WorldWideScience

Sample records for real-time pcr amplification

  1. Quantitative (real-time) PCR

    International Nuclear Information System (INIS)

    Denman, S.E.; McSweeney, C.S.

    2005-01-01

    Many nucleic acid-based probe and PCR assays have been developed for the detection tracking of specific microbes within the rumen ecosystem. Conventional PCR assays detect PCR products at the end stage of each PCR reaction, where exponential amplification is no longer being achieved. This approach can result in different end product (amplicon) quantities being generated. In contrast, using quantitative, or real-time PCR, quantification of the amplicon is performed not at the end of the reaction, but rather during exponential amplification, where theoretically each cycle will result in a doubling of product being created. For real-time PCR, the cycle at which fluorescence is deemed to be detectable above the background during the exponential phase is termed the cycle threshold (Ct). The Ct values obtained are then used for quantitation, which will be discussed later

  2. Locked nucleic acid inhibits amplification of contaminating DNA in real-time PCR

    DEFF Research Database (Denmark)

    Hummelshoj, Lone; Ryder, Lars P; Madsen, Hans O

    2005-01-01

    and real-time PCR, the addition of LNA showed blocking of the amplification of genomic XBP1 but not cDNA XBP1. To test the effect of melting temperature (Tm) on the LNA, we investigated the number of LNA nucleotides that could be replaced with DNA nucleotides and still retain the blocking activity. More...

  3. Mathematical analysis of the real time array PCR (RTA PCR) process

    NARCIS (Netherlands)

    Dijksman, Johan Frederik; Pierik, A.

    2012-01-01

    Real time array PCR (RTA PCR) is a recently developed biochemical technique that measures amplification curves (like with quantitative real time Polymerase Chain Reaction (qRT PCR)) of a multitude of different templates in a sample. It combines two different methods in order to profit from the

  4. Real-time PCR in virology.

    Science.gov (United States)

    Mackay, Ian M; Arden, Katherine E; Nitsche, Andreas

    2002-03-15

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.

  5. Shape based kinetic outlier detection in real-time PCR

    Directory of Open Access Journals (Sweden)

    D'Atri Mario

    2010-04-01

    Full Text Available Abstract Background Real-time PCR has recently become the technique of choice for absolute and relative nucleic acid quantification. The gold standard quantification method in real-time PCR assumes that the compared samples have similar PCR efficiency. However, many factors present in biological samples affect PCR kinetic, confounding quantification analysis. In this work we propose a new strategy to detect outlier samples, called SOD. Results Richards function was fitted on fluorescence readings to parameterize the amplification curves. There was not a significant correlation between calculated amplification parameters (plateau, slope and y-coordinate of the inflection point and the Log of input DNA demonstrating that this approach can be used to achieve a "fingerprint" for each amplification curve. To identify the outlier runs, the calculated parameters of each unknown sample were compared to those of the standard samples. When a significant underestimation of starting DNA molecules was found, due to the presence of biological inhibitors such as tannic acid, IgG or quercitin, SOD efficiently marked these amplification profiles as outliers. SOD was subsequently compared with KOD, the current approach based on PCR efficiency estimation. The data obtained showed that SOD was more sensitive than KOD, whereas SOD and KOD were equally specific. Conclusion Our results demonstrated, for the first time, that outlier detection can be based on amplification shape instead of PCR efficiency. SOD represents an improvement in real-time PCR analysis because it decreases the variance of data thus increasing the reliability of quantification.

  6. Application of reverse transcription-PCR and real-time PCR in nanotoxicity research.

    Science.gov (United States)

    Mo, Yiqun; Wan, Rong; Zhang, Qunwei

    2012-01-01

    Reverse transcription-polymerase chain reaction (RT-PCR) is a relatively simple and inexpensive technique to determine the expression level of target genes and is widely used in biomedical science research including nanotoxicology studies for semiquantitative analysis. Real-time PCR allows for the detection of PCR amplification in the exponential growth phase of the reaction and is much more quantitative than traditional RT-PCR. Although a number of kits and reagents for RT-PCR and real-time PCR are commercially available, the basic principles are the same. Here, we describe the procedures for total RNA isolation by using TRI Reagent, for reverse transcription (RT) by M-MLV reverse transcriptase, and for PCR by GoTaq(®) DNA Polymerase. And real-time PCR will be performed on an iQ5 multicolor real-time PCR detection system by using iQ™ SYBR Green Supermix.

  7. Real-time quantitative PCR of microdissected paraffin-embedded breast carcinoma

    DEFF Research Database (Denmark)

    Gjerdrum, Lise Mette; Sorensen, Boe Sandahl; Kjeldsen, Eigil

    2004-01-01

    We studied the feasibility of using real-time quantitative PCR to determine HER-2 DNA amplification and mRNA expression in microdissected formalin-fixed, paraffin-embedded breast tumors and compared this with standard immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) methods...... tumors as being amplified. Interestingly, all these scored 2+ with the HercepTest, but were negative using FISH. We believe that real-time quantitative PCR analysis of HER-2 DNA amplification following microdissection represents a useful supplementary or perhaps even an alternative technique...

  8. Loop mediated isothermal amplification assay using hydroxy naphthol blue, conventional polymerase chain reaction and real-time PCR in the diagnosis of intraocular tuberculosis

    Directory of Open Access Journals (Sweden)

    P K Balne

    2015-01-01

    Full Text Available This study is a comparative evaluation (Chi-square test of a closed tube loop mediated isothermal amplification assay using hydroxy naphthol blue dye (HNB-LAMP, real-time polymerase chain reaction (PCR and conventional PCR in the diagnosis of intraocular tuberculosis. Considering clinical presentation as the gold standard in 33 patients, the sensitivity of HNB-LAMP assay (75.8% was higher (not significant, P value 0.2 than conventional PCR (57.6% and lower than real-time PCR (90.9%. Specificity was 100% by all three methods. No amplification was observed in negative controls (n = 20 by all three methods. The cost of the HNB-LAMP assay was Rs. 500.00 and it does not require thermocycler, therefore, it can be used as an alternative to conventional PCR in resource-poor settings.

  9. Result Variation and Efficiency Kinetics in Real-Time PCR

    Directory of Open Access Journals (Sweden)

    Reza Shahsiah

    2010-10-01

    Full Text Available Fluorescent monitoring of DNA amplification is the basis of real-time PCR. Absolute quantification can be achieved using a standard curve method. The standard curve is constructed by amplifying known amounts of standards under identical conditions to that of the samples.The objective of the current study is to propose a mathematical model to assess the acceptability of PCR resulys.Four commercial standards for HCV-RNA (hepatitis C virus RNA along with 6 patient samples were measured by real-time PCR, using two different RT-PCR reagents. The standard deviation of regression (Sy,x was calculated for each group of standard and compared by F-Test. The efficiency kinetics was computed by logistic regression, c2 goodness of fit test was preformed to assess the appropriateness of the efficiency curves.Calculated efficiencies were not significantly different from the value predicted by logistic regression model. Reactions with more variation showed less stable efficiency curves, with wider range of amplification efficiencies.Amplification efficiency kinetics can be computed by fitting a logistic regression curve to the gathered fluorescent data of each reaction. This model can be employed to assess the acceptability of PCR results calculated by standard curve method.

  10. Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing

    Science.gov (United States)

    Espy, M. J.; Uhl, J. R.; Sloan, L. M.; Buckwalter, S. P.; Jones, M. F.; Vetter, E. A.; Yao, J. D. C.; Wengenack, N. L.; Rosenblatt, J. E.; Cockerill, F. R.; Smith, T. F.

    2006-01-01

    Real-time PCR has revolutionized the way clinical microbiology laboratories diagnose many human microbial infections. This testing method combines PCR chemistry with fluorescent probe detection of amplified product in the same reaction vessel. In general, both PCR and amplified product detection are completed in an hour or less, which is considerably faster than conventional PCR detection methods. Real-time PCR assays provide sensitivity and specificity equivalent to that of conventional PCR combined with Southern blot analysis, and since amplification and detection steps are performed in the same closed vessel, the risk of releasing amplified nucleic acids into the environment is negligible. The combination of excellent sensitivity and specificity, low contamination risk, and speed has made real-time PCR technology an appealing alternative to culture- or immunoassay-based testing methods for diagnosing many infectious diseases. This review focuses on the application of real-time PCR in the clinical microbiology laboratory. PMID:16418529

  11. EFFICIENCY OF REAL-TIME PCR FOR 18S rRNA AMPLIFICATION OF SORBUS DOMESTICA, L.

    Directory of Open Access Journals (Sweden)

    Petronela Poláčeková

    2012-10-01

    Full Text Available Normal 0 21 false false false SK X-NONE X-NONE Nowadays, the awareness is given more and more to underutilized and  unusual fruits. One of them is Sorbus domestica, L. not only as an endangered species, but as well as a promising and economically usable crop. The work was aimed for finding a total genomic DNA isolating methods from fresh plant material and confirmation of the optimized method by the detection of 18S rRNA gene using real-time PCR. Two commercial isolation kits were tested -  Invisorb® Spin Plant Mini Kit and Wizard ® Genomic DNA. Higher purity and yield of DNA isolation kit showed Invisorb kit. The effective and pure PCR amplification was confirmed for Invisorb, too when 20 ng undiluted DNA at annealing temperature of 64.5 °C.doi:10.5219/203

  12. Quantification of low-expressed mRNA using 5' LNA-containing real-time PCR primers

    International Nuclear Information System (INIS)

    Malgoyre, A.; Banzet, S.; Mouret, C.; Bigard, A.X.; Peinnequin, A.

    2007-01-01

    Real-time RT-PCR is the most sensitive and accurate method for mRNA quantification. Using specific recombinant DNA as a template, real-time PCR allows accurate quantification within a 7-log range and increased sensitivity below 10 copies. However, when using RT-PCR to quantify mRNA in biological samples, a stochastic off-targeted amplification can occur. Classical adjustments of assay parameters have minimal effects on such amplification. This undesirable amplification appears mostly to be dependent on specific to non-specific target ratio rather than on the absolute quantity of the specific target. This drawback, which decreases assay reliability, mostly appears when quantifying low-expressed transcript in a whole organ. An original primer design using properties of LNA allows to block off-target amplification. 5'-LNA substitution strengthens 5'-hybridization. Consequently on-target hybridization is stabilized and the probability for the off-target to lead to amplification is decreased

  13. Whole blood Nested PCR and Real-time PCR amplification of Talaromyces marneffei specific DNA for diagnosis.

    Science.gov (United States)

    Lu, Sha; Li, Xiqing; Calderone, Richard; Zhang, Jing; Ma, Jianchi; Cai, Wenying; Xi, Liyan

    2016-02-01

    Talaromyces marneffei is a dimorphic pathogenic fungus, which is a life-threatening invasive mycosis in the immunocompromised host. Prompt diagnosis of T. marneffei infection remains difficult although there has been progress in attempts to expedite the diagnosis of this infection. We previously demonstrated the value of nested polymerase chain reaction (PCR) to detect T. marneffei in paraffin embedded tissue samples with high sensitivity and specificity. In this study, this assay was used to detect the DNA of T. marneffei in whole blood samples. Real-time PCR assay was also evaluated to identify T. marneffei in the same samples. Twenty out of 30 whole blood samples (67%) collected from 23 patients were found positive by using the nested PCR assay, while 23/30 (77%) samples were found positive by using the real-time PCR assay. In order to express accurately the fungal loads, we used a normalized linearized plasmid as an internal control for real-time PCR. The assay results were correlated as the initial quantity (copies/μl) with fungal burden. These data indicate that combination of nested PCR and real-time PCR assay provides an attractive alternative for identification of T. marneffei DNA in whole blood samples of HIV-infected patients. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Quantitative real-time RT-PCR and chromogenic in situ hybridization

    DEFF Research Database (Denmark)

    Rosa, Fabíola E; Silveira, Sara M; Silveira, Cássia G T

    2009-01-01

    . METHODS: To elucidate the molecular profile of HER-2 status, mRNA and protein expression in 75 invasive breast carcinomas were analyzed by real time quantitative RT-PCR (qRT-PCR) and IHC, respectively. Amplifications were evaluated in 43 of these cases by CISH and in 11 by FISH. RESULTS: The concordance...

  15. Quantification of trace-level DNA by real-time whole genome amplification.

    Science.gov (United States)

    Kang, Min-Jung; Yu, Hannah; Kim, Sook-Kyung; Park, Sang-Ryoul; Yang, Inchul

    2011-01-01

    Quantification of trace amounts of DNA is a challenge in analytical applications where the concentration of a target DNA is very low or only limited amounts of samples are available for analysis. PCR-based methods including real-time PCR are highly sensitive and widely used for quantification of low-level DNA samples. However, ordinary PCR methods require at least one copy of a specific gene sequence for amplification and may not work for a sub-genomic amount of DNA. We suggest a real-time whole genome amplification method adopting the degenerate oligonucleotide primed PCR (DOP-PCR) for quantification of sub-genomic amounts of DNA. This approach enabled quantification of sub-picogram amounts of DNA independently of their sequences. When the method was applied to the human placental DNA of which amount was accurately determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES), an accurate and stable quantification capability for DNA samples ranging from 80 fg to 8 ng was obtained. In blind tests of laboratory-prepared DNA samples, measurement accuracies of 7.4%, -2.1%, and -13.9% with analytical precisions around 15% were achieved for 400-pg, 4-pg, and 400-fg DNA samples, respectively. A similar quantification capability was also observed for other DNA species from calf, E. coli, and lambda phage. Therefore, when provided with an appropriate standard DNA, the suggested real-time DOP-PCR method can be used as a universal method for quantification of trace amounts of DNA.

  16. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR.

    Directory of Open Access Journals (Sweden)

    Kirill V Sergueev

    Full Text Available BACKGROUND: Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. METHODOLOGY/PRINCIPAL FINDINGS: The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3 CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. CONCLUSIONS/SIGNIFICANCE: Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.

  17. Real-time quantitative PCR of microdissected paraffin-embedded breast carcinoma

    DEFF Research Database (Denmark)

    Gjerdrum, Lise Mette; Sorensen, Boe Sandahl; Kjeldsen, Eigil

    2004-01-01

    We studied the feasibility of using real-time quantitative PCR to determine HER-2 DNA amplification and mRNA expression in microdissected formalin-fixed, paraffin-embedded breast tumors and compared this with standard immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) methods...

  18. Development of a high-throughput real time PCR based on a hot-start alternative for Pfu mediated by quantum dots

    Science.gov (United States)

    Sang, Fuming; Yang, Yang; Yuan, Lin; Ren, Jicun; Zhang, Zhizhou

    2015-09-01

    Hot start (HS) PCR is an excellent alternative for high-throughput real time PCR due to its ability to prevent nonspecific amplification at low temperature. Development of a cost-effective and simple HS PCR technique to guarantee high-throughput PCR specificity and consistency still remains a great challenge. In this study, we systematically investigated the HS characteristics of QDs triggered in real time PCR with EvaGreen and SYBR Green I dyes by the analysis of amplification curves, standard curves and melting curves. Two different kinds of DNA polymerases, Pfu and Taq, were employed. Here we showed that high specificity and efficiency of real time PCR were obtained in a plasmid DNA and an error-prone two-round PCR assay using QD-based HS PCR, even after an hour preincubation at 50 °C before real time PCR. Moreover, the results obtained by QD-based HS PCR were comparable to a commercial Taq antibody DNA polymerase. However, no obvious HS effect of QDs was found in real time PCR using Taq DNA polymerase. The findings of this study demonstrated that a cost-effective high-throughput real time PCR based on QD triggered HS PCR could be established with high consistency, sensitivity and accuracy.Hot start (HS) PCR is an excellent alternative for high-throughput real time PCR due to its ability to prevent nonspecific amplification at low temperature. Development of a cost-effective and simple HS PCR technique to guarantee high-throughput PCR specificity and consistency still remains a great challenge. In this study, we systematically investigated the HS characteristics of QDs triggered in real time PCR with EvaGreen and SYBR Green I dyes by the analysis of amplification curves, standard curves and melting curves. Two different kinds of DNA polymerases, Pfu and Taq, were employed. Here we showed that high specificity and efficiency of real time PCR were obtained in a plasmid DNA and an error-prone two-round PCR assay using QD-based HS PCR, even after an hour

  19. Development of a real-time PCR for the detection of pathogenic Leptospira spp. in California sea lions.

    Science.gov (United States)

    Wu, Qingzhong; Prager, Katherine C; Goldstein, Tracey; Alt, David P; Galloway, Renee L; Zuerner, Richard L; Lloyd-Smith, James O; Schwacke, Lori

    2014-08-11

    Several real-time PCR assays are currently used for detection of pathogenic Leptospira spp.; however, few methods have been described for the successful evaluation of clinical urine samples. This study reports a rapid assay for the detection of pathogenic Leptospira spp. in California sea lions Zalophus californianus using real-time PCR with primers and a probe targeting the lipL32 gene. The PCR assay had high analytic sensitivity-the limit of detection was 3 genome copies per PCR volume using L. interrogans serovar Pomona DNA and 100% analytic specificity; it detected all pathogenic leptospiral serovars tested and none of the non-pathogenic Leptospira species (L. biflexa and L. meyeri serovar Semaranga), the intermediate species L. inadai, or the non-Leptospira pathogens tested. Our assay had an amplification efficiency of 1.00. Comparisons between the real-time PCR assay and culture isolation for detection of pathogenic Leptospira spp. in urine and kidney tissue samples from California sea lions showed that samples were more often positive by real-time PCR than by culture methods. Inclusion of an internal amplification control in the real-time PCR assay showed no inhibitory effects in PCR negative samples. These studies indicated that our real-time PCR assay has high analytic sensitivity and specificity for the rapid detection of pathogenic Leptospira species in urine and kidney tissue samples.

  20. SMA Diagnosis: Detection of SMN1 Deletion with Real-Time mCOP-PCR System Using Fresh Blood DNA.

    Science.gov (United States)

    Niba, Emma Tabe Eko; Ar Rochmah, Mawaddah; Harahap, Nur Imma Fatimah; Awano, Hiroyuki; Morioka, Ichiro; Iijima, Kazumoto; Saito, Toshio; Saito, Kayoko; Takeuchi, Atsuko; Lai, Poh San; Bouike, Yoshihiro; Nishio, Hisahide; Shinohara, Masakazu

    2017-12-18

    Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders. The symptoms are caused by defects of lower motor neurons in the spinal cord. More than 95% of SMA patients are homozygous for survival motor neuron 1 (SMN1) deletion. We previously developed a screening system for SMN1 deletion based on a modified competitive oligonucleotide priming-PCR (mCOP-PCR) technique using dried blood spot (DBS) on filter paper. This system is convenient for mass screening in the large population and/or first-tier diagnostic method of the patients in the remote areas. However, this system was still time-consuming and effort-taking, because it required pre-amplification procedure to avoid non-specific amplification and gel-electrophoresis to detect the presence or absence of SMN1 deletion. When the fresh blood samples are used instead of DBS, or when the gel-electrophoresis is replaced by real-time PCR, we may have a simpler and more rapid diagnostic method for SMA. To establish a simpler and more rapid diagnostic method of SMN1 deletion using fresh blood DNA. DNA samples extracted from fresh blood and stored at 4 ℃ for 1 month. The samples were assayed using a real-time mCOP-PCR system without pre-amplification procedures. DNA samples had already been genotyped by PCR-restriction fragment length polymorphism (PCR-RFLP), showing the presence or absence of SMN1 exon 7. The DNA samples were directly subjected to the mCOP-PCR step. The amplification of mCOP-PCR was monitored in a real-time PCR apparatus. The genotyping results of the real-time mCOP-PCR system using fresh blood DNA were completely matched with those of PCR-RFLP. In this real-time mCOP-PCR system using fresh blood-DNA, it took only four hours from extraction of DNA to detection of the presence or absence of SMN1 deletion, while it took more than 12 hours in PCR-RFLP. Our real-time mCOP-PCR system using fresh blood DNA was rapid and accurate, suggesting it may be useful for the first

  1. Development of a highly sensitive one-tube nested real-time PCR for detecting Mycobacterium tuberculosis.

    Science.gov (United States)

    Choi, Yeonim; Jeon, Bo-Young; Shim, Tae Sun; Jin, Hyunwoo; Cho, Sang-Nae; Lee, Hyeyoung

    2014-12-01

    Rapid, accurate detection of Mycobacterium tuberculosis is crucial in the diagnosis of tuberculosis (TB), but conventional diagnostic methods have limited sensitivity and specificity or are time consuming. A new highly sensitive nucleic acid amplification test, combined nested and real-time polymerase chain reaction (PCR) in a single tube (one-tube nested real-time PCR), was developed for detecting M. tuberculosis, which takes advantage of two PCR techniques, i.e., nested PCR and real-time PCR. One-tube nested real-time PCR was designed to have two sequential reactions with two sets of primers and dual probes for the insertion sequence (IS) 6110 sequence of M. tuberculosis in a single closed tube. The minimum limits of detection of IS6110 real-time PCR and IS6110 one-tube nested real-time PCR were 100 fg/μL and 1 fg/μL of M. tuberculosis DNA, respectively. AdvanSure TB/non-tuberculous mycobacteria (NTM) real-time PCR, IS6110 real-time PCR, and two-tube nested real-time PCR showed 100% sensitivity and 100% specificity for clinical M. tuberculosis isolates and NTM isolates. In comparison, the sensitivities of AdvanSure TB/NTM real-time PCR, single IS6110 real-time PCR, and one-tube nested real-time PCR were 91% (152/167), 94.6% (158/167), and 100% (167/167) for sputum specimens, respectively. In conclusion, IS6110 one-tube nested real-time PCR is useful for detecting M. tuberculosis due to its high sensitivity and simple manipulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    International Nuclear Information System (INIS)

    Huang, S-H; Tsai, M-H; Lin, C-W; Yang, T-C; Chuang, P-H; Tsai, I-S; Lu, H-C; Wan Lei; Lin, Y-J; Lai, C-H

    2008-01-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples

  3. A novel method of multiple nucleic acid detection: Real-time RT-PCR coupled with probe-melting curve analysis.

    Science.gov (United States)

    Han, Yang; Hou, Shao-Yang; Ji, Shang-Zhi; Cheng, Juan; Zhang, Meng-Yue; He, Li-Juan; Ye, Xiang-Zhong; Li, Yi-Min; Zhang, Yi-Xuan

    2017-11-15

    A novel method, real-time reverse transcription PCR (real-time RT-PCR) coupled with probe-melting curve analysis, has been established to detect two kinds of samples within one fluorescence channel. Besides a conventional TaqMan probe, this method employs another specially designed melting-probe with a 5' terminus modification which meets the same label with the same fluorescent group. By using an asymmetric PCR method, the melting-probe is able to detect an extra sample in the melting stage effectively while it almost has little influence on the amplification detection. Thus, this method allows the availability of united employment of both amplification stage and melting stage for detecting samples in one reaction. The further demonstration by simultaneous detection of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in one channel as a model system is presented in this essay. The sensitivity of detection by real-time RT-PCR coupled with probe-melting analysis was proved to be equal to that detected by conventional real-time RT-PCR. Because real-time RT-PCR coupled with probe-melting analysis can double the detection throughputs within one fluorescence channel, it is expected to be a good solution for the problem of low-throughput in current real-time PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Development of a Real-time PCR test for porcine group A rotavirus diagnosis

    Directory of Open Access Journals (Sweden)

    Elizabeth C.M. Marconi

    2015-01-01

    Full Text Available Group A Rotavirus (RVA is one of the most common causes of diarrhea in humans and several animal species. A SYBR-Green Real-Time polymerase chain reaction (PCR was developed to diagnose RVA from porcine fecal samples, targeting amplification of a 137-bp fragment of nonstructural protein 5 (NSP5 gene using mRNA of bovine NADH-desidrogenase-5 as exogenous internal control. Sixty-five samples were tested (25 tested positive for conventional PCR and genetic sequencing. The overall agreement (kappa was 0.843, indicating 'very good' concordance between tests, presenting 100% of relative sensitivity (25+ Real Time PCR/25+ Conventional PCR and 87.5% of relative sensitivity (35- Real Time PCR/40- Conventional PCR. The results also demonstrated high intra- and inter-assay reproducibility (coefficient of variation ≤1.42%; thus, this method proved to be a fast and sensitive approach for the diagnosis of RVA in pigs.

  5. An Undergraduate Laboratory Experiment for Upper-Level Forensic Science, Biochemistry, or Molecular Biology Courses: Human DNA Amplification Using STR Single Locus Primers by Real-Time PCR with SYBR Green Detection

    Science.gov (United States)

    Elkins, Kelly M.; Kadunc, Raelynn E.

    2012-01-01

    In this laboratory experiment, real-time polymerase chain reaction (real-time PCR) was conducted using published human TPOX single-locus DNA primers for validation and various student-designed short tandem repeat (STR) primers for Combined DNA Index System (CODIS) loci. SYBR Green was used to detect the amplification of the expected amplicons. The…

  6. Rapid genome detection of Schmallenberg virus and bovine viral diarrhea virus by use of isothermal amplification methods and high-speed real-time reverse transcriptase PCR.

    Science.gov (United States)

    Aebischer, Andrea; Wernike, Kerstin; Hoffmann, Bernd; Beer, Martin

    2014-06-01

    Over the past few years, there has been an increasing demand for rapid and simple diagnostic tools that can be applied outside centralized laboratories by using transportable devices. In veterinary medicine, such mobile test systems would circumvent barriers associated with the transportation of samples and significantly reduce the time to diagnose important infectious animal diseases. Among a wide range of available technologies, high-speed real-time reverse transcriptase quantitative PCR (RT-qPCR) and the two isothermal amplification techniques loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) represent three promising candidates for integration into mobile pen-side tests. The aim of this study was to investigate the performance of these amplification strategies and to evaluate their suitability for field application. In order to enable a valid comparison, novel pathogen-specific assays have been developed for the detection of Schmallenberg virus and bovine viral diarrhea virus. The newly developed assays were evaluated in comparison with established standard RT-qPCR using samples from experimentally or field-infected animals. Even though all assays allowed detection of the target virus in less than 30 min, major differences were revealed concerning sensitivity, specificity, robustness, testing time, and complexity of assay design. These findings indicated that the success of an assay will depend on the integrated amplification technology. Therefore, the application-specific pros and cons of each method that were identified during this study provide very valuable insights for future development and optimization of pen-side tests. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Development and implementation of real-time nucleic acid amplification for the detection of enterovirus infections in comparison to rapid culture of various clinical specimens

    NARCIS (Netherlands)

    van Doornum, G J J; Schutten, Martin; Voermans, J; Guldemeester, G J J; Niesters, H G M

    2007-01-01

    Several real-time PCR and nucleic acid sequence-based amplification (NASBA) primer pairs and a modified real-time PCR primer pair for the detection of enteroviruses were compared. The modified real-time PCR primer pair was evaluated on clinical samples in comparison with cell culture using the

  8. Comparison of DNA Microarray, Loop-Mediated Isothermal Amplification (LAMP) and Real-Time PCR with DNA Sequencing for Identification of Fusarium spp. Obtained from Patients with Hematologic Malignancies.

    Science.gov (United States)

    de Souza, Marcela; Matsuzawa, Tetsuhiro; Sakai, Kanae; Muraosa, Yasunori; Lyra, Luzia; Busso-Lopes, Ariane Fidelis; Levin, Anna Sara Shafferman; Schreiber, Angélica Zaninelli; Mikami, Yuzuru; Gonoi, Tohoru; Kamei, Katsuhiko; Moretti, Maria Luiza; Trabasso, Plínio

    2017-08-01

    The performance of three molecular biology techniques, i.e., DNA microarray, loop-mediated isothermal amplification (LAMP), and real-time PCR were compared with DNA sequencing for properly identification of 20 isolates of Fusarium spp. obtained from blood stream as etiologic agent of invasive infections in patients with hematologic malignancies. DNA microarray, LAMP and real-time PCR identified 16 (80%) out of 20 samples as Fusarium solani species complex (FSSC) and four (20%) as Fusarium spp. The agreement among the techniques was 100%. LAMP exhibited 100% specificity, while DNA microarray, LAMP and real-time PCR showed 100% sensitivity. The three techniques had 100% agreement with DNA sequencing. Sixteen isolates were identified as FSSC by sequencing, being five Fusarium keratoplasticum, nine Fusarium petroliphilum and two Fusarium solani. On the other hand, sequencing identified four isolates as Fusarium non-solani species complex (FNSSC), being three isolates as Fusarium napiforme and one isolate as Fusarium oxysporum. Finally, LAMP proved to be faster and more accessible than DNA microarray and real-time PCR, since it does not require a thermocycler. Therefore, LAMP signalizes as emerging and promising methodology to be used in routine identification of Fusarium spp. among cases of invasive fungal infections.

  9. Interlaboratory comparison of real-time pcr protocols for quantification of general fecal indicator bacteria

    Science.gov (United States)

    Shanks, O.C.; Sivaganesan, M.; Peed, L.; Kelty, C.A.; Blackwood, A.D.; Greene, M.R.; Noble, R.T.; Bushon, R.N.; Stelzer, E.A.; Kinzelman, J.; Anan'Eva, T.; Sinigalliano, C.; Wanless, D.; Griffith, J.; Cao, Y.; Weisberg, S.; Harwood, V.J.; Staley, C.; Oshima, K.H.; Varma, M.; Haugland, R.A.

    2012-01-01

    The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized protocol requires information on the reproducibility and sources of variation associated with qPCR methodology across laboratories. This study examines interlaboratory variability in the measurement of enterococci and Bacteroidales concentrations from standardized, spiked, and environmental sources of DNA using the Entero1a and GenBac3 qPCR methods, respectively. Comparisons are based on data generated from eight different research facilities. Special attention was placed on the influence of the DNA isolation step and effect of simplex and multiplex amplification approaches on interlaboratory variability. Results suggest that a crude lysate is sufficient for DNA isolation unless environmental samples contain substances that can inhibit qPCR amplification. No appreciable difference was observed between simplex and multiplex amplification approaches. Overall, interlaboratory variability levels remained low (<10% coefficient of variation) regardless of qPCR protocol. ?? 2011 American Chemical Society.

  10. chipPCR: an R package to pre-process raw data of amplification curves.

    Science.gov (United States)

    Rödiger, Stefan; Burdukiewicz, Michał; Schierack, Peter

    2015-09-01

    Both the quantitative real-time polymerase chain reaction (qPCR) and quantitative isothermal amplification (qIA) are standard methods for nucleic acid quantification. Numerous real-time read-out technologies have been developed. Despite the continuous interest in amplification-based techniques, there are only few tools for pre-processing of amplification data. However, a transparent tool for precise control of raw data is indispensable in several scenarios, for example, during the development of new instruments. chipPCR is an R: package for the pre-processing and quality analysis of raw data of amplification curves. The package takes advantage of R: 's S4 object model and offers an extensible environment. chipPCR contains tools for raw data exploration: normalization, baselining, imputation of missing values, a powerful wrapper for amplification curve smoothing and a function to detect the start and end of an amplification curve. The capabilities of the software are enhanced by the implementation of algorithms unavailable in R: , such as a 5-point stencil for derivative interpolation. Simulation tools, statistical tests, plots for data quality management, amplification efficiency/quantification cycle calculation, and datasets from qPCR and qIA experiments are part of the package. Core functionalities are integrated in GUIs (web-based and standalone shiny applications), thus streamlining analysis and report generation. http://cran.r-project.org/web/packages/chipPCR. Source code: https://github.com/michbur/chipPCR. stefan.roediger@b-tu.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis

    Science.gov (United States)

    Kim, Hyun Soo; Cifci, Osman S.; Vaughn-Diaz, Vanessa L.; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C.; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25×16×8 cm3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample. PMID:24349341

  12. Development of a real-time microchip PCR system for portable plant disease diagnosis.

    Directory of Open Access Journals (Sweden)

    Chiwan Koo

    Full Text Available Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.

  13. Detection and characterization of Newcastle disease virus in clinical samples using real time RT-PCR and melting curve analysis based on matrix and fusion genes amplification

    Directory of Open Access Journals (Sweden)

    Saad Sharawi

    2013-10-01

    Full Text Available Aim: Newcastle disease is still one of the major threats for poultry industry allover the world. Therefore, attempt was made in this study to use the SYBR Green I real-time PCR with melting curves analysis as for detection and differentiation of NDV strains in suspected infected birds. Materials and Methods: Two sets of primers were used to amplify matrix and fusion genes in samples collected from suspectly infected birds (chickens and pigeons. Melting curve analysis in conjunction with real time PCR was conducted for identifying different pathotypes of the isolated NDVs. Clinical samples were propagated on specific pathogen free ECE and tested for MDT and ICIP. Results: The velogenic NDVs isolated from chickens and pigeons were distinguished with mean T 85.03±0.341 and m 83.78±0.237 respectively for M-gene amplification and for F-gene amplification the mean T were 84.04±0.037 and m 84.53±0.223. On the other hand the lentogenic NDV isolates including the vaccinal strains (HB1 and LaSota have a higher mean T (86.99±0.021 for M-gene amplification and 86.50±0.063 for F-gene amplification. The test showed no reaction with m unrelated RNA samples. In addition, the results were in good agreement with both virus isolation and biological pathotyping (MDT and ICIP. The assay offers an attractive alternative method for the diagnosis of NDV that can be easily applied in laboratory diagnosis as a screening test for the detection and differentiation of NDV infections. Conclusion: As was shown by the successful rapid detection and pathotyping of 15 NDV strains in clinical samples representing velogenic and lentogenic NDV strains, and the agreement with the results of virus isolation , biological pathotyping and pathogenicity indices. The results of this report suggests that the described SybrGreen I real-time RT-PCR assay in conjunction with Melting curve analysis used as a rapid, specific and simple diagnostic tools for detection and pathotyping of

  14. A one-step, real-time PCR assay for rapid detection of rhinovirus.

    Science.gov (United States)

    Do, Duc H; Laus, Stella; Leber, Amy; Marcon, Mario J; Jordan, Jeanne A; Martin, Judith M; Wadowsky, Robert M

    2010-01-01

    One-step, real-time PCR assays for rhinovirus have been developed for a limited number of PCR amplification platforms and chemistries, and some exhibit cross-reactivity with genetically similar enteroviruses. We developed a one-step, real-time PCR assay for rhinovirus by using a sequence detection system (Applied Biosystems; Foster City, CA). The primers were designed to amplify a 120-base target in the noncoding region of picornavirus RNA, and a TaqMan (Applied Biosystems) degenerate probe was designed for the specific detection of rhinovirus amplicons. The PCR assay had no cross-reactivity with a panel of 76 nontarget nucleic acids, which included RNAs from 43 enterovirus strains. Excellent lower limits of detection relative to viral culture were observed for the PCR assay by using 38 of 40 rhinovirus reference strains representing different serotypes, which could reproducibly detect rhinovirus serotype 2 in viral transport medium containing 10 to 10,000 TCID(50) (50% tissue culture infectious dose endpoint) units/ml of the virus. However, for rhinovirus serotypes 59 and 69, the PCR assay was less sensitive than culture. Testing of 48 clinical specimens from children with cold-like illnesses for rhinovirus by the PCR and culture assays yielded detection rates of 16.7% and 6.3%, respectively. For a batch of 10 specimens, the entire assay was completed in 4.5 hours. This real-time PCR assay enables detection of many rhinovirus serotypes with the Applied Biosystems reagent-instrument platform.

  15. Development of multiplex real-time PCR assay for the detection of Brucella spp., Leptospira spp. and Campylobacter foetus

    Directory of Open Access Journals (Sweden)

    Abdelfattah M. Selim

    2014-12-01

    Full Text Available Abortion among dairy cattle is one of the major causes of economic losses in the livestock industry. This study describes a 1-step multiplex real-time polymerase chain reaction (PCR to detect Brucella spp., Leptospira spp. and Campylobacter foetus, these are significant bacteria commonly implicated in bovine abortion. ß-actin was added to the same PCR reaction as an internal control to detect any extraction failure or PCR inhibition. The detection limit of multiplex real-time PCR using purified DNA from cultured organisms was set to 5 fg for Leptospira spp. and C. foetus and to 50 fg for Brucella spp. The multiplex real-time PCR did not produce any non-specific amplification when tested with different strains of the 3 pathogens. This multiplex real-time PCR provides a valuable tool for diagnosis, simultaneous and rapid detection for the 3 pathogens causing abortion in bovine.

  16. Detection of Tomato black ring virus by real-time one-step RT-PCR.

    Science.gov (United States)

    Harper, Scott J; Delmiglio, Catia; Ward, Lisa I; Clover, Gerard R G

    2011-01-01

    A TaqMan-based real-time one-step RT-PCR assay was developed for the rapid detection of Tomato black ring virus (TBRV), a significant plant pathogen which infects a wide range of economically important crops. Primers and a probe were designed against existing genomic sequences to amplify a 72 bp fragment from RNA-2. The assay amplified all isolates of TBRV tested, but no amplification was observed from the RNA of other nepovirus species or healthy host plants. The detection limit of the assay was estimated to be around nine copies of the TBRV target region in total RNA. A comparison with conventional RT-PCR and ELISA, indicated that ELISA, the current standard test method, lacked specificity and reacted to all nepovirus species tested, while conventional RT-PCR was approximately ten-fold less sensitive than the real-time RT-PCR assay. Finally, the real-time RT-PCR assay was tested using five different RT-PCR reagent kits and was found to be robust and reliable, with no significant differences in sensitivity being found. The development of this rapid assay should aid in quarantine and post-border surveys for regulatory agencies. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Rapid and sensitive detection of canine distemper virus by real-time reverse transcription recombinase polymerase amplification.

    Science.gov (United States)

    Wang, Jianchang; Wang, Jinfeng; Li, Ruiwen; Liu, Libing; Yuan, Wanzhe

    2017-08-15

    Canine distemper, caused by Canine distemper virus (CDV), is a highly contagious and fatal systemic disease in free-living and captive carnivores worldwide. Recombinase polymerase amplification (RPA), as an isothermal gene amplification technique, has been explored for the molecular detection of diverse pathogens. A real-time reverse transcription RPA (RT-RPA) assay for the detection of canine distemper virus (CDV) using primers and exo probe targeting the CDV nucleocapsid protein gene was developed. A series of other viruses were tested by the RT-RPA.Thirty-two field samples were further tested by RT-RPA, and the resuts were compared with those obtained by the real-time RT-PCR. The RT-RPA assay was performed successfully at 40 °C, and the results were obtained within 3 min-12 min. The assay could detect CDV, but did not show cross-detection of canine parvovirus-2 (CPV-2), canine coronavirus (CCoV), canine parainfluenza virus (CPIV), pseudorabies virus (PRV) or Newcastle disease virus (NDV), demonstrating high specificity. The analytical sensitivity of RT-RPA was 31.8 copies in vitro transcribed CDV RNA, which is 10 times lower than the real-time RT-PCR. The assay performance was validated by testing 32 field samples and compared to real-time RT-PCR. The results indicated an excellent correlation between RT-RPA and a reference real-time RT-PCR method. Both assays provided the same results, and R 2 value of the positive results was 0.947. The results demonstrated that the RT-RPA assay offers an alternative tool for simple, rapid, and reliable detection of CDV both in the laboratory and point-of-care facility, especially in the resource-limited settings.

  18. Real time quantitative amplification detection on a microarray: towards high multiplex quantitative PCR.

    NARCIS (Netherlands)

    Pierik, A.; Moamfa, M; van Zelst, M.; Clout, D.; Stapert, H.; Dijksman, Johan Frederik; Broer, D.; Wimberger-Friedl, R.

    2012-01-01

    Quantitative real-time polymerase chain reaction (qrtPCR) is widely used as a research and diagnostic tool. Notwithstanding its many powerful features, the method is limited in the degree of multiplexing to about 6 due to spectral overlap of the available fluorophores. A new method is presented that

  19. Real time quantitative amplification detection on a microarray : towards high multiplex quantitative PCR

    NARCIS (Netherlands)

    Pierik, Anke; Boamfa, M.; Zelst, van M.; Clout, D.; Stapert, H.R.; Dijksman, J.F.; Broer, D.J.; Wimberger-Friedl, R.

    2012-01-01

    Quantitative real-time polymerase chain reaction (qrtPCR) is widely used as a research and diagnostic tool. Notwithstanding its many powerful features, the method is limited in the degree of multiplexing to about 6 due to spectral overlap of the available fluorophores. A new method is presented that

  20. Protein Analysis Using Real-Time PCR Instrumentation: Incorporation in an Integrated, Inquiry-Based Project

    Science.gov (United States)

    Southard, Jonathan N.

    2014-01-01

    Instrumentation for real-time PCR is used primarily for amplification and quantitation of nucleic acids. The capability to measure fluorescence while controlling temperature in multiple samples can also be applied to the analysis of proteins. Conformational stability and changes in stability due to ligand binding are easily assessed. Protein…

  1. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    Science.gov (United States)

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  2. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    Directory of Open Access Journals (Sweden)

    Huali Huang

    Full Text Available Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L. DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  3. Evaluation of Four Endogenous Reference Genes and Their Real-Time PCR Assays for Common Wheat Quantification in GMOs Detection

    Science.gov (United States)

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat. PMID:24098735

  4. Quantification of organellar DNA and RNA using real-time PCR.

    Science.gov (United States)

    Weihe, Andreas

    2014-01-01

    Quantitative (real-time) polymerase chain reaction (PCR) allows the measurement of relative organellar gene copy numbers as well as transcript abundance of individual mitochondrial or plastidial genes. Requiring only minute amounts of total DNA or RNA, the described method can replace traditional analyses like Southern or Northern hybridization which require large amounts of organellar nucleic acids and usually provide only semiquantitative data. Here we describe prerequisites, reaction conditions, and data analysis principles, which should be applicable for a wide range of plant species and experimental situations where comparative and precise determination of gene copy numbers or transcript abundance is requested. Sequences of amplification primers for qPCR of organellar genes from Arabidopsis are provided.

  5. Development of a Real-time PCR test for porcine group A rotavirus diagnosis

    OpenAIRE

    Marconi, Elizabeth C.M.; Bernardes, Nara T.C.G.; Beserra, Laila A.R.; Silva, Fernanda D.F.; Gregori, Fabio

    2015-01-01

    Group A Rotavirus (RVA) is one of the most common causes of diarrhea in humans and several animal species. A SYBR-Green Real-Time polymerase chain reaction (PCR) was developed to diagnose RVA from porcine fecal samples, targeting amplification of a 137-bp fragment of nonstructural protein 5 (NSP5) gene using mRNA of bovine NADH-desidrogenase-5 as exogenous internal control. Sixty-five samples were tested (25 tested positive for conventional PCR and genetic sequencing). The overall agreement (...

  6. Cost-effective optimization of real-time PCR based detection of Campylobacter and Salmonella with inhibitor tolerant DNA polymerases

    DEFF Research Database (Denmark)

    Fachmann, Mette Sofie Rousing; Josefsen, Mathilde Hasseldam; Hoorfar, Jeffrey

    2015-01-01

    bacterial cells in two validated real-time PCR assays for Campylobacter and Salmonella. The five best performing (based on: limit of detection (LOD), maximum fluorescence, shape of amplification curves, and amplification efficiency) were subsequently applied to meat and fecal samples. The VeriQuest q......PCR master mix performed best for both meat and fecal samples (LODs of 102 and 104 CFU ml-1 in the purest and crudest DNA extractions, respectively) compared with Tth (LOD=102 -103 and 105 -106 CFU ml-1 ). AmpliTaqGold and HotMasterTaq both performed well (LOD=102 -104 CFU ml-1 ) with meat samples and poorly...... (LOD=103 -106 CFU ml-1 /not detected) with fecal samples. CONCLUSIONS: Applying the VeriQuest qPCR master mix in the two tested real-time PCR assays could allow for simpler sample preparation and thus a reduction in cost. SIGNIFICANCE AND IMPACT OF STUDY: This work exemplifies a cost-effective strategy...

  7. Comparison of nested-multiplex, Taqman & SYBR Green real-time PCR in diagnosis of amoebic liver abscess in a tertiary health care institute in India.

    Science.gov (United States)

    Dinoop, K P; Parija, Subhash Chandra; Mandal, Jharna; Swaminathan, R P; Narayanan, P

    2016-01-01

    Amoebiasis is a common parasitic infection caused by Entamoeba histolytica and amoebic liver abscess (ALA) is the most common extraintestinal manifestation of amoebiasis. The aim of this study was to standardise real-time PCR assays (Taqman and SYBR Green) to detect E. histolytica from liver abscess pus and stool samples and compare its results with nested-multiplex PCR. Liver abscess pus specimens were subjected to DNA extraction. The extracted DNA samples were subjected to amplification by nested-multiplex PCR, Taqman (18S rRNA) and SYBR Green real-time PCR (16S-like rRNA assays to detect E. histolytica/E. dispar/E. moshkovskii). The amplification products were further confirmed by DNA sequence analysis. Receiver operator characteristic (ROC) curve analysis was done for nested-multiplex and SYBR Green real-time PCR and the area under the curve was calculated for evaluating the accuracy of the tests to dignose ALA. In all, 17, 19 and 25 liver abscess samples were positive for E. histolytica by nested-multiplex PCR, SYBR Green and Taqman real-time PCR assays, respectively. Significant differences in detection of E. histolytica were noted in the real-time PCR assays evaluated ( Pnested-multiplex PCR, SYBR Green real-time PCR and Taqman real-time PCR evaluated showed a positivity rate of 34, 38 and 50 per cent, respectively. Based on ROC curve analysis (considering Taqman real-time PCR as the gold standard), it was observed that SYBR Green real-time PCR was better than conventional nested-multiplex PCR for the diagnosis of ALA. Taqman real-time PCR targeting the 18S rRNA had the highest positivity rate evaluated in this study. Both nested multiplex and SYBR Green real-time PCR assays utilized were evaluated to give accurate results. Real-time PCR assays can be used as the gold standard in rapid and reliable diagnosis, and appropriate management of amoebiasis, replacing the conventional molecular methods.

  8. Use of Multiplex Real-Time PCR To Diagnose Scrub Typhus.

    Science.gov (United States)

    Tantibhedhyangkul, Wiwit; Wongsawat, Ekkarat; Silpasakorn, Saowaluk; Waywa, Duangdao; Saenyasiri, Nuttawut; Suesuay, Jintapa; Thipmontree, Wilawan; Suputtamongkol, Yupin

    2017-05-01

    Scrub typhus, caused by Orientia tsutsugamushi , is a common cause of acute undifferentiated febrile illness in the Asia-Pacific region. However, its nonspecific clinical manifestation often prevents early diagnosis. We propose the use of PCR and serologic tests as diagnostic tools. Here, we developed a multiplex real-time PCR assay using hydrolysis (TaqMan) probes targeting O. tsutsugamushi 47-kDa, groEL , and human interferon beta (IFN-β gene) genes to improve early diagnosis of scrub typhus. The amplification efficiency was higher than 94%, and the lower detection limit was 10 copies per reaction. We used a human gene as an internal DNA quality and quantity control. To determine the sensitivity of this PCR assay, we selected patients with confirmed scrub typhus who exhibited a clear 4-fold increase in the level of IgG and/or IgM. The PCR assay result was positive in 45 of 52 patients, indicating a sensitivity of 86.5% (95% confidence interval [CI]: 74.2 to 94.4). The PCR assessment was negative for all 136 non-scrub typhus patients, indicating a specificity of 100% (95% CI: 97.3 to 100). In addition, this test helped diagnose patients with inconclusive immunofluorescence assay (IFA) results and using single blood samples. In conclusion, the real-time PCR assay proposed here is sensitive and specific in diagnosing scrub typhus. Combining PCR and serologic tests will improve the diagnosis of scrub typhus among patients presenting with acute febrile illness. Copyright © 2017 American Society for Microbiology.

  9. Detection of Histoplasma capsulatum from clinical specimens by cycling probe-based real-time PCR and nested real-time PCR.

    Science.gov (United States)

    Muraosa, Yasunori; Toyotome, Takahito; Yahiro, Maki; Watanabe, Akira; Shikanai-Yasuda, Maria Aparecida; Kamei, Katsuhiko

    2016-05-01

    We developed new cycling probe-based real-time PCR and nested real-time PCR assays for the detection of Histoplasma capsulatum that were designed to detect the gene encoding N-acetylated α-linked acidic dipeptidase (NAALADase), which we previously identified as an H. capsulatum antigen reacting with sera from patients with histoplasmosis. Both assays specifically detected the DNAs of all H. capsulatum strains but not those of other fungi or human DNA. The limited of detection (LOD) of the real-time PCR assay was 10 DNA copies when using 10-fold serial dilutions of the standard plasmid DNA and 50 DNA copies when using human serum spiked with standard plasmid DNA. The nested real-time PCR improved the LOD to 5 DNA copies when using human serum spiked with standard plasmid DNA, which represents a 10-fold higher than that observed with the real-time PCR assay. To assess the ability of the two assays to diagnose histoplasmosis, we analyzed a small number of clinical specimens collected from five patients with histoplasmosis, such as sera (n = 4), formalin-fixed paraffin-embedded (FFPE) tissue (n = 4), and bronchoalveolar lavage fluid (BALF) (n = 1). Although clinical sensitivity of the real-time PCR assay was insufficiently sensitive (33%), the nested real-time PCR assay increased the clinical sensitivity (77%), suggesting it has a potential to be a useful method for detecting H. capsulatum DNA in clinical specimens. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Simultaneous fitting of real-time PCR data with efficiency of amplification modeled as Gaussian function of target fluorescence

    Directory of Open Access Journals (Sweden)

    Lazar Andreas

    2008-02-01

    Full Text Available Abstract Background In real-time PCR, it is necessary to consider the efficiency of amplification (EA of amplicons in order to determine initial target levels properly. EAs can be deduced from standard curves, but these involve extra effort and cost and may yield invalid EAs. Alternatively, EA can be extracted from individual fluorescence curves. Unfortunately, this is not reliable enough. Results Here we introduce simultaneous non-linear fitting to determine – without standard curves – an optimal common EA for all samples of a group. In order to adjust EA as a function of target fluorescence, and still to describe fluorescence as a function of cycle number, we use an iterative algorithm that increases fluorescence cycle by cycle and thus simulates the PCR process. A Gauss peak function is used to model the decrease of EA with increasing amplicon accumulation. Our approach was validated experimentally with hydrolysis probe or SYBR green detection with dilution series of 5 different targets. It performed distinctly better in terms of accuracy than standard curve, DART-PCR, and LinRegPCR approaches. Based on reliable EAs, it was possible to detect that for some amplicons, extraordinary fluorescence (EA > 2.00 was generated with locked nucleic acid hydrolysis probes, but not with SYBR green. Conclusion In comparison to previously reported approaches that are based on the separate analysis of each curve and on modelling EA as a function of cycle number, our approach yields more accurate and precise estimates of relative initial target levels.

  11. Quantitative Real-time PCR detection of putrescine-producing Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Kristýna Maršálková

    2017-01-01

    Full Text Available Biogenic amines are indispensable components of living cells; nevertheless these compounds could be toxic for human health in higher concentrations. Putrescine is supposed to be the major biogenic amine associated with microbial food spoilage. Development of reliable, fast and culture-independent molecular methods to detect bacteria producing biogenic amines deserves the attention, especially of the food industry in purpose to protect health. The objective of this study was to verify the newly designed primer sets for detection of two inducible genes adiA and speF together in Salmonella enterica and Escherichia coli genome by Real-time PCR. These forenamed genes encode enzymes in the metabolic pathway which leads to production of putrescine in Gram-negative bacteria. Moreover, relative expression of these genes was studied in E. coli CCM 3954 strain using Real-time PCR. In this study, sets of new primers for the detection two inducible genes (speF and adiA in Salmonella enterica and E. coli by Real-time PCR were designed and tested. Amplification efficiency of a Real-time PCR was calculated from the slope of the standard curves (adiA, speF, gapA. An efficiency in a range from 95 to 105 % for all tested reactions was achieved. The gene expression (R of adiA and speF genes in E. coli was varied depending on culture conditions. The highest gene expression of adiA and speF was observed at 6, 24 and 36 h (RadiA ~ 3, 5, 9; RspeF ~11, 10, 9; respectively after initiation of growth of this bacteria in nutrient broth medium enchired with amino acids. The results show that these primers could be used for relative quantification analysis of E. coli.

  12. Validation of RNAi by real time PCR

    DEFF Research Database (Denmark)

    Josefsen, Knud; Lee, Ying Chiu

    2011-01-01

    Real time PCR is the analytic tool of choice for quantification of gene expression, while RNAi is concerned with downregulation of gene expression. Together, they constitute a powerful approach in any loss of function studies of selective genes. We illustrate here the use of real time PCR to verify...

  13. Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis

    Directory of Open Access Journals (Sweden)

    Koppel Juraj

    2007-12-01

    Full Text Available Abstract Background Fluorescent data obtained from real-time PCR must be processed by some method of data analysis to obtain the relative quantity of target mRNA. The method chosen for data analysis can strongly influence results of the quantification. Results To compare the performance of six techniques which are currently used for analysing fluorescent data in real-time PCR relative quantification, we quantified four cytokine transcripts (IL-1β, IL-6 TNF-α, and GM-CSF in an in vivo model of colonic inflammation. Accuracy of the methods was tested by quantification on samples with known relative amounts of target mRNAs. Reproducibility of the methods was estimated by the determination of the intra-assay and inter-assay variability. Cytokine expression normalized to the expression of three reference genes (ACTB, HPRT, SDHA was then determined using the six methods for data analysis. The best results were obtained with the relative standard curve method, comparative Ct method and with DART-PCR, LinRegPCR and Liu & Saint exponential methods when average amplification efficiency was used. The use of individual amplification efficiencies in DART-PCR, LinRegPCR and Liu & Saint exponential methods significantly impaired the results. The sigmoid curve-fitting (SCF method produced medium performance; the results indicate that the use of appropriate type of fluorescence data and in some instances manual selection of the number of amplification cycles included in the analysis is necessary when the SCF method is applied. We also compared amplification efficiencies (E and found that although the E values determined by different methods of analysis were not identical, all the methods were capable to identify two genes whose E values significantly differed from other genes. Conclusion Our results show that all the tested methods can provide quantitative values reflecting the amounts of measured mRNA in samples, but they differ in their accuracy and

  14. Ultrafast Capillary Electrophoresis Isolation of DNA Aptamer for the PCR Amplification-Based Small Analyte Sensing

    Directory of Open Access Journals (Sweden)

    Emmanuelle eFiore

    2015-08-01

    Full Text Available Here, we report a new homogeneous DNA amplification-based aptamer assay for small analyte sensing. The aptamer of adenosine chosen as the model analyte was split into two fragments able to assemble in the presence of target. Primers were introduced at extremities of one fragment in order to generate the amplifiable DNA component. The amount of amplifiable fragment was quantifiable by Real-Time Polymerase Chain Reaction (RT-PCR amplification and directly reliable on adenosine concentration. This approach combines the very high separation efficiency and the homogeneous format (without immobilization of capillary electrophoresis and the sensitivity of real time PCR amplification. An ultrafast isolation of target-bound split aptamer (60 s was developed by designing a capillary electrophoresis input/ouput scheme. Such method was successfully applied to the determination of adenosine with a LOD of 1 µM.

  15. Species Identification of Fox-, Mink-, Dog-, and Rabbit-Derived Ingredients by Multiplex PCR and Real-Time PCR Assay.

    Science.gov (United States)

    Wu, Qingqing; Xiang, Shengnan; Wang, Wenjun; Zhao, Jinyan; Xia, Jinhua; Zhen, Yueran; Liu, Bang

    2018-05-01

    Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R 2  > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.

  16. Outbreak of hepatitis E virus infection in Darfur, Sudan: effectiveness of real-time reverse transcription-PCR analysis of dried blood spots.

    Science.gov (United States)

    Mérens, Audrey; Guérin, Philippe Jean; Guthmann, Jean-Paul; Nicand, Elisabeth

    2009-06-01

    Biological samples collected in refugee camps during an outbreak of hepatitis E were used to compare the accuracy of hepatitis E virus RNA amplification by real-time reverse transcription-PCR (RT-PCR) for sera and dried blood spots (concordance of 90.6%). Biological profiles (RT-PCR and serology) of asymptomatic individuals were also analyzed.

  17. Ultrasensitive quantitation of human papillomavirus type 16 E6 oncogene sequences by nested real time PCR

    Directory of Open Access Journals (Sweden)

    López-Revilla Rubén

    2010-05-01

    Full Text Available Abstract Background We have developed an ultrasensitive method based on conventional PCR preamplification followed by nested amplification through real time PCR (qPCR in the presence of the DNA intercalating agent EvaGreen. Results Amplification mixtures calibrated with a known number of pHV101 copies carrying a 645 base pair (bp-long insert of the human papillomavirus type 16 (HPV16 E6 oncogene were used to generate the E6-1 amplicon of 645 bp by conventional PCR and then the E6-2 amplicon of 237 bp by nested qPCR. Direct and nested qPCR mixtures for E6-2 amplification corresponding to 2.5 × 102-2.5 × 106 initial pHV101 copies had threshold cycle (Ct values in the ranges of 18.7-29.0 and 10.0-25.0, respectively. The Ct of qPCR mixtures prepared with 1/50 volumes of preamplified mixtures containing 50 ng of DNA of the SiHa cell line (derived from an invasive cervical cancer with one HPV16 genome per cell was 19.9. Thermal fluorescence extinction profiles of E6-2 amplicons generated from pHV101 and SiHa DNA were identical, with a peak at 85.5°C. Conclusions Our method based on conventional preamplification for 15 cycles increased 10,750 times the sensitivity of nested qPCR for the quantitation of the E6 viral oncogene and confirmed that the SiHa cell line contains one E6-HPV16 copy per cell.

  18. Combined use of real-time PCR and nested sequence-based typing in survey of human Legionella infection.

    Science.gov (United States)

    Qin, T; Zhou, H; Ren, H; Shi, W; Jin, H; Jiang, X; Xu, Y; Zhou, M; Li, J; Wang, J; Shao, Z; Xu, X

    2016-07-01

    Legionnaires' disease (LD) is a globally distributed systemic infectious disease. The burden of LD in many regions is still unclear, especially in Asian countries including China. A survey of Legionella infection using real-time PCR and nested sequence-based typing (SBT) was performed in two hospitals in Shanghai, China. A total of 265 bronchoalveolar lavage fluid (BALF) specimens were collected from hospital A between January 2012 and December 2013, and 359 sputum specimens were collected from hospital B throughout 2012. A total of 71 specimens were positive for Legionella according to real-time PCR focusing on the 5S rRNA gene. Seventy of these specimens were identified as Legionella pneumophila as a result of real-time PCR amplification of the dotA gene. Results of nested SBT revealed high genetic polymorphism in these L. pneumophila and ST1 was the predominant sequence type. These data revealed that the burden of LD in China is much greater than that recognized previously, and real-time PCR may be a suitable monitoring technology for LD in large sample surveys in regions lacking the economic and technical resources to perform other methods, such as urinary antigen tests and culture methods.

  19. Real-time PCR in virology

    OpenAIRE

    Mackay, Ian M.; Arden, Katherine E.; Nitsche, Andreas

    2002-01-01

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of P...

  20. Soil Baiting, Rapid PCR Assay and Quantitative Real Time PCR to Diagnose Late Blight of Potato in Quarantine Programs

    Directory of Open Access Journals (Sweden)

    Touseef Hussain

    2018-05-01

    Full Text Available Phytophthora infestans (mont de Bary is a pathogen of great concern across the globe, and accurate detection is an important component in responding to the outbreaks of potential disease. Although the molecular diagnostic protocol used in regulatory programs has been evaluated but till date methods implying direct comparison has rarely used. In this study, a known area soil samples from potato fields where light blight appear every year (both A1 and A2 mating type was assayed by soil bait method, PCR assay detection and quantification of the inoculums. Suspected disease symptoms appeared on bait tubers were further confirmed by rapid PCR, inoculums were quantified through Real Time PCR, which confirms presence of P. infestans. These diagnostic methods can be highly correlated with one another. Potato tuber baiting increased the sensitivity of the assay compared with direct extraction of DNA from tuber and soil samples. Our study determines diagnostic sensitivity and specificity of the assays to determine the performance of each method. Overall, molecular techniques based on different types of PCR amplification and Real-time PCR can lead to high throughput, faster and more accurate detection method which can be used in quarantine programmes in potato industry and diagnostic laboratory.

  1. Inhibition mechanisms of hemoglobin, immunoglobulin G, and whole blood in digital and real-time PCR.

    Science.gov (United States)

    Sidstedt, Maja; Hedman, Johannes; Romsos, Erica L; Waitara, Leticia; Wadsö, Lars; Steffen, Carolyn R; Vallone, Peter M; Rådström, Peter

    2018-04-01

    Blood samples are widely used for PCR-based DNA analysis in fields such as diagnosis of infectious diseases, cancer diagnostics, and forensic genetics. In this study, the mechanisms behind blood-induced PCR inhibition were evaluated by use of whole blood as well as known PCR-inhibitory molecules in both digital PCR and real-time PCR. Also, electrophoretic mobility shift assay was applied to investigate interactions between inhibitory proteins and DNA, and isothermal titration calorimetry was used to directly measure effects on DNA polymerase activity. Whole blood caused a decrease in the number of positive digital PCR reactions, lowered amplification efficiency, and caused severe quenching of the fluorescence of the passive reference dye 6-carboxy-X-rhodamine as well as the double-stranded DNA binding dye EvaGreen. Immunoglobulin G was found to bind to single-stranded genomic DNA, leading to increased quantification cycle values. Hemoglobin affected the DNA polymerase activity and thus lowered the amplification efficiency. Hemoglobin and hematin were shown to be the molecules in blood responsible for the fluorescence quenching. In conclusion, hemoglobin and immunoglobulin G are the two major PCR inhibitors in blood, where the first affects amplification through a direct effect on the DNA polymerase activity and quenches the fluorescence of free dye molecules, and the latter binds to single-stranded genomic DNA, hindering DNA polymerization in the first few PCR cycles. Graphical abstract PCR inhibition mechanisms of hemoglobin and immunoglobulin G (IgG). Cq quantification cycle, dsDNA double-stranded DNA, ssDNA single-stranded DNA.

  2. Identification and genotyping of molluscum contagiosum virus from genital swab samples by real-time PCR and Pyrosequencing.

    Science.gov (United States)

    Trama, Jason P; Adelson, Martin E; Mordechai, Eli

    2007-12-01

    Laboratory diagnosis of molluscum contagiosum virus (MCV) is important as lesions can be confused with those caused by Cryptococcus neoformans, herpes simplex virus, human papillomavirus, and varicella-zoster virus. To develop a rapid method for identifying patients infected with MCV via swab sampling. Two dual-labeled probe real-time PCR assays, one homologous to the p43K gene and one to the MC080R gene, were designed. The p43K PCR was designed to be used in conjunction with Pyrosequencing for confirmation of PCR products and discrimination between MCV1 and MCV2. Both PCR assays were optimized with respect to reaction components, thermocycling parameters, and primer and probe concentrations. The specificities of both PCR assays were confirmed by non-amplification of 38 known human pathogens. Sensitivity assays demonstrated detection of as few as 10 copies per reaction. Testing 703 swabs, concordance between the two real-time PCR assays was 99.9%. Under the developed conditions, Pyrosequencing of the p43K PCR product was capable of providing enough nucleotide sequence to definitively differentiate MCV1 and MCV2. These real-time PCR assays can be used for the rapid, sensitive, and specific detection of MCV and, when combined with Pyrosequencing, can further discriminate between MCV1 and MCV2.

  3. Development of Quantitative Competitive PCR and Absolute Based Real-Time PCR Assays for Quantification of The Butyrate Producing Bacterium: Butyrivibrio fibrisolvens

    Directory of Open Access Journals (Sweden)

    Mojtaba Tahmoorespur

    2016-04-01

    Full Text Available Introduction Butyrivibrio fibrisolvens strains are presently recognized as the major butyrate-producing bacteria found in the rumen and digestive track of many animals and also in the human gut. In this study we reported the development of two DNA based techniques, quantitative competitive (QC PCR and absolute based Real-Time PCR, for enumerating Butyrivibrio fibrisolvens strains. Despite the recent introduction of real-time PCR method for the rapid quantification of the target DNA sequences, use of quantitative competitive PCR (QC-PCR technique continues to play an important role in nucleic acid quantification since it is more cost effective. The procedure relies on the co-amplification of the sequence of interest with a serially diluted synthetic DNA fragment of the known concentration (competitor, using the single set primers. A real-time polymerase chain reaction is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR. It monitors the amplification of a targeted DNA molecule during the PCR. Materials and Methods At first reported species-specific primers targeting the 16S rDNA region of the bacterium Butyrivibrio fibrisolvens were used for amplifying a 213 bp fragment. A DNA competitor differing by 50 bp in length from the 213 bp fragment was constructed and cloned into pTZ57R/T vector. The competitor was quantified by NanoDrop spectrophotometer and serially diluted and co-amplified by PCR with total extracted DNA from rumen fluid samples. PCR products were quantified by photographing agarose gels and analyzed with Image J software and the amount of amplified target DNA was log plotted against the amount of amplified competitor. Coefficient of determination (R2 was used as a criterion of methodology precision. For developing the Real-time PCR technique, the 213 bp fragment was amplified and cloned into pTZ57R/T was used to draw a standard curve. Results and Discussion The specific primers of Butyrivibrio

  4. Real-time PCR for the quantification of fungi in planta.

    Science.gov (United States)

    Klosterman, Steven J

    2012-01-01

    Methods enabling quantification of fungi in planta can be useful for a variety of applications. In combination with information on plant disease severity, indirect quantification of fungi in planta offers an additional tool in the screening of plants that are resistant to fungal diseases. In this chapter, a method is described for the quantification of DNA from a fungus in plant leaves using real-time PCR (qPCR). Although the method described entails quantification of the fungus Verticillium dahliae in lettuce leaves, the methodology described would be useful for other pathosystems as well. The method utilizes primers that are specific for amplification of a β-tubulin sequence from V. dahliae and a lettuce actin gene sequence as a reference for normalization. This approach enabled quantification of V. dahliae in the amount of 2.5 fg/ng of lettuce leaf DNA at 21 days following plant inoculation.

  5. Real-Time PCR for Universal Phytoplasma Detection and Quantification

    DEFF Research Database (Denmark)

    Christensen, Nynne Meyn; Nyskjold, Henriette; Nicolaisen, Mogens

    2013-01-01

    Currently, the most efficient detection and precise quantification of phytoplasmas is by real-time PCR. Compared to nested PCR, this method is less sensitive to contamination and is less work intensive. Therefore, a universal real-time PCR method will be valuable in screening programs and in other...

  6. Quantitative Real Time PCR approach to study gene expression profile during prenatal growth of skeletal muscle in pig of Duroc and Pietrain breeds

    Directory of Open Access Journals (Sweden)

    M. Cagnazzo

    2010-01-01

    Full Text Available The quantitative real time-PCR (QRT-PCR is a very sensitive method used to quantify mRNA level in gene expression analysis. Combining amplification, detection and quantification in a single step, allows a more accurate measurement compared to the traditional PCR end point analysis (Pfaffl, 2001; Bustin, 2002.

  7. Real-time PCR based on SYBR-Green I fluorescence: An alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions

    Directory of Open Access Journals (Sweden)

    Puisieux Alain

    2003-10-01

    Full Text Available Abstract Background Real-time PCR is increasingly being adopted for RNA quantification and genetic analysis. At present the most popular real-time PCR assay is based on the hybridisation of a dual-labelled probe to the PCR product, and the development of a signal by loss of fluorescence quenching as PCR degrades the probe. Though this so-called 'TaqMan' approach has proved easy to optimise in practice, the dual-labelled probes are relatively expensive. Results We have designed a new assay based on SYBR-Green I binding that is quick, reliable, easily optimised and compares well with the published assay. Here we demonstrate its general applicability by measuring copy number in three different genetic contexts; the quantification of a gene rearrangement (T-cell receptor excision circles (TREC in peripheral blood mononuclear cells; the detection and quantification of GLI, MYC-C and MYC-N gene amplification in cell lines and cancer biopsies; and detection of deletions in the OPA1 gene in dominant optic atrophy. Conclusion Our assay has important clinical applications, providing accurate diagnostic results in less time, from less biopsy material and at less cost than assays currently employed such as FISH or Southern blotting.

  8. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    Science.gov (United States)

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  9. Development of loop-mediated isothermal amplification and SYBR green real-time PCR methods for the detection of Citrus yellow mosaic badnavirus in citrus species.

    Science.gov (United States)

    Anthony Johnson, A M; Dasgupta, I; Sai Gopal, D V R

    2014-07-01

    Citrus yellow mosaic badnavirus (CMBV) is an important pathogen in southern India spread by infected citrus propagules. One of the measures to arrest the spread of CMBV is to develop methods to screen and certify citrus propagules as CMBV-free. The methods loop-mediated isothermal amplification (LAMP) and SYBR green real-time PCR (SGRTPCR) have been developed for the efficient detection of CMBV in citrus propagules. This paper compares the sensitivities of LAMP and SGRTPCR with polymerase chain reaction (PCR) for the detection of CMBV. Whereas PCR and LAMP were able to detect CMBV from a minimum of 10 ng of total DNA of infected leaf samples, SGRTPCR could detect the same from 1 ng of total DNA. Using SGRTPCR, the viral titres were estimated to be the highest in rough lemon and lowest in Nagpur Mandarin of the five naturally infected citrus species tested. The results will help in designing suitable strategies for the sensitive detection of CMBV from citrus propagules. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Genetic screening of spinal muscular atrophy using a real-time modified COP-PCR technique with dried blood-spot DNA.

    Science.gov (United States)

    Ar Rochmah, Mawaddah; Harahap, Nur Imma Fatimah; Niba, Emma Tabe Eko; Nakanishi, Kenta; Awano, Hiroyuki; Morioka, Ichiro; Iijima, Kazumoto; Saito, Toshio; Saito, Kayoko; Lai, Poh San; Takeshima, Yasuhiro; Takeuchi, Atsuko; Bouike, Yoshihiro; Okamoto, Maya; Nishio, Hisahide; Shinohara, Masakazu

    2017-10-01

    Spinal muscular atrophy (SMA) is a common neuromuscular disorder caused by mutations in SMN1. More than 95% of SMA patients carry homozygous SMN1 deletion. SMA is the leading genetic cause of infant death, and has been considered an incurable disease. However, a recent clinical trial with an antisense oligonucleotide drug has shown encouraging clinical efficacy. Thus, early and accurate detection of SMN1 deletion may improve prognosis of many infantile SMA patients. A total of 88 DNA samples (37 SMA patients, 12 carriers and 39 controls) from dried blood spots (DBS) on filter paper were analyzed. All participants had previously been screened for SMN genes by PCR restriction fragment length polymorphism (PCR-RFLP) using DNA extracted from freshly collected blood. DNA was extracted from DBS that had been stored at room temperature (20-25°C) for 1week to 5years. To ensure sufficient quality and quantity of DNA samples, target sequences were pre-amplified by conventional PCR. Real-time modified competitive oligonucleotide priming-PCR (mCOP-PCR) with the pre-amplified PCR products was performed for the gene-specific amplification of SMN1 and SMN2 exon 7. Compared with PCR-RFLP using DNA from freshly collected blood, results from real-time mCOP-PCR using DBS-DNA for detection of SMN1 exon 7 deletion showed a sensitivity of 1.00 (CI [0.87, 1.00])] and specificity of 1.00 (CI [0.90, 1.00]), respectively. We combined DNA extraction from DBS on filter paper, pre-amplification of target DNA, and real-time mCOP-PCR to specifically detect SMN1 and SMN2 genes, thereby establishing a rapid, accurate, and high-throughput system for detecting SMN1-deletion with practical applications for newborn screening. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  11. Evaluation of an Improved U.S. Food and Drug Administration Method for the Detection of Cyclospora cayetanensis in Produce Using Real-Time PCR.

    Science.gov (United States)

    Murphy, Helen R; Lee, Seulgi; da Silva, Alexandre J

    2017-07-01

    Cyclospora cayetanensis is a protozoan parasite that causes human diarrheal disease associated with the consumption of fresh produce or water contaminated with C. cayetanensis oocysts. In the United States, foodborne outbreaks of cyclosporiasis have been linked to various types of imported fresh produce, including cilantro and raspberries. An improved method was developed for identification of C. cayetanensis in produce at the U.S. Food and Drug Administration. The method relies on a 0.1% Alconox produce wash solution for efficient recovery of oocysts, a commercial kit for DNA template preparation, and an optimized TaqMan real-time PCR assay with an internal amplification control for molecular detection of the parasite. A single laboratory validation study was performed to assess the method's performance and compare the optimized TaqMan real-time PCR assay and a reference nested PCR assay by examining 128 samples. The samples consisted of 25 g of cilantro or 50 g of raspberries seeded with 0, 5, 10, or 200 C. cayetanensis oocysts. Detection rates for cilantro seeded with 5 and 10 oocysts were 50.0 and 87.5%, respectively, with the real-time PCR assay and 43.7 and 94.8%, respectively, with the nested PCR assay. Detection rates for raspberries seeded with 5 and 10 oocysts were 25.0 and 75.0%, respectively, with the real-time PCR assay and 18.8 and 68.8%, respectively, with the nested PCR assay. All unseeded samples were negative, and all samples seeded with 200 oocysts were positive. Detection rates using the two PCR methods were statistically similar, but the real-time PCR assay is less laborious and less prone to amplicon contamination and allows monitoring of amplification and analysis of results, making it more attractive to diagnostic testing laboratories. The improved sample preparation steps and the TaqMan real-time PCR assay provide a robust, streamlined, and rapid analytical procedure for surveillance, outbreak response, and regulatory testing of foods for

  12. Development of Real-Time PCR to Monitor Groundwater Contaminated by Fecal Sources and Leachate from the Carcass

    Science.gov (United States)

    Park, S.; Kim, H.; Kim, M.; Lee, Y.; Han, J.

    2011-12-01

    The 2010 outbreak of foot and mouth disease (FMD) in South Korea caused about 4,054 carcass burial sites to dispose the carcasses. Potential environmental impacts by leachate of carcass on groundwater have been issued and it still needs to be studied. Therefore, we tried to develop robust and sensitive tool to immediately determine a groundwater contamination by the leachate from carcass burial. For tracking both an agricultural fecal contamination source and the leachate in groundwater, competitive real-time PCR and PCR method were developed using various PCR primer sets designed to detect E. Coli uidA gene and mtDNA(cytochrome B, cytB) of the animal species such as ovine, porcine, caprine, and bovine. The designed methods were applied to tract the animal species in livestock wastewater and leachate of carcass under appropriate PCR or real-time PCR condition. In the result, mtDNA primer sets for individual (Cow or Pig) and multiple (Cow and Pig) amplification, and E. Coli uidA primers for fecal source amplification were specific and sensitive to target genes. To determine contamination source, concentration of amplified mtDNA and uidA was competitively quantified in Livestock wastewater, leachate of carcass, and groundwater. The highest concentration of mtDNA and uidA showed in leachate of carcass and livestock wastewater, respectively. Groundwater samples possibly contaminated by leachate of carcass were analyzed by this assay and it was able to prove contamination source.

