiya; Shirato, Hiroki; Fujino, Masaharu; Suzuki, Keishiro; Yamazaki, Kouichi; Nishimura, Masaharu; Dosaka-Akita, Hirotoshi; Miyasaka, Kazuo

    2005-01-01

    Purpose: The effects of tumor location and pulmonary function on the motion of fiducial markers near lung tumors were evaluated to deduce simple guidelines for determining the internal margin in radiotherapy without fiducial markers. Methods and Materials: Pooled data collected by a real-time tumor-tracking radiotherapy system on 42 markers in 39 patients were analyzed. The pulmonary functions of all patients were assessed before radiotherapy. Using chest X-ray film, the position of the marker was expressed relative to the geometry of the unilateral lung. Posterior location meant the area of the posterior half of the lung in a lateral chest X-ray film, and caudal location meant the caudal half of the chest X-ray film; these categories were determined by measuring the distance between the marker and anatomic landmarks, including the apex, costophrenic angle, midline of spinal canal, lateral, anterior, and posterior boundary of the lung. Results: Before the radiotherapy, 18 patients had obstructive respiratory dysfunction (ratio of forced expiratory volume in 1 s to forced vital capacity [FEV 1.0 /FVC] 1.0 /FVC and %VC were 97.0% and 66.5%, respectively. Median tumor movements in the x (left-right), y (anteroposterior), and z (craniocaudal) directions were 1.1 mm, 2.3 mm, and 5.4 mm, respectively. There was no significant correlation between respiratory function and magnitude of marker movement in any direction. Median marker movement in the z direction was 2.6 mm for the cranial location and 11.8 mm for the caudal location, respectively (p < 0.001). Median movement in the z direction was 11.8 mm for posterior location and 3.4 mm for anterior location, respectively (p < 0.01). Conclusions: Simple measurement of the relative location on plain chest X-ray film was related, but respiratory function test was not related, to the craniocaudal amplitude of the motion of the fiducial marker near lung tumors

  12. Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system.

    Science.gov (United States)

    Depuydt, Tom; Verellen, Dirk; Haas, Olivier; Gevaert, Thierry; Linthout, Nadine; Duchateau, Michael; Tournel, Koen; Reynders, Truus; Leysen, Katrien; Hoogeman, Mischa; Storme, Guy; De Ridder, Mark

    2011-03-01

    VERO is a novel platform for image guided stereotactic body radiotherapy. Orthogonal gimbals hold the linac-MLC assembly allowing real-time moving tumor tracking. This study determines the geometric accuracy of the tracking. To determine the tracking error, an 1D moving phantom produced sinusoidal motion with frequencies up to 30 breaths per minute (bpm). Tumor trajectories of patients were reproduced using a 2D robot and pursued with the gimbals tracking system prototype. Using the moving beam light field and a digital-camera-based detection unit tracking errors, system lag and equivalence of pan/tilt performance were measured. The system lag was 47.7 ms for panning and 47.6 ms for tilting. Applying system lag compensation, sinusoidal motion tracking was accurate, with a tracking error 90% percentile E(90%)tracking errors were below 0.14 mm. The 2D tumor trajectories were tracked with an average E(90%) of 0.54 mm, and tracking error standard deviations of 0.20 mm for pan and 0.22 mm for tilt. In terms of dynamic behavior, the gimbaled linac of the VERO system showed to be an excellent approach for providing accurate real-time tumor tracking in radiation therapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Registration of clinical volumes to beams-eye-view images for real-time tracking

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Jonathan H.; Rottmann, Joerg; Lewis, John H.; Mishra, Pankaj; Berbeco, Ross I., E-mail: rberbeco@lroc.harvard.edu [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 (Australia)

    2014-12-15

    Purpose: The authors combine the registration of 2D beam’s eye view (BEV) images and 3D planning computed tomography (CT) images, with relative, markerless tumor tracking to provide automatic absolute tracking of physician defined volumes such as the gross tumor volume (GTV). Methods: During treatment of lung SBRT cases, BEV images were continuously acquired with an electronic portal imaging device (EPID) operating in cine mode. For absolute registration of physician-defined volumes, an intensity based 2D/3D registration to the planning CT was performed using the end-of-exhale (EoE) phase of the four dimensional computed tomography (4DCT). The volume was converted from Hounsfield units into electron density by a calibration curve and digitally reconstructed radiographs (DRRs) were generated for each beam geometry. Using normalized cross correlation between the DRR and an EoE BEV image, the best in-plane rigid transformation was found. The transformation was applied to physician-defined contours in the planning CT, mapping them into the EPID image domain. A robust multiregion method of relative markerless lung tumor tracking quantified deviations from the EoE position. Results: The success of 2D/3D registration was demonstrated at the EoE breathing phase. By registering at this phase and then employing a separate technique for relative tracking, the authors are able to successfully track target volumes in the BEV images throughout the entire treatment delivery. Conclusions: Through the combination of EPID/4DCT registration and relative tracking, a necessary step toward the clinical implementation of BEV tracking has been completed. The knowledge of tumor volumes relative to the treatment field is important for future applications like real-time motion management, adaptive radiotherapy, and delivered dose calculations.

  14. Automatic multimodal real-time tracking for image plane alignment in interventional Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Neumann, Markus

    2014-01-01

    Interventional magnetic resonance imaging (MRI) aims at performing minimally invasive percutaneous interventions, such as tumor ablations and biopsies, under MRI guidance. During such interventions, the acquired MR image planes are typically aligned to the surgical instrument (needle) axis and to surrounding anatomical structures of interest in order to efficiently monitor the advancement in real-time of the instrument inside the patient's body. Object tracking inside the MRI is expected to facilitate and accelerate MR-guided interventions by allowing to automatically align the image planes to the surgical instrument. In this PhD thesis, an image-based work-flow is proposed and refined for automatic image plane alignment. An automatic tracking work-flow was developed, performing detection and tracking of a passive marker directly in clinical real-time images. This tracking work-flow is designed for fully automated image plane alignment, with minimization of tracking-dedicated time. Its main drawback is its inherent dependence on the slow clinical MRI update rate. First, the addition of motion estimation and prediction with a Kalman filter was investigated and improved the work-flow tracking performance. Second, a complementary optical sensor was used for multi-sensor tracking in order to decouple the tracking update rate from the MR image acquisition rate. Performance of the work-flow was evaluated with both computer simulations and experiments using an MR compatible test bed. Results show a high robustness of the multi-sensor tracking approach for dynamic image plane alignment, due to the combination of the individual strengths of each sensor. (author)

  15. Real-time intensity based 2D/3D registration using kV-MV image pairs for tumor motion tracking in image guided radiotherapy

    Science.gov (United States)

    Furtado, H.; Steiner, E.; Stock, M.; Georg, D.; Birkfellner, W.

    2014-03-01

    Intra-fractional respiratorymotion during radiotherapy is one of themain sources of uncertainty in dose application creating the need to extend themargins of the planning target volume (PTV). Real-time tumormotion tracking by 2D/3D registration using on-board kilo-voltage (kV) imaging can lead to a reduction of the PTV. One limitation of this technique when using one projection image, is the inability to resolve motion along the imaging beam axis. We present a retrospective patient study to investigate the impact of paired portal mega-voltage (MV) and kV images, on registration accuracy. We used data from eighteen patients suffering from non small cell lung cancer undergoing regular treatment at our center. For each patient we acquired a planning CT and sequences of kV and MV images during treatment. Our evaluation consisted of comparing the accuracy of motion tracking in 6 degrees-of-freedom(DOF) using the anterior-posterior (AP) kV sequence or the sequence of kV-MV image pairs. We use graphics processing unit rendering for real-time performance. Motion along cranial-caudal direction could accurately be extracted when using only the kV sequence but in AP direction we obtained large errors. When using kV-MV pairs, the average error was reduced from 3.3 mm to 1.8 mm and the motion along AP was successfully extracted. The mean registration time was of 190+/-35ms. Our evaluation shows that using kVMV image pairs leads to improved motion extraction in 6 DOF. Therefore, this approach is suitable for accurate, real-time tumor motion tracking with a conventional LINAC.

  16. Kalman filters for real-time magnetic island phase tracking

    International Nuclear Information System (INIS)

    Borgers, D.P.; Lauret, M.; Baar, M.R. de

    2013-01-01

    Highlights: • We propose two Kalman filters for tracking of NTMs on ASDEX Upgrade. • The Kalman filters can track NTMs in a much larger frequency range than PLLs. • The filters are tested on synthetic and experimental data from TEXTOR and TCV. • We conclude that the unscented Kalman filter can be useful for NTM control. -- Abstract: For control of neoclassical tearing modes (NTMs) and the resulting rotating magnetic islands in tokamak plasmas, the frequency and phase of the magnetic islands need to be accurately tracked in real-time. In previous experiments on TEXTOR, this was achieved using a phase-locked loop (PLL). For ASDEX Upgrade however, the desired frequency range in which the islands are to be tracked (100 Hz–10 kHz) is much larger than is possible with a PLL. In this contribution, an extended Kalman filter (EKF) and an unscented Kalman filter (UKF) are proposed for real-time frequency, phase and amplitude tracking of sinusoidal signals, based on noisy measurements. Compared to PLLs, the EKF and UKF are able to track sinusoidal signals in a much larger frequency range. The filters are applied on synthetic data and on experimental data from the TEXTOR and TCV tokamaks, from which we conclude that the UKF can be useful for real-time control of magnetic islands on ASDEX Upgrade

  17. Kalman filters for real-time magnetic island phase tracking

    Energy Technology Data Exchange (ETDEWEB)

    Borgers, D.P. [Hybrid and Networked Systems, Department of Mechanical Engineering – Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Lauret, M., E-mail: M.Lauret@tue.nl [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, Nieuwegein (Netherlands); Control Systems Technology, Department of Mechanical Engineering – Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Baar, M.R. de [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, Nieuwegein (Netherlands); Control Systems Technology, Department of Mechanical Engineering – Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-11-15

    Highlights: • We propose two Kalman filters for tracking of NTMs on ASDEX Upgrade. • The Kalman filters can track NTMs in a much larger frequency range than PLLs. • The filters are tested on synthetic and experimental data from TEXTOR and TCV. • We conclude that the unscented Kalman filter can be useful for NTM control. -- Abstract: For control of neoclassical tearing modes (NTMs) and the resulting rotating magnetic islands in tokamak plasmas, the frequency and phase of the magnetic islands need to be accurately tracked in real-time. In previous experiments on TEXTOR, this was achieved using a phase-locked loop (PLL). For ASDEX Upgrade however, the desired frequency range in which the islands are to be tracked (100 Hz–10 kHz) is much larger than is possible with a PLL. In this contribution, an extended Kalman filter (EKF) and an unscented Kalman filter (UKF) are proposed for real-time frequency, phase and amplitude tracking of sinusoidal signals, based on noisy measurements. Compared to PLLs, the EKF and UKF are able to track sinusoidal signals in a much larger frequency range. The filters are applied on synthetic data and on experimental data from the TEXTOR and TCV tokamaks, from which we conclude that the UKF can be useful for real-time control of magnetic islands on ASDEX Upgrade.

  18. Real Time MRI Motion Correction with Markerless Tracking

    DEFF Research Database (Denmark)

    Benjaminsen, Claus; Jensen, Rasmus Ramsbøl; Wighton, Paul

    Prospective motion correction for MRI neuroimaging has been demonstrated using MR navigators and external tracking systems using markers. The drawbacks of these two motion estimation methods include prolonged scan time plus lack of compatibility with all image acquisitions, and difficulties...... validating marker attachment resulting in uncertain estimation of the brain motion respectively. We have developed a markerless tracking system, and in this work we demonstrate the use of our system for prospective motion correction, and show that despite being computationally demanding, markerless tracking...... can be implemented for real time motion correction....

  19. Real-time Non-linear Target Tracking Control of Wheeled Mobile Robots

    Institute of Scientific and Technical Information of China (English)

    YU Wenyong

    2006-01-01

    A control strategy for real-time target tracking for wheeled mobile robots is presented. Using a modified Kalman filter for environment perception, a novel tracking control law derived from Lyapunov stability theory is introduced. Tuning of linear velocity and angular velocity with mechanical constraints is applied. The proposed control system can simultaneously solve the target trajectory prediction, real-time tracking, and posture regulation problems of a wheeled mobile robot. Experimental results illustrate the effectiveness of the proposed tracking control laws.

  20. Real time eye tracking using Kalman extended spatio-temporal context learning

    Science.gov (United States)

    Munir, Farzeen; Minhas, Fayyaz ul Amir Asfar; Jalil, Abdul; Jeon, Moongu

    2017-06-01

    Real time eye tracking has numerous applications in human computer interaction such as a mouse cursor control in a computer system. It is useful for persons with muscular or motion impairments. However, tracking the movement of the eye is complicated by occlusion due to blinking, head movement, screen glare, rapid eye movements, etc. In this work, we present the algorithmic and construction details of a real time eye tracking system. Our proposed system is an extension of Spatio-Temporal context learning through Kalman Filtering. Spatio-Temporal Context Learning offers state of the art accuracy in general object tracking but its performance suffers due to object occlusion. Addition of the Kalman filter allows the proposed method to model the dynamics of the motion of the eye and provide robust eye tracking in cases of occlusion. We demonstrate the effectiveness of this tracking technique by controlling the computer cursor in real time by eye movements.

  1. Real-time gaze estimation via pupil center tracking

    Directory of Open Access Journals (Sweden)

    Cazzato Dario

    2018-02-01

    Full Text Available Automatic gaze estimation not based on commercial and expensive eye tracking hardware solutions can enable several applications in the fields of human computer interaction (HCI and human behavior analysis. It is therefore not surprising that several related techniques and methods have been investigated in recent years. However, very few camera-based systems proposed in the literature are both real-time and robust. In this work, we propose a real-time user-calibration-free gaze estimation system that does not need person-dependent calibration, can deal with illumination changes and head pose variations, and can work with a wide range of distances from the camera. Our solution is based on a 3-D appearance-based method that processes the images from a built-in laptop camera. Real-time performance is obtained by combining head pose information with geometrical eye features to train a machine learning algorithm. Our method has been validated on a data set of images of users in natural environments, and shows promising results. The possibility of a real-time implementation, combined with the good quality of gaze tracking, make this system suitable for various HCI applications.

  2. Evaluation of Real-time Measurement Liver Tumor's Movement and SynchronyTM System's Accuracy of Radiosurgery using a Robot CyberKnife

    International Nuclear Information System (INIS)

    Kim, Gha Jung; Shim, Su Jung; Kim, Jeong Ho; Min, Chul Kee; Chung, Weon Kuu

    2008-01-01

    This study aimed to quantitatively measure the movement of tumors in real-time and evaluate the treatment accuracy, during the treatment of a liver tumor patient, who underwent radiosurgery with a Synchrony Respiratory motion tracking system of a robot CyberKnife. Materials and Methods: The study subjects included 24 liver tumor patients who underwent CyberKnife treatment, which included 64 times of treatment with the Synchrony Respiratory motion tracking system (SynchronyTM). The treatment involved inserting 4 to 6 acupuncture needles into the vicinity of the liver tumor in all the patients using ultrasonography as a guide. A treatment plan was set up using the CT images for treatment planning uses. The position of the acupuncture needle was identified for every treatment time by Digitally Reconstructed Radiography (DRR) prepared at the time of treatment planning and X-ray images photographed in real-time. Subsequent results were stored through a Motion Tracking System (MTS) using the Mtsmain.log treatment file. In this way, movement of the tumor was measured. Besides, the accuracy of radiosurgery using CyberKnife was evaluated by the correlation errors between the real-time positions of the acupuncture needles and the predicted coordinates. Results: The maximum and the average translational movement of the liver tumor were measured 23.5 mm and 13.9±5.5 mm, respectively from the superior to the inferior direction, 3.9 mm and 1.9±0.9 mm, respectively from left to right, and 8.3 mm and 4.9±1.9 mm, respectively from the anterior to the posterior direction. The maximum and the average rotational movement of the liver tumor were measured to be 3.3o and 2.6±1.3o, respectively for X (Left-Right) axis rotation, 4.8o and 2.3±1.0o, respectively for Y (Cranio-Caudal) axis rotation, 3.9o and 2.8±1.1o, respectively for Z (Anterior-Posterior) axis rotation. In addition, the average correlation error, which represents the treatment's accuracy was 1.1±0.7 mm. Conclusion

  3. Tracking Multiple People Online and in Real Time

    Science.gov (United States)

    2015-12-21

    NO. 0704-0188 3. DATES COVERED (From - To) - UU UU UU UU 21-12-2015 Approved for public release; distribution is unlimited. Tracking multiple people ...online and in real time We cast the problem of tracking several people as a graph partitioning problem that takes the form of an NP-hard binary...PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Duke University 2200 West Main Street Suite 710 Durham, NC 27705 -4010 ABSTRACT Tracking multiple

  4. Real-time tracking with a 3D-flow processor array

    International Nuclear Information System (INIS)

    Crosetto, D.

    1993-01-01

    The problem of real-time track-finding has been performed to date with CAM (Content Addressable Memories) or with fast coincidence logic, because the processing scheme was though to have much slower performance. Advances in technology together with a new architectural approach make it feasible to also explore the computing technique for real-time track finding thus giving the advantages of implementing algorithms that can find more parameters such as calculate the sagitta, curvature, pt, etc. with respect to the CAM approach. This report describes real-time track finding using a new computing approach technique based on the 3D-flow array processor system. This system consists of a fixed interconnection architexture scheme, allowing flexible algorithm implementation on a scalable platform. The 3D-Flow parallel processing system for track finding is scalable in size and performance by either increasing the number of processors, or increasing the speed or else the number of pipelined stages. The present article describes the conceptual idea and the design stage of the project

  5. Real-time tracking with a 3D-Flow processor array

    International Nuclear Information System (INIS)

    Crosetto, D.

    1993-06-01

    The problem of real-time track-finding has been performed to date with CAM (Content Addressable Memories) or with fast coincidence logic, because the processing scheme was thought to have much slower performance. Advances in technology together with a new architectural approach make it feasible to also explore the computing technique for real-time track finding thus giving the advantages of implementing algorithms that can find more parameters such as calculate the sagitta, curvature, pt, etc., with respect to the CAM approach. The report describes real-time track finding using new computing approach technique based on the 3D-Flow array processor system. This system consists of a fixed interconnection architecture scheme, allowing flexible algorithm implementation on a scalable platform. The 3D-Flow parallel processing system for track finding is scalable in size and performance by either increasing the number of processors, or increasing the speed or else the number of pipelined stages. The present article describes the conceptual idea and the design stage of the project

  6. Four-dimensional dose distributions of step-and-shoot IMRT delivered with real-time tumor tracking for patients with irregular breathing: Constant dose rate vs dose rate regulation

    International Nuclear Information System (INIS)

    Yang Xiaocheng; Han-Oh, Sarah; Gui Minzhi; Niu Ying; Yu, Cedric X.; Yi Byongyong

    2012-01-01

    Purpose: Dose-rate-regulated tracking (DRRT) is a tumor tracking strategy that programs the MLC to track the tumor under regular breathing and adapts to breathing irregularities during delivery using dose rate regulation. Constant-dose-rate tracking (CDRT) is a strategy that dynamically repositions the beam to account for intrafractional 3D target motion according to real-time information of target location obtained from an independent position monitoring system. The purpose of this study is to illustrate the differences in the effectiveness and delivery accuracy between these two tracking methods in the presence of breathing irregularities. Methods: Step-and-shoot IMRT plans optimized at a reference phase were extended to remaining phases to generate 10-phased 4D-IMRT plans using segment aperture morphing (SAM) algorithm, where both tumor displacement and deformation were considered. A SAM-based 4D plan has been demonstrated to provide better plan quality than plans not considering target deformation. However, delivering such a plan requires preprogramming of the MLC aperture sequence. Deliveries of the 4D plans using DRRT and CDRT tracking approaches were simulated assuming the breathing period is either shorter or longer than the planning day, for 4 IMRT cases: two lung and two pancreatic cases with maximum GTV centroid motion greater than 1 cm were selected. In DRRT, dose rate was regulated to speed up or slow down delivery as needed such that each planned segment is delivered at the planned breathing phase. In CDRT, MLC is separately controlled to follow the tumor motion, but dose rate was kept constant. In addition to breathing period change, effect of breathing amplitude variation on target and critical tissue dose distribution is also evaluated. Results: Delivery of preprogrammed 4D plans by the CDRT method resulted in an average of 5% increase in target dose and noticeable increase in organs at risk (OAR) dose when patient breathing is either 10% faster or

  7. Evaluation of a real-time personnel and material tracking system

    International Nuclear Information System (INIS)

    Trujillo, A.A.; Hoover, C.E.; Garcia, B.A.

    1988-01-01

    Past experience in addressing the insider threat has led to the development of general principles for mitigating the insider threat while minimizing adverse impacts on site operations. Among the general principles developed was the requirement of a real-time personnel and material tracking system. A real-time system for personnel and material tracking will aid in mitigating the insider threat by providing critical information regarding the movement and location of personnel and material. In addition, this system can provide an early detection mechanism for potential insider actions. A system integrating Radio Frequency (RF) transmitters for real-time personnel and material tracking has been developed. This system was installed and tested in an operational environment. This test was intended to demonstrate the system's ability to successfully control access to material and areas by personnel, as well as providing information regarding the status of materials in transit and storage

  8. Real-time WAMI streaming target tracking in fog

    Science.gov (United States)

    Chen, Yu; Blasch, Erik; Chen, Ning; Deng, Anna; Ling, Haibin; Chen, Genshe

    2016-05-01

    Real-time information fusion based on WAMI (Wide-Area Motion Imagery), FMV (Full Motion Video), and Text data is highly desired for many mission critical emergency or security applications. Cloud Computing has been considered promising to achieve big data integration from multi-modal sources. In many mission critical tasks, however, powerful Cloud technology cannot satisfy the tight latency tolerance as the servers are allocated far from the sensing platform, actually there is no guaranteed connection in the emergency situations. Therefore, data processing, information fusion, and decision making are required to be executed on-site (i.e., near the data collection). Fog Computing, a recently proposed extension and complement for Cloud Computing, enables computing on-site without outsourcing jobs to a remote Cloud. In this work, we have investigated the feasibility of processing streaming WAMI in the Fog for real-time, online, uninterrupted target tracking. Using a single target tracking algorithm, we studied the performance of a Fog Computing prototype. The experimental results are very encouraging that validated the effectiveness of our Fog approach to achieve real-time frame rates.

  9. A real-time sub-μrad laser beam tracking system

    Science.gov (United States)

    Buske, Ivo; Schragner, Ralph; Riede, Wolfgang

    2007-10-01

    We present a rugged and reliable real-time laser beam tracking system operating with a high speed, high resolution piezo-electric tip/tilt mirror. Characteristics of the piezo mirror and position sensor are investigated. An industrial programmable automation controller is used to develop a real-time digital PID controller. The controller provides a one million field programmable gate array (FPGA) to realize a high closed-loop frequency of 50 kHz. Beam tracking with a root-mean-squared accuracy better than 0.15 μrad has been laboratory confirmed. The system is intended as an add-on module for established mechanical mrad tracking systems.

  10. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy

    International Nuclear Information System (INIS)

    Seppenwoolde, Yvette; Shirato, Hiroki; Kitamura, Kei; Shimizu, Shinichi; Herk, Marcel van; Lebesque, Joos V.; Miyasaka, Kazuo

    2002-01-01

    Purpose: In this work, three-dimensional (3D) motion of lung tumors during radiotherapy in real time was investigated. Understanding the behavior of tumor motion in lung tissue to model tumor movement is necessary for accurate (gated or breath-hold) radiotherapy or CT scanning. Methods: Twenty patients were included in this study. Before treatment, a 2-mm gold marker was implanted in or near the tumor. A real-time tumor tracking system using two fluoroscopy image processor units was installed in the treatment room. The 3D position of the implanted gold marker was determined by using real-time pattern recognition and a calibrated projection geometry. The linear accelerator was triggered to irradiate the tumor only when the gold marker was located within a certain volume. The system provided the coordinates of the gold marker during beam-on and beam-off time in all directions simultaneously, at a sample rate of 30 images per second. The recorded tumor motion was analyzed in terms of the amplitude and curvature of the tumor motion in three directions, the differences in breathing level during treatment, hysteresis (the difference between the inhalation and exhalation trajectory of the tumor), and the amplitude of tumor motion induced by cardiac motion. Results: The average amplitude of the tumor motion was greatest (12±2 mm [SD]) in the cranial-caudal direction for tumors situated in the lower lobes and not attached to rigid structures such as the chest wall or vertebrae. For the lateral and anterior-posterior directions, tumor motion was small both for upper- and lower-lobe tumors (2±1 mm). The time-averaged tumor position was closer to the exhale position, because the tumor spent more time in the exhalation than in the inhalation phase. The tumor motion was modeled as a sinusoidal movement with varying asymmetry. The tumor position in the exhale phase was more stable than the tumor position in the inhale phase during individual treatment fields. However, in many

  11. Expanding the use of real-time electromagnetic tracking in radiation oncology.

    Science.gov (United States)

    Shah, Amish P; Kupelian, Patrick A; Willoughby, Twyla R; Meeks, Sanford L

    2011-11-15

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT) for both inter- and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery.

  12. Real-time 3D internal marker tracking during arc radiotherapy by the use of combined MV-kV imaging.

    Science.gov (United States)

    Liu, W; Wiersma, R D; Mao, W; Luxton, G; Xing, L

    2008-12-21

    To minimize the adverse dosimetric effect caused by tumor motion, it is desirable to have real-time knowledge of the tumor position throughout the beam delivery process. A promising technique to realize the real-time image guided scheme in external beam radiation therapy is through the combined use of MV and onboard kV beam imaging. The success of this MV-kV triangulation approach for fixed-gantry radiation therapy has been demonstrated. With the increasing acceptance of modern arc radiotherapy in the clinics, a timely and clinically important question is whether the image guidance strategy can be extended to arc therapy to provide the urgently needed real-time tumor motion information. While conceptually feasible, there are a number of theoretical and practical issues specific to the arc delivery that need to be resolved before clinical implementation. The purpose of this work is to establish a robust procedure of system calibration for combined MV and kV imaging for internal marker tracking during arc delivery and to demonstrate the feasibility and accuracy of the technique. A commercially available LINAC equipped with an onboard kV imager and electronic portal imaging device (EPID) was used for the study. A custom built phantom with multiple ball bearings was used to calibrate the stereoscopic MV-kV imaging system to provide the transformation parameters from imaging pixels to 3D world coordinates. The accuracy of the fiducial tracking system was examined using a 4D motion phantom capable of moving in accordance with a pre-programmed trajectory. Overall, spatial accuracy of MV-kV fiducial tracking during the arc delivery process for normal adult breathing amplitude and period was found to be better than 1 mm. For fast motion, the results depended on the imaging frame rates. The RMS error ranged from approximately 0.5 mm for the normal adult breathing pattern to approximately 1.5 mm for more extreme cases with a low imaging frame rate of 3.4 Hz. In general

  13. Real-time 3D internal marker tracking during arc radiotherapy by the use of combined MV-kV imaging

    International Nuclear Information System (INIS)

    Liu, W; Wiersma, R D; Mao, W; Luxton, G; Xing, L

    2008-01-01

    To minimize the adverse dosimetric effect caused by tumor motion, it is desirable to have real-time knowledge of the tumor position throughout the beam delivery process. A promising technique to realize the real-time image guided scheme in external beam radiation therapy is through the combined use of MV and onboard kV beam imaging. The success of this MV-kV triangulation approach for fixed-gantry radiation therapy has been demonstrated. With the increasing acceptance of modern arc radiotherapy in the clinics, a timely and clinically important question is whether the image guidance strategy can be extended to arc therapy to provide the urgently needed real-time tumor motion information. While conceptually feasible, there are a number of theoretical and practical issues specific to the arc delivery that need to be resolved before clinical implementation. The purpose of this work is to establish a robust procedure of system calibration for combined MV and kV imaging for internal marker tracking during arc delivery and to demonstrate the feasibility and accuracy of the technique. A commercially available LINAC equipped with an onboard kV imager and electronic portal imaging device (EPID) was used for the study. A custom built phantom with multiple ball bearings was used to calibrate the stereoscopic MV-kV imaging system to provide the transformation parameters from imaging pixels to 3D world coordinates. The accuracy of the fiducial tracking system was examined using a 4D motion phantom capable of moving in accordance with a pre-programmed trajectory. Overall, spatial accuracy of MV-kV fiducial tracking during the arc delivery process for normal adult breathing amplitude and period was found to be better than 1 mm. For fast motion, the results depended on the imaging frame rates. The RMS error ranged from ∼0.5 mm for the normal adult breathing pattern to ∼1.5 mm for more extreme cases with a low imaging frame rate of 3.4 Hz. In general, highly accurate real-time

  14. A paper based inkjet printed real time location tracking TAG

    KAUST Repository

    Farooqui, Muhammad Fahad; Bilal, Rana Muhammad; Cheema, Hammad; Shamim, Atif

    2013-01-01

    substrates are discussed. The system enables location tracking through a user-friendly interface accessible through all internet enabled devices. Field tests show an update interval of 15 sec, stationary position error of 6.2m and real time tracking error

  15. A paper based inkjet printed real time location tracking TAG

    KAUST Repository

    Farooqui, Muhammad Fahad

    2013-06-01

    This paper presents, for the first time, an inkjet printed, wearable, low-cost, light weight and miniaturized real time locating TAG on an ordinary photo-paper. The 29 grams, 9 cm×8 cm×0.5 cm TAG integrates a GPS/GSM module, a microcontroller with on-paper GPS and GSM antennas. A novel monopole antenna with an L shaped slit is introduced to achieve the required circular polarization for the GPS band. Issues related to integration of active components (e.g. BGA chip) on inkjet-printed paper substrates are discussed. The system enables location tracking through a user-friendly interface accessible through all internet enabled devices. Field tests show an update interval of 15 sec, stationary position error of 6.2m and real time tracking error of 4.7m which is 4 times better than the state-of-the-art. Due to the flexible nature of the paper substrate, the TAG can be designed for different shapes such as a wrist band for child tracking or a collar band for pet tracking applications. © 2013 IEEE.

  16. SU-G-BRA-01: A Real-Time Tumor Localization and Guidance Platform for Radiotherapy Using US and MRI

    International Nuclear Information System (INIS)

    Bednarz, B; Culberson, W; Bassetti, M; McMillan, A; Matrosic, C; Shepard, A; Zagzebski, J; Smith, S; Lee, W; Mills, D; Cao, K; Wang, B; Fiveland, E; Darrow, R; Foo, T

    2016-01-01

    Purpose: To develop and validate a real-time motion management platform for radiotherapy that directly tracks tumor motion using ultrasound and MRI. This will be a cost-effective and non-invasive real-time platform combining the excellent temporal resolution of ultrasound with the excellent soft-tissue contrast of MRI. Methods: A 4D planar ultrasound acquisition during the treatment that is coupled to a pre-treatment calibration training image set consisting of a simultaneous 4D ultrasound and 4D MRI acquisition. The image sets will be rapidly matched using advanced image and signal processing algorithms, allowing the display of virtual MR images of the tumor/organ motion in real-time from an ultrasound acquisition. Results: The completion of this work will result in several innovations including: a (2D) patch-like, MR and LINAC compatible 4D planar ultrasound transducer that is electronically steerable for hands-free operation to provide real-time virtual MR and ultrasound imaging for motion management during radiation therapy; a multi- modal tumor localization strategy that uses ultrasound and MRI; and fast and accurate image processing algorithms that provide real-time information about the motion and location of tumor or related soft-tissue structures within the patient. Conclusion: If successful, the proposed approach will provide real-time guidance for radiation therapy without degrading image or treatment plan quality. The approach would be equally suitable for image-guided proton beam or heavy ion-beam therapy. This work is partially funded by NIH grant R01CA190298

  17. SU-G-BRA-01: A Real-Time Tumor Localization and Guidance Platform for Radiotherapy Using US and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Bednarz, B; Culberson, W; Bassetti, M; McMillan, A; Matrosic, C; Shepard, A; Zagzebski, J [University of Wisconsin, Madison, WI (United States); Smith, S; Lee, W; Mills, D; Cao, K; Wang, B; Fiveland, E; Darrow, R; Foo, T [GE Global Research Center, Niskayuna, NY (United States)

    2016-06-15

    Purpose: To develop and validate a real-time motion management platform for radiotherapy that directly tracks tumor motion using ultrasound and MRI. This will be a cost-effective and non-invasive real-time platform combining the excellent temporal resolution of ultrasound with the excellent soft-tissue contrast of MRI. Methods: A 4D planar ultrasound acquisition during the treatment that is coupled to a pre-treatment calibration training image set consisting of a simultaneous 4D ultrasound and 4D MRI acquisition. The image sets will be rapidly matched using advanced image and signal processing algorithms, allowing the display of virtual MR images of the tumor/organ motion in real-time from an ultrasound acquisition. Results: The completion of this work will result in several innovations including: a (2D) patch-like, MR and LINAC compatible 4D planar ultrasound transducer that is electronically steerable for hands-free operation to provide real-time virtual MR and ultrasound imaging for motion management during radiation therapy; a multi- modal tumor localization strategy that uses ultrasound and MRI; and fast and accurate image processing algorithms that provide real-time information about the motion and location of tumor or related soft-tissue structures within the patient. Conclusion: If successful, the proposed approach will provide real-time guidance for radiation therapy without degrading image or treatment plan quality. The approach would be equally suitable for image-guided proton beam or heavy ion-beam therapy. This work is partially funded by NIH grant R01CA190298.

  18. Evaluation of Real-time Measurement Liver Tumor's Movement and SynchronyTM System's Accuracy of Radiosurgery using a Robot CyberKnife

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gha Jung; Shim, Su Jung; Kim, Jeong Ho; Min, Chul Kee; Chung, Weon Kuu [Konyang University College of Medicine, Daejeon (Korea, Republic of)

    2008-12-15

    This study aimed to quantitatively measure the movement of tumors in real-time and evaluate the treatment accuracy, during the treatment of a liver tumor patient, who underwent radiosurgery with a Synchrony Respiratory motion tracking system of a robot CyberKnife. Materials and Methods: The study subjects included 24 liver tumor patients who underwent CyberKnife treatment, which included 64 times of treatment with the Synchrony Respiratory motion tracking system (SynchronyTM). The treatment involved inserting 4 to 6 acupuncture needles into the vicinity of the liver tumor in all the patients using ultrasonography as a guide. A treatment plan was set up using the CT images for treatment planning uses. The position of the acupuncture needle was identified for every treatment time by Digitally Reconstructed Radiography (DRR) prepared at the time of treatment planning and X-ray images photographed in real-time. Subsequent results were stored through a Motion Tracking System (MTS) using the Mtsmain.log treatment file. In this way, movement of the tumor was measured. Besides, the accuracy of radiosurgery using CyberKnife was evaluated by the correlation errors between the real-time positions of the acupuncture needles and the predicted coordinates. Results: The maximum and the average translational movement of the liver tumor were measured 23.5 mm and 13.9{+-}5.5 mm, respectively from the superior to the inferior direction, 3.9 mm and 1.9{+-}0.9 mm, respectively from left to right, and 8.3 mm and 4.9{+-}1.9 mm, respectively from the anterior to the posterior direction. The maximum and the average rotational movement of the liver tumor were measured to be 3.3o and 2.6{+-}1.3o, respectively for X (Left-Right) axis rotation, 4.8o and 2.3{+-}1.0o, respectively for Y (Cranio-Caudal) axis rotation, 3.9o and 2.8{+-}1.1o, respectively for Z (Anterior-Posterior) axis rotation. In addition, the average correlation error, which represents the treatment's accuracy was 1

  19. A low-cost test-bed for real-time landmark tracking

    Science.gov (United States)

    Csaszar, Ambrus; Hanan, Jay C.; Moreels, Pierre; Assad, Christopher

    2007-04-01

    A low-cost vehicle test-bed system was developed to iteratively test, refine and demonstrate navigation algorithms before attempting to transfer the algorithms to more advanced rover prototypes. The platform used here was a modified radio controlled (RC) car. A microcontroller board and onboard laptop computer allow for either autonomous or remote operation via a computer workstation. The sensors onboard the vehicle represent the types currently used on NASA-JPL rover prototypes. For dead-reckoning navigation, optical wheel encoders, a single axis gyroscope, and 2-axis accelerometer were used. An ultrasound ranger is available to calculate distance as a substitute for the stereo vision systems presently used on rovers. The prototype also carries a small laptop computer with a USB camera and wireless transmitter to send real time video to an off-board computer. A real-time user interface was implemented that combines an automatic image feature selector, tracking parameter controls, streaming video viewer, and user generated or autonomous driving commands. Using the test-bed, real-time landmark tracking was demonstrated by autonomously driving the vehicle through the JPL Mars yard. The algorithms tracked rocks as waypoints. This generated coordinates calculating relative motion and visually servoing to science targets. A limitation for the current system is serial computing-each additional landmark is tracked in order-but since each landmark is tracked independently, if transferred to appropriate parallel hardware, adding targets would not significantly diminish system speed.

  20. REAL TIME TRACKING OBYEK BERGERAK DENGAN WEBCAM BERBASIS WARNA DENGAN METODE BACKGROUND SUBTRACTION

    Directory of Open Access Journals (Sweden)

    Aris Tri Jaka Harjanta

    2017-07-01

    Full Text Available Proses tracking obyek pada real time  video adalah salah satu topik yang penting dalam kajian suveillance system (Dhananjaya, Rama, and Thimmaiah 2015. deteksi dan ekstraksi informasi serta pelacakan obyek atau benda bergerak adalah sebagai salah satu bentuk aplikasi dari computer vision. Beberapa aplikasi yang memanfaatkan metode tracking object atau benda bergerak antara lain adalah UAV (Unmanned Aerial Vehicle surveillance atau lebih dikenal dengan mesin/kendaraan tak berawak, Indoor Monitoring system adalah sistem monitoring keadaan dalam ruangan, serta memonitor trafik lalu lintas yang dapat mengamati pergerakan semua benda dalam keadaan real time. Tracking obyek dalam keadaan real time banyak hal yang perlu diperhatikan dan perlu diperhitungkan dimana semua parameter dan noise atau gangguan object di sekitarnya yang tidak perlu kita amati namun berada dalam satu bagian bersama obyek yang kita amati. Dalam penelitian ini metode yang akan digunakan adalah background subtraction untuk pendeteksian serta tracking obyek dan benda bergerak secara real time berbasis warna dengan memanfaatkan kamera webcam dan menggunakan pustaka opensource OpenCv.

  1. Evaluation of magnetic resonance imaging in thoracic inlet tumors

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Eiro (Kobe Univ. (Japan). School of Medicine)

    1993-06-01

    To evaluate the detectability of tumor invasion to the thoracic inlet, MRI was performed in 57 patients with thoracic inlet tumor, and the diagnostic accuracy of MRI was compared with that of CT concerning the utility for thoracic inlet lesions. And we assessed abnormal findings in comparison with surgical or autopsy findings. In the local extent of the tumor, the accuracy for tumor invasion to the vessels such as subclavian artery and vein was 94.9% for MRI, and 83.5% for CT, and to the brachial plexus was 95.0% for MRI, and 60.0% for CT. MRI was superior to CT, but MRI was equivalent to CT with regard to invasion to the base of the neck, lateral chest wall, ribs, and vertebral bodies. However on MRI, it is easier to understand the longitudinal tumor extent than on CT. CT has superior spatial resolusion but CT has also disadvantages, such as streak artifact caused by shoulder joints, resulting in image degradation. In contrast, MRI has inherent advantages, and multiple images which facilitate the relationship between tumor and normal structures. Coronal and sagittal MR images facilitated three-dimensional observation of tumor of invasion in the thoracic inlet. Furthermore to improve image quality of MRI for the thoracic inlet, we newly devised a high molecular polyester shell for fixing a surface coil. On the high resolution MR (HR-MR) imaging using our shell, normal lymph nodes, muscles, blood vessels and the branches of the branchial plexus were clearly visualized in detail. Our shell was simple to process and facilitated immobilization of a surface coil. HR-MR technique produces images of high resolution after simple preparation. In conclusion, MRI was very useful for detecting lesions of the thoracic inlet and in deciding surgical indication and the planning for radiotherapy. (author).

  2. Real-time tumor motion estimation using respiratory surrogate via memory-based learning

    International Nuclear Information System (INIS)

    Li Ruijiang; Xing Lei; Lewis, John H; Berbeco, Ross I

    2012-01-01

    Respiratory tumor motion is a major challenge in radiation therapy for thoracic and abdominal cancers. Effective motion management requires an accurate knowledge of the real-time tumor motion. External respiration monitoring devices (optical, etc) provide a noninvasive, non-ionizing, low-cost and practical approach to obtain the respiratory signal. Due to the highly complex and nonlinear relations between tumor and surrogate motion, its ultimate success hinges on the ability to accurately infer the tumor motion from respiratory surrogates. Given their widespread use in the clinic, such a method is critically needed. We propose to use a powerful memory-based learning method to find the complex relations between tumor motion and respiratory surrogates. The method first stores the training data in memory and then finds relevant data to answer a particular query. Nearby data points are assigned high relevance (or weights) and conversely distant data are assigned low relevance. By fitting relatively simple models to local patches instead of fitting one single global model, it is able to capture highly nonlinear and complex relations between the internal tumor motion and external surrogates accurately. Due to the local nature of weighting functions, the method is inherently robust to outliers in the training data. Moreover, both training and adapting to new data are performed almost instantaneously with memory-based learning, making it suitable for dynamically following variable internal/external relations. We evaluated the method using respiratory motion data from 11 patients. The data set consists of simultaneous measurement of 3D tumor motion and 1D abdominal surface (used as the surrogate signal in this study). There are a total of 171 respiratory traces, with an average peak-to-peak amplitude of ∼15 mm and average duration of ∼115 s per trace. Given only 5 s (roughly one breath) pretreatment training data, the method achieved an average 3D error of 1.5 mm and 95

  3. Real-time tumor motion estimation using respiratory surrogate via memory-based learning

    Science.gov (United States)

    Li, Ruijiang; Lewis, John H.; Berbeco, Ross I.; Xing, Lei

    2012-08-01

    Respiratory tumor motion is a major challenge in radiation therapy for thoracic and abdominal cancers. Effective motion management requires an accurate knowledge of the real-time tumor motion. External respiration monitoring devices (optical, etc) provide a noninvasive, non-ionizing, low-cost and practical approach to obtain the respiratory signal. Due to the highly complex and nonlinear relations between tumor and surrogate motion, its ultimate success hinges on the ability to accurately infer the tumor motion from respiratory surrogates. Given their widespread use in the clinic, such a method is critically needed. We propose to use a powerful memory-based learning method to find the complex relations between tumor motion and respiratory surrogates. The method first stores the training data in memory and then finds relevant data to answer a particular query. Nearby data points are assigned high relevance (or weights) and conversely distant data are assigned low relevance. By fitting relatively simple models to local patches instead of fitting one single global model, it is able to capture highly nonlinear and complex relations between the internal tumor motion and external surrogates accurately. Due to the local nature of weighting functions, the method is inherently robust to outliers in the training data. Moreover, both training and adapting to new data are performed almost instantaneously with memory-based learning, making it suitable for dynamically following variable internal/external relations. We evaluated the method using respiratory motion data from 11 patients. The data set consists of simultaneous measurement of 3D tumor motion and 1D abdominal surface (used as the surrogate signal in this study). There are a total of 171 respiratory traces, with an average peak-to-peak amplitude of ∼15 mm and average duration of ∼115 s per trace. Given only 5 s (roughly one breath) pretreatment training data, the method achieved an average 3D error of 1.5 mm and 95

  4. Permanent interstitial implantation of 125Iodine seed for thoracic malignant tumors

    International Nuclear Information System (INIS)

    Xu Zhongheng; Qian Yongyue; Wu Jinchang; Liu Zengli

    2002-01-01

    Objective: To observe effect of 125 Iodine sed on interstitial brachytherapy of patient with thoracic malignant tumor. Methods: 125 Iodine seed were inserted into the target tissue and permanent left there for brachytherapy in 6 cases of thoracic malignant tumors, which including lung cancer, Pancoast's tumour, mediastinal malignant schwannoma. Results: All cases were rehabilitated shortly after operation. The implanted lesions remained controlled now and in dead patients. No radiation-related and 125 Iodine seed-related complications occurred. Conclusion: Brachytherapy by implantation of 125 Iodine seeds of remained tumor tissue in patients with thoracic malignant tumor after operation has a satisfactory outcome. This therapy can control local recurrent of thoracic malignant tumor. But the results in long term should be studied further

  5. Real-Time Tracking of Knee Adduction Moment in Patients with Knee Osteoarthritis

    Science.gov (United States)

    Kang, Sang Hoon; Lee, Song Joo; Zhang, Li-Qun

    2014-01-01

    Background The external knee adduction moment (EKAM) is closely associated with the presence, progression, and severity of knee osteoarthritis (OA). However, there is a lack of convenient and practical method to estimate and track in real-time the EKAM of patients with knee OA for clinical evaluation and gait training, especially outside of gait laboratories. New Method A real-time EKAM estimation method was developed and applied to track and investigate the EKAM and other knee moments during stepping on an elliptical trainer in both healthy subjects and a patient with knee OA. Results Substantial changes were observed in the EKAM and other knee moments during stepping in the patient with knee OA. Comparison with Existing Method(s) This is the first study to develop and test feasibility of real-time tracking method of the EKAM on patients with knee OA using 3-D inverse dynamics. Conclusions The study provides us an accurate and practical method to evaluate in real-time the critical EKAM associated with knee OA, which is expected to help us to diagnose and evaluate patients with knee OA and provide the patients with real-time EKAM feedback rehabilitation training. PMID:24361759

  6. Accuracy Improvement of Real-Time Location Tracking for Construction Workers

    Directory of Open Access Journals (Sweden)

    Hyunsoo Kim

    2018-05-01

    Full Text Available Extensive research has been conducted on the real-time locating system (RTLS for tracking construction components, including workers, equipment, and materials, in order to improve construction performance (e.g., productivity improvement or accident prevention. In order to prevent safety accidents and make more sustainable construction job sites, the higher accuracy of RTLS is required. To improve the accuracy of RTLS in construction projects, this paper presents a RTLS using radio frequency identification (RFID. For this goal, this paper develops a location tracking error mitigation algorithm and presents the concept of using assistant tags. The applicability and effectiveness of the developed RTLS are tested under eight different construction environments and the test results confirm the system’s strong potential for improving the accuracy of real-time location tracking in construction projects, thus enhancing construction performance.

  7. Stereotactic radiotherapy for lung cancer: Non-invasive real-time tumor tracking; Radiotherapie stereotaxique de carcinomes bronchiques primitifs: suivi non invasif de la cible en temps reel

    Energy Technology Data Exchange (ETDEWEB)

    Bibault, J.E.; Prevost, B.; Mirabel, X.; Lacornerie, T.; Dubus, F.; Lartigau, E. [Departement universitaire de radiotherapie, universite Lille 2, CyberKnife Nord-Ouest, centre Oscar-Lambret, 59 - Lille (France); Dansin, E. [Departement d' oncologie generale, centre Oscar-Lambret, 59 - Lille (France)

    2010-12-15

    Purpose: Stereotactic radiation therapy using the CyberKnife{sup R} has been introduced in France in 2006. Two treatment modalities are currently available: the first one (Synchrony{sup R}) is a real-time fiducial-based target tracking system, while the other (Xsight Lung Tracking [XLT] System{sup R}) is completely fiducial-free. Patients and methods: Sixty-eight patients were treated for a pulmonary tumor between June 2007 and November 2009. Since august 2008, the XLT System{sup R} was used for 26 patients. We report the necessary conditions for the XLT System (position, laterality and size of the tumor), the toxicity and outcome of this treatment. Results: Twenty-two patients were analyzed. Median follow-up was 6 months (min = 3; max = 16). Local control rate was 100%. The main toxicity was grade grade 1 pulmonary alveolitis (27%). No grade 3 or 4 toxicities were reported. Conclusion: The high local control rate and low toxicity obtained with the CyberKnife{sup R} XLT System{sup R} suggest that such treatment is an alternative for inoperable patients. (authors)

  8. Real-Time Motion Tracking for Mobile Augmented/Virtual Reality Using Adaptive Visual-Inertial Fusion.

    Science.gov (United States)

    Fang, Wei; Zheng, Lianyu; Deng, Huanjun; Zhang, Hongbo

    2017-05-05

    In mobile augmented/virtual reality (AR/VR), real-time 6-Degree of Freedom (DoF) motion tracking is essential for the registration between virtual scenes and the real world. However, due to the limited computational capacity of mobile terminals today, the latency between consecutive arriving poses would damage the user experience in mobile AR/VR. Thus, a visual-inertial based real-time motion tracking for mobile AR/VR is proposed in this paper. By means of high frequency and passive outputs from the inertial sensor, the real-time performance of arriving poses for mobile AR/VR is achieved. In addition, to alleviate the jitter phenomenon during the visual-inertial fusion, an adaptive filter framework is established to cope with different motion situations automatically, enabling the real-time 6-DoF motion tracking by balancing the jitter and latency. Besides, the robustness of the traditional visual-only based motion tracking is enhanced, giving rise to a better mobile AR/VR performance when motion blur is encountered. Finally, experiments are carried out to demonstrate the proposed method, and the results show that this work is capable of providing a smooth and robust 6-DoF motion tracking for mobile AR/VR in real-time.

  9. WE-G-BRF-06: Positron Emission Tomography (PET)-Guided Dynamic Lung Tumor Tracking for Cancer Radiotherapy: First Patient Simulations

    International Nuclear Information System (INIS)

    Yang, J; Loo, B; Graves, E; Yamamoto, T; Keall, P

    2014-01-01

    Purpose: PET-guided dynamic tumor tracking is a novel concept of biologically targeted image guidance for radiotherapy. A dynamic tumor tracking algorithm based on list-mode PET data has been developed and previously tested on dynamic phantom data. In this study, we investigate if dynamic tumor tracking is clinically feasible by applying the method to lung cancer patient PET data. Methods: PET-guided tumor tracking estimates the target position of a segmented volume in PET images reconstructed continuously from accumulated coincidence events correlated with external respiratory motion, simulating real-time applications, i.e., only data up to the current time point is used to estimate the target position. A target volume is segmented with a 50% threshold, consistently, of the maximum intensity in the predetermined volume of interest. Through this algorithm, the PET-estimated trajectories are quantified from four lung cancer patients who have distinct tumor location and size. The accuracy of the PET-estimated trajectories is evaluated by comparing to external respiratory motion because the ground-truth of tumor motion is not known in patients; however, previous phantom studies demonstrated sub-2mm accuracy using clinically derived 3D tumor motion. Results: The overall similarity of motion patterns between the PET-estimated trajectories and the external respiratory traces implies that the PET-guided tracking algorithm can provide an acceptable level of targeting accuracy. However, there are variations in the tracking accuracy between tumors due to the quality of the segmentation which depends on target-to-background ratio, tumor location and size. Conclusion: For the first time, a dynamic tumor tracking algorithm has been applied to lung cancer patient PET data, demonstrating clinical feasibility of real-time tumor tracking for integrated PET-linacs. The target-to-background ratio is a significant factor determining accuracy: screening during treatment planning would

  10. Testbeam results of the first real-time embedded tracking system with artificial retina

    Energy Technology Data Exchange (ETDEWEB)

    Neri, N., E-mail: nicola.neri@mi.infn.it; Abba, A.; Caponio, F.; Citterio, M.; Coelli, S.; Fu, J.; Merli, A.; Monti, M.; Petruzzo, M.

    2017-02-11

    We present the testbeam results of the first real-time embedded tracking system based on artificial retina algorithm. The tracking system prototype is capable of fast track reconstruction with a latency of the response below 1 μs and track parameter resolutions that are comparable with the offline results. The artificial retina algorithm was implemented in hardware in a custom data acquisition board based on commercial FPGA. The system was tested successfully using a 180 GeV/c proton beam at the CERN SPS with a maximum track rate of about 280 kHz. Online track parameters were found in good agreement with offline results and with the simulated response. - Highlights: • First real-time tracking system based on artificial retina algorithm tested on beam. • Fast track reconstruction within one microsecond latency and offline like quality. • Fast tracking algorithm implemented in commercial FPGAs.

  11. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien; Keall, Paul J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, University of Sydney, NSW 2006 (Australia); Booth, Jeremy T. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia)

    2014-06-15

    Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real time tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first

  12. SU-G-JeP1-01: A Combination of Real Time Electromagnetic Localization and Tracking with Cone Beam Computed Tomography in Stereotactic Radiosurgery for Brain Tumors

    International Nuclear Information System (INIS)

    Muralidhar, K Raja; Pangam, Suresh; Ponaganti, Srinivas; Krishna, Jayarama; Sujana, Kolla V; Komanduri, Priya K

    2016-01-01

    Purpose: 1. online verification of patient position during treatment using calypso electromagnetic localization and tracking system. 2. Verification and comparison of positional accuracy between cone beam computed tomography and calypso system. 3. Presenting the advantage of continuation localization in Stereotactic radiosurgery treatments. Methods: Ten brain tumor cases were taken for this study. Patients with head mask were under gone Computed Tomography (CT). Before scanning, mask was cut on the fore head area to keep surface beacons on the skin. Slice thickness of 0.65 mm were taken for this study. x, y, z coordinates of these beacons in TPS were entered into tracking station. Varian True Beam accelerator, equipped with On Board Imager was used to take Cone beam Computed Tomography (CBCT) to localize the patient. Simultaneously Surface beacons were used to localize and track the patient throughout the treatment. The localization values were compared in both systems. For localization CBCT considered as reference. Tracking was done throughout the treatment using Calypso tracking system using electromagnetic array. This array was in tracking position during imaging and treatment. Flattening Filter free beams of 6MV photons along with Volumetric Modulated Arc Therapy was used for the treatment. The patient movement was observed throughout the treatment ranging from 2 min to 4 min. Results: The average variation observed between calypso system and CBCT localization was less than 0.5 mm. These variations were due to manual errors while keeping beacon on the patient. Less than 0.05 cm intra-fraction motion was observed throughout the treatment with the help of continuous tracking. Conclusion: Calypso target localization system is one of the finest tools to perform radiosurgery in combination with CBCT. This non radiographic method of tracking is a real beneficial method to treat patients confidently while observing real-time motion information of the patient.