  13. A quick method for species identification of Japanese eel (Anguilla japonica) using real-time PCR: an onboard application for use during sampling surveys.

    Science.gov (United States)

    Watanabe, Shun; Minegishi, Yuki; Yoshinaga, Tatsuki; Aoyama, Jun; Tsukamoto, Katsumi

    2004-01-01

    To compensate for the limited number of morphological characteristics of fish eggs and larvae, we established a convenient and robust method of species identification for eggs of the Japanese eel (Anguilla japonica) using a real-time polymerase chain reaction (PCR) that can be performed onboard research ships at sea. A total of about 1.2 kbp of the mitochondrial 16S ribosomal RNA gene sequences from all species of Anguilla and 3 other anguilliform species were compared to design specific primer pairs and a probe for A. japonica. This real-time PCR amplification was conducted for a total of 44 specimens including A. japonica, A. marmorata, A. bicolor pacifica, and 6 other anguilliform species. Immediate PCR amplification was only observed in A. japonica. We then tested this method under onboard conditions and obtained the same result as had been produced in the laboratory. These results suggest that real-time PCR can be a powerful tool for detecting Japanese eel eggs and newly hatched larvae immediately after onboard sampling during research cruises and will allow targeted sampling efforts to occur rapidly in response to any positive onboard identification of the eggs and larvae of this species.

  14. European validation of a real-time PCR-based method for detection of Listeria monocytogenes in soft cheese.

    Science.gov (United States)

    Gianfranceschi, Monica Virginia; Rodriguez-Lazaro, David; Hernandez, Marta; González-García, Patricia; Comin, Damiano; Gattuso, Antonietta; Delibato, Elisabetta; Sonnessa, Michele; Pasquali, Frederique; Prencipe, Vincenza; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Kozačinski, Lidija; Tomic, Danijela Horvatek; Zdolec, Nevijo; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John Elmerdahl; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Paiusco, Antonella; De Cesare, Alessandra; Manfreda, Gerardo; De Medici, Dario

    2014-08-01

    The classical microbiological method for detection of Listeria monocytogenes requires around 7 days for final confirmation, and due to perishable nature of RTE food products, there is a clear need for an alternative methodology for detection of this pathogen. This study presents an international (at European level) ISO 16140-based validation trial of a non-proprietary real-time PCR-based methodology that can generate final results in the following day of the analysis. This methodology is based on an ISO compatible enrichment coupled to a bacterial DNA extraction and a consolidated real-time PCR assay. Twelve laboratories from six European countries participated in this trial, and soft cheese was selected as food model since it can represent a difficult matrix for the bacterial DNA extraction and real-time PCR amplification. The limit of detection observed was down to 10 CFU per 25 of sample, showing excellent concordance and accordance values between samples and laboratories (>75%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (82.75%, 96.70% and 97.62%, respectively) when the results obtained for the real-time PCR-based methods were compared to those of the ISO 11290-1 standard method. An interesting observation was that the L. monocytogenes detection by the real-time PCR method was less affected in the presence of Listeria innocua in the contaminated samples, proving therefore to be more reliable than the reference method. The results of this international trial demonstrate that the evaluated real-time PCR-based method represents an excellent alterative to the ISO standard since it shows a higher performance as well as reduce the extent of the analytical process, and can be easily implemented routinely by the competent authorities and food industry laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Real-time PCR (qPCR) primer design using free online software.

    Science.gov (United States)

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most commonly used fluorescent chemistries are SYBR® Green dyes and TaqMan®, Molecular Beacon or Scorpion probes. SYBR® Green is very simple to use and cost efficient. As SYBR® Green dye binds to any double-stranded DNA product, its success depends greatly on proper primer design. Many types of online primer design software are available, which can be used free of charge to design desirable SYBR® Green-based qPCR primers. This laboratory exercise is intended for those who have a fundamental background in PCR. It addresses the basic fluorescent chemistries of real-time PCR, the basic rules and pitfalls of primer design, and provides a step-by-step protocol for designing SYBR® Green-based primers with free, online software. Copyright © 2010 Wiley Periodicals, Inc.

  16. Detection of Giardia intestinalis in water samples collected from natural water reservoirs and wells in northern and north-eastern Poland using LAMP, real-time PCR and nested PCR.

    Science.gov (United States)

    Lass, Anna; Szostakowska, Beata; Korzeniewski, Krzysztof; Karanis, Panagiotis

    2017-10-01

    Giardia intestinalis is a protozoan parasite, transmitted to humans and animals by the faecal-oral route, mainly through contaminated water and food. Knowledge about the distribution of this parasite in surface water in Poland is fragmentary and incomplete. Accordingly, 36 environmental water samples taken from surface water reservoirs and wells were collected in Pomerania and Warmia-Masuria provinces, Poland. The 50 L samples were filtered and subsequently analysed with three molecular detection methods: loop-mediated isothermal amplification (LAMP), real-time polymerase chain reaction (real-time PCR) and nested PCR. Of the samples examined, Giardia DNA was found in 15 (42%) samples with the use of LAMP; in 12 (33%) of these samples, Giardia DNA from this parasite was also detected using real-time PCR; and in 9 (25%) using nested PCR. Sequencing of selected positive samples confirmed that the PCR products were fragments of the Giardia intestinalis small subunit rRNA gene. Genotyping using multiplex real-time PCR indicated the presence of assemblages A and B, with the latter predominating. The results indicate that surface water in Poland, as well as water taken from surface wells, may be a source of Giardia strains which are potentially pathogenic for humans. It was also demonstrated that LAMP assay is more sensitive than the other two molecular assays.

  17. Real-time PCR assays for detection of Brucella spp. and the identification of genotype ST27 in bottlenose dolphins (Tursiops truncatus).

    Science.gov (United States)

    Wu, Qingzhong; McFee, Wayne E; Goldstein, Tracey; Tiller, Rebekah V; Schwacke, Lori

    2014-05-01

    Rapid detection of Brucella spp. in marine mammals is challenging. Microbiologic culture is used for definitive diagnosis of brucellosis, but is time consuming, has low sensitivity and can be hazardous to laboratory personnel. Serological methods can aid in diagnosis, but may not differentiate prior exposure versus current active infection and may cross-react with unrelated Gram-negative bacteria. This study reports a real-time PCR assay for the detection of Brucella spp. and application to screen clinical samples from bottlenose dolphins stranded along the coast of South Carolina, USA. The assay was found to be 100% sensitive for the Brucella strains tested, and the limit of detection was 0.27fg of genomic DNA from Brucella ceti B1/94 per PCR volume. No amplification was detected for the non-Brucella pathogens tested. Brucella DNA was detected in 31% (55/178) of clinical samples tested. These studies indicate that the real-time PCR assay is highly sensitive and specific for the detection of Brucella spp. in bottlenose dolphins. We also developed a second real-time PCR assay for rapid identification of Brucella ST27, a genotype that is associated with human zoonotic infection. Positive results were obtained for Brucella strains which had been identified as ST27 by multilocus sequence typing. No amplification was found for other Brucella strains included in this study. ST27 was identified in 33% (18/54) of Brucella spp. DNA-positive clinical samples. To our knowledge, this is the first report on the use of a real-time PCR assay for identification of Brucella genotype ST27 in marine mammals. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Real-time electrochemical monitoring of isothermal helicase-dependent amplification of nucleic acids.

    Science.gov (United States)

    Kivlehan, Francine; Mavré, François; Talini, Luc; Limoges, Benoît; Marchal, Damien

    2011-09-21

    We described an electrochemical method to monitor in real-time the isothermal helicase-dependent amplification of nucleic acids. The principle of detection is simple and well-adapted to the development of portable, easy-to-use and inexpensive nucleic acids detection technologies. It consists of monitoring a decrease in the electrochemical current response of a reporter DNA intercalating redox probe during the isothermal DNA amplification. The method offers the possibility to quantitatively analyze target nucleic acids in less than one hour at a single constant temperature, and to perform at the end of the isothermal amplification a DNA melt curve analysis for differentiating between specific and non-specific amplifications. To illustrate the potentialities of this approach for the development of a simple, robust and low-cost instrument with high throughput capability, the method was validated with an electrochemical system capable of monitoring up to 48 real-time isothermal HDA reactions simultaneously in a disposable microplate consisting of 48-electrochemical microwells. Results obtained with this approach are comparable to that obtained with a well-established but more sophisticated and expensive fluorescence-based method. This makes for a promising alternative detection method not only for real-time isothermal helicase-dependent amplification of nucleic acid, but also for other isothermal DNA amplification strategies.

  19. Application of a molecular beacon based real-time isothermal amplification (MBRTIA) technology for simultaneous detection of Bacillus cereus and Staphylococcus aureus.

    Science.gov (United States)

    Mandappa, I M; Joglekar, Prasanna; Manonmani, H K

    2015-07-01

    A multiplex real-time isothermal amplification assay was developed using molecular beacons for the detection of Bacillus cereus and Staphylococcus aureus by targeting four important virulence genes. A correlation between targeting highly accessible DNA sequences and isothermal amplification based molecular beacon efficiency and sensitivity was demonstrated using phi(Φ)29 DNA polymerase at a constant isothermal temperature of 30 °C. It was very selective and consistently detected down to 10(1) copies of DNA. The specificity and sensitivity of this assay, when tested with pure culture were high, surpassing those of currently used PCR assays for the detection of these organisms. The molecular beacon based real-time isothermal amplification (MBRTIA) assay could be carried out entirely in 96 well plates or well strips, enabling a rapid and high-throughput detection of food borne pathogens.

  20. A TaqMan real-time PCR-based assay for the identification of Fasciola spp.

    Science.gov (United States)

    Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Jowers, Michael J; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan

    2011-06-30

    Real time quantitative PCR (qPCR) is one of the key technologies of the post-genome era, with clear advantages compared to normal end-point PCR. In this paper, we report the first qPCR-based assay for the identification of Fasciola spp. Based on sequences of the second internal transcribed spacers (ITS-2) of the ribosomal rRNA gene, we used a set of genus-specific primers for Fasciola ITS-2 amplification, and we designed species-specific internal TaqMan probes to identify F. hepatica and F. gigantica, as well as the hybrid 'intermediate'Fasciola. These primers and probes were used for the highly specific, sensitive, and simple identification of Fasciola species collected from different animal host from China, Spain, Niger and Egypt. The novel qPCR-based technique for the identification of Fasciola spp. may provide a useful tool for the epidemiological investigation of Fasciola infection, including their intermediate snail hosts. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Instrument for Real-Time Digital Nucleic Acid Amplification on Custom Microfluidic Devices.

    Directory of Open Access Journals (Sweden)

    David A Selck

    Full Text Available Nucleic acid amplification tests that are coupled with a digital readout enable the absolute quantification of single molecules, even at ultralow concentrations. Digital methods are robust, versatile and compatible with many amplification chemistries including isothermal amplification, making them particularly invaluable to assays that require sensitive detection, such as the quantification of viral load in occult infections or detection of sparse amounts of DNA from forensic samples. A number of microfluidic platforms are being developed for carrying out digital amplification. However, the mechanistic investigation and optimization of digital assays has been limited by the lack of real-time kinetic information about which factors affect the digital efficiency and analytical sensitivity of a reaction. Commercially available instruments that are capable of tracking digital reactions in real-time are restricted to only a small number of device types and sample-preparation strategies. Thus, most researchers who wish to develop, study, or optimize digital assays rely on the rate of the amplification reaction when performed in a bulk experiment, which is now recognized as an unreliable predictor of digital efficiency. To expand our ability to study how digital reactions proceed in real-time and enable us to optimize both the digital efficiency and analytical sensitivity of digital assays, we built a custom large-format digital real-time amplification instrument that can accommodate a wide variety of devices, amplification chemistries and sample-handling conditions. Herein, we validate this instrument, we provide detailed schematics that will enable others to build their own custom instruments, and we include a complete custom software suite to collect and analyze the data retrieved from the instrument. We believe assay optimizations enabled by this instrument will improve the current limits of nucleic acid detection and quantification, improving our

  2. Development and evaluation of a real-time one step Reverse-Transcriptase PCR for quantitation of Chandipura Virus

    Directory of Open Access Journals (Sweden)

    Tandale Babasaheb V

    2008-12-01

    Full Text Available Abstract Background Chandipura virus (CHPV, a member of family Rhabdoviridae was attributed to an explosive outbreak of acute encephalitis in children in Andhra Pradesh, India in 2003 and a small outbreak among tribal children from Gujarat, Western India in 2004. The case-fatality rate ranged from 55–75%. Considering the rapid progression of the disease and high mortality, a highly sensitive method for quantifying CHPV RNA by real-time one step reverse transcriptase PCR (real-time one step RT-PCR using TaqMan technology was developed for rapid diagnosis. Methods Primers and probe for P gene were designed and used to standardize real-time one step RT-PCR assay for CHPV RNA quantitation. Standard RNA was prepared by PCR amplification, TA cloning and run off transcription. The optimized real-time one step RT-PCR assay was compared with the diagnostic nested RT-PCR and different virus isolation systems [in vivo (mice in ovo (eggs, in vitro (Vero E6, PS, RD and Sand fly cell line] for the detection of CHPV. Sensitivity and specificity of real-time one step RT-PCR assay was evaluated with diagnostic nested RT-PCR, which is considered as a gold standard. Results Real-time one step RT-PCR was optimized using in vitro transcribed (IVT RNA. Standard curve showed linear relationship for wide range of 102-1010 (r2 = 0.99 with maximum Coefficient of variation (CV = 5.91% for IVT RNA. The newly developed real-time RT-PCR was at par with nested RT-PCR in sensitivity and superior to cell lines and other living systems (embryonated eggs and infant mice used for the isolation of the virus. Detection limit of real-time one step RT-PCR and nested RT-PCR was found to be 1.2 × 100 PFU/ml. RD cells, sand fly cells, infant mice, and embryonated eggs showed almost equal sensitivity (1.2 × 102 PFU/ml. Vero and PS cell-lines (1.2 × 103 PFU/ml were least sensitive to CHPV infection. Specificity of the assay was found to be 100% when RNA from other viruses or healthy

  3. The detection of T-Nos, a genetic element present in GMOs, by cross-priming isothermal amplification with real-time fluorescence.

    Science.gov (United States)

    Zhang, Fang; Wang, Liu; Fan, Kai; Wu, Jian; Ying, Yibin

    2014-05-01

    An isothermal cross-priming amplification (CPA) assay for Agrobacterium tumefaciens nopaline synthase terminator (T-Nos) was established and investigated in this work. A set of six specific primers, recognizing eight distinct regions on the T-Nos sequence, was designed. The CPA assay was performed at a constant temperature, 63 °C, and detected by real-time fluorescence. The results indicated that real-time fluorescent CPA had high specificity, and the limit of detection was 1.06 × 10(3) copies of rice genomic DNA, which could be detected in 40 min. Comparison of real-time fluorescent CPA and conventional polymerase chain reaction (PCR) was also performed. Results revealed that real-time fluorescent CPA had a comparable sensitivity to conventional real-time PCR and had taken a shorter time. In addition, different contents of genetically modified (GM)-contaminated rice seed powder samples were detected for practical application. The result showed real-time fluorescent CPA could detect 0.5 % GM-contaminated samples at least, and the whole reaction could be finished in 35 min. Real-time fluorescent CPA is sensitive enough to monitor labeling systems and provides an attractive method for the detection of GMO.

  4. Absolute quantification by droplet digital PCR versus analog real-time PCR

    Science.gov (United States)

    Hindson, Christopher M; Chevillet, John R; Briggs, Hilary A; Gallichotte, Emily N; Ruf, Ingrid K; Hindson, Benjamin J; Vessella, Robert L; Tewari, Muneesh

    2014-01-01

    Nanoliter-sized droplet technology paired with digital PCR (ddPCR) holds promise for highly precise, absolute nucleic acid quantification. Our comparison of microRNA quantification by ddPCR and real-time PCR revealed greater precision (coefficients of variation decreased by 37–86%) and improved day-to-day reproducibility (by a factor of seven) of ddPCR but with comparable sensitivity. When we applied ddPCR to serum microRNA biomarker analysis, this translated to superior diagnostic performance for identifying individuals with cancer. PMID:23995387

  5. On-chip real-time single-copy polymerase chain reaction in picoliter droplets

    Energy Technology Data Exchange (ETDEWEB)

    Beer, N R; Hindson, B; Wheeler, E; Hall, S B; Rose, K A; Kennedy, I; Colston, B

    2007-04-20

    The first lab-on-chip system for picoliter droplet generation and PCR amplification with real-time fluorescence detection has performed PCR in isolated droplets at volumes 10{sup 6} smaller than commercial real-time PCR systems. The system utilized a shearing T-junction in a silicon device to generate a stream of monodisperse picoliter droplets that were isolated from the microfluidic channel walls and each other by the oil phase carrier. An off-chip valving system stopped the droplets on-chip, allowing them to be thermal cycled through the PCR protocol without droplet motion. With this system a 10-pL droplet, encapsulating less than one copy of viral genomic DNA through Poisson statistics, showed real-time PCR amplification curves with a cycle threshold of {approx}18, twenty cycles earlier than commercial instruments. This combination of the established real-time PCR assay with digital microfluidics is ideal for isolating single-copy nucleic acids in a complex environment.

  6. Detection of Salmonella in Shellfish Using SYBR Green™ I-Based Real-Time Multiplexed PCR Assay Targeting invA and spvB

    KAUST Repository

    Gangwar, Maulshree

    2012-09-23

    A SYBR Green™ I-based real-time multiplexed PCR assay was developed targeting invA and spvB for the detection of Salmonella strains in shellfish after both hns and invA genes were identified in all Salmonella strains. Simultaneously, the 16S rRNA gene was used as a PCR internal amplification control (IAC). All 89 Salmonella strains tested in this study exhibited amplification of invA, whereas only 21 (23. 6 %) were PCR positive for spvB. The sensitivity of detection of all three targeted genes was 1 ng, which is equivalent to approximately 105 colony-forming unit (CFU) of Salmonella enterica. The analysis showed specific PCR products that were identified by reproducible melt temperature profiles (invA, 84. 27 ± 1. 7 °C; spvB, 88. 76 ± 1. 0 °C; and 16S rRNA gene, 87. 16 ± 0. 8 °C). The sensitivity of detection was 10 pg purified DNA (invA) or 105 CFU in 1 mL pure culture of S. enterica ATCC 14028. The above molecular detection method for Salmonella strains was successfully applied to the oyster homogenates (food matrix). An initial inoculum of 106 and 102 CFU Salmonella in 1 ml seeded oyster tissue homogenate was detected by multiplexed PCR for all three genes after 5 and 24 h of enrichment, respectively. Natural oysters isolated from Gulf of Mexico during the winter months exhibited negative PCR amplification results suggesting the absence of Salmonella. In contrast to conventional PCR, real-time multiplex PCR assay developed in this study is rapid and sensitive and will help Interstate Shellfish Sanitation Conference undertake appropriate measures to monitor Salmonella in oysters, thereby preventing disease outbreaks and consequently protecting consumer health. © 2012 Springer Science+Business Media, LLC.

  7. Detection of Salmonella in Shellfish Using SYBR Green™ I-Based Real-Time Multiplexed PCR Assay Targeting invA and spvB

    KAUST Repository

    Gangwar, Maulshree; Waters, Alicia M.; Bej, Gautam A.; Bej, Asim K.; Mojib, Nazia

    2012-01-01

    A SYBR Green™ I-based real-time multiplexed PCR assay was developed targeting invA and spvB for the detection of Salmonella strains in shellfish after both hns and invA genes were identified in all Salmonella strains. Simultaneously, the 16S rRNA gene was used as a PCR internal amplification control (IAC). All 89 Salmonella strains tested in this study exhibited amplification of invA, whereas only 21 (23. 6 %) were PCR positive for spvB. The sensitivity of detection of all three targeted genes was 1 ng, which is equivalent to approximately 105 colony-forming unit (CFU) of Salmonella enterica. The analysis showed specific PCR products that were identified by reproducible melt temperature profiles (invA, 84. 27 ± 1. 7 °C; spvB, 88. 76 ± 1. 0 °C; and 16S rRNA gene, 87. 16 ± 0. 8 °C). The sensitivity of detection was 10 pg purified DNA (invA) or 105 CFU in 1 mL pure culture of S. enterica ATCC 14028. The above molecular detection method for Salmonella strains was successfully applied to the oyster homogenates (food matrix). An initial inoculum of 106 and 102 CFU Salmonella in 1 ml seeded oyster tissue homogenate was detected by multiplexed PCR for all three genes after 5 and 24 h of enrichment, respectively. Natural oysters isolated from Gulf of Mexico during the winter months exhibited negative PCR amplification results suggesting the absence of Salmonella. In contrast to conventional PCR, real-time multiplex PCR assay developed in this study is rapid and sensitive and will help Interstate Shellfish Sanitation Conference undertake appropriate measures to monitor Salmonella in oysters, thereby preventing disease outbreaks and consequently protecting consumer health. © 2012 Springer Science+Business Media, LLC.

  8. Comparison of real-time SYBR green dengue assay with real-time taqman RT-PCR dengue assay and the conventional nested PCR for diagnosis of primary and secondary dengue infection

    Science.gov (United States)

    Paudel, Damodar; Jarman, Richard; Limkittikul, Kriengsak; Klungthong, Chonticha; Chamnanchanunt, Supat; Nisalak, Ananda; Gibbons, Robert; Chokejindachai, Watcharee

    2011-01-01

    Background: Dengue fever and dengue hemorrhagic fever are caused by dengue virus. Dengue infection remains a burning problem of many countries. To diagnose acute dengue in the early phase we improve the low cost, rapid SYBR green real time assay and compared the sensitivity and specificity with real time Taqman® assay and conventional nested PCR assay. Aims: To develop low cost, rapid and reliable real time SYBR green diagnostic dengue assay and compare with Taqman real-time assay and conventional nested PCR (modified Lanciotti). Materials and Methods: Eight cultured virus strains were diluted in tenth dilution down to undetectable level by the PCR to optimize the primer, temperature (annealing, and extension and to detect the limit of detection of the assay. Hundred and ninety three ELISA and PCR proved dengue clinical samples were tested with real time SYBR® Green assay, real time Taqman® assay to compare the sensitivity and specificity. Results: Sensitivity and specificity of real time SYBR® green dengue assay (84% and 66%, respectively) was almost comparable to those (81% and 74%) of Taqman real time PCR dengue assay. Real time SYBR® green RT-PCR was equally sensitive in primary and secondary infection while real time Taqman was less sensitive in the secondary infection. Sensitivity of real time Taqman on DENV3 (87%) was equal to SYBR green real time PCR dengue assay. Conclusion: We developed low cost rapid diagnostic SYBR green dengue assay. Further study is needed to make duplex primer assay for the serotyping of dengue virus. PMID:22363089

  9. A novel photoinduced electron transfer (PET) primer technique for rapid real-time PCR detection of Cryptosporidium spp

    Energy Technology Data Exchange (ETDEWEB)

    Jothikumar, N., E-mail: jin2@cdc.gov; Hill, Vincent R.

    2013-06-28

    Highlights: •Uses a single-labeled fluorescent primer for real-time PCR. •The detection sensitivity of PET PCR was comparable to TaqMan PCR. •Melt curve analysis can be performed to confirm target amplicon production. •Conventional PCR primers can be converted to PET PCR primers. -- Abstract: We report the development of a fluorescently labeled oligonucleotide primer that can be used to monitor real-time PCR. The primer has two parts, the 3′-end of the primer is complimentary to the target and a universal 17-mer stem loop at the 5′-end forms a hairpin structure. A fluorescent dye is attached to 5′-end of either the forward or reverse primer. The presence of guanosine residues at the first and second position of the 3′ dangling end effectively quenches the fluorescence due to the photo electron transfer (PET) mechanism. During the synthesis of nucleic acid, the hairpin structure is linearized and the fluorescence of the incorporated primer increases several-fold due to release of the fluorescently labeled tail and the absence of guanosine quenching. As amplicons are synthesized during nucleic acid amplification, the fluorescence increase in the reaction mixture can be measured with commercially available real-time PCR instruments. In addition, a melting procedure can be performed to denature the double-stranded amplicons, thereby generating fluorescence peaks that can differentiate primer dimers and other non-specific amplicons if formed during the reaction. We demonstrated the application of PET-PCR for the rapid detection and quantification of Cryptosporidium parvum DNA. Comparison with a previously published TaqMan® assay demonstrated that the two real-time PCR assays exhibited similar sensitivity for a dynamic range of detection of 6000–0.6 oocysts per reaction. PET PCR primers are simple to design and less-expensive than dual-labeled probe PCR methods, and should be of interest for use by laboratories operating in resource

  10. A novel photoinduced electron transfer (PET) primer technique for rapid real-time PCR detection of Cryptosporidium spp

    International Nuclear Information System (INIS)

    Jothikumar, N.; Hill, Vincent R.

    2013-01-01

    Highlights: •Uses a single-labeled fluorescent primer for real-time PCR. •The detection sensitivity of PET PCR was comparable to TaqMan PCR. •Melt curve analysis can be performed to confirm target amplicon production. •Conventional PCR primers can be converted to PET PCR primers. -- Abstract: We report the development of a fluorescently labeled oligonucleotide primer that can be used to monitor real-time PCR. The primer has two parts, the 3′-end of the primer is complimentary to the target and a universal 17-mer stem loop at the 5′-end forms a hairpin structure. A fluorescent dye is attached to 5′-end of either the forward or reverse primer. The presence of guanosine residues at the first and second position of the 3′ dangling end effectively quenches the fluorescence due to the photo electron transfer (PET) mechanism. During the synthesis of nucleic acid, the hairpin structure is linearized and the fluorescence of the incorporated primer increases several-fold due to release of the fluorescently labeled tail and the absence of guanosine quenching. As amplicons are synthesized during nucleic acid amplification, the fluorescence increase in the reaction mixture can be measured with commercially available real-time PCR instruments. In addition, a melting procedure can be performed to denature the double-stranded amplicons, thereby generating fluorescence peaks that can differentiate primer dimers and other non-specific amplicons if formed during the reaction. We demonstrated the application of PET-PCR for the rapid detection and quantification of Cryptosporidium parvum DNA. Comparison with a previously published TaqMan® assay demonstrated that the two real-time PCR assays exhibited similar sensitivity for a dynamic range of detection of 6000–0.6 oocysts per reaction. PET PCR primers are simple to design and less-expensive than dual-labeled probe PCR methods, and should be of interest for use by laboratories operating in resource

  11. Real-time correction of tsunami site effect by frequency-dependent tsunami-amplification factor

    Science.gov (United States)

    Tsushima, H.

    2017-12-01

    For tsunami early warning, I developed frequency-dependent tsunami-amplification factor and used it to design a recursive digital filter that can be applicable for real-time correction of tsunami site response. In this study, I assumed that a tsunami waveform at an observing point could be modeled by convolution of source, path and site effects in time domain. Under this assumption, spectral ratio between offshore and the nearby coast can be regarded as site response (i.e. frequency-dependent amplification factor). If the amplification factor can be prepared before tsunamigenic earthquakes, its temporal convolution to offshore tsunami waveform provides tsunami prediction at coast in real time. In this study, tsunami waveforms calculated by tsunami numerical simulations were used to develop frequency-dependent tsunami-amplification factor. Firstly, I performed numerical tsunami simulations based on nonlinear shallow-water theory from many tsuanmigenic earthquake scenarios by varying the seismic magnitudes and locations. The resultant tsunami waveforms at offshore and the nearby coastal observing points were then used in spectral-ratio analysis. An average of the resulted spectral ratios from the tsunamigenic-earthquake scenarios is regarded as frequency-dependent amplification factor. Finally, the estimated amplification factor is used in design of a recursive digital filter that can be applicable in time domain. The above procedure is applied to Miyako bay at the Pacific coast of northeastern Japan. The averaged tsunami-height spectral ratio (i.e. amplification factor) between the location at the center of the bay and the outside show a peak at wave-period of 20 min. A recursive digital filter based on the estimated amplification factor shows good performance in real-time correction of tsunami-height amplification due to the site effect. This study is supported by Japan Society for the Promotion of Science (JSPS) KAKENHI grant 15K16309.

  12. Real-time PCR gene expression profiling

    Czech Academy of Sciences Publication Activity Database

    Kubista, Mikael; Sjögreen, B.; Forootan, A.; Šindelka, Radek; Jonák, Jiří; Andrade, J.M.

    2007-01-01

    Roč. 1, - (2007), s. 56-60 ISSN 1360-8606 R&D Projects: GA AV ČR KJB500520601 Institutional research plan: CEZ:AV0Z50520514 Keywords : real - time PCR, * expression profiling * statistical analysis Subject RIV: EB - Genetics ; Molecular Biology

  13. A novel method to compensate for different amplification efficiencies between patient DNA samples in quantitative real-time PCR

    NARCIS (Netherlands)

    J.P.P. Meijerink (Jules); C. Mandigers; L. van de Locht; E. Tonnissen; F. Goodsaid; J. Raemaekers (John)

    2001-01-01

    textabstractQuantification of residual disease by real-time polymerase chain reaction (PCR) will become a pivotal tool in the development of patient-directed therapy. In recent years, various protocols to quantify minimal residual disease in leukemia or lymphoma patients have been

  14. Assessment of SCAR markers to design real-time PCR primers for rhizosphere quantification of Azospirillum brasilense phytostimulatory inoculants of maize.

    Science.gov (United States)

    Couillerot, O; Poirier, M-A; Prigent-Combaret, C; Mavingui, P; Caballero-Mellado, J; Moënne-Loccoz, Y

    2010-08-01

    To assess the applicability of sequence characterized amplified region (SCAR) markers obtained from BOX, ERIC and RAPD fragments to design primers for real-time PCR quantification of the phytostimulatory maize inoculants Azospirillum brasilense UAP-154 and CFN-535 in the rhizosphere. Primers were designed based on strain-specific SCAR markers and were screened for successful amplification of target strain and absence of cross-reaction with other Azospirillum strains. The specificity of primers thus selected was verified under real-time PCR conditions using genomic DNA from strain collection and DNA from rhizosphere samples. The detection limit was 60 fg DNA with pure cultures and 4 x 10(3) (for UAP-154) and 4 x 10(4) CFU g(-1) (for CFN-535) in the maize rhizosphere. Inoculant quantification was effective from 10(4) to 10(8) CFU g(-1) soil. BOX-based SCAR markers were useful to find primers for strain-specific real-time PCR quantification of each A. brasilense inoculant in the maize rhizosphere. Effective root colonization is a prerequisite for successful Azospirillum phytostimulation, but cultivation-independent monitoring methods were lacking. The real-time PCR methods developed here will help understand the effect of environmental conditions on root colonization and phytostimulation by A. brasilense UAP-154 and CFN-535.

  15. Direct Quantification of Campylobacter jejuni in Chicken Fecal Samples Using Real-Time PCR: Evaluation of Six Rapid DNA Extraction Methods

    DEFF Research Database (Denmark)

    Garcia Clavero, Ana Belén; Kamara, Judy N.; Vigre, Håkan

    2013-01-01

    of this study, the Easy-DNA (Invitrogen) method generated lower Ct values, the best amplification efficiency (AE = 93.2 %) and good precision (R squared = 0.996). The method NucleoSpin® Tissue was able to detect samples spiked with the lowest Campylobacter concentration level (10 CFU/ml) but the amplification...... efficiency was not optimal (AE = 139.5 %). DNA extraction methods Easy-DNA Invitrogen, MiniMAG® and NucleoSpin® Tissue produced good real-time PCR reproducibility generating standard deviations from 0.3 to 0.8 between replicates....

  16. Diagnosis of aerobic vaginitis by quantitative real-time PCR

    OpenAIRE

    Rumyantseva, T. A.; Bellen, G.; Savochkina, Y. A.; Guschin, A. E.; Donders, G.G.G.

    2016-01-01

    Abstract: Purpose To evaluate a real-time PCR-based technique to quantify bacteria associated with aerobic vaginitis (AV) as a potential test. Methods Vaginal samples from 100 women were tested by wet-mount microscopy, gram stain and quantitative real-time PCR targeting Enterobacteriacea, Staphylococcus spp., Streptococcus spp., Enterococcus spp., Escherichia coli, Streptococcus agalactiae, S. aureus; Lactobacillus spp. AV diagnosis obtained by wet-mount microscopy was used as reference. Resu...

  17. QPCR: Application for real-time PCR data management and analysis

    Directory of Open Access Journals (Sweden)

    Eichhorn Heiko

    2009-08-01

    Full Text Available Abstract Background Since its introduction quantitative real-time polymerase chain reaction (qPCR has become the standard method for quantification of gene expression. Its high sensitivity, large dynamic range, and accuracy led to the development of numerous applications with an increasing number of samples to be analyzed. Data analysis consists of a number of steps, which have to be carried out in several different applications. Currently, no single tool is available which incorporates storage, management, and multiple methods covering the complete analysis pipeline. Results QPCR is a versatile web-based Java application that allows to store, manage, and analyze data from relative quantification qPCR experiments. It comprises a parser to import generated data from qPCR instruments and includes a variety of analysis methods to calculate cycle-threshold and amplification efficiency values. The analysis pipeline includes technical and biological replicate handling, incorporation of sample or gene specific efficiency, normalization using single or multiple reference genes, inter-run calibration, and fold change calculation. Moreover, the application supports assessment of error propagation throughout all analysis steps and allows conducting statistical tests on biological replicates. Results can be visualized in customizable charts and exported for further investigation. Conclusion We have developed a web-based system designed to enhance and facilitate the analysis of qPCR experiments. It covers the complete analysis workflow combining parsing, analysis, and generation of charts into one single application. The system is freely available at http://genome.tugraz.at/QPCR

  18. A nested real-time PCR assay for the quantification of Plasmodium falciparum DNA extracted from dried blood spots.

    Science.gov (United States)

    Tran, Tuan M; Aghili, Amirali; Li, Shanping; Ongoiba, Aissata; Kayentao, Kassoum; Doumbo, Safiatou; Traore, Boubacar; Crompton, Peter D

    2014-10-04

    As public health efforts seek to eradicate malaria, there has been an emphasis on eliminating low-density parasite reservoirs in asymptomatic carriers. As such, diagnosing submicroscopic Plasmodium infections using PCR-based techniques has become important not only in clinical trials of malaria vaccines and therapeutics, but also in active malaria surveillance campaigns. However, PCR-based quantitative assays that rely on nucleic acid extracted from dried blood spots (DBS) have demonstrated lower sensitivity than assays that use cryopreserved whole blood as source material. The density of Plasmodium falciparum asexual parasites was quantified using genomic DNA extracted from dried blood spots (DBS) and the sensitivity of two approaches was compared: quantitative real-time PCR (qPCR) targeting the P. falciparum 18S ribosomal RNA gene, either with an initial conventional PCR amplification prior to qPCR (nested qPCR), or without an initial amplification (qPCR only). Parasite densities determined by nested qPCR, qPCR only, and light microscopy were compared. Nested qPCR results in 10-fold higher sensitivity (0.5 parasites/μl) when compared to qPCR only (five parasites/ul). Among microscopy-positive samples, parasite densities calculated by nested qPCR correlated strongly with microscopy for both asymptomatic (Pearson's r=0.58, PNested qPCR improves the sensitivity for the detection of P. falciparum blood-stage infection from clinical DBS samples. This approach may be useful for active malaria surveillance in areas where submicroscopic asymptomatic infections are prevalent.

  19. Real-time pcr (qpcr) assay for rhizoctonia solani anastomoses group ag2-2 iiib

    International Nuclear Information System (INIS)

    Abbas, S.J.; Ahmad, B.

    2014-01-01

    Rhizoctonia solani anastomosis group AG2-2 IIIB is a severe sugar beet and maize pathogen. It causes crown and root rot disease which leads to yield losses world-wide. The soil-borne pathogen is difficult to detect and quantify by conventional methods. We developed a real-time PCR (qPCR) assay for the quantification of genomic DNA of Rhizoctonia solani AG2-2 IIIB based on the ITS region of rDNA genes. The limit of quantification of the assay is 1.8 pg genomic DNA. The amplification efficiency was 96.4. The assay will be helpful in the diagnoses of Rhizoctonia solani infection of sugar beet and maize roots and in the quantification of R. solani AG2-2 IIIB inoculum in plant debris and soil. (author)

  20. A novel method to compensate for different amplification efficiencies between patient DNA samples in quantitative real-time PCR.

    NARCIS (Netherlands)

    Meijerink, J.P.P.; Mandigers, C.M.P.W.; Locht, A.T.F. van de; Tonnissen, E.L.R.T.M.; Goodsaid, F.; Raemaekers, J.M.M.

    2001-01-01

    Quantification of residual disease by real-time polymerase chain reaction (PCR) will become a pivotal tool in the development of patient-directed therapy. In recent years, various protocols to quantify minimal residual disease in leukemia or lymphoma patients have been developed. These assays assume

  1. Use of real-time PCR to evaluate two DNA extraction methods from food

    Directory of Open Access Journals (Sweden)

    Maria Regina Branquinho

    2012-03-01

    Full Text Available The DNA extraction is a critical step in Genetically Modified Organisms analysis based on real-time PCR. In this study, the CTAB and DNeasy methods provided good quality and quantity of DNA from the texturized soy protein, infant formula, and soy milk samples. Concerning the Certified Reference Material consisting of 5% Roundup Ready® soybean, neither method yielded DNA of good quality. However, the dilution test applied in the CTAB extracts showed no interference of inhibitory substances. The PCR efficiencies of lectin target amplification were not statistically different, and the coefficients of correlation (R² demonstrated high degree of correlation between the copy numbers and the threshold cycle (Ct values. ANOVA showed suitable adjustment of the regression and absence of significant linear deviations. The efficiencies of the p35S amplification were not statistically different, and all R² values using DNeasy extracts were above 0.98 with no significant linear deviations. Two out of three R² values using CTAB extracts were lower than 0.98, corresponding to lower degree of correlation, and the lack-of-fit test showed significant linear deviation in one run. The comparative analysis of the Ct values for the p35S and lectin targets demonstrated no statistical significant differences between the analytical curves of each target.

  2. Real-time PCR-based detection of Bordetella pertussis and Bordetella parapertussis in an Irish paediatric population.

    LENUS (Irish Health Repository)

    Grogan, Juanita A

    2011-06-01

    Novel real-time PCR assays targeting the Bordetella pertussis insertion sequence IS481, the toxin promoter region and Bordetella parapertussis insertion sequence IS1001 were designed. PCR assays were capable of detecting ≤10 copies of target DNA per reaction, with an amplification efficiency of ≥90 %. From September 2003 to December 2009, per-nasal swabs and nasopharyngeal aspirates submitted for B. pertussis culture from patients ≤1 month to >15 years of age were examined by real-time PCR. Among 1324 patients, 76 (5.7 %) were B. pertussis culture positive and 145 (10.95 %) were B. pertussis PCR positive. Of the B. pertussis PCR-positive patients, 117 (81 %) were aged 6 months or less. A total of 1548 samples were examined, of which 87 (5.6 %) were culture positive for B. pertussis and 169 (10.92 %) were B. pertussis PCR positive. All culture-positive samples were PCR positive. Seven specimens (0.5 %) were B. parapertussis culture positive and 10 (0.8 %) were B. parapertussis PCR positive, with all culture-positive samples yielding PCR-positive results. A review of patient laboratory records showed that of the 1324 patients tested for pertussis 555 (42 %) had samples referred for respiratory syncytial virus (RSV) testing and 165 (30 %) were positive, as compared to 19.4 % of the total 5719 patients tested for RSV in this period. Analysis of the age distribution of RSV-positive patients identified that 129 (78 %) were aged 6 months or less, similar to the incidence observed for pertussis in that patient age group. In conclusion, the introduction of the real-time PCR assays for the routine detection of B. pertussis resulted in a 91 % increase in the detection of the organism as compared to microbiological culture. The incidence of infection with B. parapertussis is low while the incidence of RSV infection in infants suspected of having pertussis is high, with a similar age distribution to B. pertussis infection.

  3. Cross-platform comparison of SYBR® Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC study

    Directory of Open Access Journals (Sweden)

    Dial Stacey L

    2008-07-01

    Full Text Available Abstract Background The MicroArray Quality Control (MAQC project evaluated the inter- and intra-platform reproducibility of seven microarray platforms and three quantitative gene expression assays in profiling the expression of two commercially available Reference RNA samples (Nat Biotechnol 24:1115-22, 2006. The tested microarrays were the platforms from Affymetrix, Agilent Technologies, Applied Biosystems, GE Healthcare, Illumina, Eppendorf and the National Cancer Institute, and quantitative gene expression assays included TaqMan® Gene Expression PCR Assay, Standardized (Sta RT-PCR™ and QuantiGene®. The data showed great consistency in gene expression measurements across different microarray platforms, different technologies and test sites. However, SYBR® Green real-time PCR, another common technique utilized by half of all real-time PCR users for gene expression measurement, was not addressed in the MAQC study. In the present study, we compared the performance of SYBR Green PCR with TaqMan PCR, microarrays and other quantitative technologies using the same two Reference RNA samples as the MAQC project. We assessed SYBR Green real-time PCR using commercially available RT2 Profiler™ PCR Arrays from SuperArray, containing primer pairs that have been experimentally validated to ensure gene-specificity and high amplification efficiency. Results The SYBR Green PCR Arrays exhibit good reproducibility among different users, PCR instruments and test sites. In addition, the SYBR Green PCR Arrays have the highest concordance with TaqMan PCR, and a high level of concordance with other quantitative methods and microarrays that were evaluated in this study in terms of fold-change correlation and overlap of lists of differentially expressed genes. Conclusion These data demonstrate that SYBR Green real-time PCR delivers highly comparable results in gene expression measurement with TaqMan PCR and other high-density microarrays.

  4. GMO detection using a bioluminescent real time reporter (BART of loop mediated isothermal amplification (LAMP suitable for field use

    Directory of Open Access Journals (Sweden)

    Kiddle Guy

    2012-04-01

    Full Text Available Abstract Background There is an increasing need for quantitative technologies suitable for molecular detection in a variety of settings for applications including food traceability and monitoring of genetically modified (GM crops and their products through the food processing chain. Conventional molecular diagnostics utilising real-time polymerase chain reaction (RT-PCR and fluorescence-based determination of amplification require temperature cycling and relatively complex optics. In contrast, isothermal amplification coupled to a bioluminescent output produced in real-time (BART occurs at a constant temperature and only requires a simple light detection and integration device. Results Loop mediated isothermal amplification (LAMP shows robustness to sample-derived inhibitors. Here we show the applicability of coupled LAMP and BART reactions (LAMP-BART for determination of genetically modified (GM maize target DNA at low levels of contamination (0.1-5.0% GM using certified reference material, and compare this to RT-PCR. Results show that conventional DNA extraction methods developed for PCR may not be optimal for LAMP-BART quantification. Additionally, we demonstrate that LAMP is more tolerant to plant sample-derived inhibitors, and show this can be exploited to develop rapid extraction techniques suitable for simple field-based qualitative tests for GM status determination. We also assess the effect of total DNA assay load on LAMP-BART quantitation. Conclusions LAMP-BART is an effective and sensitive technique for GM detection with significant potential for quantification even at low levels of contamination and in samples derived from crops such as maize with a large genome size. The resilience of LAMP-BART to acidic polysaccharides makes it well suited to rapid sample preparation techniques and hence to both high throughput laboratory settings and to portable GM detection applications. The impact of the plant sample matrix and genome loading

  5. Rapid screening of β-Globin gene mutations by Real-Time PCR in ...

    African Journals Online (AJOL)

    Introduction of the real time PCR has made a revolution in the time taken for the PCR reactions. We present a method for the diagnosis of the common mutations of the B-thalassemia in Egyptian children & families. The procedure depends on the real-time PCR using specific fluorescently labeled hybridization probes.

  6. Real-time PCR Detection of Brucella Abortus: A Comparative Study of SYBR Green I, 5'-exonuclease, and Hybridization Probe Assays

    Energy Technology Data Exchange (ETDEWEB)

    Newby, Deborah Trishelle; Hadfield, Ted; Roberto, Francisco Figueroa

    2003-08-01

    Real-time PCR provides a means of detecting and quantifying DNA targets by monitoring PCR product accumulation during cycling as indicated by increased fluorescence. A number of different approaches can be used to generate the fluorescence signal. Three approaches—SYBR Green I (a double-stranded DNA intercalating dye), 5'-exonuclease (enzymatically released fluors), and hybridization probes (fluorescence resonance energy transfer)—were evaluated for use in a real-time PCR assay to detect Brucella abortus. The three assays utilized the same amplification primers to produce an identical amplicon. This amplicon spans a region of the B. abortus genome that includes portions of the alkB gene and the IS711 insertion element. All three assays were of comparable sensitivity, providing a linear assay over 7 orders of magnitude (from 7.5 ng down to 7.5 fg). However, the greatest specificity was achieved with the hybridization probe assay.

  7. Sensitive detection of African swine fever virus using real-time PCR with a 5' conjugated minor groove binding probe

    DEFF Research Database (Denmark)

    McKillan, John; McMenamy, Michael; Hjertner, Bernt

    2010-01-01

    sensitive than the conventional PCR recommended by the OIE. Linear range was ten logs from 2 × 101 to 2 × 1010. The assay is rapid with an amplification time just over 2 h. The development of this assay provides a useful tool for the specific diagnosis of ASF in statutory or emergency testing programs......The design of a 5′ conjugated minor groove binder (MGB) probe real-time PCR assay is described for the rapid, sensitive and specific detection of African swine fever virus (ASFV) DNA. The assay is designed against the 9GL region and is capable of detecting 20 copies of a DNA standard. It does...

  8. A real-time PCR antibiogram for drug-resistant sepsis.

    Directory of Open Access Journals (Sweden)

    John R Waldeisen

    Full Text Available Current molecular diagnostic techniques for susceptibility testing of septicemia rely on genotyping for the presence of known resistance cassettes. This technique is intrinsically vulnerable due to the inability to detect newly emergent resistance genes. Traditional phenotypic susceptibility testing has always been a superior method to assay for resistance; however, relying on the multi-day growth period to determine which antimicrobial to administer jeopardizes patient survival. These factors have resulted in the widespread and deleterious use of broad-spectrum antimicrobials. The real-time PCR antibiogram, described herein, combines universal phenotypic susceptibility testing with the rapid diagnostic capabilities of PCR. We have developed a procedure that determines susceptibility by monitoring pathogenic load with the highly conserved 16S rRNA gene in blood samples exposed to different antimicrobial drugs. The optimized protocol removes heme and human background DNA from blood, which allows standard real-time PCR detection systems to be employed with high sensitivity (<100 CFU/mL. Three strains of E. coli, two of which were antimicrobial resistant, were spiked into whole blood and exposed to three different antibiotics. After real-time PCR-based determination of pathogenic load, a ΔC(t<3.0 between untreated and treated samples was found to indicate antimicrobial resistance (P<0.01. Minimum inhibitory concentration was determined for susceptible bacteria and pan-bacterial detection was demonstrated with 3 gram-negative and 2 gram-positive bacteria. Species identification was performed via analysis of the hypervariable amplicons. In summary, we have developed a universal diagnostic phenotyping technique that assays for the susceptibility of drug-resistant septicemia with the speed of PCR. The real-time PCR antibiogram achieves detection, susceptibility testing, minimum inhibitory concentration determination, and identification in less than 24

  9. Species-specific detection and quantification of common barnacle larvae from the Japanese coast using quantitative real-time PCR.

    Science.gov (United States)

    Endo, Noriyuki; Sato, Kana; Matsumura, Kiyotaka; Yoshimura, Erina; Odaka, Yukiko; Nogata, Yasuyuki

    2010-11-01

    Species-specific detection and quantification methods for barnacle larvae using quantitative real-time polymerase chain reaction (qPCR) were developed. Species-specific primers for qPCR were designed for 13 barnacle species in the mitochondrial 12S ribosomal RNA gene region. Primer specificity was examined by PCR using template DNA extracted from each of the 13 barnacle species, other unidentified barnacle species, and field collected zooplankton samples. The resulting PCR products comprised single bands following agarose gel electrophoresis when the templates corresponded to primers. The amplifications were highly species-specific even for the field plankton samples. The field plankton samples were subjected to qPCR assay. The calculated DNA contents for each barnacle species were closely correlated with the number of larvae measured by microscopic examination. The method could be applied to quantify barnacle larvae in natural plankton samples.

  10. Real-time PCR Machine System Modeling and a Systematic Approach for the Robust Design of a Real-time PCR-on-a-Chip System

    Directory of Open Access Journals (Sweden)

    Da-Sheng Lee

    2010-01-01

    Full Text Available Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design.

  11. Development of a qualitative, multiplex real-time PCR kit for screening of genetically modified organisms (GMOs).

    Science.gov (United States)

    Dörries, Hans-Henno; Remus, Ivonne; Grönewald, Astrid; Grönewald, Cordt; Berghof-Jäger, Kornelia

    2010-03-01

    The number of commercially available genetically modified organisms (GMOs) and therefore the diversity of possible target sequences for molecular detection techniques are constantly increasing. As a result, GMO laboratories and the food production industry currently are forced to apply many different methods to reliably test raw material and complex processed food products. Screening methods have become more and more relevant to minimize the analytical effort and to make a preselection for further analysis (e.g., specific identification or quantification of the GMO). A multiplex real-time PCR kit was developed to detect the 35S promoter of the cauliflower mosaic virus, the terminator of the nopaline synthase gene of Agrobacterium tumefaciens, the 35S promoter from the figwort mosaic virus, and the bar gene of the soil bacterium Streptomyces hygroscopicus as the most widely used sequences in GMOs. The kit contains a second assay for the detection of plant-derived DNA to control the quality of the often processed and refined sample material. Additionally, the plant-specific assay comprises a homologous internal amplification control for inhibition control. The determined limits of detection for the five assays were 10 target copies/reaction. No amplification products were observed with DNAs of 26 bacterial species, 25 yeasts, 13 molds, and 41 not genetically modified plants. The specificity of the assays was further demonstrated to be 100% by the specific amplification of DNA derived from reference material from 22 genetically modified crops. The applicability of the kit in routine laboratory use was verified by testing of 50 spiked and unspiked food products. The herein described kit represents a simple and sensitive GMO screening method for the reliable detection of multiple GMO-specific target sequences in a multiplex real-time PCR reaction.

  12. Nested-PCR real time as alternative molecular tool for detection of Borrelia burgdorferi compared to the classical serological diagnosis of the blood.

    Science.gov (United States)

    Sroka-Oleksiak, Agnieszka; Ufir, Krzysztof; Salamon, Dominika; Bulanda, Malgorzata; Gosiewski, Tomasz

    Lyme disease, caused by Borrelia burgdorferi, is a multisystem disease that often makes difficulties to recognize caused by their genetic heterogenity. Currently, the gold standard for the detection of Lyme disease (LD) is serologic diagnostics based mainly on tests: ELISA and Western blot (WB). These methods, however, are subject to consider- able defect, especially in the initial phase of infection due to the occurrence of so-called serological window period and low specificity. For this reason, they might be replaced by molecular methods, for example polymerase chain reaction (PCR), which should be more sensitivity and specificity. In the present study we attempt to optimize the PCR reaction conditions and enhance existing test sensitivity by applying the equivalent of real time PCR - nested PCR for detection B. burgdorferi DNA in the patient's blood. The study involved 94 blood samples of patients with suspected LD. From each sample, 1.5 ml of blood was used for the isolation of bacterial DNA and PCR real time am- plification and its equivalent, in nested version. The remaining part earmarked for serologi- cal testing. Optimization of the reaction conditions made experimentally, using gradient of the temperature and gradient of the magnesium ions concentration for reaction real time in nested-PCR and PCR version. The results show that the nested-PCR real time, has a much higher sensitivity 45 (47.8%) of positive results for the detection of B. burgdorferi compared to the single- variety, without a preceding pre-amplification 2 (2.1%). Serological methods allowed the detection of infection in 41 (43.6%) samples. These results support of the nested PCR method as a better molecular tool for the detection of B. burgdorferi infection than classical PCR real time reaction. The nested-PCR real time method may be considered as a complement to ELISA and WB mainly in the early stages of infection, when in the blood circulating B. burgdorferi cells. By contrast, the

  13. Quantitative real-time RT-PCR and chromogenic in situ hybridization: precise methods to detect HER-2 status in breast carcinoma

    International Nuclear Information System (INIS)

    Rosa, Fabíola E; Silveira, Sara M; Silveira, Cássia GT; Bérgamo, Nádia A; Neto, Francisco A Moraes; Domingues, Maria AC; Soares, Fernando A; Caldeira, José RF; Rogatto, Silvia R

    2009-01-01

    HER-2 gene testing has become an integral part of breast cancer patient diagnosis. The most commonly used assay in the clinical setting for evaluating HER-2 status is immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). These procedures permit correlation between HER-2 expression and morphological features. However, FISH signals are labile and fade over time, making post-revision of the tumor difficult. CISH (chromogenic in situ hybridization) is an alternative procedure, with certain advantages, although still limited as a diagnostic tool in breast carcinomas. To elucidate the molecular profile of HER-2 status, mRNA and protein expression in 75 invasive breast carcinomas were analyzed by real time quantitative RT-PCR (qRT-PCR) and IHC, respectively. Amplifications were evaluated in 43 of these cases by CISH and in 11 by FISH. The concordance rate between IHC and qRT-PCR results was 78.9%, and 94.6% for qRT-PCR and CISH. Intratumoral heterogeneity of HER-2 status was identified in three cases by CISH. The results of the three procedures were compared and showed a concordance rate of 83.8%; higher discordances were observed in 0 or 1+ immunostaining cases, which showed high-level amplification (15.4%) and HER-2 transcript overexpression (20%). Moreover, 2+ immunostaining cases presented nonamplified status (50%) by CISH and HER-2 downexpression (38.5%) by qRT-PCR. In general, concordance occurred between qRT-PCR and CISH results. A high concordance was observed between CISH/qRT-PCR and FISH. Comparisons with clinicopathological data revealed a significant association between HER-2 downexpression and the involvement of less than four lymph nodes (P = 0.0350). Based on these findings, qRT-PCR was more precise and reproducible than IHC. Furthermore, CISH was revealed as an alternative and useful procedure for investigating amplifications involving the HER-2 gene

  14. Development of a high-speed real-time PCR system for rapid and precise nucleotide recognition

    Science.gov (United States)

    Terazono, Hideyuki; Takei, Hiroyuki; Hattori, Akihiro; Yasuda, Kenji

    2010-04-01

    Polymerase chain reaction (PCR) is a common method used to create copies of a specific target region of a DNA sequence and to produce large quantities of DNA. A few DNA molecules, which act as templates, are rapidly amplified by PCR into many billions of copies. PCR is a key technology in genome-based biological analysis, revolutionizing many life science fields such as medical diagnostics, food safety monitoring, and countermeasures against bioterrorism. Thus, many applications have been developed with the thermal cycling. For these PCR applications, one of the most important key factors is reduction in the data acquisition time. To reduce the acquisition time, it is necessary to decrease the temperature transition time between the high and low ends as much as possible. We have developed a novel rapid real-time PCR system based on rapid exchange of media maintained at different temperatures. This system consists of two thermal reservoirs and a reaction chamber for PCR observation. The temperature transition was achieved within 0.3 sec, and good thermal stability was achieved during thermal cycling with rapid exchange of circulating media. This system allows rigorous optimization of the temperatures required for each stage of the PCR processes. Resulting amplicons were confirmed by electrophoresis. Using the system, rapid DNA amplification was accomplished within 3.5 min, including initial heating and complete 50 PCR cycles. It clearly shows that the device could allow us faster temperature switching than the conventional conduction-based heating systems based on Peltier heating/cooling.

  15. Development of a real-time RT-PCR assay for the simultaneous identification, quantitation and differentiation of avian metapneumovirus subtypes A and B.

    Science.gov (United States)

    Cecchinato, Mattia; Lupini, Caterina; Munoz Pogoreltseva, Olga Svetlana; Listorti, Valeria; Mondin, Alessandra; Drigo, Michele; Catelli, Elena

    2013-01-01

    In recent years, special attention has been paid to real-time polymerase chain reaction (PCR) for avian metapneumovirus (AMPV) diagnosis, due to its numerous advantages over classical PCR. A new multiplex quantitative real-time reverse transcription-PCR (qRT-PCR) with molecular beacon probe assay, designed to target the SH gene, was developed. The test was evaluated in terms of specificity, sensitivity and repeatability, and compared with conventional RT nested-PCR based on the G gene. All of the AMPV subtype A and B strains tested were amplified and specifically detected while no amplification occurred with other non-target bird respiratory pathogens. The detection limit of the assay was 10(-0.41) median infectious dose/ml and 10(1.15) median infectious dose/ml when the AMPV-B strain IT/Ty/B/Vr240/87 and the AMPV-A strain IT/Ty/A/259-01/03 were used, respectively, as templates. In all cases, the amplification efficiency was approximately 2 and the error values were 0.9375) between crossing point values and virus quantities, making the assay herein designed reliable for quantification. When the newly developed qRT-PCR was compared with a conventional RT nested-PCR, it showed greater sensitivity with RNA extracted from both positive controls and from experimentally infected birds. This assay can be effectively used for the detection, identification, differentiation and quantitation of AMPV subtype A or subtype B to assist in disease diagnosis and to carry out rapid surveillance with high levels of sensitivity and specificity.

  16. Rapid diagnostic tests as a source of DNA for Plasmodium species-specific real-time PCR

    Directory of Open Access Journals (Sweden)

    Van Esbroeck Marjan

    2011-03-01

    Full Text Available Abstract Background This study describes the use of malaria rapid diagnostic tests (RDTs as a source of DNA for Plasmodium species-specific real-time PCR. Methods First, the best method to recover DNA from RDTs was investigated and then the applicability of this DNA extraction method was assessed on 12 different RDT brands. Finally, two RDT brands (OptiMAL Rapid Malaria Test and SDFK60 malaria Ag Plasmodium falciparum/Pan test were comprehensively evaluated on a panel of clinical samples submitted for routine malaria diagnosis at ITM. DNA amplification was done with the 18S rRNA real-time PCR targeting the four Plasmodium species. Results of PCR on RDT were compared to those obtained by PCR on whole blood samples. Results Best results were obtained by isolating DNA from the proximal part of the nitrocellulose component of the RDT strip with a simple DNA elution method. The PCR on RDT showed a detection limit of 0.02 asexual parasites/μl, which was identical to the same PCR on whole blood. For all 12 RDT brands tested, DNA was detected except for one brand when a low parasite density sample was applied. In RDTs with a plastic seal covering the nitrocellulose strip, DNA extraction was hampered. PCR analysis on clinical RDT samples demonstrated correct identification for single species infections for all RDT samples with asexual parasites of P. falciparum (n = 60, Plasmodium vivax (n = 10, Plasmodium ovale (n = 10 and Plasmodium malariae (n = 10. Samples with only gametocytes were detected in all OptiMAL and in 10 of the 11 SDFK60 tests. None of the negative samples (n = 20 gave a signal by PCR on RDT. With PCR on RDT, higher Ct-values were observed than with PCR on whole blood, with a mean difference of 2.68 for OptiMAL and 3.53 for SDFK60. Mixed infections were correctly identified with PCR on RDT in 4/5 OptiMAL tests and 2/5 SDFK60 tests. Conclusions RDTs are a reliable source of DNA for Plasmodium real-time PCR. This study demonstrates the

  17. Human fecal source identification with real-time quantitative PCR

    Science.gov (United States)

    Waterborne diseases represent a significant public health risk worldwide, and can originate from contact with water contaminated with human fecal material. We describe a real-time quantitative PCR (qPCR) method that targets a Bacteroides dori human-associated genetic marker for...

  18. Real-time PCR for detection of Theileria equi and Babesia caballi ...

    African Journals Online (AJOL)

    Real-time PCR for detection of Theileria equi and Babesia caballi parasites in ticks. ... This study aimed to develop a real-time PCR screening test for Babesia caballi and Theileria equi in ticks. Adult D. reticulatus were ... This test is suitable for application in epidemiological surveillance of equine babesiosis and theileriosis.

  19. Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor.

    Science.gov (United States)

    Wang, Tiantian; Devadhasan, Jasmine Pramila; Lee, Do Young; Kim, Sanghyo

    2016-01-01

    In the present study, we developed a polypropylene well-integrated complementary metal oxide semiconductor (CMOS) platform to perform the loop mediated isothermal amplification (LAMP) technique for real-time DNA amplification and detection simultaneously. An amplification-coupled detection system directly measures the photon number changes based on the generation of magnesium pyrophosphate and color changes. The photon number decreases during the amplification process. The CMOS image sensor observes the photons and converts into digital units with the aid of an analog-to-digital converter (ADC). In addition, UV-spectral studies, optical color intensity detection, pH analysis, and electrophoresis detection were carried out to prove the efficiency of the CMOS sensor based the LAMP system. Moreover, Clostridium perfringens was utilized as proof-of-concept detection for the new system. We anticipate that this CMOS image sensor-based LAMP method will enable the creation of cost-effective, label-free, optical, real-time and portable molecular diagnostic devices.

  20. Selection of Housekeeping Genes for Transgene Expression Analysis in Eucommia ulmoides Oliver Using Real-Time RT-PCR

    Directory of Open Access Journals (Sweden)

    Ren Chen

    2010-01-01

    Full Text Available In order to select appropriate housekeeping genes for accurate calibration of experimental variations in real-time (RT- PCR results in transgene expression analysis, particularly with respect to the influence of transgene on stability of endogenous housekeeping gene expression in transgenic plants, we outline a reliable strategy to identify the optimal housekeeping genes from a set of candidates by combining statistical analyses of their (RT- PCR amplification efficiency, gene expression stability, and transgene influences. We used the strategy to select two genes, ACTα and EF1α, from 10 candidate housekeeping genes, as the optimal housekeeping genes to evaluate transgenic Eucommia ulmoides Oliver root lines overexpressing IPPI or FPPS1 genes, which are involved in isoprenoid biosynthesis.

  1. Development of a primer–probe energy transfer based real-time PCR for the detection of Swine influenza virus

    DEFF Research Database (Denmark)

    Kowalczyk, Andrzej; Markowska-Daniel, Iwona; Rasmussen, Thomas Bruun

    2013-01-01

    Swine influenza virus (SIV) causes a contagious and requiring official notification disease of pigs and humans. In this study, a real-time reverse transcription-polymerase chain reaction (RT-PCR) assay based on primer–probe energy transfer (PriProET) for the detection of SIV RNA was developed...... of the specific product amplification. The assay is specific for influenza virus with a sensitivity of detection limit of approximately 10 copies of RNA by PCR. Based on serial dilutions of SIV, the detection limit of the assay was approximately 0.003 TCID50/ml for H1N1 A/Swine/Poland/KPR9/2004 virus. The Pri...

  2. Detection of Schistosoma mansoni and Schistosoma haematobium by Real-Time PCR with High Resolution Melting Analysis

    Directory of Open Access Journals (Sweden)

    Hany Sady

    2015-07-01

    Full Text Available The present study describes a real-time PCR approach with high resolution melting-curve (HRM assay developed for the detection and differentiation of Schistosoma mansoni and S. haematobium in fecal and urine samples collected from rural Yemen. The samples were screened by microscopy and PCR for the Schistosoma species infection. A pair of degenerate primers were designed targeting partial regions in the cytochrome oxidase subunit I (cox1 gene of S. mansoni and S. haematobium using real-time PCR-HRM assay. The overall prevalence of schistosomiasis was 31.8%; 23.8% of the participants were infected with S. haematobium and 9.3% were infected with S. mansoni. With regards to the intensity of infections, 22.1% and 77.9% of S. haematobium infections were of heavy and light intensities, respectively. Likewise, 8.1%, 40.5% and 51.4% of S. mansoni infections were of heavy, moderate and light intensities, respectively. The melting points were distinctive for S. mansoni and S. haematobium, categorized by peaks of 76.49 ± 0.25 °C and 75.43 ± 0.26 °C, respectively. HRM analysis showed high detection capability through the amplification of Schistosoma DNA with as low as 0.0001 ng/µL. Significant negative correlations were reported between the real-time PCR-HRM cycle threshold (Ct values and microscopic egg counts for both S. mansoni in stool and S. haematobium in urine (p < 0.01. In conclusion, this closed-tube HRM protocol provides a potentially powerful screening molecular tool for the detection of S. mansoni and S. haematobium. It is a simple, rapid, accurate, and cost-effective method. Hence, this method is a good alternative approach to probe-based PCR assays.

  3. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process

    Directory of Open Access Journals (Sweden)

    Borges-Pérez Andrés

    2008-12-01

    Full Text Available Abstract Background The elucidation of gene expression patterns leads to a better understanding of biological processes. Real-time quantitative RT-PCR has become the standard method for in-depth studies of gene expression. A biologically meaningful reporting of target mRNA quantities requires accurate and reliable normalization in order to identify real gene-specific variation. The purpose of normalization is to control several variables such as different amounts and quality of starting material, variable enzymatic efficiencies of retrotranscription from RNA to cDNA, or differences between tissues or cells in overall transcriptional activity. The validity of a housekeeping gene as endogenous control relies on the stability of its expression level across the sample panel being analysed. In the present report we describe the first systematic evaluation of potential internal controls during tomato development process to identify which are the most reliable for transcript quantification by real-time RT-PCR. Results In this study, we assess the expression stability of 7 traditional and 4 novel housekeeping genes in a set of 27 samples representing different tissues and organs of tomato plants at different developmental stages. First, we designed, tested and optimized amplification primers for real-time RT-PCR. Then, expression data from each candidate gene were evaluated with three complementary approaches based on different statistical procedures. Our analysis suggests that SGN-U314153 (CAC, SGN-U321250 (TIP41, SGN-U346908 ("Expressed" and SGN-U316474 (SAND genes provide superior transcript normalization in tomato development studies. We recommend different combinations of these exceptionally stable housekeeping genes for suited normalization of different developmental series, including the complete tomato development process. Conclusion This work constitutes the first effort for the selection of optimal endogenous controls for quantitative real-time

  4. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    Science.gov (United States)

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  5. Evaluation of a triplex real-time PCR system to detect the plant-pathogenic molds Alternaria spp., Fusarium spp. and C. purpurea.

    Science.gov (United States)

    Grube, Sabrina; Schönling, Jutta; Prange, Alexander

    2015-12-01

    This article describes the development of a triplex real-time PCR system for the simultaneous detection of three major plant-pathogenic mold genera (Alternaria spp., Fusarium spp. and the species Claviceps purpurea). The designed genus-specific primer-probe systems were validated for sensitivity, specificity and amplification in the presence of background DNA. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Development of a real-time PCR assay for Penicillium expansum quantification and patulin estimation in apples

    International Nuclear Information System (INIS)

    Atoui, A.; Tannous, J.; El Khoury, A.; Kantar, S.; Chdid, N.; Lteif, R.; Oswald, I.; Puel, O.

    2015-01-01

    Due to the occurrence and spread of the fungal contaminants in food and the difficulties to remove their resulting mycotoxins, rapid and accurate methods are needed for early detection of these mycotoxigenic fungi. The polymerase chain reaction and the real time PCR have been widely used for this purpose. Apples are suitable substrates for fungal colonization mostly caused by Penicillium expansum, which produces the mycotoxin patulin during fruit infection. This study describes the development of a realtime PCR assay incorporating an internal amplification control (IAC) to specifically detect and quantify P. expansum. A specific primer pair was designed from the patF gene, involved in patulin biosynthesis. The selected primer set showed a high specificity for P. expansum and was successfully employed in a standardized real-time PCR for the direct quantification of this fungus in apples. Using the developed system, twenty eight apples were analyzed for their DNA content. Apples were also analyzed for patulin content by HPLC. Interestingly, a positive correlation (R"2 = 0.701) was found between P. expansum DNA content and patulin concentration. This work offers an alternative to conventional methods of patulin quantification and mycological detection of P. expansum and could be very useful for the screening of patulin in fruits through the application of industrial quality control. (author)

  7. PCR amplification on microarrays of gel immobilized oligonucleotides

    Science.gov (United States)

    Strizhkov, Boris; Tillib, Sergei; Mikhailovich, Vladimir; Mirzabekov, Andrei

    2003-11-04

    The invention relates two general methods for performing PCR amplification, combined with the detection and analysis of the PCR products on a microchip. In the first method, the amplification occurs both outside and within a plurality of gel pads on a microchip, with at least one oligonucleotide primer immobilized in a gel pad. In the second method, PCR amplification also takes place within gel pads on a microchip, but the pads are surrounded by a hydrophobic liquid such as that which separates the individual gel pads into environments which resemble micro-miniaturized test tubes.

  8. Quantitative detection of the potato cyst nematode, Globodera pallida, and the beet cyst nematode, Heterodera schachtii, using Real-Time PCR with SYBR green I dye.

    Science.gov (United States)

    Madani, Mehrdad; Subbotin, Sergei A; Moens, Maurice

    2005-04-01

    The potato cyst nematode Globodera pallida and the beet cyst nematode Heterodera schachtii are major nematode pests in world agriculture. Precise identification and knowledge about the number of nematodes in field soil are necessary to develop effective integrated pest control. Here we report the results of the Real-Time PCR assay for the rapid detection and quantification of G. pallida and H. schachtii. Using species specific primers and SYBR green I dye, we were able to detect a single second stage juvenile of cyst forming nematodes in samples. The specificity of the reaction was confirmed by the lack of amplification of DNAs from other Heterodera or Globodera species. Validation tests showed a rather high correlation between real numbers of second stage juveniles in a sample and expected numbers detected by Real-Time PCR. Reasons for observed differences in sensitivity and reliability of quantification detection for two species as well as other problems of Real-Time PCR are discussed. The Real-Time PCR assay with SYBR green I dye targeting fragments of the ITS-rDNA provided a sensitive means for the rapid and simultaneous detection and quantification of juveniles of these pests.

  9. Rapid Detection and Differentiation of Clonorchis sinensis and Opisthorchis viverrini Using Real-Time PCR and High Resolution Melting Analysis

    OpenAIRE

    Cai, Xian-Quan; Yu, Hai-Qiong; Li, Rong; Yue, Qiao-Yun; Liu, Guo-Hua; Bai, Jian-Shan; Deng, Yan; Qiu, De-Yi; Zhu, Xing-Quan

    2014-01-01

    Clonorchis sinensis and Opisthorchis viverrini are both important fish-borne pathogens, causing serious public health problem in Asia. The present study developed an assay integrating real-time PCR and high resolution melting (HRM) analysis for the specific detection and rapid identification of C. sinensis and O. viverrini. Primers targeting COX1 gene were highly specific for these liver flukes, as evidenced by the negative amplification of closely related trematodes. Assays using genomic DNA...

  10. Rotavirus genotype shifts among Swedish children and adults-Application of a real-time PCR genotyping.

    Science.gov (United States)

    Andersson, Maria; Lindh, Magnus

    2017-11-01

    It is well known that human rotavirus group A is the most important cause of severe diarrhoea in infants and young children. Less is known about rotavirus infections in other age groups, and about how rotavirus genotypes change over time in different age groups. Develop a real-time PCR to easily genotype rotavirus strains in order to monitor the pattern of circulating genotypes. In this study, rotavirus strains in clinical samples from children and adults in Western Sweden during 2010-2014 were retrospectively genotyped by using specific amplification of VP 4 and VP 7 genes with a new developed real-rime PCR. A genotype was identified in 97% of 775 rotavirus strains. G1P[8] was the most common genotype representing 34.9%, followed by G2P[4] (28.3%), G9P[8] (11.5%), G3P[8] (8.1%), and G4P[8] (7.9%) The genotype distribution changed over time, from predominance of G1P[8] in 2010-2012 to predominance of G2P[4] in 2013-2014. There were also age-related differences, with G1P[8] being the most common genotype in children under 2 years (47.6%), and G2P[4] the most common in those over 70 years of age (46.1%.). The shift to G2P[4] in 2013-2014 was associated with a change in the age distribution, with a greater number of rotavirus positive cases in elderly than in children. By using a new real-time PCR method for genotyping we found that genotype distribution was age related and changed over time with a decreasing proportion of G1P[8]. Copyright © 2017. Published by Elsevier B.V.

  11. Sequence polymorphism can produce serious artefacts in real-time PCR assays: hard lessons from Pacific oysters

    Directory of Open Access Journals (Sweden)

    Camara Mark D

    2008-05-01

    Full Text Available Abstract Background Since it was first described in the mid-1990s, quantitative real time PCR (Q-PCR has been widely used in many fields of biomedical research and molecular diagnostics. This method is routinely used to validate whole transcriptome analyses such as DNA microarrays, suppressive subtractive hybridization (SSH or differential display techniques such as cDNA-AFLP (Amplification Fragment Length Polymorphism. Despite efforts to optimize the methodology, misleading results are still possible, even when standard optimization approaches are followed. Results As part of a larger project aimed at elucidating transcriptome-level responses of Pacific oysters (Crassostrea gigas to various environmental stressors, we used microarrays and cDNA-AFLP to identify Expressed Sequence Tag (EST fragments that are differentially expressed in response to bacterial challenge in two heat shock tolerant and two heat shock sensitive full-sib oyster families. We then designed primers for these differentially expressed ESTs in order to validate the results using Q-PCR. For two of these ESTs we tested fourteen primer pairs each and using standard optimization methods (i.e. melt-curve analysis to ensure amplification of a single product, determined that of the fourteen primer pairs tested, six and nine pairs respectively amplified a single product and were thus acceptable for further testing. However, when we used these primers, we obtained different statistical outcomes among primer pairs, raising unexpected but serious questions about their reliability. We hypothesize that as a consequence of high levels of sequence polymorphism in Pacific oysters, Q-PCR amplification is sub-optimal in some individuals because sequence variants in priming sites results in poor primer binding and amplification in some individuals. This issue is similar to the high frequency of null alleles observed for microsatellite markers in Pacific oysters. Conclusion This study highlights

  12. Strategies for the inclusion of an internal amplification control in conventional and real time PCR detection of Campylobacter spp. in chicken fecal samples

    DEFF Research Database (Denmark)

    Lund, Marianne; Madsen, Mogens

    2006-01-01

    To illustrate important issues in optimization of a PCR assay with an internal control four different primer combinations for conventional PCR, two non-competitive and two competitive set-ups for real time PCR were used for detection of Campylobacter spp. in chicken faecal samples....... In the conventional PCR assays the internal control was genomic DNA from Yersinia ruckeri, which is not found in chicken faeces. This internal control was also used in one of the set LIPS in real time PCR. In the three other set-ups different DNA fragments of 109 bp length prepared from two oligos of each 66 bp...... by a simple extension reaction was used. All assays were optimized to avoid loss of target sensitivity due to the presence of the internal control by adjusting the amount of internal control primers in the duplex assays and the amount of internal control in all assays. Furthermore. the assays were tested...

  13. Comparative evaluation of conventional RT-PCR and real-time RT-PCR (RRT-PCR) for detection of avian metapneumovirus subtype A

    OpenAIRE

    Ferreira, HL; Spilki, FR; dos Santos, MMAB; de Almeida, RS; Arns, CW

    2009-01-01

    Avian metapneumovirus (AMPV) belongs to Metapneumovirus genus of Paramyxoviridae family. Virus isolation, serology, and detection of genomic RNA are used as diagnostic methods for AMPV. The aim of the present study was to compare the detection of six subgroup A AMPV isolates (AMPV/A) viral RNA by using different conventional and real time RT-PCR methods. Two new RT-PCR tests and two real time RT-PCR tests, both detecting fusion (F) gene and nucleocapsid (N) gene were compared with an establis...

  14. Real-Time RT-PCR for the Detection of Lyssavirus Species

    Directory of Open Access Journals (Sweden)

    A. Deubelbeiss

    2014-01-01

    Full Text Available The causative agents of rabies are single-stranded, negative-sense RNA viruses in the genus Lyssavirus of Rhabdoviridae, consisting of twelve classified and three as yet unclassified species including classical rabies virus (RABV. Highly neurotropic RABV causes rapidly progressive encephalomyelitis with nearly invariable fatal outcome. Rapid and reliable diagnosis of rabies is highly relevant for public and veterinary health. Due to growing variety of the genus Lyssavirus observed, the development of suitable molecular assays for diagnosis and differentiation is challenging. This work focused on the establishment of a suitable real-time RT-PCR technique for rabies diagnosis as a complement to fluorescent antibody test and rabies tissue culture infection test as gold standard for diagnosis and confirmation. The real-time RT-PCR was adapted with the goal to detect the whole spectrum of lyssavirus species, for nine of which synthesized DNA fragments were used. For the detection of species, seven probes were developed. Serial dilutions of the rabies virus strain CVS-11 showed a 100-fold higher sensitivity of real-time PCR compared to heminested RT-PCR. Using a panel of thirty-one lyssaviruses representing four species, the suitability of the protocol could be shown. Phylogenetic analysis of the sequences obtained by heminested PCR allowed correct classification of all viruses used.

  15. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature

    DEFF Research Database (Denmark)

    Guðnason, Haukur; Dufva, Hans Martin; Bang, Dang Duong

    2007-01-01

    investigate 15 different intercalating DNA dyes for their inhibitory effects on PCR, effects on DNA melting temperature and possible preferential binding to GC-rich sequences. Our results demonstrated that in contrast to the results of SYBR Green I, two intercalating dyes SYTO-13 and SYTO-82 do not inhibit......The importance of real-time polymerase chain reaction (PCR) has increased steadily in clinical applications over the last decade. Many applications utilize SYBR Green I dye to follow the accumulation of amplicons in real time. SYBR Green I has, however, a number of limitations that include...... the inhibition of PCR, preferential binding to GC-rich sequences and effects on melting curve analysis. Although a few alternative dyes without some of these limitations have been recently proposed, no large-scale investigation into the properties of intercalating dyes has been performed. In this study, we...

  16. Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E. coli.

    Science.gov (United States)

    Li, Baoguang; Liu, Huanli; Wang, Weimin

    2017-11-09

    Shiga toxin-producing Escherichia coli (STEC), including E. coli O157:H7, are responsible for numerous foodborne outbreaks annually worldwide. E. coli O157:H7, as well as pathogenic non-O157:H7 STECs, can cause life-threating complications, such as bloody diarrhea (hemolytic colitis) and hemolytic-uremic syndrome (HUS). Previously, we developed a real-time PCR assay to detect E. coli O157:H7 in foods by targeting a unique putative fimbriae protein Z3276. To extend the detection spectrum of the assay, we report a multiplex real-time PCR assay to specifically detect E. coli O157:H7 and screen for non-O157 STEC by targeting Z3276 and Shiga toxin genes (stx1 and stx2). Also, an internal amplification control (IAC) was incorporated into the assay to monitor the amplification efficiency. The multiplex real-time PCR assay was developed using the Life Technology ABI 7500 System platform and the standard chemistry. The optimal amplification mixture of the assay contains 12.5 μl of 2 × Universal Master Mix (Life Technology), 200 nM forward and reverse primers, appropriate concentrations of four probes [(Z3276 (80 nM), stx1 (80 nM), stx2 (20 nM), and IAC (40 nM)], 2 μl of template DNA, and water (to make up to 25 μl in total volume). The amplification conditions of the assay were set as follows: activation of TaqMan at 95 °C for 10 min, then 40 cycles of denaturation at 95 °C for 10 s and annealing/extension at 60 °C for 60 s. The multiplex assay was optimized for amplification conditions. The limit of detection (LOD) for the multiplex assay was determined to be 200 fg of bacterial DNA, which is equivalent to 40 CFU per reaction which is similar to the LOD generated in single targeted PCRs. Inclusivity and exclusivity determinants were performed with 196 bacterial strains. All E. coli O157:H7 (n = 135) were detected as positive and all STEC strains (n = 33) were positive for stx1, or stx2, or stx1 and stx2 (Table 1). No cross reactivity was detected with Salmonella

  17. Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass.

    Science.gov (United States)

    López-Mondéjar, Rubén; Antón, Anabel; Raidl, Stefan; Ros, Margarita; Pascual, José Antonio

    2010-04-01

    The species of the genus Trichoderma are used successfully as biocontrol agents against a wide range of phytopathogenic fungi. Among them, Trichoderma harzianum is especially effective. However, to develop more effective fungal biocontrol strategies in organic substrates and soil, tools for monitoring the control agents are required. Real-time PCR is potentially an effective tool for the quantification of fungi in environmental samples. The aim of this study consisted of the development and application of a real-time PCR-based method to the quantification of T. harzianum, and the extrapolation of these data to fungal biomass values. A set of primers and a TaqMan probe for the ITS region of the fungal genome were designed and tested, and amplification was correlated to biomass measurements obtained with optical microscopy and image analysis, of the hyphal length of the mycelium of the colony. A correlation of 0.76 between ITS copies and biomass was obtained. The extrapolation of the quantity of ITS copies, calculated based on real-time PCR data, into quantities of fungal biomass provides potentially a more accurate value of the quantity of soil fungi. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Development and validation of a real-time quantitative PCR assay to detect Xanthomonas axonopodis pv. allii from onion seed.

    Science.gov (United States)

    Robène, Isabelle; Perret, Marion; Jouen, Emmanuel; Escalon, Aline; Maillot, Marie-Véronique; Chabirand, Aude; Moreau, Aurélie; Laurent, Annie; Chiroleu, Frédéric; Pruvost, Olivier

    2015-07-01

    Bacterial blight of onion is an emerging disease threatening world onion production. The causal agent Xanthomonas axonopodis pv. allii is seed transmitted and a reliable and sensitive tool is needed to monitor seed exchanges. A triplex quantitative real-time PCR assay was developed targeting two X. axonopodis pv. allii-specific markers and an internal control chosen in 5.8S rRNA gene from Alliaceae. Amplification of at least one marker indicates the presence of the bacterium in seed extracts. This real-time PCR assay detected all the 79 X. axonopodis pv. allii strains tested and excluded 85.2% of the 135 non-target strains and particularly all 39 saprophytic and pathogenic bacteria associated with onion. Cross-reactions were mainly obtained for strains assigned to nine phylogenetically related X. axonopodis pathovars. The cycle cut-off was estimated statistically at 36.3 considering a risk of false positive of 1%. The limit of detection obtained in at least 95% of the time (LOD 95%) was 5×10(3) CFU/g (colony forming unit/g). The sensitivity threshold was found to be 1 infected seed in 32,790 seeds. This real-time PCR assay should be useful for preventing the long-distance spread of X. axonopodis pv. allii via contaminated seed lots and determining the epidemiology of the bacterium. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Detection of tumor markers in prostate cancer and comparison of sensitivity between real time and nested PCR.

    Science.gov (United States)

    Matsuoka, Takayuki; Shigemura, Katsumi; Yamamichi, Fukashi; Fujisawa, Masato; Kawabata, Masato; Shirakawa, Toshiro

    2012-06-27

    The objective of this study is to investigate and compare the sensitivity in conventional PCR, quantitative real time PCR, nested PCR and western blots for detection of prostate cancer tumor markers using prostate cancer (PCa) cells. We performed conventional PCR, quantitative real time PCR, nested PCR, and western blots using 5 kinds of PCa cells. Prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and androgen receptor (AR) were compared for their detection sensitivity by real time PCR and nested PCR. In real time PCR, there was a significant correlation between cell number and the RNA concentration obtained (R(2)=0.9944) for PSA, PSMA, and AR. We found it possible to detect these markers from a single LNCaP cell in both real time and nested PCR. By comparison, nested PCR reached a linear curve in fewer PCR cycles than real time PCR, suggesting that nested PCR may offer PCR results more quickly than real time PCR. In conclusion, nested PCR may offer tumor maker detection in PCa cells more quickly (with fewer PCR cycles) with the same high sensitivity as real time PCR. Further study is necessary to establish and evaluate the best tool for PCa tumor marker detection.

  20. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    Energy Technology Data Exchange (ETDEWEB)

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  1. Towards a portable microchip system with integrated thermal control and polymer waveguides for real-time PCR

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Sekulovic, Andrea; Kutter, Jörg Peter

    2006-01-01

    A novel real-time PCR microchip platform with integrated thermal system and polymer waveguides has been developed. The integrated polymer optical system for real-time monitoring of PCR was fabricated in the same SU-8 layer as the PCR chamber, without additional masking steps. Two suitable DNA...... binding dyes, SYTOX Orange and TO-PRO-3, were selected and tested for the real-time PCR processes. As a model, cadF gene of Campylobacter jejuni has been amplified on the microchip. Using the integrated optical system of the real-time PCR microchip, the measured cycle threshold values of the real-time PCR...

  2. Real-time quantitative PCR of Staphylococcus aureus and application in restaurant meals.

    Science.gov (United States)

    Berrada, H; Soriano, J M; Mañes, J; Picó, Y

    2006-01-01

    Staphylococcus aureus is considered the second most common pathogen to cause outbreaks of food poisoning, exceeded only by Campylobacter. Consumption of foods containing this microorganism is often identified as the cause of illness. In this study, a rapid, reliable, and sensitive real-time quantitative PCR was developed and compared with conventional culture methods. Real-time quantitative PCR was carried out by purifying DNA extracts of S. aureus with a Staphylococcus sample preparation kit and quantifying it in the LightCycler system with hybridization probes. The assay was linear from a range of 10 to 10(6) S. aureus cells (r2 > 0.997). The PCR reaction presented an efficiency of >85%. Accuracy of the PCR-based assay, expressed as percent bias, was around 13%, and the precision, expressed as a percentage of the coefficient of variation, was 7 to 10%. Intraday and interday variability were studied at 10(2) CFU/g and was 12 and 14%, respectively. The proposed method was applied to the analysis of 77 samples of restaurant meals in Valencia (Spain). In 11.6% of samples S. aureus was detected by real-time quantitative PCR, as well as by the conventional microbiological method. An excellent correspondence between real-time quantitative PCR and microbiological numbers (CFU/g) was observed with deviations of < 28%.

  3. Introducing Undergraduate Students to Real-Time PCR

    Science.gov (United States)

    Hancock, Dale; Funnell, Alister; Jack, Briony; Johnston, Jill

    2010-01-01

    An experiment is conducted, which in four 3 h laboratory sessions, introduces third year undergraduate Biochemistry students to the technique of real-time PCR in a biological context. The model used is a murine erythroleukemia cell line (MEL cells). These continuously cycling, immature red blood cells, arrested at an early stage in erythropoiesis,…

  4. Simplified Pan-species Real-time PCR-based Detection of Plasmodium Spp. in Blood Smear.

    Science.gov (United States)

    Hassanpour, Gholamreza; Mirhendi, Hossein; Mohebali, Mehdi; Raeisi, Ahmad; Zeraati, Hojjat; Keshavarz, Hossein

    2016-01-01

    We aimed to quicken and simplify the detection of Plasmodium in blood samples by developing and testing a pan- Plasmodium real-time PCR for accurate screening of individuals suspected of malaria. A single primer/probe set for pan-species Plasmodium -specific real time PCR targeting a conserved region of the small subunit 18S ribosomal DNA was designed and evaluated for rapid diagnosis and screening of malaria infections using dried blood smears. FTA cards were used for rapid and simple DNA extraction. The primers and probes showed a positive response with the DNA extracted from bloods infected with P. falciparum and P. vivax but not with DNA extracted from various smears from uninfected blood samples. Seven positive cases positive by both microscopy and nested PCR were found among 280 blood samples taken from in South and Southeast Iran. Five samples were identified as positive for P. vivax and two as positive for P. falciparum . All positive samples were positive by real-time PCR. Furthermore, all 38-blood samples positive by microscopy were positive by real-time PCR. No microscopy-negative samples were positive by real-time PCR. By using a simple FTA card for DNA extraction and by application of the real-time PCR developed in this study, sensitivity similar to nested-PCR and microscopy was achieved. This format simplifies the detection of Plasmodium in large numbers of samples.

  5. Selective detection of viable seed-borne Acidovorax citrulli by real-time PCR with propidium monoazide.

    Science.gov (United States)

    Tian, Qian; Feng, Jian-Jun; Hu, Jie; Zhao, Wen-Jun

    2016-10-14

    In recent years, use of the DNA-intercalating dye propidium monoazide (PMA) in real-time PCR has been reported as a novel method to detect viable bacteria in different types of samples, such as food, environmental, and microbiological samples. In this study, viable cells of Acidovorax citrulli, the causal agent of bacterial seedling blight and fruit blotch, were selectively detected and differentiated from dead cells by real-time fluorescent polymerase chain reaction amplification after the bacterial solution was treated with the DNA-binding dye PMA. The primers and TaqMan probe were based on the A. citrulli genome (Aave_1909, Gene ID: 4669443) and were highly specific for A. citrulli. The detection threshold of this assay was 10 3 colony-forming units per mL (CFU/mL) in pure cell suspensions containing viable and dead cells and infected watermelon seeds. Application of this assay enables the selective detection of viable cells of A. citrulli and facilitates monitoring of the pathogen in watermelon and melon seeds.

  6. Detection of viable Escherichia coli O157:H7 in ground beef by propidium monoazide real-time PCR.

    Science.gov (United States)

    Liu, Yarui; Mustapha, Azlin

    2014-01-17

    Escherichia coli O157:H7 associated with food has caused many serious public health problems in recent years. However, only viable cells of this pathogen can cause infections, and false-positive detection caused by dead cells can lead to unnecessary product recalls. The objective of this study was to develop and optimize a method that combines propidium monoazide (PMA) staining with real-time PCR to detect only viable cells of E. coli O157:H7 in ground beef. PMA is a DNA intercalating dye that can penetrate compromised membranes of dead cells and bind to cellular DNA, preventing its amplification via a subsequent PCR. Three strains of E. coli O157:H7 (505B, G5310 and C7927) at concentrations of 10(0) to 10(8)CFU/mL were used as live cells. Dead cells were obtained by heating cell suspensions at 85°C for 15 min. Suspensions were treated with PMA and the optimized assay was applied to artificially contaminated ground beef with two different fat contents (10% and 27%). DNA was extracted and amplified by TaqMan® real-time PCR assay targeting the uidA gene for detection of E. coli O157:H7. Plasmid pUC19 was added as an internal amplification control (IAC). A treatment of 25 μM PMA with a 10-min light exposure on ice was sufficient to eliminate DNA from 10(8) dead E. coli O157:H7 cells/mL. The optimized assay could detect as low as 10(2) CFU/mL viable E. coli O157:H7 in pure culture and 10(5) CFU/g in ground beef, in the presence of 10(6)/mL or g of dead cells. With an 8-h enrichment, 1 CFU/g viable E. coli O157:H7 in ground beef was detectable without interference from 10(6) dead cells/g. In conclusion, the PMA real-time PCR could effectively detect viable E. coli O157:H7 without being compromised by dead cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Quantitative real-time RT-PCR and chromogenic in situ hybridization: precise methods to detect HER-2 status in breast carcinoma

    Directory of Open Access Journals (Sweden)

    Soares Fernando A

    2009-03-01

    Full Text Available Abstract Background HER-2 gene testing has become an integral part of breast cancer patient diagnosis. The most commonly used assay in the clinical setting for evaluating HER-2 status is immunohistochemistry (IHC and fluorescence in situ hybridization (FISH. These procedures permit correlation between HER-2 expression and morphological features. However, FISH signals are labile and fade over time, making post-revision of the tumor difficult. CISH (chromogenic in situ hybridization is an alternative procedure, with certain advantages, although still limited as a diagnostic tool in breast carcinomas. Methods To elucidate the molecular profile of HER-2 status, mRNA and protein expression in 75 invasive breast carcinomas were analyzed by real time quantitative RT-PCR (qRT-PCR and IHC, respectively. Amplifications were evaluated in 43 of these cases by CISH and in 11 by FISH. Results The concordance rate between IHC and qRT-PCR results was 78.9%, and 94.6% for qRT-PCR and CISH. Intratumoral heterogeneity of HER-2 status was identified in three cases by CISH. The results of the three procedures were compared and showed a concordance rate of 83.8%; higher discordances were observed in 0 or 1+ immunostaining cases, which showed high-level amplification (15.4% and HER-2 transcript overexpression (20%. Moreover, 2+ immunostaining cases presented nonamplified status (50% by CISH and HER-2 downexpression (38.5% by qRT-PCR. In general, concordance occurred between qRT-PCR and CISH results. A high concordance was observed between CISH/qRT-PCR and FISH. Comparisons with clinicopathological data revealed a significant association between HER-2 downexpression and the involvement of less than four lymph nodes (P = 0.0350. Conclusion Based on these findings, qRT-PCR was more precise and reproducible than IHC. Furthermore, CISH was revealed as an alternative and useful procedure for investigating amplifications involving the HER-2 gene.

  8. Real-time PCR detection of Fe-type nitrile hydratase genes from environmental isolates suggests horizontal gene transfer between multiple genera.

    Science.gov (United States)

    Coffey, Lee; Owens, Erica; Tambling, Karen; O'Neill, David; O'Connor, Laura; O'Reilly, Catherine

    2010-11-01

    Nitriles are widespread in the environment as a result of biological and industrial activity. Nitrile hydratases catalyse the hydration of nitriles to the corresponding amide and are often associated with amidases, which catalyze the conversion of amides to the corresponding acids. Nitrile hydratases have potential as biocatalysts in bioremediation and biotransformation applications, and several successful examples demonstrate the advantages. In this work a real-time PCR assay was designed for the detection of Fe-type nitrile hydratase genes from environmental isolates purified from nitrile-enriched soils and seaweeds. Specific PCR primers were also designed for amplification and sequencing of the genes. Identical or highly homologous nitrile hydratase genes were detected from isolates of numerous genera from geographically diverse sites, as were numerous novel genes. The genes were also detected from isolates of genera not previously reported to harbour nitrile hydratases. The results provide further evidence that many bacteria have acquired the genes via horizontal gene transfer. The real-time PCR assay should prove useful in searching for nitrile hydratases that could have novel substrate specificities and therefore potential in industrial applications.

  9. Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: applications and considerations.

    Science.gov (United States)

    Kim, Jaai; Lim, Juntaek; Lee, Changsoo

    2013-12-01

    Quantitative real-time PCR (qPCR) has been widely used in recent environmental microbial ecology studies as a tool for detecting and quantifying microorganisms of interest, which aids in better understandings of the complexity of wastewater microbial communities. Although qPCR can be used to provide more specific and accurate quantification than other molecular techniques, it does have limitations that must be considered when applying it in practice. This article reviews the principle of qPCR quantification and its applications to microbial ecology studies in various wastewater treatment environments. Here we also address several limitations of qPCR-based approaches that can affect the validity of quantification data: template nucleic acid quality, nucleic acid extraction efficiency, specificity of group-specific primers and probes, amplification of nonviable DNA, gene copy number variation, and limited number of sequences in the database. Even with such limitations, qPCR is reportedly among the best methods for quantitatively investigating environmental microbial communities. The application of qPCR is and will continue to be increasingly common in studies of wastewater treatment systems. To obtain reliable analyses, however, the limitations that have often been overlooked must be carefully considered when interpreting the results. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. A Real-Time PCR Detection of Genus Salmonella in Meat and Milk Samples

    Directory of Open Access Journals (Sweden)

    Jaroslav Pochop

    2013-05-01

    Full Text Available The aim of this study was follow the contamination of ready to eat milk and meat products with Salmonella spp. by using the Step One real-time PCR. Classical microbiological methods for detection of food-borne bacteria involve the use of pre-enrichment and/or specific enrichment, followed by the isolation of the bacteria in solid media and a final confirmation by biochemical and/or serological tests. We used the PrepSEQ Rapid Spin Sample Preparation Kit for isolation of DNA and SensiFAST SYBR Hi-ROX Kit for the real-time PCR performance. In the investigated samples without incubation we could detect strain of Salmonella sp. in five out of twenty three samples (swabs. This Step One real-time PCR assay is extremely useful for any laboratory in possession of a real-time PCR. It is a fast, reproducible, simple, specific and sensitive way to detect nucleic acids, which could be used in clinical diagnostic tests in the future. Our results indicated that the Step One real-time PCR assay developed in this study could sensitively detect Salmonella spp. in ready to eat food.

  11. Sensitive real-time PCR detection of pathogenic Leptospira spp. and a comparison of nucleic acid amplification methods for the diagnosis of leptospirosis.

    Science.gov (United States)

    Waggoner, Jesse J; Balassiano, Ilana; Abeynayake, Janaki; Sahoo, Malaya K; Mohamed-Hadley, Alisha; Liu, Yuanyuan; Vital-Brazil, Juliana Magalhães; Pinsky, Benjamin A

    2014-01-01

    Bacteria of the genus Leptospira, the causative agents of leptospirosis, are categorized into pathogenic and non-pathogenic species. However, the benefit of using a clinical diagnostic that is specific for pathogenic species remains unclear. In this study, we present the development of a real-time PCR (rtPCR) for the detection of pathogenic Leptospira (the pathogenic rtPCR), and we perform a comparison of the pathogenic rtPCR with a published assay that detects all Leptospira species [the undifferentiated febrile illness (UFI) assay] and a reference 16S Leptospira rtPCR, which was originally designed to detect pathogenic species. For the pathogenic rtPCR, a new hydrolysis probe was designed for use with primers from the UFI assay, which targets the 16S gene. The pathogenic rtPCR detected Leptospira DNA in 37/37 cultured isolates from 5 pathogenic and one intermediate species. Two strains of the non-pathogenic L. biflexa produced no signal. Clinical samples from 65 patients with suspected leptospirosis were then tested using the pathogenic rtPCR and a reference Leptospira 16S rtPCR. All 65 samples had tested positive for Leptospira using the UFI assay; 62 (95.4%) samples tested positive using the pathogenic rtPCR (p = 0.24). Only 24 (36.9%) samples tested positive in the reference 16S rtPCR (pLeptospira species in 49/50 cases, including 3 cases that were only detected using the UFI assay. The pathogenic rtPCR displayed similar sensitivity to the UFI assay when testing clinical specimens with no difference in specificity. Both assays proved significantly more sensitive than a real-time molecular test used for comparison. Future studies are needed to investigate the clinical and epidemiologic significance of more sensitive Leptospira detection using these tests.

  12. ABO Blood Group Genotyping by Real-time PCR in Kazakh Population

    Directory of Open Access Journals (Sweden)

    Pavel Tarlykov

    2014-12-01

    Full Text Available Introduction. ABO blood group genotyping is a new technology in hematology that helps prevent adverse transfusion reactions in patients. Identification of antigens on the surface of red blood cells is based on serology; however, genotyping employs a different strategy and is aimed directly at genes that determine the surface proteins. ABO blood group genotyping by real-time PCR has several crucial advantages over other PCR-based techniques, such as high rapidity and reliability of analysis. The purpose of this study was to examine nucleotide substitutions differences by blood types using a PCR-based method on Kazakh blood donors.Methods. The study was approved by the Ethics Committee of the National Center for Biotechnology. Venous blood samples from 369 healthy Kazakh blood donors, whose blood types had been determined by serological methods, were collected after obtaining informed consent. The phenotypes of the samples included blood group A (n = 99, B (n = 93, O (n = 132, and AB (n = 45. Genomic DNA was extracted using a salting-out method. PCR products of ABO gene were sequenced on an ABI 3730xl DNA analyzer (Applied Biosystems. The resulting nucleotide sequences were compared and aligned against reference sequence NM_020469.2. Real-time PCR analysis was performed on CFX96 Touch™ Real-Time PCR Detection System (BioRad.Results. Direct sequencing of ABO gene in 369 samples revealed that the vast majority of nucleotide substitutions that change the ABO phenotype were limited to exons 6 and 7 of the ABO gene at positions 261, 467, 657, 796, 803, 930 and 1,060. However, genotyping of only three of them (261, 796 and 803 resulted in identification of major ABO genotypes in the Kazakh population. As a result, TaqMan probe based real-time PCR assay for the specific detection of genotypes 261, 796 and 803 was developed. The assay did not take into account several other mutations that may affect the determination of blood group, because they have a

  13. Detection and Differentiation of Leishmania spp. in Clinical Specimens by Use of a SYBR Green-Based Real-Time PCR Assay.

    Science.gov (United States)

    de Almeida, Marcos E; Koru, Ozgur; Steurer, Francis; Herwaldt, Barbara L; da Silva, Alexandre J

    2017-01-01

    Leishmaniasis in humans is caused by Leishmania spp. in the subgenera Leishmania and Viannia Species identification often has clinical relevance. Until recently, our laboratory relied on conventional PCR amplification of the internal transcribed spacer 2 (ITS2) region (ITS2-PCR) followed by sequencing analysis of the PCR product to differentiate Leishmania spp. Here we describe a novel real-time quantitative PCR (qPCR) approach based on the SYBR green technology (LSG-qPCR), which uses genus-specific primers that target the ITS1 region and amplify DNA from at least 10 Leishmania spp., followed by analysis of the melting temperature (T m ) of the amplicons on qPCR platforms (the Mx3000P qPCR system [Stratagene-Agilent] and the 7500 real-time PCR system [ABI Life Technologies]). We initially evaluated the assay by testing reference Leishmania isolates and comparing the results with those from the conventional ITS2-PCR approach. Then we compared the results from the real-time and conventional molecular approaches for clinical specimens from 1,051 patients submitted to the reference laboratory of the Centers for Disease Control and Prevention for Leishmania diagnostic testing. Specimens from 477 patients tested positive for Leishmania spp. with the LSG-qPCR assay, specimens from 465 of these 477 patients also tested positive with the conventional ITS2-PCR approach, and specimens from 10 of these 465 patients had positive results because of retesting prompted by LSG-qPCR positivity. On the basis of the T m values of the LSG-qPCR amplicons from reference and clinical specimens, we were able to differentiate four groups of Leishmania parasites: the Viannia subgenus in aggregate; the Leishmania (Leishmania) donovani complex in aggregate; the species L (L) tropica; and the species L (L) mexicana, L (L) amazonensis, L (L) major, and L (L) aethiopica in aggregate. Copyright © 2016 American Society for Microbiology.

  14. Simplified Pan-species Real-time PCR-based Detection of Plasmodium Spp. in Blood Smear

    Directory of Open Access Journals (Sweden)

    Gholamreza HASSANPOUR

    2016-12-01

    Full Text Available Background: We aimed to quicken and simplify the detection of Plasmodium in blood samples by developing and testing a pan-Plasmodium real-time PCR for accurate screening of individuals suspected of malaria.Methods: A single primer/probe set for pan-species Plasmodium-specific real time PCR targeting a conserved region of the small subunit 18S ribosomal DNA was designed and evaluated for rapid diagnosis and screening of malaria infections using dried blood smears. FTA cards were used for rapid and simple DNA extraction.Results: The primers and probes showed a positive response with the DNA extracted from bloods infected with P. falciparum and P. vivax but not with DNA extracted from various smears from uninfected blood samples. Seven positive cases positive by both microscopy and nested PCR were found among 280 blood samples taken from in South and Southeast Iran. Five samples were identified as positive for P. vivax and two as positive for P. falciparum. All positive samples were positive by real-time PCR. Furthermore, all 38-blood samples positive by microscopy were positive by real-time PCR. No microscopy-negative samples were positive by real-time PCR.Conclusion: By using a simple FTA card for DNA extraction and by application of the real-time PCR developed in this study, sensitivity similar to nested-PCR and microscopy was achieved. This format simplifies the detection of Plasmodium in large numbers of samples.

  15. A novel approach for evaluating the performance of real time quantitative loop-mediated isothermal amplification-based methods.

    Science.gov (United States)

    Nixon, Gavin J; Svenstrup, Helle F; Donald, Carol E; Carder, Caroline; Stephenson, Judith M; Morris-Jones, Stephen; Huggett, Jim F; Foy, Carole A

    2014-12-01

    Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR). There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These 'isothermal' methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT), akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP) assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.

  16. A standard curve based method for relative real time PCR data processing

    Directory of Open Access Journals (Sweden)

    Krause Andreas

    2005-03-01

    Full Text Available Abstract Background Currently real time PCR is the most precise method by which to measure gene expression. The method generates a large amount of raw numerical data and processing may notably influence final results. The data processing is based either on standard curves or on PCR efficiency assessment. At the moment, the PCR efficiency approach is preferred in relative PCR whilst the standard curve is often used for absolute PCR. However, there are no barriers to employ standard curves for relative PCR. This article provides an implementation of the standard curve method and discusses its advantages and limitations in relative real time PCR. Results We designed a procedure for data processing in relative real time PCR. The procedure completely avoids PCR efficiency assessment, minimizes operator involvement and provides a statistical assessment of intra-assay variation. The procedure includes the following steps. (I Noise is filtered from raw fluorescence readings by smoothing, baseline subtraction and amplitude normalization. (II The optimal threshold is selected automatically from regression parameters of the standard curve. (III Crossing points (CPs are derived directly from coordinates of points where the threshold line crosses fluorescence plots obtained after the noise filtering. (IV The means and their variances are calculated for CPs in PCR replicas. (V The final results are derived from the CPs' means. The CPs' variances are traced to results by the law of error propagation. A detailed description and analysis of this data processing is provided. The limitations associated with the use of parametric statistical methods and amplitude normalization are specifically analyzed and found fit to the routine laboratory practice. Different options are discussed for aggregation of data obtained from multiple reference genes. Conclusion A standard curve based procedure for PCR data processing has been compiled and validated. It illustrates that

  17. Evaluation of a duplex reverse-transcription real-time PCR assay for the detection of encephalomyocarditis virus.

    Science.gov (United States)

    Qin, Shaomin; Underwood, Darren; Driver, Luke; Kistler, Carol; Diallo, Ibrahim; Kirkland, Peter D

    2018-06-01

    We evaluated a fluorogenic probe-based assay for the detection of encephalomyocarditis virus (EMCV) by comparing a set of published primers and probe to a new set of primers and probe. The published reagents failed to amplify a range of Australian isolates and an Italian reference strain of EMCV. In contrast, an assay based on 2 new sets of primers and probes that were run in a duplex reverse-transcription real-time PCR (RT-rtPCR) worked well, with high amplification efficiency. The analytical sensitivity was ~100-fold higher than virus isolation in cell culture. The intra-assay variation was 0.21-4.90%. No cross-reactivity was observed with a range of other porcine viruses. One hundred and twenty-two clinical specimens were tested simultaneously by RT-rtPCR and virus isolation in cell culture; 72 specimens gave positive results by RT-rtPCR, and 63 of these were also positive by virus isolation. Of 245 archived cell culture isolates of EMCV that were tested in the RT-rtPCR, 242 samples were positive. The new duplex RT-rtPCR assay is a reliable tool for the detection of EMCV in clinical specimens and for use in epidemiologic investigations.

  18. A Short Interspersed Nuclear Element (SINE)-Based Real-Time PCR Approach to Detect and Quantify Porcine Component in Meat Products.

    Science.gov (United States)

    Zhang, Chi; Fang, Xin; Qiu, Haopu; Li, Ning

    2015-01-01

    Real-time PCR amplification of mitochondria gene could not be used for DNA quantification, and that of single copy DNA did not allow an ideal sensitivity. Moreover, cross-reactions among similar species were commonly observed in the published methods amplifying repetitive sequence, which hindered their further application. The purpose of this study was to establish a short interspersed nuclear element (SINE)-based real-time PCR approach having high specificity for species detection that could be used in DNA quantification. After massive screening of candidate Sus scrofa SINEs, one optimal combination of primers and probe was selected, which had no cross-reaction with other common meat species. LOD of the method was 44 fg DNA/reaction. Further, quantification tests showed this approach was practical in DNA estimation without tissue variance. Thus, this study provided a new tool for qualitative detection of porcine component, which could be promising in the QC of meat products.

  19. Real-Time Fluorescence Loop Mediated Isothermal Amplification for the Detection of Acinetobacter baumannii

    Science.gov (United States)

    Wang, Qinqin; Zhou, Yanbin; Li, Shaoli; Zhuo, Chao; Xu, Siqi; Huang, Lixia; Yang, Ling; Liao, Kang

    2013-01-01

    Background Detection of Acinetobacter baumannii has been relying primarily on bacterial culture that often fails to return useful results in time. Although DNA-based assays are more sensitive than bacterial culture in detecting the pathogen, the molecular results are often inconsistent and challenged by doubts on false positives, such as those due to system- and environment-derived contaminations. In addition, these molecular tools require expensive laboratory instruments. Therefore, establishing molecular tools for field use require simpler molecular platforms. The loop-mediated isothermal amplification method is relatively simple and can be improved for better use in a routine clinical bacteriology laboratory. A simple and portable device capable of performing both the amplification and detection (by fluorescence) of LAMP in the same platform has been developed in recent years. This method is referred to as real-time loop-mediated isothermal amplification. In this study, we attempted to utilize this method for rapid detection of A. baumannii. Methodology and Significant Findings Species-specific primers were designed to test the utility of this method. Clinical samples of A. baumannii were used to determine the sensitivity and specificity of this system compared to bacterial culture and a polymerase chain reaction method. All positive samples isolated from sputum were confirmed to be the species of Acinetobacter by 16S rRNA gene sequencing. The RealAmp method was found to be simpler and allowed real-time detection of DNA amplification, and could distinguish A. baumannii from Acinetobacter calcoaceticus and Acinetobacter genomic species 3. DNA was extracted by simple boiling method. Compared to bacterial culture, the sensitivity and specificity of RealAmp in detecting A. baumannii was 98.9% and 75.0%, respectively. Conclusion The RealAmp assay only requires a single unit, and the assay positivity can be verified by visual inspection. Therefore, this assay has

  20. Multiplex real-time PCR assay for Legionella species.

    Science.gov (United States)

    Kim, Seung Min; Jeong, Yoojung; Sohn, Jang Wook; Kim, Min Ja

    2015-12-01

    Legionella pneumophila serogroup 1 (sg1) accounts for the majority of infections in humans, but other Legionella species are also associated with human disease. In this study, a new SYBR Green I-based multiplex real-time PCR assay in a single reaction was developed to allow the rapid detection and differentiation of Legionella species by targeting specific gene sequences. Candidate target genes were selected, and primer sets were designed by referring to comparative genomic hybridization data of Legionella species. The Legionella species-specific groES primer set successfully detected all 30 Legionella strains tested. The xcpX and rfbA primers specifically detected L. pneumophila sg1-15 and L. pneumophila sg1, respectively. In addition, this assay was validated by testing clinical samples and isolates. In conclusion, this novel multiplex real-time PCR assay might be a useful diagnostic tool for the rapid detection and differentiation of Legionella species in both clinical and epidemiological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Development of real-time PCR for detection and quantitation of Streptococcus parauberis.

    Science.gov (United States)

    Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B

    2016-01-01

    Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P < 0.05). Hence, this sensitive and specific real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples. © 2014 John Wiley & Sons Ltd.

  2. Automated Nucleic Acid Extraction Systems for Detecting Cytomegalovirus and Epstein-Barr Virus Using Real-Time PCR: A Comparison Study Between the QIAsymphony RGQ and QIAcube Systems.

    Science.gov (United States)

    Kim, Hanah; Hur, Mina; Kim, Ji Young; Moon, Hee Won; Yun, Yeo Min; Cho, Hyun Chan

    2017-03-01

    Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) are increasingly important in immunocompromised patients. Nucleic acid extraction methods could affect the results of viral nucleic acid amplification tests. We compared two automated nucleic acid extraction systems for detecting CMV and EBV using real-time PCR assays. One hundred and fifty-three whole blood (WB) samples were tested for CMV detection, and 117 WB samples were tested for EBV detection. Viral nucleic acid was extracted in parallel by using QIAsymphony RGQ and QIAcube (Qiagen GmbH, Germany), and real-time PCR assays for CMV and EBV were performed with a Rotor-Gene Q real-time PCR cycler (Qiagen). Detection rates for CMV and EBV were compared, and agreements between the two systems were analyzed. The detection rate of CMV and EBV differed significantly between the QIAsymphony RGQ and QIAcube systems (CMV, 59.5% [91/153] vs 43.8% [67/153], P=0.0005; EBV, 59.0% [69/117] vs 42.7% [50/117], P=0.0008). The two systems showed moderate agreement for CMV and EBV detection (kappa=0.43 and 0.52, respectively). QIAsymphony RGQ showed a negligible correlation with QIAcube for quantitative EBV detection. QIAcube exhibited EBV PCR inhibition in 23.9% (28/117) of samples. Automated nucleic acid extraction systems have different performances and significantly affect the detection of viral pathogens. The QIAsymphony RGQ system appears to be superior to the QIAcube system for detecting CMV and EBV. A suitable sample preparation system should be considered for optimized nucleic acid amplification in clinical laboratories.

  3. A novel approach for evaluating the performance of real time quantitative loop-mediated isothermal amplification-based methods

    Directory of Open Access Journals (Sweden)

    Gavin J. Nixon

    2014-12-01

    Full Text Available Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR. There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These ‘isothermal’ methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT, akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.

  4. Simultaneous Detection of Ricin and Abrin DNA by Real-Time PCR (qPCR

    Directory of Open Access Journals (Sweden)

    Roman Wölfel

    2012-08-01

    Full Text Available Ricin and abrin are two of the most potent plant toxins known and may be easily obtained in high yield from the seeds using rather simple technology. As a result, both toxins are potent and available toxins for criminal or terrorist acts. However, as the production of highly purified ricin or abrin requires sophisticated equipment and knowledge, it may be more likely that crude extracts would be used by non-governmental perpetrators. Remaining plant-specific nucleic acids in these extracts allow the application of a real-time PCR (qPCR assay for the detection and identification of abrin or ricin genomic material. Therefore, we have developed a duplex real-time PCR assays for simultaneous detection of ricin and abrin DNA based on the OmniMix HS bead PCR reagent mixture. Novel primers and hybridization probes were designed for detection on a SmartCycler instrument by using 5′-nuclease technology. The assay was thoroughly optimized and validated in terms of analytical sensitivity. Evaluation of the assay sensitivity by probit analysis demonstrated a 95% probability of detection at 3 genomes per reaction for ricin DNA and 1.2 genomes per reaction for abrin DNA. The suitability of the assays was exemplified by detection of ricin and abrin contaminations in a food matrix.

  5. Multiplex real-time PCR (TaqMan) assay for the simultaneous detection and discrimination of potato powdery and common scab diseases and pathogens.

    Science.gov (United States)

    Qu, X S; Wanner, L A; Christ, B J

    2011-03-01

    To develop a multiplex real-time PCR assay using TaqMan probes for the simultaneous detection and discrimination of potato powdery scab and common scab, two potato tuber diseases with similar symptoms, and the causal pathogens Spongospora subterranea and plant pathogenic Streptomyces spp. Real-time PCR primers and a probe for S. subterranea were designed based on the DNA sequence of the ribosomal RNA ITS2 region. Primers and a probe for pathogenic Streptomyces were designed based on the DNA sequence of the txtAB genes. The two sets of primer pairs and probes were used in a single real-time PCR assay. The multiplex real-time PCR assay was confirmed to be specific for S. subterranea and pathogenic Streptomyces. The assay detected DNA quantities of 100 fg for each of the two pathogens and linear responses and high correlation coefficients between the amount of DNA and C(t) values for each pathogen were achieved. The presence of two sets of primer pairs and probes and of plant extracts did not alter the sensitivity and efficiency of multiplex PCR amplification. Using the PCR assay, we could discriminate between powdery scab and common scab tubers with similar symptoms. Common scab and powdery scab were detected in some tubers with no visible symptoms. Mixed infections of common scab and powdery scab on single tubers were also revealed. This multiplex real-time PCR assay is a rapid, cost efficient, specific and sensitive tool for the simultaneous detection and discrimination of the two pathogens on infected potato tubers when visual symptoms are inconclusive or not present. Accurate and quick identification and discrimination of the cause of scab diseases on potatoes will provide critical information to potato growers and researchers for disease management. This is important because management strategies for common and powdery scab diseases are very different. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  6. Identification of pyrG Used as an Endogenous Reference Gene in Qualitative and Real-Time Quantitative PCR Detection of Pleurotus ostreatus.

    Science.gov (United States)

    Zheng, Shi; Shan, Luying; Zhuang, Yongliang; Shang, Ying

    2018-03-01

    As a well-known edible fungus rich in nutrients, Pleurotus ostreatus has been used as an alternative to expensive wild edible fungi. Specifically, the fact that using P. ostreatus instead of other expensive wild edible fungi has damaged the rights and interests of consumers. Among the existing methods for detection of food adulteration, the amplification of endogenous reference gene is the most accurate method. However, an ideal endogenous reference gene for P. ostreatus has yet to be developed. In this study, a DNA extraction method for P. ostreatus was optimized, and pyrG was selected as a species-specific gene through sequence alignment. This gene was subsequently subjected to qualitative and quantitative Polymerase Chain Reaction (PCR) assays with 3 different P. ostreatus varieties and 7 other species. A low detection limit of 5 pg/μL was obtained by TaqMan quantitative PCR, and no pyrG amplification product was observed in the 7 other species. No allelic variation was detected in P. ostreatus varieties. These experiments confirmed that pyrG was an ideal endogenous reference gene for the qualitative and real-time quantitative PCR detection of P. ostreatus. This method was also suitable for the examination of processed P. ostreatus samples and determination of adulteration in wild mushrooms. The pyrG gene was chosen as an ideal endogenous reference gene for the qualitative and real-time quantitative PCR detection of P. ostreatus, and the detection limit was 5 pg/μL for the quantification. This method is used not only for raw materials but also for processed P. ostreatus products and other processed mushroom foods. © 2018 Institute of Food Technologists®.

  7. Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis.

    Science.gov (United States)

    Matero, Pirjo; Pasanen, Tanja; Laukkanen, Riikka; Tissari, Päivi; Tarkka, Eveliina; Vaara, Martti; Skurnik, Mikael

    2009-01-01

    A multiplex real-time polymerase chain reaction (PCR) assay was developed for the detection of Yersinia pestis and Yersinia pseudotuberculosis. The assay includes four primer pairs, two of which are specific for Y. pestis, one for Y. pestis and Y. pseudotuberculosis and one for bacteriophage lambda; the latter was used as an internal amplification control. The Y. pestis-specific target genes in the assay were ypo2088, a gene coding for a putative methyltransferase, and the pla gene coding for the plasminogen activator. In addition, the wzz gene was used as a target to specifically identify both Y. pestis and the closely related Y. pseudotuberculosis group. The primer and probe sets described for the different genes can be used either in single or in multiplex PCR assays because the individual probes were designed with different fluorochromes. The assays were found to be both sensitive and specific; the lower limit of the detection was 10-100 fg of extracted Y. pestis or Y. pseudotuberculosis total DNA. The sensitivity of the tetraplex assay was determined to be 1 cfu for the ypo2088 and pla probe labelled with FAM and JOE fluorescent dyes, respectively.

  8. Absolute estimation of initial concentrations of amplicon in a real-time RT-PCR process

    Directory of Open Access Journals (Sweden)

    Kohn Michael

    2007-10-01

    Full Text Available Abstract Background Since real time PCR was first developed, several approaches to estimating the initial quantity of template in an RT-PCR reaction have been tried. While initially only the early thermal cycles corresponding to exponential duplication were used, lately there has been an effort to use all of the cycles in a PCR. The efforts have included both fitting empirical sigmoid curves and more elaborate mechanistic models that explore the chemical reactions taking place during each cycle. The more elaborate mechanistic models require many more parameters than can be fit from a single amplification, while the empirical models provide little insight and are difficult to tailor to specific reactants. Results We directly estimate the initial amount of amplicon using a simplified mechanistic model based on chemical reactions in the annealing step of the PCR. The basic model includes the duplication of DNA with the digestion of Taqman probe and the re-annealing between previously synthesized DNA strands of opposite orientation. By modelling the amount of Taqman probe digested and matching that with the observed fluorescence, the conversion factor between the number of fluorescing dye molecules and observed fluorescent emission can be estimated, along with the absolute initial amount of amplicon and the rate parameter for re-annealing. The model is applied to several PCR reactions with known amounts of amplicon and is shown to work reasonably well. An expanded version of the model allows duplication of amplicon without release of fluorescent dye, by adding 1 more parameter to the model. The additional process is helpful in most cases where the initial primer concentration exceeds the initial probe concentration. Software for applying the algorithm to data may be downloaded at http://www.niehs.nih.gov/research/resources/software/pcranalyzer/ Conclusion We present proof of the principle that a mechanistically based model can be fit to observations

  9. On-site detection of Xylella fastidiosa in host plants and in “spy insects” using the real-time loop-mediated isothermal amplification method

    Directory of Open Access Journals (Sweden)

    Thaer YASEEN

    2015-12-01

    Full Text Available A recent severe outbreak of Xylella fastidiosa associated with ‘olive quick decline syndrome’ (OQDS was reported in Apulia (Southern Italy. In this study an on-site real-time loop-mediated isothermal amplification (real-time LAMP was developed for detecting X. fastidiosa in host plants and insects. A marked simplification of the DNA extraction procedure was obtained by heating the samples in a portable Smart-Dart device and using an optimized enhancer reaction buffer. The connection to a tablet or Smartphone allowed to visualize the results of the reaction in real time. Compared to PCR and ELISA, with which it showed comparable results in terms of sensitivity and reliability in the X. fastidiosa detection, this simplified real-time LAMP procedure proved to be “user friendly”, displaying the advantages to be an on-site detection method of easy handling, rapid execution and low cost.

  10. Quantitative Real-Time PCR using the Thermo Scientific Solaris qPCR Assay

    Science.gov (United States)

    Ogrean, Christy; Jackson, Ben; Covino, James

    2010-01-01

    The Solaris qPCR Gene Expression Assay is a novel type of primer/probe set, designed to simplify the qPCR process while maintaining the sensitivity and accuracy of the assay. These primer/probe sets are pre-designed to >98% of the human and mouse genomes and feature significant improvements from previously available technologies. These improvements were made possible by virtue of a novel design algorithm, developed by Thermo Scientific bioinformatics experts. Several convenient features have been incorporated into the Solaris qPCR Assay to streamline the process of performing quantitative real-time PCR. First, the protocol is similar to commonly employed alternatives, so the methods used during qPCR are likely to be familiar. Second, the master mix is blue, which makes setting the qPCR reactions easier to track. Third, the thermal cycling conditions are the same for all assays (genes), making it possible to run many samples at a time and reducing the potential for error. Finally, the probe and primer sequence information are provided, simplifying the publication process. Here, we demonstrate how to obtain the appropriate Solaris reagents using the GENEius product search feature found on the ordering web site (www.thermo.com/solaris) and how to use the Solaris reagents for performing qPCR using the standard curve method. PMID:20567213

  11. Sensitive detection of porcine DNA in processed animal proteins using a TaqMan real-time PCR assay.

    Science.gov (United States)

    Pegels, N; González, I; Fernández, S; García, T; Martín, R

    2012-01-01

    A TaqMan real-time PCR method was developed for specific detection of porcine-prohibited material in industrial feeds. The assay combines the use of a porcine-specific primer pair, which amplifies a 79 bp fragment of the mitochondrial (mt) 12 S rRNA gene, and a locked nucleic acid (LNA) TaqMan probe complementary to a target sequence lying between the porcine-specific primers. The nuclear 18 S rRNA gene system, yielding a 77 bp amplicon, was employed as a positive amplification control to monitor the total content of amplifiable DNA in the samples. The specificity of the porcine primers-probe system was verified against different animal and plant species, including mammals, birds and fish. The applicability of the real-time PCR protocol to detect the presence of porcine mt DNA in feeds was determined through the analysis of 190 industrial feeds (19 known reference and 171 blind samples) subjected to stringent processing treatments. The performance of the method allows qualitative and highly sensitive detection of short fragments from porcine DNA in all the industrial feeds declared to contain porcine material. Although the method has quantitative potential, the real quantitative capability of the assay is limited by the existing variability in terms of composition and processing conditions of the feeds, which affect the amount and quality of amplifiable DNA.

  12. Comparison between quantitative nucleic acid sequence-based amplification, real-time reverse transcriptase PCR, and real-time PCR for quantification of Leishmania parasites

    NARCIS (Netherlands)

    van der Meide, Wendy; Guerra, Jorge; Schoone, Gerard; Farenhorst, Marit; Coelho, Leila; Faber, William; Peekel, Inge; Schallig, Henk

    2008-01-01

    DNA or RNA amplification methods for detection of Leishmania parasites have advantages regarding sensitivity and potential quantitative characteristics in comparison with conventional diagnostic methods but are often still not routinely applied. However, the use and application of molecular assays

  13. REAL-TIME PCR DETECTION OF LISTERIA MONOCYTOGENES IN FOOD SAMPLES OF ANIMAL ORIGIN

    Directory of Open Access Journals (Sweden)

    Jaroslav Pochop

    2013-02-01

    Full Text Available The aim of this study was to follow the contamination of food with Listeria monocytogenes by using Step One real time polymerase chain reaction (PCR. We used the PrepSEQ Rapid Spin Sample Preparation Kit for isolation of DNA and SensiFAST SYBR Hi-ROX Kit for the real-time PCR performance. In 24 samples of food of animal origin without incubation were detected strains of Listeria monocytogenes in 15 samples (swabs. Nine samples were negative. Our results indicated that the real-time PCR assay developed in this study could sensitively detect Listeria monocytogenes in food of animal origin without incubation. This could prevent infection caused by Listeria monocytogenes, and also could benefit food manufacturing companies by extending their product’s shelf-life as well as saving the cost of warehousing their food products while awaiting pathogen testing results. The rapid real-time PCR-based method performed very well compared to the conventional method. It is a fast, simple, specific and sensitive way to detect nucleic acids, which could be used in clinical diagnostic tests in the future.

  14. Listeria monocytogenes Identification in Food of Animal Origin Used with Real Time PCR

    Directory of Open Access Journals (Sweden)

    Jaroslav Pochop

    2013-10-01

    Full Text Available The aim of this study was to follow the contamination of food with Listeria monocytogenes by using Step One real time polymerase chain reaction (RT PCR. We used the PrepSEQ Rapid Spin Sample Preparation Kit for isolation of DNA and SensiFAST SYBR Hi-ROX Kit for the real-time PCR performance. In 20 samples of food of animal origin with incubation were detected strains of Listeria monocytogenes in 9 samples (swabs. Eleven samples were negative. Our results indicated that the real-time PCR assay developed in this study could sensitively detect Listeria monocytogenes in food of animal origin without incubation. This could prevent infection caused by Listeria monocytogenes, and also could benefit food manufacturing companies by extending their product’s shelf-life as well as saving the cost of warehousing their food products while awaiting pathogen testing results. The rapid real-time PCR-based method performed very well compared to the conventional method. It is a fast, simple, specific and sensitive way to detect nucleic acids, which could be used in clinical diagnostic tests in the future.

  15. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data

    NARCIS (Netherlands)

    Ramakers, Christian; Ruijter, Jan M.; Deprez, Ronald H. Lekanne; Moorman, Antoon F. M.

    2003-01-01

    Quantification of mRNAs using real-time polymerase chain reaction (PCR) by monitoring the product formation with the fluorescent dye SYBR Green I is being extensively used in neurosciences, developmental biology, and medical diagnostics. Most PCR data analysis procedures assume that the PCR

  16. Direct Quantitative Detection and Identification of Lactococcal Bacteriophages from Milk and Whey by Real-Time PCR: Application for the Detection of Lactococcal Bacteriophages in Goat's Raw Milk Whey in France

    Directory of Open Access Journals (Sweden)

    Mai Huong Ly-Chatain

    2011-01-01

    Full Text Available The presence of Lactococcus bacteriophages in milk can partly or completely inhibit milk fermentation. To prevent the problems associated with the bacteriophages, the real-time PCR was developed in this study for direct detection from whey and milk of three main groups of Lactococcus bacteriophages, c2, 936, and P335. The optimization of DNA extraction protocol from complex matrices such as whey and milk was optimized allowed the amplification of PCR without any matrix and nontarget contaminant interference. The real-time PCR program was specific and with the detection limit of 102 PFU/mL. The curve slopes were −3.49, −3.69, and −3.45 with the amplification efficiency estimated at 94%, 94%, and 98% and the correlation coefficient (2 of 0.999, 0.999, and 0.998 for c2, 936 and P335 group, respectively. This method was then used to detect the bacteriophages in whey and goat's raw milk coming from three farms located in the Rhône-Alpes region (France.

  17. Real-time PCR assays for hepatitis B virus DNA quantification may require two different targets.

    Science.gov (United States)

    Liu, Chao; Chang, Le; Jia, Tingting; Guo, Fei; Zhang, Lu; Ji, Huimin; Zhao, Junpeng; Wang, Lunan

    2017-05-12

    Quantification Hepatitis B virus (HBV) DNA plays a critical role in the management of chronic HBV infections. However, HBV is a DNA virus with high levels of genetic variation, and drug-resistant mutations have emerged with the use of antiviral drugs. If a mutation caused a sequence mismatched in the primer or probe of a commercial DNA quantification kit, this would lead to an underestimation of the viral load of the sample. The aim of this study was to determine whether commercial kits, which use only one pair of primers and a single probe, accurately quantify the HBV DNA levels and to develop an improved duplex real-time PCR assay. We developed a new duplex real-time PCR assay that used two pairs of primers and two probes based on the conserved S and C regions of the HBV genome. We performed HBV DNA quantitative detection of HBV samples and compared the results of our duplex real-time PCR assays with the COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. The target region of the discordant sample was amplified, sequenced, and validated using plasmid. The results of the duplex real-time PCR were in good accordance with the commercial COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. We showed that two samples from Chinese HBV infections underestimated viral loads when quantified by the Roche kit because of a mismatch between the viral sequence and the reverse primer of the Roche kit. The HBV DNA levels of six samples were undervalued by duplex real-time PCR assays of the C region because of mutations in the primer of C region. We developed a new duplex real-time PCR assay, and the results of this assay were similar to the results of commercial kits. The HBV DNA level could be undervalued when using the COBAS TaqMan HBV Test version 2 for Chinese HBV infections owing to a mismatch with the primer/probe. A duplex real-time PCR assay based on the S and C regions could solve this problem to some extent.

  18. Comparison between digital PCR and real-time PCR in detection of Salmonella typhimurium in milk.

    Science.gov (United States)

    Wang, Meng; Yang, Junjie; Gai, Zhongtao; Huo, Shengnan; Zhu, Jianhua; Li, Jun; Wang, Ranran; Xing, Sheng; Shi, Guosheng; Shi, Feng; Zhang, Lei

    2018-02-02

    As a kind of zero-tolerance foodborne pathogens, Salmonella typhimurium poses a great threat to quality of food products and public health. Hence, rapid and efficient approaches to identify Salmonella typhimurium are urgently needed. Combined with PCR and fluorescence technique, real-time PCR (qPCR) and digital PCR (ddPCR) are regarded as suitable tools for detecting foodborne pathogens. To compare the effect between qPCR and ddPCR in detecting Salmonella typhimurium, a series of nucleic acid, pure strain culture and spiking milk samples were applied and the resistance to inhibitors referred in this article as well. Compared with qPCR, ddPCR exhibited more sensitive (10 -4 ng/μl or 10 2 cfu/ml) and less pre-culturing time (saving 2h). Moreover, ddPCR had stronger resistance to inhibitors than qPCR, yet absolute quantification hardly performed when target's concentration over 1ng/μl or 10 6 cfu/ml. This study provides an alternative strategy in detecting foodborne Salmonella typhimurium. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Real-time PCR for Strongyloides stercoralis-associated meningitis.

    Science.gov (United States)

    Nadir, Eyal; Grossman, Tamar; Ciobotaro, Pnina; Attali, Malka; Barkan, Daniel; Bardenstein, Rita; Zimhony, Oren

    2016-03-01

    Four immunocompromised patients, immigrants from Ethiopia, presented with diverse clinical manifestations of meningitis associated with Strongyloides stercoralis dissemination as determined by identification of intestinal larvae. The cerebrospinal fluid of 3 patients was tested by a validated (for stool) real-time PCR for S. stercoralis and was found positive, establishing this association. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Real-Time PCR using a PCR Microchip with Integrated Thermal System and Polymer Waveguides for the Detection of Campylobacter jejuni

    DEFF Research Database (Denmark)

    Wang, Zhenyu; Sekulovic, Andrea; Kutter, Jörg Peter

    2006-01-01

    A novel real-time PCR microchip platform with integrated thermal system and polymer waveguides has been developed. By using the integrated optical system of the real-time PCR chip, cadF – a virulence gene of Campylobacter jejuni, could specifically be detected. Two different DNA binding dyes, SYTOX...

  1. On-Site Molecular Detection of Soil-Borne Phytopathogens Using a Portable Real-Time PCR System.

    Science.gov (United States)

    DeShields, Joseph B; Bomberger, Rachel A; Woodhall, James W; Wheeler, David L; Moroz, Natalia; Johnson, Dennis A; Tanaka, Kiwamu

    2018-02-23

    On-site diagnosis of plant diseases can be a useful tool for growers for timely decisions enabling the earlier implementation of disease management strategies that reduce the impact of the disease. Presently in many diagnostic laboratories, the polymerase chain reaction (PCR), particularly real-time PCR, is considered the most sensitive and accurate method for plant pathogen detection. However, laboratory-based PCRs typically require expensive laboratory equipment and skilled personnel. In this study, soil-borne pathogens of potato are used to demonstrate the potential for on-site molecular detection. This was achieved using a rapid and simple protocol comprising of magnetic bead-based nucleic acid extraction, portable real-time PCR (fluorogenic probe-based assay). The portable real-time PCR approach compared favorably with a laboratory-based system, detecting as few as 100 copies of DNA from Spongospora subterranea. The portable real-time PCR method developed here can serve as an alternative to laboratory-based approaches and a useful on-site tool for pathogen diagnosis.

  2. Detection of Campylobacter spp. in chicken fecal samples by real-time PCR

    DEFF Research Database (Denmark)

    Lund, Marianne; Nordentoft, Steen; Pedersen, Karl

    2004-01-01

    A real-time PCR assay for detecting thermophilic Campylobacter spp. directly in chicken feces has been developed. DNA was isolated from fecal material by using magnetic beads followed by PCR with a prealiquoted PCR mixture, which had been stored at -18degreesC. Campylobacter could be detected...

  3. Assessing HER2 amplification by IHC, FISH, and real-time polymerase chain reaction analysis (real-time PCR) following LCM in formalin-fixed paraffin embedded tissue from 40 women with ovarian cancer

    DEFF Research Database (Denmark)

    Hillig, Thore; Thode, Jørgen; Breinholt, Ellen Marie

    2012-01-01

    . Only few ovarian cancer patients were HER2 overexpressed measured by IHC or FISH and thus could be eligible for antibody-based therapy with trastuzumab (Herceptin). Interestingly, we find an increased number of HER2 positive patients by real-time PCR analysis on microdissected cancer cells, suggesting...

  4. Quantification of DNA fragmentation in processed foods using real-time PCR.

    Science.gov (United States)

    Mano, Junichi; Nishitsuji, Yasuyuki; Kikuchi, Yosuke; Fukudome, Shin-Ichi; Hayashida, Takuya; Kawakami, Hiroyuki; Kurimoto, Youichi; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Takabatake, Reona; Kitta, Kazumi

    2017-07-01

    DNA analysis of processed foods is performed widely to detect various targets, such as genetically modified organisms (GMOs). Food processing often causes DNA fragmentation, which consequently affects the results of PCR analysis. In order to assess the effects of DNA fragmentation on the reliability of PCR analysis, we investigated a novel methodology to quantify the degree of DNA fragmentation. We designed four real-time PCR assays that amplified 18S ribosomal RNA gene sequences common to various plants at lengths of approximately 100, 200, 400, and 800 base pairs (bp). Then, we created an indicator value, "DNA fragmentation index (DFI)", which is calculated from the Cq values derived from the real-time PCR assays. Finally, we demonstrated the efficacy of this method for the quality control of GMO detection in processed foods by evaluating the relationship between the DFI and the limit of detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Amplification of nonspecific products in quantitative polymerase chain reactions (qPCR

    Directory of Open Access Journals (Sweden)

    Adrián Ruiz-Villalba

    2017-12-01

    Full Text Available Quantitative PCR allows the precise measurement of DNA concentrations and is generally considered to be straightforward and trouble free. However, a survey with 93 validated assays for genes in the Wnt-pathway showed that the amplification of nonspecific products occurs frequently and is unrelated to Cq or PCR efficiency values. Titration experiments showed that the occurrence of low and high melting temperature artifacts was shown to be determined by annealing temperature, primer concentration and cDNA input. To explore the range of input variations that occur in the normal use of the Cre assay these conditions were mimicked in a complete two-way design of template −plasmid DNA- and non-template −mouse cDNA- concentrations. These experiments showed that the frequency of the amplification of the correct product and the artifact, as well as the valid quantification of the correct product, depended on the concentration of the non-template cDNA. This finding questions the interpretation of dilution series in which template as well as non-template concentrations are simultaneously decreasing. Repetition of this cDNA concentration experiment with other templates revealed that exact reproduction qPCR experiments was affected by the time it takes to complete the pipetting of a qPCR plate. Long bench times were observed to lead to significantly more artifacts. However, the measurement of artifact-associated fluorescence can be avoided by inclusion of a small heating step after the elongation phase in the amplification protocol. Taken together, this trouble-shooting journey showed that reliability and reproducibility of qPCR experiments not only depends on standardization and reporting of the biochemistry and technical aspects but also on hitherto neglected factors as sample dilution and waiting times in the laboratory work flow. Keywords: RT-qPCR, Melting curve analysis, Reaction parameters, Artifacts

  6. An integrated portable hand-held analyser for real-time isothermal nucleic acid amplification

    International Nuclear Information System (INIS)

    Smith, Matthew C.; Steimle, George; Ivanov, Stan; Holly, Mark; Fries, David P.

    2007-01-01

    A compact hand-held heated fluorometric instrument for performing real-time isothermal nucleic acid amplification and detection is described. The optoelectronic instrument combines a Printed Circuit Board/Micro Electro Mechanical Systems (PCB/MEMS) reaction detection/chamber containing an integrated resistive heater with attached miniature LED light source and photo-detector and a disposable glass waveguide capillary to enable a mini-fluorometer. The fluorometer is fabricated and assembled in planar geometry, rolled into a tubular format and packaged with custom control electronics to form the hand-held reactor. Positive or negative results for each reaction are displayed to the user using an LED interface. Reaction data is stored in FLASH memory for retrieval via an in-built USB connection. Operating on one disposable 3 V lithium battery >12, 60 min reactions can be performed. Maximum dimensions of the system are 150 mm (h) x 48 mm (d) x 40 mm (w), the total instrument weight (with battery) is 140 g. The system produces comparable results to laboratory instrumentation when performing a real-time nucleic acid sequence-based amplification (NASBA) reaction, and also displayed comparable precision, accuracy and resolution to laboratory-based real-time nucleic acid amplification instrumentation. A good linear response (R 2 = 0.948) to fluorescein gradients ranging from 0.5 to 10 μM was also obtained from the instrument indicating that it may be utilized for other fluorometric assays. This instrument enables an inexpensive, compact approach to in-field genetic screening, providing results comparable to laboratory equipment with rapid user feedback as to the status of the reaction

  7. An integrated portable hand-held analyser for real-time isothermal nucleic acid amplification

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Matthew C. [College of Marine Science, University of South Florida, St Petersburg, FL (United States)], E-mail: msmith@marine.usf.edu; Steimle, George; Ivanov, Stan; Holly, Mark; Fries, David P. [College of Marine Science, University of South Florida, St Petersburg, FL (United States)

    2007-08-29

    A compact hand-held heated fluorometric instrument for performing real-time isothermal nucleic acid amplification and detection is described. The optoelectronic instrument combines a Printed Circuit Board/Micro Electro Mechanical Systems (PCB/MEMS) reaction detection/chamber containing an integrated resistive heater with attached miniature LED light source and photo-detector and a disposable glass waveguide capillary to enable a mini-fluorometer. The fluorometer is fabricated and assembled in planar geometry, rolled into a tubular format and packaged with custom control electronics to form the hand-held reactor. Positive or negative results for each reaction are displayed to the user using an LED interface. Reaction data is stored in FLASH memory for retrieval via an in-built USB connection. Operating on one disposable 3 V lithium battery >12, 60 min reactions can be performed. Maximum dimensions of the system are 150 mm (h) x 48 mm (d) x 40 mm (w), the total instrument weight (with battery) is 140 g. The system produces comparable results to laboratory instrumentation when performing a real-time nucleic acid sequence-based amplification (NASBA) reaction, and also displayed comparable precision, accuracy and resolution to laboratory-based real-time nucleic acid amplification instrumentation. A good linear response (R{sup 2} = 0.948) to fluorescein gradients ranging from 0.5 to 10 {mu}M was also obtained from the instrument indicating that it may be utilized for other fluorometric assays. This instrument enables an inexpensive, compact approach to in-field genetic screening, providing results comparable to laboratory equipment with rapid user feedback as to the status of the reaction.

  8. Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR

    NARCIS (Netherlands)

    Huijsdens, Xander W.; Linskens, Ronald K.; Mak, Mariëtte; Meuwissen, Stephan G. M.; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.

    2002-01-01

    The use of real-time quantitative PCR (5' nuclease PCR assay) as a tool to study the gastrointestinal microflora that adheres to the colonic mucosa was evaluated. We developed primers and probes based on the 16S ribosomal DNA gene sequences for the detection of Escherichia coli and Bacteroides

  9. Development of quantitative real-time PCR for detection and enumeration of Enterobacteriaceae.

    Science.gov (United States)

    Takahashi, Hajime; Saito, Rumi; Miya, Satoko; Tanaka, Yuichiro; Miyamura, Natsumi; Kuda, Takashi; Kimura, Bon

    2017-04-04

    The family Enterobacteriaceae, members of which are widely distributed in the environment, includes many important human pathogens. In this study, a rapid real-time PCR method targeting rplP, coding for L16 protein, a component of the ribosome large subunit, was developed for enumerating Enterobacteriaceae strains, and its efficiency was evaluated using naturally contaminated food products. The rplP-targeted real-time PCR amplified Enterobacteriaceae species with Ct values of 14.0-22.8, whereas the Ct values for non-Enterobacteriaceae species were >30, indicating the specificity of this method for the Enterobacteriaceae. Using a calibration curve of Ct=-3.025 (log CFU/g)+37.35, which was calculated from individual plots of the cell numbers in different concentrations of 5 Enterobacteriaceae species, the rplP-targeted real-time PCR was applied to 51 food samples. A Enterobacteriaceae species in foods rapidly and accurately, and therefore, it can be used for the microbiological risk analysis of foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Rapid and Accurate Detection of Bacteriophage Activity against Escherichia coli O157:H7 by Propidium Monoazide Real-Time PCR

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2014-01-01

    Full Text Available Conventional methods to determine the efficacy of bacteriophage (phage for biocontrol of E. coli require several days, due to the need to culture bacteria. Furthermore, cell surface-attached phage particles may lyse bacterial cells during experiments, leading to an overestimation of phage activity. DNA-based real-time quantitative polymerase chain reaction (qPCR is a fast, sensitive, and highly specific means of enumerating pathogens. However, qPCR may underestimate phage activity due to its inability to distinguish viable from nonviable cells. In this study, we evaluated the suitability of propidium monoazide (PMA, a microbial membrane-impermeable dye that inhibits amplification of extracellular DNA and DNA within dead or membrane-compromised cells as a means of using qPCR to identify only intact E. coli cells that survive phage exposure. Escherichia coli O157:H7 strain R508N and 4 phages (T5-like, T1-like, T4-like, and O1-like were studied. Results compared PMA-qPCR and direct plating and confirmed that PMA could successfully inhibit amplification of DNA from compromised/damaged cells E. coli O157:H7. Compared to PMA-qPCR, direct plating overestimated (P < 0.01 phage efficacy as cell surface-attached phage particles lysed E. coli O157:H7 during the plating process. Treatment of samples with PMA in combination with qPCR can therefore be considered beneficial when assessing the efficacy of bacteriophage for biocontrol of E. coli O157:H7.

  11. A TaqMan real-time PCR assay for detection of Meloidogyne hapla in root galls and in soil

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Skantar, Andrea M.; Nicolaisen, Mogens

    2016-01-01

    . haplaand showed no significant amplification of DNA from non-target nematodes. The assay was able to detect M. haplain a background of plant and soil DNA. A dilution series of M. haplaeggs in soil showed a high correlation ( R 2 = 0 . 95 , P ...Early detection and quantification of Meloidogyne haplain soil is essential for effective disease management. The purpose of this study was to develop a real-time PCR assay for detection of M. haplain soil. Primers and a TaqMan probe were designed for M. hapladetection. The assay detected M......-knot development in carrots by testing soils before planting. The assay could be useful for management decisions in carrot cultivation....

  12. Synthesis of O-serogroup specific positive controls and real-time PCR standards for nine clinically relevant non-O157 STECs.

    Science.gov (United States)

    Conrad, Cheyenne C; Gilroyed, Brandon H; McAllister, Tim A; Reuter, Tim

    2012-10-01

    Non-O157 Shiga toxin producing Escherichia coli (STEC) are gaining recognition as human pathogens, but no standardized method exists to identify them. Sequence analysis revealed that STEC can be classified on the base of variable O antigen regions into different O serotypes. Polymerase chain reaction is a powerful technique for thorough screening and complex diagnosis for these pathogens, but requires a positive control to verify qualitative and/or quantitative DNA-fragment amplification. Due to the pathogenic nature of STEC, controls are not readily available and cell culturing of STEC reference strains requires biosafety conditions of level 2 or higher. In order to bypass this limitation, controls of stacked O-type specific DNA-fragments coding for primer recognition sites were designed to screen for nine STEC serotypes frequently associated with human infection. The synthetic controls were amplified by PCR, cloned into a plasmid vector and transferred into bacteria host cells. Plasmids amplified by bacterial expression were purified, serially diluted and tested as standards for real-time PCR using SYBR Green and TaqMan assays. Utility of synthetic DNA controls was demonstrated in conventional and real-time PCR assays and validated with DNA from natural STEC strains. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Clinical evaluation of β-tubulin real-time PCR for rapid diagnosis of dermatophytosis, a comparison with mycological methods.

    Science.gov (United States)

    Motamedi, Marjan; Mirhendi, Hossein; Zomorodian, Kamiar; Khodadadi, Hossein; Kharazi, Mahboobeh; Ghasemi, Zeinab; Shidfar, Mohammad Reza; Makimura, Koichi

    2017-10-01

    Following our previous report on evaluation of the beta tubulin real-time PCR for detection of dermatophytosis, this study aimed to compare the real-time PCR assay with conventional methods for the clinical assessment of its diagnostic performance. Samples from a total of 853 patients with suspected dermatophyte lesions were subjected to direct examination (all samples), culture (499 samples) and real-time PCR (all samples). Fungal DNA was extracted directly from clinical samples using a conical steel bullet, followed by purification with a commercial kit and subjected to the Taq-Man probe-based real-time PCR. The study showed that among the 499 specimens for which all three methods were used, 156 (31.2%), 128 (25.6%) and 205 (41.0%) were found to be positive by direct microscopy, culture and real-time PCR respectively. Real-time PCR significantly increased the detection rate of dermatophytes compared with microscopy (288 vs 229) with 87% concordance between the two methods. The sensitivity, specificity, positive predictive value, and negative predictive value of the real-time PCR was 87.5%, 85%, 66.5% and 95.2% respectively. Although real-time PCR performed better on skin than on nail samples, it should not yet fully replace conventional diagnosis. © 2017 Blackwell Verlag GmbH.

  14. Direct quantification of fungal DNA from soil substrate using real-time PCR.

    Science.gov (United States)

    Filion, Martin; St-Arnaud, Marc; Jabaji-Hare, Suha H

    2003-04-01

    Detection and quantification of genomic DNA from two ecologically different fungi, the plant pathogen Fusarium solani f. sp. phaseoli and the arbuscular mycorrhizal fungus Glomus intraradices, was achieved from soil substrate. Specific primers targeting a 362-bp fragment from the SSU rRNA gene region of G. intraradices and a 562-bp fragment from the F. solani f. sp. phaseoli translation elongation factor 1 alpha gene were used in real-time polymerase chain reaction (PCR) assays conjugated with the fluorescent SYBR(R) Green I dye. Standard curves showed a linear relation (r(2)=0.999) between log values of fungal genomic DNA of each species and real-time PCR threshold cycles and were quantitative over 4-5 orders of magnitude. Real-time PCR assays were applied to in vitro-produced fungal structures and sterile and non-sterile soil substrate seeded with known propagule numbers of either fungi. Detection and genomic DNA quantification was obtained from the different treatments, while no amplicon was detected from non-seeded non-sterile soil samples, confirming the absence of cross-reactivity with the soil microflora DNA. A significant correlation (Pgenomic DNA of F. solani f. sp. phaseoli or G. intraradices detected and the number of fungal propagules present in seeded soil substrate. The DNA extraction protocol and real-time PCR quantification assay can be performed in less than 2 h and is adaptable to detect and quantify genomic DNA from other soilborne fungi.