  13. SU-G-JeP1-01: A Combination of Real Time Electromagnetic Localization and Tracking with Cone Beam Computed Tomography in Stereotactic Radiosurgery for Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, K Raja; Pangam, Suresh; Ponaganti, Srinivas; Krishna, Jayarama; Sujana, Kolla V; Komanduri, Priya K [American Oncology Institute, Hyderabad, Telangana (India)

    2016-06-15

    Purpose: 1. online verification of patient position during treatment using calypso electromagnetic localization and tracking system. 2. Verification and comparison of positional accuracy between cone beam computed tomography and calypso system. 3. Presenting the advantage of continuation localization in Stereotactic radiosurgery treatments. Methods: Ten brain tumor cases were taken for this study. Patients with head mask were under gone Computed Tomography (CT). Before scanning, mask was cut on the fore head area to keep surface beacons on the skin. Slice thickness of 0.65 mm were taken for this study. x, y, z coordinates of these beacons in TPS were entered into tracking station. Varian True Beam accelerator, equipped with On Board Imager was used to take Cone beam Computed Tomography (CBCT) to localize the patient. Simultaneously Surface beacons were used to localize and track the patient throughout the treatment. The localization values were compared in both systems. For localization CBCT considered as reference. Tracking was done throughout the treatment using Calypso tracking system using electromagnetic array. This array was in tracking position during imaging and treatment. Flattening Filter free beams of 6MV photons along with Volumetric Modulated Arc Therapy was used for the treatment. The patient movement was observed throughout the treatment ranging from 2 min to 4 min. Results: The average variation observed between calypso system and CBCT localization was less than 0.5 mm. These variations were due to manual errors while keeping beacon on the patient. Less than 0.05 cm intra-fraction motion was observed throughout the treatment with the help of continuous tracking. Conclusion: Calypso target localization system is one of the finest tools to perform radiosurgery in combination with CBCT. This non radiographic method of tracking is a real beneficial method to treat patients confidently while observing real-time motion information of the patient.

  14. Tracking Accuracy of a Real-Time Fiducial Tracking System for Patient Positioning and Monitoring in Radiation Therapy

    International Nuclear Information System (INIS)

    Shchory, Tal; Schifter, Dan; Lichtman, Rinat; Neustadter, David; Corn, Benjamin W.

    2010-01-01

    Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive tracking system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.

  15. Steep Dose-Response Relationship for Stage I Non-Small-Cell Lung Cancer Using Hypofractionated High-Dose Irradiation by Real-Time Tumor-Tracking Radiotherapy

    International Nuclear Information System (INIS)

    Onimaru, Rikiya; Fujino, Masaharu; Yamazaki, Koichi; Onodera, Yuya; Taguchi, Hiroshi; Katoh, Norio; Hommura, Fumihiro; Oizumi, Satoshi; Nishimura, Masaharu; Shirato, Hiroki

    2008-01-01

    Purpose: To investigate the clinical outcomes of patients with pathologically proven, peripherally located, Stage I non-small-cell lung cancer who had undergone stereotactic body radiotherapy using real-time tumor tracking radiotherapy during the developmental period. Methods and Materials: A total of 41 patients (25 with Stage T1 and 16 with Stage T2) were admitted to the study between February 2000 and June 2005. A 5-mm planning target volume margin was added to the clinical target volume determined with computed tomography at the end of the expiratory phase. The gating window ranged from ±2 to 3 mm. The dose fractionation schedule was 40 or 48 Gy in four fractions within 1 week. The dose was prescribed at the center of the planning target volume, giving more than an 80% dose at the planning target volume periphery. Results: For 28 patients treated with 48 Gy in four fractions, the overall actuarial survival rate at 3 years was 82% for those with Stage IA and 32% for those with Stage IB. For patients treated with 40 Gy in four fractions within 1 week, the overall actuarial survival rate at 3 years was 50% for those with Stage IA and 0% for those with Stage IB. A significant difference was found in local control between those with Stage IB who received 40 Gy vs. 48 Gy (p = 0.0015) but not in those with Stage IA (p = 0.5811). No serious radiation morbidity was observed with either dose schedule. Conclusion: The results of our study have shown that 48 Gy in four fractions within 1 week is a safe and effective treatment for peripherally located, Stage IA non-small-cell lung cancer. A steep dose-response curve between 40 and 48 Gy using a daily dose of 12 Gy delivered within 1 week was identified for Stage IB non-small-cell lung cancer in stereotactic body radiotherapy using real-time tumor tracking radiotherapy

  16. SU-G-BRA-04: Simulation of Errors in Maximal Intensity Projection (MIP)-Based Lung Tumor Internal Target Volumes (ITV) Using Real-Time 2D MRI and Deformable Image Registration Based Lung Tumor Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D; Kishan, A; Santhanam, A; Min, Y; O’Connell, D; Lamb, J; Cao, M; Agazaryan, N; Yang, Y; Lee, P; Low, D [University of California, Los Angeles, Ca (United States)

    2016-06-15

    Purpose: To evaluate the effect of inter- and intra-fractional tumor motion on the error in four-dimensional computed tomography (4DCT) maximal intensity projection (MIP)–based lung tumor internal target volumes (ITV), using deformable image registration of real-time 2D-sagital cine-mode MRI acquired during lung SBRT treatments. Methods: Five lung tumor patients underwent free breathing SBRT treatment on the ViewRay, with dose prescribed to PTV (4DCT MIP-based ITV+3–6mm margin). Sagittal slice cine-MR images (3.5×3.5mm pixels) were acquired through the center of the tumor at 4 frames per second throughout the treatments (3–4 fractions of 21–32 minutes duration). Tumor GTVs were contoured on the first frame of the cine and tracked throughout the treatment using off-line optical-flow based deformable registration implemented on a GPU cluster. Pseudo-4DCT MIP-based ITVs were generated from MIPs of the deformed GTV contours limited to short segments of image data. All possible pseudo-4DCT MIP-based ITV volumes were generated with 1s resolution and compared to the ITV volume of the entire treatment course. Varying pseudo-4DCT durations from 10-50s were analyzed. Results: Tumors were covered in their entirety by PTV in the patients analysed here. However, pseudo-4DCT based ITV volumes were observed that were as small as 29% of the entire treatment-ITV, depending on breathing irregularity and the duration of pseudo-4DCT. With an increase in duration of pseudo-4DCT from 10–50s the minimum volume acquired from 95% of all pseudo-4DCTs increased from 62%–81% of the treatment ITV. Conclusion: A 4DCT MIP-based ITV offers a ‘snap-shot’ of breathing motion for the brief period of time the tumor is imaged on a specific day. Real time MRI over prolonged periods of time and over multiple treatment fractions shows that the accuracy of this snap-shot varies according to inter- and intra-fractional tumor motion. Further work is required to investigate the dosimetric

  17. SU-G-BRA-04: Simulation of Errors in Maximal Intensity Projection (MIP)-Based Lung Tumor Internal Target Volumes (ITV) Using Real-Time 2D MRI and Deformable Image Registration Based Lung Tumor Tracking

    International Nuclear Information System (INIS)

    Thomas, D; Kishan, A; Santhanam, A; Min, Y; O’Connell, D; Lamb, J; Cao, M; Agazaryan, N; Yang, Y; Lee, P; Low, D

    2016-01-01

    Purpose: To evaluate the effect of inter- and intra-fractional tumor motion on the error in four-dimensional computed tomography (4DCT) maximal intensity projection (MIP)–based lung tumor internal target volumes (ITV), using deformable image registration of real-time 2D-sagital cine-mode MRI acquired during lung SBRT treatments. Methods: Five lung tumor patients underwent free breathing SBRT treatment on the ViewRay, with dose prescribed to PTV (4DCT MIP-based ITV+3–6mm margin). Sagittal slice cine-MR images (3.5×3.5mm pixels) were acquired through the center of the tumor at 4 frames per second throughout the treatments (3–4 fractions of 21–32 minutes duration). Tumor GTVs were contoured on the first frame of the cine and tracked throughout the treatment using off-line optical-flow based deformable registration implemented on a GPU cluster. Pseudo-4DCT MIP-based ITVs were generated from MIPs of the deformed GTV contours limited to short segments of image data. All possible pseudo-4DCT MIP-based ITV volumes were generated with 1s resolution and compared to the ITV volume of the entire treatment course. Varying pseudo-4DCT durations from 10-50s were analyzed. Results: Tumors were covered in their entirety by PTV in the patients analysed here. However, pseudo-4DCT based ITV volumes were observed that were as small as 29% of the entire treatment-ITV, depending on breathing irregularity and the duration of pseudo-4DCT. With an increase in duration of pseudo-4DCT from 10–50s the minimum volume acquired from 95% of all pseudo-4DCTs increased from 62%–81% of the treatment ITV. Conclusion: A 4DCT MIP-based ITV offers a ‘snap-shot’ of breathing motion for the brief period of time the tumor is imaged on a specific day. Real time MRI over prolonged periods of time and over multiple treatment fractions shows that the accuracy of this snap-shot varies according to inter- and intra-fractional tumor motion. Further work is required to investigate the dosimetric

  18. 2010 winter games tracks energy in real time

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-01-15

    An online energy tracker was developed by BC Hydro to publicly monitor the real-time energy consumption at the Vancouver 2010 Olympic winter game sites within Vancouver, Richmond, Whistler and Whistler Blackcomb. The venues and associated sites participating in the live energy tracking project were the Richmond Olympic Oval, Canada Hockey Place, Vancouver Olympic/Paralympic Centre, South East False Creek Community Centre, Whistler Blackcomb Roundhouse Lodge and snowmaking facilities, and the Olympic and Paralympic Villages. The system was developed to allow venue managers to optimize their use of electricity on an hourly and daily basis. An energy tracking display board developed by Pulse Energy enabled them to compare their performance to similar facilities in real time, and to determine the greenhouse gas savings achieved as result of building and operating practices. Some venues had the potential to save as much as 15 to 20 per cent in energy costs with corresponding reductions in carbon emissions. Efficiency and conservation was built into the design of many new venues. The retrofits made to several existing buildings will continue to contribute to British Columbia's conservation goals long after the 2010 winter games are over.

  19. Kalman filters for real-time magnetic island phase tracking

    NARCIS (Netherlands)

    Borgers, D. P.; Lauret, M.; M.R. de Baar,

    2013-01-01

    For control of neoclassical tearing modes (NTMs) and the resulting rotating magnetic islands in tokamak plasmas, the frequency and phase of the magnetic islands need to be accurately tracked in real-time. In previous experiments on TEXTOR, this was achieved using a phase-locked loop (PLL). For ASDEX

  20. Real-time object detection, tracking and occlusion reasoning

    Science.gov (United States)

    Divakaran, Ajay; Yu, Qian; Tamrakar, Amir; Sawhney, Harpreet Singh; Zhu, Jiejie; Javed, Omar; Liu, Jingen; Cheng, Hui; Eledath, Jayakrishnan

    2018-02-27

    A system for object detection and tracking includes technologies to, among other things, detect and track moving objects, such as pedestrians and/or vehicles, in a real-world environment, handle static and dynamic occlusions, and continue tracking moving objects across the fields of view of multiple different cameras.

  1. Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Krieger, Thomas; Richter, Anne; Baier, Kurt; Wilbert, Juergen; Sweeney, Reinhart A.; Flentje, Michael

    2009-01-01

    Purpose: To evaluate the potential of image-guidance, gating and real-time tumor tracking to improve accuracy in pulmonary stereotactic body radiotherapy (SBRT). Materials and methods: Safety margins for compensation of inter- and intra-fractional uncertainties of the target position were calculated based on SBRT treatments of 43 patients with pre- and post-treatment cone-beam CT imaging. Safety margins for compensation of breathing motion were evaluated for 17 pulmonary tumors using respiratory correlated CT, model-based segmentation of 4D-CT images and voxel-based dose accumulation; the target in the mid-ventilation position was the reference. Results: Because of large inter-fractional base-line shifts of the tumor, stereotactic patient positioning and image-guidance based on the bony anatomy required safety margins of 12 mm and 9 mm, respectively. Four-dimensional image-guidance targeting the tumor itself and intra-fractional tumor tracking reduced margins to <5 mm and <3 mm, respectively. Additional safety margins are required to compensate for breathing motion. A quadratic relationship between tumor motion and margins for motion compensation was observed: safety margins of 2.4 mm and 6 mm were calculated for compensation of 10 mm and 20 mm motion amplitudes in cranio-caudal direction, respectively. Conclusion: Four-dimensional image-guidance with pre-treatment verification of the target position and online correction of errors reduced safety margins most effectively in pulmonary SBRT.

  2. WE-AB-303-08: Direct Lung Tumor Tracking Using Short Imaging Arcs

    International Nuclear Information System (INIS)

    Shieh, C; Huang, C; Keall, P; Feain, I

    2015-01-01

    Purpose: Most current tumor tracking technologies rely on implanted markers, which suffer from potential toxicity of marker placement and mis-targeting due to marker migration. Several markerless tracking methods have been proposed: these are either indirect methods or have difficulties tracking lung tumors in most clinical cases due to overlapping anatomies in 2D projection images. We propose a direct lung tumor tracking algorithm robust to overlapping anatomies using short imaging arcs. Methods: The proposed algorithm tracks the tumor based on kV projections acquired within the latest six-degree imaging arc. To account for respiratory motion, an external motion surrogate is used to select projections of the same phase within the latest arc. For each arc, the pre-treatment 4D cone-beam CT (CBCT) with tumor contours are used to estimate and remove the contribution to the integral attenuation from surrounding anatomies. The position of the tumor model extracted from 4D CBCT of the same phase is then optimized to match the processed projections using the conjugate gradient method. The algorithm was retrospectively validated on two kV scans of a lung cancer patient with implanted fiducial markers. This patient was selected as the tumor is attached to the mediastinum, representing a challenging case for markerless tracking methods. The tracking results were converted to expected marker positions and compared with marker trajectories obtained via direct marker segmentation (ground truth). Results: The root-mean-squared-errors of tracking were 0.8 mm and 0.9 mm in the superior-inferior direction for the two scans. Tracking error was found to be below 2 and 3 mm for 90% and 98% of the time, respectively. Conclusions: A direct lung tumor tracking algorithm robust to overlapping anatomies was proposed and validated on two scans of a lung cancer patient. Sub-millimeter tracking accuracy was observed, indicating the potential of this algorithm for real-time guidance

  3. Real-time markerless tracking for augmented reality: the virtual visual servoing framework.

    Science.gov (United States)

    Comport, Andrew I; Marchand, Eric; Pressigout, Muriel; Chaumette, François

    2006-01-01

    Tracking is a very important research subject in a real-time augmented reality context. The main requirements for trackers are high accuracy and little latency at a reasonable cost. In order to address these issues, a real-time, robust, and efficient 3D model-based tracking algorithm is proposed for a "video see through" monocular vision system. The tracking of objects in the scene amounts to calculating the pose between the camera and the objects. Virtual objects can then be projected into the scene using the pose. Here, nonlinear pose estimation is formulated by means of a virtual visual servoing approach. In this context, the derivation of point-to-curves interaction matrices are given for different 3D geometrical primitives including straight lines, circles, cylinders, and spheres. A local moving edges tracker is used in order to provide real-time tracking of points normal to the object contours. Robustness is obtained by integrating an M-estimator into the visual control law via an iteratively reweighted least squares implementation. This approach is then extended to address the 3D model-free augmented reality problem. The method presented in this paper has been validated on several complex image sequences including outdoor environments. Results show the method to be robust to occlusion, changes in illumination, and mistracking.

  4. Achieving Real-Time Tracking Mobile Wireless Sensors Using SE-KFA

    Science.gov (United States)

    Kadhim Hoomod, Haider, Dr.; Al-Chalabi, Sadeem Marouf M.

    2018-05-01

    Nowadays, Real-Time Achievement is very important in different fields, like: Auto transport control, some medical applications, celestial body tracking, controlling agent movements, detections and monitoring, etc. This can be tested by different kinds of detection devices, which named "sensors" as such as: infrared sensors, ultrasonic sensor, radars in general, laser light sensor, and so like. Ultrasonic Sensor is the most fundamental one and it has great impact and challenges comparing with others especially when navigating (as an agent). In this paper, concerning to the ultrasonic sensor, sensor(s) detecting and delimitation by themselves then navigate inside a limited area to estimating Real-Time using Speed Equation with Kalman Filter Algorithm as an intelligent estimation algorithm. Then trying to calculate the error comparing to the factual rate of tracking. This paper used Ultrasonic Sensor HC-SR04 with Arduino-UNO as Microcontroller.

  5. Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm

    Science.gov (United States)

    Baskaran, Subbiah; Noever, D.

    1999-01-01

    Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.

  6. Real-Time Track Reallocation for Emergency Incidents at Large Railway Stations

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2015-01-01

    Full Text Available After track capacity breakdowns at a railway station, train dispatchers need to generate appropriate track reallocation plans to recover the impacted train schedule and minimize the expected total train delay time under stochastic scenarios. This paper focuses on the real-time track reallocation problem when tracks break down at large railway stations. To represent these cases, virtual trains are introduced and activated to occupy the accident tracks. A mathematical programming model is developed, which aims at minimizing the total occupation time of station bottleneck sections to avoid train delays. In addition, a hybrid algorithm between the genetic algorithm and the simulated annealing algorithm is designed. The case study from the Baoji railway station in China verifies the efficiency of the proposed model and the algorithm. Numerical results indicate that, during a daily and shift transport plan from 8:00 to 8:30, if five tracks break down simultaneously, this will disturb train schedules (result in train arrival and departure delays.

  7. Real-Time Order Tracking of Gear Mesh Vibration in High Speed Planetary Gearboxes

    Directory of Open Access Journals (Sweden)

    Plöger Daniel Fritz

    2018-01-01

    Full Text Available Possible approaches to real-time order tracking are discussed. Two methods for real-time order tracking are developed and validated experimentally for the entire audible spectrum. An adaptive heterodyne filter bank is compared to a direct integral transform. The performance of both methods is adequate for usage in an active vibration control (AVC algorithm. Vold-Kalman filters are not suitable for AVC. The vibration data of three different planetary gearboxes is analyzed using order tracking. While some of the existing research could be reproduced, the data contradicts statements made by several authors. Lastly, the architecture of a novel AVC algorithm is sketched out.

  8. Near real-time bi-planar fluoroscopic tracking system for the video tumor fighter

    International Nuclear Information System (INIS)

    Lawson, M.A.; Wika, K.G.; Gillies, G.T.; Ritter, R.C.

    1991-01-01

    The authors have developed software capable of the three-dimensional tracking of objects in the brain volume, and the subsequent overlaying of an image of the object onto previously obtained MR or CT scans. This software has been developed for use with the Magnetic Stereotaxis System (MSS), also called the Video Tumor Fighter (VTF). The software was written for s Sun 4/110 SPARC workstation with an ANDROX ICS-400 image processing card installed to manage this task. At present, the system uses input from two orthogonally- oriented, visible-light cameras and simulated scene to determine the three-dimensional position of the object of interest. The coordinates are then transformed into MR or CT coordinates and an image of the object is displayed in the appropriate intersecting MR slice on a computer screen. This paper describes the tracking algorithm and discusses how it was implemented in software. The system's hardware is also described. The limitations of the present system are discussed and plans for incorporating bi-planar, x-ray fluoroscopy are presented

  9. Three-dimensional intrafractional movement of prostate measured during real-time tumor-tracking radiotherapy in supine and prone treatment positions

    International Nuclear Information System (INIS)

    Kitamura, Kei; Shirato, Hiroki; Seppenwoolde, Yvette; Onimaru, Rikiya; Oda, Makoto; Fujita, Katsuhisa; Shimizu, Shinichi; Shinohara, Nobuo; Harabayashi, Toru; Miyasaka, Kazuo

    2002-01-01

    Purpose: To quantify three-dimensional (3D) movement of the prostate gland with the patient in the supine and prone positions and to analyze the movement frequency for each treatment position. Methods and Materials: The real-time tumor-tracking radiotherapy (RTRT) system was developed to identify the 3D position of a 2-mm gold marker implanted in the prostate 30 times/s using two sets of fluoroscopic images. The linear accelerator was triggered to irradiate the tumor only when the gold marker was located within the region of the planned coordinates relative to the isocenter. Ten patients with prostate cancer treated with RTRT were the subjects of this study. The coordinates of the gold marker were recorded every 0.033 s during RTRT in the supine treatment position for 2 min. The patient was then moved to the prone position, and the marker was tracked for 2 min to acquire data regarding movement in this position. Measurements were taken 5 times for each patient (once a week); a total of 50 sets for the 10 patients was analyzed. The raw data from the RTRT system were filtered to reduce system noise, and the amplitude of movement was then calculated. The discrete Fourier transform of the unfiltered data was performed for the frequency analysis of prostate movement. Results: No apparent difference in movement was found among individuals. The amplitude of 3D movement was 0.1-2.7 mm in the supine and 0.4-24 mm in the prone positions. The amplitude in the supine position was statistically smaller in all directions than that in the prone position (p < 0.0001). The amplitude in the craniocaudal and AP directions was larger than in the left-right direction in the prone position (p < 0.0001). No characteristic movement frequency was detected in the supine position. The respiratory frequency was detected for all patients regarding movement in the craniocaudal and AP directions in the prone position. The results of the frequency analysis suggest that prostate movement is

  10. Real-time visual tracking of less textured three-dimensional objects on mobile platforms

    Science.gov (United States)

    Seo, Byung-Kuk; Park, Jungsik; Park, Hanhoon; Park, Jong-Il

    2012-12-01

    Natural feature-based approaches are still challenging for mobile applications (e.g., mobile augmented reality), because they are feasible only in limited environments such as highly textured and planar scenes/objects, and they need powerful mobile hardware for fast and reliable tracking. In many cases where conventional approaches are not effective, three-dimensional (3-D) knowledge of target scenes would be beneficial. We present a well-established framework for real-time visual tracking of less textured 3-D objects on mobile platforms. Our framework is based on model-based tracking that efficiently exploits partially known 3-D scene knowledge such as object models and a background's distinctive geometric or photometric knowledge. Moreover, we elaborate on implementation in order to make it suitable for real-time vision processing on mobile hardware. The performance of the framework is tested and evaluated on recent commercially available smartphones, and its feasibility is shown by real-time demonstrations.

  11. TH-AB-202-05: BEST IN PHYSICS (JOINT IMAGING-THERAPY): First Online Ultrasound-Guided MLC Tracking for Real-Time Motion Compensation in Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ipsen, S; Bruder, R; Schweikard, A [University of Luebeck, Luebeck, DE (United States); O’Brien, R; Keall, P [University of Sydney, Sydney (Australia); Poulsen, P [Aarhus University Hospital, Aarhus (Denmark)

    2016-06-15

    Purpose: While MLC tracking has been successfully used for motion compensation of moving targets, current real-time target localization methods rely on correlation models with x-ray imaging or implanted electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging yields volumetric data in real-time (4D) without ionizing radiation. We report the first results of online 4D ultrasound-guided MLC tracking in a phantom. Methods: A real-time tracking framework was installed on a 4D ultrasound station (Vivid7 dimension, GE) and used to detect a 2mm spherical lead marker inside a water tank. The volumetric frame rate was 21.3Hz (47ms). The marker was rigidly attached to a motion stage programmed to reproduce nine tumor trajectories (five prostate, four lung). The 3D marker position from ultrasound was used for real-time MLC aperture adaption. The tracking system latency was measured and compensated by prediction for lung trajectories. To measure geometric accuracy, anterior and lateral conformal fields with 10cm circular aperture were delivered for each trajectory. The tracking error was measured as the difference between marker position and MLC aperture in continuous portal imaging. For dosimetric evaluation, 358° VMAT fields were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using a 3%/3 mm γ-test. Results: The tracking system latency was 170ms. The mean root-mean-square tracking error was 1.01mm (0.75mm prostate, 1.33mm lung). Tracking reduced the mean γ-failure rate from 13.9% to 4.6% for prostate and from 21.8% to 0.6% for lung with high-modulation VMAT plans and from 5% (prostate) and 18% (lung) to 0% with low modulation. Conclusion: Real-time ultrasound tracking was successfully integrated with MLC tracking for the first time and showed similar accuracy and latency as other methods while holding the

  12. Real-Time Generic Face Tracking in the Wild with CUDA

    NARCIS (Netherlands)

    Cheng, Shiyang; Asthana, Akshay; Asthana, Ashish; Zafeiriou, Stefanos; Shen, Jie; Pantic, Maja

    We present a robust real-time face tracking system based on the Constrained Local Models framework by adopting the novel regression-based Discriminative Response Map Fitting (DRMF) method. By exploiting the algorithm's potential parallelism, we present a hybrid CPU-GPU implementation capable of

  13. MRI-guided tumor tracking in lung cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, Laura I; Jiang, Steve B [Center for Advanced Radiotherapy Technology and Department of Radiation Oncology, University of California San Diego, 3960 Health Sciences Dr., La Jolla, CA 92093-0865 (United States); Du, Jiang, E-mail: lcervino@ucsd.edu [Department of Radiology, University of California San Diego, 200 West Arbor Dr., San Diego, CA 92103-8226 (United States)

    2011-07-07

    Precise tracking of lung tumor motion during treatment delivery still represents a challenge in radiation therapy. Prototypes of MRI-linac hybrid systems are being created which have the potential of ionization-free real-time imaging of the tumor. This study evaluates the performance of lung tumor tracking algorithms in cine-MRI sagittal images from five healthy volunteers. Visible vascular structures were used as targets. Volunteers performed several series of regular and irregular breathing. Two tracking algorithms were implemented and evaluated: a template matching (TM) algorithm in combination with surrogate tracking using the diaphragm (surrogate was used when the maximum correlation between the template and the image in the search window was less than specified), and an artificial neural network (ANN) model based on the principal components of a region of interest that encompasses the target motion. The mean tracking error e and the error at 95% confidence level e{sub 95} were evaluated for each model. The ANN model led to e = 1.5 mm and e{sub 95} = 4.2 mm, while TM led to e = 0.6 mm and e{sub 95} = 1.0 mm. An extra series was considered separately to evaluate the benefit of using surrogate tracking in combination with TM when target out-of-plane motion occurs. For this series, the mean error was 7.2 mm using only TM and 1.7 mm when the surrogate was used in combination with TM. Results show that, as opposed to tracking with other imaging modalities, ANN does not perform well in MR-guided tracking. TM, however, leads to highly accurate tracking. Out-of-plane motion could be addressed by surrogate tracking using the diaphragm, which can be easily identified in the images.

  14. Development of a real-time internal and external marker tracking system for particle therapy: a phantom study using patient tumor trajectory data.

    Science.gov (United States)

    Cho, Junsang; Cheon, Wonjoong; Ahn, Sanghee; Jung, Hyunuk; Sheen, Heesoon; Park, Hee Chul; Han, Youngyih

    2017-09-01

    Target motion-induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external markers in X-ray therapy have been developed; however, the accuracy of such internal/external marker tracking systems, especially in particle therapy, has not yet been sufficiently tested. In this article, the process of installing an in-house hybrid internal/external motion-tracking system is described and the accuracy level of tracking system was acquired. Our results demonstrated that the developed in-house external/internal combined tracking system has submillimeter accuracy, and can be clinically used as a particle therapy system as well as a simulation system for moving tumor treatment. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  15. Real Time 3D Facial Movement Tracking Using a Monocular Camera

    Directory of Open Access Journals (Sweden)

    Yanchao Dong

    2016-07-01

    Full Text Available The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference.

  16. Real-time particle tracking at 10,000 fps using optical fiber illumination.

    Science.gov (United States)

    Otto, Oliver; Czerwinski, Fabian; Gornall, Joanne L; Stober, Gunter; Oddershede, Lene B; Seidel, Ralf; Keyser, Ulrich F

    2010-10-25

    We introduce optical fiber illumination for real-time tracking of optically trapped micrometer-sized particles with microsecond time resolution. Our light source is a high-radiance mercury arc lamp and a 600 μm optical fiber for short-distance illumination of the sample cell. Particle tracking is carried out with a software implemented cross-correlation algorithm following image acquisition from a CMOS camera. Our image data reveals that fiber illumination results in a signal-to-noise ratio usually one order of magnitude higher compared to standard Köhler illumination. We demonstrate position determination of a single optically trapped colloid with up to 10,000 frames per second over hours. We calibrate our optical tweezers and compare the results with quadrant photo diode measurements. Finally, we determine the positional accuracy of our setup to 2 nm by calculating the Allan variance. Our results show that neither illumination nor software algorithms limit the speed of real-time particle tracking with CMOS technology.

  17. Using an external surrogate for predictor model training in real-time motion management of lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Rottmann, Joerg; Berbeco, Ross [Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2014-12-15

    Purpose: Precise prediction of respiratory motion is a prerequisite for real-time motion compensation techniques such as beam, dynamic couch, or dynamic multileaf collimator tracking. Collection of tumor motion data to train the prediction model is required for most algorithms. To avoid exposure of patients to additional dose from imaging during this procedure, the feasibility of training a linear respiratory motion prediction model with an external surrogate signal is investigated and its performance benchmarked against training the model with tumor positions directly. Methods: The authors implement a lung tumor motion prediction algorithm based on linear ridge regression that is suitable to overcome system latencies up to about 300 ms. Its performance is investigated on a data set of 91 patient breathing trajectories recorded from fiducial marker tracking during radiotherapy delivery to the lung of ten patients. The expected 3D geometric error is quantified as a function of predictor lookahead time, signal sampling frequency and history vector length. Additionally, adaptive model retraining is evaluated, i.e., repeatedly updating the prediction model after initial training. Training length for this is gradually increased with incoming (internal) data availability. To assess practical feasibility model calculation times as well as various minimum data lengths for retraining are evaluated. Relative performance of model training with external surrogate motion data versus tumor motion data is evaluated. However, an internal–external motion correlation model is not utilized, i.e., prediction is solely driven by internal motion in both cases. Results: Similar prediction performance was achieved for training the model with external surrogate data versus internal (tumor motion) data. Adaptive model retraining can substantially boost performance in the case of external surrogate training while it has little impact for training with internal motion data. A minimum

  18. Real-Time Dynamic MLC Tracking for Intensity Modulated Arc Therapy

    DEFF Research Database (Denmark)

    Falk, Marianne

    Motion management of intra-fraction tumour motion during radiotherapy treatment can be a challenging task in order to achieve tumour control as well as minimizing the dose to the surrounding healthy tissue. Real-time dynamic multileaf collimator (MLC) tracking is a novel method for intra-fraction...

  19. Donor Tracker: An Innovative Real-Time Tracking System for Blood ...

    African Journals Online (AJOL)

    In this paper, we explore the possibility of using location-aware computing to track blood donors in Mauritius and locate the nearest donor in cases of emergencies and whenever fresh blood is ... Keywords: Context-awareness, location-awareness, mobile and ubiquitous computing, location sensing technique, real-time.

  20. Dynamic contrast enhanced MRI study of primary primitive neuroectodermal tumor in the thoracic spine

    International Nuclear Information System (INIS)

    Chen Yu; Xu Jianmin; Li Ying; Zhang Jingzhong; Zhu Jing

    2004-01-01

    Objective: To investigate the value of dynamic contrast-enhanced MR imaging in the diagnosis and differentiation of primitive neuroectodermal tumor (PNET) in the thoracic spine. Methods: The dynamic contrast-enhanced MR imaging of 2 patients (3 times) with PNET in the thoracic spine proved by surgery and pathology were prospectively studied. Results: In the curves of SI-time and CER-time, PNET in the thoracic spine showed a rapid rise to the peak between 60 s and 120 s, then the flat level was kept and no obvious decline was detected after about 3.5 minute. Conclusion: Dynamic contrast-enhanced MRI can help to make the diagnosis and differential diagnosis for PNET in the thoracic spine, offer reliable information for the choice of clinical management, and predict the prognosis

  1. Real-time endoscopic guidance using near-infrared fluorescent light for thoracic surgery

    Science.gov (United States)

    Venugopal, Vivek; Stockdale, Alan; Neacsu, Florin; Kettenring, Frank; Frangioni, John V.; Gangadharan, Sidharta P.; Gioux, Sylvain

    2013-03-01

    Lung cancer is the leading cause of cancer death in the United States, accounting for 28% of all cancer deaths. Standard of care for potentially curable lung cancer involves preoperative radiographic or invasive staging, followed by surgical resection. With recent adjuvant chemotherapy and radiation studies showing a survival advantage in nodepositive patients, it is crucial to accurately stage these patients surgically in order to identify those who may benefit. However, lymphadenectomy in lung cancer is currently performed without guidance, mainly due to the lack of tools permitting real-time, intraoperative identification of lymph nodes. In this study we report the design and validation of a novel, clinically compatible near-infrared (NIR) fluorescence thoracoscope for real-time intraoperative guidance during lymphadenectomy. A novel, NIR-compatible, clinical rigid endoscope has been designed and fabricated, and coupled to a custom source and a dual channel camera to provide simultaneous color and NIR fluorescence information to the surgeon. The device has been successfully used in conjunction with a safe, FDA-approved fluorescent tracer to detect and resect mediastinal lymph nodes during thoracic surgery on Yorkshire pigs. Taken together, this study lays the foundation for the clinical translation of endoscopic NIR fluorescence intraoperative guidance and has the potential to profoundly impact the management of lung cancer patients.

  2. Three-Dimensional Intrafractional Motion of Breast During Tangential Breast Irradiation Monitored With High-Sampling Frequency Using a Real-Time Tumor-Tracking Radiotherapy System

    International Nuclear Information System (INIS)

    Kinoshita, Rumiko; Shimizu, Shinichi; Taguchi, Hiroshi; Katoh, Norio; Fujino, Masaharu; Onimaru, Rikiya; Aoyama, Hidefumi; Katoh, Fumi; Omatsu, Tokuhiko; Ishikawa, Masayori; Shirato, Hiroki

    2008-01-01

    Purpose: To evaluate the three-dimensional intrafraction motion of the breast during tangential breast irradiation using a real-time tracking radiotherapy (RT) system with a high-sampling frequency. Methods and Materials: A total of 17 patients with breast cancer who had received breast conservation RT were included in this study. A 2.0-mm gold marker was placed on the skin near the nipple of the breast for RT. A fluoroscopic real-time tumor-tracking RT system was used to monitor the marker. The range of motion of each patient was calculated in three directions. Results: The mean ± standard deviation of the range of respiratory motion was 1.0 ± 0.6 mm (median, 0.9; 95% confidence interval [CI] of the marker position, 0.4-2.6), 1.3 ± 0.5 mm (median, 1.1; 95% CI, 0.5-2.5), and 2.6 ± 1.4 (median, 2.3; 95% CI, 1.0-6.9) for the right-left, craniocaudal, and anteroposterior direction, respectively. No correlation was found between the range of motion and the body mass index or respiratory function. The mean ± standard deviation of the absolute value of the baseline shift in the right-left, craniocaudal, and anteroposterior direction was 0.2 ± 0.2 mm (range, 0.0-0.8 mm), 0.3 ± 0.2 mm (range, 0.0-0.7 mm), and 0.8 ± 0.7 mm (range, 0.1-1.8 mm), respectively. Conclusion: Both the range of motion and the baseline shift were within a few millimeters in each direction. As long as the conventional wedge-pair technique and the proper immobilization are used, the intrafraction three-dimensional change in the breast surface did not much influence the dose distribution

  3. Real-time vehicle detection and tracking in video based on faster R-CNN

    Science.gov (United States)

    Zhang, Yongjie; Wang, Jian; Yang, Xin

    2017-08-01

    Vehicle detection and tracking is a significant part in auxiliary vehicle driving system. Using the traditional detection method based on image information has encountered enormous difficulties, especially in complex background. To solve this problem, a detection method based on deep learning, Faster R-CNN, which has very high detection accuracy and flexibility, is introduced. An algorithm of target tracking with the combination of Camshift and Kalman filter is proposed for vehicle tracking. The computation time of Faster R-CNN cannot achieve realtime detection. We use multi-thread technique to detect and track vehicle by parallel computation for real-time application.

  4. CT-assisted transcutaneous interstitial implantation of thoracic tumors: Early experience

    International Nuclear Information System (INIS)

    Heelan, R.T.; Hilaris, B.S.; Anderson, L.; Caravelli, J.F.; Nori, D.; Martini, N.; Watson, R.C.; Linares, L.

    1986-01-01

    The authors have transcutaneously implanted I-125 radioactive seeds in six patients with thoracic tumors (three with lung cancer; three with metastases) to determine the feasibility of this procedure. In four patients the thoracic tumors were localized without evidence of distant metastases, but these patients were not candidates for resection because of chronic pulmonary disease. Tumor volume was measured on CT scans (with sagittal and coronal reconstructions) and the required number of seeds was determined based on tumor volume. Between 6 and 11 needles were placed in the tumor and the seeds were implanted as the needle was withdrawn. Between 40 and 60 seeds were implanted in each patient, under local anesthesia. In this preliminary series all patients were found to have tumor attached to pleura. Four of the six patients underwent implantation during a day-time admission to the institution's Adult Day Hospital. No patient suffered any complication as a result of the procedure. Four patients experienced a symptomatic relief of pain and a decrease in size of tumor bulk (local control). Two patients eventually exhibited renewed tumor growth in the edges of the implanted mass after 6 months; the authors plan to supplement future implantations with external radiation therapy. One patient underwent implantation after local recurrence of tumor, returned to work the day following the procedure, and is without evidence of local recurrence 18 months later. They are encouraged by these preliminary results, for several reasons: the lack of morbidity, the achievement of local control of tumor while avoiding surgery and its potential complications, and avoidance of hospital stay (with consequent financial savings). The intent is to expand this series to include patients with lung tumors not attached to pleura

  5. Real-time object tracking system based on field-programmable gate array and convolution neural network

    Directory of Open Access Journals (Sweden)

    Congyi Lyu

    2016-12-01

    Full Text Available Vision-based object tracking has lots of applications in robotics, like surveillance, navigation, motion capturing, and so on. However, the existing object tracking systems still suffer from the challenging problem of high computation consumption in the image processing algorithms. The problem can prevent current systems from being used in many robotic applications which have limitations of payload and power, for example, micro air vehicles. In these applications, the central processing unit- or graphics processing unit-based computers are not good choices due to the high weight and power consumption. To address the problem, this article proposed a real-time object tracking system based on field-programmable gate array, convolution neural network, and visual servo technology. The time-consuming image processing algorithms, such as distortion correction, color space convertor, and Sobel edge, Harris corner features detector, and convolution neural network were redesigned using the programmable gates in field-programmable gate array. Based on the field-programmable gate array-based image processing, an image-based visual servo controller was designed to drive a two degree of freedom manipulator to track the target in real time. Finally, experiments on the proposed system were performed to illustrate the effectiveness of the real-time object tracking system.

  6. Real-time tracking for virtual environments using scaat kalman filtering and unsynchronised cameras

    DEFF Research Database (Denmark)

    Rasmussen, Niels Tjørnly; Störring, Morritz; Moeslund, Thomas B.

    2006-01-01

    This paper presents a real-time outside-in camera-based tracking system for wireless 3D pose tracking of a user’s head and hand in a virtual environment. The system uses four unsynchronised cameras as sensors and passive retroreflective markers arranged in rigid bodies as targets. In order to ach...

  7. Fiber tracking for brain tumor

    International Nuclear Information System (INIS)

    Yamada, Kei; Nakamura, Hisao; Ito, Hirotoshi; Tanaka, Osamu; Kubota, Takao; Yuen, Sachiko; Kizu, Osamu; Nishimura, Tsunehiko

    2003-01-01

    The purpose of this study was to validate an innovative scanning method for patients diagnosed with brain tumors. Using a 1.5 Tesla whole body magnetic resonance (MR) imager, 23 patients with brain tumors were scanned. The recorded data points of the diffusion-tensor imaging (DTI) sequences were 128 x 37 with the parallel imaging technique. The parallel imaging technique was equivalent to a true resolution of 128 x 74. The scan parameters were repetition time (TR)=6000, echo time (TE)=88, 6 averaging with a b-value of 800 s/mm 2 . The total scan time for DTI was 4 minutes and 24 seconds. DTI scans and subsequent fiber tracking were successfully applied in all cases. All fiber tracts on the contralesional side were visualized in the expected locations. Fiber tracts on the lesional side had varying degrees of displacement, disruption, or a combination of displacement and disruption due to the tumor. Tract disruption resulted from direct tumor involvement, compression upon the tract, and vasogenic edema surrounding the tumor. This DTI method using a parallel imaging technique allows for clinically feasible fiber tracking that can be incorporated into a routine MR examination. (author)

  8. A real time tracking vision system and its application to robotics

    International Nuclear Information System (INIS)

    Inoue, Hirochika

    1994-01-01

    Among various sensing channels the vision is most important for making robot intelligent. If provided with a high speed visual tracking capability, the robot-environment interaction becomes dynamic instead of static, and thus the potential repertoire of robot behavior becomes very rich. For this purpose we developed a real-time tracking vision system. The fundamental operation on which our system based is the calculation of correlation between local images. Use of special chip for correlation and the multi-processor configuration enable the robot to track more than hundreds cues in full video rate. In addition to the fundamental visual performance, applications for robot behavior control are also introduced. (author)

  9. A Real-time Face/Hand Tracking Method for Chinese Sign Language Recognition

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper introduces a new Chinese Sign Language recognition (CSLR) system and a method of real-time tracking face and hand applied in the system. In the method, an improved agent algorithm is used to extract the region of face and hand and track them. Kalman filter is introduced to forecast the position and rectangle of search, and self-adapting of target color is designed to counteract the effect of illumination.

  10. Real-time optical tracking for motion compensated irradiation with scanned particle beams at CNAO

    Energy Technology Data Exchange (ETDEWEB)

    Fattori, G., E-mail: giovanni.fattori@psi.ch [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Seregni, M. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Pella, A. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Riboldi, M. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Capasso, L. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Donetti, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Ciocca, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Giordanengo, S. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Pullia, M. [Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy); Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Section of Torino, Torino 10125 (Italy); Baroni, G. [Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Centro Nazionale di Adroterapia Oncologica (CNAO), Strada Campeggi 53, 27100 Pavia (Italy)

    2016-08-11

    Purpose: We describe the interface developed at the National Center for Oncological Hadrontherapy in Pavia to provide the dose delivery systems with real time respiratory motion information captured with an optical tracking system. An experimental study is presented to assess the technical feasibility of the implemented organ motion compensation framework, by analyzing the film response when irradiated with proton beams. Methods: The motion monitoring solution is based on a commercial hardware for motion capture running in-house developed software for respiratory signal processing. As part of the integration, the latency of data transmission to the dose delivery system was experimentally quantified and accounted for by signal time prediction. A respiratory breathing phantom is presented and used to test tumor tracking based either on the optical measurement of the target position or internal-external correlation models and beam gating, as driven by external surrogates. Beam tracking was tested considering the full target motion excursion (25×18 mm), whereas it is limited to 6×2 mm in the gating window. The different motion mitigation strategies were evaluated by comparing the experimental film responses with respect to static irradiation conditions. Dose inhomogeneity (IC) and conformity (CI) are provided as main indexes for dose quality assessment considering the irradiation in static condition as reference. Results: We measured 20.6 ms overall latency for motion signal processing. Dose measurements showed that beam tracking largely preserved dose homogeneity and conformity, showing maximal IC and CI variations limited to +0.10 and −0.01 with respect to the static reference. Gating resulted in slightly larger discrepancies (ΔIC=+0.20, ΔCI=−0.13) due to uncompensated residual motion in the gating window. Conclusions: The preliminary beam tracking and gating results verified the functionality of the prototypal solution for organ motion compensation based on

  11. Real-time optical tracking for motion compensated irradiation with scanned particle beams at CNAO

    International Nuclear Information System (INIS)

    Fattori, G.; Seregni, M.; Pella, A.; Riboldi, M.; Capasso, L.; Donetti, M.; Ciocca, M.; Giordanengo, S.; Pullia, M.; Marchetto, F.; Baroni, G.

    2016-01-01

    Purpose: We describe the interface developed at the National Center for Oncological Hadrontherapy in Pavia to provide the dose delivery systems with real time respiratory motion information captured with an optical tracking system. An experimental study is presented to assess the technical feasibility of the implemented organ motion compensation framework, by analyzing the film response when irradiated with proton beams. Methods: The motion monitoring solution is based on a commercial hardware for motion capture running in-house developed software for respiratory signal processing. As part of the integration, the latency of data transmission to the dose delivery system was experimentally quantified and accounted for by signal time prediction. A respiratory breathing phantom is presented and used to test tumor tracking based either on the optical measurement of the target position or internal-external correlation models and beam gating, as driven by external surrogates. Beam tracking was tested considering the full target motion excursion (25×18 mm), whereas it is limited to 6×2 mm in the gating window. The different motion mitigation strategies were evaluated by comparing the experimental film responses with respect to static irradiation conditions. Dose inhomogeneity (IC) and conformity (CI) are provided as main indexes for dose quality assessment considering the irradiation in static condition as reference. Results: We measured 20.6 ms overall latency for motion signal processing. Dose measurements showed that beam tracking largely preserved dose homogeneity and conformity, showing maximal IC and CI variations limited to +0.10 and −0.01 with respect to the static reference. Gating resulted in slightly larger discrepancies (ΔIC=+0.20, ΔCI=−0.13) due to uncompensated residual motion in the gating window. Conclusions: The preliminary beam tracking and gating results verified the functionality of the prototypal solution for organ motion compensation based on

  12. Real-time non-rigid target tracking for ultrasound-guided clinical interventions

    NARCIS (Netherlands)

    Zachiu, Cornel; Ries, Mario G; Ramaekers, Pascal; Guey, Jean-Luc; Moonen, Chrit T W; de Senneville, Baudouin Denis

    2017-01-01

    Biological motion is a problem for non- or mini-invasive interventions when conducted in mobile/deformable organs due to the targeted pathology moving/deforming with the organ. This may lead to high miss rates and/or incomplete treatment of the pathology. Therefore, real-time tracking of the target

  13. Initial assessment of tumor tracking with a gimbaled linac system in clinical circumstances: A patient simulation study

    International Nuclear Information System (INIS)

    Depuydt, Tom; Poels, Kenneth; Verellen, Dirk; Engels, Benedikt; Collen, Christine; Haverbeke, Chloe; Gevaert, Thierry; Buls, Nico; Van Gompel, Gert; Reynders, Truus; Duchateau, Michael; Tournel, Koen; Boussaer, Marlies; Steenbeke, Femke; Vandenbroucke, Frederik; De Ridder, Mark

    2013-01-01

    Purpose: To have an initial assessment of the Vero Dynamic Tracking workflow in clinical circumstances and quantify the performance of the tracking system, a simulation study was set up on 5 lung and liver patients. Methods and materials: The preparatory steps of a tumor tracking treatment, based on fiducial markers implanted in the tumor, were executed allowing pursuit of the tumor with the gimbaled linac and monitoring X-rays acquisition, however, without activating the 6 MV beam. Data were acquired on workflow time-efficiency, tracking accuracy and imaging exposure. Results: The average time between the patient entering the treatment room and the first treatment field was about 9 min. The time for building the correlation model was 3.2 min. Tracking errors of 0.55 and 0.95 mm (1σ) were observed in PAN/TILT direction and a 2D range of 3.08 mm. A skin dose was determined of 0.08 mGy/image, with a source-to-skin distance of 900 mm and kV exposure of 1 mAs. On average 1.8 mGy/min kV skin dose was observed for 1 Hz monitoring. Conclusion: The Vero tracking solution proved to be fully functional and showed performance comparable with other real-time tracking systems

  14. Real-time multiple objects tracking on Raspberry-Pi-based smart embedded camera

    Science.gov (United States)

    Dziri, Aziz; Duranton, Marc; Chapuis, Roland

    2016-07-01

    Multiple-object tracking constitutes a major step in several computer vision applications, such as surveillance, advanced driver assistance systems, and automatic traffic monitoring. Because of the number of cameras used to cover a large area, these applications are constrained by the cost of each node, the power consumption, the robustness of the tracking, the processing time, and the ease of deployment of the system. To meet these challenges, the use of low-power and low-cost embedded vision platforms to achieve reliable tracking becomes essential in networks of cameras. We propose a tracking pipeline that is designed for fixed smart cameras and which can handle occlusions between objects. We show that the proposed pipeline reaches real-time processing on a low-cost embedded smart camera composed of a Raspberry-Pi board and a RaspiCam camera. The tracking quality and the processing speed obtained with the proposed pipeline are evaluated on publicly available datasets and compared to the state-of-the-art methods.

  15. Suitability of markerless EPID tracking for tumor position verification in gated radiotherapy

    International Nuclear Information System (INIS)

    Serpa, Marco; Baier, Kurt; Guckenberger, Matthias; Cremers, Florian; Meyer, Juergen

    2014-01-01

    Purpose: To maximize the benefits of respiratory gated radiotherapy (RGRT) of lung tumors real-time verification of the tumor position is required. This work investigates the feasibility of markerless tracking of lung tumors during beam-on time in electronic portal imaging device (EPID) images of the MV therapeutic beam. Methods: EPID movies were acquired at ∼2 fps for seven lung cancer patients with tumor peak-to-peak motion ranges between 7.8 and 17.9 mm (mean: 13.7 mm) undergoing stereotactic body radiotherapy. The external breathing motion of the abdomen was synchronously measured. Both datasets were retrospectively analyzed inPortalTrack, an in-house developed tracking software. The authors define a three-step procedure to run the simulations: (1) gating window definition, (2) gated-beam delivery simulation, and (3) tumor tracking. First, an amplitude threshold level was set on the external signal, defining the onset of beam-on/-off signals. This information was then mapped onto a sequence of EPID images to generate stamps of beam-on/-hold periods throughout the EPID movies in PortalTrack, by obscuring the frames corresponding to beam-off times. Last, tumor motion in the superior-inferior direction was determined on portal images by the tracking algorithm during beam-on time. The residual motion inside the gating window as well as target coverage (TC) and the marginal target displacement (MTD) were used as measures to quantify tumor position variability. Results: Tumor position monitoring and estimation from beam's-eye-view images during RGRT was possible in 67% of the analyzed beams. For a reference gating window of 5 mm, deviations ranging from 2% to 86% (35% on average) were recorded between the reference and measured residual motion. TC (range: 62%–93%; mean: 77%) losses were correlated with false positives incidence rates resulting mostly from intra-/inter-beam baseline drifts, as well as sudden cycle-to-cycle fluctuations in exhale positions. Both

  16. First Demonstration of Combined kV/MV Image-Guided Real-Time Dynamic Multileaf-Collimator Target Tracking

    International Nuclear Information System (INIS)

    Cho, Byungchul; Poulsen, Per R.; Sloutsky, Alex; Sawant, Amit; Keall, Paul J.

    2009-01-01

    Purpose: For intrafraction motion management, a real-time tracking system was developed by combining fiducial marker-based tracking via simultaneous kilovoltage (kV) and megavoltage (MV) imaging and a dynamic multileaf collimator (DMLC) beam-tracking system. Methods and Materials: The integrated tracking system employed a Varian Trilogy system equipped with kV/MV imaging systems and a Millennium 120-leaf MLC. A gold marker in elliptical motion (2-cm superior-inferior, 1-cm left-right, 10 cycles/min) was simultaneously imaged by the kV and MV imagers at 6.7 Hz and segmented in real time. With these two-dimensional projections, the tracking software triangulated the three-dimensional marker position and repositioned the MLC leaves to follow the motion. Phantom studies were performed to evaluate time delay from image acquisition to MLC adjustment, tracking error, and dosimetric impact of target motion with and without tracking. Results: The time delay of the integrated tracking system was ∼450 ms. The tracking error using a prediction algorithm was 0.9 ± 0.5 mm for the elliptical motion. The dose distribution with tracking showed better target coverage and less dose to surrounding region over no tracking. The failure rate of the gamma test (3%/3-mm criteria) was 22.5% without tracking but was reduced to 0.2% with tracking. Conclusion: For the first time, a complete tracking system combining kV/MV image-guided target tracking and DMLC beam tracking was demonstrated. The average geometric error was less than 1 mm, and the dosimetric error was negligible. This system is a promising method for intrafraction motion management.