  15. Detection of Ophiocordyceps sinensis in soil by quantitative real-time PCR.

    Science.gov (United States)

    Peng, Qingyun; Zhong, Xin; Lei, Wei; Zhang, Guren; Liu, Xin

    2013-03-01

    Ophiocordyceps sinensis, one of the best known entomopathogenic fungi in traditional Chinese medicine, parasitizes larvae of the moth genus Thitarodes, which lives in soil tunnels. However, little is known about the spatial distribution of O. sinensis in the soil. We established a protocol for DNA extraction, purification, and quantification of O. sinensis in soil with quantitative real-time PCR targeting the internal transcribed spacer region. The method was assessed using 34 soil samples from Tibet. No inhibitory effects in purified soil DNA extracts were detected. The standard curve method for absolute DNA quantification generated crossing point values that were strongly and linearly correlated to the log10 of the initial amount of O. sinensis genomic DNA (r(2) = 0.999) over 7 orders of magnitude (4 × 10(1) to 4 × 10(7) fg). The amplification efficiency and y-intercept value of the standard curve were 1.953 and 37.70, respectively. The amount of O. sinensis genomic DNA decreased with increasing soil depth and horizontal distance from a sclerotium (P protocol is rapid, specific, sensitive, and provides a powerful tool for quantification of O. sinensis from soil.

  16. A rapid and direct real time PCR-based method for identification of Salmonella spp

    DEFF Research Database (Denmark)

    Rodriguez-Lazaro, D.; Hernández, Marta; Esteve, T.

    2003-01-01

    The aim of this work was the validation of a rapid, real-time PCR assay based on TaqMan((R)) technology for the unequivocal identification of Salmonella spp. to be used directly on an agar-grown colony. A real-time PCR system targeting at the Salmonella spp. invA gene was optimized and validated ...

  17. The diagnosis of microorganism involved in infective endocarditis (IE by polymerase chain reaction (PCR and real-time PCR: A systematic review

    Directory of Open Access Journals (Sweden)

    Reza Faraji

    2018-02-01

    Full Text Available Broad-range bacterial rDNA polymerase chain reaction (PCR followed by sequencing may be identified as the etiology of infective endocarditis (IE from surgically removed valve tissue; therefore, we reviewed the value of molecular testing in identifying organisms' DNA in the studies conducted until 2016. We searched Google Scholar, Scopus, ScienceDirect, Cochrane, PubMed, and Medline electronic databases without any time limitations up to December 2016 for English studies reporting microorganisms involved in infective endocarditis microbiology using PCR and real-time PCR. Most studies were prospective. Eleven out of 12 studies used valve tissue samples and blood cultures while only 1 study used whole blood. Also, 10 studies used the molecular method of PCR while 2 studies used real-time PCR. Most studies used 16S rDNA gene as the target gene. The bacteria were identified as the most common microorganisms involved in infective endocarditis. Streptococcus spp. and Staphylococcus spp. were, by far, the most predominant bacteria detected. In all studies, PCR and real-time PCR identified more pathogens than blood and tissue cultures; moreover, the sensitivity and specificity of PCR and real-time PCR were more than cultures in most of the studies. The highest sensitivity and specificity were 96% and 100%, respectively. The gram positive bacteria were the most frequent cause of infective endocarditis. The molecular methods enjoy a greater sensitivity compared to the conventional blood culture methods; yet, they are applicable only to the valve tissue of the patients undergoing cardiac valve surgery.

  18. The diagnosis of microorganism involved in infective endocarditis (IE) by polymerase chain reaction (PCR) and real-time PCR: A systematic review.

    Science.gov (United States)

    Faraji, Reza; Behjati-Ardakani, Mostafa; Moshtaghioun, Seyed Mohammad; Kalantar, Seyed Mehdi; Namayandeh, Seyedeh Mahdieh; Soltani, Mohammadhossien; Emami, Mahmood; Zandi, Hengameh; Firoozabadi, Ali Dehghani; Kazeminasab, Mahmood; Ahmadi, Nastaran; Sarebanhassanabadi, Mohammadtaghi

    2018-02-01

    Broad-range bacterial rDNA polymerase chain reaction (PCR) followed by sequencing may be identified as the etiology of infective endocarditis (IE) from surgically removed valve tissue; therefore, we reviewed the value of molecular testing in identifying organisms' DNA in the studies conducted until 2016. We searched Google Scholar, Scopus, ScienceDirect, Cochrane, PubMed, and Medline electronic databases without any time limitations up to December 2016 for English studies reporting microorganisms involved in infective endocarditis microbiology using PCR and real-time PCR. Most studies were prospective. Eleven out of 12 studies used valve tissue samples and blood cultures while only 1 study used whole blood. Also, 10 studies used the molecular method of PCR while 2 studies used real-time PCR. Most studies used 16S rDNA gene as the target gene. The bacteria were identified as the most common microorganisms involved in infective endocarditis. Streptococcus spp. and Staphylococcus spp. were, by far, the most predominant bacteria detected. In all studies, PCR and real-time PCR identified more pathogens than blood and tissue cultures; moreover, the sensitivity and specificity of PCR and real-time PCR were more than cultures in most of the studies. The highest sensitivity and specificity were 96% and 100%, respectively. The gram positive bacteria were the most frequent cause of infective endocarditis. The molecular methods enjoy a greater sensitivity compared to the conventional blood culture methods; yet, they are applicable only to the valve tissue of the patients undergoing cardiac valve surgery. Copyright © 2017. Published by Elsevier Taiwan.

  19. A MIQE-compliant real-time PCR assay for Aspergillus detection.

    Directory of Open Access Journals (Sweden)

    Gemma L Johnson

    Full Text Available The polymerase chain reaction (PCR is widely used as a diagnostic tool in clinical laboratories and is particularly effective for detecting and identifying infectious agents for which routine culture and microscopy methods are inadequate. Invasive fungal disease (IFD is a major cause of morbidity and mortality in immunosuppressed patients, and optimal diagnostic criteria are contentious. Although PCR-based methods have long been used for the diagnosis of invasive aspergillosis (IA, variable performance in clinical practice has limited their value. This shortcoming is a consequence of differing sample selection, collection and preparation protocols coupled with a lack of standardisation of the PCR itself. Furthermore, it has become clear that the performance of PCR-based assays in general is compromised by the inadequacy of experimental controls, insufficient optimisation of assay performance as well as lack of transparency in reporting experimental details. The recently published "Minimum Information for the publication of real-time Quantitative PCR Experiments" (MIQE guidelines provide a blueprint for good PCR assay design and unambiguous reporting of experimental detail and results. We report the first real-time quantitative PCR (qPCR assay targeting Aspergillus species that has been designed, optimised and validated in strict compliance with the MIQE guidelines. The hydrolysis probe-based assay, designed to target the 18S rRNA DNA sequence of Aspergillus species, has an efficiency of 100% (range 95-107%, a dynamic range of at least six orders of magnitude and limits of quantification and detection of 6 and 0.6 Aspergillus fumigatus genomes, respectively. It does not amplify Candida, Scedosporium, Fusarium or Rhizopus species and its clinical sensitivity is demonstrated in histological material from proven IA cases, as well as concordant PCR and galactomannan data in matched broncho-alveolar lavage and blood samples. The robustness

  20. Subtyping of swine influenza viruses using a high-throughput real time PCR platform

    DEFF Research Database (Denmark)

    Goecke, Nicole Bakkegård; Krog, Jesper Schak; Hjulsager, Charlotte Kristiane

    ). The results revealed that the performance of the dynamic chip was similar to conventional real time analysis. Discussion and conclusion. Application of the chip for subtyping of swine influenza has resulted in a significant reduction in time, cost and working hours. Thereby, it is possible to offer diagnostic...... test and subsequent subtyping is performed by real time RT-PCR (RT-qPCR) but several assays are needed to cover the wide range of circulating subtypes which is expensive,resource and time demanding. To mitigate these restrictions the high-throughput qPCR platform BioMark (Fluidigm) has been explored...... services with reduced price and turnover time which will facilitate choice of vaccines and by that lead to reduction of antibiotic used....

  1. Statistical aspects of quantitative real-time PCR experiment design

    Czech Academy of Sciences Publication Activity Database

    Kitchen, R.R.; Kubista, Mikael; Tichopád, Aleš

    2010-01-01

    Roč. 50, č. 4 (2010), s. 231-236 ISSN 1046-2023 R&D Projects: GA AV ČR IAA500520809 Institutional research plan: CEZ:AV0Z50520701 Keywords : Real-time PCR * Experiment design * Nested analysis of variance Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.527, year: 2010

  2. Development and validation of a real-time PCR assay for the detection of anguillid herpesvirus 1.

    Science.gov (United States)

    van Beurden, S J; Voorbergen-Laarman, M A; Roozenburg, I; van Tellingen, J; Haenen, O L M; Engelsma, M Y

    2016-01-01

    Anguillid herpesvirus 1 (AngHV1) causes a haemorrhagic disease with increased mortality in wild and farmed European eel, Anguilla anguilla (L.) and Japanese eel Anguilla japonica, Temminck & Schlegel). Detection of AngHV1 is currently based on virus isolation in cell culture, antibody-based typing assays or conventional PCR. We developed, optimized and concisely validated a diagnostic TaqMan probe based real-time PCR assay for the detection of AngHV1. The primers and probe target AngHV1 open reading frame 57, encoding the capsid protease and scaffold protein. Compared to conventional PCR, the developed real-time PCR is faster, less labour-intensive and has a reduced risk of cross-contamination. The real-time PCR assay was shown to be analytically sensitive and specific and has a high repeatability, efficiency and r(2) -value. The diagnostic performance of the assay was determined by testing 10% w/v organ suspensions and virus cultures from wild and farmed European eels from the Netherlands by conventional and real-time PCR. The developed real-time PCR assay is a useful tool for the rapid and sensitive detection of AngHV1 in 10% w/v organ suspensions from wild and farmed European eels. © 2015 John Wiley & Sons Ltd.

  3. Detection of enterovirus 71 gene from clinical specimens by reverse-transcription loop-mediated isothermal amplification.

    Science.gov (United States)

    Wang, D; Wang, X; Geng, Y; An, C

    2014-01-01

    The objective of this study was to develop a sensitive, specific and rapid approach to diagnose hand foot and mouth disease (HFMD) for an early treatment by using loop-mediated isothermal amplification (LAMP) technique. A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) for detecting EV71 virus was developed, the specificity and sensitivity of RT-LAMP was tested, and the clinical specimens was assayed by the RT-LAMP comparing with conventional reverse-transcription polymerase chain reaction (RT-PCR) and real-time PCR. A total of 116 clinical specimens from the suspected HFMD individual were detected with the RT-LAMP. The detection rate for EV71 was 56.89% by RT-LAMP, 41.38% by real-time PCR and 34.48% by RT-PCR. The minimum detection limit of RT-LAMP was 0.01 PFU, both of RT-PCR and real-time PCR was 0.1PFU. Non-cross-reactive amplification with other enteroviruses was detected in the survey reports. The effectiveness of RT-LAMP is higher than RT-PCR and real-time PCR. The protocol is easy to operate and time saving. It was not an expensive instrument, which was needed; it is an applicable method for rapid diagnosis of the disease, especially in resource-poor countries or in developing countries.

  4. Evaluation of two real time PCR assays for the detection of bacterial DNA in amniotic fluid.

    Science.gov (United States)

    Girón de Velasco-Sada, Patricia; Falces-Romero, Iker; Quiles-Melero, Inmaculada; García-Perea, Adela; Mingorance, Jesús

    2018-01-01

    The aim of this study was to evaluate two non-commercial Real-Time PCR assays for the detection of microorganisms in amniotic fluid followed by identification by pyrosequencing. We collected 126 amniotic fluids from 2010 to 2015 for the evaluation of two Real-Time PCR assays for detection of bacterial DNA in amniotic fluid (16S Universal PCR and Ureaplasma spp. specific PCR). The method was developed in the Department of Microbiology of the University Hospital La Paz. Thirty-seven samples (29.3%) were positive by PCR/pyrosequencing and/or culture, 4 of them were mixed cultures with Ureaplasma urealyticum. The Universal 16S Real-Time PCR was compared with the standard culture (81.8% sensitivity, 97.4% specificity, 75% positive predictive value, 98% negative predictive value). The Ureaplasma spp. specific Real-Time PCR was compared with the Ureaplasma/Mycoplasma specific culture (92.3% sensitivity, 89.4% specificity, 50% positive predictive value, 99% negative predictive value) with statistically significant difference (p=0.005). Ureaplasma spp. PCR shows a rapid response time (5h from DNA extraction until pyrosequencing) when comparing with culture (48h). So, the response time of bacteriological diagnosis in suspected chorioamnionitis is reduced. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Development and validation of real-time PCR for rapid detection of Mecistocirrus digitatus.

    Directory of Open Access Journals (Sweden)

    Subhra Subhadra

    Full Text Available Hematophagous activity of Mecistocirrus digitatus, which causes substantial blood and weight loss in large ruminants, is an emerging challenge due to the economic loss it brings to the livestock industry. Infected animals are treated with anthelmintic drugs, based on the identification of helminth species and the severity of infection; however, traditional methods such as microscopic identification and the counting of eggs for diagnosis and determination of level of infection are laborious, cumbersome and unreliable. To facilitate the detection of this parasite, a SYBR green-based real-time PCR was standardized and validated for the detection of M. digitatus infection in cattle and buffaloes. Oligonucleotides were designed to amplify partial Internal Transcribed Spacer (ITS-1 sequence of M. digitatus. The specificity of the primers was confirmed by non-amplification of DNA extracted from other commonly occurring gastrointestinal nematodes in ruminants. Plasmids were ligated with partial ITS-1 sequence of M. digitatus, serially diluted (hundred fold and used as standards in the real-time PCR assay. The quantification cycle (Cq values were plotted against the standard DNA concentration to produce a standard curve. The assay was sensitive enough to detect one plasmid containing the M. digitatus DNA. Clinical application of this assay was validated by testing the DNA extracted from the faeces of naturally infected cattle (n = 40 and buffaloes (n = 25. The results were compared with our standard curve to calculate the quantity of M. digitatus in each faecal sample. The Cq value of the assay depicted a strong linear relationship with faecal DNA content, with a regression coefficient of 0.984 and efficiency of 99%. This assay has noteworthy advantages over the conventional methods of diagnosis because it is more specific, sensitive and reliable.

  6. Internally controlled, generic real-time PCR for quantification and multiplex real-time PCR with serotype-specific probes for serotyping of dengue virus infections

    NARCIS (Netherlands)

    Menting, Sandra; Thai, Khoa T. D.; Nga, Tran T. T.; Phuong, Hoang L.; Klatser, Paul; Wolthers, Katja C.; Binh, Tran Q.; de Vries, Peter J.; Beld, Marcel

    2011-01-01

    Dengue has become a global public health problem and a sensitive diagnostic test for early phase detection can be life saving. An internally controlled, generic real-time PCR was developed and validated by testing serial dilutions of a DENV positive control RNA in the presence of a fixed amount of

  7. A Java program for LRE-based real-time qPCR that enables large-scale absolute quantification.

    Science.gov (United States)

    Rutledge, Robert G

    2011-03-02

    Linear regression of efficiency (LRE) introduced a new paradigm for real-time qPCR that enables large-scale absolute quantification by eliminating the need for standard curves. Developed through the application of sigmoidal mathematics to SYBR Green I-based assays, target quantity is derived directly from fluorescence readings within the central region of an amplification profile. However, a major challenge of implementing LRE quantification is the labor intensive nature of the analysis. Utilizing the extensive resources that are available for developing Java-based software, the LRE Analyzer was written using the NetBeans IDE, and is built on top of the modular architecture and windowing system provided by the NetBeans Platform. This fully featured desktop application determines the number of target molecules within a sample with little or no intervention by the user, in addition to providing extensive database capabilities. MS Excel is used to import data, allowing LRE quantification to be conducted with any real-time PCR instrument that provides access to the raw fluorescence readings. An extensive help set also provides an in-depth introduction to LRE, in addition to guidelines on how to implement LRE quantification. The LRE Analyzer provides the automated analysis and data storage capabilities required by large-scale qPCR projects wanting to exploit the many advantages of absolute quantification. Foremost is the universal perspective afforded by absolute quantification, which among other attributes, provides the ability to directly compare quantitative data produced by different assays and/or instruments. Furthermore, absolute quantification has important implications for gene expression profiling in that it provides the foundation for comparing transcript quantities produced by any gene with any other gene, within and between samples.

  8. [Usefulness of a real-time quantitative polymerase-chain reaction (PCR) assay for the diagnosis of congenital and postnatal cytomegalovirus infection].

    Science.gov (United States)

    Reina, J; Weber, I; Riera, E; Busquets, M; Morales, C

    2014-05-01

    Cytomegalovirus (CMV) is the main virus causing congenital and postnatal infections in the pediatric population. The aim of this study is to evaluate the usefulness of a quantitative real-time PCR in the diagnosis of these infections using urine as a single sample. We studied all the urine samples of newborns (< 7 days) with suspected congenital infection, and urine of patients with suspected postnatal infection (urine negative at birth). Urines were simultaneously studied by cell culture, qualitative PCR (PCRc), and quantitative real-time PCR (PCRq). We analyzed 332 urine samples (270 to rule out congenital infection and 62 postnatal infections). Of the first, 22 were positive in the PCRq, 19 in the PCRc, and 17 in the culture. PCRq had a sensitivity of 100%, on comparing the culture with the rest of the techniques. Using the PCRq as a reference method, culture had a sensitivity of 77.2%, and PCRc 86.3%. In cases of postnatal infection, PCRq detected 16 positive urines, the PCRq 12, and the cell culture 10. The urines showed viral loads ranging from 2,178 to 116,641 copies/ml. The genomic amplification technique PCRq in real time was more sensitive than the other techniques evaluated. This technique should be considered as a reference (gold standard), leaving the cell culture as a second diagnostic level. The low cost and the automation of PCRq would enable the screening for CMV infection in large neonatal and postnatal populations. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  9. Quantification of Pseudomonas fluorescens strains F113, CHA0 and Pf153 in the rhizosphere of maize by strain-specific real-time PCR unaffected by the variability of DNA extraction efficiency.

    Science.gov (United States)

    Von Felten, Andreas; Défago, Geneviève; Maurhofer, Monika

    2010-05-01

    Pseudomonas fluorescens strains F113 and CHA0 are well-known plant growth-promoting rhizobacteria (PGPR) often used as model strains in biocontrol experiments. To monitor their persistence in large scale field experiments, culture-independent methods are needed. In this study, a strain-specific real-time PCR quantification tool was developed based on sequence-characterized amplified regions (SCAR) for P. fluorescens strains F113, CHA0 and Pf153. Differences in DNA extraction efficiencies from rhizosphere samples were circumvented using plasmid APA9 as internal standard to normalize C(T) values after real-time amplification. The detection limits of the real-time PCR assays for all three strains were approximately 10 cells for genomic DNA and 10(4)cells/g rhizosphere for maize samples grown in different natural soils. Population sizes of the three strains in the rhizosphere of maize measured by the new real-time PCR approaches were similar to those measured by most probable number (MPN)-PCR. A persistence study of the three strains indicated that the strains persisted differently over a period of 5weeks. In conclusion the newly developed real-time PCR approach is a fast and resource efficient method for monitoring individual biocontrol strains in natural soil, which makes it an apt quantification tool for future large-scale field experiments. Copyright 2010 Elsevier B.V. All rights reserved.

  10. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids

    Directory of Open Access Journals (Sweden)

    Wilson Zoe A

    2008-06-01

    Full Text Available Abstract Background Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. Results We describe a real-time PCR technique employing attached universal duplex probes (AUDP, which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP and a complementary quenching probe (QP lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. Conclusion The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost.

  11. Diagnostic efficacy of a real time-PCR assay for Chlamydia trachomatis infection in infertile women in north India

    Directory of Open Access Journals (Sweden)

    Benu Dhawan

    2014-01-01

    Full Text Available Background & objectives: Little is known about the prevalence of Chlamydia trachomatis infection in Indian women with infertility. To improve the diagnosis of C. trachomatis infection in developing countries, there is an urgent need to establish cost-effective molecular test with high sensitivity and specificity. This study was conducted to determine the diagnostic utility of a real time-PCR assay for detention of C. trachomatis infection in infertile women attending an infertility clinic in north India. The in house real time-PCR assay was also compared with a commercial real-time PCR based detection system. Methods: Endocervical swabs, collected from 200 infertile women were tested for C. trachomatis by three different PCR assays viz. in-house real time-PCR targeting the cryptic plasmid using published primers, along with omp1 gene and cryptic plasmid based conventional PCR assays. Specimens were also subjected to direct fluorescence assay (DFA and enzyme immunoassay (EIA Performance of in-house real time-PCR was compared with that of COBAS Taqman C. trachomatis Test, version 2.0 on all in-house real time-PCR positive sample and 30 consecutive negative samples. Results: C. trachomatis infection was found in 13.5 per cent (27/200 infertile women by in-house real time-PCR, 11.5 per cent (23/200 by cryptic plasmid and/or omp1 gene based conventional PCR, 9 per cent (18/200 by DFA and 6.5 per cent (7/200 by EIA. The in-house real time-PCR exhibited a sensitivity and specificity of 100 per cent, considering COBAS Taqman CT Test as the gold standard. The negative and positive predictive values of the in-house real time-PCR were 100 per cent. The in-house real time-PCR could detect as low as 10 copies of C. trachomatis DNA per reaction. Interpretation & conclusions: In-house real time-PCR targeting the cryptic plasmid of C. trachomatis exhibited an excellent sensitivity and specificity similar to that of COBAS Taqman CT Test, v2.0 for detection of C

  12. Improved quantification accuracy for duplex real-time PCR detection of genetically modified soybean and maize in heat processed foods

    Directory of Open Access Journals (Sweden)

    CHENG Fang

    2013-04-01

    Full Text Available Real-time PCR technique has been widely used in quantitative GMO detection in recent years.The accuracy of GMOs quantification based on the real-time PCR methods is still a difficult problem,especially for the quantification of high processed samples.To develop the suitable and accurate real-time PCR system for high processed GM samples,we made ameliorations to several real-time PCR parameters,including re-designed shorter target DNA fragment,similar lengths of amplified endogenous and exogenous gene targets,similar GC contents and melting temperatures of PCR primers and TaqMan probes.Also,one Heat-Treatment Processing Model (HTPM was established using soybean flour samples containing GM soybean GTS 40-3-2 to validate the effectiveness of the improved real-time PCR system.Tested results showed that the quantitative bias of GM content in heat processed samples were lowered using the new PCR system.The improved duplex real-time PCR was further validated using processed foods derived from GM soybean,and more accurate GM content values in these foods was also achieved.These results demonstrated that the improved duplex real-time PCR would be quite suitable in quantitative detection of high processed food products.

  13. Real-time RT-PCR, a necessary tool to support the diagnosis and surveillance of rotavirus in Mexico.

    Science.gov (United States)

    De La Cruz Hernández, Sergio Isaac; Anaya Molina, Yazmin; Gómez Santiago, Fabián; Terán Vega, Heidi Lizbeth; Monroy Leyva, Elda; Méndez Pérez, Héctor; García Lozano, Herlinda

    2018-04-01

    Rotavirus produces diarrhea in children under 5 years old. Most of those conventional methods such as polyacrylamide gel electrophoresis (PAGE) and reverse transcription-polymerase chain reaction (RT-PCR) have been used for rotavirus detection. However, these techniques need a multi-step process to get the results. In comparison with conventional methods, the real-time RT-PCR is a highly sensitive method, which allows getting the results in only one day. In this study a real-time RT-PCR assay was tested using a panel of 440 samples from patients with acute gastroenteritis, and characterized by PAGE and RT-PCR. The results show that the real-time RT-PCR detected rotavirus from 73% of rotavirus-negative samples analyzed by PAGE and RT-PCR; thus, the percentage of rotavirus-positive samples increased to 81%. The results indicate that this real-time RT-PCR should be part of a routine analysis, and as a support of the diagnosis of rotavirus in Mexico. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Real-time PCR improves Helicobacter pylori detection in patients with peptic ulcer bleeding.

    Directory of Open Access Journals (Sweden)

    María José Ramírez-Lázaro

    Full Text Available BACKGROUND AND AIMS: Histological and rapid urease tests to detect H. pylori in biopsy specimens obtained during peptic ulcer bleeding episodes (PUB often produce false-negative results. We aimed to examine whether immunohistochemistry and real-time PCR can improve the sensitivity of these biopsies. PATIENTS AND METHODS: We selected 52 histology-negative formalin-fixed paraffin-embedded biopsy specimens obtained during PUB episodes. Additional tests showed 10 were true negatives and 42 were false negatives. We also selected 17 histology-positive biopsy specimens obtained during PUB to use as controls. We performed immunohistochemistry staining and real-time PCR for 16S rRNA, ureA, and 23S rRNA for H. pylori genes on all specimens. RESULTS: All controls were positive for H. pylori on all PCR assays and immunohistochemical staining. Regarding the 52 initially negative biopsies, all PCR tests were significantly more sensitive than immunohistochemical staining (p<0.01. Sensitivity and specificity were 55% and 80% for 16S rRNA PCR, 43% and 90% for ureA PCR, 41% and 80% for 23S rRNA PCR, and 7% and 100% for immunohistochemical staining, respectively. Combined analysis of PCR assays for two genes were significantly more sensitive than ureA or 23S rRNA PCR tests alone (p<0.05 and marginally better than 16S rRNA PCR alone. The best combination was 16S rRNA+ureA, with a sensitivity of 64% and a specificity of 80%. CONCLUSIONS: Real-time PCR improves the detection of H. pylori infection in histology-negative formalin-fixed paraffin-embedded biopsy samples obtained during PUB episodes. The low reported prevalence of H. pylori in PUB may be due to the failure of conventional tests to detect infection.

  15. Real-time PCR detection of aldoxime dehydratase genes in nitrile-degrading microorganisms.

    Science.gov (United States)

    Dooley-Cullinane, Tríona Marie; O'Reilly, Catherine; Coffey, Lee

    2017-02-01

    Aldoxime dehydratase catalyses the conversion of aldoximes to their corresponding nitriles. Utilization of the aldoxime-nitrile metabolising enzyme pathway can facilitate the move towards a greener chemistry. In this work, a real-time PCR assay was developed for the detection of aldoxime dehydratase genes in aldoxime/nitrile metabolising microorganisms which have been purified from environmental sources. A conventional PCR assay was also designed allowing gene confirmation via sequencing. Aldoxime dehydratase genes were identified in 30 microorganisms across 11 genera including some not previously shown to harbour the gene. The assay displayed a limit of detection of 1 pg/μL DNA or 7 CFU/reaction. This real-time PCR assay should prove valuable in the high-throughput screening of micro-organisms for novel aldoxime dehydratase genes towards pharmaceutical and industrial applications.

  16. Evaluation of a new single-tube multiprobe real-time PCR for diagnosis of Entamoeba histolytica and Entamoeba dispar.

    Science.gov (United States)

    Liang, Shih-Yu; Hsia, Kan-Tai; Chan, Yun-Hsien; Fan, Chia-Kwung; Jiang, Donald Dah-Shyong; Landt, Olfert; Ji, Dar-Der

    2010-08-01

    A single-tube multiprobe real-time PCR assay for simultaneous detection of Entamoeba histolytica and Entamoeba dispar was developed. One primer pair with 2 species-specific probes was designed based on new SSU RNA regions of the ribosomal DNA-containing episome. The sensitivity is 1 parasite per milliliter of feces and thus superior to the conventional nested PCR and comparable to other published real-time PCR protocols. The applicability for clinical diagnosis was validated with 218 stool specimens from patients. A total of 51 E. histolytica and 39 E. dispar positive samples was detected by the multiprobe real-time PCR compared to 39 and 22 by routine nested PCR diagnosis. The detection rate of Entamoeba species for the multiprobe real-time PCR assays was significantly higher than the nested PCR (40.8% vs. 28.0%, P Entamoeba moshkovskii, Giardia lamblia , Cryptosporidium sp., Escherichia coli , or other nonpathogenic enteric parasites. The multiprobe real-time PCR assay is simple and rapid and has high specificity and sensitivity. The assay could streamline the laboratory diagnosis procedure and facilitate epidemiological investigation.

  17. Diagnosis of aerobic vaginitis by quantitative real-time PCR.

    Science.gov (United States)

    Rumyantseva, T A; Bellen, G; Savochkina, Y A; Guschin, A E; Donders, G G G

    2016-07-01

    To evaluate a real-time PCR-based technique to quantify bacteria associated with aerobic vaginitis (AV) as a potential test. Vaginal samples from 100 women were tested by wet-mount microscopy, gram stain and quantitative real-time PCR targeting Enterobacteriacea, Staphylococcus spp., Streptococcus spp., Enterococcus spp., Escherichia coli, Streptococcus agalactiae, S. aureus; Lactobacillus spp. AV diagnosis obtained by wet-mount microscopy was used as reference. Some level of AV was diagnosed in 23 (23.7 %) cases. Various concentrations of Enterobacteriacea, Staphylococcus spp., Streptococcus spp. were detected an all patients. Enterococcus spp. were detected in 76 (78.3 %) cases. Summarized concentrations of aerobes were tenfold higher in AV-positive compared to AV-negative cases [7.30lg vs 6.06lg (p = 0.02)]. Concentrations of aerobes in severe, moderate and light AV cases did not vary significantly (p = 0.14). Concentration of lactobacilli was 1000-fold lower in AV-positive cases compared to normal cases (5.3lg vs 8.3lg, p AV-positive cases [19/22 (86.4 %) samples]. The relation of high loads of aerobes to the low numbers of Lactobacilli are a reliable marker for the presence of AV and could substitute microscopy as a test. PCR may be a good standardized substitution for AV diagnosis in settings where well-trained microscopists are lacking.

  18. Quantification bias caused by plasmid DNA conformation in quantitative real-time PCR assay.

    Science.gov (United States)

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification.

  19. Sampling methods for rumen microbial counts by Real-Time PCR techniques

    Directory of Open Access Journals (Sweden)

    S. Puppo

    2010-02-01

    Full Text Available Fresh rumen samples were withdrawn from 4 cannulated buffalo females fed a fibrous diets in order to quantify bacteria concentration in the rumen by Real-Time PCR techniques. To obtain DNA of a good quality from whole rumen fluid, eight (M1-M8 different pre-filtration methods (cheese cloths, glass-fibre and nylon filter in combination with various centrifugation speeds (1000, 5000 and 14,000 rpm were tested. Genomic DNA extraction was performed either on fresh or frozen samples (-20°C. The quantitative bacteria analysis was realized according to Real-Time PCR procedure for Butyrivibrio fibrisolvens reported in literature. M5 resulted the best sampling procedure allowing to obtain a suitable genomic DNA. No differences were revealed between fresh and frozen samples.

  20. Multiplex real-time PCR for identification of canine parvovirus antigenic types.

    Science.gov (United States)

    Kaur, Gurpreet; Chandra, Mudit; Dwivedi, P N; Narang, Deepti

    2016-07-01

    Canine parvovirus (CPV) is an important disease causing gastroenteritis and/or haemorrhagic gastroenteritis in dogs. There are four antigenic types of CPV reported worldwide viz. CPV 2, CPV 2a, CPV 2b and CPV 2c. The diagnosis of CPV with the identification of the antigen type responsible remains problematic. In the present study, identification as well as antigenic typing of CPV was done using a de novo multiplex real time PCR to combat the problem of antigenic type identification. From the study it could be concluded that the here developed multiplex real time PCR assay could be used for rapid detection of CPV as well as typing of its three antigenic types. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. [Real-time PCR in rapid diagnosis of Aeromonas hydrophila necrotizing soft tissue infections].

    Science.gov (United States)

    Kohayagawa, Yoshitaka; Izumi, Yoko; Ushita, Misuzu; Niinou, Norio; Koshizaki, Masayuki; Yamamori, Yuji; Kaneko, Sakae; Fukushima, Hiroshi

    2009-11-01

    We report a case of rapidly progressive necrotizing soft tissue infection and sepsis followed by a patient's death. We suspected Vibrio vulnificus infection because the patient's underlying disease was cirrhosis and the course extremely rapid. No microbe had been detected at death. We extracted DNA from a blood culture bottle. SYBR green I real-time PCR was conducted but could not detect V. vulnificus vvh in the DNA sample. Aeromonas hydrophila was cultured and identified in blood and necrotized tissue samples. Real-time PCR was conducted to detect A. hydrophila ahh1, AHCYTOEN and aerA in the DNA sample extracted from the blood culture bottle and an isolated necrotized tissue strain, but only ahh1 was positive. High-mortality in necrotizing soft tissue infections makes it is crucial to quickly detect V. vulnificus and A. hydrophila. We found real-time PCR for vvh, ahh1, AHCYTOEN, and aerA useful in detecting V. vulnificus and A. hydrophila in necrotizing soft tissue infections.

  2. Comparison of different real-time PCR chemistries and their suitability for detection and quantification of genetically modified organisms

    Directory of Open Access Journals (Sweden)

    Žel Jana

    2008-03-01

    Full Text Available Abstract Background The real-time polymerase chain reaction is currently the method of choice for quantifying nucleic acids in different DNA based quantification applications. It is widely used also for detecting and quantifying genetically modified components in food and feed, predominantly employing TaqMan® and SYBR® Green real-time PCR chemistries. In our study four alternative chemistries: Lux™, Plexor™, Cycling Probe Technology and LNA® were extensively evaluated and compared using TaqMan® chemistry as a reference system. Results Amplicons were designed on the maize invertase gene and the 5'-junction of inserted transgene and plant genomic DNA in MON 810 event. Real-time assays were subsequently compared for their efficiency in PCR amplification, limits of detection and quantification, repeatability and accuracy to test the performance of the assays. Additionally, the specificity of established assays was checked on various transgenic and non-transgenic plant species. The overall applicability of the designed assays was evaluated, adding practicability and costs issues to the performance characteristics. Conclusion Although none of the chemistries significantly outperformed the others, there are certain characteristics that suggest that LNA® technology is an alternative to TaqMan® when designing assays for quantitative analysis. Because LNA® probes are much shorter they might be especially appropriate when high specificity is required and where the design of a common TaqMan® probe is difficult or even impossible due to sequence characteristics. Plexor™ on the other hand might be a method of choice for qualitative analysis when sensitivity, low cost and simplicity of use prevail.

  3. Detection of Tumor Markers in Prostate Cancer and Comparison of Sensitivity between Real Time and Nested PCR

    OpenAIRE

    Matsuoka, Takayuki; Shigemura, Katsumi; Yamamichi, Fukashi; Fujisawa, Masato; Kawabata, Masato; Shirakawa, Toshiro

    2012-01-01

    The objective of this study is to investigate and compare the sensitivity in conventional PCR, quantitative real time PCR, nested PCR and western blots for detection of prostate cancer tumor markers using prostate cancer (PCa) cells. We performed conventional PCR, quantitative real time PCR, nested PCR, and western blots using 5 kinds of PCa cells. Prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and androgen receptor (AR) were compared for their detection sensitivi...

  4. Improvement of a real-time RT-PCR assay for the detection of enterovirus RNA

    Directory of Open Access Journals (Sweden)

    Bruynseels Peggy

    2009-07-01

    Full Text Available Abstract We describe an improvement of an earlier reported real-time RT-PCR assay for the detection of enterovirus RNA, based on the 5' exonuclease digestion of a dual-labeled fluorogenic probe by Taq DNA polymerase. A different extraction method, real-time RT-PCR instrument and primer set were evaluated. Our data show that the optimized assay yields a higher sensitivity and reproducibility and resulted in a significant reduced hands-on time per sample.

  5. Single tube multiplex real-time PCR for the rapid detection of herpesvirus infections of the central nervous system.

    Science.gov (United States)

    Sankuntaw, Nipaporn; Sukprasert, Saovaluk; Engchanil, Chulapan; Kaewkes, Wanlop; Chantratita, Wasun; Pairoj, Vantanit; Lulitanond, Viraphong

    2011-01-01

    Human herpesvirus infection of immunocompromised hosts may lead to central nervous system (CNS) infection and diseases. In this study, a single tube multiplex real-time PCR was developed for the detection of five herpesviruses (HSV-1, HSV-2, VZV, EBV and CMV) in clinical cerebrospinal fluid (CSF) specimens. Two primer pairs specific for the herpesvirus polymerase gene and five hybridization probe pairs for the specific identification of the herpesvirus types were used in a LightCycler multiplex real-time PCR. A singleplex real-time PCR was first optimized and then applied to the multiplex real-time PCR. The singleplex and multiplex real-time PCRs showed no cross-reactivity. The sensitivity of the singleplex real-time PCR was 1 copy per reaction for each herpesvirus, while that of the multiplex real-time PCR was 1 copy per reaction for HSV-1 and VZV and 10 copies per reaction for HSV-2, EBV and CMV. Intra and inter-assay variations of the single tube multiplex assay were in the range of 0.02%-3.67% and 0.79%-4.35%, respectively. The assay was evaluated by testing 62 clinical CSF samples and was found to have equivalent sensitivity, specificity and agreement as the routine real-time PCR, but reducing time, cost and amount of used sample. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Analytical Performance of Four Polymerase Chain Reaction (PCR and Real Time PCR (qPCR Assays for the Detection of Six Leishmania Species DNA in Colombia

    Directory of Open Access Journals (Sweden)

    Cielo M. León

    2017-10-01

    Full Text Available Leishmaniasis comprises a spectrum of parasitic diseases caused by protozoans of the genus Leishmania. Molecular tools have been widely employed for the detection of Leishmania due to its high sensitivity and specificity. However, the analytical performance of molecular platforms as PCR and real time PCR (qPCR including a wide variety of molecular markers has never been evaluated. Herein, the aim was to evaluate the analytical performance of 4 PCR-based assays (designed on four different targets and applied on conventional and real-time PCR platforms. We evaluated the analytical performance of conventional PCR and real time PCR, determining exclusivity and inclusivity, Anticipated Reportable Range (ARR, limit of detection (LoD and accuracy using primers directed to kDNA, HSP70, 18S and ITS-1 targets. We observed that the kDNA was the most sensitive but does not meet the criterion of exclusivity. The HSP70 presented a higher LoD in conventional PCR and qPCR in comparison with the other markers (1 × 101 and 1 × 10-1 equivalent parasites/mL respectively and had a higher coefficient of variation in qPCR. No statistically significant differences were found between the days of the test with the four molecular markers. The present study revealed that the 18S marker presented the best performance in terms of analytical sensitivity and specificity for the qPCR in the species tested (species circulating in Colombia. Therefore, we recommend to explore the analytical and diagnostic performance in future studies using a broader number of species across America.

  7. Analytical Performance of Four Polymerase Chain Reaction (PCR) and Real Time PCR (qPCR) Assays for the Detection of Six Leishmania Species DNA in Colombia

    Science.gov (United States)

    León, Cielo M.; Muñoz, Marina; Hernández, Carolina; Ayala, Martha S.; Flórez, Carolina; Teherán, Aníbal; Cubides, Juan R.; Ramírez, Juan D.

    2017-01-01

    Leishmaniasis comprises a spectrum of parasitic diseases caused by protozoans of the genus Leishmania. Molecular tools have been widely employed for the detection of Leishmania due to its high sensitivity and specificity. However, the analytical performance of molecular platforms as PCR and real time PCR (qPCR) including a wide variety of molecular markers has never been evaluated. Herein, the aim was to evaluate the analytical performance of 4 PCR-based assays (designed on four different targets) and applied on conventional and real-time PCR platforms. We evaluated the analytical performance of conventional PCR and real time PCR, determining exclusivity and inclusivity, Anticipated Reportable Range (ARR), limit of detection (LoD) and accuracy using primers directed to kDNA, HSP70, 18S and ITS-1 targets. We observed that the kDNA was the most sensitive but does not meet the criterion of exclusivity. The HSP70 presented a higher LoD in conventional PCR and qPCR in comparison with the other markers (1 × 101 and 1 × 10-1 equivalent parasites/mL respectively) and had a higher coefficient of variation in qPCR. No statistically significant differences were found between the days of the test with the four molecular markers. The present study revealed that the 18S marker presented the best performance in terms of analytical sensitivity and specificity for the qPCR in the species tested (species circulating in Colombia). Therefore, we recommend to explore the analytical and diagnostic performance in future studies using a broader number of species across America. PMID:29046670

  8. Improved detection of canine Angiostrongylus vasorum infection using real-time PCR and indirect ELISA.

    Science.gov (United States)

    Jefferies, Ryan; Morgan, Eric R; Helm, Jenny; Robinson, Matthew; Shaw, Susan E

    2011-12-01

    This study reports the development of a real-time PCR assay and an indirect ELISA to improve on current detection of canine Angiostrongylus vasorum infection. A highly specific fluorescent probe-based, real-time PCR assay was developed to target the A. vasorum second internal transcribed spacer region and detected DNA in EDTA blood, lung tissue, broncho-alveolar larvage fluid, endotracheal mucus, pharyngeal swabs and faecal samples. PCR was fast (∼1 h), highly efficient when using EDTA blood samples, consistently detected a single molecule of parasite DNA and did not amplify DNA from other parasitic nematodes or definitive host species. An indirect ELISA was also developed using the soluble protein fraction from adult A. vasorum worms. Some cross-reactive antigen recognition was observed when tested against sera from dogs infected with Crenosoma vulpis (n = 8), Toxocara canis (n = 5) and Dirofilaria immitis (n = 5). This was largely overcome by setting the cut-off for a positive result at an appropriately high level. Field evaluation of the real-time PCR and ELISA was conducted by testing sera and EDTA blood from dogs with suspected A. vasorum infection (n = 148) and compared with the Baermann's larval migration test in faeces. Thirty-one dogs were positive by at least one test. Of these, 20 (65%) were detected by the Baermann method, 18 (58%) by blood PCR, 24 (77%) by ELISA and 28 (90%) by blood PCR and ELISA together. Combined testing using real-time PCR and ELISA therefore improved the detection rate of A. vasorum infection and holds promise for improved clinical diagnosis and epidemiological investigation.

  9. Detection of Enterovirus 71 gene from clinical specimens by reverse-transcription loop-mediated isothermal amplification

    Directory of Open Access Journals (Sweden)

    D Wang

    2014-01-01

    Full Text Available Purpose : The objective of this study was to develop a sensitive, specific and rapid approach to diagnose hand foot and mouth disease (HFMD for an early treatment by using loop-mediated isothermal amplification (LAMP technique. Materials and Methods : A reverse-transcription loop-mediated isothermal amplification (RT-LAMP for detecting EV71 virus was developed, the specificity and sensitivity of RT-LAMP was tested, and the clinical specimens was assayed by the RT-LAMP comparing with conventional reverse-transcription polymerase chain reaction (RT-PCR and real-time PCR. Results : A total of 116 clinical specimens from the suspected HFMD individual were detected with the RT-LAMP. The detection rate for EV71 was 56.89% by RT-LAMP, 41.38% by real-time PCR and 34.48% by RT-PCR. The minimum detection limit of RT-LAMP was 0.01 PFU, both of RT-PCR and real-time PCR was 0.1PFU. Non-cross-reactive amplification with other enteroviruses was detected in the survey reports. Conclusions : The effectiveness of RT-LAMP is higher than RT-PCR and real-time PCR. The protocol is easy to operate and time saving. It was not an expensive instrument, which was needed; it is an applicable method for rapid diagnosis of the disease, especially in resource-poor countries or in developing countries.

  10. Comparative evaluation of a laboratory developed real-time PCR assay and the RealStar® HHV-6 PCR Kit for quantitative detection of human herpesvirus 6.

    Science.gov (United States)

    Yip, Cyril C Y; Sridhar, Siddharth; Cheng, Andrew K W; Fung, Ami M Y; Cheng, Vincent C C; Chan, Kwok-Hung; Yuen, Kwok-Yung

    2017-08-01

    HHV-6 reactivation in immunocompromised patients is common and may be associated with serious morbidity and mortality; therefore, early detection and initiation of therapy might be of benefit. Real-time PCR assays allow for early identification of HHV-6 reactivation to assist in providing a timely response. Thus, we compared the performance of an in-house developed HHV-6 quantitative PCR assay with a commercially available kit, the RealStar ® HHV-6 PCR Kit. The analytical sensitivity, analytical specificity, linearity, precision and accuracy of the in-house developed HHV-6 qPCR assay were evaluated. The diagnostic performance of the in-house HHV-6 qPCR assay was compared with the RealStar ® HHV-6 PCR Kit, using 72 clinical specimens and 17 proficiency testing samples. Linear regression analysis of the quantitative results showed a dynamic range from 2 to 10 log 10 copies/ml and a coefficient of determination (R 2 ) of 0.999 for the in-house assay. A dilution series demonstrated a limit of detection and a limit of quantification of 1.7 log 10 and 2 log 10 copies/ml, respectively. The precision of the assay was highly reproducible among runs with coefficients of variance (CV) ranging from 0.27% to 4.37%. A comparison of 27 matched samples showed an excellent correlation between the quantitative viral loads measured by the in-house HHV-6 qPCR assay and the RealStar ® HHV-6 PCR Kit (R 2 =0.926; PPCR Kit. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Comparison of droplet digital PCR and seminested real-time PCR for quantification of cell-associated HIV-1 RNA

    NARCIS (Netherlands)

    Kiselinova, Maja; Pasternak, Alexander O.; de Spiegelaere, Ward; Vogelaers, Dirk; Berkhout, Ben; Vandekerckhove, Linos

    2014-01-01

    Cell-associated (CA) HIV-1 RNA is considered a potential marker for assessment of viral reservoir dynamics and antiretroviral therapy (ART) response in HIV-infected patients. Recent studies employed sensitive seminested real-time quantitative (q)PCR to quantify CA HIV-1 RNA. Digital PCR has been

  12. Development of Capillary Loop Convective Polymerase Chain Reaction Platform with Real-Time Fluorescence Detection

    Directory of Open Access Journals (Sweden)

    Wen-Pin Chou

    2017-02-01

    Full Text Available Polymerase chain reaction (PCR has been one of the principal techniques of molecular biology and diagnosis for decades. Conventional PCR platforms, which work by rapidly heating and cooling the whole vessel, need complicated hardware designs, and cause energy waste and high cost. On the other hand, partial heating on the various locations of vessels to induce convective solution flows by buoyancy have been used for DNA amplification in recent years. In this research, we develop a new convective PCR platform, capillary loop convective polymerase chain reaction (clcPCR, which can generate one direction flow and make the PCR reaction more stable. The U-shaped loop capillaries with 1.6 mm inner diameter are designed as PCR reagent containers. The clcPCR platform utilizes one isothermal heater for heating the bottom of the loop capillary and a CCD device for detecting real-time amplifying fluorescence signals. The stable flow was generated in the U-shaped container and the amplification process could be finished in 25 min. Our experiments with different initial concentrations of DNA templates demonstrate that clcPCR can be applied for precise quantification. Multiple sample testing and real-time quantification will be achieved in future studies.

  13. Real-Time PCR Detection and QUantification of Soilborne Fungal Pathogens : the Case of Rosellinia necatrix, Phytophthora nicotianae, P. citrophthora and Verticillium dahliae

    Directory of Open Access Journals (Sweden)

    L. Schena

    2004-08-01

    Full Text Available Conventional and Scorpion primers were designed from the ITS regions to identify Rosellinia necatrix, Phytophthora nicotianae, and P. citrophthora and from the IGS regions to identify Verticillium dahliae and V. alboatrum. Specificity of primers and probes was assessed using genomic DNA from a large number of fungi from several hosts and by means of BLAST analyses, to exclude the presence of similar sequences in other micro-organisms among available DNA databases (GenBank. Simple and rapid procedures for DNA extraction from naturally infected matrices (soils, roots, bark, and/or woody tissues were utilised to yield DNA of a purity and quality suitable for PCR assays. Combining these protocols with a double amplification (nested Scorpion-PCR, the real-time detection of these pathogens was possible from naturally infested soils and from infected citrus roots (P. nicotianae and P. citrophthora, from the roots and bark of stone fruits and olive (R. necatrix and from olive branches (V. dahliae. For target pathogens, the limit of detection was 1 pg µl-1 in Scorpion-PCR and 1 fg µl-1 in nested Scorpion-PCR. High and significant correlations between pathogen propagule concentrations and real-time PCR cycle thresholds (Ct were obtained. Moreover, specific tests with R. necatrix seem to indicate that its DNA is quite rapidly degraded in the soil, excluding the risk of false positives due to the presence of dead cells.

  14. A rapid real-time PCR method to differentiate between mottled skate (Beringraja pulchra) and other skate and ray species.

    Science.gov (United States)

    Kim, Mi-Ra; Kwon, Kisung; Jung, Yoo-Kyung; Kang, Tae Sun

    2018-07-30

    Skates and rays are commercially important fish in South Korea, and among them, Beringraja pulchra has the highest economic value. However, the similar morphological traits among skates and rays are often exploited for seafood fraud. Here, we designed both Beringraja pulchra-specific and skate-universal primer sets, capable of detecting short sequences in the cytochrome oxidase subunit I gene, and developed highly sensitive and reliable quantitative real-time PCR (qPCR) assays to differentiate between Beringraja pulchra and other skate and ray species. AΔCq method based on differences in the amplification efficiency was developed, validated, and then used to confirm the presence of Beringraja pulchra in twenty-six commercial skate products. The averageΔCq value obtained for other skate species (18.94 ± 3.46) was significantly higher than that of Beringraja pulchra (1.18 ± 0.15). For on-site applications, we developed an ultra-fast qPCR assay, allowing for completion of the entire analytical procedure within 30 min. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A Java program for LRE-based real-time qPCR that enables large-scale absolute quantification.

    Directory of Open Access Journals (Sweden)

    Robert G Rutledge

    Full Text Available BACKGROUND: Linear regression of efficiency (LRE introduced a new paradigm for real-time qPCR that enables large-scale absolute quantification by eliminating the need for standard curves. Developed through the application of sigmoidal mathematics to SYBR Green I-based assays, target quantity is derived directly from fluorescence readings within the central region of an amplification profile. However, a major challenge of implementing LRE quantification is the labor intensive nature of the analysis. FINDINGS: Utilizing the extensive resources that are available for developing Java-based software, the LRE Analyzer was written using the NetBeans IDE, and is built on top of the modular architecture and windowing system provided by the NetBeans Platform. This fully featured desktop application determines the number of target molecules within a sample with little or no intervention by the user, in addition to providing extensive database capabilities. MS Excel is used to import data, allowing LRE quantification to be conducted with any real-time PCR instrument that provides access to the raw fluorescence readings. An extensive help set also provides an in-depth introduction to LRE, in addition to guidelines on how to implement LRE quantification. CONCLUSIONS: The LRE Analyzer provides the automated analysis and data storage capabilities required by large-scale qPCR projects wanting to exploit the many advantages of absolute quantification. Foremost is the universal perspective afforded by absolute quantification, which among other attributes, provides the ability to directly compare quantitative data produced by different assays and/or instruments. Furthermore, absolute quantification has important implications for gene expression profiling in that it provides the foundation for comparing transcript quantities produced by any gene with any other gene, within and between samples.

  16. Evaluation of a multiplex real-time PCR assay for the detection of respiratory viruses in clinical specimens.

    Science.gov (United States)

    Rheem, Insoo; Park, Joowon; Kim, Tae-Hyun; Kim, Jong Wan

    2012-11-01

    In this study, we evaluated the analytical performance and clinical potential of a one-step multiplex real-time PCR assay for the simultaneous detection of 14 types of respiratory viruses using the AdvanSure RV real-time PCR Kit (LG Life Sciences, Korea). Three hundred and twenty clinical specimens were tested with the AdvanSure RV real-time PCR Kit and conventional multiplex reverse transcription (RT)-PCR assay. The assay results were analyzed and the one-step AdvanSure RV real-time PCR Kit was compared with the conventional multiplex RT-PCR assay with respect to the sensitivity and specificity of the detection of respiratory viruses. The limit of detection (LOD) was 1.31 plaque-forming units (PFU)/mL for human rhinoviruses (hRVs), 4.93 PFU/mL for human coronavirus HCoV-229E/NL63, 2.67 PFU/mL for human coronavirus HCoV-OC43, 18.20 PFU/mL for parainfluenza virus 1 (PIV)-1, 24.57 PFU/mL for PIV-2, 1.73 PFU/mL for PIV-3, 1.79 PFU/mL for influenza virus group (Flu) A, 59.51 PFU/mL for FluB, 5.46 PFU/mL for human respiratory syncytial virus (hRSV)-A, 17.23 PFU/mL for hRSV-B, 9.99 PFU/mL for human adenovirus (ADVs). The cross-reactivity test for this assay against 23 types of non-respiratory viruses showed negative results for all viruses tested. The agreement between the one-step AdvanSure multiplex real-time PCR assay and the conventional multiplex RT-PCR assay was 98%. The one-step AdvanSure RV multiplex real-time PCR assay is a simple assay with high potential for specific, rapid and sensitive laboratory diagnosis of respiratory viruses compared to conventional multiplex RT-PCR.

  17. Real-time PCR assays for the quantitation of rDNA from apricot and other plant species in marzipan.

    Science.gov (United States)

    Haase, Ilka; Brüning, Philipp; Matissek, Reinhard; Fischer, Markus

    2013-04-10

    Marzipan or marzipan raw paste is a typical German sweet which is consumed directly or is used as an ingredient in the bakery industry/confectionery (e.g., in stollen) and as filling for chocolate candies. Almonds (blanched and pealed) and sugar are the only ingredients for marzipan production according to German food guidelines. Especially for the confectionery industry, the use of persipan, which contains apricot or peach kernels instead of almonds, is preferred due to its stronger aroma. In most of the companies, both raw pastes are produced, in most cases on the same production line, running the risk of an unintended cross contamination. Additionally, due to high almond market values, dilutions of marzipan with cheaper seeds may occur. Especially in the case of apricot and almond, the close relationship of both species is a challenge for the analysis. DNA based methods for the qualitative detection of apricot, peach, pea, bean, lupine, soy, cashew, pistachio, and chickpea in marzipan have recently been published. In this study, different quantitation strategies on the basis of real-time PCR have been evaluated and a relative quantitation method with a reference amplification product was shown to give the best results. As the real-time PCR is based on the high copy rDNA-cluster, even contaminations <1% can be reliably quantitated.

  18. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria.

    Science.gov (United States)

    Choi, Goro; Jung, Jae Hwan; Park, Byung Hyun; Oh, Seung Jun; Seo, Ji Hyun; Choi, Jong Seob; Kim, Do Hyun; Seo, Tae Seok

    2016-06-21

    In this study, we developed a centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria contaminated milk samples. The microdevice was designed to contain identical triplicate functional units and each unit has four reaction chambers, thereby making it possible to perform twelve direct-RPA reactions simultaneously. The integrated microdevice consisted of two layers: RPA reagents were injected in the top layer, while spiked milk samples with food poisoning bacteria were loaded into sample reservoirs in the bottom layer. For multiplex bacterial detection, the target gene-specific primers and probes were dried in each reaction chamber. The introduced samples and reagents could be equally aliquoted and dispensed into each reaction chamber by centrifugal force, and then the multiplex direct-RPA reaction was executed. The target genes of bacteria spiked in milk could be amplified at 39 °C without a DNA extraction step by using the direct-RPA cocktails, which were a combination of a direct PCR buffer and RPA enzymes. As the target gene amplification proceeded, the increased fluorescence signals coming from the reaction chambers were recorded in real-time at an interval of 2 min. The entire process, including the sample distribution, the direct-RPA reaction, and the real-time analysis, was accomplished with a custom-made portable genetic analyzer and a miniaturized optical detector. Monoplex, duplex, and triplex food poisoning bacteria (Salmonella enterica, Escherichia coli O157:H7, and Vibrio parahaemolyticus) detection was successfully performed with a detection sensitivity of 4 cells per 3.2 μL of milk samples within 30 min. By implementing the direct-PRA on the miniaturized centrifugal microsystem, the on-site food poisoning bacteria analysis would be feasible with high speed, sensitivity, and multiplicity.

  19. A new method for simultaneous detection and discrimination of Bovine herpesvirus types 1 (BoHV-1) and 5 (BoHV-5) using real time PCR with high resolution melting (HRM) analysis.

    Science.gov (United States)

    Marin, M S; Quintana, S; Leunda, M R; Recavarren, M; Pagnuco, I; Späth, E; Pérez, S; Odeón, A

    2016-01-01

    Bovine herpesvirus types 1 (BoHV-1) and 5 (BoHV-5) are antigenically and genetically similar. The aim of this study was to develop a simple and reliable one-step real time PCR assay with high resolution melting (HRM) analysis for the simultaneous detection and differentiation of BoHV-1 and BoHV-5. Optimization of assay conditions was performed with DNA from reference strains. Then, DNA from field isolates, clinical samples and tissue samples of experimentally infected animals were studied by real time PCR-HRM. An efficient amplification of real time PCR products was obtained, and a clear melting curve and appropriate melting peaks for both viruses were achieved in the HRM curve analysis for BoHV type identification. BoHV was identified in all of the isolates and clinical samples, and BoHV types were properly differentiated. Furthermore, viral DNA was detected in 12/18 and 7/18 samples from BoHV-1- and BoHV-5-infected calves, respectively. Real time PCR-HRM achieved a higher sensitivity compared with virus isolation or conventional PCR. In this study, HRM was used as a novel procedure. This method provides rapid, sensitive, specific and simultaneous detection of bovine alpha-herpesviruses DNA. Thus, this technique is an excellent tool for diagnosis, research and epidemiological studies of these viruses in cattle. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Development of a real-time multiplex PCR assay for the detection of multiple Salmonella serotypes in chicken samples

    Directory of Open Access Journals (Sweden)

    Whyte Paul

    2008-09-01

    Full Text Available Abstract Background A real-time multiplex PCR assay was developed for the detection of multiple Salmonella serotypes in chicken samples. Poultry-associated serotypes detected in the assay include Enteritidis, Gallinarum, Typhimurium, Kentucky and Dublin. The traditional cultural method according to EN ISO 6579:2002 for the detection of Salmonella in food was performed in parallel. The real-time PCR based method comprised a pre-enrichment step in Buffered Peptone Water (BPW overnight, followed by a shortened selective enrichment in Rappaport Vasilliadis Soya Broth (RVS for 6 hours and subsequent DNA extraction. Results The real-time multiplex PCR assay and traditional cultural method showed 100% inclusivity and 100% exclusivity on all strains tested. The real-time multiplex PCR assay was as sensitive as the traditional cultural method in detecting Salmonella in artificially contaminated chicken samples and correctly identified the serotype. Artificially contaminated chicken samples resulted in a detection limit of between 1 and 10 CFU per 25 g sample for both methods. A total of sixty-three naturally contaminated chicken samples were investigated by both methods and relative accuracy, relative sensitivity and relative specificity of the real-time PCR method were determined to be 89, 94 and 87%, respectively. Thirty cultures blind tested were correctly identified by the real-time multiplex PCR method. Conclusion Real-time PCR methodology can contribute to meet the need for rapid identification and detection methods in food testing laboratories.

  1. Highly sensitive real-time PCR for specific detection and quantification of Coxiella burnetii

    Directory of Open Access Journals (Sweden)

    Linke Sonja

    2006-01-01

    Full Text Available Abstract Background Coxiella burnetii, the bacterium causing Q fever, is an obligate intracellular biosafety level 3 agent. Detection and quantification of these bacteria with conventional methods is time consuming and dangerous. During the last years, several PCR based diagnostic assays were developed to detect C. burnetii DNA in cell cultures and clinical samples. We developed and evaluated TaqMan-based real-time PCR assays that targeted the singular icd (isocitrate dehydrogenase gene and the transposase of the IS1111a element present in multiple copies in the C. burnetii genome. Results To evaluate the precision of the icd and IS1111 real-time PCR assays, we performed different PCR runs with independent DNA dilutions of the C. burnetii Nine Mile RSA493 strain. The results showed very low variability, indicating efficient reproducibility of both assays. Using probit analysis, we determined that the minimal number of genome equivalents per reaction that could be detected with a 95% probability was 10 for the icd marker and 6.5 for the IS marker. Plasmid standards with cloned icd and IS1111 fragments were used to establish standard curves which were linear over a range from 10 to 107 starting plasmid copy numbers. We were able to quantify cell numbers of a diluted, heat-inactivated Coxiella isolate with a detection limit of 17 C. burnetii particles per reaction. Real-time PCR targeting both markers was performed with DNA of 75 different C. burnetii isolates originating from all over the world. Using this approach, the number of IS1111 elements in the genome of the Nine Mile strain was determined to be 23, close to 20, the number revealed by genome sequencing. In other isolates, the number of IS1111 elements varied widely (between seven and 110 and seemed to be very high in some isolates. Conclusion We validated TaqMan-based real-time PCR assays targeting the icd and IS1111 markers of C. burnetii. The assays were shown to be specific, highly

  2. Strategy for Extracting DNA from Clay Soil and Detecting a Specific Target Sequence via Selective Enrichment and Real-Time (Quantitative) PCR Amplification

    Science.gov (United States)

    Yankson, Kweku K.; Steck, Todd R.

    2009-01-01

    We present a simple strategy for isolating and accurately enumerating target DNA from high-clay-content soils: desorption with buffers, an optional magnetic capture hybridization step, and quantitation via real-time PCR. With the developed technique, μg quantities of DNA were extracted from mg samples of pure kaolinite and a field clay soil. PMID:19633108

  3. A Novel Low Temperature PCR Assured High-Fidelity DNA Amplification

    Directory of Open Access Journals (Sweden)

    Shaoxia Zhou

    2013-06-01

    Full Text Available As previously reported, a novel low temperature (LoTemp polymerase chain reaction (PCR catalyzed by a moderately heat-resistant (MHR DNA polymerase with a chemical-assisted denaturation temperature set at 85 °C instead of the conventional 94–96 °C can achieve high-fidelity DNA amplification of a target DNA, even after up to 120 PCR thermal cycles. Furthermore, such accurate amplification is not achievable with conventional PCR. Now, using a well-recognized L1 gene segment of the human papillomavirus (HPV type 52 (HPV-52 as the template for experiments, we demonstrate that the LoTemp high-fidelity DNA amplification is attributed to an unusually high processivity and stability of the MHR DNA polymerase whose high fidelity in template-directed DNA synthesis is independent of non-existent 3'–5' exonuclease activity. Further studies and understanding of the characteristics of the LoTemp PCR technology may facilitate implementation of DNA sequencing-based diagnostics at the point of care in community hospital laboratories.

  4. Performance Evaluation of the Real-Q Cytomegalovirus (CMV) Quantification Kit Using Two Real-Time PCR Systems for Quantifying CMV DNA in Whole Blood.

    Science.gov (United States)

    Park, Jong Eun; Kim, Ji Youn; Yun, Sun Ae; Lee, Myoung Keun; Huh, Hee Jae; Kim, Jong Won; Ki, Chang Seok

    2016-11-01

    Standardized cytomegalovirus (CMV) DNA quantification is important for managing CMV disease. We evaluated the performance of the Real-Q CMV Quantification Kit (Real-Q assay; BioSewoom, Korea) using whole blood (WB), with nucleic acid extraction using MagNA Pure 96 (Roche Diagnostics, Germany). Real-time PCR was performed on two platforms: the 7500 Fast real-time PCR (7500 Fast; Applied Biosystems, USA) and CFX96 real-time PCR detection (CFX96; Bio-Rad, USA) systems. The WHO international standard, diluted with CMV-negative WB, was used to validate the analytical performance. We used 90 WB clinical samples for comparison with the artus CMV RG PCR kit (artus assay; Qiagen, Germany). Limits of detections (LODs) in 7500 Fast and CFX96 were 367 and 479 IU/mL, respectively. The assay was linear from the LOD to 10⁶ IU/mL (R² ≥0.9886). The conversion factors from copies to IU in 7500 Fast and CFX96 were 0.95 and 1.06, respectively. Compared with the artus assay, for values 1,000 copies/mL, 73.3% and 80.6% of samples in 7500 Fast and CFX96, respectively, had real-time PCR platforms.

  5. Evaluation of a Chlamydia trachomatis-specific, commercial, real-time PCR for use with ocular swabs.

    Science.gov (United States)

    Pickering, Harry; Holland, Martin J; Last, Anna R; Burton, Matthew J; Burr, Sarah E

    2018-02-20

    Trachoma, the leading infectious cause of blindness worldwide, is caused by conjunctival Chlamydia trachomatis infection. Trachoma is diagnosed clinically by observation of conjunctival inflammation and/or scarring; however, there is evidence that monitoring C. trachomatis infection may be required for elimination programmes. There are many commercial and 'in-house' nucleic acid amplification tests for the detection of C. trachomatis DNA, but the majority have not been validated for use with ocular swabs. This study evaluated a commercial assay, the Fast-Track Vaginal swab kit, using conjunctival samples from trachoma-endemic areas. An objective, biostatistical-based method for binary classification of continuous PCR data was developed, to limit potential user-bias in diagnostic settings. The Fast-Track Vaginal swab assay was run on 210 ocular swab samples from Guinea-Bissau and Tanzania. Fit of individual amplification curves to exponential or sigmoid models, derivative and second derivative of the curves and final fluorescence value were examined for utility in thresholding for determining positivity. The results from the Fast-Track Vaginal swab assay were evaluated against a commercial test (Amplicor CT/NG) and a non-commercial test (in-house droplet digital PCR), both of whose performance has previously been evaluated. Significant evidence of exponential amplification (R 2  > 0.99) and final fluorescence > 0.15 were combined for thresholding. This objective approach identified a population of positive samples, however there were a subset of samples that amplified towards the end of the cycling protocol (at or later than 35 cycles), which were less clearly defined. The Fast-Track Vaginal swab assay showed good sensitivity against the commercial (95.71) and non-commercial (97.18) tests. Specificity was lower against both (90.00 and 96.55, respectively). This study defined a simple, automated protocol for binary classification of continuous, real-time qPCR

  6. Bias in the Cq value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value

    NARCIS (Netherlands)

    Tuomi, Jari Michael; Voorbraak, Frans; Jones, Douglas L.; Ruijter, Jan M.

    2010-01-01

    For real-time monitoring of PCR amplification of DNA, quantitative PCR (qPCR) assays use various fluorescent reporters. DNA binding molecules and hybridization reporters (primers and probes) only fluoresce when bound to DNA and result in the non-cumulative increase in observed fluorescence.

  7. Real-time PCR for the early detection and quantification of Coxiella burnetii as an alternative to the murine bioassay.

    Science.gov (United States)

    Howe, Gerald B; Loveless, Bonnie M; Norwood, David; Craw, Philip; Waag, David; England, Marilyn; Lowe, John R; Courtney, Bernard C; Pitt, M Louise; Kulesh, David A

    2009-01-01

    Real-time PCR was used to analyze archived blood from non-human primates (NHP) and fluid samples originating from a well-controlled Q fever vaccine efficacy trial. The PCR targets were the IS1111 element and the com1 gene of Coxiella burnetii. Data from that previous study were used to evaluate real-time PCR as an alternative to the use of sero-conversion by mouse bioassay for both quantification and early detection of C. burnetii bacteria. Real-time PCR and the mouse bioassay exhibited no statistical difference in quantifying the number of microorganisms delivered in the aerosol challenge dose. The presence of C. burnetii in peripheral blood of non-human primates was detected by real-time PCR as early after exposure as the mouse bioassay with results available within hours instead of weeks. This study demonstrates that real-time PCR has the ability to replace the mouse bioassay to measure dosage and monitor infection of C. burnetii in a non-human primate model.

  8. Development and Validation of a Real-Time PCR Assay for Rapid Detection of Candida auris from Surveillance Samples.

    Science.gov (United States)

    Leach, L; Zhu, Y; Chaturvedi, S

    2018-02-01

    Candida auris is an emerging multidrug-resistant yeast causing invasive health care-associated infection with high mortality worldwide. Rapid identification of C. auris is of primary importance for the implementation of public health measures to control the spread of infection. To achieve these goals, we developed and validated a TaqMan-based real-time PCR assay targeting the internal transcribed spacer 2 ( ITS 2) region of the ribosomal gene. The assay was highly specific, reproducible, and sensitive, with the detection limit of 1 C. auris CFU/PCR. The performance of the C. auris real-time PCR assay was evaluated by using 623 surveillance samples, including 365 patient swabs and 258 environmental sponges. Real-time PCR yielded positive results from 49 swab and 58 sponge samples, with 89% and 100% clinical sensitivity with regard to their respective culture-positive results. The real-time PCR also detected C. auris DNA from 1% and 12% of swab and sponge samples with culture-negative results, indicating the presence of dead or culture-impaired C. auris The real-time PCR yielded results within 4 h of sample processing, compared to 4 to 14 days for culture, reducing turnaround time significantly. The new real-time PCR assay allows for accurate and rapid screening of C. auris and can increase effective control and prevention of this emerging multidrug-resistant fungal pathogen in health care facilities. Copyright © 2018 Leach et al.

  9. Schistosoma real-time PCR as diagnostic tool for international travellers and migrants.

    Science.gov (United States)

    Cnops, Lieselotte; Tannich, Egbert; Polman, Katja; Clerinx, Jan; Van Esbroeck, Marjan

    2012-10-01

    To evaluate the use of a genus-specific PCR that combines high sensitivity with the detection of different Schistosoma species for diagnosis in international travellers and migrants in comparison to standard microscopy. The genus-specific real-time PCR was developed to target the 28S ribosomal RNA gene of the major human Schistosoma species. It was validated for analytical specificity and reproducibility and demonstrated an analytical sensitivity of 0.2 eggs per gram of faeces. Its diagnostic performance was further evaluated on 152 faecal, 32 urine and 38 serum samples from patients presenting at the outpatient clinic of the Institute of Tropical Medicine in Antwerp (Belgium). We detected Schistosoma DNA in 76 faecal (50.0%) and five urine (15.6%) samples of which, respectively, nine and one were not detected by standard microscopy. Only two of the 38 serum samples of patients with confirmed schistosomiasis were positive with the presently developed PCR. Sequence analysis on positive faecal samples allowed identification of the Schistosoma species complex. The real-time PCR is highly sensitive and may offer added value in diagnosing imported schistosomiasis. The genus-specific PCR can detect all schistosome species that are infectious to humans and performs very well with faeces and urine, but not in serum. © 2012 Blackwell Publishing Ltd.

  10. Using quantitative real-time PCR to detect chimeras in transgenic tobacco and apricot and to monitor their dissociation

    Directory of Open Access Journals (Sweden)

    Burgos Lorenzo

    2010-07-01

    Full Text Available Abstract Background The routine generation of transgenic plants involves analysis of transgene integration into the host genome by means of Southern blotting. However, this technique cannot distinguish between uniformly transformed tissues and the presence of a mixture of transgenic and non-transgenic cells in the same tissue. On the other hand, the use of reporter genes often fails to accurately detect chimerical tissues because their expression can be affected by several factors, including gene silencing and plant development. So, new approaches based on the quantification of the amount of the transgene are needed urgently. Results We show here that chimeras are a very frequent phenomenon observed after regenerating transgenic plants. Spatial and temporal analyses of transformed tobacco and apricot plants with a quantitative, real-time PCR amplification of the neomycin phosphotransferase (nptII transgene as well as of an internal control (β-actin, used to normalise the amount of target DNA at each reaction, allowed detection of chimeras at unexpected rates. The amount of the nptII transgene differed greatly along with the sub-cultivation period of these plants and was dependent on the localisation of the analysed leaves; being higher in roots and basal leaves, while in the apical leaves it remained at lower levels. These data demonstrate that, unlike the use of the gus marker gene, real-time PCR is a powerful tool for detection of chimeras. Although some authors have proposed a consistent, positive Southern analysis as an alternative methodology for monitoring the dissociation of chimeras, our data show that it does not provide enough proof of uniform transformation. In this work, however, real-time PCR was applied successfully to monitor the dissociation of chimeras in tobacco plants and apricot callus. Conclusions We have developed a rapid and reliable method to detect and estimate the level of chimeras in transgenic tobacco and apricot

  11. Sensitive detection of novel Indian isolate of BTV 21 using ns1 gene based real-time PCR assay

    Directory of Open Access Journals (Sweden)

    Gaya Prasad

    2013-06-01

    Full Text Available Aim: The study was conducted to develop ns1 gene based sensitive real-time RT-PCR assay for diagnosis of India isolates of bluetongue virus (BTV. Materials and Methods: The BTV serotype 21 isolate (KMNO7 was isolated from Andhra Pradesh and propagated in BHK-21 cell line in our laboratory. The Nucleic acid (dsRNA of virus was extracted using Trizol method and cDNA was prepared using a standard protocol. The cDNA was allowed to ns1 gene based group specific PCR to confirm the isolate as BTV. The viral RNA was diluted 10 folds and the detection limit of ns1 gene based RT-PCR was determined. Finally the tenfold diluted viral RNA was subjected to real-time RT-PCR using ns1 gene primer and Taq man probe to standardized the reaction and determine the detection limit. Results: The ns1 gene based group specific PCR showed a single 366bp amplicon in agarose gel electrophoresis confirmed the sample as BTV. The ns1 gene RT-PCR using tenfold diluted viral RNA showed the detection limit of 70.0 fg in 1%agarose gel electrophoresis. The ns1 gene based real time RT-PCR was successfully standardized and the detection limit was found to be 7.0 fg. Conclusion: The ns1 gene based real-time RT-PCR was successfully standardized and it was found to be 10 times more sensitive than conventional RT-PCR. Key words: bluetongue, BTV21, RT-PCR, Real time RT-PCR, ns1 gene [Vet World 2013; 6(8.000: 554-557

  12. Interlaboratory study of DNA extraction from multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for individual kernel detection system of genetically modified maize.

    Science.gov (United States)

    Akiyama, Hiroshi; Sakata, Kozue; Makiyma, Daiki; Nakamura, Kosuke; Teshima, Reiko; Nakashima, Akie; Ogawa, Asako; Yamagishi, Toru; Futo, Satoshi; Oguchi, Taichi; Mano, Junichi; Kitta, Kazumi

    2011-01-01

    In many countries, the labeling of grains, feed, and foodstuff is mandatory if the genetically modified (GM) organism content exceeds a certain level of approved GM varieties. We previously developed an individual kernel detection system consisting of grinding individual kernels, DNA extraction from the individually ground kernels, GM detection using multiplex real-time PCR, and GM event detection using multiplex qualitative PCR to analyze the precise commingling level and varieties of GM maize in real sample grains. We performed the interlaboratory study of the DNA extraction with multiple ground samples, multiplex real-time PCR detection, and multiplex qualitative PCR detection to evaluate its applicability, practicality, and ruggedness for the individual kernel detection system of GM maize. DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR were evaluated by five laboratories in Japan, and all results from these laboratories were consistent with the expected results in terms of the commingling level and event analysis. Thus, the DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for the individual kernel detection system is applicable and practicable in a laboratory to regulate the commingling level of GM maize grain for GM samples, including stacked GM maize.