  17. The Fast Tracker Real Time Processor: high quality real-time tracking at ATLAS

    CERN Document Server

    Stabile, A; The ATLAS collaboration

    2011-01-01

    As the LHC luminosity is ramped up to the design level of 1x1034 cm−2 s−1 and beyond, the high rates, multiplicities, and energies of particles seen by the detectors will pose a unique challenge. Only a tiny fraction of the produced collisions can be stored on tape and immense real-time data reduction is needed. An effective trigger system must maintain high trigger efficiencies for the most important physics and at the same time suppress the enormous QCD backgrounds. This requires massive computing power to minimize the online execution time of complex algorithms. A multi-level trigger is an effective solution for an otherwise impossible problem. The Fast Tracker (FTK)[1], [2] is a proposed upgrade to the current ATLAS trigger system that will operate at full Level-1 output rates and provide high quality tracks reconstructed over the entire detector by the start of processing in Level-2. FTK is a dedicated Super Computer based on a mixture of advanced technologies. The architecture broadly employs powerf...

  18. Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study

    International Nuclear Information System (INIS)

    Zhang, Xiaoyong; Homma, Noriyasu; Ichiji, Kei; Takai, Yoshihiro; Yoshizawa, Makoto

    2015-01-01

    tumor boundary in EPID images by using a LSM-based algorithm. Experimental results conducted on phantom and clinical EPID images demonstrated the effectiveness of the tracking algorithm for visible tumor target. Compared with previous tracking methods, the authors’ algorithm has the potential to improve the tracking accuracy in radiation therapy. In addition, real-time tumor boundary information within the irradiation field will be potentially useful for further applications, such as adaptive beam delivery, dose evaluation

  19. Imaging after radiation therapy of thoracic tumors

    International Nuclear Information System (INIS)

    Ghaye, B.; Wanet, M.; El Hajjam, M.

    2016-01-01

    Radiation-induced lung disease (RILD) is frequent after therapeutic irradiation of thoracic malignancies. Many technique-, treatment-, tumor- and patient-related factors influence the degree of injury sustained by the lung after irradiation. Based on the time interval after the completion of the treatment RILD presents as early and late features characterized by inflammatory and fibrotic changes, respectively. They are usually confined to the radiation port. Though the typical pattern of RILD is easily recognized after conventional two-dimensional radiation therapy (RT), RILD may present with atypical patterns after more recent types of three or four-dimensional RT treatment. Three atypical patterns are reported: the modified conventional, the mass-like and the scar-like patterns. Knowledge of the various features and patterns of RILD is important for correct diagnosis and appropriate treatment. RILD should be differentiated from recurrent tumoral disease, infection and radiation-induced tumors. Due to RILD, the follow-up after RT may be difficult as response evaluation criteria in solid tumours (RECIST) criteria may be unreliable to assess tumor control particularly after stereotactic ablation RT (SABR). Long-term follow-up should be based on clinical examination and morphological and/or functional investigations including CT, PET-CT, pulmonary functional tests, MRI and PET-MRI. (authors)

  20. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.

    Science.gov (United States)

    Peikon, Ian D; Fitzsimmons, Nathan A; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2009-06-15

    Collection and analysis of limb kinematic data are essential components of the study of biological motion, including research into biomechanics, kinesiology, neurophysiology and brain-machine interfaces (BMIs). In particular, BMI research requires advanced, real-time systems capable of sampling limb kinematics with minimal contact to the subject's body. To answer this demand, we have developed an automated video tracking system for real-time tracking of multiple body parts in freely behaving primates. The system employs high-contrast markers painted on the animal's joints to continuously track the three-dimensional positions of their limbs during activity. Two-dimensional coordinates captured by each video camera are combined and converted to three-dimensional coordinates using a quadratic fitting algorithm. Real-time operation of the system is accomplished using direct memory access (DMA). The system tracks the markers at a rate of 52 frames per second (fps) in real-time and up to 100fps if video recordings are captured to be later analyzed off-line. The system has been tested in several BMI primate experiments, in which limb position was sampled simultaneously with chronic recordings of the extracellular activity of hundreds of cortical cells. During these recordings, multiple computational models were employed to extract a series of kinematic parameters from neuronal ensemble activity in real-time. The system operated reliably under these experimental conditions and was able to compensate for marker occlusions that occurred during natural movements. We propose that this system could also be extended to applications that include other classes of biological motion.

  1. Real time tracking by LOPF algorithm with mixture model

    Science.gov (United States)

    Meng, Bo; Zhu, Ming; Han, Guangliang; Wu, Zhiguo

    2007-11-01

    A new particle filter-the Local Optimum Particle Filter (LOPF) algorithm is presented for tracking object accurately and steadily in visual sequences in real time which is a challenge task in computer vision field. In order to using the particles efficiently, we first use Sobel algorithm to extract the profile of the object. Then, we employ a new Local Optimum algorithm to auto-initialize some certain number of particles from these edge points as centre of the particles. The main advantage we do this in stead of selecting particles randomly in conventional particle filter is that we can pay more attentions on these more important optimum candidates and reduce the unnecessary calculation on those negligible ones, in addition we can overcome the conventional degeneracy phenomenon in a way and decrease the computational costs. Otherwise, the threshold is a key factor that affecting the results very much. So here we adapt an adaptive threshold choosing method to get the optimal Sobel result. The dissimilarities between the target model and the target candidates are expressed by a metric derived from the Bhattacharyya coefficient. Here, we use both the counter cue to select the particles and the color cur to describe the targets as the mixture target model. The effectiveness of our scheme is demonstrated by real visual tracking experiments. Results from simulations and experiments with real video data show the improved performance of the proposed algorithm when compared with that of the standard particle filter. The superior performance is evident when the target encountering the occlusion in real video where the standard particle filter usually fails.

  2. Investigation of the change in marker geometry during respiration motion: a preliminary study for dynamic-multi-leaf real-time tumor tracking

    International Nuclear Information System (INIS)

    Yamazaki, Rie; Nishioka, Seiko; Date, Hiroyuki; Shirato, Hiroki; Koike, Takao; Nishioka, Takeshi

    2012-01-01

    The use of stereotactic body radiotherapy (SBRT) is rapidly increasing. Presently, the most accurate method uses fiducial markers implanted near the tumor. A shortcoming of this method is that the beams turn off during the majority of the respiratory cycle, resulting in a prolonged treatment time. Recent advances in collimation technology have enabled continuous irradiation to a moving tumor. However, the lung is a dynamic organ characterized by inhalation exhalation cycles, during which marker/tumor geometry may change (i.e., misalignment), resulting in under-dosing to the tumor. Eight patients with lung cancer who were candidates for stereotactic radiotherapy were examined with 4D high-resolution CT. As a marker surrogate, virtual bronchoscopy using the pulmonary artery (VBPA) was conducted. To detect possible marker/tumor misalignment during the respiration cycle, the distance between the peripheral bronchus, where a marker could be implanted, and the center of gravity of a tumor were calculated for each respiratory phase. When the respiration cycle was divided into 10 phases, the median value was significantly larger for the 30%-70% respiratory phases compared to that for the 10% respiratory phase (P<0.05, Mann–Whitney U-test). These results demonstrate that physiological aspect must be considered when continuous tumor tracking is applied to a moving tumor. To minimize an “additional” internal target volume (ITV) margin, a marker should be placed approximately 2.5 cm from the tumor

  3. A Real Time Differential GPS Tracking System for NASA Sounding Rockets

    Science.gov (United States)

    Bull, Barton; Bauer, Frank (Technical Monitor)

    2000-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads to several hundred miles in altitude. These missions return a variety of scientific data including: chemical makeup and physical processes taking place in the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices to be used on satellites and other spacecraft prior to their use in these more expensive missions. Typically around thirty of these rockets are launched each year, from established ranges at Wallops Island, Virginia; Poker Flat Research Range, Alaska; White Sands Missile Range, New Mexico and from a number of ranges outside the United States. Many times launches are conducted from temporary launch ranges in remote parts of the world requiring considerable expense to transport and operate tracking radars. In order to support these missions, an inverse differential GPS system has been developed. The flight system consists of a small, inexpensive receiver, a preamplifier and a wrap-around antenna. A rugged, compact, portable ground station extracts GPS data from the raw payload telemetry stream, performs a real time differential solution and graphically displays the rocket's path relative to a predicted trajectory plot. In addition to generating a real time navigation solution, the system has been used for payload recovery, timing, data timetagging, precise tracking of multiple payloads and slaving of optical tracking systems for over the horizon acquisition. This paper discusses, in detail, the flight and ground hardware, as well as data processing and operational aspects of the system, and provides evidence of the system accuracy.

  4. The dosimetric impact of inversely optimized arc radiotherapy plan modulation for real-time dynamic MLC tracking delivery

    International Nuclear Information System (INIS)

    Falk, Marianne; Larsson, Tobias; Keall, Paul; Chul Cho, Byung; Aznar, Marianne; Korreman, Stine; Poulsen, Per; Munck af Rosenschoeld, Per

    2012-01-01

    Purpose: Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced by using a leaf position constraint (LPC) that reduces the difference in the position of adjacent MLC leaves in the plan. The purpose of this study was to investigate the impact of the LPC on the quality of inversely optimized arc radiotherapy plans and the effect of the MLC motion pattern on the dosimetric accuracy of MLC tracking delivery. Specifically, the possibility of predicting the accuracy of MLC tracking delivery based on the plan modulation was investigated. Methods: Inversely optimized arc radiotherapy plans were created on CT-data of three lung cancer patients. For each case, five plans with a single 358 deg. arc were generated with LPC priorities of 0 (no LPC), 0.25, 0.5, 0.75, and 1 (highest possible LPC), respectively. All the plans had a prescribed dose of 2 Gy x 30, used 6 MV, a maximum dose rate of 600 MU/min and a collimator angle of 45 deg. or 315 deg. To quantify the plan modulation, an average adjacent leaf distance (ALD) was calculated by averaging the mean adjacent leaf distance for each control point. The linear relationship between the plan quality [i.e., the calculated dose distributions and the number of monitor units (MU)] and the LPC was investigated, and the linear regression coefficient as well as a two tailed confidence level of 95% was used in the evaluation. The effect of the plan modulation on the performance of MLC tracking was tested by delivering the plans to a cylindrical diode array phantom moving with sinusoidal motion in the superior-inferior direction with a peak-to-peak displacement of 2 cm and a cycle time of 6 s. The delivery was adjusted to the target motion using MLC tracking, guided in real-time by an infrared optical system

  5. Real-time automatic fiducial marker tracking in low contrast cine-MV images

    International Nuclear Information System (INIS)

    Lin, Wei-Yang; Lin, Shu-Fang; Yang, Sheng-Chang; Liou, Shu-Cheng; Nath, Ravinder; Liu Wu

    2013-01-01

    Purpose: To develop a real-time automatic method for tracking implanted radiographic markers in low-contrast cine-MV patient images used in image-guided radiation therapy (IGRT). Methods: Intrafraction motion tracking using radiotherapy beam-line MV images have gained some attention recently in IGRT because no additional imaging dose is introduced. However, MV images have much lower contrast than kV images, therefore a robust and automatic algorithm for marker detection in MV images is a prerequisite. Previous marker detection methods are all based on template matching or its derivatives. Template matching needs to match object shape that changes significantly for different implantation and projection angle. While these methods require a large number of templates to cover various situations, they are often forced to use a smaller number of templates to reduce the computation load because their methods all require exhaustive search in the region of interest. The authors solve this problem by synergetic use of modern but well-tested computer vision and artificial intelligence techniques; specifically the authors detect implanted markers utilizing discriminant analysis for initialization and use mean-shift feature space analysis for sequential tracking. This novel approach avoids exhaustive search by exploiting the temporal correlation between consecutive frames and makes it possible to perform more sophisticated detection at the beginning to improve the accuracy, followed by ultrafast sequential tracking after the initialization. The method was evaluated and validated using 1149 cine-MV images from two prostate IGRT patients and compared with manual marker detection results from six researchers. The average of the manual detection results is considered as the ground truth for comparisons. Results: The average root-mean-square errors of our real-time automatic tracking method from the ground truth are 1.9 and 2.1 pixels for the two patients (0.26 mm/pixel). The

  6. Real-time automatic fiducial marker tracking in low contrast cine-MV images

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wei-Yang; Lin, Shu-Fang; Yang, Sheng-Chang; Liou, Shu-Cheng; Nath, Ravinder; Liu Wu [Department of Computer Science and Information Engineering, National Chung Cheng University, Taiwan, 62102 (China); Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06510-3220 (United States)

    2013-01-15

    Purpose: To develop a real-time automatic method for tracking implanted radiographic markers in low-contrast cine-MV patient images used in image-guided radiation therapy (IGRT). Methods: Intrafraction motion tracking using radiotherapy beam-line MV images have gained some attention recently in IGRT because no additional imaging dose is introduced. However, MV images have much lower contrast than kV images, therefore a robust and automatic algorithm for marker detection in MV images is a prerequisite. Previous marker detection methods are all based on template matching or its derivatives. Template matching needs to match object shape that changes significantly for different implantation and projection angle. While these methods require a large number of templates to cover various situations, they are often forced to use a smaller number of templates to reduce the computation load because their methods all require exhaustive search in the region of interest. The authors solve this problem by synergetic use of modern but well-tested computer vision and artificial intelligence techniques; specifically the authors detect implanted markers utilizing discriminant analysis for initialization and use mean-shift feature space analysis for sequential tracking. This novel approach avoids exhaustive search by exploiting the temporal correlation between consecutive frames and makes it possible to perform more sophisticated detection at the beginning to improve the accuracy, followed by ultrafast sequential tracking after the initialization. The method was evaluated and validated using 1149 cine-MV images from two prostate IGRT patients and compared with manual marker detection results from six researchers. The average of the manual detection results is considered as the ground truth for comparisons. Results: The average root-mean-square errors of our real-time automatic tracking method from the ground truth are 1.9 and 2.1 pixels for the two patients (0.26 mm/pixel). The

  7. A Kinect-based real-time compressive tracking prototype system for amphibious spherical robots.

    Science.gov (United States)

    Pan, Shaowu; Shi, Liwei; Guo, Shuxiang

    2015-04-08

    A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.

  8. A Kinect-Based Real-Time Compressive Tracking Prototype System for Amphibious Spherical Robots

    Directory of Open Access Journals (Sweden)

    Shaowu Pan

    2015-04-01

    Full Text Available A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT, which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.

  9. Detection of tumor markers in prostate cancer and comparison of sensitivity between real time and nested PCR.

    Science.gov (United States)

    Matsuoka, Takayuki; Shigemura, Katsumi; Yamamichi, Fukashi; Fujisawa, Masato; Kawabata, Masato; Shirakawa, Toshiro

    2012-06-27

    The objective of this study is to investigate and compare the sensitivity in conventional PCR, quantitative real time PCR, nested PCR and western blots for detection of prostate cancer tumor markers using prostate cancer (PCa) cells. We performed conventional PCR, quantitative real time PCR, nested PCR, and western blots using 5 kinds of PCa cells. Prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and androgen receptor (AR) were compared for their detection sensitivity by real time PCR and nested PCR. In real time PCR, there was a significant correlation between cell number and the RNA concentration obtained (R(2)=0.9944) for PSA, PSMA, and AR. We found it possible to detect these markers from a single LNCaP cell in both real time and nested PCR. By comparison, nested PCR reached a linear curve in fewer PCR cycles than real time PCR, suggesting that nested PCR may offer PCR results more quickly than real time PCR. In conclusion, nested PCR may offer tumor maker detection in PCa cells more quickly (with fewer PCR cycles) with the same high sensitivity as real time PCR. Further study is necessary to establish and evaluate the best tool for PCa tumor marker detection.

  10. Strain measurement of abdominal aortic aneurysm with real-time 3D ultrasound speckle tracking.

    Science.gov (United States)

    Bihari, P; Shelke, A; Nwe, T H; Mularczyk, M; Nelson, K; Schmandra, T; Knez, P; Schmitz-Rixen, T

    2013-04-01

    Abdominal aortic aneurysm rupture is caused by mechanical vascular tissue failure. Although mechanical properties within the aneurysm vary, currently available ultrasound methods assess only one cross-sectional segment of the aorta. This study aims to establish real-time 3-dimensional (3D) speckle tracking ultrasound to explore local displacement and strain parameters of the whole abdominal aortic aneurysm. Validation was performed on a silicone aneurysm model, perfused in a pulsatile artificial circulatory system. Wall motion of the silicone model was measured simultaneously with a commercial real-time 3D speckle tracking ultrasound system and either with laser-scan micrometry or with video photogrammetry. After validation, 3D ultrasound data were collected from abdominal aortic aneurysms of five patients and displacement and strain parameters were analysed. Displacement parameters measured in vitro by 3D ultrasound and laser scan micrometer or video analysis were significantly correlated at pulse pressures between 40 and 80 mmHg. Strong local differences in displacement and strain were identified within the aortic aneurysms of patients. Local wall strain of the whole abdominal aortic aneurysm can be analysed in vivo with real-time 3D ultrasound speckle tracking imaging, offering the prospect of individual non-invasive rupture risk analysis of abdominal aortic aneurysms. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  11. Real-time non-rigid target tracking for ultrasound-guided clinical interventions

    Science.gov (United States)

    Zachiu, C.; Ries, M.; Ramaekers, P.; Guey, J.-L.; Moonen, C. T. W.; de Senneville, B. Denis

    2017-10-01

    Biological motion is a problem for non- or mini-invasive interventions when conducted in mobile/deformable organs due to the targeted pathology moving/deforming with the organ. This may lead to high miss rates and/or incomplete treatment of the pathology. Therefore, real-time tracking of the target anatomy during the intervention would be beneficial for such applications. Since the aforementioned interventions are often conducted under B-mode ultrasound (US) guidance, target tracking can be achieved via image registration, by comparing the acquired US images to a separate image established as positional reference. However, such US images are intrinsically altered by speckle noise, introducing incoherent gray-level intensity variations. This may prove problematic for existing intensity-based registration methods. In the current study we address US-based target tracking by employing the recently proposed EVolution registration algorithm. The method is, by construction, robust to transient gray-level intensities. Instead of directly matching image intensities, EVolution aligns similar contrast patterns in the images. Moreover, the displacement is computed by evaluating a matching criterion for image sub-regions rather than on a point-by-point basis, which typically provides more robust motion estimates. However, unlike similar previously published approaches, which assume rigid displacements in the image sub-regions, the EVolution algorithm integrates the matching criterion in a global functional, allowing the estimation of an elastic dense deformation. The approach was validated for soft tissue tracking under free-breathing conditions on the abdomen of seven healthy volunteers. Contact echography was performed on all volunteers, while three of the volunteers also underwent standoff echography. Each of the two modalities is predominantly specific to a particular type of non- or mini-invasive clinical intervention. The method demonstrated on average an accuracy of

  12. Real-time x-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventions

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yingliang; Housden, R. James; Razavi, Reza; Rhode, Kawal S. [Division of Imaging Sciences and Biomedical Engineering, King' s College London, London SE1 7EH (United Kingdom); Gogin, Nicolas; Cathier, Pascal [Medisys Research Group, Philips Healthcare, Paris 92156 (France); Gijsbers, Geert [Interventional X-ray, Philips Healthcare, Best 5680 DA (Netherlands); Cooklin, Michael; O' Neill, Mark; Gill, Jaswinder; Rinaldi, C. Aldo [Department of Cardiology, Guys and St. Thomas' Hospitals NHS Foundation Trust, London SE1 7EH (United Kingdom)

    2013-07-15

    Purpose: X-ray fluoroscopically guided cardiac electrophysiology (EP) procedures are commonly carried out to treat patients with arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of a three-dimensional (3D) roadmap derived from preprocedural volumetric images can be used to add anatomical information. It is useful to know the position of the catheter electrodes relative to the cardiac anatomy, for example, to record ablation therapy locations during atrial fibrillation therapy. Also, the electrode positions of the coronary sinus (CS) catheter or lasso catheter can be used for road map motion correction.Methods: In this paper, the authors present a novel unified computational framework for image-based catheter detection and tracking without any user interaction. The proposed framework includes fast blob detection, shape-constrained searching and model-based detection. In addition, catheter tracking methods were designed based on the customized catheter models input from the detection method. Three real-time detection and tracking methods are derived from the computational framework to detect or track the three most common types of catheters in EP procedures: the ablation catheter, the CS catheter, and the lasso catheter. Since the proposed methods use the same blob detection method to extract key information from x-ray images, the ablation, CS, and lasso catheters can be detected and tracked simultaneously in real-time.Results: The catheter detection methods were tested on 105 different clinical fluoroscopy sequences taken from 31 clinical procedures. Two-dimensional (2D) detection errors of 0.50 {+-} 0.29, 0.92 {+-} 0.61, and 0.63 {+-} 0.45 mm as well as success rates of 99.4%, 97.2%, and 88.9% were achieved for the CS catheter, ablation catheter, and lasso catheter, respectively. With the tracking method, accuracies were increased to 0.45 {+-} 0.28, 0.64 {+-} 0.37, and 0.53 {+-} 0.38 mm and success rates increased to 100%, 99

  13. Free-breathing cardiac MR stress perfusion with real-time slice tracking.

    Science.gov (United States)

    Basha, Tamer A; Roujol, Sébastien; Kissinger, Kraig V; Goddu, Beth; Berg, Sophie; Manning, Warren J; Nezafat, Reza

    2014-09-01

    To develop a free-breathing cardiac MR perfusion sequence with slice tracking for use after physical exercise. We propose to use a leading navigator, placed immediately before each 2D slice acquisition, for tracking the respiratory motion and updating the slice location in real-time. The proposed sequence was used to acquire CMR perfusion datasets in 12 healthy adult subjects and 8 patients. Images were compared with the conventional perfusion (i.e., without slice tracking) results from the same subjects. The location and geometry of the myocardium were quantitatively analyzed, and the perfusion signal curves were calculated from both sequences to show the efficacy of the proposed sequence. The proposed sequence was significantly better compared with the conventional perfusion sequence in terms of qualitative image scores. Changes in the myocardial location and geometry decreased by 50% in the slice tracking sequence. Furthermore, the proposed sequence had signal curves that are smoother and less noisy. The proposed sequence significantly reduces the effect of the respiratory motion on the image acquisition in both rest and stress perfusion scans. Copyright © 2013 Wiley Periodicals, Inc.

  14. Real-Time Imaging System for the OpenPET

    Science.gov (United States)

    Tashima, Hideaki; Yoshida, Eiji; Kinouchi, Shoko; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Suga, Mikio; Haneishi, Hideaki; Yamaya, Taiga

    2012-02-01

    The OpenPET and its real-time imaging capability have great potential for real-time tumor tracking in medical procedures such as biopsy and radiation therapy. For the real-time imaging system, we intend to use the one-pass list-mode dynamic row-action maximum likelihood algorithm (DRAMA) and implement it using general-purpose computing on graphics processing units (GPGPU) techniques. However, it is difficult to make consistent reconstructions in real-time because the amount of list-mode data acquired in PET scans may be large depending on the level of radioactivity, and the reconstruction speed depends on the amount of the list-mode data. In this study, we developed a system to control the data used in the reconstruction step while retaining quantitative performance. In the proposed system, the data transfer control system limits the event counts to be used in the reconstruction step according to the reconstruction speed, and the reconstructed images are properly intensified by using the ratio of the used counts to the total counts. We implemented the system on a small OpenPET prototype system and evaluated the performance in terms of the real-time tracking ability by displaying reconstructed images in which the intensity was compensated. The intensity of the displayed images correlated properly with the original count rate and a frame rate of 2 frames per second was achieved with average delay time of 2.1 s.

  15. First online real-time evaluation of motion-induced 4D dose errors during radiotherapy delivery

    DEFF Research Database (Denmark)

    Ravkilde, Thomas; Skouboe, Simon; Hansen, Rune

    2018-01-01

    PURPOSE: In radiotherapy, dose deficits caused by tumor motion often far outweigh the discrepancies typically allowed in plan-specific quality assurance (QA). Yet, tumor motion is not usually included in present QA. We here present a novel method for online treatment verification by real......-time motion-including 4D dose reconstruction and dose evaluation and demonstrate its use during stereotactic body radiotherapy (SBRT) delivery with and without MLC tracking. METHODS: Five volumetric modulated arc therapy (VMAT) plans were delivered with and without MLC tracking to a motion stage carrying...... a Delta4 dosimeter. The VMAT plans have previously been used for (non-tracking) liver SBRT with intra-treatment tumor motion recorded by kilovoltage intrafraction monitoring (KIM). The motion stage reproduced the KIM-measured tumor motions in 3D while optical monitoring guided the MLC tracking. Linac...

  16. Real-Time 3D Tracking and Reconstruction on Mobile Phones.

    Science.gov (United States)

    Prisacariu, Victor Adrian; Kähler, Olaf; Murray, David W; Reid, Ian D

    2015-05-01

    We present a novel framework for jointly tracking a camera in 3D and reconstructing the 3D model of an observed object. Due to the region based approach, our formulation can handle untextured objects, partial occlusions, motion blur, dynamic backgrounds and imperfect lighting. Our formulation also allows for a very efficient implementation which achieves real-time performance on a mobile phone, by running the pose estimation and the shape optimisation in parallel. We use a level set based pose estimation but completely avoid the, typically required, explicit computation of a global distance. This leads to tracking rates of more than 100 Hz on a desktop PC and 30 Hz on a mobile phone. Further, we incorporate additional orientation information from the phone's inertial sensor which helps us resolve the tracking ambiguities inherent to region based formulations. The reconstruction step first probabilistically integrates 2D image statistics from selected keyframes into a 3D volume, and then imposes coherency and compactness using a total variational regularisation term. The global optimum of the overall energy function is found using a continuous max-flow algorithm and we show that, similar to tracking, the integration of per voxel posteriors instead of likelihoods improves the precision and accuracy of the reconstruction.

  17. Development of algorithms for real time track selection in the TOTEM experiment

    CERN Document Server

    Minafra, Nicola; Radicioni, E

    The TOTEM experiment at the LHC has been designed to measure the total proton-proton cross-section with a luminosity independent method and to study elastic and diffractive scattering at energy up to 14 TeV in the center of mass. Elastic interactions are detected by Roman Pot stations, placed at 147m and 220m along the two exiting beams. At the present time, data acquired by these detectors are stored on disk without any data reduction by the data acquisition chain. In this thesis several tracking and selection algorithms, suitable for real-time implementation in the firmware of the back-end electronics, have been proposed and tested using real data.

  18. Real-time tumor ablation simulation based on the dynamic mode decomposition method

    KAUST Repository

    Bourantas, George C.; Ghommem, Mehdi; Kagadis, George C.; Katsanos, Konstantinos H.; Loukopoulos, Vassilios C.; Burganos, Vasilis N.; Nikiforidis, George C.

    2014-01-01

    Purpose: The dynamic mode decomposition (DMD) method is used to provide a reliable forecasting of tumor ablation treatment simulation in real time, which is quite needed in medical practice. To achieve this, an extended Pennes bioheat model must

  19. Acute Paraparesis Caused by a Giant Cell Tumor of the Thoracic Spine

    Directory of Open Access Journals (Sweden)

    Liang-Chun Chao

    2014-12-01

    Full Text Available Giant cell tumor (GCT is a benign but locally aggressive skeletal neoplasm of young adults. GCT located in the spine is relatively rare and may need a combination of surgical and adjunctive therapies. Here we present a patient who had intermittent thoracic back pain for two weeks and experienced an acute episode of decreased muscle power of both lower limbs. Magnetic resonance (MR imaging examinations of the thoracic spine revealed that the patient had severe spinal canal compression caused by pathological fracture due to a tumor within the seventh thoracic vertebra. She underwent an emergent surgical intervention for total removal of the tumor and spinal reconstruction with autologous rib grafts and instruments. Postoperatively, the patient made an uneventful recovery of muscle power of bilateral lower limbs. She subsequently received adjuvant radiotherapy. In a follow-up period of 36 months, the patient had no clinical or radiological evidence of tumor recurrence. Even though spinal location for GCT is a rare event, it should be included in the differential diagnosis in patients with osteolytic lesions or pathological fractures of the vertebra, especially in young female patients sustaining no trauma who had a clinical history of persistent low back pain.

  20. Real-time tracking and fast retrieval of persons in multiple surveillance cameras of a shopping mall

    NARCIS (Netherlands)

    Bouma, H.; Baan, J.; Landsmeer, S.; Kruszynski, K.J.; Antwerpen, G. van; Dijk, J.

    2013-01-01

    The capability to track individuals in CCTV cameras is important for e.g. surveillance applications at large areas such as train stations, airports and shopping centers. However, it is laborious to track and trace people over multiple cameras. In this paper, we present a system for real-time

  1. Real-time probabilistic covariance tracking with efficient model update.

    Science.gov (United States)

    Wu, Yi; Cheng, Jian; Wang, Jinqiao; Lu, Hanqing; Wang, Jun; Ling, Haibin; Blasch, Erik; Bai, Li

    2012-05-01

    The recently proposed covariance region descriptor has been proven robust and versatile for a modest computational cost. The covariance matrix enables efficient fusion of different types of features, where the spatial and statistical properties, as well as their correlation, are characterized. The similarity between two covariance descriptors is measured on Riemannian manifolds. Based on the same metric but with a probabilistic framework, we propose a novel tracking approach on Riemannian manifolds with a novel incremental covariance tensor learning (ICTL). To address the appearance variations, ICTL incrementally learns a low-dimensional covariance tensor representation and efficiently adapts online to appearance changes of the target with only O(1) computational complexity, resulting in a real-time performance. The covariance-based representation and the ICTL are then combined with the particle filter framework to allow better handling of background clutter, as well as the temporary occlusions. We test the proposed probabilistic ICTL tracker on numerous benchmark sequences involving different types of challenges including occlusions and variations in illumination, scale, and pose. The proposed approach demonstrates excellent real-time performance, both qualitatively and quantitatively, in comparison with several previously proposed trackers.

  2. Real time track finding in a drift chamber with a VLSI neural network

    International Nuclear Information System (INIS)

    Lindsey, C.S.; Denby, B.; Haggerty, H.; Johns, K.

    1992-01-01

    In a test setup, a hardware neural network determined track parameters of charged particles traversing a drift chamber. Voltages proportional to the drift times in 6 cells of the 3-layer chamber were inputs to the Intel ETANN neural network chip which had been trained to give the slope and intercept of tracks. We compare network track parameters to those obtained from off-line track fits. To our knowledge this is the first on-line application of a VLSI neural network to a high energy physics detector. This test explored the potential of the chip and the practical problems of using it in a real world setting. We compare the chip performance to a neural network simulation on a conventional computer. We discuss possible applications of the chip in high energy physics detector triggers. (orig.)

  3. Extended neural network-based scheme for real-time force tracking with magnetorheological dampers

    DEFF Research Database (Denmark)

    Weber, Felix; Bhowmik, Subrata; Høgsberg, Jan Becker

    2014-01-01

    This paper validates numerically and experimentally a new neural network-based real-time force tracking scheme for magnetorheological (MR) dampers on a five-storey shear frame with MR damper. The inverse model is trained with absolute values of measured velocity and force because the targeted...... the pre-yield to the post-yield region. A control-oriented approach is presented to compensate for these drawbacks. The resulting control force tracking scheme is validated for the emulation of viscous damping, clipped viscous damping with negative stiffness, and friction damping with negative stiffness...

  4. Real-time x-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventions

    International Nuclear Information System (INIS)

    Ma Yingliang; Housden, R. James; Razavi, Reza; Rhode, Kawal S.; Gogin, Nicolas; Cathier, Pascal; Gijsbers, Geert; Cooklin, Michael; O'Neill, Mark; Gill, Jaswinder; Rinaldi, C. Aldo

    2013-01-01

    Purpose: X-ray fluoroscopically guided cardiac electrophysiology (EP) procedures are commonly carried out to treat patients with arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of a three-dimensional (3D) roadmap derived from preprocedural volumetric images can be used to add anatomical information. It is useful to know the position of the catheter electrodes relative to the cardiac anatomy, for example, to record ablation therapy locations during atrial fibrillation therapy. Also, the electrode positions of the coronary sinus (CS) catheter or lasso catheter can be used for road map motion correction.Methods: In this paper, the authors present a novel unified computational framework for image-based catheter detection and tracking without any user interaction. The proposed framework includes fast blob detection, shape-constrained searching and model-based detection. In addition, catheter tracking methods were designed based on the customized catheter models input from the detection method. Three real-time detection and tracking methods are derived from the computational framework to detect or track the three most common types of catheters in EP procedures: the ablation catheter, the CS catheter, and the lasso catheter. Since the proposed methods use the same blob detection method to extract key information from x-ray images, the ablation, CS, and lasso catheters can be detected and tracked simultaneously in real-time.Results: The catheter detection methods were tested on 105 different clinical fluoroscopy sequences taken from 31 clinical procedures. Two-dimensional (2D) detection errors of 0.50 ± 0.29, 0.92 ± 0.61, and 0.63 ± 0.45 mm as well as success rates of 99.4%, 97.2%, and 88.9% were achieved for the CS catheter, ablation catheter, and lasso catheter, respectively. With the tracking method, accuracies were increased to 0.45 ± 0.28, 0.64 ± 0.37, and 0.53 ± 0.38 mm and success rates increased to 100%, 99.2%, and 96

  5. Aortic dose constraints when reirradiating thoracic tumors

    International Nuclear Information System (INIS)

    Evans, Jaden D.; Gomez, Daniel R.; Amini, Arya; Rebueno, Neal; Allen, Pamela K.; Martel, Mary K.; Rineer, Justin M.; Ang, Kie Kian; McAvoy, Sarah; Cox, James D.; Komaki, Ritsuko; Welsh, James W.

    2013-01-01

    Background and purpose: Improved radiation delivery and planning has allowed, in some instances, for the retreatment of thoracic tumors. We investigated the dose limits of the aorta wherein grade 5 aortic toxicity was observed after reirradiation of lung tumors. Material and methods: In a retrospective analysis, 35 patients were identified, between 1993 and 2008, who received two rounds of external beam irradiation that included the aorta in the radiation fields of both the initial and retreatment plans. We determined the maximum cumulative dose to 1 cm 3 of the aorta (the composite dose) for each patient, normalized these doses to 1.8 Gy/fraction, and corrected them for long-term tissue recovery between treatments (NID R ). Results: The median time interval between treatments was 30 months (range, 1–185 months). The median follow-up of patients alive at analysis was 42 months (range, 14–70 months). Two of the 35 patients (6%) were identified as having grade 5 aortic toxicities. There was a 25% rate of grade 5 aortic toxicity for patients receiving composite doses ⩾120.0 Gy (vs. 0% for patients receiving R ⩾90.0 Gy) to 1 cm 3 of the aorta

  6. Development of radiation hardened robot for nuclear facility - Development of real-time stereo object tracking system using the optical correlator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Soo; Lee, S. H.; Lee, J. S. [Kwangwoon University, Seoul (Korea)

    2000-03-01

    Object tracking, through Centroide method used in the KAERI-M1 Stereo Robot Vision System developed at Atomic Research Center, is too sensitive to target's light variation and because it has a fragility which can't reflect the surrounding background, the application in the actual condition is very limited. Also the correlation method can constitute a relatively stable object tracker in noise features but the digital calculation amount is too massive in image correlation so real time materialization is limited. So the development of Optical Correlation based on Stereo Object Tracking System using high speed optical information processing technique will put stable the real time stereo object tracking system and substantial atomic industrial stereo robot vision system to practical use. This research is about developing real time stereo object tracking algorithm using optical correlation system through the technique which can be applied to Atomic Research Center's KAERI-M1 Stereo Vision Robot which will be used in atomic facility remote operations. And revise the stereo disparity using real time optical correlation technique, and materializing the application of the stereo object tracking algorithm to KAERI-M1 Stereo Robot. 19 refs., 45 figs., 2 tabs. (Author)

  7. Printed Tag Real-time Tracking

    KAUST Repository

    Bilal, Rana M.

    2014-09-18

    Disclosed are various embodiments for monitoring tracking devices capable of seamless indoor and outdoor tracking transitions. A tracking device may comprise, for example, printable circuitry and antennas combined with one or more receivers/transceivers on a substrate. The tracking device may be configured, for example, to localize the tracking device via GPS or an alternative localization strategy based on a determination of whether GPS communication is available. A modified RSSI fingerprinting methodology may be used to accurately determine a location of the tracking device using Wi-Fi access points. A device monitoring service may communicate with internal and/or external mapping API\\'s to render a device monitoring user interface comprising a visual representation of the location of the tracking device.

  8. Real-time piscicide tracking using Rhodamine WT dye for support of application, transport, and deactivation strategies in riverine environments

    Science.gov (United States)

    Jackson, Patrick Ryan; Lageman, Jonathan D.

    2013-01-01

    Piscicide applications in riverine environments are complicated by the advection and dispersion of the piscicide by the flowing water. Proper deactivation of the fish toxin is required outside of the treatment reach to ensure that there is minimal collateral damage to fisheries downstream or in connecting and adjacent water bodies. In urban settings and highly managed waterways, further complications arise from the influence of industrial intakes and outfalls, stormwater outfalls, lock and dam operations, and general unsteady flow conditions. These complications affect the local hydrodynamics and ultimately the transport and fate of the piscicide. This report presents two techniques using Rhodamine WT dye for real-time tracking of a piscicide plume—or any passive contaminant—in rivers and waterways in natural and urban settings. Passive contaminants are those that are present in such low concentration that there is no effect (such as buoyancy) on the fluid dynamics of the receiving water body. These methods, when combined with data logging and archiving, allow for visualization and documentation of the application and deactivation process. Real-time tracking and documentation of rotenone applications in rivers and urban waterways was accomplished by encasing the rotenone plume in a plume of Rhodamine WT dye and using vessel-mounted submersible fluorometers together with acoustic Doppler current profilers (ADCP) and global positioning system (GPS) receivers to track the dye and map the water currents responsible for advection and dispersion. In this study, two methods were used to track rotenone plumes: (1) simultaneous injection of dye with rotenone and (2) delineation of the upstream and downstream boundaries of the treatment zone with dye. All data were logged and displayed on a shipboard laptop computer, so that survey personnel provided real-time feedback about the extent of the rotenone plume to rotenone application and deactivation personnel. Further

  9. Real-time tumor ablation simulation based on the dynamic mode decomposition method

    KAUST Repository

    Bourantas, George C.

    2014-05-01

    Purpose: The dynamic mode decomposition (DMD) method is used to provide a reliable forecasting of tumor ablation treatment simulation in real time, which is quite needed in medical practice. To achieve this, an extended Pennes bioheat model must be employed, taking into account both the water evaporation phenomenon and the tissue damage during tumor ablation. Methods: A meshless point collocation solver is used for the numerical solution of the governing equations. The results obtained are used by the DMD method for forecasting the numerical solution faster than the meshless solver. The procedure is first validated against analytical and numerical predictions for simple problems. The DMD method is then applied to three-dimensional simulations that involve modeling of tumor ablation and account for metabolic heat generation, blood perfusion, and heat ablation using realistic values for the various parameters. Results: The present method offers very fast numerical solution to bioheat transfer, which is of clinical significance in medical practice. It also sidesteps the mathematical treatment of boundaries between tumor and healthy tissue, which is usually a tedious procedure with some inevitable degree of approximation. The DMD method provides excellent predictions of the temperature profile in tumors and in the healthy parts of the tissue, for linear and nonlinear thermal properties of the tissue. Conclusions: The low computational cost renders the use of DMD suitable forin situ real time tumor ablation simulations without sacrificing accuracy. In such a way, the tumor ablation treatment planning is feasible using just a personal computer thanks to the simplicity of the numerical procedure used. The geometrical data can be provided directly by medical image modalities used in everyday practice. © 2014 American Association of Physicists in Medicine.

  10. Demo: Distributed Real-Time Generative 3D Hand Tracking using Edge GPGPU Acceleration

    DEFF Research Database (Denmark)

    Qammaz, Ammar; Kosta, Sokol; Kyriazis, Nikolaos

    2018-01-01

    computations locally. The network connection takes the place of a GPGPU accelerator and sharing resources with a larger workstation becomes the acceleration mechanism. The unique properties of a generative optimizer are examined and constitute a challenging use-case, since the requirement for real......This work demonstrates a real-time 3D hand tracking application that runs via computation offloading. The proposed framework enables the application to run on low-end mobile devices such as laptops and tablets, despite the fact that they lack the sufficient hardware to perform the required...

  11. Elimination of ghost markers during dual sensor-based infrared tracking of multiple individual reflective markers

    International Nuclear Information System (INIS)

    Stroian, G.; Falco, T.; Seuntjens, J.P.

    2004-01-01

    The accuracy of dose delivery in radiotherapy is affected by the uncertainty in tumor localization. Motion of internal anatomy due to physiological processes such as respiration may lead to significant displacements which compromise tumor coverage and generate irradiation of healthy tissue. Real-time tracking with infrared-based systems is often used for tracking thoracic motion in radiation therapy. We studied the origin of ghost markers ('crosstalk') which may appear during dual sensor-based infrared tracking of independent reflective markers. Ghost markers occur when two or more reflective markers are coplanar with each other and with the sensors of the two camera-based infrared tracking system. Analysis shows that sensors are not points but they have a finite extent and this extent determines for each marker a 'ghost volume'. If one reflective marker enters the ghost volume of another marker, ghost markers will be reported by the tracking system; if the reflective markers belong to a surface their 'ghost volume' is reduced to a 'ghost surface' (ghost zone). Appearance of ghost markers is predicted for markers taped on the torso of an anthropomorphic phantom. This study illustrates the dependence of the shape, extent, and location of the ghost zones on the shape of the anthropomorphic phantom, the angle of view of the tracking system, and the distance between the tracking system and the anthropomorphic phantom. It is concluded that the appearance of ghost markers can be avoided by positioning the markers outside the ghost zones of the other markers. However, if this is not possible and the initial marker configuration is ghost marker-free, ghost markers can be eliminated during real-time tracking by virtue of the fact that they appear in the coordinate data sequence only temporarily

  12. XpertTrack: Precision Autonomous Measuring Device Developed for Real Time Shipments Tracker.

    Science.gov (United States)

    Viman, Liviu; Daraban, Mihai; Fizesan, Raul; Iuonas, Mircea

    2016-03-10

    This paper proposes a software and hardware solution for real time condition monitoring applications. The proposed device, called XpertTrack, exchanges data through the GPRS protocol over a GSM network and monitories temperature and vibrations of critical merchandise during commercial shipments anywhere on the globe. Another feature of this real time tracker is to provide GPS and GSM positioning with a precision of 10 m or less. In order to interpret the condition of the merchandise, the data acquisition, analysis and visualization are done with 0.1 °C accuracy for the temperature sensor, and 10 levels of shock sensitivity for the acceleration sensor. In addition to this, the architecture allows increasing the number and the types of sensors, so that companies can use this flexible solution to monitor a large percentage of their fleet.

  13. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    International Nuclear Information System (INIS)

    Min Yugang; Santhanam, Anand; Ruddy, Bari H; Neelakkantan, Harini; Meeks, Sanford L; Kupelian, Patrick A

    2010-01-01

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  14. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    Energy Technology Data Exchange (ETDEWEB)

    Min Yugang; Santhanam, Anand; Ruddy, Bari H [University of Central Florida, FL (United States); Neelakkantan, Harini; Meeks, Sanford L [M D Anderson Cancer Center Orlando, FL (United States); Kupelian, Patrick A, E-mail: anand.santhanam@orlandohealth.co [Department of Radiation Oncology, University of California, Los Angeles, CA (United States)

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  15. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion.

    Science.gov (United States)

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H; Meeks, Sanford L; Kupelian, Patrick A

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  16. Real-time tracking of tumor motions and deformations along the leaf travel direction with the aid of a synchronized dynamic MLC leaf sequencer

    International Nuclear Information System (INIS)

    Tacke, Martin; Nill, Simeon; Oelfke, Uwe

    2007-01-01

    Advanced radiotherapeutical techniques like intensity-modulated radiation therapy (IMRT) are based on an accurate knowledge of the location of the radiation target. An accurate dose delivery, therefore, requires a method to account for the inter- and intrafractional target motion and the target deformation occurring during the course of treatment. A method to compensate in real time for changes in the position and shape of the target is the use of a dynamic multileaf collimator (MLC) technique which can be devised to automatically arrange the treatment field according to real-time image information. So far, various approaches proposed for leaf sequencers have had to rely on a priori known target motion data and have aimed to optimize the overall treatment time. Since for a real-time dose delivery the target motion is not known a priori, the velocity range of the leading leaves is restricted by a safety margin to c x v max while the following leaves can travel with an additional maximum speed to compensate for the respective target movements. Another aspect to be considered is the tongue and groove effect. A uniform radiation field can only be achieved if the leaf movements are synchronized. The method presented in this note is the first to combine a synchronizing sequencer and real-time tracking with a dynamic MLC. The newly developed algorithm is capable of online optimizing the leaf velocities by minimizing the overall treatment time while at the same time it synchronizes the leaf trajectories in order to avoid the tongue and groove effect. The simultaneous synchronization is performed with the help of an online-calculated mid-time leaf trajectory which is common for all leaf pairs and which takes into account the real-time target motion and deformation information. (note)

  17. Real-time tracking of tumor motions and deformations along the leaf travel direction with the aid of a synchronized dynamic MLC leaf sequencer.

    Science.gov (United States)

    Tacke, Martin; Nill, Simeon; Oelfke, Uwe

    2007-11-21

    Advanced radiotherapeutical techniques like intensity-modulated radiation therapy (IMRT) are based on an accurate knowledge of the location of the radiation target. An accurate dose delivery, therefore, requires a method to account for the inter- and intrafractional target motion and the target deformation occurring during the course of treatment. A method to compensate in real time for changes in the position and shape of the target is the use of a dynamic multileaf collimator (MLC) technique which can be devised to automatically arrange the treatment field according to real-time image information. So far, various approaches proposed for leaf sequencers have had to rely on a priori known target motion data and have aimed to optimize the overall treatment time. Since for a real-time dose delivery the target motion is not known a priori, the velocity range of the leading leaves is restricted by a safety margin to c x v(max) while the following leaves can travel with an additional maximum speed to compensate for the respective target movements. Another aspect to be considered is the tongue and groove effect. A uniform radiation field can only be achieved if the leaf movements are synchronized. The method presented in this note is the first to combine a synchronizing sequencer and real-time tracking with a dynamic MLC. The newly developed algorithm is capable of online optimizing the leaf velocities by minimizing the overall treatment time while at the same time it synchronizes the leaf trajectories in order to avoid the tongue and groove effect. The simultaneous synchronization is performed with the help of an online-calculated mid-time leaf trajectory which is common for all leaf pairs and which takes into account the real-time target motion and deformation information.

  18. Real-time dynamic MR image reconstruction using compressed sensing and principal component analysis (CS-PCA): Demonstration in lung tumor tracking.

    Science.gov (United States)

    Dietz, Bryson; Yip, Eugene; Yun, Jihyun; Fallone, B Gino; Wachowicz, Keith

    2017-08-01

    This work presents a real-time dynamic image reconstruction technique, which combines compressed sensing and principal component analysis (CS-PCA), to achieve real-time adaptive radiotherapy with the use of a linac-magnetic resonance imaging system. Six retrospective fully sampled dynamic data sets of patients diagnosed with non-small-cell lung cancer were used to investigate the CS-PCA algorithm. Using a database of fully sampled k-space, principal components (PC's) were calculated to aid in the reconstruction of undersampled images. Missing k-space data were calculated by projecting the current undersampled k-space data onto the PC's to generate the corresponding PC weights. The weighted PC's were summed together, and the missing k-space was iteratively updated. To gain insight into how the reconstruction might proceed at lower fields, 6× noise was added to the 3T data to investigate how the algorithm handles noisy data. Acceleration factors ranging from 2 to 10× were investigated using CS-PCA and Split Bregman CS for comparison. Metrics to determine the reconstruction quality included the normalized mean square error (NMSE), as well as the dice coefficients (DC) and centroid displacement of the tumor segmentations. Our results demonstrate that CS-PCA performed superior than CS alone. The CS-PCA patient averaged DC for 3T and 6× noise added data remained above 0.9 for acceleration factors up to 10×. The patient averaged NMSE gradually increased with increasing acceleration; however, it remained below 0.06 up to an acceleration factor of 10× for both 3T and 6× noise added data. The CS-PCA reconstruction speed ranged from 5 to 20 ms (Intel i7-4710HQ CPU @ 2.5 GHz), depending on the chosen parameters. A real-time reconstruction technique was developed for adaptive radiotherapy using a Linac-MRI system. Our CS-PCA algorithm can achieve tumor contours with DC greater than 0.9 and NMSE less than 0.06 at acceleration factors of up to, and including, 10×. The

  19. On the Feasibility of Real-Time 3D Hand Tracking using Edge GPGPU Acceleration

    DEFF Research Database (Denmark)

    Qammaz, A.; Kosta, S.; Kyriazis, N.

    2018-01-01

    This paper presents the case study of a non-intrusive porting of a monolithic C++ library for real-time 3D hand tracking, to the domain of edge-based computation. Towards a proof of concept, the case study considers a pair of workstations, a computationally powerful and a computationally weak one...

  20. Risk of tumor transmission after thoracic allograft transplantation from adult donors with central nervous system neoplasm-A UNOS database study.

    Science.gov (United States)

    Hynes, Conor F; Ramakrishnan, Karthik; Alfares, Fahad A; Endicott, Kendal M; Hammond-Jack, Katrina; Zurakowski, David; Jonas, Richard A; Nath, Dilip S

    2017-04-01

    We analyzed the UNOS database to better define the risk of transmission of central nervous system (CNS) tumors from donors to adult recipients of thoracic organs. Data were procured from the Standard Transplant Analysis and Research dataset files. Donors with CNS tumors were identified, and recipients from these donors comprised the study group (Group I). The remaining recipients of organs from donors who did not have CNS tumors formed the control group (Group II). Incidence of recipient CNS tumors, donor-related malignancies, and overall survival were calculated and compared in addition to multivariable logistic regression. A cohort of 58 314 adult thoracic organ recipients were included, of which 337 received organs from donors who had documented CNS tumors (Group I). None of these recipients developed CNS tumors at a median follow-up of 72 months (IR: 30-130 months). Although overall mortality in terms of the percentage was higher in Group I than Group II (163/320=51% vs 22 123/52 691=42%), Kaplan-Meier curves indicate no significant difference in the time to death between the two groups (P=.92). There is little risk of transmission of the common nonaggressive CNS tumors to recipients of thoracic organs. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Fast Tracker: A Hardware Real Time Track Finder for the ATLAS Trigger System

    CERN Document Server

    Kimura, N; The ATLAS collaboration

    2014-01-01

    The Fast Tracker (FTK) is an integral part of the trigger upgrade program for the ATLAS detector at the Large Hadron Collider (LHC). As the LHC luminosity approaches its design level of 10^34cm^−2s^−1, the combinatorial problem posed by charged particle tracking becomes increasingly difficult due to the swelling of multiple interactions per bunch crossing (pile-up). The FTK is a highly-parallel hardware system intended to provide high-quality tracks with transverse momentum above 1 GeV/c in real time for online trigger system. The FTK system’s design, based on a mixture of advanced technologies, and expected physics performance will be presented.

  2. XpertTrack: Precision Autonomous Measuring Device Developed for Real Time Shipments Tracker

    Directory of Open Access Journals (Sweden)

    Liviu Viman

    2016-03-01

    Full Text Available This paper proposes a software and hardware solution for real time condition monitoring applications. The proposed device, called XpertTrack, exchanges data through the GPRS protocol over a GSM network and monitories temperature and vibrations of critical merchandise during commercial shipments anywhere on the globe. Another feature of this real time tracker is to provide GPS and GSM positioning with a precision of 10 m or less. In order to interpret the condition of the merchandise, the data acquisition, analysis and visualization are done with 0.1 °C accuracy for the temperature sensor, and 10 levels of shock sensitivity for the acceleration sensor. In addition to this, the architecture allows increasing the number and the types of sensors, so that companies can use this flexible solution to monitor a large percentage of their fleet.