  13. Direct PCR amplification of the HVSI region in mitochondrial DNA from buccal cell swabs

    Directory of Open Access Journals (Sweden)

    Kovačević-Grujičić Nataša

    2012-01-01

    Full Text Available Amplification of human mitochondrial DNA (mtDNA has been widely used in population genetics, human evolutionary and molecular anthropology studies. mtDNA hypervariable segments I and II (HVSI and HVSII were shown to be a suitable tool in genetic analyses due to the unique properties of mtDNA, such as the lack of recombination, maternal mode of inheritance, rapid evolutionary rate and high population-specific polymorphisms. Here we present a rapid and low-cost method for direct PCR amplification of a 330 bp fragment of HVSI from buccal cell samples. Avoiding the DNA isolation step makes this method appropriate for the analysis of a large number of samples in a short period of time. Since the transportation of samples and fieldwork conditions can affect the quality of samples and subsequent DNA analysis, we tested the effects of long-term storage of buccal cell swabs on the suitability of such samples for direct PCR amplification. We efficiently amplified a 330 bp fragment of HVSI even after the long-term storage of buccal cells at room temperature, +4°C or at -20°C, for up to eight months. All examined PCR products were successfully sequenced, regardless of sample storage time and conditions. Our results suggest that the direct PCR amplification of the HVSI region from buccal cells is a method well suited for large-scale mtDNA population studies.[Acknowledgments. This work was supported by the Ministry of Education and Science of the Republic of Serbia (Grant no. III 47025.

  14. Population diversity of ammonium oxidizers investigated by specific PCR amplification

    Science.gov (United States)

    Ward, B.B.; Voytek, M.A.; Witzel, K.-P.

    1997-01-01

    The species composition of ammonia-oxidizing bacteria in aquatic environments was investigated using PCR primers for 16S rRNA genes to amplify specific subsets of the total ammonia-oxidizer population. The specificity of the amplification reactions was determined using total genomic DNA from known nitrifying strains and non-nitrifying strains identified as having similar rDNA sequences. Specificity of amplification was determined both for direct amplification, using the nitrifier specific primers, and with nested amplification, in which the nitrifier primers were used to reamplify a fragment obtained from direct amplification with Eubacterial universal primers. The present level of specificity allows the distinction between Nitrosomonas europaea, Nitrosomonas sp. (marine) and the other known ammonia-oxidizers in the beta subclass of the Proteobacteria. Using total DNA extracted from natural samples, we used direct amplification to determine presence/absence of different species groups. Species composition was found to differ among depths in vertical profiles of lake samples and among samples and enrichments from various other aquatic environments. Nested PCR yielded several more positive reactions, which implies that nitrifier DNA was present in most samples, but often at very low levels.

  15. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA.

    Science.gov (United States)

    Majid, Farjana; Jahan, Munira; Lutful Moben, Ahmed; Tabassum, Shahina

    2014-01-01

    Both real-time-polymerase chain reaction (PCR) and hybrid capture 2 (HC2) assay can detect and quantify hepatitis B virus (HBV) DNA. However, real-time-PCR can detect a wide range of HBV DNA, while HC2 assay could not detect lower levels of viremia. The present study was designed to detect and quantify HBV DNA by real-time-PCR and HC2 assay and compare the quantitative data of these two assays. A cross-sectional study was conducted in between July 2010 and June 2011. A total of 66 serologically diagnosed chronic hepatitis B (CHB) patients were selected for the study. Real-time-PCR and HC2 assay was done to detect HBV DNA. Data were analyzed by statistical Package for the social sciences (SPSS). Among 66 serologically diagnosed chronic hepatitis B patients 40 (60.61%) patients had detectable and 26 (39.39%) had undetectable HBV DNA by HC2 assay. Concordant results were obtained for 40 (60.61%) out of these 66 patients by real-time-PCR and HC2 assay with mean viral load of 7.06 ± 1.13 log 10 copies/ml and 6.95 ± 1.08 log 10 copies/ml, respectively. In the remaining 26 patients, HBV DNA was detectable by real-time-PCR in 20 patients (mean HBV DNA level was 3.67 ± 0.72 log 10 copies/ml. However, HBV DNA could not be detectable in six cases by the both assays. The study showed strong correlation (r = 0.915) between real-time-PCR and HC2 assay for the detection and quantification of HBV DNA. HC2 assay may be used as an alternative to real-time-PCR for CHB patients. How to cite this article: Majid F, Jahan M, Moben AL, Tabassum S. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA. Euroasian J Hepato-Gastroenterol 2014;4(1):31-35.

  16. Quantification of viable spray-dried potential probiotic lactobacilli using real-time PCR

    Directory of Open Access Journals (Sweden)

    Radulović Zorica

    2012-01-01

    Full Text Available The basic requirement for probiotic bacteria to be able to perform expected positive effects is to be alive. Therefore, appropriate quantification methods are crucial. Bacterial quantification based on nucleic acid detection is increasingly used. Spray-drying (SD is one of the possibilities to improve the survival of probiotic bacteria against negative environmental effects. The aim of this study was to investigate the survival of spray-dried Lactobacillus plantarum 564 and Lactobacillus paracasei Z-8, and to investigate the impact on some probiotic properties caused by SD of both tested strains. Besides the plate count technique, the aim was to examine the possibility of using propidium monoazide (PMA in combination with real-time polymerase chain reaction (PCR for determining spray-dried tested strains. The number of intact cells, Lb. plantarum 564 and Lb. paracasei Z-8, was determined by real-time PCR with PMA, and it was similar to the number of investigated strains obtained by the plate count method. Spray-dried Lb. plantarum 564 and Lb. paracasei Z-8 demonstrated very good probiotic ability. It may be concluded that the PMA real-time PCR determination of the viability of probiotic bacteria could complement the plate count method and SD may be a cost-effective way to produce large quantities of some probiotic cultures. [Projekat Ministarstva nauke Republike Srbije, br. 046010

  17. Solid-phase PCR for rapid multiplex detection of Salmonella spp. at the subspecies level, with amplification efficiency comparable to conventional PCR

    DEFF Research Database (Denmark)

    Chin, Wai Hoe; Sun, Yi; Høgberg, Jonas

    2017-01-01

    Solid-phase PCR (SP-PCR) has attracted considerable interest in different research fields since it allows parallel DNA amplification on the surface of a solid substrate. However, the applications of SP-PCR have been hampered by the low efficiency of the solid-phase amplification. In order to incr...... diagnosis, high-throughput DNA sequencing, and single-nucleotide polymorphism analysis. Graphical abstract Schematic representation of solid-phase PCR....

  18. Assessment of the real-time PCR and different digital PCR platforms for DNA quantification.

    Science.gov (United States)

    Pavšič, Jernej; Žel, Jana; Milavec, Mojca

    2016-01-01

    Digital PCR (dPCR) is beginning to supersede real-time PCR (qPCR) for quantification of nucleic acids in many different applications. Several analytical properties of the two most commonly used dPCR platforms, namely the QX100 system (Bio-Rad) and the 12.765 array of the Biomark system (Fluidigm), have already been evaluated and compared with those of qPCR. However, to the best of our knowledge, direct comparison between the three of these platforms using the same DNA material has not been done, and the 37 K array on the Biomark system has also not been evaluated in terms of linearity, analytical sensitivity and limit of quantification. Here, a first assessment of qPCR, the QX100 system and both arrays of the Biomark system was performed with plasmid and genomic DNA from human cytomegalovirus. With use of PCR components that alter the efficiency of qPCR, each dPCR platform demonstrated consistent copy-number estimations, which indicates the high resilience of dPCR. Two approaches, one considering the total reaction volume and the other considering the effective reaction size, were used to assess linearity, analytical sensitivity and variability. When the total reaction volume was considered, the best performance was observed with qPCR, followed by the QX100 system and the Biomark system. In contrast, when the effective reaction size was considered, all three platforms showed almost equal limits of detection and variability. Although dPCR might not always be more appropriate than qPCR for quantification of low copy numbers, dPCR is a suitable method for robust and reproducible quantification of viral DNA, and a promising technology for the higher-order reference measurement method.

  19. Real-time PCR Machine System Modeling and a Systematic Approach for the Robust Design of a Real-time PCR-on-a-Chip System

    OpenAIRE

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DN...

  20. Application of real-time PCR to postharvest physiology – DNA isolation

    Science.gov (United States)

    Real-time PCR technology has been widely used in the postharvest plant physiology research. One of the difficulties to isolate DNA from plant martial and pathogen cells is the presence of rigid polysaccharide cell walls and capsules, which physically protect DNA from cell lysis. Many materials requi...

  1. Accurate, Fast and Cost-Effective Diagnostic Test for Monosomy 1p36 Using Real-Time Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Pricila da Silva Cunha

    2014-01-01

    Full Text Available Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH, which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH, and/or multiplex ligation-dependent probe amplification (MLPA all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.

  2. Evaluation of a real-time PCR assay for malaria diagnosis in patients from Vietnam and in returned travellers.

    Science.gov (United States)

    Vo, Thi Kim Duy; Bigot, Patricia; Gazin, Pierre; Sinou, Veronique; De Pina, Jean Jacques; Huynh, Dinh Chien; Fumoux, Francis; Parzy, Daniel

    2007-05-01

    Real-time PCR diagnosis of malaria has advantages over traditional microscopic methods, especially when parasitaemia is low and when dealing with mixed infections. We have developed a new real-time PCR with specific genes in each Plasmodium species present only in one copy to identify the four pathogenic Plasmodium spp. for humans. The sensitivity was less than 25 parasites/microl. No cross-hybridisation was observed with human DNA or among the four Plasmodium spp. Using LightCycler PCR and conventional microscopy, we compared the diagnosis of malaria in patients from Vietnam and in returned European travellers with suspicion of malaria. In patients from Vietnam with suspicion of malaria, one mixed infection was observed by PCR only; the remaining data (54 of 55 patients) correlated with microscopy. In 79 patients without symptoms, low parasitaemia was detected in 7 samples by microscopy and in 16 samples by PCR. In returned travellers, PCR results were correlated with microscopy for all four species in 48 of 56 samples. The eight discrepant results were resolved in favour of real-time PCR diagnosis. This new real-time PCR is a rapid, accurate and efficient method for malaria diagnosis in returned travellers as well as for epidemiological studies or antimalarial efficiency trials in the field.

  3. Comparison of the genexpert enterovirus assay (GXEA) with real-time one step RT-PCR for the detection of enteroviral RNA in the cerebrospinal fluid of patients with meningitis.

    Science.gov (United States)

    Hong, JiYoung; Kim, Ahyoun; Hwang, Seoyeon; Cheon, Doo-Sung; Kim, Jong-Hyen; Lee, June-Woo; Park, Jae-Hak; Kang, Byunghak

    2015-02-13

    Enteroviruses (EVs) are the leading cause of aseptic meningitis worldwide. Detection of enteroviral RNA in clinical specimens has been demonstrated to improve the management of patient care, especially that of neonates and young children. To establish a sensitive and reliable assay for routine laboratory diagnosis, we compared the sensitivity and specificity of the GeneXpert Enterovirus Assay (GXEA) with that of the reverse transcription polymerase chain reaction (RT-PCR) based assay referred to as real-time one step RT-PCR (RTo-PCR). The sensitivity/specificity produced by GXEA and RTo-PCR were 100%/100% and 65%/100%, respectively. Both methods evaluated in this article can be used for detection of enterovirus in clinical specimens and these nucleic acid amplification methods are useful assays for the diagnosis of enteroviral infection.

  4. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium oxysporum f. sp. cubense tropical race 4 in soil.

    Science.gov (United States)

    Zhang, Xin; Zhang, He; Pu, Jinji; Qi, Yanxiang; Yu, Qunfang; Xie, Yixian; Peng, Jun

    2013-01-01

    Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt (Panama disease), is one of the most devastating diseases of banana (Musa spp.). The Foc tropical race 4 (TR4) is currently known as a major concern in global banana production. No effective resistance is known in Musa to Foc, and no effective measures for controlling Foc once banana plants have been infected in place. Early and accurate detection of Foc TR4 is essential to protect banana industry and guide banana planting. A real-time fluorescence loop-mediated isothermal amplification assay (RealAmp) was developed for the rapid and quantitative detection of Foc TR4 in soil. The detection limit of the RealAmp assay was approximately 0.4 pg/µl plasmid DNA when mixed with extracted soil DNA or 10(3) spores/g of artificial infested soil, and no cross-reaction with other relative pathogens were observed. The RealAmp assay for quantifying genomic DNA of TR4 was confirmed by testing both artificially and naturally infested samples. Quantification of the soil-borne pathogen DNA of Foc TR4 in naturally infested samples was no significant difference compared to classic real-time PCR (P>0.05). Additionally, RealAmp assay was visual with an improved closed-tube visual detection system by adding SYBR Green I fluorescent dye to the inside of the lid prior to amplification, which avoided the inhibitory effects of the stain on DNA amplification and makes the assay more convenient in the field and could thus become a simple, rapid and effective technique that has potential as an alternative tool for the detection and monitoring of Foc TR4 in field, which would be a routine DNA-based testing service for the soil-borne pathogen in South China.

  5. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium oxysporum f. sp. cubense tropical race 4 in soil.

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    Full Text Available Fusarium oxysporum f. sp. cubense (Foc, the causal agent of Fusarium wilt (Panama disease, is one of the most devastating diseases of banana (Musa spp.. The Foc tropical race 4 (TR4 is currently known as a major concern in global banana production. No effective resistance is known in Musa to Foc, and no effective measures for controlling Foc once banana plants have been infected in place. Early and accurate detection of Foc TR4 is essential to protect banana industry and guide banana planting. A real-time fluorescence loop-mediated isothermal amplification assay (RealAmp was developed for the rapid and quantitative detection of Foc TR4 in soil. The detection limit of the RealAmp assay was approximately 0.4 pg/µl plasmid DNA when mixed with extracted soil DNA or 10(3 spores/g of artificial infested soil, and no cross-reaction with other relative pathogens were observed. The RealAmp assay for quantifying genomic DNA of TR4 was confirmed by testing both artificially and naturally infested samples. Quantification of the soil-borne pathogen DNA of Foc TR4 in naturally infested samples was no significant difference compared to classic real-time PCR (P>0.05. Additionally, RealAmp assay was visual with an improved closed-tube visual detection system by adding SYBR Green I fluorescent dye to the inside of the lid prior to amplification, which avoided the inhibitory effects of the stain on DNA amplification and makes the assay more convenient in the field and could thus become a simple, rapid and effective technique that has potential as an alternative tool for the detection and monitoring of Foc TR4 in field, which would be a routine DNA-based testing service for the soil-borne pathogen in South China.

  6. Identification of Histoplasma capsulatum from culture extracts by real-time PCR.

    Science.gov (United States)

    Martagon-Villamil, Jose; Shrestha, Nabin; Sholtis, Mary; Isada, Carlos M; Hall, Gerri S; Bryne, Terry; Lodge, Barbara A; Reller, L Barth; Procop, Gary W

    2003-03-01

    We designed and tested a real-time LightCycler PCR assay for Histoplasma capsulatum that correctly identified the 34 H. capsulatum isolates in a battery of 107 fungal isolates tested and also detected H. capsulatum in clinical specimens from three patients that were culture positive for this organism.

  7. Real-time PCR-based method for the rapid detection of extended RAS mutations using bridged nucleic acids in colorectal cancer.

    Science.gov (United States)

    Iida, Takao; Mizuno, Yukie; Kaizaki, Yasuharu

    2017-10-27

    Mutations in RAS and BRAF are predictors of the efficacy of anti-epidermal growth factor receptor (EGFR) therapy in patients with metastatic colorectal cancer (mCRC). Therefore, simple, rapid, cost-effective methods to detect these mutations in the clinical setting are greatly needed. In the present study, we evaluated BNA Real-time PCR Mutation Detection Kit Extended RAS (BNA Real-time PCR), a real-time PCR method that uses bridged nucleic acid clamping technology to rapidly detect mutations in RAS exons 2-4 and BRAF exon 15. Genomic DNA was extracted from 54 formalin-fixed paraffin-embedded (FFPE) tissue samples obtained from mCRC patients. Among the 54 FFPE samples, BNA Real-time PCR detected 21 RAS mutations (38.9%) and 5 BRAF mutations (9.3%), and the reference assay (KRAS Mutation Detection Kit and MEBGEN™ RASKET KIT) detected 22 RAS mutations (40.7%). The concordance rate of detected RAS mutations between the BNA Real-time PCR assay and the reference assays was 98.2% (53/54). The BNA Real-time PCR assay proved to be a more simple, rapid, and cost-effective method for detecting KRAS and RAS mutations compared with existing assays. These findings suggest that BNA Real-time PCR is a valuable tool for predicting the efficacy of early anti-EGFR therapy in mCRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Direct PCR amplification of forensic touch and other challenging DNA samples: A review.

    Science.gov (United States)

    Cavanaugh, Sarah E; Bathrick, Abigail S

    2018-01-01

    DNA evidence sample processing typically involves DNA extraction, quantification, and STR amplification; however, DNA loss can occur at both the DNA extraction and quantification steps, which is not ideal for forensic evidence containing low levels of DNA. Direct PCR amplification of forensic unknown samples has been suggested as a means to circumvent extraction and quantification, thereby retaining the DNA typically lost during those procedures. Direct PCR amplification is a method in which a sample is added directly to an amplification reaction without being subjected to prior DNA extraction, purification, or quantification. It allows for maximum quantities of DNA to be targeted, minimizes opportunities for error and contamination, and reduces the time and monetary resources required to process samples, although data analysis may take longer as the increased DNA detection sensitivity of direct PCR may lead to more instances of complex mixtures. ISO 17025 accredited laboratories have successfully implemented direct PCR for limited purposes (e.g., high-throughput databanking analysis), and recent studies indicate that direct PCR can be an effective method for processing low-yield evidence samples. Despite its benefits, direct PCR has yet to be widely implemented across laboratories for the processing of evidentiary items. While forensic DNA laboratories are always interested in new methods that will maximize the quantity and quality of genetic information obtained from evidentiary items, there is often a lag between the advent of useful methodologies and their integration into laboratories. Delayed implementation of direct PCR of evidentiary items can be attributed to a variety of factors, including regulatory guidelines that prevent laboratories from omitting the quantification step when processing forensic unknown samples, as is the case in the United States, and, more broadly, a reluctance to validate a technique that is not widely used for evidence samples. The

  9. Incidence of pulmonary aspergillosis and correlation of conventional diagnostic methods with nested PCR and real-time PCR assay using BAL fluid in intensive care unit patients.

    Science.gov (United States)

    Zarrinfar, Hossein; Makimura, Koichi; Satoh, Kazuo; Khodadadi, Hossein; Mirhendi, Hossein

    2013-05-01

    Although the incidence of invasive aspergillosis in the intensive care unit (ICU) is scarce, it has emerged as major problems in critically ill patients. In this study, the incidence of pulmonary aspergillosis (PA) in ICU patients has evaluated and direct microscopy and culture has compared with nested polymerase chain reaction (PCR) and real-time PCR for detection of Aspergillus fumigatus and A. flavus in bronchoalveolar lavage (BAL) samples of the patients. Thirty BAL samples obtained from ICU patients during a 16-month period were subjected to direct examinations on 20% potassium hydroxide (KOH) and culture on two culture media. Nested PCR targeting internal transcribed spacer ribosomal DNA and TaqMan real-time PCR assay targeting β-tubulin gene were used for the detection of A. fumigatus and A. flavus. Of 30 patients, 60% were men and 40% were women. The diagnosis of invasive PA was probable in 1 (3%), possible in 11 (37%), and not IPA in 18 (60%). Nine samples were positive in nested PCR including seven samples by A. flavus and two by A. fumigatus specific primers. The lowest amount of DNA that TaqMan real-time PCR could detect was ≥40 copy numbers. Only one of the samples had a positive result of A. flavus real-time PCR with Ct value of 37.5. Although a significant number of specimens were positive in nested PCR, results of this study showed that establishment of a correlation between the conventional methods with nested PCR and real-time PCR needs more data confirmed by a prospective study with a larger sample group. © 2013 Wiley Periodicals, Inc.

  10. Real-time PCR systems targeting giant viruses of amoebae and their virophages.

    Science.gov (United States)

    Ngounga, Tatsiana; Pagnier, Isabelle; Reteno, Dorine-Gaelle Ikanga; Raoult, Didier; La Scola, Bernard; Colson, Philippe

    2013-01-01

    Giant viruses that infect amoebae, including mimiviruses and marseilleviruses, were first described in 2003. Virophages were subsequently described that infect mimiviruses. Culture isolation with Acanthamoeba spp. and metagenomic studies have shown that these giant viruses are common inhabitants of our biosphere and have enabled the recent detection of these viruses in human samples. However, the genomes of these viruses display substantial genetic diversity, making it a challenge to examine their presence in environmental and clinical samples using conventional and real-time PCR. We designed and evaluated the performance of PCR systems capable of detecting all currently isolated mimiviruses, marseilleviruses and virophages to assess their prevalence in various samples. Our real-time PCR assays accurately detected all or most of the members of the currently delineated lineages of giant viruses infecting acanthamoebae as well as the mimivirus virophages, and enabled accurate classification of the mimiviruses of amoebae in lineages A, B or C. We were able to detect four new mimiviruses directly from environmental samples and correctly classified these viruses within mimivirus lineage C. This was subsequently confirmed by culture on amoebae followed by partial Sanger sequencing. PCR systems such as those implemented here may contribute to an improved understanding of the prevalence of mimiviruses, their virophages and marseilleviruses in humans.

  11. A FRET-based real-time PCR assay to identify the main causal agents of New World tegumentary leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Pablo Tsukayama

    Full Text Available In South America, various species of Leishmania are endemic and cause New World tegumentary leishmaniasis (NWTL. The correct identification of these species is critical for adequate clinical management and surveillance activities. We developed a real-time polymerase chain reaction (PCR assay and evaluated its diagnostic performance using 64 archived parasite isolates and 192 prospectively identified samples collected from individuals with suspected leishmaniasis enrolled at two reference clinics in Lima, Peru. The real-time PCR assay was able to detect a single parasite and provided unambiguous melting peaks for five Leishmania species of the Viannia subgenus that are highly prevalent in South America: L. (V. braziliensis, L. (V. panamensis, L. (V. guyanensis, L. (V. peruviana and L. (V. lainsoni. Using kinetoplastid DNA-based PCR as a gold standard, the real-time PCR had sensitivity and specificity values of 92% and 77%, respectively, which were significantly higher than those of conventional tests such as microscopy, culture and the leishmanin skin test (LST. In addition, the real-time PCR identified 147 different clinical samples at the species level, providing an overall agreement of 100% when compared to multilocus sequence typing (MLST data performed on a subset of these samples. Furthermore, the real-time PCR was three times faster and five times less expensive when compared to PCR - MLST for species identification from clinical specimens. In summary, this new assay represents a cost-effective and reliable alternative for the identification of the main species causing NWTL in South America.

  12. Simultaneous quantitative assessment of circulating cell-free mitochondrial and nuclear DNA by multiplex real-time PCR

    Directory of Open Access Journals (Sweden)

    Peng Xia

    2009-01-01

    Full Text Available Quantification of circulating nucleic acids in plasma and serum could be used as a non-invasive diagnostic tool for monitoring a wide variety of diseases and conditions. We describe here a rapid, simple and accurate multiplex real-time PCR method for direct synchronized analysis of circulating cell-free (ccf mitochondrial (mtDNA and nuclear (nDNA DNA in plasma and serum samples. The method is based on one-step multiplex real-time PCR using a FAM-labeled MGB probe and primers to amplify the mtDNA sequence of the ATP 8 gene, and a VIC-labeled MGB probe and primers to amplify the nDNA sequence of the glycerinaldehyde-3-phosphate-dehydrogenase (GAPDH gene, in plasma and serum samples simultaneously. The efficiencies of the multiplex assays were measured in serial dilutions. Based on the simulation of the PCR reaction kinetics, the relative quantities of ccf mtDNA were calculated using a very simple equation. Using our optimised real-time PCR conditions, close to 100% efficiency was obtained from the two assays. The two assays performed in the dilution series showed very good and reproducible correlation to each other. This optimised multiplex real-time PCR protocol can be widely used for synchronized quantification of mtDNA and nDNA in different samples, with a very high rate of efficiency.

  13. Detection of SYT-SSX mutant transcripts in formalin-fixed paraffin-embedded sarcoma tissues using one-step reverse transcriptase real-time PCR.

    Science.gov (United States)

    Norlelawati, A T; Mohd Danial, G; Nora, H; Nadia, O; Zatur Rawihah, K; Nor Zamzila, A; Naznin, M

    2016-04-01

    Synovial sarcoma (SS) is a rare cancer and accounts for 5-10% of adult soft tissue sarcomas. Making an accurate diagnosis is difficult due to the overlapping histological features of SS with other types of sarcomas and the non-specific immunohistochemistry profile findings. Molecular testing is thus considered necessary to confirm the diagnosis since more than 90% of SS cases carry the transcript of t(X;18)(p11.2;q11.2). The purpose of this study is to diagnose SS at molecular level by testing for t(X;18) fusion-transcript expression through One-step reverse transcriptase real-time Polymerase Chain Reaction (PCR). Formalin-fixed paraffin-embedded tissue blocks of 23 cases of soft tissue sarcomas, which included 5 and 8 cases reported as SS as the primary diagnosis and differential diagnosis respectively, were retrieved from the Department of Pathology, Tengku Ampuan Afzan Hospital, Kuantan, Pahang. RNA was purified from the tissue block sections and then subjected to One-step reverse transcriptase real-time PCR using sequence specific hydrolysis probes for simultaneous detection of either SYT-SSX1 or SYT-SSX2 fusion transcript. Of the 23 cases, 4 cases were found to be positive for SYT-SSX fusion transcript in which 2 were diagnosed as SS whereas in the 2 other cases, SS was the differential diagnosis. Three cases were excluded due to failure of both amplification assays SYT-SSX and control β-2-microglobulin. The remaining 16 cases were negative for the fusion transcript. This study has shown that the application of One-Step reverse transcriptase real time PCR for the detection SYT-SSX transcript is feasible as an aid in confirming the diagnosis of synovial sarcoma.

  14. Comparison of culture, single and multiplex real-time PCR for detection of Sabin poliovirus shedding in recently vaccinated Indian children.

    Science.gov (United States)

    Giri, Sidhartha; Rajan, Anand K; Kumar, Nirmal; Dhanapal, Pavithra; Venkatesan, Jayalakshmi; Iturriza-Gomara, Miren; Taniuchi, Mami; John, Jacob; Abraham, Asha Mary; Kang, Gagandeep

    2017-08-01

    Although, culture is considered the gold standard for poliovirus detection from stool samples, real-time PCR has emerged as a faster and more sensitive alternative. Detection of poliovirus from the stool of recently vaccinated children by culture, single and multiplex real-time PCR was compared. Of the 80 samples tested, 55 (68.75%) were positive by culture compared to 61 (76.25%) and 60 (75%) samples by the single and one step multiplex real-time PCR assays respectively. Real-time PCR (singleplex and multiplex) is more sensitive than culture for poliovirus detection in stool, although the difference was not statistically significant. © 2017 Wiley Periodicals, Inc.

  15. Development of a pan-Simbu real-time reverse transcriptase PCR for the detection of Simbu serogroup viruses and comparison with SBV diagnostic PCR systems.

    Science.gov (United States)

    Fischer, Melina; Schirrmeier, Horst; Wernike, Kerstin; Wegelt, Anne; Beer, Martin; Hoffmann, Bernd

    2013-11-05

    Schmallenberg virus (SBV), a novel orthobunyavirus of the Simbu serogroup, was first identified in October 2011 in dairy cattle in Germany, where it caused fever, diarrhea and a drop in milk yield. Since then, SBV additionally has been detected in adult sheep and goats. Although symptoms of acute infection were not observed, infection during a vulnerable phase of pregnancy caused congenital malformations and stillbirths. In view of the current situation and the possible emergence of further Simbu serogroup members, a pan-Simbu real-time reverse transcriptase (RT) PCR system for the reliable detection of Simbu serogroup viruses should be developed. In this study a pan-Simbu real-time RT-PCR system was established and compared to several SBV real-time RT-PCR assays. All PCR-systems were tested using a panel of different Simbu serogroup viruses as well as several field samples from diseased cattle, sheep and goats originating from all over Germany. Several pan-Simbu real-time RT-PCR products were sequenced via Sanger sequencing. Furthermore, in silico analyses were performed to investigate suitability for the detection of further orthobunyaviruses. All tested members of the Simbu serogroup (n = 14) as well as most of the field samples were successfully detected by the pan-Simbu real-time RT-PCR system. The comparison of this intercalating dye assay with different TaqMan probe-based assays developed for SBV diagnostics confirmed the functionality of the pan-Simbu assay for screening purposes. However, the SBV-TaqMan-assay SBV-S3 delivered the highest analytical sensitivity of less than ten copies per reaction for duplex systems including an internal control. In addition, for confirmation of SBV-genome detection the highly specific SBV-M1 assay was established. The pan-Simbu real-time RT-PCR system was able to detect all tested members of the Simbu serogroup, most of the SBV field samples as well as three tested Bunyamwera serogroup viruses with a suitable

  16. HybProbes-based real-time PCR assay for specific identification of Streptomyces scabies and Streptomyces europaeiscabiei, the potato common scab pathogens.

    Science.gov (United States)

    Xu, R; Falardeau, J; Avis, T J; Tambong, J T

    2016-02-01

    The aim of this study was to develop and validate a HybProbes-based real-time PCR assay targeting the trpB gene for specific identification of Streptomyces scabies and Streptomyces europaeiscabiei. Four primer pairs and a fluorescent probe were designed and evaluated for specificity in identifying S. scabies and Streptomyces europaeiscabiei, the potato common scab pathogens. The specificity of the HybProbes-based real-time PCR assay was evaluated using 46 bacterial strains, 23 Streptomyces strains and 23 non-Streptomyces bacterial species. Specific and strong fluorescence signals were detected from all nine strains of S. scabies and Streptomyces europaeiscabiei. No fluorescence signal was detected from 14 strains of other Streptomyces species and all non-Streptomyces strains. The identification was corroborated by the melting curve analysis that was performed immediately after the amplification step. Eight of the nine S. scabies and S. europaeiscabiei strains exhibited a unique melting peak, at Tm of 69·1°C while one strain, Warba-6, had a melt peak at Tm of 65·4°C. This difference in Tm peaks could be attributed to a guanine to cytosine mutation in strain Warba-6 at the region spanning the donor HybProbe. The reported HybProbes assay provides a more specific tool for accurate identification of S. scabies and S. europaeiscabiei strains. This study reports a novel assay based on HybProbes chemistry for rapid and accurate identification of the potato common scab pathogens. Since the HybProbes chemistry requires two probes for positive identification, the assay is considered to be more specific than conventional PCR or TaqMan real-time PCR. The developed assay would be a useful tool with great potential in early diagnosis and detection of common scab pathogens of potatoes in infected plants or for surveillance of potatoes grown in soil environment. © 2015 Her Majesty the Queen in Right of Canada © 2015 The Society for Applied Microbiology.

  17. Critical points of DNA quantification by real-time PCR--effects of DNA extraction method and sample matrix on quantification of genetically modified organisms.

    Science.gov (United States)

    Cankar, Katarina; Stebih, Dejan; Dreo, Tanja; Zel, Jana; Gruden, Kristina

    2006-08-14

    Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs) quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was chosen as the primary criterion by which to

  18. Fast real-time PCR for the detection of crustacean allergen in foods.

    Science.gov (United States)

    Herrero, Beatriz; Vieites, Juan M; Espiñeira, Montserrat

    2012-02-29

    Crustaceans are one of the most common allergens causing severe food reaction. These food allergens are a health problem, and they have become very important; there are various regulations that establish that labeling must be present regarding these allergens to warn consumers. In the present work a fast real-time PCR, by a LNA probe, was developed. This allows the detection of crustaceans in all kinds of products, including processed products in which very aggressive treatments of temperature and pressure during the manufacturing process are used. This methodology provides greater sensitivity and specificity and reduces the analysis time of real-time PCR to 40 min. This methodology was further validated by means of simulating products likely to contain this allergen. For this, products present on the market were spiked with crustacean cooking water. The assay is a potential tool in issues related to the labeling of products and food security to protect the allergic consumer.

  19. PCR em tempo real para diagnóstico da leucose enzoótica bovina Enzootic bovine leukosis real time PCR

    Directory of Open Access Journals (Sweden)

    Natanael Lamas Dias

    2012-08-01

    Full Text Available O objetivo deste trabalho foi realizar a validação de uma reação em cadeia da polimerase em tempo real com o sistema Plexor® (qPCR para o diagnóstico da Leucose Enzoótica Bovina (LEB, por meio da comparação com testes de diagnóstico recomendados pela Organização Mundial de Saúde Animal (OIE. A qPCR foi comparada com duas outras técnicas: a PCR nested (nPCR e a imunodifusão em gel de ágar (IDGA. Das 82 amostras analisadas pela qPCR e nPCR, 79 apresentaram resultados concordantes, sendo a concordância, classificada pelo Índice Kappa, como alta. Entre as PCRs e a IDGA, o número de resultados concordantes foi de 71 e 69, respectivamente, para qPCR e nPCR, sendo a concordância classificada como considerável. A qPCR apresentou altos valores de sensibilidade e especificidade. Os valores preditivos da qPCR observados demonstraram a alta capacidade de classificação dos casos positivos e negativos. A qPCR não foi capaz de detectar três amostras positivas e tem custo ligeiramente superior que a nPCR. Entretanto, a qPCR é uma técnica mais rápida, menos susceptível a contaminações, tem alta sensibilidade, não utiliza e não gera resíduos carcinogênicos. Concluímos que a qPCR pode substituir a nPCR recomendada pela OIE no diagnóstico de rotina em áreas em que a LEB é endêmica, como no Brasil.The goal of this research was to validate a Plexor® real time Polymerase Chain Reaction (qPCR for Enzootic Bovine Leukosis (EBL diagnosis by comparison with methods recommend by the World Animal Health Organization (OIE. The qPCR was compared with two other techniques: the nested PCR (nPCR and to the agar gel immunodiffusion (AGID. Of 82 qPCR and nPCR analysed samples, 79 presented concordant results, being the concordance classified by Kappa Index as high. Between the PCRs and AGID, the number of concordant results was 71 and 69, out of 82, to qPCR and nPCR, respectively, being the concordance classified as considerable, in both

  20. Complementary techniques: validation of gene expression data by quantitative real time PCR.

    Science.gov (United States)

    Provenzano, Maurizio; Mocellin, Simone

    2007-01-01

    Microarray technology can be considered the most powerful tool for screening gene expression profiles of biological samples. After data mining, results need to be validated with highly reliable biotechniques allowing for precise quantitation of transcriptional abundance of identified genes. Quantitative real time PCR (qrt-PCR) technology has recently reached a level of sensitivity, accuracy and practical ease that support its use as a routine bioinstrumentation for gene level measurement. Currently, qrt-PCR is considered by most experts the most appropriate method to confirm or confute microarray-generated data. The knowledge of the biochemical principles underlying qrt-PCR as well as some related technical issues must be beard in mind when using this biotechnology.

  1. External and semi-internal controls for PCR amplification of homologous sequences in mixed templates.

    Science.gov (United States)

    Kalle, Elena; Gulevich, Alexander; Rensing, Christopher

    2013-11-01

    In a mixed template, the presence of homologous target DNA sequences creates environments that almost inevitably give rise to artifacts and biases during PCR. Heteroduplexes, chimeras, and skewed template-to-product ratios are the exclusive attributes of mixed template PCR and never occur in a single template assay. Yet, multi-template PCR has been used without appropriate attention to quality control and assay validation, in spite of the fact that such practice diminishes the reliability of results. External and internal amplification controls became obligatory elements of good laboratory practice in different PCR assays. We propose the inclusion of an analogous approach as a quality control system for multi-template PCR applications. The amplification controls must take into account the characteristics of multi-template PCR and be able to effectively monitor particular assay performance. This study demonstrated the efficiency of a model mixed template as an adequate external amplification control for a particular PCR application. The conditions of multi-template PCR do not allow implementation of a classic internal control; therefore we developed a convenient semi-internal control as an acceptable alternative. In order to evaluate the effects of inhibitors, a model multi-template mix was amplified in a mixture with DNAse-treated sample. Semi-internal control allowed establishment of intervals for robust PCR performance for different samples, thus enabling correct comparison of the samples. The complexity of the external and semi-internal amplification controls must be comparable with the assumed complexity of the samples. We also emphasize that amplification controls should be applied in multi-template PCR regardless of the post-assay method used to analyze products. © 2013 Elsevier B.V. All rights reserved.

  2. Use of RAPD and PCR double amplification in the study of ancient DNA

    Directory of Open Access Journals (Sweden)

    F. Balzano

    2011-01-01

    Full Text Available This project analysed the DNA extracted from bones of ancient sheep which have been brought to light in Sardinian different archaeological sites. In order to better analyse this highly fragmented DNA, a double amplification technique was chosen. The first approach consisted of RAPD-PCR abd the second one in classic PCR. The RAPD-PCR amplified random fragments and allowed the production of numerous amplicons. The products of RAPD amplification have been amplified, more specifically, by the second PCR using primers for a sequence of 176 bp of mitochondrial D-loop region. These DNA fragments have been sequenced and the sequence analysis has confirmed that it belonged to Ovis aries. Consequently, this provedure can be considered a valid tool to perform amplification of degraded DNA, such as ancient DNA.

  3. Real-time PCR detection of Brucella spp. DNA in lesions and viscera of bovine carcasses.

    Science.gov (United States)

    Sola, Marília Cristina; da Veiga Jardim, Eurione A G; de Freitas, Marcius Ribeiro; de Mesquita, Albenones José

    2014-09-01

    This study reports a real-time PCR assay for the detection of Brucella spp. associated with the FTA® Elute method in lesions observed during sanitary inspections in beef slaughter. Of the total 276 samples, 78 (28.3%) tested positive and 198 (71.7%) negative for Brucella spp. The real-time PCR technique associated with the FTA® Elute method proved to be an important tool for the diagnosis, judgment about and disposal of carcasses and viscera of slaughtered animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The development and application of the two real-time RT-PCR assays to detect the pathogen of HFMD.

    Directory of Open Access Journals (Sweden)

    Aili Cui

    Full Text Available Large-scale Hand, Foot, and Mouth Disease (HFMD outbreaks have frequently occurred in China since 2008, affecting more than one million children and causing several hundred children deaths every year. The pathogens of HFMD are mainly human enteroviruses (HEVs. Among them, human enterovirus 71 (HEV71 and coxsackievirus A16 (CVA16 are the most common pathogens of HFMD. However, other HEVs could also cause HFMD. To rapidly detect HEV71 and CVA16, and ensure detection of all HEVs causing HFMD, two real-time hybridization probe-based RT-PCR assays were developed in this study. One is a multiplex real-time RT-PCR assay, which was developed to detect and differentiate HEV71 specifically from CVA16 directly from clinical specimens within 1-2 h, and the other is a broad-spectrum real-time RT-PCR assay, which targeted almost all HEVs. The experiments confirmed that the two assays have high sensitivity and specificity, and the sensitivity was up to 0.1 TCID50/ml for detection of HEVs, HEV71, and CVA16, respectively. A total of 213 clinical specimens were simultaneously detected by three kinds of assays, including the two real-time RT-PCR assays, direct conventional RT-PCR assay, and virus isolation assay on human rhabdomyosarcoma cells (RD cells. The total positive rate of both HEV71 and CVA16 was 69.48% with real-time RT-PCR assay, 47.42% with RT-PCR assay, and 34.58% with virus isolation assay. One HFMD clinical specimen was positive for HEV, but negative for HEV71 or CVA16, which was identified as Echovirus 11 (Echo11 by virus isolation, RT-PCR, and sequencing for the VP1 gene. The two real-time RT-PCR assays had been applied in 31 provincial HFMD labs to detect the pathogens of HFMD, which has contributed to the rapid identification of the pathogens in the early stages of HFMD outbreaks, and helped to clarify the etiologic agents of HFMD in China.

  5. Linear and exponential TAIL-PCR: a method for efficient and quick amplification of flanking sequences adjacent to Tn5 transposon insertion sites.

    Science.gov (United States)

    Jia, Xianbo; Lin, Xinjian; Chen, Jichen

    2017-11-02

    Current genome walking methods are very time consuming, and many produce non-specific amplification products. To amplify the flanking sequences that are adjacent to Tn5 transposon insertion sites in Serratia marcescens FZSF02, we developed a genome walking method based on TAIL-PCR. This PCR method added a 20-cycle linear amplification step before the exponential amplification step to increase the concentration of the target sequences. Products of the linear amplification and the exponential amplification were diluted 100-fold to decrease the concentration of the templates that cause non-specific amplification. Fast DNA polymerase with a high extension speed was used in this method, and an amplification program was used to rapidly amplify long specific sequences. With this linear and exponential TAIL-PCR (LETAIL-PCR), we successfully obtained products larger than 2 kb from Tn5 transposon insertion mutant strains within 3 h. This method can be widely used in genome walking studies to amplify unknown sequences that are adjacent to known sequences.

  6. Development, optimization, and single laboratory validation of an event-specific real-time PCR method for the detection and quantification of Golden Rice 2 using a novel taxon-specific assay.

    Science.gov (United States)

    Jacchia, Sara; Nardini, Elena; Savini, Christian; Petrillo, Mauro; Angers-Loustau, Alexandre; Shim, Jung-Hyun; Trijatmiko, Kurniawan; Kreysa, Joachim; Mazzara, Marco

    2015-02-18

    In this study, we developed, optimized, and in-house validated a real-time PCR method for the event-specific detection and quantification of Golden Rice 2, a genetically modified rice with provitamin A in the grain. We optimized and evaluated the performance of the taxon (targeting rice Phospholipase D α2 gene)- and event (targeting the 3' insert-to-plant DNA junction)-specific assays that compose the method as independent modules, using haploid genome equivalents as unit of measurement. We verified the specificity of the two real-time PCR assays and determined their dynamic range, limit of quantification, limit of detection, and robustness. We also confirmed that the taxon-specific DNA sequence is present in single copy in the rice genome and verified its stability of amplification across 132 rice varieties. A relative quantification experiment evidenced the correct performance of the two assays when used in combination.

  7. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    Directory of Open Access Journals (Sweden)

    Rider Mark A

    2012-06-01

    Full Text Available Abstract Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR. Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically

  8. Competitive Reporter Monitored Amplification (CMA) - Quantification of Molecular Targets by Real Time Monitoring of Competitive Reporter Hybridization

    Science.gov (United States)

    Ullrich, Thomas; Ermantraut, Eugen; Schulz, Torsten; Steinmetzer, Katrin

    2012-01-01

    Background State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. Methodology and Principal Findings The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. Conclusions and Significance The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2), we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls and targets into a

  9. Competitive reporter monitored amplification (CMA--quantification of molecular targets by real time monitoring of competitive reporter hybridization.

    Directory of Open Access Journals (Sweden)

    Thomas Ullrich

    Full Text Available BACKGROUND: State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. METHODOLOGY AND PRINCIPAL FINDINGS: The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. CONCLUSIONS AND SIGNIFICANCE: The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2, we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls

  10. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods.

    Science.gov (United States)

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-10-19

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.

  11. European validation of Real-Time PCR method for detection of Salmonella spp. in pork meat.

    Science.gov (United States)

    Delibato, Elisabetta; Rodriguez-Lazaro, David; Gianfranceschi, Monica; De Cesare, Alessandra; Comin, Damiano; Gattuso, Antonietta; Hernandez, Marta; Sonnessa, Michele; Pasquali, Frédérique; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Prukner-Radovcic, Estella; Horvatek Tomic, Danijela; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John E; Chemaly, Marianne; Le Gall, Francoise; González-García, Patricia; Lettini, Antonia Anna; Lukac, Maja; Quesne, Segolénè; Zampieron, Claudia; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Proroga, Yolande T R; Capuano, Federico; Manfreda, Gerardo; De Medici, Dario

    2014-08-01

    The classical microbiological method for detection of Salmonella spp. requires more than five days for final confirmation, and consequently there is a need for an alternative methodology for detection of this pathogen particularly in those food categories with a short shelf-life. This study presents an international (at European level) ISO 16140-based validation study of a non-proprietary Real-Time PCR-based method that can generate final results the day following sample analysis. It is based on an ISO compatible enrichment coupled to an easy and inexpensive DNA extraction and a consolidated Real-Time PCR assay. Thirteen laboratories from seven European Countries participated to this trial, and pork meat was selected as food model. The limit of detection observed was down to 10 CFU per 25 g of sample, showing excellent concordance and accordance values between samples and laboratories (100%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (100%) when the results obtained for the Real-Time PCR-based methods were compared to those of the ISO 6579:2002 standard method. The results of this international trial demonstrate that the evaluated Real-Time PCR-based method represents an excellent alternative to the ISO standard. In fact, it shows an equal and solid performance as well as it reduces dramatically the extent of the analytical process, and can be easily implemented routinely by the Competent Authorities and Food Industry laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Rapid Genome Detection of Schmallenberg Virus and Bovine Viral Diarrhea Virus by Use of Isothermal Amplification Methods and High-Speed Real-Time Reverse Transcriptase PCR

    OpenAIRE

    Aebischer, Andrea; Wernike, Kerstin; Hoffmann, Bernd; Beer, Martin

    2014-01-01

    Over the past few years, there has been an increasing demand for rapid and simple diagnostic tools that can be applied outside centralized laboratories by using transportable devices. In veterinary medicine, such mobile test systems would circumvent barriers associated with the transportation of samples and significantly reduce the time to diagnose important infectious animal diseases. Among a wide range of available technologies, high-speed real-time reverse transcriptase quantitative PCR (R...

  13. Quantification of algal endosymbionts (Symbiodinium) in coral tissue using real-time PCR

    NARCIS (Netherlands)

    Mieog, J. C.; Van Oppen, M. J. H.; Berkelmans, R.; Stam, W. T.; Olsen, J. L.

    Understanding the flexibility of the endosymbioses between scleractinian corals and single-cell algae of the genus Symbiodinium will provide valuable insights into the future of coral reefs. Here, a real-time polymerase chain reaction (PCR) assay is presented to accurately determine the cell

  14. Rapid detection and differentiation of Clonorchis sinensis and Opisthorchis viverrini using real-time PCR and high resolution melting analysis.

    Science.gov (United States)

    Cai, Xian-Quan; Yu, Hai-Qiong; Li, Rong; Yue, Qiao-Yun; Liu, Guo-Hua; Bai, Jian-Shan; Deng, Yan; Qiu, De-Yi; Zhu, Xing-Quan

    2014-01-01

    Clonorchis sinensis and Opisthorchis viverrini are both important fish-borne pathogens, causing serious public health problem in Asia. The present study developed an assay integrating real-time PCR and high resolution melting (HRM) analysis for the specific detection and rapid identification of C. sinensis and O. viverrini. Primers targeting COX1 gene were highly specific for these liver flukes, as evidenced by the negative amplification of closely related trematodes. Assays using genomic DNA extracted from the two flukes yielded specific amplification and their identity was confirmed by sequencing, having the accuracy of 100% in reference to conventional methods. The assay was proved to be highly sensitive with a detection limit below 1 pg of purified genomic DNA, 5 EPG, or 1 metacercaria of C. sinensis. Moreover, C. sinensis and O. viverrini were able to be differentiated by their HRM profiles. The method can reduce labor of microscopic examination and the contamination of agarose electrophoresis. Moreover, it can differentiate these two flukes which are difficult to be distinguished using other methods. The established method provides an alternative tool for rapid, simple, and duplex detection of C. sinensis and O. viverrini.

  15. Rapid Detection and Differentiation of Clonorchis sinensis and Opisthorchis viverrini Using Real-Time PCR and High Resolution Melting Analysis

    Directory of Open Access Journals (Sweden)

    Xian-Quan Cai

    2014-01-01

    Full Text Available Clonorchis sinensis and Opisthorchis viverrini are both important fish-borne pathogens, causing serious public health problem in Asia. The present study developed an assay integrating real-time PCR and high resolution melting (HRM analysis for the specific detection and rapid identification of C. sinensis and O. viverrini. Primers targeting COX1 gene were highly specific for these liver flukes, as evidenced by the negative amplification of closely related trematodes. Assays using genomic DNA extracted from the two flukes yielded specific amplification and their identity was confirmed by sequencing, having the accuracy of 100% in reference to conventional methods. The assay was proved to be highly sensitive with a detection limit below 1 pg of purified genomic DNA, 5 EPG, or 1 metacercaria of C. sinensis. Moreover, C. sinensis and O. viverrini were able to be differentiated by their HRM profiles. The method can reduce labor of microscopic examination and the contamination of agarose electrophoresis. Moreover, it can differentiate these two flukes which are difficult to be distinguished using other methods. The established method provides an alternative tool for rapid, simple, and duplex detection of C. sinensis and O. viverrini.

  16. Development and evaluation of a real-time method for testing human enteroviruses and coxsackievirus A16.

    Science.gov (United States)

    Chen, Qian; Hu, Zheng; Zhang, Qihua; Yu, Minghui

    2016-05-01

    Hand, foot, and mouth disease (HFMD) is a common infectious disease caused by a group of the human enteroviruses (HEV), including coxsackievirus A16 (CA16) and enterovirus 71 (EV71). In recent years, another HEV-A serotype, CA6 or CA10, has emerged to be one of the major etiologic agents that can induce HFMD worldwide. The objective of this study is to develop specific, sensitive, and rapid methods to help diagnose HEV and CA16 specifically by using simultaneous amplification testing (SAT) based on isothermal amplification of RNA and real-time detection of fluorescence technique, which were named as SAT-HEV and SAT-CA16, respectively (SAT-HEV/SAT-CA16). The specificity and sensitivity of SAT were tested here. SAT-HEV/SAT-CA16 could measure viral titers that were at least 10-fold lower than those measured by real-time PCR. Non-false cross-reactive amplification indicated that SAT-HEV/SAT-CA16 were highly specific with the addition of internal control (IC) RNA (5000 copies/reaction). A total of 198 clinical specimens were assayed by SAT comparing with real-time PCR. The statistically robust assessment of SAT-HEV and HEV-specific real-time PCR plus sequencing reached 99.0% (196/198), with a kappa value of 0.97, and 99.5% (197/198) and a kappa value of 0.99 for CA16, respectively. Additionally, IC prevented false-negative readings and assured the SAT-HEV/SAT-CA16 method's accuracy. Overall, SAT-HEV/SAT-CA16 method may serve as a platform for the simple and rapid detection of HEV/CA16 in time of HFMD outbreak. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Periodontal pathogens: a quantitative comparison of anaerobic culture and real-time PCR

    NARCIS (Netherlands)

    Boutaga, Khalil; van Winkelhoff, Arie Jan; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.

    2005-01-01

    Periodontitis is a multi-factorial chronic inflammatory and destructive disease of the tooth-supporting tissues. Quantitative anaerobic culture techniques have been used for microbial diagnosis of the different forms of the disease. The aim of this study was to compare real-time PCR with

  18. Detection of Balamuthia mandrillaris DNA by real-time PCR targeting the RNase P gene

    Directory of Open Access Journals (Sweden)

    Lewin Astrid

    2008-12-01

    Full Text Available Abstract Background The free-living amoeba Balamuthia mandrillaris may cause fatal encephalitis both in immunocompromised and in – apparently – immunocompetent humans and other mammalian species. Rapid, specific, sensitive, and reliable detection requiring little pathogen-specific expertise is an absolute prerequisite for a successful therapy and a welcome tool for both experimental and epidemiological research. Results A real-time polymerase chain reaction assay using TaqMan® probes (real-time PCR was established specifically targeting the RNase P gene of B. mandrillaris amoebae. The assay detected at least 2 (down to 0.5 genomes of B. mandrillaris grown in axenic culture. It did not react with DNA from closely related Acanthamoeba (3 species, nor with DNA from Toxoplasma gondii, Leishmania major, Pneumocystis murina, Mycobacterium bovis (BCG, human brain, various mouse organs, or from human and murine cell lines. The assay efficiently detected B. mandrillaris DNA in spiked cell cultures, spiked murine organ homogenates, B. mandrillaris-infected mice, and CNS tissue-DNA preparations from 2 patients with proven cerebral balamuthiasis. This novel primer set was successfully combined with a published set that targets the B. mandrillaris 18S rRNA gene in a duplex real-time PCR assay to ensure maximum specificity and as a precaution against false negative results. Conclusion A real-time PCR assay for B. mandrillaris amoebae is presented, that is highly specific, sensitive, and reliable and thus suited both for diagnosis and for research.

  19. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods

    Directory of Open Access Journals (Sweden)

    Akiko Edagawa

    2015-10-01

    Full Text Available We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR, and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%. Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%. In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8% compared with real-time qPCR alone (46/68, 67.6%. Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1% compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%. Legionella was not detected in the remaining six samples (6/68, 8.8%, irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.

  20. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods

    Science.gov (United States)

    There is a growing interest in the application of human-associated fecal sourceidentification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data q...

  1. Partial validation of a TaqMan real-time quantitative PCR for the detection of ranaviruses

    DEFF Research Database (Denmark)

    Stilwell, Natalie K.; Whittington, Richard J.; Hick, Paul M.

    2018-01-01

    Ranaviruses are globally emerging pathogens negatively impacting wild and cultured fish, amphibians, and reptiles. Although conventional and diagnostic real-time PCR (qPCR) assays have been developed to detect ranaviruses, these assays often have not been tested against the known diversity of ran...

  2. Detection panel for identification of twelve hemorrhagic viruses using real-time RT-PCR.

    Science.gov (United States)

    Fajfr, M; Neubauerová, V; Pajer, P; Kubíčková, P; Růžek, D

    2014-09-01

    Viral hemorrhagic fevers are caused by viruses from four viral families and develop diseases with high fatality rates. However, no commercial diagnostic assay for these pathogens is available. We developed real-time RT-PCR assays for viruses Ebola, Marburg, Lassa, Guanarito, Machupo, Junin, Sabiá, Seoul, Puumala, Hantaan, Crimean-Congo hemorrhagic fever virus and Rift Valley fever virus. The assays were optimized for identical reaction conditions and can be performed using several types of real-time PCR instruments, both capillary and plate, including a portable Ruggedized Advanced Pathogen Identification Device (R.A.P.I.D.) (Idaho Technology, Inc.). In combination with primers and probes from previously published studies, we present a simple system for rapid identification of hemorrhagic filoviruses, arenaviruses and bunyaviruses with sufficient sensitivity for first contact laboratory and diagnosis under field conditions.

  3. Diagnostic performance of Schistosoma real-time PCR in urine samples from Kenyan children infected with Schistosoma haematobium

    DEFF Research Database (Denmark)

    Vinkeles Melchers, Natalie V. S.; van Dam, Govert J.; Shaproski, David

    2014-01-01

    treatment. METHODOLOGY: Previously collected urine samples (N = 390) from 114 preselected proven parasitological and/or clinical S. haematobium positive Kenyan schoolchildren were analyzed by a Schistosoma internal transcribed spacer-based real-time PCR after 14 years of storage. Pre-treatment day......, respectively. Based on the 'gold standard', PCR showed high sensitivity (>92%) as compared to >31% sensitivity for microscopy, both pre- and post-treatment. CONCLUSIONS/SIGNIFICANCE: Detection and quantification of Schistosoma DNA in urine by real-time PCR was shown to be a powerful and specific diagnostic...

  4. Clinical Value of Treponema pallidum Real-Time PCR for Diagnosis of Syphilis

    NARCIS (Netherlands)

    Heymans, R.; van der Helm, J. J.; de Vries, H. J. C.; Fennema, H. S. A.; Coutinho, R. A.; Bruisten, S. M.

    2010-01-01

    The diagnosis of syphilis can be complicated when it is based on diverse clinical manifestations, dark-field microscopy, and serology. In the present study, therefore, we examined the additional clinical value of a Treponema pallidum real-time TaqMan PCR for the detection of primary and secondary

  5. Molecular analysis of single oocyst of Eimeria by whole genome amplification (WGA) based nested PCR.

    Science.gov (United States)

    Wang, Yunzhou; Tao, Geru; Cui, Yujuan; Lv, Qiyao; Xie, Li; Li, Yuan; Suo, Xun; Qin, Yinghe; Xiao, Lihua; Liu, Xianyong

    2014-09-01

    PCR-based molecular tools are widely used for the identification and characterization of protozoa. Here we report the molecular analysis of Eimeria species using combined methods of whole genome amplification (WGA) and nested PCR. Single oocyst of Eimeria stiedai or Eimeriamedia was directly used for random amplification of the genomic DNA with either primer extension preamplification (PEP) or multiple displacement amplification (MDA), and then the WGA product was used as template in nested PCR with species-specific primers for ITS-1, 18S rDNA and 23S rDNA of E. stiedai and E. media. WGA-based PCR was successful for the amplification of these genes from single oocyst. For the species identification of single oocyst isolated from mixed E. stiedai or E. media, the results from WGA-based PCR were exactly in accordance with those from morphological identification, suggesting the availability of this method in molecular analysis of eimerian parasites at the single oocyst level. WGA-based PCR method can also be applied for the identification and genetic characterization of other protists. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Comparative Evaluation Of Conventional Rt-pcr And Real-time Rt-pcr (rrt-pcr) For Detection Of Avian Metapneumovirus Subtype A [comparação Entre As Técnicas De Rt-pcr Convencional E Rt-pcr Em Tempo Real Para A Detecção Do Metapneumovírus Aviários Subtipo A

    OpenAIRE

    Ferreira H.L.; Spilki F.R.; dos Santos M.M.A.B.; de Almeida R.S.; Arns C.W.

    2009-01-01

    Avian metapneumovirus (AMPV) belongs to Metapneumovirus genus of Paramyxoviridae family. Virus isolation, serology, and detection of genomic RNA are used as diagnostic methods for AMPV. The aim of the present study was to compare the detection of six subgroup A AMPV isolates (AMPV/A) viral RNA by using different conventional and real time RT-PCR methods. Two new RT-PCR tests and two real time RT-PCR tests, both detecting fusion (F) gene and nucleocapsid (N) gene were compared with an establis...

  7. The effect of various disinfectants on detection of avian influenza virus by real time RT-PCR.

    Science.gov (United States)

    Suarez, D L; Spackman, E; Senne, D A; Bulaga, L; Welsch, A C; Froberg, K

    2003-01-01

    An avian influenza (AI) real time reverse transcriptase-polymerase chain reaction (RRT-PCR) test was previously shown to be a rapid and sensitive method to identify AI virus-infected birds in live-bird markets (LBMs). The test can also be used to identify avian influenza virus (AIV) from environmental samples. Consequently, the use of RRT-PCR was being considered as a component of the influenza eradication program in the LBMs to assure that each market was properly cleaned and disinfected before allowing the markets to be restocked. However, the RRT-PCR test cannot differentiate between live and inactivated virus, particularly in environmental samples where the RRT-PCR test potentially could amplify virus that had been inactivated by commonly used disinfectants, resulting in a false positive test result. To determine whether this is a valid concern, a study was conducted in three New Jersey LBMs that were previously shown to be positive for the H7N2 AIV. Environmental samples were collected from all three markets following thorough cleaning and disinfection with a phenolic disinfectant. Influenza virus RNA was detected in at least one environmental sample from two of the three markets when tested by RRT-PCR; however, all samples were negative by virus isolation using the standard egg inoculation procedure. As a result of these findings, laboratory experiments were designed to evaluate several commonly used disinfectants for their ability to inactivate influenza as well as disrupt the RNA so that it could not be detected by the RRT-PCR test. Five disinfectants were tested: phenolic disinfectants (Tek-trol and one-stroke environ), a quaternary ammonia compound (Lysol no-rinse sanitizer), a peroxygen compound (Virkon-S), and sodium hypochlorite (household bleach). All five disinfectants were effective at inactivating AIV at the recommended concentrations, but AIV RNA in samples inactivated with phenolic and quaternary ammonia compounds could still be detected by RRT-PCR

  8. Detection of Yersinia Enterocolitica Species in Pig Tonsils and Raw Pork Meat by the Real-Time Pcr and Culture Methods.

    Science.gov (United States)

    Stachelska, M A

    2017-09-26

    The aim of the present study was to establish a rapid and accurate real-time PCR method to detect pathogenic Yersinia enterocolitica in pork. Yersinia enterocolitica is considered to be a crucial zoonosis, which can provoke diseases both in humans and animals. The classical culture methods designated to detect Y. enterocolitica species in food matrices are often very time-consuming. The chromosomal locus _tag CH49_3099 gene, that appears in pathogenic Y. enterocolitica strains, was applied as DNA target for the 5' nuclease PCR protocol. The probe was labelled at the 5' end with the fluorescent reporter dye (FAM) and at the 3' end with the quencher dye (TAMRA). The real-time PCR cycling parameters included 41 cycles. A Ct value which reached a value higher than 40 constituted a negative result. The developed for the needs of this study qualitative real-time PCR method appeared to give very specific and reliable results. The detection rate of locus _tag CH49_3099 - positive Y. enterocolitica in 150 pig tonsils was 85 % and 32 % with PCR and culture methods, respectively. Both the Real-time PCR results and culture method results were obtained from material that was enriched during overnight incubation. The subject of the study were also raw pork meat samples. Among 80 samples examined, 7 ones were positive when real-time PCR was applied, and 6 ones were positive when classical culture method was applied. The application of molecular techniques based on the analysis of DNA sequences such as the Real-time PCR enables to detect this pathogenic bacteria very rapidly and with higher specificity, sensitivity and reliability in comparison to classical culture methods.

  9. Molecular detection and species-specific identification of medically important Aspergillus species by real-time PCR in experimental invasive pulmonary aspergillosis.

    Science.gov (United States)

    Walsh, Thomas J; Wissel, Mark C; Grantham, Kevin J; Petraitiene, Ruta; Petraitis, Vidmantas; Kasai, Miki; Francesconi, Andrea; Cotton, Margaret P; Hughes, Johanna E; Greene, Lora; Bacher, John D; Manna, Pradip; Salomoni, Martin; Kleiboeker, Steven B; Reddy, Sushruth K

    2011-12-01

    Diagnosis of invasive pulmonary aspergillosis (IPA) remains a major challenge to clinical microbiology laboratories. We developed rapid and sensitive quantitative PCR (qPCR) assays for genus- and species-specific identification of Aspergillus infections by use of TaqMan technology. In order to validate these assays and understand their potential diagnostic utility, we then performed a blinded study of bronchoalveolar lavage (BAL) fluid specimens from well-characterized models of IPA with the four medically important species. A set of real-time qPCR primers and probes was developed by utilizing unique ITS1 regions for genus- and species-specific detection of the four most common medically important Aspergillus species (Aspergillus fumigatus, A. flavus, A. niger, and A. terreus). Pan-Aspergillus and species-specific qPCRs with BAL fluid were more sensitive than culture for detection of IPA caused by A. fumigatus in untreated (P < 0.0007) and treated (P ≤ 0.008) animals, respectively. For infections caused by A. terreus and A. niger, culture and PCR amplification from BAL fluid yielded similar sensitivities for untreated and treated animals. Pan-Aspergillus PCR was more sensitive than culture for detection of A. flavus in treated animals (P = 0.002). BAL fluid pan-Aspergillus and species-specific PCRs were comparable in sensitivity to BAL fluid galactomannan (GM) assay. The copy numbers from the qPCR assays correlated with quantitative cultures to determine the pulmonary residual fungal burdens in lung tissue. Pan-Aspergillus and species-specific qPCR assays may improve the rapid and accurate identification of IPA in immunocompromised patients.

  10. Development of a qualitative real-time PCR method to detect 19 targets for identification of genetically modified organisms.

    Science.gov (United States)

    Peng, Cheng; Wang, Pengfei; Xu, Xiaoli; Wang, Xiaofu; Wei, Wei; Chen, Xiaoyun; Xu, Junfeng

    2016-01-01

    As the amount of commercially available genetically modified organisms (GMOs) grows recent years, the diversity of target sequences for molecular detection techniques are eagerly needed. Considered as the gold standard for GMO analysis, the real-time PCR technology was optimized to produce a high-throughput GMO screening method. With this method we can detect 19 transgenic targets. The specificity of the assays was demonstrated to be 100 % by the specific amplification of DNA derived from reference material from 20 genetically modified crops and 4 non modified crops. Furthermore, most assays showed a very sensitive detection, reaching the limit of ten copies. The 19 assays are the most frequently used genetic elements present in GM crops and theoretically enable the screening of the known GMO described in Chinese markets. Easy to use, fast and cost efficient, this method approach fits the purpose of GMO testing laboratories.

  11. Pre-Clinical Testing of Real-Time PCR Assays for Diarrheal Disease Agents of Genera Escherichia and Shigella

    Science.gov (United States)

    2014-05-16

    FOR DIARRHEAL DISEASE AGENTS OF GENERA ESCHERICHIA AND SHIGELLA May 16, 2014 Reporting Period: October 1, 2010 to September 30, 2013...10-2010 - 30-09-2013 PRE-CLINICAL TESTING OF REAL-TIME PCR ASSAYS FOR DIARRHEAL DISEASE AGENTS OF GENERA ESCHERICHIA AND SHIGELLA ...Texas (MOA 2007 - 2013. Agreement No.: DODI 4000.19; AFI 25-201). Pre-clinical test results qualify ETEC and Shigella real-time PCR assays as lead

  12. Rapid quantitative detection of Lactobacillus sakei in meat and fermented sausages by real-time PCR.

    Science.gov (United States)

    Martín, Belén; Jofré, Anna; Garriga, Margarita; Pla, Maria; Aymerich, Teresa

    2006-09-01

    A quick and simple method for quantitative detection of Lactobacillus sakei in fermented sausages was successfully developed. It is based on Chelex-100-based DNA purification and real-time PCR enumeration using a TaqMan fluorescence probe. Primers and probes were designed in the L. sakei 16S-23S rRNA intergenic transcribed spacer region, and the assay was evaluated using L. sakei genomic DNA and an artificially inoculated sausage model. The detection limit of this technique was approximately 3 cells per reaction mixture using both purified DNA and the inoculated sausage model. The quantification limit was established at 30 cells per reaction mixture in both models. The assay was then applied to enumerate L. sakei in real samples, and the results were compared to the MRS agar count method followed by confirmation of the percentage of L. sakei colonies. The results obtained by real-time PCR were not statistically significantly different than those obtained by plate count on MRS agar (P > 0.05), showing a satisfactory agreement between both methods. Therefore, the real-time PCR assay developed can be considered a promising rapid alternative method for the quantification of L. sakei and evaluation of the implantation of starter strains of L. sakei in fermented sausages.

  13. Revealing the microbiota of marketed edible insects through PCR-DGGE, metagenomic sequencing and real-time PCR.

    Science.gov (United States)

    Osimani, Andrea; Milanović, Vesna; Garofalo, Cristiana; Cardinali, Federica; Roncolini, Andrea; Sabbatini, Riccardo; De Filippis, Francesca; Ercolini, Danilo; Gabucci, Claudia; Petruzzelli, Annalisa; Tonucci, Franco; Clementi, Francesca; Aquilanti, Lucia

    2018-07-02

    The present study aimed to identify the microbiota present in six species of processed edible insects produced in Thailand and marketed worldwide via the internet, namely, giant water bugs (Belostoma lutarium), black ants (Polyrhachis), winged termites (alates, Termitoidae), rhino beetles (Hyboschema contractum), mole crickets (Gryllotalpidae), and silkworm pupae (Bombyx mori). For each species, two samples of boiled, dried and salted insects were purchased. The microbial DNA was extracted from the insect samples and subjected to polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), high-throughput sequencing and qualitative real-time PCR assays. The microbiota of the analyzed samples were widely characterized by the presence of spore-forming bacteria mainly represented by the genera Bacillus and Clostridium. Moreover, the genera Anaerobacillus, Paenibacillus, Geobacillus, Pseudomonas, Stenotrophomonas, Massilia, Delftia, Lactobacillus, Staphylococcus, Streptococcus, Vagococcus, and Vibrio were also detected. Real-time PCR allowed for ascertainment of the absence of Coxiella burnetii, Shiga toxin-producing E. coli (STEC), and Pseudomonas aeruginosa in all samples. The results of this study confirm the importance of combining different molecular techniques to characterize the biodiversity of complex ecosystems such as edible insects. The presence of potential human pathogens suggests the need for a careful application of good manufacturing practices during insect processing. This study provides further data that will be useful in risk analyses of edible insects as a novel food source. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Comparison of methods of DNA extraction for real-time PCR in a model of pleural tuberculosis.

    Science.gov (United States)

    Santos, Ana; Cremades, Rosa; Rodríguez, Juan Carlos; García-Pachón, Eduardo; Ruiz, Montserrat; Royo, Gloria

    2010-01-01

    Molecular methods have been reported to have different sensitivities in the diagnosis of pleural tuberculosis and this may in part be caused by the use of different methods of DNA extraction. Our study compares nine DNA extraction systems in an experimental model of pleural tuberculosis. An inoculum of Mycobacterium tuberculosis was added to 23 pleural liquid samples with different characteristics. DNA was subsequently extracted using nine different methods (seven manual and two automatic) for analysis with real-time PCR. Only two methods were able to detect the presence of M. tuberculosis DNA in all the samples: extraction using columns (Qiagen) and automated extraction with the TNAI system (Roche). The automatic method is more expensive, but requires less time. Almost all the false negatives were because of the difficulty involved in extracting M. tuberculosis DNA, as in general, all the methods studied are capable of eliminating inhibitory substances that block the amplification reaction. The method of M. tuberculosis DNA extraction used affects the results of the diagnosis of pleural tuberculosis by molecular methods. DNA extraction systems that have been shown to be effective in pleural liquid should be used.

  15. Development and validation of sensitive real-time RT-PCR assay for broad detection of rabies virus.

    Science.gov (United States)

    Faye, Martin; Dacheux, Laurent; Weidmann, Manfred; Diop, Sylvie Audrey; Loucoubar, Cheikh; Bourhy, Hervé; Sall, Amadou Alpha; Faye, Ousmane

    2017-05-01

    Rabies virus (RABV) remains one of the most important global zoonotic pathogens. RABV causes rabies, an acute encephalomyelitis associated with a high rate of mortality in humans and animals and affecting different parts of the world, particularly in Asia and Africa. Confirmation of rabies diagnosis relies on laboratory diagnosis, in which molecular techniques such as detection of viral RNA by reverse transcription polymerase chain reaction (RT-PCR) are increasingly being used. In this study, two real-time quantitative RT-PCR assays were developed for large-spectrum detection of RABV, with a focus on African isolates. The primer and probe sets were targeted highly conserved regions of the nucleoprotein (N) and polymerase (L) genes. The results indicated the absence of non-specific amplification and cross-reaction with a range of other viruses belonging to the same taxonomic family, i.e. Rhabdoviridae, as well as negative brain tissues from various host species. Analytical sensitivity ranged between 100 to 10 standard RNA copies detected per reaction for N-gene and L-gene assays, respectively. Effective detection and high sensitivity of these assays on African isolates showed that they can be successfully applied in general research and used in diagnostic process and epizootic surveillance in Africa using a double-check strategy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Comparative validation using quantitative real-time PCR (qPCR and conventional PCR of bovine semen centrifuged in continuous density gradient

    Directory of Open Access Journals (Sweden)

    M.V. Resende

    2011-06-01

    Full Text Available The objective of the present study was to determine the sperm enrichment with X-bearing spermatozoa, after one centrifugation in a Percoll or OptiPrep continuous density gradient, using quantitative real-time polymerase chain reaction (qPCR of sperm DNA and resultant in vitro-produced bovine embryos by PCR. Frozen/thawed sperm was layered on density gradients and the tubes were centrifuged. Supernatants were gently aspirated and the sperm recovered from the bottom of the tubes. Cleavage and blastocyst rates were determined through in vitro production of embryos and PCR was performed to identify the embryos' genetic sex. A difference in blastocyst rate was found in the Percoll treatment compared to OptiPrep (P<0.05. The percentage of female embryos in the Percoll and OptiPrep groups was 62.0% and 47.1%, respectively. These results were confirmed by qPCR of spermatozoa DNA and underestimation was seen only in the Percoll group. It was possible to sexing sperm using simple approach.

  17. Multiplex, rapid and sensitive isothermal detection of nucleic-acid sequence by endonuclease restriction-mediated real-time multiple cross displacement amplification

    Directory of Open Access Journals (Sweden)

    Yi eWang

    2016-05-01

    Full Text Available We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA, which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5’ end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labelled at the 5’ end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5’ end short sequences and their complementary sequences, which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 minutes, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.

  18. Multiplex, Rapid, and Sensitive Isothermal Detection of Nucleic-Acid Sequence by Endonuclease Restriction-Mediated Real-Time Multiple Cross Displacement Amplification.

    Science.gov (United States)

    Wang, Yi; Wang, Yan; Zhang, Lu; Liu, Dongxin; Luo, Lijuan; Li, Hua; Cao, Xiaolong; Liu, Kai; Xu, Jianguo; Ye, Changyun

    2016-01-01

    We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA), which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5' end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labeled at the 5' end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5' end short sequences and their complementary sequences), which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 min, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here, we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.

  19. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    Science.gov (United States)

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  20. Real-time isothermal RNA amplification of toxic marine microalgae using preserved reagents on an integrated microfluidic platform.

    Science.gov (United States)

    Tsaloglou, Maria-Nefeli; Laouenan, Florian; Loukas, Christos-Moritz; Monsalve, Lisandro Gabriel; Thanner, Christine; Morgan, Hywel; Ruano-López, Jesus M; Mowlem, Matthew C

    2013-01-21

    Quantitation of specific RNA sequences is a useful technique in marine biology that can elucidate cell abundance, speciation and viability, especially for early detection of harmful algal blooms. We are thus developing an integrated microfluidic system for cell concentration and lysis, RNA extraction/purification and quantitative RNA detection for environmental applications. The portable system is based on a microfluidic cartridge, or "lab-card", using a low-cost injection moulded device, with a laminated lid. Here we present real-time isothermal RNA amplification using reagent master-mixes preserved on-chip in a gel at 4 °C for up to eight months. We demonstrate quantitation by reference to an internal control in a competitive assay with 500 cell equivalents of the toxic microalga Karenia brevis. Annealing of primers, amplification at 41 °C and real-time fluorescence detection of the internal control and target using sequence-specific molecular beacons were all performed on-chip.