  3. XpertTrack: Precision Autonomous Measuring Device Developed for Real Time Shipments Tracker

    Science.gov (United States)

    Viman, Liviu; Daraban, Mihai; Fizesan, Raul; Iuonas, Mircea

    2016-01-01

    This paper proposes a software and hardware solution for real time condition monitoring applications. The proposed device, called XpertTrack, exchanges data through the GPRS protocol over a GSM network and monitories temperature and vibrations of critical merchandise during commercial shipments anywhere on the globe. Another feature of this real time tracker is to provide GPS and GSM positioning with a precision of 10 m or less. In order to interpret the condition of the merchandise, the data acquisition, analysis and visualization are done with 0.1 °C accuracy for the temperature sensor, and 10 levels of shock sensitivity for the acceleration sensor. In addition to this, the architecture allows increasing the number and the types of sensors, so that companies can use this flexible solution to monitor a large percentage of their fleet. PMID:26978360

  4. Experimental validation of concept for real-time wavelength monitoring and tracking in densely populated WDM networks

    Science.gov (United States)

    Vukovic, Alex; Savoie, Michel; Hua, Heng; Campbell, Scott; Nguyen, Thao

    2005-10-01

    As the telecom industry responds with technological innovations to requests for higher data rates, increased number of wavelengths at higher densities, longer transmission distances and more intelligence for next generation optical networks, new monitoring schemes based on monitoring and tracking of each wavelength need to be developed and deployed. An optical layer monitoring scheme, based on tracking key optical parameters per each wavelength, is considered to be one of enablers for the transformation of today's opaque networks to dynamic, agile future networks. Ever-tighter network monitoring and control will be required to fulfill customer Service Level Agreements (SLAs). A wavelength monitoring and tracking concept was developed as a three-step approach. It started with the identification of all critical parameters required to obtain sufficient information about each wavelength; followed by the deployment of a cost-efficient device to provide simultaneous, accurate measurements in real-time of all critical parameters; and finally, the formulation of a specification for wavelength monitoring and tracking devices for real-time, simultaneous measurements and processing the data. A prototype solution based on a commercially available integrated modular spectrometer within a testbed environment associated with the all-optical network (AON) demonstrator program was used to verify and validate the wavelength monitoring and tracking concept. The developed concept verified that it can manage tracking of 32 wavelengths within a wavelength division multiplexing network. The developed concept presented in this paper can be used inside the transparent domains of networks to detect, identify and locate signal degradations in real-time, even sometimes to recognize the cause of the failure. Aside from the reduction of operational expenses due to the elimination of the need for operators at every site and skilled field technicians to isolate and repair faults, the developed

  5. Development of the SyncTraX FX4 version real-time tumor tracking system for radiation therapy

    International Nuclear Information System (INIS)

    Ishiyama, Tomoharu; Torigoe, Yui; Nagae, Koudai; Kajiki, Shunsuke; Sano, Takayuki

    2017-01-01

    Based on the current SyncTraX that was developed jointly with Hokkaido University, we have developed the SyncTraX FX4 version, which features not only tumor tracking but also patient positioning. The SyncTraX FX4 version is configured with four fixed x-ray tubes an detectors and eliminated the rail that is used to move the x-ray tube and detector as in the current SyncTraX. This development simplifies limitations on facility construction. We also adopted a distortion free flat panel detector instead of a color I.I., and the additional patient positioning feature will enable the SyncTraX FX4 version to become more widely applied in clinical cases. (author)

  6. SU-E-J-189: Determination of Markerless Lung Tumor Position in Real Time: A Feasibility Study Using a Novel Tomo-Cinegraphy Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yi, B; Hu, E; Yu, C; Lee, M; Lasio, G [Univ. of Maryland School Of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: A Tomo-Cinegraphy (TC) is a method to generate a series of temporal tomographic images from projection images of the on-board imager (OBI) while gantry is moving. It is to test if this technique is useful to determine a lung tumor position during treatments. Methods: Tomographic image via background subtraction, TIBS uses a priori anatomical information from a previous CT scan to isolate a SOI from a planar kV image by factoring out the attenuations by tissues outside the SOI (background). This idea was extended to a TC, which enables to generate tomographic images of same geometry from the projection of different gantry angles and different breathing phases. Projection images of a lung patient for CBCT acquisition are used to generate TC images. A region of interest (ROI) is selected around a tumor adding 2cm margins. Center of mass (COM) of the ROI is traced to determine tumor position for every projection images. Results: Tumor is visible in the TC images while the OBI projections are not. The coordinates of the COMs represent the temporal tumor positions. While, it is not possible to trace the tumor motion using the projection images. A source of time delay is the time to acquire projection images, which is always less than a second. Conclusion: TC allows tracking the tumor positions without fiducial markers in real time for some lung patients, if the projection images are acquired during treatments. Partially supported by NIH R01CA133539.

  7. Insertion and fixation of fiducial markers for setup and tracking of lung tumors in radiotherapy

    International Nuclear Information System (INIS)

    Imura, Mikado; Yamazaki, Koichi; Shirato, Hiroki; Onimaru, Rikiya; Fujino, Masaharu; Shimizu, Shinichi; Harada, Toshiyuki; Ogura, Shigeaki; Dosaka-Akita, Hirotoshi; Miyasaka, Kazuo; Nishimura, Masaharu

    2005-01-01

    Purpose: Internal 1.5-mm fiducial markers were used in real-time tumor-tracking radiotherapy (RT) for lung cancer. The fixation rate of the markers using the bronchial insertion technique, reliability of the setup using markers around the target volume, dislocation of the markers after real-time tumor-tracking RT, and long-term toxicity of marker insertion were investigated. Methods and Materials: Between July 2000 and April 2004, 154 gold markers were inserted into 57 patients with peripheral lung cancer. The distances between the implanted markers in 198 measurements in 71 setups in 11 patients were measured using two sets of orthogonal diagnostic X-ray images of the real-time tumor-tracking RT system. The distance between the markers and the chest wall was also measured in a transaxial CT image on 186 occasions in 48 patients during treatment planning and during follow-up. The median treatment time was 6 days (range, 4-14 days). Results: In 115 (75%) of the 154 inserted markers, the gold marker was detected throughout the treatment period. In 122 markers detected at CT planning, 115 (94%) were detected until the end of treatment. The variation in the distances between the implanted markers was within ±2 mm in 95% and ±1 mm in 80% during treatment. The variation in the distances between the implanted markers was >2 mm in at least one direction in 9% of the setups for which reexamination with a CT scan was indicated. The fixation rate in the left upper lobe was lower than in the other lobes. A statistically significant relationship was found between a shorter distance between the markers and the chest wall and the fixation rate, suggesting that the markers in the smaller bronchial lumens fixed better than those in the larger lumens. A learning curve among the endoscopists was suggested in the fixation rate. The distance between the markers and the chest wall changed significantly within a median of 44 days (range, 16-181 days) after treatment. Conclusion: The

  8. Real-time heart rate measurement for multi-people using compressive tracking

    Science.gov (United States)

    Liu, Lingling; Zhao, Yuejin; Liu, Ming; Kong, Lingqin; Dong, Liquan; Ma, Feilong; Pang, Zongguang; Cai, Zhi; Zhang, Yachu; Hua, Peng; Yuan, Ruifeng

    2017-09-01

    The rise of aging population has created a demand for inexpensive, unobtrusive, automated health care solutions. Image PhotoPlethysmoGraphy(IPPG) aids in the development of these solutions by allowing for the extraction of physiological signals from video data. However, the main deficiencies of the recent IPPG methods are non-automated, non-real-time and susceptible to motion artifacts(MA). In this paper, a real-time heart rate(HR) detection method for multiple subjects simultaneously was proposed and realized using the open computer vision(openCV) library, which consists of getting multiple subjects' facial video automatically through a Webcam, detecting the region of interest (ROI) in the video, reducing the false detection rate by our improved Adaboost algorithm, reducing the MA by our improved compress tracking(CT) algorithm, wavelet noise-suppression algorithm for denoising and multi-threads for higher detection speed. For comparison, HR was measured simultaneously using a medical pulse oximetry device for every subject during all sessions. Experimental results on a data set of 30 subjects show that the max average absolute error of heart rate estimation is less than 8 beats per minute (BPM), and the processing speed of every frame has almost reached real-time: the experiments with video recordings of ten subjects under the condition of the pixel resolution of 600× 800 pixels show that the average HR detection time of 10 subjects was about 17 frames per second (fps).

  9. Radiation therapy of thoracic and abdominal tumors

    International Nuclear Information System (INIS)

    LaRue, S.M.; Gillette, S.M.; Poulson, J.M.

    1995-01-01

    Until recently, radiotherapy of thoracic and abdominal tumors in animals has been limited. However, the availability of computerized tomography and other imaging techniques to aid in determining the extent of tumor, an increase in knowledge of dose tolerance of regional organs, the availability of isocentrically mounted megavoltage machines, and the willingness of patients to pursue more aggressive treatment is making radiation therapy of tumors in these regions far more common. Tumor remission has been reported after radiation therapy of thymomas. Radiation therapy has been used to treat mediastinal lymphoma refractory to chemotherapy, and may be beneficial as part of the initial treatment regimen for this disease. Chemodectomas are responsive to radiation therapy in human patients, and favorable response has also been reported in dogs. Although primary lung tumors in dogs are rare, in some cases radiation therapy could be a useful primary or adjunctive therapy. Lung is the dose-limiting organ in the thorax. Bladder and urethral tumors in dogs have been treated using intraoperative and external-beam radiation therapy combined with chemotherapy. These tumors are difficult to control locally with surgery alone, although the optimal method of combining treatment modalities has not been established. Local control of malignant perianal tumors is also difficult to achieve with surgery alone, and radiation therapy should be used. Intraoperative radiation therapy combined with external-beam radiation therapy has been used for the management of metastatic carcinoma to the sublumbar lymph nodes. Tolerance of retroperitoneal tissues may be decreased by disease or surgical manipulation

  10. Accuracy of Real-time Couch Tracking During 3-dimensional Conformal Radiation Therapy, Intensity Modulated Radiation Therapy, and Volumetric Modulated Arc Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Wilbert, Juergen; Baier, Kurt; Hermann, Christian; Flentje, Michael; Guckenberger, Matthias

    2013-01-01

    Purpose: To evaluate the accuracy of real-time couch tracking for prostate cancer. Methods and Materials: Intrafractional motion trajectories of 15 prostate cancer patients were the basis for this phantom study; prostate motion had been monitored with the Calypso System. An industrial robot moved a phantom along these trajectories, motion was detected via an infrared camera system, and the robotic HexaPOD couch was used for real-time counter-steering. Residual phantom motion during real-time tracking was measured with the infrared camera system. Film dosimetry was performed during delivery of 3-dimensional conformal radiation therapy (3D-CRT), step-and-shoot intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). Results: Motion of the prostate was largest in the anterior–posterior direction, with systematic (∑) and random (σ) errors of 2.3 mm and 2.9 mm, respectively; the prostate was outside a threshold of 5 mm (3D vector) for 25.0%±19.8% of treatment time. Real-time tracking reduced prostate motion to ∑=0.01 mm and σ = 0.55 mm in the anterior–posterior direction; the prostate remained within a 1-mm and 5-mm threshold for 93.9%±4.6% and 99.7%±0.4% of the time, respectively. Without real-time tracking, pass rates based on a γ index of 2%/2 mm in film dosimetry ranged between 66% and 72% for 3D-CRT, IMRT, and VMAT, on average. Real-time tracking increased pass rates to minimum 98% on average for 3D-CRT, IMRT, and VMAT. Conclusions: Real-time couch tracking resulted in submillimeter accuracy for prostate cancer, which transferred into high dosimetric accuracy independently of whether 3D-CRT, IMRT, or VMAT was used.

  11. Real-time multi-peak tractography for instantaneous connectivity display

    Directory of Open Access Journals (Sweden)

    Maxime eChamberland

    2014-05-01

    Full Text Available The computerized process of reconstructing white matter tracts from diffusion MRI (dMRI data is often referred to as tractography. Tractography is nowadays central in structural connectivity since it is the only non-invasive technique to obtain information about brain wiring. Most publicly available tractography techniques and most studies are based on a fixed set of tractography parameters. However, the scale and curvature of fiber bundles can vary from region to region in the brain. Therefore, depending on the area of interest or subject (e.g. healthy control vs. tumor patient, optimal tracking parameters can be dramatically different. As a result, a slight change in tracking parameters may return different connectivity profiles and complicate the interpretation of the results. Having access to tractography parameters can thus be advantageous, as it will help in better isolating those which are sensitive to certain streamline features and potentially converge on optimal settings which are area-specific. In this work, we propose a real-time fiber tracking (RTT tool which can instantaneously compute and display streamlines. To achieve such real-time performance, we propose a novel evolution equation based on the upsampled principal directions, also called peaks, extracted at each voxel of the dMRI dataset. The technique runs on a single Computer Processing Unit (CPU without the need for Graphical Unit Processing (GPU programming. We qualitatively illustrate and quantitatively evaluate our novel multi-peak RTT technique on phantom and human datasets in comparison with the state of the art offline tractography from MRtrix, which is robust to fiber crossings. Finally, we show how our RTT tool facilitates neurosurgical planning and allows one to find fibers that infiltrate tumor areas, otherwise missing when using the standard default tracking parameters.

  12. TH-AB-202-02: Real-Time Verification and Error Detection for MLC Tracking Deliveries Using An Electronic Portal Imaging Device

    International Nuclear Information System (INIS)

    J Zwan, B; Colvill, E; Booth, J; J O’Connor, D; Keall, P; B Greer, P

    2016-01-01

    Purpose: The added complexity of the real-time adaptive multi-leaf collimator (MLC) tracking increases the likelihood of undetected MLC delivery errors. In this work we develop and test a system for real-time delivery verification and error detection for MLC tracking radiotherapy using an electronic portal imaging device (EPID). Methods: The delivery verification system relies on acquisition and real-time analysis of transit EPID image frames acquired at 8.41 fps. In-house software was developed to extract the MLC positions from each image frame. Three comparison metrics were used to verify the MLC positions in real-time: (1) field size, (2) field location and, (3) field shape. The delivery verification system was tested for 8 VMAT MLC tracking deliveries (4 prostate and 4 lung) where real patient target motion was reproduced using a Hexamotion motion stage and a Calypso system. Sensitivity and detection delay was quantified for various types of MLC and system errors. Results: For both the prostate and lung test deliveries the MLC-defined field size was measured with an accuracy of 1.25 cm 2 (1 SD). The field location was measured with an accuracy of 0.6 mm and 0.8 mm (1 SD) for lung and prostate respectively. Field location errors (i.e. tracking in wrong direction) with a magnitude of 3 mm were detected within 0.4 s of occurrence in the X direction and 0.8 s in the Y direction. Systematic MLC gap errors were detected as small as 3 mm. The method was not found to be sensitive to random MLC errors and individual MLC calibration errors up to 5 mm. Conclusion: EPID imaging may be used for independent real-time verification of MLC trajectories during MLC tracking deliveries. Thresholds have been determined for error detection and the system has been shown to be sensitive to a range of delivery errors.

  13. An accuracy analysis of Cyberknife tumor tracking radiotherapy according to unpredictable change of respiration

    International Nuclear Information System (INIS)

    Seo, Jung Min; Lee, Chang Yeol; Huh, Hyun Do; Kim, Wan Sun

    2015-01-01

    Cyber-Knife tumor tracking system, based on the correlation relationship between the position of a tumor which moves in response to the real time respiratory cycle signal and respiration was obtained by the LED marker attached to the outside of the patient, the location of the tumor to predict in advance, the movement of the tumor in synchronization with the therapeutic device to track real-time tumor, is a system for treating. The purpose of this study, in the cyber knife tumor tracking radiation therapy, trying to evaluate the accuracy of tumor tracking radiation therapy system due to the change in the form of unpredictable sudden breathing due to cough and sleep. Materials and Methods : Breathing Log files that were used in the study, based on the Respiratory gating radiotherapy and Cyber-knife tracking radiosurgery breathing Log files of patients who received herein, measured using the Log files in the form of a Sinusoidal pattern and Sudden change pattern. it has been reconstituted as possible. Enter the reconstructed respiratory Log file cyber knife dynamic chest Phantom, so that it is possible to implement a motion due to respiration, add manufacturing the driving apparatus of the existing dynamic chest Phantom, Phantom the form of respiration we have developed a program that can be applied to. Movement of the phantom inside the target (Ball cube target) was driven by the displacement of three sizes of according to the size of the respiratory vertical (Superior-Inferior) direction to the 5 mm, 10 mm, 20 mm. Insert crosses two EBT3 films in phantom inside the target in response to changes in the target movement, the End-to-End (E2E) test provided in Cyber-Knife manufacturer depending on the form of the breathing five times each. It was determined by carrying. Accuracy of tumor tracking system is indicated by the target error by analyzing the inserted film, additional E2E test is analyzed by measuring the correlation error while being advanced. If the target

  14. An accuracy analysis of Cyberknife tumor tracking radiotherapy according to unpredictable change of respiration

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung Min; Lee, Chang Yeol; Huh, Hyun Do; Kim, Wan Sun [Dept. of Radiation Oncology, Inha university hospital, Incheon (Korea, Republic of)

    2015-12-15

    Cyber-Knife tumor tracking system, based on the correlation relationship between the position of a tumor which moves in response to the real time respiratory cycle signal and respiration was obtained by the LED marker attached to the outside of the patient, the location of the tumor to predict in advance, the movement of the tumor in synchronization with the therapeutic device to track real-time tumor, is a system for treating. The purpose of this study, in the cyber knife tumor tracking radiation therapy, trying to evaluate the accuracy of tumor tracking radiation therapy system due to the change in the form of unpredictable sudden breathing due to cough and sleep. Materials and Methods : Breathing Log files that were used in the study, based on the Respiratory gating radiotherapy and Cyber-knife tracking radiosurgery breathing Log files of patients who received herein, measured using the Log files in the form of a Sinusoidal pattern and Sudden change pattern. it has been reconstituted as possible. Enter the reconstructed respiratory Log file cyber knife dynamic chest Phantom, so that it is possible to implement a motion due to respiration, add manufacturing the driving apparatus of the existing dynamic chest Phantom, Phantom the form of respiration we have developed a program that can be applied to. Movement of the phantom inside the target (Ball cube target) was driven by the displacement of three sizes of according to the size of the respiratory vertical (Superior-Inferior) direction to the 5 mm, 10 mm, 20 mm. Insert crosses two EBT3 films in phantom inside the target in response to changes in the target movement, the End-to-End (E2E) test provided in Cyber-Knife manufacturer depending on the form of the breathing five times each. It was determined by carrying. Accuracy of tumor tracking system is indicated by the target error by analyzing the inserted film, additional E2E test is analyzed by measuring the correlation error while being advanced. If the target

  15. Observation of nuclear track in organic material by atomic force microscopy in real time during etching

    CERN Document Server

    Palmino, F; Labrune, J C

    1999-01-01

    The developments of Atomic Force Microscopy (AFM) allow to investigated solid surfaces with a nanometer scale. These techniques are useful methods allowing direct observation of surface morphologies. Particularly in the nuclear track fields, they offer a new tool to give many new informations on track formation. In this paper we present the preliminary results of a new use of this technique to characterize continuously the formation of the revealed track in a cellulose nitrate detector (LR115) after an alpha particle irradiation. For that, a specific cell has been used to observe, by nano-observations, the evolution of track shapes simultaneously with chemical treatment. Thus, the track shape evolution has been studied; visualizing the evolution of the tracks in real time, in situ during the chemical etching process.

  16. Real-time vision systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Hernandez, J.E.; Lu, Shin-yee [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Many industrial and defence applications require an ability to make instantaneous decisions based on sensor input of a time varying process. Such systems are referred to as `real-time systems` because they process and act on data as it occurs in time. When a vision sensor is used in a real-time system, the processing demands can be quite substantial, with typical data rates of 10-20 million samples per second. A real-time Machine Vision Laboratory (MVL) was established in FY94 to extend our years of experience in developing computer vision algorithms to include the development and implementation of real-time vision systems. The laboratory is equipped with a variety of hardware components, including Datacube image acquisition and processing boards, a Sun workstation, and several different types of CCD cameras, including monochrome and color area cameras and analog and digital line-scan cameras. The equipment is reconfigurable for prototyping different applications. This facility has been used to support several programs at LLNL, including O Division`s Peacemaker and Deadeye Projects as well as the CRADA with the U.S. Textile Industry, CAFE (Computer Aided Fabric Inspection). To date, we have successfully demonstrated several real-time applications: bullet tracking, stereo tracking and ranging, and web inspection. This work has been documented in the ongoing development of a real-time software library.

  17. SU-E-J-61: Monitoring Tumor Motion in Real-Time with EPID Imaging During Cervical Cancer Treatment

    International Nuclear Information System (INIS)

    Mao, W; Hrycushko, B; Yan, Y; Foster, R; Albuquerque, K

    2015-01-01

    Purpose: Traditional external beam radiotherapy for cervical cancer requires setup by external skin marks. In order to improve treatment accuracy and reduce planning margin for more conformal therapy, it is essential to monitor tumor positions interfractionally and intrafractionally. We demonstrate feasibility of monitoring cervical tumor motion online using EPID imaging from Beam’s Eye View. Methods: Prior to treatment, 1∼2 cylindrical radio opaque markers were implanted into inferior aspect of cervix tumor. During external beam treatments on a Varian 2100C by 4-field 3D plans, treatment beam images were acquired continuously by an EPID. A Matlab program was developed to locate internal markers on MV images. Based on 2D marker positions obtained from different treatment fields, their 3D positions were estimated for every treatment fraction. Results: There were 398 images acquired during different treatment fractions of three cervical cancer patients. Markers were successfully located on every frame of image at an analysis speed of about 1 second per frame. Intrafraction motions were evaluated by comparing marker positions relative to the position on the first frame of image. The maximum intrafraction motion of the markers was 1.6 mm. Interfraction motions were evaluated by comparing 3D marker positions at different treatment fractions. The maximum interfraction motion was up to 10 mm. Careful comparison found that this is due to patient positioning since the bony structures shifted with the markers. Conclusion: This method provides a cost-free and simple solution for online tumor tracking for cervical cancer treatment since it is feasible to acquire and export EPID images with fast analysis in real time. This method does not need any extra equipment or deliver extra dose to patients. The online tumor motion information will be very useful to reduce planning margins and improve treatment accuracy, which is particularly important for SBRT treatment with long

  18. SU-E-J-61: Monitoring Tumor Motion in Real-Time with EPID Imaging During Cervical Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mao, W; Hrycushko, B; Yan, Y; Foster, R; Albuquerque, K [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: Traditional external beam radiotherapy for cervical cancer requires setup by external skin marks. In order to improve treatment accuracy and reduce planning margin for more conformal therapy, it is essential to monitor tumor positions interfractionally and intrafractionally. We demonstrate feasibility of monitoring cervical tumor motion online using EPID imaging from Beam’s Eye View. Methods: Prior to treatment, 1∼2 cylindrical radio opaque markers were implanted into inferior aspect of cervix tumor. During external beam treatments on a Varian 2100C by 4-field 3D plans, treatment beam images were acquired continuously by an EPID. A Matlab program was developed to locate internal markers on MV images. Based on 2D marker positions obtained from different treatment fields, their 3D positions were estimated for every treatment fraction. Results: There were 398 images acquired during different treatment fractions of three cervical cancer patients. Markers were successfully located on every frame of image at an analysis speed of about 1 second per frame. Intrafraction motions were evaluated by comparing marker positions relative to the position on the first frame of image. The maximum intrafraction motion of the markers was 1.6 mm. Interfraction motions were evaluated by comparing 3D marker positions at different treatment fractions. The maximum interfraction motion was up to 10 mm. Careful comparison found that this is due to patient positioning since the bony structures shifted with the markers. Conclusion: This method provides a cost-free and simple solution for online tumor tracking for cervical cancer treatment since it is feasible to acquire and export EPID images with fast analysis in real time. This method does not need any extra equipment or deliver extra dose to patients. The online tumor motion information will be very useful to reduce planning margins and improve treatment accuracy, which is particularly important for SBRT treatment with long

  19. A fiducial detection algorithm for real-time image guided IMRT based on simultaneous MV and kV imaging.

    Science.gov (United States)

    Mao, Weihua; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Xing, Lei

    2008-08-01

    The advantage of highly conformal dose techniques such as 3DCRT and IMRT is limited by intrafraction organ motion. A new approach to gain near real-time 3D positions of internally implanted fiducial markers is to analyze simultaneous onboard kV beam and treatment MV beam images (from fluoroscopic or electronic portal image devices). Before we can use this real-time image guidance for clinical 3DCRT and IMRT treatments, four outstanding issues need to be addressed. (1) How will fiducial motion blur the image and hinder tracking fiducials? kV and MV images are acquired while the tumor is moving at various speeds. We find that a fiducial can be successfully detected at a maximum linear speed of 1.6 cm/s. (2) How does MV beam scattering affect kV imaging? We investigate this by varying MV field size and kV source to imager distance, and find that common treatment MV beams do not hinder fiducial detection in simultaneous kV images. (3) How can one detect fiducials on images from 3DCRT and IMRT treatment beams when the MV fields are modified by a multileaf collimator (MLC)? The presented analysis is capable of segmenting a MV field from the blocking MLC and detecting visible fiducials. This enables the calculation of nearly real-time 3D positions of markers during a real treatment. (4) Is the analysis fast enough to track fiducials in nearly real time? Multiple methods are adopted to predict marker positions and reduce search regions. The average detection time per frame for three markers in a 1024 x 768 image was reduced to 0.1 s or less. Solving these four issues paves the way to tracking moving fiducial markers throughout a 3DCRT or IMRT treatment. Altogether, these four studies demonstrate that our algorithm can track fiducials in real time, on degraded kV images (MV scatter), in rapidly moving tumors (fiducial blurring), and even provide useful information in the case when some fiducials are blocked from view by the MLC. This technique can provide a gating signal or

  20. Evaluation of Real-Time Hand Motion Tracking Using a Range Camera and the Mean-Shift Algorithm

    Science.gov (United States)

    Lahamy, H.; Lichti, D.

    2011-09-01

    Several sensors have been tested for improving the interaction between humans and machines including traditional web cameras, special gloves, haptic devices, cameras providing stereo pairs of images and range cameras. Meanwhile, several methods are described in the literature for tracking hand motion: the Kalman filter, the mean-shift algorithm and the condensation algorithm. In this research, the combination of a range camera and the simple version of the mean-shift algorithm has been evaluated for its capability for hand motion tracking. The evaluation was assessed in terms of position accuracy of the tracking trajectory in x, y and z directions in the camera space and the time difference between image acquisition and image display. Three parameters have been analyzed regarding their influence on the tracking process: the speed of the hand movement, the distance between the camera and the hand and finally the integration time of the camera. Prior to the evaluation, the required warm-up time of the camera has been measured. This study has demonstrated the suitability of the range camera used in combination with the mean-shift algorithm for real-time hand motion tracking but for very high speed hand movement in the traverse plane with respect to the camera, the tracking accuracy is low and requires improvement.

  1. Validation of tumor markers in central nervous system germ cell tumors by real-time reverse transcriptase polymerase chain reaction using formalin-fixed paraffin-embedded tissues.

    Science.gov (United States)

    Kim, Dowhan; Lee, Da Hye; Choi, Junjeong; Shim, Kyu Won; Kim, Se Hoon

    2013-01-01

    The therapeutic protocols for treatment of germinomas and non-germinomatous germ cell tumors (NGGCTs) are completely different, so it is important to distinguish pure germinomas from NGGCTs. As it can be difficult to diagnose by morphology alone, immunohisto-chemistry (IHC) has been widely used as an ancillary test to improve diagnostic accuracy. However, IHC has limitations due to the misinterpretation of results or the aberrant loss of immunoreactivity. However, real-time RT-PCR has certain advantages over IHC, including its quantitative nature. The aim of our study was to evaluate the usefulness of real-time RT-PCR on formalin-fixed paraffin-embedded (FFPE) tissue blocks for the diagnosis of germ cell tumors of the central nervous system. We selected eight markers of germ cell tumors using a literature search, and validated them using real-time RT-PCR. Among them, POU5F1, NANOG and TGFB2 were statistically significant (P=0.05) in multiple comparisons (MANOVA) of three groups (pure germinomas, mature teratomas and malignant germ cell tumors). Two-group (pure germinomas and NGGCTs) discriminant analysis achieved a 70.0% success rate in cross-validation. We concluded that real-time RT-PCR using FFPE tissue has adequate validating power comparable to IHC in the diagnosis of central nervous system germ cell tumors; therefore, when IHC is not available, not conclusive or not informative, RT-PCR is a potential alternative to a repeat biopsy.

  2. A novel method for quantification of beam's-eye-view tumor tracking performance.

    Science.gov (United States)

    Hu, Yue-Houng; Myronakis, Marios; Rottmann, Joerg; Wang, Adam; Morf, Daniel; Shedlock, Daniel; Baturin, Paul; Star-Lack, Josh; Berbeco, Ross

    2017-11-01

    In-treatment imaging using an electronic portal imaging device (EPID) can be used to confirm patient and tumor positioning. Real-time tumor tracking performance using current digital megavolt (MV) imagers is hindered by poor image quality. Novel EPID designs may help to improve quantum noise response, while also preserving the high spatial resolution of the current clinical detector. Recently investigated EPID design improvements include but are not limited to multi-layer imager (MLI) architecture, thick crystalline and amorphous scintillators, and phosphor pixilation and focusing. The goal of the present study was to provide a method of quantitating improvement in tracking performance as well as to reveal the physical underpinnings of detector design that impact tracking quality. The study employs a generalizable ideal observer methodology for the quantification of tumor tracking performance. The analysis is applied to study both the effect of increasing scintillator thickness on a standard, single-layer imager (SLI) design as well as the effect of MLI architecture on tracking performance. The present study uses the ideal observer signal-to-noise ratio (d') as a surrogate for tracking performance. We employ functions which model clinically relevant tasks and generalized frequency-domain imaging metrics to connect image quality with tumor tracking. A detection task for relevant Cartesian shapes (i.e., spheres and cylinders) was used to quantitate trackability of cases employing fiducial markers. Automated lung tumor tracking algorithms often leverage the differences in benign and malignant lung tissue textures. These types of algorithms (e.g., soft-tissue localization - STiL) were simulated by designing a discrimination task, which quantifies the differentiation of tissue textures, measured experimentally and fit as a power-law in trend (with exponent β) using a cohort of MV images of patient lungs. The modeled MTF and NPS were used to investigate the effect of

  3. Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration.

    Science.gov (United States)

    Su, Li-Ming; Vagvolgyi, Balazs P; Agarwal, Rahul; Reiley, Carol E; Taylor, Russell H; Hager, Gregory D

    2009-04-01

    To investigate a markerless tracking system for real-time stereo-endoscopic visualization of preoperative computed tomographic imaging as an augmented display during robot-assisted laparoscopic partial nephrectomy. Stereoscopic video segments of a patient undergoing robot-assisted laparoscopic partial nephrectomy for tumor and another for a partial staghorn renal calculus were processed to evaluate the performance of a three-dimensional (3D)-to-3D registration algorithm. After both cases, we registered a segment of the video recording to the corresponding preoperative 3D-computed tomography image. After calibrating the camera and overlay, 3D-to-3D registration was created between the model and the surgical recording using a modified iterative closest point technique. Image-based tracking technology tracked selected fixed points on the kidney surface to augment the image-to-model registration. Our investigation has demonstrated that we can identify and track the kidney surface in real time when applied to intraoperative video recordings and overlay the 3D models of the kidney, tumor (or stone), and collecting system semitransparently. Using a basic computer research platform, we achieved an update rate of 10 Hz and an overlay latency of 4 frames. The accuracy of the 3D registration was 1 mm. Augmented reality overlay of reconstructed 3D-computed tomography images onto real-time stereo video footage is possible using iterative closest point and image-based surface tracking technology that does not use external navigation tracking systems or preplaced surface markers. Additional studies are needed to assess the precision and to achieve fully automated registration and display for intraoperative use.

  4. The JET Alfven Eigenmode Local Manager for the real-time detection and tracking of a frequency-degenerate spectrum of MHD instabilities

    International Nuclear Information System (INIS)

    Testa, D.; Carfantan, H.; Fasoli, A.; Goodyear, A.; King, Q.; Blanchard, P.; Klein, A.; Lavanchy, P.; Panis, T.

    2011-01-01

    We present the real-time VME system used to detect and track MHD instabilities, and particularly Alfven Eigenmodes, on the JET tokamak [J. Wesson, Tokamaks, 3rd ed., Oxford Science Publication, Oxford, 2003, p. 617]. This system runs on a 1 kHz clock cycle, and allows performing a real-time, unsupervised and blind detection, decomposition and tracking of the individual components in a frequency-degenerate, multi-harmonic spectrum, using a small number of input data which are unevenly sampled in the spatial domain. This makes it possible to follow in real-time the detected modes as the plasma background evolves, and measure in real-time their frequency, damping rate, toroidal mode-number and relative amplitude. The successful implementation of this system opens a clear path towards developing real-time control tools for electro-magnetic instabilities in future fusion devices aimed at achieving a net energy gain, such as ITER [J. Wesson, Tokamaks, 3rd ed., Oxford Science Publication, Oxford, 2003, p. 711].

  5. Quantitative analysis of the improvement in high zoom maritime tracking due to real-time image enhancement

    CSIR Research Space (South Africa)

    Bachoo, AK

    2011-04-01

    Full Text Available This work aims to evaluate the improvement in the performance of tracking small maritime targets due to real-time enhancement of the video streams from high zoom cameras on pan-tilt pedestal. Due to atmospheric conditions these images can frequently...

  6. SU-G-JeP4-12: Real-Time Organ Motion Monitoring Using Ultrasound and KV Fluoroscopy During Lung SBRT Delivery

    International Nuclear Information System (INIS)

    Omari, E; Tai, A; Li, X; Cooper, D; Lachaine, M

    2016-01-01

    Purpose: Real-time ultrasound monitoring during SBRT is advantageous in understanding and identifying motion irregularities which may cause geometric misses. In this work, we propose to utilize real-time ultrasound to track the diaphragm in conjunction with periodical kV fluoroscopy to monitor motion of tumor or landmarks during SBRT delivery. Methods: Transabdominal Ultrasound (TAUS) b-mode images were collected from 10 healthy volunteers using the Clarity Autoscan System (Elekta). The autoscan transducer, which has a center frequency of 5 MHz, was utilized for the scans. The acquired images were contoured using the Clarity Automatic Fusion and Contouring workstation software. Monitoring sessions of 5 minute length were observed and recorded. The position correlation between tumor and diaphragm could be established with periodic kV fluoroscopy periodically acquired during treatment with Elekta XVI. We acquired data using a tissue mimicking ultrasound phantom with embedded spheres placed on a motion stand using ultrasound and kV Fluoroscopy. MIM software was utilized for image fusion. Correlation of diaphragm and target motion was also validated using 4D-MRI and 4D-CBCT. Results: The diaphragm was visualized as a hyperechoic region on the TAUS b-mode images. Volunteer set-up can be adjusted such that TAUS probe will not interfere with treatment beams. A segment of the diaphragm was contoured and selected as our tracking structure. Successful monitoring sessions of the diaphragm were recorded. For some volunteers, diaphragm motion over 2 times larger than the initial motion has been observed during tracking. For the phantom study, we were able to register the 2D kV Fluoroscopy with the US images for position comparison. Conclusion: We demonstrated the feasibility of tracking the diaphragm using real-time ultrasound. Real-time tracking can help in identifying such irregularities in the respiratory motion which is correlated to tumor motion. We also showed the

  7. Preliminary study of the internal margin of the gross tumor volume in thoracic esophageal cancer

    International Nuclear Information System (INIS)

    Li, Jiancheng; Pan, Jianji; Wang, Linhua; Zhao, Yunhui; Liu, Di; Chen, Cheng; Zhang, He Ping; Wang, Xiaoliang

    2012-01-01

    Purpose. - To measure the displacement of the tumor of the gross tumor volume (GTV) of thoracic esophageal cancer in the calm states of end-inspiration and end-expiration for determining the internal margin of the GTV (IGTV). Methods. - Twenty-two patients with thoracic esophageal cancer who were unable to undergo surgery were identified in our hospital. The patients received radiotherapy. By using 16-slice spiral computed tomography (CT), we acquired the calm states of end-inspiration and end-expiration. The displacement and volume changes in tumor target volume were measured, and the changes were analyzed to determine if these were associated with the tidal volume and the location and length of the target volume V. In the end, we analyzed the displacement of tumor target volume and calculated the internal margin of the GTV by empirical formula. Results. - The average tidal volume was 463.6 ml. The average GTV at end-inspiration was 33.3 ml and at end-expiration was 33.35 ml. Three was not any significant between two groups (T -0.034, P > 0.05). The IGTV (X-axis direction) was 3.09 mm for the right sector and 4.08 mm for the left border; the IGTV (Z-axis direction) was 3.96 mm for the anterior border and 2.83 mm for the posterior border; and the IGTV (Y-axis direction) was 7.31 mm for the upper boundary (head direction) and 10.16 mm for the lower boundary (feet direction). The motion of the GTV showed no significant correlation with the tidal volume of patients and the length of the tumor, but in relation to the tumor location, the displacement of the lower thoracic and the middle thoracic target volumes occurred in the direction of the anterior and right, which were not significantly different (T = 0.859, 0.229, P > 0.05) The significant differences were observed for the other directions (P < 0.05). Conclusions. - Because of respiratory and organ movements, the displacement of the tumor target volume was different in all directions. Therefore, we recommend that

  8. Fiber Bragg gratings-based sensing for real-time needle tracking during MR-guided brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borot de Battisti, Maxence, E-mail: M.E.P.Borot@umcutrecht.nl; Maenhout, Metha; Lagendijk, Jan J. W.; Vulpen, Marco van; Moerland, Marinus A. [Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX (Netherlands); Denis de Senneville, Baudouin [Imaging Division, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands and IMB, UMR 5251 CNRS/University of Bordeaux, Talence 33400 (France); Hautvast, Gilion; Binnekamp, Dirk [Philips Group Innovation Biomedical Systems, Eindhoven 5656 AE (Netherlands)

    2016-10-15

    Purpose: The development of MR-guided high dose rate (HDR) brachytherapy is under investigation due to the excellent tumor and organs at risk visualization of MRI. However, MR-based localization of needles (including catheters or tubes) has inherently a low update rate and the required image interpretation can be hampered by signal voids arising from blood vessels or calcifications limiting the precision of the needle guidance and reconstruction. In this paper, a new needle tracking prototype is investigated using fiber Bragg gratings (FBG)-based sensing: this prototype involves a MR-compatible stylet composed of three optic fibers with nine sets of embedded FBG sensors each. This stylet can be inserted into brachytherapy needles and allows a fast measurement of the needle deflection. This study aims to assess the potential of FBG-based sensing for real-time needle (including catheter or tube) tracking during MR-guided intervention. Methods: First, the MR compatibility of FBG-based sensing and its accuracy was evaluated. Different known needle deflections were measured using FBG-based sensing during simultaneous MR-imaging. Then, a needle tracking procedure using FBG-based sensing was proposed. This procedure involved a MR-based calibration of the FBG-based system performed prior to the interventional procedure. The needle tracking system was assessed in an experiment with a moving phantom during MR imaging. The FBG-based system was quantified by comparing the gold-standard shapes, the shape manually segmented on MRI and the FBG-based measurements. Results: The evaluation of the MR compatibility of FBG-based sensing and its accuracy shows that the needle deflection could be measured with an accuracy of 0.27 mm on average. Besides, the FBG-based measurements were comparable to the uncertainty of MR-based measurements estimated at half the voxel size in the MR image. Finally, the mean(standard deviation) Euclidean distance between MR- and FBG-based needle position

  9. The potential of positron emission tomography for intratreatment dynamic lung tumor tracking: A phantom study

    International Nuclear Information System (INIS)

    Yang, Jaewon; Yamamoto, Tokihiro; Mazin, Samuel R.; Graves, Edward E.; Keall, Paul J.

    2014-01-01

    Purpose: This study aims to evaluate the potential and feasibility of positron emission tomography for dynamic lung tumor tracking during radiation treatment. The authors propose a center of mass (CoM) tumor tracking algorithm using gated-PET images combined with a respiratory monitor and investigate the geometric accuracy of the proposed algorithm. Methods: The proposed PET dynamic lung tumor tracking algorithm estimated the target position information through the CoM of the segmented target volume on gated PET images reconstructed from accumulated coincidence events. The information was continuously updated throughout a scan based on the assumption that real-time processing was supported (actual processing time at each frame ≈10 s). External respiratory motion and list-mode PET data were acquired from a phantom programmed to move with measured respiratory traces (external respiratory motion and internal target motion) from human subjects, for which the ground truth target position was known as a function of time. The phantom was cylindrical with six hollow sphere targets (10, 13, 17, 22, 28, and 37 mm in diameter). The measured respiratory traces consisted of two sets: (1) 1D-measured motion from ten healthy volunteers and (2) 3D-measured motion from four lung cancer patients. The authors evaluated the geometric accuracy of the proposed algorithm by quantifying estimation errors (Euclidean distance) between the actual motion of targets (1D-motion and 3D-motion traces) and CoM trajectories estimated by the proposed algorithm as a function of time. Results: The time-averaged error of 1D-motion traces over all trajectories of all targets was 1.6 mm. The error trajectories decreased with time as coincidence events were accumulated. The overall error trajectory of 1D-motion traces converged to within 2 mm in approximately 90 s. As expected, more accurate results were obtained for larger targets. For example, for the 37 mm target, the average error over all 1D

  10. Real-time ultrasound-tagging to track the 2D motion of the common carotid artery wall in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zahnd, Guillaume, E-mail: g.zahnd@erasmusmc.nl [Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam 3000 CA (Netherlands); Salles, Sébastien; Liebgott, Hervé; Vray, Didier [Université de Lyon, CREATIS, CNRS UMR 5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Lyon 69100 (France); Sérusclat, André [Department of Radiology, Louis Pradel Hospital, Lyon 69500 (France); Moulin, Philippe [Department of Endocrinology, Louis Pradel Hospital, Hospices Civils de Lyon, Université Lyon 1, Lyon 69100, France and INSERM UMR 1060, Lyon 69500 (France)

    2015-02-15

    Purpose: Tracking the motion of biological tissues represents an important issue in the field of medical ultrasound imaging. However, the longitudinal component of the motion (i.e., perpendicular to the beam axis) remains more challenging to extract due to the rather coarse resolution cell of ultrasound scanners along this direction. The aim of this study is to introduce a real-time beamforming strategy dedicated to acquire tagged images featuring a distinct pattern in the objective to ease the tracking. Methods: Under the conditions of the Fraunhofer approximation, a specific apodization function was applied to the received raw channel data, in real-time during image acquisition, in order to introduce a periodic oscillations pattern along the longitudinal direction of the radio frequency signal. Analytic signals were then extracted from the tagged images, and subpixel motion tracking of the intima–media complex was subsequently performed offline, by means of a previously introduced bidimensional analytic phase-based estimator. Results: The authors’ framework was applied in vivo on the common carotid artery from 20 young healthy volunteers and 6 elderly patients with high atherosclerosis risk. Cine-loops of tagged images were acquired during three cardiac cycles. Evaluated against reference trajectories manually generated by three experienced analysts, the mean absolute tracking error was 98 ± 84 μm and 55 ± 44 μm in the longitudinal and axial directions, respectively. These errors corresponded to 28% ± 23% and 13% ± 9% of the longitudinal and axial amplitude of the assessed motion, respectively. Conclusions: The proposed framework enables tagged ultrasound images of in vivo tissues to be acquired in real-time. Such unconventional beamforming strategy contributes to improve tracking accuracy and could potentially benefit to the interpretation and diagnosis of biomedical images.

  11. Real-time estimation of prostate tumor rotation and translation with a kV imaging system based on an iterative closest point algorithm

    International Nuclear Information System (INIS)

    Tehrani, Joubin Nasehi; O’Brien, Ricky T; Keall, Paul; Poulsen, Per Rugaard

    2013-01-01

    Previous studies have shown that during cancer radiotherapy a small translation or rotation of the tumor can lead to errors in dose delivery. Current best practice in radiotherapy accounts for tumor translations, but is unable to address rotation due to a lack of a reliable real-time estimate. We have developed a method based on the iterative closest point (ICP) algorithm that can compute rotation from kilovoltage x-ray images acquired during radiation treatment delivery. A total of 11 748 kilovoltage (kV) images acquired from ten patients (one fraction for each patient) were used to evaluate our tumor rotation algorithm. For each kV image, the three dimensional coordinates of three fiducial markers inside the prostate were calculated. The three dimensional coordinates were used as input to the ICP algorithm to calculate the real-time tumor rotation and translation around three axes. The results show that the root mean square error was improved for real-time calculation of tumor displacement from a mean of 0.97 mm with the stand alone translation to a mean of 0.16 mm by adding real-time rotation and translation displacement with the ICP algorithm. The standard deviation (SD) of rotation for the ten patients was 2.3°, 0.89° and 0.72° for rotation around the right–left (RL), anterior–posterior (AP) and superior–inferior (SI) directions respectively. The correlation between all six degrees of freedom showed that the highest correlation belonged to the AP and SI translation with a correlation of 0.67. The second highest correlation in our study was between the rotation around RL and rotation around AP, with a correlation of −0.33. Our real-time algorithm for calculation of rotation also confirms previous studies that have shown the maximum SD belongs to AP translation and rotation around RL. ICP is a reliable and fast algorithm for estimating real-time tumor rotation which could create a pathway to investigational clinical treatment studies requiring

  12. Longitudinal comparison of quality of life after real-time tumor-tracking intensity-modulated radiation therapy and radical prostatectomy in patients with localized prostate cancer

    International Nuclear Information System (INIS)

    Shinohara, Nobuo; Maruyama, Satoru; Abe, Takashige; Nonomura, Katsuya; Shimizu, Shinichi; Nishioka, Kentaro; Shirato, Hiroki; C-Hatanaka, Kanako; Oba, Koji

    2013-01-01

    The purpose of this study was to compare the quality of life (QOL) in patients with localized prostate cancer (PC) after intensity-modulated radiation therapy assisted with a fluoroscopic real-time intensity-modulated radiation therapy (RT-IMRT) tumor-tracking system versus the QOL after radical prostatectomy (RP). Between 2003 and 2006, 71 patients were enrolled in this longitudinal prospective study. Each patient was allowed to decide which treatment modality they would receive. Of the 71 patients, 23 patients underwent RT-IMRT, while 48 opted for RP. No patient received neo-adjuvant or adjuvant hormone therapy. The global QOL and disease-specific-QOL were evaluated before treatment and again at 1, 3 and 5 years after treatment. There was no significant difference in the background characteristics between the two groups. The 5-year biochemical progression-free survival was 90% in the RT-IMRT and 79% in the RP group. In the RT-IMRT group, there was no significant deterioration of the global QOL or disease-specific QOL through 5 years post-treatment. In the RP group, the urinary function, sexual function, and sexual bother indicators significantly deteriorated after treatment. Urinary and sexual function was significantly better in the RT-IMRT group at 1, 3 and 5 years post-treatment compared to the RP group. RT-IMRT may be a preferable treatment for localized PC because of similar efficacy to RP but better post-treatment QOL. (author)

  13. Real-time tracking and fast retrieval of persons in multiple surveillance cameras of a shopping mall

    Science.gov (United States)

    Bouma, Henri; Baan, Jan; Landsmeer, Sander; Kruszynski, Chris; van Antwerpen, Gert; Dijk, Judith

    2013-05-01

    The capability to track individuals in CCTV cameras is important for e.g. surveillance applications at large areas such as train stations, airports and shopping centers. However, it is laborious to track and trace people over multiple cameras. In this paper, we present a system for real-time tracking and fast interactive retrieval of persons in video streams from multiple static surveillance cameras. This system is demonstrated in a shopping mall, where the cameras are positioned without overlapping fields-of-view and have different lighting conditions. The results show that the system allows an operator to find the origin or destination of a person more efficiently. The misses are reduced with 37%, which is a significant improvement.

  14. Unsupervised markerless 3-DOF motion tracking in real time using a single low-budget camera.

    Science.gov (United States)

    Quesada, Luis; León, Alejandro J

    2012-10-01

    Motion tracking is a critical task in many computer vision applications. Existing motion tracking techniques require either a great amount of knowledge on the target object or specific hardware. These requirements discourage the wide spread of commercial applications based on motion tracking. In this paper, we present a novel three degrees of freedom motion tracking system that needs no knowledge on the target object and that only requires a single low-budget camera that can be found installed in most computers and smartphones. Our system estimates, in real time, the three-dimensional position of a nonmodeled unmarked object that may be nonrigid, nonconvex, partially occluded, self-occluded, or motion blurred, given that it is opaque, evenly colored, enough contrasting with the background in each frame, and that it does not rotate. Our system is also able to determine the most relevant object to track in the screen. Our proposal does not impose additional constraints, therefore it allows a market-wide implementation of applications that require the estimation of the three position degrees of freedom of an object.

  15. A Low-Power High-Speed Spintronics-Based Neuromorphic Computing System Using Real Time Tracking Method

    DEFF Research Database (Denmark)

    Farkhani, Hooman; Tohidi, Mohammad; Farkhani, Sadaf

    2018-01-01

    In spintronic-based neuromorphic computing systems (NCS), the switching of magnetic moment in a magnetic tunnel junction (MTJ) is used to mimic neuron firing. However, the stochastic switching behavior of the MTJ and process variations effect lead to a significant increase in stimulation time...... of such NCSs. Moreover, current NCSs need an extra phase to read the MTJ state after stimulation which is in contrast with real neuron functionality in human body. In this paper, the read circuit is replaced with a proposed real-time sensing (RTS) circuit. The RTS circuit tracks the MTJ state during...... stimulation phase. As soon as switching happens, the RTS circuit terminates the MTJ current and stimulates the post neuron. Hence, the RTS circuit not only improves the energy consumption and speed, but also makes the operation of NCS similar to real neuron functionality. The simulation results in 65-nm CMOS...

  16. Modified SURF Algorithm Implementation on FPGA For Real-Time Object Tracking

    Directory of Open Access Journals (Sweden)

    Tomyslav Sledevič

    2013-05-01

    Full Text Available The paper describes the FPGA-based implementation of the modified speeded-up robust features (SURF algorithm. FPGA was selected for parallel process implementation using VHDL to ensure features extraction in real-time. A sliding 84×84 size window was used to store integral pixels and accelerate Hessian determinant calculation, orientation assignment and descriptor estimation. The local extreme searching was used to find point of interest in 8 scales. The simplified descriptor and orientation vector were calculated in parallel in 6 scales. The algorithm was investigated by tracking marker and drawing a plane or cube. All parts of algorithm worked on 25 MHz clock. The video stream was generated using 60 fps and 640×480 pixel camera.Article in Lithuanian

  17. Usefulness of Guided Breathing for Dose Rate-Regulated Tracking

    International Nuclear Information System (INIS)

    Han-Oh, Sarah; Yi, Byong Yong; Berman, Barry L.; Lerma, Fritz; Yu, Cedric

    2009-01-01

    Purpose: To evaluate the usefulness of guided breathing for dose rate-regulated tracking (DRRT), a new technique to compensate for intrafraction tumor motion. Methods and Materials: DRRT uses a preprogrammed multileaf collimator sequence that tracks the tumor motion derived from four-dimensional computed tomography and the corresponding breathing signals measured before treatment. Because the multileaf collimator speed can be controlled by adjusting the dose rate, the multileaf collimator positions are adjusted in real time during treatment by dose rate regulation, thereby maintaining synchrony with the tumor motion. DRRT treatment was simulated with free, audio-guided, and audiovisual-guided breathing signals acquired from 23 lung cancer patients. The tracking error and duty cycle for each patient were determined as a function of the system time delay (range, 0-1.0 s). Results: The tracking error and duty cycle averaged for all 23 patients was 1.9 ± 0.8 mm and 92% ± 5%, 1.9 ± 1.0 mm and 93% ± 6%, and 1.8 ± 0.7 mm and 92% ± 6% for the free, audio-guided, and audiovisual-guided breathing, respectively, for a time delay of 0.35 s. The small differences in both the tracking error and the duty cycle with guided breathing were not statistically significant. Conclusion: DRRT by its nature adapts well to variations in breathing frequency, which is also the motivation for guided-breathing techniques. Because of this redundancy, guided breathing does not result in significant improvements for either the tracking error or the duty cycle when DRRT is used for real-time tumor tracking

  18. Feathered Detectives: Real-Time GPS Tracking of Scavenging Gulls Pinpoints Illegal Waste Dumping.

    Directory of Open Access Journals (Sweden)

    Joan Navarro

    Full Text Available Urban waste impacts human and environmental health, and waste management has become one of the major challenges of humanity. Concurrently with new directives due to manage this human by-product, illegal dumping has become one of the most lucrative activities of organized crime. Beyond economic fraud, illegal waste disposal strongly enhances uncontrolled dissemination of human pathogens, pollutants and invasive species. Here, we demonstrate the potential of novel real-time GPS tracking of scavenging species to detect environmental crime. Specifically, we were able to detect illegal activities at an officially closed dump, which was visited recurrently by 5 of 19 GPS-tracked yellow-legged gulls (Larus michahellis. In comparison with conventional land-based surveys, GPS tracking allows a much wider and cost-efficient spatiotemporal coverage, even of the most hazardous sites, while GPS data accessibility through the internet enables rapid intervention. Our results suggest that multi-species guilds of feathered detectives equipped with GPS and cameras could help fight illegal dumping at continental scales. We encourage further experimental studies, to infer waste detection thresholds in gulls and other scavenging species exploiting human waste dumps.

  19. Eye tracking and gating system for proton therapy of orbital tumors

    International Nuclear Information System (INIS)

    Shin, Dongho; Yoo, Seung Hoon; Moon, Sung Ho; Yoon, Myonggeun; Lee, Se Byeong; Park, Sung Yong

    2012-01-01

    Purpose: A new motion-based gated proton therapy for the treatment of orbital tumors using real-time eye-tracking system was designed and evaluated. Methods: We developed our system by image-pattern matching, using a normalized cross-correlation technique with LabVIEW 8.6 and Vision Assistant 8.6 (National Instruments, Austin, TX). To measure the pixel spacing of an image consistently, four different calibration modes such as the point-detection, the edge-detection, the line-measurement, and the manual measurement mode were suggested and used. After these methods were applied to proton therapy, gating was performed, and radiation dose distributions were evaluated. Results: Moving phantom verification measurements resulted in errors of less than 0.1 mm for given ranges of translation. Dosimetric evaluation of the beam-gating system versus nongated treatment delivery with a moving phantom shows that while there was only 0.83 mm growth in lateral penumbra for gated radiotherapy, there was 4.95 mm growth in lateral penumbra in case of nongated exposure. The analysis from clinical results suggests that the average of eye movements depends distinctively on each patient by showing 0.44 mm, 0.45 mm, and 0.86 mm for three patients, respectively. Conclusions: The developed automatic eye-tracking based beam-gating system enabled us to perform high-precision proton radiotherapy of orbital tumors.