  1. Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients.

    Science.gov (United States)

    Ramírez, Juan Carlos; Cura, Carolina Inés; da Cruz Moreira, Otacilio; Lages-Silva, Eliane; Juiz, Natalia; Velázquez, Elsa; Ramírez, Juan David; Alberti, Anahí; Pavia, Paula; Flores-Chávez, María Delmans; Muñoz-Calderón, Arturo; Pérez-Morales, Deyanira; Santalla, José; Marcos da Matta Guedes, Paulo; Peneau, Julie; Marcet, Paula; Padilla, Carlos; Cruz-Robles, David; Valencia, Edward; Crisante, Gladys Elena; Greif, Gonzalo; Zulantay, Inés; Costales, Jaime Alfredo; Alvarez-Martínez, Miriam; Martínez, Norma Edith; Villarroel, Rodrigo; Villarroel, Sandro; Sánchez, Zunilda; Bisio, Margarita; Parrado, Rudy; Maria da Cunha Galvão, Lúcia; Jácome da Câmara, Antonia Cláudia; Espinoza, Bertha; Alarcón de Noya, Belkisyole; Puerta, Concepción; Riarte, Adelina; Diosque, Patricio; Sosa-Estani, Sergio; Guhl, Felipe; Ribeiro, Isabela; Aznar, Christine; Britto, Constança; Yadón, Zaida Estela; Schijman, Alejandro G

    2015-09-01

    An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  2. Development of duplex real-time PCR for the detection of WSSV and PstDV1 in cultivated shrimp.

    Science.gov (United States)

    Leal, Carlos A G; Carvalho, Alex F; Leite, Rômulo C; Figueiredo, Henrique C P

    2014-07-05

    The White spot syndrome virus (WSSV) and Penaeus stylirostris penstyldensovirus 1 (previously named Infectious hypodermal and hematopoietic necrosis virus-IHHNV) are two of the most important viral pathogens of penaeid shrimp. Different methods have been applied for diagnosis of these viruses, including Real-time PCR (qPCR) assays. A duplex qPCR method allows the simultaneous detection of two viruses in the same sample, which is more cost-effective than assaying for each virus separately. Currently, an assay for the simultaneous detection of the WSSV and the PstDV1 in shrimp is unavailable. The aim of this study was to develop and standardize a duplex qPCR assay for the simultaneous detection of the WSSV and the PstDV1 in clinical samples of diseased L. vannamei. In addition, to evaluate the performance of two qPCR master mixes with regard to the clinical sensitivity of the qPCR assay, as well as, different methods for qPCR results evaluation. The duplex qPCR assay for detecting WSSV and PstDV1 in clinical samples was successfully standardized. No difference in the amplification of the standard curves was observed between the duplex and singleplex assays. Specificities and sensitivities similar to those of the singleplex assays were obtained using the optimized duplex qPCR. The analytical sensitivities of duplex qPCR were two copies of WSSV control plasmid and 20 copies of PstDV1 control plasmid. The standardized duplex qPCR confirmed the presence of viral DNA in 28 from 43 samples tested. There was no difference for WSSV detection using the two kits and the distinct methods for qPCR results evaluation. High clinical sensitivity for PstDV1 was obtained with TaqMan Universal Master Mix associated with relative threshold evaluation. Three cases of simultaneous infection by the WSSV and the PstDV1 were identified with duplex qPCR. The standardized duplex qPCR was shown to be a robust, highly sensitive, and feasible diagnostic tool for the simultaneous detection of the

  3. Sample pooling for real-time PCR detection and virulence determination of the footrot pathogen Dichelobacter nodosus.

    Science.gov (United States)

    Frosth, Sara; König, Ulrika; Nyman, Ann-Kristin; Aspán, Anna

    2017-09-01

    Dichelobacter nodosus is the principal cause of ovine footrot and strain virulence is an important factor in disease severity. Therefore, detection and virulence determination of D. nodosus is important for proper diagnosis of the disease. Today this is possible by real-time PCR analysis. Analysis of large numbers of samples is costly and laborious; therefore, pooling of individual samples is common in surveillance programs. However, pooling can reduce the sensitivity of the method. The aim of this study was to develop a pooling method for real-time PCR analysis that would allow sensitive detection and simultaneous virulence determination of D. nodosus. A total of 225 sheep from 17 flocks were sampled using ESwabs within the Swedish Footrot Control Program in 2014. Samples were first analysed individually and then in pools of five by real-time PCR assays targeting the 16S rRNA and aprV2/B2 genes of D. nodosus. Each pool consisted of four negative and one positive D. nodosus samples with varying amounts of the bacterium. In the individual analysis, 61 (27.1%) samples were positive in the 16S rRNA and the aprV2/B2 PCR assays and 164 (72.9%) samples were negative. All samples positive in the aprV2/B2 PCR-assay were of aprB2 variant. The pooled analysis showed that all 41 pools were also positive for D. nodosus 16S rRNA and the aprB2 variant. The diagnostic sensitivity for pooled and individual samples was therefore similar. Our method includes concentration of the bacteria before DNA-extraction. This may account for the maintenance of diagnostic sensitivity. Diagnostic sensitivity in the real-time PCR assays of the pooled samples were comparable to the sensitivity obtained for individually analysed samples. Even sub-clinical infections were able to be detected in the pooled PCR samples which is important for control of the disease. This method may therefore be implemented in footrot control programs where it can replace analysis of individual samples.

  4. Quantification of mixed chimerism by real time PCR on whole blood-impregnated FTA cards.

    Science.gov (United States)

    Pezzoli, N; Silvy, M; Woronko, A; Le Treut, T; Lévy-Mozziconacci, A; Reviron, D; Gabert, J; Picard, C

    2007-09-01

    This study has investigated quantification of chimerism in sex-mismatched transplantations by quantitative real time PCR (RQ-PCR) using FTA paper for blood sampling. First, we demonstrate that the quantification of DNA from EDTA-blood which has been deposit on FTA card is accurate and reproducible. Secondly, we show that fraction of recipient cells detected by RQ-PCR was concordant between the FTA and salting-out method, reference DNA extraction method. Furthermore, the sensitivity of detection of recipient cells is relatively similar with the two methods. Our results show that this innovative method can be used for MC assessment by RQ-PCR.

  5. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    Science.gov (United States)

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.

  6. Real-time RT-PCR analysis of mRNA decay: half-life of Beta-actin mRNA in human leukemia CCRF-CEM and Nalm-6 cell lines

    Directory of Open Access Journals (Sweden)

    Barredo Julio C

    2002-03-01

    Full Text Available Abstract Background We describe an alternative method to determine mRNA half-life (t1/2 based on the Real-Time RT-PCR procedure. This approach was evaluated by using the β-actin gene as a reference molecule for measuring of mRNA stability. Results Human leukemia Nalm-6 and CCRF-CEM cells were treated with various concentrations of Actinomycin D to block transcription and aliquots were removed periodically. Total RNA was isolated and quantified using the RiboGreen® fluorescent dye with the VersaFluor Fluorometer System. One μg of total RNA was reverse transcribed and used as template for the amplification of a region of the β-actin gene (231 bp. To generate the standard curve, serial ten-fold dilutions of the pBactin-231 vector containing the cDNA amplified fragment were employed, β-actin mRNAs were quantified by Real-Time RT-PCR using the SYBR® Green I fluorogenic dye and data analyzed using the iCycle iQ system software. Using this method, the β-actin mRNA exhibited a half-life of 6.6 h and 13.5 h in Nalm-6 and CCRF-CEM cells, respectively. The t1/2 value obtained for Nalm-6 is comparable to those estimated from Northern blot studies, using normal human leukocytes (5.5 h. Conclusions We have developed a rapid, sensitive, and reliable method based on Real-Time RT-PCR for measuring mRNA half-life. Our results confirm that β-actin mRNA half-life can be affected by the cellular growth rate.

  7. Detection of viable Salmonella in ice cream by TaqMan real-time polymerase chain reaction assay combining propidium monoazide

    Directory of Open Access Journals (Sweden)

    Yuexia Wang

    2015-09-01

    Full Text Available Real-time polymerase chain reaction (PCR allows rapid detection of Salmonella in frozen dairy products, but it might cause a false positive detection result because it might amplify DNA from dead target cells as well. In this study, Salmonella-free frozen ice cream was initially inoculated with heat-killed Salmonella Typhimurium cells and stored at −18°C. Bacterial DNA extracted from the sample was amplified using TaqMan probe-based real-time PCR targeting the invA gene. Our results indicated that DNA from the dead cells remained stable in frozen ice cream for at least 20 days, and could produce fluorescence signal for real-time PCR as well. To overcome this limitation, propidium monoazide (PMA was combined with real-time PCR. PMA treatment can effectively prevent PCR amplification from heat-killed Salmonella cells in frozen ice cream. The PMA real-time PCR assay can selectively detect viable Salmonella at as low as 103 CFU/mL. Combining 18 hours of pre-enrichment with the assay allows for the detection of viable Salmonella at 100 CFU/mL and avoiding the false-positive result of dead cells. The PMA real-time PCR assay provides an alternative specifically for detection of viable Salmonella in ice cream. However, when the PMA real-time PCR assay was evaluated in ice cream subjected to frozen storage, it obviously underestimated the contamination situation of viable Salmonella, which might lead to a false negative result. According to this result, the use of enrichment prior to PMA real-time PCR analysis remains as the more appropriate approach.

  8. Detection of viable Salmonella in ice cream by TaqMan real-time polymerase chain reaction assay combining propidium monoazide.

    Science.gov (United States)

    Wang, Yuexia; Yang, Ming; Liu, Shuchun; Chen, Wanyi; Suo, Biao

    2015-09-01

    Real-time polymerase chain reaction (PCR) allows rapid detection of Salmonella in frozen dairy products, but it might cause a false positive detection result because it might amplify DNA from dead target cells as well. In this study, Salmonella-free frozen ice cream was initially inoculated with heat-killed Salmonella Typhimurium cells and stored at -18°C. Bacterial DNA extracted from the sample was amplified using TaqMan probe-based real-time PCR targeting the invA gene. Our results indicated that DNA from the dead cells remained stable in frozen ice cream for at least 20 days, and could produce fluorescence signal for real-time PCR as well. To overcome this limitation, propidium monoazide (PMA) was combined with real-time PCR. PMA treatment can effectively prevent PCR amplification from heat-killed Salmonella cells in frozen ice cream. The PMA real-time PCR assay can selectively detect viable Salmonella at as low as 10 3  CFU/mL. Combining 18 hours of pre-enrichment with the assay allows for the detection of viable Salmonella at 10 0  CFU/mL and avoiding the false-positive result of dead cells. The PMA real-time PCR assay provides an alternative specifically for detection of viable Salmonella in ice cream. However, when the PMA real-time PCR assay was evaluated in ice cream subjected to frozen storage, it obviously underestimated the contamination situation of viable Salmonella, which might lead to a false negative result. According to this result, the use of enrichment prior to PMA real-time PCR analysis remains as the more appropriate approach. Copyright © 2015. Published by Elsevier B.V.

  9. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology.

    Science.gov (United States)

    Smith, Cindy J; Osborn, A Mark

    2009-01-01

    Quantitative PCR (Q-PCR or real-time PCR) approaches are now widely applied in microbial ecology to quantify the abundance and expression of taxonomic and functional gene markers within the environment. Q-PCR-based analyses combine 'traditional' end-point detection PCR with fluorescent detection technologies to record the accumulation of amplicons in 'real time' during each cycle of the PCR amplification. By detection of amplicons during the early exponential phase of the PCR, this enables the quantification of gene (or transcript) numbers when these are proportional to the starting template concentration. When Q-PCR is coupled with a preceding reverse transcription reaction, it can be used to quantify gene expression (RT-Q-PCR). This review firstly addresses the theoretical and practical implementation of Q-PCR and RT-Q-PCR protocols in microbial ecology, highlighting key experimental considerations. Secondly, we review the applications of (RT)-Q-PCR analyses in environmental microbiology and evaluate the contribution and advances gained from such approaches. Finally, we conclude by offering future perspectives on the application of (RT)-Q-PCR in furthering understanding in microbial ecology, in particular, when coupled with other molecular approaches and more traditional investigations of environmental systems.

  10. Detection of Legionella pneumophila by real-time PCR for the mip gene.

    Science.gov (United States)

    Wilson, Deborah A; Yen-Lieberman, Belinda; Reischl, Udo; Gordon, Steve M; Procop, Gary W

    2003-07-01

    A real-time PCR assay for the mip gene of Legionella pneumophila was tested with 27 isolates of L. pneumophila, 20 isolates of 14 other Legionella species, and 103 non-Legionella bacteria. Eight culture-positive and 40 culture-negative clinical specimens were tested. This assay was 100% sensitive and 100% specific for L. pneumophila.

  11. A kinetic-based sigmoidal model for the polymerase chain reaction and its application to high-capacity absolute quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Stewart Don

    2008-05-01

    Full Text Available Abstract Background Based upon defining a common reference point, current real-time quantitative PCR technologies compare relative differences in amplification profile position. As such, absolute quantification requires construction of target-specific standard curves that are highly resource intensive and prone to introducing quantitative errors. Sigmoidal modeling using nonlinear regression has previously demonstrated that absolute quantification can be accomplished without standard curves; however, quantitative errors caused by distortions within the plateau phase have impeded effective implementation of this alternative approach. Results Recognition that amplification rate is linearly correlated to amplicon quantity led to the derivation of two sigmoid functions that allow target quantification via linear regression analysis. In addition to circumventing quantitative errors produced by plateau distortions, this approach allows the amplification efficiency within individual amplification reactions to be determined. Absolute quantification is accomplished by first converting individual fluorescence readings into target quantity expressed in fluorescence units, followed by conversion into the number of target molecules via optical calibration. Founded upon expressing reaction fluorescence in relation to amplicon DNA mass, a seminal element of this study was to implement optical calibration using lambda gDNA as a universal quantitative standard. Not only does this eliminate the need to prepare target-specific quantitative standards, it relegates establishment of quantitative scale to a single, highly defined entity. The quantitative competency of this approach was assessed by exploiting "limiting dilution assay" for absolute quantification, which provided an independent gold standard from which to verify quantitative accuracy. This yielded substantive corroborating evidence that absolute accuracies of ± 25% can be routinely achieved. Comparison

  12. Dynamics of vaginal bacterial communities in women developing bacterial vaginosis, candidiasis, or no infection, analyzed by PCR-denaturing gradient gel electrophoresis and real-time PCR.

    Science.gov (United States)

    Vitali, Beatrice; Pugliese, Ciro; Biagi, Elena; Candela, Marco; Turroni, Silvia; Bellen, Gert; Donders, Gilbert G G; Brigidi, Patrizia

    2007-09-01

    The microbial flora of the vagina plays a major role in preventing genital infections, including bacterial vaginosis (BV) and candidiasis (CA). An integrated approach based on PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR was used to study the structure and dynamics of bacterial communities in vaginal fluids of healthy women and patients developing BV and CA. Universal eubacterial primers and Lactobacillus genus-specific primers, both targeted at 16S rRNA genes, were used in DGGE and real-time PCR analysis, respectively. The DGGE profiles revealed that the vaginal flora was dominated by Lactobacillus species under healthy conditions, whereas several potentially pathogenic bacteria were present in the flora of women with BV. Lactobacilli were the predominant bacterial population in the vagina for patients affected by CA, but changes in the composition of Lactobacillus species were observed. Real-time PCR analysis allowed the quantitative estimation of variations in lactobacilli associated with BV and CA diseases. A statistically significant decrease in the relative abundance of lactobacilli was found in vaginal fluids of patients with BV compared to the relative abundance of lactobacilli in the vaginal fluids of healthy women and patients with CA.

  13. Rapid differentiation of Staphylococcus aureus, Staphylococcus epidermidis and other coagulase-negative staphylococci and meticillin susceptibility testing directly from growth-positive blood cultures by multiplex real-time PCR.

    Science.gov (United States)

    Jukes, Leanne; Mikhail, Jane; Bome-Mannathoko, Naledi; Hadfield, Stephen J; Harris, Llinos G; El-Bouri, Khalid; Davies, Angharad P; Mack, Dietrich

    2010-12-01

    This study evaluated a multiplex real-time PCR method specific for the mecA, femA-SA and femA-SE genes for rapid identification of Staphylococcus aureus, Staphylococcus epidermidis and non-S. epidermidis coagulase-negative staphylococci (CoNS), and meticillin susceptibility testing directly in positive blood cultures that grew Gram-positive cocci in clusters. A total of 100 positive blood cultures produced: 39 S. aureus [12 meticillin-resistant S. aureus (MRSA), 31% of all the S. aureus]; 30 S. epidermidis (56.6% of the CoNS), 8 Staphylococcus capitis (15.1%), 3 Staphylococcus saprophyticus (5.7%), 4 Staphylococcus hominis (7.5%), 3 Staphylococcus haemolyticus (5.7%), 2 Staphylococcus warneri (3.8%), 1 Staphylococcus cohnii (1.9%) and 2 unidentified Staphylococcus spp. (3.8%); and 1 Micrococcus luteus in pure culture. Two blood cultures had no growth on subculture and five blood cultures grew mixed CoNS. For the 95 blood cultures with pure growth or no growth on subculture, there was very good agreement between real-time PCR and the BD Phoenix identification system for staphylococcal species categorization in S. aureus, S. epidermidis and non-S. epidermidis CoNS and meticillin-resistance determination (Cohen's unweighted kappa coefficient κ=0.882). All MRSA and meticillin-susceptible S. aureus were correctly identified by mecA amplification. PCR amplification of mecA was more sensitive for direct detection of meticillin-resistant CoNS in positive blood cultures than testing with the BD Phoenix system. There were no major errors when identifying staphylococcal isolates and their meticillin susceptibility within 2.5 h. Further studies are needed to evaluate the clinical benefit of using such a rapid test on the consumption of glycopeptide antibiotics and the alteration of empiric therapy in the situation of positive blood cultures growing staphylococci, and the respective clinical outcomes.

  14. Detection of Leishmania infantum in animals and their ectoparasites by conventional PCR and real time PCR.

    Science.gov (United States)

    de Morais, Rayana Carla Silva; Gonçalves, Suênia da Cunha; Costa, Pietra Lemos; da Silva, Kamila Gaudêncio; da Silva, Fernando José; Silva, Rômulo Pessoa E; de Brito, Maria Edileuza Felinto; Brandão-Filho, Sinval Pinto; Dantas-Torres, Filipe; de Paiva-Cavalcanti, Milena

    2013-04-01

    Visceral leishmaniosis (VL) is a parasitic disease caused by Leishmania infantum, which is primarily transmitted by phlebotomine sandflies. However, there has been much speculation on the role of other arthropods in the transmission of VL. Thus, the aim of this study was to assess the presence of L. infantum in cats, dogs and their ectoparasites in a VL-endemic area in northeastern Brazil. DNA was extracted from blood samples and ectoparasites, tested by conventional PCR (cPCR) and quantitative real time PCR (qPCR) targeting the L. infantum kinetoplast DNA. A total of 280 blood samples (from five cats and 275 dogs) and 117 ectoparasites from dogs were collected. Animals were apparently healthy and not previously tested by serological or molecular diagnostic methods. Overall, 213 (76.1 %) animals and 51 (43.6 %) ectoparasites were positive to L. infantum, with mean parasite loads of 795.2, 31.9 and 9.1 fg in dogs, cats and ectoparasites, respectively. Concerning the positivity between dogs and their ectoparasites, 32 (15.3 %) positive dogs were parasitized by positive ectoparasites. The overall concordance between the PCR protocols used was 59.2 %, with qPCR being more efficient than cPCR; 34.1 % of all positive samples were exclusively positive by qPCR. The high number of positive animals and ectoparasites also indicates that they could serve as sentinels or indicators of the circulation of L. infantum in risk areas.

  15. [Quantitative fluorogenic real-time PCR assay for respiratory syncytial virus detection].

    Science.gov (United States)

    Zhang, Qi-wei; You, Shang-you; Sun, Ji-min; Wu, Qi; Yu, Chun-hua; Zhang, Chu-yu

    2005-07-01

    To Establish a rapid and objective quantitative fluorogenic real-time PCR assay for early detection of human respiratory syncytial virus (hRSV). Two pairs of primers and one TaqMan Fluorogenic probe that are specific for the recognition of the most conservative N gene of hRSV for virus detection with LighCycler PCR in 93 nasopharyngeal secretion specimens collected from infants and young children. The assay was compared with virus isolation, routine PCR, nested PCR, and enzyme-linked immunosorbent assay (ELISA). This TaqMan assay had a sensitivity of 1 x 10(2) cDNA copies/microl with a dynamic range between 1 x 10(2) and 1 x 10(7) cDNA copies/microl, which was the same as that of nested PCR, but 10 times more sensitive than routine PCR. The specificity of the assay was evaluated by comparing hRSV with polivirus type 1, coxsackie virus type 2, influenza A, influenza B and adenovirus type 7. A PCR product of the expected size (195 bp) was produced and fluorescence signal detected for hRSV, but not for any of the other viruses. The results in LightCycler and Rotor-Gene instrument were consistent. Forty-four specimens (43.9%) were hRSV-positive with this assay and 4 (4/93,4.3%) were hRSV-positive with ELISA, showing rather low correlation between the two methods. No visible relation was found between the concentration of hRSV RNA and severity of the disease. This assay is rapid, sensitive, specific and quantitative, and has the potential of wide application for early diagnosis of hRSV infection and evaluation of the therapeutic effect.

  16. Toward metrological traceability for DNA fragment ratios in GM quantification. 1. Effect of DNA extraction methods on the quantitative determination of Bt176 corn by real-time PCR.

    Science.gov (United States)

    Corbisier, Philippe; Broothaerts, Wim; Gioria, Sabrina; Schimmel, Heinz; Burns, Malcolm; Baoutina, Anna; Emslie, Kerry R; Furui, Satoshi; Kurosawa, Yasunori; Holden, Marcia J; Kim, Hyong-Ha; Lee, Yun-Mi; Kawaharasaki, Mamoru; Sin, Della; Wang, Jing

    2007-05-02

    An international CCQM-P60 pilot study involving eight national metrological institutes was organized to investigate if the quantification of genetically modified (GM) corn powder by real-time PCR was affected by the DNA extraction method applied. Four commonly used extraction methods were compared for the extraction of DNA from a GM Bt176 corn powder. The CTAB-based method yielded the highest DNA template quantity and quality. A difference in the 260 nm/230 nm absorbance ratio was observed among the different extraction methods. Real-time amplification of sequences specific for endogenous genes zein and hmg as well as transgenic sequences within the cryIA(b) gene and a fragment covering the junction between the transformed DNA and the plant genome were used to determine the GM percentage. The detection of the transgenic gene was affected by the quantity and quality of template used for the PCR reaction. The Bt176 percentages measured on diluted or purified templates were statistically different depending on the extraction method applied.

  17. Comparison of commercial DNA preparation kits for the detection of Brucellae in tissue using quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Straube Eberhard

    2010-04-01

    Full Text Available Abstract Background The detection of Brucellae in tissue specimens using PCR assays is difficult because the amount of bacteria is usually low. Therefore, optimised DNA extraction methods are critical. The aim of this study was to assess the performance of commercial kits for the extraction of Brucella DNA. Methods Five kits were evaluated using clinical specimens: QIAamp™ DNA Mini Kit (QIAGEN, peqGold™ Tissue DNA Mini Kit (PeqLab, UltraClean™ Tissue and Cells DNA Isolation Kit (MoBio, DNA Isolation Kit for Cells and Tissues (Roche, and NucleoSpin™ Tissue (Macherey-Nagel. DNA yield was determined using a quantitative real-time PCR assay targeting IS711 that included an internal amplification control. Results Kits of QIAGEN and Roche provided the highest amount of DNA, Macherey-Nagel and Peqlab products were intermediate whereas MoBio yielded the lowest amount of DNA. Differences were significant (p Conclusions We observed differences in DNA yield as high as two orders of magnitude for some samples between the best and the worst DNA extraction kits and inhibition was observed occasionally. This indicates that DNA purification may be more relevant than expected when the amount of DNA in tissue is very low.

  18. Construction of a microfluidic chip, using dried-down reagents, for LATE-PCR amplification and detection of single-stranded DNA.

    Science.gov (United States)

    Jia, Yanwei; Mak, Pui-In; Massey, Conner; Martins, Rui P; Wangh, Lawrence J

    2013-12-07

    LATE-PCR is an advanced form of non-symmetric PCR that efficiently generates single-stranded DNA which can readily be characterized at the end of amplification by hybridization to low-temperature fluorescent probes. We demonstrate here for the first time that monoplex and duplex LATE-PCR amplification and probe target hybridization can be carried out in double layered PDMS microfluidics chips containing dried reagents. Addition of a set of reagents during dry down overcomes the common problem of single-stranded oligonucleotide binding to PDMS. These proof-of-principle results open the way to construction of inexpensive point-of-care devices that take full advantage of the analytical power of assays built using LATE-PCR and low-temperature probes.

  19. Critical points of DNA quantification by real-time PCR – effects of DNA extraction method and sample matrix on quantification of genetically modified organisms

    Directory of Open Access Journals (Sweden)

    Žel Jana

    2006-08-01

    Full Text Available Abstract Background Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Results Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was

  20. Critical points of DNA quantification by real-time PCR – effects of DNA extraction method and sample matrix on quantification of genetically modified organisms

    Science.gov (United States)

    Cankar, Katarina; Štebih, Dejan; Dreo, Tanja; Žel, Jana; Gruden, Kristina

    2006-01-01

    Background Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs) quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Results Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was chosen as the primary

  1. Performance of a real-time PCR assay in routine bovine mastitis diagnostics compared with in-depth conventional culture.

    Science.gov (United States)

    Hiitiö, Heidi; Riva, Rauna; Autio, Tiina; Pohjanvirta, Tarja; Holopainen, Jani; Pyörälä, Satu; Pelkonen, Sinikka

    2015-05-01

    Reliable identification of the aetiological agent is crucial in mastitis diagnostics. Real-time PCR is a fast, automated tool for detecting the most common udder pathogens directly from milk. In this study aseptically taken quarter milk samples were analysed with a real-time PCR assay (Thermo Scientific PathoProof Mastitis Complete-12 Kit, Thermo Fisher Scientific Ltd.) and by semi-quantitative, in-depth bacteriological culture (BC). The aim of the study was to evaluate the diagnostic performance of the real-time PCR assay in routine use. A total of 294 quarter milk samples from routine mastitis cases were cultured in the national reference laboratory of Finland and examined with real-time PCR. With BC, 251 out of 294 (85.7%) of the milk samples had at least one colony on the plate and 38 samples were considered contaminated. In the PCR mastitis assay, DNA of target species was amplified in 244 samples out of 294 (83.0%). The most common bacterial species detected in the samples, irrespective of the diagnostic method, was the coagulase negative staphylococci (CNS) group (later referred as Staphylococcus spp.) followed by Staphylococcus aureus. Sensitivity (Se) and specificity (Sp) for the PCR assay to provide a positive Staph. aureus result was 97.0 and 95.8% compared with BC. For Staphylococcus spp., the corresponding figures were 86.7 and 75.4%. Our results imply that PCR performed well as a diagnostic tool to detect Staph. aureus but may be too nonspecific for Staphylococcus spp. in routine use with the current cut-off Ct value (37.0). Using PCR as the only microbiological method for mastitis diagnostics, clinical relevance of the results should be carefully considered before further decisions, for instance antimicrobial treatment, especially when minor pathogens with low amount of DNA have been detected. Introducing the concept of contaminated samples should also be considered.

  2. Real-time PCR assay using fine-needle aspirates and tissue biopsy specimens for rapid diagnosis of mycobacterial lymphadenitis in children

    NARCIS (Netherlands)

    Bruijnesteijn van Coppenraet, E. S.; Lindeboom, J. A.; Prins, J. M.; Peeters, M. F.; Claas, E. C. J.; Kuijper, E. J.

    2004-01-01

    A real-time PCR assay was developed to diagnose and identify the causative agents of suspected mycobacterial lymphadenitis. Primers and probes for the real-time PCR were designed on the basis of the internal transcribed spacer sequence, enabling the recognition of the genus Mycobacterium and the

  3. Application of droplet digital PCR for quantitative detection of Spiroplasma citri in comparison with real time PCR.

    Directory of Open Access Journals (Sweden)

    Yogita Maheshwari

    Full Text Available Droplet digital polymerase chain reaction (ddPCR is a method for performing digital PCR that is based on water-oil emulsion droplet technology. It is a unique approach to measure the absolute copy number of nucleic acid targets without the need of external standards. This study evaluated the applicability of ddPCR as a quantitative detection tool for the Spiroplasma citri, causal agent of citrus stubborn disease (CSD in citrus. Two sets of primers, SP1, based on the spiral in housekeeping gene, and a multicopy prophage gene, SpV1 ORF1, were used to evaluate ddPCR in comparison with real time (quantitative PCR (qPCR for S. citri detection in citrus tissues. Standard curve analyses on tenfold dilution series showed that both ddPCR and qPCR exhibited good linearity and efficiency. However, ddPCR had a tenfold greater sensitivity than qPCR and accurately quantified up to one copy of spiralin gene. Receiver operating characteristic analysis indicated that the ddPCR methodology was more robust for diagnosis of CSD and the area under the curve was significantly broader compared to qPCR. Field samples were used to validate ddPCR efficacy and demonstrated that it was equal or better than qPCR to detect S. citri infection in fruit columella due to a higher pathogen titer. The ddPCR assay detected both the S. citri spiralin and the SpV1 ORF1 targets quantitatively with high precision and accuracy compared to qPCR assay. The ddPCR was highly reproducible and repeatable for both the targets and showed higher resilience to PCR inhibitors in citrus tissue extract for the quantification of S. citri compare to qPCR.

  4. Original Article. Evaluation of Rapid Detection of Nasopharyngeal Colonization with MRSA by Real-Time PCR

    Directory of Open Access Journals (Sweden)

    Kang Feng-feng

    2012-03-01

    Full Text Available Objective To investigate the clinical application of Real-Time PCR for rapid detection of methicillin-resistant Staphylococcus aureus (MRSA directly from nasopharyngeal swab specimens.

  5. Rapid and Specific Detection of Acidovorax avenae subsp. citrulli Using SYBR Green-Based Real-Time PCR Amplification of the YD-Repeat Protein Gene.

    Science.gov (United States)

    Cho, Min Seok; Park, Duck Hwan; Ahn, Tae-Young; Park, Dong Suk

    2015-09-01

    The aim of this study was to develop a SYBR Green-based real-time PCR assay for the rapid, specific, and sensitive detection of Acidovorax avenae subsp. citrulli, which causes bacterial fruit blotch (BFB), a serious disease of cucurbit plants. The molecular and serological methods currently available for the detection of this pathogen are insufficiently sensitive and specific. Thus, a novel SYBR Green-based real-time PCR assay targeting the YD-repeat protein gene of A. avenae subsp. citrulli was developed. The specificity of the primer set was evaluated using DNA purified from 6 isolates of A. avenae subsp. citrulli, 7 other Acidovorax species, and 22 of non-targeted strains, including pathogens and non-pathogens. The AC158F/R primer set amplified a single band of the expected size from genomic DNA obtained from the A. avenae subsp. citrulli strains but not from the genomic DNA of other Acidovorax species, including that of other bacterial genera. Using this assay, it was possible to detect at least one genomeequivalents of the cloned amplified target DNA using 5 × 10(0) fg/μl of purified genomic DNA per reaction or using a calibrated cell suspension, with 6.5 colony-forming units per reaction being employed. In addition, this assay is a highly sensitive and reliable method for identifying and quantifying the target pathogen in infected samples that does not require DNA extraction. Therefore, we suggest that this approach is suitable for the rapid and efficient diagnosis of A. avenae subsp. citrulli contaminations of seed lots and plants.

  6. Improved thermal cycling durability and PCR compatibility of polymer coated quantum dot

    International Nuclear Information System (INIS)

    Xun Zhe; Guan Yifu; Zhao Xiaoyun

    2013-01-01

    Quantum dots have experienced rapid development in imaging, labeling and sensing in medicine and life science. To be suitable for polymerase chain reaction (PCR) assay, we have tested QD thermal cycling durability and compatibility, which have not been addressed in previous reports. In this study, we synthesized CdSe/ZnS QDs with a surface modification with high-MW amphiphilic copolymers and observed that Mg 2+ ions in the PCR reaction could induce the QDs to precipitate and reduce their fluorescence signal significantly after thermal cycling. To overcome this problem, we used mPEG2000 to conjugate the QD surface for further protection, and found that this modification enables QDs to endure 40 thermal cycles in the presence of other components essential for PCR reactions. We have also identified that QDs have different effects on rTaq and Ex Taq polymerization systems. A high QD concentration could apparently reduce the PCR efficiency, but this inhibition was relieved significantly in the Ex PCR system as the concentration of Ex Taq polymerase was increased. Real-time PCR amplification results showed that QDs could provide a sufficiently measurable fluorescence signal without excessively inhibiting the DNA amplification. Based on this improved thermal cycling durability and compatibility with the PCR system, QDs have the potential to be developed as stable fluorescent sensors in PCR and real-time PCR amplification. (paper)

  7. Quantitative real-time PCR combined with propidium monoazide for the selective quantification of viable periodontal pathogens in an in vitro subgingival biofilm model.

    Science.gov (United States)

    Sánchez, M C; Marín, M J; Figuero, E; Llama-Palacios, A; León, R; Blanc, V; Herrera, D; Sanz, M

    2014-02-01

    Differentiation of live and dead cells is an important challenge when using molecular diagnosis for microbial identification. This is particularly relevant when bacteria have been exposed to antimicrobial agents. The objective of this study was to test a method using quantitative real-time polymerase chain reaction (qPCR) combined with propidium monoazide (PMA), developed for the selective quantification of viable P. gingivalis, A. actinomycetemcomitans, F. nucleatum and total bacteria in an in vitro biofilm model after antimicrobial treatment. PMA-qPCR method was tested in an in vitro biofilm model, using isopropyl alcohol as the antimicrobial agent. Matured biofilms were exposed for 1, 5, 10 and 30 min to isopropyl alcohol by immersion. Biofilms were disrupted and PMA added (final concentration of 100 μm). After DNA isolation, qPCR was carried out using specific primers and probes for the target bacteria. The differentiation of live and dead cells was tested by analysis of variance. When PMA was used in the presence of viable target bacterial cells, no statistically significant inhibition of qPCR amplification was detected (p > 0.05 in all cases). Conversely, after immersion in isopropyl alcohol of the biofilm, PMA resulted in a significant total reduction of qPCR amplification of about 4 log10 . P. gingivalis showed a vitality reduction in the biofilm of 3 log10 , while A. actinomycetemcomitans and F. nucleatum showed a 2 log10 reduction. These results demonstrate the efficiency of PMA for differentiating viable and dead P. gingivalis, A. actinomycetemcomitans and F. nucleatum cells, as well as total bacteria, in an in vitro biofilm model, after being exposed to an antimicrobial agent. Hence, this PMA-qPCR method may be useful for studying the effect of antimicrobial agents aimed at oral biofilms. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Two quantitative real-time PCR assays for the detection of penaeid shrimp and blue crab, crustacean shellfish allergens.

    Science.gov (United States)

    Eischeid, Anne C; Kim, Bang-hyun; Kasko, Sasha M

    2013-06-19

    Food allergen detection methods must be able to specifically detect minute quantities of an allergenic food in a complex food matrix. One technique that can be used is real-time PCR. For the work described here, real-time PCR assays were developed to detect penaeid shrimp and blue crab, crustacean shellfish allergens. The method was tested using shrimp meat and crab meat spiked into several types of foods, including canned soups, deli foods, meat, seafood, and prepared seafood products. Foods were spiked with either shrimp or crab at levels ranging from 0.1 to 10⁶ parts per million (ppm) and analyzed either raw or cooked by a variety of methods. Real-time PCR data were used to generate linear standard curves, and assays were evaluated with respect to linear range and reaction efficiency. Results indicate that both assays performed well in a variety of food types. High reaction efficiencies were achieved across a linear range of 6-8 orders of magnitude. Limits of detection were generally between 0.1 and 1 ppm. Cooking methods used to simulate thermal processing of foods had little effect on assay performance. This work demonstrates that real-time PCR can be a valuable tool in the detection of crustacean shellfish.

  9. Neurotoxoplasmosis diagnosis for HIV-1 patients by real-time PCR of cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Fábio Luís Nascimento Nogui

    Full Text Available Encephalitis caused by Toxoplasma gondii is the most common cause of central nervous system damage in patients with acquired immunodeficiency syndrome (AIDS. Toxoplasma may infect any of the brain cells, thus leading to non-specific neurotoxoplasmosis clinical manifestations including focused or non-focused signs and symptoms of central nervous system malfunction. Clinical development ranges from insidious display during weeks to experiencing acute general confusion or ultimately fatal onset. Cerebral toxoplasmosis occurs in advanced stages of immunodeficiency, and the absence of anti-toxoplasmosis antibodies by the immunofluorescence method does not allow us to rule out its diagnosis. As specific therapy begins, diagnosis confirmation is sought through clinical and radiological response. There are few accurate diagnosis methods to confirm such cases. We present a method for T. gondii DNA detection by real time PCR-Multiplex. Fifty-one patients were evaluated; 16 patients had AIDS and a presumptive diagnosis for toxoplasmosis, 23 patients were HIV-positive with further morbidities except neurotoxoplasmosis, and 12 subjects were HIV-negative control patients. Real time PCR-Multiplex was applied to these patients' cephalorachidian liquid with a specific T. gondii genome sequence from the 529bp fragment. This test is usually carried out within four hours. Test sensitivity, specificity, positive predictive value, and negative predictive value were calculated according to applicable tables. Toxoplasma gondii assay by real time Multiplex of cephalorachidian fluid was positive for 11 out of 16 patients with AIDS and a presumptive diagnosis for cerebral toxoplasmosis, while none of the 35 control patients displayed such a result. Therefore, this method allowed us to achieve 68.8% sensitivity, 100% specificity, 100% positive predictive value, and 87.8% negative predictive value. Real time PCR on CSF allowed high specificity and good sensitivity among

  10. Estimating marginal properties of quantitative real-time PCR data using nonlinear mixed models

    DEFF Research Database (Denmark)

    Gerhard, Daniel; Bremer, Melanie; Ritz, Christian

    2014-01-01

    A unified modeling framework based on a set of nonlinear mixed models is proposed for flexible modeling of gene expression in real-time PCR experiments. Focus is on estimating the marginal or population-based derived parameters: cycle thresholds and ΔΔc(t), but retaining the conditional mixed mod...

  11. Diagnosis of bacteremia in pediatric oncologic patients by in-house real-time PCR.

    Science.gov (United States)

    Quiles, Milene Gonçalves; Menezes, Liana Carballo; Bauab, Karen de Castro; Gumpl, Elke Kreuscher; Rocchetti, Talita Trevizani; Palomo, Flavia Silva; Carlesse, Fabianne; Pignatari, Antonio Carlos Campos

    2015-07-23

    Infections are the major cause of morbidity and mortality in children with cancer. Gaining a favorable prognosis for these patients depends on selecting the appropriate therapy, which in turn depends on rapid and accurate microbiological diagnosis. This study employed real-time PCR (qPCR) to identify the main pathogens causing bloodstream infection (BSI) in patients treated at the Pediatric Oncology Institute IOP-GRAACC-UNIFESP-Brazil. Antimicrobial resistance genes were also investigated using this methodology. A total of 248 samples from BACTEC® blood culture bottles and 99 whole-blood samples collected in tubes containing EDTA K2 Gel were isolated from 137 patients. All samples were screened by specific Gram probes for multiplex qPCR. Seventeen sequences were evaluated using gender-specific TaqMan probes and the resistance genes bla SHV, bla TEM, bla CTX, bla KPC, bla IMP, bla SPM, bla VIM, vanA, vanB and mecA were detected using the SYBR Green method. Positive qPCR results were obtained in 112 of the blood culture bottles (112/124), and 90 % agreement was observed between phenotypic and molecular microbial detection methods. For bacterial and fungal identification, the performance test showed: sensitivity 87 %; specificity 91 %; NPV 90 %; PPV 89 % and accuracy of 89 % when compared with the phenotypic method. The mecA gene was detected in 37 samples, extended-spectrum β-lactamases were detected in six samples and metallo-β-lactamase coding genes in four samples, with 60 % concordance between the two methods. The qPCR on whole blood detected eight samples possessing the mecA gene and one sample harboring the vanB gene. The bla KPC, bla VIM, bla IMP and bla SHV genes were not detected in this study. Real-time PCR is a useful tool in the early identification of pathogens and antimicrobial resistance genes from bloodstream infections of pediatric oncologic patients.

  12. Real-time PCR evaluation of Strongylus vulgaris in horses on farms in Denmark and Central Kentucky.

    Science.gov (United States)

    Nielsen, M K; Olsen, S N; Lyons, E T; Monrad, J; Thamsborg, S M

    2012-12-21

    Strongyle parasites are ubiquitous in grazing horses, and the large strongyle Strongylus vulgaris is considered the most pathogenic helminth parasite of horses. Recent investigations have suggested an association between occurrence of this parasite and usage of selective therapy based on regular fecal egg counts. The established diagnostic method for S. vulgaris involves larval culture and subsequent morphological identification of third stage larvae under the microscope. Recently, a real-time PCR assay was developed and validated for the detection and semi-quantification of S. vulgaris eggs in equine fecal samples. The purposes of the present study were (a) to determine the presence of S. vulgaris by real-time PCR in Danish and American horses on farms using vastly different anthelmintic treatment regimens and (b) to evaluate the association between larval culture results and the PCR. A total of 991 horses representing 53 different horse farms in Denmark and Central Kentucky were studied. Fresh fecal samples were collected from all horses, and strongyle eggs retrieved for DNA extraction and subsequent real-time PCR analysis. Individual larval cultures were performed on the Danish part of the data set (663 horses on 42 farms). On the Danish farms, the S. vulgaris PCR prevalence was found to be 9.2% on farms not basing parasite control on fecal egg counts, and 14.1% on farms using selective therapy. No horses were PCR positive in the American part of the study (328 horses on 11 farms). Kappa-values indicated a moderate agreement between PCR and larval culture results, while McNemar tests revealed no statistical difference between the paired proportions. Significant associations were found between PCR cycle of threshold (Ct) value groups and larval culture counts. Results indicate that both diagnostic methods can be useful for determining the occurrence of S. vulgaris on horse farms, but that they both are affected by potential sources of error. The PCR results

  13. Diagnosis of pulmonary infection with Toxoplasma gondii in immunocompromised HIV-positive patients by real-time PCR

    DEFF Research Database (Denmark)

    Petersen, E; Edvinsson, B; Lundgren, B

    2006-01-01

    The aim of the study presented here was to evaluate the use of PCR for improving the diagnosis of Toxoplasma gondii infection in immunocompromised hosts. Three hundred thirty-two bronchoalveolar lavage (BAL) fluid samples were analyzed by real-time PCR targeting a 529 bp element of T. gondii. In ...

  14. Diagnosing Human Papillomavirus and Human Papillomavirus Type 16 By Real-Time PCR in Patient Undergone to Colposcopy and Significance of the Diagnosis

    Directory of Open Access Journals (Sweden)

    Sibel Özdaş

    2013-06-01

    Full Text Available Objective: It is aimed to determine presence of HPV and HPV 16 by Real-Time PCR in cervical smears obtained from patients during colposcopic examination who had referred to outpatient clinic of Gynecology and Obstetrics Department due to various complaints and to examine interrelation between positive test results and clinical data. Method: Sixty patients were included in the study who were referred to outpatient clinic due to vary complaints and who had been decided to undergo to colposcopic examination. DNA was obtained from each smear sample by phenol-chloroform-isoamylalcohol method. L1 region was replicated in amplification process using MY09/MY11 primers. Products for Nested Real time PCR were studied in Ligth Cycler equipment by GP5+/GP6+ primers and Cyanine-5 labeled HPV 16 DNA specific probe. Real time PCR products were undergone melting curve analysis by LigthCycler software version 3.5.3. HPV DNA positivity and HPV 16 positivity were determined at 78-82°C and 68°C, respectively. Results: No statistically significant difference could be detected between HPV positivity, HPV 16 in and types other than HPV 16 control group and patients with positive test result as a consequence of colposcopic examination. Again, no statistically significant difference could be detected between HPV positivity and status of parity, result of PAP test, marital status and age of patient. Conclusion: No statistically significant difference could be detected between HPV positivity, HPV 16 in and types other than HPV 16 control group and patients with positive test result as a consequence of colposcopic examination. Again, no statistically difference could be detected between HPV positivity and result of PAP smear test, marital status, age of patient and smoking but statistically significant difference could be detected between types other than HPV 16 and status of parity (respectively; χ2=0.821, p=0.365; χ2=0.752, p=0.564; χ2=0.364, p=0.834; χ2= 6.835, p

  15. Development and utility of an internal threshold control (ITC real-time PCR assay for exogenous DNA detection.

    Directory of Open Access Journals (Sweden)

    Weiyi Ni

    Full Text Available Sensitive and specific tests for detecting exogenous DNA molecules are useful for infectious disease diagnosis, gene therapy clinical trial safety, and gene doping surveillance. Taqman real-time PCR using specific sequence probes provides an effective approach to accurately and quantitatively detect exogenous DNA. However, one of the major challenges in these analyses is to eliminate false positive signals caused by either non-targeted exogenous or endogenous DNA sequences, or false negative signals caused by impurities that inhibit PCR. Although multiplex Taqman PCR assays have been applied to address these problems by adding extra primer-probe sets targeted to endogenous DNA sequences, the differences between targets can lead to different detection efficiencies. To avoid these complications, a Taqman PCR-based approach that incorporates an internal threshold control (ITC has been developed. In this single reaction format, the target sequence and ITC template are co-amplified by the same primers, but are detected by different probes each with a unique fluorescent dye. Sample DNA, a prescribed number of ITC template molecules set near the limit of sensitivity, a single pair of primers, target probe and ITC probe are added to one reaction. Fluorescence emission signals are obtained simultaneously to determine the cycle thresholds (Ct for amplification of the target and ITC sequences. The comparison of the target Ct with the ITC Ct indicates if a sample is a true positive for the target (i.e. Ct less than or equal to the ITC Ct or negative (i.e. Ct greater than the ITC Ct. The utility of this approach was demonstrated in a nonhuman primate model of rAAV vector mediated gene doping in vivo and in human genomic DNA spiked with plasmid DNA.

  16. Rapid real-time PCR assay for culture and tissue identification of Geomyces destructans: the etiologic agent of bat geomycosis (white nose syndrome).

    Science.gov (United States)

    Chaturvedi, Sudha; Rudd, Robert J; Davis, April; Victor, Tanya R; Li, Xiaojiang; Appler, Kim A; Rajkumar, Sunanda S; Chaturvedi, Vishnu

    2011-10-01

    Geomyces destructans is the etiologic agent of bat geomycosis, commonly referred to as white nose syndrome (WNS). This infection has caused severe morbidity and mortality in little brown bats (Myotis lucifugus) and has also spread to other bat species with significant decline in the populations. Currently, G. destructans infection is identified by culture, ITS-PCR, and histopathology. We hypothesized that a real-time PCR assay would considerably improve detection of G. destructans in bats. The 100 bp sequence of the Alpha-L-Rhamnosidase gene was validated as a target for real-time PCR. The assay sensitivity was determined from serial dilution of DNA extracted from G. destructans conidia (5 × 10(-1)-5 × 10(7)), and the specificity was tested using DNA from 30 closely and distantly related fungi and 5 common bacterial pathogens. The real-time PCR assay was highly sensitive with detection limit of two G. destructans conidia per reaction at 40 PCR cycles. The assay was also highly specific as none of the other fungal or bacterial DNA cross-reacted in the real-time PCR assay. One hundred and forty-seven bat tissue samples, suspected of infection with G. destructans, were used to compare the real-time PCR assay to other methods employed for the detection of G. destructans. Real-time PCR was highly sensitive with 80 of 147 (55%) samples testing positive for G. destructans DNA. In comparison, histopathology examination revealed 64/147 (44%) positive samples. The internal transcribed spacer (ITS)-PCR yielded positive amplicon for G. destructans from 37 tissue samples (25%). The least sensitive assay was the fungal culture with only 17 tissue samples (12%) yielding G. destructans in culture. The data suggested that the real-time PCR assay is highly promising for rapid, sensitive, and specific identification of G. destructans. Further trials and inter-laboratory comparisons of this novel assay are recommended to improve the diagnosis of bat geomycosis.

  17. Decay Of Bacterial Pathogens, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure-Amended Soils

    Science.gov (United States)

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green...

  18. Decay Of Bacterial Pathogen, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure Amended Soils

    Science.gov (United States)

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria, and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manre-amended agricultural soils. Known concentrations of transformed green fluore...

  19. Quantification of Campylobacter spp. in chicken rinse samples by using flotation prior to real-time PCR.

    Science.gov (United States)

    Wolffs, Petra; Norling, Börje; Hoorfar, Jeffrey; Griffiths, Mansel; Rådström, Peter

    2005-10-01

    Real-time PCR is fast, sensitive, specific, and can deliver quantitative data; however, two disadvantages are that this technology is sensitive to inhibition by food and that it does not distinguish between DNA originating from viable, viable nonculturable (VNC), and dead cells. For this reason, real-time PCR has been combined with a novel discontinuous buoyant density gradient method, called flotation, in order to allow detection of only viable and VNC cells of thermotolerant campylobacters in chicken rinse samples. Studying the buoyant densities of different Campylobacter spp. showed that densities changed at different time points during growth; however, all varied between 1.065 and 1.109 g/ml. These data were then used to develop a flotation assay. Results showed that after flotation and real-time PCR, cell concentrations as low as 8.6 x 10(2) CFU/ml could be detected without culture enrichment and amounts as low as 2.6 x 10(3) CFU/ml could be quantified. Furthermore, subjecting viable cells and dead cells to flotation showed that viable cells were recovered after flotation treatment but that dead cells and/or their DNA was not detected. Also, when samples containing VNC cells mixed with dead cells were treated with flotation after storage at 4 or 20 degrees C for 21 days, a similar percentage resembling the VNC cell fraction was detected using real-time PCR and 5-cyano-2,3-ditolyl tetrazolium chloride-4',6'-diamidino-2-phenylindole staining (20% +/- 9% and 23% +/- 4%, respectively, at 4 degrees C; 11% +/- 4% and 10% +/- 2%, respectively, at 20 degrees C). This indicated that viable and VNC Campylobacter cells could be positively selected and quantified using the flotation method.

  20. EVALUATION OF A RAPID, QUANTITATIVE REAL-TIME PCR METHOD FOR ENUMERATION OF PATHOGENIC CANDIDA CELLS IN WATER

    Science.gov (United States)

    Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan?) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C....

  1. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen.

    Science.gov (United States)

    Denman, Stuart E; McSweeney, Christopher S

    2006-12-01

    Traditional methods for enumerating and identifying microbial populations within the rumen can be time consuming and cumbersome. Methods that involve culturing and microscopy can also be inconclusive, particularly when studying anaerobic rumen fungi. A real-time PCR SYBR Green assay, using PCR primers to target total rumen fungi and the cellulolytic bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes, is described, including design and validation. The DNA and crude protein contents with respect to the fungal biomass of both polycentric and monocentric fungal isolates were investigated across the fungal growth stages to aid in standard curve generation. The primer sets used were found to be target specific with no detectable cross-reactivity. Subsequently, the real-time PCR assay was employed in a study to detect these populations within cattle rumen. The anaerobic fungal target was observed to increase 3.6-fold from 0 to 12 h after feeding. The results also indicated a 5.4-fold increase in F. succinogenes target between 0 and 12 h after feeding, whereas R. flavefaciens was observed to maintain more or less consistent levels. This is the first report of a real-time PCR assay to estimate the rumen anaerobic fungal population.

  2. Development and comparison of a real-time PCR assay for detection of Dichelobacter nodosus with culturing and conventional PCR: harmonisation between three laboratories

    DEFF Research Database (Denmark)

    Frosth, Sara; Slettemeås, Jannice S.; Jørgensen, Hannah J.

    2012-01-01

    BACKGROUND: Ovine footrot is a contagious disease with worldwide occurrence in sheep. The main causative agent is the fastidious bacterium Dichelobacter nodosus. In Scandinavia, footrot was first diagnosed in Sweden in 2004 and later also in Norway and Denmark. Clinical examination of sheep feet...... was tested using 55 bacterial and two fungal strains. To evaluate the sensitivity and harmonisation of results between different laboratories, aliquots of a single DNA preparation were analysed at three Scandinavian laboratories. The developed real-time PCR assay was compared to culturing by analysing 126...... laboratories and corresponds to approximately three copies of the D. nodosus genome per reaction. The assay showed 100% inclusivity and 100% exclusivity for the strains tested. The real-time PCR assay found 54.8% more positive samples than by culturing and 8% more than conventional PCR. CONCLUSIONS...

  3. Development of a novel real-time qPCR assay for the dual detection of canine and phocine distemper virus

    DEFF Research Database (Denmark)

    Nielsen, Linette Buxbom; Hjulsager, Charlotte Kristiane; Larsen, Helene

    conventional PCR assays with real-time PCR assays to obtain a uniform assay palette. The present work describes the development of a novel real-time RT-qPCR assay for the dual detection of canine and phocine distemper virus. The assay is relevant for the future detection of outbreaks of canine distemper virus...... in e.g. in farmed mink and wildlife and phocine distemper in seals. A set of primers and dual labelled probe was designed based on an alignment of distemper sequences in GenBank from various species and in-house sequences from recent outbreaks in Danish farmed mink. The assay amplifies a segment of 151...... bp in the Phosphoprotein (P) gene of the distemper virus genome. The dynamic range and PCR efficiency (E) was experimentally determined using 10-fold dilutions of a specially designed distemper DNA-oligo in addition to extracted RNA from clinical samples. E of the real-time assay was shown to range...

  4. A method for accurate detection of genomic microdeletions using real-time quantitative PCR

    Directory of Open Access Journals (Sweden)

    Bassett Anne S

    2005-12-01

    Full Text Available Abstract Background Quantitative Polymerase Chain Reaction (qPCR is a well-established method for quantifying levels of gene expression, but has not been routinely applied to the detection of constitutional copy number alterations of human genomic DNA. Microdeletions or microduplications of the human genome are associated with a variety of genetic disorders. Although, clinical laboratories routinely use fluorescence in situ hybridization (FISH to identify such cryptic genomic alterations, there remains a significant number of individuals in which constitutional genomic imbalance is suspected, based on clinical parameters, but cannot be readily detected using current cytogenetic techniques. Results In this study, a novel application for real-time qPCR is presented that can be used to reproducibly detect chromosomal microdeletions and microduplications. This approach was applied to DNA from a series of patient samples and controls to validate genomic copy number alteration at cytoband 22q11. The study group comprised 12 patients with clinical symptoms of chromosome 22q11 deletion syndrome (22q11DS, 1 patient trisomic for 22q11 and 4 normal controls. 6 of the patients (group 1 had known hemizygous deletions, as detected by standard diagnostic FISH, whilst the remaining 6 patients (group 2 were classified as 22q11DS negative using the clinical FISH assay. Screening of the patients and controls with a set of 10 real time qPCR primers, spanning the 22q11.2-deleted region and flanking sequence, confirmed the FISH assay results for all patients with 100% concordance. Moreover, this qPCR enabled a refinement of the region of deletion at 22q11. Analysis of DNA from chromosome 22 trisomic sample demonstrated genomic duplication within 22q11. Conclusion In this paper we present a qPCR approach for the detection of chromosomal microdeletions and microduplications. The strategic use of in silico modelling for qPCR primer design to avoid regions of repetitive

  5. Identifying Haemophilus haemolyticus and Haemophilus influenzae by SYBR Green real-time PCR.

    Science.gov (United States)

    Latham, Roger; Zhang, Bowen; Tristram, Stephen

    2015-05-01

    SYBR Green real time PCR assays for protein D (hpd), fuculose kinase (fucK) and [Cu, Zn]-superoxide dismutase (sodC) were designed for use in an algorithm for the identification of Haemophilus influenzae and H. haemolyticus. When tested on 127 H. influenzae and 60 H. haemolyticus all isolates were identified correctly. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  6. Molecular detection of Plasmodium knowlesi in a Dutch traveler by real-time PCR.

    Science.gov (United States)

    Link, Lonneke; Bart, Aldert; Verhaar, Nienke; van Gool, Tom; Pronk, Marjolijn; Scharnhorst, Volkher

    2012-07-01

    Plasmodium knowlesi infection with low parasitemia presents a diagnostic challenge, as rapid diagnostic tests are often negative and identification to the species level by microscopy is difficult. P. knowlesi malaria in a traveler is described, and real-time PCR is demonstrated to support fast and reliable diagnosis and identification to the species level.

  7. Lab-on-a-chip enabled HLA diagnostic: combined sample preparation and real time PCR for HLA-B57 diagnosis

    Science.gov (United States)

    Gärtner, Claudia; Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Schattschneider, Sebastian; Frank, Rainer; Willems, Andreas

    2015-05-01

    The diverse human HLA (human leukocyte antigen) system is responsible for antigen presentation and recognition. It is essential for the immune system to maintain a stable defense line, but also is also involved in autoimmunity as well as metabolic disease. HLA-haplotype (HLA-B27), for instance, is associated with inflammatory diseases such as Bechterew's disease. The administration of the HIV drug Abacavir in combination with another HLA-haplotype (HLAB57) is associated with severe hypersensitivity reactions. Accordingly, the HLA status has to be monitored for diagnosis or prior to start of therapy. Along this line, a miniaturized microfluidic platform has been developed allowing performing the complete analytical process from "sample-in" to "answer-out" in a point-of-care environment. The main steps of the analytical cascade inside the integrated system are blood cell lysis and DNA isolation, DNA purification, real-time PCR and quantitative monitoring of the rise of a fluorescent signal appearing during the PCR based sequence amplification. All bio-analytical steps were intended to be performed inside one chip and will be actuated, controlled and monitored by a matching device. This report will show that all required processes are established and tested and all device components work well and interact with the functional modules on the chips in a harmonized fashion.

  8. Exploring Valid Reference Genes for Quantitative Real-Time PCR Analysis in Sesamia inferens (Lepidoptera: Noctuidae)

    OpenAIRE

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2015-01-01

    The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study...

  9. Development of a real-time PCR to detect Demodex canis DNA in different tissue samples.

    Science.gov (United States)

    Ravera, Ivan; Altet, Laura; Francino, Olga; Bardagí, Mar; Sánchez, Armand; Ferrer, Lluís

    2011-02-01

    The present study reports the development of a real-time polymerase chain reaction (PCR) to detect Demodex canis DNA on different tissue samples. The technique amplifies a 166 bp of D. canis chitin synthase gene (AB 080667) and it has been successfully tested on hairs extracted with their roots and on formalin-fixed paraffin embedded skin biopsies. The real-time PCR amplified on the hairs of all 14 dogs with a firm diagnosis of demodicosis and consistently failed to amplify on negative controls. Eleven of 12 skin biopsies with a morphologic diagnosis of canine demodicosis were also positive. Sampling hairs on two skin points (lateral face and interdigital skin), D. canis DNA was detected on nine of 51 healthy dogs (17.6%) a much higher percentage than previously reported with microscopic studies. Furthermore, it is foreseen that if the number of samples were increased, the percentage of positive dogs would probably also grow. Moreover, in four of the six dogs with demodicosis, the samples taken from non-lesioned skin were positive. This finding, if confirmed in further studies, suggests that demodicosis is a generalized phenomenon in canine skin, due to proliferation of local mite populations, even though macroscopic lesions only appear in certain areas. The real-time PCR technique to detect D. canis DNA described in this work is a useful tool to advance our understanding of canine demodicosis.

  10. Real-time PCR quantification of six periodontal pathogens in saliva samples from healthy young adults.

    Science.gov (United States)

    Zhou, Xiaodong; Liu, Xiaoli; Li, Jing; Aprecio, Raydolfo M; Zhang, Wu; Li, Yiming

    2015-05-01

    The use of saliva as a diagnostic fluid for the evaluation of periodontal health has gained attention recently. Most published real-time PCR assays focused on quantification of bacteria in subgingival plaque, not in saliva. The aims of this study were to develop a real-time PCR assay for quantification of six periodontal pathogens in saliva and to establish a relationship between the amount of DNA (fg) and colony-forming unit (CFU). TaqMan primers/probe sets were used for the detection of Aggregatibacter actinomycetemcomitans (Aa), Eikenella corrodens (Ec), Fusobacterium nucleatum (Fn), Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Tannerella forsythia (Tf), and total bacteria. Six periodontal pathogens and total bacteria in saliva from 24 periodontally healthy individuals were determined. The relationship between the amount of DNA (fg) and CFU was established by measuring the concentrations of extracted bacterial DNA and CFU per milliliter of bacteria on agar plates. Fn, Ec, and Pi were detected in all saliva samples, while 58.5, 45.8, and 33.3% were detected for Tf, Pg, and Aa, respectively. Numbers of Ec and Fn in saliva were highly correlated (R(2) = 0.93, P periodontal pathogens in saliva and estimate the number of live bacteria (CFU). This real-time PCR assay in combination with the relationship between DNA (fg) and CFU has the potential to be an adjunct in evaluation of periodontal health status.

  11. Development of duplex real-time RT-PCR based on Taqman technology for detecting simultaneously the genome of pan-enterovirus and enterovirus 71.

    Science.gov (United States)

    Hwang, Seoyeon; Kang, Byunghak; Hong, Jiyoung; Kim, Ahyoun; Kim, Hyejin; Kim, Kisang; Cheon, Doo-Sung

    2013-07-01

    Human enterovirus (EV) 71 is the main etiological agent of hand, foot, and mouth disease (HFMD). It is associated with neurological complications, and caused fatalities during recent outbreaks in the Asia-Pacific region. Infections caused by EV71 could lead to many complications, ranging from brainstem encephalitis to pulmonary oedema, resulting in high mortality. In this study, a duplex real-time RT-PCR assay was developed in order to simultaneously detect pan-EV and EV71. EV71-specific primers and probes were designed based on the highly conserved VP1 region of EV71. Five EV71 strains were detected as positive, and no positive fluorescence signal was observed in the duplex real-time RT-PCR for other viral RNA, which showed 100% specificity for the selected panel, and no cross-reactions were observed in this duplex real-time RT-PCR. The EV71-specific duplex real-time RT-PCR was more sensitive than conventional RT-PCR, and detected viral titers that were 10-fold lower than those measured by the latter. Of the 381 HFMD clinical specimens, 196 (51.4%) cases were pan-EV-positive, of which 170 (86.7%) were EV71-positive when tested by pan-EV and EV71-specific duplex real-time RT-PCR. EV71-specific duplex real-time RT-PCR offers a rapid and sensitive method to detect EV71 from clinical specimens, and will allow quarantine measures to be taken more effectively during outbreaks. Copyright © 2013 Wiley Periodicals, Inc.

  12. Enhancing PCR Amplification of DNA from Recalcitrant Plant Specimens Using a Trehalose-Based Additive

    Directory of Open Access Journals (Sweden)

    Tharangamala Samarakoon

    2013-01-01

    Full Text Available Premise of the study: PCR amplification of DNA extracted from plants is sometimes difficult due to the presence of inhibitory compounds. An effective method to overcome the inhibitory effect of compounds that contaminate DNA from difficult plant specimens is needed. Methods and Results: The effectiveness of a PCR additive reagent containing trehalose, bovine serum albumin (BSA, and polysorbate-20 (Tween-20 (TBT-PAR was tested. PCR of DNA extracted from fresh, silica-dried, and herbarium leaf material of species of Achariaceae, Asteraceae, Lacistemataceae, and Samydaceae that failed using standard techniques were successful with the addition of TBT-PAR. Conclusions: The addition of TBT-PAR during routine PCR is an effective method to improve amplification of DNA extracted from herbarium specimens or plants that are known to contain PCR inhibitors.

  13. Quantification of Fusarium graminearum and Fusarium culmorum by real-time PCR system and zearalenone assessment in maize

    International Nuclear Information System (INIS)

    Atoui, A.; El Khoury, A.; Kallassy, M.; Lebrihi, A.

    2012-01-01

    Zearalenone (ZEA) is a mycotoxin produced by some species of Fusarium, especially by Fusarium grami- nearum and F. culmorum. ZEA induces hyperoestrogenic responses in mammals and can result in reproductive disorders in farm animals. In the present study, a real-time PCR (qPCR) assay has been successfully developed for the detection and quantification of Fusarium graminearum based on primers targeting the gene PKS13 involved in ZEA biosynthesis. A standard curve was developed by plotting the logarithm of known concentrations of F. graminearum DNA against the cycle threshold (Ct) value. The developed real time PCR system was also used to analyze the occurrence of zearalenone producing F. graminearum strains on maize. In this context, DNA extractions were performed from thirty-two maize samples, and subjected to real time PCR. Maize samples also were analyzed for zearalenone content by HPLC. F. graminearum DNA content (pg DNA/ mg of maize) was then plotted against ZEA content (ppb) in maize samples. The regression curve showed a positive and good correlation (R2 = 0.760) allowing for the estimation of the potential risk from ZEA contamination. Consequently, this work offers a quick alternative to conventional methods of ZEA quantification and mycological detection and quantification of F. graminearum in maize. (author)

  14. Multiplex Real-Time qPCR Assay for Simultaneous and Sensitive Detection of Phytoplasmas in Sesame Plants and Insect Vectors.

    Science.gov (United States)

    Ikten, Cengiz; Ustun, Rustem; Catal, Mursel; Yol, Engin; Uzun, Bulent

    2016-01-01

    Phyllody, a destructive and economically important disease worldwide caused by phytoplasma infections, is characterized by the abnormal development of floral structures into stunted leafy parts and contributes to serious losses in crop plants, including sesame (Sesamum indicum L.). Accurate identification, differentiation, and quantification of phyllody-causing phytoplasmas are essential for effective management of this plant disease and for selection of resistant sesame varieties. In this study, a diagnostic multiplex qPCR assay was developed using TaqMan® chemistry based on detection of the 16S ribosomal RNA gene of phytoplasmas and the 18S ribosomal gene of sesame. Phytoplasma and sesame specific primers and probes labeled with different fluorescent dyes were used for simultaneous amplification of 16SrII and 16SrIX phytoplasmas in a single tube. The multiplex real-time qPCR assay allowed accurate detection, differentiation, and quantification of 16SrII and 16SrIX groups in 109 sesame plant and 92 insect vector samples tested. The assay was found to have a detection sensitivity of 1.8 x 102 and 1.6 x 102 DNA copies for absolute quantification of 16SrII and 16SrIX group phytoplasmas, respectively. Relative quantification was effective and reliable for determination of phyllody phytoplasma DNA amounts normalized to sesame DNA in infected plant tissues. The development of this qPCR assay provides a method for the rapid measurement of infection loads to identify resistance levels of sesame genotypes against phyllody phytoplasma disease.

  15. Evaluation of the AGCU Expressmarker 16 and 22 PCR Amplification Kits Using Biological Samples Applied to FTA Micro Cards in Reduced Volume Direct PCR Amplification Reactions

    Directory of Open Access Journals (Sweden)

    Samantha J Ogden

    2015-01-01

    Full Text Available This study evaluated the performance of the  Wuxi AGCU ScienTech Incorporation (HuiShan, Wuxi, China AGCU Expressmarker 16 (EX 16 and 22 (EX22 short tandem repeat (STR amplification kits in reduced reaction volumes using direct polymerase chain reaction (PCR amplification workflows. The commercially available PowerPlex® 21 (PP21 System (Promega, Wisconsin, USA, which follows similar direct workflows, was used as a reference. Anticoagulate blood applied to chemically impregnated  FTA TM Micro Cards (GE Healthcare UK Limited, Amersham Place, Little Chalfont, Buckinghamshire, HP7 9NA, UK was used to represent a complex biological sample. Allelic concordance, first-pass success rate, average peak heights, heterozygous peak height ratios (HPHRs, and intracolor and intercolor peak height balance were determined. In reduced volume PCR reactions, the performances of both the EX16 and EX22 STR amplification kits were comparable to that of the PP21 System. The level of performance was maintained at PCR reaction volumes, which are 40% of that recommended. The EX22 and PP21 System kits possess comparable overlapping genome coverage. This study evaluated the performance of the AGCU EX16 and EX22 STR amplification kits in reduced PCR reaction volumes using direct workflows in combination with whole blood applied to FTA TM Micro Cards. Allelic concordance, first-pass success rate, average peak heights, HPHRs, and intracolor and intercolor peak height balance were determined. A concordance analysis was completed that compared the performance of the EX16 and EX22 kits using human blood applied to FTA Micro Cards in combination with full, half, and reduced PCR reaction volumes. The PP21 System (Promega was used as a reference kit. Where appropriate, the distributions of data were assessed using the Shapiro-Wilk test. For normally-distributed data, statistics were calculated using analysis of variance (ANOVA and for nonparametric data the Wilcoxon

  16. Soft fruit traceability in food matrices using real-time PCR.

    Science.gov (United States)

    Palmieri, Luisa; Bozza, Elisa; Giongo, Lara

    2009-02-01

    Food product authentication provides a means of monitoring and identifying products for consumer protection and regulatory compliance. There is a scarcity of analytical methods for confirming the identity of fruit pulp in products containing Soft Fruit. In the present work we have developed a very sensible qualitative and quantitative method to determine the presence of berry DNAs in different food matrices. To our knowledge, this is the first study that shows the applicability, to Soft Fruit traceability, of melting curve analysis and multiplexed fluorescent probes, in a Real-Time PCR platform. This methodology aims to protect the consumer from label misrepresentation.

  17. Development and application of two independent real-time PCR assays to detect clinically relevant Mucorales species.

    Science.gov (United States)

    Springer, Jan; Goldenberger, Daniel; Schmidt, Friderike; Weisser, Maja; Wehrle-Wieland, Elisabeth; Einsele, Hermann; Frei, Reno; Löffler, Jürgen

    2016-03-01

    PCR-based detection of Mucorales species could improve diagnosis of suspected invasive fungal infection, leading to a better patient outcome. This study describes two independent probe-based real-time PCR tests for detection of clinically relevant Mucorales, targeting specific fragments of the 18S and the 28S rRNA genes. Both assays have a short turnaround time, allow fast, specific and very sensitive detection of clinically relevant Mucorales and have the potential to be used as quantitative tests. They were validated on various clinical samples (fresh and formalin-fixed paraffin-embedded specimens, mainly biopsies, n = 17). The assays should be used as add-on tools to complement standard techniques; a combined approach of both real-time PCR assays has 100 % sensitivity. Genus identification by subsequent sequencing is possible for amplicons of the 18S PCR assay. In conclusion, combination of the two independent Mucorales assays described in this study, 18S and 28S, detected all clinical samples associated with proven Mucorales infection (n = 10). Reliable and specific identification of Mucorales is a prerequisite for successful antifungal therapy as these fungi show intrinsic resistance to voriconazole and caspofungin.

  18. Simultaneous detection of five different DNA targets by real-time Taqman PCR using the Roche LightCycler480: Application in viral molecular diagnostics

    NARCIS (Netherlands)

    Molenkamp, Richard; van der Ham, Alwin; Schinkel, Janke; Beld, Marcel

    2007-01-01

    One of the most interesting aspects of real-time PCR based on the detection of fluorophoric labeled oligonucleotides is the possibility of being able to detect conveniently multiple targets in the same PCR reaction. Recently, Roche Diagnostics launched a real-time PCR platform, the LightCycler480

  19. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli.

    Science.gov (United States)

    Hasanpour, Mojtaba; Najafi, Akram

    2017-06-01

    Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (T m ) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Correlation Coefficients Between Different Methods of Expressing Bacterial Quantification Using Real Time PCR

    Directory of Open Access Journals (Sweden)

    Bahman Navidshad

    2012-02-01

    Full Text Available The applications of conventional culture-dependent assays to quantify bacteria populations are limited by their dependence on the inconsistent success of the different culture-steps involved. In addition, some bacteria can be pathogenic or a source of endotoxins and pose a health risk to the researchers. Bacterial quantification based on the real-time PCR method can overcome the above-mentioned problems. However, the quantification of bacteria using this approach is commonly expressed as absolute quantities even though the composition of samples (like those of digesta can vary widely; thus, the final results may be affected if the samples are not properly homogenized, especially when multiple samples are to be pooled together before DNA extraction. The objective of this study was to determine the correlation coefficients between four different methods of expressing the output data of real-time PCR-based bacterial quantification. The four methods were: (i the common absolute method expressed as the cell number of specific bacteria per gram of digesta; (ii the Livak and Schmittgen, ΔΔCt method; (iii the Pfaffl equation; and (iv a simple relative method based on the ratio of cell number of specific bacteria to the total bacterial cells. Because of the effect on total bacteria population in the results obtained using ΔCt-based methods (ΔΔCt and Pfaffl, these methods lack the acceptable consistency to be used as valid and reliable methods in real-time PCR-based bacterial quantification studies. On the other hand, because of the variable compositions of digesta samples, a simple ratio of cell number of specific bacteria to the corresponding total bacterial cells of the same sample can be a more accurate method to quantify the population.

  1. Malaria diagnosis from pooled blood samples: comparative analysis of real-time PCR, nested PCR and immunoassay as a platform for the molecular and serological diagnosis of malaria on a large-scale

    Directory of Open Access Journals (Sweden)

    Giselle FMC Lima

    2011-09-01

    Full Text Available Malaria diagnoses has traditionally been made using thick blood smears, but more sensitive and faster techniques are required to process large numbers of samples in clinical and epidemiological studies and in blood donor screening. Here, we evaluated molecular and serological tools to build a screening platform for pooled samples aimed at reducing both the time and the cost of these diagnoses. Positive and negative samples were analysed in individual and pooled experiments using real-time polymerase chain reaction (PCR, nested PCR and an immunochromatographic test. For the individual tests, 46/49 samples were positive by real-time PCR, 46/49 were positive by nested PCR and 32/46 were positive by immunochromatographic test. For the assays performed using pooled samples, 13/15 samples were positive by real-time PCR and nested PCR and 11/15 were positive by immunochromatographic test. These molecular methods demonstrated sensitivity and specificity for both the individual and pooled samples. Due to the advantages of the real-time PCR, such as the fast processing and the closed system, this method should be indicated as the first choice for use in large-scale diagnosis and the nested PCR should be used for species differentiation. However, additional field isolates should be tested to confirm the results achieved using cultured parasites and the serological test should only be adopted as a complementary method for malaria diagnosis.