  20. Detection of Tumor Markers in Prostate Cancer and Comparison of Sensitivity between Real Time and Nested PCR

    OpenAIRE

    Matsuoka, Takayuki; Shigemura, Katsumi; Yamamichi, Fukashi; Fujisawa, Masato; Kawabata, Masato; Shirakawa, Toshiro

    2012-01-01

    The objective of this study is to investigate and compare the sensitivity in conventional PCR, quantitative real time PCR, nested PCR and western blots for detection of prostate cancer tumor markers using prostate cancer (PCa) cells. We performed conventional PCR, quantitative real time PCR, nested PCR, and western blots using 5 kinds of PCa cells. Prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and androgen receptor (AR) were compared for their detection sensitivi...

  1. A parallelizable real-time motion tracking algorithm with applications to ultrasonic strain imaging

    International Nuclear Information System (INIS)

    Jiang, J; Hall, T J

    2007-01-01

    Ultrasound-based mechanical strain imaging systems utilize signals from conventional diagnostic ultrasound systems to image tissue elasticity contrast that provides new diagnostically valuable information. Previous works (Hall et al 2003 Ultrasound Med. Biol. 29 427, Zhu and Hall 2002 Ultrason. Imaging 24 161) demonstrated that uniaxial deformation with minimal elevation motion is preferred for breast strain imaging and real-time strain image feedback to operators is important to accomplish this goal. The work reported here enhances the real-time speckle tracking algorithm with two significant modifications. One fundamental change is that the proposed algorithm is a column-based algorithm (a column is defined by a line of data parallel to the ultrasound beam direction, i.e. an A-line), as opposed to a row-based algorithm (a row is defined by a line of data perpendicular to the ultrasound beam direction). Then, displacement estimates from its adjacent columns provide good guidance for motion tracking in a significantly reduced search region to reduce computational cost. Consequently, the process of displacement estimation can be naturally split into at least two separated tasks, computed in parallel, propagating outward from the center of the region of interest (ROI). The proposed algorithm has been implemented and optimized in a Windows (registered) system as a stand-alone ANSI C++ program. Results of preliminary tests, using numerical and tissue-mimicking phantoms, and in vivo tissue data, suggest that high contrast strain images can be consistently obtained with frame rates (10 frames s -1 ) that exceed our previous methods

  2. Collaborative real-time scheduling of multiple PTZ cameras for multiple object tracking in video surveillance

    Science.gov (United States)

    Liu, Yu-Che; Huang, Chung-Lin

    2013-03-01

    This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.

  3. Quantifying metabolic heterogeneity in head and neck tumors in real time: 2-DG uptake is highest in hypoxic tumor regions.

    Directory of Open Access Journals (Sweden)

    Erica C Nakajima

    Full Text Available Intratumoral metabolic heterogeneity may increase the likelihood of treatment failure due to the presence of a subset of resistant tumor cells. Using a head and neck squamous cell carcinoma (HNSCC xenograft model and a real-time fluorescence imaging approach, we tested the hypothesis that tumors are metabolically heterogeneous, and that tumor hypoxia alters patterns of glucose uptake within the tumor.Cal33 cells were grown as xenograft tumors (n = 16 in nude mice after identification of this cell line's metabolic response to hypoxia. Tumor uptake of fluorescent markers identifying hypoxia, glucose import, or vascularity was imaged simultaneously using fluorescent molecular tomography. The variability of intratumoral 2-deoxyglucose (IR800-2-DG concentration was used to assess tumor metabolic heterogeneity, which was further investigated using immunohistochemistry for expression of key metabolic enzymes. HNSCC tumors in patients were assessed for intratumoral variability of (18F-fluorodeoxyglucose ((18F-FDG uptake in clinical PET scans.IR800-2-DG uptake in hypoxic regions of Cal33 tumors was 2.04 times higher compared to the whole tumor (p = 0.0001. IR800-2-DG uptake in tumors containing hypoxic regions was more heterogeneous as compared to tumors lacking a hypoxic signal. Immunohistochemistry staining for HIF-1α, carbonic anhydrase 9, and ATP synthase subunit 5β confirmed xenograft metabolic heterogeneity. We detected heterogeneous (18F-FDG uptake within patient HNSCC tumors, and the degree of heterogeneity varied amongst tumors.Hypoxia is associated with increased intratumoral metabolic heterogeneity. (18F-FDG PET scans may be used to stratify patients according to the metabolic heterogeneity within their tumors, which could be an indicator of prognosis.

  4. Real-time tracking of visually attended objects in virtual environments and its application to LOD.

    Science.gov (United States)

    Lee, Sungkil; Kim, Gerard Jounghyun; Choi, Seungmoon

    2009-01-01

    This paper presents a real-time framework for computationally tracking objects visually attended by the user while navigating in interactive virtual environments. In addition to the conventional bottom-up (stimulus-driven) saliency map, the proposed framework uses top-down (goal-directed) contexts inferred from the user's spatial and temporal behaviors, and identifies the most plausibly attended objects among candidates in the object saliency map. The computational framework was implemented using GPU, exhibiting high computational performance adequate for interactive virtual environments. A user experiment was also conducted to evaluate the prediction accuracy of the tracking framework by comparing objects regarded as visually attended by the framework to actual human gaze collected with an eye tracker. The results indicated that the accuracy was in the level well supported by the theory of human cognition for visually identifying single and multiple attentive targets, especially owing to the addition of top-down contextual information. Finally, we demonstrate how the visual attention tracking framework can be applied to managing the level of details in virtual environments, without any hardware for head or eye tracking.

  5. Accelerating volumetric cine MRI (VC-MRI) using undersampling for real-time 3D target localization/tracking in radiation therapy: a feasibility study

    Science.gov (United States)

    Harris, Wendy; Yin, Fang-Fang; Wang, Chunhao; Zhang, You; Cai, Jing; Ren, Lei

    2018-01-01

    Purpose. To accelerate volumetric cine MRI (VC-MRI) using undersampled 2D-cine MRI to provide real-time 3D guidance for gating/target tracking in radiotherapy. Methods. 4D-MRI is acquired during patient simulation. One phase of the prior 4D-MRI is selected as the prior images, designated as MRIprior. The on-board VC-MRI at each time-step is considered a deformation of the MRIprior. The deformation field map is represented as a linear combination of the motion components extracted by principal component analysis from the prior 4D-MRI. The weighting coefficients of the motion components are solved by matching the corresponding 2D-slice of the VC-MRI with the on-board undersampled 2D-cine MRI acquired. Undersampled Cartesian and radial k-space acquisition strategies were investigated. The effects of k-space sampling percentage (SP) and distribution, tumor sizes and noise on the VC-MRI estimation were studied. The VC-MRI estimation was evaluated using XCAT simulation of lung cancer patients and data from liver cancer patients. Volume percent difference (VPD) and Center of Mass Shift (COMS) of the tumor volumes and tumor tracking errors were calculated. Results. For XCAT, VPD/COMS were 11.93  ±  2.37%/0.90  ±  0.27 mm and 11.53  ±  1.47%/0.85  ±  0.20 mm among all scenarios with Cartesian sampling (SP  =  10%) and radial sampling (21 spokes, SP  =  5.2%), respectively. When tumor size decreased, higher sampling rate achieved more accurate VC-MRI than lower sampling rate. VC-MRI was robust against noise levels up to SNR  =  20. For patient data, the tumor tracking errors in superior-inferior, anterior-posterior and lateral (LAT) directions were 0.46  ±  0.20 mm, 0.56  ±  0.17 mm and 0.23  ±  0.16 mm, respectively, for Cartesian-based sampling with SP  =  20% and 0.60  ±  0.19 mm, 0.56  ±  0.22 mm and 0.42  ±  0.15 mm, respectively, for

  6. Real Property Project Tracking System (RPPTS)

    Data.gov (United States)

    Department of Veterans Affairs — The Real Property Project Tracking System (RPPTS), formerly known as the Lease/Project Tracking (LEASE) database, contains information about lease and land projects...

  7. High-accuracy and real-time 3D positioning, tracking system for medical imaging applications based on 3D digital image correlation

    Science.gov (United States)

    Xue, Yuan; Cheng, Teng; Xu, Xiaohai; Gao, Zeren; Li, Qianqian; Liu, Xiaojing; Wang, Xing; Song, Rui; Ju, Xiangyang; Zhang, Qingchuan

    2017-01-01

    This paper presents a system for positioning markers and tracking the pose of a rigid object with 6 degrees of freedom in real-time using 3D digital image correlation, with two examples for medical imaging applications. Traditional DIC method was improved to meet the requirements of the real-time by simplifying the computations of integral pixel search. Experiments were carried out and the results indicated that the new method improved the computational efficiency by about 4-10 times in comparison with the traditional DIC method. The system was aimed for orthognathic surgery navigation in order to track the maxilla segment after LeFort I osteotomy. Experiments showed noise for the static point was at the level of 10-3 mm and the measurement accuracy was 0.009 mm. The system was demonstrated on skin surface shape evaluation of a hand for finger stretching exercises, which indicated a great potential on tracking muscle and skin movements.

  8. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlemann, I [University of Luebeck, Luebeck (Germany); Graduate School for Computing in Medicine and Life Sciences, University of Luebeck (Germany); Jauer, P; Schweikard, A; Ernst, F [University of Luebeck, Luebeck (Germany)

    2016-06-15

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety features create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking

  9. SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy

    International Nuclear Information System (INIS)

    Kuhlemann, I; Jauer, P; Schweikard, A; Ernst, F

    2016-01-01

    Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety features create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking

  10. Giant Cell Tumor of the Thoracic Spine Presenting as a Posterior Mediastinal Tumor with Benign Pulmonary Metastases: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hun [Daegu Fatima Hospital College of Medicine, Daegu (Korea, Republic of); Rho, Byung Hak; Bahn, Young Eun; Choi, Won Il [Dongsan Medical Center, Keimyung University School of Medicine, Daegu (Korea, Republic of)

    2010-11-15

    Giant cell tumor of bone is a benign, but potentially aggressive lesion that can show local recurrence and metastases. We report here on a case of a 29-year-old man who presented with an incidentally found mediastinal mass. Chest radiography and computed tomography showed a huge mediastinal mass with bilateral pulmonary nodules and the diagnosis of giant cell tumor with benign pulmonary metastasis was confirmed. To the best of our knowledge, this is the first reported case of primary thoracic spinal giant cell tumor manifesting as a huge mediastinal mass with pulmonary metastases

  11. Monitoring tumor motion by real time 2D/3D registration during radiotherapy.

    Science.gov (United States)

    Gendrin, Christelle; Furtado, Hugo; Weber, Christoph; Bloch, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Bergmann, Helmar; Stock, Markus; Fichtinger, Gabor; Georg, Dietmar; Birkfellner, Wolfgang

    2012-02-01

    In this paper, we investigate the possibility to use X-ray based real time 2D/3D registration for non-invasive tumor motion monitoring during radiotherapy. The 2D/3D registration scheme is implemented using general purpose computation on graphics hardware (GPGPU) programming techniques and several algorithmic refinements in the registration process. Validation is conducted off-line using a phantom and five clinical patient data sets. The registration is performed on a region of interest (ROI) centered around the planned target volume (PTV). The phantom motion is measured with an rms error of 2.56 mm. For the patient data sets, a sinusoidal movement that clearly correlates to the breathing cycle is shown. Videos show a good match between X-ray and digitally reconstructed radiographs (DRR) displacement. Mean registration time is 0.5 s. We have demonstrated that real-time organ motion monitoring using image based markerless registration is feasible. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Preoperative embolization of hypervascular thoracic, lumbar, and sacral spinal column tumors: technique and outcomes from a single center.

    Science.gov (United States)

    Nair, Sreejit; Gobin, Y Pierre; Leng, Lewis Z; Marcus, Joshua D; Bilsky, Mark; Laufer, Ilya; Patsalides, Athos

    2013-09-01

    The existing literature on preoperative spine tumor embolization is limited in size of patient cohorts and diversity of tumor histologies. This report presents our experience with preoperative embolization of hypervascular thoracic, lumbar, and sacral spinal column tumors in the largest series to date. We conducted a retrospective review of 228 angiograms and 188 pre-operative embolizations for tumors involving thoracic, lumbar and sacral spinal column. Tumor vascularity was evaluated with conventional spinal angiography and was graded from 0 (same as normal adjacent vertebral body) to 3 (severe tumor blush with arteriovenous shunting). Embolic materials included poly vinyl alcohol (PVA) particles and detachable platinum coils and rarely, liquid embolics. The degree of embolization was graded as complete, near-complete, or partial. Anesthesia records were reviewed to document blood loss during surgery. Renal cell carcinoma (44.2%), thyroid carcinoma (9.2%), and leiomyosarcoma (6.6%) were the most common tumors out of a total of 40 tumor histologies. Hemangiopericytoma had the highest mean vascularity (2.6) of all tumor types with at least five representative cases followed by renal cell carcinoma (2.0) and thyroid carcinoma (2.0). PVA particles were used in 100% of cases. Detachable platinum coils were used in 51.6% of cases. Complete, near-complete, and partial embolizations were achieved in 86.1%, 12.7%, and 1.2% of all cases, respectively. There were no new post-procedure neurologic deficits or other complications with long-term morbidity. The mean intra-operative blood loss for the hypervascular tumors treated with pre-operative embolization was 1745 cc. Preoperative embolization of hypervascular thoracic, lumbar, and sacral spine tumors can be performed with high success rates and a high degree of safety at high volume centers.

  13. A comparison of two clinical correlation models used for real-time tumor tracking of semi-periodic motion: A focus on geometrical accuracy in lung and liver cancer patients

    International Nuclear Information System (INIS)

    Poels, Kenneth; Dhont, Jennifer; Verellen, Dirk; Blanck, Oliver; Ernst, Floris; Vandemeulebroucke, Jef; Depuydt, Tom; Storme, Guy; De Ridder, Mark

    2015-01-01

    Purpose: A head-to-head comparison of two clinical correlation models with a focus on geometrical accuracy for internal tumor motion estimation during real-time tumor tracking (RTTT). Methods and materials: Both the CyberKnife (CK) and the Vero systems perform RTTT with a correlation model that is able to describe hysteresis in the breathing motion. The CK dual-quadratic (DQ) model consists of two polynomial functions describing the trajectory of the tumor for inhale and exhale breathing motion, respectively. The Vero model is based on a two-dimensional (2D) function depending on position and speed of the external breathing signal to describe a closed-loop tumor trajectory. In this study, 20 s of internal motion data, using an 11 Hz (on average) full fluoroscopy (FF) sequence, was used for training of the CK and Vero models. Further, a subsampled set of 15 internal tumor positions (15p) equally spread over the different phases of the breathing motion was used for separate training of the CK DQ model. Also a linear model was trained using 15p and FF tumor motion data. Fifteen liver and lung cancer patients, treated on the Vero system with RTTT, were retrospectively evaluated comparing the CK FF, CK 15p and Vero FF models using an in-house developed simulator. The distance between estimated target position and the tumor position localized by X-ray imaging was measured in the beams-eye view (BEV) to calculate the 95th percentile BEV modeling errors (ME 95,BEV ). Additionally, the percentage of ME 95,BEV smaller than 5 mm (P 5mm ) was determined for all correlation models. Results: In general, no significant difference (p > 0.05, paired t-test) was found between the CK FF and Vero models. Based on patient-specific evaluation of the geometrical accuracy of the linear, CK DQ and Vero correlation models, no statistical necessity (p > 0.05, two-way ANOVA) of including hysteresis in correlation models was proven, although during inhale breathing motion, the linear model

  14. Automated Real-Time Needle-Guide Tracking for Fast 3-T MR-guided Transrectal Prostate Biopsy: A Feasibility Study

    NARCIS (Netherlands)

    Zamecnik, P.; Schouten, M.G.; Krafft, A.J.; Maier, F.; Schlemmer, H.-P.; Barentsz, J.O.; Bock, M. de; Futterer, J.J.

    2014-01-01

    Purpose To assess the feasibility of automatic needle-guide tracking by using a real-time phase-only cross correlation (POCC) algorithm-based sequence for transrectal 3-T in-bore magnetic resonance (MR)-guided prostate biopsies. Materials and Methods This study was approved by the ethics review

  15. High dose three-dimensional conformal boost (3DCB) using an orthogonal diagnostic X-ray set-up for patients with gynecological malignancy: a new application of real-time tumor-tracking system

    International Nuclear Information System (INIS)

    Yamamoto, Ritsu; Yonesaka, Akio; Nishioka, Seiko; Watari, Hidemichi; Hashimoto, Takayuki; Uchida, Daichi; Taguchi, Hiroshi; Nishioka, Takeshi; Miyasaka, Kazuo; Sakuragi, Noriaki; Shirato, Hiroki

    2004-01-01

    The feasibility and accuracy of high dose three-dimensional conformal boost (3DCB) using three internal fiducial markers and a two-orthogonal X-ray set-up of the real-time tumor-tracking system on patients with gynecological malignancy were investigated in 10 patients. The standard deviation of the distribution of systematic deviations (Σ) was reduced from 3.8, 4.6, and 4.9 mm in the manual set-up to 2.3, 2.3 and 2.7 mm in the set-up using the internal markers. The average standard deviation of the distribution of random deviations (σ) was reduced from 3.7, 5.0, and 4.5 mm in the manual set-up to 3.3, 3.0, and 4.2 mm in the marker set-up. The appropriate PTV margin was estimated to be 10.2, 12.8, and 12.9 mm in the manual set-up and 6.9, 6.7, and 8.3 mm in the gold marker set-up, respectively, using the formula 2Σ+0.7σ. Set-up of the patients with three markers and two fluoroscopy is useful to reduce PTV margin and perform 3DCB

  16. Real-Time Correction By Optical Tracking with Integrated Geometric Distortion Correction for Reducing Motion Artifacts in fMRI

    Science.gov (United States)

    Rotenberg, David J.

    Artifacts caused by head motion are a substantial source of error in fMRI that limits its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and non-linear spin-history artifacts, however residual artifacts due to dynamic magnetic field non-uniformity may remain in the data. A recently developed correction technique, PLACE, can correct for absolute geometric distortion using the complex image data from two EPI images, with slightly shifted k-space trajectories. We present a correction approach that integrates PLACE into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an fMRI finger tapping experiment with overt head motion to induce dynamic field non-uniformity. Experiments suggest that including volume by volume geometric distortion correction by PLACE can suppress dynamic geometric distortion artifacts in a phantom and in vivo and provide more robust activation maps.

  17. Optimum location of external markers using feature selection algorithms for real-time tumor tracking in external-beam radiotherapy: a virtual phantom study.

    Science.gov (United States)

    Nankali, Saber; Torshabi, Ahmad Esmaili; Miandoab, Payam Samadi; Baghizadeh, Amin

    2016-01-08

    In external-beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation-based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two "Genetic" and "Ranker" searching procedures. The performance of these algorithms has been evaluated using four-dimensional extended cardiac-torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro-fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F-test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation-based feature selection algorithm, in

  18. A study of real-time content marketing : formulating real-time content marketing based on content, search and social media

    OpenAIRE

    Nguyen, Thi Kim Duyen

    2015-01-01

    The primary objective of this research is to understand profoundly the new concept of content marketing – real-time content marketing on the aspect of the digital marketing experts. Particularly, the research will focus on the real-time content marketing theories and how to build real-time content marketing strategy based on content, search and social media. It also finds out how marketers measure and keep track of conversion rates of their real-time content marketing plan. Practically, th...

  19. Hardware Approach for Real Time Machine Stereo Vision

    Directory of Open Access Journals (Sweden)

    Michael Tornow

    2006-02-01

    Full Text Available Image processing is an effective tool for the analysis of optical sensor information for driver assistance systems and controlling of autonomous robots. Algorithms for image processing are often very complex and costly in terms of computation. In robotics and driver assistance systems, real-time processing is necessary. Signal processing algorithms must often be drastically modified so they can be implemented in the hardware. This task is especially difficult for continuous real-time processing at high speeds. This article describes a hardware-software co-design for a multi-object position sensor based on a stereophotogrammetric measuring method. In order to cover a large measuring area, an optimized algorithm based on an image pyramid is implemented in an FPGA as a parallel hardware solution for depth map calculation. Object recognition and tracking are then executed in real-time in a processor with help of software. For this task a statistical cluster method is used. Stabilization of the tracking is realized through use of a Kalman filter. Keywords: stereophotogrammetry, hardware-software co-design, FPGA, 3-d image analysis, real-time, clustering and tracking.

  20. Observations on Real-Time Prostate Gland Motion Using Electromagnetic Tracking

    International Nuclear Information System (INIS)

    Langen, Katja M.; Willoughby, Twyla R.; Meeks, Sanford L.; Santhanam, Anand; Cunningham, Alexis; Levine, Lisa; Kupelian, Patrick A.

    2008-01-01

    Purpose: To quantify and describe the real-time movement of the prostate gland in a large data set of patients treated with radiotherapy. Methods and Materials: The Calypso four-dimensional localization system was used for target localization in 17 patients, with electromagnetic markers implanted in the prostate of each patient. We analyzed a total of 550 continuous tracking sessions. The fraction of time that the prostate was displaced by >3, >5, >7, and >10 mm was calculated for each session and patient. The frequencies of displacements after initial patient positioning were analyzed over time. Results: Averaged over all patients, the prostate was displaced >3 and >5 mm for 13.6% and 3.3% of the total treatment time, respectively. For individual patients, the corresponding maximal values were 36.2% and 10.9%. For individual fractions, the corresponding maximal values were 98.7% and 98.6%. Displacements >3 mm were observed at 5 min after initial alignment in about one-eighth of the observations, and increased to one-quarter by 10 min. For individual patients, the maximal value of the displacements >3 mm at 5 and 10 min after initial positioning was 43% and 75%, respectively. Conclusion: On average, the prostate was displaced by >3 mm and >5 mm approximately 14% and 3% of the time, respectively. For individual patients, these values were up to three times greater. After the initial positioning, the likelihood of displacement of the prostate gland increased with elapsed time. This highlights the importance of initiating treatment shortly after initially positioning the patient

  1. A spatiotemporal-based scheme for efficient registration-based segmentation of thoracic 4-D MRI.

    Science.gov (United States)

    Yang, Y; Van Reeth, E; Poh, C L; Tan, C H; Tham, I W K

    2014-05-01

    Dynamic three-dimensional (3-D) (four-dimensional, 4-D) magnetic resonance (MR) imaging is gaining importance in the study of pulmonary motion for respiratory diseases and pulmonary tumor motion for radiotherapy. To perform quantitative analysis using 4-D MR images, segmentation of anatomical structures such as the lung and pulmonary tumor is required. Manual segmentation of entire thoracic 4-D MRI data that typically contains many 3-D volumes acquired over several breathing cycles is extremely tedious, time consuming, and suffers high user variability. This requires the development of new automated segmentation schemes for 4-D MRI data segmentation. Registration-based segmentation technique that uses automatic registration methods for segmentation has been shown to be an accurate method to segment structures for 4-D data series. However, directly applying registration-based segmentation to segment 4-D MRI series lacks efficiency. Here we propose an automated 4-D registration-based segmentation scheme that is based on spatiotemporal information for the segmentation of thoracic 4-D MR lung images. The proposed scheme saved up to 95% of computation amount while achieving comparable accurate segmentations compared to directly applying registration-based segmentation to 4-D dataset. The scheme facilitates rapid 3-D/4-D visualization of the lung and tumor motion and potentially the tracking of tumor during radiation delivery.

  2. Evaluation of the tumor registration error in biopsy procedures performed under real-time PET/CT guidance.

    Science.gov (United States)

    Fanchon, Louise M; Apte, Adytia; Schmidtlein, C Ross; Yorke, Ellen; Hu, Yu-Chi; Dogan, Snjezana; Hatt, Mathieu; Visvikis, Dimitris; Humm, John L; Solomon, Stephen B; Kirov, Assen S

    2017-10-01

    The purpose of this study is to quantify tumor displacement during real-time PET/CT guided biopsy and to investigate correlations between tumor displacement and false-negative results. 19 patients who underwent real-time 18 F-FDG PET-guided biopsy and were found positive for malignancy were included in this study under IRB approval. PET/CT images were acquired for all patients within minutes prior to biopsy to visualize the FDG-avid region and plan the needle insertion. The biopsy needle was inserted and a post-insertion CT scan was acquired. The two CT scans acquired before and after needle insertion were registered using a deformable image registration (DIR) algorithm. The DIR deformation vector field (DVF) was used to calculate the mean displacement between the pre-insertion and post-insertion CT scans for a region around the tip of the biopsy needle. For 12 patients one biopsy core from each was tracked during histopathological testing to investigate correlations of the mean displacement between the two CT scans and false-negative or true-positive biopsy results. For 11 patients, two PET scans were acquired; one at the beginning of the procedure, pre-needle insertion, and an additional one with the needle in place. The pre-insertion PET scan was corrected for intraprocedural motion by applying the DVF. The corrected PET was compared with the post-needle insertion PET to validate the correction method. The mean displacement of tissue around the needle between the pre-biopsy CT and the postneedle insertion CT was 5.1 mm (min = 1.1 mm, max = 10.9 mm and SD = 3.0 mm). For mean displacements larger than 7.2 mm, the biopsy cores gave false-negative results. Correcting pre-biopsy PET using the DVF improved the PET/CT registration in 8 of 11 cases. The DVF obtained from DIR of the CT scans can be used for evaluation and correction of the error in needle placement with respect to the FDG-avid area. Misregistration between the pre-biopsy PET and the CT acquired with the

  3. Printed Tag Real-time Tracking

    KAUST Repository

    Bilal, Rana M.; Farooqui, Muhammad F.; Cheema, Hammad M.; Shamim, Atif

    2014-01-01

    methodology may be used to accurately determine a location of the tracking device using Wi-Fi access points. A device monitoring service may communicate with internal and/or external mapping API's to render a device monitoring user interface comprising a

  4. Real-Time Tracking of Selective Auditory Attention From M/EEG: A Bayesian Filtering Approach

    Science.gov (United States)

    Miran, Sina; Akram, Sahar; Sheikhattar, Alireza; Simon, Jonathan Z.; Zhang, Tao; Babadi, Behtash

    2018-01-01

    Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, an ability which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG) and electroencephalography (EEG). To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach) or vice versa (the encoding approach). To produce robust results, these procedures require multiple trials for training purposes. Also, their decoding accuracy drops significantly when operating at high temporal resolutions. Thus, they are not well-suited for emerging real-time applications such as smart hearing aid devices or brain-computer interface systems, where training data might be limited and high temporal resolutions are desired. In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main modules: (1) Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive filtering, (2) Extracting reliable markers of the attentional state, and thereby generalizing the widely-used correlation-based measures thereof, and (3) Devising a near real-time state-space estimator that translates the noisy and variable attention markers to robust and statistically interpretable estimates of the attentional state with minimal delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering, ℓ1-regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the performance of our proposed

  5. Real-Time Tracking of Selective Auditory Attention From M/EEG: A Bayesian Filtering Approach

    Directory of Open Access Journals (Sweden)

    Sina Miran

    2018-05-01

    Full Text Available Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, an ability which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG and electroencephalography (EEG. To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach or vice versa (the encoding approach. To produce robust results, these procedures require multiple trials for training purposes. Also, their decoding accuracy drops significantly when operating at high temporal resolutions. Thus, they are not well-suited for emerging real-time applications such as smart hearing aid devices or brain-computer interface systems, where training data might be limited and high temporal resolutions are desired. In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main modules: (1 Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive filtering, (2 Extracting reliable markers of the attentional state, and thereby generalizing the widely-used correlation-based measures thereof, and (3 Devising a near real-time state-space estimator that translates the noisy and variable attention markers to robust and statistically interpretable estimates of the attentional state with minimal delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering, ℓ1-regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the performance of our

  6. Real time magnetic resonance guided endomyocardial local delivery

    Science.gov (United States)

    Corti, R; Badimon, J; Mizsei, G; Macaluso, F; Lee, M; Licato, P; Viles-Gonzalez, J F; Fuster, V; Sherman, W

    2005-01-01

    Objective: To investigate the feasibility of targeting various areas of left ventricle myocardium under real time magnetic resonance (MR) imaging with a customised injection catheter equipped with a miniaturised coil. Design: A needle injection catheter with a mounted resonant solenoid circuit (coil) at its tip was designed and constructed. A 1.5 T MR scanner with customised real time sequence combined with in-room scan running capabilities was used. With this system, various myocardial areas within the left ventricle were targeted and injected with a gadolinium-diethylenetriaminepentaacetic acid (DTPA) and Indian ink mixture. Results: Real time sequencing at 10 frames/s allowed clear visualisation of the moving catheter and its transit through the aorta into the ventricle, as well as targeting of all ventricle wall segments without further image enhancement techniques. All injections were visualised by real time MR imaging and verified by gross pathology. Conclusion: The tracking device allowed real time in vivo visualisation of catheters in the aorta and left ventricle as well as precise targeting of myocardial areas. The use of this real time catheter tracking may enable precise and adequate delivery of agents for tissue regeneration. PMID:15710717

  7. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer.

    Science.gov (United States)

    Kessel, Sarah; Cribbes, Scott; Bonasu, Surekha; Rice, William; Qiu, Jean; Chan, Leo Li-Ying

    2017-09-01

    The development of three-dimensional (3D) multicellular tumor spheroid models for cancer drug discovery research has increased in the recent years. The use of 3D tumor spheroid models may be more representative of the complex in vivo tumor microenvironments in comparison to two-dimensional (2D) assays. Currently, viability of 3D multicellular tumor spheroids has been commonly measured on standard plate-readers using metabolic reagents such as CellTiter-Glo® for end point analysis. Alternatively, high content image cytometers have been used to measure drug effects on spheroid size and viability. Previously, we have demonstrated a novel end point drug screening method for 3D multicellular tumor spheroids using the Celigo Image Cytometer. To better characterize the cancer drug effects, it is important to also measure the kinetic cytotoxic and apoptotic effects on 3D multicellular tumor spheroids. In this work, we demonstrate the use of PI and caspase 3/7 stains to measure viability and apoptosis for 3D multicellular tumor spheroids in real-time. The method was first validated by staining different types of tumor spheroids with PI and caspase 3/7 and monitoring the fluorescent intensities for 16 and 21 days. Next, PI-stained and nonstained control tumor spheroids were digested into single cell suspension to directly measure viability in a 2D assay to determine the potential toxicity of PI. Finally, extensive data analysis was performed on correlating the time-dependent PI and caspase 3/7 fluorescent intensities to the spheroid size and necrotic core formation to determine an optimal starting time point for cancer drug testing. The ability to measure real-time viability and apoptosis is highly important for developing a proper 3D model for screening tumor spheroids, which can allow researchers to determine time-dependent drug effects that usually are not captured by end point assays. This would improve the current tumor spheroid analysis method to potentially better

  8. Real-time object tracking based on scale-invariant features employing bio-inspired hardware.

    Science.gov (United States)

    Yasukawa, Shinsuke; Okuno, Hirotsugu; Ishii, Kazuo; Yagi, Tetsuya

    2016-09-01

    We developed a vision sensor system that performs a scale-invariant feature transform (SIFT) in real time. To apply the SIFT algorithm efficiently, we focus on a two-fold process performed by the visual system: whole-image parallel filtering and frequency-band parallel processing. The vision sensor system comprises an active pixel sensor, a metal-oxide semiconductor (MOS)-based resistive network, a field-programmable gate array (FPGA), and a digital computer. We employed the MOS-based resistive network for instantaneous spatial filtering and a configurable filter size. The FPGA is used to pipeline process the frequency-band signals. The proposed system was evaluated by tracking the feature points detected on an object in a video. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. An artemisinin-mediated ROS evolving and dual protease light-up nanocapsule for real-time imaging of lysosomal tumor cell death.

    Science.gov (United States)

    Huang, Liwei; Luo, Yingping; Sun, Xian; Ju, Huangxian; Tian, Jiangwei; Yu, Bo-Yang

    2017-06-15

    Lysosomes are critical organelles for cellular homeostasis and can be used as potential targets to kill tumor cells from inside. Many photo-therapeutic methods have been developed to overproduce reactive oxygen species (ROS) to trigger lysosomal membrane permeabilization (LMP)-associated cell death pathway. However, these technologies rely on extra irradiation to activate the photosensitizers, which limits the applications in treating deep seated tumors and widespread metastatic lesions. This work reports a multifunctional nanocapsule to achieve targeted lysosomal tumor cell death without irradiation and real-time monitoring of drug effect through encapsulating artemisinin and dual protease light-up nanoprobe in a folate-functionalized liposome. The nanocapsule can be specifically uptaken by tumor cells via folate receptor-mediated endocytosis to enter lysosomes, in which artemisinin reacts with ferrous to generate ROS for LMP-associated cell death. By virtue of confocal fluorescence imaging, the artemisinin location in lysosome, ROS-triggered LMP and ultimate cell apoptosis can be visualized with the cathepsin B and caspase-3 activatable nanoprobe. Notably, the artemisinin-mediated ROS evolving for tumor therapy and real-time therapeutic monitoring were successfully implemented by living imaging in tumor-bearing mice, which broaden the nanocapsule for in vivo theranostics and may offer new opportunities for precise medicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Computed tomographic-guided iodine-125 interstitial implants for malignant thoracic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiming [The Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou 350005 (China); The Department of Radiology, Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan Bei Road, Quanzhou 362000 (China); Chen, Jin; Chen, Qunlin [The Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou 350005 (China); Lai, Qingquan; Cai, Siqing [The Department of Radiology, Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan Bei Road, Quanzhou 362000 (China); Luo, Kaidong [The Department of Radiology, Longyan Hosptial of Traditional Chinese Medical, 59 Longteng Middle Road, Longyan 364000 (China); Lin, Zhengyu, E-mail: linsinlan@yahoo.com.cn [The Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou 350005 (China)

    2013-11-01

    Purpose: To evaluate the feasibility and efficacy of percutaneous interstitial brachytherapy using iodine-125 ({sup 125}I) radioactive seeds under computed tomographic (CT) guidance for malignant thoracic tumors. Materials and methods: Forty-one patients (34 males, 7 females; 18–90 years; mean, 63.7 years) with 77 lesions (3 in the mediastinum, 7 in the chest wall, 67 in the lung) underwent percutaneous interstitial implantation of {sup 125}I radioactive seeds under CT guidance. A treatment planning system (TPS) was employed to calculate the number and distribution of seeds preoperatively. An 18-G needle was inserted into the lesions under CT guidance and send the seeds according to TPS. Two patients with mediastinal lesions undergoing seed implantation received an artificial pneumothorax. One patient with lung carcinoma adjacent to the anterior mediastinum underwent seed implantation through the sternum. Follow-up CT was done every 2 months postoperatively. Results: The procedure was successful in all patients. No major procedure-associated death occurred. The mean duration of follow-up was 19.4 ± 1.3 months (3–49 months). A complete response (CR) was seen in 49 lesions (63.6%), partial response (PR) in 9 lesions (11.7%), stable disease (SD) in 12 lesions (12.8%), and progressive disease (PD) in 7 lesions (7.4%). The overall response rate (CR + PR) was 75.3%; the local control rate (CR + PR + SD) was 90.9%. The 1-, 2- and 3-year progression-free rates for local tumors were 91%, 88% and 88%, respectively. The 1-, 2- and 3-year survival rates were 87%, 74% and 68%, respectively. Conclusion: Implantation of CT-guided {sup 125}I seeds is feasible and effective for patients with malignant thoracic tumors.

  11. Bringing well service into the digital age : new software and digital pens allow for real-time tracking of field data

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-09-15

    This article discussed a paperwork automation system that was implemented at a well services company and the efficiencies that were gained as a result of the implementation. The company's highly mobile delivery and service teams needed access to real-time delivery, inventory, and billing data, which the paper-based data management system then in place was unable to provide. The automated system incorporates new software and digital pens, which digitize handwriting and integrate the data directly into software. The new system allows for the real-time tracking of field data without disruption to existing employee processes or the necessity of a large investment in new computer infrastructure. The new system reduces the costs associated with paper-based data collection processes, including printing, form data re-keying, scanning, and storage. It also eliminates delays in reporting and billing and allows accurate inventory tracking throughout the supply chain as well as improved management of inventory levels. 2 refs., 2 figs.

  12. High-level expression of podoplanin in benign and malignant soft tissue tumors: immunohistochemical and quantitative real-time RT-PCR analysis.

    Science.gov (United States)

    Xu, Yongjun; Ogose, Akira; Kawashima, Hiroyuki; Hotta, Tetsuo; Ariizumi, Takashi; Li, Guidong; Umezu, Hajime; Endo, Naoto

    2011-03-01

    Podoplanin is a 38 kDa mucin-type transmembrane glycoprotein that was first identified in rat glomerular epithelial cells (podocytes). It is expressed in normal lymphatic endothelium, but is absent from vascular endothelial cells. D2-40 is a commercially available mouse monoclonal antibody which binds to an epitope on human podoplanin. D2-40 immunoreactivity is therefore highly sensitive and specific for lymphatic endothelium. Recent investigations have shown widespread applications of immunohistochemical staining with D2-40 in evaluating podoplanin expression as an immunohistochemical marker for diagnosis and prognosis in various tumors. To determine whether the podoplanin (D2-40) antibody may be useful for the diagnosis of soft tissue tumors, 125 cases, including 4 kinds of benign tumors, 15 kinds of malignant tumors and 3 kinds of tumor-like lesions were immunostained using the D2-40 antibody. Total RNA was extracted from frozen tumor tissue obtained from 41 corresponding soft tissue tumor patients and 12 kinds of soft tissue tumor cell lines. Quantitative real-time PCR reactions were performed. Immunohistochemical and quantitative real-time RT-PCR analyses demonstrated the expression of the podoplanin protein and mRNA in the majority of benign and malignant soft tissue tumors and tumor-like lesions examined, with the exception of alveolar soft part sarcoma, embryonal and alveolar rhabdomyosarcoma, extraskeletal Ewing's sarcoma/peripheral primitive neuro-ectodermal tumor and lipoma, which were completely negative for podoplanin. Since it is widely and highly expressed in nearly all kinds of soft tissue tumors, especially in spindle cell sarcoma, myxoid type soft tissue tumors and soft tissue tumors of the nervous system, podoplanin is considered to have little value in the differential diagnosis of soft tissue tumors.

  13. Thoracic ROM measurement system with visual bio-feedback: system design and biofeedback evaluation.

    Science.gov (United States)

    Ando, Takeshi; Kawamura, Kazuya; Fujitani, Junko; Koike, Tomokazu; Fujimoto, Masashi; Fujie, Masakatsu G

    2011-01-01

    Patients with diseases such as chronic obstructive pulmonary disease (COPD) need to improve their thorax mobility. Thoracic ROM is one of the simplest and most useful indexes to evaluate the respiratory function. In this paper, we have proposed the prototype of a simple thoracic ROM measurement system with real-time visual bio-feedback in the chest expansion test. In this system, the thoracic ROM is measured using a wire-type linear encoder whose wire is wrapped around the thorax. In this paper, firstly, the repeatability and reliability of measured thoracic ROM was confirmed as a first report of the developed prototype. Secondly, we analyzed the effect of the bio-feedback system on the respiratory function. The result of the experiment showed that it was easier to maintain a large and stable thoracic ROM during deep breathing by using the real-time visual biofeedback system of the thoracic ROM.

  14. Real-time Astrometry Using Phase Congruency

    Science.gov (United States)

    Lambert, A.; Polo, M.; Tang, Y.

    Phase congruency is a computer vision technique that proves to perform well for determining the tracks of optical objects (Flewelling, AMOS 2014). We report on a real-time implementation of this using an FPGA and CMOS Image Sensor, with on-sky data. The lightweight instrument can provide tracking update signals to the mount of the telescope, as well as determine abnormal objects in the scene.

  15. Anesthesia and fast-track in video-assisted thoracic surgery (VATS): from evidence to practice.

    Science.gov (United States)

    Umari, Marzia; Falini, Stefano; Segat, Matteo; Zuliani, Michele; Crisman, Marco; Comuzzi, Lucia; Pagos, Francesco; Lovadina, Stefano; Lucangelo, Umberto

    2018-03-01

    In thoracic surgery, the introduction of video-assisted thoracoscopic techniques has allowed the development of fast-track protocols, with shorter hospital lengths of stay and improved outcomes. The perioperative management needs to be optimized accordingly, with the goal of reducing postoperative complications and speeding recovery times. Premedication performed in the operative room should be wisely administered because often linked to late discharge from the post-anesthesia care unit (PACU). Inhalatory anesthesia, when possible, should be preferred based on protective effects on postoperative lung inflammation. Deep neuromuscular blockade should be pursued and carefully monitored, and an appropriate reversal administered before extubation. Management of one-lung ventilation (OLV) needs to be optimized to prevent not only intraoperative hypoxemia but also postoperative acute lung injury (ALI): protective ventilation strategies are therefore to be implemented. Locoregional techniques should be favored over intravenous analgesia: the thoracic epidural, the paravertebral block (PVB), the intercostal nerve block (ICNB), and the serratus anterior plane block (SAPB) are thoroughly reviewed and the most common dosages are reported. Fluid therapy needs to be administered critically, to avoid both overload and cardiovascular compromisation. All these practices are analyzed singularly with the aid of the most recent evidences aimed at the best patient care. Finally, a few notes on some of the latest trends in research are presented, such as non-intubated video-assisted thoracoscopic surgery (VATS) and intravenous lidocaine.

  16. A Bayesian approach to real-time 3D tumor localization via monoscopic x-ray imaging during treatment delivery

    International Nuclear Information System (INIS)

    Li, Ruijiang; Fahimian, Benjamin P.; Xing, Lei

    2011-01-01

    Purpose: Monoscopic x-ray imaging with on-board kV devices is an attractive approach for real-time image guidance in modern radiation therapy such as VMAT or IMRT, but it falls short in providing reliable information along the direction of imaging x-ray. By effectively taking consideration of projection data at prior times and/or angles through a Bayesian formalism, the authors develop an algorithm for real-time and full 3D tumor localization with a single x-ray imager during treatment delivery. Methods: First, a prior probability density function is constructed using the 2D tumor locations on the projection images acquired during patient setup. Whenever an x-ray image is acquired during the treatment delivery, the corresponding 2D tumor location on the imager is used to update the likelihood function. The unresolved third dimension is obtained by maximizing the posterior probability distribution. The algorithm can also be used in a retrospective fashion when all the projection images during the treatment delivery are used for 3D localization purposes. The algorithm does not involve complex optimization of any model parameter and therefore can be used in a ''plug-and-play'' fashion. The authors validated the algorithm using (1) simulated 3D linear and elliptic motion and (2) 3D tumor motion trajectories of a lung and a pancreas patient reproduced by a physical phantom. Continuous kV images were acquired over a full gantry rotation with the Varian TrueBeam on-board imaging system. Three scenarios were considered: fluoroscopic setup, cone beam CT setup, and retrospective analysis. Results: For the simulation study, the RMS 3D localization error is 1.2 and 2.4 mm for the linear and elliptic motions, respectively. For the phantom experiments, the 3D localization error is < 1 mm on average and < 1.5 mm at 95th percentile in the lung and pancreas cases for all three scenarios. The difference in 3D localization error for different scenarios is small and is not

  17. Comparative Analysis of Several Real-Time Systems for Tracking People and/or Moving Objects using GPS

    OpenAIRE

    Radinski, Gligorcho; Mileva, Aleksandra

    2015-01-01

    When we talk about real-time systems for tracking people and/or moving objects using a Global Positioning System (GPS), there are several categories of such systems and the ways in which they work. Some uses additional hardware to extend the functionality of the offered opportunities, some are free, some are too complex and cost too much money. This paper aims to provide a clearer picture of several such systems and to show results from a comparative analysis of some popular systems for trac...

  18. The development of a 4D treatment planning methodology to simulate the tracking of central lung tumors in an MRI-linac.

    Science.gov (United States)

    Al-Ward, Shahad M; Kim, Anthony; McCann, Claire; Ruschin, Mark; Cheung, Patrick; Sahgal, Arjun; Keller, Brian M

    2018-01-01

    Targeting and tracking of central lung tumors may be feasible on the Elekta MRI-linac (MRL) due to the soft-tissue visualization capabilities of MRI. The purpose of this work is to develop a novel treatment planning methodology to simulate tracking of central lung tumors with the MRL and to quantify the benefits in OAR sparing compared with the ITV approach. Full 4D-CT datasets for five central lung cancer patients were selected to simulate the condition of having 4D-pseudo-CTs derived from 4D-MRI data available on the MRL with real-time tracking capabilities. We used the MRL treatment planning system to generate two plans: (a) with a set of MLC-defined apertures around the target at each phase of the breathing ("4D-MRL" method); (b) with a fixed set of fields encompassing the maximum inhale and exhale of the breathing cycle ("ITV" method). For both plans, dose accumulation was performed onto a reference phase. To further study the potential benefits of a 4D-MRL method, the results were stratified by tumor motion amplitude, OAR-to-tumor proximity, and the relative OAR motion (ROM). With the 4D-MRL method, the reduction in mean doses was up to 3.0 Gy and 1.9 Gy for the heart and the lung. Moreover, the lung's V12.5 Gy was spared by a maximum of 300 cc. Maximum doses to serial organs were reduced by up to 6.1 Gy, 1.5 Gy, and 9.0 Gy for the esophagus, spinal cord, and the trachea, respectively. OAR dose reduction with our method depended on the tumor motion amplitude and the ROM. Some OARs with large ROMs and in close proximity to the tumor benefited from tracking despite small tumor amplitudes. We developed a novel 4D tracking methodology for the MRL for central lung tumors and quantified the potential dosimetric benefits compared with our current ITV approach. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  19. SU-G-JeP1-06: Correlation of Lung Tumor Motion with Tumor Location Using Electromagnetic Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Muccigrosso, D; Maughan, N; Parikh, P [Washington University School of Medicine, Saint Louis, MO (United States); Schultejans, H; Bera, R [Lindbergh High School, St. Louis, MO (United States)

    2016-06-15

    Purpose: It is well known that lung tumors move with respiration. However, most measurements of lung tumor motion have studied long treatment times with intermittent imaging; those populations may not necessarily represent conventional LINAC patients. We summarized the correlation between tumor motion and location in a multi-institutional trial with electromagnetic tracking, and identified the patient cohort that would most benefit from respiratory gating. Methods: Continuous electromagnetic transponder data (Varian Medical, Seattle, WA) of lung tumor motion was collected from 14 patients (214 total fractions) across 3 institutions during external beam radiation therapy in a prospective clinical trial (NCT01396551). External intervention from the clinician, such as couch shifts, instructed breath-holds, and acquisition pauses, were manually removed from the 10 Hz tracking data according to recorded notes. The average three-dimensional displacement from the breathing cycle’s end-expiratory to end-inhalation phases (peak-to-peak distance) of the transponders’ isocenter was calculated for each patient’s treatment. A weighted average of each isocenter was used to assess the effects of location on motion. A total of 14 patients were included in this analysis, grouped by their transponders’ location in the lung: upper, medial, and lower. Results: 8 patients had transponders in the upper lung, and 3 patients each in the medial lobe and lower lung. The weighted average ± standard deviation of all peak-to-peak distances for each group was: 1.04 ± 0.39 cm in the lower lung, 0.56 ± 0.14 cm in the medial lung, and 0.30 ± 0.06 cm in the upper lung. Conclusion: Tumors in the lower lung are most susceptible to excessive motion and daily variation, and would benefit most from continuous motion tracking and gating. Those in the medial lobe might be at moderate risk. The upper lobes have limited motion. These results can guide different motion management strategies

  20. Real-time implementation of logo detection on open source BeagleBoard

    Science.gov (United States)

    George, M.; Kehtarnavaz, N.; Estevez, L.

    2011-03-01

    This paper presents the real-time implementation of our previously developed logo detection and tracking algorithm on the open source BeagleBoard mobile platform. This platform has an OMAP processor that incorporates an ARM Cortex processor. The algorithm combines Scale Invariant Feature Transform (SIFT) with k-means clustering, online color calibration and moment invariants to robustly detect and track logos in video. Various optimization steps that are carried out to allow the real-time execution of the algorithm on BeagleBoard are discussed. The results obtained are compared to the PC real-time implementation results.

  1. Expanding the use of real‐time electromagnetic tracking in radiation oncology

    Science.gov (United States)

    Kupelian, Patrick A.; Willoughby, Twyla R.; Meeks, Sanford L.

    2011-01-01

    In the past 10 years, techniques to improve radiotherapy delivery, such as intensity‐modulated radiation therapy (IMRT), image‐guided radiation therapy (IGRT) for both inter‐ and intrafraction tumor localization, and hypofractionated delivery techniques such as stereotactic body radiation therapy (SBRT), have evolved tremendously. This review article focuses on only one part of that evolution, electromagnetic tracking in radiation therapy. Electromagnetic tracking is still a growing technology in radiation oncology and, as such, the clinical applications are limited, the expense is high, and the reimbursement is insufficient to cover these costs. At the same time, current experience with electromagnetic tracking applied to various clinical tumor sites indicates that the potential benefits of electromagnetic tracking could be significant for patients receiving radiation therapy. Daily use of these tracking systems is minimally invasive and delivers no additional ionizing radiation to the patient, and these systems can provide explicit tumor motion data. Although there are a number of technical and fiscal issues that need to be addressed, electromagnetic tracking systems are expected to play a continued role in improving the precision of radiation delivery. PACS number: 87.63.‐d PMID:22089017

  2. Real-time Avatar Animation from a Single Image.

    Science.gov (United States)

    Saragih, Jason M; Lucey, Simon; Cohn, Jeffrey F

    2011-01-01

    A real time facial puppetry system is presented. Compared with existing systems, the proposed method requires no special hardware, runs in real time (23 frames-per-second), and requires only a single image of the avatar and user. The user's facial expression is captured through a real-time 3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression model with synthetically generated examples that better capture person specific characteristics. Performance of the system is evaluated on avatars of real people as well as masks and cartoon characters.

  3. Acidity-Triggered Tumor Retention/Internalization of Chimeric Peptide for Enhanced Photodynamic Therapy and Real-Time Monitoring of Therapeutic Effects.

    Science.gov (United States)

    Han, Kai; Zhang, Wei-Yun; Ma, Zhao-Yu; Wang, Shi-Bo; Xu, Lu-Ming; Liu, Jia; Zhang, Xian-Zheng; Han, He-You

    2017-05-17

    Photodynamic therapy (PDT) holds great promise in tumor treatment. Nevertheless, it remains highly desirable to develop easy-to-fabricated PDT systems with improved tumor accumulation/internalization and timely therapeutic feedback. Here, we report a tumor-acidity-responsive chimeric peptide for enhanced PDT and noninvasive real-time apoptosis imaging. Both in vitro and in vivo studies revealed that a tumor mildly acidic microenvironment could trigger rapid protonation of carboxylate anions in chimeric peptide, which led to increased ζ potential, improved hydrophobicity, controlled size enlargement, and precise morphology switching from sphere to spherocylinder shape of the chimeric peptide. All of these factors realized superfast accumulation and prolonged retention in the tumor region, selective cellular internalization, and enhanced PDT against the tumor. Meanwhile, this chimeric peptide could further generate reactive oxygen species and initiate cell apoptosis during PDT. The subsequent formation of caspase-3 enzyme hydrolyzed the chimeric peptide, achieving a high signal/noise ratio and timely fluorescence feedback. Importantly, direct utilization of the acidity responsiveness of a biofunctional Asp-Glu-Val-Asp-Gly (DEVDG, caspase-3 enzyme substrate) peptide sequence dramatically simplified the preparation and increased the performance of the chimeric peptide furthest.

  4. 4D computed tomography scans for conformal thoracic treatment planning: is a single scan sufficient to capture thoracic tumor motion?

    Science.gov (United States)

    Tseng, Yolanda D.; Wootton, Landon; Nyflot, Matthew; Apisarnthanarax, Smith; Rengan, Ramesh; Bloch, Charles; Sandison, George; St. James, Sara

    2018-01-01

    Four dimensional computed tomography (4DCT) scans are routinely used in radiation therapy to determine the internal treatment volume for targets that are moving (e.g. lung tumors). The use of these studies has allowed clinicians to create target volumes based upon the motion of the tumor during the imaging study. The purpose of this work is to determine if a target volume based on a single 4DCT scan at simulation is sufficient to capture thoracic motion. Phantom studies were performed to determine expected differences between volumes contoured on 4DCT scans and those on the evaluation CT scans (slow scans). Evaluation CT scans acquired during treatment of 11 patients were compared to the 4DCT scans used for treatment planning. The images were assessed to determine if the target remained within the target volume determined during the first 4DCT scan. A total of 55 slow scans were compared to the 11 planning 4DCT scans. Small differences were observed in phantom between the 4DCT volumes and the slow scan volumes, with a maximum of 2.9%, that can be attributed to minor differences in contouring and the ability of the 4DCT scan to adequately capture motion at the apex and base of the motion trajectory. Larger differences were observed in the patients studied, up to a maximum volume difference of 33.4%. These results demonstrate that a single 4DCT scan is not adequate to capture all thoracic motion throughout treatment.

  5. Real-Time Tracking the Synthesis and Degradation of Albumin in Complex Biological Systems with a near-Infrared Fluorescent Probe.

    Science.gov (United States)

    Jin, Qiang; Feng, Lei; Zhang, Shui-Jun; Wang, Dan-Dan; Wang, Fang-Jun; Zhang, Yi; Cui, Jing-Nan; Guo, Wen-Zhi; Ge, Guang-Bo; Yang, Ling

    2017-09-19

    In this study, a novel fluorescent detection system for biological sensing of human albumin (HA) was developed on the basis of the pseudoesterase activity and substrate preference of HA. The designed near-infrared (NIR) fluorescent probe (DDAP) could be effectively hydrolyzed by HA, accompanied by significant changes in both color and fluorescence spectrum. The sensing mechanism was fully investigated by fluorescence spectroscopy, NMR, and mass spectra. DDAP exhibited excellent selectivity and sensitivity toward HA over a variety of human plasma proteins, hydrolases, and abundant biomolecules found in human body. The probe has been successfully applied to measure native HA in diluted plasma samples and the secreted HA in the hepatocyte culture supernatant. DDAP has also been used for fluorescence imaging of HA reabsorption in living renal cells, and the results show that the probe exhibits good cell permeability, low cytotoxicity and high imaging resolution. Furthermore, DDAP has been successfully used for real-time tracking the uptaking and degradation of albumin in ex vivo mouse kidney models for the first time. All these results clearly demonstrated that DDAP-based assay held great promise for real-time sensing and tracking HA in complex biological systems, which would be very useful for basic researches and clinical diagnosis of HA-associated diseases.

  6. Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images

    International Nuclear Information System (INIS)

    Weon, Chijun; Hyun Nam, Woo; Lee, Duhgoon; Ra, Jong Beom; Lee, Jae Young

    2015-01-01

    Purpose: Registration between 2D ultrasound (US) and 3D preoperative magnetic resonance (MR) (or computed tomography, CT) images has been studied recently for US-guided intervention. However, the existing techniques have some limits, either in the registration speed or the performance. The purpose of this work is to develop a real-time and fully automatic registration system between two intermodal images of the liver, and subsequently an indirect lesion positioning/tracking algorithm based on the registration result, for image-guided interventions. Methods: The proposed position tracking system consists of three stages. In the preoperative stage, the authors acquire several 3D preoperative MR (or CT) images at different respiratory phases. Based on the transformations obtained from nonrigid registration of the acquired 3D images, they then generate a 4D preoperative image along the respiratory phase. In the intraoperative preparatory stage, they properly attach a 3D US transducer to the patient’s body and fix its pose using a holding mechanism. They then acquire a couple of respiratory-controlled 3D US images. Via the rigid registration of these US images to the 3D preoperative images in the 4D image, the pose information of the fixed-pose 3D US transducer is determined with respect to the preoperative image coordinates. As feature(s) to use for the rigid registration, they may choose either internal liver vessels or the inferior vena cava. Since the latter is especially useful in patients with a diffuse liver disease, the authors newly propose using it. In the intraoperative real-time stage, they acquire 2D US images in real-time from the fixed-pose transducer. For each US image, they select candidates for its corresponding 2D preoperative slice from the 4D preoperative MR (or CT) image, based on the predetermined pose information of the transducer. The correct corresponding image is then found among those candidates via real-time 2D registration based on a

  7. Real-Time Motion Management of Prostate Cancer Radiotherapy

    DEFF Research Database (Denmark)

    Pommer, Tobias

    of this thesis is to manage prostate motion in real-time by aligning the radiation beam to the prostate using the novel dynamic multileaf collimator (DMLC) tracking method. Specifically, the delivered dose with tracking was compared to the planned dose, and the impact of treatment plan complexity and limitations...

  8. A Low Cost GPS System for Real-Time Tracking of Sounding Rockets

    Science.gov (United States)

    Markgraf, M.; Montenbruck, O.; Hassenpflug, F.; Turner, P.; Bull, B.; Bauer, Frank (Technical Monitor)

    2001-01-01

    This paper describes the development as well as the on-ground and the in-flight evaluation of a low cost Global Positioning System (GPS) system for real-time tracking of sounding rockets. The flight unit comprises a modified ORION GPS receiver and a newly designed switchable antenna system composed of a helical antenna in the rocket tip and a dual-blade antenna combination attached to the body of the service module. Aside from the flight hardware a PC based terminal program has been developed to monitor the GPS data and graphically displays the rocket's path during the flight. In addition an Instantaneous Impact Point (IIP) prediction is performed based on the received position and velocity information. In preparation for ESA's Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, Kiruna, on 19 Feb. 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. In addition to the ORION receiver, an Ashtech G12 HDMA receiver and a BAE (Canadian Marconi) Allstar receiver, both connected to a wrap-around antenna, have been flown on the same rocket as part of an independent experiment provided by the Goddard Space Flight Center. This allows an in-depth verification and trade-off of different receiver and antenna concepts.

  9. Thoracic pain in a collegiate runner.

    Science.gov (United States)

    Austin, G P; Benesky, W T

    2002-08-01

    This case study describes the process of examination, re-examination, and intervention for a collegiate runner with mechanical thoracic pain preventing athletic participation and limiting daily function. Unimpaired function fully returned in less than 3 weeks with biweekly sessions to re-establish normal and painfree thoracic mechanics via postural hygiene, exercise, mobilization, and manipulation. The outcome of this case study supports the original hypothesis that the pattern of impairments was in fact responsible for the functional limitations and disability in this athlete. At the time of publication the athlete was without functional limitations and had fully returned to competitive sprinting for the university track team.

  10. Real-time Human Activity Recognition

    Science.gov (United States)

    Albukhary, N.; Mustafah, Y. M.

    2017-11-01

    The traditional Closed-circuit Television (CCTV) system requires human to monitor the CCTV for 24/7 which is inefficient and costly. Therefore, there’s a need for a system which can recognize human activity effectively in real-time. This paper concentrates on recognizing simple activity such as walking, running, sitting, standing and landing by using image processing techniques. Firstly, object detection is done by using background subtraction to detect moving object. Then, object tracking and object classification are constructed so that different person can be differentiated by using feature detection. Geometrical attributes of tracked object, which are centroid and aspect ratio of identified tracked are manipulated so that simple activity can be detected.

  11. Laboratory-Scale Simulation and Real-Time Tracking of a Microbial Contamination Event and Subsequent Shock-Chlorination in Drinking Water

    Directory of Open Access Journals (Sweden)

    Michael D. Besmer

    2017-10-01

    Full Text Available Rapid contamination of drinking water in distribution and storage systems can occur due to pressure drop, backflow, cross-connections, accidents, and bio-terrorism. Small volumes of a concentrated contaminant (e.g., wastewater can contaminate large volumes of water in a very short time with potentially severe negative health impacts. The technical limitations of conventional, cultivation-based microbial detection methods neither allow for timely detection of such contaminations, nor for the real-time monitoring of subsequent emergency remediation measures (e.g., shock-chlorination. Here we applied a newly developed continuous, ultra high-frequency flow cytometry approach to track a rapid pollution event and subsequent disinfection of drinking water in an 80-min laboratory scale simulation. We quantified total (TCC and intact (ICC cell concentrations as well as flow cytometric fingerprints in parallel in real-time with two different staining methods. The ingress of wastewater was detectable almost immediately (i.e., after 0.6% volume change, significantly changing TCC, ICC, and the flow cytometric fingerprint. Shock chlorination was rapid and detected in real time, causing membrane damage in the vast majority of bacteria (i.e., drop of ICC from more than 380 cells μl-1 to less than 30 cells μl-1 within 4 min. Both of these effects as well as the final wash-in of fresh tap water followed calculated predictions well. Detailed and highly quantitative tracking of microbial dynamics at very short time scales and for different characteristics (e.g., concentration, membrane integrity is feasible. This opens up multiple possibilities for targeted investigation of a myriad of bacterial short-term dynamics (e.g., disinfection, growth, detachment, operational changes both in laboratory-scale research and full-scale system investigations in practice.

  12. TH-AB-BRB-05: Using a Research Real-Time Control Interface to Go Beyond Dynamic MLC Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Nill, S. [The Institute of Cancer Research (United Kingdom)

    2016-06-15

    Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapy involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43

  13. TH-AB-BRB-05: Using a Research Real-Time Control Interface to Go Beyond Dynamic MLC Tracking

    International Nuclear Information System (INIS)

    Nill, S.

    2016-01-01

    Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapy involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43

  14. Progesterone receptor isoform analysis by quantitative real-time polymerase chain reaction in formalin-fixed, paraffin-embedded canine mammary dysplasias and tumors

    DEFF Research Database (Denmark)

    Guil-Luna, S.; Stenvang, Jan; Brünner, Nils

    2014-01-01

    and its isoforms in formalin-fixed, paraffin-embedded tissue samples from canine mammary lesions (4 dysplasias, 10 benign tumors, and 46 carcinomas) using 1-step SYBR Green quantitative real-time polymerase chain reaction (RT-qPCR). Progesterone receptor was expressed in 75% of dysplasias, all benign...... in the expression of isoform A versus B. Analysis of progesterone receptor mRNA isoforms by RT-qPCR was successful in routinely formalin-fixed, paraffin-embedded tissue samples and enabled the distribution of isoforms A and B to be identified for the first time in dysplasias, benign tumors, and malignant tumors...

  15. The European educational platform on thoracic surgery.

    Science.gov (United States)

    Massard, Gilbert; Rocco, Gaetano; Venuta, Federico

    2014-05-01

    As the largest scientific organisation world-wide exclusively dedicated to general thoracic surgery (GTS), the European Society of Thoracic Surgeons (ESTS) recognized that one of its priorities is education. The educational platform designed ESTS addresses not only trainees, but also confirmed thoracic surgeons. The two main aims are (I) to prepare trainees to graduation and to the certification by the European Board of Thoracic Surgery and (II) to offer opportunities for continuous medical education in the perspective of life-long learning and continuous professional development to certified thoracic surgeons. It is likely that recertification will become an obligation during the coming decade. At its inception, the platform differentiated two different events. A 6-day course emphasizing on theoretic knowledge was created in Antalya in 2007. The same year, a 2-day school oriented to practical issues with hands-on in the animal lab was launched in Antalya. These two teaching tracks need further development. In the knowledge track, we intend to organize highly specialized 2-day courses to deepen insight into theoretical questions. The skill track will be implemented by specialized courses for high technology such as tracheal surgery, ECMO, robotics or chest wall reconstruction. In order to promote tomorrows' leadership, we created an academic competence track giving an insight into medical communication, methodology and management. We also had to respond to an increasing demand from the Russian speaking countries, where colleagues may face problems to attend western meetings, and where the language bareer may be a major impediment. We initiated a Russian school with three events yearly in 2012. Contemporary teaching must be completed with an e-learning platform, which is currently under development. The school activities are organized by the educational committee, which is headed by the ESTS Director of Education, assisted by coordinators of the teaching tracks and

  16. A Novel Real-Time Coal Miner Localization and Tracking System Based on Self-Organized Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wang Yang

    2010-01-01

    Full Text Available With the development of information technology, we envision that the key of improving coal mine safety is how to get real-time positions of miners. In this paper, we propose a prototype system for real-time coal miner localization and tracking based on self-organized sensor networks. The system is composed of hardware and software platform. We develop a set of localization hardware devices with the Safety Certificate of Approval for Mining Products include miner node, wired fixed access station, and base with optical port. On the software side, we develop a layered software architecture of node application, server management, and information dissemination and broadcasting. We also develop three key localization technologies: an underground localization algorithm using received signal strength indication- (RSSI- verifying algorithm to reduce the influence of the severe environment in a coal mine; a robust fault-tolerant localization mechanism to improve the inherent defect of instability of RSSI localization; an accurate localization algorithm based on Monte Carlo localization (MCL to adapt to the underground tunnel structure. In addition, we conduct an experimental evaluation based on a real prototype implementation using MICA2 motes. The results show that our system is more accurate and more adaptive in general than traditional localization algorithms.

  17. Real-Time MRI Navigated Ultrasound for Preoperative Tumor Evaluation in Breast Cancer Patients: Technique and Clinical Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ah Young; Seo, Bo Kyoung [Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355 (Korea, Republic of)

    2016-11-01

    Real-time magnetic resonance imaging (MRI) navigated ultrasound is an image fusion technique to display the results of both MRI and ultrasonography on the same monitor. This system is a promising technique to improve lesion detection and analysis, to maximize advantages of each imaging modality, and to compensate the disadvantages of both MRI and ultrasound. In evaluating breast cancer stage preoperatively, MRI and ultrasound are the most representative imaging modalities. However, sometimes difficulties arise in interpreting and correlating the radiological features between these two different modalities. This pictorial essay demonstrates the technical principles of the real-time MRI navigated ultrasound, and clinical implementation of the system in preoperative evaluation of tumor extent, multiplicity, and nodal status in breast cancer patients.

  18. Real-time MRI navigated ultrasound for preoperative tumor evaluation in breast cancer patients: Technique and clinical implementation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ah Young; Seo, Bo Kyoung [Dept. of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan (Korea, Republic of)

    2016-09-15

    Real-time magnetic resonance imaging (MRI) navigated ultrasound is an image fusion technique to display the results of both MRI and ultrasonography on the same monitor. This system is a promising technique to improve lesion detection and analysis, to maximize advantages of each imaging modality, and to compensate the disadvantages of both MRI and ultrasound. In evaluating breast cancer stage preoperatively, MRI and ultrasound are the most representative imaging modalities. However, sometimes difficulties arise in interpreting and correlating the radiological features between these two different modalities. This pictorial essay demonstrates the technical principles of the real-time MRI navigated ultrasound, and clinical implementation of the system in preoperative evaluation of tumor extent, multiplicity, and nodal status in breast cancer patients.

  19. Smartphone-Based Real-Time Indoor Location Tracking With 1-m Precision.

    Science.gov (United States)

    Liang, Po-Chou; Krause, Paul

    2016-05-01

    Monitoring the activities of daily living of the elderly at home is widely recognized as useful for the detection of new or deteriorating health conditions. However, the accuracy of existing indoor location tracking systems remains unsatisfactory. The aim of this study was, therefore, to develop a localization system that can identify a patient's real-time location in a home environment with maximum estimation error of 2 m at a 95% confidence level. A proof-of-concept system based on a sensor fusion approach was built with considerations for lower cost, reduced intrusiveness, and higher mobility, deployability, and portability. This involved the development of both a step detector using the accelerometer and compass of an iPhone 5, and a radio-based localization subsystem using a Kalman filter and received signal strength indication to tackle issues that had been identified as limiting accuracy. The results of our experiments were promising with an average estimation error of 0.47 m. We are confident that with the proposed future work, our design can be adapted to a home-like environment with a more robust localization solution.

  20. SU-G-BRA-07: An Innovative Fiducial-Less Tracking Method for Radiation Treatment of Abdominal Tumors by Diaphragm Disparity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dick, D; Zhao, W [University of Miami, Coral Gables, Florida (United States); Wu, X [Biophysics Research Institute of America, Miami, Florida (United States)

    2016-06-15

    Purpose: To investigate the feasibility of tracking abdominal tumors without the use of gold fiducial markers Methods: In this simulation study, an abdominal 4DCT dataset, acquired previously and containing 8 phases of the breathing cycle, was used as the testing data. Two sets of DRR images (45 and 135 degrees) were generated for each phase. Three anatomical points along the lung-diaphragm interface on each of the Digital Reconstructed Radiograph(DRR) images were identified by cross-correlation. The gallbladder, which simulates the tumor, was contoured for each phase of the breathing cycle and the corresponding centroid values serve as the measured center of the tumor. A linear model was created to correlate the diaphragm’s disparity of the three identified anatomical points with the center of the tumor. To verify the established linear model, we sequentially removed one phase of the data (i.e., 3 anatomical points and the corresponding tumor center) and created new linear models with the remaining 7 phases. Then we substituted the eliminated phase data (disparities of the 3 anatomical points) into the corresponding model to compare model-generated tumor center and the measured tumor center. Results: The maximum difference between the modeled and the measured centroid values across the 8 phases were 0.72, 0.29 and 0.30 pixels in the x, y and z directions respectively, which yielded a maximum mean-squared-error value of 0.75 pixels. The outcomes of the verification process, by eliminating each phase, produced mean-squared-errors ranging from 0.41 to 1.28 pixels. Conclusion: Gold fiducial markers, requiring surgical procedures to be implanted, are conventionally used in radiation therapy. The present work shows the feasibility of a fiducial-less tracking method for localizing abdominal tumors. Through developed diaphragm disparity analysis, the established linear model was verified with clinically accepted errors. The tracking method in real time under different

  1. 3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy.

    Science.gov (United States)

    Li, Ruijiang; Lewis, John H; Jia, Xun; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Song, William Y; Jiang, Steve B

    2011-05-01

    To evaluate an algorithm for real-time 3D tumor localization from a single x-ray projection image for lung cancer radiotherapy. Recently, we have developed an algorithm for reconstructing volumetric images and extracting 3D tumor motion information from a single x-ray projection [Li et al., Med. Phys. 37, 2822-2826 (2010)]. We have demonstrated its feasibility using a digital respiratory phantom with regular breathing patterns. In this work, we present a detailed description and a comprehensive evaluation of the improved algorithm. The algorithm was improved by incorporating respiratory motion prediction. The accuracy and efficiency of using this algorithm for 3D tumor localization were then evaluated on (1) a digital respiratory phantom, (2) a physical respiratory phantom, and (3) five lung cancer patients. These evaluation cases include both regular and irregular breathing patterns that are different from the training dataset. For the digital respiratory phantom with regular and irregular breathing, the average 3D tumor localization error is less than 1 mm which does not seem to be affected by amplitude change, period change, or baseline shift. On an NVIDIA Tesla C1060 graphic processing unit (GPU) card, the average computation time for 3D tumor localization from each projection ranges between 0.19 and 0.26 s, for both regular and irregular breathing, which is about a 10% improvement over previously reported results. For the physical respiratory phantom, an average tumor localization error below 1 mm was achieved with an average computation time of 0.13 and 0.16 s on the same graphic processing unit (GPU) card, for regular and irregular breathing, respectively. For the five lung cancer patients, the average tumor localization error is below 2 mm in both the axial and tangential directions. The average computation time on the same GPU card ranges between 0.26 and 0.34 s. Through a comprehensive evaluation of our algorithm, we have established its accuracy in 3D

  2. Effectiveness of a simple and real-time baseline shift monitoring system during stereotactic body radiation therapy of lung tumors.

    Science.gov (United States)

    Uchida, Yukihiro; Tachibana, Hidenobu; Kamei, Yoshiyuki; Kashihara, Kenichi

    2017-11-01

    This study aimed to clinically validate a simple real-time baseline shift monitoring system in a prospective study of consecutive patients undergoing stereotactic body radiation therapy (SBRT) of lung tumors, and to investigate baseline shift due to intrafraction motion of the patient's body during lung SBRT. Ten consecutive patients with peripheral lung tumors were treated by SBRT consisting of four fractions of 12 Gy each, with a total dose of 48 Gy. During treatment, each patient's geometric displacement in the anterior-posterior and left-right directions (the baseline shift) was measured using a real-time monitoring webcam system. Displacement between the start and end of treatment was measured using an X-ray fluoroscopic imaging system. The displacement measurements of the two systems were compared, and the measurements of baseline shift acquired by the monitoring system during treatment were analyzed for all patients. There was no significant deviation between the monitoring system and the X-ray imaging system, with the accuracy of measurement being within 1 mm. Measurements using the monitoring system showed that 7 min of treatment generated displacements of more than 1 mm in 50% of the patients. Baseline shift of a patient's body may be measured accurately in real time, using a monitoring system without X-ray exposure. The manubrium of the sternum is a good location for measuring the baseline shift of a patient's body at all times. The real-time monitoring system may be useful for measuring the baseline shift of a patient's body independently of a gating system. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Wide area surveillance real-time motion detection systems

    CERN Document Server

    2014-01-01

    The book describes a system for visual surveillance using intelligent cameras. The camera uses robust techniques for detecting and tracking moving objects. The real time capture of the objects is then stored int he database. The tracking data stored in the database is analysed to study the camera view, detect and track objects, and study object behavior. These set of models provide a robust framework for coordinating the tracking of objects between overlapping and non-overlapping cameras, and recording the activity of objects detected by the system.

  4. Exploiting Microwave Imaging Methods for Real-Time Monitoring of Thermal Ablation

    Directory of Open Access Journals (Sweden)

    Rosa Scapaticci

    2017-01-01

    Full Text Available Microwave thermal ablation is a cancer treatment that exploits local heating caused by a microwave electromagnetic field to induce coagulative necrosis of tumor cells. Recently, such a technique has significantly progressed in the clinical practice. However, its effectiveness would dramatically improve if paired with a noninvasive system for the real-time monitoring of the evolving dimension and shape of the thermally ablated area. In this respect, microwave imaging can be a potential candidate to monitor the overall treatment evolution in a noninvasive way, as it takes direct advantage from the dependence of the electromagnetic properties of biological tissues from temperature. This paper explores such a possibility by presenting a proof of concept validation based on accurate simulated imaging experiments, run with respect to a scenario that mimics an ex vivo experimental setup. In particular, two model-based inversion algorithms are exploited to tackle the imaging task. These methods provide independent results in real-time and their integration improves the quality of the overall tracking of the variations occurring in the target and surrounding regions.

  5. Thoracic chordoma: CT and MR findings

    International Nuclear Information System (INIS)

    Cha, Yoo Mi; Hwang, Hee Young; Kim, Sang Joon; Chung, Hyo Sun; Han, Heon

    1993-01-01

    Chordoma arising from the notochordal remnants is a rare primary bone tumor in the cervicosacral region and is even more unusual in the thoracic region. The authors experienced a case of thoracic chordoma and reports its CT and MR findings

  6. Real-time tracking of vertebral body movement with implantable reference microsensors.

    Science.gov (United States)

    Mularski, Sven; Picht, Thomas; Kuehn, Björn; Kombos, Theodoros; Brock, Mario; Suess, Olaf

    2006-05-01

    In the spine, navigation techniques serve mainly to control and accurately target insertion of implants. The main source of error is that the spine is not a rigid organ, but rather a chain of semiflexible movement segments. Any intraoperative manipulation of the patient alters the geometry and volumetry as compared to the 3D volume model created from the image data. Thus, the objective of the study was to implement the theoretical principle of microsensor referencing in a model experiment and to clarify which anatomical structures are suitable for intermittent implantation of positional sensors, as illustrated with cervical vertebral bodies. Laboratory tests were conducted using 70 models of human cervical vertebral bodies. The first experiment investigated whether arbitrary movements of vertebral bodies can be tracked with the positional information from the implanted microsensors. The accuracy of this movement monitoring was determined quantitatively on the basis of positional error measurement. In the second experiment, different ventral and dorsal surgical operations were simulated on five models of the cervical spine. Quantifiable measurement values such as the spatial extension of the intervertebral space and the relative positions of the planes of the upper plates were determined. With respect to the differing anatomy of the individual vertebral bodies of the cervical spine, the sensors could be placed securely with a 5x2 mm drill. The registration error (RE) was determined as a root mean square error. The mean value was 0.9425 mm (range: 0.57-1.2 mm; median: 0.9400 mm; SD: 0.1903 mm). The precision of the movement monitoring of the vertebral body was investigated along its three main axes. The error tolerance between post-interventional 3D reconstruction and direct measurement on the model did not exceed 1.3 mm in the distance measurements or 2.5 degrees in the angular measurements. The tomograms on the system monitor could be updated in close to real time

  7. Recent innovation in microbial source tracking using bacterial real-time PCR markers in shellfish

    International Nuclear Information System (INIS)

    Mauffret, A.; Mieszkin, S.; Morizur, M.; Alfiansah, Y.; Lozach, S.; Gourmelon, M.

    2013-01-01

    Highlights: ► DNA extraction from intravalvular liquid is promising for microbial source tracking in oysters. ► Host-associated bacterial markers in shellfish digestive tissues were difficult to assess with real-time PCR. ► DNA extracts from shellfish flesh appeared to have low inhibitor levels but low marker levels. ► Protocol transfer from one shellfish species to another does not appear possible. -- Abstract: We assessed the capacity of real-time PCR markers to identify the origin of contamination in shellfish. Oyster, cockles or clams were either contaminated with fecal materials and host-associated markers designed from Bacteroidales or Catellicoccus marimammalium 16S RNA genes were extracted from their intravalvular liquid, digestive tissues or shellfish flesh. Extraction of bacterial DNA from the oyster intravalvular liquid with FastDNA spin kit for soil enabled the selected markers to be quantified in 100% of artificially contaminated samples, and the source of contamination to be identified in 13 out of 38 naturally contaminated batches from European Class B and Class C areas. However, this protocol did not enable the origin of the contamination to be identified in cockle or clam samples. Although results are promising for extracts from intravalvular liquid in oyster, it is unlikely that a single protocol could be the best across all bacterial markers and types of shellfish

  8. Metastatic tumor of thoracic and lumbar spine: prospective study comparing the surgery and radiotherapy vs external immobilization with radiotherapy

    International Nuclear Information System (INIS)

    Falavigna, Asdrubal; Ioppi, Ana Elisa Empinotti; Grasselli, Juliana

    2007-01-01

    Bone metastases at the thoracic and lumbar segment of the spine are usually presented with painful sensation and medullar compression. The treatment is based on the clinical and neurological conditions of the patient and the degree of tumor invasion. In the present study, 32 patients with spinal metastasis of thoracic and lumbar segment were prospectively analyzed. These patients were treated by decompression and internal stabilization followed by radiotherapy or irradiation with external immobilization. The election of the groups was in accordance with the tumor radiotherapy sensitivity, clinical conditions, spinal stability, medullar or nerve compression and patient's decision. The Frankel scale and pain visual test were applied at the moment of diagnosis and after 1 and 6 months. The surgical group had better results with preserving the ambulation longer and significant reduction of pain.(author)

  9. Thoracic pathologies on scout views and bolus tracking slices for computed tomographic cerebral angiography

    Energy Technology Data Exchange (ETDEWEB)

    Groth, M.; Fiehler, J.; Buhk, J.H. [University Medical Center Hamburg-Eppendorf (Germany). Dept. of Diagnostic and Interventional Neuroradiology; Henes, F.O. [University Medical Center Hamburg-Eppendorf (Germany). Dept. of Diagnostic and Interventional Radiology

    2015-08-15

    To evaluate the incidence of additional thoracic pathologic findings (TPF) detected on scout views and corresponding bolus tracking slices (SVBT) for computed tomographic cerebral angiography (CTCA) and to test the reliability and accuracy of these findings. The study collective included 505 consecutive patients who underwent multidetector CTCA. Appendant SVBT of all patients were reviewed for any pathologic findings and patient medical reports were analyzed, if any medical treatment was initiated for the detected pathologic findings. In 18 patients thoracic CT scans were performed in the same session. These were additionally reviewed by two blinded observers to test for intra- and interobserver reliability as well as for accuracy of detecting thoracic pathologies on SVBT. TPF were detected in 165 (33 %) SVBT. The five most common pathologic findings were: pleural effusion, 12 %; pneumonia, 8 %; atelectasis/dystelecatsis, 6 %; pericardial effusion, 2 % and elevated diaphragm, 1 %. For 48 % of these findings medical treatment was initiated. SVBT showed a sensitivity of 53 %, a specificity of 99 %, a positive predictive value of 89 %, a negative predictive value of 94 % and accuracy of 94 % for the detection of TPF. The intraobserver reliability was very good and the interobserver reliability showed moderate agreement. SVBT for CTCA should be reviewed with care by radiologists, since additional TPF can affect patient management. Nevertheless, despite a high specificity of SVBT for detecting TPF, an only moderate sensitivity has to be taken into account.

  10. SU-D-18A-04: Quantifying the Ability of Tumor Tracking to Spare Normal Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Burger, A; Buzurovic, I; Hurwitz, M; Williams, C; Lewis, J [Brigham and Women' s Hospital, Dana-Farber Cancer Center, Harvard Medical Sc, Boston, MA (United States); Mishra, P [Varian Medical Systems, Palo Alto, CA (United States); Seco, J [Mass General Hospital, Harvard Medical, Boston, MA (United States)

    2014-06-01

    Purpose: Tumor tracking allows for smaller tissue volumes to be treated, potentially reducing normal tissue damage. However, tumor tracking is a more complex treatment and has little benefit in some scenarios. Here we quantify the benefit of tumor tracking for a range of patients by estimating the dose of radiation to organs at risk and the normal tissue complication probability (NTCP) for both standard and tracking treatment plans. This comparison is performed using both patient 4DCT data and extended Cardiac-Torso (XCAT) digital phantoms. Methods: We use 4DCT data for 10 patients. Additionally, we generate digital phantoms with motion derived from measured patient long tumor trajectories to compare standard and tracking treatment plans. The standard treatment is based on the average intensity projection (AIP) of 4DCT images taken over a breath cycle. The tracking treatment is based on doses calculated on images representing the anatomy at each time point. It is assumed that there are no errors in tracking the target. The NTCP values are calculated based on RTOG guidelines. Results: The mean reduction in the mean dose delivered was 5.5% to the lungs (from 7.3 Gy to 6.9 Gy) and 4.0% to the heart (from 12.5 Gy to 12.0 Gy). The mean reduction in the max dose delivered was 13% to the spinal cord (from 27.6 Gy to 24.0 Gy), 2.5% to the carina (from 31.7 Gy to 30.9 Gy), and 15% to the esophagus (from 69.6 Gy to 58.9 Gy). The mean reduction in the probability of 2nd degree radiation pneumonitis (RP) was 8.7% (3.1% to 2.8%) and the mean reduction in the effective volume was 6.8% (10.8% to 10.2%). Conclusions: Tumor tracking has the potential to reduce irradiation of organs at risk, and consequentially reduce the normal tissue complication probability. The benefits vary based on the clinical scenario. This study is supported by Varian Medical Systems, Inc.

  11. Real-Time Cloud-Based Health Tracking and Monitoring System in Designed Boundary for Cardiology Patients

    Directory of Open Access Journals (Sweden)

    Aamir Shahzad

    2018-01-01

    Full Text Available Telemonitoring is not a new term, in information technology (IT, which has been employed to remotely monitor the health of patients that are located not in common places, such hospitals or medical centers. For that, wearable medical sensors, such as electrocardiography sensors, blood pressure sensors, and glucometer, have commonly been used to make possible to acquire the real-time information from the remotely located patients; therefore, the medical information is further carried, via the Internet, to perform medical diagnosis and the corresponding treatments. Like in other IT sectors, there has been tremendous progress accounted in medical sectors (and in telemonitoring systems that changes the human life protection against several chronic diseases, and the patient’s medical information can be accessed wirelessly via Wi-Fi and cellular systems. Further, with the advents of cloud computing technology, medical systems are now more efficient and scalable in processing, such as storage and access, the medical information with minimal development costs. This study is also a piece of enhancement made to track and monitor the real-time medical information, bounded in authorized area, through the modeling of private cloud computing. The private cloud-based environment is designed, for patient health monitoring called bounded telemonitoring system, to acquire the real-time medical information of patients that resided in the boundary, inside medical wards and outside medical wards, of the medical center. A new wireless sensor network scenario is designed and modeled to keep or monitor the patients’ health information whole day, 24 hours. This research is a new secured sight towards medical information access and gives directions for future developments in the medical systems.

  12. From Diagnosis to Treatment: Clinical Applications of Nanotechnology in Thoracic Surgery.

    Science.gov (United States)

    Digesu, Christopher S; Hofferberth, Sophie C; Grinstaff, Mark W; Colson, Yolonda L

    2016-05-01

    Nanotechnology is an emerging field with potential as an adjunct to cancer therapy, particularly thoracic surgery. Therapy can be delivered to tumors in a more targeted fashion, with less systemic toxicity. Nanoparticles may aid in diagnosis, preoperative characterization, and intraoperative localization of thoracic tumors and their lymphatics. Focused research into nanotechnology's ability to deliver both diagnostics and therapeutics has led to the development of nanotheranostics, which promises to improve the treatment of thoracic malignancies through enhanced tumor targeting, controlled drug delivery, and therapeutic monitoring. This article reviews nanoplatforms, their unique properties, and the potential for clinical application in thoracic surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Real-time tracking control of electro-hydraulic force servo systems using offline feedback control and adaptive control.

    Science.gov (United States)

    Shen, Gang; Zhu, Zhencai; Zhao, Jinsong; Zhu, Weidong; Tang, Yu; Li, Xiang

    2017-03-01

    This paper focuses on an application of an electro-hydraulic force tracking controller combined with an offline designed feedback controller (ODFC) and an online adaptive compensator in order to improve force tracking performance of an electro-hydraulic force servo system (EHFS). A proportional-integral controller has been employed and a parameter-based force closed-loop transfer function of the EHFS is identified by a continuous system identification algorithm. By taking the identified system model as a nominal plant model, an H ∞ offline design method is employed to establish an optimized feedback controller with consideration of the performance, control efforts, and robustness of the EHFS. In order to overcome the disadvantage of the offline designed controller and cope with the varying dynamics of the EHFS, an online adaptive compensator with a normalized least-mean-square algorithm is cascaded to the force closed-loop system of the EHFS compensated by the ODFC. Some comparative experiments are carried out on a real-time EHFS using an xPC rapid prototype technology, and the proposed controller yields a better force tracking performance improvement. Copyright © 2016. Published by Elsevier Ltd.

  14. Online dose reconstruction for tracked volumetric arc therapy: Real-time implementation and offline quality assurance for prostate SBRT.

    Science.gov (United States)

    Kamerling, Cornelis Ph; Fast, Martin F; Ziegenhein, Peter; Menten, Martin J; Nill, Simeon; Oelfke, Uwe

    2017-11-01

    Firstly, this study provides a real-time implementation of online dose reconstruction for tracked volumetric arc therapy (VMAT). Secondly, this study describes a novel offline quality assurance tool, based on commercial dose calculation algorithms. Online dose reconstruction for VMAT is a computationally challenging task in terms of computer memory usage and calculation speed. To potentially reduce the amount of memory used, we analyzed the impact of beam angle sampling for dose calculation on the accuracy of the dose distribution. To establish the performance of the method, we planned two single-arc VMAT prostate stereotactic body radiation therapy cases for delivery with dynamic MLC tracking. For quality assurance of our online dose reconstruction method we have also developed a stand-alone offline dose reconstruction tool, which utilizes the RayStation treatment planning system to calculate dose. For the online reconstructed dose distributions of the tracked deliveries, we could establish strong resemblance for 72 and 36 beam co-planar equidistant beam samples with less than 1.2% deviation for the assessed dose-volume indicators (clinical target volume D98 and D2, and rectum D2). We could achieve average runtimes of 28-31 ms per reported MLC aperture for both dose computation and accumulation, meeting our real-time requirement. To cross-validate the offline tool, we have compared the planned dose to the offline reconstructed dose for static deliveries and found excellent agreement (3%/3 mm global gamma passing rates of 99.8%-100%). Being able to reconstruct dose during delivery enables online quality assurance and online replanning strategies for VMAT. The offline quality assurance tool provides the means to validate novel online dose reconstruction applications using a commercial dose calculation engine. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  15. Using Real-time Event Tracking Sensitivity Analysis to Overcome Sensor Measurement Uncertainties of Geo-Information Management in Drilling Disasters

    Science.gov (United States)

    Tavakoli, S.; Poslad, S.; Fruhwirth, R.; Winter, M.

    2012-04-01

    This paper introduces an application of a novel EventTracker platform for instantaneous Sensitivity Analysis (SA) of large scale real-time geo-information. Earth disaster management systems demand high quality information to aid a quick and timely response to their evolving environments. The idea behind the proposed EventTracker platform is the assumption that modern information management systems are able to capture data in real-time and have the technological flexibility to adjust their services to work with specific sources of data/information. However, to assure this adaptation in real time, the online data should be collected, interpreted, and translated into corrective actions in a concise and timely manner. This can hardly be handled by existing sensitivity analysis methods because they rely on historical data and lazy processing algorithms. In event-driven systems, the effect of system inputs on its state is of value, as events could cause this state to change. This 'event triggering' situation underpins the logic of the proposed approach. Event tracking sensitivity analysis method describes the system variables and states as a collection of events. The higher the occurrence of an input variable during the trigger of event, the greater its potential impact will be on the final analysis of the system state. Experiments were designed to compare the proposed event tracking sensitivity analysis with existing Entropy-based sensitivity analysis methods. The results have shown a 10% improvement in a computational efficiency with no compromise for accuracy. It has also shown that the computational time to perform the sensitivity analysis is 0.5% of the time required compared to using the Entropy-based method. The proposed method has been applied to real world data in the context of preventing emerging crises at drilling rigs. One of the major purposes of such rigs is to drill boreholes to explore oil or gas reservoirs with the final scope of recovering the content

  16. The Slow Developmental Time Course of Real-Time Spoken Word Recognition

    Science.gov (United States)

    Rigler, Hannah; Farris-Trimble, Ashley; Greiner, Lea; Walker, Jessica; Tomblin, J. Bruce; McMurray, Bob

    2015-01-01

    This study investigated the developmental time course of spoken word recognition in older children using eye tracking to assess how the real-time processing dynamics of word recognition change over development. We found that 9-year-olds were slower to activate the target words and showed more early competition from competitor words than…

  17. Quantitative (real-time) PCR

    International Nuclear Information System (INIS)

    Denman, S.E.; McSweeney, C.S.

    2005-01-01

    Many nucleic acid-based probe and PCR assays have been developed for the detection tracking of specific microbes within the rumen ecosystem. Conventional PCR assays detect PCR products at the end stage of each PCR reaction, where exponential amplification is no longer being achieved. This approach can result in different end product (amplicon) quantities being generated. In contrast, using quantitative, or real-time PCR, quantification of the amplicon is performed not at the end of the reaction, but rather during exponential amplification, where theoretically each cycle will result in a doubling of product being created. For real-time PCR, the cycle at which fluorescence is deemed to be detectable above the background during the exponential phase is termed the cycle threshold (Ct). The Ct values obtained are then used for quantitation, which will be discussed later

  18. Monitoring, Tracking, and Recording Pancreas-Related Health Issues in Real Time

    Science.gov (United States)

    Chrysikos, Theofilos; Zisi, Iliana; Katsini, Christina; Raptis, George E.; Kotsopoulos, Stavros

    2017-11-01

    The monitoring of pancreas-related health issues in real-time and outside the medical room is a challenge in the wide e-health domain. This paper introduces WHEAMO, a novel e-health platform which employs medical implants (biosensors), which function as antennas, planted in the pancreas. WHEAMO uses wireless in-body propagation to track, monitor, and record critical parameters, such as glucose. The signal reaches the skin and then it is propagated in an indoor environment (e.g., medical room) over to a terminal equipped with adaptive, user-configurable, and intelligent mechanisms which provide personalized recommendations to varying WHEAMO users (e.g., medical personnel, health care workers, patients). The personalized nature of the provided recommendations is based on patients unique characteristics via a sophisticated knowledge-base. The fundamentals of in-body and on-body wireless propagation and channel characterization have been studied in a series of published works. Researchers have tested both electric-field (dipole) and magnetic-field (patch, loop) antennas. Another important aspect concerns the frequency band in which the signal propagation will occur. Among the frequencies that have gathered scientific and academic interest are the Medical Implant Communication Service (MICS) band at 402-405 MHz, the 900 MHz channel and the industrial, scientific and medical (ISM) radio band at 2.45 GHz.

  19. TRAX - Real-World Tracking of Moving Objects

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Pakalnis, Stardas

    2007-01-01

    accuracy. This paper presents the TRAX tracking system that supports several techniques capable of tracking the current positions of moving objects with guaranteed accuracies at low update and communication costs in real-world settings. The techniques are readily relevant for practical applications......, but they also have implications for continued research. The tracking techniques offer a realistic setting for existing query processing techniques that assume that it is possible to always know the exact positions of moving objects. The techniques enable studies of trade-offs between querying and update...

  20. U27 : real-time commercial vehicle safety & security monitoring final report.

    Science.gov (United States)

    2012-12-01

    Accurate real-time vehicle tracking has a wide range of applications including fleet management, drug/speed/law enforcement, transportation planning, traffic safety, air quality, electronic tolling, and national security. While many alternative track...

  1. Optimal transcostal high-intensity focused ultrasound with combined real-time 3D movement tracking and correction

    International Nuclear Information System (INIS)

    Marquet, F; Aubry, J F; Pernot, M; Fink, M; Tanter, M

    2011-01-01

    Recent studies have demonstrated the feasibility of transcostal high intensity focused ultrasound (HIFU) treatment in liver. However, two factors limit thermal necrosis of the liver through the ribs: the energy deposition at focus is decreased by the respiratory movement of the liver and the energy deposition on the skin is increased by the presence of highly absorbing bone structures. Ex vivo ablations were conducted to validate the feasibility of a transcostal real-time 3D movement tracking and correction mode. Experiments were conducted through a chest phantom made of three human ribs immersed in water and were placed in front of a 300 element array working at 1 MHz. A binarized apodization law introduced recently in order to spare the rib cage during treatment has been extended here with real-time electronic steering of the beam. Thermal simulations have been conducted to determine the steering limits. In vivo 3D-movement detection was performed on pigs using an ultrasonic sequence. The maximum error on the transcostal motion detection was measured to be 0.09 ± 0.097 mm on the anterior–posterior axis. Finally, a complete sequence was developed combining real-time 3D transcostal movement correction and spiral trajectory of the HIFU beam, allowing the system to treat larger areas with optimized efficiency. Lesions as large as 1 cm in diameter have been produced at focus in excised liver, whereas no necroses could be obtained with the same emitted power without correcting the movement of the tissue sample.

  2. Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy.

    Science.gov (United States)

    Li, Ruijiang; Jia, Xun; Lewis, John H; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Jiang, Steve B

    2010-06-01

    To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Given a set of volumetric images of a patient at N breathing phases as the training data, deformable image registration was performed between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, new DVFs can be generated, which, when applied on the reference image, lead to new volumetric images. A volumetric image can then be reconstructed from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. The algorithm was implemented on graphics processing units (GPUs) to achieve real-time efficiency. The training data were generated using a realistic and dynamic mathematical phantom with ten breathing phases. The testing data were 360 cone beam projections corresponding to one gantry rotation, simulated using the same phantom with a 50% increase in breathing amplitude. The average relative image intensity error of the reconstructed volumetric images is 6.9% +/- 2.4%. The average 3D tumor localization error is 0.8 +/- 0.5 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for reconstructing a volumetric image from each projection is 0.24 s (range: 0.17 and 0.35 s). The authors have shown the feasibility of reconstructing volumetric images and localizing tumor positions in 3D in near real-time from a single x-ray image.

  3. TH-AB-202-10: Quantifying the Accuracy and Precision of Six Degree-Of-Freedom Motion Estimation for Use in Real-Time Tumor Motion Monitoring During Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J [The University of Sydney, Sydney, New South Wales (Australia); Nguyen, D; O’Brien, R; Keall, P [University of Sydney, Sydney, NSW (Australia); Huang, C [Sydney Medical School, Camperdown (Australia); Caillet, V [The University of Sydney, Sydney, NSW (Australia); Poulsen, P [Aarhus University Hospital, Aarhus (Denmark); Booth, J [Royal North Shore Hospital, Sydney (Australia)

    2016-06-15

    Purpose: Kilovoltage intrafraction monitoring (KIM) scheme has been successfully used to simultaneously monitor 3D tumor motion during radiotherapy. Recently, an iterative closest point (ICP) algorithm was implemented in KIM to also measure rotations about three axes, enabling real-time tracking of tumor motion in six degrees-of-freedom (DoF). This study aims to evaluate the accuracy of the six DoF motion estimates of KIM by comparing it with the corresponding motion (i) measured by the Calypso; and (ii) derived from kV/MV triangulation. Methods: (i) Various motions (static and dynamic) were applied to a CIRS phantom with three embedded electromagnetic transponders (Calypso Medical) using a 5D motion platform (HexaMotion) and a rotating treatment couch while both KIM and Calypso were used to concurrently track the phantom motion in six DoF. (ii) KIM was also used to retrospectively estimate six DoF motion from continuous sets of kV projections of a prostate, implanted with three gold fiducial markers (2 patients with 80 fractions in total), acquired during the treatment. Corresponding motion was obtained from kV/MV triangulation using a closed form least squares method based on three markers’ positions. Only the frames where all three markers were present were used in the analysis. The mean differences between the corresponding motion estimates were calculated for each DoF. Results: Experimental results showed that the mean of absolute differences in six DoF phantom motion measured by Calypso and KIM were within 1.1° and 0.7 mm. kV/MV triangulation derived six DoF prostate tumor better agreed with KIM estimated motion with the mean (s.d.) difference of up to 0.2° (1.36°) and 0.2 (0.25) mm for rotation and translation, respectively. Conclusion: These results suggest that KIM can provide an accurate six DoF intrafraction tumor during radiotherapy.

  4. Track recognition in the central drift chamber of the SAPHIR detector at ELSA and first reconstruction of real tracks

    International Nuclear Information System (INIS)

    Korn, P.

    1991-02-01

    The FORTRAN program for pattern recognition in the central drift chamber of SAPHIR has been modified in order to find tracks with more than one missing wire signal and has been optimized in resolving the left/right ambiguities. The second part of this report deals with the reconstruction of some real tracks (γ → e + e - ), which were measured with SAPHIR. The efficiency of the central drift chamber and the space-to-drift time-relation are discussed. (orig.)

  5. Overexpression of interleukin-1β and interferon-γ in type I thoracic aortic dissections and ascending thoracic aortic aneurysms: possible correlation with matrix metalloproteinase-9 expression and apoptosis of aortic media cells.

    Science.gov (United States)

    Zhang, Lei; Liao, Ming-fang; Tian, Lei; Zou, Si-li; Lu, Qing-sheng; Bao, Jun-min; Pei, Yi-fei; Jing, Zai-ping

    2011-07-01

    To examine the expression of interleukin-1β and interferon-γ and their possible roles in aortic dissections and aneurysms. Aortic specimens were obtained from patients with type I thoracic aortic dissection, ascending thoracic aortic aneurysms, and control organ donors. The expression of interleukin-1β, interferon-γ, matrix metalloproteinase-9, and signal transduction factors phospho-p38 and phosphorylated c-jun N-terminal kinase (phospho-JNK) were detected by real time reverse transcription-polymerase chain reaction (real time RT-PCR), Western blot, and immunohistochemistry, respectively. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining was performed to detect apoptosis of media cells. The correlation of these factors and apoptosis was also studied. Apoptosis in the media of thoracic aortic dissection and in ascending thoracic aortic aneurysms was dramatically higher than in the control group. The expression of interleukin-1β gradually increased from the control group, thoracic aortic dissection to ascending thoracic aortic aneurysms (p matrix metalloproteinase-9 was significantly increased in the media of thoracic aortic dissection and ascending thoracic aortic aneurysms compared with the control group (p correlations between interleukin-1β versus matrix metalloproteinase-9, interleukin-1β versus phospho-p38 in thoracic aortic dissection (p matrix metalloproteinase-9, interferon-γ versus phospho-JNK, interferon-γ versus apoptosis, and interleukin-1β versus apoptosis in ascending thoracic aortic aneurysms (p = 0.02, 0.02, p matrix metalloproteinase-9 and the apoptosis of media cells in humans. Copyright © 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  6. Automated real time peg and tool detection for the FLS trainer box.

    Science.gov (United States)

    Nemani, Arun; Sankaranarayanan, Ganesh

    2012-01-01

    This study proposes a method that effectively tracks trocar tool and peg positions in real time to allow real time assessment of the peg transfer task of the Fundamentals of Laparoscopic Surgery (FLS). By utilizing custom code along with OpenCV libraries, tool and peg positions can be accurately tracked without altering the original setup conditions of the FLS trainer box. This is achieved via a series of image filtration sequences, thresholding functions, and Haar training methods.

  7. Clinical Accuracy of the Respiratory Tumor Tracking System of the CyberKnife: Assessment by Analysis of Log Files

    International Nuclear Information System (INIS)

    Hoogeman, Mischa; Prevost, Jean-Briac; Nuyttens, Joost; Poell, Johan; Levendag, Peter; Heijmen, Ben

    2009-01-01

    Purpose: To quantify the clinical accuracy of the respiratory motion tracking system of the CyberKnife treatment device. Methods and Materials: Data in log files of 44 lung cancer patients treated with tumor tracking were analyzed. Errors in the correlation model, which relates the internal target motion with the external breathing motion, were quantified. The correlation model error was compared with the geometric error obtained when no respiratory tracking was used. Errors in the prediction method were calculated by subtracting the predicted position from the actual measured position after 192.5 ms (the time lag to prediction in our current system). The prediction error was also measured for a time lag of 115 ms and a new prediction method. Results: The mean correlation model errors were less than 0.3 mm. Standard deviations describing intrafraction variations around the whole-fraction mean error were 0.2 to 1.9 mm for cranio-caudal, 0.1 to 1.9 mm for left-right, and 0.2 to 2.5 mm for anterior-posterior directions. Without the use of respiratory tracking, these variations would have been 0.2 to 8.1 mm, 0.2 to 5.5 mm, and 0.2 to 4.4 mm. The overall mean prediction error was small (0.0 ± 0.0 mm) for all directions. The intrafraction standard deviation ranged from 0.0 to 2.9 mm for a time delay of 192.5 ms but was halved by using the new prediction method. Conclusions: Analyses of the log files of real clinical cases have shown that the geometric error caused by respiratory motion is substantially reduced by the application of respiratory motion tracking.

  8. Cooperative multisensor system for real-time face detection and tracking in uncontrolled conditions

    Science.gov (United States)

    Marchesotti, Luca; Piva, Stefano; Turolla, Andrea; Minetti, Deborah; Regazzoni, Carlo S.

    2005-03-01

    The presented work describes an innovative architecture for multi-sensor distributed video surveillance applications. The aim of the system is to track moving objects in outdoor environments with a cooperative strategy exploiting two video cameras. The system also exhibits the capacity of focusing its attention on the faces of detected pedestrians collecting snapshot frames of face images, by segmenting and tracking them over time at different resolution. The system is designed to employ two video cameras in a cooperative client/server structure: the first camera monitors the entire area of interest and detects the moving objects using change detection techniques. The detected objects are tracked over time and their position is indicated on a map representing the monitored area. The objects" coordinates are sent to the server sensor in order to point its zooming optics towards the moving object. The second camera tracks the objects at high resolution. As well as the client camera, this sensor is calibrated and the position of the object detected on the image plane reference system is translated in its coordinates referred to the same area map. In the map common reference system, data fusion techniques are applied to achieve a more precise and robust estimation of the objects" track and to perform face detection and tracking. The work novelties and strength reside in the cooperative multi-sensor approach, in the high resolution long distance tracking and in the automatic collection of biometric data such as a person face clip for recognition purposes.

  9. Real-time quantitative PCR of microdissected paraffin-embedded breast carcinoma

    DEFF Research Database (Denmark)

    Gjerdrum, Lise Mette; Sorensen, Boe Sandahl; Kjeldsen, Eigil

    2004-01-01

    We studied the feasibility of using real-time quantitative PCR to determine HER-2 DNA amplification and mRNA expression in microdissected formalin-fixed, paraffin-embedded breast tumors and compared this with standard immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) methods...... tumors as being amplified. Interestingly, all these scored 2+ with the HercepTest, but were negative using FISH. We believe that real-time quantitative PCR analysis of HER-2 DNA amplification following microdissection represents a useful supplementary or perhaps even an alternative technique...

  10. Real-Time Eye Detection and Tracking under Various Light Conditions

    Directory of Open Access Journals (Sweden)

    Feng Jiao

    2007-10-01

    Full Text Available This paper describes a real-time online prototype automobile and truck driver-fatigue monitor. It uses remotely located charge-coupled-device cameras equipped with active infrared illuminators to acquire video images of the driver. Various visual cues that typically characterize the level of alertness of a person are extracted in real time and systematically combined to infer the fatigue level of the driver. The visual cues employed characterize eyelid movement, gaze movement, head movement, and facial expression. A probabilistic model is developed to model human fatigue and to predict fatigue based on the visual cues obtained. The simultaneous use of multiple visual cues and their systematic combination yields a much more robust and accurate fatigue characterization than using a single visual cue. This system was validated under real-life fatigue conditions with human subjects of different ethnic backgrounds, genders, and ages; with/without glasses; and under different illumination conditions. It was found to be reasonably robust, reliable, and accurate in fatigue characterization.

  11. A real-time tracking system for monitoring shipments of hazardous materials

    Science.gov (United States)

    Womble, Phillip; Paschal, Jon; Hopper, Lindsay; Pinson, Dudley; Schultz, Frederick; Whitfield Humphrey, Melinda

    2007-04-01

    Due to the ever increasing use of radioactive materials in day to day living from the treatment of cancer patients and irradiation of food for preservation to industrial radiography to check for defects in the welding of pipelines and buildings there is a growing concern over the tracking and monitoring of these sources in transit prior to use as well as the waste produced by such use. The prevention of lost sealed sources is important in reducing the environmental and health risk posed by direct exposure, co-mingling in the metal recycling stream, use in contaminated consumer products, and use in terrorist activities. Northwest Nuclear, LLC (NWN) and the Applied Physics Institute (API) at Western Kentucky University have developed a tracking technology using active radio frequency identification (RFID) tags. This system provides location information by measuring the time of arrival of packets from a set of RFID tags to a set of location receivers. The system can track and graphically display the location on maps, drawings or photographs of tagged items on any 802.11- compliant device (PDAs, laptops, computers, WiFi telephones) situated both outside and inside structures. This location information would be vital for tracking the location of high level radiological sources while in transit. RFID technology would reduce the number of lost sources by tracking them from origination to destination. Special tags which indicate tampering or sudden movement have also been developed.