  2. Real-time PCR for type-specific identification of herpes simplex in clinical samples: evaluation of type-specific results in the context of CNS diseases.

    Science.gov (United States)

    Meylan, Sylvain; Robert, Daniel; Estrade, Christine; Grimbuehler, Valérie; Péter, Olivier; Meylan, Pascal R; Sahli, Roland

    2008-02-01

    HSV-1 and HSV-2 cause CNS infections of dissimilar clinico-pathological characteristics with prognostic and therapeutic implications. To validate a type-specific real-time PCR that uses MGB/LNA Taqman probes and to review the virologico-clinical data of 25 eligible patients with non-neonatal CNS infections. This real-time PCR was evaluated against conventional PCR (26 CSF and 20 quality controls), and LightCycler assay (51 mucocutaneous, 8 CSF and 32 quality controls) and culture/immunofluorescence (75 mucocutaneous) to assess typing with independent methods. Taqman real-time PCR detected 240 HSV genomes per ml CSF, a level appropriate for the management of patients, and provided unambiguous typing for the 104 positive (62 HSV-1 and 42 HSV-2) out the 160 independent clinical samples tested. HSV type diagnosed by Taqman real-time PCR predicted final diagnosis (meningitis versus encephalitis/meningoencephalitis, p<0.001) in 24/25 patients at time of presentation, in contrast to clinical evaluation. Our real-time PCR, as a sensitive and specific means for type-specific HSV diagnosis, provided rapid prognostic information for patient management.

  3. Developmental stage of strongyle eggs affects the outcome variations of real-time PCR analysis

    DEFF Research Database (Denmark)

    Andersen, Ulla Vestergaard; Haakansson, I. T.; Roust, Tina

    2013-01-01

    extent developmental stages can affect the variation of diagnostic test results. This study investigated the influence of developmental stages of strongyle eggs on the variation real-time polymerase chain reaction (PCR) results. Mixed species strongyle eggs were obtained from the faeces of a naturally...

  4. Detection of five potentially periodontal pathogenic bacteria in peri-implant disease: A comparison of PCR and real-time PCR.

    Science.gov (United States)

    Schmalz, Gerhard; Tsigaras, Sandra; Rinke, Sven; Kottmann, Tanja; Haak, Rainer; Ziebolz, Dirk

    2016-07-01

    The aim of this study was to compare the microbial analysis methods of polymerase chain reaction (PCR) and real-time PCR (RT-PCR) in terms of detection of five selected potentially periodontal pathogenic bacteria in peri-implant disease. Therefore 45 samples of healthy, mucositis and peri-implantitis (n = 15 each) were assessed according to presence of the following bacteria using PCR (DNA-strip technology) and RT-PCR (fluorescent dye SYBR green-system): Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Treponema denticola (Td), Tanerella forsythia (Tf), and Fusobacterium nucleatum (Fn). There were no significant correlations between the bacterial and disease patterns, so the benefit of using microbiological tests for the diagnosis of peri-implant diseases is questionable. Correlations between the methods were highest for Tf (Kendall's Tau: 0.65, Spearman: 0.78), Fn (0.49, 0.61) and Td (0.49, 0.59). For Aa (0.38, 0.42) and Pg (0.04, 0.04), lower correlation values were detected. Accordingly, conventional semi-quantitative PCR seems to be sufficient for analyzing potentially periodontal pathogenic bacterial species. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Detection of intestinal protozoa in paediatric patients with gastrointestinal symptoms by multiplex real-time PCR.

    Science.gov (United States)

    Maas, L; Dorigo-Zetsma, J W; de Groot, C J; Bouter, S; Plötz, F B; van Ewijk, B E

    2014-06-01

    The performance of a multiplex real-time PCR for the detection of Blastocystis, Dientamoeba fragilis, Giardia lamblia, Cryptosporidium species and Entamoeba species in faecal samples was evaluated in an observational prospective study. Paediatric patients (0-18 years) presenting with gastrointestinal symptoms and suspected of having enteroparasitic disease were included. A questionnaire on gastrointestinal symptoms and the chosen treatment was completed at the start of the study and after 6 weeks. Of 163 paediatric patients (mean age, 7.8 years), 114 (70%) had a PCR-positive faecal sample. D. fragilis was detected most frequently, in 101 patients, followed by Blastocystis in 49. In faecal samples of 47 patients, more than one protozoan was detected, mainly the combination of D. fragilis and Blastocystis. Reported gastrointestinal symptoms were abdominal pain (78%), nausea (30%), and altered bowel habits (28%). Eighty-nine of the PCR-positive patients were treated with antibiotics. A significant reduction in abdominal pain was observed both in treated and in untreated patients. This study demonstrated that multiplex real-time PCR detects a high percentage of intestinal protozoa in paediatric patients with gastrointestinal symptoms. However, interpretation and determination of the clinical relevance of a positive PCR result in this population are still difficult. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  6. High throughput detection of Coxiella burnetii by real-time PCR with internal control system and automated DNA preparation

    Directory of Open Access Journals (Sweden)

    Kramme Stefanie

    2008-05-01

    Full Text Available Abstract Background Coxiella burnetii is the causative agent of Q-fever, a widespread zoonosis. Due to its high environmental stability and infectivity it is regarded as a category B biological weapon agent. In domestic animals infection remains either asymptomatic or presents as infertility or abortion. Clinical presentation in humans can range from mild flu-like illness to acute pneumonia and hepatitis. Endocarditis represents the most common form of chronic Q-fever. In humans serology is the gold standard for diagnosis but is inadequate for early case detection. In order to serve as a diagnostic tool in an eventual biological weapon attack or in local epidemics we developed a real-time 5'nuclease based PCR assay with an internal control system. To facilitate high-throughput an automated extraction procedure was evaluated. Results To determine the minimum number of copies that are detectable at 95% chance probit analysis was used. Limit of detection in blood was 2,881 copies/ml [95%CI, 2,188–4,745 copies/ml] with a manual extraction procedure and 4,235 copies/ml [95%CI, 3,143–7,428 copies/ml] with a fully automated extraction procedure, respectively. To demonstrate clinical application a total of 72 specimens of animal origin were compared with respect to manual and automated extraction. A strong correlation between both methods was observed rendering both methods suitable. Testing of 247 follow up specimens of animal origin from a local Q-fever epidemic rendered real-time PCR more sensitive than conventional PCR. Conclusion A sensitive and thoroughly evaluated real-time PCR was established. Its high-throughput mode may show a useful approach to rapidly screen samples in local outbreaks for other organisms relevant for humans or animals. Compared to a conventional PCR assay sensitivity of real-time PCR was higher after testing samples from a local Q-fever outbreak.

  7. Rapid detection of Van genes in rectal swabs by real time PCR in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Vlademir Cantarelli

    2011-10-01

    Full Text Available INTRODUCTION: Laboratory-based surveillance is an important component in the control of vancomycin resistant enterococci (VRE. METHODS: The study aimed to evaluate real-time polymerase chain reaction (RT-PCR (genes vanA-vanB for VRE detection on 115 swabs from patients included in a surveillance program. RESULTS: Sensitivity of RT-PCR was similar to primary culture (75% and 79.5%, respectively when compared to broth enriched culture, whereas specificity was 83.1%. CONCLUSIONS: RT-PCR provides same day results, however it showed low sensitivity for VRE detection.

  8. Embryonation of Ostertagia ostertagi eggs affects the outcome of real-time quantitative PCR

    DEFF Research Database (Denmark)

    Drag, Markus; Höglund, Johan; Nejsum, Peter

    prior to detection and quantification by real-time quantitative polymerase chain reaction (qPCR). Fresh O. ostertagi eggs were isolated from cattle faeces and stored at 4°C or 25°C under aerobic or anaerobic conditions. Embryonation was monitored by microscopy and the ITS2 copies were determined by q...... the outcome of qPCR analysis for the quantitative determination of O. ostertagi eggs in cattle faeces. Cold storage at 4°C for up to 3 days or anaerobicvacuum packing at 25°C for up to 336 h will entail no undesirable effects on ITS2 copies....

  9. Embryonation of Ostertagia ostertagi eggs affects the outcome of real-time quantitative PCR

    DEFF Research Database (Denmark)

    Drag, Markus; Höglund, Johan; Nejsum, Peter

    prior to detection and quantification by real-time quantitative polymerase chain reaction (qPCR) . Fresh O. ostertagi eggs were isolated from cattle faeces and stored at 4°C or 25°C under aerobic or anaerobic conditions. Embryonation was monitored by microscopy and the ITS2 copies were determined by q...... the outcome of qPCR analysis for the quantitative determination of O. ostertagi eggs in cattle faeces. Cold storage at 4°C for up to 3 days or anaerobic vacuum packing at 25°C for up to 336 h will entail no undesirable effects on ITS2 copies....

  10. Determination of Sperm Sex Ratio in Bovine Semen Using Multiplex Real-time Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Trisadee Khamlor

    2014-10-01

    Full Text Available Gender selection is important in livestock industries; for example, female calves are required in the dairy industry. Sex-sorted semen is commonly used for the production of calves of the desired gender. However, assessment of the sex ratio of the sorted semen is tedious and expensive. In this study, a rapid, cost effective and reliable method for determining the sex ratio was developed using a multiplex real-time polymerase chain reaction (PCR assay. In this assay, the X and Y chromosome-specific markers, i.e., bovine proteolipid protein (PLP gene and sex-determining region Y (SRY were simultaneously quantified in a single tube. The multiplex real-time PCR assay was shown to have high amplification efficiencies (97% to 99% comparable to the separated-tube simplex real-time PCR assay. The results obtained from both assays were not significantly different (p>0.05. The multiplex assay was validated using reference DNA of known X ratio (10%, 50%, and 90% as templates. The measured %X in semen samples were the same within 95% confidence intervals as the expected values, i.e., >90% in X-sorted semen, <10% in Y-sorted semen and close to 50% in the unsorted semen. The multiplex real-time PCR assay as shown in this study can thus be used to assess purity of sex-sorted semen.

  11. Real-Time PCR Quantification of Chloroplast DNA Supports DNA Barcoding of Plant Species.

    Science.gov (United States)

    Kikkawa, Hitomi S; Tsuge, Kouichiro; Sugita, Ritsuko

    2016-03-01

    Species identification from extracted DNA is sometimes needed for botanical samples. DNA quantification is required for an accurate and effective examination. If a quantitative assay provides unreliable estimates, a higher quantity of DNA than the estimated amount may be used in additional analyses to avoid failure to analyze samples from which extracting DNA is difficult. Compared with conventional methods, real-time quantitative PCR (qPCR) requires a low amount of DNA and enables quantification of dilute DNA solutions accurately. The aim of this study was to develop a qPCR assay for quantification of chloroplast DNA from taxonomically diverse plant species. An absolute quantification method was developed using primers targeting the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene using SYBR Green I-based qPCR. The calibration curve was generated using the PCR amplicon as the template. DNA extracts from representatives of 13 plant families common in Japan. This demonstrates that qPCR analysis is an effective method for quantification of DNA from plant samples. The results of qPCR assist in the decision-making will determine the success or failure of DNA analysis, indicating the possibility of optimization of the procedure for downstream reactions.

  12. Using Real-time PCR for Identification of Paenibacillus larvae

    Directory of Open Access Journals (Sweden)

    Vladimíra Kňazovická

    2011-05-01

    Full Text Available The aim of the study was identification of Paenibacillus larvae that causes American foulbrood disease (AFB in colony of bees (Apis mellifera. Bacterial isolates originated from honey samples, because presence of P. larvae in honey is treated as early diagnostic of AFB. Intense proteolytic activity and no catalase activity are typical for Gram positive rod-shaped bacteria P. larvae. We diluted honey (1:2, heated at 80 °C for 10 min and inoculated on semiselective medium MYPGP agar with nalidixic acid. Plates were cultivated at 37 °C for 48 – 72 h under the aerobic conditions. Selected colonies were transferred on MYT agar and cultivated 24 h. We analysed 30 honey samples and found 27 bacterial isolates. All isolates were Gram positive and mainly rod-shaped. No catalase activity was documented for 6 from 27 isolates. Identification was finished by real-time PCR to detect the 16S rRNA gene of Paenibacillus larvae with real-time cycler Rotor-Gene 6000. As DNA template we used genomic DNA isolated with commercial kit and DNA lysate obtaining by boiled cells. We used 2 strains of P. larvae from CCM (Czech Collection of Microorganisms as positive control. The reliable method of detection P. larvae has important rule for beekeeping.

  13. Usefulness of in-house real time PCR for HBV DNA quantification in serum and oral fluid samples.

    Science.gov (United States)

    Portilho, Moyra Machado; Mendonça, Ana Carolina da Fonseca; Bezerra, Cristianne Sousa; do Espirito-Santo, Márcia Paschoal; de Paula, Vanessa Salete; Nabuco, Leticia Cancella; Villela-Nogueira, Cristiane Alves; Lewis-Ximenez, Lia Laura; Lampe, Elisabeth; Villar, Livia Melo

    2018-06-01

    For quantification of hepatitis B virus DNA (HBV DNA), commercial assays are used with serum or plasma samples, but oral fluid samples could be an alternative for HBV diagnosis due to ease of collection. This study aims to develop in-house real time PCR using synthetic curve for HBV DNA quantification for serum and oral fluid samples. Samples were collected from 103 individuals (55 HBsAg reactive and HBV DNA reactive by commercial assay and 48 without HBV markers) and submitted to two in-house real time PCR assays for HBV pre-S/S region with different standard curves: qPCR plasmidial and qPCR synthetic. A total of 27 serum samples were HBV DNA positive by qPCR plasmidial and 40 with qPCR synthetic (72% and 85% of concordance, respectively). Quantitative PCR synthetic presented efficiency of 99% and sensitivity of 2log10 copies/mL. Among oral fluid samples, five and ten were detected using qPCR plasmidial and synthetic, respectively. This study demonstrated that qPCR synthetic using serum samples could be used as alternative for HBV DNA quantification due to its sensitivity. In addition, it was possible to quantify HBV DNA in oral fluid samples suggesting the potential of this specimen for molecular diagnosis of HBV. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. MULTIPLEX SYBR® GREEN-REAL TIME PCR (qPCR ASSAY FOR THE DETECTION AND DIFFERENTIATION OF Bartonella henselae AND Bartonella clarridgeiae IN CATS

    Directory of Open Access Journals (Sweden)

    Rodrigo Staggemeier

    2014-04-01

    Full Text Available A novel SYBR® green-real time polymerase chain reaction (qPCR was developed to detect two Bartonella species, B. henselae and B. clarridgeiae, directly from blood samples. The test was used in blood samples obtained from cats living in animal shelters in Southern Brazil. Results were compared with those obtained by conventional PCR targeting Bartonella spp. Among the 47 samples analyzed, eight were positive using the conventional PCR and 12 were positive using qPCR. Importantly, the new qPCR detected the presence of both B. henselae and B. clarridgeiae in two samples. The results show that the qPCR described here may be a reliable tool for the screening and differentiation of two important Bartonella species.

  15. Application of real-time PCR (qPCR) for characterization of microbial populations and type of milk in dairy food products.

    Science.gov (United States)

    Agrimonti, Caterina; Bottari, Benedetta; Sardaro, Maria Luisa Savo; Marmiroli, Nelson

    2017-09-08

    Dairy foods represent an important sector of the food market for their nutritional qualities and their organoleptic characteristics, which are often linked to tradition and to region. These products are typically protected by labels such as PDO (Protected Designation of Origin) and PGI (Protected Geographical Indication). Real-time PCR (qPCR) is a fundamental tool in "Food Genomics;" a discipline concerned with the residual DNA in food, which, alongside traditional physical and chemical methods, is frequently used to determine product safety, quality and authenticity. Compared to conventional or "end-point" PCR, qPCR incorporates continuous monitoring of reaction progress, thereby enabling quantification of target DNA. This review describes qPCR applications to the analysis of microbiota, and to the identification of the animal species source of milk from which dairy products have been made. These are important aspects for ensuring safety and authenticity. The various applications of qPCR are discussed, as well as advantages and disadvantages in comparison with other analytical methods.

  16. Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR.

    Science.gov (United States)

    Furet, Jean-Pierre; Quénée, Pascal; Tailliez, Patrick

    2004-12-15

    Real-time quantitative PCR assays were developed for the absolute quantification of lactic acid bacteria (LAB) (Streptococcus thermophilus, Lactobacillus delbrueckii, L. casei, L. paracasei, L. rhamnosus, L. acidophilus and L. johnsonii) in fermented milk products. The results of molecular quantification and classic bacterial enumeration did not differ significantly with respect to S. thermophilus and the species of the L. casei group which were detected in the six commercial fermented products tested, thus showing that DNA extraction was efficient and that genomic DNA solutions were free of PCR inhibitors. For L. delbrueckii, the results of bacterial enumeration were generally lower by a factor 10 to 100 than those of PCR quantification, suggesting a loss of viability during storage of the dairy products at 1-8 degrees C for most of the strains in this species. Real-time quantitative assays enabled identification of the species of lactic acid bacterial strains initially present in commercial fermented milk products and their accurate quantification with a detection threshold of 10(3) cells per ml of product.

  17. Development of Candida-Specific Real-Time PCR Assays for the Detection and Identification of Eight Medically Important Candida Species.

    Science.gov (United States)

    Zhang, Jing; Hung, Guo-Chiuan; Nagamine, Kenjiro; Li, Bingjie; Tsai, Shien; Lo, Shyh-Ching

    2016-01-01

    Culture-based identification methods have been the gold standard for the diagnosis of fungal infection. Currently, molecular technologies such as real-time PCR assays with short turnaround time can provide desirable alternatives for the rapid detection of Candida microbes. However, most of the published PCR primer sets are not Candida specific and likely to amplify DNA from common environmental contaminants, such as Aspergillus microbes. In this study, we designed pan-Candida primer sets based on the ribosomal DNA-coding regions conserved within Candida but distinct from those of Aspergillus and Penicillium. We demonstrate that the final two selected pan-Candida primer sets would not amplify Aspergillus DNA and could be used to differentiate eight medically important Candida pathogens in real-time PCR assays based on their melting profiles, with a sensitivity of detection as low as 10 fg of Candida genomic DNA. Moreover, we further evaluated and selected species-specific primer sets covering Candida albicans, Candida glabrata, Candida tropicalis, and Candida dubliniensis and show that they had high sensitivity and specificity. These real-time PCR primer sets could potentially be assembled into a single PCR array for the rapid detection of Candida species in various clinical settings, such as corneal transplantation.

  18. Rapid, actionable diagnosis of urban epidemic leptospirosis using a pathogenic Leptospira lipL32-based real-time PCR assay.

    Science.gov (United States)

    Riediger, Irina N; Stoddard, Robyn A; Ribeiro, Guilherme S; Nakatani, Sueli M; Moreira, Suzana D R; Skraba, Irene; Biondo, Alexander W; Reis, Mitermayer G; Hoffmaster, Alex R; Vinetz, Joseph M; Ko, Albert I; Wunder, Elsio A

    2017-09-01

    With a conservatively estimated 1 million cases of leptospirosis worldwide and a 5-10% fatality rate, the rapid diagnosis of leptospirosis leading to effective clinical and public health decision making is of high importance, and yet remains a challenge. Based on parallel, population-based studies in two leptospirosis-endemic regions in Brazil, a real-time PCR assay which detects lipL32, a gene specifically present in pathogenic Leptospira, was assessed for the diagnostic effectiveness and accuracy. Patients identified by active hospital-based surveillance in Salvador and Curitiba during large urban leptospirosis epidemics were tested. Real-time PCR reactions were performed with DNA-extracted samples obtained from 127 confirmed and 23 unconfirmed cases suspected of leptospirosis, 122 patients with an acute febrile illness other than leptospirosis, and 60 healthy blood donors. The PCR assay had a limit of detection of 280 Leptospira genomic equivalents/mL. Sensitivity for confirmed cases was 61% for whole blood and 29% for serum samples. Sensitivity was higher (86%) for samples collected within the first 6 days after onset of illness compared to those collected after 7 days (34%). The real-time PCR assay was able to detect leptospiral DNA in blood from 56% of serological non-confirmed cases. The overall specificity of the assay was 99%. These findings indicate that real-time PCR may be a reliable tool for early diagnosis of leptospirosis, which is decisive for clinical management of severe and life-threatening cases and for public health decision making.

  19. Digital PCR for direct quantification of viruses without DNA extraction

    OpenAIRE

    Pav?i?, Jernej; ?el, Jana; Milavec, Mojca

    2015-01-01

    DNA extraction before amplification is considered an essential step for quantification of viral DNA using real-time PCR (qPCR). However, this can directly affect the final measurements due to variable DNA yields and removal of inhibitors, which leads to increased inter-laboratory variability of qPCR measurements and reduced agreement on viral loads. Digital PCR (dPCR) might be an advantageous methodology for the measurement of virus concentrations, as it does not depend on any calibration mat...

  20. Methods for microbial DNA extraction from soil for PCR amplification

    Directory of Open Access Journals (Sweden)

    Yeates C

    1998-01-01

    Full Text Available Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1. DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol precipitation. This method was compared to other DNA extraction methods with regard to DNA purity and size.

  1. Development of a panel of seven duplex real-time PCR assays for detecting 13 streptococcal superantigens.

    Science.gov (United States)

    Yang, Peng; Peng, Xiaomin; Cui, Shujuan; Shao, Junbin; Zhu, Xuping; Zhang, Daitao; Liang, Huijie; Wang, Quanyi

    2013-07-30

    Streptococcal superantigens (SAgs) are the major virulence factors of infection in humans for group A Streptococcus (GAS) bacteria. A panel consisting of seven duplex real-time PCR assays was developed to simultaneously detect 13 streptococcal SAgs and one internal control which may be important in the control of GAS-mediated diseases. Primer and probe sequences were selected based on the highly conserved region from an alignment of nucleotide sequences of the 13 streptococcal SAgs. The reaction conditions of the duplex real-time PCR were optimized and the specificity of the duplex assays was evaluated using SAg positive strains. The limit of detection of the duplex assays was determined by using 10-fold serial dilutions of the DNA of 13 streptococcal SAgs and compared to a conventional polymerase chain reaction (PCR) method for evaluating the duplex assays sensitivity. Using the duplex assays, we were able to differentiate between 13 SAgs from Streptococcus strains and other non-Streptococcus bacteria without cross-reaction. On the other hand, the limit of detection of the duplex assays was at least one or two log dilutions lower than that of the conventional PCR. The panel was highly specific (100%) and the limit of detection of these duplex groups was at least ten times lower than that obtained by using a conventional PCR method.

  2. Real-time PCR detection of Listeria monocytogenes in infant formula and lettuce following macrophage-based isolation and enrichment.

    Science.gov (United States)

    Day, J B; Basavanna, U

    2015-01-01

    To develop a rapid detection procedure for Listeria monocytogenes in infant formula and lettuce using a macrophage-based enrichment protocol and real-time PCR. A macrophage cell culture system was employed for the isolation and enrichment of L. monocytogenes from infant formula and lettuce for subsequent identification using real-time PCR. Macrophage monolayers were exposed to infant formula and lettuce contaminated with a serial dilution series of L. monocytogenes. As few as approx. 10 CFU ml(-1) or g(-1) of L. monocytogenes were detected in infant formula and lettuce after 16 h postinfection by real-time PCR. Internal positive PCR controls were utilized to eliminate the possibility of false-negative results. Co-inoculation with Listeria innocua did not reduce the L. monocytogenes detection sensitivity. Intracellular L. monocytogenes could also be isolated on Listeria selective media from infected macrophage lysates for subsequent confirmation. The detection method is highly sensitive and specific for L. monocytogenes in infant formula and lettuce and establishes a rapid identification time of 20 and 48 h for presumptive and confirmatory identification, respectively. The method is a promising alternative to many currently used q-PCR detection methods which employ traditional selective media for enrichment of contaminated food samples. Macrophage enrichment of L. monocytogenes eliminates PCR inhibitory food elements and contaminating food microflora which produce cleaner samples that increase the rapidity and sensitivity of detection. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  3. Evaluation of six nucleic acid amplification tests used for diagnosis of Neisseria gonorrhoeae in Russia compared with an international strictly validated real-time porA pseudogene polymerase chain reaction.

    Science.gov (United States)

    Shipitsyna, E; Zolotoverkhaya, E; Hjelmevoll, S O; Maximova, A; Savicheva, A; Sokolovsky, E; Skogen, V; Domeika, M; Unemo, M

    2009-11-01

    In Russia, laboratory diagnosis of gonorrhoea has been mainly based on microscopy only and, in some settings, relatively rare suboptimal culturing. In recent years, Russian developed and manufactured nucleic acid amplification tests (NAAT) have been implemented for routine diagnosis of Neisseria gonorrhoeae. However, these NAATs have never been validated to any international well-recognized diagnostic NAAT. This study aims to evaluate the performance characteristics of six Russian NAATs for N. gonorrhoeae diagnostics. In total, 496 symptomatic patients were included. Five polymerase chain reaction (PCR) assays and one real-time nucleic acid sequence based amplification (NASBA) assay, developed by three Russian companies, were evaluated on urogenital samples, i.e. cervical and first voided urine (FVU) samples from females (n = 319), urethral and FVU samples from males (n = 127), and extragenital samples, i.e. rectal and pharyngeal samples, from 50 additional female patients with suspicion of gonorrhoea. As reference method, an international strictly validated real-time porA pseudogene PCR was applied. The prevalence of N. gonorrhoeae was 2.7% and 16% among the patients providing urogenital and extragenital samples, respectively. The Russian NAATs and the reference method displayed high level of concordance (99.4-100%). The sensitivities, specificities, positive predictive values and negative predictive values of the Russian tests in different specimens were 66.7-100%, 100%, 100%, and 99.4-100%, respectively. Russian N. gonorrhoeae diagnostic NAATs comprise relatively good performance characteristics. However, larger studies are crucial and, beneficially, the Russian assays should also be evaluated to other international highly sensitive and specific, and ideally Food and Drug Administration approved, NAATs such as Aptima Combo 2 (Gen-Probe).

  4. Direct Detection and Differentiation of Pathogenic Leptospira Species Using a Multi-Gene Targeted Real Time PCR Approach

    Science.gov (United States)

    Ferreira, Ana Sofia; Costa, Pedro; Rocha, Teresa; Amaro, Ana; Vieira, Maria Luísa; Ahmed, Ahmed; Thompson, Gertrude; Hartskeerl, Rudy A.; Inácio, João

    2014-01-01

    Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal β-actin and the leptospiral lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be <10 genome equivalents (GE) in the reaction mixture. Application of the amplification reactions on genomic DNA from a variety of pathogenic and non-pathogenic Leptospira strains and other non-related bacteria revealed a 100% analytical specificity. Additionally, pathogenic leptospires were successfully detected in five out of 29 tissue samples from animals (Mus spp., Rattus spp., Dolichotis patagonum and Sus domesticus). Two samples were infected with L. borgpetersenii, two with L. interrogans and one with L. kirschneri. The possibility to detect and identify these pathogenic agents to the species level in domestic and wildlife animals reinforces the diagnostic information and will enhance our understanding of the epidemiology of leptopirosis. PMID:25398140

  5. Single Cell HLA Matching Feasibility by Whole Genomic Amplification and Nested PCR

    Institute of Scientific and Technical Information of China (English)

    Xiao-hong Li; Fang-yin Meng

    2004-01-01

    @@ PCR based single-cell DNA analysis has been widely used in forensic science, preimplantation genetic diagnosis and so on. However, the original sample cannot be efficiently retrieved following single cell PCR, consequently the amount of information gained is limited. HLA system is too sophisticated that it is very hard to complete HLA typing by single cell. A Taq polymerase-based method using random primers to amplify whole genome termed as whole genome amplification (WGA) has demonstrated to be a useful method in increasing the copies of minimum sample. We establish a technique in this study to amplify HLA-A and HLA-B loci at same time in a single cell using WGA.

  6. Simplified Real-Time Multiplex Detection of Loop-Mediated Isothermal Amplification Using Novel Mediator Displacement Probes with Universal Reporters.

    Science.gov (United States)

    Becherer, Lisa; Bakheit, Mohammed; Frischmann, Sieghard; Stinco, Silvina; Borst, Nadine; Zengerle, Roland; von Stetten, Felix

    2018-04-03

    A variety of real-time detection techniques for loop-mediated isothermal amplification (LAMP) based on the change in fluorescence intensity during DNA amplification enable simultaneous detection of multiple targets. However, these techniques depend on fluorogenic probes containing target-specific sequences. That complicates the adaption to different targets leading to time-consuming assay optimization. Here, we present the first universal real-time detection technique for multiplex LAMP. The novel approach allows simple assay design and is easy to implement for various targets. The innovation features a mediator displacement probe and a universal reporter. During amplification of target DNA the mediator is displaced from the mediator displacement probe. Then it hybridizes to the reporter generating a fluorescence signal. The novel mediator displacement (MD) detection was validated against state-of-the-art molecular beacon (MB) detection by means of a HIV-1 RT-LAMP: MD surpassed MB detection by accelerated probe design (MD: 10 min, MB: 3-4 h), shorter times to positive (MD 4.1 ± 0.1 min shorter than MB, n = 36), improved signal-to-noise fluorescence ratio (MD: 5.9 ± 0.4, MB: 2.7 ± 0.4; n = 15), and showed equally good or better analytical performance parameters. The usability of one universal mediator-reporter set in different multiplex assays was successfully demonstrated for a biplex RT-LAMP of HIV-1 and HTLV-1 and a biplex LAMP of Haemophilus ducreyi and Treponema pallidum, both showing good correlation between target concentration and time to positive. Due to its simple implementation it is suggested to extend the use of the universal mediator-reporter sets to the detection of various other diagnostic panels.

  7. Direct amplification of casework bloodstains using the Promega PowerPlex(®) 21 PCR amplification system.

    Science.gov (United States)

    Gray, Kerryn; Crowle, Damian; Scott, Pam

    2014-09-01

    A significant number of evidence items submitted to Forensic Science Service Tasmania (FSST) are blood swabs or bloodstained items. Samples from these items routinely undergo phenol:chloroform:isoamyl alcohol organic extraction and quantitative Polymerase Chain Reaction (qPCR) testing prior to PowerPlex(®) 21 amplification. This multi-step process has significant cost and timeframe implications in a fiscal climate of tightening government budgets, pressure towards improved operating efficiencies, and an increasing emphasis on rapid techniques better supporting intelligence-led policing. Direct amplification of blood and buccal cells on cloth and Whatman FTA™ card with PowerPlex(®) 21 has already been successfully implemented for reference samples, eliminating the requirement for sample pre-treatment. Scope for expanding this method to include less pristine casework blood swabs and samples from bloodstained items was explored in an endeavour to eliminate lengthy DNA extraction, purification and qPCR steps for a wider subset of samples. Blood was deposited onto a range of substrates including those historically found to inhibit STR amplification. Samples were collected with micro-punch, micro-swab, or both. The potential for further fiscal savings via reduced volume amplifications was assessed by amplifying all samples at full and reduced volume (25 and 13μL). Overall success rate data showed 80% of samples yielded a complete profile at reduced volume, compared to 78% at full volume. Particularly high success rates were observed for the blood on fabric/textile category with 100% of micro-punch samples yielding complete profiles at reduced volume and 85% at full volume. Following the success of this trial, direct amplification of suitable casework blood samples has been implemented at reduced volume. Significant benefits have been experienced, most noticeably where results from crucial items have been provided to police investigators prior to interview of

  8. An immunomagnetic separation-real-time PCR system for the detection of Alicyclobacillus acidoterrestris in fruit products.

    Science.gov (United States)

    Wang, Zhouli; Cai, Rui; Yuan, Yahong; Niu, Chen; Hu, Zhongqiu; Yue, Tianli

    2014-04-03

    Alicyclobacillus acidoterrestris is the most important spoilage species within the Alicyclobacillus genus and has become a major issue in the pasteurized fruit juice industry. The aim of this study was to develop a method combining immunomagnetic separation (IMS) with real-time PCR system (IMS-PCR) for rapid and specific detection of A. acidoterrestris in fruit products. A real-time PCR with the TaqMan system was designed to target the 16S rDNA genes with specific primer and probe set. The specificity of the assay was confirmed using 9 A. acidoterrestris strains and 21 non-A. acidoterrestris strains. The results indicated that no combination of the designed primers and probe was found in any Alicyclobacillus genus except A. acidoterrestris. The detection limit of the established IMS-PCR was less than 10CFU/mL and the testing process was accomplished in 2-3h. For the three types of samples (sterile water, apple juice and kiwi juice), the correlation coefficient of standard curves was greater than 0.991, and the calculated PCR efficiencies were from 108% to 109%. As compared with the standard culture method performed concurrently on the same set of samples, the sensitivity, specificity and accuracy of IMS-PCR for 196 naturally contaminated fruit products were 90.0%, 98.3% and 97.5%, respectively. The results exhibited that the proposed IMS-PCR method was effective for the rapid detection of A. acidoterrestris in fruit products. Copyright © 2014. Published by Elsevier B.V.

  9. Specific and sensitive diagnosis of syphilis using a real-time PCR for Treponema pallidum

    NARCIS (Netherlands)

    Koek, A. G.; Bruisten, S. M.; Dierdorp, M.; van Dam, A. P.; Templeton, K.

    2006-01-01

    A real-time PCR assay with a Taqman probe was developed that targeted the polA gene of Treponema pallidum. The test was validated using an analytical panel (n = 140) and a clinical panel of genital samples (n = 112) from patients attending a sexually transmitted infections clinic. High sensitivities

  10. Use of real-time qPCR to quantify members of the unculturable heterotrophic bacterial community in a deep sea marine sponge, Vetulina sp.

    Science.gov (United States)

    Cassler, M; Peterson, C L; Ledger, A; Pomponi, S A; Wright, A E; Winegar, R; McCarthy, P J; Lopez, J V

    2008-04-01

    In this report, real-time quantitative PCR (TaqMan qPCR) of the small subunit (SSU) 16S-like rRNA molecule, a universal phylogenetic marker, was used to quantify the relative abundance of individual bacterial members of a diverse, yet mostly unculturable, microbial community from a marine sponge. Molecular phylogenetic analyses of bacterial communities derived from Caribbean Lithistid sponges have shown a wide diversity of microbes that included at least six major subdivisions; however, very little overlap was observed between the culturable and unculturable microbial communities. Based on sequence data of three culture-independent Lithistid-derived representative bacteria, we designed probe/primer sets for TaqMan qPCR to quantitatively characterize selected microbial residents in a Lithistid sponge, Vetulina, metagenome. TaqMan assays included specificity testing, DNA limit of detection analysis, and quantification of specific microbial rRNA sequences such as Nitrospira-like microbes and Actinobacteria up to 172 million copies per microgram per Lithistid sponge metagenome. By contrast, qPCR amplification with probes designed for common previously cultured sponge-associated bacteria in the genera Rheinheimera and Marinomonas and a representative of the CFB group resulted in only minimal detection of the Rheiheimera in total DNA extracted from the sponge. These data verify that a large portion of the microbial community within Lithistid sponges may consist of currently unculturable microorganisms.

  11. Development of a real time polymerase chain reaction for quantitation of Schistosoma mansoni DNA

    Directory of Open Access Journals (Sweden)

    Ana Lisa do Vale Gomes

    2006-10-01

    Full Text Available This report describes the development of a SYBR Green I based real time polymerase chain reaction (PCR protocol for detection on the ABI Prism 7000 instrument. Primers targeting the gene encoding the SSU rRNA were designed to amplify with high specificity DNA from Schistosoma mansoni, in a real time quantitative PCR system. The limit of detection of parasite DNA for the system was 10 fg of purified genomic DNA, that means less than the equivalent to one parasite cell (genome ~580 fg DNA. The efficiency was 0.99 and the correlation coefficient (R² was 0.97. When different copy numbers of the target amplicon were used as standards, the assay could detect at least 10 copies of the specific target. The primers used were designed to amplify a 106 bp DNA fragment (Tm 83ºC. The assay was highly specific for S. mansoni, and did not recognize DNA from closely related non-schistosome trematodes. The real time PCR allowed for accurate quantification of S. mansoni DNA and no time-consuming post-PCR detection of amplification products by gel electrophoresis was required. The assay is potentially able to quantify S. mansoni DNA (and indirectly parasite burden in a number of samples, such as snail tissue, serum and feces from patients, and cercaria infested water. Thus, these PCR protocols have potential to be used as tools for monitoring of schistosome transmission and quantitative diagnosis of human infection.

  12. Utilization of real time PCR for the assessment of egg burden in the organs of Schistosoma japonicum experimentally infected mice.

    Science.gov (United States)

    Dang-Trinh, Minh-Anh; Angeles, Jose Ma M; Moendeg, Kharleezelle J; Macalanda, Adrian Miki C; Higuchi, Luna; Oto, Chiho; Kirinoki, Masashi; Chigusa, Yuichi; Kawazu, Shin-Ichiro

    2018-06-01

    Schistosoma japonicum, causing zoonotic intestinal schistosomiasis, is found in China, the Philippines and parts of Indonesia. Severe disease manifestations are basically due to the deposition of eggs in some vital organs such as the liver, spleen and brain. Traditionally, histopathological microscopic examination of the egg burden was used to evaluate the intensity of infection in the affected organs. However, this technique is laborious, time-consuming and requires trained personnel. In this study, real time PCR targeting the mitochondrial NADH dehydrogenase I gene was used to compare with microscopic examination of tissue sections in evaluating the egg burdens in different affected organs. Livers, spleens and brains of the S. japonicum infected mice after 8 and 18 weeks post-infection (p.i) were harvested and examined. Results showed that there were statistically significant correlations between the egg burden evaluated by tissue section examination, and the Ct values of the real time PCR of livers with heavy egg burden at 8 (r = -0.81) and 18 (r = -0.80) weeks p.i. Furthermore, a correlation (r = -0.56) between the egg burden assessed by the microscopic examination and Ct value of the real time PCR of spleens with moderate egg burden after 18 weeks p.i and not 8 weeks p.i was also observed. Brains with low egg burden showed no schistosome eggs in the microscopic examination, however one sample tested positive by real time PCR. These results suggested that real time PCR is useful in evaluating schistosome egg burden in the organs of the experimentally infected mice model that will give further insights into the pathology of schistosomiasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Mitochondrial DNA as a non-invasive biomarker: Accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias

    International Nuclear Information System (INIS)

    Malik, Afshan N.; Shahni, Rojeen; Rodriguez-de-Ledesma, Ana; Laftah, Abas; Cunningham, Phil

    2011-01-01

    Highlights: → Mitochondrial dysfunction is central to many diseases of oxidative stress. → 95% of the mitochondrial genome is duplicated in the nuclear genome. → Dilution of untreated genomic DNA leads to dilution bias. → Unique primers and template pretreatment are needed to accurately measure mitochondrial DNA content. -- Abstract: Circulating mitochondrial DNA (MtDNA) is a potential non-invasive biomarker of cellular mitochondrial dysfunction, the latter known to be central to a wide range of human diseases. Changes in MtDNA are usually determined by quantification of MtDNA relative to nuclear DNA (Mt/N) using real time quantitative PCR. We propose that the methodology for measuring Mt/N needs to be improved and we have identified that current methods have at least one of the following three problems: (1) As much of the mitochondrial genome is duplicated in the nuclear genome, many commonly used MtDNA primers co-amplify homologous pseudogenes found in the nuclear genome; (2) use of regions from genes such as β-actin and 18S rRNA which are repetitive and/or highly variable for qPCR of the nuclear genome leads to errors; and (3) the size difference of mitochondrial and nuclear genomes cause a 'dilution bias' when template DNA is diluted. We describe a PCR-based method using unique regions in the human mitochondrial genome not duplicated in the nuclear genome; unique single copy region in the nuclear genome and template treatment to remove dilution bias, to accurately quantify MtDNA from human samples.

  14. Quantitative detection of Campylobacter jejuni on fresh chicken carcasses by real-time PCR.

    Science.gov (United States)

    Rönner, Anna-Clara; Lindmark, Hans

    2007-06-01

    Campylobacter jejuni infection is a significant cause of foodborne gastroenteritis worldwide. Consumption and handling of poultry products is believed to be the primary risk factor for campylobacteriosis. Risk assessments require quantitative data, and C. jejuni is enumerated usually by direct plating, which sometimes allows growth of non-Campylobacter bacteria. The objective of the present study was to develop a quantitative real-time PCR method (q-PCR) for enumerating C. jejuni in chicken rinse without a culturing step. The procedure to obtain the template for the PCR assay involved (i) filtration of 10 ml of chicken rinse, (ii) centrifugation of the sample, and (iii) total DNA extraction from the pellet obtained using a commercial DNA extraction kit. The detection limit of the method was comparable to that for plating 100 microl of chicken rinse on modified charcoal cefoperazone deoxycholate agar, and the detection limit could be further improved 10-fold by concentrating the DNA eluate by ethanol precipitation. A close correlation for spiked chicken rinse was obtained for the results of the quantitative real-time PCR method and direct plating (r = 0.99). The coefficient of correlation for the methods was 0.87 when samples from chicken carcasses on the slaughter line were analyzed, whereas a lower correlation (r = 0.76) was obtained when samples from retail carcasses were analyzed. Greater variation in the proportion of dead and/or viable but not culturable Campylobacter types in the retail samples may explain the decreased correlation between the methods. Overall, the new method is simple and fast and the results obtained are closely correlated with those for direct plating for samples containing a low proportion of dead Campylobacter cells.

  15. Biochip for Real-Time Monitoring of Hepatitis B Virus (HBV) by Combined Loop-Mediated Isothermal Amplification and Solution-Phase Electrochemical Detection

    Science.gov (United States)

    Tien, Bui Quang; Ngoc, Nguyen Thy; Loc, Nguyen Thai; Thu, Vu Thi; Lam, Tran Dai

    2017-06-01

    Accurate in situ diagnostic tests play a key role in patient management and control of most infectious diseases. To achieve this, use of handheld biochips that implement sample handling, sample analysis, and result readout together is an ideal approach. We present herein a fluid-handling biochip for real-time electrochemical monitoring of nucleic acid amplification based on loop-mediated isothermal amplification and real-time electrochemical detection on a microfluidic platform. Intercalation between amplifying DNA and free redox probe in solution phase was used to monitor the number of DNA copies. The whole diagnostic process is completed within 70 min. Our platform offers a fast and easy tool for quantification of viral pathogens in shorter time and with limited risk of all potential forms of cross-contamination. Such diagnostic tools have potential to make a huge difference to the lives of millions of people worldwide.

  16. Species identification of Cannabis sativa using real-time quantitative PCR (qPCR).

    Science.gov (United States)

    Johnson, Christopher E; Premasuthan, Amritha; Satkoski Trask, Jessica; Kanthaswamy, Sree

    2013-03-01

    Most narcotics-related cases in the United States involve Cannabis sativa. Material is typically identified based on the cystolithic hairs on the leaves and with chemical tests to identify of the presence of cannabinoids. Suspect seeds are germinated into a viable plant so that morphological and chemical tests can be conducted. Seed germination, however, causes undue analytical delays. DNA analyses that involve the chloroplast and nuclear genomes have been developed for identification of C. sativa materials, but they require several nanograms of template DNA. Using the trnL 3' exon-trnF intragenic spacer regions within the C. sativa chloroplast, we have developed a real-time quantitative PCR assay that is capable of identifying picogram amounts of chloroplast DNA for species determination of suspected C. sativa material. This assay provides forensic science laboratories with a quick and reliable method to identify an unknown sample as C. sativa. © 2013 American Academy of Forensic Sciences.

  17. Optimization of a Real Time PCR based method for the detection of Listeria monocytogenes in pork meat.

    Science.gov (United States)

    Gattuso, Antonietta; Gianfranceschi, Monica Virginia; Sonnessa, Michele; Delibato, Elisabetta; Marchesan, Massimo; Hernandez, Marta; De Medici, Dario; Rodriguez-Lazaro, David

    2014-08-01

    The aim of this study was to optimize a Real-Time PCR protocol for a rapid detection of Listeria monocytogenes in pork meat, using reduced volumes of primary selective enrichment broth and times of incubation to decrease the cost and time for analysis. Forty-five samples of pork meat were artificially contaminated with two different levels of L. monocytogenes (1-10 CFU per sample and 10-100 CFU per sample), homogenized in three different volumes of Half Fraser Broth (1:3; 1:5 and 1:10) and incubated at 30°C ± 1°C for 5h, 8h and 24h. The detection was conducted in parallel by Real-Time PCR and the ISO standard 11290-1 methods. L. monocytogenes was detected in all the samples after 24h by Real-Time PCR method, also using reduced volumes of Half Fraser Broth. This represents a clear advantage as the time to final detection and the inherent costs were significantly reduced compared to the ISO reference method. All samples artificially contaminated were correctly detected also after 8 of incubation at 30°C ± 1°C in Half Fraser Broth and 24h in Fraser Broth at 37°C ± 1°C using cultural method. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Internal amplification control of PCR for the Glu1-Dx5 allele in wheat.

    Science.gov (United States)

    Heim, H N; Vieira, E S N; Polo, L R T; Lima, N K; Silva, G J; Linde, G A; Colauto, N B; Schuster, I

    2017-08-17

    One of the limiting factors in using dominant markers is the unique amplification of the target fragment. Therefore, failures in polymerase chain reaction (PCR) or non-amplifications can be interpreted as an absence of the allele. The possibility of false negatives implies in reduced efficiency in the selection process in genetic breeding programs besides the loss of valuable genetic material. Thus, this study aimed to evaluate the viability of a microsatellite marker as an internal amplification control with a dominant marker for the wheat Glu1-Dx5 gene. A population of 77 wheat cultivars/breeding lines was analyzed. Fourteen microsatellite markers were analyzed in silico regarding the formation of dimers and clamps. The biplex reaction conditions were optimized, and the Xbarc117 marker was selected as the internal amplification control with a Glu1-Dx5 marker in wheat. It was concluded that the Xbarc117 microsatellite marker was effective in the simultaneous amplification with a dominant Glu1-Dx5 marker, making biplex PCR viable in wheat for the studied markers.

  19. Comparison of the performance in detection of HPV infections between the high-risk HPV genotyping real time PCR and the PCR-reverse dot blot assays.

    Science.gov (United States)

    Zhang, Lahong; Dai, Yibei; Chen, Jiahuan; Hong, Liquan; Liu, Yuhua; Ke, Qiang; Chen, Yiwen; Cai, Chengsong; Liu, Xia; Chen, Zhaojun

    2018-01-01

    A new multiplex real-time PCR assay, the high-risk HPV genotyping real time PCR assay (HR HPV RT-PCR), has been developed to detect 15 high-risk HPV types with respective viral loads. In this report, a total of 684 cervical specimens from women diagnosed with vaginitis were assessed by the HR HPV RT-PCR and the PCR reaction and reverse dot blot (PCR-RDB) assays, using a PCR-sequencing method as a reference standard. A total coincidence of 97.7% between the HR HPV RT PCR and the PCR-RDB assays was determined with a Kappa value of 0.953. The HR HPV RT PCR assay had sensitivity, specificity, and concordance rates (accuracy) of 99.7%, 99.7%, and 99.7%, respectively, as confirmed by PCR-sequencing, while the PCR-RDB assay had respective rates of 98.8%, 97.1%, and 98.0%. The overall rate of HPV infection, determined by PCR-sequencing, in women diagnosed with vaginitis was 49.85%, including 36.26% of single infection and 13.6% of multiple infections. The most common infections among the 15 high-risk HPV types in women diagnosed with vaginitis were HPV-52, HPV-16, and HPV-58, with a total detection rate of 10.23%, 7.75%, and 5.85%, respectively. We conclude that the HR HPV RT PCR assay exhibits better clinical performance than the PCR-RDB assay, and is an ideal alternative method for HPV genotyping. In addition, the HR HPV RT PCR assay provides HPV DNA viral loads, and could serve as a quantitative marker in the diagnosis and treatment of single and multiple HPV infections. © 2017 Wiley Periodicals, Inc.

  20. A human fecal contamination index for ranking impaired recreational watersusing the HF183 quantitative real-time PCR method

    Science.gov (United States)

    Human fecal pollution of surface water remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for recreational water quality risk managem...

  1. Enteroviruses in blood of patients with type 1 diabetes detected by integrated cell culture and reverse transcription quantitative real-time PCR.

    Science.gov (United States)

    Alidjinou, Enagnon Kazali; Sane, Famara; Lefevre, Christine; Baras, Agathe; Moumna, Ilham; Engelmann, Ilka; Vantyghem, Marie-Christine; Hober, Didier

    2017-11-01

    Enteroviruses (EV) have been associated with type 1 diabetes (T1D), but EV RNA detection has been reported in only a small proportion of T1D patients. We studied whether integrated cell culture and reverse transcription real-time PCR could improve EV detection in blood samples from patients with T1D. Blood was collected from 13 patients with T1D. The presence of EV RNA in blood was investigated by using real-time RT-PCR. In addition, plasma and white blood cells (WBC) were inoculated to BGM and Vero cell line cultures. Culture supernatants and cells collected on day 7 and day 14 were tested for EV RNA by real-time RT-PCR. Enterovirus identification was performed through sequencing of the VP4/VP2 region. Enterovirus RNA was detected in blood by using real-time RT-PCR in only one out of 13 patients. The detection of EV RNA in cultures inoculated with clinical samples (plasma and/or WBC) gave positive results in five other patients. The viral loads were low, ranging from 45 to 4420 copies/ng of total RNA. One isolate was successfully identified as coxsackievirus B1. Integrated cell culture and reverse transcription real-time PCR can improve the detection rate of EV in blood samples of patients with T1D and can be useful to investigate further the relationship between EV and the disease.

  2. A semi-nested real-time PCR method to detect low chimerism percentage in small quantity of hematopoietic stem cell transplant DNA samples.

    Science.gov (United States)

    Aloisio, Michelangelo; Bortot, Barbara; Gandin, Ilaria; Severini, Giovanni Maria; Athanasakis, Emmanouil

    2017-02-01

    Chimerism status evaluation of post-allogeneic hematopoietic stem cell transplantation samples is essential to predict post-transplant relapse. The most commonly used technique capable of detecting small increments of chimerism is quantitative real-time PCR. Although this method is already used in several laboratories, previously described protocols often lack sensitivity and the amount of the DNA required for each chimerism analysis is too high. In the present study, we compared a novel semi-nested allele-specific real-time PCR (sNAS-qPCR) protocol with our in-house standard allele-specific real-time PCR (gAS-qPCR) protocol. We selected two genetic markers and analyzed technical parameters (slope, y-intercept, R2, and standard deviation) useful to determine the performances of the two protocols. The sNAS-qPCR protocol showed better sensitivity and precision. Moreover, the sNAS-qPCR protocol requires, as input, only 10 ng of DNA, which is at least 10-fold less than the gAS-qPCR protocols described in the literature. Finally, the proposed sNAS-qPCR protocol could prove very useful for performing chimerism analysis with a small amount of DNA, as in the case of blood cell subsets.

  3. Rapid, actionable diagnosis of urban epidemic leptospirosis using a pathogenic Leptospira lipL32-based real-time PCR assay.

    Directory of Open Access Journals (Sweden)

    Irina N Riediger

    2017-09-01

    Full Text Available With a conservatively estimated 1 million cases of leptospirosis worldwide and a 5-10% fatality rate, the rapid diagnosis of leptospirosis leading to effective clinical and public health decision making is of high importance, and yet remains a challenge.Based on parallel, population-based studies in two leptospirosis-endemic regions in Brazil, a real-time PCR assay which detects lipL32, a gene specifically present in pathogenic Leptospira, was assessed for the diagnostic effectiveness and accuracy. Patients identified by active hospital-based surveillance in Salvador and Curitiba during large urban leptospirosis epidemics were tested. Real-time PCR reactions were performed with DNA-extracted samples obtained from 127 confirmed and 23 unconfirmed cases suspected of leptospirosis, 122 patients with an acute febrile illness other than leptospirosis, and 60 healthy blood donors.The PCR assay had a limit of detection of 280 Leptospira genomic equivalents/mL. Sensitivity for confirmed cases was 61% for whole blood and 29% for serum samples. Sensitivity was higher (86% for samples collected within the first 6 days after onset of illness compared to those collected after 7 days (34%. The real-time PCR assay was able to detect leptospiral DNA in blood from 56% of serological non-confirmed cases. The overall specificity of the assay was 99%.These findings indicate that real-time PCR may be a reliable tool for early diagnosis of leptospirosis, which is decisive for clinical management of severe and life-threatening cases and for public health decision making.

  4. Optimization and Validation of Real Time PCR Assays for Absolute Quantification of toxigenic Vibrio cholerae and Escherichia coli

    DEFF Research Database (Denmark)

    Ferdous, J.; Hossain, Z. Z.; Tulsiani, S.

    2016-01-01

    and quantify DNA by real-time PCR for two pathogenic species, Escherichia coli (E. coli) and Vibrio cholerae (V.cholerae). In order to generate a standard curve, total bacterial DNA was diluted in a 10-fold series and each sample was adjusted to an estimated cell count. The starting bacterial DNA concentration......Quantitative real-time PCR (qPCR) is a dynamic and cogent assay for the detection and quantification of specified nucleic acid sequences and is more accurate compared to both traditional culture based techniques and ‘end point’ conventional PCR. Serial dilution of bacterial cell culture provides...... significant, low F ratios indicated that there was some variation in CT values when genomic DNA dilution was compared to dilution of cell suspension in media. Different water samples spiked with pure cultures of E. coli and V. cholerae were used as unknown samples. The standard curve constructed by the serial...

  5. Multiplex Real-Time PCR for Detection of Staphylococcus aureus, mecA and Panton-Valentine Leukocidin (PVL) Genes from Selective Enrichments from Animals and Retail Meat

    Science.gov (United States)

    Velasco, Valeria; Sherwood, Julie S.; Rojas-García, Pedro P.; Logue, Catherine M.

    2014-01-01

    The aim of this study was to compare a real-time PCR assay, with a conventional culture/PCR method, to detect S. aureus, mecA and Panton-Valentine Leukocidin (PVL) genes in animals and retail meat, using a two-step selective enrichment protocol. A total of 234 samples were examined (77 animal nasal swabs, 112 retail raw meat, and 45 deli meat). The multiplex real-time PCR targeted the genes: nuc (identification of S. aureus), mecA (associated with methicillin resistance) and PVL (virulence factor), and the primary and secondary enrichment samples were assessed. The conventional culture/PCR method included the two-step selective enrichment, selective plating, biochemical testing, and multiplex PCR for confirmation. The conventional culture/PCR method recovered 95/234 positive S. aureus samples. Application of real-time PCR on samples following primary and secondary enrichment detected S. aureus in 111/234 and 120/234 samples respectively. For detection of S. aureus, the kappa statistic was 0.68–0.88 (from substantial to almost perfect agreement) and 0.29–0.77 (from fair to substantial agreement) for primary and secondary enrichments, using real-time PCR. For detection of mecA gene, the kappa statistic was 0–0.49 (from no agreement beyond that expected by chance to moderate agreement) for primary and secondary enrichment samples. Two pork samples were mecA gene positive by all methods. The real-time PCR assay detected the mecA gene in samples that were negative for S. aureus, but positive for Staphylococcus spp. The PVL gene was not detected in any sample by the conventional culture/PCR method or the real-time PCR assay. Among S. aureus isolated by conventional culture/PCR method, the sequence type ST398, and multi-drug resistant strains were found in animals and raw meat samples. The real-time PCR assay may be recommended as a rapid method for detection of S. aureus and the mecA gene, with further confirmation of methicillin-resistant S. aureus (MRSA) using

  6. Multiplex real-time PCR for detection of Staphylococcus aureus, mecA and Panton-Valentine Leukocidin (PVL genes from selective enrichments from animals and retail meat.

    Directory of Open Access Journals (Sweden)

    Valeria Velasco

    Full Text Available The aim of this study was to compare a real-time PCR assay, with a conventional culture/PCR method, to detect S. aureus, mecA and Panton-Valentine Leukocidin (PVL genes in animals and retail meat, using a two-step selective enrichment protocol. A total of 234 samples were examined (77 animal nasal swabs, 112 retail raw meat, and 45 deli meat. The multiplex real-time PCR targeted the genes: nuc (identification of S. aureus, mecA (associated with methicillin resistance and PVL (virulence factor, and the primary and secondary enrichment samples were assessed. The conventional culture/PCR method included the two-step selective enrichment, selective plating, biochemical testing, and multiplex PCR for confirmation. The conventional culture/PCR method recovered 95/234 positive S. aureus samples. Application of real-time PCR on samples following primary and secondary enrichment detected S. aureus in 111/234 and 120/234 samples respectively. For detection of S. aureus, the kappa statistic was 0.68-0.88 (from substantial to almost perfect agreement and 0.29-0.77 (from fair to substantial agreement for primary and secondary enrichments, using real-time PCR. For detection of mecA gene, the kappa statistic was 0-0.49 (from no agreement beyond that expected by chance to moderate agreement for primary and secondary enrichment samples. Two pork samples were mecA gene positive by all methods. The real-time PCR assay detected the mecA gene in samples that were negative for S. aureus, but positive for Staphylococcus spp. The PVL gene was not detected in any sample by the conventional culture/PCR method or the real-time PCR assay. Among S. aureus isolated by conventional culture/PCR method, the sequence type ST398, and multi-drug resistant strains were found in animals and raw meat samples. The real-time PCR assay may be recommended as a rapid method for detection of S. aureus and the mecA gene, with further confirmation of methicillin-resistant S. aureus (MRSA

  7. Quantitative analysis of diet structure by real-time PCR, reveals different feeding patterns by two dominant grasshopper species

    Science.gov (United States)

    Huang, Xunbing; Wu, Huihui; McNeill, Mark Richard; Qin, Xinghu; Ma, Jingchuan; Tu, Xiongbing; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Zhang, Zehua

    2016-01-01

    Studies on grasshopper diets have historically employed a range of methodologies, each with certain advantages and disadvantages. For example, some methodologies are qualitative instead of quantitative. Others require long experimental periods or examine population-level effects, only. In this study, we used real-time PCR to examine diets of individual grasshoppers. The method has the advantage of being both fast and quantitative. Using two grasshopper species, Oedaleus asiaticus and Dasyhippus barbipes, we designed ITS primer sequences for their three main host plants, Stipa krylovii, Leymus chinensis and Cleistogenes squarrosa and used real-time PCR method to test diet structure both qualitatively and quantitatively. The lowest detection efficiency of the three grass species was ~80% with a strong correlation between actual and PCR-measured food intake. We found that Oedaleus asiaticus maintained an unchanged diet structure across grasslands with different grass communities. By comparison, Dasyhippus barbipes changed its diet structure. These results revealed why O. asiaticus distribution is mainly confined to Stipa-dominated grassland, and D. barbipes is more widely distributed across Inner Mongolia. Overall, real-time PCR was shown to be a useful tool for investigating grasshopper diets, which in turn offers some insight into grasshopper distributions and improved pest management. PMID:27562455

  8. Detection and enumeration of Salmonella enteritidis in homemade ice cream associated with an outbreak: comparison of conventional and real-time PCR methods.

    Science.gov (United States)

    Seo, K H; Valentin-Bon, I E; Brackett, R E

    2006-03-01

    Salmonellosis caused by Salmonella Enteritidis (SE) is a significant cause of foodborne illnesses in the United States. Consumption of undercooked eggs and egg-containing products has been the primary risk factor for the disease. The importance of the bacterial enumeration technique has been enormously stressed because of the quantitative risk analysis of SE in shell eggs. Traditional enumeration methods mainly depend on slow and tedious most-probable-number (MPN) methods. Therefore, specific, sensitive, and rapid methods for SE quantitation are needed to collect sufficient data for risk assessment and food safety policy development. We previously developed a real-time quantitative PCR assay for the direct detection and enumeration of SE and, in this study, applied it to naturally contaminated ice cream samples with and without enrichment. The detection limit of the real-time PCR assay was determined with artificially inoculated ice cream. When applied to the direct detection and quantification of SE in ice cream, the real-time PCR assay was as sensitive as the conventional plate count method in frequency of detection. However, populations of SE derived from real-time quantitative PCR were approximately 1 log higher than provided by MPN and CFU values obtained by conventional culture methods. The detection and enumeration of SE in naturally contaminated ice cream can be completed in 3 h by this real-time PCR method, whereas the cultural enrichment method requires 5 to 7 days. A commercial immunoassay for the specific detection of SE was also included in the study. The real-time PCR assay proved to be a valuable tool that may be useful to the food industry in monitoring its processes to improve product quality and safety.

  9. Quantitative Microbiological Study of Human Carious Dentine by Culture and Real-Time PCR: Association of Anaerobes with Histopathological Changes in Chronic Pulpitis

    Science.gov (United States)

    Martin, F. Elizabeth; Nadkarni, Mangala A.; Jacques, Nicholas A.; Hunter, Neil

    2002-01-01

    The bacteria found in carious dentine were correlated with the tissue response of the dental pulps of 65 teeth extracted from patients with advanced caries and pulpitis. Standardized homogenates of carious dentine were plated onto selective and nonselective media under anaerobic and microaerophilic conditions. In addition, real-time PCR was used to quantify the recovery of anaerobic bacteria. Primers and fluorogenic probes were designed to detect the total anaerobic microbial load, the genera Prevotella and Fusobacterium, and the species Prevotella melaninogenica, Porphyromonas endodontalis, Porphyromonas gingivalis, and Micromonas (formerly Peptostreptococcus) micros. The pulpal pathology was categorized according to the cellular response and degenerative changes. Analysis of cultured bacteria showed a predominance of gram-positive microorganisms, particularly lactobacilli. Gram-negative bacteria were also present in significant numbers with Prevotella spp., the most numerous anaerobic group cultured. Real-time PCR analysis indicated a greater microbial load than that determined by colony counting. The total number of anaerobes detected was 41-fold greater by real-time PCR than by colony counting, while the numbers of Prevotella and Fusobacterium spp. detected were 82- and 2.4-fold greater by real-time PCR than by colony counting, respectively. Real-time PCR also identified M. micros, P. endodontalis, and P. gingivalis in 71, 60, and 52% of carious samples, respectively. Correlation matrices of the real-time PCR data revealed significant positive associations between M. micros and P. endodontalis detection and inflammatory degeneration of pulpal tissues. These anaerobes have been strongly implicated in endodontic infections that occur as sequelae to carious pulpitis. Accordingly, the data suggest that the presence of high levels of these bacteria in carious lesions may be indicative of irreversible pulpal pathology. PMID:11980945

  10. Diagnosis of Barmah Forest Virus Infection by a Nested Real-Time SYBR Green RT-PCR Assay

    OpenAIRE

    Hueston, Linda; Toi, Cheryl S.; Jeoffreys, Neisha; Sorrell, Tania; Gilbert, Gwendolyn

    2013-01-01

    Barmah Forest virus (BFV) is a mosquito borne (+) ssRNA alphavirus found only in Australia. It causes rash, myalgia and arthralgia in humans and is usually diagnosed serologically. We developed a real-time PCR assay to detect BFV in an effort to improve diagnosis early in the course of infection. The limit of detection was 16 genome equivalents with a specificity of 100%. Fifty five serum samples from BFV-infected patients were tested by the PCR. 52 of 53 antibody-positive samples were PCR ne...

  11. Multiplex Real-Time qPCR Assay for Simultaneous and Sensitive Detection of Phytoplasmas in Sesame Plants and Insect Vectors.

    Directory of Open Access Journals (Sweden)

    Cengiz Ikten

    Full Text Available Phyllody, a destructive and economically important disease worldwide caused by phytoplasma infections, is characterized by the abnormal development of floral structures into stunted leafy parts and contributes to serious losses in crop plants, including sesame (Sesamum indicum L.. Accurate identification, differentiation, and quantification of phyllody-causing phytoplasmas are essential for effective management of this plant disease and for selection of resistant sesame varieties. In this study, a diagnostic multiplex qPCR assay was developed using TaqMan® chemistry based on detection of the 16S ribosomal RNA gene of phytoplasmas and the 18S ribosomal gene of sesame. Phytoplasma and sesame specific primers and probes labeled with different fluorescent dyes were used for simultaneous amplification of 16SrII and 16SrIX phytoplasmas in a single tube. The multiplex real-time qPCR assay allowed accurate detection, differentiation, and quantification of 16SrII and 16SrIX groups in 109 sesame plant and 92 insect vector samples tested. The assay was found to have a detection sensitivity of 1.8 x 102 and 1.6 x 102 DNA copies for absolute quantification of 16SrII and 16SrIX group phytoplasmas, respectively. Relative quantification was effective and reliable for determination of phyllody phytoplasma DNA amounts normalized to sesame DNA in infected plant tissues. The development of this qPCR assay provides a method for the rapid measurement of infection loads to identify resistance levels of sesame genotypes against phyllody phytoplasma disease.

  12. Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters.

    Science.gov (United States)

    Bottari, Benedetta; Agrimonti, Caterina; Gatti, Monica; Neviani, Erasmo; Marmiroli, Nelson

    2013-01-01

    A multiplex real time PCR (mRealT-PCR) useful to rapidly screen microbial composition of thermophilic starter cultures for hard cooked cheeses and to compare samples with potentially different technological properties was developed. Novel primers directed toward pheS gene were designed and optimized for multiple detection of Lactobacillus helveticus, Lactobacillus delbrueckii, Streptococcus thermophilus and Lactobacillus fermentum. The assay was based on SYBR Green chemistry followed by melting curves analysis. The method was then evaluated for applications in the specific detection of the 4 lactic acid bacteria (LAB) in 29 different natural whey starters for Parmigiano Reggiano cheese production. The results obtained by mRealT-PCR were also compared with those obtained on the same samples by Fluorescence in Situ Hybridization (FISH) and Length-Heterogeneity PCR (LH-PCR). The mRealT-PCR developed in this study, was found to be effective for analyzing species present in the samples with an average sensitivity down to less than 600 copies of DNA and therefore sensitive enough to detect even minor LAB community members of thermophilic starter cultures. The assay was able to describe the microbial population of all the different natural whey starter samples analyzed, despite their natural variability. A higher number of whey starter samples with S. thermophilus and L. fermentum present in their microbial community were revealed, suggesting that these species could be more frequent in Parmigiano Reggiano natural whey starter samples than previously shown. The method was more effective than LH-PCR and FISH and, considering that these two techniques have to be used in combination to detect the less abundant species, the mRealT-PCR was also faster. Providing a single step sensitive detection of L. helveticus, L. delbrueckii, S. thermophilus and L. fermentum, the developed mRealT-PCR could be used for screening thermophilic starter cultures and to follow the presence of

  13. Identification by real-time PCR with SYBR Green of Leishmania spp. and Serratia marcescens in canine 'sterile' cutaneous nodular lesions.

    Science.gov (United States)

    Cornegliani, Luisa; Corona, Antonio; Vercelli, Antonella; Roccabianca, Paola

    2015-06-01

    Noninfectious, non-neoplastic, nodular to diffuse, so-called 'sterile' granulomatous/pyogranulomatous skin lesions (SGPSLs) are infrequently identified in dogs and may represent a diagnostic challenge. Their correct identification is based on history, histopathology and absence of intralesional foreign bodies and micro-organisms. The aim of this study was to investigate the presence of Leishmania spp., Mycobacterium spp., Serratia marcescens and Nocardia spp. by real-time PCR in canine nodular skin lesions histologically diagnosed as putatively sterile. Formalin-fixed skin biopsies were collected from 40 dogs. All samples were associated with an SGPSL diagnosis characterized by multifocal, nodular to diffuse, periadnexal and perifollicular pyogranulomas/granulomas. Neither micro-organisms nor foreign bodies were detected with haematoxylin and eosin staining, under polarized light. Further analyses included periodic acid Schiff, Ziehl-Neelsen, Fite Faraco, Giemsa and Gram histochemical stains; anti-Bacillus Calmette-Guérin (BCG) and Leishmania spp. immunohistochemistry; and real-time PCR analysis for Leishmania spp., Mycobacterium spp., S. marcescens and Nocardia spp. Special stains and BCG/immunohistochemistry were negative in all samples. Real-time PCR was positive for Leishmania spp. in four of 40 biopsies and for S. marcescens in two of 40 samples. Real-time PCR for Mycobacterium spp. and Nocardia spp. was negative. No correlation between real-time PCR positivity and a specific histological pattern was identified. Leishmania spp. have been previously identified as possible agents of certain SGPSLs, while the involvement of S. marcescens has not been investigated previously. According to our findings, Serratia spp. should be included in the list of agents possibly associated with a subgroup of granulomatous/pyogranulomatous skin lesions in dogs. © 2015 ESVD and ACVD.

  14. Reverse transcriptase real-time PCR for detection and quantification of viable Campylobacter jejuni directly from poultry faecal samples

    DEFF Research Database (Denmark)

    Bui, Thanh Xuan; Wolff, Anders; Madsen, Mogens

    2012-01-01

    Campylobacter spp. is the most common cause of bacterial diarrhoea in humans worldwide. Therefore, rapid and reliable methods fordetection and quantification of this pathogen are required. In this study, we have developed a reverse transcription quantitative real-time PCR(RT-qPCR) for detection a...

  15. A comparison of EGFR mutation testing methods in lung carcinoma: direct sequencing, real-time PCR and immunohistochemistry.

    Directory of Open Access Journals (Sweden)

    Bárbara Angulo

    Full Text Available The objective of this study is to compare two EGFR testing methodologies (a commercial real-time PCR kit and a specific EGFR mutant immunohistochemistry, with direct sequencing and to investigate the limit of detection (LOD of both PCR-based methods. We identified EGFR mutations in 21 (16% of the 136 tumours analyzed by direct sequencing. Interestingly, the Therascreen EGFR Mutation Test kit was able to characterize as wild-type one tumour that could not be analyzed by direct sequencing of the PCR product. We then compared the LOD of the kit and that of direct sequencing using the available mutant tumours. The kit was able to detect the presence of a mutation in a 1% dilution of the total DNA in nine of the 18 tumours (50%, which tested positive with the real-time quantitative PCR method. In all cases, EGFR mutation was identified at a dilution of 5%. Where the mutant DNA represented 30% of the total DNA, sequencing was able to detect mutations in 12 out of 19 cases (63%. Additional experiments with genetically defined standards (EGFR ΔE746-A750/+ and EGFR L858R/+ yielded similar results. Immunohistochemistry (IHC staining with exon 19-specific antibody was seen in eight out of nine cases with E746-A750del detected by direct sequencing. Neither of the two tumours with complex deletions were positive. Of the five L858R-mutated tumours detected by the PCR methods, only two were positive for the exon 21-specific antibody. The specificity was 100% for both antibodies. The LOD of the real-time PCR method was lower than that of direct sequencing. The mutation specific IHC produced excellent specificity.

  16. Decoding DNA labels by melting curve analysis using real-time PCR.

    Science.gov (United States)

    Balog, József A; Fehér, Liliána Z; Puskás, László G

    2017-12-01

    Synthetic DNA has been used as an authentication code for a diverse number of applications. However, existing decoding approaches are based on either DNA sequencing or the determination of DNA length variations. Here, we present a simple alternative protocol for labeling different objects using a small number of short DNA sequences that differ in their melting points. Code amplification and decoding can be done in two steps using quantitative PCR (qPCR). To obtain a DNA barcode with high complexity, we defined 8 template groups, each having 4 different DNA templates, yielding 158 (>2.5 billion) combinations of different individual melting temperature (Tm) values and corresponding ID codes. The reproducibility and specificity of the decoding was confirmed by using the most complex template mixture, which had 32 different products in 8 groups with different Tm values. The industrial applicability of our protocol was also demonstrated by labeling a drone with an oil-based paint containing a predefined DNA code, which was then successfully decoded. The method presented here consists of a simple code system based on a small number of synthetic DNA sequences and a cost-effective, rapid decoding protocol using a few qPCR reactions, enabling a wide range of authentication applications.

  17. Shell-vial culture and real-time PCR applied to Rickettsia typhi and Rickettsia felis detection.

    Science.gov (United States)

    Segura, Ferran; Pons, Immaculada; Pla, Júlia; Nogueras, María-Mercedes

    2015-11-01

    Murine typhus is a zoonosis transmitted by fleas, whose etiological agent is Rickettsia typhi. Rickettsia felis infection can produces similar symptoms. Both are intracellular microorganisms. Therefore, their diagnosis is difficult and their infections can be misdiagnosed. Early diagnosis prevents severity and inappropriate treatment regimens. Serology can't be applied during the early stages of infection because it requires seroconversion. Shell-vial (SV) culture assay is a powerful tool to detect Rickettsia. The aim of the study was to optimize SV using a real-time PCR as monitoring method. Moreover, the study analyzes which antibiotics are useful to isolate these microorganisms from fleas avoiding contamination by other bacteria. For the first purpose, SVs were inoculated with each microorganism. They were incubated at different temperatures and monitored by real-time PCR and classical methods (Gimenez staining and indirect immunofluorescence assay). R. typhi grew at all temperatures. R. felis grew at 28 and 32 °C. Real-time PCR was more sensitive than classical methods and it detected microorganisms much earlier. Besides, the assay sensitivity was improved by increasing the number of SV. For the second purpose, microorganisms and fleas were incubated and monitored in different concentrations of antibiotics. Gentamicin, sufamethoxazole, trimethoprim were useful for R. typhi isolation. Gentamicin, streptomycin, penicillin, and amphotericin B were useful for R. felis isolation. Finally, the optimized conditions were used to isolate R. felis from fleas collected at a veterinary clinic. R. felis was isolated at 28 and 32 °C. However, successful establishment of cultures were not possible probably due to sub-optimal conditions of samples.

  18. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus

    Directory of Open Access Journals (Sweden)

    Tian-Min Qiao

    2016-10-01

    Full Text Available Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP were developed for detection of C. scoparium based on factor 1-alpha (tef1 and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.

  19. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus

    Science.gov (United States)

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-01-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products. PMID:27721691

  20. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus.

    Science.gov (United States)

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-10-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium , has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium . The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.

  1. [Investigation of RNA viral genome amplification by multiple displacement amplification technique].