  12. SU-E-T-183: Clinical Quality Assurance Workflow for Dynamic Tumor Tracking Radiation Dose Delivery

    International Nuclear Information System (INIS)

    Mamalui-Hunter, M; Su, Z; Li, Z

    2015-01-01

    Purpose: One of the most important aspects of implementation of new treatment modalities is an ‘end-to-end’ verification of the treatment process. Radiation treatment based on dynamic tracking of a tumor is highly patient-specific, therefore, special attention should be paid to quality assurance of the treatment delivery. Our goal was to design the clinical workflow that ensures accurate delivery of the planned dose using the Dynamic Target Tracking option of VeroTM (BrainLab,MHI) linac. Methods: A patient simulation is designed to include a pre-treatment session to verify whether the system can reliably track the motion of the implanted marker and build the 4D model of the target motion. The external surrogate and target motion patterns are recorded in the ExactracTM log files. In this work, a spectrum of custom marker and external surrogate motion trajectories closely resembling the patient specific motion patterns was used. 1mm thick/11mm long VisicoilTM marker was placed 15 and 20mm from the center of the spherical tissue equivalent target (centroid to centroid distance) in the 4D motion phantom (CIRSTM). 3D conformal (3 mm block margin) SBRT plans were delivered to 2 moving targets in the phantom: 1) 20mm diameter target that allows ion chamber dose measurement and 2) 25mm target that allows using film to measure CAX dose (GafchromicTM EBT3 used). The measured dose was compared to the iPlanTM TPS results using MonteCarlo algorithm (1% variance, Dose-to-water). Results: On average, film shows 98.9% pass using gamma criterion for 2% and 2mm DTA, 94.3% match for 2% and 1 mm DTA, 98% pass for 1% and 2 mm DTA however only 88% points passing for 1% and 1 mm DTA. Ion chamber measurements agreed with the calculation within 1.5%. Conclusion: The clinical QA workflow was designed for SBRT delivery using real-time tumor tracking on VeroTM linac

  13. Energy Tracking in Classrooms - A Real Time Experiment with Grade 5 Students

    Science.gov (United States)

    Lam, H. M.; Ho, F.

    2015-12-01

    ISF Academy, a K-G12 school in Hong Kong with over 1500 students and currently spanning 3 buildings, is retrofitting the school with an energy tracking system in three phases. The first phase during the fall of 2015 will include retrofitting eight Grade 5 classrooms. This new program will show the daily energy usage data from these classrooms. The Grade 5 students receive feedback on their energy use in real time as they compete over two months in their homeroom classes to lower their electrical use, and subsequently their carbon footprint. This competition style initiative will teach the 180 Grade 5 students about their energy usage in a fun and informative manner. ISF Academy has over 400 air-conditioners and we have already determined that the air conditioners are the largest single use of energy in the school. The energy tracking system installed and maintained by from Global Design Corporation utilizes uniquely identified current detectors attached to circuit breakers, to monitor electrical use of individual circuits. These detectors will also monitor the energy used for classroom lighting, fans and plugs, as well as the air conditioners. The system has been installed and the Grade 5 classrooms averaged between 40 kWh and 120 kWh of usage in May 2015. This data will be used as the baseline for the competition. Further analysis can also be done with the data, such as calculating the carbon emissions reduction throughout the school year, providing possible class learning activities and also aiding in future energy use and carbon footprint predictions. The data collected will help refine phase 2 and 3 of the installation, expanding the system to more buildings and also giving insight to the rollout of the system to the whole school when the systems are fully in place.

  14. Real time water chemistry monitoring and diagnostics

    International Nuclear Information System (INIS)

    Gaudreau, T.M.; Choi, S.S.

    2002-01-01

    EPRI has produced a real time water chemistry monitoring and diagnostic system. This system is called SMART ChemWorks and is based on the EPRI ChemWorks codes. System models, chemistry parameter relationships and diagnostic approaches from these codes are integrated with real time data collection, an intelligence engine and Internet technologies to allow for automated analysis of system chemistry. Significant data management capabilities are also included which allow the user to evaluate data and create automated reporting. Additional features have been added to the system in recent years including tracking and evaluation of primary chemistry as well as the calculation and tracking of primary to secondary leakage in PWRs. This system performs virtual sensing, identifies normal and upset conditions, and evaluates the consistency of on-line monitor and grab sample readings. The system also makes use of virtual fingerprinting to identify the cause of any chemistry upsets. This technology employs plant-specific data and models to determine the chemical state of the steam cycle. (authors)

  15. Cell-cycle-dependent drug-resistant quiescent cancer cells induce tumor angiogenesis after chemotherapy as visualized by real-time FUCCI imaging

    Science.gov (United States)

    Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M.

    2017-01-01

    ABSTRACT We previously demonstrated that quiescent cancer cells in a tumor are resistant to conventional chemotherapy as visualized with a fluorescence ubiquitination cell cycle indicator (FUCCI). We also showed that proliferating cancer cells exist in a tumor only near nascent vessels or on the tumor surface as visualized with FUCCI and green fluorescent protein (GFP)-expressing tumor vessels. In the present study, we show the relationship between cell-cycle phase and chemotherapy-induced tumor angiogenesis using in vivo FUCCI real-time imaging of the cell cycle and nestin-driven GFP to detect nascent blood vessels. We observed that chemotherapy-treated tumors, consisting of mostly of quiescent cancer cells after treatment, had much more and deeper tumor vessels than untreated tumors. These newly-vascularized cancer cells regrew rapidly after chemotherapy. In contrast, formerly quiescent cancer cells decoyed to S/G2 phase by a telomerase-dependent adenovirus did not induce tumor angiogenesis. The present results further demonstrate the importance of the cancer-cell position in the cell cycle in order that chemotherapy be effective and not have the opposite effect of stimulating tumor angiogenesis and progression. PMID:27715464

  16. An advanced real time energy management system for microgrids

    International Nuclear Information System (INIS)

    Elsied, Moataz; Oukaour, Amrane; Youssef, Tarek; Gualous, Hamid; Mohammed, Osama

    2016-01-01

    This paper presents an advanced Real-Time Energy Management System (RT-EMS) for Microgrid (MG) systems. The proposed strategy of RT-EMS capitalizes on the power of Genetic Algorithms (GAs) to minimize the energy cost and carbon dioxide emissions while maximizing the power of the available renewable energy resources. MATLAB-dSPACE Real-Time Interface Libraries (MLIB/MTRACE) are used as new tools to run the optimization code in Real-Time Operation (RTO). The communication system is developed based on ZigBee communication network which is designed to work in harsh radio environment where the control system is developed based on Advanced Lead-Lag Compensator (ALLC) which its parameters are tuned online to achieve fast convergence and good tracking response. The proposed RT-EMS along with its control and communication systems is experimentally tested to validate the results obtained from the optimization algorithm in a real MG testbed. The simulation and experimental results using real-world data highlight the effectiveness of the proposed RT-EMS for MGs applications. - Highlights: • Real-time energy management system of a typical MG is developed, and analyzed. • RT-EMS considered the nonlinear cost function and emission constraints. • MLIB/MTRACE libraries in dSPACE are used as new tools to run the optimization code. • The communication system is developed based on a Zigbee communication network. • Control system parameters are tuned online to achieve good tracking response.

  17. Real-Time Head Pose Estimation on Mobile Platforms

    Directory of Open Access Journals (Sweden)

    Jianfeng Ren

    2010-06-01

    Full Text Available Many computer vision applications such as augmented reality require head pose estimation. As far as the real-time implementation of head pose estimation on relatively resource limited mobile platforms is concerned, it is required to satisfy real-time constraints while maintaining reasonable head pose estimation accuracy. The introduced head pose estimation approach in this paper is an attempt to meet this objective. The approach consists of the following components: Viola-Jones face detection, color-based face tracking using an online calibration procedure, and head pose estimation using Hu moment features and Fisher linear discriminant. Experimental results running on an actual mobile device are reported exhibiting both the real- time and accuracy aspects of the developed approach.

  18. Validation of a method for real time foot position and orientation tracking with Microsoft Kinect technology for use in virtual reality and treadmill based gait training programs.

    Science.gov (United States)

    Paolini, Gabriele; Peruzzi, Agnese; Mirelman, Anat; Cereatti, Andrea; Gaukrodger, Stephen; Hausdorff, Jeffrey M; Della Croce, Ugo

    2014-09-01

    The use of virtual reality for the provision of motor-cognitive gait training has been shown to be effective for a variety of patient populations. The interaction between the user and the virtual environment is achieved by tracking the motion of the body parts and replicating it in the virtual environment in real time. In this paper, we present the validation of a novel method for tracking foot position and orientation in real time, based on the Microsoft Kinect technology, to be used for gait training combined with virtual reality. The validation of the motion tracking method was performed by comparing the tracking performance of the new system against a stereo-photogrammetric system used as gold standard. Foot position errors were in the order of a few millimeters (average RMSD from 4.9 to 12.1 mm in the medio-lateral and vertical directions, from 19.4 to 26.5 mm in the anterior-posterior direction); the foot orientation errors were also small (average %RMSD from 5.6% to 8.8% in the medio-lateral and vertical directions, from 15.5% to 18.6% in the anterior-posterior direction). The results suggest that the proposed method can be effectively used to track feet motion in virtual reality and treadmill-based gait training programs.

  19. TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging

    International Nuclear Information System (INIS)

    Redler, G; Cifter, G; Templeton, A; Lee, C; Bernard, D; Liao, Y; Zhen, H; Turian, J; Chu, J

    2016-01-01

    patient images demonstrate the clinical utility of scatter imaging for real-time tumor tracking during lung SBRT.

  20. TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Redler, G; Cifter, G; Templeton, A; Lee, C; Bernard, D; Liao, Y; Zhen, H; Turian, J; Chu, J [Rush University Medical Center, Chicago, IL (United States)

    2016-06-15

    patient images demonstrate the clinical utility of scatter imaging for real-time tumor tracking during lung SBRT.

  1. A real-time dashboard for managing pathology processes

    Directory of Open Access Journals (Sweden)

    Fawaz Halwani

    2016-01-01

    Full Text Available Context: The Eastern Ontario Regional Laboratory Association (EORLA is a newly established association of all the laboratory and pathology departments of Eastern Ontario that currently includes facilities from eight hospitals. All surgical specimens for EORLA are processed in one central location, the Department of Pathology and Laboratory Medicine (DPLM at The Ottawa Hospital (TOH, where the rapid growth and influx of surgical and cytology specimens has created many challenges in ensuring the timely processing of cases and reports. Although the entire process is maintained and tracked in a clinical information system, this system lacks pre-emptive warnings that can help management address issues as they arise. Aims: Dashboard technology provides automated, real-time visual clues that could be used to alert management when a case or specimen is not being processed within predefined time frames. We describe the development of a dashboard helping pathology clinical management to make informed decisions on specimen allocation and tracking. Methods: The dashboard was designed and developed in two phases, following a prototyping approach. The first prototype of the dashboard helped monitor and manage pathology processes at the DPLM. Results: The use of this dashboard helped to uncover operational inefficiencies and contributed to an improvement of turn-around time within The Ottawa Hospital′s DPML. It also allowed the discovery of additional requirements, leading to a second prototype that provides finer-grained, real-time information about individual cases and specimens. Conclusion: We successfully developed a dashboard that enables managers to address delays and bottlenecks in specimen allocation and tracking. This support ensures that pathology reports are provided within time frame standards required for high-quality patient care. Given the importance of rapid diagnostics for a number of diseases, the use of real-time dashboards within

  2. A real-time dashboard for managing pathology processes.

    Science.gov (United States)

    Halwani, Fawaz; Li, Wei Chen; Banerjee, Diponkar; Lessard, Lysanne; Amyot, Daniel; Michalowski, Wojtek; Giffen, Randy

    2016-01-01

    The Eastern Ontario Regional Laboratory Association (EORLA) is a newly established association of all the laboratory and pathology departments of Eastern Ontario that currently includes facilities from eight hospitals. All surgical specimens for EORLA are processed in one central location, the Department of Pathology and Laboratory Medicine (DPLM) at The Ottawa Hospital (TOH), where the rapid growth and influx of surgical and cytology specimens has created many challenges in ensuring the timely processing of cases and reports. Although the entire process is maintained and tracked in a clinical information system, this system lacks pre-emptive warnings that can help management address issues as they arise. Dashboard technology provides automated, real-time visual clues that could be used to alert management when a case or specimen is not being processed within predefined time frames. We describe the development of a dashboard helping pathology clinical management to make informed decisions on specimen allocation and tracking. The dashboard was designed and developed in two phases, following a prototyping approach. The first prototype of the dashboard helped monitor and manage pathology processes at the DPLM. The use of this dashboard helped to uncover operational inefficiencies and contributed to an improvement of turn-around time within The Ottawa Hospital's DPML. It also allowed the discovery of additional requirements, leading to a second prototype that provides finer-grained, real-time information about individual cases and specimens. We successfully developed a dashboard that enables managers to address delays and bottlenecks in specimen allocation and tracking. This support ensures that pathology reports are provided within time frame standards required for high-quality patient care. Given the importance of rapid diagnostics for a number of diseases, the use of real-time dashboards within pathology departments could contribute to improving the quality of

  3. Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes.

    Science.gov (United States)

    Kwon, M-W; Kim, S-C; Yoon, S-E; Ho, Y-S; Kim, E-S

    2015-02-09

    A new object tracking mask-based novel-look-up-table (OTM-NLUT) method is proposed and implemented on graphics-processing-units (GPUs) for real-time generation of holographic videos of three-dimensional (3-D) scenes. Since the proposed method is designed to be matched with software and memory structures of the GPU, the number of compute-unified-device-architecture (CUDA) kernel function calls and the computer-generated hologram (CGH) buffer size of the proposed method have been significantly reduced. It therefore results in a great increase of the computational speed of the proposed method and enables real-time generation of CGH patterns of 3-D scenes. Experimental results show that the proposed method can generate 31.1 frames of Fresnel CGH patterns with 1,920 × 1,080 pixels per second, on average, for three test 3-D video scenarios with 12,666 object points on three GPU boards of NVIDIA GTX TITAN, and confirm the feasibility of the proposed method in the practical application of electro-holographic 3-D displays.

  4. TH-E-17A-10: Markerless Lung Tumor Tracking Based On Beams Eye View EPID Images

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Kearney, V; Liu, H; Jiang, L; Foster, R; Mao, W [UT Southwestern Medical Center, Dallas, Texas (United States); Rozario, T; Bereg, S [University of Texas at Dallas, Richardson, Texas (United States); Klash, S [Premier Cancer Centers, Dallas, TX (United States)

    2014-06-15

    Purpose: Dynamic tumor tracking or motion compensation techniques have proposed to modify beam delivery following lung tumor motion on the flight. Conventional treatment plan QA could be performed in advance since every delivery may be different. Markerless lung tumor tracking using beams eye view EPID images provides a best treatment evaluation mechanism. The purpose of this study is to improve the accuracy of the online markerless lung tumor motion tracking method. Methods: The lung tumor could be located on every frame of MV images during radiation therapy treatment by comparing with corresponding digitally reconstructed radiograph (DRR). A kV-MV CT corresponding curve is applied on planning kV CT to generate MV CT images for patients in order to enhance the similarity between DRRs and MV treatment images. This kV-MV CT corresponding curve was obtained by scanning a same CT electron density phantom by a kV CT scanner and MV scanner (Tomotherapy) or MV CBCT. Two sets of MV DRRs were then generated for tumor and anatomy without tumor as the references to tracking the tumor on beams eye view EPID images. Results: Phantom studies were performed on a Varian TrueBeam linac. MV treatment images were acquired continuously during each treatment beam delivery at 12 gantry angles by iTools. Markerless tumor tracking was applied with DRRs generated from simulated MVCT. Tumors were tracked on every frame of images and compared with expected positions based on programed phantom motion. It was found that the average tracking error were 2.3 mm. Conclusion: This algorithm is capable of detecting lung tumors at complicated environment without implanting markers. It should be noted that the CT data has a slice thickness of 3 mm. This shows the statistical accuracy is better than the spatial accuracy. This project has been supported by a Varian Research Grant.

  5. Real-Time Tracking of the Extreme Rainfall of Hurricanes Harvey, Irma, and Maria using UCI CHRS's iRain System

    Science.gov (United States)

    Shearer, E. J.; Nguyen, P.; Ombadi, M.; Palacios, T.; Huynh, P.; Furman, D.; Tran, H.; Braithwaite, D.; Hsu, K. L.; Sorooshian, S.; Logan, W. S.

    2017-12-01

    During the 2017 hurricane season, three major hurricanes-Harvey, Irma, and Maria-devastated the Atlantic coast of the US and the Caribbean Islands. Harvey set the record for the rainiest storm in continental US history, Irma was the longest-lived powerful hurricane ever observed, and Maria was the costliest storm in Puerto Rican history. The recorded maximum precipitation totals for these storms were 65, 16, and 20 inches respectively. These events provided the Center for Hydrometeorology and Remote Sensing (CHRS) an opportunity to test its global real-time satellite precipitation observation system, iRain, for extreme storm events. The iRain system has been under development through a collaboration between CHRS at the University of California, Irvine (UCI) and UNESCO's International Hydrological Program (IHP). iRain provides near real-time high resolution (0.04°, approx. 4km) global (60°N - 60°S) satellite precipitation data estimated by the PERSIANN-Cloud Classification System (PERSIANN-CCS) algorithm developed by the scientists at CHRS. The user-interactive and web-accessible iRain system allows users to visualize and download real-time global satellite precipitation estimates and track the development and path of the current 50 largest storms globally from data generated by the PERSIANN-CCS algorithm. iRain continuously proves to be an effective tool for measuring real-time precipitation amounts of extreme storms-especially in locations that do not have extensive rain gauge or radar coverage. Such areas include large portions of the world's oceans and over continents such as Africa and Asia. CHRS also created a mobile app version of the system named "iRain UCI", available for iOS and Android devices. During these storms, real-time rainfall data generated by PERSIANN-CCS was consistently comparable to radar and rain gauge data. This presentation evaluates iRain's efficiency as a tool for extreme precipitation monitoring and provides an evaluation of the

  6. Movie prediction of lung tumor for precise chasing radiation therapy

    International Nuclear Information System (INIS)

    Chhatkuli, Ritu Bhusal; Demachi, Kazuyuki; Kawai, Masaki; Sakakibara, Hiroshi; Uesaka, Mitsuru

    2012-01-01

    In recent years, precision for radiation therapy is a major challenge in the field of cancer treatment. When it comes to a moving organ like lungs, limiting the radiation to the target and sparing the surrounding healthy tissue is always a concern. It can induce the limit in the accuracy of area irradiated during lung cancer radiation therapy. Many methods have been introduced to compensate the motion in order to reduce the effect of radiation to healthy tissue due to respiratory motion. The motion of lung along with the tumor makes it very difficult to spare the healthy tissue during radiation therapy. The fear of this unintended damage to the neighboring tissue often limits the dose that can be applied to the tumor. The purpose of this research is the prediction of future motion images for the improvement of tumor tracking method. We predict the motion images by using principal component analysis (PCA) and multi-channel singular spectral analysis (MSSA) method. Time series x-ray images are used as training images. The motion images were successfully predicted and verified using the developed algorithm. The real time implementation of this method in future is believed to be significant for higher level of real time tumor tracking during radiation therapy. (author)

  7. Effects of Thoracic Paravertebral Block on Postoperative Analgesia and Serum Level of Tumor Marker in Lung Cancer Patients Undergoing Video-assisted Thoracoscopic Surgery

    Directory of Open Access Journals (Sweden)

    Jiheng CHEN

    2015-02-01

    Full Text Available Background and objective Perioperative management of pain associated with the prognosis of cancer patients. Optimization of perio-perative analgesia method, then reduce perioperative stress response, reduce opioiddosage, to reduce or even avoid systemic adverse reactions and elevated levels of tumor markers. Serum levels of tumor markers in patients with lung cancer are closely related to tumor growth. Clinical research reports on regional anesthesia effect on tumor markers for lung cancer are still very little in domesticliterature. The aim of this study is to evaluate the effects of thoracic paraverte-bral block on postoperative analgesia and serum level of tumor marker in lung cancer patients undergoing video-assisted thoracoscopic surgery. Methods Lung cancer patients undergoing video-assisted thoracoscopic surgery were randomly divided into 2 groups (n=20 in each group. The patients in group G were given only general anesthesia. The thoracic paravertebral blockade (PVB was performed before general anesthesia in patients of group GP. The effect of PVB was judged by testing area of block. Patient controlled intravenous analgesia (PCIA pump started before the end of surgery in 2 groups. Visual analogue scale (VAS score was recorded after extubation 2 h (T1, 24 h (T2 and 48 h (T3 after surgery and the times of PCIA and the volume of analgesic drugs used were recorded during 48 h after surgery. The serum levels of carcino-embryonic antigen (CEA, carbohydrate antigen 199 (CA199, carbohydrate antigen 125 (CA125, neuron-specific enolase (NSE, cytokeratin 19 fragment (CYFRA21-1 and squamous cell carcinoma (SCC in 40 lung cancer cases undergoing video-assisted thoracoscopic lobectomy were measured before operation and 24 h after operation. Results Forty American Society of Anesthesiologists (ASA physical status I or II patients, aged 20 yr-70 yr, body mass index (BMI 18 kg/m2-25 kg/m2, scheduled for elective video-assisted thoraeoscopic lobectomy

  8. Virtual decoupling flight control via real-time trajectory synthesis and tracking

    Science.gov (United States)

    Zhang, Xuefu

    The production of the General Aviation industry has declined in the past 25 years. Ironically, however, the increasing demand for air travel as a fast, safe, and high-quality mode of transportation has been far from satisfied. Addressing this demand shortfall with personal air transportation necessitates advanced systems for navigation, guidance, control, flight management, and flight traffic control. Among them, an effective decoupling flight control system will not only improve flight quality, safety, and simplicity, and increase air space usage, but also reduce expenses on pilot initial and current training, and thus expand the current market and explore new markets. Because of the formidable difficulties encountered in the actual decoupling of non-linear, time-variant, and highly coupled flight control systems through traditional approaches, a new approach, which essentially converts the decoupling problem into a real-time trajectory synthesis and tracking problem, is employed. Then, the converted problem is solved and a virtual decoupling effect is achieved. In this approach, a trajectory in inertial space can be predefined and dynamically modified based on the flight mission and the pilot's commands. A feedforward-feedback control architecture is constructed to guide the airplane along the trajectory as precisely as possible. Through this approach, the pilot has much simpler, virtually decoupled control of the airplane in terms of speed, flight path angle and horizontal radius of curvature. To verify and evaluate this approach, extensive computer simulation is performed. A great deal of test cases are designed for the flight control under different flight conditions. The simulation results show that our decoupling strategy is satisfactory and promising, and therefore the research can serve as a consolidated foundation for future practical applications.

  9. Real-time estimation of wildfire perimeters from curated crowdsourcing

    Science.gov (United States)

    Zhong, Xu; Duckham, Matt; Chong, Derek; Tolhurst, Kevin

    2016-04-01

    Real-time information about the spatial extents of evolving natural disasters, such as wildfire or flood perimeters, can assist both emergency responders and the general public during an emergency. However, authoritative information sources can suffer from bottlenecks and delays, while user-generated social media data usually lacks the necessary structure and trustworthiness for reliable automated processing. This paper describes and evaluates an automated technique for real-time tracking of wildfire perimeters based on publicly available “curated” crowdsourced data about telephone calls to the emergency services. Our technique is based on established data mining tools, and can be adjusted using a small number of intuitive parameters. Experiments using data from the devastating Black Saturday wildfires (2009) in Victoria, Australia, demonstrate the potential for the technique to detect and track wildfire perimeters automatically, in real time, and with moderate accuracy. Accuracy can be further increased through combination with other authoritative demographic and environmental information, such as population density and dynamic wind fields. These results are also independently validated against data from the more recent 2014 Mickleham-Dalrymple wildfires.

  10. Quality assurance of a system for improved target localization and patient set-up that combines real-time infrared tracking and stereoscopic X-ray imaging.

    Science.gov (United States)

    Verellen, Dirk; Soete, Guy; Linthout, Nadine; Van Acker, Swana; De Roover, Patsy; Vinh-Hung, Vincent; Van de Steene, Jan; Storme, Guy

    2003-04-01

    The aim of this study is to investigate the positional accuracy of a prototype X-ray imaging tool in combination with a real-time infrared tracking device allowing automated patient set-up in three dimensions. A prototype X-ray imaging tool has been integrated with a commercially released real-time infrared tracking device. The system, consisting of two X-ray tubes mounted to the ceiling and a centrally located amorphous silicon detector has been developed for automated patient positioning from outside the treatment room prior to treatment. Two major functions are supported: (a) automated fusion of the actual treatment images with digitally reconstructed radiographs (DRRs) representing the desired position; (b) matching of implanted radio opaque markers. Measurements of known translational (up to 30.0mm) and rotational (up to 4.0 degrees ) set-up errors in three dimensions as well as hidden target tests have been performed on anthropomorphic phantoms. The system's accuracy can be represented with the mean three-dimensional displacement vector, which yielded 0.6mm (with an overall SD of 0.9mm) for the fusion of DRRs and X-ray images. Average deviations between known translational errors and calculations varied from -0.3 to 0.6mm with a standard deviation in the range of 0.6-1.2mm. The marker matching algorithm yielded a three-dimensional uncertainty of 0.3mm (overall SD: 0.4mm), with averages ranging from 0.0 to 0.3mm and a standard deviation in the range between 0.3 and 0.4mm. The stereoscopic X-ray imaging device integrated with the real-time infrared tracking device represents a positioning tool allowing for the geometrical accuracy that is required for conformal radiation therapy of abdominal and pelvic lesions, within an acceptable time-frame.

  11. SU-G-JeP3-10: Update On a Real-Time Treatment Guidance System Using An IR Navigation System for Pleural PDT

    International Nuclear Information System (INIS)

    Kim, M; Penjweini, R; Zhu, T

    2016-01-01

    Purpose: Photodynamic therapy (PDT) is used in conjunction with surgical debulking of tumorous tissue during treatment for pleural mesothelioma. One of the key components of effective PDT is uniform light distribution. Currently, light is monitored with 8 isotropic light detectors that are placed at specific locations inside the pleural cavity. A tracking system with real-time feedback software can be utilized to improve the uniformity of light in addition to the existing detectors. Methods: An infrared (IR) tracking camera is used to monitor the movement of the light source. The same system determines the pleural geometry of the treatment area. Software upgrades allow visualization of the pleural cavity as a two-dimensional volume. The treatment delivery wand was upgraded for ease of light delivery while incorporating the IR system. Isotropic detector locations are also displayed. Data from the tracking system is used to calculate the light fluence rate delivered. This data is also compared with in vivo data collected via the isotropic detectors. Furthermore, treatment volume information will be used to form light dose volume histograms of the pleural cavity. Results: In a phantom study, the light distribution was improved by using real-time guidance compared to the distribution when using detectors without guidance. With the tracking system, 2D data can be collected regarding light fluence rather than just the 8 discrete locations inside the pleural cavity. Light fluence distribution on the entire cavity can be calculated at every time in the treatment. Conclusion: The IR camera has been used successfully during pleural PDT patient treatment to track the motion of the light source and provide real-time display of 2D light fluence. It is possible to use the feedback system to deliver a more uniform dose of light throughout the pleural cavity.

  12. SU-G-JeP3-10: Update On a Real-Time Treatment Guidance System Using An IR Navigation System for Pleural PDT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M; Penjweini, R; Zhu, T [University Pennsylvania, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Photodynamic therapy (PDT) is used in conjunction with surgical debulking of tumorous tissue during treatment for pleural mesothelioma. One of the key components of effective PDT is uniform light distribution. Currently, light is monitored with 8 isotropic light detectors that are placed at specific locations inside the pleural cavity. A tracking system with real-time feedback software can be utilized to improve the uniformity of light in addition to the existing detectors. Methods: An infrared (IR) tracking camera is used to monitor the movement of the light source. The same system determines the pleural geometry of the treatment area. Software upgrades allow visualization of the pleural cavity as a two-dimensional volume. The treatment delivery wand was upgraded for ease of light delivery while incorporating the IR system. Isotropic detector locations are also displayed. Data from the tracking system is used to calculate the light fluence rate delivered. This data is also compared with in vivo data collected via the isotropic detectors. Furthermore, treatment volume information will be used to form light dose volume histograms of the pleural cavity. Results: In a phantom study, the light distribution was improved by using real-time guidance compared to the distribution when using detectors without guidance. With the tracking system, 2D data can be collected regarding light fluence rather than just the 8 discrete locations inside the pleural cavity. Light fluence distribution on the entire cavity can be calculated at every time in the treatment. Conclusion: The IR camera has been used successfully during pleural PDT patient treatment to track the motion of the light source and provide real-time display of 2D light fluence. It is possible to use the feedback system to deliver a more uniform dose of light throughout the pleural cavity.

  13. On the use of EPID-based implanted marker tracking for 4D radiotherapy

    International Nuclear Information System (INIS)

    Keall, P.J.; Todor, A.D.; Vedam, S.S.; Bartee, C.L.; Siebers, J.V.; Kini, V.R.; Mohan, R.

    2004-01-01

    Four-dimensional (4D) radiotherapy delivery to dynamically moving tumors requires a real-time signal of the tumor position as a function of time so that the radiation beam can continuously track the tumor during the respiration cycle. The aim of this study was to develop and evaluate an electronic portal imaging device (EPID)-based marker-tracking system that can be used for real-time tumor targeting, or 4D radiotherapy. Three gold cylinders, 3 mm in length and 1 mm in diameter, were implanted in a dynamic lung phantom. The phantom range of motion was 4 cm with a 3-s 'breathing' period. EPID image acquisition parameters were modified, allowing image acquisition in 0.1 s. Images of the stationary and moving phantom were acquired. Software was developed to segment automatically the marker positions from the EPID images. Images acquired in 0.1 s displayed higher noise and a lower signal-noise ratio than those obtained using regular (>1 s) acquisition settings. However, the markers were still clearly visible on the 0.1-s images. The motion of the phantom blurred the images of the markers and further reduced the signal-noise ratio, though they could still be successfully segmented from the images in 10-30 ms of computation time. The positions of gold markers placed in the lung phantom were detected successfully, even for phantom velocities substantially higher than those observed for typical lung tumors. This study shows that using EPID-based marker tracking for 4D radiotherapy is feasible, however, changes in linear accelerator technology and EPID-based image acquisition as well as patient studies are required before this method can be implemented clinically

  14. The FastTrack Real Time Processor and Its Impact on Muon Isolation, Tau and b-Jet Online Selections at ATLAS

    CERN Document Server

    Crescioli, F; The ATLAS collaboration; Zhang, J; Boveia, A; Bevacqua, V; Cheng, Y; Canelli, F; Bogdan, M; Dell'Orso, M; Bossini, E; Citterio, M; Dunford, M; Drake, G; Beretta, M; Genat, JF; Annovi, A; Kim, YK; Kimura, N; Andreazza, A; Kapliy, A; Kasten, M; Piendibene, M; Negri, A; Meroni, C; Giannetti, P; Melachrinos, C; Hoff, J; Liberali, V; McCarn, A; Neubauer, M; Tang, F; Shochet, M; Stabile, A; Sartori, L; Sabatini, F; Proudfoot, J; Riva, M; Liu, T; Punzi, G; Vercesi, V; Tuggle, J; Todri, A; Tripiccione, R; Lanza, A; Wu, J; Yorita, K; Volpi, G; Vitullo, R.A; Sacco, I

    2010-01-01

    As the LHC luminosity is ramped up to 31034 cm−2 s−1 and beyond, the high rates, multiplicities, and energies of particles seen by the detectors will pose a unique challenge. Only a tiny fraction of the produced collisions can be stored on tape and immense real-time data reduction is needed. An effective trigger system must maintain high trigger efficiencies for the physics we are most interested in, and at the same time suppress the enormous QCD backgrounds. This requires massive computing power to minimize the online execution time of complex algorithms. A multi-level trigger is an effective solution for an otherwise impossible problem. The Fast Tracker (FTK) is a proposed upgrade to the current ATLAS trigger system that will operate at full Level-1 output rates and provide high quality tracks reconstructed over the entire detector by the start of processing in Level-2. FTK solves the combinatorial challenge inherent to tracking by exploiting massive parallelism of associative memories that can compa...

  15. Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation.

    Science.gov (United States)

    Royer, Lucas; Krupa, Alexandre; Dardenne, Guillaume; Le Bras, Anthony; Marchand, Eric; Marchal, Maud

    2017-01-01

    In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. SU-E-J-59: Feasibility of Markerless Tumor Tracking by Sequential Dual-Energy Fluoroscopy On a Clinical Tumor Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Dhont, J; Poels, K; Verellen, D; Tournel, K; Gevaert, T; Steenbeke, F; Burghelea, M; De Ridder, M [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Brussels (Belgium)

    2015-06-15

    Purpose: To evaluate the feasibility of markerless tumor tracking through the implementation of a novel dual-energy imaging approach into the clinical dynamic tracking (DT) workflow of the Vero SBRT system. Methods: Two sequential 20 s (11 Hz) fluoroscopy sequences were acquired at the start of one fraction for 7 patients treated for primary and metastatic lung cancer with DT on the Vero system. Sequences were acquired using 2 on-board kV imaging systems located at ±45° from the MV beam axis, at respectively 60 kVp (3.2 mAs) and 120 kVp (2.0 mAs). Offline, a normalized cross-correlation algorithm was applied to match the high (HE) and low energy (LE) images. Per breathing phase (inhale, exhale, maximum inhale and maximum exhale), the 5 best-matching HE and LE couples were extracted for DE subtraction. A contrast analysis according to gross tumor volume was conducted based on contrast-to-noise ratio (CNR). Improved tumor visibility was quantified using an improvement ratio. Results: Using the implanted fiducial as a benchmark, HE-LE sequence matching was effective for 13 out of 14 imaging angles. Overlying bony anatomy was removed on all DE images. With the exception of two imaging angles, the DE images showed no significantly improved tumor visibility compared to HE images, with an improvement ratio averaged over all patients of 1.46 ± 1.64. Qualitatively, it was observed that for those imaging angles that showed no significantly improved CNR, the tumor tissue could not be reliably visualized on neither HE nor DE images due to a total or partial overlap with other soft tissue. Conclusion: Dual-energy subtraction imaging by sequential orthogonal fluoroscopy was shown feasible by implementing an additional LE fluoroscopy sequence. However, for most imaging angles, DE images did not provide improved tumor visibility over single-energy images. Optimizing imaging angles is likely to improve tumor visibility and the efficacy of dual-energy imaging. This work was in

  17. WE-G-BRF-01: Adaptation to Intrafraction Tumor Deformation During Intensity-Modulated Radiotherapy: First Proof-Of-Principle Demonstration

    International Nuclear Information System (INIS)

    Ge, Y; OBrien, R; Shieh, C; Booth, J; Keall, P

    2014-01-01

    Purpose: Intrafraction tumor deformation limits targeting accuracy in radiotherapy and cannot be adapted to by current motion management techniques. This study simulated intrafractional treatment adaptation to tumor deformations using a dynamic Multi-Leaf Collimator (DMLC) tracking system during Intensity-modulated radiation therapy (IMRT) treatment for the first time. Methods: The DMLC tracking system was developed to adapt to the intrafraction tumor deformation by warping the planned beam aperture guided by the calculated deformation vector field (DVF) obtained from deformable image registration (DIR) at the time of treatment delivery. Seven single phantom deformation images up to 10.4 mm deformation and eight tumor system phantom deformation images up to 21.5 mm deformation were acquired and used in tracking simulation. The intrafraction adaptation was simulated at the DMLC tracking software platform, which was able to communicate with the image registration software, reshape the instantaneous IMRT field aperture and log the delivered MLC fields.The deformation adaptation accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the reference aperture. The incremental deformations were arbitrarily determined to take place equally over the delivery interval. The geometric target coverage of delivery with deformation adaptation was compared against the delivery without adaptation. Results: Intrafraction deformation adaptation during dynamic IMRT plan delivery was simulated for single and system deformable phantoms. For the two particular delivery situations, over the treatment course, deformation adaptation improved the target coverage by 89% for single target deformation and 79% for tumor system deformation compared with no-tracking delivery. Conclusion: This work demonstrated the principle of real-time tumor deformation tracking using a DMLC. This is the first step towards the development of an

  18. Motion management during IMAT treatment of mobile lung tumors-A comparison of MLC tracking and gated delivery

    DEFF Research Database (Denmark)

    Falk, Marianne; Pommer, Tobias; Keall, Paul

    2014-01-01

    Purpose:To compare real-time dynamic multileaf collimator (MLC) tracking, respiratory amplitude and phase gating, and no compensation for intrafraction motion management during intensity modulated arc therapy (IMAT). Methods: Motion management with MLC tracking and gating was evaluated for four...... tracking reduced the effects of the target movements, although the gated delivery showed a better dosimetric accuracy and enabled a larger reduction of the margins in some cases. MLC tracking did not prolong the treatment time compared to delivery with no motion compensation while gating had a considerably...... of the dosimetric error contributions showed that the gated delivery mainly had errors in target localization, while MLC tracking also had contributions from MLC leaf fitting and leaf adjustment. The average treatment time was about three times longer with gating compared to delivery with MLC tracking (that did...

  19. Novel real-time alignment and calibration of LHCb detector for Run II and tracking for the upgrade.

    CERN Document Server

    AUTHOR|(CDS)2091576

    2016-01-01

    LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run II. Data collected at the start of the fill is processed in a few minutes and used to update the alignment, while the calibration constants are evaluated for each run. The procedure aims to improve the quality of the online selection and performance stability. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. A similar scheme is planned to be used for Run III foreseen to start in 2020. At that time LHCb will run at an instantaneous luminosity of $2 \\times 10^{33}$ cm$^2$ s$^1$ and a fully software based trigger strategy will be used. The new running conditions and the tighter timing constraints in the software trigger (only 13 ms per event are available) represent a big challenge for track reconstruction. The new software based trigger strategy implies a full detector read-out at the collision rate of 40 MHz. High performance ...

  20. Effects of computing time delay on real-time control systems

    Science.gov (United States)

    Shin, Kang G.; Cui, Xianzhong

    1988-01-01

    The reliability of a real-time digital control system depends not only on the reliability of the hardware and software used, but also on the speed in executing control algorithms. The latter is due to the negative effects of computing time delay on control system performance. For a given sampling interval, the effects of computing time delay are classified into the delay problem and the loss problem. Analysis of these two problems is presented as a means of evaluating real-time control systems. As an example, both the self-tuning predicted (STP) control and Proportional-Integral-Derivative (PID) control are applied to the problem of tracking robot trajectories, and their respective effects of computing time delay on control performance are comparatively evaluated. For this example, the STP (PID) controller is shown to outperform the PID (STP) controller in coping with the delay (loss) problem.

  1. Real-time prediction of respiratory motion based on local regression methods

    International Nuclear Information System (INIS)

    Ruan, D; Fessler, J A; Balter, J M

    2007-01-01

    Recent developments in modulation techniques enable conformal delivery of radiation doses to small, localized target volumes. One of the challenges in using these techniques is real-time tracking and predicting target motion, which is necessary to accommodate system latencies. For image-guided-radiotherapy systems, it is also desirable to minimize sampling rates to reduce imaging dose. This study focuses on predicting respiratory motion, which can significantly affect lung tumours. Predicting respiratory motion in real-time is challenging, due to the complexity of breathing patterns and the many sources of variability. We propose a prediction method based on local regression. There are three major ingredients of this approach: (1) forming an augmented state space to capture system dynamics, (2) local regression in the augmented space to train the predictor from previous observation data using semi-periodicity of respiratory motion, (3) local weighting adjustment to incorporate fading temporal correlations. To evaluate prediction accuracy, we computed the root mean square error between predicted tumor motion and its observed location for ten patients. For comparison, we also investigated commonly used predictive methods, namely linear prediction, neural networks and Kalman filtering to the same data. The proposed method reduced the prediction error for all imaging rates and latency lengths, particularly for long prediction lengths

  2. TH-AB-BRA-08: Simulated Tumor Tracking in An MRI Linac for Lung Tumor Lesions Using the Monaco Treatment Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ward, S; Kim, A; McCann, C; Ruschin, M; Cheung, P; Sahgal, A; Keller, B [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada)

    2016-06-15

    Purpose: To simulate tumor tracking in an Elekta MRI-linac (MRL) and to compare this tracking method with our current ITV approach in terms of OAR sparing for lung cancer patients. Methods: Five SABR-NSCLC patients with central lung tumors were selected for reasons of potential enhancement of tumor-tissue delineation using MRI. The Monaco TPS was used to compare the current clinical ITV approach to a simulated, novel tracking method which used a 7MV MRL beam in the presence of an orthogonal 1.5 T magnetic field (4D-MRL method). In the simulated tracking scenario, achieved using the virtual couch shift (VCS), the PTV was defined using an isotropic 5mm margin applied to the GTV of each phase, as acquired from an 8-phase amplitude-binned 4DCT. These VCS plans were optimized and weighted on each phase. The dose weighting was performed using the patient-specific breathing traces. The doses were accumulated on the inhale phase. The two methods were compared by assessing the OAR DVHs. Results: The 4D-MRL method resulted in a reduced target volume (by an average of 29% over all patients). The benefits of using an MRL tracking system depended on the tumor motion amplitude and the relative OAR motion (ROM) to the target. The reduction in mean doses to parallel organs was up to 3 Gy for the heart and 2.1 Gy for the lung. The reductions in maximum doses to serial organs were up to 9.4 Gy, 5.6 Gy, and 8.7 Gy for the esophagus, spinal cord, and the trachea, respectively. Serial organs benefited from MRL tracking when the ROM was ≥ 0.3 cm despite small tumor motion amplitude in some cases. Conclusions: This work demonstrated the potential benefit for an MRL tracking system to spare OARs in SABR-NSCLC patients with central tumors. The benefits are embodied in the target volume reduction. This project was made possible with the financial support of Elekta.

  3. Physiological Interaction of Heart and Lung in Thoracic Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ghobadi, Ghazaleh; Veen, Sonja van der [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Bartelds, Beatrijs [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Boer, Rudolf A. de [Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Dickinson, Michael G. [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Jong, Johan R. de [Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Faber, Hette; Niemantsverdriet, Maarten [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Brandenburg, Sytze [Kernfysisch Versneller Instituut, University of Groningen, Groningen (Netherlands); Berger, Rolf M.F. [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Luijk, Peter van, E-mail: p.van.luijk@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2012-12-01

    Introduction: The risk of early radiation-induced lung toxicity (RILT) limits the dose and efficacy of radiation therapy of thoracic tumors. In addition to lung dose, coirradiation of the heart is a known risk factor in the development RILT. The aim of this study was to identify the underlying physiology of the interaction between lung and heart in thoracic irradiation. Methods and Materials: Rat hearts, lungs, or both were irradiated to 20 Gy using high-precision proton beams. Cardiopulmonary performance was assessed using breathing rate measurements and F{sup 18}-fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG-PET) scans biweekly and left- and right-sided cardiac hemodynamic measurements and histopathology analysis at 8 weeks postirradiation. Results: Two to 12 weeks after heart irradiation, a pronounced defect in the uptake of {sup 18}F-FDG in the left ventricle (LV) was observed. At 8 weeks postirradiation, this coincided with LV perivascular fibrosis, an increase in LV end-diastolic pressure, and pulmonary edema in the shielded lungs. Lung irradiation alone not only increased pulmonary artery pressure and perivascular edema but also induced an increased LV relaxation time. Combined irradiation of lung and heart induced pronounced increases in LV end-diastolic pressure and relaxation time, in addition to an increase in right ventricle end-diastolic pressure, indicative of biventricular diastolic dysfunction. Moreover, enhanced pulmonary edema, inflammation and fibrosis were also observed. Conclusions: Both lung and heart irradiation cause cardiac and pulmonary toxicity via different mechanisms. Thus, when combined, the loss of cardiopulmonary performance is intensified further, explaining the deleterious effects of heart and lung coirradiation. Our findings show for the first time the physiological mechanism underlying the development of a multiorgan complication, RILT. Reduction of dose to either of these organs offers new opportunities to

  4. An improved optical flow tracking technique for real-time MR-guided beam therapies in moving organs

    Science.gov (United States)

    Zachiu, C.; Papadakis, N.; Ries, M.; Moonen, C.; de Senneville, B. Denis

    2015-12-01

    Magnetic resonance (MR) guided high intensity focused ultrasound and external beam radiotherapy interventions, which we shall refer to as beam therapies/interventions, are promising techniques for the non-invasive ablation of tumours in abdominal organs. However, therapeutic energy delivery in these areas becomes challenging due to the continuous displacement of the organs with respiration. Previous studies have addressed this problem by coupling high-framerate MR-imaging with a tracking technique based on the algorithm proposed by Horn and Schunck (H and S), which was chosen due to its fast convergence rate and highly parallelisable numerical scheme. Such characteristics were shown to be indispensable for the real-time guidance of beam therapies. In its original form, however, the algorithm is sensitive to local grey-level intensity variations not attributed to motion such as those that occur, for example, in the proximity of pulsating arteries. In this study, an improved motion estimation strategy which reduces the impact of such effects is proposed. Displacements are estimated through the minimisation of a variation of the H and S functional for which the quadratic data fidelity term was replaced with a term based on the linear L1norm, resulting in what we have called an L2-L1 functional. The proposed method was tested in the livers and kidneys of two healthy volunteers under free-breathing conditions, on a data set comprising 3000 images equally divided between the volunteers. The results show that, compared to the existing approaches, our method demonstrates a greater robustness to local grey-level intensity variations introduced by arterial pulsations. Additionally, the computational time required by our implementation make it compatible with the work-flow of real-time MR-guided beam interventions. To the best of our knowledge this study was the first to analyse the behaviour of an L1-based optical flow functional in an applicative context: real-time MR

  5. Real-Time FPGA-Based Object Tracker with Automatic Pan-Tilt Features for Smart Video Surveillance Systems

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2017-05-01

    Full Text Available The design of smart video surveillance systems is an active research field among the computer vision community because of their ability to perform automatic scene analysis by selecting and tracking the objects of interest. In this paper, we present the design and implementation of an FPGA-based standalone working prototype system for real-time tracking of an object of interest in live video streams for such systems. In addition to real-time tracking of the object of interest, the implemented system is also capable of providing purposive automatic camera movement (pan-tilt in the direction determined by movement of the tracked object. The complete system, including camera interface, DDR2 external memory interface controller, designed object tracking VLSI architecture, camera movement controller and display interface, has been implemented on the Xilinx ML510 (Virtex-5 FX130T FPGA Board. Our proposed, designed and implemented system robustly tracks the target object present in the scene in real time for standard PAL (720 × 576 resolution color video and automatically controls camera movement in the direction determined by the movement of the tracked object.

  6. TH-B-204-01: Real-Time Tracking with Implanted Markers

    International Nuclear Information System (INIS)

    Xu, Q.

    2016-01-01

    Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRI compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a consultant

  7. TH-B-204-01: Real-Time Tracking with Implanted Markers

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q. [MD Anderson Cancer Center at Cooper (United States)

    2016-06-15

    Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRI compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a consultant

  8. The Fast Tracker Real Time Processor

    CERN Document Server

    Annovi, A; The ATLAS collaboration

    2011-01-01

    As the LHC luminosity is ramped up to the SLHC Phase I level and beyond, the high rates, multiplicities, and energies of particles seen by the detectors will pose a unique challenge. Only a tiny fraction of the produced collisions can be stored on tape and immense real-time data reduction is needed. An effective trigger system must maintain high trigger efficiencies for the physics we are most interested in, and at the same time suppress the enormous QCD backgrounds. This requires massive computing power to minimize the online execution time of complex algorithms. A multi-level trigger is an effective solution for an otherwise impossible problem. The Fast Tracker (FTK)[1], is a proposed upgrade to the current ATLAS trigger system that will operate at full Level-1 output rates and provide high quality tracks reconstructed over the entire detector by the start of processing in Level-2. FTK solves the combinatorial challenge inherent to tracking by exploiting massive parallelism of associative memories [2] that ...

  9. Nanohybrids with Magnetic and Persistent Luminescence Properties for Cell Labeling, Tracking, In Vivo Real-Time Imaging, and Magnetic Vectorization.

    Science.gov (United States)

    Teston, Eliott; Maldiney, Thomas; Marangon, Iris; Volatron, Jeanne; Lalatonne, Yoann; Motte, Laurence; Boisson-Vidal, Catherine; Autret, Gwennhael; Clément, Olivier; Scherman, Daniel; Gazeau, Florence; Richard, Cyrille

    2018-04-01

    Once injected into a living organism, cells diffuse or migrate around the initial injection point and become impossible to be visualized and tracked in vivo. The present work concerns the development of a new technique for therapeutic cell labeling and subsequent in vivo visualization and magnetic retention. It is hypothesized and subsequently demonstrated that nanohybrids made of persistent luminescence nanoparticles and ultrasmall superparamagnetic iron oxide nanoparticles incorporated into a silica matrix can be used as an effective nanoplatform to label therapeutic cells in a nontoxic way in order to dynamically track them in real-time in vitro and in living mice. As a proof-of-concept, it is shown that once injected, these labeled cells can be visualized and attracted in vivo using a magnet. This first step suggests that these nanohybrids represent efficient multifunctional nanoprobes for further imaging guided cell therapies development. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Real-time pulse deinterleaving using digital delay line techniques

    Science.gov (United States)

    Lentz, L. F.; Palermo, T. J.

    This paper describes an implementation of a tracking pulse sorter based on predictive gating techniques. Real-time pulse sorters or pulse train gating devices have been utilized by the ELINT signal analyst for many years. The more elementary of these devices employed a retriggerable delay interval and an acceptance gate, which were used in predictive fashion to track pulse trains whose PRIs fall within the limits of the programmed delay interval. This design utilizes the pulse hit/miss history of individual track files in a variation of a sequential observer detection algorithm. Use of a digital delay line with pulse history allows multiple pulse trains to be tracked simultaneously and independently without interference. The design also provides flexibility in lock-on and track criteria to allow maintenance of acquisition probability and false alarm rate in dense signal environments and with low SNRs. The hardware provides time interval resolution to 12.5 nsec and covers a PRI range of 50 microsec to 50 msec.

  11. Real-time locating systems (RTLS) in healthcare: a condensed primer.

    Science.gov (United States)

    Kamel Boulos, Maged N; Berry, Geoff

    2012-06-28

    Real-time locating systems (RTLS, also known as real-time location systems) have become an important component of many existing ubiquitous location aware systems. While GPS (global positioning system) has been quite successful as an outdoor real-time locating solution, it fails to repeat this success indoors. A number of RTLS technologies have been used to solve indoor tracking problems. The ability to accurately track the location of assets and individuals indoors has many applications in healthcare. This paper provides a condensed primer of RTLS in healthcare, briefly covering the many options and technologies that are involved, as well as the various possible applications of RTLS in healthcare facilities and their potential benefits, including capital expenditure reduction and workflow and patient throughput improvements. The key to a successful RTLS deployment lies in picking the right RTLS option(s) and solution(s) for the application(s) or problem(s) at hand. Where this application-technology match has not been carefully thought of, any technology will be doomed to failure or to achieving less than optimal results.

  12. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection.

    Science.gov (United States)

    Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania

    2015-04-15

    In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. WE-G-BRD-03: Development of a Real-Time Optical Tracking Goggle System (OTGS) for Intracranial Stereotactic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mittauer, K; Yan, G; Lu, B; Barraclough, B; Li, J; Liu, C [University of Florida, Gainesville, FL (United States)

    2014-06-15

    Purpose: Optical tracking systems (OTS) are an acceptable alternative to frame-based stereotactic radiotherapy (SRT). However, current surface-based OTS lack the ability to target exclusively rigid/bony anatomical features. We propose a novel marker-based optical tracking goggle system (OTGS) that provides real-time guidance based on the nose/facial bony anatomy. This ongoing study involves the development and characterization of the OTGS for clinical implementation in intracranial stereotactic radiotherapy. Methods: The OTGS consists of eye goggles, a custom thermoplastic nosepiece, and 6 infrared markers pre-attached to the goggles. A phantom and four healthy volunteers were used to evaluate the calibration/registration accuracy, intrafraction accuracy, interfraction reproducibility, and end-to-end accuracy of the OTGS. The performance of the OTGS was compared with that of the frameless SonArray system and cone-beam computed tomography (CBCT) for volunteer and phantom cases, respectively. The performance of the OTGS with commercial immobilization devices and under treatment conditions (i.e., couch rotation and translation range) was also evaluated. Results: The difference in the calibration/registration accuracy of 24 translations or rotation combinations between CBCT and in-house OTS software was within 0.5 mm/0.4°. The mean intrafraction and interfraction accuracy among the volunteers was 0.004+/−0.4mm with −0.09+/−0.5° (n=6,170) and −0.26+/−0.8mm with 0.15+/0.8° (n=11), respectively. The difference in end-to-end accuracy between the OTGS and CBCT was within 1.3 mm/1.1°. The predetermined marker pattern (1) minimized marker occlusions, (2) allowed for continuous tracking for couch angles +/− 90°, (3) and eliminated individual marker misplacement. The device was feasible with open and half masks for immobilization. Conclusion: Bony anatomical localization eliminated potential errors due to facial hair changes and/or soft tissue deformation. The

  14. Remote-Sensing and Automated Water Resources Tracking: Near Real-Time Decision Support for Water Managers Facing Drought and Flood

    Science.gov (United States)

    Reiter, M. E.; Elliott, N.; Veloz, S.; Love, F.; Moody, D.; Hickey, C.; Fitzgibbon, M.; Reynolds, M.; Esralew, R.

    2016-12-01

    Innovative approaches for tracking the Earth's natural resources, especially water which is essential for all living things, are essential during a time of rapid environmental change. The Central Valley is a nexus for water resources in California, draining the Sacramento and San Joaquin River watersheds. The distribution of water throughout California and the Central Valley, while dynamic, is highly managed through an extensive regional network of canals, levees, and pumps. Water allocation and delivery is determined through a complex set of rules based on water contracts, historic priority, and other California water policies. Furthermore, urban centers, agriculture, and the environment throughout the state are already competing for water, particularly during drought. Competition for water is likely to intensify as California is projected to experience continued increases in demand due to population growth and more arid growing conditions, while also having reduced or modified water supply due to climate change. As a result, it is difficult to understand or predict how water will be used to fulfill wildlife and wetland conservation needs. A better understanding of the spatial distribution of water in near real-time can facilitate adaptation of water resource management to changing conditions on the landscape, both over the near- and long-term. The Landsat satellite mission delivers imagery every 16-days from nearly every place on the earth at a high spatial resolution. We have integrated remote sensing of satellite data, classification modeling, bioinformatics, optimization, and ecological analyses to develop an automated near real-time water resources tracking and decision-support system for the Central Valley of California. Our innovative system has applications for coordinated water management in the Central Valley to support people, places, and wildlife and is being used to understand the factors that drive variation in the distribution and abundance of water

  15. Real-Time Tracking of Parental Histones Reveals Their Contribution to Chromatin Integrity Following DNA Damage.

    Science.gov (United States)

    Adam, Salomé; Dabin, Juliette; Chevallier, Odile; Leroy, Olivier; Baldeyron, Céline; Corpet, Armelle; Lomonte, Patrick; Renaud, Olivier; Almouzni, Geneviève; Polo, Sophie E

    2016-10-06

    Chromatin integrity is critical for cell function and identity but is challenged by DNA damage. To understand how chromatin architecture and the information that it conveys are preserved or altered following genotoxic stress, we established a system for real-time tracking of parental histones, which characterize the pre-damage chromatin state. Focusing on histone H3 dynamics after local UVC irradiation in human cells, we demonstrate that parental histones rapidly redistribute around damaged regions by a dual mechanism combining chromatin opening and histone mobilization on chromatin. Importantly, parental histones almost entirely recover and mix with new histones in repairing chromatin. Our data further define a close coordination of parental histone dynamics with DNA repair progression through the damage sensor DDB2 (DNA damage-binding protein 2). We speculate that this mechanism may contribute to maintaining a memory of the original chromatin landscape and may help preserve epigenome stability in response to DNA damage. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery.

    Science.gov (United States)

    Schlosser, Jeffrey; Salisbury, Kenneth; Hristov, Dimitre

    2010-12-01

    imaging, gross tumor volume coverage was identical while notable reductions of bladder and rectal volumes exposed to large doses were possible. The quality of U.S. images obtained during beam operation was not appreciably degraded by radiofrequency interference and 2D tracking of a phantom object in U.S. images obtained with the beam on/off yielded no significant differences. Remotely controlled robotic U.S. imaging is feasible in the radiotherapy environment and for the first time may offer real-time volumetric soft-tissue guidance concurrent with radiotherapy delivery.

  17. Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery

    International Nuclear Information System (INIS)

    Schlosser, Jeffrey; Salisbury, Kenneth; Hristov, Dimitre

    2010-01-01

    would be enabled by real-time imaging, gross tumor volume coverage was identical while notable reductions of bladder and rectal volumes exposed to large doses were possible. The quality of U.S. images obtained during beam operation was not appreciably degraded by radiofrequency interference and 2D tracking of a phantom object in U.S. images obtained with the beam on/off yielded no significant differences. Conclusions: Remotely controlled robotic U.S. imaging is feasible in the radiotherapy environment and for the first time may offer real-time volumetric soft-tissue guidance concurrent with radiotherapy delivery.

  18. Real Time Surface Registration for PET Motion Tracking

    DEFF Research Database (Denmark)

    Wilm, Jakob; Olesen, Oline Vinter; Paulsen, Rasmus Reinhold

    2011-01-01

    to create point clouds representing parts of the patient's face. The movement is estimated by a rigid registration of the point clouds. The registration should be done using a robust algorithm that can handle partial overlap and ideally operate in real time. We present an optimized Iterative Closest Point......Head movement during high resolution Positron Emission Tomography brain studies causes blur and artifacts in the images. Therefore, attempts are being made to continuously monitor the pose of the head and correct for this movement. Specifically, our method uses a structured light scanner system...... algorithm that operates at 10 frames per second on partial human face surfaces. © 2011 Springer-Verlag....

  19. Implementation of an RBF neural network on embedded systems: real-time face tracking and identity verification.

    Science.gov (United States)

    Yang, Fan; Paindavoine, M

    2003-01-01

    This paper describes a real time vision system that allows us to localize faces in video sequences and verify their identity. These processes are image processing techniques based on the radial basis function (RBF) neural network approach. The robustness of this system has been evaluated quantitatively on eight video sequences. We have adapted our model for an application of face recognition using the Olivetti Research Laboratory (ORL), Cambridge, UK, database so as to compare the performance against other systems. We also describe three hardware implementations of our model on embedded systems based on the field programmable gate array (FPGA), zero instruction set computer (ZISC) chips, and digital signal processor (DSP) TMS320C62, respectively. We analyze the algorithm complexity and present results of hardware implementations in terms of the resources used and processing speed. The success rates of face tracking and identity verification are 92% (FPGA), 85% (ZISC), and 98.2% (DSP), respectively. For the three embedded systems, the processing speeds for images size of 288 /spl times/ 352 are 14 images/s, 25 images/s, and 4.8 images/s, respectively.

  20. Feasibility of real-time location systems in monitoring recovery after major abdominal surgery.

    Science.gov (United States)

    Dorrell, Robert D; Vermillion, Sarah A; Clark, Clancy J

    2017-12-01

    Early mobilization after major abdominal surgery decreases postoperative complications and length of stay, and has become a key component of enhanced recovery pathways. However, objective measures of patient movement after surgery are limited. Real-time location systems (RTLS), typically used for asset tracking, provide a novel approach to monitoring in-hospital patient activity. The current study investigates the feasibility of using RTLS to objectively track postoperative patient mobilization. The real-time location system employs a meshed network of infrared and RFID sensors and detectors that sample device locations every 3 s resulting in over 1 million data points per day. RTLS tracking was evaluated systematically in three phases: (1) sensitivity and specificity of the tracking device using simulated patient scenarios, (2) retrospective passive movement analysis of patient-linked equipment, and (3) prospective observational analysis of a patient-attached tracking device. RTLS tracking detected a simulated movement out of a room with sensitivity of 91% and specificity 100%. Specificity decreased to 75% if time out of room was less than 3 min. All RTLS-tagged patient-linked equipment was identified for 18 patients, but measurable patient movement associated with equipment was detected for only 2 patients (11%) with 1-8 out-of-room walks per day. Ten patients were prospectively monitored using RTLS badges following major abdominal surgery. Patient movement was recorded using patient diaries, direct observation, and an accelerometer. Sensitivity and specificity of RTLS patient tracking were both 100% in detecting out-of-room ambulation and correlated well with direct observation and patient-reported ambulation. Real-time location systems are a novel technology capable of objectively and accurately monitoring patient movement and provide an innovative approach to promoting early mobilization after surgery.

  1. Pre-hospital transport times and survival for Hypotensive patients with penetrating thoracic trauma

    Directory of Open Access Journals (Sweden)

    Mamta Swaroop

    2013-01-01

    Full Text Available Background: Achieving definitive care within the "Golden Hour" by minimizing response times is a consistent goal of regional trauma systems . This study hypothesizes that in urban Level I Trauma Centers, shorter pre-hospital times would predict outcomes in penetrating thoracic injuries. Materials and Methods: A retrospective cohort study was performed using a statewide trauma registry for the years 1999-2003 . Total pre-hospital times were measured for urban victims of penetrating thoracic trauma. Crude and adjusted mortality rates were compared by pre-hospital time using STATA statistical software. Results: During the study period, 908 patients presented to the hospital after penetrating thoracic trauma, with 79% surviving . Patients with higher injury severity scores (ISS were transported more quickly. Injury severity scores (ISS ≥16 and emergency department (ED hypotension (systolic blood pressure, SBP <90 strongly predicted mortality (P < 0.05 for each . In a logistic regression model including age, race, and ISS, longer transport times for hypotensive patients were associated with higher mortality rates (all P values <0.05. This was seen most significantly when comparing patient transport times 0-15 min and 46-60 min (P < 0.001. Conclusion: In victims of penetrating thoracic trauma, more severely injured patients arrive at urban trauma centers sooner . Mortality is strongly predicted by injury severity, although shorter pre-hospital times are associated with improved survival . These results suggest that careful planning to optimize transport time-encompassing hospital capacity and existing resources, traffic patterns, and trauma incident densities may be beneficial in areas with a high burden of penetrating trauma.

  2. Real-time, in vivo measurement of radiation dose during radioimmunotherapy in mice using a miniature MOSFET dosimeter probe

    International Nuclear Information System (INIS)

    Gladstone, D.J.; Chin, L.M.

    1995-01-01

    This report presents the first real-time measurement of absorbed radiation dose during radioimmunotherapy in mice. Dose rate and total dose at the center of the tumor were measured after administration of 90 Y-labeled antibodies using a miniature metal oxide semiconductor field-effect transistor radiation dosimeter probe which was inserted into the center of the tumor volume. Continuous real-time measurements were made for as long as 23 h after injection of the radiolabeled antibodies. Comparison of the real-time dose-rate measurements with estimates based on the MIRD formalism indicates good agreement. The real-time measurements are further compared to measurements made in a second experiment in which groups of mice were sacrificed at individual times after injection of the same radiolabeled antibodies. The real-time measurements agree well with the measurements in excised tumors. The real-time measurements have greater time resolution and are much more efficient than traditional uptake measurements. 17 refs., 2 figs

  3. ADAPTIVE BACKGROUND DENGAN METODE GAUSSIAN MIXTURE MODELS UNTUK REAL-TIME TRACKING

    Directory of Open Access Journals (Sweden)

    Silvia Rostianingsih

    2008-01-01

    Full Text Available Nowadays, motion tracking application is widely used for many purposes, such as detecting traffic jam and counting how many people enter a supermarket or a mall. A method to separate background and the tracked object is required for motion tracking. It will not be hard to develop the application if the tracking is performed on a static background, but it will be difficult if the tracked object is at a place with a non-static background, because the changing part of the background can be recognized as a tracking area. In order to handle the problem an application can be made to separate background where that separation can adapt to change that occur. This application is made to produce adaptive background using Gaussian Mixture Models (GMM as its method. GMM method clustered the input pixel data with pixel color value as it’s basic. After the cluster formed, dominant distributions are choosen as background distributions. This application is made by using Microsoft Visual C 6.0. The result of this research shows that GMM algorithm could made adaptive background satisfactory. This proofed by the result of the tests that succeed at all condition given. This application can be developed so the tracking process integrated in adaptive background maker process. Abstract in Bahasa Indonesia : Saat ini, aplikasi motion tracking digunakan secara luas untuk banyak tujuan, seperti mendeteksi kemacetan dan menghitung berapa banyak orang yang masuk ke sebuah supermarket atau sebuah mall. Sebuah metode untuk memisahkan antara background dan obyek yang di-track dibutuhkan untuk melakukan motion tracking. Membuat aplikasi tracking pada background yang statis bukanlah hal yang sulit, namun apabila tracking dilakukan pada background yang tidak statis akan lebih sulit, dikarenakan perubahan background dapat dikenali sebagai area tracking. Untuk mengatasi masalah tersebut, dapat dibuat suatu aplikasi untuk memisahkan background dimana aplikasi tersebut dapat

  4. TU-PIS-Exhibit Hall-3: Simultaneous tracking of patient and real time staff dose to optimize interventional workflow

    International Nuclear Information System (INIS)

    Boon, S.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  5. TU-PIS-Exhibit Hall-3: Simultaneous tracking of patient and real time staff dose to optimize interventional workflow

    Energy Technology Data Exchange (ETDEWEB)

    Boon, S.

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  6. Real-time systems

    OpenAIRE

    Badr, Salah M.; Bruztman, Donald P.; Nelson, Michael L.; Byrnes, Ronald Benton

    1992-01-01

    This paper presents an introduction to the basic issues involved in real-time systems. Both real-time operating sys and real-time programming languages are explored. Concurrent programming and process synchronization and communication are also discussed. The real-time requirements of the Naval Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real-time operating system, real-time programming language, real-time sy...

  7. Strategies for real-time position control of a single atom in cavity QED

    International Nuclear Information System (INIS)

    Lynn, T W; Birnbaum, K; Kimble, H J

    2005-01-01

    Recent realizations of single-atom trapping and tracking in cavity QED open the door for feedback schemes which actively stabilize the motion of a single atom in real time. We present feedback algorithms for cooling the radial component of motion for a single atom trapped by strong coupling to single-photon fields in an optical cavity. Performance of various algorithms is studied through simulations of single-atom trajectories, with full dynamical and measurement noise included. Closed loop feedback algorithms compare favourably to open loop 'switching' analogues, demonstrating the importance of applying actual position information in real time. The high optical information rate in current experiments enables real-time tracking that approaches the standard quantum limit for broadband position measurements, suggesting that realistic active feedback schemes may reach a regime where measurement backaction appreciably alters the motional dynamics

  8. Real-Time Facial Segmentation and Performance Capture from RGB Input

    OpenAIRE

    Saito, Shunsuke; Li, Tianye; Li, Hao

    2016-01-01

    We introduce the concept of unconstrained real-time 3D facial performance capture through explicit semantic segmentation in the RGB input. To ensure robustness, cutting edge supervised learning approaches rely on large training datasets of face images captured in the wild. While impressive tracking quality has been demonstrated for faces that are largely visible, any occlusion due to hair, accessories, or hand-to-face gestures would result in significant visual artifacts and loss of tracking ...

  9. From Diagnosis to Treatment: Clinical Applications of Nanotechnology in Thoracic Surgery

    Science.gov (United States)

    Digesu, Christopher S.; Hofferberth, Sophie C.; Grinstaff, Mark W.; Colson, Yolonda L.

    2016-01-01

    Synopsis Nanotechnology is an emerging field of medicine with significant potential to become a powerful adjunct to cancer therapy, and in particular, thoracic surgery. Using the unique properties of several different nanometer-sized platforms, therapy can be delivered to tumors in a more targeted fashion, with less of the systemic toxicity associated with traditional chemotherapeutics. In addition to the packaged delivery of chemotherapeutic drugs, nanoparticles show potential to aid in the diagnosis, pre-operative characterization, and intraoperative localization of thoracic tumors and their lymphatics. With increasing interest in their clinical application, there is a rapid expansion of in vitro and in vivo studies being conducted that provide a better understanding of potential toxicities and hopes of broader clinical translation. Focused research into nanotechnology’s ability to deliver both diagnostics and therapeutics has led to the development of a field known as nanotheranostics which promises to improve the treatment of thoracic malignancies through enhanced tumor targeting, controlled drug delivery, and therapeutic monitoring. This article reviews the various types of nanoplatforms, their unique properties, and the potential for clinical application in thoracic surgery. PMID:27112260

  10. Magnetic Particle / Magnetic Resonance Imaging: In-Vitro MPI-Guided Real Time Catheter Tracking and 4D Angioplasty Using a Road Map and Blood Pool Tracer Approach.

    Science.gov (United States)

    Salamon, Johannes; Hofmann, Martin; Jung, Caroline; Kaul, Michael Gerhard; Werner, Franziska; Them, Kolja; Reimer, Rudolph; Nielsen, Peter; Vom Scheidt, Annika; Adam, Gerhard; Knopp, Tobias; Ittrich, Harald

    2016-01-01

    In-vitro evaluation of the feasibility of 4D real time tracking of endovascular devices and stenosis treatment with a magnetic particle imaging (MPI) / magnetic resonance imaging (MRI) road map approach and an MPI-guided approach using a blood pool tracer. A guide wire and angioplasty-catheter were labeled with a thin layer of magnetic lacquer. For real time MPI a custom made software framework was developed. A stenotic vessel phantom filled with saline or superparamagnetic iron oxide nanoparticles (MM4) was equipped with bimodal fiducial markers for co-registration in preclinical 7T MRI and MPI. In-vitro angioplasty was performed inflating the balloon with saline or MM4. MPI data were acquired using a field of view of 37.3×37.3×18.6 mm3 and a frame rate of 46 volumes/sec. Analysis of the magnetic lacquer-marks on the devices were performed with electron microscopy, atomic absorption spectrometry and micro-computed tomography. Magnetic marks allowed for MPI/MRI guidance of interventional devices. Bimodal fiducial markers enable MPI/MRI image fusion for MRI based roadmapping. MRI roadmapping and the blood pool tracer approach facilitate MPI real time monitoring of in-vitro angioplasty. Successful angioplasty was verified with MPI and MRI. Magnetic marks consist of micrometer sized ferromagnetic plates mainly composed of iron and iron oxide. 4D real time MP imaging, tracking and guiding of endovascular instruments and in-vitro angioplasty is feasible. In addition to an approach that requires a blood pool tracer, MRI based roadmapping might emerge as a promising tool for radiation free 4D MPI-guided interventions.

  11. Magnetic Particle / Magnetic Resonance Imaging: In-Vitro MPI-Guided Real Time Catheter Tracking and 4D Angioplasty Using a Road Map and Blood Pool Tracer Approach.

    Directory of Open Access Journals (Sweden)

    Johannes Salamon

    Full Text Available In-vitro evaluation of the feasibility of 4D real time tracking of endovascular devices and stenosis treatment with a magnetic particle imaging (MPI / magnetic resonance imaging (MRI road map approach and an MPI-guided approach using a blood pool tracer.A guide wire and angioplasty-catheter were labeled with a thin layer of magnetic lacquer. For real time MPI a custom made software framework was developed. A stenotic vessel phantom filled with saline or superparamagnetic iron oxide nanoparticles (MM4 was equipped with bimodal fiducial markers for co-registration in preclinical 7T MRI and MPI. In-vitro angioplasty was performed inflating the balloon with saline or MM4. MPI data were acquired using a field of view of 37.3×37.3×18.6 mm3 and a frame rate of 46 volumes/sec. Analysis of the magnetic lacquer-marks on the devices were performed with electron microscopy, atomic absorption spectrometry and micro-computed tomography.Magnetic marks allowed for MPI/MRI guidance of interventional devices. Bimodal fiducial markers enable MPI/MRI image fusion for MRI based roadmapping. MRI roadmapping and the blood pool tracer approach facilitate MPI real time monitoring of in-vitro angioplasty. Successful angioplasty was verified with MPI and MRI. Magnetic marks consist of micrometer sized ferromagnetic plates mainly composed of iron and iron oxide.4D real time MP imaging, tracking and guiding of endovascular instruments and in-vitro angioplasty is feasible. In addition to an approach that requires a blood pool tracer, MRI based roadmapping might emerge as a promising tool for radiation free 4D MPI-guided interventions.

  12. Tracking of multiple objects with time-adjustable composite correlation filters

    Science.gov (United States)

    Ruchay, Alexey; Kober, Vitaly; Chernoskulov, Ilya

    2017-09-01

    An algorithm for tracking of multiple objects in video based on time-adjustable adaptive composite correlation filtering is proposed. For each frame a bank of composite correlation filters are designed in such a manner to provide invariance to pose, occlusion, clutter, and illumination changes. The filters are synthesized with the help of an iterative algorithm, which optimizes the discrimination capability for each object. The filters are adapted to the objects changes online using information from the current and past scene frames. Results obtained with the proposed algorithm using real-life scenes are presented and compared with those obtained with state-of-the-art tracking methods in terms of detection efficiency, tracking accuracy, and speed of processing.

  13. The influence of real-time rural transit tracking on traveler perception.

    Science.gov (United States)

    2013-03-01

    Public transportation systems require accurate and reliable information as part of their : day-to-day operations and are increasingly engaging their customers through a variety of online : services and smart phone applications, such as real-time vehi...

  14. Technical Note: A respiratory monitoring and processing system based on computer vision: prototype and proof of principle.

    Science.gov (United States)

    Leduc, Nicolas; Atallah, Vincent; Escarmant, Patrick; Vinh-Hung, Vincent

    2016-09-08

    Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in-house-made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real-time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high-contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axial motion up to 4 mm for deep-breathing patterns. This low-cost, computer-vision system for real-time motion monitoring of the irradiation of breast cancer patients showed submillimetric accuracy and acceptable latency. It allowed the authors to highlight differences in surface motion that may be correlated to tumor motion.v. © 2016 The Authors.

  15. Experimental investigation of a moving averaging algorithm for motion perpendicular to the leaf travel direction in dynamic MLC target tracking

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul [Department of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul, Korea 131-700 and Research Institute of Biomedical Engineering, Catholic University of Korea, Seoul, 131-700 (Korea, Republic of); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States) and Department of Radiation Oncology, Asan Medical Center, Seoul, 138-736 (Korea, Republic of); Department of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul, 131-700 and Research Institute of Biomedical Engineering, Catholic University of Korea, Seoul, 131-700 (Korea, Republic of); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States) and Radiation Physics Laboratory, Sydney Medical School, University of Sydney, 2006 (Australia)

    2011-07-15

    Purpose: In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. Methods: The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a {gamma}-test with a 3%/3 mm criterion. Results: The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the {gamma}-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation

  16. Experimental investigation of a moving averaging algorithm for motion perpendicular to the leaf travel direction in dynamic MLC target tracking.

    Science.gov (United States)

    Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul

    2011-07-01

    In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a tgamma-test with a 3%/3 mm criterion. The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the gamma-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation. The delivery efficiency of

  17. Real-time ultrasonic weld evaluation system

    Science.gov (United States)

    Katragadda, Gopichand; Nair, Satish; Liu, Harry; Brown, Lawrence M.

    1996-11-01

    Ultrasonic testing techniques are currently used as an alternative to radiography for detecting, classifying,and sizing weld defects, and for evaluating weld quality. Typically, ultrasonic weld inspections are performed manually, which require significant operator expertise and time. Thus, in recent years, the emphasis is to develop automated methods to aid or replace operators in critical weld inspections where inspection time, reliability, and operator safety are major issues. During this period, significant advances wee made in the areas of weld defect classification and sizing. Very few of these methods, however have found their way into the market, largely due to the lack of an integrated approach enabling real-time implementation. Also, not much research effort was directed in improving weld acceptance criteria. This paper presents an integrated system utilizing state-of-the-art techniques for a complete automation of the weld inspection procedure. The modules discussed include transducer tracking, classification, sizing, and weld acceptance criteria. Transducer tracking was studied by experimentally evaluating sonic and optical position tracking techniques. Details for this evaluation are presented. Classification is obtained using a multi-layer perceptron. Results from different feature extraction schemes, including a new method based on a combination of time and frequency-domain signal representations are given. Algorithms developed to automate defect registration and sizing are discussed. A fuzzy-logic acceptance criteria for weld acceptance is presented describing how this scheme provides improved robustness compared to the traditional flow-diagram standards.

  18. Thermal Tracking of Sports Players

    Directory of Open Access Journals (Sweden)

    Rikke Gade

    2014-07-01

    Full Text Available We present here a real-time tracking algorithm for thermal video from a sports game. Robust detection of people includes routines for handling occlusions and noise before tracking each detected person with a Kalman filter. This online tracking algorithm is compared with a state-of-the-art offline multi-target tracking algorithm. Experiments are performed on a manually annotated 2-minutes video sequence of a real soccer game. The Kalman filter shows a very promising result on this rather challenging sequence with a tracking accuracy above 70% and is superior compared with the offline tracking approach. Furthermore, the combined detection and tracking algorithm runs in real time at 33 fps, even with large image sizes of 1920 × 480 pixels.

  19. Thermal tracking of sports players.

    Science.gov (United States)

    Gade, Rikke; Moeslund, Thomas B

    2014-07-29

    We present here a real-time tracking algorithm for thermal video from a sports game. Robust detection of people includes routines for handling occlusions and noise before tracking each detected person with a Kalman filter. This online tracking algorithm is compared with a state-of-the-art offline multi-target tracking algorithm. Experiments are performed on a manually annotated 2-minutes video sequence of a real soccer game. The Kalman filter shows a very promising result on this rather challenging sequence with a tracking accuracy above 70% and is superior compared with the offline tracking approach. Furthermore, the combined detection and tracking algorithm runs in real time at 33 fps, even with large image sizes of 1920 × 480 pixels.

  20. Real-time 3-dimensional virtual reality navigation system with open MRI for breast-conserving surgery

    International Nuclear Information System (INIS)

    Tomikawa, Morimasa; Konishi, Kozo; Ieiri, Satoshi; Hong, Jaesung; Uemura, Munenori; Hashizume, Makoto; Shiotani, Satoko; Tokunaga, Eriko; Maehara, Yoshihiko

    2011-01-01

    We report here the early experiences using a real-time three-dimensional (3D) virtual reality navigation system with open magnetic resonance imaging (MRI) for breast-conserving surgery (BCS). Two patients with a non-palpable MRI-detected breast tumor underwent BCS under the guidance of the navigation system. An initial MRI for the breast tumor using skin-affixed markers was performed immediately prior to excision. A percutaneous intramammary dye marker was applied to delineate an excision line, and the computer software '3D Slicer' generated a real-time 3D virtual reality model of the tumor and the puncture needle in the breast. Under guidance by the navigation system, marking procedures were performed without any difficulties. Fiducial registration errors were 3.00 mm for patient no.1, and 4.07 mm for patient no.2. The real-time 3D virtual reality navigation system with open MRI is feasible for safe and accurate excision of non-palpable MRI-detected breast tumors. (author)

  1. WE-G-18C-08: Real Time Tumor Imaging Using a Novel Dynamic Keyhole MRI Reconstruction Technique

    International Nuclear Information System (INIS)

    Lee, D; Pollock, S; Whelan, B; Keall, P; Greer, P; Kim, T

    2014-01-01

    Purpose: To test the hypothesis that the novel Dynamic Keyhole MRI reconstruction technique can accelerate image acquisition whilst maintaining high image quality for lung cancer patients. Methods: 18 MRI datasets from 5 lung cancer patients were acquired using a 3T MRI scanner. These datasets were retrospectively reconstructed using (A) The novel Dynamic Keyhole technique, (B) The conventional keyhole technique and (C) the conventional zero filling technique. The dynamic keyhole technique in MRI refers to techniques in which previously acquired k-space data is used to supplement under sampled data obtained in real time. The novel Dynamic Keyhole technique utilizes a previously acquired a library of kspace datasets in conjunction with central k-space datasets acquired in realtime. A simultaneously acquired respiratory signal is utilized to sort, match and combine the two k-space streams with respect to respiratory displacement. Reconstruction performance was quantified by (1) comparing the keyhole size (which corresponds to imaging speed) required to achieve the same image quality, and (2) maintaining a constant keyhole size across the three reconstruction methods to compare the resulting image quality to the ground truth image. Results: (1) The dynamic keyhole method required a mean keyhole size which was 48% smaller than the conventional keyhole technique and 60% smaller than the zero filling technique to achieve the same image quality. This directly corresponds to faster imaging. (2) When a constant keyhole size was utilized, the Dynamic Keyhole technique resulted in the smallest difference of the tumor region compared to the ground truth. Conclusion: The dynamic keyhole is a simple and adaptable technique for clinical applications requiring real-time imaging and tumor monitoring such as MRI guided radiotherapy. Based on the results from this study, the dynamic keyhole method could increase the imaging frequency by a factor of five compared with full k

  2. Real-Time Location-Based Rendering of Urban Underground Pipelines

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-01-01

    Full Text Available The concealment and complex spatial relationships of urban underground pipelines present challenges in managing them. Recently, augmented reality (AR has been a hot topic around the world, because it can enhance our perception of reality by overlaying information about the environment and its objects onto the real world. Using AR, underground pipelines can be displayed accurately, intuitively, and in real time. We analyzed the characteristics of AR and their application in underground pipeline management. We mainly focused on the AR pipeline rendering procedure based on the BeiDou Navigation Satellite System (BDS and simultaneous localization and mapping (SLAM technology. First, in aiming to improve the spatial accuracy of pipeline rendering, we used differential corrections received from the Ground-Based Augmentation System to compute the precise coordinates of users in real time, which helped us accurately retrieve and draw pipelines near the users, and by scene recognition the accuracy can be further improved. Second, in terms of pipeline rendering, we used Visual-Inertial Odometry (VIO to track the rendered objects and made some improvements to visual effects, which can provide steady dynamic tracking of pipelines even in relatively markerless environments and outdoors. Finally, we used the occlusion method based on real-time 3D reconstruction to realistically express the immersion effect of underground pipelines. We compared our methods to the existing methods and concluded that the method proposed in this research improves the spatial accuracy of pipeline rendering and the portability of the equipment. Moreover, the updating of our rendering procedure corresponded with the moving of the user’s location, thus we achieved a dynamic rendering of pipelines in the real environment.

  3. Real-time measurement system for tracking birefringence, weight, thickness, and surface temperature during drying of solution cast coatings and films

    Science.gov (United States)

    Unsal, E.; Drum, J.; Yucel, O.; Nugay, I. I.; Yalcin, B.; Cakmak, M.

    2012-02-01

    This paper describes the design and performance of a new instrument to track temporal changes in physical parameters during the drying behavior of solutions, as well as curing of monomers. This real-time instrument follows in-plane and out-of-plane birefringence, weight, thickness, and surface temperature during the course of solidification of coatings and films through solvent evaporation and thermal or photocuring in a controlled atmosphere. It is specifically designed to simulate behavior of polymer solutions inside an industrial size, continuous roll-to-roll solution casting line and other coating operations where resins are subjected to ultraviolet (UV) curing from monomer precursors. Controlled processing parameters include air speed, temperature, initial cast thickness, and solute concentration, while measured parameters are thickness, weight, film temperature, in-plane and out-of-plane birefringence. In this paper, we illustrate the utility of this instrument with solution cast and dried poly (amide-imide)/DMAc (Dimethylacetamide) solution, water based black paint, and organo-modified clay/NMP (N-Methylpyrrolidone) solution. In addition, the physical changes that take place during UV photo polymerization of a monomer are tracked. This instrument is designed to be generic and it can be used for tracking any drying/swelling/solidification systems including paper, foodstuffs such as; grains, milk as well as pharmaceutical thin paste and slurries.

  4. Quantification of the kV X-ray imaging dose during real-time tumor tracking and from three- and four-dimensional cone-beam computed tomography in lung cancer patients using a Monte Carlo simulation.

    Science.gov (United States)

    Nakamura, Mitsuhiro; Ishihara, Yoshitomo; Matsuo, Yukinori; Iizuka, Yusuke; Ueki, Nami; Iramina, Hiraku; Hirashima, Hideaki; Mizowaki, Takashi

    2018-03-01

    Knowledge of the imaging doses delivered to patients and accurate dosimetry of the radiation to organs from various imaging procedures is becoming increasingly important for clinicians. The purposes of this study were to calculate imaging doses delivered to the organs of lung cancer patients during real-time tumor tracking (RTTT) with three-dimensional (3D), and four-dimensional (4D) cone-beam computed tomography (CBCT), using Monte Carlo techniques to simulate kV X-ray dose distributions delivered using the Vero4DRT. Imaging doses from RTTT, 3D-CBCT and 4D-CBCT were calculated with the planning CT images for nine lung cancer patients who underwent stereotactic body radiotherapy (SBRT) with RTTT. With RTTT, imaging doses from correlation modeling and from monitoring of imaging during beam delivery were calculated. With CBCT, doses from 3D-CBCT and 4D-CBCT were also simulated. The doses covering 2-cc volumes (D2cc) in correlation modeling were up to 9.3 cGy for soft tissues and 48.4 cGy for bone. The values from correlation modeling and monitoring were up to 11.0 cGy for soft tissues and 59.8 cGy for bone. Imaging doses in correlation modeling were larger with RTTT. On a single 4D-CBCT, the skin and bone D2cc values were in the ranges of 7.4-10.5 cGy and 33.5-58.1 cGy, respectively. The D2cc from 4D-CBCT was approximately double that from 3D-CBCT. Clinicians should Figure that the imaging dose increases the cumulative doses to organs.

  5. Poster - 51: A tumor motion-compensating system with tracking and prediction – a proof-of-concept study

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Kaiming; Teo, Peng; Kawalec, Philip; Pistorius, Stephen [CancerCare Manitoba (Canada)

    2016-08-15

    Purpose: This work reports on the development of a mechanical slider system for the counter-steering of tumor motion in adaptive Radiation Therapy (RT). The tumor motion was tracked using a weighted optical flow algorithm and its position is being predicted with a neural network (NN). Methods: The components of the proposed mechanical counter-steering system includes: (1) an actuator which provides the tumor motion, (2) the motion detection using an optical flow algorithm, (3) motion prediction using a neural network, (4) a control module and (5) a mechanical slider to counter-steer the anticipated motion of the tumor phantom. An asymmetrical cosine function and five patient traces (P1–P5) were used to evaluate the tracking of a 3D printed lung tumor. In the proposed mechanical counter-steering system, both actuator (Zaber NA14D60) and slider (Zaber A-BLQ0070-E01) were programed to move independently with LabVIEW and their positions were recorded by 2 potentiometers (ETI LCP12S-25). The accuracy of this counter-steering system is given by the difference between the two potentiometers. Results: The inherent accuracy of the system, measured using the cosine function, is −0.15 ± 0.06 mm. While the errors when tracking and prediction were included, is (0.04 ± 0.71) mm. Conclusion: A prototype tumor motion counter-steering system with tracking and prediction was implemented. The inherent errors are small in comparison to the tracking and prediction errors, which in turn are small in comparison to the magnitude of tumor motion. The results show that this system is suited for evaluating RT tracking and prediction.

  6. Comparative Analysis of Neural Network Training Methods in Real-time Radiotherapy

    Directory of Open Access Journals (Sweden)

    Nouri S.

    2017-03-01

    Full Text Available Background: The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients. Objective: This study evaluates the accuracy of some artificial intelligence methods including neural network and those of combination with genetic algorithm as well as particle swarm optimization (PSO estimating tumor positions in real-time radiotherapy. Method: One hundred recorded signals of three external markers were used as input data. The signals from 3 markers thorough 10 breathing cycles of a patient treated via a cyber-knife for a lung tumor were used as data input. Then, neural network method and its combination with genetic or PSO algorithms were applied determining the tumor locations using MATLAB© software program. Results: The accuracies were obtained 0.8%, 12% and 14% in neural network, genetic and particle swarm optimization algorithms, respectively. Conclusion: The internal target volume (ITV should be determined based on the applied neural network algorithm on training steps.

  7. Antenatal Diagnosis of Jeune Syndrome (Asphyxiating Thoracic Dysplasia) with Micromelia and Facial Dysmorphism on Second-Trimester Ultrasound

    International Nuclear Information System (INIS)

    Mistry, Kewal A.; Suthar, Pokhraj P.; Bhesania, Siddharth R.; Patel, Ankitkumar

    2015-01-01

    Jeune syndrome is a rare congenital malformation with a reported incidence of 1 in 100,000–130,000 live births. Thoracic hypoplasia is the most striking abnormality of this disorder. Here we report a case of Jeune syndrome with marked thoracic hypoplasia, micromelia and facial dysmorphism, which was diagnosed on a second-trimester antenatal real-time three-dimensional ultrasound. A 24-year-old primigravida came for routine anomaly scan at 19 weeks of gestation. Transabdominal grey scale and real time 3D ultrasound (US) was done with GE Logiq P5 with curvilinear array transducers (4C and 4D3C-L). US findings were consistent with the diagnosis of Jeune syndrome (Asphyxiating thoracic dysplasia). Jeune syndrome is an extremely rare congenital disorder with a spectrum of abnormalities of which thoracic hypoplasia is the most striking. It can be diagnosed on early antenatal US by its characteristic skeletal and morphological features which can guide further management of pregnancy in form of termination or preparation for surgical correction of the deformity

  8. Impact of Real-Time Image Gating on Spot Scanning Proton Therapy for Lung Tumors: A Simulation Study.

    Science.gov (United States)

    Kanehira, Takahiro; Matsuura, Taeko; Takao, Seishin; Matsuzaki, Yuka; Fujii, Yusuke; Fujii, Takaaki; Ito, Yoichi M; Miyamoto, Naoki; Inoue, Tetsuya; Katoh, Norio; Shimizu, Shinichi; Umegaki, Kikuo; Shirato, Hiroki

    2017-01-01

    To investigate the effectiveness of real-time-image gated proton beam therapy for lung tumors and to establish a suitable size for the gating window (GW). A proton beam gated by a fiducial marker entering a preassigned GW (as monitored by 2 fluoroscopy units) was used with 7 lung cancer patients. Seven treatment plans were generated: real-time-image gated proton beam therapy with GW sizes of ±1, 2, 3, 4, 5, and 8 mm and free-breathing proton therapy. The prescribed dose was 70 Gy (relative biological effectiveness)/10 fractions to 99% of the target. Each of the 3-dimensional marker positions in the time series was associated with the appropriate 4-dimensional computed tomography phase. The 4-dimensional dose calculations were performed. The dose distribution in each respiratory phase was deformed into the end-exhale computed tomography image. The D99 and D5 to D95 of the clinical target volume scaled by the prescribed dose with criteria of D99 >95% and D5 to D95 lung, and treatment times were evaluated. Gating windows ≤ ±2 mm fulfilled the CTV criteria for all patients (whereas the criteria were not always met for GWs ≥ ±3 mm) and gave an average reduction in V20 of more than 17.2% relative to free-breathing proton therapy (whereas GWs ≥ ±4 mm resulted in similar or increased V20). The average (maximum) irradiation times were 384 seconds (818 seconds) for the ±1-mm GW, but less than 226 seconds (292 seconds) for the ±2-mm GW. The maximum increased considerably at ±1-mm GW. Real-time-image gated proton beam therapy with a GW of ±2 mm was demonstrated to be suitable, providing good dose distribution without greatly extending treatment time. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Impact of Real-Time Image Gating on Spot Scanning Proton Therapy for Lung Tumors: A Simulation Study

    Energy Technology Data Exchange (ETDEWEB)

    Kanehira, Takahiro [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Matsuura, Taeko, E-mail: matsuura@med.hokudai.ac.jp [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo (Japan); Takao, Seishin; Matsuzaki, Yuka; Fujii, Yusuke; Fujii, Takaaki [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Ito, Yoichi M. [Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Miyamoto, Naoki [Department of Medical Physics, Hokkaido University Hospital, Sapporo (Japan); Inoue, Tetsuya [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Katoh, Norio [Department of Radiation Oncology, Hokkaido University Hospital, Sapporo (Japan); Shimizu, Shinichi [Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Department of Radiation Oncology, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Umegaki, Kikuo [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo (Japan); Shirato, Hiroki [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan)

    2017-01-01

    Purpose: To investigate the effectiveness of real-time-image gated proton beam therapy for lung tumors and to establish a suitable size for the gating window (GW). Methods and Materials: A proton beam gated by a fiducial marker entering a preassigned GW (as monitored by 2 fluoroscopy units) was used with 7 lung cancer patients. Seven treatment plans were generated: real-time-image gated proton beam therapy with GW sizes of ±1, 2, 3, 4, 5, and 8 mm and free-breathing proton therapy. The prescribed dose was 70 Gy (relative biological effectiveness)/10 fractions to 99% of the target. Each of the 3-dimensional marker positions in the time series was associated with the appropriate 4-dimensional computed tomography phase. The 4-dimensional dose calculations were performed. The dose distribution in each respiratory phase was deformed into the end-exhale computed tomography image. The D99 and D5 to D95 of the clinical target volume scaled by the prescribed dose with criteria of D99 >95% and D5 to D95 <5%, V20 for the normal lung, and treatment times were evaluated. Results: Gating windows ≤ ±2 mm fulfilled the CTV criteria for all patients (whereas the criteria were not always met for GWs ≥ ±3 mm) and gave an average reduction in V20 of more than 17.2% relative to free-breathing proton therapy (whereas GWs ≥ ±4 mm resulted in similar or increased V20). The average (maximum) irradiation times were 384 seconds (818 seconds) for the ±1-mm GW, but less than 226 seconds (292 seconds) for the ±2-mm GW. The maximum increased considerably at ±1-mm GW. Conclusion: Real-time-image gated proton beam therapy with a GW of ±2 mm was demonstrated to be suitable, providing good dose distribution without greatly extending treatment time.

  10. REAL TIME SPEED ESTIMATION FROM MONOCULAR VIDEO

    Directory of Open Access Journals (Sweden)

    M. S. Temiz

    2012-07-01

    Full Text Available In this paper, detailed studies have been performed for developing a real time system to be used for surveillance of the traffic flow by using monocular video cameras to find speeds of the vehicles for secure travelling are presented. We assume that the studied road segment is planar and straight, the camera is tilted downward a bridge and the length of one line segment in the image is known. In order to estimate the speed of a moving vehicle from a video camera, rectification of video images is performed to eliminate the perspective effects and then the interest region namely the ROI is determined for tracking the vehicles. Velocity vectors of a sufficient number of reference points are identified on the image of the vehicle from each video frame. For this purpose sufficient number of points from the vehicle is selected, and these points must be accurately tracked on at least two successive video frames. In the second step, by using the displacement vectors of the tracked points and passed time, the velocity vectors of those points are computed. Computed velocity vectors are defined in the video image coordinate system and displacement vectors are measured by the means of pixel units. Then the magnitudes of the computed vectors in the image space are transformed to the object space to find the absolute values of these magnitudes. The accuracy of the estimated speed is approximately ±1 – 2 km/h. In order to solve the real time speed estimation problem, the authors have written a software system in C++ programming language. This software system has been used for all of the computations and test applications.

  11. Real-time dynamic MLC tracking for inversely optimized arc radiotherapy

    DEFF Research Database (Denmark)

    Falk, Marianne; af Rosenschöld, Per Munck; Keall, Paul

    2010-01-01

    Motion compensation with MLC tracking was tested for inversely optimized arc radiotherapy with special attention to the impact of the size of the target displacements and the angle of the leaf trajectory.......Motion compensation with MLC tracking was tested for inversely optimized arc radiotherapy with special attention to the impact of the size of the target displacements and the angle of the leaf trajectory....

  12. The case for a Supersite for real-time GNSS hazard monitoring on a global scale

    Science.gov (United States)

    Bar-Sever, Y. E.

    2017-12-01

    Real-time measurements from many hundreds of GNSS tracking sites around the world are publicly available today, and the amount of streaming data is steadily increasing as national agencies densify their local and global infrastructure for natural hazard monitoring and a variety of geodetic, cadastral, and other civil applications. Thousands of such sites can soon be expected on a global scale. It is a challenge to manage and make optimal use of this massive amount of real-time data. We advocate the creation of Supersite(s), in the parlance of the U.N. Global Earth Observation System of Systems (https://www.earthobservations.org/geoss.php), to generate high level real-time data products from the raw GNSS measurements from all available sources (many thousands of sites). These products include: • High rate, real-time positioning time series for assessing rapid crustal motion due to Earthquakes, volcanic activities, land slides, etc. • Co-seismic displacement to help resolve earthquake mechanism and moment magnitude • Real-time total electron content (TEC) fluctuations to augment Dart buoy in detecting and tracking tsunamis • Aggregation of the many disparate raw data dispensation servers (Casters)Recognizing that natural hazards transcend national boundaries in terms of direct and indirect (e.g., economical, security) impact, the benefits from centralized, authoritative processing of GNSS measurements is manifold: • Offers a one-stop shop to less developed nations and institutions for raw and high-level products, in support of research and applications • Promotes the installation of tracking sites and the contribution of data from nations without the ability to process the data • Reduce dependency on local responsible agencies impacted by a natural disaster • Reliable 24/7 operations, independent of voluntary, best effort contributions from good-willing scientific organizationsThe JPL GNSS Real-Time Earthquake and Tsunami (GREAT) Alert has been

  13. Real-time geometry-aware augmented reality in minimally invasive surgery.

    Science.gov (United States)

    Chen, Long; Tang, Wen; John, Nigel W

    2017-10-01

    The potential of augmented reality (AR) technology to assist minimally invasive surgery (MIS) lies in its computational performance and accuracy in dealing with challenging MIS scenes. Even with the latest hardware and software technologies, achieving both real-time and accurate augmented information overlay in MIS is still a formidable task. In this Letter, the authors present a novel real-time AR framework for MIS that achieves interactive geometric aware AR in endoscopic surgery with stereo views. The authors' framework tracks the movement of the endoscopic camera and simultaneously reconstructs a dense geometric mesh of the MIS scene. The movement of the camera is predicted by minimising the re-projection error to achieve a fast tracking performance, while the three-dimensional mesh is incrementally built by a dense zero mean normalised cross-correlation stereo-matching method to improve the accuracy of the surface reconstruction. The proposed system does not require any prior template or pre-operative scan and can infer the geometric information intra-operatively in real time. With the geometric information available, the proposed AR framework is able to interactively add annotations, localisation of tumours and vessels, and measurement labelling with greater precision and accuracy compared with the state-of-the-art approaches.

  14. Tracking by Machine Learning Methods

    CERN Document Server

    Jofrehei, Arash

    2015-01-01

    Current track reconstructing methods start with two points and then for each layer loop through all possible hits to find proper hits to add to that track. Another idea would be to use this large number of already reconstructed events and/or simulated data and train a machine on this data to find tracks given hit pixels. Training time could be long but real time tracking is really fast Simulation might not be as realistic as real data but tacking has been done for that with 100 percent efficiency while by using real data we would probably be limited to current efficiency.

  15. Real-time Visualization of Tissue Dynamics during Embryonic Development and Malignant Transformation

    Science.gov (United States)

    Yamada, Kenneth

    Tissues undergo dramatic changes in organization during embryonic development, as well as during cancer progression and invasion. Recent advances in microscopy now allow us to visualize and track directly the dynamic movements of tissues, their constituent cells, and cellular substructures. This behavior can now be visualized not only in regular tissue culture on flat surfaces (`2D' environments), but also in a variety of 3D environments that may provide physiological cues relevant to understanding dynamics within living organisms. Acquisition of imaging data using various microscopy modalities will provide rich opportunities for determining the roles of physical factors and for computational modeling of complex processes in living tissues. Direct visualization of real-time motility is providing insight into biology spanning multiple spatio-temporal scales. Many cells in our body are known to be in contact with connective tissue and other forms of extracellular matrix. They do so through microscopic cellular adhesions that bind to matrix proteins. In particular, fluorescence microscopy has revealed that cells dynamically probe and bend the matrix at the sites of cell adhesions, and that 3D matrix architecture, stiffness, and elasticity can each regulate migration of the cells. Conversely, cells remodel their local matrix as organs form or tumors invade. Cancer cells can invade tissues using microscopic protrusions that degrade the surrounding matrix; in this case, the local matrix protein concentration is more important for inducing the micro-invasive protrusions than stiffness. On the length scales of tissues, transiently high rates of individual cell movement appear to help establish organ architecture. In fact, isolated cells can self-organize to form tissue structures. In all of these cases, in-depth real-time visualization will ultimately provide the extensive data needed for computer modeling and for testing hypotheses in which physical forces interact

  16. Architecture for an integrated real-time air combat and sensor network simulation

    Science.gov (United States)

    Criswell, Evans A.; Rushing, John; Lin, Hong; Graves, Sara

    2007-04-01

    An architecture for an integrated air combat and sensor network simulation is presented. The architecture integrates two components: a parallel real-time sensor fusion and target tracking simulation, and an air combat simulation. By integrating these two simulations, it becomes possible to experiment with scenarios in which one or both sides in a battle have very large numbers of primitive passive sensors, and to assess the likely effects of those sensors on the outcome of the battle. Modern Air Power is a real-time theater-level air combat simulation that is currently being used as a part of the USAF Air and Space Basic Course (ASBC). The simulation includes a variety of scenarios from the Vietnam war to the present day, and also includes several hypothetical future scenarios. Modern Air Power includes a scenario editor, an order of battle editor, and full AI customization features that make it possible to quickly construct scenarios for any conflict of interest. The scenario editor makes it possible to place a wide variety of sensors including both high fidelity sensors such as radars, and primitive passive sensors that provide only very limited information. The parallel real-time sensor network simulation is capable of handling very large numbers of sensors on a computing cluster of modest size. It can fuse information provided by disparate sensors to detect and track targets, and produce target tracks.

  17. A Non-invasive Real-time Localization System for Enhanced Efficacy in Nasogastric Intubation.

    Science.gov (United States)

    Sun, Zhenglong; Foong, Shaohui; Maréchal, Luc; Tan, U-Xuan; Teo, Tee Hui; Shabbir, Asim

    2015-12-01

    Nasogastric (NG) intubation is one of the most commonly performed clinical procedures. Real-time localization and tracking of the NG tube passage at the larynx region into the esophagus is crucial for safety, but is lacking in current practice. In this paper, we present the design, analysis and evaluation of a non-invasive real-time localization system using passive magnetic tracking techniques to improve efficacy of the clinical NG intubation process. By embedding a small permanent magnet at the insertion tip of the NG tube, a wearable system containing embedded sensors around the neck can determine the absolute position of the NG tube inside the body in real-time to assist in insertion. In order to validate the feasibility of the proposed system in detecting erroneous tube placement, typical reference intubation trajectories are first analyzed using anatomically correct models and localization accuracy of the system are evaluated using a precise robotic platform. It is found that the root-mean-squared tracking accuracy is within 5.3 mm for both the esophagus and trachea intubation pathways. Experiments were also designed and performed to demonstrate that the system is capable of tracking the NG tube accurately in biological environments even in presence of stationary ferromagnetic objects (such as clinical instruments). With minimal physical modification to the NG tube and clinical process, this system allows accurate and efficient localization and confirmation of correct NG tube placement without supplemental radiographic methods which is considered the current clinical standard.

  18. Real-time position reconstruction with hippocampal place cells.

    Science.gov (United States)

    Guger, Christoph; Gener, Thomas; Pennartz, Cyriel M A; Brotons-Mas, Jorge R; Edlinger, Günter; Bermúdez I Badia, S; Verschure, Paul; Schaffelhofer, Stefan; Sanchez-Vives, Maria V

    2011-01-01

    Brain-computer interfaces (BCI) are using the electroencephalogram, the electrocorticogram and trains of action potentials as inputs to analyze brain activity for communication purposes and/or the control of external devices. Thus far it is not known whether a BCI system can be developed that utilizes the states of brain structures that are situated well below the cortical surface, such as the hippocampus. In order to address this question we used the activity of hippocampal place cells (PCs) to predict the position of an rodent in real-time. First, spike activity was recorded from the hippocampus during foraging and analyzed off-line to optimize the spike sorting and position reconstruction algorithm of rats. Then the spike activity was recorded and analyzed in real-time. The rat was running in a box of 80 cm × 80 cm and its locomotor movement was captured with a video tracking system. Data were acquired to calculate the rat's trajectories and to identify place fields. Then a Bayesian classifier was trained to predict the position of the rat given its neural activity. This information was used in subsequent trials to predict the rat's position in real-time. The real-time experiments were successfully performed and yielded an error between 12.2 and 17.4% using 5-6 neurons. It must be noted here that the encoding step was done with data recorded before the real-time experiment and comparable accuracies between off-line (mean error of 15.9% for three rats) and real-time experiments (mean error of 14.7%) were achieved. The experiment shows proof of principle that position reconstruction can be done in real-time, that PCs were stable and spike sorting was robust enough to generalize from the training run to the real-time reconstruction phase of the experiment. Real-time reconstruction may be used for a variety of purposes, including creating behavioral-neuronal feedback loops or for implementing neuroprosthetic control.

  19. Detection of Tumor Cell-Specific mRNA in the Peripheral Blood of Patients with Breast Cancer — Evaluation of Several Markers with Real-Time Reverse Transcription-PCR

    Directory of Open Access Journals (Sweden)

    Ulrich Andergassen

    2013-01-01

    Full Text Available It is widely known that cells from epithelial tumors, e.g., breast cancer, detach from their primary tissue and enter blood circulation. We show that the presence of circulating tumor cells (CTCs in samples of patients with primary and metastatic breast cancer can be detected with an array of selected tumor-marker-genes by reverse transcription real-time PCR. The focus of the presented work is on detecting differences in gene expression between healthy individuals and adjuvant and metastatic breast cancer patients, not an accurate quantification of these differences. Therefore, total RNA was isolated from blood samples of healthy donors and patients with primary or metastatic breast cancer after enrichment of mononuclear cells by density gradient centrifugation. After reverse transcription real-time PCR was carried out with a set of marker genes (BCSP, CK8, Her2, MGL, CK18, CK19. B2M and GAPDH were used as reference genes. Blood samples from patients with metastatic disease revealed increased cytokine gene levels in comparison to normal blood samples. Detection of a single gene was not sufficient to detect CTCs by reverse transcription real-time PCR. Markers used here were selected based on a recent study detecting cancer cells on different protein levels. The combination of such a marker array leads to higher and more specific discovery rates, predominantly in metastatic patients. Identification of CTCs by PCR methods may lead to better diagnosis and prognosis and could help to choose an adequate therapy.

  20. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul [Stanford University, Stanford, California 94394 (United States); Varian Medical Systems, Palo Alto, California 94304 (United States); Stanford University, Stanford, California 94394 (United States)

    2010-12-15

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN{>=}125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g