    Science.gov (United States)

    Pang, Zheng; Li, Jian-Dong; Li, Chuan; Liang, Mi-Fang; Li, De-Xin

    2013-06-01

    In order to facilitate the detection of newly emerging or rare viral infectious diseases, a negative-strand RNA virus-severe fever with thrombocytopenia syndrome bunyavirus, and a positive-strand RNA virus-dengue virus, were used to investigate RNA viral genome unspecific amplification by multiple displacement amplification technique from clinical samples. Series of 10-fold diluted purified viral RNA were utilized as analog samples with different pathogen loads, after a series of reactions were sequentially processed, single-strand cDNA, double-strand cDNA, double-strand cDNA treated with ligation without or with supplemental RNA were generated, then a Phi29 DNA polymerase depended isothermal amplification was employed, and finally the target gene copies were detected by real time PCR assays to evaluate the amplification efficiencies of various methods. The results showed that multiple displacement amplification effects of single-strand or double-strand cDNA templates were limited, while the fold increases of double-strand cDNA templates treated with ligation could be up to 6 X 10(3), even 2 X 10(5) when supplemental RNA existed, and better results were obtained when viral RNA loads were lower. A RNA viral genome amplification system using multiple displacement amplification technique was established in this study and effective amplification of RNA viral genome with low load was achieved, which could provide a tool to synthesize adequate viral genome for multiplex pathogens detection.

  2. Analysis on the arcelin expression in bruchid pest resistant wild pulses using real time RT-qPCR.

    Science.gov (United States)

    Sakthivelkumar, Shanmugavel; Veeramani, Velayutham; Hilda, Karuppiah; Arumugam, Munusamy; Janarthanan, Sundaram

    2014-12-01

    Arcelin, the antimetabolic protein from wild pulses is a known natural insecticidal molecule. Wild pulses with high arcelin content could serve as potential source to. increase the levels of insect resistance in cultivated pulse crops. In this study, arcelin (Arl) gene expression was screened in seven stored product insect pest resistant wild pulse varieties using real time RT-qPCR. Arcelin gene specific real time PCR primers were synthesized from arcelin mRNA sequence of the wild pulse variety, Lablab purpureus. The results revealed different levels of arcelin gene expression in the tested varieties. Canavalia virosa registered significantly high content indicating its suitability for utilization of arcelin gene in developing stored product insect pest resistance with other cultivated pulses.

  3. Culture-independent identification and quantification of Gallibacterium anatis (G. anatis) by real-time quantitative PCR

    DEFF Research Database (Denmark)

    Wang, Chong; Robles, Francisco; Ramirez, Saul

    2016-01-01

    Gallibacterium is a genus within the family Pasteurellaceae characterized by a high level of phenotypic and genetic diversity. No diagnostic method has yet been described, which allows species-specific identification of Gallibacterium anatis. The aim of this study was to develop a real...... published conventional PCR method and culture-based identification, respectively. The detection rates were 97%, 78% and 34% for the current qPCR, the conventional PCR and the culture-based identification method, respectively. The qPCR assay was able to detect the gene gyrB in serial dilutions of 10......-time quantitative PCR (qPCR) method allowing species-specific identification and quantification of G. anatis. A G. anatis specific DNA sequence was identified in the gyrase subunit B gene (gyrB) and used to design a TaqMan probe and corresponding primers. The specificity of the assay was tested on 52 bacterial...

  4. Development and validation of a real-time PCR for Chlamydia suis diagnosis in swine and humans.

    Directory of Open Access Journals (Sweden)

    Kristien De Puysseleyr

    Full Text Available Pigs are the natural host for Chlamydia suis, a pathogen which is phylogenetically highly related to the human pathogen C. trachomatis. Chlamydia suis infections are generally treated with tetracyclines. In 1998, tetracyline resistant C. suis strains emerged on U.S. pig farms and they are currently present in the Belgian, Cypriote, German, Israeli, Italian and Swiss pig industry. Infections with tetracycline resistant C. suis strains are mainly associated with severe reproductive failure leading to marked economical loss. We developed a sensitive and specific TaqMan probe-based C. suis real-time PCR for examining clinical samples of both pigs and humans. The analytical sensitivity of the real-time PCR is 10 rDNA copies/reaction without cross-amplifying DNA of other Chlamydia species. The PCR was successfully validated using conjunctival, pharyngeal and stool samples of slaughterhouse employees, as well as porcine samples from two farms with evidence of reproductive failure and one farm without clinical disease. Chlamydia suis was only detected in diseased pigs and in the eyes of humans. Positive humans had no clinical complaints. PCR results were confirmed by culture in McCoy cells. In addition, Chlamydia suis isolates were also examined by the tet(C PCR, designed for demonstrating the tetracycline resistance gene tet(C. The tet(C gene was only present in porcine C. suis isolates.

  5. Matrix approach to the simultaneous detection of multiple potato pathogens by real-time PCR.

    Science.gov (United States)

    Nikitin, M M; Statsyuk, N V; Frantsuzov, P A; Dzhavakhiya, V G; Golikov, A G

    2018-03-01

    Create a method for highly sensitive, selective, rapid and easy-to-use detection and identification of economically significant potato pathogens, including viruses, bacteria and oomycetes, be it single pathogen, or a range of various pathogens occurring simultaneously. Test-systems for real-time PCR, operating in the unified amplification regime, have been developed for Phytophthora infestans, Pectobacterium atrosepticum, Dickeya dianthicola, Dickeya solani, Ralstonia solanacearum, Pectobacterium carotovorum, Clavibacter michiganensis subsp. sepedonicus, potato viruses Y (ordinary and necrotic forms as well as indiscriminative test system, detecting all forms), A, X, S, M, potato leaf roll virus, potato mop top virus and potato spindle tuber viroid. The test-systems (including polymerase and revertase) were immobilized and lyophilized in miniature microreactors (1·2 μl) on silicon DNA/RNA microarrays (micromatrices) to be used with a mobile AriaDNA ® amplifier. Preloaded 30-reaction micromatrices having shelf life of 3 and 6 months (for RNA- and DNA-based pathogens, respectively) at room temperature with no special conditions were successfully tested on both reference and field samples in comparison with traditional ELISA and microbiological methods, showing perfect performance and sensitivity (1 pg). The accurate, rapid and user-friendly diagnostic system in a micromatrix format may significantly contribute to pathogen screening and phytopathological studies. © 2018 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  6. Implementation of polymerase chain reaction (PCR and Real-Time PCR in quick identification of bovine herpesvirus 1

    Directory of Open Access Journals (Sweden)

    Milić Nenad

    2010-01-01

    Full Text Available Examinations were performed on 65 samples of nasal smeas taken from calves and young cows with clinical symptoms of respiratory infection to determine the presence of the bovine herpes virus 1 using parallel implementation of molecular and standard methods of virological diagnostics. The appearance of a cytopathogenic effect (CPE was not established in inoculated cell lines 24h, 48h and 72h following inoculation, or after two successive passages of the examined material sample through these cell lines. The application of polymerize chain reaction (PCR using a primer for glucoprotein B and thymidine - kinasis, established the presence of bovine herpes virus 1 nucleic acid in one sample of a bovine nasal smear, while the presence of this virus was established in three samples in an examination of the nasal smear samples using the Real-Time PCR method.

  7. Effect of ionizing radiation on the quantitative detection of Salmonella using real-time PCR

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sangyong; Jung, Jinwoo [Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kim, Minjeong; Ryu, Sangryeol [Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921 (Korea, Republic of); Kim, Dongho [Radiation Research Center for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: fungikim@kaeri.re.kr

    2008-09-15

    Food irradiation is an economically viable technology for inactivating foodborne pathogens, but irradiation can mask pathogens in unhygienically prepared food. The aim of this study was to investigate the effect of irradiation treatment on the detection of Salmonella using real-time PCR. Three commercially available kits were tested, of which the InstaGene Matrix procedure was most effective in preparing template DNA from Salmonella exposed to radiation in broth culture. The minimum level of detection by real-time PCR combined with InstaGene Matrix was 3 log units of Salmonella per milliliter. However, when pure cultures of Salmonella were irradiated at 3 and 5 kGy, the cycle threshold (C{sub T}) increased 1-1.5-fold compared to irradiation at 0 and 1 kGy. This indicated that irradiation treatment may result in an underestimation of bacterial counts due to radiation-induced DNA lesions. We also compared C{sub T} values in inoculated chicken homogenates before and after irradiation, which in this model caused a 1.3-3.3-fold underestimation of bacterial counts with respect to irradiation dose.

  8. Using Real-Time PCR as a tool for monitoring the authenticity of commercial coffees.

    Science.gov (United States)

    Ferreira, Thiago; Farah, Adriana; Oliveira, Tatiane C; Lima, Ivanilda S; Vitório, Felipe; Oliveira, Edna M M

    2016-05-15

    Coffee is one of the main food products commercialized in the world. Its considerable market value among food products makes it susceptible to adulteration, especially with cereals. Therefore, the objective of this study was to develop a method based on Real-Time Polymerase Chain Reaction (PCR) for detection of cereals in commercial ground roast and soluble coffees. After comparison with standard curves obtained by serial dilution of DNA extracted from barley, corn and rice, the method was sensitive and specific to quantify down to 0.6 pg, 14 pg and 16 pg of barley, corn and rice DNA, respectively. To verify the applicability of the method, 30 commercial samples obtained in different countries were evaluated and those classified as gourmets or superior did not present the tested cereals DNA. However, barley was detected in various traditional (cheaper) samples from South America. In addition, corn and rice were also detected in different samples. Real-Time PCR showed to be suitable for detection of food adulterants in commercial ground roast and soluble coffees. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Neutralization Assay for Zika and Dengue Viruses by Use of Real-Time-PCR-Based Endpoint Assessment.

    Science.gov (United States)

    Wilson, Heather L; Tran, Thomas; Druce, Julian; Dupont-Rouzeyrol, Myrielle; Catton, Michael

    2017-10-01

    The global spread and infective complications of Zika virus (ZKV) and dengue virus (DENV) have made them flaviviruses of public health concern. Serological diagnosis can be challenging due to antibody cross-reactivity, particularly in secondary flavivirus infections or when there is a history of flavivirus vaccination. The virus neutralization assay is considered to be the most specific assay for measurement of anti-flavivirus antibodies. This study describes an assay where the neutralization endpoint is measured by real-time PCR, providing results within 72 h. It demonstrated 100% sensitivity (24/24 ZKV and 15/15 DENV) and 100% specificity (11/11 specimens) when testing well-characterized sera. In addition, the assay was able to determine the correct DENV serotype in 91.7% of cases. The high sensitivity and specificity of the real-time PCR neutralization assay makes it suitable to use as a confirmatory test for sera that are reactive in commercial IgM/IgG enzyme immunoassays. Results are objective and the PCR-based measurement of the neutralization endpoint lends itself to automation so that throughput may be increased in times of high demand. Copyright © 2017 American Society for Microbiology.

  10. Rapid detection and typing of pathogenic nonpneumophila Legionella spp. isolates using a multiplex real-time PCR assay.

    Science.gov (United States)

    Benitez, Alvaro J; Winchell, Jonas M

    2016-04-01

    We developed a single tube multiplex real-time PCR assay that allows for the rapid detection and typing of 9 nonpneumophila Legionella spp. isolates that are clinically relevant. The multiplex assay is capable of simultaneously detecting and discriminating L. micdadei, L. bozemanii, L. dumoffii, L. longbeachae, L. feeleii, L. anisa, L. parisiensis, L. tucsonensis serogroup (sg) 1 and 3, and L. sainthelensis sg 1 and 2 isolates. Evaluation of the assay with nucleic acid from each of these species derived from both clinical and environmental isolates and typing strains demonstrated 100% sensitivity and 100% specificity when tested against 43 other Legionella spp. Typing of L. anisa, L. parisiensis, and L. tucsonensis sg 1 and 3 isolates was accomplished by developing a real-time PCR assay followed by high-resolution melt (HRM) analysis targeting the ssrA gene. Further typing of L. bozemanii, L. longbeachae, and L. feeleii isolates to the serogroup level was accomplished by developing a real-time PCR assay followed by HRM analysis targeting the mip gene. When used in conjunction with other currently available diagnostic tests, these assays may aid in rapidly identifying specific etiologies associated with Legionella outbreaks, clusters, sporadic cases, and potential environmental sources. Published by Elsevier Inc.

  11. Mutation Scanning in a Single and a Stacked Genetically Modified (GM) Event by Real-Time PCR and High Resolution Melting (HRM) Analysis

    Science.gov (United States)

    Ben Ali, Sina-Elisabeth; Madi, Zita Erika; Hochegger, Rupert; Quist, David; Prewein, Bernhard; Haslberger, Alexander G.; Brandes, Christian

    2014-01-01

    Genetic mutations must be avoided during the production and use of seeds. In the European Union (EU), Directive 2001/18/EC requires any DNA construct introduced via transformation to be stable. Establishing genetic stability is critical for the approval of genetically modified organisms (GMOs). In this study, genetic stability of two GMOs was examined using high resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) employing Scorpion primers for amplification. The genetic variability of the transgenic insert and that of the flanking regions in a single oilseed rape variety (GT73) and a stacked maize (MON88017 × MON810) was studied. The GT73 and the 5' region of MON810 showed no instabilities in the examined regions. However; two out of 100 analyzed samples carried a heterozygous point mutation in the 3' region of MON810 in the stacked variety. These results were verified by direct sequencing of the amplified PCR products as well as by sequencing of cloned PCR fragments. The occurrence of the mutation suggests that the 5' region is more suitable than the 3' region for the quantification of MON810. The identification of the single nucleotide polymorphism (SNP) in a stacked event is in contrast to the results of earlier studies of the same MON810 region in a single event where no DNA polymorphism was found. PMID:25365178

  12. Legionellosis and Lung Abscesses: Contribution of Legionella Quantitative Real-Time PCR to an Adapted Followup

    Directory of Open Access Journals (Sweden)

    G. Descours

    2013-01-01

    Full Text Available We report a case of severe Legionnaires' disease (LD complicated by a lung abscess in an immunocompetent patient who required ECMO therapy and thoracic surgery. The results of repeated Legionella quantitative real-time PCR performed on both sera and respiratory samples correlated with the LD severity and the poor clinical outcome. Moreover, the PCR allowed for the detection of Legionella DNA in the lung abscess specimen, which was negative when cultured for Legionella. This case report provides a logical basis for further investigations to examine whether the Legionella quantitative PCR could improve the assessment of LD severity and constitute a prognostic marker.

  13. Real-time RT-PCR high-resolution melting curve analysis and multiplex RT-PCR to detect and differentiate grapevine leafroll-associated associated virus 3 variant groups I, II, III and VI

    Directory of Open Access Journals (Sweden)

    Bester Rachelle

    2012-09-01

    Full Text Available Abstract Background Grapevine leafroll-associated virus 3 (GLRaV-3 is the main contributing agent of leafroll disease worldwide. Four of the six GLRaV-3 variant groups known have been found in South Africa, but their individual contribution to leafroll disease is unknown. In order to study the pathogenesis of leafroll disease, a sensitive and accurate diagnostic assay is required that can detect different variant groups of GLRaV-3. Methods In this study, a one-step real-time RT-PCR, followed by high-resolution melting (HRM curve analysis for the simultaneous detection and identification of GLRaV-3 variants of groups I, II, III and VI, was developed. A melting point confidence interval for each variant group was calculated to include at least 90% of all melting points observed. A multiplex RT-PCR protocol was developed to these four variant groups in order to assess the efficacy of the real-time RT-PCR HRM assay. Results A universal primer set for GLRaV-3 targeting the heat shock protein 70 homologue (Hsp70h gene of GLRaV-3 was designed that is able to detect GLRaV-3 variant groups I, II, III and VI and differentiate between them with high-resolution melting curve analysis. The real-time RT-PCR HRM and the multiplex RT-PCR were optimized using 121 GLRaV-3 positive samples. Due to a considerable variation in melting profile observed within each GLRaV-3 group, a confidence interval of above 90% was calculated for each variant group, based on the range and distribution of melting points. The intervals of groups I and II could not be distinguished and a 95% joint confidence interval was calculated for simultaneous detection of group I and II variants. An additional primer pair targeting GLRaV-3 ORF1a was developed that can be used in a subsequent real-time RT-PCR HRM to differentiate between variants of groups I and II. Additionally, the multiplex RT-PCR successfully validated 94.64% of the infections detected with the real-time RT-PCR HRM

  14. Rapid and accurate identification by real-time PCR of biotoxin-producing dinoflagellates from the family gymnodiniaceae.

    Science.gov (United States)

    Smith, Kirsty F; de Salas, Miguel; Adamson, Janet; Rhodes, Lesley L

    2014-03-07

    The identification of toxin-producing dinoflagellates for monitoring programmes and bio-compound discovery requires considerable taxonomic expertise. It can also be difficult to morphologically differentiate toxic and non-toxic species or strains. Various molecular methods have been used for dinoflagellate identification and detection, and this study describes the development of eight real-time polymerase chain reaction (PCR) assays targeting the large subunit ribosomal RNA (LSU rRNA) gene of species from the genera Gymnodinium, Karenia, Karlodinium, and Takayama. Assays proved to be highly specific and sensitive, and the assay for G. catenatum was further developed for quantification in response to a bloom in Manukau Harbour, New Zealand. The assay estimated cell densities from environmental samples as low as 0.07 cells per PCR reaction, which equated to three cells per litre. This assay not only enabled conclusive species identification but also detected the presence of cells below the limit of detection for light microscopy. This study demonstrates the usefulness of real-time PCR as a sensitive and rapid molecular technique for the detection and quantification of micro-algae from environmental samples.

  15. Citrus huanglongbing: validation of Real-Time PCR (qPCR for the detection of Candidatus Liberibacter asiaticus and Candidatus Liberibacter americanus in Colombia

    Directory of Open Access Journals (Sweden)

    Jorge Evelio Ángel

    2014-12-01

    Full Text Available Citrus huanglongbing (HLB is the most destructive citrus disease. Two of the three known HLB-associated Candidatus Liberibacter species were recently found to be present in the Americas. In this study, eggs, nymphs and adults of Diaphorina citri Kuwayama (Hemiptera: Liviidae and suspect citrus plant materials were collected in 25 municipalities in the departments of Cundinamarca, Santander, Valle del Cauca, Meta and Quindio (Colombia. The detection sensitivity, specificity and assay performance of the 16S rDNA-based real-time PCR (qPCR were validated for the field survey of the disease in Colombia. The validation confirmed the reliability and robustness of the real-time PCR method for the detection of HLB bacteria in host citrus plant tissues and the vector D. citri. The diagnosis was performed for Candidatus Liberibacter asiaticus (Ca. L. asiaticus and for Candidatus Liberibacter americanus (Ca. L. americanus on 168 citrus plant material samples and 239 insect samples. Neither Ca. L. asiaticus nor Ca. L. americanus were detected in the host plants or insects vector, confirming the absence of the disease in the citrus-producing areas of Colombia.

  16. 3D printing and milling a real-time PCR device for infectious disease diagnostics.

    Science.gov (United States)

    Mulberry, Geoffrey; White, Kevin A; Vaidya, Manjusha; Sugaya, Kiminobu; Kim, Brian N

    2017-01-01

    Diagnosing infectious diseases using quantitative polymerase chain reaction (qPCR) offers a conclusive result in determining the infection, the strain or type of pathogen, and the level of infection. However, due to the high-cost instrumentation involved and the complexity in maintenance, it is rarely used in the field to make a quick turnaround diagnosis. In order to provide a higher level of accessibility than current qPCR devices, a set of 3D manufacturing methods is explored as a possible option to fabricate a low-cost and portable qPCR device. The key advantage of this approach is the ability to upload the digital format of the design files on the internet for wide distribution so that people at any location can simply download and feed into their 3D printers for quick manufacturing. The material and design are carefully selected to minimize the number of custom parts that depend on advanced manufacturing processes which lower accessibility. The presented 3D manufactured qPCR device is tested with 20-μL samples that contain various concentrations of lentivirus, the same type as HIV. A reverse-transcription step is a part of the device's operation, which takes place prior to the qPCR step to reverse transcribe the target RNA from the lentivirus into complementary DNA (cDNA). This is immediately followed by qPCR which quantifies the target sequence molecules in the sample during the PCR amplification process. The entire process of thermal control and time-coordinated fluorescence reading is automated by closed-loop feedback and a microcontroller. The resulting device is portable and battery-operated, with a size of 12 × 7 × 6 cm3 and mass of only 214 g. By uploading and sharing the design files online, the presented low-cost qPCR device may provide easier access to a robust diagnosis protocol for various infectious diseases, such as HIV and malaria.

  17. 3D printing and milling a real-time PCR device for infectious disease diagnostics

    Science.gov (United States)

    Mulberry, Geoffrey; White, Kevin A.; Vaidya, Manjusha; Sugaya, Kiminobu

    2017-01-01

    Diagnosing infectious diseases using quantitative polymerase chain reaction (qPCR) offers a conclusive result in determining the infection, the strain or type of pathogen, and the level of infection. However, due to the high-cost instrumentation involved and the complexity in maintenance, it is rarely used in the field to make a quick turnaround diagnosis. In order to provide a higher level of accessibility than current qPCR devices, a set of 3D manufacturing methods is explored as a possible option to fabricate a low-cost and portable qPCR device. The key advantage of this approach is the ability to upload the digital format of the design files on the internet for wide distribution so that people at any location can simply download and feed into their 3D printers for quick manufacturing. The material and design are carefully selected to minimize the number of custom parts that depend on advanced manufacturing processes which lower accessibility. The presented 3D manufactured qPCR device is tested with 20-μL samples that contain various concentrations of lentivirus, the same type as HIV. A reverse-transcription step is a part of the device’s operation, which takes place prior to the qPCR step to reverse transcribe the target RNA from the lentivirus into complementary DNA (cDNA). This is immediately followed by qPCR which quantifies the target sequence molecules in the sample during the PCR amplification process. The entire process of thermal control and time-coordinated fluorescence reading is automated by closed-loop feedback and a microcontroller. The resulting device is portable and battery-operated, with a size of 12 × 7 × 6 cm3 and mass of only 214 g. By uploading and sharing the design files online, the presented low-cost qPCR device may provide easier access to a robust diagnosis protocol for various infectious diseases, such as HIV and malaria. PMID:28586401

  18. Molecular methods (digital PCR and real-time PCR) for the quantification of low copy DNA of Phytophthora nicotianae in environmental samples.

    Science.gov (United States)

    Blaya, Josefa; Lloret, Eva; Santísima-Trinidad, Ana B; Ros, Margarita; Pascual, Jose A

    2016-04-01

    Currently, real-time polymerase chain reaction (qPCR) is the technique most often used to quantify pathogen presence. Digital PCR (dPCR) is a new technique with the potential to have a substantial impact on plant pathology research owing to its reproducibility, sensitivity and low susceptibility to inhibitors. In this study, we evaluated the feasibility of using dPCR and qPCR to quantify Phytophthora nicotianae in several background matrices, including host tissues (stems and roots) and soil samples. In spite of the low dynamic range of dPCR (3 logs compared with 7 logs for qPCR), this technique proved to have very high precision applicable at very low copy numbers. The dPCR was able to detect accurately the pathogen in all type of samples in a broad concentration range. Moreover, dPCR seems to be less susceptible to inhibitors than qPCR in plant samples. Linear regression analysis showed a high correlation between the results obtained with the two techniques in soil, stem and root samples, with R(2) = 0.873, 0.999 and 0.995 respectively. These results suggest that dPCR is a promising alternative for quantifying soil-borne pathogens in environmental samples, even in early stages of the disease. © 2015 Society of Chemical Industry.

  19. Detection of Strongylus vulgaris in equine faecal samples by real-time PCR and larval culture - method comparison and occurrence assessment.

    Science.gov (United States)

    Kaspar, A; Pfister, K; Nielsen, M K; Silaghi, C; Fink, H; Scheuerle, M C

    2017-01-11

    Strongylus vulgaris has become a rare parasite in Germany during the past 50 years due to the practice of frequent prophylactic anthelmintic therapy. To date, the emerging development of resistance in Cyathostominae and Parascaris spp. to numerous equine anthelmintics has changed deworming management and the frequency of anthelmintic usage. In this regard, reliable detection of parasitic infections, especially of the highly pathogenic S. vulgaris is essential. In the current study, two diagnostic methods for the detection of infections with S. vulgaris were compared and information on the occurrence of this parasite in German horses was gained. For this purpose, faecal samples of 501 horses were screened for S. vulgaris with real-time PCR and an additional larval culture was performed in samples of 278 horses. A subset of 26 horses underwent multiple follow-up examinations with both methods in order to evaluate both the persistence of S. vulgaris infections and the reproducibility of each diagnostic method. The real-time PCR revealed S. vulgaris-DNA in ten of 501 investigated equine samples (1.9%). The larval culture demonstrated larvae of S. vulgaris in three of the 278 samples (1.1%). A direct comparison of the two methods was possible in 321 samples including 43 follow-up examinations with the result of 11 S. vulgaris-positive samples by real-time PCR and 4 S. vulgaris-positive samples by larval culture. The McNemar's test (p-value = 0.016) revealed a significant difference and the kappa values (0.525) showed a moderate agreement between real-time PCR and larval culture. The real-time PCR detected a significantly higher proportion of positives of S. vulgaris compared to larval culture and should thus be considered as a routine diagnostic method for the detection of S. vulgaris in equine samples.

  20. CDK4 amplification predicts recurrence of well-differentiated liposarcoma of the abdomen.

    Directory of Open Access Journals (Sweden)

    Sanghoon Lee

    Full Text Available The absence of CDK4 amplification in liposarcomas is associated with favorable prognosis. We aimed to identify the factors associated with tumor recurrence in patients with well-differentiated (WD and dedifferentiated (DD liposarcomas.From 2000 to 2010, surgical resections for 101 WD and DD liposarcomas were performed. Cases in which complete surgical resections with curative intent were carried out were selected. MDM2 and CDK4 gene amplification were analyzed by quantitative real-time polymerase chain reaction (Q-PCR.There were 31 WD and 17 DD liposarcomas. Locoregional recurrence was observed in 11 WD and 3 DD liposarcomas. WD liposarcomas showed better patient survival compared to DD liposarcomas (P<0.05. Q-PCR analysis of the liposarcomas revealed the presence of CDK4 amplification in 44 cases (91.7% and MDM2 amplification in 46 cases (95.8%. WD liposarcomas with recurrence after surgical resection had significantly higher levels of CDK4 amplification compared to those without recurrence (P = 0.041. High level of CDK4 amplification (cases with CDK4 amplification higher than the median 7.54 was associated with poor recurrence-free survival compared to low CDK4 amplification in both univariate (P = 0.012 and multivariate analyses (P = 0.020.Level of CDK4 amplification determined by Q-PCR was associated with the recurrence of WD liposarcomas after surgical resection.

  1. Development of a duplex real-time RT-PCR for the simultaneous detection and differentiation of Theiler's murine encephalomyelitis virus and rat theilovirus.

    Science.gov (United States)

    Yuan, Wen; Wang, Jing; Xu, Fengjiao; Huang, Bihong; Lian, Yuexiao; Rao, Dan; Yin, Xueqin; Wu, Miaoli; Zhu, Yujun; Zhang, Yu; Huang, Ren; Guo, Pengju

    2016-10-01

    Theiler's murine encephalomyelitis virus (TMEV) and rat theilovirus (RTV), the member of the genus Cardiovirus, are widespread in laboratory mice and rats, and are potential contaminants of biological materials. Cardioviruses infection may cause serious complications in biomedical research. To improve the efficiency of routine screening for Cardioviruses infection, a duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was developed for simultaneous detection and differentiation of TMEV and RTV. The duplex assay was specific for reference strains of TMEV and RTV, and no cross-reaction was found with seven other rodent viruses. The limits of detection of both TMEV and RTV were 4×10(1) copies RNA/reaction. Reproducibility was estimated using standard dilutions, with coefficients of variation duplex real-time RT-PCR and conventional RT-PCR. For 439 clinical samples,95 samples were positive for TMEV and 72 samples were positive for RTV using duplex real-time RT-PCR approach, whereas only 77 samples were positive for TMEV and 66 samples were positive for RTV when conventional RT-PCR was applied. Mixed infections were found in 20 samples when analyzed by conventional RT-PCR whereas 30 samples were found to be mixed infection when duplex real-time RT-PCR was applied. This duplex assay provides a useful tool for routine health monitoring and screening of contaminated biological materials of these two viruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Design of primers for pertussis diagnosis by Real Time PCR and determination of its sensitivity and specificity in comparison with commercial kits.

    Directory of Open Access Journals (Sweden)

    Hamidreza Monavari

    2013-12-01

    Results: Performance of our home made primers for detecting pertussis using Real Time PCR in comparison with those by commercial kit was acceptable based on diagnostic classical guidance (WHO and the (CDC. Conclusions: Real time PCR test with new primers in comparison with culture techniques is more suitable, high sensitivity and can provide more informative values for pertussis detection.

  3. Evaluation of dual target-specific real-time PCR for the detection of Kingella kingae in a Danish paediatric population

    DEFF Research Database (Denmark)

    de Knegt, Victoria Elizabeth; Kristiansen, Gitte Qvist; Schønning, Kristian

    2017-01-01

    BACKGROUND: We aimed to evaluate the relevance of dual target real-time polymerase chain (PCR) assays targeting the rtxA and cpn60 genes of the paediatric pathogen Kingella kingae. We also studied for the first time the clinical and epidemiological features of K. kingae infections in a Danish pop......-value: peak in autumn. CONCLUSION: Dual target-specific real-time PCR markedly improved the detection of K. kingae in clinical specimens when compared to culture methods....

  4. Quality control for quantitative PCR based on amplification compatibility test

    Czech Academy of Sciences Publication Activity Database

    Tichopád, Aleš; Bar, T.; Pecen, Ladislav; Kitchen, R.R.; Kubista, Mikael; Pfaffl, M.W.

    2010-01-01

    Roč. 50, č. 4 (2010), s. 308-312 ISSN 1046-2023 R&D Projects: GA AV ČR IAA500520809; GA AV ČR IAA500970904 Institutional research plan: CEZ:AV0Z50520701 Keywords : Quantitative PCR * Quality control * Amplification efficiency Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.527, year: 2010

  5. Monitoring bacterial population dynamics using real-time PCR during the bioremediation of crude-oil-contaminated soil.

    Science.gov (United States)

    Baek, Kyung-Hwa; Yoon, Byung-Dae; Cho, Dae-Hyun; Kim, Byung-Hyuk; Oh, Hee-Mock; Kim, Hee-Sik

    2009-04-01

    We evaluated the activity and abundance of the crude oil- degrading bacterium Nocardia sp. H17-1 during bioremediation of oil-contaminated soil, using real-time PCR. The total petroleum hydrocarbon (TPH) degradation rate constants (k) of the soils treated with and without H17-1 were 0.103 d-1 and 0.028 d-1, respectively. The degradation rate constant was 3.6 times higher in the soil with H17-1 than in the soil without H17-1. In order to detect and quantify the Nocardia sp. H17-1 in soil samples, we quantified the genes encoding 16S ribosomal RNA (16S rRNA), alkane monooxygenase (alkB4), and catechol 2,3-dioxygenase (23CAT) with real-time PCR using SYBR green. The amounts of H17-1 16S rRNA and alkB4 detected increased rapidly up to 1,000-folds for the first 10 days, and then continued to increase only slightly or leveled off. However, the abundance of the 23CAT gene detected in H17-1-treated soil, where H17-1 had neither the 23CAT gene for the degradation of aromatic hydrocarbons nor the catechol 2,3-dioxygenase activity, did not differ significantly from that of the untreated soil (alpha=0.05, p>0.22). These results indicated that H17-1 is a potential candidate for the bioaugmentation of alkane-contaminated soil. Overall, we evaluated the abundance and metabolic activity of the bioremediation strain H17-1 using real-time PCR, independent of cultivation.

  6. Quantitation of Marek's disease and chicken anemia viruses in organs of experimentally infected chickens and commercial chickens by multiplex real-time PCR.

    Science.gov (United States)

    Davidson, Irit; Raibshtein, I; Al-Touri, A

    2013-06-01

    The worldwide distribution of chicken anemia virus (CAV) and Marek's disease virus (MDV) is well documented. In addition to their economic significance in single- or dual-virus infections, the two viruses can often accompany various other pathogens and affect poultry health either directly, by causing tumors, anemia, and delayed growth, or indirectly, by aggravating other diseases, as a result of their immunosuppressive effects. After a decade of employing the molecular diagnosis of those viruses, which replaced conventional virus isolation, we present the development of a real-time multiplex PCR for the simultaneous detection of both viruses. The real-time PCRs for MDV and for CAV alone are more sensitive than the respective end-point PCRs. In addition, the multiplex real-time shows a similar sensitivity when compared to the single real-time PCR for each virus. The newly developed real-time multiplex PCR is of importance in terms of the diagnosis and detection of low copies of each virus, MDV and CAV in single- and in multiple-virus infections, and its applicability will be further evaluated.

  7. Quantification of Campylobacter spp. in chicken rinse samples by using flotation prior to real-time PCR

    DEFF Research Database (Denmark)

    Wolffs, Petra; Norling, Börje; Hoorfar, Jeffrey

    2005-01-01

    Real-time PCR is fast, sensitive, specific, and can deliver quantitative data; however, two disadvantages are that this technology is sensitive to inhibition by food and that it does not distinguish between DNA originating from viable, viable nonculturable (VNC), and dead cells. For this reason......, real-time PCR has been combined with a novel discontinuous buoyant density gradient method, called flotation, in order to allow detection of only viable and VNC cells of thermotolerant campylobacters in chicken rinse samples. Studying the buoyant densities of different Campylobacter spp. showed...... enrichment and amounts as low as 2.6 X 10(3) CFU/ml could be quantified. Furthermore, subjecting viable cells and dead cells to flotation showed that viable cells were recovered after flotation treatment but that dead cells and/or their DNA was not detected. Also, when samples containing VNC cells mixed...

  8. Amplification of nonspecific products in quantitative polymerase chain reactions (qPCR)

    NARCIS (Netherlands)

    Ruiz-Villalba, Adrián; van Pelt-Verkuil, Elizabeth; Gunst, Quinn D.; Ruijter, Jan M.; van den Hoff, Maurice J. B.

    2017-01-01

    Quantitative PCR allows the precise measurement of DNA concentrations and is generally considered to be straightforward and trouble free. However, a survey with 93 validated assays for genes in the Wnt-pathway showed that the amplification of nonspecific products occurs frequently and is unrelated

  9. Detection of Fusobacterium necrophorum subsp funduliforme in tonsillitis in young adults by real-time PCR

    DEFF Research Database (Denmark)

    Jensen, Anders; Hagelskjær Kristensen, Lena; Prag, Jørgen

    2007-01-01

    Throat swabs from 61 patients, aged 18-32 years, with non-streptococcal tonsillitis (NST) and 92 healthy controls were examined for the presence of Fusobacterium necrophorum DNA using a novel TaqMan-based real-time quantitative PCR assay for F. necrophorum subspecies. The assay was based on the g...

  10. Novel methods of cytokine detection: Real-time PCR, ELISPOT, and intracellular cytokine staining

    Directory of Open Access Journals (Sweden)

    Eliza Turlej

    2009-05-01

    Full Text Available Cytokines are small hormone-like proteins that play important roles in immune system control. Cytokines regulate the proliferation and differentiation of cells and hematopoiesis and act as mediators in the inflammatory reaction. Changes in cytokine levels are found in many diseases, such as sepsis, bowel inflammatory disease, autoimmune diseases, as well as graft-versus-host disease. Cytokines levels can be detected using in vivo, in vitro, and ex vivo techniques. The level of cytokine produced can be measured by immunoenzymatic test (ELISA in supernatant after cell culture with the addition of stimulant and in plasma by techniques that measure the level of cytokine secretion in cells (e.g. immunohistochemical staining, ELISPOT, and intracellular cytokine staining, and by molecular biological methods (RPA, real-time PCR, in situ hybridization, and Northern blot. Detection of cytokine mRNA in tissues is useful in the direct determination of heterogenic populations of cytokine-producing cells. Nowadays the most frequently used methods for measuring cytokine level are ELISPOT, intracellular cytokine staining with flow cytometry detection, and real-time PCR. These methods have an important clinical role in vaccine efficacy, in viral, bacterial, and verminous diagnostics, and in determining the efficacy of cancer treatment.

  11. Galactomannan and Real-Time PCR in the diagnosis of invasive Aspergillosis: preliminary data

    Directory of Open Access Journals (Sweden)

    Cristina Pedrotti

    2014-03-01

    Full Text Available The diagnosis of invasive aspergillosis is notoriously difficult. The standard culture-based methods have shown considerable limitations in performance. For this reason, non-culture methods have been increasingly employed for the diagnosis of invasive aspergillosis, and, among them, the methods based on Real-Time polymerase chain reaction (RT-PCR. In this study we assess the contribution in lowering diagnosis errors provided by the RT-PCR method when run alongside other methods. We analyzed 23 biological samples, 14 serum samples, and 9 bronchoalveolar lavage samples (BAL from 10 immunocompromised patients who were selected according to EORTC/MSG criteria (European Organization for Research and Treatment of Cancer/Mycoses Study Group. On the serum sample we searched the galactomannan (GM (Platelia Aspergillus® and the fungal genome (MycAssayTMAspergillus; the BAL samples were subjected also to the culture tests. In 11 serum samples the results showed concordance between GM and RT–PCR tests, while in 3 samples we report discordance: 2 results were GM positive and RT-PCR negative, and 1 results GM negative and RT-PCR indeterminate. In 5 BAL samples the results showed concordance between the two methods, while 4 were GM positive and RT-PCR negative. The data, although still preliminary, suggest an increased accuracy in the diagnosis of suspected invasive aspergillosis when employing both RT-PCR and GM tests given that the RT-PCR test eliminates the false positive results of the GM test. The PCR methods require, however, further applications of this type of diagnostic because of the severe limit given by the lack of standardization.

  12. Valutazione analitica e applicazione clinica di un metodo Real Time PCR per il dosaggio della carica virale di Epstein-Barr virus

    Directory of Open Access Journals (Sweden)

    Maria Teresa Bortolin

    2004-03-01

    Full Text Available We assessed the performance of a Real Time PCR assay to be used for EBV viremia evaluation in clinical specimens. Sensitivity and intra-/interassay reproducibility were evaluated by using DNA serial dilutions from the Namalwa cell line. EBV DNA was analyzed in serum samples from 39 patients (pts with undifferentiated type nasopharyngeal carcinoma (UCNT, from 5 infectious mononucleosis (IM pts and from 18 healthy donors. Results obtained by Real Time PCR were compared with those obtained by quantitative competitive (QC-PCR assay.We thereafter measured the dynamics of EBV DNA load in 5 HIV-seropositive (HIV+ and 9 HIV-seronegative (HIV-, as controls pts with lymphoma, treated with high-dose chemotherapy (HCT followed by autologus stem-cell transplantation (ASCT. We found a sensitivity of 100% at 10 EBV copies. The Spearman correlation for both the intra- and the interassay reproducibility was statistically significant (r=0.99; p20 copies/reaction and >30% for EBV viral loads <20 copies/reaction. No EBV DNA was detected in healthy donors. Higher EBV DNA loads were found by Real Time PCR (range 1173-46328 copies/ml than by QC-PCR (range 450-5000 copies/ml (p<0.05. 54% of UCNT and 100% of IM pts were EBV DNA positive. Two HIV+(40% and 2 HIV-(22% pts with lymphoma had detectable EBV viremia during the follow-up. The Real Time PCR is a suitable technique for high-throughput screening and frequent monitoring of patients at risk for developing EBV-associated diseases.

  13. Quantitative analysis of the dystrophin gene by real-time PCR

    Directory of Open Access Journals (Sweden)

    Maksimovic Nela

    2012-01-01

    Full Text Available Duchenne and Becker muscular dystrophy (DMD/BMD are severe X-linked neuromuscular disorders caused by mutations in the dystrophin gene. Our aim was to optimize a quantitative real-time PCR method based on SYBR® Green I chemistry for routine diagnostics of DMD/BMD deletion carriers. Twenty female relatives of DMD/BMD patients with previously detected partial gene deletions were studied. The relative quantity of the target exons was calculated by a comparative threshold cycle method (ΔΔCt. The carrier status of all subjects was successfully determined. The gene dosage ratio for non-carriers was 1.07±0.20, and for carriers 0.56±0.11. This assay proved to be simple, rapid, reliable and cost-effective.

  14. A real-time loop-mediated isothermal amplification assay for rapid detection of Shigella species.

    Science.gov (United States)

    Liew, P S; Teh, C S J; Lau, Y L; Thong, K L

    2014-12-01

    Shigellosis is a foodborne illness caused by the genus Shigella and is an important global health issue. The development of effective techniques for rapid detection of this pathogen is essential for breaking the chain of transmission. Therefore, we have developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the invasion plasmid antigen H (ipaH) gene to rapidly detect Shigella species. This assay could be performed in 90 min at an optimal temperature of 64ºC, with endpoint results visualized directly. Notably, the method was found to be more sensitive than conventional PCR. Indeed, the detection limit for the LAMP assay on pure bacterial cultures was 5.9 x 10(5) CFU/ml, while PCR displayed a limit of 5.9 x 10(7) CFU/ml. In spiked lettuce samples, the sensitivity of the LAMP assay was 3.6 x 10(4) CFU/g, whereas PCR was 3.6 x 10(5) CFU/g. Overall, the assay accurately identified 32 Shigella spp. with one enteroinvasive Escherichia coli displaying positive reaction while the remaining 32 non-Shigella strains tested were negative.

  15. Detection of polyoma virus in brain tissue of patients with progressive multifocal leukoencephalopathy by real-time PCR and pyrosequencing.

    Science.gov (United States)

    Beck, Rose C; Kohn, Debra J; Tuohy, Marion J; Prayson, Richard A; Yen-Lieberman, Belinda; Procop, Gary W

    2004-03-01

    We evaluated 2 methods, a LightCycler PCR assay and pyrosequencing for the detection of the JC polyoma virus (JCV) in fixed brain tissue of 10 patients with and 3 control patients without progressive multifocal leukoencephalopathy (PML). Nucleic acid extraction was performed after deparaffinization and proteinase K digestion. The LightCycler assay differentiates the BK virus (BKV), JCV, and SV40 using melt curve analysis. Conventional PCR was used with the same primers to generate products for pyrosequencing. Two sequencing primers were used that differentiate the polyoma viruses. Seven of 11 biopsies (1 patient had 2 biopsies) with PML were positive for JCV by real-time PCR and/or PCR/pyrosequencing. Three of 4 remaining biopsies were positive by real-time PCR but had melting points between JCV and SV40. The 4 specimens that were negative or atypical by LightCycler PCR were positive by traditional PCR, but 1 had an amplicon of lower molecular weight by gel electrophoresis. These were shown to represent JCV by at least 1 of the 2 pyrosequencing primers. The biopsies from patients without PML were PCR negative. Both the LightCycler and pyrosequencing assays are useful for confirming JCV in brain biopsies from patients with PML, but variant JCVs may require supplementary methods to confirm JCV infection.

  16. Detection of the tetM resistance determinant among phenotypically sensitive Ureaplasma species by a novel real-time PCR method.

    Science.gov (United States)

    Kotrotsiou, Tzimoula; Tzimoula, Kotrotsiou; Exindari, Maria; Maria, Exindari; Diza, Eudoxia; Eudoxia, Diza; Gioula, Georgia; Georgia, Gioula; Melidou, Angeliki; Angeliki, Melidou; Malisiovas, Nikolaos; Nikolaos, Malisiovas

    2015-02-01

    The study aimed to identify the proportion of tetM-positive Ureaplasma spp. isolates phenotypically susceptible to tetracycline by real-time PCR. Ureaplasma spp. strains of urogenital origin were isolated from 100 female or male adults on A7 agar plates. The presence of Ureaplasma was confirmed by the presence of urease gene by a novel real-time PCR method. Genotyping and sensitivity to tetracyclines were examined using commercial methods. The tetM gene was detected by a novel real-time PCR method especially designed for this study. Ureaplasma parvum was isolated from 87 of the specimens; Ureaplasma urealyticum, from 12; and both species were isolated from a single specimen. All isolates were phenotypically susceptible to tetracyclines. Thirty-five strains were tetM carriers; 29 (82.9%), U. parvum; 5 (14.3%), U. urealyticum; and 1 (2.9%), U. parvum/U. urealyticum. No statistically significant difference was observed between the 3 groups. Four (40%) tetM carriers were isolated from 10 symptomatic men; 11 (32.4%), from 34 symptomatic women; and 20 (35.7%), from 56 asymptomatic women. No statistically significant difference was observed between the 3 groups. The tetM determinant is detected in 35% of phenotypically susceptible to tetracycline Ureaplasma spp. Greek isolates. The use of a real-time PCR technique is particularly helpful, as it makes its detection easy; cost-effective; rapid; and, therefore, more convenient for the surveillance of the dissemination of the tetM resistance gene. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. PCR amplification of repetitive sequences as a possible approach in relative species quantification

    DEFF Research Database (Denmark)

    Ballin, Nicolai Zederkopff; Vogensen, Finn Kvist; Karlsson, Anders H

    2012-01-01

    Abstract Both relative and absolute quantifications are possible in species quantification when single copy genomic DNA is used. However, amplification of single copy genomic DNA does not allow a limit of detection as low as one obtained from amplification of repetitive sequences. Amplification...... of repetitive sequences is therefore frequently used in absolute quantification but problems occur in relative quantification as the number of repetitive sequences is unknown. A promising approach was developed where data from amplification of repetitive sequences were used in relative quantification of species...... to relatively quantify the amount of chicken DNA in a binary mixture of chicken DNA and pig DNA. However, the designed PCR primers lack the specificity required for regulatory species control....

  18. Identification of circulating miRNA biomarkers based on global quantitative real-time PCR profiling

    Directory of Open Access Journals (Sweden)

    Kang Kang

    2012-02-01

    Full Text Available Abstract MicroRNAs (miRNAs are small noncoding RNAs (18-25 nucleotides that regulate gene expression at the post-transcriptional level. Recent studies have demonstrated the presence of miRNAs in the blood circulation. Deregulation of miRNAs in serum or plasma has been associated with many diseases including cancers and cardiovascular diseases, suggesting the possible use of miRNAs as diagnostic biomarkers. However, the detection of the small amount of miRNAs found in serum or plasma requires a method with high sensitivity and accuracy. Therefore, the current study describes polymerase chain reaction (PCR-based methods for measuring circulating miRNAs. Briefly, the procedure involves four major steps: (1 sample collection and preparation; (2 global miRNAs profiling using quantitative real-time PCR (qRT-PCR; (3 data normalization and analysis; and (4 selection and validation of miRNA biomarkers. In conclusion, qRT-PCR is a promising method for profiling of circulating miRNAs as biomarkers.

  19. Molecular analysis of Leptospira spp. isolated from humans by restriction fragment length polymorphism, real-time PCR and pulsed-field gel electrophoresis.

    Science.gov (United States)

    Turk, Nenad; Milas, Zoran; Mojcec, Vesna; Ruzic-Sabljic, Eva; Staresina, Vilim; Stritof, Zrinka; Habus, Josipa; Postic, Daniele

    2009-11-01

    A total of 17 Leptospira clinical strains isolated from humans in Croatia were serologically and genetically analysed. For serovar identification, the microscopic agglutination test (MAT) and pulsed-field gel electrophoresis (PFGE) were used. To identify isolates on genomic species level, PCR-based restriction fragment length polymorphism (RFLP) and real-time PCR were performed. MAT revealed the following serogroup affinities: Grippotyphosa (seven isolates), Icterohaemorrhagiae (eight isolates) and Javanica (two isolates). RFLP of PCR products from a 331-bp-long fragment of rrs (16S rRNA gene) digested with endonucleases MnlI and DdeI and real-time PCR revealed three Leptospira genomic species. Grippotyphosa isolates belonged to Leptospira kirschneri, Icterohaemorrhagiae isolates to Leptospira interrogans and Javanica isolates to Leptospira borgpetersenii. Genomic DNA from 17 leptospiral isolates was digested with NotI and SgrAI restriction enzymes and analysed by PFGE. Results showed that seven isolates have the same binding pattern to serovar Grippotyphosa, eight isolates to serovar Icterohaemorrhagiae and two isolates to serovar Poi. Results demonstrate the diversity of leptospires circulating in Croatia. We point out the usefulness of a combination of PFGE, RFLP and real-time PCR as appropriate molecular methods in molecular analysis of leptospires.

  20. Use of real-time PCR to detect canine parvovirus in feces of free-ranging wolves

    Science.gov (United States)

    Mech, L. David; Almberg, Emily S.; Smith, Douglas; Goyal, Sagar; Singer, Randall S.

    2012-01-01

    Using real-time PCR, we tested 15 wolf (Canis lupus) feces from the Superior National Forest (SNF), Minnesota, USA, and 191 from Yellowstone National Park (YNP), USA, collected during summer and 13 during winter for canine parvovirus (CPV)-2 DNA. We also tested 20 dog feces for CPV-2 DNA. The PCR assay was 100% sensitive and specific with a minimum detection threshold of 104 50% tissue culture infective dose. Virus was detected in two winter specimens but none of the summer specimens. We suggest applying the technique more broadly especially with winter feces.

  1. Use of real-time PCR to detect canine parvovirus in feces of free-ranging wolves.

    Science.gov (United States)

    Mech, L David; Almberg, Emily S; Smith, Douglas; Goyal, Sagar; Singer, Randall S

    2012-04-01

    Using real-time PCR, we tested 15 wolf (Canis lupus) feces from the Superior National Forest (SNF), Minnesota, USA, and 191 from Yellowstone National Park (YNP), USA, collected during summer and 13 during winter for canine parvovirus (CPV)-2 DNA. We also tested 20 dog feces for CPV-2 DNA. The PCR assay was 100% sensitive and specific with a minimum detection threshold of 10(4) 50% tissue culture infective dose. Virus was detected in two winter specimens but none of the summer specimens. We suggest applying the technique more broadly especially with winter feces.

  2. Real-time PCR-based method for rapid detection of Aspergillus niger and Aspergillus welwitschiae isolated from coffee.

    Science.gov (United States)

    von Hertwig, Aline Morgan; Sant'Ana, Anderson S; Sartori, Daniele; da Silva, Josué José; Nascimento, Maristela S; Iamanaka, Beatriz Thie; Pelegrinelli Fungaro, Maria Helena; Taniwaki, Marta Hiromi

    2018-05-01

    Some species from Aspergillus section Nigri are morphologically very similar and altogether have been called A. niger aggregate. Although the species included in this group are morphologically very similar, they differ in their ability to produce mycotoxins and other metabolites and their taxonomical status has evolved continuously. Among them, A. niger and A. welwitschiae are ochratoxin A and fumonisin B 2 producers and their detection and/or identification is of crucial importance for food safety. The aim of this study was the development of a real-time PCR-based method for simultaneous discrimination of A. niger and A. welwitschiae from other species of the A. niger aggregate isolated from coffee beans. One primer pair and a hybridization probe specific for detection of A. niger and A. welwitschiae strains were designed based on the BenA gene sequences, and used in a Real-time PCR assay for the rapid discrimination between both these species from all others of the A. niger aggregate. The Real-time PCR assay was shown to be 100% efficient in discriminating the 73 isolates of A. niger/A. welwitschiae from the other A. niger aggregate species analyzed as a negative control. This result testifies to the use of this technique as a good tool in the rapid detection of these important toxigenic species. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus

    Directory of Open Access Journals (Sweden)

    Qin E-de

    2010-06-01

    Full Text Available Abstract A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009 influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same as that of each single-target RT-PCR for pandemic H1N1 and even more sensitive for H5N1 with the same primers and probes. No cross reactivity of detecting other subtype influenza viruses or respiratory tract viruses was observed. Two hundred and thirty-six clinical specimens were tested by comparing with single real-time RT-PCR and result from the duplex assay was 100% consistent with the results of single real-time RT-PCR and sequence analysis.

  4. Comparative evaluation of conventional RT-PCR and real-time RT-PCR (RRT-PCR for detection of avian metapneumovirus subtype A Comparação entre as técnicas de RT-PCR convencional e RT-PCR em tempo real para a detecção do metapneumovírus aviários subtipo A

    Directory of Open Access Journals (Sweden)

    Helena Lage Ferreira

    2009-08-01

    Full Text Available Avian metapneumovirus (AMPV belongs to Metapneumovirus genus of Paramyxoviridae family. Virus isolation, serology, and detection of genomic RNA are used as diagnostic methods for AMPV. The aim of the present study was to compare the detection of six subgroup A AMPV isolates (AMPV/A viral RNA by using different conventional and real time RT-PCR methods. Two new RT-PCR tests and two real time RT-PCR tests, both detecting fusion (F gene and nucleocapsid (N gene were compared with an established test for the attachment (G gene. All the RT-PCR tested assays were able to detect the AMPV/A. The lower detection limits were observed using the N-, F- based RRT-PCR and F-based conventional RT-PCR (10(0.3 to 10¹ TCID50 mL-1. The present study suggests that the conventional F-based RT-PCR presented similar detection limit when compared to N- and F-based RRT-PCR and they can be successfully used for AMPV/A detection.O metapneumovírus aviário (AMPV pertence ao gênero Metapneumovirus, família Paramyxoviridae. Isolamento viral, sorologia e detecção do RNA genômico são atualmente as técnicas utilizadas para o diagnóstico desse agente. O objetivo do presente estudo foi comparar a detecção de RNA viral de seis isolados de AMPV, subtipo A (AMPV/A, utilizando diferentes métodos de RT-PCR convencional e real time RT-PCR (RRT-PCR. Duas novas técnicas de RT-PCR convencional e duas técnicas de RRT-PCR, ambas para a detecção dos genes da nucleoproteína (N e da proteína de fusão (F, foram comparadas com um RT-PCR previamente estabelecido para a detecção do AMPV (gene da glicoproteína -G. Todos esses métodos foram capazes de detectar os isolados AMPV/A. As técnicas RRT-PCR (genes F e N mostraram os menores limites de detecção (10(0.3 to 10¹ TCID50 mL-1. Os resultados sugerem que as técnicas RT-PCR convencional (gene F e as técnicas de RRT-PCR (gene F e N desenvolvidas no presente estudo podem ser utilizadas com sucesso para a detecção do

  5. Correlation of SHOX2 Gene Amplification and DNA Methylation in Lung Cancer Tumors

    International Nuclear Information System (INIS)

    Schneider, Katja U; Liebenberg, Volker; Kneip, Christoph; Seegebarth, Anke; Erdogan, Fikret; Rappold, Gudrun; Schmidt, Bernd; Dietrich, Dimo; Fleischhacker, Michael; Leschber, Gunda; Merk, Johannes; Schäper, Frank; Stapert, Henk R; Vossenaar, Erik R; Weickmann, Sabine

    2011-01-01

    DNA methylation in the SHOX2 locus was previously used to reliably detect lung cancer in a group of critical controls, including 'cytologically negative' samples with no visible tumor cell content, at a high specificity based on the analysis of bronchial lavage samples. This study aimed to investigate, if the methylation correlates with SHOX2 gene expression and/or copy number alterations. An amplification of the SHOX2 gene locus together with the observed tumor-specific hypermethylation might explain the good performance of this marker in bronchial lavage samples. SHOX2 expression, gene copy number and DNA methylation were determined in lung tumor tissues and matched morphologically normal adjacent tissues (NAT) from 55 lung cancer patients. Quantitative HeavyMethyl (HM) real-time PCR was used to detect SHOX2 DNA methylation levels. SHOX2 expression was assayed with quantitative real-time PCR, and copy numbers alterations were measured with conventional real-time PCR and array CGH. A hypermethylation of the SHOX2 locus in tumor tissue as compared to the matched NAT from the same patient was detected in 96% of tumors from a group of 55 lung cancer patients. This correlated highly significantly with the frequent occurrence of copy number amplification (p < 0.0001), while the expression of the SHOX2 gene showed no difference. Frequent gene amplification correlated with hypermethylation of the SHOX2 gene locus. This concerted effect qualifies SHOX2 DNA methylation as a biomarker for lung cancer diagnosis, especially when sensitive detection is needed, i.e. in bronchial lavage or blood samples

  6. Relative sensitivity of conventional and real-time PCR assays for detection of SFG Rickettsia in blood and tissue samples from laboratory animals.

    Science.gov (United States)

    Zemtsova, Galina E; Montgomery, Merrill; Levin, Michael L

    2015-01-01

    Studies on the natural transmission cycles of zoonotic pathogens and the reservoir competence of vertebrate hosts require methods for reliable diagnosis of infection in wild and laboratory animals. Several PCR-based applications have been developed for detection of infections caused by Spotted Fever group Rickettsia spp. in a variety of animal tissues. These assays are being widely used by researchers, but they differ in their sensitivity and reliability. We compared the sensitivity of five previously published conventional PCR assays and one SYBR green-based real-time PCR assay for the detection of rickettsial DNA in blood and tissue samples from Rickettsia- infected laboratory animals (n = 87). The real-time PCR, which detected rickettsial DNA in 37.9% of samples, was the most sensitive. The next best were the semi-nested ompA assay and rpoB conventional PCR, which detected as positive 18.4% and 14.9% samples respectively. Conventional assays targeting ompB, gltA and hrtA genes have been the least sensitive. Therefore, we recommend the SYBR green-based real-time PCR as a tool for the detection of rickettsial DNA in animal samples due to its higher sensitivity when compared to more traditional assays.

  7. Comparison of the clinical performances of the AdvanSure HPV Screening Real-Time PCR, the Abbott Real-Time High-Risk HPV Test, and the Hybrid Capture High-Risk HPV DNA Test for Cervical Cancer Screening.

    Science.gov (United States)

    Chung, Hae-Sun; Hahm, Chorong; Lee, Miae

    2014-09-01

    The clinical performance of three human papillomavirus (HPV) DNA commercial assays for cervical cancer screening was evaluated; the AdvanSure HPV Screening Real-Time PCR (AdvanSure PCR; LG Life Sciences) that was developed recently for the detection of both high-risk and low-risk genotypes, the Abbott RealTime High-Risk HPV Test (Abbott PCR; Abbott Molecular) and the Hybrid Capture High-Risk HPV DNA test (HC2; Qiagen). The three different HPV DNA tests were compared using cytology samples obtained from 619 women who underwent routine cervical cancer screening. The gold-standard assay was histopathological confirmation of cervical intraepithelial neoplasia of grade 2 or worse. The clinical sensitivities of the AdvanSure PCR, the Abbott PCR and the HC2 for the detection of cervical intraepithelial neoplasia of grade 2 or worse were 95.5%, 95.5% and 100%, respectively, while the clinical specificities were 61.6%, 86.4% and 83.3%, respectively. There were no significant differences in the clinical sensitivities of the Abbott PCR and the AdvanSure PCR compared to the HC2. The clinical specificities of the Abbott PCR and the AdvanSure PCR for the detection of HPV types 16/18 were 97.8% and 98.5%, respectively. For cervical cancer screening, all three tests showed relatively good clinical sensitivities, but the AdvanSure PCR had lower clinical specificity than the Abbott PCR and the HC2. The AdvanSure PCR and the Abbott PCR assays have the advantage of being automated and the ability to distinguish between HPV types 16/18 and other HPV types. The two real-time PCR assays could be useful tools in HPV testing for cervical cancer screening. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Optimized Pan-species and speciation duplex real-time PCR assays for Plasmodium parasites detection in malaria vectors.

    Directory of Open Access Journals (Sweden)

    Maurice Marcel Sandeu

    Full Text Available BACKGROUND: An accurate method for detecting malaria parasites in the mosquito's vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus. METHODS: Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin. RESULTS: The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6% and specificity (98%, compared to ELISA-CSP as the referent standard. The agreement between both methods was "excellent" (κ=0.8, P<0.05. The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P=0, 2. All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed. CONCLUSION: This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the

  9. Assessment of Clinically Suspected Tubercular Lymphadenopathy by Real-Time PCR Compared to Non-Molecular Methods on Lymph Node Aspirates.

    Science.gov (United States)

    Gupta, Vivek; Bhake, Arvind

    2018-01-01

    The diagnosis of tubercular lymphadenitis (TBLN) is challenging. This study assesses the role of diagnostic intervention with real-time PCR in clinically suspected tubercular lymphadenopathy in relation to cytology and microbiological methods. The cross-sectional study involved 214 patients, and PCR, cytology, and Ziehl-Neelsen (ZN) staining was performed on aspirates. The findings were compared with culture on Lowenstein-Jensen medium. The overall concordance of cytology and PCR, both individually and combined, was calculated. χ2 and Phi values were assessed between cytology, PCR, and culture. A cytological diagnosis of tuberculosis (TB), reactive lymphoid hyperplasia, and suppurative lymphadenitis was made in 71, 112, and 6 patients, respectively. PCR and culture were positive in 40% of the cases. Among the TBLN patients, PCR showed higher positivity in necrosis and culture showed higher positivity in necrotizing granuloma. Positive ZN staining was observed in 29.6% of the TBLN cases, with an overall positivity of 11%. PCR could additionally detect 82 cases missed by ZN staining. The overall concordance rate for either diagnostic modality, i.e., PCR or cytology, was highest (75%), and for PCR alone was 74%. Phi values were observed to be 0.47 between PCR and culture. Real-time PCR for Mycobacterium tuberculosis complex on aspirates offers a definitive and comparable diagnosis of TBLN. Including this approach as the primary investigation in the work-up of TBLN could reduce the burden of TB. © 2017 S. Karger AG, Basel.

  10. Application of clone library analysis and real-time PCR for comparison of microbial communities in a low-grade copper sulfide ore bioheap leachate.

    Science.gov (United States)

    Bowei, Chen; Xingyu, Liu; Wenyan, Liu; Jiankang, Wen

    2009-11-01

    The microbial communities of leachate from a bioleaching heap located in China were analyzed using the 16S rRNA gene clone library and real-time quantitative PCR. Both methods showed that Leptospirillum spp. were the dominant bacteria, and Ferroplasma acidiphilum were the only archaea detected in the leachate. Clone library results indicated that nine operational taxonomic units (OTUs) were obtained, which fell into four divisions, the Nitrospirae (74%), the gamma-Proteobacteria (14%), the Actinobacteria (6%) and the Euryarchaeota (6%). The results obtained by real-time PCR in some ways were the same as clone library analysis. Furthermore, Sulfobacillus spp., detected only by real-time PCR, suggests that real-time PCR was a reliable technology to study the microbial communities in bioleaching environments. It is a useful tool to assist clone library analysis, to further understand microbial consortia and to have comprehensive and exact microbiological information about bioleaching environments. Finally, the interactions among the microorganisms detected in the leachate were summarized according to the characteristics of these species.

  11. Modeling of 5 ' nuclease real-time responses for optimization of a high-throughput enrichment PCR procedure for Salmonella enterica

    DEFF Research Database (Denmark)

    Knutsson, R.; Löfström, Charlotta; Grage, H.

    2002-01-01

    The performance of a 5' nuclease real-time PCR assay was studied to optimize an automated method of detection of preenriched Salmonella enterica cells in buffered peptone water (BPW). The concentrations and interactions of the PCR reagents were evaluated on the basis of two detection responses, t...

  12. Rapid and Accurate Identification by Real-Time PCR of Biotoxin-Producing Dinoflagellates from the Family Gymnodiniaceae

    Directory of Open Access Journals (Sweden)

    Kirsty F. Smith

    2014-03-01

    Full Text Available The identification of toxin-producing dinoflagellates for monitoring programmes and bio-compound discovery requires considerable taxonomic expertise. It can also be difficult to morphologically differentiate toxic and non-toxic species or strains. Various molecular methods have been used for dinoflagellate identification and detection, and this study describes the development of eight real-time polymerase chain reaction (PCR assays targeting the large subunit ribosomal RNA (LSU rRNA gene of species from the genera Gymnodinium, Karenia, Karlodinium, and Takayama. Assays proved to be highly specific and sensitive, and the assay for G. catenatum was further developed for quantification in response to a bloom in Manukau Harbour, New Zealand. The assay estimated cell densities from environmental samples as low as 0.07 cells per PCR reaction, which equated to three cells per litre. This assay not only enabled conclusive species identification but also detected the presence of cells below the limit of detection for light microscopy. This study demonstrates the usefulness of real-time PCR as a sensitive and rapid molecular technique for the detection and quantification of micro-algae from environmental samples.

  13. Rapid identification and quantification of Campylobacter coli and Campylobacter jejuni by real-time PCR in pure cultures and in complex samples

    Directory of Open Access Journals (Sweden)

    Denis Martine

    2011-05-01

    Full Text Available Abstract Background Campylobacter spp., especially Campylobacter jejuni (C. jejuni and Campylobacter coli (C. coli, are recognized as the leading human foodborne pathogens in developed countries. Livestock animals carrying Campylobacter pose an important risk for human contamination. Pigs are known to be frequently colonized with Campylobacter, especially C. coli, and to excrete high numbers of this pathogen in their faeces. Molecular tools, notably real-time PCR, provide an effective, rapid, and sensitive alternative to culture-based methods for the detection of C. coli and C. jejuni in various substrates. In order to serve as a diagnostic tool supporting Campylobacter epidemiology, we developed a quantitative real-time PCR method for species-specific detection and quantification of C. coli and C. jejuni directly in faecal, feed, and environmental samples. Results With a sensitivity of 10 genome copies and a linear range of seven to eight orders of magnitude, the C. coli and C. jejuni real-time PCR assays allowed a precise quantification of purified DNA from C. coli and C. jejuni. The assays were highly specific and showed a 6-log-linear dynamic range of quantification with a quantitative detection limit of approximately 2.5 × 102 CFU/g of faeces, 1.3 × 102 CFU/g of feed, and 1.0 × 103 CFU/m2 for the environmental samples. Compared to the results obtained by culture, both C. coli and C. jejuni real-time PCR assays exhibited a specificity of 96.2% with a kappa of 0.94 and 0.89 respectively. For faecal samples of experimentally infected pigs, the coefficients of correlation between the C. coli or C. jejuni real-time PCR assay and culture enumeration were R2 = 0.90 and R2 = 0.93 respectively. Conclusion The C. coli and C. jejuni real-time quantitative PCR assays developed in this study provide a method capable of directly detecting and quantifying C. coli and C. jejuni in faeces, feed, and environmental samples. These assays represent a new

  14. Diagnosis of Barmah Forest virus infection by a nested real-time SYBR green RT-PCR assay.

    Directory of Open Access Journals (Sweden)

    Linda Hueston

    Full Text Available Barmah Forest virus (BFV is a mosquito borne (+ ssRNA alphavirus found only in Australia. It causes rash, myalgia and arthralgia in humans and is usually diagnosed serologically. We developed a real-time PCR assay to detect BFV in an effort to improve diagnosis early in the course of infection. The limit of detection was 16 genome equivalents with a specificity of 100%. Fifty five serum samples from BFV-infected patients were tested by the PCR. 52 of 53 antibody-positive samples were PCR negative. Two culture-positive (neutralizing antibody negative samples were positive on first round PCR, while one sample (IgM and neutralizing antibody strongly positive, IgG negative was positive on second round PCR, suggesting that viral RNA is detectable and transiently present in early infection. PCR can provide results faster than culture, is capable of high throughput and by sequencing the PCR product strain variants can be characterized.

  15. Identification of genes for normalization of real-time RT-PCR data in breast carcinomas

    DEFF Research Database (Denmark)

    Lyng, Maria B; Laenkholm, Anne-Vibeke; Pallisgaard, Niels

    2008-01-01

    BACKGROUND: Quantitative real-time RT-PCR (RT-qPCR) has become a valuable molecular technique in basic and translational biomedical research, and is emerging as an equally valuable clinical tool. Correlation of inter-sample values requires data normalization, which can be accomplished by various...... means, the most common of which is normalization to internal, stably expressed, reference genes. Recently, such traditionally utilized reference genes as GAPDH and B2M have been found to be regulated in various circumstances in different tissues, emphasizing the need to identify genes independent...... of factors influencing the tissue, and that are stably expressed within the experimental milieu. In this study, we identified genes for normalization of RT-qPCR data for invasive breast cancer (IBC), with special emphasis on estrogen receptor positive (ER+) IBC, but also examined their applicability to ER...

  16. Real-time polymerase chain reaction assay for endogenous reference gene for specific detection and quantification of common wheat-derived DNA (Triticum aestivum L.).

    Science.gov (United States)

    Vautrin, Sonia; Zhang, David

    2007-01-01

    A species-specific endogenous reference gene system was developed for polymerase chain reaction (PCR)-based analysis in common wheat (Triticum aestivum L.) by targeting the ALMT1 gene, an aluminium-activated malate transporter. The primers and probe were elaborated for real-time PCR-based qualitative and quantitative assay. The size of amplified product is 95 base pairs. The specificity was assessed on 17 monocot and dicot plant species. The established real-time PCR assay amplified only T. aestivum-derived DNA; no amplification occurred on other phylogenetically related species, including durum wheat (T. durum). The robustness of the system was tested on the DNA of 15 common wheat cultivars using 20 000 genomic copies per PCR the mean cycle threshold (Ct) values of 24.02 +/- 0.251 were obtained. The absolute limits of detection and quantification of the real-time PCR assay were estimated to 2 and 20 haploid genome copies of common wheat, respectively. The linearity was experimentally validated on 2-fold serial dilutions of DNA from 650 to 20 000 haploid genome copies. All these results show that the real-time PCR assay developed on the ALMT1 gene is suitable to be used as an endogenous reference gene for PCR-based specific detection and quantification of T. aestivum-derived DNA in various applications, in particular for the detection and quantification of genetically modified materials in common wheat.

  17. Performance of Droplet Digital PCR in Non-Invasive Fetal RHD Genotyping - Comparison with a Routine Real-Time PCR Based Approach.

    Directory of Open Access Journals (Sweden)

    Iveta Svobodová

    Full Text Available Detection and characterization of circulating cell-free fetal DNA (cffDNA from maternal circulation requires an extremely sensitive and precise method due to very low cffDNA concentration. In our study, droplet digital PCR (ddPCR was implemented for fetal RHD genotyping from maternal plasma to compare this new quantification alternative with real-time PCR (qPCR as a golden standard for quantitative analysis of cffDNA. In the first stage of study, a DNA quantification standard was used. Clinical samples, including 10 non-pregnant and 35 pregnant women, were analyzed as a next step. Both methods' performance parameters-standard curve linearity, detection limit and measurement precision-were evaluated. ddPCR in comparison with qPCR has demonstrated sufficient sensitivity for analysing of cffDNA and determination of fetal RhD status from maternal circulation, results of both methods strongly correlated. Despite the more demanding workflow, ddPCR was found to be slightly more precise technology, as evaluated using quantitative standard. Regarding the clinical samples, the precision of both methods equalized with decreasing concentrations of tested DNA samples. In case of cffDNA with very low concentrations, variance parameters of both techniques were comparable. Detected levels of fetal cfDNA in maternal plasma were slightly higher than expected and correlated significantly with gestational age as measured by both methods (ddPCR r = 0.459; qPCR r = 0.438.

  18. Real time RT-PCR assay for detection of different serotypes of FMDV in Egypt

    Directory of Open Access Journals (Sweden)

    Laila El-Shehawy

    Full Text Available Aim: The present study indicated that rRT-PCR could be provided for the detection of FMDV in infected, contact and carrier cattle and also provide a rapid sensitive tool aiming to aid in rapid disease detection and control. Foot and Mouth disease virus serotypes O and A still existing in Egypt. In January 2012, sever outbreaks struck the animal population in most Egyptian 1 governorates. The causative virus was identified as FMDV SAT2. Material and Methods: Five samples of tongue epithelium (ET and five oesophageal-pharyngeal (OP fluid samples were collected from FMD suspected cattle in infected farm at El-Fayoum and 20 OP samples from in-contact cattle at the same farm in addition to 30 OP samples from apparently healthy cattle at three different localities in El-Fayoum governorate (12 from Fayoum; 9 from Sinoras and 9 from Edsa in order to detect carrier cattle. All of these samples were collected during November and December 2011 and January 2012. Results: All the ET and OP samples were inoculated on BHK cell culture and baby mice. The obtained results were identified using complement fixation test in addition to real-time reverse transcriptase polymerase chain reaction (rRT-PCR. In the infected farm at El-Fayoum FMDV type SAT2 was detected in cattle which are considered as the first introduction of this type while FMDV type O and SAT2 were detected in the in-contact cattle in the same farm. The sensitivity of rRT-PCR was cleared in the in-contact cattle as 13 out of 20 OP samples were positive to FMDV by rRT-PCR while 11 out of 20 OP samples were positive to FMDV by CFT. The OP samples collected from apparently healthy cattle from Fayoum, Sinoras and Edsa localities in Fayoum governorate demonstrate the circulation of the FMDV type A, O and the recent SAT2 in carrier cattle which threaten cattle population in Fayoum governorate. Also the sensitivity of real time RT-PCR over the CFT in detection of FMDV carrier cattle was clearly noticed in

  19. Polymeric LabChip real-time PCR as a point-of-care-potential diagnostic tool for rapid detection of influenza A/H1N1 virus in human clinical specimens.

    Directory of Open Access Journals (Sweden)

    Hyun-Ok Song

    Full Text Available It is clinically important to be able to detect influenza A/H1N1 virus using a fast, portable, and accurate system that has high specificity and sensitivity. To achieve this goal, it is necessary to develop a highly specific primer set that recognizes only influenza A viral genes and a rapid real-time PCR system that can detect even a single copy of the viral gene. In this study, we developed and validated a novel fluidic chip-type real-time PCR (LabChip real-time PCR system that is sensitive and specific for the detection of influenza A/H1N1, including the pandemic influenza strain A/H1N1 of 2009. This LabChip real-time PCR system has several remarkable features: (1 It allows rapid quantitative analysis, requiring only 15 min to perform 30 cycles of real-time PCR. (2 It is portable, with a weight of only 5.5 kg. (3 The reaction cost is low, since it uses disposable plastic chips. (4 Its high efficiency is equivalent to that of commercially available tube-type real-time PCR systems. The developed disposable LabChip is an economic, heat-transferable, light-transparent, and easy-to-fabricate polymeric chip compared to conventional silicon- or glass-based labchip. In addition, our LabChip has large surface-to-volume ratios in micro channels that are required for overcoming time consumed for temperature control during real-time PCR. The efficiency of the LabChip real-time PCR system was confirmed using novel primer sets specifically targeted to the hemagglutinin (HA gene of influenza A/H1N1 and clinical specimens. Eighty-five human clinical swab samples were tested using the LabChip real-time PCR. The results demonstrated 100% sensitivity and specificity, showing 72 positive and 13 negative cases. These results were identical to those from a tube-type real-time PCR system. This indicates that the novel LabChip real-time PCR may be an ultra-fast, quantitative, point-of-care-potential diagnostic tool for influenza A/H1N1 with a high sensitivity and

  20. Real-time onestep RT-PCR for the detection and differentiation of European and North American types of PRRSV in boar semen

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Larsen, Lars Erik

    and safe diagnostic procedure, since cDNA synthesis and PCR is performed sequentially without inbetween opening of the PCR-tubes, thus eliminating a substantial contamination risk. The aim of the present study was to validate a real-time OneStep RT-PCR assay for the simultaneous detection...